
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

The Excel® Analyst’s
Guide to Access®

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

The Excel® Analyst’s
Guide to Access®

Michael Alexander

Wiley Publishing, Inc.

www.allitebooks.com

http://www.allitebooks.org

The Excel® Analyst’s Guide to Access®

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-56701-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010922044

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Excel and Access
are registered trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

www.allitebooks.com

www.wiley.com
www.wiley.com/go/permissions
http://www.allitebooks.org

This is dedicated to the fans of DataPigTechnologies.com . . .

all 12 of you.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mike Alexander is a Microsoft Certified Application Developer (MCAD) and
author of several books on advanced business analysis with Microsoft Access
and Excel. He has more than 15 years experience consulting and developing
Office solutions. Michael has been named a Microsoft MVP for his ongoing
contributions to the Excel community.

In his spare time he runs a free tutorial site, www.datapigtechnologies.com,
where he shares basic Access and Excel tips to the Office community.

vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Credits

Executive Editor
Carol Long

Project Editor
Maureen Spears

Technical Editor
Dick Kusleika

Production Editor
Kathleen Wisor

Copy Editor
C.M. Jones

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Sheilah Ledwidge, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

ix

Acknowledgments

My deepest thanks to Carol Long and Maureen Spears, for all the hours of work
put into bringing this book to life. Thanks also to Dick Kusleika (one of the
best tech editors I’ve worked with) for suggesting numerous improvements
to the examples and text in this book. Finally, a special thank you goes out to
the wife and kids for putting up with all the time spent locked away on this
project.

xi

Contents at a Glance

Introduction xxix

Part I Fundamentals of Data Analysis in Access 1

Chapter 1 The Case for Data Analysis in Access 3

Chapter 2 Access Basics 13

Chapter 3 Beyond Select Queries 47

Part II Basic Analysis Techniques 87

Chapter 4 Transforming Your Data with Access 89

Chapter 5 Working with Calculations and Dates 113

Chapter 6 Performing Conditional Analysis 141

Part III Advanced Analysis Techniques 161

Chapter 7 Adding Dimension with Subqueries and Domain
Aggregate Functions 163

Chapter 8 Running Descriptive Statistics in Access 189

Chapter 9 Scheduling and Running Batch Analysis 209

Chapter 10 Leveraging VBA to Enhance Data Analysis 243

Part IV Reports, Dashboards, and Visualization in Access 267

Chapter 11 Presenting Data with Access Reports 269

Chapter 12 Using Pivot Tables and Pivot Charts in Access 291

xiii

xiv Contents at a Glance

Chapter 13 Enhancing Queries and Reports with Visualizations 323

Part V Advanced Excel and Access Integration Techniques 345

Chapter 14 Getting Access Data into Excel 347

Chapter 15 Using VBA to Move Data between Excel and Access 365

Chapter 16 Exploring Excel and Access Automation 389

Chapter 17 Integrating Excel and Access with XML 423

Chapter 18 Integrating Excel and Other Office Applications 441

Part VI Appendixes 475

Appendix A Access VBA Fundamentals 477

Appendix B Understanding and Using SQL 489

Appendix C Query Performance, Database Corruption, and Other
Thoughts 509

Appendix D Data Analyst’s Function Reference 521

Index 563

Contents

Introduction xxix

Part I Fundamentals of Data Analysis in Access 1

Chapter 1 The Case for Data Analysis in Access 3
Where Data Analysis with Excel Can Go Wrong 3

Scalability 4
Transparency of Analytical Processes 5
Separation of Data and Presentation 7

Deciding Whether to Use Access or Excel 8
Size of Data 8
Data Structure 9
Data Evolution 9
Functional Complexity 9
Shared Processing 9

An Excel User’s Guide to Access: Don’t Panic! 10
Tables 10
Queries 11
Reports 11
Macros and VBA 12

Summary 12

Chapter 2 Access Basics 13
Access Tables 13

Table Basics 13
Opening a Table in the Datasheet View 14
Identifying Important Table Elements 14

xv

xvi Contents

Opening a Table in the Design View 15
Exploring Data Types 15
Creating a Table from Scratch 17
Working with Field Properties 19
Setting Primary Keys 21

Importing Data into Access 22
Importing Data from Text File 26

Linking an Excel Worksheet to Access 27
Understanding the Relational Database Concept 28

Why Is This Concept Important? 28
Excel and the Flat-File Format 29
Splitting Data into Separate Tables 30
Relationship Types 31

Query Basics 32
What Is a Query? 33
Creating Your First Select Query 34

Sorting Query Results 37
Filtering Query Results 38
Querying Multiple Tables 39
Refining the Query 41
Using Operators in Queries 41

The Top Ten Query Errors 44
Summary 46

Chapter 3 Beyond Select Queries 47
Aggregate Queries 47

Creating an Aggregate Query 47
About Aggregate Functions 51

Group By 52
Sum, Avg, Count, StDev, Var 53
Min, Max, First, Last 54
Expression, Where 54

Action Queries 56
Why Use Action Queries? 57
Make-Table Queries 57

Why Use a Make-Table Query? 57
What Are the Hazards of Make-Table Queries? 57
Creating a Make-Table Query 58

Delete Queries 60
Why Use a Delete Query? 60
What Are the Hazards of Delete Queries? 61
Creating a Delete Query 61

Append Queries 64
Why Use an Append Query? 64
What Are the Hazards of Append Queries? 64
Creating an Append Query 66

Contents xvii

Update Queries 70
Why Use an Update Query? 70
What Are the Hazards of Update Queries? 70
Creating an Update Query 70
A Word on Updatable Datasets 72

Crosstab Queries 73
Using the Crosstab Query Wizard 74
Creating a Crosstab Query Manually 79

Customizing Your Crosstab Queries 82
Summary 85

Part II Basic Analysis Techniques 87

Chapter 4 Transforming Your Data with Access 89
Finding and Removing Duplicate Records 89

Defining Duplicate Records 90
Finding Duplicate Records 91
Removing Duplicate Records 94

Common Transformation Tasks 96
Filling in Blank Fields 96
Concatenating 98

Concatenating Fields 98
Augmenting Field Values with Your Own Text 99

Changing Case 100
Removing Leading and Trailing Spaces from a String 103
Finding and Replacing Specific Text 103
Adding Your Own Text in Key Positions Within a String 105
Parsing Strings Using Character Markers 109

Query 1 110
Query 2 111

Summary 112

Chapter 5 Working with Calculations and Dates 113
Using Calculations in Your Analysis 113

Common Calculation Scenarios 114
Using Constants in Calculations 114
Using Fields in Calculations 115
Using the Results of Aggregation in Calculations 115
Using the Results of One Calculation as an Expression in

Another 115
Using a Calculation as an Argument in a Function 116

Using the Expression Builder to Construct Calculations 117
Common Calculation Errors 122

Understanding the Order of Operator Precedence 122
Watching Out for Null Values 123
Watching the Syntax in Your Expressions 125

xviii Contents

Using Dates in Your Analysis 125
Simple Date Calculations 126
Advanced Analysis Using Functions 127

The Date Function 127
The DateAdd Function 132
Grouping Dates into Quarters 134
The DateSerial Function 136

The New Calculated Data Type 137
Summary 139

Chapter 6 Performing Conditional Analysis 141
Using Parameter Queries 141

How Parameter Queries Work 143
Ground Rules of Parameter Queries 143
Working with Parameter Queries 144

Working with Multiple Parameter Conditions 144
Combining Parameters with Operators 145
Combining Parameters with Wildcards 145
Using Parameters as Calculation Variables 146
Using Parameters as Function Arguments 146

Using Conditional Functions 149
The IIf Function 150

Using IIf to Avoid Mathematical Errors 150
Using IIf to Save Time 152
Nesting IIf Functions for Multiple Conditions 154
Using IIf Functions to Create Crosstab Analyses 154

The Switch Function 156
Comparing the IIf and Switch Functions 157

Summary 159

Part III Advanced Analysis Techniques 161

Chapter 7 Adding Dimension with Subqueries and Domain
Aggregate Functions 163
Enhancing Your Analysis with Subqueries 164

Why Use Subqueries? 165
Subquery Ground Rules 165
Creating Subqueries Without Typing SQL Statements 165
Using IN and NOT IN with Subqueries 168
Using Subqueries with Comparison Operators 169
Using Subqueries as Expressions 170
Using Correlated Subqueries 170

Uncorrelated Subqueries 171
Correlated Subqueries 171
Using a Correlated Subquery as an Expression 173

www.allitebooks.com

http://www.allitebooks.org

Contents xix

Using Subqueries Within Action Queries 173
A Subquery in a Make-Table Query 173
A Subquery in an Append Query 173
A Subquery in an Update Query 174
A Subquery in a Delete Query 174

Domain Aggregate Functions 177
Understanding the Different Domain Aggregate Functions 178
Examining the Syntax of Domain Aggregate Functions 179

Using No Criteria 180
Using Text Criteria 180
Using Number Criteria 180
Using Date Criteria 181

Using Domain Aggregate Functions 181
Calculating the Percent of Total 182
Creating a Running Count 183
Using a Value from the Previous Record 184

Summary 186

Chapter 8 Running Descriptive Statistics in Access 189
Basic Descriptive Statistics 190

Running Descriptive Statistics with Aggregate Queries 190
Determining Rank, Mode, and Median 191

Ranking the Records in Your Dataset 191
Getting the Mode of a Dataset 192
Getting the Median of a Dataset 194

Pulling a Random Sampling from Your Dataset 196
Advanced Descriptive Statistics 198

Calculating Percentile Ranking 198
Determining the Quartile Standing of a Record 200
Creating a Frequency Distribution 202

Summary 207

Chapter 9 Scheduling and Running Batch Analysis 209
Introduction to Access Macros 210

Dealing with Access Macro Security 210
The Quick Fix 212
The Long-Term Fix 213

Creating Your First Macro 213
Essential Macro Actions 216

Manipulating Forms, Queries, Reports, and Tables 216
The Access Environment 216
Executing Processes 217
Outputting Data 217

Setting Up and Managing Batch Analysis 218
Getting Organized 218

xx Contents

Using a Logical Naming Convention 218
Using the Description Property 221

Setting Up a Basic Batch Analysis 222
Building Smarter Macros 223

If. . .Then in Access 2010 Macros 224
If. . .Then in Access 2007 Macros 225
If. . .Then. . .Else in Access 2010 Macros 225
If. . .Then. . .Else in Access 2007 Macros 227

Looping with Macros 228
Scheduling Macros to Run Nightly 232

Using an AutoExec Macro to Schedule Tasks 232
Using the Windows Task Scheduler 233

Using Command Lines to Schedule Tasks 238
When to Use Command Lines to Schedule Tasks Instead

of AutoExec 239
Scheduling a Macro to Run Using a Command Line 239

Summary 240

Chapter 10 Leveraging VBA to Enhance Data Analysis 243
Creating and Using Custom Functions 244

Creating Your First Custom Function 245
Creating a Custom Function that Accepts Arguments 248

Controlling Analytical Processes with Forms 251
The Basics of Passing Data from a Form to a Query 251
Enhancing Automation with Forms 255

Enumerating Through a Combo Box 258
Processing Data Behind the Scenes 260

Processing Data with RunSQL Statements 261
The Basics of the RunSQL Method 261
Using RunSQL Statements 262

Advanced Techniques Using RunSQL Statements 263
Suppressing Warning Messages 263
Passing a SQL Statement as a Variable 264
Passing User-Defined Parameters from a Form to Your

SQL Statement 264
Summary 265

Part IV Reports, Dashboards, and Visualization in Access 267

Chapter 11 Presenting Data with Access Reports 269
Access Report Basics 269

Creating Your First Report 269
Viewing Your Report 271

Report View 271
Layout View 273

Contents xxi

Design View 273
Page Footer 275
Report Footer 276

Creating and Modifying Grouped Reports 276
Grouping 277
Sorting and Totaling 279

Creating a Report from Scratch 283
Creating Your Source Data 283
Building the Report in Design View 285

Summary 289

Chapter 12 Using Pivot Tables and Pivot Charts in Access 291
Pivot Tables in Access? 292
The Anatomy of a Pivot Table 292

The Totals and Detail Area 293
The Row Area 294
The Column Area 294
The Filter Area 294

Creating a Basic Pivot Table 295
Creating an Advanced Pivot Table with Details 300
Saving Your Pivot Table 302
Sending Your Access Pivot Table to Excel 303
Pivot Table Options 303

Expanding and Collapsing Fields 304
Changing Field Captions 304
Sorting Data 306
Grouping Data 306
Using Date Groupings 308
Filter for Top and Bottom Records 310
Adding a Calculated Total 311

Working with Pivot Charts in Access 313
Pivot Chart Fundamentals 314

Data Area 314
Series Area 314
Category Area 314
Filter Area 316

Creating a Basic Pivot Chart 316
Formatting Your Pivot Chart 319

Summary 321

Chapter 13 Enhancing Queries and Reports with Visualizations 323
Basic Visualization Techniques 323

Using Number Formatting Tricks to Enhance Reporting 324
Using Conditional Formatting in Access 326

xxii Contents

Apply Conditional Formatting to a Field Based on its
Own Value 327

Apply Conditional Formatting Based on another
Control’s Value 329

Clearing Conditional Formatting 330
Advanced Visualization Techniques 331

Enhancing Queries and Reports with Data Bars 331
Introducing the STRING Function 331
Extending Data Bars to Reports 334

Sprucing up Queries and Reports with Symbols 335
Using Your Own Dashboard Graphics in Access 339

Storing External Graphics in an Access Table 339
Using the Graphics Table 341
Using Multiple Sets of Graphics 342

Summary 343

Part V Advanced Excel and Access Integration Techniques 345

Chapter 14 Getting Access Data into Excel 347
The Different Methods for Importing Access Data 347

The Drag and Drop Method 347
Using the Export Wizard from Access 348
Using Get External Data from Excel 350
Using MS Query 353

Starting MS Query 354
Setting up Your Data Source 355
Building Your Custom Data Pull 357

Summary 362

Chapter 15 Using VBA to Move Data between Excel and Access 365
Understanding ADO Fundamentals 366

The Connection String 366
Declaring a Recordset 368

Return Read Only Data from a Table or Query 368
Return Updateable Data from a Table or Query 369

Writing Your First ADO Procedure 369
Referencing the ADO Object Library 370
Writing the Code 371
Using the Code 373

Writing Your First ADO/SQL Data Extract 374
Using Criteria in Your SQL Statements 376

Set Numeric Criteria 377
Set Textual Criteria 377
Set Date Criteria 377

Contents xxiii

Set Multiple Criteria 377
Using the LIKE Operator with ADO 378

Common Scenarios Where VBA Can Help 380
Query Data from an Excel Workbook 380
Append Records to an Existing Excel Table 382
Append Excel Records to an Existing Access Table 384
Querying Text Files 386

Summary 387

Chapter 16 Exploring Excel and Access Automation 389
Understanding the Concept of Binding 389

Early Binding 390
Late Binding 390

Automating Excel from Access 391
Creating Your First Excel Automation Procedure 391
Automating Data Export to Excel 394

Sending one Recordset to Excel 394
Sending Two Datasets to Two Different Tabs in the Same

Workbook 396
Automating Excel Reports: Without Programming Excel 398
Using Find and Replace to Adjust Macro-Generated Code 404
Running an Excel Macro from Access 406
Optimizing Macro-Generated Code 407

Removing Navigation Actions 408
Deleting Code that Specifies Default Settings 408
Cleaning Up Double Takes and Mistakes 409
Temporarily Disabling Screen Updating 410

Automating Access from Excel 411
Setting the Required References 411
Running an Access Query from Excel 412
Running Access Parameter Queries from Excel 413
Running an Access Macro from Excel 418
Opening an Access Report from Excel 419
Opening an Access Form from Excel 419
Compacting an Access Database from Excel 420

Summary 422

Chapter 17 Integrating Excel and Access with XML 423
Why XML? 423
Understanding XML 424

The XML Declaration 424
Processing Instructions 425
Comments 425

xxiv Contents

Elements 425
The Root Element 426
Attributes 427
Namespaces 428

Creating a Simple Reporting Solution with XML 429
Exporting XML Data from Access 429
Utilize XML Data in Excel 432

Creating a Data Entry Process Using XML 434
Creating the Data Entry Schema in Access 434
Setting up the Data Entry Form in Excel 435
Exporting Results from Excel to XML 436
Getting the Results Back into Access 437

Summary 439

Chapter 18 Integrating Excel and Other Office Applications 441
Integrating Excel with Microsoft Word 441

Creating a Dynamic Link to an Excel Table 442
Linking an Excel Table to Word 442
Preventing the Link from Automatically Updating 444

Getting Excel Data to a Word Document Using Automation 445
Creating a Word Mail Merge Document 448
Simulating the Word Mail Merge Function from Excel 452

Integrating Excel with PowerPoint 456
Creating a PowerPoint Slide with a Title 456
Copying a Range of Cells to a Presentation 458
Sending All Excel Charts to the Presentation 460
Converting a Workbook into a PowerPoint Presentation 462

Integrating Excel and Outlook 465
Mailing the Active Workbook 465
Mailing a Specific Range 466
Mailing to All Email Addresses in Your Contact List 468
Saving All Attachments in a Folder 470
Saving Certain Attachments to a Folder 471

Summary 474

Part VI Appendixes 475

Appendix A Access VBA Fundamentals 477
Covering the Basics in 10 Steps 477

Step 1: Creating a Standard Module 478
Step 2: Creating a Function 478
Step 3: Giving Your Function Purpose with a Procedure 479
Step 4: Testing Your Function 480

Contents xxv

Step 5: Declaring a Variable 481
Step 6: Assigning a Value to a Variable 481
Step 7: Compiling Your Newly Created Function 482
Step 8: Saving Your Newly Created Function 482
Step 9: Running Your Function in a Macro 483
Step 10: Running Your Function from a Form 484

Letting Access Teach You VBA 485

Appendix B Understanding and Using SQL 489
Understanding Basic SQL 489

The SELECT Statement 491
Selecting Specific Columns 491
Selecting All Columns 492

The WHERE Clause 492
Making Sense of Joins 493

Inner Joins 493
Outer Joins 494

Getting Fancy with Advanced SQL Statements 495
Expanding Your Search with the Like Operator 496
Selecting Unique Values and Rows without Grouping 496
Grouping and Aggregating with the GROUP BY Clause 498

The HAVING Clause 498
Setting Sort Order with the ORDER BY Clause 499
Creating Aliases with the AS Clause 499

Creating a Column Alias 499
Creating a Table Alias 499

SELECT TOP and SELECT TOP PERCENT 500
Top Values Queries Explained 500
SELECT TOP 500
SELECT TOP PERCENT 502

Performing Action Queries via SQL Statements 502
Make-Table Queries Translated 502
Append Queries Translated 503
Update Queries Translated 503
Delete Queries Translated 503

Creating Crosstabs with the TRANSFORM Statement 503
Using SQL Specific Queries 504

Merging Datasets with the UNION Operator 504
Creating a Table with the CREATE TABLE Statement 506
Manipulating Columns with the ALTER TABLE Statement 506

Adding a Column with the ADD Clause 507
Altering a Column with the ALTER COLUMN Clause 507
Deleting a Column with the DROP COLUMN Clause 507
Dynamically Adding Primary Keys with the ADD

CONSTRAINT Clause 508

xxvi Contents

Appendix C Query Performance, Database Corruption, and Other
Thoughts 509
Optimizing Query Performance 509

Understanding Access’s Query Optimizer 509
Steps You Can Take to Optimize Query Performance 510

Normalizing Your Database Design 510
Using Indexes on Appropriate Fields 510
Optimizing by Improving Query Design 512
Compacting and Repairing Your Database Regularly 513

Handling Database Corruption 513
Signs and Symptoms of a Corrupted Database 514

Watching for Corruption in Seemingly Normal Databases 514
Common Errors Associated with Database Corruption 515

Recovering a Corrupted Database 516
Steps You Can Take to Prevent Database Corruption 517

Backing Up Your Database on a Regular Basis 517
Compacting and Repairing Your Database on a Regular

Basis 518
Avoiding Interruption of Service While Writing to Your

Database 518
Never Working with a Database from Removable Media 519

Getting Help in Access 519
Location Matters When Asking for Help 519
Online Help Is Better than Offline Help 520
Diversifying Your Knowledgebase with Online Resources 520

Appendix D Data Analyst’s Function Reference 521
Abs 521
Asc 522
Atn 522
Choose 522
Chr 523
Cos 523
Date 523
DateAdd 523
DateDiff 524
DatePart 526
DateSerial 527
DateValue 527
Day 528
DDB 528
Domain Aggregate Functions 529
Exp 531
FormatCurrency 531

Contents xxvii

FormatDateTime 532
FormatNumber 532
FormatPercent 533
FV 534
Hour 535
IIf 535
InStr 535
InStrRev 536
IPmt 537
IRR 537
IsError 538
IsNull 538
IsNumeric 538
LCase 539
Left 539
Len 539
Log 540
Mid 540
Minute 540
MIRR 541
Month 541
MonthName 542
Now 542
NPer 542
NPV 543
NZ 543
Partition 544
Pmt 544
PPmt 545
PV 546
Rate 546
Replace 547
Right 548
Rnd 548
Round 549
Second 549
Sgn 550
Sin 550
SLN 550
Space 551
SQL Aggregate Functions 551
Sqr 552
Str 552

xxviii Contents

StrConv 553
String 554
StrReverse 554
Switch 554
SYD 555
Tan 555
Time 556
TimeSerial 556
TimeValue 556
Trim, LTrim, RTrim 557
TypeName 557
UCase 558
Val 559
VarType 559
Weekday 560
WeekdayName 561
Year 561

Index 563

www.allitebooks.com

http://www.allitebooks.org

Introduction

If you were to ask a random sampling of people what data analysis is, most
would say that it is the process of calculating and summarizing data to get
an answer to a question. In one sense, they are correct. However, the actions
they are describing represent only a small part of the process known as data
analysis.

For example, if you were asked to analyze how much revenue in sales your
company made last month, what would you have to do in order to complete
that analysis? You would just calculate and summarize the sales for the month,
right? Well, where would you get the sales data? Where would you store the
data? Would you have to clean up the data when you got it? How would you
present your analysis: by week, by day, by location? The point being made
here is that the process of data analysis is made up of more than just calculating
and summarizing data.

A more representative definition of data analysis is the process of sys-
tematically collecting, transforming, and analyzing data in order to present
meaningful conclusions. To better understand this concept, think of data
analysis as a process that encapsulates four fundamental actions: collection,
transformation, analysis, and presentation.

Collection. Collection encompasses the gathering and storing of
data—that is, where you obtain your data, how you will receive your
data, how you will store your data, and how you will access your data
when it comes time to perform some analysis.

Transformation. Transformation is the process of ensuring your data is
uniform in structure, free from redundancy, and stable. This generally

xxix

xxx Introduction

entails things like establishing a table structure, cleaning text, removing
blanks, and standardizing data fields.

Analysis. Analysis is the investigation of the component parts of your
data and their relationships to your data source as a whole. You are
analyzing your data when you are calculating, summarizing, categorizing,
comparing, contrasting, examining, or testing your data.

Presentation. In the context of data analysis, presentation deals with how
you make the content of your analysis available to a certain audience.
That is, how you choose to display your results. Some considerations that
go along with presentation of your analysis include the platform you will
use, the levels of visibility you will provide, and the freedom you will
give your audience to change their view.

As you think about these four fundamental actions, think about this reality:
most analysts are severely limited to one tool—Excel. This means that all of
the complex actions involved in each of these fundamentals are mostly being
done with and in Excel. What’s the problem with that? Well, Excel is not
designed to do many of these actions. However, many analysts are so limited
in their toolsets that they often go into hand-to-hand combat with their data,
creating complex workarounds and inefficient processes.

What this book highlights is that there are powerful functionalities in Access
that can help you go beyond your one dimensional spreadsheet and liberate
you from the daily grind of managing and maintaining redundant analytical
processes. Indeed, using Access for your data analysis needs can help you
streamline your analytical processes, increase your productivity, and analyze
the larger datasets that have reached Excel’s limitations.

Throughout this book, you will come to realize that Access is not the
dry database program used only for storing data and building departmental
applications. Access possesses strong data analysis functionalities that are
easy to learn and certainly applicable to many types of organizations and data
systems.

What to Expect from This Book

After reading the first three chapters, you will be able to demonstrate profi-
ciency in Access, executing powerful analysis on large datasets that have long
since reached Excel’s limitations. After the first nine chapters, you’ll be able to
add depth and dimension to your analysis with advanced Access functions,
building complex analytical processes with ease. By the end of the book,
you’ll be creating your own custom functions, performing batch analysis, and

Introduction xxxi

developing automated procedures that essentially run on their own. You’ll
also you will be able to analyze large amounts of data in a meaningful way,
quickly slice data into various views on the fly, automate redundant analysis,
save time, and increase productivity.

What Not to Expect from This Book

It’s important to note that there are aspects of Access and data analysis that
are out of the scope of this book.

While this book does cover the fundamentals of Access, it is always in the
light of data analysis and it is written from a data analyst’s point of view.
This is not meant to be an all-encompassing book on Access. That being said,
if you are a first-time user of Access, you can feel confident that this book
will provide you with a solid introduction to Access that will leave you with
valuable skills you can use in your daily operations.

This book is not meant to be a book on data management theory and
best practices. Nor is it meant to expound on high-level business intelligence
concepts. This is more of a ‘‘technician’s’’ book, providing hands-on instruction
that introduces Access as an analytical tool that can provide powerful solutions
to common analytical scenarios and issues.

Finally, while this book does contain a chapter that demonstrates various
techniques to perform a whole range of statistical analysis, it is important
to note that this book does not cover statistics theory, methodology, or best
practices.

Skills Required for This Book

In order to get the most out of this book, it’s best that you have certain skills
before diving into the topics highlighted in this book. The ideal candidate for
this book will have:

Some experience working with data and familiarity with the basic con-
cepts of data analysis such as working with tables, aggregating data, and
performing calculations

Experience using Excel with a strong grasp of concepts such as table
structures, filtering, sorting and using formulas

Some basic knowledge of Access; enough to know it exists and to have
opened a database once or twice

xxxii Introduction

How This Book is Organized

The following sections discuss this books structure and what it has to offer.

Part I: Fundamentals of Data Analysis in Access
Part I, which includes Chapters 1 , 2 and 3, provides a condensed introduction
to Access. Here, you will learn some of the basic fundamentals of Access,
along with the essential query skills required throughout the rest of the book.
Topics covered in this part are: relational database concepts, query basics,
using aggregate queries, action queries, and Crosstab queries.

Part II: Basic Analysis Techniques
Part II introduces you to some of the basic analytical tools and techniques
available in Access. Chapter 4 covers data transformation, providing examp-
les of how to clean and shape raw data into staging areas. Chapter 5 provides
in-depth instruction on how to create and utilize custom calculations in
analysis. Chapter 5 also shows you how to work with dates, using them
in simple date calculations. Chapter 6 introduces you to some conditional
analysis techniques that allow for the addition of business logic into analytical
processes.

Part III: Advanced Analysis Techniques
Part III demonstrates many of the advanced techniques that truly bring data
analysis to the next level. Chapter 7 introduces you to powerful subquery
and domain aggregate functionality. Chapter 8 demonstrates many of the
advanced statistical analysis that can be performed using subqueries and
domain aggregate functions. Chapter 9 provides you with an in-depth look
at Access macros and how to schedule batch data processing. Chapter 10 not
only shows you how to use SQL and VBA to run data analysis without queries,
but also how to create your own custom functions.

Part IV: Reports, Dashboards and Visualizations in Access
Part IV focuses on building reports and visualizations using Access. In
Chapter 11, you will cover the basics of turning data into a slick-looking
PDF-style Access reports. The chapter also talks about creating charts in
Access to enhance the look and feel of Access reports. Chapter 12 discusses the
real-world benefits of using the built-in PivotTable and PivotChart function-
ality found in Access. Chapter 13 demonstrates some of the innovative ways

Introduction xxxiii

you can implement dashboard-style visualizations in your Access Queries
and Reports.

Part V: Advanced Excel and Access Integration
Techniques
Part V turns your attention to automation and integration, showing you how
your reporting mechanisms can be enhanced by leveraging other programs
and platforms. Chapter 14 discusses the various ways to move data between
Excel and Access using VBA and ADO. Chapter 15 focuses on using Excel
and Access automation to manage the inevitable need to show parts of your
reporting through Excel. In Chapter 16, you’re introduced to the automation
techniques, which allow Excel and Access to take control of one another,
resulting in some interesting reporting options. In Chapter 17, you get a
thorough introduction to XML including a detailed explanation of how XML
can collect and transfer data. You conclude with Chapter 18, where you’ll get
a taste of some of the techniques you can use to integrate Excel and other
applications in the Microsoft Office suite. Here, you will be shown how to
perform the most common tasks in more efficient ways through integration.

Part VI: Appendixes
Part VI includes useful reference materials that will assist you in your every-
day dealings with Access. Appendix A provides a high-level overview of
VBA for those users who are new to the world of Access programming.
Appendix B introduces SQL, offering a concise tutorial on SQL syntax and
usage. Appendix C offers ideas on how to avoid performance and corruption
issues when working with Access databases. Appendix D details many of the
built-in Access functions that are available to data analysts.

Conventions

To help you get the most from the text and keep track of what’s happening,
we’ve used a number of conventions throughout the book.

TRICKS OF THE TRADE

These features give you in-depth information on how to handle specific prob-
lems you might encounter when working with Access.

xxxiv Introduction

WARNING These hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are
presented like this.

As for styles in the text:
We highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.

We show file names, URLs, and code within the text like so:
persistence.properties.

We present code as follows:

We use a monofont type for code examples.

Companion Database

The examples demonstrated throughout this book can be found in the com-
panion database. This sample database is located at www.wiley.com/go/

excelanalystguide.

www.wiley.com/go/excelanalystguide
www.wiley.com/go/excelanalystguide

P a r t

I
Fundamentals of Data Analysis

in Access

In This Part

Chapter 1: The Case for Data Analysis in Access
Chapter 2: Access Basics
Chapter 3: Beyond Select Queries

C H A P T E R

1
The Case for Data Analysis

in Access

When you ask most people which software tool they use for their daily data
analysis, the answer you most often get is Excel. Indeed, if you were to enter
the key words data analysis in an Amazon.com search, you would get a plethora
of books on how to analyze your data with Excel. Well if so many people
seem to agree that using Excel to analyze data is the way to go, why bother
using Access for data analysis? The honest answer: to avoid the limitations
and issues that plague Excel.

This is not meant to disparage Excel. Many people across varying industries
have used Excel for years, considering it the tool of choice for performing and
presenting data analysis. Anyone who does not understand Excel in today’s
business world is undoubtedly hiding that shameful fact. The interactive,
impromptu analysis that Excel can perform makes it truly unique in the
industry.

However, Excel is not without its limitations, as you will see in the following
section.

Where Data Analysis with Excel Can Go Wrong

Years of consulting experience have brought me face to face with man-
agers, accountants, and analysts who all have had to accept one simple fact:
Their analytical needs had outgrown Excel. They all met with fundamen-
tal issues that stemmed from one or more of Excel’s three problem areas:
scalability, transparency of analytical processes, and separation of data and
presentation.

3

4 Part I ■ Fundamentals of Data Analysis in Access

Scalability

Scalability is the ability of an application to develop flexibly to meet growth
and complexity requirements. In the context of this chapter, scalability refers
to Excel’s ability to handle ever-increasing volumes of data. Most Excel
aficionados will be quick to point out that as of Excel 2007, you can place
1,048,576 rows of data into a single Excel worksheet. This is an overwhelming
increase from the limitation of 65,536 rows imposed by previous versions of
Excel. However, this increase in capacity does not solve all of the scalability
issues that inundate Excel.

Imagine that you are working in a small company and you are using Excel
to analyze your daily transactions. As time goes on, you build a robust process
complete with all the formulas, pivot tables, and macros you need to analyze
the data stored in your neatly maintained worksheet.

As your data grows, you will first notice performance issues. Your spread-
sheet will become slow to load and then slow to calculate. Why will this
happen? It has to do with the way Excel handles memory. When an Excel file
is loaded, the entire file is loaded into memory. Excel does this to allow for
quick data processing and access. The drawback to this behavior is that each
time something changes in your spreadsheet, Excel has to reload the entire
spreadsheet into memory. The net result in a large spreadsheet is that it takes a
great deal of memory to process even the smallest change in your spreadsheet.
Eventually, each action you take in your gigantic worksheet will become an
excruciating wait.

Your pivot tables will require bigger pivot caches, almost doubling your
Excel workbook’s file size. Eventually, your workbook will be too big to dis-
tribute easily. You may even consider breaking down the workbook into
smaller workbooks (possibly one for each region). This causes you to duplicate
your work. Not to mention the extra time and effort it would take should you
want to recombine those workbooks.

In time, you may eventually reach the 1,048,576-row limit of your worksheet.
What happens then? Do you start a new worksheet? How do you analyze two
datasets on two different worksheets as one entity? Are your formulas still
good? Will you have to write new macros?

These are all issues you need to deal with.
Of course, you will have the Excel power-users, who will find various clever

ways to work around these limitations. In the end, though, they will always be
just workarounds. Eventually, even these power-users will begin to think less
about the most effective way to perform and present analysis of their data and
more about how to make something ‘‘fit’’ into Excel without breaking their
formulas and functions. Excel is flexible enough that a proficient user can make
most things fit into Excel just fine. However, when users think only in terms

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ The Case for Data Analysis in Access 5

of Excel, they are undoubtedly limiting themselves, albeit in an incredibly
functional way.

In addition, these capacity limitations often force Excel users to have the
data prepared for them. That is, someone else extracts large chunks of data
from a large database and then aggregates and shapes the data for use in
Excel. Should the serious analyst always be dependent on someone else for his
or her data needs? What if an analyst could be given the tools to access vast
quantities of data without being reliant on others to provide data? Could that
analyst be more valuable to the organization? Could that analyst focus on the
accuracy of the analysis and the quality of the presentation, instead of routing
Excel data maintenance?

Access is an excellent (many would say logical) next step for the analyst
who faces an ever-increasing data pool. Since an Access table takes very
few performance hits with larger datasets and has no predetermined row
limitations, an analyst can handle larger datasets without requiring the data
to be summarized or prepared to fit into Excel. Since many tasks can be
duplicated in both Excel and Access, an analyst proficient at both will
be prepared for any situation. The alternative is telling everyone, ‘‘Sorry,
it is not in Excel.’’

Also, if ever a process becomes more crucial to the organization and needs
to be tracked in a more enterprise-acceptable environment, it will be easier to
upgrade and scale up if that process is already in Access.

NOTE An Access table is limited to 256 columns but has no row limitation. This
is not to say that Access has unlimited data storage capabilities. Every bit of data
causes the Access database to grow in file size. An Access database has a file-size
limitation of 2 gigabytes.

Transparency of Analytical Processes
One of Excel’s most attractive features is its flexibility. Each cell can contain
text, a number, a formula, or practically anything else the user defines. Indeed,
this is one of the fundamental reasons Excel is such an effective tool for
data analysis. Users can use named ranges, formulas, and macros to create
an intricate system of interlocking calculations, linked cells, and formatted
summaries that work together to create a final analysis.

So what is the problem with that? The problem is that there is no trans-
parency of analytical processes. Thus, it is extremely difficult to determine
what is actually going on in a spreadsheet. Anyone who has had to work
with a spreadsheet created by someone else knows all too well the frustration
that comes with deciphering the various gyrations of calculations and links
being used to perform some analysis. Small spreadsheets performing modest

6 Part I ■ Fundamentals of Data Analysis in Access

analysis are painful to decipher, while large, elaborate, multi-worksheet
workbooks are virtually impossible to decode, often leaving you to start
from scratch.

Even auditing tools available with most Excel add-in packages provide
little relief. Figure 1-1 shows the results of a formula auditing tool run on
an actual workbook used by a real company. It’s a list of all the formulas in
this workbook. The idea is to use this list to find and make sense of existing
formulas. Notice that line one shows that there are 156 formulas. Yeah, this list
helps a lot; good luck.

Figure 1-1: Formula auditing tools don’t help much in deciphering spreadsheets.

Compared to Excel, Access might seem rigid, strict, and unwavering in its
rules. No, you can’t put formulas directly into data fields. No, you can’t link
a data field to another table. To many users, Excel is the cool gym teacher
who lets you do anything, while Access is the cantankerous librarian who
has nothing but error messages for you. All this rigidity comes with a benefit,
however.

Since only certain actions are allowable, you can more easily come to
understand what is being done with a set of data in Access. If a dataset is
being edited, a number is being calculated, or if any portion of the dataset
is being affected as a part of an analytical process, you will readily see that
action. This is not to say that users can’t do foolish and confusing things
in Access. However, you definitely will not encounter hidden steps in an
analytical process such as hidden formulas, hidden cells, or named ranges in
dead worksheets.

Chapter 1 ■ The Case for Data Analysis in Access 7

Separation of Data and Presentation
Data should be separate from presentation; you do not want the data to become
too tied to any particular way of presenting it. For example, when you receive
an invoice from a company, you don’t assume that the financial data on that
invoice is the true source of your data. Rather, it is a presentation of your
data. It can be presented to you in other manners and styles on charts or on
Web sites, but such representations are never the actual source of data. This
sounds obvious, but it becomes an important distinction when you study an
approach of using Access and Excel together for data analysis.

What exactly does this concept have to do with Excel? People who perform
data analysis with Excel, more often than not, tend to fuse the data, the
analysis, and the presentation together. For example, you will often see an
Excel Workbook that has 12 worksheets, each representing a month. On each
worksheet, data for that month is listed along with formulas, pivot tables,
and summaries. What happens when you are asked to provide a summary by
quarter? Do you add more formulas and worksheets to consolidate the data
on each of the month worksheets? The fundamental problem in this scenario
is that the worksheets actually represent data values that are fused into the
presentation of your analysis. The point here is that data should not be tied to
a particular presentation, no matter how apparently logical or useful it may
be. However, in Excel, it happens all the time.

In addition, as previously discussed, because all manners and phases of
analysis can be done directly within a spreadsheet, Excel cannot effectively
provide adequate transparency to the analysis. Each cell has the potential of
holding formulas, becoming hidden, and containing links to other cells. In
Excel, this blurs the line between analysis and data, which makes it difficult
to determine exactly what is going on in a spreadsheet. Moreover, it takes a
great deal of effort in the way of manual maintenance to ensure that edits and
unforeseen changes don’t affect previous analyses.

Access inherently separates its analytical components into tables, queries,
and reports. By separating these elements, Access makes data less sensitive to
changes and creates a data analysis environment where you can easily respond
to new requests for analysis without destroying previous analyses.

Many who use Excel will find themselves manipulating its functionalities
to approximate this database behavior. If you find yourself in this situation,
you must consider that if you are using Excel’s functionality to make it behave
like a database application, perhaps the real thing just might have something
to offer. Utilizing Access for data storage and analytical needs would enhance
overall data analysis and would allow the Excel power-user to focus on the
presentation in his or her spreadsheets.

In the future, there will be more data, not less. Likewise, there will be more
demands for complex data analysis, not fewer. Power-users are going to need

8 Part I ■ Fundamentals of Data Analysis in Access

to add some tools to their repertoire in order to get away from being simply
spreadsheet mechanics. Excel can be stretched to do just about anything, but
maintaining such creative solutions can be a tedious manual task. You can
be sure that the sexy part of data analysis is not in routine data management
within Excel. Rather, it is in the creation of slick processes and utilities that
will provide your clients with the best solution for any situation.

Deciding Whether to Use Access or Excel

After such a critical view of Excel, it is important to say that the key to
your success in the sphere of data analysis will not come from discard-
ing Excel altogether and exclusively using Access. Your success will come
from proficiency with both applications and the ability to evaluate a project
and determine the best platform to use for your analytical needs. Are there
hard-and-fast rules you can follow to make this determination? The answer
is no, but there are some key indicators in every project you can consider
as guidelines to determine whether to use Access or Excel. These indicators
are the size of the data; the data’s structure; the potential for data evolu-
tion; the functional complexity of the analysis; and the potential for shared
processing.

Size of Data
The size of your dataset is the most obvious consideration you will have to take
into account. Although Excel can handle more data than in previous versions,
it is generally a good rule to start considering Access if your dataset begins
to approach 100,000 rows. The reason for this is the fundamental way Access
and Excel handle data.

When you open an Excel file, the entire file is loaded into memory to ensure
quick data processing and access. The drawback to this behavior is that Excel
requires a great deal of memory to process even the smallest change in your
spreadsheet. You may have noticed that when you try to perform an AutoFilter
on a large formula-intensive dataset, Excel is slow to respond, giving you a
Calculating indicator in the status bar. The larger your dataset is, the less
efficient the data crunching in Excel will be.

Access, on the other hand, does not follow the same behavior as Excel. When
you open an Access table, it may seem as though the whole table is opening
for you, but in reality, Access is storing only a portion of data into memory
at a time. This ensures the cost-effective use of memory and allows for more
efficient data crunching on larger datasets. In addition, Access allows you to
make use of Indexes that enable you to search, sort, filter, and query extremely
large datasets very quickly.

Chapter 1 ■ The Case for Data Analysis in Access 9

Data Structure
If you are analyzing data that resides in a table that has no relationships with
other tables, Excel is a fine choice for your analytical needs. However, if you
have a series of tables that interact with each other (such as a Customers table,
an Orders table, and an Invoices table), you should consider using Access.
Access is a relational database, which means it is designed to handle the
intricacies of interacting datasets. Some of these are the preservation of data
integrity, the prevention of redundancy, and the efficient comparison and
querying of data between the datasets. You will learn more about the concept
of table relationships in Chapter 2.

Data Evolution
Excel is an ideal choice for quickly analyzing data used as a means to an end,
such as a temporary dataset crunched to obtain a more valuable subset of data.
The result of a pivot table is a perfect example of this kind of one-time data
crunching. However, if you are building a long-term analytical process with
data that has the potential of evolving and growing, Access is a better choice.
Many analytical processes that start in Excel begin small and run fine, but as
time passes these processes grow in both size and complexity until they reach
the limits of Excel’s capabilities. The message here is that you should use some
foresight and consider future needs when determining which platform is best
for your scenario.

Functional Complexity
There are far too many real-life examples of analytical projects where processes
are forced into Excel even when Excel’s limitations have been reached. How
many times have you seen a workbook that contains an analytical process
encapsulating multiple worksheets, macros, pivot tables, and formulas that
add, average, count, look up, and link to other workbooks? The fact is
that when Excel-based analytical processes become overly complex, they are
difficult to manage, difficult to maintain, and difficult to translate to others.
Consider using Access for projects that have complex, multiple-step analytical
processes.

Shared Processing
Although it is possible to have multiple users work on one central Excel
spreadsheet located on a network, ask anyone who has tried to coordinate
and manage a central spreadsheet how difficult and restrictive it is. Data
conflicts, loss of data, locked-out users, and poor data integrity are just a

10 Part I ■ Fundamentals of Data Analysis in Access

few examples of some of the problems you will encounter if you try to build
a multiple-user process with Excel. Consider using Access for your shared
processes. Access is better suited for a shared environment for many reasons,
some of which are:

The ability for users to concurrently enter and update data

Inherent protection against data conflicts

Prevention of data redundancy

Protection against data entry errors

An Excel User’s Guide to Access: Don’t Panic!

Many seasoned managers, accountants, and analysts come to realize that just
because something can be done in Excel does not necessarily mean Excel is the
best way to do it. This is the point when they decide to open Access for the first
time. When they do open Access, the first object that looks familiar to them
is the Access table. In fact, Access tables look so similar to an Excel spreadsheet
that most Excel users try to use tables just like a spreadsheet. However, when
they realize that they can’t type formulas directly into the table or duplicate
most of Excel’s behavior and functionality, most of them wonder just what
exactly the point of using Access is.

When many Excel experts find out that Access does not behave or look like
Excel, they write Access off as too difficult or as taking too much time to learn.
However, the reality is that many of the concepts behind how data is stored
and managed in Access are those with which the user is already familiar. Any
Excel user has already learned such concepts in order to perform and present
complex analysis. Investing a little time up front to see just how Access can be
made to work for you can save a great deal of time in automating routine data
processes.

Throughout this book, you will learn various techniques in which you can
use Access to perform much of the data analysis you are now performing
exclusively in Excel. This section is a brief introduction to Access from an Excel
expert’s point of view. Here, you will focus on the big-picture items in Access.
If some of the Access terms mentioned here are new or not terribly familiar,
be patient. They will be covered in detail as the book progresses.

Tables
What will undoubtedly look most familiar to you are Access tables. Tables
appear almost identical to spreadsheets with familiar cells, rows, and columns.
However, the first time you attempt to type a formula in one of the cells, you

Chapter 1 ■ The Case for Data Analysis in Access 11

will see that Access tables do not possess Excel’s flexible, multi-purpose nature
that allows any cell to take on almost any responsibility or function.

The Access table is simply a place to store data, such as numbers and text.
All of the analysis and number crunching happens somewhere else. This way,
data will never be tied to any particular analysis or presentation. Data is in raw
form, which leaves users to determine how they want to analyze or display it.

Chapter 2 will help you get started with a gentle introduction to Access
basics.

Queries
You may have heard of Access queries but have never been able to relate to
them.

Consider this: In Excel, when you use AutoFilter, a VLookup formula, or
Subtotals, you are essentially running a query. A query is a question you pose
against your data in order to get an answer or a result. The answer to a query
can be a single data item, a Yes/No answer, or many rows of data. In Excel,
the concept of querying data is a bit nebulous, as it can take the form of the
different functionalities, such as formulas, AutoFilters, and PivotTables.

In Access, a query is an actual object that has its own functionalities. A
query is separate from a table, ensuring that data is never tied to any particular
analysis. You will cover queries extensively in subsequent chapters. Your
success in using Microsoft Access to enhance your data analysis will depend
on your ability to create all manners of both simple and complex queries.

Chapter 3 begins your full emersion into all the functionality you can get
from Access queries.

Reports
Access reports are an incredibly powerful component of Microsoft Access,
which allow data to be presented in a variety of styles. Access reports, in and
of themselves, provide an excellent illustration of one of the main points of
this book: Data should be separate from analysis and presentation. The report
serves as the presentation layer for a database, displaying various views into
the data within. Acting as the presentation layer for your database, reports
are inherently disconnected from the way your data is stored and structured.
As long as the report receives the data it requires in order to accurately
and cleanly present its information, it will not care where the information
comes from.

Access reports can have mixed reputations. On one hand, they can provide
clean-looking PDF-esque reports that are ideal for invoices and form letters.
On the other hand, Access reports are not ideal for showing the one-shot
displays of data that Excel can provide. However, Access reports can easily be

12 Part I ■ Fundamentals of Data Analysis in Access

configured to prepare all manners of report styles, such as crosstabs, matrices,
tabular layouts, and subtotaled layouts. You’ll explore all the reporting options
available to you starting in Chapter 11.

Macros and VBA
Just as Excel has macro and VBA functionality, Microsoft Access has its
equivalents. This is where the true power and flexibility of Microsoft Access
data analysis resides. Whether you are using them in custom functions, batch
analysis, or automation, macros and VBA can add a customized flexibility that
is hard to match using any other means. For example, you can use macros and
VBA to automatically perform redundant analyses and recurring analytical
processes, leaving you free to work on other tasks. Macros and VBA also
allow you to reduce the chance of human error and to ensure that analyses are
preformed the same way every time. Starting in Chapter 9, you will explore
the benefits of macros and VBA and how you can leverage them to schedule
and run batch analysis.

Summary

Although Excel is considered the premier tool for data analysis, Excel has some
inherent characteristics that often lead to issues revolving around scalability,
transparency of analytic processes, and confusion between data and presenta-
tion. Access has a suite of analytical tools that can help you avoid many of the
issues that arise from Excel.

First, Access can handle very large datasets and has no predetermined
row limitation. This allows for the management and analysis of large
datasets without the scalability issues that plague Excel. Access also forces
transparency—the separation of data and presentation by separating data
into functional objects (that is, tables, queries, and reports) and by applying
stringent rules that protect against bad processes and poor habits.

As you go through this book, it is important to remember that your goal is
not to avoid Excel altogether but rather to broaden your toolset and to
understand that, often, Access offers functionality that both enhances your
analytical processes and makes your life easier.

C H A P T E R

2

Access Basics

When working with Access for the first time, it is tempting to start filling
tables right away and querying data to get fast results, but it’s important to
understand the basics of the relational database concept before pounding away
at data. A good understanding of how a relational database works will help you
take full advantage of Access as a powerful data analysis solution. This chapter
covers the fundamentals of Access and methods to bring data into the program.

Access Tables

Upon opening any existing Access database, you notice that the Database win-
dow, shown in Figure 2-1, contains a task pane on the left. Using the topmost
dropdown box, change the navigation category to All Access Objects. You will
get six sections. Each section represents one of the six database objects: Tables,
Queries, Forms, Reports, Macros, and Modules. The Tables section is appropri-
ately at the top of the list because it is the precise location where your data will
be stored. All other database objects will refer to the tables in your database
for data, whether asking questions of the data or creating reports based on the
data. This section covers the basics to get you working with Access tables.

Table Basics

One way to think of a table is as a collection of data concerning a specific
type of entity (such as customers, branches, transactions, products, and so
on). You want each of these entities to have its own unique table. Among the
many advantages to storing your data using this approach is eliminating or

13

14 Part I ■ Fundamentals of Data Analysis in Access

significantly decreasing duplicate information. Later in this chapter, you will
learn about the dangers inherent in storing data with excessive duplications.

Figure 2-1: The navigation pane on the left allows you to navigate through the six types
of database objects: Tables, Queries, Forms, Reports, Macros, and Modules.

Opening a Table in the Datasheet View

Open your sample database and go to the Tables section in the navigation
pane. Double-click the Dim_Customers table. When the table opens, it is in
the Datasheet view. In this view, you are able to directly view and edit the
contents of the table. As you can see in Figure 2-2, the names of the columns
are at the top.

Figure 2-2: Opening the table in Datasheet view allows you to view and edit the data
stored in the table.

Identifying Important Table Elements

A table is composed of rows, with each row representing an individual entity.
In the Dim_Customers table, each row represents a single distinct customer.
The proper database terminology for a row is record.

A table is also composed of columns, with each column representing a
particular piece of information common to all instances of the table’s entities.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Access Basics 15

In Dim_Customers, each column represents some attribute of the customer
record. The proper database terminology for a column is field.

TIP The number of records in a table is visible at the bottom left of the
Datasheet view, next to the record selectors.

Opening a Table in the Design View

Through the Design view of a table, you are able to set the field names and
data types. To get to the Design view of the Dim_Customers table, go to the
Home tab and select View ➪ Design View, as demonstrated in Figure 2-3.

Figure 2-3: You can configure the structure of your table by switching to Design view.

As you can see in Figure 2-4, the Design view shows you the fields that
compose the Dim_Customers table in an easy-to-manage view.

Note how each field has a Field Name and a Data Type. The Field Name is
the descriptive text string given to that particular column of a table. It appears
at the top of the table when it is in the Datasheet view. The Data Type of the
field ensures that only a certain type of data is allowed in the field. If a data
type is tagged as a Number, Access does not allow any text to be entered into
that field. By setting the data type of each column, you go a long way toward
ensuring the integrity and consistency of the data.

TIP It’s good practice to avoid putting any spaces in your field names. When
constructing queries or referring to tables in VBA code, spaces in the field names
can lead to problems. If you need to indicate a space in your field name, use the
underscore character. Keep in mind that your field names cannot include a
period (.), an exclamation point (!), an accent grave (`), or brackets ([]).

Exploring Data Types

With the Design view of the Dim_Customers table open, select the Data
type section of the first field and click the drop-down arrow. A list of

16 Part I ■ Fundamentals of Data Analysis in Access

predefined data type choices becomes visible. These data types are Text;
Memo; Number; Date/Time; Currency; AutoNumber; Yes/No; OLE Object;
Hyperlink; Attachment; and Calculated.

Figure 2-4: Opening the table in the Design view allows you to add field names or change
existing ones.

NOTE When in Design View, you will also see a data type selection called
Lookup Wizard. This selection is actually not a data type at all; it’s a mechanism
used to activate the Lookup Wizard in order to create lookup fields. The Lookup
Wizard is beyond the scope of this book.

Text: Any combination of letters, numbers, spaces, and characters is text.
This is by far the most common data type. Although text can be a number,
it should not be a number used in a calculation. Examples of common
uses of the Text data type are customer names, customer numbers
(using customer numbers in calculations would have no meaning), and
addresses. The maximum number of characters allowed in a Text field is
255 characters.

Memo: If you need to store text data that exceeds the 255-character limit
of the Text field, the Memo field should be used. Long descriptions or
notes about the record can be stored in fields of this type.

Number: This type is for all numerical data used in calculations, except
currency (which has its own data type). Actually, Number is several
data types under one heading. When you select Number as a data type in
the Design view of the table, you go to the Field Size field at the top of the
General tab. When you select the drop-down arrow, you get the following
options: Byte, Integer, Long Integer, Single, Double, Replication ID, and

Chapter 2 ■ Access Basics 17

Decimal. Probably the most commonly used field sizes of the Number
data type are Long Integer and Double. Long Integer should be selected
if the numbers are whole numbers that do not have any non-zeros to the
right of the decimal point. Double should be selected if numbers with
decimals need to be stored.

Date/Time: Another data type often used in calculations is Date/Time.
Recording the time that certain events occur is among the more important
uses of this data type. Recording dates and times allows you to compare
data by time durations, be it months, years, or whatever. In the business
world, the date field can be crucial to analysis, especially in identifying
seasonal trends or year-over-year comparisons.

Currency: A special calculation data type, Currency is ideal for storing
all data that represents amounts of money.

AutoNumber: This data type is actually a Long Integer automatically
and sequentially created for each new record added to a table. The
AutoNumber can be one mechanism by which you can uniquely identify
each record in a table. You will not enter data into this field.

Yes/No: There are situations where the data that needs to be represented
is in a simple Yes/No format. Although you could use the Text data type
for creating a True/False field, it is much more intuitive to use Access’s
native data type for this purpose.

OLE Object: This data type is not encountered very often in data analysis.
It is used when the field must store a binary file, such as a picture or
sound file.

Hyperlink: When you need to store an address to a Web site, this is the
preferred data type.

Attachment: This data type was introduced with Access 2007. When you
set a field to the Attachment type, you can attach images, spreadsheet files,
documents, charts, and other types of supported files to the records in
your database. You can also configure the field to view and edit attached
files.

Calculated: This data type is new to Access 2010. With Calculated type
fields, you can build mathematical operations, textual evaluations, or any
other calculation directly into your table.

Creating a Table from Scratch

Access provides several methods for creating a table. The ideal way to create
a table in Access is with the Design view. Why? The Design view allows
for a compact work area so you can add fields, reposition fields, and assign
attributes easily.

18 Part I ■ Fundamentals of Data Analysis in Access

Imagine that the human resources department asks you to create a simple
list of employees in Access.

1. To create this table in the Design view, go to the application ribbon and
select the Create tab and then the Table Design button. This opens an
empty table called Table1 in Design view.

2. The idea here is to create a list of fields that describe employee attributes.
Among the more common attributes in this situation are the following:
EmployeeNumber, FirstName, LastName, Address, City, State, Zip, and
HourlyWage. You begin by entering the names of the columns going
down the list. When you have entered all of the required column names,
your dialog box should look like Figure 2-5.

Figure 2-5: Enter the column names you want to see in your table.

3. As you enter the field names, the data types default to the most common
data type, Text. You now want to set the data type for each field or at
least change the data type of each non-text field. Choosing the correct
data type for the first field, EmployeeNumber, may be initially confusing.
With the word ‘‘Number’’ in the field, you might think that Number
would be the logical choice for the data type. Actually, the rule of thumb
is that if the field will not be used in a calculation, it is best to set its data
type to Text. Because there is no logical reason to perform a calculation
on an employee’s EmployeeNumber, the EmployeeNumber data type
should remain Text. Another reason for using the Text data type for the
field EmployeeNumber is that there could be a need to use alphabetic or
other characters in the field.

As you go through the field names, it should be fairly obvious that you
will want to set all of the fields to Text, except for HourlyWage. This
field will almost certainly be used in calculations, and it will represent a
monetary value, so you should change the data type to Currency.

At this point, your Design view should look similar to Figure 2-6.

Chapter 2 ■ Access Basics 19

Figure 2-6: You have created your first table!

4. Now you can save and name your table. Click File on the application
Ribbon and select Save As. If you are using Access 2007, click the Office
Icon and select Save As. This opens the Save As dialog box where you will
give your newly created table an appropriate name like ‘‘Employees’’ or
‘‘EmployeeMaster.’’

Keep in mind that at this point, this table has no data. You can begin entering
employee information directly into the table through the Datasheet view. For
tables with a small number of records, you can enter your records manually.
However, most sets of data are quite large, so other techniques of bringing
data into Access are introduced later in this chapter.

NOTE When you save a table, you may be prompted to set a primary key. Primary
keys are explained later (see Setting Primary Keys in this chapter). In most cases,
Access will try to choose one for you. It’s generally good practice to accept Access’
recommendation to create a primary key if you do not already have one on mind.

Working with Field Properties

When working with data in tables, you may encounter situations that require
the data be restricted or to adhere to some default specifications in particular
columns. You can define these requirements by using the field properties.

The field properties affect how the data is stored and presented, among
other things. The list of field properties that are available to you is dependent
on the data type chosen for that field. Some field properties are specific to
Text fields, and others are specific to Number fields. The field properties can
be found in the Design view, as illustrated in Figure 2-7. As you click on each
field, you will see the field properties for that field.

Some of the most important field properties to note are:

Field Size: You encountered the Field Size before, when working with
the Number data type. This property also exists for the common Text

20 Part I ■ Fundamentals of Data Analysis in Access

data type. This property allows you to set a maximum size limit on data
entered in that column. For the Text data type, size refers to the length
(number of characters and spaces) of the Text data in that column. For
example, looking at the Employees table, you see a field for State. Your
firm tells you that the names of states should be recorded using their
two-letter designation. If you set the field size to ‘‘2’’ for the State column,
the user will be unable to type any text that is longer than two characters.
So with Access, you are not only able to force a certain data type in
a particular column, you can also customize that individual column to
accept data only in the rigid format that you specify.

Figure 2-7: You can find the Field Properties in Design view beneath the field names.

Format: This property allows you to set the precise manner in which
Access displays or prints the data that is located in its Tables. As with
Field Size, the format available to select will depend on the data type of
that column. For example, with a Currency field, you can display the data
in a form that uses a dollar sign, a Euro sign, or no sign at all. With these
settings, the data itself does not change—just how it displays. Another
very useful function of Format is with Date/Time data types. Whether
you want to display data in the long format or short format, this property
allows you to set that option.

Input Mask: This feature can be useful in data entry situations. Where
Format controls how data is displayed, Input Mask controls how data is
entered into a particular field. Input mask is available for the following
data types: Text, Number, Date/Time, and Currency. For example, if a

Chapter 2 ■ Access Basics 21

user needs to enter a telephone number, the input mask can create the
characters and structure with which you are all familiar. As the user
types, the number automatically assumes a phone number format: (###)
###-####.

Decimal Places: In number fields, you can set the number of decimal
places to the right of the decimal point that will be recorded. There is an
Auto setting, which defers to the Format setting to determine the correct
number of places. Apart from Auto, you are able to select 0 to 15 for
the number of decimal places.

Default Value: An important database concept, the default value can help
save time in the data entry process. The default value is automatically
placed in that column every time a new record is added. Defaults can be
overridden by simply entering data into the field.

Required: Another important property, Required simply forces a user to
enter some value, using the proper data type, in the designated field. The
user cannot add a new record if the Required field is not properly filled.
As with Input Mask, this property is an excellent mechanism for asserting
more control over the data entry process.

Setting Primary Keys

In some tables, you will need to ensure the uniqueness of each record. This is
typically achieved by including a field whose records will not have duplicate
values. One example of this is a field for Social Security numbers. Each person
has one and only one unique Social Security number. By definition, you cannot
have a Social Security number that represents two people. This type of unique
column is what you call a primary key.

You can identify a given field as the primary key for you table in Design
view—by right clicking the chosen field and selecting Primary Key. When
you save your table, Access determines whether your selected fields have any
null (or blank) values or duplicate data (data duplicating in multiple records
for a single field). If there are blanks or duplicates, Access informs you with an
error message. You must fill in the blanks with unique values and remove any
duplicates if that column is indeed to become the primary key for the table.

TIP Sometimes a table will have two or more fields that together uniquely
identify a record. In these cases, you will need to create what is called a compound
key. For example, imagine a table with both an invoice number and a product
number. A sales representative may have sold multiple products to a customer on
the same invoice. Therefore, when you look at each value separately, you’ll find
duplicate values of each field. By combining invoice and product number,

22 Part I ■ Fundamentals of Data Analysis in Access

however, you can create a compound primary key that is truly unique for each
record. If you need a compound key, do the following:

1. Select the first field that will be included in your compound key by clicking on
the grey square to the right of the Field Name. Then while holding down the
Control key on your keyboard, click the grey square next to the second field to be
included.

2. Right click on the Field Name (right clicking on the grey square will cause Access
to forget your multiple selection).

3. Close the table and save your changes.

Importing Data into Access
Apart from creating a table from scratch and manually entering the data, you
can import data, which essentially makes a copy of the data directly in your
Access database. After importing, the data is disconnected from the source
from which it was imported.

To get an idea of how Importing works, imagine that HR has passed you
an Excel file containing their master employee table. You want to import that
table into your database.

TIP The ExcelMaster.xlsx file can be found within the sample files for this book,
installed under C:\OffTheGrid.

1. Click the External Data tab and then click the Excel icon.

2. Browse for the file you wish to import and then select the ‘‘Import the
source data into a new table . . . ’’ option. Figure 2-8 shows you what
the wizard should look like.

3. Click the OK button to activate the Import Spreadsheet Wizard shown
in Figure 2-9. The first dialog box in the Import Spreadsheet Wizard
allows you to specify the worksheet or range you want to import. If
your workbook has more than one worksheet, all worksheets are listed
on this screen. In this case, there is only one worksheet. Select the target
worksheet and click the Next button.

4. The next screen (Figure 2-10) allows you to select whether or not the
source data has headings or column labels. As you can see, you will
simply check the checkbox if your source data has headings. Click the
Next button to move on.

5. The next screen (Figure 2-11) allows you to specify the data type for each
field. This setting allows you to tell Access whether the given field is a
number, text, currency, date, etc. The idea is to select each field and check
to make sure the data type for that field is correct.

Chapter 2 ■ Access Basics 23

Figure 2-8: Select the data source and select the import option.

Figure 2-9: Identify the worksheet or range you want to import.

Also in this screen (Figure 2-11), you can specify whether any given
field is to be indexed. When you index a field, Access creates a kind
of organizational mapping of the field allowing for faster querying and
grouping.

The best way to illustrate indexing is by an analogy. Imagine you
had a file cabinet with 10,000 folders, each dedicated to a specific cus-
tomer. Now imagine these files were in random order. To access the

24 Part I ■ Fundamentals of Data Analysis in Access

customer file for ‘‘Mike’s Coffee House,’’ you would have to search
through every customer file until you found it. Now imagine finding
the file if your customer folders were organized or ‘‘indexed’’ alpha-
betically. It would be a much faster task. When you sort or filter on
a non-indexed field, Access will search every record until the correct
record is found. Indexing a field in Access is conceptually identical to
alphabetizing the file system. Indexing a field makes Access create an
organizational scheme for that field such that it can be quickly searched
when needed.

Figure 2-10: Specify whether your data source comes with headings.

Figure 2-11: Apply data types and indexing to your fields.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Access Basics 25

NOTE You may wonder why you would not index all your fields. Wouldn’t
that make your queries run faster? The answer is an emphatic no! Indexing is
a good idea on fields you expect to filter or join to another table. Indexing is
not a good idea for fields you expect to perform calculations on. You should
also be aware that while indexing can improve the performance for some
types of analysis, other types could actually be slowed by using indexed
fields.

6. Clicking Next will bring you to the screen shown in Figure 2-12. Here,
you can choose the field to set as the primary key. In this case, the
Employee_Number field will be primary key.

Figure 2-12: Define which field will be your primary key.

7. The last screen of the Import Spreadsheet Wizard (Figure 2-13) will ask
to you name your new table. If you are importing an Excel worksheet,
the new table name will default to the name of your imported worksheet.
However, you can change the name to suit your needs. At this point, you
can click the Finish button to start the import.

NOTE It’s important to note that naming your import table the same name as an
existing table in your database will cause Access to give you an overwrite warning.
That is to say, Access will warn you that you are about to overwrite your existing
table. Be careful that you do not inadvertently overwrite an existing table with a
careless table name choice.

Once your data has been imported, an interesting dialog box activates
(Figure 2-14). This dialog box asks if you want to save your import steps. This

26 Part I ■ Fundamentals of Data Analysis in Access

is a relatively new feature introduced in Access 2007, allowing you to save
time when the same dataset must be routinely imported. As you can see in
Figure 1-14, clicking the ‘‘Save import steps’’ option allows you to save your
import steps as a named task that can be fired whenever you need. To recall a
saved import task, simply click the Saved Imports command button under the
External Data tab in the Access ribbon.

Figure 2-13: Name your imported table and Click the Finish button.

Figure 2-14: You now have the option of saving your import steps.

Importing Data from Text File

You may want to import and analyze non-Excel data and then send it to
Excel after analysis in Access. One of the most common data types for import
is text-delimited data. Delimited text is simply text where the individual
fields in a record are separated by a specific character such as a tab, comma,
or space.

Fortunately, Access recognizes delimited text and even allows you to choose
the specific character that separates fields. To get delimited text into Access,
simply choose Text File from the External Data ribbon and walk through the
same process you would when importing or linking to an Excel file.

Chapter 2 ■ Access Basics 27

TRICKS OF THE TRADE: USING COMPACT AND REPAIR

As you bring data into Access, it’s important to remember that Access does
not let go of disk space on its own. This means that as time passes, all the
file space taken up by the data you imported will be held by your Access file,
regardless of whether the data is actually still there.

In that light, it’s critical to that you perform a compact and repair operation
on your Access database regularly to ensure that your database does not grow
to an unmanageable size or, even worse, become corrupted.

To compact and repair your database in Access 2007, click the Office icon
and select Manage ➪ Compact and Repair Database.

To compact and repair your database in Access 2010, go to the application
ribbon and select File ➪ Info ➪ Compact and Repair Database.

How often you perform this operation really depends on how frequently
you add and then delete tables from your database. The best practice is to
compact and repair your Access database at least every time you open or
close it. You can automate this action by clicking Access Options ➪ Current
Database. Once in the Current Database Menu section, select the Compact on
Close check box. This will ensure your database is compacted and repaired at
least every time you close the application.

Linking an Excel Worksheet to Access
Sometimes, the data you want to incorporate into Access is going to change
frequently. Does it make sense to import that data into a new Access table
every time it changes? What if you do not know when it changes yet it is
critical to have the most up-to-date information for your analysis? In these
situations, it makes more sense to create a link to your data.

Linking data is different from importing data in that Access references the
linked data in its original location. Importing data brings a local copy of
the information into the Access database. Any changes made to the local copy
in Access do not affect the original spreadsheet. Likewise, any changes made
to the original spreadsheet after importing will not be reflected in the Access
table.

Conversely, a linked Excel sheet exists in real time. Changes made to the
sheet in the original Excel file will be reflected in Access upon refresh. However,
you will not be able to make changes to the Excel data through Access. Linking
is a one-way street of data flow.

To link to a data source, you would start by selecting the External Data tab
and then select the Import Excel icon. This time, select the ‘‘Link to the data
source by creating a linked table’’ option (see Figure 2-15).

From here, Access will walk you through steps similar to those taken when
importing data.

28 Part I ■ Fundamentals of Data Analysis in Access

Figure 2-15: To link to a data source, select the Link option.

NOTE When linking to a data source, you will not be able to specify data types,
indexing, or primary keys. Therefore, you will not see those selections in the Link
Spreadsheet Wizard.

Understanding the Relational Database Concept

Now that you have covered tables and brought some data into the database,
you can turn your focus to one of the more useful features of Access:
relationships. Access relationships are the mechanisms by which separate
tables are related to each other. The idea behind relationships is the Rela-
tional Database Concept. Before you begin to create relationships between
Access tables, take a closer look at the concept behind relational database
systems.

Why Is This Concept Important?
This concept is important because it is the theoretical framework from which
most databases programs are designed. If you want to understand just how
databases work, you need to understand this concept. You are learning Access,
among other reasons, because the data storage and data manipulation capacity
of Excel is insufficient for your analysis needs.

The concept that dictates just how data is stored and structured is the
Relational Database Concept. Even though you may have no intention of

Chapter 2 ■ Access Basics 29

becoming a database administrator, having some understanding of how the
data that you would like to analyze has been stored and structured will increase
your performance and productivity. It will also promote better communication
between you and the IT department and the database administrator, since now
you will be able to understand at least some of the vocabulary of the database
language.

Excel and the Flat-File Format
Before you cover the proper techniques for storing data in Access, examine
the common data storage scenario that led to the problems that the concept
attempts to address. Even if they are not aware of the term flat-file format,
most Excel users are very adept at working with data that has been stored in
it. In fact, most people are familiar with the concept because it is used in so
many things that they encounter every day. The flat-file, of course, organizes
data into rows and columns.

There are data analysis scenarios that are not terribly complex, in which
a flat-file representation of the data to be analyzed is adequate. However,
most data-analysis scenarios require analyzing data that is much more
multi-dimensional. One of the main reasons that the flat-file can prove inade-
quate is that it is two-dimensional. Real-world business data rarely falls into
a convenient, two-dimensional format. Of course, it can be forced into that
format by the Excel guru who wants all analysis to fit into the spreadsheet.

Take a look at a typical example of a flat-file; Figure 2-16 shows a typical
flat-file list of orders.

Figure 2-16: Data is usually stored in an Excel spreadsheet using the flat-file format.

In order to get the customer information for each order, there are several
fields for customer-specific information such as customer name, address, city,

30 Part I ■ Fundamentals of Data Analysis in Access

and so on. Because most firms sell to customers more than once, for each order
the same customer information has to be repeated. Duplicate information is
one of the main drawbacks of the flat-file format.

What is wrong with duplicate data? Initially, the duplicate data may not
appear to be a potential source of future problems, but upon further examina-
tion, you discover the shortcomings:

File Size. Duplicate data wastes space, both on the computer hard drive,
where the file is stored, and in the computer’s memory, where the data
resides when it is being used. Although the enormous amount of memory
that is standard with today’s machines goes a long way to handling these
demands, you are wasting valuable computer space and resources. The
duplicate information is not valuable. In fact, it leads to problems.

Updating data: One of the main problems that can arise from too much
duplicate data occurs when that data needs to be updated.

In Figure 2-16, you can see there are several orders for ACASCO Corp. You
can also see that you have to repeat the information about the customer for
each instance of an order. Imagine a scenario where the customer information
might change. For example, the customer acquires new office space, and you
want to reflect this change of location in your data. You will have to update
the change in several different places. You need to ensure that every order will
correctly map back to its relevant customer information.

While there are excellent functions that find and replace data in Excel, there
is still a danger that you might not make all of the updates correctly. Whenever
you are changing duplicate information, there is always the risk of introducing
unintentional errors.

Splitting Data into Separate Tables
Data must be consistent if analysis is to have any true value in the
decision-making process. Duplicate data is the bane of consistent data. If an
entity is changed in one place, it must be changed in every place. Would it not
be more logical and efficient if you could create the name and information
of a customer only once? Would it not be great simply to have some form of
customer reference number instead of creating the same customer information
repeatedly? Then that customer reference could send you to another list
where the information is unique and written once.

This is the idea behind the relational database concept. You have separate,
carefully designed, unique lists of data, and you relate them to each other by
using their unique identifiers (primary keys).

In a relational database, customer details such as address, city, state, etc,
would be listed only once in a master customer table. A transactions table

Chapter 2 ■ Access Basics 31

using a primary key such as CustomerID would then reference that table
(Figure 2-17). This way, if any of the details for a given customer were to
change, edits would have to be applied only to that customer’s one record in
the master customer table.

Figure 2-17: The relational data model for customers and orders.

Excel users may not realize it, but they often make great efforts to keep the
data on their spreadsheets ‘‘relational.’’ They use (or overuse) VLOOKUP or
HLOOKUP to match data from separate lists that have some data field or key
in common. While much is possible with these functions, they do have their
limitations. The functions are not very intuitive and try to solve a problem
that Access was designed, from the ground up, to address. When Excel users
use functions like VLOOKUP and HLOOKUP to bring data from separate lists
onto a single row, they are emulating a relationship of that data.

The problem for the analyst is that if there are relationships between the data
that are consistent or even permanent, it is easier somehow to reflect this in
a behind-the-scenes representation of the data. Some of the data relationships
can be quite complex, which compels the analyst to remember and manually
enforce all of them but also detracts from analysis and increases the possibility
of mistakes.

Relationship Types
Three types of relationships can be set in a relational database:

One-to-one relationship: For each record in one table, there is one and
only one matching record in a different table. It is as if two tables have
the exact same primary key. Typically, data from different tables in a
one-to-one relationship are combined into one table.

One-to-many relationship: For each record in one table, there may be 0,
1 or many records matching in a separate table. For example, you might
have an invoice header table related to an invoice detail table. The invoice

32 Part I ■ Fundamentals of Data Analysis in Access

header table has a primary key, Invoice Number. The invoice detail table
will use the Invoice Number for every record representing a detail of that
particular invoice. This is certainly the most common type of relationship
you will encounter.

Many-to-many relationship: Used decidedly less often, this relationship
cannot be defined in Access without the use of a mapping table. This
relationship states that records in both tables can have any number of
matching records in the other table.

In the sample database that came with this book, relationships have already
been established between the tables. Take a look at some of these relationships
to get a better idea of how you can set and change them.

In Access 2007, go up to the application ribbon and select the Database
Tools ➪ Relationships.

In Access 2010, go up to the application ribbon and select File ➪ Info ➪

Relationships.

As you can see in Figure 2-18, the tables are represented with lines between
them. The lines signify the relationships.

Figure 2-18: The one-to-many relationship between tables can be identified by the ∞
symbol on the line connecting the tables.

Query Basics

Once you have a fundamental understanding of tables and relationships
in Access, you are ready to start analyzing data with queries. In this section,
you are going to focus on what is perhaps the most common type of query: the

Chapter 2 ■ Access Basics 33

select query. You will see the concept behind the query and a few examples
that illustrate just how easy it is to create queries in Access.

What Is a Query?
By definition, a query is a question. For your purposes, it is a question about the
data, which is stored in tables. Queries can be exceedingly simple, like asking
what all of the data in a table is. Queries can also be quite complex, testing
for different criteria, sorting in certain orders, and performing calculations. In
Access, there are two main types of queries: select and action:

Select queries are perhaps the most common type. This query simply
asks a question of the data and returns the results. No changes are made
to the data whatsoever. You can always run select queries and never
worry that the actual data is being altered.

Action queries actually manipulate and change the data in a table.
The action query can add records, delete records, or change (update)
information in existing records.

TRICKS OF THE TRADE: SORTING AND FILTERING FOR ON-THE-FLY
ANALYSIS

There is inherent functionality within Access that allows you to sort and filter
the contents of your tables on the fly: without queries. With this functionality,
you can perform quick, impromptu data analysis with just a few clicks of the
mouse.

This functionality definitely has an Excel feel to it. To get a sense of what
this means, open a table in the Datasheet view and select the column you
wish to sort or filter. Then click the dropdown arrow next to that column’s
field name.

For example, if you wanted to find any customer located in Aberdeen,
you could click the dropdown arrow under the City field, select Text Filters,
and then select Equals as demonstrated in Figure 2-19. This opens a
Custom Filter dialog box where you can simply enter the name that you are
filtering.

The resulting dataset, shown in Figure 2-20, has only the records for the fil-
tered name.

To remove the filter, simply click the dropdown arrow next to the filtered
column’s field name and select Clear Filter from x, where x equals the field
name.

(continued)

34 Part I ■ Fundamentals of Data Analysis in Access

TRICKS OF THE TRADE: SORTING AND FILTERING FOR ON-THE-FLY
ANALYSIS (continued)

Figure 2-19: The dropdown arrow next to the field name will bring up the sorting
and filtering menu.

Figure 2-20: There are two customers located in Aberdeen.

Creating Your First Select Query
Quite often, when you are working with or analyzing data, it is preferable to
work with smaller sections of the data at a time. The tables contain all the
records pertaining to a particular entity, but perhaps for your purposes you
need to examine a subset of that data. Typically, the subsets are defined by
categories or criteria. The select query allows you to determine exactly which
records will be returned to you.

If you thought that creating queries required learning a programming
language or some other technological hurdle, you are mistaken. While it is
possible to create queries using the programming language of databases (SQL),
Access provides a graphical interface that is easy to use and quite user-friendly.
This graphical interface has been called the QBE (Query by Example) or QBD
(Query by Design) in the past. Now Microsoft calls it the Query Design view. In
the Query Design view, tables and columns are visually represented, making
it easy to visualize the ‘‘question’’ you would like to ask of the data.

Follow these steps:

1. Go up to the application ribbon and select Create ➪ Query Design. The
Show Table dialog box now opens on top of a blank Query Design

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Access Basics 35

interface, as shown in Figure 2-21. The white grid area you see in the
Query Design view is often called the query grid.

When creating your ‘‘question’’ of the data, the first thing you must
determine is from which tables you need to retrieve data. The Show
Table dialog box allows the user to select one or more tables. As you can
see in Figure 2-21, there are also tabs for Queries and Both. One of the
wonderful features of queries is that you are not limited to just querying
directly from the table. You can create queries of other queries.

Figure 2-21: The Show Table dialog box allows you to select the tables or queries to add
to the Query Design view.

2. For this first query, select the Dim_Customers table, either by selecting
the table in the list and clicking Add or by double-clicking the table in the
list. Now that you have selected the table from which you want to retrieve
data, you can close the Show Table dialog box and select the fields of that
table that you would like to retrieve.

The Query Design view is divided into two sections. The top half shows
the tables or queries from which the query will retrieve data. The bottom
half (often called the query grid) shows the fields from which the query
will retrieve data. You will notice in Figure 2-22 that the Dim_Customers
table shown at the top half of the Query Design view lists all the fields
but has an asterisk at the top of the list. The asterisk is the traditional
database symbol that means that all fields from that table will be in the
output.

3. For this example, select the following three fields: Customer_Name, City,
and State. To select fields, you can either double-click the field or click it

36 Part I ■ Fundamentals of Data Analysis in Access

once and drag it down to the bottom half (the query grid). Each field that
you add to the query grid will be included in the output of the query.
Figure 2-23 shows you how your query should look after selecting the
output fields.

Figure 2-22: The Query Design view allows you to query all fields easily.

Figure 2-23: The lower half, or query grid, shows the output fields of the select query.

4. At this point, you have all you need to run the query. To run the query,
click the Run button located on the Design tab. As you can see in
Figure 2-24, the output from a query looks similar to a regular table after
it is open.

NOTE To return to the Query Design view, simply click Home ➪ View ➪

Design View.

Chapter 2 ■ Access Basics 37

Figure 2-24: The Datasheet view of a query shows the results of the query.

Sorting Query Results

Now examine how you can sort the results of this query. Just as you sorted
in Excel, you are going to select a column and choose between an ascending
sort and a descending sort. In the query grid, notice the Sort row of the grid.
This is where you can select either one or multiple sort columns. If you select
multiple sort columns, the query will sort the results in order from left to right.

Go to the State column and click your mouse on the Sort section. As shown in
Figure 2-25, a dropdown box appears, allowing you to select either Ascending
or Descending for that particular column.

Figure 2-25: The sort order options for a column are provided by the Query Design view.

Select Ascending and rerun the query. When you ran the query before,
the states were in no particular order. After setting the sort order of the
State column to ascending, the query output simply looks better and more
professionally formatted, as seen in Figure 2-26.

38 Part I ■ Fundamentals of Data Analysis in Access

Figure 2-26: The results of the query are now sorted in ascending order by the State field.

Filtering Query Results

Next, you’ll examine how you can filter the query output so that you retrieve
only the specific records to analyze. As in Excel, in Access this filter is also
called Criteria.

NOTE You will notice a Criteria row in the query grid. This is where you enter the
value or values for which you would like to query. When entering a value in the
Criteria section, all records that match it are returned in the query output. When
entering text, you must enclose the text string with quotation marks. You can
either place them there yourself or type your text and click another part of the
query grid. Access then automatically places quotation marks around your criteria
if the field you are filtering is a text field.

In the example demonstrated in Figure 2-27, your manager wants to see
the list of customers from California. Since California is designated by the
abbreviation ‘‘CA’’ in the table, that is exactly what you will enter in the Criteria
row of the State column.

Figure 2-27: The Criteria section is where you type in a value for which you want to filter
the data.

Chapter 2 ■ Access Basics 39

After you run the query, you will notice that fewer records are returned.
This is obvious from looking at the Record Selector at the bottom of the query
output window. A quick scan of the results verifies that indeed only records
with ‘‘CA’’ in the State column were returned, as shown in Figure 2-28.

TIP You can sort and filter query results just as if they were a Table. Simply click
the dropdown arrow next to each of the column headings to activate the sorting
and filtering context menu. Remember, this is only temporary and does not affect
the underlying query.

Figure 2-28: The results of the query will be all records that match the criteria.

Querying Multiple Tables

In this section you’ll see how you can perform a query on multiple tables.
Remember that you split your data into separate tables. You used Relationships
to define the logical relationships between the data. Now you will query from
the tables based on the relationships established.

For example, say you want to see the customer transactions from California.
A quick examination of the Dim_Transactions table reveals that there is no
State field on which you can filter. However, you see that there is a CustomerID
field. Follow these steps:

1. In the query that you already have opened, add the Dim_Transactions
table so you can include some fields from that table in your query output.

2. Right-click the top half of the Query Design view and select Show Table.

3. Double click the Dim_Transactions table to add it to the Query Design
view. You will notice that the previously established relationship
is automatically represented, as shown in Figure 2-29. You can see
the one-to-many relationship, indicating possible multiple records in
Dim_Transactions for each individual customer in the Dim_Customers
table.

40 Part I ■ Fundamentals of Data Analysis in Access

Figure 2-29: The relationship between the two tables is visually represented.

4. You must now select the fields from your newly added table, which you
need to appear in the query output. Select the following three fields from
the Dim_Transactions table: PONumber, OrderDate, LineTotal. As you
can see in Figure 2-30, the field names from the two tables are brought
together in the query grid.

Figure 2-30: Fields from two tables are brought together to create a new dataset.

As you can see in Figure 2-31, you now have orders matched with the
appropriate customer data. Although there is repeating data, as with the
flat-file examples, there is a significant difference. The repeating data is being
read from a single source, the Dim_Customer table. If a value were to change
in the Dim_Customer table, that changed value would be repeated in your
query results.

Chapter 2 ■ Access Basics 41

Figure 2-31: The results of the query have successfully brought together and have matched
data from two separate tables.

Refining the Query

You can narrow your results even further by filtering the query results
according to a certain date. As you can see, there are several rows of criteria
cells. These allow you to enter multiple criteria from which to filter. One thing
to keep in mind is that each separate criteria row functions as its own separate
set of criteria. Take a look at how this works.

Single Criterion: Click the Criteria cell in the OrderDate column and
type 12/5/2008. When you click out of that cell, you will notice that
number signs (#) now surround the date, as shown in Figure 2-32. When
running this query, only results matching the two criteria (State = CA
and Invoice_Date = 12/5/2008) are returned.

Multiple Criteria: Say you want to bring in orders for the data 3/8/2009
as well as 12/5/2008. You will want to add the new criteria line below
the existing criteria. This will have the effect of testing the records for
either one criteria or the other. Since you want to limit your query to
only results from California, you must retype CA on your new Criteria
line. If you do not do that, the Query will think that you want all orders
from California on 12/5/2008 or orders from all states on 3/8/2009. The
criteria lines will be evaluated individually. Add CA to the state column
under the existing CA, as shown in Figure 2-33.

After running the query, you can see your results have been refined even
further. You have only those orders from California issued on March 9,
2009 and December 5, 2008.

Using Operators in Queries

To use multiple criteria in a query, you are not limited to using the separate
criteria lines. By using operators, you can place your multiple criteria on the

42 Part I ■ Fundamentals of Data Analysis in Access

same line. That is to say, you can filter for multiple criteria on any given field
by using operators.

Figure 2-32: The number signs, which are surrounding the date, identify the criteria as
being a Date/Time data type.

Figure 2-33: Each line of criteria will be evaluated separately.

The following operators allow you to combine multiple values in different
logical contexts so you can create complex queries:

Or: Either condition can be true. Multiple criteria values for one field can
either be separated on different criteria lines or combined in one cell with
the use of the Or operator. For example, using your query, you can filter
for both California and Colorado by typing CA or CO in the Criteria field.

Chapter 2 ■ Access Basics 43

Between: Tests for a range of values. For example, using your query,
you can filter for all orders between 4/20/2009 and 11/19/2009 instead
of testing just for those particular dates by typing Between #4/20/2009#
AND #11/19/2009# in the Criteria field.

Like: Tests for string expressions matching a pattern. For example, you
can filter for all records with a customer ID that begins with the number
147 by typing Like 147* in the Criteria field. The asterisk is the wild card
character, which can signify any character or combination of characters.

In: Similar to Or. Tests for all records that have values, which are
contained in parentheses. For example, you can filter for both California
and Colorado by typing In (‘‘CA’’, ‘‘CO’’) in the Criteria field.

Not: Opposite of writing a value in Criteria. All records not matching that
value will be returned. For example, you can filter for all states except
California by typing Not ‘‘CA’’ in the Criteria field.

Is Null: Filters all records that have the database value Null in that field.

=, <, >, <=, >=, and <>: The traditional mathematical operators allow
you to construct complex criteria for fields used in calculations.

For example, suppose you want to further refine your query so that
only order amounts over $200 will be returned in the results. As shown in
Figure 2-34, use the greater-than operator to filter the LineTotal.

Figure 2-34: You can use operators to test for ranges of values.

After running the query, you can see that you narrowed your results down
to just nine records. These are the only records that match the multiple criteria
designated in the query grid. Figure 2-35 shows the query results.

44 Part I ■ Fundamentals of Data Analysis in Access

Figure 2-35: Here are your query results.

The Top Ten Query Errors

When starting to build analyses with Access, you will inevitably do something
that makes Access throw up an error. In order to ease the confusion when first
starting out, Table 2-1 and Table 2-2 list the ten most common errors new users
are likely to encounter while working with queries. The tenth error deservers
a table all of its own! Ironically, although these are the most common errors
in a query environment, they are also the least descriptive. This leaves many
new Access users scratching their heads.

Table 2-1: Top Nine Query Errors

ERROR MESSAGE MESSAGE MEANING
6 Overflow The number you are using is outside the range of

the data type you are assigning it to. In other
words, the number you are using is either too big
or too small for the data type.

7 Out of memory The query or procedure you are running requires
more memory than available on your system. Try
closing any other applications you have open. You
can also try breaking up the query or procedure in
two steps.

11 Division by zero When you divide a number by zero you get this
message.

13 Type mismatch in
Expression

You typically get this message when you are trying
to join two fields with different data types; i.e. Text
field and a Number field. Make sure any fields you
are joining are the same data type.

16 Expression too
complex

You have too many nested expressions or
subqueries in your query. Try breaking up your
query into steps.

Chapter 2 ■ Access Basics 45

ERROR MESSAGE MESSAGE MEANING
3001 Invalid Argument Most often raised when your database has

reached the 2 gigabyte limit. When this error is
thrown, you should check the current size of the
database. If your database has reached 2 gigabytes
(or close to it), perform a Compact and Repair.
This will resolve the error.

3060 Wrong data type for
parameter
<Parameter Name>

You are feeding a parameter the wrong type of
data

3068 Not a valid alias name You have either used a reserved word for your
alias name, or your alias name contains invalid
characters.

The error messages ‘‘Operation must use an updateable query’’ and ‘‘This
Recordset is not updateable,’’ are thrown when any of the queries in Table 2-2
are applied.

Table 2-2: Tenth Query Error, 3073 and 3326

QUERY WORKAROUND
Your query is using a join to another query. Create a temporary table that

you can use instead of the
joined query.

Your query is based on a crosstab query, an
aggregate query, a union query, or a subquery
that contains aggregate functions.

Workaround: Create a temporary
table that you can use instead of
the query.

Your query is based on three or more tables and
there is a many-to-one-to-many relationship.

Create a temporary table that
you can use without the
relationship.

Your query is based on a table where the
Unique Values property is set to Yes.

Set the Unique Values property
of the table to No.

Your query is based on a table on which you do
not have Update Data permissions, or is locked
by another user.

Ensure you have permissions to
update the table, and that the
table is not in design view or
locked by another user.

Your query is based on a table in a database
that is open as read-only or is located on a
read-only drive.

Obtain write access to the
database or drive.

Your query is based on a linked ODBC table
with no unique index or a Paradox table
without a primary key.

Add a primary key or a unique
index to the linked table.

Your query is based on a SQL pass-through
query.

Create a temporary table that
you can use instead of the query.

46 Part I ■ Fundamentals of Data Analysis in Access

Summary

The fundamental tools in Access are tables and queries. A table is a collection
of data concerning a specific types of entities such as customers, branches,
transactions, and products. Access allows you to build relationships between
your tables and enforce certain rules that guide these relationships. This
reduces the chance for error and allows for easy analysis across multiple
tables.

A query is a question about the data that is stored in tables. The results of
a query are separate from the data. If the data in the table is changed and the
query run again, you would most often get different results. The most common
query is the select query. With a select query, you can extract a dataset or
individual data items. You can also utilize the built-in operators to apply filters
and sorting to your queries.

C H A P T E R

3

Beyond Select Queries

Retrieving and displaying specific records with a select query is indeed a
fundamental task in analyzing data. However, it’s just a small portion of what
makes up data analysis. The scope of data analysis is broad and includes
grouping and comparing data; updating and deleting data; performing calcu-
lations on data; and shaping and reporting data. Access has built in tools and
functionality designed specifically to handle each one of these tasks.

In this chapter, you take an in-depth look at the various tools available to
you in Access and how they can help you go beyond Select queries.

Aggregate Queries

An aggregate query, sometimes referred to as a group-by query, is a type of query
you can build to help you quickly group and summarize your data. With a
select query, you can only retrieve records as they appear in your data source.
However, with an aggregate query, you can retrieve a summary snapshot of
your data that will show you totals, averages, counts, and more.

Creating an Aggregate Query
To get a firm understanding of what an aggregate query does, take the
following scenario as an example. You have just been asked to provide
the sum of total revenue by period. In response to this request, start a query
in Design view and bring in the Period and LineTotal fields, as shown in

47

48 Part I ■ Fundamentals of Data Analysis in Access

Figure 3-1. If you run this query as is, you will get every record in your dataset
instead of the summary you need.

Figure 3-1: Running this query returns all the records in your dataset, not the summary
you need.

TIP Here’s a quick reminder on how to start a query in Design view. Go to the
application ribbon and select Create➪ Query Design. The Show Table dialog box
opens on top of a blank Query Design view. Select the table or tables with which
you need to work and you’re on your way. Feel free to refer to Chapter 2 for a
quick refresher on the basics of Access Queries.

To get a summary of revenue by period, you need to activate Totals in your
design grid. To do this, go up to the ribbon and select the Design tab and then
click the Totals button. As you can see in Figure 3-2, after you have activated
Totals in your design grid, you will see a new row in your grid called ‘‘Totals.’’
The Totals row tells Access which aggregate function to use when performing
aggregation on the specified fields.

Notice that the Totals row contains the words ‘‘group by’’ under each field
in your grid. This means that all similar records in a field will be grouped to
provide you with a unique data item. You will cover the different aggregate
functions later in this chapter.

The idea here is to adjust the aggregate functions in the Totals row to
correspond with the analysis you are trying perform. In this scenario, you
need to group all the periods in your dataset and then sum the revenue in
each period. Therefore, you will need to use the Group By aggregate function
for the Period field and the Sum aggregate function for the LineTotal field.

Chapter 3 ■ Beyond Select Queries 49

Figure 3-2: Activating Totals in your design grid adds a Totals row to your query grid that
defaults to ‘‘Group By.’’

Since the default selection for Totals is the Group By function, no change
is needed for the Period field. However, you need to change the aggregate
function for the LineTotal field from Group By to Sum. This tells Access that
you want to sum the revenue figures in the LineTotal field, not group them.
To change the aggregate function, simply click the Totals dropdown and the
LineTotal field, shown in Figure 3-3, and select Sum. At this point, you can
run your query.

Figure 3-3: Change the aggregate function under the LineTotal field to Sum.

50 Part I ■ Fundamentals of Data Analysis in Access

As you can see in Figure 3-4, the resulting table gives a summary of your
dataset, showing total revenue by period.

Figure 3-4: After you run your query, you have a summary showing you total revenue
by period.

TRICKS OF THE TRADE: CREATE ALIASES FOR YOUR COLUMN
NAMES

Notice that in Figure 3-4, Access automatically changes the name of the Line-
Total field to ‘‘SumOfLineTotal.’’ This is a normal courtesy extended by Access
to let you know that the figures you see here are a result of summing the Line-
Total field. This may be convenient in some cases, but if you need to distribute
these results to other people, you may want to give this field a more seemly
name. This is where aliases come in handy.

■ An alias is an alternate name you can give to a field to make it easier to
read the field’s name in the query results. There are two methods for creat-
ing an alias for your field.

■ Method 1: The first method is to preface the field with the text you
would like to see as the field name, followed by a colon. Figure 3-5
demonstrates how you would create aliases to ensure your query
results have user-friendly column names. Running this query results in
a dataset with a column call Period and column called Total Revenue.

■ Method 2: The second method is to right-click the field name
and select Properties. This activates the Property Sheet dia-
log box for Field Properties. In this dialog box, simply enter the
desired alias into the Caption input, as shown in Figure 3-6.

Chapter 3 ■ Beyond Select Queries 51

TRICKS OF THE TRADE: CREATE ALIASES FOR YOUR COLUMN
NAMES

Figure 3-5: In this example, you are creating an alias called TotalRevenue.

Figure 3-6: Using the Property Sheet dialog box for field properties is an alternate
way of defining an alias for your field.

WARNING Be aware that if you do use the Field Properties dialog box to
define your alias, there will be no clear indication in your query’s Design
view or in your query’s SQL string that you are using an alias. This may lead
to some confusion for anyone using your queries. For this reason, it is
generally better to use the first method to define an alias.

About Aggregate Functions
In the example shown in Figure 3-3, you select the Sum aggregate function from
the Totals dropdown list. Obviously, you could select any of the 12 functions
available. Indeed, you will undoubtedly come across analyses where you will

52 Part I ■ Fundamentals of Data Analysis in Access

have to use a few of the other functions available to you. In this light, it is
important to know what each one of these aggregate functions implicates for
your data analysis.

Group By

The Group By aggregate function aggregates all the records in the specified
field into unique groups. Here are a few things to keep in mind when using
the Group By aggregate function.

Access performs the Group By function in your aggregate query before
any other aggregation. If you are performing a Group By along with
another aggregate function, the group by function will be performed first.
The example shown in Figure 3-4 illustrates this concept. Access groups
the Period field before summing the LineTotal field.

Access sorts each group by field in ascending order. Unless otherwise
specified, any field tagged as a group by field will be sorted in ascending
order. If your query has multiple Group By fields, each field will be sorted
in ascending order starting with the left-most field.

Access treats multiple Group By fields as one unique item.

To illustrate the last bullet point, create a query that looks similar to the one
shown in Figure 3-7. This query will count all the transactions logged in the
‘‘200701’’ Period.

Figure 3-7: This query returns only one line showing total records for the 200701 period.

Now return to the Query Design view and add ProductID, as shown here
in Figure 3-8. This time, Access treats each combination of Period and Product
Number as a unique item. Each combination is grouped before the records in
each group are counted. The benefit here is that you have added a dimension
to your analysis. Not only do you know how many transactions per ProductID
were logged in 200701, but if you add all the transactions, you will get an
accurate count of the total number of transactions logged in 200701.

Chapter 3 ■ Beyond Select Queries 53

Figure 3-8: This query results in a few more records, but if you add the counts in each
group, they will total to 503.

Sum, Avg, Count, StDev, Var

These aggregate functions all perform mathematical calculations against the
records in your selected field. It is important to note that these functions
exclude any records set to null. In other words, these aggregate functions
ignore empty cells.

Avg: Calculates the Average.

Sum : Calculates the total value of all the records in the designated field
or grouping. This function will only work with the following data types:
AutoNumber, Currency, Date/Time, Yes/No, and Number.

Avg: Calculates the Average of all the records in the designated field or
grouping. This function will only work with the following data types:
AutoNumber, Currency, Date/Time, Yes/No, and Number.

Count: Simply counts the number of entries within the designated field
or grouping. This function works with all data types.

StDev: Calculates the standard deviation across all records within
the designated field or grouping. This function will only work with the
following data types: AutoNumber, Currency, Date/Time, and Number.

Var: Calculates the amount by which all the values within the designated
field or grouping vary from the average value of the group. This function
will only work with the following data types: AutoNumber, Currency,
Date/Time, and Number.

54 Part I ■ Fundamentals of Data Analysis in Access

Min, Max, First, Last

Unlike other aggregate functions, these functions evaluate all the records in
the designated field or grouping and return a single value from the group.

Min: Returns the value of the record with the lowest value in the designated
field or grouping. This function will only work with the following data
types: AutoNumber, Currency, Date/Time, Number, and Text.

Max: Returns the value of the record with the highest value in
the designated field or grouping. This function will only work with the
following data types: AutoNumber, Currency, Date/Time, Number, and
Text.

First: Returns the value of the first record in the designated field or
grouping. This function works with all data types.

Last: Returns the value of the last record in the designated field or
grouping. This function works with all data types

Expression, Where

One of the steadfast rules of aggregate queries is that every field must
have an aggregation performed against it. However, there will be situ-
ations where you will have to use a field as a utility. That is, use a
field to simply perform a calculation or apply a filter. These fields are
a means to get to the final analysis you are looking for, rather than part
of the final analysis. In these situations, you will use the Expression function
or the Where clause. The Expression function and the Where clause are unique
in that they don’t perform any grouping action per se.

The Expression Aggregate Function

This function is generally applied when you are utilizing custom calculations or
other functions in an aggregate query. Expression tells Access to perform the
designated custom calculation on each individual record or group separately.

To use this function, you create a query in Design view that looks like the
one shown in Figure 3-9.

NOTE Note that you are using two aliases in this query: ‘‘Revenue’’ for the
LineTotal field and ‘‘Cost’’ for the custom calculation defined here. Using an alias
of ‘‘Revenue’’ gives the sum of LineTotal a user-friendly name.

Now you can use [Revenue] to represent the sum of LineTotal in your
custom calculation. The Expression aggregate function ties it all together by
telling Access that [Revenue]*.33 will be performed against the resulting sum

Chapter 3 ■ Beyond Select Queries 55

of LineTotal for each individual Period group. Running this query will return
the total Revenue and Cost for each Period group.

Figure 3-9: The Expression aggregate function allows you to perform the designated
custom calculation on each Period group separately.

The Where Clause

The Where clause allows you to apply a criterion to a field that is not included
in your aggregate query, effectively applying a filter to your analysis. To see
the Where clause in action, create a query in Design view that looks like the
one shown in Figure 3-10.

Figure 3-10: Running this query causes an error message because you have no aggrega-
tion defined for Period.

56 Part I ■ Fundamentals of Data Analysis in Access

As you can see in the Total row, you are grouping ProductID and summing
LineTotal. However, Period has no aggregation selected, because you only
want to use it to filter out one specific period. You have entered ‘‘200701’’ in
the criteria for Period. If you run this query as is, you will get the following
error message: ‘‘You tried to execute a query that does not include the specified
expression Dim.Dates.Period=’’200701’’ as part of an aggregate function.’’

To run this query successfully, click the Totals dropdown for the Period
field and select ‘‘Where’’ from the selection list. At this point, your query
should look similar to the one shown here in Figure 3-11. With the Where

clause specified, you can successfully run this query.

NOTE Here is one final note about the Where clause. Notice in Figure 3-9 that
the check box in the ‘‘Show’’ row has no check in it for the Period. This is because
fields tagged with the Where clause cannot be shown in an aggregate query.
Therefore, this checkbox must remain empty. If you place a check in the ‘‘Show’’
checkbox of a field with a Where clause, you will get an error message stating that
you cannot display the field for which you entered Where in the Total row.

Figure 3-11: Adding a Where remedies the error and allows you to run the query.

Action Queries

You can think of an action query the same way you think of a select query. Like
a select query, an action query extracts a dataset from a data source based on
the definitions and criteria you pass to the query. The difference is that when an
action query returns results, it does not display a dataset; instead, it performs
some action on those results. The action it performs depends on its type.

Chapter 3 ■ Beyond Select Queries 57

NOTE Unlike select queries, you cannot use action queries as a datasource for a
form or a report, as they do not return a dataset that can be read.

There are four types of action queries: Make-Table queries, delete queries,
append queries, and updated queries. Each query type performs a unique
action that you will cover in this section.

Why Use Action Queries?
As mentioned before, along with querying data, the scope of data analysis
includes shaping data, changing data, deleting data and updating data. Access
provides action queries as data analysis tools to help you with these tasks.
Unfortunately, too many people do not make use of these tools; instead, opting
to export small chunks of data to Excel in order to perform these tasks.

This may be fine if you are performing these tasks as a one-time analysis
with a small dataset. However, what do you do when you have to carry out
the same analysis on a weekly basis, or if the dataset you need to manipulate
exceeds Excel’s limits? In these situations, it would be impractical to routinely
export data into Excel, manipulate the data, and then re-import the data back
into Access. Using action queries, you can increase your productivity and
reduce the chance of errors by carrying out all your analytical process within
Access.

Make-Table Queries
A Make-Table query creates a new table consisting of data from an existing
table. The table created consists of records that have met the definitions and
criteria of the Make-Table query.

Why Use a Make-Table Query?

In simple terms, if you create a query and would like to capture the results of
your query in its own table, you can use a Make-Table query to create a hard
table with your query results. You can then use your new table in some other
analytical process.

What Are the Hazards of Make-Table Queries?

When you build a Make-Table query, you must specify the name of the table
that will be created when the Make-Table query is run. If you give the new
table the same name as an existing table, the existing table will be overwritten.
If you accidentally write over another table with a Make-Table query, you will

58 Part I ■ Fundamentals of Data Analysis in Access

not be able to recover the old table. Be sure that you name the tables created by
your Make-Table queries carefully to avoid overwriting existing information.

The data in a table made by a Make-Table query is not linked to its source
data. This means that the data in your new table is not updated when data in
the original table is changed.

Creating a Make-Table Query

You have been asked to provide the marketing department with a list of
customers along with information about each customer’s sales history. To
meet this task, follow these steps:

1. Create a query in the Query Design view that looks similar to the one
shown here in Figure 3-12.

Figure 3-12: Create this query in Design view.

2. Go up to the ribbon, select Design ➪ Make Table. The Make Table dialog
box shown in Figure 3-13 will be activated.

Figure 3-13: Enter the name of your new table.

Chapter 3 ■ Beyond Select Queries 59

3. Enter the name you would like to give to your new table in the Table
Name input box. For this example, type SalesHistory.

WARNING Be sure not to enter the name of a table that already exists in your
database, as it will be overwritten.

4. Once you have entered the name, click the OK button to close the dialog
box, and then run your query. At this point, Access will throw up the
warning message shown in Figure 3-14 in order to make you aware that
you will not be able to undo this action.

Figure 3-14: Click Yes to run your query.

5. Click Yes to confirm and create your new table.

When your query has completed running, you will find a new table called
SalesHistory in your Table objects.

TRICKS OF THE TRADE: TURNING AGGREGATE QUERY RESULTS
INTO HARD DATA

The results of aggregate queries are inherently not updatable. This means you
will not be able to edit any of the records returned from an aggregate query.
This is because the relationship between the aggregated data and the under-
lying data only goes one way. That is, changing the aggregated data will not
change the underlying data.

However, you can change your aggregate query into a Make- Table query
and create a static table with your aggregate query’s results. With your new
hard table, you will be able to edit at your heart’s content.

To illustrate how this works, create the query shown in Figure 3-15 in design
view. Then, change the query into a Make-Table query, enter a name for your
new table, and run it.

(continued)

60 Part I ■ Fundamentals of Data Analysis in Access

TRICKS OF THE TRADE: TURNING AGGREGATE QUERY RESULTS
INTO HARD DATA (continued)

Figure 3-15: Running this query as a Make-Table will allow you to edit the aggre-
gate query’s results.

TIP Notice that in the previous figure you defined a column with an alias
of Customer. After the alias, you simply entered All in quotes. When you run
the query, you will notice that your new table has a column named
Customer in which the value for every record is All. This example illustrates
that when running a Make-Table query, you can create your own columns
on the fly by simply creating an alias for the column and defining its
contents after the colon.

Delete Queries
A delete query deletes records from a table based on the definitions and criteria
you specify. That is, a delete query affects a group of records that meet a
specified criterion that you apply.

Why Use a Delete Query?

Although you can delete records by hand, there are situations where using
a delete query is more efficient. For example, if you have a very large dataset, a
delete query will delete your records faster than a manual delete. In addition,
if you want to delete certain records based on several complex criteria, you
will want to utilize a delete query. Finally, if you need to delete records from
one table based on a comparison with another table, a delete query is the
way to go.

Chapter 3 ■ Beyond Select Queries 61

What Are the Hazards of Delete Queries?

As with all other action queries, you will not be able to undo the effects
of a delete query. However, a delete query is much more dangerous than
the other action queries because there is no way to remedy accidentally
deleted data.

Given that deleted data cannot be recovered, you should get into the habit
of taking one of the following actions to avoid a fatal error.

Run a select query to display the records you are about to delete. Review
the records to confirm that they are indeed the ones you want to delete,
and then run the query as a delete query.

Run a select query to display the records you are about to delete; then
change the query into a Make-Table query. Run the Make-Table query to
make a backup of the data you are about to delete. Finally, run the query
again as a delete query to delete the records.

Make a backup of your database before running your delete query.

Creating a Delete Query

The marketing department has informed you that the SalesHistory table
you gave them includes records that they do not need. They want you to
delete all history before the 200806 Period. To meet this demand, do the
following:

1. Design a query based on the SalesHistory table you created a moment
ago.

2. Bring in the Period field and enter <200806 in the Criteria row. Your
design grid should look like the one shown here in Figure 3-16.

Figure 3-16: This query selects all records with a Period earlier than 200806.

62 Part I ■ Fundamentals of Data Analysis in Access

3. Perform a test by running the query. Review the records returned, and
take note that 6418 records meet your criteria. You now know that 6418
will be deleted if you run a delete query based on these query definitions.

4. Return to the Design view. Go up to the ribbon and select Design➪

Delete. Now run your query again. At this point, Access will throw up a
message, as shown in Figure 3-17, telling you that you are about to delete
6418 rows of data and warning you that you will not be able to undo this
action. This is the number you were expecting to see, as the test you ran
earlier returned 6418 records.

Figure 3-17: Click Yes to continue with your delete action.

5. Since everything checks out, click Yes to confirm and delete the records.

NOTE If you are working with a very large dataset, Access may throw up a
message telling you that the ‘‘undo command won’t be available because the
operation is too large or there isn’t enough free memory.’’

Many people mistakenly interpret this message to mean that this operation can’t
be performed because there is not enough memory. This message simply tells you
that Access will not be able to give the option of undoing this change if you
choose to continue with the action.

This is applicable to delete queries, append queries, and update queries.

TRICKS OF THE TRADE: DELETING RECORDS FROM ONE TABLE BASED ON
RECORDS FROM ANOTHER

You will encounter many analyses where you will have to delete records from
one table based on records from another. This is relatively easy to do. How-
ever, many users get stuck on this because of one simple mistake.

The query in Figure 3-18 looks simple enough. It tells Access to delete all
records from the Customer_ListA table if the customer is found in the Cus-
tomer_ListB table.

If you run this query, Access throws up the message shown in Figure 3-19.
This message asks you to specify which table contains the records you want to
delete.

Chapter 3 ■ Beyond Select Queries 63

TRICKS OF THE TRADE: DELETING RECORDS FROM ONE TABLE BASED ON
RECORDS FROM ANOTHER

This message stumps many Access users. Unfortunately, this message does
not clearly state what you need to do to remedy the mistake. Nevertheless, the
remedy is a simple one:

1. Clear the query grid by deleting the CustomerName field.

2. Double-click the asterisk (*) in the Customer_ListA table. This explicitly
tells Access that the Customer_ListA table contains the records you want
to delete. Figure 3-20 demonstrates the correct way to build this query.

Figure 3-18: This delete query seems as though it should run fine, but there is
something wrong.

Figure 3-19: Access does not know which table you want the records deleted
from.

Figure 3-20: This is the correct way to build this query.

64 Part I ■ Fundamentals of Data Analysis in Access

Append Queries
An append query appends records to a table based on the definitions and
criteria you specify in your query. In other words, with an append query, you
can add the results of your query to the end of a table, effectively adding rows
to the table.

Why Use an Append Query?

With an append query, you are essentially copying records from one table
or query and adding them to the end of another table. In that light, append
queries come in handy when you need to transfer large datasets from one table
to another. For example, if you have a table called Old Transactions where you
archive your transaction records, you can add the latest batch of transactions
from the New Transactions table by using an append query.

What Are the Hazards of Append Queries?

The primary hazard of an append query is losing records during the append
process. That is, not all of the records you think you are appending to a table
actually make it to your table. There are generally two reasons why records
can get lost during an append process.

Type Conversion Failure: This failure occurs when the character type of
the source data does not match that of the destination table column. For
example, imagine that you have a table with a field called Cost. Your Cost
field is set as a TEXT character type because you have some entries that
are tagged as ‘‘TBD’’ (to be determined), as you don’t know the cost yet.
If you try to append that field to another table whose Cost field is set as a
NUMBER character type, all the entries that have ‘‘TBD’’ will be changed
to Null, effectively deleting your TBD tag.

Key Violation: This violation occurs when you are trying to append
duplicate records to a field in the destination table that is set as a primary
key or is indexed as No Duplicates. In other words, when you have a
field that prohibits duplicates, Access will not allow you to append any
record that is a duplicate of an existing record in that field.

Another hazard of an append query is that the query may simply fail to run.
There are two reasons why an append query might fail:

Lock Violation: This violation occurs when the destination table is open
in Design view or is open by another user on the network.

Validation Rule Violation: This violation occurs when a field in the
destination table has one of the following properties settings:

Chapter 3 ■ Beyond Select Queries 65

Required Field is set to Yes: If a field in the destination table has been
set to Required Yes and you do not append data to this field, your
append query will fail.

Allow Zero Length is set to No: If a field in the destination table has
been set to Zero Length No and you do not append data to this field,
your append query will fail.

Validation Rule set to anything: If a field in the destination table has
a validation rule and you break the rule with your append query, your
append query will fail. For example, if you have a validation rule for
the Cost field in your destination table set to >0, you cannot append
records with a quantity less than or equal to zero.

Luckily, Access will clearly warn you if you are about to cause any of these
errors. Figure 3-21 demonstrates this warning message.

Figure 3-21: The warning message tells you that you will lose records during the append
process.

As you can see, this warning message tells you that you cannot append all
the records due to errors. It goes on to tell you exactly how many records will
not be appended because of each error. In this case, 5979 records will not be
appended because of key violations. You have the option of clicking Yes or
No. The Yes button ignores the warning and appends all records minus the
two with the errors. The No button cancels the query, which means that no
records will be appended.

Keep in mind that as with all other action queries, you will not be able to
undo your append query once you have pulled the trigger.

TIP If you can identify the records you recently appended in your destination
table, you can technically undo your append action by simply deleting the newly
append records. This will obviously be contingent upon your providing yourself a
method of identifying appended records. For example, you can create a field that
contains some code or tag that identifies the appended records. This code can be
anything from a date to a simple character.

66 Part I ■ Fundamentals of Data Analysis in Access

Creating an Append Query

The marketing department contacts you and tells you that they made a mistake.
They actually need all the sales history for the 2008 Fiscal year. So they need
periods 200801 thru 200805 added back to the SalesHistory report.

To meet this demand:

1. Create a query in the Query Design view that looks similar to the one
shown in Figure 3-22.

Figure 3-22: This query selects all records contained in Periods 200801 thru 200805.

2. Go to the ribbon and select Design ➪ Append. The Append dialog box,
shown in Figure 3-23, will be activated. In the Table Name input box,
enter the name of the table to which you would like to append your query
results. In this example, enter SalesHistory.

Figure 3-23: Enter the name of the table to which you would like to append your query
results.

Chapter 3 ■ Beyond Select Queries 67

3. Once you have entered your destination table’s name, click the OK button.
You will notice that your query grid has a new row called ‘‘Append To’’
under the Sort row. Figure 3-24 shows this new row.

Figure 3-24: In the Append To row, select the name of the field in your destination table
where you would like to append the information resulting from your query.

The idea is to select the name of the field in your destination table where
you would like append the information resulting from your query. For
example, the Append To row under the Period field shows the word
‘‘Period.’’ This means that the data in the Period field of this query will
be appended to the Period field in the SalesHistory table.

4. Now you can run your query. After you run your query, Access will
throw up a message, as shown in Figure 3-25, telling you that you are
about to append 1760 rows of data and warning you that you will not be
able to undo this action. Click Yes to confirm and append the records.

Figure 3-25: Click Yes to continue with your append action.

68 Part I ■ Fundamentals of Data Analysis in Access

TRICKS OF THE TRADE: ADDING A TOTALS ROW TO
YOUR DATASET

Your manager wants you to create a revenue summary report that shows the
total revenue for each account manager in each market. He also wants to see
the total revenue for each market. Instead of giving your manager two sepa-
rate reports, you can give him one table that has account manager details and
market totals. This is a simple two-step process:

1. Make an Account Manager Summary. Create a query in the Query Design
view that looks similar to the one shown in the Figure 3-26. Note that
you are creating an alias for the LineTotal field. Change the query into a
Make-Table query and name your table RevenueSummary. Run this query.

Figure 3-26: Run this query as a Make-Table query to make a table called Revenue-
Summary.

2. Append the Market Totals. Now use the RevenueSummary table you just
created to summarize revenue by Market. To do this, create a query in the
Query Design view that looks similar to the one shown in the Figure 3-27.

3. Take a moment and look at the query in the previous figure. You will
notice that you are making a custom Product_Category field, filling it
with the word ‘‘(Total).’’ This will ensure that the summary lines you
append to the RevenueSummary table will be clearly identifiable,
as they will have the word ‘‘Total’’ in the Product_Category field.

4. Change the query into an append query and append these results to the
RevenueSummary table.

Chapter 3 ■ Beyond Select Queries 69

TRICKS OF THE TRADE: ADDING A TOTALS ROW TO
YOUR DATASET

Figure 3-27: Run this market summary query as an append query and append it to
the RevenueSummary table.

5. Now you can open the RevenueSummary table and sort by Market and
Product_Category. As you can see in Figure 3-28, you have success-
fully created a table that has a total revenue line for every product
category and a total revenue line for each market, all in one table.

Figure 3-28: Sort by market and product category.

70 Part I ■ Fundamentals of Data Analysis in Access

Update Queries
An update query allows you to alter the records in a table based on the
definitions and criteria you specify in your query. In other words, with an
update query, you can change the values of many records at one time.

Why Use an Update Query?

The primary reason to use update queries is to save time. There is no easier
way to edit large amounts of data at one time than with an update query. For
example, imagine you have a Customers table that includes the customer’s zip
code. If the zip code 32750 has been changed to 32751, you can easily update
your Customers table to replace 32750 with 32751.

What Are the Hazards of Update Queries?

As is the case with all other action queries, you must always take precautions
to ensure that you are not in a situation where you cannot undo the effects of
an update query. Get into the habit of taking one of the following actions in
order to give yourself a way back to the original data in the event of a misstep.

Run a select query to display, then change the query to a Make-Table
query. Run the Make-Table query to make a backup of the data you are
about to update. Finally, run the query again as an update query to delete
the records.

Make a backup of your database before running your update query.

Creating an Update Query

You have just received word that the zip code for all customers in the 33605
zip code has been changed to 33606. To keep your database accurate, you must
update all the 33605 zip codes in your Dim_Customers table to 33606.

1. Create a query in the Query Design view that looks similar to the one
shown in Figure 3-29.

2. Perform a test by running the query.

3. Review the records returned and take note that six records meet your
criteria. You now know that six records will be updated if you run an
update query based on these query definitions.

4. Return to the Design view. Go up to the Ribbon and select Design ➪

Update. You will notice that your query grid has a new row called
Update To. The idea is to enter the value to which you would like to

Chapter 3 ■ Beyond Select Queries 71

update the current data. In this scenario, shown in Figure 3-30, you want
to update the zip code for the records you are selecting to 33606.

Figure 3-29: This query selects all customers in the 32750 zip code.

Figure 3-30: In this query, you are updating the zip code for all customers that have a
code between 33605 to 33606.

5. Run the query. Access will throw up the message, shown in Figure 3-31,
telling you that you are about to update six rows of data and warning
you that you will not be able to undo this action. This is the number you
were expecting to see, as the test you ran earlier returned six records.
Since everything checks out, click Yes to confirm and update the records.

Figure 3-31: Click Yes to continue with your update action.

72 Part I ■ Fundamentals of Data Analysis in Access

TRICKS OF THE TRADE: USING EXPRESSIONS IN YOUR UPDATE QUERIES

You will come across situations where you will have to execute record-specific
updates. That is, you are not updating multiple records with one specific value;
instead, you are updating each record based on an expression.

To demonstrate this concept, start a query in Design view based on the
SalesHistory table you created in the ‘‘Make-Table Queries’’ section of this
chapter. Build your query like the one shown in Figure 3-32.

Figure 3-32: This update query uses an expression to make record-specific
updates.

This query is telling Access to update the Period to concatenate the text ‘‘PD ‘‘
(note the space after PD) with the value in the Period field.

After you run this query, all the values in the Period field will have a prefix
of PD. For example, 200801 will be updated to PD 200801.

Remember, this is just one example of an expression you can use to update
your records. You can use almost any expression with an update query, rang-
ing from mathematical functions to string operations.

A Word on Updatable Datasets

Not all datasets are updatable. That is, you may have a dataset that Access
cannot update for one reason or another. If your update query fails, you will
get one of these messages: ‘‘Operation must use an updatable query’’ or ‘‘This
Recordset is not updateable.’’

Your update query will fail if any one of the following applies:

Your query is using a join to another query: To work around this issue,
create a temporary table that you can use instead of the joined query.

Your query is based on a crosstab query, an aggregate query, a Union
query, or a subquery that contains aggregate functions: To work around
this issue, create a temporary table that you can use instead of the query.

Chapter 3 ■ Beyond Select Queries 73

Your query is based on three or more tables and there is a
many-to-one-to-many relationship: To work around this issue, create a
temporary table that you can use without the relationship.

Your query is based on a table where the Unique Values property is set
to Yes: To work around this issue, set the Unique Values property of the
table to No.

Your query is based on a table on which you do not have Update Data
permissions or is locked by another user: To work around this issue,
ensure you have permissions to update the table, and that the table is not
in Design view or locked by another user.

Your query is based on a table in a database that is open as read-only or
is located on a read-only drive: To work around this issue, obtain write
access to the database or drive.

Your query is based on a linked ODBC table with no unique index or
a Paradox table without a primary key: To work around this issue, add
a primary key or a unique index to the linked table.

Your query is based on a SQL pass-through query: To work around this
issue, create a temporary table that you can use instead of the query.

Crosstab Queries

A crosstab query is a special kind of aggregate query that summarizes values
from a specified field and groups them in a matrix layout by two sets of
dimensions: one set down the left side of the matrix and the other set listed
across the top of the matrix. Crosstab queries are perfect for analyzing trends
over time or providing a method for quickly identifying anomalies in your
dataset.

The anatomy of a crosstab query is simple. You need a minimum of three
fields to create the matrix structure that will become your crosstab: The first
field makes up the row headings, the second field makes up the column
headings, and the third field makes up the aggregated data in the center of the
matrix. The data in the center can represent a Sum, Count, Average, or any other
aggregate function. Figure 3-33 demonstrate the basic structure of a crosstab
query.

Figure 3-33: This is the basic structure of a crosstab query.

74 Part I ■ Fundamentals of Data Analysis in Access

There are two methods for creating a crosstab query: using the Crosstab
Query Wizard and creating a crosstab query manually using the query
design grid.

Using the Crosstab Query Wizard
The Crosstab Query Wizard comes in handy for beginners. Use this wizard
when you want a simple guide through the steps of creating a crosstab query.

To activate the Crosstab Query Wizard:

1. In the ribbon, select the Create tab.

2. Select the Query Wizard button. This will bring up the New Query dialog
box, shown in Figure 3-34.

Figure 3-34: Select Crosstab Query Wizard from the New Query dialog box.

3. Select Crosstab Query Wizard from the selection list and then click the
OK button.

4. The first step in the Crosstab Query Wizard is to identify the data source
you will be using. As you can see in Figure 3-35, you can choose either
a query or a table as your data source. In this example, you’ll use the
Dim_Transactions table as your data source. Select Dim_Transactions
and then click the Next button.

5. The next step is to identify the fields you would like to use as the row
headings. Select the ProductID field and click the button with the >

symbol on it to move it to the Selected Items list. At this point, your
dialog box should look like Figure 3-36. Notice that the ProductID field
is shown in the sample diagram at the bottom of the dialog box.

Chapter 3 ■ Beyond Select Queries 75

NOTE You can select up to three fields to include in your crosstab query as row
headings. Remember that Access treats each combination of headings as a unique
item. That is, each combination is grouped before the records in each group are
aggregated.

Figure 3-35: Select the data source for your crosstab query.

Figure 3-36: Select the ProductID field; then click the Next button.

6. The next step is to identify the field you would like to use as the column
heading for your crosstab query. Keep in mind that there can be only
one column heading in your crosstab. Select the OrderDate field from
the field list. Again, notice in Figure 3-37 that the sample diagram at the
bottom of the dialog box updates to show the OrderDate.

76 Part I ■ Fundamentals of Data Analysis in Access

Figure 3-37: Select the OrderDate field; then click the Next button.

NOTE If the field used as a column heading includes data that contains a period
(.), an exclamation mark (!), or a bracket ([or]), those characters will be changed
to an underscore character (_) in the column heading. This does not happen if the
same data is used as a row heading. This behavior is by design, as the naming
convention for field names in Access prohibits use of these characters.

7. If your column heading is a date field, as the OrderDate is in this example,
you will see the step shown here in Figure 3-38. In this step, you will
have the option of specifying an interval to group your dates by. Select
Quarter here and notice that the sample diagram at the bottom of the
dialog box updates accordingly.

Figure 3-38: Select Quarter and then click the Next button.

Chapter 3 ■ Beyond Select Queries 77

8. You’re almost done. In the second-to-last step, shown in Figure 3-39, you
identify the field you want to aggregate and the function you want to use.
Select the LineTotal field from the Fields list and then select Sum from
the Functions list.

If you look at the sample diagram at the bottom of the dialog box, you
will get a good sense of what your final crosstab query will do. In this
example, your crosstab will calculate the sum of the LineTotal field for
each ProductID by Quarter.

Figure 3-39: Select LineTotal and Sum, and then click the Next button.

NOTE Notice the check box next to ‘‘Yes, include row sums.’’ This box is checked
by default to ensure that your crosstab query includes a ‘‘Total’’ column that
contains the sum total for each row. If you do not want this column, simply
remove the check from the checkbox.

9. The final step, shown in Figure 3-40, is to name your crosstab query.
In this example, you are naming your crosstab ‘‘Product Summary by
Quarter.’’ After you name your query, you have the option of viewing
your query or modifying the design. In this case, you want to view your
query results, so simply click the Finish button.

In just a few clicks, you have created a powerful look at the revenue
performance of each product by quarter (Figure 3-41).

78 Part I ■ Fundamentals of Data Analysis in Access

Figure 3-40: Select Finish to see your query results.

Figure 3-41: A powerful analysis in just a few clicks.

TIP To quickly add all of a table’s fields to the query design grid, double click the
table’s title bar. This will select all of the fields (except the asterisk). Now you can
drag all of the selected fields to the grid at once.

TRICKS OF THE TRADE: TURNING YOUR CROSSTAB QUERY INTO
HARD DATA

You will undoubtedly encounter scenarios where you will have to convert your
crosstab query into hard data in order to use the results on other analysis. A
simple trick in doing this is to use your saved crosstab query in a Make-Table
query to create a new table with your crosstab results.

Start by creating a new select query in Design view and add your saved
crosstab query. In Figure 3-42, you will notice that you are using the ‘‘Product

Chapter 3 ■ Beyond Select Queries 79

TRICKS OF THE TRADE: TURNING YOUR CROSSTAB QUERY INTO
HARD DATA

Summary by Quarter’’ crosstab you just created. Bring in the fields you want
to include in your new table.

Figure 3-42: Create a select query using the crosstab query as your source data.

At this point, simply convert your query into a Make-Table query and run it.
After you run your Make-Table, you will have a hard table that contains the
results of your crosstab.

Creating a Crosstab Query Manually
Although the Crosstab Query Wizard makes it easy to create a crosstab in
just a few clicks, it does come with its own set of limitations that may inhibit
your data analysis efforts. The following list describes the limitations you will
encounter when using the Crosstab Query Wizard:

You can only select one data source on which to base your crosstab. This
means that if you need to crosstab data residing across multiple tables,
you will need to take extra steps to create a temporary query in order to
use as your data source.

There is no way to filter or limit your crosstab query with criteria.

You are limited to only three row headings.

You cannot explicitly define the order of your column headings.

The good news is that you can create a crosstab query manually through the
query design grid. As you will learn in the sections to follow, creating your
crosstab manually allows you greater flexibility in your analysis.

80 Part I ■ Fundamentals of Data Analysis in Access

1. Create the aggregate query shown in Figure 3-43. Notice that you are
using multiple tables to get the fields you need. One of the benefits of
creating a crosstab query manually is that you don’t have to use just one
data source. You can use as many sources as you need in order to define
the fields in your query.

Figure 3-43: Create an aggregate query as shown here.

2. In the ribbon, select the Design tab. From the Design tab, select the
Crosstab button. At this point, you will notice a row in your query grid
called Crosstab, as shown in Figure 3-44. The idea is to define what
role each field will play in your crosstab query. Under each field in the
Crosstab row, you will select where the field will be a row heading, a
column heading, or a value.

Figure 3-44: Set each field’s role in the Crosstab row.

Chapter 3 ■ Beyond Select Queries 81

3. Run the query to see your crosstab in action.

When building your crosstab in the query grid, keep the following in mind:

You must have a minimum of one row heading, one column heading,
and one Value field.

You cannot define more than one column heading.

You cannot define more than one value heading.

You are not limited to only three row headings.

TRICKS OF THE TRADE: CREATING A CROSSTAB VIEW WITH MULTIPLE
VALUE FIELDS

One of the rules of a crosstab query is that you cannot have more than one
Value field. However, there is a trick to get work around this limitation and
analyze more than one metric with the same data groups. To help demonstrate
how this works, follow these steps:

1. Create a crosstab query as shown in Figure 3-45 and save it
as Crosstab-1. Your column heading is a custom field that
has the region name and the word ‘‘Revenue’’ next to it.

Figure 3-45: This crosstab will give you a revenue metric.

2. Create another crosstab query as shown in Figure 3-46 and save it
as Crosstab-2. Again, your column heading is a custom field that
gives you the region name and the word ‘‘Transactions’’ next to it.

3. Create a select query that will join the two crosstab queries on the row
heading. In the example shown in Figure 3-47, the row heading is the Pro-
duct_Category field. Bring in all the fields in the appropriate order.

(continued)

82 Part I ■ Fundamentals of Data Analysis in Access

TRICKS OF THE TRADE: CREATING A CROSSTAB VIEW WITH MULTIPLE
VALUE FIELDS (continued)

Figure 3-46: This crosstab will give you a transaction count metric.

Figure 3-47: This query joins two crosstabs, allowing you to use multiple value
fields in a crosstab format.

4. Run this query. The result will be an analysis that incorporates both
crosstab queries, effectively giving you multiple value fields.

NOTE Keep in mind that if you have more than one row heading, you will
have to create a join on each row heading.

Customizing Your Crosstab Queries

As useful as crosstab queries can be, you may find that you need to apply
some of your own customizations in order to get the results you need. In this

Chapter 3 ■ Beyond Select Queries 83

section, you will explore a few of the ways to customize your crosstab queries
to meet your needs.

Defining criteria in a crosstab query: The ability to filter or limit your
crosstab query is another benefit of creating a crosstab query manually.
To define a filter for your crosstab, simply enter the criteria as you
normally would for any other aggregate query. Figure 3-48 demonstrates
this concept.

Figure 3-48: You can define a criterion to filter your crosstab queries.

Changing the sort order of your crosstab column headings: By default,
crosstab queries sort their column headings in alphabetical order. For
example, the crosstab query in Figure 3-49 will produce a dataset where
the column headings read this order: Canada, Midwest, North, Northeast,
South, Southeast, Southwest, and West.

Figure 3-49: The crosstab displays all regions as columns in alphabetical order.

84 Part I ■ Fundamentals of Data Analysis in Access

This may be fine in most situations, but if your company headquarters is
in California, the executive management may naturally want to see the West
region first. You can explicitly specify the column order of a crosstab query by
changing the Column Headings attribute in the Query Properties.

To get to the Column Headings attribute:

1. Open the query in Design view.

2. Right click in the grey area above the white query grid and select
Properties. This activates the Query Properties dialog box, shown in
Figure 3-50.

3. Enter the order you would like to see the column headings by changing
the Column Headings attribute.

TIP Adjusting the Column Headings attribute comes in handy when you are
struggling with showing months in month order instead of alphabetical order.
Simply enter the month columns in the order you would like to see them. For
example: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec.

Figure 3-50: The Column Headings attribute is set to have the column read in this order:
West, Canada, Midwest, North, Northeast, South, Southeast, and Southwest.

When working with the Column Headings attribute, keep the following in
mind:

Each column name should be in quotes and separated by commas. If you
omit the quotes, Access will insert them for you.

Accidentally misspelling a column name results in that column being
excluded from the crosstab results and a dummy column with the
misspelled name being included with no data in it.

Chapter 3 ■ Beyond Select Queries 85

You must enter every column you want to include in your crosstab report.
Excluding a column from the Column Headings attribute excludes that
column from the crosstab results.

Clearing the Column Headings attribute ensures that all columns are
displayed in alphabetical order.

Summary

Data analysis often goes beyond selecting small extracts of data. The scope
of data analysis also includes grouping and comparing data; updating and
deleting data; performing calculations on data; and shaping and reporting
data. Unfortunately, many Excel users don’t realize that Access has built-in
tools and functionality designed specifically to handle each of these tasks.

Aggregate queries allow you to quickly group and summarize data, aggre-
gating the returned dataset into totals, averages, counts, and more. Similarly,
crosstab queries summarize values and group them in a matrix layout, perfect
for analyzing trends over time or providing a method for quickly identifying
anomalies in your dataset.

Action queries go beyond just selecting data by actually performing some
action on the returned results. The action performed depends on the type of
action query you are using. There are four types of action queries: Make-Table
queries, delete queries, append queries, and update queries:

Make-Table queries create a new table consisting of the data resulting from
the query.

Delete queries delete records from a table based on the definitions and
criteria you specify in the query.

Append queries append records to a table based on the definitions and
criteria you specify in your query. In other words, with an append query,
you can add the results of your query to the end of a table, effectively
adding rows to the table.

Update queries allow you to edit large amounts of data at one time.

Utilizing the tools and functionality outlined in this chapter will help
you carry out all your analytical processes within Access, saving you time,
increasing your productivity, and reducing the chance for error.

P a r t

II
Basic Analysis Techniques

In This Part

Chapter 4: Transforming Your Data with Access
Chapter 5: Working with Calculations and Dates
Chapter 6: Performing Conditional Analysis

C H A P T E R

4
Transforming Your Data

with Access

Data transformation generally entails certain actions that are meant to ‘‘clean’’
your data—actions such as establishing a table structure, removing duplicates,
cleaning text, removing blanks, and standardizing data fields.

You will often receive data that is unpolished or ‘‘raw.’’ That is to say,
the data may have duplicates, blank fields, inconsistent text, and so on.
Before you can perform any kind of meaningful analysis on data in this
state, it’s important to go through a process of data transformation, or data
cleanup.

While many people store their data in Access, few use it for data trans-
formation purposes, often preferring to export the data to Excel, perform
any necessary cleanup there, and then import the data back to Access. The
obvious motive for this behavior is familiarity with the flexible Excel envi-
ronment. However, exporting and importing data simply to perform such
easy tasks can be quite inefficient, especially if you are working with large
datasets.

This chapter introduces you to some of the tools and techniques in Access
that make it easy to clean and massage your data without turning to Excel.

Finding and Removing Duplicate Records

Duplicate records are absolute analysis killers. The effect duplicate records
have on your analysis can be far-reaching, corrupting almost every metric,
summary, and analytical assessment you produce. For this reason, finding and

89

90 Part II ■ Basic Analysis Techniques

removing duplicate records should be your first priority when you receive a
new dataset.

Defining Duplicate Records
Before you jump into your dataset to find and remove duplicate records, it’s
important to consider how you define a duplicate record. To demonstrate this
point, look at the table shown in Figure 4-1, where you see 11 records. Out of
the 11 records, how many are duplicates?

Figure 4-1: Are there duplicate records in this table? It depends on how you define one.

If you were to define a duplicate record in Figure 4-1 as a duplication
of just the SicCode, you would find 10 duplicate records. That is, out of
the 11 records shown, one record has a unique SicCode while the other 10
are duplications. Now, if you were to expand your definition of a duplicate
record to a duplication of both SicCode and PostalCode, you would find
only two duplicates: the duplication of PostalCodes 77032 and 77040. Finally,
if you were to define a duplicate record as a duplication of the unique
value of SicCode, PostalCode, and CompanyNumber, you would find no
duplicates.

This example shows that having two records with the same value in a
column does not necessarily mean you have a duplicate record. It’s up to you
to determine which field or combination of fields best defines a unique record
in your dataset.

Once you have a clear idea what field, or fields, best make up a unique
record in your table, you can easily test your table for duplicate records by
attempting to set them as a primary or combination key. To demonstrate this
test, open the LeadList table in Design view; then tag the CompanyNumber
field as a primary key. If you try to save this change, you get the error message

Chapter 4 ■ Transforming Your Data with Access 91

shown in Figure 4-2. This message means there is some duplication of records
in your dataset that needs to be dealt with.

Figure 4-2: If you get this error message when trying to set a primary key, you have
duplicate records in your dataset.

Finding Duplicate Records
If you have determined that your dataset does indeed contain duplicates, it’s
generally a good idea to find and review the duplicate records before removing
them. Giving your records a thorough review ensures that you don’t mistake a
record as a duplicate and remove it from your analysis. You may find that you
are mistakenly identifying valid records as duplications, in which case you
need to include another field in your definition of what makes up a unique
record.

The easiest way to find the duplicate records in your dataset is to run the
Find Duplicates Query Wizard. Follow these steps:

1. To start this wizard, go up to the application Ribbon and select the
Create tab.

2. Click the Query Wizard button. This activates the New Query dialog box
shown in Figure 4-3.

Figure 4-3: Select the Find Duplicates Query Wizard and then click the OK button.

3. Select Find Duplicates Query Wizard and then click the OK button.

92 Part II ■ Basic Analysis Techniques

4. Select the particular dataset you will use in your Find Duplicate query.
Notice you can use queries as well as tables. Select the LeadList table, as
shown in Figure 4-4.

Figure 4-4: Select the dataset in which you want to find duplicates; then click Next.

5. Identify which field, or combination of fields, best defines a unique record
in your dataset. In the example shown in Figure 4-5, the CompanyNumber
field alone defines a unique record. Click Next.

Figure 4-5: Select the field or fields that make up a unique record in your dataset.

6. Shown in Figure 4-6, identify any additional fields you would like to see
in your query. Click the Next button.

7. Finish off the wizard by naming your query and clicking the Finish button
as shown in Figure 4-7.

Chapter 4 ■ Transforming Your Data with Access 93

Figure 4-6: Select the field or fields you want to see in your query.

Figure 4-7: Name your query and click Finish.

Once you click Finish, your new Find Duplicates query immediately opens
for your review. Figure 4-8 shows the resulting query. Now that Access has
found the records that are repeating, you can remove duplicates simply by
deleting the duplicate records.

NOTE The records shown in your Find Duplicates query are not only the
duplications. They include one unique record plus the duplication. For
example, in Figure 4-8, you will notice that there are four records tagged with the
CompanyNumber 11145186. Three of the four are duplicates that can be
removed, while one should remain as a unique record.

94 Part II ■ Basic Analysis Techniques

Figure 4-8: Your Find Duplicates query.

Removing Duplicate Records
If you are working with a small dataset, removing the duplicates can be as
easy as manually deleting records from your Find Duplicates query. However,
if you are working with a large dataset, your Find Duplicates query may result
in more records than you care to manually delete. Believe it when someone
tells you that manually deleting records from a 5,000 row–Find Duplicates
query is an eyeball-burning experience. Fortunately, there is an alternative to
burning out your eyeballs.

The idea is to remove duplicates en masse by taking advantage of Access’
built-in protections against duplicate primary keys. To demonstrate this tech-
nique, follow these steps:

1. Right-click the LeadList table and select Copy.

2. Right-click again and select Paste. At this point, the Paste Table As dialog
box, shown in Figure 4-9, activates.

Figure 4-9: Activate the Paste Table As dialog box to copy your table’s structure into a
new table called ‘‘LeadList_NoDups.’’

3. Name your new table ‘‘LeadList_NoDups’’ and select Structure Only
from the Paste Options section. This creates a new empty table that has
the same structure as your original.

Chapter 4 ■ Transforming Your Data with Access 95

4. Open your new ‘‘LeadList_NoDups’’ table in Design view and set the
appropriate field or combination of fields as primary keys. Again, it’s
up to you to determine which field or combination of fields best defines
a unique record in your dataset. As you can see in Figure 4-10, the
CompanyNumber field alone defines a unique record; therefore, only the
CompanyNumber field is set as a primary key.

Figure 4-10: Set as a primary key the field or fields that best define a unique record.

5. Pause here a moment and review what you have so far. At this point, you
should have a table called LeadList and a table called LeadList_NoDups.
The LeadList_NoDups table is empty and has the CompanyNumber field
set as a primary key.

6. Create an Append query that appends all records from the LeadList table
to the LeadList_NoDups table. When you run the Append query, you get
a message similar to the one shown in Figure 4-11.

Figure 4-11: Now you can append all records, excluding the duplicates.

Because the CustomerNumber field in the LeadList_NoDups table is set as
the primary key, Access does not allow duplicate customer numbers to be

96 Part II ■ Basic Analysis Techniques

appended. In just a few clicks, you have effectively created a table free from
duplicates. You can now use this duplicate-free table as the source for any
subsequent analysis!

TRICKS OF THE TRADE: REMOVING DUPLICATES WITH ONE MAKE-TABLE
QUERY

Start a Make-Table query in Design view, using as the data source the dataset
that contains the duplicates. Right-click on the grey area above the white
query grid and select Properties. This activates the Property Sheet dialog box
shown in Figure 4-12.

Figure 4-12: Running a Make-Table query with the Unique Values property set to
Yes ensures that your resulting table contains no duplicates.

All you have to do here is change the Unique Values property to Yes. Close
the Property Sheet dialog box and run the query.

Common Transformation Tasks

Besides duplicate records, you will find that many of the unpolished datasets
that come to you requires other types of transformation actions. This section
covers some of the more common transformation tasks you will have to
perform.

Filling in Blank Fields
Oftentimes, you have fields that contain empty values. These values
are considered ‘‘Null’’—a value of nothing. Nulls are not necessarily a

Chapter 4 ■ Transforming Your Data with Access 97

bad thing. In fact, if used properly, they can be an important part of a
well-designed relational database. Note, however, that an excessive number
of Null values in your data can lead to an unruly database environment.
Too many Nulls in a database makes querying and coding for your data
more difficult because you must test for Nulls in almost every action
you take.

Your job is to decide whether to leave the Nulls in your dataset or fill them
in with an actual value. When deciding this, consider the following general
guidelines:

Use Nulls Sparingly: Working with, and coding for, a database is a
much less daunting task when you don’t have to test for Null values
constantly.

Use alternatives when possible: A good practice is to represent missing
values with some logical missing value code whenever possible.

Never use Null values in number fields: Use Zeros instead of Nulls in a
currency or a number field that feeds into calculations. Any mathematical
operation performed using a field containing even one Null value results
in a Null answer (the wrong answer).

Filling in the Null fields in your dataset is as simple as running an Update
query. In the example shown in Figure 4-13, you are updating the Null values
in the DollarPotential field to zero.

Figure 4-13: This query updates the Null values in the DollarPotential field to a value of 0.

It’s important to note that there are two kinds of blank values: Null and
empty string (‘‘’’). When filling in the blank values of a text field, include the
empty string as a criterion in your Update query to ensure that you don’t miss
any fields. In the example shown in Figure 4-14, you are updating the blank
values in the Segment field to ‘‘Other.’’

98 Part II ■ Basic Analysis Techniques

Figure 4-14: This query updates blank values in the Segment field to a value of ‘‘Other.’’

Concatenating
It’s always amazing to see anyone export data out of Access and into Excel,
only to concatenate (join two or more character strings end to end) and then
re-import the data back into Access. You can easily concatenate any number
of ways in Access with a simple Update query.

Concatenating Fields

Look at the Update query shown in Figure 4-15. In this query, you are updating
the MyTest field with the concatenated row values of the Type field and the
Code field.

Figure 4-15: This query concatenates the row values of the Type field and the Code field.

TIP It’s a good idea to create a test field to test the effects of your data transfor-
mation actions before applying changes to the real data.

Take a moment to analyze the following query breakdown:

[Type]: This tells Access to use the row values of the Type field.
&: The ampersand is a character operator that joins strings together.
[Code]: This tells Access to use the row values of the Code field.

Figure 4-16 shows the results of this query.

Chapter 4 ■ Transforming Your Data with Access 99

Figure 4-16: The MyTest field now contains the concatenated values of the Type field and
the Code field.

WARNING When running Update queries that perform concatenations, make
sure the field you are updating is large enough to accept the concatenated string.
For example, if the length of your concatenated string is 100 characters long, and
the Field Size of the field you are updating is 50 characters, your concatenated
string will be cut short without warning.

Augmenting Field Values with Your Own Text

You can augment the values in your fields by adding your own text. For
example, you may want to concatenate the row values of the Type field and
the Code field, but separate them with a colon. The query in Figure 4-17 does
just that.

Figure 4-17: This query concatenates the row values of the Type field and the Code field
and separates them with a colon.

Take a moment to analyze the following query breakdown:

[Type]: This tells Access to use the row values of the Type field.

&: The ampersand is a character operator that joins strings together.

100 Part II ■ Basic Analysis Techniques

“:“: This text will add a colon and a space to the concatenated string.

[Code]: This tells Access to use the row values of the Code field.

Figure 4-18 shows the results of this query.

Figure 4-18: The MyTest field now contains the concatenated values of the Type field and
the Code field, separated by a colon.

NOTE When specifying your own text in a query, you must enclose the text in
quotes.

Changing Case
Making sure the text in your database has the correct capitalization may sound
trivial, but it’s important. Imagine you receive a customer table that has an
address field where all the addresses are lowercase. How is that going to look
on labels, form letters, or invoices? Fortunately, for those who are working
with tables containing thousands of records, Access has a few built-in functions
that make changing the case of your text a snap.

The LeadList table shown in Figure 4-19 contains an Address field that is in
all lowercase letters.

Figure 4-19: The address field is in all lowercase letters.

Chapter 4 ■ Transforming Your Data with Access 101

To fix the values in the Address field, you can use the StrConv function,
which converts a string to a specified case.

ABOUT THE STRCONV FUNCTION

To use the StrConv function, you must provide two required arguments: the
string to be converted, and the conversion type.

StrConv(string to be converted, conversion type)

The string to be converted is simply the text you are working with. In a query
environment, you can use the name of a field to specify that you are convert-
ing all the row values of that field.

The conversion type tells Access whether you want to convert the specified
text to all uppercase, all lowercase, or proper case. There are constants that
identify the conversion type:

■ Conversion type 1: Converts the specified text to uppercase characters.

■ Conversion type 2: Converts the specified text to lowercase characters.

■ Conversion type 3: Converts the specified text to proper case. That is, the
first letter of every word is uppercase.

Examples:

StrConv(“My Text“,1) would be converted to “MY TEXT“.

StrConv(“MY TEXT“,2) would be converted to “my text“.

StrConv(“my text“,3) would be converted to “My Text“.

The Update query shown in Figure 4-20 will convert the values of the
Address field to the proper case.

Figure 4-20: Use StrConv to convert text values to proper case.

NOTE You can also use the Ucase and Lcase functions to convert your text to
uppercase and lowercase text. These functions are highlighted in Appendix D of
this book.

102 Part II ■ Basic Analysis Techniques

TRICKS OF THE TRADE: SORTING BY CAPITALIZATION

Ever needed to sort on the capitalization of the values in a field? The query in
Figure 4-21 demonstrates a trick that sorts a query where all the values whose
first letter is lowercase are shown first.

Figure 4-21: This query returns a dataset whose values begin with
lowercase letters.

How does this work? The Asc function converts a string to its Ascii code. For
example, Asc(“A“) returns 65 because 65 is the ASCII code for the uppercase
letter A.

If you pass a whole word to the Asc function, it only returns the ASCII code
for the first letter. Now in ASCII codes, uppercase letters A–Z are respec-
tively represented by codes 65–90, while the lowercase letters a–z are
respectively represented by codes 97–122.

The function Asc([Type])>90 asks the question, ‘‘Is the ASCII code
returned by the string greater than 90?’’ The answer is either True or False
(-1 or 0). If the answer is true, then the first letter of the string is lowercase;
otherwise, the first letter is uppercase.

Figure 4-22 shows the results of the query with the Expression field dis-
played.

Figure 4-22: This query is sorted in ascending order on the Expression field. Sort-
ing this field in descending order displays values starting with uppercase letters
first.

Chapter 4 ■ Transforming Your Data with Access 103

Removing Leading and Trailing Spaces from a String
When you receive a dataset from a mainframe system, a data warehouse, or
even a text file, it is not uncommon to have field values that contain leading
and trailing spaces. These spaces can cause some abnormal results, especially
when you are appending values with leading and trailing spaces to other
values that are clean. To demonstrate this, look at the dataset in Figure 4-23.

Figure 4-23: The leading spaces are preventing an accurate aggregation.

This is intended to be an Aggregate query that displays the sum of the dollar
potential for California, New York, and Texas. However, the leading spaces
are causing Access to group each state into two sets, preventing you from
discerning the accurate totals.

You can easily remove leading and trailing spaces by using the Trim function.
Figure 4-24 demonstrates how you update a field to remove the leading and
trailing spaces by using an Update query.

NOTE Using the Ltrim function removes only the leading spaces, while the
Rtrim function removes only the trailing spaces. These functions are highlighted
in Appendix D of this book.

Figure 4-24: Simply pass the field name through the Trim function in an Update query
to remove the leading and trailing spaces.

Finding and Replacing Specific Text
Imagine that you work in a company called BLVD, Inc. One day, the president
of your company informs you that the abbreviation ‘‘blvd’’ on all addresses
is now deemed an infringement on your company’s trademarked name, and
must be changed to ‘‘Boulevard’’ as soon as possible. How would you go

104 Part II ■ Basic Analysis Techniques

about meeting this new requirement? Your first thought may be to use the
built-in Find and Replace functionality that exists in all Office applications.
However, when your data consists of hundreds of thousands of rows, the Find
and Replace function will only be able to process a few thousand records at a
time. This clearly would not be very efficient.

The Replace function is ideal in a situation like this. As you can see in the
following sidebar, the Replace function replaces a specified text string with a
different string.

ABOUT THE REPLACE FUNCTION

There are three required arguments in a Replace function and three optional
arguments:

Replace(Expression, Find, Replace[, Start[, Count[, Compare]]])

■ Expression (required): The full string you are evaluating. In a
query environment, you can use the name of a field to specify
that you are evaluating all the row values of that field.

■ Find (required): The substring you need to find and replace.

■ Replace (required): The substring used as the replacement.

■ Start (optional): The position within expression to begin the search;
default is 1.

■ Count (optional): Number of occurrences to replace; default is all occur-
rences.

■ Compare (optional): The kind of comparison to use; see Appendix D for
details

For example:

Replace(“Pear“, “P“, “B“) would return “Bear“.

Replace(“Now Here“, “ H“, “h“) would return “Nowhere“.

Replace(“Microsoft Access“, “Microsoft “, ““) would return

“Access“.

Figure 4-25 demonstrates how you would use the Replace function to meet
the requirements in the scenario above.

Figure 4-25: This query finds all instances of ‘‘blvd’’ and replaces them with
‘‘Boulevard.’’

Chapter 4 ■ Transforming Your Data with Access 105

Adding Your Own Text in Key Positions Within a String
When transforming your data, you sometimes have to add your own text in
key positions with a string. For example, in Figure 4-26, you will see two fields.
The Phone field is the raw phone number received from a mainframe report,
while the MyTest field is the same phone number transformed into a standard
format. As you can see, the two parentheses and the dash were added in the
appropriate positions within the string to achieve the correct format.

Figure 4-26: The phone number has been transformed into a standard format by adding
the appropriate characters to key positions with the string.

The edits demonstrated in Figure 4-26 were accomplished by using the
Right function, the Left function, and the Mid function in conjunction
with each other. See the sidebar that follows for more information on these
functions.

ABOUT THE RIGHT, LEFT, AND MID FUNCTIONS

The Right, Left, and Mid functions allow you to extract portions of a string
starting from different positions:

■ The Left function returns a specified number of characters starting
from the leftmost character of the string. The required arguments for
the Left function are the text you are evaluating and the number of
characters you want returned. For example, Left(“70056-3504“,
5) would return 5 characters starting from the leftmost character
(‘‘70056’’).

■ The Right function returns a specified number of characters starting
from the rightmost character of the string. The required arguments for
the Right function are the text you are evaluating and the number of
characters you want returned. For example, Right(“Microsoft“,
4) would return four characters starting from the rightmost character
(‘‘soft’’).

(continued)

106 Part II ■ Basic Analysis Techniques

ABOUT THE RIGHT, LEFT, AND MID FUNCTIONS (continued)

■ The Mid function returns a specified number of characters starting
from a specified character position. The required arguments for the
Mid function are the text you are evaluating, the starting position,
and the number of characters you want returned. For example,
Mid(“Lonely“, 2, 3) would return three characters starting from
the second character, or character number two in the string (‘‘one’’).

TIP In a Mid function, if there are fewer characters in the text being used
than the length argument, the entire text will be returned. For example,
Mid(g̋o˝,1,10000) will return ‘‘go.’’ As you will see later in this chapter,
this behavior comes in handy when you are working with nested
functions.

Figure 4-27 demonstrates how the MyTest field was updated to the correctly
formatted phone number.

Figure 4-27: This query will update the MyTest field with a properly formatted phone
number.

QUERY BREAKDOWN

Take a moment to analyze the query breakdowns that follows.

■ “(“: This text adds an open parenthesis to the resulting string.

■ &: The ampersand is a character operator that joins strings together.

■ Left([Phone],3): This function extracts the left three characters of the
[Phone] field.

■ &: The ampersand is a character operator that joins strings together.

■ “)“: This text adds a close parenthesis to the resulting string.

■ &: The ampersand is a character operator that joins strings together.

Chapter 4 ■ Transforming Your Data with Access 107

QUERY BREAKDOWN

■ Mid([Phone],4,3): This function extracts the three characters
of the [Phone] field starting from character number 4.

■ &: The ampersand is a character operator that joins strings together.

■ “-“: This text adds a dash to the resulting string.

■ &: The ampersand is a character operator that joins strings together.

■ Right([Phone],4): This function extracts the right four characters of the
[Phone] field.

TRICKS OF THE TRADE: PADDING STRINGS TO A SPECIFIC NUMBER
OF CHARACTERS

You may encounter a situation where key fields are required to be a certain
number of characters in order for your data to be able to interface with
peripheral platforms such as ADP or SAP.

For example, imagine that the CompanyNumber field shown in Figure 4-28
must be 10 characters long. Those that are not 10 characters must be padded
with enough leading zeros to create a 10-character string.

Figure 4-28: You need to pad the values in the CompanyNumber field with
enough leading zeros to create a 10-character string.

The secret to this trick is to add 10 zeros to every company number,
regardless of the current length, then pass them through a Right function
that extracts only the right 10 characters. For example, company number
29875764 would first be converted to 000000000029875764, then would

(continued)

108 Part II ■ Basic Analysis Techniques

TRICKS OF THE TRADE: PADDING STRINGS TO A SPECIFIC NUMBER
OF CHARACTERS (continued)

go into a Right function that extracted out only the right 10 charac-
ters; Right(“000000000029875764“,10). This would leave you with
0029875764.

Although this is essentially two steps, you can accomplish this with just
one Update query. Figure 4-29 demonstrates how this is done. This query first
concatenates each company number with ‘‘0000000000’’ and then passes
that concatenated string through a Right function that extracts only the left
10 characters.

Figure 4-29: This query updates each value in the CompanyNumber field to a
10-character string with leading zeros.

Figure 4-30 shows the results of this query.

Figure 4-30: The CompanyNumber field now contains 10 character company
numbers.

Chapter 4 ■ Transforming Your Data with Access 109

Parsing Strings Using Character Markers
Have you ever gotten a dataset where two or more distinct pieces of data were
jammed into one field and separated by commas? For example, a field called
Address may have a string that represents ‘‘Address, City, State, Zip.’’ In a
proper database, this string is parsed into four fields.

In Figure 4-31, you can see that the values in the ContactName field are
strings that represent ‘‘Last name, First name, Middle initial.’’ You need to
parse this string into three separate fields.

Figure 4-31: You need to split the ContactName field into last name, first name and
middle initial.

Although this is not a straightforward undertaking, it can be done fairly
easily with the help of the InStrInStr function, which is detailed in the
following sidebar.

ABOUT THE INSTRINSTRINSTR FUNCTION

The InStrInStr function searches for a specified string in another string
and returns its position number. There are two required arguments in an
InStrInStr function and two optional arguments.

InStr([Start], String, Find, [Compare])

■ Start (optional): This is the character number to start the search;
default is 1.

■ String (required): This is the string to be searched.

■ Find (required): This is the string to search for.

■ Compare (optional): This specifies the type of string comparison.

(continued)

110 Part II ■ Basic Analysis Techniques

ABOUT THE INSTRINSTRINSTR FUNCTION (continued)

For example:

■ InStr(“Alexander, Mike, H“,“,“) would return 10 because the first
comma of the string is character number 10.

■ InStr(11,“Alexander, Mike, H“,“,“) would return 16 because
the first comma from character number 11 is character number 16.

If the InStr function only returns a number, how can it help you? Well,
the idea is to use the InStr function with the Left, Right, or Mid functions
in order to extract a string. For example, instead of using a hard-coded
number in your Left function to pass it the required length argument,
you can use a nested InStr function to return that number. For example,
Left(“Alexander, Mike“,9) is the same as Left(“Alexander, Mike“,

InStr(“Alexander, Mike“, “,“)-1).

NOTE When you are nesting an InStr function inside of a Left, Right,
or Mid function, you may have to add or subtract a character, depending on
what you want to accomplish. For example:

Left(“Zey, Robert“, InStr(“Zey, Robert“, “,“)) would return “Zey,“.

Why is the comma included in the returned result? The InStr function
returns 4 because the first comma in the string is the fourth character. The
Left function then uses this 4 as a length argument, effectively extracting the
left four characters: ‘‘Zey,’’.

If you want a clean extract without the comma, you will have to modify your
function to read like this:

Left(“Zey, Robert“, InStrInStr(“Zey, Robert“, “,“)-1)

Subtracting 1 from the InStr function would leave you with 3 instead of 4.
The Left function then uses this 3 as the length argument, effectively extract-
ing the left three characters: ‘‘Zey’’.

The easiest way to parse the contact name field, shown in Figure 4-23, is to
use two Update queries.

WARNING This is a somewhat tricky process, so you will want to create and
work in test fields. This ensures that you give yourself a way back from any
mistakes you may make.

Query 1
The first query, shown in Figure 4-32, parses out the last name in the Con-
tactName field and updates the Contact_LastName field. It then updates the
Contact_FirstName field with the remaining string.

Chapter 4 ■ Transforming Your Data with Access 111

Figure 4-32: This query updates the Contact_LastName and Contact_FirstName fields.

If you open the LeadList table, you can see the impact of your first Update
query. Figure 4-33 shows your progress so far.

Figure 4-33: Check your progress so far.

Query 2

The second query, shown in Figure 4-34, updates the Contact_FirstName field
and the Contact_MI.

Figure 4-34: This query parses out the first name and the middle initial from the
Contact_FirstName field.

112 Part II ■ Basic Analysis Techniques

After you run your second query, you can open your table and see the
results, shown in Figure 4-35.

Figure 4-35: With two queries, you have successfully parsed the ContactName field into
three separate fields.

Summary

Data transformation is the process of cleaning up your data. Before you can
perform any kind of meaningful analysis on data in this state, it’s impor-
tant to go through a process of data cleanup. Although Access has several
built-in functions and tools that allow you to transform data, most users find
themselves exporting data to Excel in order to perform these tasks.

As this chapter shows, there is no need to take the extra effort of moving
records to Excel to transform data. Access can easily perform various types
of data cleanup to include removing duplicates, concatenating strings of text,
filling in blank fields, parsing characters, replacing text, changing case, and
augmenting data with your own text.

C H A P T E R

5
Working with Calculations

and Dates

The truth is that few organizations can analyze their raw data at face value.
More often than not, some preliminary analysis with calculations and dates
must be carried out before a big-picture analysis can be performed. Again, Excel
is the preferred platform for working with calculations and dates. However,
as you will learn in this chapter, Access provides a wide array of tools and
built-in functions that make working with calculations and dates possible.

Using Calculations in Your Analysis

If you are an Excel user trying to familiarize yourself with Access, one of the
questions you undoubtedly have is ‘‘Where do the formulas go?’’ In Excel,
you have the flexibility to enter a calculation via a formula directly into the
dataset you are analyzing. You do not have this ability in Access. So where do
you store calculations in Access?

As you have already learned, things work differently in Access. The natural
structure of an Access database forces you to keep your data separate from
your analysis. In this light, you will not be able to store a calculation (a formula)
in your dataset. Now, it is true that you can store the calculated results as
hard data, but using tables to store calculated results is problematic for several
reasons:

Stored calculations take up valuable storage space.

Stored calculations require constant maintenance as the data in your table
changes.

Stored calculations generally tie your data to one analytical path.

113

114 Part II ■ Basic Analysis Techniques

Instead of storing the calculated results as hard data, it is a better practice
to perform calculations in ‘‘real-time,’’ at the precise moment when they are
required. This ensures the most current and accurate results and does not
tie your data to one particular analysis.

Common Calculation Scenarios

In Access, calculations are performed using expressions. An expression is a
combination of values, operators, or functions evaluated to return a separate
value to be used in a subsequent process. For example, 2+2 is an expression
that returns the integer 4, which can be used in a subsequent analysis.
Expressions can be used almost anywhere in Access to accomplish various
tasks: in queries, forms, reports, data access pages, and even tables to a certain
degree. In this section, you learn how to expand your analysis by building
real-time calculations using expressions.

Using Constants in Calculations

Most calculations typically consist of hard-coded numbers or constants. A
constant is a static value that does not change. For example, in the expression
[List_Price]*1.1, 1.1 is a constant; the value of 1.1 will never change.
Figure 5-1 demonstrates how a constant can be used in an expression within a
query.

Figure 5-1: In this query, you are using a constant to calculate a 10 percent price increase.

In this example, you are building a query that will analyze how the current
price for each product compares to the same price with a 10 percent increase.
The expression, entered under the alias ‘‘Increase,’’ will multiply the List_Price
field of each record with a constant value of 1.1, calculating a price that is 10
percent over the original value in the List_Price field.

Chapter 5 ■ Working with Calculations and Dates 115

Using Fields in Calculations

Not all your calculations require you to specify a constant. In fact, many of the
mathematical operations you will carry out are performed on data that already
resides in fields within your dataset. You can perform calculations using any
fields formatted as numbers or currency.

For instance, in the query shown in Figure 5-2, you are not using any
constants. Instead, your calculation is executed using the values in each record
of the dataset. This is similar to referencing cell values in an Excel formula.

Figure 5-2: In this query, you are using two fields in a Dollar Variance calculation.

Using the Results of Aggregation in Calculations

Using the result of an aggregation as an expression in a calculation allows you
to perform multiple analytical steps in one query. In the example in Figure 5-3,
you are running an aggregate query. This query executes in the following
order.

1. The query firsts group your records by market.

2. The query calculates the count of orders and the sum of revenue for each
market.

3. The query assigns the aliases you have defined respectively (‘‘Order-
Count’’ and ‘‘Rev’’).

4. The query then uses the aggregation results for each branch as expressions
in your ‘‘AvgDollarPerOrder’’ calculation.

Using the Results of One Calculation as an Expression in Another

Keep in mind that you are not limited to one calculation per query. In fact, you
can use the results of one calculation as an expression in another calculation.
Figure 5-4 illustrates this concept.

116 Part II ■ Basic Analysis Techniques

Figure 5-3: In this query, you are using the aggregation results for each market as
expressions in your calculation.

Figure 5-4: This query uses the results of one calculation as an expression in another.

In this query, you are first calculating an adjusted forecast and then using
the results of that calculation in another calculation that returns the variance
of Actual versus Adjusted Forecast.

Using a Calculation as an Argument in a Function

Look at the query in Figure 5-5. The calculation in this query returns a number
with a fractional part. That is, it returns a number that contains a decimal
point followed by many trailing digits. You want to return a round number,
however, making the resulting dataset easier to read.

To force the results of your calculation into an integer, you can use the Int

function. Int is a mathematical function that removes the fractional part of a
number and returns the resulting integer. This function takes one argument, a
number. However, instead of hard-coding a number into this function, you can
use your calculation as the argument. Figure 5-6 demonstrates this concept.

Chapter 5 ■ Working with Calculations and Dates 117

NOTE You can use calculations that result in a number value in any function
where a number value is accepted as an argument.

Figure 5-5: The results of this calculation are difficult to read because they are fractional
numbers that have many digits trailing a decimal point. Forcing the results into round
numbers makes for easier reading.

Figure 5-6: You can use your calculation as the argument in the Int function, allowing
you to remove the fractional part of the resulting data.

Using the Expression Builder to Construct Calculations
If you are not yet comfortable manually creating complex expressions with
functions and calculations, Access provides the Expression Builder. The
Expression Builder guides you through constructing an expression with a

118 Part II ■ Basic Analysis Techniques

few clicks of the mouse. Avid Excel users may relate the Expression Builder
to the Insert Function wizard found in Excel. The idea is that you build your
expression by simply selecting the necessary functions and data fields.

To activate the Expression Builder, right-click inside the cell that contains
your expression and select Build, as shown in Figure 5-7.

NOTE In fact, you can activate the Expression Builder by right-clicking anywhere
you would write expressions, including: control properties in forms, control
properties in reports, field properties in tables, as well as in the query design grid.

Figure 5-7: Activate the Expression Builder by right-clicking inside the Field row of the
query grid and selecting Build.

As you can see in Figure 5-8, the Expression Builder has four panes to work
in. The upper pane is where you enter the expression. The lower panes show
the different objects available to you. In the lower-left pane, you can see the
five main database objects: tables, queries, forms, reports, and functions.

Double-click any of the five main database objects to drill down to the next
level of objects. By double-clicking the Functions object, for example, you can
drill into the Built-In Functions folder, where you will see all the functions
available to you in Access. Figure 5-9 shows the Expression Builder set to
display all the available math functions.

NOTE If you are using Access 2007, your Expression Builder will look slightly
different from the one shown in Figure 5-9. However, the basic functionality
remains the same. Thus, you can use the concepts illustrated in this section even
with Access 2007.

Chapter 5 ■ Working with Calculations and Dates 119

Figure 5-8: The Expression Builder displays all the database objects you can use in your
expression.

Figure 5-9: Similar to the Insert Function wizard in Excel, the Expression Builder displays
all the functions available to you.

The idea is that you double-click the function you need and Access auto-
matically enters the function in the upper pane of the Expression Builder. In
the example shown in Figure 5-10, the selected function is Round. As you can
see, the function is immediately placed in the upper pane of the Expression
Builder, and Access shows you the arguments needed to make the function
work. In this case, you need a Number argument and a Precision argument.

120 Part II ■ Basic Analysis Techniques

Figure 5-10: Access tells you which arguments you need to make the function work.

If you don’t know what an argument means, simply highlight the argument
in question and click the Help button. Access will activate a help window
that provides an explanation of the function. As shown in Figure 5-11, for
example, the Round function requires a number to be rounded and an optional
numdecimalplaces argument, which, in this case, indicates the number of
decimal places used in the rounding operation.

Figure 5-11: Help files are available to explain each function in detail.

Chapter 5 ■ Working with Calculations and Dates 121

As you can see in Figure 5-12, instead of using a hard-coded number in
the Round function, an expression returns a dynamic value. This calculation
divides the sum of [TransactionMaster]![Line_Total] by 13. Since the
numdecimalplaces argument is optional, that argument is omitted.

Figure 5-12: The function here rounds the results of the calculation,
([TransactionMaster]![Line _ Total])/13.

When you are satisfied with your newly created expression, click the OK
button to insert it in the query grid. Figure 5-13 shows that the new expression
has been added as a field. Note that the new field has a default alias of Expr1;
you can rename this something more meaningful.

Figure 5-13: Your newly created expression gives you the average revenue by period for
all transactions.

122 Part II ■ Basic Analysis Techniques

Common Calculation Errors
No matter what platform you use to analyze your data, you always run the
risk of generating errors when you work with calculations. No magic function
in Access can help you prevent errors in your analysis. However, you can
take a few fundamental actions to avoid some of the most common calculation
errors.

Understanding the Order of Operator Precedence

You might remember from your algebra days that when working with a
complex equation executing multiple mathematical operations, the equation
does not necessarily evaluate left to right. Some operations have precedence
over others and therefore must occur first. The Access environment has
similar rules regarding the order of operator precedence. When you are using
expressions and calculations that involve several operations, each operation is
evaluated and resolved in a predetermined order. It is important to know the
order of operator precedence in Access. An incorrectly built expression may
cause errors in your analysis.

The order of operations for Access is as follows:

1. Evaluate items in parentheses.

2. Perform exponentiation (^ calculates exponents).

3. Perform negation (- converts to negative).

4. Perform multiplication (* multiplies) and division (/ divides) at equal
precedence.

5. Perform addition (+ adds) and subtraction (- Subtract) at equal prece-
dence.

6. Evaluate string concatenation (&).

7. Evaluate comparison and pattern matching operators (>, <, =, <>, >=, <=,
Like, Between, Is) at equal precedence.

8. Evaluate logical operators in the following order: Not, And, Or.

NOTE Operations equal in precedence are performed from left to right.

How can understanding the order of operations ensure that you avoid
analytical errors? Consider this basic example: The correct answer to the
calculation (20+30)*4 is 200. However, if you leave off the parentheses (as
in 20+30*4), Access will perform the calculation like this: 30*4 = 120 +

20 = 140. The order of operator precedence mandates that Access perform
multiplication before subtraction. Therefore, entering 20+30*4 gives you the
wrong answer. Because the order of operator precedence in Access mandates

Chapter 5 ■ Working with Calculations and Dates 123

that all operations in parentheses be evaluated first, placing 20+30 inside
parentheses ensures the correct answer.

Watching Out for Null Values

A Null value represents the absence of any value. When you see a data item in
an Access table that is empty or has no information in it, it is considered Null.

The concept of a Null value causing errors in a calculation might initially
seem strange to Excel power users. In Excel, if there is a Null value within a
column of numbers, the column can still be properly evaluated because Excel
simply reads the Null value as zero. This is not the case in Access. If Access
encounters a Null value, it does not assume that the Null value represents
zero. Instead, it immediately returns a Null value as the answer. To illustrate
this behavior, build the query shown in Figure 5-14.

Figure 5-14: To demonstrate how Null values can cause calculation errors, build this query
in Design view.

Run the query, and you will see the results shown in Figure 5-15. Notice
that the Variance calculation for the first record does not show the expected
results; instead, it shows a Null value. This is because the forecast value for
that record is a Null value.

Looking at Figure 5-15, you can imagine how a Null calculation error can
wreak havoc on your analysis, especially if you have an involved analytical
process. Furthermore, Null calculation errors can be difficult to identify and
fix. This is a good place to remind you that you should rarely use Null values
in your tables. Instead, you should use a logical value that represents ‘‘no
data’’ (for example, 0, ‘‘NA,’’ or ‘‘Undefined’’).

That being said, you can avoid Null calculation errors by using the Nz

function, which enables you to convert any Null value to a value you specify.

124 Part II ■ Basic Analysis Techniques

Figure 5-15: As you can see, when any variable in your calculation is Null, the resulting
answer is a Null value.

ABOUT THE NZ FUNCTION

The Nz function takes two arguments:

Nz(variant, valueifnull)

■ variant: The data you are working with.

■ valueifnull: The value you want returned if the variant is Null.

NZ([MyNumberField],0) converts any Null value in MyNumberField

to zero.

Armed with this new information, you can adjust the query in Figure 5-14
to utilize the Nz function. Since the problem field is Forecast, pass the Forecast
field through the Nz function. Figure 5-16 shows the adjusted query.

Figure 5-16: Pass the Forecast field through the Nz function to convert Null values to zero.

Chapter 5 ■ Working with Calculations and Dates 125

As you can see in Figure 5-17, the first five records now show a Variance
value even though the values in the Forecast field are Null. Note that the NZ

function does not physically place a zero in the Null values. The NZ function
merely tells access to treat the Nulls as zeros when calculating the Variance
field.

Figure 5-17: The first five records now show a Variance value.

Watching the Syntax in Your Expressions

Basic syntax mistakes in your calculation expressions can also lead to errors.
Follow these guidelines to avoid slip-ups:

If you are using fields in your calculations, enclose their names in square
brackets ([]).

Make sure you spell the names of the fields correctly.

When assigning an alias to your calculated field, be sure you don’t use a
name that currently exists in the table(s) being calculated.

Do not use illegal characters—period (.), exclamation mark (!), square
brackets ([]) or an ampersand (&)—in your aliases.

Using Dates in Your Analysis

In Access, every possible date starting from December 31, 1899 is stored as
a serial number. For example, December 31, 1899 is stored as 1; January
1, 1900 is stored as 2; and so on. This system of storing dates as serial
numbers, commonly called the 1900 system, is the default date system for
all Microsoft Office applications. You can take advantage of this system to
perform calculations with dates.

126 Part II ■ Basic Analysis Techniques

Simple Date Calculations
Figure 5-18 shows one of the simplest calculations you can perform on a date.
In this query, you are adding 30 to each ship date. This effectively returns the
order date plus 30 days, giving you a new date.

Figure 5-18: You are adding 30 to each ship date, effectively creating a date equal to the
ship date plus 30 days.

WARNING To be calculated correctly, dates must reside in a field formatted as
a Date/Time field. If you enter a date into a Text field, the date will continue to
look like a date, but Access will treat it like a string. The result is that any
calculation performed on dates in this Text formatted field will fail. Ensure that all
dates are stored in fields formatted as Date/Time.

You can also calculate the number of days between two dates. The calculation
in Figure 5-19, for example, subtracts the serial number of one date from the
serial number of another date, leaving you the number of days between the
two dates.

Figure 5-19: In this query, you are calculating the number of days between two dates.

Chapter 5 ■ Working with Calculations and Dates 127

Advanced Analysis Using Functions
As of Access 2010, 25 built-in Date/Time functions are available. Some of
these are functions you will very rarely encounter, whereas you’ll use others
routinely in your analyses. This section discusses a few of the basic Date/Time
functions that come in handy in your day-to-day analysis.

The Date Function

Date is a built-in Access function that returns the current system date—in
other words, today’s date. With this versatile function, you never have to
hard-code today’s date in your calculations. That is to say, you can create
dynamic calculations that use the current system date as a variable, giving you
a different result every day. In this section, you look at some of the ways you
can leverage the Date function to enhance your analysis.

Finding the Number of Days Between Today and a Past Date

Imagine that you have to calculate aged receivables. You need to know the
current date to determine how overdue the receivables are. Of course, you can
type the current date by hand, but that can be cumbersome and prone to error.

To demonstrate how to use the Date function, create the query shown in
Figure 5-20.

Figure 5-20: This query returns the number of days between today’s date and each order
date.

Using the Date Function in a Criteria Expression

You can use the Date function to filter out records by including the function in
a criteria expression. For example, the query shown in Figure 5-21 returns all
records with an order date older than 90 days.

128 Part II ■ Basic Analysis Techniques

Figure 5-21: No matter what day it is today, this query will return all orders older than
90 days.

Calculating an Age in Years Using the Date Function

Imagine that you have been asked to provide a list of account managers,
along with the number of years they have been employed by the company. To
accomplish this task, you must calculate the difference between today’s date
and each manager’s hire date.

The first step is to build the query shown in Figure 5-22.

Figure 5-22: You are calculating the difference between today’s date and each manager’s
hire date.

When you look at the query results, shown in Figure 5-23, you realize that
the calculation results in the number of days between the two dates, not the
number of years.

To fix this, switch back to Design view and divide your calculation by 365.25.
Why 365.25? That is the average number of days in a year when you account
for leap years. Figure 5-24 demonstrates this change. Note that your original

Chapter 5 ■ Working with Calculations and Dates 129

calculation is now wrapped in parentheses to avoid errors due to order of
operator precedence.

Figure 5-23: This dataset shows the number of days, not the number of years.

Figure 5-24: Divide your original calculation by 365.25 to convert the answer to years.

A look at the results, shown in Figure 5-25, proves that you are now returning
the number of years. All that is left to do is to strip away the fractional portion
of the date using the Int function. Why the Int function? The Int function
does not round the year up or down; it merely converts the number to a
readable integer.

TIP Want to actually round the number of years? You can simply wrap your date
calculation in the Round function. The Round function is highlighted in Appendix A
of this book.

Wrapping your calculation in the Int function ensures that your answer is
a clean year without fractions (see Figure 5-26).

130 Part II ■ Basic Analysis Techniques

Figure 5-25: Your query now returns years, but you must strip away the fractional portion
of your answer.

Figure 5-26: Running this query returns the number of years each employee has been
with the company.

You can calculate a person’s age by using the same method. Simply replace
the hire date with the date of birth.

The Year, Month, Day, and Weekday Functions

The Year, Month, Day, and Weekday functions are used to return an integer that
represents their respective parts of a date. These functions require a valid date
as an argument. For example:

Year(#12/31/1997#) returns 1997.

Month(#12/31/1997#) returns 12.

Day(#12/31/1997#) returns 31.

Weekday(#12/31/1997#) returns 4.

Chapter 5 ■ Working with Calculations and Dates 131

NOTE The Weekday function returns the day of the week from a date. In Access,
weekdays are numbered from 1 to 7, starting with Sunday. Therefore, if the
Weekday function returns 4, the day of the week represented is Wednesday.

Figure 5-27 demonstrates how you use these functions in a query
environment.

Figure 5-27: The Year, Month, Day, and Weekday functions enable you parse out a part
of a date.

TRICKS OF THE TRADE: AN EASY WAY TO QUERY ONLY WORKDAYS

Suppose that you have been asked to provide the total amount of revenue
generated by product but only revenue generated during workdays in calendar
year 2008. Workdays are defined as days that are not weekends or holidays.

The first thing you need to accomplish this task is a table that lists all the
company holidays in 2008. Figure 5-28 shows that a Holidays table can be
nothing more than one field listing all the dates that constitute a holiday.

Figure 5-28: In this database, the CY_2008_Holidays table contains a column
called Holidays that lists all the dates that counted as company holidays.

(continued)

132 Part II ■ Basic Analysis Techniques

TRICKS OF THE TRADE: AN EASY WAY TO QUERY ONLY WORKDAYS
(continued)

Once you have established a table that contains all the company holidays, it’s
time to build the query. Figure 5-29 demonstrates how to build a query that
filters out non-workdays.

Figure 5-29: Using the CY_2008_Holidays table and a simple Weekday function,
you can filter out non-workdays.

Take a moment to analyze what is going on in Figure 5-29.

1. You create a left join from TransactionMaster to CY_2008_Holidays

to tell Access that you want all the records from TransactionMaster.

2. You then use the Is Null criteria under Holidays. This limits the
TransactionMaster to only those dates that do not match any
of the holidays listed in the CY_2008_Holidays table.

3. You then create a field called Day Check where you are returning
the weekday of every service date in the TransactionMaster.

4. You filter the newly created Day Check field to filter out those
weekdays that represent Saturdays and Sundays (1 and 7).

5. Finally, you filter for only those records whose order date falls in the year
2008.

The DateAdd Function

A common analysis for many organizations is to determine on which date a
certain benchmark is reached. For example, most businesses want to know
on what date an order becomes 30 days past due. Furthermore, on what date
should the customer receive a warning letter? An easy way to perform these

Chapter 5 ■ Working with Calculations and Dates 133

types of analyses is to use the DateAdd function. The DateAdd function returns
a date to which a specified interval has been added.

ABOUT THE DATEADD FUNCTION

The DateAdd function returns a date to which a specified interval has been
added. There are three required arguments in the DateAdd function.

DateAdd(interval, number, date)

■ interval (required): The interval of time want to use. The intervals avail-
able are as follows:

■ “yyyy“: Year

■ “q“: Quarter

■ “m“: Month

■ “y“: Day of year

■ “d“: Day

■ “w“ : Weekday

■ “ww“: Week

■ “h“: Hour

■ “n“: Minute

■ “s“: Second

■ number (required): The number of intervals to add. A positive number
returns a date in the future, whereas a negative number returns a date in
the past.

■ date (required): The date value with which you are working.

For example:

■ DateAdd(“ww“,1,#11/30/2008#) returns 12/7/2008.

■ DateAdd(“m“,2,#11/30/2008#) returns 1/30/2009.

■ DateAdd(“yyyy“,-1,#11/30/2008#) returns 11/30/2007.

The query shown in Figure 5-30 illustrates how the DateAdd function
determines the exact date a specific benchmark is reached. You are creating
two new fields with this query: Warning and Overdue. The DateAdd function
in the Warning field returns the date that is three weeks from the original
order date. The DateAdd function in the Overdue field returns the date that is
one month from the original order date.

134 Part II ■ Basic Analysis Techniques

Figure 5-30: This query gives you the original order date, the date you should send a
warning letter, and the date that the order is 30 days overdue.

Grouping Dates into Quarters

Why would you need to group your dates into quarters? Most databases
store dates rather than quarter designations. Therefore, if you want to analyze
data on a quarter-over-quarter basis, you have to convert dates into quarters.
Surprisingly, there is no Date/Time function that allows you to group dates
into quarters. There is, however, the Format function.

The Format function belongs to the Text category of functions and allows
you to convert a variant into a string based on formatting instructions. From
the perspective of analyzing dates, you can pass several valid instructions to a
Format function.

Format(#01/31/2004#, “yyyy“) returns 2004.

Format(#01/31/2004#, “yy“) returns 04.

Format(#01/31/2004#, “q“) returns 1.

Format(#01/31/2004#, “mmm“) returns Jan.

Format(#01/31/2004#, “mm“) returns 01.

Format(#01/31/2004#, “d“) returns 31.

Format(#01/31/2004#, “w“) returns 7.

Format(#01/31/2004#, “ww“) returns 5.

NOTE Keep in mind that the value returned when passing a date through a
Format function is a string that cannot be used in subsequent calculations.

The query in Figure 5-31 shows how you group all the order dates into
quarters and then group the quarters to get a sum of revenue for each
quarter.

Chapter 5 ■ Working with Calculations and Dates 135

Figure 5-31: You can group dates into quarters by using the Format function.

If you want to get fancy, you can insert the Format function in a crosstab
query, using Quarter as the column (see Figure 5-32).

Figure 5-32: You can also use the Format function in a crosstab query.

As you can see in Figure 5-33, the resulting dataset is a clean look at revenue
by product, by quarter.

Figure 5-33: You have successfully grouped your dates into quarters.

136 Part II ■ Basic Analysis Techniques

The DateSerial Function

The DateSerial function allows you to construct a date value by combining
given year, month, and day components. This function is perfect for converting
disparate strings (that together represent a date) into an actual date.

ABOUT THE DATESERIAL FUNCTION

The DateSerial function has three arguments:

DateSerial(Year, Month, Day)

■ Year (required): Any number or numeric expression from 100 to 9999.

■ Month (required): Any number or numeric expression.

■ Day (required): Any number or numeric expression.

For example, DateSerial(2004, 4, 3) returns April 3, 2004.

The wonderful thing about the DateSerial function is that you can pass
other date expressions as arguments. For example, pretend that the system
date on your PC is August 1, 2005. For those of you who have been paying
attention, this means that the Date function would return August 1, 2005. That
being the case, the following expression would return August 1, 2005:

DateSerial (Year(Date()) , Month(Date()) , Day(Date()))

NOTE Year(Date()) returns the current year, Month(Date()) returns the
current month, and Day(Date()) returns the current day.

So how is this helpful? Well, now you can put a few twists on this by
performing calculations on the expressions within the DateSerial function.
Consider some of the possibilities:

Get the first day of last month by subtracting 1 from the current month
and using 1 as the Day argument.

DateSerial(Year(Date()), Month(Date()) - 1, 1)

Get the first day of next month by adding 1 to the current month and
using 1 as the Day argument.

DateSerial(Year(Date()), Month(Date()) + 1, 1)

Get the last day of the previous month by using 0 as the Day argument.

DateSerial(Year(Date()), Month(Date()), 0)

Chapter 5 ■ Working with Calculations and Dates 137

Get the last day of the current month by adding 1 to the current month
and using 0 as the Day argument.

DateSerial(Year(Date()), Month(Date()) +1, 0)

TIP Passing a 0 to the Day argument automatically gets you the last day of the
month specified in the DateSerial function. This is because Access will interpret
the 0 as bleeding into the previous month. That is to say from an Access point of
view, if 1 is the first day of the month, then 0 means you want to go into the
previous month.

The New Calculated Data Type

With Access 2010, Microsoft introduced a new data type called Calculated. This
new data type allows you to embed calculations directly inside your tables.
That is to say, you can create a field that holds no real data, only a predefined
calculation—similar to using a formula in a cell in Excel.

Database purists are sure to shun this new functionality because it goes
against the rule that calculations should never be stored. Stored calculations
require constant maintenance as the data in your table changes. Not to mention
that stored calculations generally tie your data to one analytical path.

So why would Microsoft tweak such a long-standing database rule? The
reason has to do with the Internet. In the near future, Access databases will
have the ability to work on the Web. That is to say, users can interact with
Access databases, forms, and reports online. Calculated data types are the first
step in giving Access developers a way to employ calculations online without
resorting to background queries and code (which may not be available to a
user while connected through the Internet).

That being said, offline scenarios that have a calculated data type can save
you time because they perform relatively simple operations that won’t unduly
lock down or hinder your table architecture.

Take a moment to go through a simple scenario where you can use the
Calculated data type. Follow these steps:

1. In your sample database, you’ll find a table called 2009_Projections.
Right-click 2009_Projections and select Design view. Notice that one of
the fields in the table is Percent Increase (see Figure 5-34). You could
calculate a 2009 Target field that shows a real-time calculation of the
projection for each market.

2. Add the new field and select the Calculated data type, as shown here in
Figure 5-35. The Expression Builder will immediately activate.

138 Part II ■ Basic Analysis Techniques

Figure 5-34: Your table contains Percent Increase. You would like to add a 2009 Projection
field.

Figure 5-35: Add your new field and set the data type to Calculated.

3. The idea is to enter your calculation in the upper pane, as demonstrated
in Figure 5-36. In this example, you are performing a simple operation
that adds the Percent Increase to the 2008 Actual.

4. Once your expression is set, you can format the calculated field as
needed. In Figure 5-37, the 2009 Projection field is formatted to show as a
currency.

Figure 5-36: Enter your expression.

If all went well, you’ll have a new calculated field. As you can see in
Figure 5-38, the new 2009 Projection field looks and feels like a standard field.
However, this field will recalculate on-the-fly if any of the linked variables are
changed. To test this, change any of the values under Percent Increase. Once
you change a value, the associated 2009 projection will change.

Chapter 5 ■ Working with Calculations and Dates 139

Figure 5-37: Apply the needed formatting to the new Calculated field.

Figure 5-38: Although your newly created calculated field looks and feels like a standard
field, it will recalculate on-the-fly.

WARNING Be aware the Calculated data types will only work in Access 2010
databases. They are not backward compatible. That means that Access 2007 or
prior versions cannot use any field designated as a Calculate data type.

Summary

Not many Excel analysts know that Access has the ability to perform calcu-
lations. In fact, the most common question asked about Access is ‘‘Where do
the formulas go?’’ The reality is that Access provides a wide array of tools and
built-in functions that make performing calculations possible.

The first thing to remember is that calculations are typically not stored
in Access tables as formulas are stored in Excel. There are several reasons
for this:

Stored calculations take up valuable storage space.

Stored calculations require constant maintenance as the data in your table
changes.

Stored calculations generally tie your data to one analytical path.

140 Part II ■ Basic Analysis Techniques

Instead of storing the calculated results as hard data, calculations in Access
are typically performed in ‘‘real-time’’ with the use of various types of queries.

Microsoft has introduced a change to this long-standing rule with the
Calculated data type. This new data type allows you to embed calculations
directly inside your tables. Although this is generally shunned, you can use
the Calculated data type to perform simple operations that won’t unduly lock
down or hinder your table architecture.

In addition to performing mathematical calculations, Access can perform
calculations with dates. This is because Access stores all dates as serial numbers
with December 31, 1899 being day 1. You can take advantage of this system to
perform queries using date calculations. For example, you can find all orders
over 90 days old, you can calculate the seniority of each employee, you can
calculate the due date of an order, and the list goes on.

C H A P T E R

6
Performing Conditional

Analysis

Up until now, your analyses have been straightforward. You build a query,
you add some criteria, you add a calculation, you save the query, then you
run the query whenever you need to. What happens however, if the criteria
that governs you analysis changes frequently, or if your analytical processes
depend on meeting certain conditions? In these situations, you would use
a conditional analysis; an analysis whose outcome depends on a pre-defined
set of conditions. Barring VBA code, several tools and functions enable you
to build conditional analyses, some of which are parameter queries, the IIf

function, and the Switch function. In this chapter, you learn how these tools
and functions can help you save time, organize your analytical processes, and
enhance your analysis.

Using Parameter Queries

You will find that when building your analytical processes, it’s often difficult
to anticipate every single combination of criteria that may be needed. This is
where parameter queries can help.

A parameter query is an interactive query that prompts you for criteria before
the query runs. A parameter query is useful when you need to ask a query
different questions using different criteria each time it runs. To get a firm
understanding of how a parameter query can help you, build the query in
Figure 6-1. With this query, you want to see the all purchase orders logged
during the 200705-system period.

141

142 Part II ■ Basic Analysis Techniques

Figure 6-1: This query has a hard-coded criterion for system period.

Although this query gives you what you need, the problem is that the
criterion for system period is hard-coded as 200705. That means if you want
to analyze revenue for a different period, you essentially have to rebuild the
query. Using a parameter query allows you to create a conditional analysis;
that is, an analysis based on variables you specify each time you run the query.
To create a parameter query, simply replace the hard-coded criteria with text
that you have enclosed in square brackets ([]), as shown in Figure 6-2.

Figure 6-2: To create a parameter query, replace the hard-coded criteria with text enclosed
in square brackets [].

Running a parameter query forces the Enter Parameter Value dialog box to
open and ask for a variable. Note that the text you typed inside the brackets
of your parameter appears in the dialog box. At this point, you would simply
enter your parameter, as shown in Figure 6-3.

Chapter 6 ■ Performing Conditional Analysis 143

Figure 6-3: Enter your criteria in the Enter Parameter Value dialog box and click OK.

How Parameter Queries Work
When you run a parameter query, Access attempts to convert any text to a
literal string by wrapping the text in quotes. However, if you place square
brackets ([]) around the text, Access thinks that it is a variable and tries to
bind some value to the variable using the following series of tests:

1. Access checks to see if the variable is a field name. If Access identifies the
variable as a field name, that field is used in the expression.

2. If the variable is not a field name, Access checks to see if the variable is a
calculated field. If Access determines the expression is indeed a calculated
field, it simply carries out the mathematical operation.

3. If the variable is not a calculated field, Access checks to see if the variable
is referencing an object such as a control on an open form or open report.

4. If all else fails, the only remaining option is to ask the user what the
variable is, so Access displays the Enter Parameter Value dialog box,
showing the text you entered in the Criteria row.

Ground Rules of Parameter Queries
As with other functionality in Access, parameter queries come with their own
set of ground rules that you should follow in order to use them properly.

You must place square brackets ([]) around your parameter. If you do
not, Access automatically converts your text into a literal string.

You cannot use the name of a field as a parameter. If you do, Access
simply replaces your parameter with the current value of the field.

You cannot use a period (.), an exclamation mark (!), or square brackets
([]) in your parameter’s prompt text.

You must limit the number of characters in your parameter’s prompt
text. Entering parameter prompt text that is too long may result in your
prompt being cut off in the Enter Parameter Value dialog box. Moreover,
you should make your prompts as clear and concise as possible.

144 Part II ■ Basic Analysis Techniques

TIP If you really want to use a field name in your parameter’s prompt, you can
follow the field name with other characters. For example, instead of using
[Period], you could use [Period: ?]. As you read this, keep in mind that there
is nothing magic about the colon (:) or the question mark (?). Any character will
do. The idea is to allow Access to differentiate between your parameter and the
field name while matching the original field name as closely as possible.

Working with Parameter Queries

The example shown in Figure 6-2 uses a parameter to define a single criterion.
Although this is the most common way to use a parameter in a query, there
are many ways to exploit this functionality. In fact, it is safe to say that the
more innovative you get with your parameter queries, the more elegant and
advanced your impromptu analysis will be. This section covers some of the
different ways you can use parameters in your queries.

Working with Multiple Parameter Conditions

You are not in any way limited in the number of parameters you can use in
your query. Figure 6-4, on the other hand, demonstrates how you can utilize
more than one parameter in a query. When you run this query, it prompts you
for both a system period and a product ID, allowing you to dynamically filter
on two data points without ever having to rewrite your query.

Figure 6-4: You can employ more than one parameter in a query.

Chapter 6 ■ Performing Conditional Analysis 145

Combining Parameters with Operators

You can combine parameter prompts with any operator you would normally
use in a query. Using parameters in conjunction with standard operators
allows you to dynamically expand or contract the filters in your analysis
without rebuilding your query. To demonstrate how this works, build the
query shown here in Figure 6-5.

Figure 6-5: This query combines standard operators with parameters in order to limit the
results.

This query uses the BETWEEN...ANDoperator and the > (greater than) operator
to limit the results of the query based on the user-defined parameters. Because
three parameter prompts are built into this query, it prompts you for inputs
three times: once for a starting period, once for an ending period, and once for
a dollar amount. The number of returned records depends on the parameters
you input. For instance, if you input 200701 as the starting period, 200703 as
the ending period, and 5000 as the dollar amount, you get 1700 records.

Combining Parameters with Wildcards

One of the problems with a parameter query is that if the parameter is ignored
when the query runs, the query returns no records. One way to get around
this problem is to combine your parameter with a wildcard so that if the
parameter is ignored, all records are returned. To demonstrate how you can
use a wildcard with a parameter, build the query shown here in Figure 6-
6. When you run this query, it will prompt you for a period. Because you
are using the wildcard, you have the option of filtering out a single period
by entering a period designator into the parameter, or you can ignore the
parameter to return all records.

146 Part II ■ Basic Analysis Techniques

Figure 6-6: If the parameter in this query is ignored, the query returns all records, thanks
to the wildcard (*).

TIP Using the wildcard with a parameter also allows users to enter in a partial
parameter and still get results. Suppose, for example, that the criteria in your
parameter query is:

Like [Enter Lastname] & “*“

Entering A as the parameter would return all last names that start with the letter A.

Or, suppose the criteria in your parameter query is:

Like “*“ & [Enter Lastname] & “*“

Entering A would return all last names that contain the letter A.

Using Parameters as Calculation Variables

You are not limited to using parameters as criteria for a query; you can use
parameters anywhere you use a variable. In fact, a particularly useful way to
use parameters is in calculations. For example, the query in Figure 6-7 enables
you to analyze how a price increase will affect current prices based on the
percent increase you enter. When you run this query, you are asked to enter
a percentage by which you want to increase your prices. Once you pass your
percentage, the parameter query uses it as a variable in the calculation.

Using Parameters as Function Arguments

You can also use parameters as arguments within functions. Figure 6-8 demon-
strates the use of the DateDiff function employing parameters instead of
hard-coded dates. When this query runs, it prompts you for a start date and an

Chapter 6 ■ Performing Conditional Analysis 147

end date. The DateDiff function then uses these dates as arguments. Again,
this allows you to specify new dates each time you run the query without ever
having to rebuild the query.

NOTE You will notice that when you run the query in Figure 6-8, you will only
have to enter the Start date and the End date one time although they are both
used in two places in the query. Once you assign a variable to a parameter, that
assignment persists to every future instance of that parameter.

This is also a good time to note that the values you enter into your parameters
must fit into the data type required for the function’s argument. For example, if
you are using a parameter in a date-oriented function (like DateDiff), the
variable you enter into that parameter must be a date or the function won’t work.

Figure 6-7: You can use parameters in calculations, enabling you to change the calcula-
tions variables each time you run the query.

Figure 6-8: You can use parameters as arguments in functions instead of hard-coded
values.

148 Part II ■ Basic Analysis Techniques

TRICKS OF THE TRADE: CREATING A PARAMETER PROMPT THAT ACCEPTS
MULTIPLE ENTRIES

The parameter query in Figure 6-9 enables you to dynamically filter results by
a variable period that you specify within the parameter. However, this query
does not allow you to see results for more than one period at a time.

Figure 6-9: This query enables you to filter only one period at a time.

You could use more than one parameter, as shown in the following figure.
Unlike the query in Figure 6-9, this query allows you to include more than one
period in your query results. However, you are still limited to the number of
parameters built into the query (in this case, three) as shown in Figure 6-10.

Figure 6-10: This query enables you to filter by three periods at a time instead of
one. But what if you need to filter more than three periods?

So how do you allow for any number of parameter entries? The answer
is relatively easy. You create a parameter that is passed through an InStr

function to test for a position number (feel free to revisit Chapter 4 to get a
refresher on the InStr function).

Chapter 6 ■ Performing Conditional Analysis 149

TRICKS OF THE TRADE: CREATING A PARAMETER PROMPT THAT ACCEPTS
MULTIPLE ENTRIES

The query shown in Figure 6-11 demonstrates how to do this.

Figure 6-11: This parameter query allows for multiple entries in a parameter.

Notice that the parameter is not being used as criteria for the Period field.
Instead, it is being used in an Instr function to test for the position number
of the variable you enter into the parameter prompt, as follows:

InStr([Enter Periods separated by commas],[Period])

If the Instr function finds your variable, it returns a position number; if not,
it returns 0. Therefore, you only want records that returned a position number
greater than zero (hence, the criteria for the parameter).

When you run this query, Access displays the standard Enter Parameter
Value dialog box (see Figure 6-12). You can then type in as many variables as
you want.

Figure 6-12: Simply type as many parameters you want.

Using Conditional Functions

Parameter queries are not the only tools in Access that allow for conditional
analysis. Access also has built-in functions that facilitate value comparisons,
data validation, and conditional evaluation. Two of these functions are the

150 Part II ■ Basic Analysis Techniques

IIf function and the Switch function. These conditional functions (also called
program flow functions) are designed to test for conditions and provide
different outcomes based on the results of those tests. In this section, you
learn how to control the flow of your analysis by utilizing the IIf and Switch

functions.

The IIf Function

The IIf (immediate if) function replicates the functionality of an IF statement
for a single operation. The IIf function evaluates a specific condition and
returns a result based on a True or False determination.

ABOUT THE IIf FUNCTION

To use the IIf function, you must provide three required arguments: the
expression to be evaluated, a value to be returned if the expression is True,
and a value to be returned if the expression is False.

IIf(Expression, TrueAnswer, FalseAnswer)

■ Expression (required): The expression you want to evaluate.

■ TrueAnswer (required): The value to return if the expression is True.

■ FalseAnswer (optional): The value to return if the expression is False. If
this argument is omitted, a Null value is returned if the expression evalu-
ates to False.

TIP Think of the commas in an IIf function as THEN and ELSE statements.
Consider the following IIf function, for instance:

IIf(Babies = 2 , “Twins“, “Not Twins“)

This function literally translates to: If Babies equals 2, then Twins, else Not Twins.

Using IIf to Avoid Mathematical Errors

To demonstrate a simple problem where the IIf function comes in handy,
build the query shown in Figure 6-13.

When you run the query, you’ll notice that not all the results are clean. As
you can see in Figure 6-14, you are getting some errors due to division by zero.
That is to say, you are dividing actual revenues by forecasts that are zero.

Chapter 6 ■ Performing Conditional Analysis 151

Figure 6-13: This query performs a calculation on the Actual and the Forecast fields to
calculate a percent to forecast.

Figure 6-14: The errors shown in the results are due to the fact that some revenues are
being divided by zeros.

Although this seems like a benign issue, in a more complex, multilayered
analytical process, these errors could compromise the integrity of your data
analysis. To avoid these errors, you can perform a conditional analysis on
your dataset using the IIf function, evaluating the Forecast field for each
record before performing the calculation. If the forecast is zero, you bypass the
calculation and simply return a value of zero. If the forecast is not zero, you
perform the calculation to get the correct value. The IIf function would look
like this:

IIf([Forecast]=0,0,[Actual]/[Forecast])

Figure 6-15 demonstrates how this IIf function is put into action.
As you can see in Figure 6-16, the errors have been avoided.

152 Part II ■ Basic Analysis Techniques

Figure 6-15: This IIf function enables you to test for forecasts with a value of 0 and bypass
them when performing your calculation.

Figure 6-16: The IIf function helped you avoid the division by zero errors.

Using IIf to Save Time

You can also use the IIf function to save steps in your analytical processes and,
ultimately, save time. For example, imagine that you need to tag customers in
a lead list as either large-sized customers or a small-sized customers, based
on their dollar potential and you decide that you will update the MyTest field
in your dataset with ‘‘LARGE’’ or ‘‘SMALL’’ based on the revenue potential
of the customer. Without the IIf function, you would have to run the two
Update queries shown in Figures 6-17 and 6-18 to accomplish this task.

Will the queries in Figures 6-17 and 6-18 do the job? Yes. However, you
could accomplish the same task with one query using the IIf function.

The update query shown in Figure 6-19 illustrates how you can use an IIf

function as the update expression.
Take a moment and look at the IIf function used as the update expression.

IIf([DollarPotential]>=10000,“LARGE“,“SMALL“)

Chapter 6 ■ Performing Conditional Analysis 153

Figure 6-17: This query will update the MyTest field to tag all customers that have a
revenue potential at or above 10,000 dollars with the word ‘‘LARGE.’’

Figure 6-18: This query updates the MyTest field to tag all customers that have a revenue
potential less than 10,000 dollars with the word ‘‘SMALL.’’

This function tells Access to evaluate the DollarPotential field of each record.
If the DollarPotential field is greater than or equal to 10,000, use the word
‘‘LARGE’’ as the update value. If not, use the word ‘‘SMALL.’’

TIP You can use conditional operators (AND, OR, BETWEEN) within your IIf
functions to add a layers to your condition expression. For example, the following
function tests for a dollar potential and segment to get a True or a False value.

IIf([DollarPotential]>10000 And [Segment]=“Metal

Fabrication“,“True“,“False“)

154 Part II ■ Basic Analysis Techniques

Figure 6-19: You can accomplish the same task in one query using the IIf function.

Nesting IIf Functions for Multiple Conditions

Sometimes, the condition you need to test for is too complex to be handled
by a basic IF...THEN...ELSE structure. In such cases, you can use nested IIf

functions—that is, IIf functions embedded in other IIf functions. Consider
the following example:

IIf([VALUE]>100,“A“,IIf([VALUE]<100,“C“,“B“))

This function will check to see if VALUE is greater than 100. If it is, then A
is returned; if not (else), a second IIf function is triggered. The second IIf

function checks to see if VALUE is less than 100. If yes, then C is returned; if
not (else), B is returned.

The idea here is that because an IIf function results in a True or False
answer, you can expand your condition by setting the ‘‘False’’ expression to
another IIf function instead of to a hard-coded value. This triggers another
evaluation. There is no limit to the number of nested IIf functions you
can use.

Using IIf Functions to Create Crosstab Analyses

Many seasoned analysts use the IIf function to create custom crosstab analyses
in lieu of using a crosstab query. Among the many advantages of creating
crosstab analyses without a crosstab query is the ability to categorize and
group otherwise unrelated data items.

In the example shown in Figure 6-20, you are returning the number of
account managers hired before and after 2009. Categorizations this specific are
not possible with a crosstab query.

The result, shown in Figure 6-21, is every bit as clean and user-friendly as
the results would be from a crosstab query.

Chapter 6 ■ Performing Conditional Analysis 155

Figure 6-20: This query demonstrates how to create a crosstab analysis without using a
crosstab query.

Figure 6-21: The resulting dataset gives you a clean crosstab-style view of your data.

Another advantage of creating crosstab analyses without a crosstab query
is the ability to include more than one calculation in your crosstab report. For
example, Figure 6-22 illustrates a query where the sum of units and revenue
are returned in crosstab format.

Figure 6-22: Creating crosstab-style reports using the IIf function allows you to calculate
more than one value.

156 Part II ■ Basic Analysis Techniques

As you can see in Figure 6-23, the resulting dataset provides a great deal of
information in an easy-to-read format. Because a standard crosstab query does
not allow more than one value calculations (in this case units and revenue are
values), this particular view is not possible with a standard crosstab query.

Figure 6-23: This analysis would be impossible to create in a standard crosstab query,
where multiple calculations are not allowed.

The Switch Function
The Switch function enables you to evaluate a list of expressions and return
the value associated with the expression determined to be True. To use the
Switch function, you must provide a minimum of one expression and one
value.

ABOUT THE SWITCH FUNCTION

The power of the Switch function comes in evaluating multiple expressions at
one time and determining which one is True. The basic syntax for the Switch
function is:

Switch(Expression, Value)

■ Expression (required): The expression you want to evaluate.

■ Value (required): The value to return if the expression is True.

To evaluate multiple expressions, simply add another Expression and
Value to the function, as follows:

Switch(Expression1, Value1, Expression2, Value2, Expression3,

Value3)

When executed, this Switch function evaluates each expression in turn.
If an expression evaluates to True, the value that follows that expression is
returned. If more than one expression is True, the value for the first True
expression is returned (the others are ignored).

If none of the expressions in your Switch function evaluate as True, the
function returns a Null value. For example, the following function evaluates
Count and returns a value based on it.

Switch([Count] < 10, “Low“, [Count] > 15, “High“)

Chapter 6 ■ Performing Conditional Analysis 157

ABOUT THE SWITCH FUNCTION

If Count comes in between 10 and 15, you get a Null value because none of
the expressions include those numbers.

You can ensure your Switch function returns a value other than Null when
none of your expressions evaluate to TRUE. You do this by adding a catch-
all expression and provide a value to return if none of your expressions are
determined to be True.

Switch([Count] < 10, “Low“, [Count] > 15, “High“, True, “Middle“)

In this example, adding True as the last expression forces the value
“Middle“ to be returned instead of a Null value if none of the other
expressions evaluate as True.

Comparing the IIf and Switch Functions
Although the IIf function is a versatile tool that can handle most conditional
analysis, the fact is that the IIf function has a fixed number of arguments
that limits it to a basic IF...THEN...ELSE structure. This limitation makes it
difficult to evaluate complex conditions without using nested IIf functions.
While there is nothing wrong with nesting IIF functions, they have the potential
to be difficult to read and maintain.

To illustrate this point, consider this scenario: It is common practice to
classify customers into groups based on annual revenue, or how much they
spend with your company. Imagine that your organization has a policy of
classifying customers into four groups: A, B, C, and D (see Table 6-1).

You have been asked to classify the customers in the TransactionMaster
table, based on each customer’s sales transactions. You can actually do this
using either the IIf function or the Switch function.

Table 6-1: Customer Classifications

ANNUAL REVENUE CUSTOMER CLASSIFICATION

>= $10,000 A

>=5,000 but < $10,000 B

>=$1,000 but < $5,000 C

<$1,000 D

The problem with using the IIf function is that this situation calls for
some hefty nesting. That is, you have to use IIf expressions within other IIf

158 Part II ■ Basic Analysis Techniques

expressions to handle the easy layer of possible conditions. Here is how the
expression would look if you opted to use the IIf function:

IIf([REV]>=10000,“A“,IIf([REV]>=5000,“B“,IIf([REV]>=1000,“C“,“D“)))“

As you can see, this can get a bit convoluted. So much so, that the chances
of making a syntax or logic error are high.

In contrast to the preceding nested IIf function, the following Switch

function is rather straightforward:

Switch([REV]<1000,“D“,[REV]<5000,“C“,[REV]<10000,“B“,True,“A“)

This function tells Access that if REV is less than 1000, then return a value
of “D“. If REV is less than 5000, then return a value of “C“. If REV is less than
10000, then return “B“. If all else fails, use “A“. Figure 6-24 demonstrates how
you would use this function in a query.

NOTE You may shrewdly notice that those records that are less than 1000 will
also be less than 10,000. So why don’t all the records get tagged with a value of
‘‘B’’? Remember that the Switch function evaluates your expressions from left to
right and only returns the value of the first expression that evaluates to True.

In this light, you want to sort the expressions in your Switch function accordingly,
using an order that is conducive to the logic of your analysis.

Figure 6-24: Using the Switch function is sometimes more practical than using nested IIf
functions. This query will classify customers by how much they spend.

When you run the query, you see the resulting dataset shown in Figure 6-25.

Chapter 6 ■ Performing Conditional Analysis 159

Figure 6-25: Each customer is conditionally tagged with a group designation based on
annual revenue.

Summary

You will often need to perform analyses where specifications and circum-
stances for the analysis are variable. That is, the parameters and conditions for
the analysis change each time you run it. In such cases, you need to perform a
conditional analysis—an analysis whose outcome depends on a pre-defined set
of conditions. Access has several built-in tools that enable conditional analyses;
some of these are parameter queries, the IIf function, and the Switch function.

A parameter query is an interactive query that prompts you for criteria before
the query runs. You often use this type of query when you need to pass
different criteria each time the query runs. Running a parameter query forces
the Enter Parameter Value dialog box to open and ask for a variable or criteria.
You would simply enter your parameter, as shown in Figure 6-3.

Parameter queries are not the only tools in Access that allow for conditional
analysis. Access also has built-in functions that facilitate value comparisons,
data validation, and conditional evaluation. These conditional functions (also
called program flow functions) are designed to test for conditions and provide
different outcomes based on the results of those tests. Two of these functions
are the IIf function and the Switch function.

The IIf (immediate if) function replicates the functionality of Excel’s IF

function, evaluating a specific condition as True or False. The IIf function
saves steps in your analytical processes and, ultimately, saves time. The Switch
function enables you to evaluate a list of expressions and return the value
associated with the expression determined to be True. The power of the Switch
function comes in evaluating multiple expressions at one time and determining
which one is True.

Leveraging and employing conditional analysis is not only easy but helps
save you time, organizes your analytical processes, and ultimately enhances
your analysis.

P a r t

III
Advanced Analysis Techniques

In This Part

Chapter 7: Adding Dimension with Subqueries and Domain Aggregate Functions
Chapter 8: Running Descriptive Statistics in Access
Chapter 9: Scheduling and Running Batch Analysis
Chapter 10: Leveraging VBA to Enhance Data Analysis

C H A P T E R

7
Adding Dimension with
Subqueries and Domain

Aggregate Functions

Often, you will carry out your analyses in layers, each layer of analysis using
or building on the previous layer. Building layers into analytical processes is
actually very common. For instance, when you build a query using another
query as the data source, you are layering your analysis. When you build
a query based on a temporary table created by a make-table query, you are
also layering your analysis.

All these conventional methods of layering analyses have two things in
common.

They all add a step to your analytical processes. Every query that has to
be run in order to feed another query, or every temporary table that has
to be created in order to advance your analysis, adds yet another task that
must be completed before you get your final results.

They all require the creation of temporary tables or transitory queries,
inundating your database with table and query objects that lead to a
confusing analytical process as well as a database that bloats easily.

This is where subqueries and domain aggregate functions can help. Sub-
queries and domain aggregate functions allow you to build layers into your
analysis within one query, eliminating the need for temporary tables or
transitory queries.

NOTE The topic of subqueries and domain aggregate functions requires an
understanding of SQL (Structured Query Language). Most beginning Access users
don’t have the foundation in SQL. If you fall into this category, press the pause
button here and review Appendix B of this book. There, you’ll receive enough of a
primer on SQL to continue this chapter.

163

164 Part III ■ Advanced Analysis Techniques

Enhancing Your Analysis with Subqueries

Subqueries (sometimes referred to as subselect queries) are select queries nested
in other queries. The primary purpose of a subquery is to enable you to use
the results of one query within the execution of another. With subqueries, you
can answer a multiple-part question, specify criteria for further selection, or
define new fields for use in your analysis.

The query shown in Figure 7-1 demonstrates how to use a subquery in the
design grid. As you look at this, remember that this is just one example of how
a subquery can be used. Subqueries are not limited to use as criteria.

Figure 7-1: To use a subquery in Query Design view, simply enter the SQL statement.

If you were to build the query in Figure 7-1 and switch to SQL view, you
would see a SQL statement similar to this one. Can you pick out the subquery?
Look for the second SELECT statement.

SELECT CustomerID, Sum(LineTotal) AS SumOfLineTotal

FROM Dim_Transactions

WHERE CustomerID IN

(SELECT [CustomerID] FROM [Dim_Customers] WHERE [State] = “CA“)

GROUP BY CustomerID

NOTE Subqueries must always be enclosed in parentheses.

The idea behind a subquery is that the subquery is executed first, and
the results are used in the outer query (the query in which the subquery
is embedded) as a criterion, an expression, a parameter, and so on. In the
example shown in Figure 7-1, the subquery first returns a list of CustomerIDs
for customers in California. Then the outer query uses that list as criteria to
filter out any CustomerIDs not in California.

Chapter 7 ■ Adding Dimension 165

Why Use Subqueries?
You should know that subqueries often run more slowly than standard queries
using joins. This is because subqueries either are executed against an entire
dataset or are evaluated multiple times—one time per each row processed by
the outer query. This makes them slow to execute, especially if you have a
large dataset. So why use them?

Many analyses require multiple step processes that use temporary tables or
transitory queries. Although there is nothing inherently wrong with temporary
tables and queries, an excess number of them in your analytical processes could
lead to a confusing analytical process as well as a database that bloats easily.

Even though using subqueries comes with a performance hit, it may be
an acceptable trade for streamlined procedures and optimized analytical
processes. You will even find that as you become more comfortable with
writing your own SQL statements, you will use subqueries in on-the-fly
queries to save time.

Subquery Ground Rules
There are a few rules and restrictions that you must be aware of when using
subqueries.

Your subquery must have, at a minimum, a SELECT statement and a FROM

clause in its SQL string.

You must enclose your subquery in parentheses.

Theoretically, you can nest up to 31 subqueries within a query. This
number, however, is based on your system’s available memory and the
complexity of your subqueries.

You can use a subquery in an expression as long as it returns a single
value.

You cannot use the DISTINCT keyword in a subquery that includes the
GROUP BY clause.

Creating Subqueries Without Typing SQL Statements
You may have a tendency to shy away from subqueries because you may feel
uncomfortable with writing your own SQL statements. Indeed, many of the
SQL statements necessary to perform the smallest analysis can seem daunting.

Imagine, for example, that you have been asked to provide the number of
account managers that have a time in service greater than the average time in
service for all account managers. Sounds like a relatively simple analysis, and
it is simple when you use a subquery. But where do you start? Well, you could

166 Part III ■ Advanced Analysis Techniques

just write an SQL statement into the SQL view of a query and run it. But the
truth is that not many Access users create SQL statements from scratch. The
smart ones utilize the built-in functionalities of Access to save time and avoid
headaches. The trick is to split the analysis into manageable pieces, as shown
in the following steps:

1. Find the average time in service for all account managers. To do this,
create the query shown in Figure 7-2.

Figure 7-2: Create a query to find the average time in service for all account managers.

2. Switch to SQL view, shown in Figure 7-3, and copy the SQL statement.

Figure 7-3: Switch to SQL view and copy the SQL statement.

3. Create a query that will count the number of account managers by time
in service. Figure 7-4 does just that.

4. Right-click in the Criteria row under the TIS_in_Months field and select
Zoom. This opens the Zoom dialog shown in Figure 7-5. The Zoom dialog
does nothing more than help you more comfortably work with text that
is too long to be easily seen at one time in the query grid.

5. With the Zoom dialog box open, paste the SQL statement you copied
previously into to the white input area.

NOTE Remember that subqueries must be enclosed in parentheses, so you want
to enter parentheses around the SQL statement you just pasted. You also need to
make sure you delete all carriage returns that were put in automatically by Access.

Chapter 7 ■ Adding Dimension 167

6. Finish off the query by entering a greater than (>) sign in from of your
subquery and change the aggregate function of the TIS_in_Months row
to a WHERE clause. At this point, your query should look like the one
shown in Figure 7-6.

Figure 7-4: Create a query to count the number of employees by time in service.

Figure 7-5: Paste the first SQL statement you copied into the Criteria row of the TIS_IN
_MONTHS field.

Now if you go to the SQL view of the query shown in Figure 7-6, you will
see the following SQL statement:

SELECT Count(AccountManagerID) AS MyCount

FROM Dim_AccountManagers

WHERE (((DateDiff(“m“,[HireDate],Date()))

>(SELECT Avg(DateDiff(“m“,[HireDate],Date())) AS Avg_TIS_in_Months

FROM Dim_AccountManagers;)));

The beauty is that you do not have to type all this syntax. You simply use
your knowledge of Access to piece together the necessary actions that needed

168 Part III ■ Advanced Analysis Techniques

to be taken in order to get to the answer. As you become more familiar with
SQL, you will find that you can create subqueries manually with no problems.

Figure 7-6: Running this query tells you there are 12 account managers that have a time
in service greater than the company average.

Using IN and NOT IN with Subqueries
The IN and NOT IN operators enable you to run two queries in one. The idea
is that the subquery executes first, and then the outer query uses the resulting
dataset to filter the final output.

The example demonstrated in Figure 7-7 first runs a subquery that selects
all customers based in CA (California). The outer query then uses the resulting
dataset as a criteria to return the sum of LineTotal for only those customers
that match the customer numbers returned in the subquery.

Figure 7-7: This query uses the IN operator with a subquery, allowing you to run two
queries in one.

Chapter 7 ■ Adding Dimension 169

You would use NOT IN to go the opposite way and return the sum of
LineTotal for customers that do not match the customer numbers returned in
the subquery.

TIP You can find the query examples in this section in the sample database for
this book, located at www.wiley.com.

Using Subqueries with Comparison Operators
As its name implies, a comparison operator (=, <, >, <=, >=, <>, and so on)
compares two items and returns True or False. When you use a subquery with
a comparison operator, you are asking Access to compare the resulting dataset
of your outer query to that of the subquery.

For example, to return all customers who have purchases greater than
the average purchase for all customers, you can use the following query
(Figure 7-8):

Figure 7-8: Use comparison operators to compare the resulting dataset of your outer
query to the results of the subquery.

The subquery runs first, giving you the average purchase for all cus-
tomers. This is a single value that Access then uses to compare the outer
query’s resulting dataset. In other words, the max purchase for each customer
is compared to the company average. If a customer’s maximum purchase is
greater than the company average, it is included in the final output; otherwise,
it is excluded.

NOTE A subquery used with a comparison operator must return a single value.

www.wiley.com

170 Part III ■ Advanced Analysis Techniques

Using Subqueries as Expressions
In every example so far, you have used subqueries in conjunction with
the WHERE clause, effectively using the results of a subquery as criteria for
your outer query. However, you can also use a subquery as an expres-
sion, as long as the subquery returns a single value. The query shown in
Figure 7-9 demonstrates how you can use a subquery as an expression in a
calculation.

Figure 7-9: You are using a subquery as an expression in a calculation.

This example uses a subquery to get the average units sold by the entire
company; that subquery returns a single value. You are then using that value
in a calculation to determine the variance between each market’s average units
sold and the average for the company. The output of this query is shown in
Figure 7-10.

Figure 7-10: Your query result.

Using Correlated Subqueries
A correlated query is essentially a subquery that refers back to a column
that is in the outer query. What makes correlated subqueries unique is that

Chapter 7 ■ Adding Dimension 171

while standard subqueries are evaluated one time to get a result, a correlated
subquery has to be evaluated multiple times: once for each row processed
by the outer query. To illustrate this point, consider the following two SQL
statements.

Uncorrelated Subqueries

This SQL statement uses an uncorrelated subquery. How can you tell? The
subquery does not reference any column in the outer query. This subquery is
evaluated one time to give you the average revenue for the entire dataset.

SELECT MainSummary.Branch_Number,

(SELECT Avg(Revenue)FROM MainSummary)

FROM MainSummary

Correlated Subqueries

This SQL statement uses a correlated subquery. The subquery reaches back
into the outer query and references the Branch_Number column, effectively
forcing the subquery to be evaluated for every row that is processed by the
outer query. The result of this query is a dataset that shows the average
revenue for every branch in the company. Figure 7-11 demonstrates how this
SQL statement looks in Design View.

SELECT MainSummary.Branch_Number,

(SELECT Avg(Revenue)FROM MainSummary AS M2

WHERE M2.Branch_Number = MainSummary.Branch_Number) AS AvgByBranch

FROM MainSummary

GROUP BY MainSummary.Branch_Number

Figure 7-11: A correlated subquery

172 Part III ■ Advanced Analysis Techniques

USING ALIASES WITH CORRELATED SUBQUERIES

Notice that in the correlated subquery, you are using the AS clause to establish
a table alias of ‘‘M2.’’ The reason for this is that the subquery and the outer
query are both utilizing the same table. By giving one of the tables an alias,
you allow Access to distinguish exactly which table you are referring to in your
SQL statement. Although the alias in this SQL statement is assigned to the
subquery, you can just as easily assign an alias to the table in the outer query.

Note that the character ‘‘M2’’ holds no significance. In fact, you can use any
text string you like, as long as the alias and the table name combined do not
exceed 255 characters.

To assign an alias to a table in Design view, simply right-click the field list
and select Properties, as shown in Figure 7-12.

Figure 7-12: Right-click the field list and select Properties.

Next, edit the Alias property to the one you want to use (see Figure 7-13).
You know that it takes effect when the name on the Field List changes to your
new alias.

Figure 7-13: Enter the table alias into the Alias property.

TIP Try to give your tables alias names that make sense. For example, if
both your outer query and subquery are using the MainSummary table, you
can give the table an alias of M1 in your outer query, while naming the
same table M2 in your subquery. This gives you an easy visual indication of
which table you’re referring to.

Chapter 7 ■ Adding Dimension 173

Using a Correlated Subquery as an Expression
The example shown in Figure 7-9 uses an uncorrelated subquery to determine
the variance between each market’s average units sold and the average units
for the company.

You can apply the same type of technique to correlated subqueries. In
the query demonstrated in Figure 7-14, a correlation for each branch number
allows you to determine the variance between each employee’s annual revenue
and the average revenue for that employee’s branch.

Figure 7-14: You can use a correlated subquery as part of an expression.

Using Subqueries Within Action Queries
Action queries can be fitted with subqueries just as easily as select queries can.
Here are a few examples of how you would use a subquery in an action query.

A Subquery in a Make-Table Query
This example illustrates how to use a subquery within a make-table query.

SELECT E1.Employee_Number, E1.Last_Name, E1.First_Name

INTO OldSchoolEmployees

FROM Employee_Master as E1

WHERE E1.Employee_Number IN

(SELECT E2.Employee_Number

FROM Employee_Master AS E2

WHERE E2.Hire_Date <#1/1/1995#)

A Subquery in an Append Query
This example uses a subquery within an append query.

INSERT INTO CustomerMaster (Customer_Number, Customer_Name, State)

SELECT CompanyNumber,CompanyName,State

FROM LeadList

WHERE CompanyNumber Not In

(SELECT Customer_Number FROM CustomerMaster)

174 Part III ■ Advanced Analysis Techniques

A Subquery in an Update Query

This example uses a subquery in an update query.

UPDATE PriceMaster SET Price = [Price]*1.1

WHERE Branch_Number In

(SELECT Branch_Number FROM LocationMaster WHERE Region = “South“)

A Subquery in a Delete Query

This example uses a subquery in a delete query.

DELETE CompanyNumber

FROM LeadList

WHERE CompanyNumber In

(SELECT Customer_Number FROM CustomerMaster)

TRICKS OF THE TRADE: GETTING THE SECOND QUARTILE OF A DATASET
WITH ONE QUERY

You can easily pull out the second quartile of a dataset by using a top values
subquery.

1. The first step is to create a top values query that returns the top 25 percent
of your dataset. Again, you can specify that a query is a top values query by
right-clicking the grey area above the white query grid and selecting Prop-
erties. Once in the Property Sheet dialog, adjust the Top Values property to
return the top Nth value you need as demonstrated in Figure 7-15. For this
example, use 25 percent.

Figure 7-15: Create a query that returns the top 25 percent of your dataset.

2. Next, switch to SQL view, shown in Figure 7-16, and copy the SQL string.

Chapter 7 ■ Adding Dimension 175

TRICKS OF THE TRADE: GETTING THE SECOND QUARTILE OF A DATASET
WITH ONE QUERY

Figure 7-16: Copy the SQL statement that makes up the query.

3. Switch back to Design view. The idea is to paste the SQL statement you
just copied into the Criteria row of the Branch_Number field. To do this,
right-click inside the Criteria row of the Branch_Number field and select
Zoom. Then paste the SQL statement inside the Zoom dialog box, as shown
in Figure 7-17.

Figure 7-17: Paste the SQL statement into the Criteria row of Branch_Number.

4. This next part is a little tricky. You need to perform the following edits
on the SQL statement in order to make it work for this situation:

a. Because this subquery is a criterion for the Branch_Number field, you
only need to select Branch_Number in the SQL statement; therefore,
you can remove the line Sum(MainSummary.Revenue) AS

SumOfRevenue.

b. Remove the comma at the end of the first line.

c. Delete all carriage returns.

d. Place parentheses around the subquery and put the NOT IN operator in
front of it all.

(continued)

176 Part III ■ Advanced Analysis Techniques

TRICKS OF THE TRADE: GETTING THE SECOND QUARTILE OF A DATASET
WITH ONE QUERY (continued)

At this point, your Zoom dialog box should look like the one shown in
Figure 7-18.

Figure 7-18: Apply a few edits so that the subquery works as criteria.

At this point, you can switch to Design View. If all went well, you query
should look similar to Figure 7-19.

Figure 7-19: Your query is ready to run.

There you have it. Running this query returns the second quartile in the
dataset. To get the third quartile, simply replace TOP 25 PERCENT in the
subquery with TOP 50 PERCENT; to get the fourth quartile, use TOP 75

PERCENT.

NOTE Be sure to check this book’s sample file to get a few more
examples that highlight how subqueries can help you find solutions to
common analytical needs.

Chapter 7 ■ Adding Dimension 177

Domain Aggregate Functions

Domain aggregate functions enable you to extract and aggregate statistical
information from an entire dataset (a domain). These functions differ from
aggregate queries in that aggregate queries group data before evaluating
the values, whereas domain aggregate functions evaluate the values for entire
datasets; thus, a domain aggregate function never returns more than one value.
To get a clear understanding of the difference between an aggregate query and
a domain aggregate function, build the query shown in Figure 7-20.

Figure 7-20: This query shows you the difference between an aggregate query and a
domain aggregate function.

Run the query to get the results you see in Figure 7-21. You will notice
that the Aggregate Sum column contains a different total for each year,
whereas the Domain Sum column (the domain aggregate function) contains
only one total (for the entire dataset).

Figure 7-21: You can clearly see the difference between an aggregate query and a domain
aggregate function.

NOTE Although the examples in this chapter show the use of domain aggregate
functions in query expressions, keep in mind that you can use these functions in
macros, modules, or the calculated controls of forms and reports.

178 Part III ■ Advanced Analysis Techniques

THE ANATOMY OF DOMAIN AGGREGATE FUNCTIONS

There are 12 different domain aggregate functions, but they all have the
same anatomy:
FunctionName(“[Field Name]“,“[Dataset Name]“, “[Criteria]“)

■ FunctionName: This is the name of the domain aggregate function you are
using.

■ Field Name (required): This expression identifies the field containing the
data with which you are working.

■ Dataset Name (required): This expression identifies the table
or query you are working with; also known as the domain.

■ Criteria (optional): This expression restricts the range of data on
which the domain aggregate function is performed. If no criterion is speci-
fied, the domain aggregate function is performed against the entire dataset.

NOTE You cannot use a parameter query with a domain aggregate
function.

Understanding the Different Domain Aggregate
Functions
There are 12 different domain aggregate functions in Access, each one per-
forming a different operation. The Table 7-1 lists each function with its purpose
and utility.

Table 7-1: Domain Aggregate Functions

FUNCTION PURPOSE

DSum The DSum function returns the sum value of a specified
field in the domain. For example, DSum(“[LineTotal]“,
“[Dim_Transactions]“) returns the total sum of LineTotal
in the Dim_Transactions table.

DAvgf The DAvg function returns the average value of a specified
field in the domain. For example, DAvg(“[LineTotal]“,
“[Dim_Transactions]“) returns the average LineTotal in
the Dim_Transactions table.

DCount The DCount function returns the total number of records
in the domain. DCount(“*“, “[Dim_Transactions]“),
for example, returns the total number of records in the Dim_
Transactions table.

Chapter 7 ■ Adding Dimension 179

FUNCTION PURPOSE

DLookup The DLookup function returns the first value of a specified
field that matches the criteria you define within the DLookup
function. If you don’t supply criteria, the DLookup func-
tion returns a random value in the domain. For example,
DLookUp(“[Last_Name]“,“[Employee_Master]“,“
[Employee_Number]=’42620' “) returns the value in the
Last_Name field of the record where the Employee_Number
is 42620.

DMin and DMax The DMin and DMax functions return the minimum
and maximum values in the domain, respectively.
DMin(“[LineTotal]“,“[Dim_Transactions]“) returns
the lowest LineTotal in the Dim_Transactions table, whereas
DMax(“[LineTotal]“,“[Dim_Transactions]“) returns
the highest LineTotal.

DFirst and DLast The DFirst and DLast functions return the first and last val-
ues in the domain, respectively. DFirst(“[LineTotal]“,
“[Dim_Transactions]“) returns the first LineTotal in the
Dim_Transactions table, whereas DLast(“[LineTotal]“,
“[Dim_Transactions]“) returns the last.

DStDev, DStDevP,
DVar, and DvarP

You can use the DStDev and DStDevP functions to
return the standard deviation across a population sam-
ple and a population, respectively. Similarly, the DVar
and the DVarP functions return the variance across
a population sample and a population, respectively.
DStDev(“[List_Price]“, “[Dim_Products]“) returns
the standard deviation of all prices in the Dim_Products
table. DVar (“[List_Price]“, “[Dim_Products]“)
returns the variance of all prices in the Dim_Products table.

NOTE DLookup functions are particularly useful when you need to retrieve a
value from an outside dataset.

Examining the Syntax of Domain Aggregate Functions
Domain aggregate functions are unique in that the syntax required to make
them work varies depending on the scenario. This has produced some very
frustrated users who have given up on domain aggregate functions altogether.
This section describes some general guidelines that help you in building your
domain aggregate functions.

180 Part III ■ Advanced Analysis Techniques

Using No Criteria

In this example, you are summing the values in the LineTotal field from the
Dim_Transactions table (domain). Your field names and dataset names must
always be wrapped in quotes.

DSum(“[LineTotal]“,“[Dim_Transactions]“)

Also, note the use of brackets. Although not always required, it is generally
a good practice to use brackets when identifying a field, a table, or a query.

Using Text Criteria

In this example, you are summing the values in the Revenue field from
the PvTblFeed table (domain) where the value in the Branch_Number field
is 301316. Note that the Branch_Number field is formatted as text. When
specifying a criterion that is textual or a string, your criterion must be wrapped
in single quotes. In addition, your entire criteria expression must be wrapped
in double quotes.

DSum(“[Revenue]“, “[PvTblFeed]“, “[Branch_Number] = '301316' “)

TIP You can use any valid WHERE clause in the criteria expression of your domain
aggregate functions. This adds a level of functionality to domain aggregate
functions, as they can support the use of multiple columns and logical operators
such as AND, OR, NOT, and so on. An example is:

DSum(“[Field1]“, “[Table]“, “[Field2] = 'A’ OR [Field2] = 'B’

AND [Field3] = 2“)

If you are referencing a control inside of a form or report, the syntax will
change a bit.

DSum(“[Revenue]“, “[PvTblFeed]“, “[Branch_Number] = i

' “ & [MyTextControl] & “ ' “)

Notice that you are using single quotes to convert the control’s value
to a string. In other words, if the value of the form control is 301316, then
“[Branch_Number] = ' “ & [MyTextControl] & “ ' “ is essentially translated
to read “[Branch_Number] = '301316' “.

Using Number Criteria

In this example, you are summing the values in the LineTotal field from the
Dim_Transactions table (domain) where the value in the LineTotal field is

Chapter 7 ■ Adding Dimension 181

greater than 500. Notice that you are not using single quotes, as the LineTotal
field is an actual number field.

DSum(“[LineTotal]“, “[Dim_Transactions]“, “[LineTotal] > 500 “)

If you are referencing a control inside of a form or report, the syntax changes
a bit.

DSum(“[LineTotal]“, “[Dim_Transactions]“, “[LineTotal] >“ i

[MyNumericControl])

Using Date Criteria

In this example, you are summing the values in the LineTotal field from the
Dim_Transactions table (domain) where the value in the OrderDate field is
07/05/2008.

DSum(“[LineTotal]“, “[Dim_Transactions]“, “[OrderDate] = #07/05/08# “)

If you are referencing a control inside of a form or report, the syntax changes
a bit.

DSum(“[LineTotal]“, “[Dim_Transactions]“, “[OrderDate] = i

#“ & [MydateControl] & “#“)

Notice that you are using number signs to convert the control’s value to
a date. In other words, if the value of the form control is 07/05/2008, then
“[OrderDate] = #“ & [MydateControl] & “#“ is essentially translated to
read “[OrderDate] = #07/05/2008# “.

Using Domain Aggregate Functions
Like subqueries, domain aggregate functions are not very efficient when it
comes to performing large-scale analyses and crunching very large datasets.
These functions are better suited for use in specialty analyses with smaller
subsets of data. Indeed, you most often find domain aggregate functions
in environments where the dataset being evaluated is predictable and con-
trolled (form example, functions, forms, and reports). This is not to say,
however, that domain aggregate functions don’t have their place in your
day-to-day data analysis. This section walks through some examples of
how you can use domain aggregate functions to accomplish some common
tasks.

182 Part III ■ Advanced Analysis Techniques

Calculating the Percent of Total

The query shown in Figure 7-22 returns products by group and the sum of
LineTotal for each product category. This is a worthwhile analysis, but you
can easily enhance it by adding a column that gives you the percent of total
revenue for each product.

Figure 7-22: You want to add a column that shows the percent of total revenue for each
product category.

To get the percent of the total dollar value that each product makes up,
you naturally have to know the total dollar value of the entire dataset. This is
where a DSum function can come in handy. The following DSum function returns
the total value of the dataset:

DSum(“[LineTotal]“,“[Dim_Transactions]“)

Now you can use this function as an expression in the calculation that returns
the ‘‘percent of total’’ for each product group. Figure 7-23 demonstrates how.

Figure 7-23: Use a DSum function as an expression in a calculation to get ‘‘percent of
total.’’

The result, shown in Figure 7-24, proves that this is a quick and easy way to
get both total by group and percent of total with one query.

Chapter 7 ■ Adding Dimension 183

Figure 7-24: You retrieved both total by group and percent of total with one query.

Creating a Running Count

The query in Figure 7-25 uses a DCount function as an expression to return the
number of invoices processed on each specific invoice day.

Figure 7-25: This query returns all invoice dates and the number of invoices processed
on each date.

Take a moment to analyze what the DCount function is doing.

DCount(“[TransactionID]“,“[Dim_Transactions]“,“[OrderDate]= i

#“ & [OrderDate] & “#“)

This DCount function retrieves the count of invoices where the invoice date
equals (=) each invoice date returned by the query. In the context of the query
shown in Figure 7-25, the resulting dataset shows each invoice date and its
own count of invoices.

What would happen if you were to alter the DCount function to tell it to
return the count of invoices where the invoice date equals or is earlier than
(<=) each invoice date returned by the query, as follows?

DCount(“[TransactionID]“,“[Dim_Transactions]“,“[OrderDate]<= i

#“ & [OrderDate] & “#“)

The DCount function would return the count of invoices for each date and
the count of invoices for any earlier date, thereby giving you a running count.

184 Part III ■ Advanced Analysis Techniques

To put this into action, simply replace the = operator in the DCount function
with the <= operator, as shown in Figure 7-26.

Figure 7-26: Use the <= operator in your DCount function to return the count of invoice
dates that equals or is less than the date returned by the query.

Figure 7-27 shows the resulting running count.

Figure 7-27: You now have a running count in your analysis.

TIP You can achieve a running sum instead of a running count by using the DSum

function.

Using a Value from the Previous Record

The query in Figure 7-28 uses a DLookup function to return the revenue value
from the previous record. This value is placed into a new column called
‘‘Yesterday.’’

This method is similar to the one used when creating a running sum in that
it revolves around manipulating a comparison operator in order to change
the meaning of the domain aggregate function. In this case, DLookup searches

Chapter 7 ■ Adding Dimension 185

for the revenue value where the invoice date is equal to each invoice date
returned by the query minus one (-1). If you subtract one from a date, you get
yesterday’s date!

DLookUp(“[Revenue]“,“[TimeSummary]“,“[OrderDate] = i

#“ & [OrderDate]-1 & “#“)

TIP If you add 1, you get the next record in the sequence. However, this trick does
not work with textual fields. This only works with date and numeric fields. If you
are working with a table that does not contain any numeric or date fields, create
an autonumber field. This gives you a unique numeric identifier that you can use.

Figure 7-28: This query uses a DLookup to refer to the previous revenue value.

Running the query in Figure 7-28 yields the results shown in Figure 7-29.

Figure 7-29: You can take this functionality a step further and perform a calculation on
the Yesterday field.

You can enhance this analysis by adding a calculated field that gives you
the dollar variance between today and yesterday. Create a new column and
enter [Revenue]-NZ([Yesterday],0), as shown in Figure 7-30. Note that the

186 Part III ■ Advanced Analysis Techniques

Yesterday field is wrapped in an NZ function in order to avoid errors caused
by null fields.

Figure 7-30: Enhance your analysis by adding a variance between today and yesterday.

Figure 7-31 shows the result.

Figure 7-31: Another task made possible by domain aggregate functions

Summary

Subqueries and domain aggregate functions allow you to build layers into
your analysis within one query, eliminating the need for temporary tables or
transitory queries. You can leverage both subqueries and domain aggregate
functions to streamline your analytical processes, as well as expand and
enhance your analysis.

Subqueries are select queries nested within other queries, allowing you
to use the results of one query within the execution of another. The idea
behind a subquery is that the subquery is executed first, and the results are
used in the outer query (the query in which the subquery is embedded) as a

Chapter 7 ■ Adding Dimension 187

criterion, an expression, a parameter, and so on. Although subqueries often
run more slowly than standard queries using joins, there are situations where
the performance hit may be an acceptable trade for streamlined procedures
and optimized analytical processes.

Domain aggregate functions enable you to extract and aggregate statistical
information from an entire dataset (a domain). Unlike aggregate queries where
the data is grouped before evaluation, domain aggregate functions evaluate
the values for the entire dataset. There are 12 different domain aggregate
functions: DSum, DAvg, DCount, DLookup, DMin, DMax, DFirst, DLast DStDev,
DStDevP, DVar, and DVarP. Domain aggregate functions are ideal for specialty
analyses such as calculating the percent of total, creating a running count,
creating a running sum, or using values from previous records.

C H A P T E R

8
Running Descriptive Statistics

in Access

Descriptive statistics allow you to present large amounts of data in quantitative
summaries that are simple to understand. When you sum data, count data,
and average data, you are producing descriptive statistics. It is important
to note that descriptive statistics are used only to profile a dataset and
enable comparisons that can be used in other analyses. This is different from
inferential statistics, where you infer conclusions that extend beyond the scope
of the data. To help solidify the difference between descriptive and inferential
statistics, consider a customer survey. Descriptive statistics summarize the
survey results for all customers and describe the data in understandable
metrics, while inferential statistics infer conclusions such as customer loyalty
based on the observed differences between groups of customers.

When it comes to inferential statistics, Excel is better suited to handle these
types of analyses than Access. Why? First, Excel comes with a plethora of
built-in functions and tools that make it easy to perform inferential statistics;
tools that Access simply does not have. Secondarily, inferential statistics are
usually performed on small subsets of data that can flexibly be analyzed and
presented by Excel. Running descriptive statistics, on the other hand, is quite
practical in Access. In fact, running descriptive statistics in Access versus Excel
is often the smartest option due to the structure and volume of the dataset.

TIP The examples shown in this chapter can be found in the sample database for
this book. The sample database for this book can be found on Wrox.com.

189

190 Part III ■ Advanced Analysis Techniques

Basic Descriptive Statistics

This section discusses some of the basic tasks you can perform by using
descriptive statistics, including:

Running descriptive statistics with aggregate queries

Ranking records in a dataset

Determining the mode and median of a dataset

Creating random samplings from a dataset

Running Descriptive Statistics with Aggregate Queries
At this point in the book, you have run many Access queries, some of which
have been aggregate queries. Little did you know that when you ran those
aggregate queries, you were actually creating descriptive statistics. It’s true.
The simplest descriptive statistics can be generated using an aggregate query.
To demonstrate this point, build the query shown in Figure 8-1.

Figure 8-1: Running this aggregate query provides a useful set of descriptive statistics.

Similar to the descriptive statistics functionality found in Excel, the result of
this query, shown in Figure 8-2, provides key statistical metrics for the entire
dataset.

Figure 8-2: Key statistical metrics for the entire dataset.

You can easily add layers to your descriptive statistics. In Figure 8-3, you are
adding the Branch_Number field to your query. This gives you key statistical
metrics for each branch.

Chapter 8 ■ Running Descriptive Statistics in Access 191

Figure 8-3: Add the Branch_Number field to your query to add another dimension to your
analysis.

As you can see in Figure 8-4, you can now compare the descriptive statistics
across branches to measure how they perform against each other.

Figure 8-4: You have a one shot view of the descriptive statistics for each branch.

Determining Rank, Mode, and Median
Ranking the records in your dataset, getting the mode of a dataset, and getting
the median of a dataset are all tasks that data analysts need to perform from
time to time. Unfortunately, Access does not provide built-in functionality to
perform these tasks easily. This means you have to come up with a way to
carry out these descriptive statistics. In this section, you learn some of the
techniques you can use to determine rank, mode, and median.

Ranking the Records in Your Dataset

You will undoubtedly encounter scenarios where you have to rank the records
in your dataset based on a specific metric such as revenue. A record’s rank is

192 Part III ■ Advanced Analysis Techniques

not only useful in presenting data; it is also a key variable when calculating
advanced descriptive statistics such as median, percentile, and quartile.

The easiest way to determine a record’s ranking within a dataset is by using
a correlated subquery. The query shown in Figure 8-5 demonstrates how a
rank is created using a subquery.

Figure 8-5: This query ranks employees by revenue.

Take a moment to examine the subquery that generates the rank.

(SELECT Count(*)FROM RepSummary AS M1 WHERE [Rev]>[RepSummary].[Rev])+1

This correlated subquery returns the total count of records from the M1
table (this is the RepSummary table with an alias of M1), where the Rev field in
the M1 table is greater than the Rev field in the RepSummary table. The value
returned by the subquery is then increased by one. Why increase the value by
one? If you don’t, the record with the highest value will return 0 because zero
records are greater than the record with the highest value. The result would
be that your ranking starts with 0 instead of 1. Adding one effectively ensures
that your ranking starts with 1.

NOTE Because this is a correlated subquery, this subquery is evaluated for every
record in your dataset, giving you a different rank value for each record. Correlated
subqueries are covered in detail in Chapter 8. In Appendix B, you’ll find a primer
on using SQL syntax.

Figure 8-6 shows the result.

TIP This technique is also useful when you want to create an autonumber field
within a query.

Getting the Mode of a Dataset

The mode of a dataset is the number that appears the most often in a set of
numbers. For instance, the mode for 4, 5, 5, 6, 7, 5, 3, 4 is 5.

Chapter 8 ■ Running Descriptive Statistics in Access 193

Figure 8-6: You have created a Rank column for your dataset.

Unlike Excel, Access does not have a built-in Mode function, so you must
create your own method of determining the mode of a dataset. Although there
are various ways to get the mode of a dataset, one of the easiest is to use a query
to count the occurrences of a certain data item, and then filter for the highest
count. To demonstrate this method, build the query shown in Figure 8-7.

Figure 8-7: This query groups by the Rev field and then counts the occurrences of each
number in Rev field. The query is sorted in descending order by Rev.

The results, shown in Figure 8-8, do not seem very helpful, but if you
turn this into a top values query, returning only the top one record, you will
effectively get the mode.

Change the Top Values property to 1, as shown in Figure 8-9, and you will
get one record with the highest count.

As you can see in Figure 8-10, you now have only one Rev figure: the one
that occurs most often. This is your mode.

NOTE Keep in mind that in the event of a tie, a top values query shows all
records. This effectively gives you more than one mode. You must make a manual
determination which mode to use.

194 Part III ■ Advanced Analysis Techniques

Figure 8-8: Almost there. Turn this into a top values query and you’ll have your Mode.

Figure 8-9: Set the Top Values property to 1.

Figure 8-10: This is your mode.

Getting the Median of a Dataset

The median of a dataset is the middle number in the dataset. In other words,
half of the numbers have values greater than the median, and half have values
less than the median. For instance, the median number in 3, 4, 5, 6, 7, 8, 9 is 6
because 6 is the middle number of the dataset.

TIP Why can’t you just calculate an average and be done with it? Sometimes,
calculating an average on a dataset that contains outliers can dramatically skew
your analysis. For example, if you were to calculate an average on the numbers,
32, 34, 35, 37, and 89, you would get an answer of 45.4. The problem is that 45.4
does not accurately represent the central tendency of this sampling of numbers.

Chapter 8 ■ Running Descriptive Statistics in Access 195

Using median on this sample makes more sense. The median in this case would be
35, which is more representative of what’s going on in this data.

Access does not have a built-in Median function, so you have to create your
own method of determining the median of a dataset. An easy way to get the
median is to build a query in two steps. The first step is to create a query that
sorts and ranks your records. The query shown in Figure 8-11 sorts and ranks
the records in the RepSummary table.

Figure 8-11: The first step in finding the median of a dataset is to assign a rank to each
record.

The next step is to identify the middle-most record in your dataset by
counting the total number of records in the dataset and then dividing that
number by two. This gives you a middle value. The idea is that because the
records are now sorted and ranked, the record that has the same rank as the
middle value is the median. Figure 8-12 shows the subquery that returns a
middle value for the dataset. Note that the value is wrapped in an Int function
to strip out the fractional portion of the number.

Figure 8-12: The Middle Value subquery counts all the records in the dataset and then
divides that number by 2.

As you can see in Figure 8-13, the middle value is 336. You can go down to
record 336 to see the median.

196 Part III ■ Advanced Analysis Techniques

Figure 8-13: Go down to record 336 to get the median value of the dataset.

If you want to return only the median value, simply use the subquery as a
criterion for the Rank field, as shown in Figure 8-14.

Figure 8-14: Using the subquery as a criterion for the Rank field will ensure that only the
median value is returned.

Pulling a Random Sampling from Your Dataset
Although the creation of a random sample of data does not necessarily fall
into the category of descriptive statistics, a random sampling is often the basis
for statistical analysis.

There are many ways to create a random sampling of data in Access, but
one of the easiest is to use the Rnd function within a top values query. The Rnd

function returns a random number based on an initial value. The idea is to build
an expression that applies the Rnd function to a field that contains numbers,
and then limit the records returned by setting the Top Values property of the
query.

Chapter 8 ■ Running Descriptive Statistics in Access 197

To demonstrate this method, follow these steps:

1. Start a query in Design view on the TransactionMaster table.

2. Create a Random ID field, as shown in Figure 8-15, and then sort the field
(either ascending or descending will work).

NOTE The Rnd function does not work with fields that contain text or Null
values. Strangely enough, though, the Rnd function works with fields that contain
all numerical values even if the field is formatted as a Text type field.

If your table is made up of fields that only contain text, you can add an
Autonumber field to use with the Rnd function. Another option is to pass the field
containing text through the Len function, and then use that expression in your Rnd
function. For example: Rnd(Len([Mytext])).

Figure 8-15: Start by creating a Random ID field using the Rnd function with the Cus-
tomer_Number field.

3. Change the Top Values property of the query to the number of random
records you want returned. The scenario shown in Figure 8-16 limits this
dataset to 1,000 records.

4. Set the Show row for the Random ID field to false and add the fields you
want to see in your dataset.

5. Run the query and you will have a completely random sampling of data.

WARNING Re-running the query, switching the view state, or sorting the
dataset, results in a different set of random records. If you want to perform
extensive analysis on an established set of random records that does not change,
you must run this query as a Make-Table query in order to create a hard table.

198 Part III ■ Advanced Analysis Techniques

Figure 8-16: Limit the number of records returned by setting the Top Values property of
the query.

Figure 8-17: Running this query produces a sample 1,000 random records.

Advanced Descriptive Statistics

When working with descriptive statistics, a little knowledge goes a long
way. Indeed, basic statistical analyses often lead to more advanced statistical
analyses. In this section, you build on the fundamentals you have just learned
to create advanced descriptive statistics.

Calculating Percentile Ranking
A percentile rank indicates the standing of a particular score relative to the
normal group standard. Percentiles are most notably used in determining
performance on standardized tests. If a child scores in the 90th percentile on
a standardized test, this means that his score is higher than 90 percent of the
other children taking the test. Another way to look at it is to say that his
score is in the top 10 percent of all the children taking the test. Percentiles are
often used in data analysis as a method of measuring a subject’s performance

Chapter 8 ■ Running Descriptive Statistics in Access 199

in relation to the group as a whole—for instance, determining the percentile
ranking for each employee based on annual revenue.

Calculating a percentile ranking for a dataset is simply a mathematical
operation. The formula for a percentile rank is (Record Count–Rank)/Record

Count. The trick is to getting all the variables needed for this mathematical
operation.

To start, follow these steps:

1. Build the query you see in Figure 8-18. This query will start by ranking
each employee by annual revenue. Be sure to give you new field an alias
of ‘‘Rank.’’

2. Add a field that counts all the records in your dataset. As you can see
in Figure 8-19, you are using a subquery to do this. Be sure to give your
new field an alias of ‘‘RCount.’’

3. Create a calculated field with the expression (RCount–Rank)/RCount. At
this point, your query should look like the one shown in Figure 8-20.

4. Running the query give you the results shown in Figure 8-21.

Again, the resulting dataset enables you to measure each employee’s perfor-
mance in relation to the group as a whole. For example, the employee ranked
sixth in the dataset is in the 99th percentile, meaning this employee earned
more revenue than 99 percent of other employees.

Figure 8-18: Start with a query that ranks employees by revenue.

Figure 8-19: Add a field that returns a total dataset count.

200 Part III ■ Advanced Analysis Techniques

Figure 8-20: The final step is to create a calculated field that gives you the percentile rank
for each record.

Figure 8-21: You’ve successfully calculated the percentile rank for each employee.

Determining the Quartile Standing of a Record
A quartile is a statistical division of a dataset into four equal groups, with each
group making up 25 percent of the dataset. The top 25 percent of a collection is
considered to be the first quartile, whereas the bottom 25 percent is considered
the fourth quartile. Quartile standings typically are used for the purposes of
separating data into logical groupings that can be compared and analyzed
individually. For example, if you want to establish a minimum performance
standard around monthly revenue, you could set the minimum to equal the
average revenue for employees in the second quartile. This ensures you have
a minimum performance standard that at least 50 percent of your employees
have historically achieved or exceeded.

Establishing the quartile for each record in a dataset does not involve a
mathematical operation; rather, it is a question of comparison. The idea is to
compare each record’s rank value to the quartile benchmarks for the dataset.
What are quartile benchmarks? Imagine that your dataset contains 100 records.
Dividing 100 by 4 would give you the first quartile benchmark (25). This means
that any record with a rank of 25 or less is in the first quartile. To get the second
quartile benchmark, you would calculate 100/4*2. To get the third, you would
calculate 100/4*3 and so on.

Chapter 8 ■ Running Descriptive Statistics in Access 201

Given that information, you know right away that you need to rank the
records in your dataset and count the records in your dataset. Follow these
steps:

1. Start by building the query shown in Figure 8-22. Build the Rank field the
same way you did in Figure 8-18.

2. Build the RCount field the same way you did in Figure 8-19.

3. Once you create the Rank and RCount fields in your query, you can use
these fields in a Switch function that tag each record with the appropriate
quartile standing. Take a moment and look at the Switch function you
will be using.

Switch([Rank]<=[RCount]/4*1,“1st“,[Rank]<=[RCount]/4*2,“2nd“,

[Rank]<= [RCount]/4*3,“3rd“,True,“4th“)

Figure 8-22: Start by creating a field named Rank that ranks each employee by revenue
and a field named RCount that counts the total records in the dataset.

This Switch function is going through four conditions, comparing each
record’s rank value to the quartile benchmarks for the dataset.

NOTE For more information on the Switch function, see Chapter 6.

Figure 8-23 demonstrates how this Switch function fits into the query. Note
that you are using an alias of Quartile here.

Figure 8-23: Create the quartile tags using the Switch function.

As you can see in Figure 8-24, you can sort the resulting dataset on any field
without compromising your quartile standing tags.

202 Part III ■ Advanced Analysis Techniques

Figure 8-24: Your final dataset can be sorted any way without the danger of losing your
quartile tags.

Creating a Frequency Distribution
A frequency distribution is a special kind of analysis that categorizes data
based on the count of occurrences where a variable assumes a specified value
attribute. Figure 8-25 illustrates a frequency distribution created by using the
Partition function.

With this frequency distribution, you are clustering employees by the range
of revenue dollars they fall in. For instance, 183 employees fall into the 500:
5999 grouping, meaning that 183 employees earn between 500 and 5,999
revenue dollars per employee. Although there are several ways to get the
results you see here, the easiest way to build a frequency distribution is to use
the Partition function.

Figure 8-25: This frequency distribution was created by using the Partition function.

Chapter 8 ■ Running Descriptive Statistics in Access 203

ABOUT THE PARTITION FUNCTION

The Partition function identifies the range that a specific number falls
into, indicating where the number occurs in a calculated series of ranges. The
Partition function requires the following four arguments:

Partition(Number, Range Start, Range Stop, Interval)

■ Number (required): The number you are evaluating. In a query
environment, you typically use the name of a field to specify
that you are evaluating all the row values of that field.

■ Range Start (required): A whole number that is to be the start
of the overall range of numbers. Note that this number cannot be less
than zero.

■ Range Stop (required): A whole number that is to be the end of the overall
range of numbers. Note that this number cannot be equal to or less than the
Range Start.

■ Interval (required): A whole number that is to be the span of each range
in the series from Range Start to Range Stop. Note that this number can-
not be less than one.

To create the frequency distribution you saw in Figure 8-25, build the query
shown in Figure 8-26. As you can see in this query, you are using a Partition

function to specify that you want to evaluate the Revenue field, start the series
range at 500, end the series range at 100,000, and set the range intervals to
5,000.

Figure 8-26: This simple query creates the frequency distribution you see in Figure 8-25.

You can also create a frequency distribution by group by adding a Group By
field to your query. Figure 8-27 demonstrates this by adding the Branch_Num-
ber field.

The result is a dataset (see Figure 8-28) that contains a separate frequency
distribution for each branch, detailing the count of employees in each revenue
distribution range.

204 Part III ■ Advanced Analysis Techniques

Figure 8-27: This query creates a separate frequency distribution for each branch number
in your dataset.

Figure 8-28: You have successfully created multiple frequency distributions with one
query.

TRICKS OF THE TRADE: CREATING A HISTOGRAM CHART IN ACCESS

A histogram chart is a graphic representation of a frequency distribution.
You can use these types of charts to easily pick out anomalies in a data col-
lection, by following these steps:

1. Start your histogram chart by building the query shown in Figure 8-29.

2. Run the query to display the results of the frequency distribu-
tion operation (be sure to run the query). After you run the
query, select View➪PivotChart View as shown in Figure 8-30.

Within a few seconds, Access runs your query and returns the results to a
pivot chart object.

Chapter 8 ■ Running Descriptive Statistics in Access 205

TRICKS OF THE TRADE: CREATING A HISTOGRAM CHART IN ACCESS

Figure 8-29: Build a query using the Partition function to create a frequency
distribution.

Figure 8-30: Switch to PivotChart View.

3. Drag thze Branch Number field to the section of the pivot chart that reads
Drop Filter Fields Here.

4. Drag the Dollars field to the section of the pivot chart that reads Drop Cate-
gory Fields Here.

5. Drag the Employees field to gray plot area in center of the chart.

The result is a histogram similar to the one illustrated here in Figure 8-31.

6. As if that isn’t impressive enough, remember you have given your-
self the ability to filter by branch number. To filter out one branch,

(continued)

206 Part III ■ Advanced Analysis Techniques

TRICKS OF THE TRADE: CREATING A HISTOGRAM CHART IN ACCESS
(continued)

click the drop-down arrow next to the Branch_Number field, shown
in Figure 8-32, and remove the check from the All checkbox.

7. Place a check in the checkbox for the branch you want to show, and then
click OK.

The PivotChart in the Figure 8-33 presents the histogram chart for branch
301316.

Figure 8-31: Your histogram chart is complete!

Figure 8-32: To filter by branch, click the drop-down arrow next to the Branch_
Number field.

Chapter 8 ■ Running Descriptive Statistics in Access 207

TRICKS OF THE TRADE: CREATING A HISTOGRAM CHART IN ACCESS

Figure 8-33: You have filtered out all branches, showing only branch 301316.

Summary

Descriptive statistics allow you to profile a dataset and enable comparisons
that you can use in other analyses. With descriptive statistics, you can present
large amounts of data in quantitative summaries that are meaningful, yet
simple to understand. Although many users turn to Excel to perform statistical
operations, running descriptive statistics in Access is often the smartest option
due to the structure and volume of the data that is to be analyzed.

The simplest descriptive statistics can be generated using aggregate queries
(sum, average, min, max, etc.), while more advanced descriptive analyses can
be performed by leveraging the power of subqueries and domain aggregate
functions. Indeed, using the tools and techniques you have learned thus far,
you can create a wide array of descriptive analyses; from determining rank,
mode, and median, to creating a frequency distribution.

C H A P T E R

9
Scheduling and Running

Batch Analysis

In the realm of Microsoft Access, the term ‘‘automation’’ has two meanings.
First, it’s used to describe the computerization of a process where Access
self-regulates a procedure based on predetermined requirements you supply.
It’s also used to define the means of manipulating another application’s objects
with the use of Access Visual Basic for Applications (VBA). In the context of
this book, the term automation involves the former.

Access provides you with two key methods of automating your analytical
processes: macros and VBA. This chapter focuses on using macros to automate
your processes and run batch analysis on your data. Why should you care?
Well, leveraging macro functionality is not just a cool way to use Access, it
offers the following advantages:

Higher productivity: Just because you have the skills to analyze data in
Access doesn’t mean you have the time. With automation, you can have
Access carry out redundant analyses and recurring analytical processes,
leaving you free to work on other tasks.

Quality control: Human beings make mistakes. The more you touch a set
of analyses, the greater the chance there is for errors. Automation takes
humans (you) out of the equation.

Reproducibility: There’s an old quip among data analysts: ‘‘It’s okay
to produce the wrong answer, as long as you produce the same wrong
answer consistently.’’ Although you obviously don’t want to produce a
wrong answer, the point is you want to be able to reproduce the analysis
you have established. If your answer changes from one analysis to the
next, you’ll find yourself wondering whether you’ve done something

209

210 Part III ■ Advanced Analysis Techniques

differently. Automating your analytical processes ensures that Access
executes your analyses in the same way every time.

Introduction to Access Macros

Access macros are very different from Excel macros. In Excel, macros are used
as a way to record actions that can be played back when needed. Excel macros
are analogous to programming a phone to dial a specific telephone number
when you hit a special key. In Access, however, macros are used to execute a
set of pre-programmed functions, much like a list of menu options on your TV
that can be fired when selected. These pre-programmed functions are called
actions. The idea behind building a macro in Access is to choose a set of actions
you want the macro to carry out when it is executed. Figure 9-1 illustrates an
Access macro that carries out three actions when run.

Figure 9-1: This macro runs a SQL statement that makes a new table, opens the new
table, and throws up a message box.

Again, none of the actions shown in Figure 9-1 were recorded by the user.
They are all actions that came pre-packaged for use in a macro.

NOTE With the release of Access 2010, Microsoft decided to move away from
the grid format traditionally found in previous versions of Access. To keep the
content of this book substantive, the screenshots in this chapter have been limited
to those taken from Access 2010.

This means that if you are using Access 2007 to go through the exercises in this
chapter, you will notice some of the screenshots will not match what you see on
your screen. That’s OK. Although the interfaces are different, the basic mechanics
and functionality of creating and using macros are the same between Access 2007
and 2010.

In short, you should still be able to follow along with the exercises in this chapter
even if you are using Access 2007.

Dealing with Access Macro Security
Before jumping into your first macro, it’s important to understand the macro
security features in Access.

Chapter 9 ■ Scheduling and Running Batch Analysis 211

Access 2010 comes with over 80 macro actions that you can use in your
processes. However, the new security features in Access 2007 prevents 20 of
those macro actions from running unless the Access database you are working
with is trusted. The term trusted means that you have explicitly told Access
that the macros within the database are of no threat and can be run freely.

For example, when you open the sample database for this book, you should
see a security message (Figure 9-2) directly below the Ribbon. This message
indicates that because this database is not ‘‘trusted,’’ certain actions have been
disabled.

Figure 9-2: Databases that are not trusted will have certain features automatically
disabled.

This means that certain macro actions will not run at all. For instance, the
macro illustrated here in Figure 9-3 contains two SetWarnings macro actions.
These macro actions require that the database be trusted before running
properly.

NOTE In Figure 9-3, the two SetWarnings macro actions have a triangle icon next
to them. These icons provide a convenient visual indicator, letting you know that
the action will require a trusted database to run properly.

Figure 9-3: The two SetWarnings macro actions will not run in an un-trusted database.

Attempting to run this macro in a database that is not trusted will result in
a message similar to the one shown in Figure 9-4.

Figure 9-4: Running certain actions in an un-trusted databases will cause an error.

212 Part III ■ Advanced Analysis Techniques

TIP The following Access 2010 macro actions require a trusted database to run:
CopyObject, DeleteObject, Echo, ImportExportData, ImportExportSpreadsheet,
ImportExportText, ImportSharePointList, OpenSharePointList, OpenSharePoint-
RecycleBin, OpenVisualBasicModule, PrintOut, QuitAccess, RenameObject,
RunApplication, RunSavedImportExport, RunSQL, SaveObject, SendKeys, SetValue,
SetWarnings, and ShowToolbar.

If you are running Access 2007, these macro actions require a trusted database to
run: CopyDatabaseFile , CopyObject, DeleteObject, Echo, OpenDataAccessPage,
OpenDiagram, OpenFunction, OpenModule, OpenStoredProcedure, OpenView,
PrintOut, Quit, Rename, RunApp, RunCommand, RunSavedImportExport, RunSQL,
Save, SendKeys, SetValue, SetWarnings, ShowToolbar, TransferDatabase,
TransferSharePointList, TransferSpreadsheet, TransferSQLDatabase, and
TransferText.

Note that although the RunCommand macro action does not, in and of itself,
require a trusted database to run, many of its arguments do.

The Quick Fix

The easy fix for a disabled database is to manually enable the content. In
Access 2010, you can do this by clicking the Enable button on the security
message shown in Figure 9-2.

If you are using Access 2007, you can click the button on the warning
messages shown in Figure 9-2. This activates the Microsoft Office Security
Options dialog box. From here, simply select the option next to ‘‘Enable this
content’’ as demonstrated in Figure 9-5.

Figure 9-5: Once you enable the content in a database, all macros will run fine.

Chapter 9 ■ Scheduling and Running Batch Analysis 213

Keep in mind that the Access 2007 quick fix needs to be repeated each time
you open the database.

The Long-Term Fix
The best way to work around the security issues in Access 2007 on a long-term
basis is to use the database in a trusted location, a directory deemed a safe zone
where only trusted workbooks are placed. A trusted location allows you to
work with a database with no security restrictions, as long as the database is
in that location.

To set up a trusted location, follow these steps:

1. In Access 2010, select the File button. For Access 2007, select the Office
icon in the upper left-hand corner of the application window.

2. Select the Options button.

3. Click the Trust Center button and select Trust Center Settings.

4. Select the Trusted Locations button.

5. Select Add New Location

6. Click Browse to specify the directory that will be considered a trusted loca-
tion (such as your MyDocuments directory; or the Documents directory
if you’re using Windows Vista)

Once a trusted location is specified, all databases opened from that location
are, by default, opened with macros enabled.

NOTE In Access 2010, Microsoft has enhanced the security model to remember
files that you’ve deemed trustworthy. That is to say, when you open an Access
database and click the Enable button, Access remembers that you trusted
the database. Each time you open the database after that, Access will
automatically trust it.

Creating Your First Macro
Start by initializing a new macro. To do this, select the Create tab on the Ribbon
and then click the Macro button. This will activate the Macro window shown
in Figure 9-6.

The idea is to select an action in the Action drop-down box.

TIP As mentioned previously in this chapter, Access, by default, hides any macro
action that requires a trusted database to run properly. That is to say, these macro
actions will not appear in the Action column drop-down boxes. Therefore, before
you get started, click the Show All Actions button on the Design tab of the Ribbon.
This ensures that all macro actions are displayed in the Action column drop-down
boxes, even those that require a trusted database.

214 Part III ■ Advanced Analysis Techniques

Figure 9-6: The Macro window is essentially a grid where each row defines a specified
action to carry out.

The first action you want to run is RunSQL, so select RunSQL from the Action
dropdown box. Once you select your action, you will see some new input
boxes. These new input boxes are called action arguments. Every action comes
with a unique set of arguments that you can tailor to fit your needs. As you can
see in Figure 9-7, the RunSQL action requires two arguments: SQL Statement
and Use Transaction.

Click inside the SQL Statement input field and enter SELECT
Customer_Number INTO MyTable FROM CustomerMaster. This action
will run a make-table query in order to make a new table called
MyTable.

Figure 9-7: Add the RunSQL action and specify its arguments.

Add another action by selecting the OpenTable action from the Action
dropdown box. Once the new OpenTable action has been added, enter MyTable
in the Table Name input field, as shown in Figure 9-8. This action will open
the MyTable table.

Chapter 9 ■ Scheduling and Running Batch Analysis 215

NOTE Although there is no table called MyTable currently in the database, there
will be once the RunSQL action runs. In the meantime, the macro doesn’t care that
there is no table called MyTable and will save with no problem. This illustrates the
fact that, unlike VBA modules, macros don’t compile to identify unrecognized
objects or other errors.

Figure 9-8: Add the OpenTable action and specify its arguments.

Add another action by selecting the MessageBox action from the Action
dropdown box. Once the new MessageBox action has been added, enter Table
has been created in the Message input field, as shown in Figure 9-9. This
action will activate a message box.

Figure 9-9: Add the MessageBox action and specify its arguments.

216 Part III ■ Advanced Analysis Techniques

At this point, save and close your newly created macro. Access will prompt
you to give your new macro a name. Once you name your macro, it will be
saved in the Macros collection in your Database window. To run it, simply
double-click it. If you built your macro correctly, it should paste 9,253 records
into a new table called MyTable, and then open the table and throw up a
message box that reads, ‘‘Table has been created.’’

NOTE To edit any macro, you can simply right-click the macro and select
Design View.

Essential Macro Actions
Trying to determine which macro actions benefit the automation of your data
analysis can be overwhelming. A set of 18 macro actions, however, are ideal
for automating your analytical processes. When trying to familiarize yourself
with the macro actions that are available to you, the actions in this section
should be first on your list.

Manipulating Forms, Queries, Reports, and Tables

The following macro actions manipulate forms, queries, reports, and tables:

CloseWindow: Closes a specified form, query, report, or table. This is useful
when you want to ensure that a particular object is closed before running
a process. In Access 2007, this action is called Close.

DeleteObject: Deletes a specified form, query, report, or table. This
action comes in handy when you need to delete temporary tables that
you created during an analytical process. Note that this macro action
requires a trusted database to run properly.

OpenQuery: Runs a specified query or, if indicated, opens the query in
Design view. You typically use the action to string multiple OpenQuery

actions together in order to run a series of queries, effectively running a
batch analysis.

OpenForm: Opens a specified form. You can use this action to open a form
that supplies the values needed for your analytical process.

OpenReport and OpenTable: These actions allow you to open a specified
report and table, respectively. These are useful for presenting a final result
after your batch analysis.

The Access Environment

The following macro actions affect the Access environment:

QuitAccess: Closes the entire Access application. This action comes in
handy when you are running a scheduled process and you want to close
the application once the macro has finished executing. Note that in Access
2007, this action is called Quit.

Chapter 9 ■ Scheduling and Running Batch Analysis 217

SetWarnings: Forces an OK or Yes response to all system messages,
effectively suppressing message pop-ups while a macro runs. Without
the SetWarnings action, you would have to be there to click Yes or OK
on every confirmation message that popped up while your macro was
running. Note that this macro action requires a trusted database to run
properly.

Executing Processes

The following macro actions control the execution of processes:

RunCode: Executes an existing VBA function. This action is ideal when
you need to initialize a procedure that can only be accomplished with
VBA, such as automating Excel.

RunMacro: Executes another macro. You can use this action in a condi-
tional macro where the resulting decision requires that another macro be
executed.

RunSQL: Executes a valid SQL string. Bear in mind that only Insert,
Delete, Select...Into, or Update statements are valid in the macro
environment. This action comes in handy when you need to run action
queries, but you don’t want to inundate your database with superfluous
query objects. Note that this macro action requires a trusted database to
run properly.

StopMacro: Stops the current macro. You can use this action in a condi-
tional macro where the resulting decision indicates no further processing
is needed.

Outputting Data

The following macro actions export or output data:

PrintOut: Prints the active datasheet, form, or report. This action is ideal
for ensuring that a hardcopy of analytical results are produced. Note that
this macro action requires a trusted database to run properly.

ExportWithFormatting: Outputs a table, query, form, or report to an
external document. Output options include outputting to Excel, Word,
HTML, or text. Note that this action is memory intensive and does not
work well with very large datasets. In Access 2007, this action is called
OutputTo.

ImportExportData: Exports and imports data to and from an exter-
nal database. This action is ideal for backing up your database to an
external location. You can even schedule nightly backups of your data
using this macro action. Note that this macro action requires a trusted
database to run properly. In previous versions of Access, this macro
action was called TransferDatabase.

218 Part III ■ Advanced Analysis Techniques

ImportExportSpreadsheet: Exports and imports data to and from external
spreadsheets. This action comes in handy when you need to push large
datasets to and from Excel files. Note that this macro actions require a
trusted database to run properly. In Previous versions of Access, this
macro action is called TransferSpreadsheet.

ImportExportText: Exports and imports data to and from external text
files. This action is ideal for automating data pulls from text files. Note
that this macro actions require a trusted database to run properly. In
Previous versions of Access, this macro action is called TransferText.

EMailDatabaseObject: Outputs an object to an Excel, text, PDF, or HTML
file, then attaches that file to an email message that can be sent to
specified address with additional text. This action works with any 32 bit
email program that conforms to Mail Application Programming Interface
(MAPI) standards. In Access 2007, this action is called SendObject.

Setting Up and Managing Batch Analysis

An analytical process involves a series of queries that run in a logical order,
giving you the needed set of analyses. A batch analysis is nothing more than
automating the execution of one or more of your analytical processes. In
this section, you learn how to set up and manage you own automated batch
analysis.

Getting Organized
Creating a batch analysis is as simple as defining which queries and actions
you need run. This involves pointing your macro to specific objects. However,
if your database is inundated with temporary queries and tables or queries
that have no logical name or order, it becomes difficult to determine which
object does what, let alone point a macro to the right set of objects. That being
said, there are a few things you can do to ensure that you keep your database
organized.

Using a Logical Naming Convention

The long-standing guideline on using naming conventions in Access is that you
preface each type of object in your database with a prefix describing that object.
For example, an appropriate name for a query would be qryMonthlyRevenue, a
table could be called tblCustomers, and a form could be named frmMain.

What you are about to read will be considered blasphemy in many Access
circles, but the fact is that this is not always the best naming convention you
can use.

Chapter 9 ■ Scheduling and Running Batch Analysis 219

The database in Figure 9-10 is a good example. This database contains
15 queries that make up two separate analytical processes. As you can see, it’s
difficult to determine which query belongs to which process.

Figure 9-10: It’s difficult to determine which query belongs to which analytical process.

Adding ‘‘qry’’ to each query, as shown in Figure 9-11, doesn’t help much in
this situation.

Figure 9-11: Prefixing each query with ‘‘qry’’ does not clear things up at all.

So, what do you do? In a database used primarily for data analysis, the best
way to organize your queries is to take advantage of the fact that the default
sort order is alphabetical. Preface your query names with text describing
the analysis followed by a logical numbering system. For example, instead
of AppendCredits, you could use PSmry_2A_AppendCredits. Figure 9-12

220 Part III ■ Advanced Analysis Techniques

demonstrates this naming convention. Keep in mind that there is nothing
special about the prefix ‘‘PSmry’’; it is simply a description that allows for easy
recognition of the analyses that have to do with creating the period summary.

NOTE Note the use of the underscore in place of spaces. It’s generally a good
practice not to use spaces in your object names in order to avoid complications
when writing SQL strings or using VBA code.

Figure 9-12: With this naming convention, you cannot only distinguish between the two
analyses but can also see the correct order each query should be run.

You should also make your object names upper camel case, meaning that the
first letter of each word is capitalized. This makes your object names easier to
read. Figure 9-13 demonstrates this naming convention.

Figure 9-13: Using camel case makes your object names easier to read.

Chapter 9 ■ Scheduling and Running Batch Analysis 221

Using the Description Property

Each object has a Description property that you use to describe the object in
detail. To adjust an object’s description, right-click the object and select Object
Properties. This activates a properties dialog box for that object, as shown in
Figure 9-14. You can use up to 250 characters to describe the object.

Figure 9-14: Use the Description property to describe the object in detail.

Now you can change your database view to show descriptions along with
the names and other details of your Access objects. To do so, right click on the
title bar of the navigation pane and select View By ➪ Details as demonstrated
in Figure 9-15.

Figure 9-15: Change the view of your navigation pane to show details.

This will show you a series of details to include the description you entered.
Figure 9-16 shows a database in Details view.

Figure 9-16: You can now see the description you added.

222 Part III ■ Advanced Analysis Techniques

Setting Up a Basic Batch Analysis

Setting up a basic batch analysis involves little more than creating a macro
that executes a set of analytical processes in a logical order conducive to your
analysis. For example, the database in Figure 9-17 is used to run three queries
that work together to accomplish a set of analytics.

Figure 9-17: These three queries make up a simple analytical process.

The macro being built in Figure 9-18 starts with a SetWarnings action to
ensure that no system messages interrupt the process. From here, it’s simply a
question of adding the queries that need to be executed in order.

Figure 9-18: Building a macro to automate the execution of the three queries.

After all queries are added, a second SetWarnings action is called to reinstate
system messages. The completed macro is shown in Figure 9-19.

Once this macro is saved, it can be run at any time to execute what can be
called a ‘‘batch analysis.’’

NOTE You may notice in Figure 9-19 that the arguments seem to be hidden. This
is because the macro is in a collapsed state. This makes the macro easier to read.
To collapse your macros, simply right-click any of the actions in the macro and
select Collapse All.

Chapter 9 ■ Scheduling and Running Batch Analysis 223

Figure 9-19: When completed and saved, the macro can be run anytime as a batch
analysis.

TIP If you need to create a macro with a large amount of queries, you can
save time by simply dragging each query to the macro design interface (see
Figure 9-20). This will automatically create an OpenQuery action for you, complete
with all the needed arguments.

Figure 9-20: Save time by dragging your queries to the macro design interface.

Building Smarter Macros
You can simulate decision-making functionality by building conditions into
your macros. A condition is a logical expression evaluated in order to return a
True or False answer. With conditions, you simulate an If...Then scenario
or even an If...Then...Else scenario.

224 Part III ■ Advanced Analysis Techniques

If . . . Then in Access 2010 Macros

To demonstrate how to build a basic If . . . Then scenario, start a new macro
and add the If macro action. Enter the following as the expression argument:
InputBox(‘‘Enter any number’’)>10.

This expression activates an input box and asks you to enter a number. The
number you enter is then evaluated to determine if it is greater than 10. If the
number you enter is greater than 10, the expression will return a True answer,
otherwise, it will return a False answer.

At this point, your macro should look similar to Figure 9-21.

Figure 9-21: Start a new macro with one If action.

In Figure 9-21, you will notice an area between the If and End If where you
can assign actions. Any action placed between the If and End If is executed
when the conditional expression evaluates to true. Here, select the MessageBox
action and enter a message similar to that shown in Figure 9-22.

Figure 9-22: Add a messagebox between If and End If.

Close the macro and save it as IfMacro. When you run the macro, you’ll see
the input box shown in Figure 9-23. If you enter a number less than or equal

Chapter 9 ■ Scheduling and Running Batch Analysis 225

to 10, nothing happens. If you enter a number greater than 10, a message pops
up telling you your number is greater than 10.

Figure 9-23: Running the macro activates an input box where you enter your chosen
number.

If . . . Then in Access 2007 Macros

If you are using Access 2007, you will not have the If macro action available
to you. In order to apply conditions to your macros in Access 2007, you need
to activate the Condition column in your macro design interface.

Go up to the Design tab on the application ribbon and click the Conditions
button. At this point, your macro design interface will contain a new column
called Condition. The idea is to enter your Condition next to the action you
want fired if that condition evaluates to True. In Access 2007, the macro for
this first exercise would look like Figure 9-24.

Figure 9-24: Evaluating a condition in Access 2007.

If . . . Then . . . Else in Access 2010 Macros

You can expand the scope of your conditions by adding If...Then...Else

functionality. To demonstrate this, create a new macro and enter the following

226 Part III ■ Advanced Analysis Techniques

condition in a new If action: InputBox(‘‘Guess How Many Locations There
are’’)=DCount(‘‘[Branch_Number]’’,‘‘[LocationMaster]’’). With this condi-
tion, you are comparing the user’s input to the number of records in the
LocationMaster table. If the two are equal, the expression evaluates as True.

In the area between If and End If, Select the MessageBox action, and then
select the StopMacro action. At this point, your Macro window should look
similar to the one shown in Figure 9-25.

Figure 9-25: If the expression evaluates to true, this macro will fire a congratulatory
message box, then stop.

Once you have your basic condition built, click the ‘‘Add Else’’ hyperlink
shown in Figure 9-25. This activates a new section where you can specify what
action to take if your condition evaluates to false.

In this case, select the MessageBox action, and enter ‘‘The Answer is 59’’ in
the Message argument. On the line below that, select the RunMacro Action and
enter ConditionalMacro as the Macro Name argument.

At this point, your Macro window should look similar to the one shown in
Figure 9-26.

Make sure to save the macro and name it ConditionalMacro. Now take a
moment to consider what will happen when you run this macro.

1. It will give you an input box where you will guess how many locations
there are. It will then compare your answer to the real record count from
the LocationMaster table. If your answer matches the actual record count,
then the macro performs actions 2 and 3; else the macro skips to action 4.
As you can see, this essentially gives you the IF...THEN...ELSE effect.

2. If your macro goes to action 2, it means you got the answer right. A
message box is thrown to tell you so.

3. The macro stops.

Chapter 9 ■ Scheduling and Running Batch Analysis 227

4. If your macro goes directly to step 4, it means it got the answer wrong. A
message box is thrown to tell you the correct answer.

5. The macro is run again to give you another chance.

Figure 9-26: : Any action in the Else section will only be run if your condition did not
evaluate to true.

If . . . Then . . . Else in Access 2007 Macros

As explained earlier in this chapter (If . . . Then in Access 2007 Macros)
conditional macros work differently in Access 2007. In Access 2007, conditional
expressions are entered in the Conditions column. This allows you to build
simple If . . . Then functionality into your macros.

You can expand simple decision-making functionality into a more complex
If . . . Then . . . Else model by entering three periods (also called an ‘‘ellipsis’’)
as a condition. Using an ellipsis in the Condition inputs tells the macro to
execute the action on that line only if the condition in the preceding line is
true.

The previous exercise can be completed in Access 2007 by building the
macro shown in Figure 9-27.

Figure 9-27: In Access 2007, you use ellipses in the Condition inputs to invoke the If . . .

Then . . . Else functionality.

Taking a closer look at Figure 9-27, you can see the second action in the
macro is a message box with an ellipsis condition. This means that the second

228 Part III ■ Advanced Analysis Techniques

action will run only if the preceding condition evaluates to true. Since the
third action in the macro also has the ellipsis condition, it too will be skipped
if the preceding conditions are true.

In short, if the first condition evaluates to true, then the macro will run its
course, else the macro will skip to action 4. This, in effect achieves the If . . .

Then . . . Else functionality.

Looping with Macros
First, your trustworthy author has to confess that the phrase ‘‘looping with
macros’’ is admittedly a tad misleading. Looping implies that the macro’s
actions are continuously being run in the same instance of execution. What is
really happening is that the macro is being started repeatedly until a condition
is met. However, the fact that you can simulate looping behavior through
macros does open up some interesting possibilities for those of you who are
not yet comfortable with VBA.

To demonstrate the concept of a looping macro, imagine that you have been
asked to provide a list of the top ten customers for each market in the US.
Because this will be a monthly exercise, you decide to use macros to automate
the process. For this particular scenario, you will need four queries and two
macros.

TIP You can find a working version of the example illustrated here in the sample
database for this book at www.wiley.com/go/excelanalystguide. Refer to the
sample database if you run into problems.

1. Create the make-table query shown in Figure 9-28. Name the table being
created TopTenList. Running this query will create an empty table that
will eventually contain the final results. Be sure to save this query as
TopTen_Step1.

Figure 9-28: Save this make-table query as TopTen_Step1.

www.wiley.com/go/excelanalystguide

Chapter 9 ■ Scheduling and Running Batch Analysis 229

NOTE Run the query you created in step 1 at least one time. You will need the
table it creates for step 3.

2. Create the make-table query shown in Figure 9-29. Name the table being
created LoopList. Running this query will create a list of unique market
names that will be used to loop through. Be sure to save this query as
TopTen_Step2.

Figure 9-29: Save this take-table query as TopTen_Step2.

NOTE Run the query you created in step 2 at least one time. You will need the
table it creates for step 4.

3. Create the append query shown in Figure 9-30. You will append it to the
TopTenList table you created in step 1. Note that the Top Values property
has been set to 10 in order to return only the top ten values. Also note
the criteria under Market. This criteria ensures that only one market is
included in the query: the one whose first letter is closest to the letter A.
Be sure to save this query as TopTen_Step3.

Figure 9-30: Save this append query as TopTen_Step3.

230 Part III ■ Advanced Analysis Techniques

4. Create the delete query shown in Figure 9-31. Running this query deletes
the market whose first letter is closest to the letter A from the LoopList.
This ensures that the market can never again be used in the TopTen_Step3
query. If you ran this query 14 times, you would eventually run out of
markets. Be sure to save this query as TopTen_Step4.

Figure 9-31: Save this delete query as TopTen_Step4.

5. Start a new macro and add the following actions:

SetWarnings. Set the Warnings No argument to No.

OpenQuery. Set the Query Name argument to TopTen_Step1.

OpenQuery. Set the Query Name argument to TopTen_Step2.

RunMacro. Set the Macro Name argument to TopTenB_Child.

SetWarnings. Set the Warnings No argument to Yes.

This macro will do the setup work, creating the tables necessary for
the looping action. Once the tables are created, it calls the child macro,
TopTenB_Child.

Be sure to save this query as TopTenA_Parent. At this point, your Macro
window should look similar to the one shown in Figure 9-32.

Figure 9-32: Save this macro as TopTenA_Parent.

6. Start a new macro and add an If action:

If: Set the Condition to DCount(‘‘[Market]’’,‘‘[LoopList]’’)>0. This
condition specifies that the record count of the Looplist table must be

Chapter 9 ■ Scheduling and Running Batch Analysis 231

greater than zero in order to continue with the actions that have the
ellipsis condition.

7. Inside the If section, add the following actions:

SetWarnings: Give this action an ellipsis condition. Set the Warnings
No argument to No.

OpenQuery: Give this action an ellipsis condition. Set the Query Name
argument to TopTen_Step3.

OpenQuery: Give this action an ellipsis condition. Set the Query Name
argument to TopTen_Step4.

RunMacro: Give this action an ellipsis condition. Set the Macro Name
argument to TopTenB_Child. This action starts the macro over. The
idea is that this macro will repeatedly start over until the condition in
the first line of the macro is false.

8. Click the ‘‘Add Else’’ hyperlink to add an Else section. Inside the Else
section, add the following actions:

DeleteObject: This is the first action that runs when the condition in
the first line of the macro is false. Set the ObjectType argument to Table
and the Object Name argument to LoopList. This action deletes the
LoopList table as it is no longer needed.

SetWarnings: Set the Warnings No argument to Yes.

MessageBox: Set the Message argument to ‘‘Top Ten Customers by
Market can now be found in the TopTenList table.’’

StopMacro: This action is used as a clean sweep to ensure no rogue
macro actions are still executing.

When you are done, your Macro window should look similar to the one
shown in Figure 9-33. Be sure to save this query as TopTenB_Child.

9. There is nothing left to do but run the macro. Double-click the Top
TenA_Parent macro to start the loop. After the macro is done, you will
get a message telling you that you can find your results in the TopTenList
table. Open the table to see the results.

You may be thinking that this is a lot of work. However, remember that you
are not only performing some hefty analytics on 17 markets with a click of the
mouse, but now that this process is built, you can run it whenever you need to.

TIP Instead of using the OpenQuery action in your macro, which requires that
you create a query object, you can use a SQL statement in a RunSQL action. This
can help you cut back on the number of superfluous queries in your database.

Keep in mind that the SQL statements used in RunSQL actions cannot be more
than 256 characters in length.

232 Part III ■ Advanced Analysis Techniques

Figure 9-33: Save this macro as TopTenB_Child.

Scheduling Macros to Run Nightly

Although automating a process to run with a click of the mouse is impressive,
the ultimate in automation is not even being there. How many times have you
heard someone say, ‘‘Yeah, I just run a nightly routine’’ while you nod your
head and pretend to know what that means. Meanwhile, you’re trudging into
work at 5:00 am to make sure you have the reports ready by eight. The good
news is that there is an easy way to schedule your macros to run every night,
every Monday, on the 15th of every month, or whenever you like.

Unfortunately, as of Office 2010, Access does not yet have an internal macro
scheduler. Until the time it does, you can use the Windows Task Scheduler
to schedule a macro to run at specific times. The question is, how do you
tell Access which macro to run through a completely unrelated program
(Windows Task Scheduler)? You have two options: use an AutoExec macro or
use a command-line switch.

Using an AutoExec Macro to Schedule Tasks
If you name a macro AutoExec, that macro will be run automatically when
your database is opened. How does that help you? The idea is to create a macro
that contains your batch analysis and save it as AutoExec. When the Windows
Task Scheduler opens your database at 3:00 am, the AutoExec automatically
executes your batch analysis.

To demonstrate this, create the macro shown in Figure 9-34. The MessageBox
action with the Message argument set to read ‘‘A bunch of actions are executed’’

Chapter 9 ■ Scheduling and Running Batch Analysis 233

will represent a batch analysis. Using the QuitAccess action makes certain
that the database closes once the macro completes execution. Save your newly
created macro as AutoExec.

Figure 9-34: Create this macro and save it as AutoExec.

TIP If you need to run multiple batch analyses, you can create a ‘‘master’’ macro
that runs other macros, and then save it as AutoExec.

Once you save your macro as AutoExec, close the database to test it. When
you open your database again, you should see the message box you entered
into the AutoExec; then the database closes. Now you are ready to schedule
your newly created macro with the Windows Task Scheduler.

TIP How do you get back into your database? Simply hold down the Shift key
while you open the database. This prevents the AutoExec macro from running.

You may be tempted to remove the QuitAccess action from your macro, but keep
in mind that during a nightly routine, you want the database to close automatically.
Removing the QuitAccess action will cause the database to stay open.

Remember that the QuitAccess action will only run if the database is trusted as per
the new security features highlighted earlier in this chapter.

Using the Windows Task Scheduler

Every version of Windows comes with a built-in Task Scheduler. Although
the steps for creating a scheduled task varies from version to version, the basic
mechanics are the same. In this walkthrough, the Windows XP task scheduler
is being used.

In the Windows Control Panel, find and double-click the icon for the Task
Scheduler (Figure 9-35).

TIP If you are having trouble finding the Task Scheduler in your version of
Windows, you can use a Run command to find it. To do so, click Start in your

234 Part III ■ Advanced Analysis Techniques

Windows taskbar, and then click Run. This will open the Run dialog box. In the
input box provided, enter ‘‘control schedtasks’’ (without the quotes) then press OK.

Another way to get to the Task Scheduler is to right-click My Computer and select
the Manage option. This activates the Computer Mangement window where you
will find the Task Scheduler.

Figure 9-35: Double-click Scheduled Tasks.

Once you are in the Scheduled Tasks folder, double-click the Add Scheduled
Task icon to activate the Scheduled Task Wizard shown in Figure 9-36, and
then click Next.

Figure 9-36: Activate the Scheduled Task Wizard and then click the Next button.

Chapter 9 ■ Scheduling and Running Batch Analysis 235

The next window, shown in Figure 9-37, asks you to select the program you
would like to run. Select Microsoft Office Access 2010 from the program list,
and then click the Next button.

Figure 9-37: Select Microsoft Access from the program list, and click Next.

At this point, you will see the window shown in Figure 9-38, where you
will name your scheduled task and specify when you want the task to be
performed. In this example, the task will be performed daily.

Figure 9-38: Specify when you want the task to be performed, and then click the Next
button.

In the next window, you will set up the time and interval for the task. In the
example illustrated in Figure 9-39, the task will be performed at 3:00 am every
day, starting on March 1, 2010.

236 Part III ■ Advanced Analysis Techniques

Figure 9-39: Indicate the time and interval you want the task to be performed, and then
click Next.

In the next window, shown in Figure 9-40, you will have to enter the user
ID and password you use to log in. This is important, as the scheduled task
will not run without it.

WARNING If you are using Windows XP, the Task Scheduler will not work
without a password. Also, keep in mind that the Windows Task Scheduler does not
keep track of expired or changed passwords. You will have to reconfigure your
task if you change your password.

Figure 9-40: Enter your security information, and click the Next button.

Once you get to Figure 9-41, you’re almost done. Select the check box next
to ‘‘Open advanced properties for this task when I click Finish.’’

The last step is to click on the Browse button, shown in Figure 9-42, and
point the Scheduler to the database that contains the AutoExec macro.

Chapter 9 ■ Scheduling and Running Batch Analysis 237

Figure 9-41: Place a check in the advanced properties check box, and click Finish.

Figure 9-42: Click the Browse button and point the Scheduler to your database.

Now you can test the task to make sure it runs properly by right-clicking its
name and selecting Run, as demonstrated in Figure 9-43.

Your task is now scheduled! One thing to keep in mind is that the PC on
which the task is scheduled obviously must stay on. Also, based on your PC’s
configuration, you must be logged-in in order for the task to run. That is to say
that if you log out, the task may not run. A workaround to this problem is to
lock the workstation, which effectively keeps your user ID logged in without
compromising security.

238 Part III ■ Advanced Analysis Techniques

Figure 9-43: Be sure to test your task to make sure it runs properly.

Using Command Lines to Schedule Tasks
Command lines are nothing more than commands you can pass to your Access
database to modify its startup process. In other words, you can tell Access to
do something on startup. For example, the following command line tells the
DB1 database to open exclusively and fire the STATS macro.

“C:\Program Files\Microsoft Office\Office\msaccess.exe“ i

“C:\Data\DB1.mdb“/Excl/X STATS

A command line is made up of three basic parts:

The path to the msaccess.exe:

“C:\Program Files\Microsoft Office\Office\msaccess.exe“ i

“C:\Data\DB1.mdb“/Excl/X STATS

The path of the affected database:

“C:\Program Files\Microsoft Office\Office\msaccess.exe“ i

“C:\Data\DB1.mdb“/Excl/X STATS

The command-line switch(es) being used:

“C:\Program Files\Microsoft Office\Office\msaccess.exe“ i

“C:\Data\DB1.mdb“/Excl/X STATS

In this example, the /Excl switch tells the database to open exclusively. The
/X STATS switch tells the database to run the STATS macro upon opening.

TIP Here’s a quick list of the more useful command-line switches:

/excl opens the specified database exclusively.
/ro opens the specified database as read-only.
/user starts Access by using the specified user name.
/pwd starts Access by using the specified password.

Chapter 9 ■ Scheduling and Running Batch Analysis 239

/profile starts Access by using the options in the specified user profile.
/compact compacts and repairs the specified database.
/X MacroName starts the specified database and runs the specified macro.
/wrkgrp starts Access by using the specified workgroup information.

When to Use Command Lines to Schedule Tasks
Instead of AutoExec

Microsoft recommends that you use an AutoExec macro in lieu of
command-line switches. However, there are situations where a command line
makes more sense. Consider the following when deciding which method to
use to schedule your batch analysis:

AutoExec affects the startup of your database every time you open it.
You already know that holding the Shift key while you open the database
bypasses the AutoExec macro. However, working with a database where
you constantly have to remember to hold down the Shift key can be quite
annoying. In contrast, a command-line switch does not become part of the
database. This means you can fire it whenever you like. If you regularly
work in the same database used to run scheduled tasks, consider using
command lines.

Each macro can have its own schedule. The problem with combining all
your analytical processes into one AutoExec macro is that you run them
all when you run AutoExec. If you want to schedule some your analyses
to run on Monday while others run on Wednesday, you’ll have to create
another database with a separate AutoExec macro. Command-lines, on
the other hand, allow you to have multiple macros run on different
schedules without creating new databases. If you have multiple tasks that
need to be scheduled at different time, consider using command lines.

Scheduling a Macro to Run Using a Command Line

To schedule a task using a command line, you would follow the steps you
performed in the section ‘‘Using the Windows Task Scheduler’’ (shown in
Figures 9-35 through 9-42). In the advanced properties dialog box shown in
Figure 9-42, enter the following in the Run input box:

1. The path to msaccess.exe in quotes. In most cases, it will be ‘‘C:\Program
Files\Microsoft Office\OFFICExx\msaccess.exe,’’ where xx is the version
of Office.

2. A space.

3. The path to the database that contains the macro you want to run in
quotes.

240 Part III ■ Advanced Analysis Techniques

4. The command-line switch for running a macro (/X MacroName).

The following is an example of a valid command-line switch:

“C:\Program Files\Microsoft Office\OFFICE14\msaccess.exe“ i

“C:\Data\MyDatabase.mdb“/X MyMacro

As you can see in Figure 9-44, to use this command line, you would simply
enter it into the Run input box.

Your task is now scheduled!

Figure 9-44: Simply enter the command line into the Run input box.

TIP You can create a new shortcut on your desktop and use a command line as
the target. This enables you to run a macro from a shortcut, compact and repair
your database from a shortcut, and so forth.

Summary

Access macros are used to execute a set of pre-programmed functions called
actions. The idea behind building a macro in Access is to choose a set of actions
you want the macro to carry out when it is executed. There are over 80 macro
actions in Access, each one performing a certain function. These functions
range from manipulating Access objects to executing and outputting data

Chapter 9 ■ Scheduling and Running Batch Analysis 241

analysis. Once you build a macro that automates your analytical processes,
you can schedule it to run automatically by using the Windows Task Sched-
uler. Leveraging macro functionality allows you to automate many of your
analytical processes, leading to higher productivity and a reduced chance of
human error.

C H A P T E R

10
Leveraging VBA to Enhance

Data Analysis

Many Access users are not programmers, and it would be fair to say that most
do not aspire to be programmers. In fact, most of you are just trying to survive
the projects you are juggling now; who has the time to learn VBA?

If you are tempted to take a polite look at this chapter and then move on,
you should definitely fight that urge. Why? Because leveraging VBA (Visual
Basic for Applications) in your analytical processes can make your life easier
in the long run. VBA can help you do things faster and more efficiently. In fact,
just a few lines of code can save you hours of work, freeing you up to do other
things, and increasing your productivity. Consider some of the advantages
that VBA offers:

VBA can help you automate redundant analyses and recurring analytical
processes, leaving you free to work on other tasks.

VBA allows you to process data without the need to create and maintain
queries and macros.

With VBA, you can automate external programs such as Excel to expand
the reporting capabilities.

With VBA, you can perform complex, multi-layered procedures that
involve looping, record-level testing, and If...Then...ElseIf state-
ments.

You can tailor your own error-handling procedures using VBA, allowing
you to anticipate and plan for process flow changes in the event of an
error.

243

244 Part III ■ Advanced Analysis Techniques

This chapter covers some fundamental concepts and techniques that will
lay the groundwork for your own ideas about how to enhance your analytical
processes with VBA.

TIP True to its purpose, all the techniques in this chapter involve writing some
basic code. In order to keep things focused on the data analysis aspect of these
techniques, this chapter will not be spending much time explaining the VBA
behind them. If you are new to VBA, you may want to refer to Appendix A, ‘‘Access
VBA Fundamentals,’’ which will give you a firm understanding of the basic
concepts used in this chapter.

NOTE Keep in mind that the new security features in Access may prevent you
from running the procedures found in the sample file. You will need to enable the
content in the database in order to use the VBA. Feel free to revisit Chapter 9 to
find out how the new security features in Access work and how to enable the
content of your database.

Creating and Using Custom Functions

The developers at Microsoft have put in thousands of man-hours developing
functions that are expansive enough to fit the needs of most users. In most
cases, the functions available in Access more than satisfy user requirements.
In fact, many users will never use a majority of the functions available, and
will typically gravitate towards only those that fit their current needs.

On the other end of the spectrum, there are those users whose daily
operations involve tasks not covered by the functions in Access. These tasks can
involve a business-specific calculation or a complex expression that achieves
a particular result. In most cases, these tasks are accomplished by building
expressions. For example, suppose that your analysis routinely calls for the
last day of the current week. Because no built-in function exists to help you
determine the last day of the current week, you would use the following
expression wherever you need this data:

Date() - WeekDay(Date()) + 7

The alternative to using such an expression is to build a custom function
(sometimes referred to as a user-defined function). Custom functions are VBA
procedures that expose your expressions to other objects in your database
as a function, much like Access’s built-in functions. This essentially means
that instead of creating and using expressions in a query or form, you build
your expressions into a VBA procedure, and then call it whenever you need
it. Why bother with custom functions? Well, consider the following inherent
advantages to converting your expressions into custom functions.

Expressions, in and of themselves, generally perform operations that are
simple and linear in nature. They don’t allow for complex operations that

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 245

involve looping or If...Then...Else logic. Building a custom function
will give you the flexibility to perform complex, multi-layered procedures
that involve looping, record-level testing, and If...Then...Else logic.

Expressions don’t allow you to define explicitly what happens in the
event of an error. Building a custom function in a VBA environment
allows you to include error-handling procedures with your expressions,
empowering you to anticipate and plan for process flow changes in the
event of an error.

When you change the definition of an expression, you have to find and
modify that expression in every place it is used. A custom function resides
in one module; therefore, when there is a change in your expression or
procedure, you have to update it in only one location.

There is an increased risk of error when you are forced to manually
type expressions repeatedly. For example, the expression, Date() -

WeekDay(Date()) + 7 contains syntax that could easily be keyed incor-
rectly or omitted. By using a custom function, you ensure that your
expression is performed the same way every time, without the risk of a
typing mistake.

Creating Your First Custom Function
For your first custom function, you will build a function that will return the
last day of the current week.

1. Start a new module by clicking the Create tab on the ribbon and selecting
Module as demonstrated in Figure 10-1.

Figure 10-1: Start a new module.

2. Create a new function by entering the following code:

Function LastDayThisWeek()

NOTE There is nothing special about the name LastDayThisWeek. It’s simply a
descriptive name that coincides with the purpose of the function. When creating
your own custom function, it’s good practice to give your functions simple names
that are descriptive and easy to remember.

3. On the next line, assign the needed expression to the function, giving
your custom function its utility.

LastDayThisWeek = Date - Weekday(Date) + 7

246 Part III ■ Advanced Analysis Techniques

At this point, your module should look similar to the one shown in
Figure 10-2.

Figure 10-2: You have created your first custom function.

4. Save the module and close it.

To test your newly created custom function, create the query you see in
Figure 10-3 and run it. In this query, you first determine the last day of the
current week by using your newly created function, and then you use that
value to calculate how many days are left in the current week.

Figure 10-3: This query uses your newly created function to determine how many days
are left in the current week.

TRICKS OF THE TRADE: CREATING A CENTRAL REPOSITORY OF CUSTOM
FUNCTIONS

You don’t have to create a separate module for each custom function in your
database; you can create one module to hold them all. In the sample database
that comes with this book, you will see a module called ‘‘My_Custom_Func-
tions.’’ If you open it, you will see the seven separate custom functions
shown in Figure 10-4. These functions can be used separately in various
analyses.

This method of storing your custom functions makes finding and editing
your functions easy. Figure 10-5 illustrates another advantage of this method.
When you activate the Expression Builder, you can drill into all the modules
you have created in your database. Having one module that contains all your
custom functions provides you a complete list of your functions.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 247

TRICKS OF THE TRADE: CREATING A CENTRAL REPOSITORY OF CUSTOM
FUNCTIONS

Figure 10-4: Creating one module that holds all your custom functions allows you
to quickly find and edit any of your user-defined functions.

Figure 10-5: Creating one module that holds all your custom functions allows you
to quickly find and edit any of your user-defined functions.

248 Part III ■ Advanced Analysis Techniques

Creating a Custom Function that Accepts Arguments
Sometimes the operation performed by your custom function requires argu-
ments that cannot be supplied internally by Access. In these situations, you
will need to create a custom function that accepts arguments. To illustrate this
concept, look at the query in Figure 10-6.

In this query, the Revenue field is being annualized (that is, the revenue
value of each row is being translated to an annual rate for comparative
purposes). The nature of this operation requires three arguments: the value
being annualized, the number of periods already completed, and the number
periods that make up an entire year. As you can see in this query, the value
being annualized is revenue, the number of periods completed is 8, and the
number periods that make up a year is 12.

Figure 10-6: This query is using an expression that annualizes a revenue value.

In order to convert this expression to a custom function, you have to allow
the user to pass the required arguments. Walk through the following steps:

1. Go into the Visual Basic Editor by pressing Ctrl+Alt on the keyboard.
From there, start a new module by selecting Insert ➪ Module.

2. Create and name your new function by entering the following code:
Function Annualized()

3. Inside the parentheses, declare a variable and type for each argument
that will be passed to the function.
Function Annualized(MyValue As Long, _
PeriodsCompleted As Integer, PeriodsinYear As Integer)

4. On the next line, assign the needed expression to the function, giving
your custom function its utility. Instead of using hard-coded values, you
will use the values passed to the declared variables.
Annualized = MyValue / PeriodsCompleted * PeriodsinYear

At this point, your module should look similar to the one shown in
Figure 10-7.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 249

Figure 10-7: This custom function accepts three variables and uses them in an expression.

To test your newly created Annualized function, create the query you see
in Figure 10-8, and then run it. Note that you are using your newly created
function in an Alias called ‘‘AnlzdRev.’’

Figure 10-8: This query uses your newly created function to get the annualized revenue
for each record.

TIP You can hard-code selected arguments in your custom function to limit the
number of arguments that need to be passed. For instance, the following code
demonstrates how you can change the procedure for the Annualized function to
hard-code the number of periods in a year:

Function Annualized(MyValue As Long, PeriodsCompleted As Integer)

Annualized = MyValue / PeriodsCompleted * 12

End Function

As you can see, the number of periods in a year has been hard-coded to 12, so
when using this function, you have to pass only two arguments. For example:

Annualized([Revenue], 8)

A WORD ABOUT USING CUSTOM FUNCTIONS

Up to this point, you have tested your custom functions using queries.
Although you will most commonly use your custom functions in queries, it is

(continued)

250 Part III ■ Advanced Analysis Techniques

A WORD ABOUT USING CUSTOM FUNCTIONS (continued)

important to note that you can use them anywhere you would use any one of
Access’s built-in functions. Here are a few examples of how you can utilize
your custom functions.

In a query environment, you can use your custom functions in the same
ways you would use built-in Access functions. Figure 10-9 demonstrates some
of the ways you can use a custom function in a query.

Figure 10-9: Using custom functions in a query

Figure 10-10 illustrates how in a form, you can tie the Control Source
for a text box to one of your custom functions. This same method works
in Access reports. In this example, this form will automatically execute the
FirstDayLastMonth function each time it is opened to provide a value to
the assigned text box.

Figure 10-10: Using a custom function in a form

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 251

A WORD ABOUT USING CUSTOM FUNCTIONS

Figure 10-11 illustrates how your custom functions can be used in other VBA
procedures. This procedure uses the FirstDayLastMonth function to find the
first day of last month and then puts that date into a message box.

Figure 10-11: Using a custom function in another VBA procedure

Controlling Analytical Processes with Forms

An Access form is nothing more than a database object that can accept user
input and display data using a collection of controls. Access forms are often
thought of as part of the presentation layer of a database, primarily being used
as the front-end of an application. While it is true that the primary purpose
of forms is to act as an interface between Access and a user, this does not
mean the user cannot be you (the designer of the database). In this section,
you learn how Access forms can be leveraged on the back-end of a database
as a data analysis tool that interacts with your analyses and further automates
your analytical processes.

The Basics of Passing Data from a Form to a Query
The idea behind passing data from a form to a query is that instead of using
parameters in a query to collect the data for your analysis, you collect the
data through a form. To get a firm understanding of the basics of passing
parameters from a form to a query, perform the following steps:

1. Start by creating a new form. Go to the Create tab on the ribbon and click
the Form Design button as demonstrated in Figure 10-12.

2. Go up to the Design tab and select the Text Box control as demonstrated
in Figure 10-13; then click anywhere on your form. At this point, you
should have a form with one text box control.

252 Part III ■ Advanced Analysis Techniques

Figure 10-12: Start a new form in Design view.

Figure 10-13: Add a text box control to your form.

3. Right-click the text box and select Properties. Click the All tab, and then
give the newly created text box a distinctive name by entering txtParam
as the Name property, as shown in Figure 10-14.

Figure 10-14: Give your text box control a distinctive name.

NOTE Each control on your form must have a valid name in the Name property.
The Name property is a unique identifier that allows Access to reference a control
in other parts of your database. Access automatically assigns generic names to
newly created controls. However, you should always make it a point to give each
of your controls you own descriptive name. This makes referencing and
recognizing your controls much easier.

4. Go back to the Design tab and select the Command Button control, as
shown in Figure 10-15, and click anywhere on your form. This will place
a command button on your form.

NOTE If the Command Button Wizard activates, click Cancel to close it. You will
not need that wizard for this exercise.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 253

Figure 10-15: Add a command button control to your form.

5. Right-click the newly created command button and select Properties.
Click the All tab, and adjust the Name property of your command button
to read btnRunQuery. Then adjust the Caption property to read Run
Query.

6. Next, while still in the command button’s properties, click the Event tab
and then select [Event Procedure] from the On Click event, as shown
in Figure 10-16. Next, click the ellipsis button (the button next to the
dropdown).

Figure 10-16: Set the On Click event to run an [Event Procedure], and then click the
ellipsis button.

7. At this point, you should be inside the VBA editor, where you will enter
a DoCmd action that will run the query called ‘‘Chapter10_ExampleA.’’
Enter the following code, just as you see in Figure 10-17.

DoCmd.OpenQuery “Chapter10_ExampleA“, acViewNormal

The DoCmd.OpenQuery method enables you to execute any saved query
from code. This method is perfect for simple automation processes such
as this.

8. Once you are done, save your form as ‘‘frmMain’’ and close it.

Figure 10-17: Use the Docmd.OpenQuerymethod to execute the ‘‘Chapter10_ExampleA’’
query.

254 Part III ■ Advanced Analysis Techniques

9. It’s time to test. Open the newly created frmMain form and click the Run
Query button. If the query runs successfully, you have set up your form
correctly. Now you can prepare your query to accept parameters from
this form!

10. Open the ‘‘Chapter12_Example_A’’ query in Design view. Enter [Forms]!
[frmMain].[txtParam] as the criteria for the Period field, as shown in
Figure 10-18.

Figure 10-18: This query filters on the Period field based on the value of the txtParam text
box in the frmMain form.

11. Save and close the query.

Now you can open the frmMain form and enter a parameter for your query
through a form! Enter 200704 in the text box, as shown in Figure 10-19, and then
run the query. This returns all revenues earned in the 200704system period.

NOTE You will notice that if you leave the text box blank, your query will not
return any results. This is the same issue you encounter using parameter queries.
One way to get around this problem is to combine your expression with a wildcard
so that if the text box is blank, all records will be returned. In this scenario, for
instance, you would change your expression to read:

Like [Forms]![frmMain].[txtParam] & “*“

Figure 10-19: Now you can pass your parameters to your query through a form.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 255

TIP You can reference any form control that has a value property, including
combo boxes, list boxes, text boxes, and option groups.

UNDERSTANDING THE SYNTAX FOR REFERENCING A FORM

Let’s take a moment to analyze the syntax used for referencing a form.

■ Brackets ([]): Brackets are used to identify the name of an object.
For instance, if you were referring to the CustomerMaster table, you
would refer to it as [CustomerMaster]. If you were referring to a
query called TopTen_Step1, you would refer to it as [TopTen_Step1]. This
not only helps Access identify objects, but it will also make your code easier
to read.

■ The collection operator (!): The collection operator (sometimes referred
to as the bang operator) is used to tell Access that the object with
which you are working belongs to a particular collection of objects. For
example, if you are working with a form called ‘‘Main,’’ you would refer
to it as [Forms]![Main] because the form [Main] belongs to the Forms
collection.

■ The dot operator (.): The dot operator points to a property belonging to an
object. For example, while [CustomerMaster] refers to the CustomerMaster
table, [CustomerMaster].[City] refers to the City field in the CustomerMaster
table. Here is another example. [Forms]![Main] refers to the form ‘‘Main’’,
while [Forms]![Main].[Fname] refers to a control called Fname located
in ‘‘Main.’’

Enhancing Automation with Forms
Access forms can help you enhance your automated processes using
little more than a few controls and some light VBA coding. The idea
is to turn your forms into something more than just a tool to pass
parameters; you can create a robust central control point for your
analysis.

To help illustrate the power of incorporating Access forms into your analysis,
open the frmMktRpts form in the sample database, shown in Figure 10-20.
The purpose of this form is to control the execution of an analysis that
involves creating market reports. The idea is to select a market, run the
process that executes a query, and then sends the results to an Excel file in the
C:\OffTheGrid directory.

256 Part III ■ Advanced Analysis Techniques

Figure 10-20: This form enables you to control the execution of an analytical process.

Open the form in Design view to see how this works. As you can see, there
are three controls on this form.

The txtPath text box. The txtPath text box uses the market value from the
combo box to construct a file path. This allows you to dynamically create
a separate path for each market. This path is constructed by concatenating
two strings and a control reference.

C:\OffTheGrid\. This is the first part of the file path, pointing to the
OffTheGrid directory in the C drive.

[cboLocations]. This is the name of the combo box where you select
your market. This becomes the file name.

.xls. This string finishes the path by assigning the file extension that
identifies the file as an Excel file.

If you open the MktExports macro, shown in Figure 10-21, you will notice
that the Output File path is referencing this text box. This allows the macro to
avoid using a hard-coded file path.

Figure 10-21: You will use the txtPath text box to dynamically feed your macro the Output
File path for each market.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 257

The cboLocations combo box. This combo box helps do two things.
First, this combo box feeds the txtPath text box a market to use in
the construction of a file path. Second, it feeds the MarketExports
query its parameter. If you open the MarketExports query, shown in
Figure 10-22, you will notice that filter criteria for the Market field is refer-
encing this combo box. This allows the query to avoid using a hard-coded
market.

Figure 10-22: You are using the cboLocations combo box as the filter criteria for the
Market field.

The btnRunMarket command button. Right-click this command button
and then click Build Event. This will take you to the VBA editor shown
in Figure 10-23. As you can see, this button simply runs the MktExports
macro, and then throws up a message box announcing the location of
your new file.

Figure 10-23: When you click the command button, a DoCmd action will run the macro
and then call a message box.

Now that you have a firm grasp of how this form works, you can enhance
it even further. Instead of running one market at a time, wouldn’t it be
useful to run all markets at once? You can do this by using VBA to enumer-
ate through all the markets in the combo box, running the MktExports as
you go.

258 Part III ■ Advanced Analysis Techniques

Enumerating Through a Combo Box

Open the frmMktRpts form and take a look at the combo box on the form.
The entries, or rows, you see within the combo box are indexed—that is, each
row has an index number starting from 0 and continuing to however many
rows there are. For example, the first row is index number 0, the second row is
index number 1, the third row is index number 2, and so on. The idea behind
enumerating through a combo box is to capture one index at a time, and then
change the value of the combo box to match the row value assigned to that
index number.

1. Start by opening the frmMktRpts form in Design view and adding a
second command button.

2. Adjust the Name property of your newly created command button to
read btnRunAll, and then adjust the Caption property to read Run All.

At this point, your form should look similar to Figure 10-24.

Figure 10-24: Add a second command button called Run All to the form.

3. Right-click the button and select Build Event. Select Code Builder from the
Choose Builder dialog box, and then click OK. This opens the VBA Editor.
As you can see in Figure 10-25, this creates a separate subprocedure.

Figure 10-25: Build an On Click event for the newly created btnRunAll command button.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 259

4. Start the code by declaring an integer variable called IndexNum. This traps
the index number of each entry of the combo box.

Dim IndexNum As Integer

5. Initiate a For...Next loop with the IndexNum variable. This line of code
ensures that the procedure runs for each index number in the combo box.

For IndexNum = 0 To Me.cboLocations.ListCount – 1

NOTE Why subtract 1 from the combo box’s list count? You must do this to
adjust for the fact that index numbers of a combo box start at 0. If there are 10
rows in a combo box, the ListCount property starts counting at 1, returning a count
of 10 rows. However, the index numbers in the same combo box range from 0 to 9.
Subtracting 1 from the list count removes the extra number and corrects the
discrepancy.

6. Set the value of the combo box equal to the value of the row assigned
to the current index number. After the new value has been set, run the
predefined macro.

Me.cboLocations.Value = Me.cboLocations.ItemData(IndexNum)

DoCmd.RunMacro “MktExports“

7. Repeat the process for the next index number. The message will alert you
when the procedure has completed its execution.

Next IndexNum

MsgBox “Your files can be found in the C:\OffTheGrid directory.“

If you have done everything correctly, your procedure should look similar
to Figure 10-26.

8. Save your form and test the newly created functionality by clicking the
Run All button.

Figure 10-26: This procedure enumerates through a combo box, running a macro for
each entry.

260 Part III ■ Advanced Analysis Techniques

Once the procedure has completed running, look under the C:\OffTheGrid
directory to see all the Excel files that where created (see Figure 10-27).

Figure 10-27: All of these Excel files were created with automation.

Needless to say, this example is just one of the hundreds of ways you can
enhance your analytical processes using forms. The flexibility and functionality
you gain by using a few controls and a handful of code is simply incredible.
Even simple techniques such as passing parameters from a form to a query
can open the doors to a completely new set of analytical functionality.

Processing Data Behind the Scenes

One of the benefits of using VBA is that you can perform much of your data
processing in the background without the use of queries and macros. This can
be beneficial in several ways, including that it can:

Reduce the number of query objects in your database: Every analytical
process has intermediate steps that serve as a means to an end. These steps
typically involve action queries that massage and transform the data for
the bigger analysis. Too many of these peripheral queries can inundate
your database with query objects, making your analytical processes
difficult to manage and change. Processing your data in the background
using VBA can help you streamline your processes by reducing the
number query objects in your database, making both the management
and the maintenance of your analyses more practical.

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 261

Better organize your analytical processes: Have you ever seen a process
that involves queries that link to forms that, in turn, link to macros that
reference tables created by other queries, and so on? You will undoubtedly
run into analyses that involve complicated processes, and there is nothing
wrong with utilizing the tools Access provides. However, engineering
overly elaborate systems that involve macros, queries, and forms can
make your processes difficult to manage and maintain. Processing your
data in the background using VBA can help you centralize your analysis
into one procedure, organizing your tasks in a clearly defined set of
instructions that are easy to locate, update, and manage.

Protect your processes in shared environments: Processing your data in
the background using VBA can help you protect your analytical processes
working in a shared database. Building your processes in VBA can reduce
the risk of someone changing your queries or accidentally deleting objects.

Enhance your processes with VBA: The more you integrate your ana-
lytical processes into VBA, the more you can take advantage of its many
benefits such as looping, record-level testing, and error handling.

Anyone who routinely works with Access knows that there are several
different ways to accomplish any given task. Processing data using VBA is no
different. Indeed, the beauty of VBA is that its flexibility allows you to perform
literally any action in countless ways. That being said, it should be obvious
that it’s impossible to cover every possible way to process data using VBA.
Therefore, you will focus on using RunSQL statements. This technique gives
you some fundamental controls over your processes through VBA and allows
you to move more of your analyses behind the scenes.

Processing Data with RunSQL Statements
By this point, you already know that the query objects you are accustomed to
using are simply visual representations of SQL statements. What you may not
know is that you don’t necessarily need to create a query object in order to
process data. You can process data directly through a RunSQL statement. One
of the ways to do this is to use the RunSQL method.

The Basics of the RunSQL Method

If you were designing a macro, you would find RunSQL in the list of macro
actions. In technical terms, RunSQL is a method belonging to the DoCmd object.
Those of you who have been paying attention probably noticed that up
until now, you’ve used OpenQuery when working with a query in a macro
environment, and Docmd.OpenQuerywhen working with a query through code.

262 Part III ■ Advanced Analysis Techniques

In this light, it’s important to note the differences between the RunSQL method
and OpenQuery method.

The OpenQuery method executes a saved query, whereas the RunSQL

method processes a SQL statement without the need for a saved
query.

The RunSQLmethod only allows you to execute action queries (make-table,
append, delete, and update), whereas the OpenQuery method enables the
execution of any type of saved query; including select queries.

The OpenQuery method is ideal for use in a macro environment. The
RunSQL method, on the other hand, is better suited for dynamic back-end
processes performed in VBA.

NOTE Among other reasons, RunSQL is better suited for VBA because in
a macro environment, the RunSQL action limits you to SQL statements that
do not exceed 256 characters. This obviously restricts the functionality of
RunSQL in the macro environment. However, there is no such limitation in the
VBA environment.

THE ANATOMY OF RUNSQL STATEMENTS

DoCmd.RunSQL(SQLStatement, UseTransaction)

RunSQL is a method of the DoCmd object that executes action queries such
as append, delete, update, and make-table. This method has the following two
arguments:

■ SQLStatement (required): This is the SQL statement that is to be executed.

■ UseTransaction (optional): This is a true or false indicator that
specifies how Access safeguards your data during the execution of
your SQL statement. The default state for this argument is True, which
ensures that your SQL statement is tested in a temporary log before
final execution. You should rarely set this argument to False.

DoCmd.RunSQL “Delete * from [MyTable]“ deletes all records from
MyTable.

Using RunSQL Statements

Using RunSQL statements in your code is easy. You would simply place each
RunSQL statement in your VBA procedure as needed. For instance, the following
procedure runs four actions, demonstrating that you can process data without
creating one query:

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 263

Makes a table called tblJobCodes

Inserts a new record into the tblJobCodes table

Updates the job code ‘‘PPL’’ to ‘‘PPL1’’

Deletes the ‘‘PPL1’’ job code
Function Look_Ma_No_Queries()

DoCmd.RunSQL “SELECT [Job_Code]INTO [tblJobCodes]FROM i

[Employee_Master] GROUP BY [Job_Code]“

DoCmd.RunSQL “INSERT INTO [tblJobCodes] ([Job_Code]) SELECT i

’PPL’ AS NewCode FROM [Employee_Master] GROUP BY 'PPL’“

DoCmd.RunSQL “UPDATE [tblJobCodes] SET [Job_Code] = 'PPL1' i

WHERE [Job_Code]=’PPL’“

DoCmd.RunSQL “DELETE * FROM [tblJobCodes] WHERE [Job_Code]=’PPL1’“

End Function

NOTE You will find this procedure in the sample database in the module called
Using_RunSQL. Note that each RunSQL statement should be one line of code. You
see the lines broken up here due to layout specifications.

TIP Having trouble creating SQL statements? Here’s a handy trick. Create a query
in Design view, and then switch to SQL view. Although you have to adjust the SQL
statement a bit, Access does most of the work for you.

Advanced Techniques Using RunSQL Statements
Now that you have a firm understanding of what RunSQL statements can do,
take a look at some of the advanced techniques that will help enhance your
behind-the-scenes processing.

Suppressing Warning Messages
As you execute your RunSQL statements, you will notice that Access throws
up the same warning messages you would get if you were to run the same
actions with stored queries. You can use the SetWarnings method to suppress
these messages just as you would in a macro. For example, the following code
sets warnings to false, runs the RunSQL statement, and then sets warnings back
to true.

DoCmd.SetWarnings False

DoCmd.RunSQL “DELETE * FROM [tblJobCodes] WHERE [Job_Code]=’PPL1’“

DoCmd.SetWarnings True

264 Part III ■ Advanced Analysis Techniques

Passing a SQL Statement as a Variable

One of the biggest challenges in working with the RunSQL method is managing
and making sense of giant SQL statements. It’s difficult to determine what is
going on in your code when your RunSQL statement runs off the page with over
100 characters in its SQL string. One of the ways to make for easier reading
is to pass your SQL statement as a variable. This section demonstrates how
passing your SQL statement through a string variable enables you to break up
your statement into pieces that are easier to read.

1. Start a procedure and declare a string variable called MySQL.
Function Passing_SQL_With_Strings()

Dim MySQL As String

2. Start assigning the SQL statement to the MySQL variable. What you’re
looking for here is structure, a format that makes the SQL statement easy
to read and manage within the VBA editor. The first line starts the string.
Each subsequent line is concatenated to the previous line. By the last line,
the MySQL variable contains the entire SQL string.
MySQL = “SELECT TOP 10 Market, Sum(Revenue) AS Rev INTO TopTenList “

MySQL = MySQL & “FROM PvTblFeed “

MySQL = MySQL & “GROUP BY PvTblFeed.Market, PvTblFeed.Customer_Name “

MySQL = MySQL & “ORDER BY Sum(PvTblFeed.Revenue) DESC“

3. All that is left to do now is pass the MySQL variable to your RunSQL

statement, as follows:
DoCmd.RunSQL MySQL

End Function

NOTE Although there are other ways to concatenate this SQL string without the
redundancy of typing ‘‘MySQL = MySQL & . . . ’’ , this method creates a visual block
of code that unmistakably lets the person reviewing the code know that all this
goes together.

Passing User-Defined Parameters from a Form to Your SQL
Statement

Even when you are processing data behind the scenes, you can pass
user-defined parameters from a form to create dynamic SQL statements. Here
are some examples of how you would pass data from a form to your SQL
statements:

Passing Textual Parameters from a Form

In this example, you are passing textual criterion from a form. Note that the
expression that points to the user-defined parameter on the form must be

Chapter 10 ■ Leveraging VBA to Enhance Data Analysis 265

wrapped in quotes. In addition, because the data type you are passing is
textual, the entire expression is wrapped in single quotes.

MySQL = “SELECT Market, Customer_Name, EffDate, TransCount “

MySQL = MySQL & “INTO MyResults “

MySQL = MySQL & “FROM MyTable “

MySQL = MySQL & “WHERE Market=’“ & [Forms]![frmMain].[cboMarket] & “’“

DoCmd.RunSQL MySQL

Passing Numeric Parameters from a Form

In this example, you are passing a numeric criterion from a form. Note that
the expression that points to the user-defined parameter on the form must be
wrapped in quotes.

MySQL = “SELECT Market, Customer_Name, EffDate, TransCount “

MySQL = MySQL & “INTO MyResults “

MySQL = MySQL & “FROM MyTable “

MySQL = MySQL & “WHERE TransCount =“ & [Forms]![frmMain].[cboCount] & ““

DoCmd.RunSQL MySQL

Passing Date Parameters from a Form

In this example, you are passing date criterion from a form. Note that the
expression that points to the user-defined parameter on the form must be
wrapped in quotes. In addition, because the data type you are passing is a
date, the entire expression is wrapped in a pound sign (#).

MySQL = “SELECT Market, Customer_Name, EffDate, TransCount “

MySQL = MySQL & “INTO MyResults “

MySQL = MySQL & “FROM MyTable “

MySQL = MySQL & “WHERE EffDate =#“ & [Forms]![frmMain].[cboMarket] & “#“

DoCmd.RunSQL MySQL

Summary

Leveraging VBA (Visual Basic for Applications) in your analytical processes
can help you automate redundant and recurring analyses, as well as process
data without the need to create and maintain queries and macros. Although
there are countless ways you can leverage VBA to improve your analytical pro-
cess, in this chapter you covered three techniques: building custom functions,
incorporating Access Forms in your analysis, and using Run SQL commands
to run queries behind the scenes.

Custom functions are VBA procedures that expose your expressions to other
objects in your database as a function, much like Access’s built-in functions.
This essentially means that instead of creating and using expressions in

266 Part III ■ Advanced Analysis Techniques

a query or form, you build your expressions into a VBA procedure, and
then call it whenever you need it. The major advantages to building your
own custom functions using VBA is that you have the flexibility to perform
complex multi-layered procedures that involve looping, record-level testing,
and If...Then...Else logical evaluations while ensuring that your expression
is performed the same way every time, without the risk of a typing mistake.

Another way to use VBA to enhance analysis is to incorporate Access
forms into your analytical processes. An Access form is nothing more than a
database object that can accept user input and display data using a collection
of controls. Access forms are often thought of as part of the presentation layer
of a database, primarily being used as the front-end of an application. While
it is true that the primary purpose of forms is to act as an interface between
Access and a user, this does not mean the user cannot be you. Access forms
can be leveraged on the back-end of a database as a data analysis tool that
interacts with your analyses and further automates your analytical processes.

Finally, you can create and run RunSQL commands using VBA to process
data behind the scenes, without the need for query objects or temporary tables.
The advantages of using RunSQL commands are:

You can reduce the number of query objects in your database.

You can centralize your analysis into one procedure, organizing your
tasks in a clearly defined set of instructions that are easy managed.

You can protect your processes in shared environments, reducing the risk
of someone changing your queries or accidentally deleting objects.

P a r t

IV
Reports, Dashboards, and

Visualization in Access

In This Part

Chapter 11: Presenting Data with Access Reports
Chapter 12: Using Pivot Tables and Pivot Charts in Access
Chapter 13: Enhancing Queries and Reports with Visualizations

C H A P T E R

11
Presenting Data with

Access Reports

As an Excel analyst, you have no doubt created your fair share of Excel reports;
complete with sorting, layout and formatting. But how often have you thought
about creating your reports in Access? The truth is that most Excel analysts
think of Access solely as a data store. Few analysts consider using Access’
reporting layer (the Access Report object).

The Access Report is an incredibly powerful component of the Microsoft
Access toolset. Acting as the presentation layer for your database, the Access
Report allows you to easily integrate your database analysis with polished
PDF-style reporting functionality, complete with grouping, sorting, and con-
ditional formatting.

In this chapter, you explore Access Reports and discover how they can add
a powerful new dimension to your reporting capabilities.

Access Report Basics

In this section, you create your first Access report and explore the different
ways to view that report. After walking through this section, you’ll have
enough grounding to start building your own Access Reports.

Creating Your First Report
The first step in creating a report in Access is to define the data source for
the report. The data used in any Access reports can come from either a Table
or a Query. One of the easiest ways to define a data source for a report is to
build a query specifically designed to feed your report.

269

270 Part IV ■ Reports, Dashboards, and Visualization in Access

For your first report, you’ll use the Query_Products query. Select the query
and click Report command found in the Create tab (Figure 11-1).

Figure 11-1: Select your query and click the Report command button.

In a few seconds, Access produces a report that looks similar to the one
illustrated here in Figure 11-2. As easy as that, you have created your first
Access Report.

Figure 11-2: You have created your first Access Report!

Close the report and you will a message asking if you want to save your
changes. Clicking the No button leaves you with no report. Clicking the Yes
button activates the dialog box you see in Figure 11-3. Here, you name your

Chapter 11 ■ Presenting Data with Access Reports 271

new report. As you can see, Access defaults the name of the report to the same
name as its source. In this case, the name Query_Products is fine.

Figure 11-3: Be sure to save your report.

Viewing Your Report
At this point, you will see your newly created report in the Navigation Pane
(Figure 11-4). Simply double click on the report name to open it.

Figure 11-4: All reports are displayed in the Navigation Pane.

Report View

By default, your reports will open in Report view. The Report view simply lets
you view and interact with your report as the report user would. You can’t
edit the data, labels or layout in Report view. However, Access does allow you
to apply filters to your reports in real-time.

For instance, imagine you need to quickly find all the Refrigerator
products in your newly created report. While in Report View, right-click
any product name and select Text Filters ➪ Contains (as demonstrated in
Figure 11-5).

272 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 11-5: Right-click any field while in Report View to see a set of filter options.

This activates the Custom Filter dialog box shown in Figure 11-6. Simply
enter your search criteria. In this case, you would enter Refrigerator.

Figure 11-6: Enter your search criteria.

As you can see in Figure 11-7, Access responds by filtering out any product
with the word Refrigerator in the product name.

Figure 11-7: You can now review all Refrigerator products.

Chapter 11 ■ Presenting Data with Access Reports 273

Layout View

The Layout view, introduced in Access 2007, allows you to edit the look and
feel of your report while seeing how it will be displayed to the end user. To
get to Layout view, open your Access report and select View ➪ Layout View
in the Home tab.

Once your report is in Layout view, you can do things like change the
report title, change the data labels, resize columns, remove individual fields,
or add new fields. For example, with your report open in Layout view, you
can choose a theme for your report (See Figure 11-8). You will immediately
notice that your changes take effect in real-time. You don’t have to switch back
to Report view to see the effect of your change; it shows up right there live on
your screen.

Figure 11-8: With Layout view, you get a dynamic live preview of what your report will
look like as you change themes.

Design View

The Design view allows you design your report in the traditional grid interface.
For the Access novice, deciphering a report in Design view can be a little
intimidating. However, once you understand the basics, creating reports will
become much more intuitive and simple. To get to Design view, open your
Access report and select View ➪ Design View in the Home tab.

Opening the Query_Products report in Design view brings up the screen
shown in Figure 11-9.

274 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 11-9: The Query_Products report in Design view.

Notice that this report has five distinct sections: Report Header, Page Header,
Detail, Page Footer, and Report Footer. These sections are typically what you
see when you initially create your reports in Access. Take a moment to explore
what each section is designed to do:

Report Header: This typically contains a label that serves as the main
title for your report. Just like a header in Word, anything placed in
the header section of the Access Design view shows up at the top of
your report. As you can see, Access was nice enough to include an
auto logo along with a report title; therefore that logo also shows up at
the top of your report. It’s important to note that items in the Report
Header section need not be simple labels. They can be data driven as
well, such as page number, current date, or virtually any other data
element.

Page Header: This typically contains labels that serve as the head-
ing for each page in your report. Again, items in the Page Header
section need not be simple labels. They can be data fields, page count,
a date indicator, or virtually any other data element. While it’s not
evident in this view, you can have different sub-header types. In
each instance the header section gives you a place for data that will
repeat only once at the top of each logical section, be it report, page,
or grouping. You will explore sub-headers and grouping later in this
chapter.

TIP You can hover the cursor over the bottom boundary of any section and the
cursor will change to a resizing arrow. Simply drag the bottom boundary up or
down and you will resize that section of your report. Resizing the sections effecti-
vely changes the distance between the sections, allowing you to reduce the white
space in your report, expand a section to make room for additional fields, or simply
create bit more space to move around easier while working in a particular section.

Chapter 11 ■ Presenting Data with Access Reports 275

Detail: This section houses the actual data of your report. As you can see,
each data field in your report is represented by a single text box. You can
manipulate the content and formatting of any given field by right-clicking
a field and selecting Properties. This activates the Property Sheet pane,
shown in Figure 11-10. This pane allows you to easily edit and format the
chosen field simply by adjusting the properties found here.

Figure 11-10: Use the Property Sheet pane to adjust the properties of any given field.

Page Footer

The Page Footer section is virtually identical to the Page Header section. The
only difference is that labels and data in the footer section come at the end
of each page view in the report. Common data elements in the footer include
page number, date, and labels. As you can see in Figure 11-9, your report has
a data driven page number field inserted in the footer section.

ADDING REPORT ELEMENTS TO YOUR HEADERS AND FOOTERS

It’s always handy to have your report headers and footers display informa-
tion about your report; specifically page numbering and report dates. Although
Access does apply these report elements by default, you may want to create
these elements manually or change their format and content.

You can apply these elements using the Page Numbers and Date and Time
buttons found in the Header/Footer group of the Design tab (Figure 11-11).

(continued)

276 Part IV ■ Reports, Dashboards, and Visualization in Access

ADDING REPORT ELEMENTS TO YOUR HEADERS AND FOOTERS (continued)

Each of these command buttons opens a dialog box that allows you to
configure the report element to suit your needs. For example, Figure 11-12
illustrates the Page Numbers dialog box that configures the format of the
report’s page numbering.

Figure 11-11: You can apply report elements using the Page Numbers and Date
and Time buttons.

Figure 11-12: The Insert Page Numbers dialog box

Report Footer

The Report Footer section is virtually identical to the Report Header sec-
tion. The only difference is that labels and data in the footer come at the end
of the report. Common data elements in the footer include page number, date,
and labels.

Creating and Modifying Grouped Reports

In this section, you begin to explore the true power of Access reports by
illustrating grouping, sorting, and totaling techniques. You’ll explore a set
of specific example reports, using both the Design and Layout views to
complete them.

Chapter 11 ■ Presenting Data with Access Reports 277

Grouping
Grouping your report is one of the easiest and most powerful ways to enhance
your reports by adding layers of analyses. To explore grouping, open your
Query_Products report in Layout View.

Once your report is opened, select the Group and Sort menu item found in
the Design tab. This activates the Group, Sort, and Total pane, shown at the
bottom of Figure 11-13.

Figure 11-13: The Group, Sort, and Total pane in Layout view

Notice that there are two menu items in the Group, Sort, and Total
pane—Add a group and Add a sort. Select the Add a group menu item.
Doing so brings up a drop down menu asking on which field we wish to group
by (see Figure 11-14).

Figure 11-15 illustrates the applied grouping. Notice how Access moves your
grouping field (Product_Category) to the far left of the report. In addition,
product categories are now listed only once instead of repeatedly for each of
the branch’s service reps.

Figure 11-16 demonstrates how a bit of formatting work can make your
groupings stand out. In this example, the font for the Product_Category field
has been increased and made bold. Also, a little color has been added to the
background to make it look more like a heading.

278 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 11-14: You want to group by the Product_Catetgory field.

Figure 11-15: Your grouping has been applied.

Chapter 11 ■ Presenting Data with Access Reports 279

Figure 11-16: Apply some formatting to make your grouping stand out.

Sorting and Totaling
Fortunately, Access’s Layout view makes sorting and totaling very easy and
intuitive. Switch back to Layout view and take a closer look at the Group, Sort,
and Total pane. As you can see in Figure 11-17, this pane now shows you the
existing groupings.

Figure 11-17: The Group, Sort and Total pane shows you the groupings that have been
applied to your reports.

The first line of the Group, Sort, and Total pane tells you that Access
is grouping the report first by Product_Category, and sorting Product_
Category in ascending order (with A on top). The second line is indented
slightly. This is Access’s way of sorting and grouping hierarchy within the
report.

If you wish to manipulate anything related to the top group and sort,
Product_Category, then you need to work with the menu items on the top
line. For additional grouping or sorting underneath Product_Category, you
would work with the menu items. In this example, you want to add a sorting
by the ListPrice column. That is to say, you want to sort the product by its list
price.

280 Part IV ■ Reports, Dashboards, and Visualization in Access

1. Start clicking the Add a sort menu item. As you can see in Figure 11-18,
this activates a drop down menu asking you to select the field by which
you want to sort. Choose the ListPrice field.

Figure 11-18: Choose the field you want to sort by.

2. You’ll notice that a new line appears in the Group, Sort, and Total
pane. This line represents the sorting you just applied. Since the sales
amount must be sorted in descending order, change the sort direction as
demonstrated in Figure 11-19.

Figure 11-19: Change the sort direction by using the dropdown selectors.

At this point, the products under each category should be sorted in descend-
ing order by list price.

This looks great, but this report could really use a total product count for
each category. That is to say, you want to display a number which represents
the count of products in that category.

In Layout view, go to the Group, Sort, and Total pane and select the
More drill down button for the Product_Category grouping. Figure 11-20
demonstrates how.

Chapter 11 ■ Presenting Data with Access Reports 281

Figure 11-20: Select the More drill down button.

As promised, you will see more options for your grouping. One of these is the
totals option, which is set to ‘‘with no totals’’ by default. Click the dropdown
selector for the totals option to reveal the Totals dialog box illustrated in
Figure 11-21.

Figure 11-21: Activate the Totals menu.

The Totals dialog box can be a bit tricky. The top menu item is a dropdown
box where you choose a field to total. Notice that the default selection is the
first field in your report. Again, you want to count the number of products. To
do so, follow these steps:

1. Select the Product_Name field from the Total On dropdown menu.

2. Select Count of Records from the Type dropdown menu.

3. Click the Show in group footer box at the bottom of our menu. This
tells Access to display the total in the footer section of your category
groupings.

At this point, your Totals dialog box should look similar to the one shown
in Figure 11-22.

Figure 11-22: Your completed Totals dialog box

282 Part IV ■ Reports, Dashboards, and Visualization in Access

Take a moment to save your report; then switch to Report view. Figure 11-23
illustrates what the grouping, sorts, and totals look like for Fryers category.
With just few clicks of the mouse, you’ve added layering to your report,
making it much easier to comprehend.

Figure 11-23: Your product list is much easier to read.

TRICKS OF THE TRADE: SOLVING PAGE BREAK ISSUES

A common problem in grouped, multi-page reports occurs when users go to
print. Very often, a page break occurs during the middle of a grouping or even
right after a group heading, making it difficult for the user to read. Fortunately,
there is an easy fix in Access’s Layout view.

Open your report in Layout view and expand the submenu for your group-
ing under the Group, Sort, and Total menu. Once the menu is expanded, you
will see an option titled ‘‘do not keep group together on one page.’’ Using the
dropdown selector, change that option to ‘‘keep whole group together on one
page’’ as demonstrated in Figure 11-24.

Figure 11-24: Avoid page break issues by choosing to keep your groups together.

Chapter 11 ■ Presenting Data with Access Reports 283

Creating a Report from Scratch

In the previous exercise, you let Access generate your report automatically.
Although this option is convenient, you may want to have a more involved
hand in what your report looks and feels like. In this section, you’ll dis-
cover how to create an Access report from scratch, starting from a blank
slate.

For this endeavor, you’ll walk through the creation of a specific type of
report called an Alpha Roster. An Alpha Roster is a fancy name for an
alphabetically grouped and sorted report, usually showing addresses,
contact information, or something similar. This particular report will show
customer information grouped by the first letter of the customer’s name and
sorted alphabetically.

Creating Your Source Data
The first thing you need is some source data. Instead of creating a separate
external query for this, you’ll build your data source directly into the Report
object.

1. Go to the Create tab of the Access Ribbon and select Report Design.

2. Once in Design view, ensure the Property Sheet pane is activated by right
clicking inside the white area of the report and selecting Properties (you
can also select F4 on your keyboard).

3. Make sure the Selection Type dropdown menu in the Property Sheet
pane is set to Report.

4. Now select the Data tab and click the ellipsis button (the button with the
three dots) next to the Record Source property (Figure 11-25).

Figure 11-25: Choose to build the data source using the Query Builder.

Selecting these three dots invokes the Query Builder, which you can use
just as you would if you were building a standard query.

284 Part IV ■ Reports, Dashboards, and Visualization in Access

5. At this point, you can create the query you see here in Figure 11-26. As
you want to make an alphabetical listing of customers, you will choose
the most relevant pieces of data.

Figure 11-26: Query design for your customer roster.

6. Now you must save your query to ensure it remains as the report record
source. Click the close button from the Design menu and select the Yes
button when presented with the message box shown in Figure 11-27.

Figure 11-27: Be sure to save your changes by clicking the Yes button when asked to
save your query.

As a quick check, go to the Property Sheet pane and examine the Record-
Source property of your report to make sure it contains your newly created
query. If the query saved properly, you should see SQL syntax similar to that
shown in Figure 11-28. If you don’t see anything, repeat steps 4 through 6.

Figure 11-28: Check the RecordSource property to ensure your query was saved.

Chapter 11 ■ Presenting Data with Access Reports 285

Building the Report in Design View
Once you have a data source defined, you can start designing your report.
Because you are building your report from scratch, you’ll have to add and
arrange your report’s content yourself. Follow these steps to build your report:

1. From the Design tab of the ribbon, select the Add Existing Fields button.
This opens the Field List pane.

2. The idea is to drag the fields you want on your report. Drag the fields
you need over to the detail section of your report as demonstrated in
Figure 11-29.

Figure 11-29: Drag the appropriate fields to the Detail area.

Now you have the basic data elements for your Customer roster. Before
you go on, take some time to position your data fields and clean up your
labels until it they look like Figure 11-30.

Figure 11-30: Format your fields so that they are neatly stacked without their labels.

286 Part IV ■ Reports, Dashboards, and Visualization in Access

TIP For quick and easy positioning of data and labels, highlight your fields and
labels and then go to the Arrange tab on the ribbon and select Stacked. Access
automatically aligns and distributes your labels and data into a neat block.

Remember that you want your report grouped and sorted alphabetically.
So naturally, the next step is to add a grouping.

3. From the Design tab on the ribbon, click the Group and Sort icon.

4. You will see the same Group, Sort, and Total menu you saw earlier. From
this menu, group the Customer_Name field by clicking the Add Group
button and selecting Customer_Name.

5. Expand the menu by clicking More and select the third dropdown menu
(to the right of the text ‘‘with A on top’’).

As you can see in Figure 11-31, this menu gives different options for
how to group by the Name field. Select to group by first character of the
Customer_Name field.

Figure 11-31: Group the customer names by first character.

Now you have a grouping that bundles all companies with the same first
letter of their name. Things are starting to come together now, but you
still aren’t quite done. You need a field that explicitly shows users what
grouping (what letter of the alphabet) they are viewing. For this, you
must add a field to the group header section.

Chapter 11 ■ Presenting Data with Access Reports 287

6. In the Design tab, click the Text Box control as demonstrated in
Figure 11-32.

Figure 11-32: Click the Text Box control to add a new Text Box.

7. Place the new Text Box in the group header section of the Name field. Be
sure to delete the label that came with the Text Box; then align the Text
Box to the left (Figure 11-33).

Figure 11-33: Place the Text Box in the header section for the Name field.

8. Type the following in your new Text Box:

=LEFT([Customer_Name],1)

The LEFT function parses out the leftmost characters of a text string.
It requires two arguments: the string to be parsed and the number
of characters to parse. The preceding code returns the single leftmost
character in the Customer_Name text string.

9. Take a moment to format your new text box so that the font is 24-pitch
and bold. While you’re at it, go ahead and make the Customer_Name field
bold as well.

At this point, you can switch to Report view and admire your newly created
report. Figure 11-34 illustrates what your report should look like.

288 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 11-34: Your alphabetically sorted customer roster

TRICKS OF THE TRADE: MULTI-COLUMN REPORT LAYOUT

To make better use of report space, you can change the column layout to two
columns. In Design view, select the Columns icon from the Page Setup tab on
the Ribbon. This activates the dialog box in Figure 11-35:

■ The Grid Settings section tells Access that you want two columns
per sheet instead of the default, which is one column.

Figure 11-35: The Columns dialog box allows you to define multi-column layouts.

Chapter 11 ■ Presenting Data with Access Reports 289

TRICKS OF THE TRADE: MULTI-COLUMN REPORT LAYOUT

■ The Column Size section allows you to define the column widths
so that your multiple columns will actually fit on the page.

■ The Column Layout section defines how your columns should flow.
For example, the ‘‘Down, then Across’’ setting tells Access that the
data should be organized first by going down the page and then
starting another column when the end of the page is reached.

Summary

Access Reports act as the presentation layer for your database and allows you
to easily integrate your database analysis with polished PDF-style reporting.

Access Reports allow you to build data-driven reports right from the tables
and queries in your database. You can either use the convenient Report
Wizard to generate an Access Report or can create your Reports from scratch.
Access Reports offer a full array of customization options, including: grouping,
sorting, and formatting. The convenience and productivity improvements you
can gain from Access reports are only limited by your creativity and initiative!

C H A P T E R

12
Using Pivot Tables and Pivot

Charts in Access

A pivot table is one of the most robust analytical tools found in Excel. With
a pivot table, you can group, summarize and perform a wide variety of
calculations in a fraction of the time it takes to do so by hand. The most
impressive functionality of a pivot table is the ability to interactively change its
content, shape data, and alter its overall utility. You can drag and drop fields,
dynamically change your perspective, recalculate totals to fit the current view,
and interactively drill down to the detail records.

If pivot tables are your passion and the reason you use Excel, then you had
better lean in close as I tell you a secret: You have the power of pivot tables
at your fingertips right there in your Access database. That’s right. Access
comes with its own version of the pivot table, allowing you to customize your
analysis on the fly without re-writing your queries or turning to code.

In this chapter, you will discover that you can apply your knowledge
of Excel pivot tables to Access, creating both pivot table and pivot chart
analyses. You will learn how leveraging these powerful tools to change
the way you analyze your Access data and the way you create your Excel
exports.

TIP This chapter focuses on using the power of pivot tables and pivot charts in
Access. We assume that you are familiar with both the mechanics and the benefits
of using pivot tables and pivot charts in Excel. If you are new to pivot tables
altogether, consider picking up Excel 2007 Pivot Table Data Crunching, ISBN:
0789736012.

291

292 Part IV ■ Reports, Dashboards, and Visualization in Access

Pivot Tables in Access?

For years, pivot tables could only be found in Excel. The closest equivalent to
this functionality in pre-2000 versions of Access was the traditional Crosstab
query, which didn’t come close to the analytical power of pivot tables. The first
attempts at an ‘‘Access pivot table’’ came with Access 2000 where users had the
ability to embed an Excel pivot table report inside of a Form. Unfortunately,
this feature was a bit clunky and left users with an interface that felt clumsy
at best. However, Access 2000 also introduced a promising new technology
in the form of Office Web Components. Office Web Components allowed
users to create interactive web pages with functionality normally found only
in Excel. One of these components was the PivotTable Component. Although
this component did expose pivot table functionality to Access, the fact that
it was limited for use only on Data Access Pages (asp and html-based Web
pages), made it an impractical tool for day-to-day data analysis.

With the release of Office XP, Microsoft gave Access users the ability to
use the PivotTable and PivotChart components in both the Query and Form
environments. This finally allowed for practical data analysis using pivot
tables in Access. Alas, this functionality remained relatively untouched by
many users, as it was relatively difficult to find in previous versions.

In later versions of Access, the PivotTable and PivotChart components still
exist and have been brought to the forefront. So the only question for you is,
why should you get excited about using pivot tables in Access?

From a data analysis point of view, pivot tables and pivot charts are some
of the most powerful data-crunching tools found in Access today. Consider
these capabilities:

You can create multi-dimensional analysis that far surpasses the limita-
tions of traditional Crosstab Queries.

You can interactively change your analysis without re-writing your query.

You can dynamically sort, filter, group, and add custom calculations with
a few clicks of the mouse.

You have drill-down capabilities that allow you to collapse and expand
analytical details without writing code.

You can perform more of your analysis in Access instead of spending
time exporting raw data back and forth to Excel.

The Anatomy of a Pivot Table

Figure 12-1 shows an empty pivot table. As you can see a pivot table is
comprised of four areas. Because how you choose to utilize these areas defines

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 293

both the utility and the appearance of your pivot table, it’s important to
understand the functionality of each area.

Figure 12-1: An empty pivot table in Access.

The Totals and Detail Area
The Totals and Detail area, highlighted in Figure 12-2, is the area that calculates
and supplies the details for your report. You can recognize this area by the
words Drop Totals or Detail Fields Here. This area tends to be confusing for
first time users because it has a dual role. First, it displays aggregate totals
such as Sum of Revenue, Count of Units, and Average of Price. Secondarily, it
stores detailed row data that is exposed upon expansion of Row and Column
fields.

Totals and detail area

Figure 12-2: The Totals and Detail area calculates fields and stores record details.

294 Part IV ■ Reports, Dashboards, and Visualization in Access

The Row Area
The Row area, highlighted in Figure 12-3, is the area that creates the headings
down the left side of the pivot table. You can recognize this area by the words
Drop Row Fields Here. Dropping a field into the Row Area will display each
unique value in that field down the left side of the pivot table. The types of
data fields that you would drop here are things you would want to group and
categorize; for example, locations, customer names, and products.

Row area

Figure 12-3: The Row area displays values down the left side of the pivot table.

The Column Area
The Column area, highlighted in Figure 12-4, makes up the headings that span
across the top of the pivot table. You can recognize this area by the words Drop
Column Fields Here. Dropping a field into the Column area will display each
unique value in the field in a column-oriented perspective. The Column area
is ideal for showing trending over time. Some examples of fields you would
drop here would be Months, Periods, and Years.

The Filter Area
The Filter area, highlighted in Figure 12-5, allows for dynamic filtering of your
pivot table based on a value in a field. You can recognize this area by the
words Drop Filter Fields Here. The fields dropped here would be things you
would want to isolate and focus on, such as locations, employee names, and
products.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 295

Column area

Figure 12-4: The Column area displays values across the top of the pivot table.

Filter area

Figure 12-5: The Filter area allows you to filter your pivot table.

Creating a Basic Pivot Table

Start by building the query you see here in Figure 12-6, and then do the
following:

1. Click the Design tab and click View ➪ PivotTable View.

At this point, you will see an empty pivot table, shown here in Figure 12-7
and a list of fields that are in your dataset.

296 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-6: Build your query then switch to PivotTable view.

Figure 12-7: You will use the field list to build your pivot table.

2. Drag the fields you need into the pivot table’s drop areas. How do you
know which field goes where? To answer this question, consider two
things: what are you measuring, and how do you want it presented? The
answer to the first question tells you which fields in your data source you
need to work with, and the answer to the second tells you where to place
the fields. For example, to measure the amount of revenue by region, you
automatically know that you need to work with the Revenue field and

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 297

the Region field. In addition, you want regions to go down the left side of
the report and revenues to be calculated for each region. Therefore, you
know that the Region field will go into the Row area while the revenue
field will go into the Detail area.

3. Start by selecting the Region field from your field list and drag it to the
Row area as shown here in Figure 12-8.

TIP If you accidently close out your PivotTable Field List, simply right-click
inside the pivot table and select Field List to reactivate it. You can also find
this command on the PivotTable Tools Design Tab in the Show/Hide group.

Figure 12-8: Drag the Region field to the Row area of the pivot table

4. Select the Revenue field, then select Data area from the drop-down box
at the bottom of the PivotTable field list as shown in Figure 12-9. Click
the Add To button.

NOTE Why not just drag the Revenue field to the Detail area? The reason is
that the Pivot Table Web Component requires that you view detail data
before you add totals. So, if you simply drag the Revenue field to the Data
area, the pivot table does not display the sum of revenue. Instead it displays
the detailed revenue for each record in your dataset.

NOTE Keep in mind that in order to use the method shown in Figure 12-9,
the field you are adding must be a numeric or currency field.

298 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-9: Add the Revenue field using the field list drop-down.

At this point, your pivot table should look like the one shown in
Figure 12-10.

Figure 12-10: You have created your first pivot table report!

5. You can add some dimension to this report by the dragging the Product-
Description field to the Column area. As you can see in Figure 12-11,
doing this you now have a cross tabular view of revenue by region and
product.

6. Add the Market field to the Row area and drag the Region field to the
Filter area (the area that reads Drop Filter Fields Here). Your pivot table
should look like the one shown in Figure 12-12. With just a few mouse
clicks, you not only have a totally new perspective on the same data, but
you can now filter by region.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 299

Figure 12-11: Drag the ProductDescription field to the Column area of the pivot table.

Figure 12-12: Adding the Market field and dragging the Region field to the Filter area
allows you to analyze market revenue for a specific region.

A WORD ABOUT DRAGGING FIELDS FROM ONE AREA
TO ANOTHER

When you are dragging your fields from one area of a pivot table to another,
your cursor will turn into a mini pivot table. That is to say, your cursor turns
into an icon that represents your pivot table. As you move your cursor from
one area of your actual pivot table to the next, you will notice that different
parts of the icon will be shaded. The shaded area corresponds to the area
over which you are currently hovering. This allows you to easily discern the
area in which you are about to drop your field. The key to telling which area
you are hovering over is to watch the shaded area of the cursor as shown in
Figure 12-13.

TIP If you need to remove a field from your pivot table, an alternative to
dragging it off is right-clicking the field name and select Remove.

(continued)

300 Part IV ■ Reports, Dashboards, and Visualization in Access

A WORD ABOUT DRAGGING FIELDS FROM ONE AREA
TO ANOTHER (continued)

Row Field

Column Field

Detail Field

Filter Field

Remove Field

Figure 12-13: Watch the shaded area of the cursor to determine where you are
about to drop your field.

Creating an Advanced Pivot Table with Details

This section, demonstrates how you can incorporate record details into your
pivot table, effectively building an analysis that can drill down to the record
level. First, create the pivot table shown in Figure 12-14 by following these steps:

1. Start by building the query you see in Figure 12-6, then in the Design tab
and click View ➪ PivotTable View.

2. Drag the Market and Product_Description fields to the Row area of the
pivot table.

3. Select the Revenue field, then select Data area from the drop-down box
at the bottom of the PivotTable Field List and click the Add To button.

Take a moment and look at what you have so far. You’ve created a basic
analysis that reveals the amount of revenue by product for each market.
Now you can enhance this analysis by adding customer details to the
pivot table. This will allow you to drill into a product segment and view
all the customers that make up that product’s revenue.

4. Select the Customer_Name field; then select Detail Data from the
drop-down box at the bottom of the PivotTable field and click the
Add To button.

5. Select the Effective_Date field; then select Detail Data from the
drop-down box at the bottom of the PivotTable field and click the Add To
button.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 301

Figure 12-14: Build the pivot table shown here.

6. Select the Revenue field, then select Detail area from the drop-down box
at the bottom of the PivotTable field and click the Add To button.

At this point, it looks as though your pivot table hasn’t changed. However,
if you click the plus sign next to any one of the products segments, you now
see the customer details for every customer that contributed to that segment’s
total revenue. Figure 12-15 illustrates this.

Figure 12-15: Your now have the ability to drill down into the details that make up your
revenue totals.

302 Part IV ■ Reports, Dashboards, and Visualization in Access

TIP You can drill into all details at one time by right-clicking the column field
names and selecting Show Details. Conversely, you can hide the details by
right-clicking the column field names and selecting Hide Details.

WARNING Incorporating record details into your pivot tables is a technique
that should be limited to smaller datasets. Because the PivotTable component
opens a separate ADO recordset for each cell it contains, accessing a large amount
of details through your pivot table can lead to performance issues. If you
absolutely need to view all row and column details for a large dataset, you should
consider using a Query or a Form.

Saving Your Pivot Table

It’s important to remember that when you are building your analysis with
a pivot table, you are actually working with a query in a PivotTable View.
Therefore, when you save your analysis it will save as a query. You will notice
that the next time you open the query it will open in Datasheet View. This
doesn’t mean your pivot table is lost. Just switch back to PivotTable View to
see your pivot table.

If you want your query to run in PivotTable View by default, just change
the Default View property of the query. To do this:.

1. Open your query in Design View. You will see the Property Sheet button
in the Design tab under the Show/Hide group.

2. Select the Property Sheet button. This activates the Property Sheet dialog
box shown in Figure 12-16. Change the Default View property to Piv-
otTable. The next time you open your query, it will open in PivotTable
view.

Figure 12-16: Change the Default View property to PivotTable.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 303

Sending Your Access Pivot Table to Excel

Once you are happy with your Access pivot table analysis, you may want to
share your pivot table with the world. You can distribute your Access-made
pivot table via Excel. To do so, open your query in PivotTable view. Then
in the Design tab, click the Export to Excel button. This will send your pivot
table to Excel where you can format it and mail it out as a professionally made
analysis.

The nifty thing about this technique is that only the pivot cache is sent to
Excel. That is to say, the raw data behind the pivot table is not sent to the
workbook to be placed in a separate sheet. This means a smaller file size and a
cleaner looking workbook.

TIP What if you also want your users have access to the raw data? Because
Access only transfers the pivot table and not the raw data, are you out of luck? No.
To get the raw data, simply double-click the bottom-right-most Grand Total value
of your pivot table. This drills into the pivot cache and outputs the raw data that
makes up your pivot table. The output goes to a separate worksheet in the same
workbook.

Pivot Table Options

You will often find that the pivot tables you create often need to be tweaked in
order to get the result you’re looking for. This section covers some of the pivot
table options you can adjust in order to enhance your analysis. To prepare for
the examples in this section, create the pivot table shown in Figure 12-17 by
following these steps:

1. Build the query you see in Figure 12-6, then in the Design tab, select View
➪ PivotTable View.

2. Drag the Region, Market and Customer_Name fields to the Row area of
the pivot table.

3. Select the Revenue field, then select Data area from the drop-down box
at the bottom of the PivotTable Field List and click the Add To button.

4. Select the TransactionCount field; then select Data area from the
drop-down box at the bottom of the PivotTable field and click the Add
To button.

304 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-17: Build the pivot table shown here.

Expanding and Collapsing Fields
It’s always difficult to perform an effect analysis on a large volume of data. So
when you are analyzing a large amount of data in a pivot table such as the one
shown in Figure 12-17, it’s helpful to see small chunks of data at a time.

To facilitate this need, Access allows you to expand or collapse detail easily
when you click the plus and minus signs shown in the pivot tables. You can
also expand or collapse all values in a field at once. For example, when you
right-click the Market field and select Collapse, as seen in Figure 12-18, all
the customer details for each market are hidden, which makes this pivot table
easier to read. Now you can analyze the customer detail for one market at a
time when you click the plus sign for that market.

Changing Field Captions
As you know by now, Access often attempts to name aggregated fields with
its own name such as Sum of TransactionCount. You can imagine how titles like
this can be confusing to the consumer. You can customize your field captions
by changing the Caption property of the field.

To demonstrate this, follow these steps:

1. Right-click Sum of TransactionCount field heading and select Properties.
This activates the Properties dialog box shown here in Figure 12-19.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 305

2. Click the Captions tab and enter Count of Transactions in the Caption
input box.

3. Close the dialog box and your changes will immediately take effect.

Figure 12-18: Collapsing fields makes your pivot tables easier to read.

Figure 12-19: You can change a field’s name by setting the Caption property of the field.

306 Part IV ■ Reports, Dashboards, and Visualization in Access

Sorting Data

By default, pivot tables are initially sorted in ascending order. However,
you may prefer to present your data in an order that makes more sense in
your situation. To change the sort order of a particular field or aggregation,
simply right-click the chosen field or aggregation and select Sort and then Sort
Ascending or Sort Descending.

Grouping Data

A particularly useful feature in pivot tables is the ability to create a new layer
of analysis by grouping and summarizing unrelated data items. Imagine that
you need to group the products shown in Figure 12-20 into two segments:
outside services (Green Plants and Foliage Care and Landscaping/Grounds
Care) and inside services (the rest of the items on the list).

Figure 12-20: You need to group these products into two groups.

To accomplish this task, follow these steps:

1. Hold down the Ctrl key on your keyboard and select both Green Plants
and Foliage Care and Landscaping/Grounds Care.

2. Right-click and select Group Items as shown here in Figure 12-21.

At this point, your pivot table should look similar to the one shown in
Figure 12-22. As you can see, you have essentially created a new field
with two data items: Group1 and Other.

3. All that’s left do is to change the captions on these newly created objects
to reflect their true meaning. You do this simply by right-clicking the
field name and select Properties. This activates the Properties dialog box
where you can click the Captions tab and edit the Caption input box.

Figure 12-23 illustrates what the final report with a new Product Segment
field should look like.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 307

Figure 12-21: Include fields in a group by selecting them and choosing Group Items from
the right-click menu.

Figure 12-22: You have successfully grouped your items into a single data item!

Figure 12-23: In just a few clicks, you have added another layer to your analysis.

308 Part IV ■ Reports, Dashboards, and Visualization in Access

NOTE The Properties dialog is non-modal. That means you can select different
objects without closing it. This is especially helpful when you’re changing the
caption on multiple objects. For example, you can change the Product_
Description1 caption, and then select the Group1 object and change its caption
—all without closing the Properties dialog.

One last note about grouping data. If you activate your field list and drill
into the Product_Description field, as shown in Figure 12-24, you will notice
that you newly created grouping is listed there as a sub field. This means you
can treat this field as any other in your field list. To delete your grouping,
right-click its entry in the field list and select Delete.

Figure 12-24: To delete your grouping, find it in the PivotTable Field List; then right-click
it, and then click Delete.

Using Date Groupings
Notice that in Figure 12-25, you have a field called Effective _Date and directly
underneath that field you see Effective_Date by Week and Effective_Date by
Month. Unlike Excel where you would have to explicitly create date groupings,
Access automatically creates these groupings for any field that is formatted as
a date field.

Figure 12-26 illustrates how you can simply drag these date grouping onto
your pivot table just as you would any other field.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 309

Figure 12-25: Access automatically creates date groupings for any field formatted as a
date field.

Figure 12-26: Date Groupings in action.

NOTE If your dates aren’t expanded as shown in Figure 12-26, you can expand a
field by right-clicking on the field header and choosing Expand.

One drawback to using the Access-provided date groupings is that you can’t
separate them. For instance, you cannot drag the Year grouping into the Column
area then drag the Month grouping into the Row area.

310 Part IV ■ Reports, Dashboards, and Visualization in Access

Filter for Top and Bottom Records
Filtering your pivot table to show the top or bottom Nth records can be done
with just a few clicks of the mouse. In the example illustrated in Figure 12-27,
you have a list of customers and want to limit the list to the top ten customers
by sum of revenue. Right-clicking the Customer_Name field heading will
expose a shortcut menu where you can select Show Top/Bottom Items ➪

Show only the Top ➪ 10.

Figure 12-27: An example of how easy it is to filer top 10 customers.

As you can see in Figure 12-27, the filtering options also include the ability to
filter by percent of records. You can remove the applied filter by right-clicking
the field heading and selecting AutoFilter.

TIP There are actually two methods you can use to remove an applied filter from
a field.

Method 1: Right-click the field heading and select AutoFilter.

Method 2: Right-click the field heading and clicking Show Top/Bottom Items ➪

Show All.

Method 1 has an added advantage in that it allows you to reapply the last known
filter to the field at any time by right-clicking the field heading and selecting
AutoFilter. Method 2, however, clears the filter settings altogether.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 311

Adding a Calculated Total
Once you create a pivot table, you may find it useful to expand your analysis
by performing calculations on summary totals. To demonstrate this, follow
these steps:

1. Create the pivot table shown here in Figure 12-28. This analysis cal-
culates total revenue and total count of transactions. Upon reviewing
these results, you determine that you need to get an average dollar per
transaction.

Figure 12-28: You need to calculate the average dollar per transaction for each market.

2. In the Design tab, click Formulas ➪ Create Calculated Total. This will set
off two events. First, a new field called New Total will appear in your pivot
table as shown in Figure 12-29 (see the column right next to the Market
column). Second, the Properties dialog box for this field will activate.

The idea here is to enter the calculation you need into the dialog box.

3. Enter Dollars per Transaction into the Name input box.

4. Delete the 0 from the large input box below Name.

5. Select Sum of Revenue (Total) from the drop-down then click the Insert
Reference To button.

6. Type a forward slash (/) to indicate division.

7. Select Sum of TransactionCount (Total) from the drop-down, then click
the Insert Reference To button.

At this point, your dialog box should look similar to Figure 12-30.

8. Click the Change button.

9. In the Format tab, click Currency from the Number input box.

312 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-29: Adding a new calculated total will create a new field in your pivot table.

Figure 12-30: Your dialog box should look like this.

As you can see in Figure 12-31, your new calculation looks and acts like any
other Totals field in your pivot table.

To adjust the calculation behind your calculated total, right-click on the field
heading and select Properties. This will open the Properties dialog box where
you can change the calculation in the Calculation tab.

To delete your calculated total, right-click on its entry in the field list, shown
here in Figure 12-32, and select Delete.

NOTE You can also create Calculated Detail Field using the same steps
illustrated above. However, it’s generally a better idea to perform calculations on

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 313

details in the actual query as opposed to a pivot table. This way, Microsoft ACE
(ACE is the Access replacement for Microsoft Jet) performs the calculation instead
of the PivotTable component, making your PivotTable view perform better.

Figure 12-31: You have enhanced your analysis with a calculated total.

Figure 12-32: To delete your calculated total, find it in the PivotTable Field List; then
right-click it, and then click Delete.

Working with Pivot Charts in Access

A pivot chart is essentially a pivot table in chart form. Once you learn the
basics of using a pivot table, a pivot chart will feel quite intuitive.

314 Part IV ■ Reports, Dashboards, and Visualization in Access

Pivot Chart Fundamentals
There are slight differences in the anatomy of a pivot chart. Figure 12-33 shows
an empty pivot chart where you can see four distinct areas. Just as in pivot
tables, how you choose to utilize these areas defines both the utility and the
appearance of your pivot chart.

Figure 12-33: An empty pivot chart in Access.

Data Area

The Data area, highlighted in Figure 12-34, is the area that calculates and
supplies the data points for your chart. You can recognize this area by the
words Drop Data Fields Here.

Series Area

The Series area, highlighted in Figure 12-35, is the area that makes up the Y
axis of your chart. You can recognize this area by the words Drop Series Fields
Here. This area corresponds is equivalent to the Column area of a pivot table.
In other words, if you create a pivot table and switch to PivotChart view, the
fields in the Column area of the pivot table will become the Y axis series.

Category Area

The Category area, highlighted in Figure 12-36, is the area that makes up
the X axis of your chart. You can recognize this area by the words Drop

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 315

Category Fields Here. This area is equivalent to the Row area of a pivot table.
In other words, if you create a pivot table and switch to PivotChart view,
the fields in the Row area of the pivot table will become categories in the
X axis.

Data area

Figure 12-34: The Data area supplies the data points for your chart.

Y Axis

Figure 12-35: The Series area makes up the Y axis of your chart.

316 Part IV ■ Reports, Dashboards, and Visualization in Access

X Axis

Figure 12-36: The Category area makes up the X axis of your chart.

Filter Area

The Filter area, highlighted in Figure 12-37, allows for dynamic filtering of
your pivot chart based on a value in a field. You can recognize this area by the
words Drop Filter Fields Here. This area is identical to the Filter area of a pivot
table.

Creating a Basic Pivot Chart

To create a pivot chart, start by building a query in design view, as shown here
in Figure 12-38. Next, follow these steps:

1. In the Design tab, click View ➪ PivotChart View.

At this point, you will see an empty pivot chart, shown here in Figure 12-39
and a list of fields that are in your dataset.

2. Just as in a pivot table, the idea is to drag the fields you need into the
pivot chart’s drop areas. Build a basic chart by dragging the Revenue
field to the Data area, then the Market field to the Category area.

3. Drag the Region field to the Filter area. Your completed chart should look
like the one illustrated here in Figure 12-40.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 317

NOTE You may notice that the pivot charts produced by Access are not as
polished as the ones Excel produces. This is because Access uses the old Office
Web Component technology that was primarily designed for reporting on the web.
Excel, on the other hand, uses the slick new graphics engine introduced with
Office 2007.

Filter area

Figure 12-37: The Filter area allows you to filter your pivot chart.

Figure 12-38: Build your query; then switch to PivotChart view.

318 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-39: You will use the field list to build your pivot table.

Figure 12-40: You’ve built you first pivot chart!

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 319

Formatting Your Pivot Chart

The key to formatting a pivot chart in Access is to remember that everything
revolves around property settings. Each object on the chart has its own
properties that you can adjust. To demonstrate this, follow these steps:

1. Right-click your pivot chart and select Properties. This will activate the
Properties dialog box shown in Figure 12-41.

Figure 12-41: Select the General tab of the pivot chart properties dialog box.

2. Go to the General tab. The idea here is to select the object with which you
want to work in order to expose the adjustable properties. For example,
if you wanted to add labels to your series, you would select Series from
the Select drop-down as demonstrated here in Figure 12-42.

3. With the Series properties exposed, you can tailor its properties to suit
your needs. In Figure 12-43, you are adding data labels to you pivot chart.

4. Of course, data labels have properties that can be modified as well. In the
General tab of the Properties dialog box, select the series data labels you
just added. As you can see in Figure 12-44, the Select drop-down list has
been updated to include ‘‘Series Data Labels 1.’’

320 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 12-42: Selecting the Series object exposes its modifiable properties.

Figure 12-43: Adding Data Labels to your pivot chart.

Chapter 12 ■ Using Pivot Tables and Pivot Charts in Access 321

Figure 12-44: The Select dropdown list is updated every time you add a new object to
your chart.

Twenty minutes of experimenting with each object’s properties will give
you a solid level of proficiency at formatting pivot charts in Access.

NOTE As of this writing, you cannot export pivot charts from Access to Excel.
Again, this is due to the fact that Access and Excel use entirely different charting
engines.

Summary

From a data analysis point of view, pivot tables and pivot charts are some
of the most powerful data-crunching tools found in Access. With a pivot
table, you can group, summarize, and perform a wide variety of calculations
in a fraction of the time it takes by hand. In addition, you can interactively
change the content and shape of your analysis by dragging data fields to one
area of the pivot table to another. This allows you to dynamically change
your perspective, recalculate totals to fit the current view, and interactively
drill down to the detail records. Pivot charts enhance your analytical tools
by allowing you to display your pivot tables graphically—in chart form. By
applying your knowledge of Excel pivot tables to Access, you can completely
change the way you analyze your Access data.

C H A P T E R

13
Enhancing Queries and Reports

with Visualizations

Access isn’t typically a tool you would think of when considering a dashboard
style reporting tool. The reporting tools in Access, as slick as they are, don’t
readily lend themselves to data visualizations. That is to say, Access doesn’t
offer a whole lot in the way of dashboarding graphics. What’s so great about
visualization?

When you present your data through a visual interface, you can highlight
key trends, point out comparisons, and focus in on outliers. Think of how
much time it takes your end-users to process the table-driven reports you
produce. Now imagine giving your users a visual interface that they can
absorb at-a-glance. Adding visual components to your reporting arsenal not
only makes you more effective at reporting data, but it helps your end-users
become more effective at consuming data.

In this chapter, you explore some of the techniques that will help you go
beyond tables filled with numbers. At the end of this chapter, you’ll be turning
your bland queries and reports into innovative visual interfaces.

Basic Visualization Techniques

Data visualizations don’t always refer to fancy graphics. In fact, something as
basic as specially formatted font or colored fields can be considered visual-
izations. In this section, you start with some simple techniques that will help
spruce up your reporting.

323

324 Part IV ■ Reports, Dashboards, and Visualization in Access

Using Number Formatting Tricks to Enhance Reporting
As a general rule, you should always make your reporting easy to read and
absorb. To that end, you should consider formatting the numbers in your
reports to help your audience consume the needed information they need
without confusion or hindrance. Why? Because it’s never fun to count the
zeros in a large number, especially when you’re staring at 10 pitch font.

Here are some general best practices when it comes to formatting numbers
for reporting:

Always use commas to make numbers easier to read (for example, instead
of 2345, show 2,345).

Only use decimal places if that level of precision is required. For instance,
there is rarely benefit for showing the decimal places in a dollar amount
such as $123.45. Likewise in percentages, use only the minimum number
of decimals required to represent the data effectively. For example instead
of 43.21 percent, you may be able to get away with 43 percent.

Only use the dollar symbol when you need to clarify that you are referring
to monetary values. If you have a chart or table that contains all revenue
values, and there is a label clearly stating this, you can save room and
pixels by leaving out the dollar symbol.

Format very large numbers to thousands or millions place. For instance,
instead of displaying 16,906,714, you can format the number to
read 16.9 M.

You can easily format numbers in Access by adjusting the Format property
of your value fields. To test this, go to the sample database you downloaded
with this book, and open the Access Report called ‘‘Revenue By 2007 vs 2008.’’

As you can see in Figure 13-1, there are a ton of numbers here. Instead of
inundating your users with unnecessary digits, you can truncate the dollar
values to thousands.

Follow these steps to format the numbers:

1. Switch to Design View by going up to the Ribbon and clicking View ➪

Design View.

2. Click the 2007 field to set focus on it.

3. You will see a Design tab in the Ribbon. Go to the Design tab and click
the Property Sheet button.

4. This activates the Property Sheet pane. Here, click the Format tab and
enter $#,##0,’’ k’’ into the Format property (see Figure 13-2).

5. Click the 2008 field and apply the same number formatting.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 325

Figure 13-1: To make this report easier to read, dollar values can be shown in thousands.

Figure 13-2: Enter your custom number formatting into the Format property.

Let’s take a moment to analyze the syntax you just used: ($#,##0,’’ k’’).

The dollar symbol ($) obviously tells Access that this is a currency value.

The pound signs along with the first comma (#,##0) defines a basic
structure for any number that uses this format. In this case, #,##0 tells
Access that commas should be used in any number larger than 999.

The comma after the 0 tells Access to truncate the number to the thousands
place.

The letter k wrapped in quotes (‘‘ k ’’) adds a visual indicator that these
numbers are in thousands.

326 Part IV ■ Reports, Dashboards, and Visualization in Access

Switch back to report view to see the result of your change. If all went well,
your report should now look like one shown here in Figure 13-3.

Figure 13-3: You have successfully applied your custom number format.

This is just one example of a custom number format you can apply to reduce
the clutter in your reports. You can employ literally hundreds of alternative
formats. Table 13-1 lists just a few of the common format syntax and how they
can affect your numbers.

Table 13-1: Common Custom Number Syntax

ORMAT HOW 6,404,954 WOULD
SYNTAX BE DISPLAYED

#,##0 6,404,954

#,##0, 6,405

#,##0,’’ k’’ 6,405 k

#,##0,,’’ M’’ 6 M

$#,##0, $6,405

$#,##0,’’ k’’ $6,405 k

$#,##0,,’’ M’’ $6 M

Using Conditional Formatting in Access
Conditional Formatting is the term given to the functionality where Access
dynamically changes the formatting of a value based on a set of conditions
you define. Conditional formatting allows your audience to, at a glance, make

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 327

split-second determinations on which values are ‘‘good’’ and which are ‘‘bad,’’
all based on formatting.

Conditional formatting is one of those functionalities in Access that offer
countless ways of achieving a result. In this section, you cover a few basic
examples of how conditional formatting can visually enhance your Access
reporting. If you’ve worked with conditional formatting in Excel, this will be
familiar territory.

Apply Conditional Formatting to a Field Based on its Own Value
The simplest way to apply conditional formatting is to test whether a field’s
value meets a specific criterion. For your first encounter with conditional
formatting in Access, take a moment to walk through an example.

1. Go to the sample database you downloaded with this book, and open the
Access Report called Revenue by Segments.

2. Switch to Design View by going up to the Ribbon and clicking View ➪

Design View.

3. Click the SumofSales_Amount field; then find the Format tab on the Rib-
bon. There, click the Conditional Formatting button shown in Figure 13-4.

Figure 13-4: Selecting the Conditional Formatting button.

4. The Conditional Formatting dialog box will open (see Figure 13-5). Click
the New Rule button.

Figure 13-5: Choose to start a new rule.

328 Part IV ■ Reports, Dashboards, and Visualization in Access

The New Formatting Rule dialog box will activate. Take a look at
Figure 13-6. Because you are applying a condition to the current field
based on its own values, the only adjustments that have to be made are
to the operator dropdown and the criteria field.

5. As you can see in Figure 13-6, you are applying a formatting rule to any
value less than 50000. Select less than from the operator dropdown, and
then enter 50000 in the criteria input.

6. While you are still on this dialog box, assign a format you want applied
to any value meeting your criteria.

Figure 13-6: Apply a new format for any value under 50,000.

7. Click the OK button to finalize your conditional formatting. Figure 13-7
illustrates what your report will look like when you switch back to Report
View.

Figure 13-7: You’ve successfully applied your first conditional formatting in Access.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 329

With your newly applied conditional formatting, you can easily pick out the
entry under 50,000. Although this is a relatively benign example, conditional
formatting can prove useful in guiding your end-users toward key metrics on
your report.

Apply Conditional Formatting Based on another Control’s Value

Often times, you may need to set conditional formatting on a particular field
based the values of another field. In these cases, you’ll have to configure your
conditional formatting slightly differently.

1. Open the Revenue By Segment report again in Design View.

2. Click the SumofSales_Amount field, and then click Conditional Format-
ting on the Format tab in the Ribbon.

3. Because you have already set up a conditional format, you now have the
Edit Rule button illustrated in Figure 13-8. From here, you can choose to
create a new rule, or to edit the existing rule. Click the Edit Rule button.

Figure 13-8: The Edit Rule option allows you to edit an existing conditional format-
ting rule.

At this point, you will be taken to the Edit Formatting Rule dialog box
shown in Figure 13-9. In this example, you want to edit the rule to check
the PcntSales field. If the PcntSales Field is less than 20 percent, you want
to apply your conditional formatting.

4. As you can see in Figure 13-9, the Expression Is qualifier is being used
this time. Any time you are evaluating your criteria against another
field, you will choose the ‘‘Expression is’’ qualifier. On the same dialog
box, enter [Pcnt Sales] <.20. This expression tells Access to evaluate the
PcntSales field. If the value in that field is less than 20 percent, then the
SumofSales_Amount field will be formatted.

330 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 13-9: Use an expression to point to the field you need to evaluate.

5. Click the OK button to finalize your conditional formatting. If you’re
following along, your report should look similar to the one shown here
in figure 13-10.

Figure 13-10: Your conditional formatting is now based on the values in the percent of
Revenue field.

Clearing Conditional Formatting

If you find that you no longer need to conditionally format a particular field,
you can follow these steps to clear the conditional formatting rule.

1. Open your report in Design View.

2. Click the control from which you want the conditional formatting
removed.

3. Click Conditional Formatting on the Format tab in the Ribbon.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 331

4. In the Conditional Formatting dialog box, select the condition you want
removed and then click the Delete Rule button.

5. Click OK to confirm.

Advanced Visualization Techniques

Up until now, you’ve been working with the visualization tools that are native
to Access. Now it’s time to move off the reservation a bit.

In this section, you explore a few techniques that go beyond the built-in
functionality of Access. As you go through the rest of this chapter, you’ll
discover how a little outside-the-box thinking can expand your reporting
capabilities and improve your ability to communicate through dashboard-style
visualizations.

Enhancing Queries and Reports with Data Bars
Figure 13-11 shows a query that contains what seems to be a bar chart. This
type of data visualization is typically referred to as in-cell charting (charting
directly in a table, providing a visualization of the data shown). The cool thing
is that the in-cell charting achieved here is the result of a simple calculation
and the STRING function.

Figure 13-11: The in-cell charting seen here is nothing more than a query trick using the
STRING function.

Introducing the STRING Function

The STRING function repeats a given character a specified number of times. For
example, if you were to type the expression =STRING(10, 's’), the returned
value would be ssssssssss (the ‘‘s’’ character repeated 10 times). To see this
in action, build the query you see in Figure 13-12.

332 Part IV ■ Reports, Dashboards, and Visualization in Access

Figure 13-12: Testing the STRING function in a query

When you run this query, as promised, you will see a series of ten S’s. Now
you can alter this query so that instead of using a letter, you would use a
character that, when repeated, looks kind of like a chart.

For this, you can use the ChrW function. The ChrW function returns Unicode
characters based on a character number. For instance, ChrW(9608) returns a
block that, when repeated several times, looks like a bar chart. Here is how
you would use it with the STRING function.

String(10, ChrW(9608)

Figure 13-13 demonstrates how this is used in a query.

Figure 13-13: Using ChrW(9608) with the STRING function in a query produces a series
of block characters reminiscent of a bar chart.

Obviously, it doesn’t make sense to hard-code the number of times to repeat
the character. You would ideally point the STRING function to some sort of

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 333

field or mathematical operation that gives you a number of times to repeat.
Figure 13-14 illustrates an example where the Revenue field is used in a
mathematical operation to arrive at an appropriate number of times to repeat
the block character.

Figure 13-14: In situations where you have large values, you can divide the vales by 10,
100, 1000, etc. in order to calculate an appropriate repeat number.

As you can see in Figure 13-15, you couldn’t just use the raw Revenue field
to feed the STRING function. There would be too many block characters, and
the function would fail. So the RepeatNumber field is calculated to derive a
repeat number that works.

Figure 13-15: The results of your test query

Another way to limit the number of times a character is repeated is to
calculate a maximum repeat number. You can do this by getting a bit fancy
and using Access’ DSUM function. To understand this, take a look at Figure 13-16.

The expression in the RepeatNumber column basically tells Access to take
the value being referenced and divide it by the sum for the entire range. This
returns a percent weighting, which is then multiplied by 100. Stand back and

334 Part IV ■ Reports, Dashboards, and Visualization in Access

think about what this means. The maximum number of characters that can
possibly be returned by this formula is 100, no matter how big the revenue
figures are.

Figure 13-16: Use the DSUM Function to establish a ceiling on your repeat number.

NOTE You may be wondering why you would not just use the data bars
conditional formatting feature, or for that matter, a chart? First, data bars are not
backwards compatible. Meaning anyone who doesn’t have Access 2010 won’t be
able to use them. Second, their gradient style may not conform to the overall look
and feel of your dashboard. As for standard charts, they take up much more space
than in-cell charting. Plus they add overhead to your file. In-cell charting gives you
an easy to implement alternative that doesn’t require a lot of real-estate or setup.

Extending Data Bars to Reports

Because these clever new data bars are expression driven, they can be used
practically anywhere you can use an expression. In Figure 13-17, a new TextBox
has been added to the Revenue by Segments report, and a STRING expression
is used to create a data bar.

Figure 13-17: You can use your new data bar anywhere you can enter an expression.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 335

Figure 13-18, shows the data bars in Report view. Note that because these
data bars are text based, they can be formatted just like any other text.

Figure 13-18: These data bars can also be formatted to be different colors and sizes.

Sprucing up Queries and Reports with Symbols
With the release of Office 2007, Excel introduced new conditional formatting
rules that allow you to show dashboard-esque icons to your cells. With
these icons, you can represent performance using different shapes and colors.
Unfortunately, no such functionality exists in your cache of Access 2010 tools.

A creative alternative is using the fancy characters and symbols you can
get from the ChrW function. You were introduced to the ChrW function earlier
in this chapter (‘‘Enhancing Queries and Reports with Data Bars’’). If you’ll
remember, the ChrW function returns Unicode characters based on a character
number. For instance, ChrW(9608) returns a block character. These characters
allow you to mimic Excel’s icon sets, using symbols to provide users a visual
representation of performance.

Before walking through an example, look at Table 13-2. Here, you will see
some of the Unicode characters often seen on dashboard reports. Again, the
idea is to pass the character number through the ChrW function. For example,
ChrW(9650) would return an up arrow symbol.

To understand the benefit of using symbols in reporting, go to the sample
database you downloaded with this book, and open the Access Report called
Revenue By 2007 vs 2008.

As you can see in Figure 13-19, this report compares revenues in 2008 to
those in 2007. Obviously, the goal of this report is to convey the movement up
or down in revenue from one year to another.

336 Part IV ■ Reports, Dashboards, and Visualization in Access

Table 13-2: Unicode Character Codes and Their Associated Symbols

CHARACTER ASSOCIATED CHARACTER ASSOCIATED
CODE SYMBOL CODE SYMBOL

8592 9668

8593 9670

8594 9671

8595 9679

8598 9680

8599 9681

8600 9682

8601 9683

8678 9684

8679 9685

8680 9698

8681 9699

9607 9700

9608 9701

9650 10003

9658 10007

9660 10025

Figure 13-19: Open the Revenue By 2007 vs 2008 report.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 337

In order to help absorb this data faster, let’s add a set of up and down arrows
representing the increase or decrease in revenue from 2007 to 2008.

1. Switch to Design View by going up to the Ribbon and clicking View ➪

Design View.

2. Add a new TextBox next to the 2008 field (Figure 13-20).

Figure 13-20: Add a TextBox.

3. In the newly added TextBox, enter the following IIf statement:
=IIf([2008]>[2007],ChrW(9650),ChrW(9660)). This checks if the 2008
revenue is greater than 2007. If so, then an up arrow is return via the
ChrW function. If not, a down arrow is returned. Your screen should look
similar to that shown in Figure 13-21.

Figure 13-21: Build an IIf statement that evaluates revenue and returns either an
up arrow or down arrow.

4. Since you’re knee-deep in creating a visualization, you might as well
add some conditional formatting. Click your newly created TextBox and
select Conditional Formatting from the Format tab. This activates the
Conditional Formatting Rules Manager dialog box.

5. Click the New Rule button.

6. Select the ‘‘Expression Is’’ qualifier, then enter [2008]>[2007] in the
condition input (see Figure 13-22). This formats all arrows where the
revenue from 2008 is greater than 2007 (up arrows). Needless to say,

338 Part IV ■ Reports, Dashboards, and Visualization in Access

you want to select formatting that corresponds with good performance.
Format the Font Color green.

Figure 13-22: Create a conditional formatting for up arrows.

7. Press OK to confirm your changes and to return to the Conditional
Formatting Rules Manager.

8. Now you’ll need to add conditional formatting to those records where
2007 is greater than 2008. Click the New Rule button.

9. Select the ‘‘Expression Is’’ qualifier, then enter [2007]>[2008] in the
condition as demonstrated in Figure 13-23. This formats all arrows where
the revenue from 2007 is greater than 2008 (down arrows). For the down
arrows, format the Font Color Red.

Figure 13-23: Create a conditional formatting for down arrows.

10. Take some time to format your arrows; make them bigger, align them
to the other fields, and so on. If all went well, your report should look
similar to Figure 13-24.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 339

Figure 13-24: With your new visualizations, you easily pick out the poor performers.

Using Your Own Dashboard Graphics in Access
Figure 13-25 shows a dashboard report (gauges included) that contains data
related to internet revenue. Believe it or not, this report was done in Access.
If you open the sample database for this book, you will find a Report object
called Dashboard Report.

Figure 13-25: Amazingly, this report was created in Access.

Storing External Graphics in an Access Table

The starting point to this technique is obviously graphics. You’ll need to
decide which graphics to use. For illustrative purposes, Figure 13-26 shows a
directory that has several bitmap files (each one containing a representation

340 Part IV ■ Reports, Dashboards, and Visualization in Access

of a gauge). Note how the title of each file is a number. When creating
graphics for dashboarding purposes, the idea is to name each file a number
corresponding to a value from 1 to 100. So file 50 represents 50 percent, file 40
represents 40 percent, and so on.

Figure 13-26: Figure 13-26: Start with a set of bitmap files, each representing a value
from 1 to 100.

NOTE The sample database for this book already contains a table (’Dashboard-
Graphics’) which contains a series of images ideal for dashboarding. This section
is an illustrative look at how you would go about building your own dashboard
graphics table.

Once you have graphics, you’ll need to store them someplace. This is where
Access tables come in. Figure 13-27 demonstrates a basic structure for a table
designed to hold graphics. As you can see, you need only three columns to
start.

A number column that holds numbers 1–100

A percent column that holds .01–1

An OLEObject column that holds the Bitmap graphics

Figure 13-27: The basic table structure needed to store graphics for dashboarding
purposes

TIP OLE (Object Linking and Embedding) is a Microsoft technology that allows an
application to store data packages such as text files, sound files, or picture files.
The OLE Object field type in Access uses this technology to embed and store
external data files directly into an Access database. Embedding files using an OLE
Object field ensures that the embedded files travel with the database when
distributed or moved.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 341

Once Access has a place to store your graphics, you’ll need to get your
graphics into the table. Several multiple methods are available to do this. The
easiest manual way is to drag them into the OLEObject field. Simply drag each
graphic into the record corresponding to its value. For example, the bitmap
file titled 40 would go into the record where the ValueNum field is 40 and the
ValuePcnt field is .40. Figure 13-28 demonstrates how you would drag graphic
files into the OLE Object field.

Figure 13-28: The drag and drop method is the easiest way to get graphics into an OLE
Object field.

When all is said and done, you would have a ‘‘graphics table’’ where each
record represents a number value from 1 to 100. Each number and percent
value corresponds to the appropriate bitmap file (see Figure 13-29).

Figure 13-29: A completed graphics table

Using the Graphics Table

Using a graphics table is as easy as linking it to any analysis using the
ValueNum or ValuePcnt columns. Figure 13-30 demonstrates how you would
use a query to tie your graphics table to another dataset. In this case, the Pcnt

342 Part IV ■ Reports, Dashboards, and Visualization in Access

Internet Revenue field is joined to the ValuePcnt field I the graphics table. This
results in the appropriate image being associated to each value in the Pcnt
Internet Revenue field.

Figure 13-30: The OLEObject column (the column that holds the bitmaps) in this example
is called ‘‘GaugesHiGood.’’

After the query is saved, you can use it as the source for various reports and
forms. Figure 13-31 shows that you can build reporting views in Access forms
as well as Access reports.

Figure 13-31: You can build your dashboards directly on forms.

Using Multiple Sets of Graphics

Keep in mind that you can have more than one OLEObject field in your graphics
table. This allows you to have all kinds of different visual representations of
1–100. If you open the DashboardGraphics table found in the sample database
for this book, you will see multiple columns representing different graphics.

Figure 13-32 demonstrates how using multiple graphics fields is as easy as
selecting the desired graphic in a query.

Chapter 13 ■ Enhancing Queries and Reports with Visualizations 343

Figure 13-32: This query identifies the progress bar as the graphic used.

Running this query produces the report in Figure 13-33.

Figure 13-33: The progress bar report

Summary

Adding data visualizations to your reporting allows you to highlight key
trends, point out comparisons, and focus in on outliers. It not only makes you
more effective at reporting data, but it helps your end-users become more
effective at consuming data.

Using Access’ conditional formatting functionality is an easy way to quickly
add visualizations to your reports. Conditional formatting allows your audi-
ence to, at-a-glance, make split-second determinations on which values are
‘‘good’’ and which are ‘‘bad,’’ all based on formatting.

344 Part IV ■ Reports, Dashboards, and Visualization in Access

Outside of rudimentary conditional formatting, Access doesn’t offer a whole
lot in the way of data visualization and dashboarding graphics. But with a
bit of imagination, you can create your own visualizations. Two examples
covered in this chapter are data bars using the STRING function and fancy
symbols using the ChrW function. Alternatively, thanks to Access’ ability to
store OLE objects, you can store and use your own graphics in reporting.

P a r t

V
Advanced Excel and Access

Integration Techniques

In This Part

Chapter 14: Getting Access Data into Excel
Chapter 15: Using VBA to Move Data between Excel and Access
Chapter 16: Exploring Excel and Access Automation
Chapter 17: Integrating Excel and Access with XML
Chapter 18: Integrating Excel and Other Office Applications

C H A P T E R

14

Getting Access Data into Excel

Throughout this book, you’ve been exposed to the concept of using Access
as the data layer, and Excel as the presentation layer. This obviously suggests
that data has to be moved from Access to Excel. In this chapter, you explore a
few basic techniques that will help you efficiently move Access data into your
Excel workbook.

The Different Methods for Importing Access Data

While it’s important to know the numerous ways to get our Access data
into Excel, it’s equally important to know when a particular method is more
efficient than another! In this section, you’ll be introduced to several methods
for getting data into Excel and examine what circumstances make one method
better suited than another.

The Drag and Drop Method
For simplicity and ease, you just can’t beat the Drag and Drop method. Try this:
Simultaneously open an empty Excel workbook and an Access database from
which you want to import. In this case, you can use the ZalexCorp sample
database you downloaded with this book. Now resize each application’s
window such that they are both fully visible on your screen.

Hover on the Access table or query you wish to transfer into Excel. Now
press and hold the left mouse button and move the mouse cursor over to the
blank worksheet in Excel as demonstrated in Figure 14-1. Release the mouse
to see the data move to Excel.

347

348 Part V ■ Advanced Excel and Access Integration Techniques

Figure 14-1: Illustrating Drag and Drop

The Drag and Drop method comes in handy when you are doing a quick
one-time analysis where you need a specific set of data in Excel. It is not so
useful if:

You expect this step to occur routinely, as a part of a repeated analysis or
report.

You expect the users of your Excel report to get or refresh the report data
via this method.

It’s not possible or convenient for you to simply open up Access at the
time you need the data.

Under the preceding scenarios, it is much better to use another technique.

Using the Export Wizard from Access
You may remember from Chapter 2 that Access has a built-in Import wizard
for importing data from various sources. Well, Access also has an Export
wizard. It’s relatively simple to use.

1. With the ZalexCorp sample database open, click the Dim_Products table
one time to select it.

2. With the table selected, browse to the External Data tab on the Ribbon and
select the Excel icon under the Export group. This activates the wizard
shown in Figure 14-2.

As you can see in Figure 14-2, you have a few discretionary options you
can specify in the Excel Export wizard. You can specify the file location,
the file type and some format preservation options.

Chapter 14 ■ Getting Access Data into Excel 349

Figure 14-2: Export Data to Excel wizard in Access.

NOTE You may export your Access object to an existing Excel file instead of
creating a new file. However, you should be aware of several things. By default,
the name of the exported object becomes the name of the table or query in
Access. Be cautious if you have an object with the same name in your Excel
workbook, as it may be overwritten. For example, if you export the ‘‘PriceMaster’’
table to an Excel worksheet that already has a worksheet named PriceMaster,
Excel will overwrite the worksheet. Second, make sure the workbook to which you
are exporting is closed. If you try to export to an open workbook, you will likely get
an error in Access.

3. Select the Export data with formatting and layout option. Notice that a
second menu option becomes available that asks if you wish to open the
file for viewing after export. Select that as well and click OK.

Immediately, Excel opens to show you the exported data.

In Access, the last page in the Export wizard (Figure 14-3) asks if you
want to save your export steps. Saving your export steps can be useful if
you expect to frequently send that particular query or table to Excel.

The benefit of this method is that, unlike dragging and dropping, the
ability to save export steps allows you to automate your exports by using
macros.

350 Part V ■ Advanced Excel and Access Integration Techniques

Figure 14-3: Be sure to utilize the Save Export Steps option if you are going to Export your
data frequently.

The limitation of this export method is that it is done within Access. If you
are making an Excel report where data refresh must be under the Excel user’s
control, this method is not viable. In this circumstance, importing data from
the Excel menu and/or using MS Query in Excel is the more viable option.

TIP Use the RunSavedImportExport macro action to automate the exporting of
data using ‘‘saved export steps.’’ Feel free to review Chapter 9 for a refresher on
how to use macros.

Using Get External Data from Excel
The option to pull data from Access has been available in Excel for many
versions; it was just buried several layers deep in somewhat cryptic menu
titles. This made getting Access data into Excel seem like a mysterious and
tenuous proposition for many Excel analysts. With the introduction of the
Ribbon in Excel 2007, Microsoft made importing Access data from Excel a little
less nebulous, including the option right on the Ribbon under the Data tab.

Using the Get External Data method in Excel allows you to establishing a
refreshable data connection between Excel and Access. To see the power of
this method, walk through these steps:

1. Open a new Excel workbook and select the Data tab on the Ribbon.

2. Simply click the From Access icon found in the Get External Data group.

This activates the Select Database dialog box you see in Figure 14-4. The
idea is to browse for your Access database. If the database from which
you wish to import is local, simply browse to the file location and open it.
If you have an Access database on a network drive at your employer, you
may also select that database as well — provided you have the proper
authorization and access.

3. Navigate to the sample database found under C:\OffTheGrid (see
Figure 14-4): then click the Open button.

Chapter 14 ■ Getting Access Data into Excel 351

Figure 14-4: Choose your source database.

4. In some environments, a series of Data Link Properties dialog boxes
will activate, asking for credentials (username and password). Most
Access databases do not require login credentials, but if your database
does require a username and password, enter them in the Data Link
Properties. Otherwise, press the OK button to go to the next step.

5. Once you reach this step, the Select Table dialog box (Figure 14-5) activates
and allows you to choose a table or query from your database. Choose
Revenue by Period query and click the OK button.

Figure 14-5: Choose the Access Object you wish to import.

At this point, you will see the Import Data dialog box shown in 14-6. This
dialog box allows you to define where and how to import the table. As

352 Part V ■ Advanced Excel and Access Integration Techniques

you can see, you have the option of importing the data into a Table, a
PivotTable, or a PivotChart/PivotTable combination.

In this scenario, you want the raw data to be written directly onto your
spreadsheet, so you’ll choose the Table option.

NOTE If you choose PivotTable or PivotChart, the data is saved to a pivot cache
without writing the actual data to the spreadsheet. This allows your pivot table to
function as normal without having to import potentially hundreds of thousands of
data rows twice (once for the pivot cache and once for the spreadsheet).

6. Select Table as the output view and define cell A1 as the output location
(see Figure 14-6). Click the OK button to finalize your selections.

Figure 14-6: Choosing how and where to view your Access data

Your reward for all the work will be a table similar to that shown in
Figure 14-7, which contains the imported data from your Access database.

Figure 14-7: Your imported Access data!

The incredibly powerful thing about importing data this way is that it’s
refreshable! That’s right. If you import data from Access using this technique,

Chapter 14 ■ Getting Access Data into Excel 353

Excel creates a table that you can refresh by right-clicking and selecting Refresh,
as demonstrated in Figure 14-8. When you Refresh your imported data, Excel
reconnects to your Access database and imports the data again. As long as a
connection to your database is available, you can refresh it with a mere click
of the mouse.

Figure 14-8: As long as a connection to your database is available, you can refresh your
table with the latest data.

Again, a major advantage to using the Get External Data method is
that it allows you to establish a refreshable data connection between Excel
and Access. This means, in most cases, you can set up the connection one
time and then just refresh the data connection when needed. You can even
record an Excel macro to refresh the data on some trigger or event. This is
ideal for automating the transfer of data from Access.

The disadvantage to this method is that you have to take the data as it is in
Access. That is to say, you give up the ability to utilize sorts, filters, and table
joins to customize the data you bring into Excel.

Using MS Query
Microsoft Query (affectionately known as MS Query) is a stand-alone program,
installed with the Office suite, which can connect to external data sources from
Excel. MS Query has one distinct advantage over the other methods for
importing Access data into Excel: flexibility.

When transferring data using any of the previously mentioned methods,
you can only import an existing table or query as is. That is to say, there is no
opportunity to parse, filter or sort the data on the fly before importing it.

Not so with MS Query! With MS Query, you don’t have to rely on the
original tables or queries to be filtered or configured in a particular way. You
can apply your own filters and sorts to your data pulls (through MS Query),
essentially creating custom views that don’t necessarily exist in the source
database.

NOTE MS Query may or may not be installed on your system, based on how you
performed your Office installation. Keep in mind that if you do not have the MS

354 Part V ■ Advanced Excel and Access Integration Techniques

Query program installed on your system, you cannot link to external data sources
in Excel. To install MS Query you need your Microsoft Office installation disk. Start
the Microsoft Office Setup and choose to customize your installation. While you
are customizing your installation, look for Office Tools. You will find an entry
called Microsoft Query under Office Tools. Make sure you set it to the Run from My
Computer option and then complete the installation.

Starting MS Query

Begin by going to the Get External Data menu under the Data tab of the Excel
ribbon. To start Microsoft Query, you choose the From Other Sources option
and then select From Microsoft Query from the dropdown menu. Figure 14-9
shows what the menu will look like.

Figure 14-9: Start the Microsoft Query wizard.

After Microsoft Query opens, you will see the Choose Data Source dialog
box illustrated in Figure 14-10. This is where you start building your MS Query
import.

Figure 14-10: The Choose Data Source dialog box is your starting point.

Chapter 14 ■ Getting Access Data into Excel 355

Setting up Your Data Source

For this exercise, you will source data from the ZalexCorp database you
downloaded with the sample files for this book. To set this database as an
available data source, follow these steps:

1. From the Choose Data Source dialog, choose <New data source> from
the Databases tab and click OK. This opens the Create New Data Source
dialog box.

2. Type a name for your data source at the top of the dialog box, for example,
ZalexCorp (see Figure 14-11).

Figure 14-11: Name your new data source.

3. In the dropdown list box below, choose a type of driver for the database
to which you want to connect. From this dropdown menu, make sure you
select Microsoft Access Driver (*.mdb, *.accdb), as shown in Figure 14-12.

Figure 14-12: Choose the Access driver designed for .mdb and .accdb files.

356 Part V ■ Advanced Excel and Access Integration Techniques

4. Click Connect. This opens the ODBC Microsoft Access Setup dialog box
illustrated in Figure 14-13.

Figure 14-13: The ODBC Microsoft Access Setup dialog box

5. Click the Select button in the Database section to browse for your database
in the Select Database dialog box (see Figure 14-14). In this example,
you will select the ZalexCorp database found in the C:\OffTheGrid
directory.

Figure 14-14: Select your target database.

6. After you have selected your database, continue to click OK until you
come back to the Choose Data Source dialog box. ZalexCorp now shows
up in the list of databases (see Figure 14-15).

Now that your ZalexCorp data source is set up, MS Query remembers its
location, allowing you to use it repeatedly without the need to point to it each
time you need to use it.

Chapter 14 ■ Getting Access Data into Excel 357

Figure 14-15: ZalexCorp is now in the list of available data sources.

TIP Microsoft Query works equally well for non-local databases (those that
reside on a networked drive or even on the Web). In the Select Database dialog
box, you’ll find a dropdown menu with a list of computer drives available to you.

If your target database is on a network drive that is already mapped to your
computer, choosing it is as simple as choosing that drive from the dropdown menu,
and browsing the file hierarchy until you find the database you are looking for.

If your database is on a network that isn’t mapped to your computer, simply click
the Network button (shown in the lower right of the dialog box in Figure 14-14).
This fires up a wizard to help you connect to a network drive or folder to which
you are not currently mapped.

Building Your Custom Data Pull

Now that you have your ZalexCorp database set as an available data source,
you can start building your own custom data pull. If you’ve closed the MS
Query wizard, start it back up by going to the Data tab of the Excel Ribbon,
choosing the From Other Sources option and then selecting From Microsoft
Query.

1. Select your ZalexCorp datasource, as demonstrated in Figure 14-16, and
click OK.

2. As you can see in Figure 14-17, you are presented with a dialog box
that shows tables and queries within the ZalexCorp database. Select the
Revenue by Period object and click the button with the right-pointing
arrow.

3. In the next step, you can change the order of the data fields by clicking
the up and down arrows to the right of the Columns in your query list
box. Arrange the columns so that Region and Market come before Period
as demonstrated in Figure 14-18. Click the Next button.

358 Part V ■ Advanced Excel and Access Integration Techniques

Figure 14-16: Select your ZalexCorp data source.

Figure 14-17: Select the Revenue by Period object.

Figure 14-18: Move the Period column after Region and Market.

Chapter 14 ■ Getting Access Data into Excel 359

4. The next pane of the query wizard gives you the option of applying your
own criteria to filter your data before importing (see Figure 14-19). Select
the Period field to enable the filter options on the right. Once filtering
is enabled, select ‘‘is greater than’’ from the condition dropdown. Then
select 200812 in the criteria input box. Click the Next button.

Figure 14-19: Set a filter telling MS Query to return only those records where the Period
is greater than 200812.

5. In the next step, you’re offered the opportunity to sort your query results.
In this scenario, you want to sort by Period in ascending order, then by
SumofSalesAmount in descending order. Figure 14-20 illustrates what
this step looks like after the needed sorts have been applied. Click the
Next button.

Figure 14-20: You can apply your own sorting to your query results.

6. The last screen of the wizard asks you whether you want to return your
data to Excel or further modify the query in Microsoft Query. Choose to
view our data in Excel and click the Finish button.

360 Part V ■ Advanced Excel and Access Integration Techniques

7. At this point, you should see the Import dialog box shown in Figure 14-21.
Here, elect to return the data to a Table in cell A1, and then click the OK
button.

Figure 14-21: Return your results to a Table on your spreadsheet.

If all went well, you should have a table similar to that shown in
Figure 14-22. Note that as designed, your query results contain only records
where the Period is greater than 200812. Also, the columns have the correct
order and sorting.

Figure 14-22: You’ve successfully created your first MS Query!

You can refresh the data by right-clicking anywhere inside your query
table and selecting the Refresh button. You can also click the Refresh button
found in the Design tab which activates when you cursor is inside the query
table.

Again, while setting up an MS Query seems like a lot of work, the ability to
parse, filter and sort data on the fly gives MS Query a distinct advantage over
the previously mentioned methods for transferring data.

Chapter 14 ■ Getting Access Data into Excel 361

TRICKS OF THE TRADE: MANAGING EXTERNAL DATA PROPERTIES

Your query tables have a few adjustable properties exposed via the Properties
dialog box. You can get to the properties of a particular External data table by
clicking on the target table and selecting the Properties icon under the Data
Tab (see Figure 14-23).

Figure 14-23: Getting to the properties of an external data table dialog box.

Activating the properties of a query table calls up the dialog box shown in
Figure 14-24. Adjusting these properties allows you to further customize your
query tables to suit your needs. Take a moment to familiarize yourself with
some of the useful options on this dialog box.

Figure 14-24: The External Data Properties dialog box.

■ Include row numbers: This property is unchecked by default. Checking this
property will create a dummy column that contains row numbers. The first
column of your dataset will be this row number column upon refresh.

■ Adjust column width: This property is checked by default, telling
Excel to adjust the column widths each time the data is refreshed.
Removing this check will cause the column widths to remain the same.

■ Preserve column/sort/filter/layout: If this is checked, the order
of the columns and rows of the Excel range remains unchanged.

(continued)

362 Part V ■ Advanced Excel and Access Integration Techniques

TRICKS OF THE TRADE: MANAGING EXTERNAL DATA PROPERTIES
(continued)

This way, you can rearrange and sort the columns and rows of
the external data in your spreadsheet without worrying about
blowing away your formatting each time you refresh. Unchecking
this property makes the Excel range look like the query.

■ Preserve cell formatting: This is checked by default, telling Excel
to keep the applied cell formatting when you refresh.

■ Insert cells for new data, delete unused cells: This is the default setting
for data range changes. When data rows decrease, you may have errors in
adjacent cells that reference your external range. The cells these formulas
referenced are deleted, so you will get a #VALUE error in your formula cells.

■ Insert rows for new data, clear unused cells: When the unused cells are
cleared instead of deleted, the formula may no longer return an error.
Instead, it continues to reference cells from the original range—even
though some of them are blank now. This could still give you erroneous
results.

■ Overwrite cells for new data, clear unused cells: The third option should
be the same as option two when rows decrease as unused cells are cleared.

Summary

There are several basic techniques you can use to move Access data into your
Excel workbooks. The most basic of these is the Drag and Drop method, where
you literally drag access tables and queries onto a spreadsheet. Although this
method comes in handy when you are doing a quick one-time analysis, it’s
not ideal when your analytical processes require that the data coming from
Access be refreshed on a routine basis.

Another method of transferring data is to use Access’ own Export wizard.
This method is easy and it is ideal for automating exports to Excel using
macros. However, if you are making an Excel report where data refresh must
be under the Excel user’s control, this method is not for you.

Excel’s Get External Data functionality is yet another method you can employ
to transfer data from Access to Excel. With a simple wizard guiding your way,
it’s extremely easy to get up and running with this option. The advantage
to using the Get External Data method is that it allows you to establish a
refreshable data connection between Excel and Access. The disadvantage to
this method is that you have to take the data as it is in Access. That is to say,

Chapter 14 ■ Getting Access Data into Excel 363

you give up the ability to utilize sorts, filters, and table joins to customize the
data you bring into Excel.

The last method covered in this chapter is MS Query. MS Query is a
standalone application that works with Excel to pull external data via queries.
Like the Get External Data method, MS Query allows you to create refreshable
data connections between Excel and Access. But MS Query has a distinct
advantage over the Get External Data method in that it allows you to customize
your query results. That is to say, MS Query enables you to apply your own
filters and sorts to your data pulls, essentially creating custom views that don’t
necessarily exist in the source database.

With these basic options at your disposal, you should have no problem
integrating Excel and Access.

C H A P T E R

15
Using VBA to Move Data

between Excel and Access

Throughout the first few chapters of this book, you have discovered several
ways to move data between Access and Excel. Although many of those
techniques will suit your needs just fine, each one retains an aspect of manual
involvement. That is to say, each one involves manual setup, management,
and maintenance. In this chapter, you explore how to leverage VBA (along
with some data connection technologies) to make your life even easier by
making your data transfer processes virtually hands free.

Note the phrase, ‘‘along with some data connection technologies.’’ The
reality is that VBA, in and of itself, does not have the capability to connect
and manipulate external data. You need to combine VBA with a helper
technology to work with external data sources. Although many technologies
allow you to automate your data processes, you will focus on using ADO
(ActiveX Data Objects) and SQL (Structured Query Language)—commonly
pronounced ‘‘sequel.’’

Why bother using VBA when the manual processes work just fine? First, VBA
allows you to process data without the need to create and maintain multiple
queries and macros. Also with VBA, you can perform complex, multi-layered
procedures that involve looping, record-level testing, and If...Then...Else

checks without the need to inundate your processes with many queries and
temporary tables. Finally, the one-two-three combination of VBA, ADO, and
SQL is extremely powerful and relatively easy to understand and implement.
In fact, as you go through this chapter, you will immediately start to think
about the ways the techniques found here will help you optimize your Excel
and Access integration projects.

365

366 Part V ■ Advanced Excel and Access Integration Techniques

NOTE True to its purpose, all the techniques in this chapter involve writing some
basic code. In order to keep this chapter focused on the data analysis aspect of
these techniques, this chapter does not spending much time explaining the VBA
behind them. If you are new to VBA, you may want to visit Appendix A, which gives
you a basic understanding of the concepts used in this chapter.

Understanding ADO Fundamentals

When trying to grasp the basics of ADO, it helps to think of ADO as a tool
that will help you accomplish two tasks: Connecting to a data source and
specifying the dataset with which to work. In the following section, you will
explore the fundamental syntax you will need to know in order to do just that.

The Connection String
The first thing you must do is connect to a data source. In order to do this,
you must give VBA a few pieces of information. This information is passed to
VBA in the form of a connection string. A connection string is fundamentally
nothing more than a text string that holds a series of variables (also called
arguments), which VBA uses to identify and open a connection to a data source.
Although connection strings can get pretty fancy with a myriad of arguments
and options, there are a handful of arguments that are commonly used when
connecting to either Access or Excel. If you’re new to ADO, it helps to focus
on these commonly used arguments:

Provider: The Provider argument tells VBA what type of data source
with which you are working. When using Office 2007 or Office 2010 as
the data source, the Provider syntax will read:
Provider=Microsoft.ACE.OLEDB.12.0

If your data process needs to run on a machine that does not have Office
2007 or Office 2010 on it, you need to use the Provider for earlier versions
of Access and Excel:
Provider=Microsoft.Jet.OLEDB.4.0

Data Source: The Data Source argument tells VBA where to find the
database or workbook that contains the data needed. With the Data

Source argument, you pass the full path of the database or workbook.
For example:
Data Source=C:\Mydirectory\Northwind 2007.accdb

Extended Properties: The Extended Properties argument is typically
used when connecting to an Excel workbook. This argument tells VBA
that the data source is something other than a database. When working
with an Excel 2007 or 2010 workbook, this argument would read:
Extended Properties=Excel 12.0

Chapter 15 ■ Using VBA to Move Data between Excel and Access 367

If your data process needs to run on a machine that does not have Office
2007 or Office 2010 on it, you must use the Extended Properties for the
earlier versions of Excel:

Extended Properties=Excel 8.0

User ID: The User ID argument is optional and only used if a user ID is
required to connect to the data source:

User Id=MyUserId

Password: The Password argument is optional and only used if a password
is required to connect to the data source:

Password=MyPassword

Take a moment now to see a few examples of how these arguments are put
together to build a connection string:

Connecting to an Access database:

“Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source= C:\MyDatabase.accdb“

TIP You will notice that each argument is surrounded by quotes and we are using
the ampersand (&) along with an underscore (_). This is a simple technique used to
break up the text string into readable parts. The code above is the same as writing:

“Provider=Microsoft.ACE.OLEDB.12.0;Data Source= C: MyDatabase.accdb“

The purpose of breaking up the text string into parts is to make the code easy to
read and manage within the Visual Basic Editor. The first line starts the string, and
each subsequent line is concatenated to the previous line with the ampersand (&).
The underscore (_), preceded by a space, is used as a continuation marker,
indicating that the code on the next line is part of the code on the current line. This
is similar to the way a hyphen is used in writing to continue a word broken into
two lines.

Connecting to an Access database with password and user ID:

“Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source= C:\MyDatabase.accdb;“ & _

“User ID=Administrator;“ & _

“Password=AdminPassword“

Connecting to an Excel workbook:

“Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source=C:\MyExcelWorkbook.xlsx;“ & _

“Extended Properties=Excel 12.0“

Access connection string that will run on systems without Office 2007
installed:

“Provider=Microsoft.Jet.OLEDB.4.0;“ & _

“Data Source= C:\MyDatabase.mdb“

368 Part V ■ Advanced Excel and Access Integration Techniques

Excel connection string that will run on systems without Office 2007
installed:
“Provider=Microsoft.Jet.OLEDB.4.0;“ & _

“Data Source=C:\MyExcelWorkbook.xls;“ & _

“Extended Properties=Excel 8.0“

Declaring a Recordset
In addition to building a connection to your data source, you must define the
data set with which you need to work. In ADO, this dataset is referred to
as the Recordset. A Recordset object is essentially a container for the records
and fields returned from the data source. The most common way to define a
Recordset is to open an existing table or query using the following arguments
(see Table 15-1):

Recordset.Open Source, ConnectString, CursorType, LockType

Table 15-1: Recordset Arguments

ARGUMENT DEFINITION
Source Represents the data to be extracted. This is typically a table, query

or SQL statement that retrieves records. Initially, you use tables
and queries to select records from a data source. Later in this
chapter, you learn how to build SQL statements to fine tune data
extracts on the fly.

ConnectString Represent the connection string used to connect to your chosen
data source.

CursorType Represents how a Recordset allows you to move through the
data to be extracted. Types are shown in Table 15-2.

LockType The argument to specify whether the data returned by the
Recordset can be changed. Commonly used LockTypes are
shown in Table 15-3.

The CursorTypes commonly used are shown in Table 15-2.
The following sections provide a few examples of how to declare a Recordset

using the arguments you just covered.

Return Read Only Data from a Table or Query
Any of these Recordset declarations would return a Recordset that is read
only. Note that you can use a table name or a SQL statement in each one of
these examples:

MyRecordset.Open “MyTable“, ConnectString

MyRecordset.Open “SQL“, ConnectString, adOpenForwardOnly,adLockReadOnly

Chapter 15 ■ Using VBA to Move Data between Excel and Access 369

Table 15-2: Common Cursor Types

adOpenForwardOnly This is the default setting; if you don’t specify a
CursorType, the Recordset will automatically be
adOpenForwardOnly. This CursorType is the most
efficient type because it only allows you to move through
the Recordset one way, from beginning to end. This is
ideal for reporting processes where data only needs to be
retrieved and not traversed. Keep in mind that you cannot
make changes to data when using this CursorType.

adOpenDynamic This CursorType is typically used in processes where there
is a need for looping, moving up and down through the
dataset, or the ability to dynamically see any edits made to
the dataset. This CursorType is typically memory and
resource intensive and should be used only when needed.

adOpenStatic This CursorType is ideal for returning results quickly
because it essentially returns a snapshot of your data.
However, this is different from the adOpenForwardOnly
CursorType as it allows you to navigate the returned
records. In addition, when using this CursorType, the data
returned can be made updateable by setting its LockType
to something other than adLockReadOnly.

Table 15-3: Common Lock Types

adLockReadOnly This is the default setting; if you don’t specify a LockType, the
Recordset will automatically be set to adLockReadOnly.
This is typically used when there is no need to change the data
that is returned.

adLockOptimistic This LockType allows you to freely edit the data of the
records that are returned.

Return Updateable Data from a Table or Query

Any of these Recordset declarations would return updateable data. Note that
you can use a table name or a SQL statement in each one of these examples:

MyRecordset.Open “SQL“, ConnectString, adOpenStatic, adLockOptimistic

MyRecordset.Open “SQL“, ConnectString, adOpenDynamic, adLockOptimistic

Writing Your First ADO Procedure
Now it’s time to put together the ADO fundamentals you have explored thus
far to create your first ADO procedure. In this section, you build a procedure
that transfers an Access table into an Excel spreadsheet.

370 Part V ■ Advanced Excel and Access Integration Techniques

Referencing the ADO Object Library

Before you do anything with ADO, you must first set a reference to the ADO
Object Library. Just as each Microsoft Office application has its own set of
objects, properties and methods, so does ADO. Since Excel does not inherently
know the ADO Object Model, you need to point Excel to the ADO reference
library, as shown in the following steps:

1. Open a new Excel workbook and the Visual Basic Editor.

TIP Remember that in both Excel and Access you can access the VBE with the
shortcut Alt + F11. Alternatively, you can access the VBE in Excel by selecting the
Developer tab from the ribbon, and then selecting the Visual Basic icon.

Depending on how Excel is set up, the Developer tab may not show up in your
Ribbon by default. If it is not there, simply go to the top-left corner of the Ribbon
and click the File tab in Excel 2010 (the Office icon in Excel 2007) and select Excel
Options In the Personalize menu, you will see a check box entitled ‘‘Show
Developer tab in ribbon.’’ Make sure this box is checked.

2. Once you are in the Visual Basic Editor, go up to the application menu
and select Tools ➪ References. This opens the References dialog box
illustrated in Figure 15-1.

3. Scroll down until you locate latest version of the Microsoft ActiveX
Data Objects Library. Place a checkmark beside this entry and
click OK.

NOTE It is normal to have several versions of the same library displayed in the
References dialog box. It’s generally best to select the latest version available. You
will notice that in Figure 15-1, Microsoft ActiveX Data Objects Library 2.8 is used.
Don’t be too concerned if you only have earlier versions available; the examples in
this chapter will run fine with those earlier versions.

4. After you click the OK button, you can open the Reference dialog box
again to ensure that your reference is set. You will know that your
selection took effect, when the Microsoft ActiveX Data Objects Library is
displayed at the top of the Reference dialog box with a check next to it
(Figure 15-2).

NOTE You have just walked through setting a reference to the Microsoft ActiveX
Data Objects Library using Excel. Keep in mind that these are the steps you take
when you perform the same task in Access.

Chapter 15 ■ Using VBA to Move Data between Excel and Access 371

Also keep in mind that the references you set in any given workbook or database
are not applied at the application level. This means that you need to repeat these
steps with each new workbook or database you create.

Figure 15-1: Select the latest version of the Microsoft ActiveX Data Objects Library.

Figure 15-2: Open the References dialog box again to ensure that a reference to Microsoft
ActiveX Data Objects Library has indeed been set.

Writing the Code

Once you have a reference set to the ADO Object Library, start a new module
in the Visual Basic Editor by selecting Insert ➪ Module. Start a new Sub
procedure called GetAccessData. In that procedure, enter the following code:

372 Part V ■ Advanced Excel and Access Integration Techniques

Sub GetAccessData()

’Step 1: Declare your Variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

’Step 2: Declare your Connection String

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source=

C:\OffTheGrid\ZalexCorp Restaurant Equipment and Supply.accdb“

’Step 3: Instantiate and Specify your Recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open “Query_Products“, MyConnect, adOpenStatic,

adLockReadOnly

’Step 4: Copy the Recordset to Excel

Sheets(“Your First ADO Procedure“).Select

ActiveSheet.Range(“A2“).CopyFromRecordset MyRecordset

’Step 5: Add Column Labels

With ActiveSheet.Range(“A1:C1“)

.Value = Array(“Product“, “Description“, “Segment“)

.EntireColumn.AutoFit

End With

End Sub

TIP Installing the sample files for this book ensures that you have the Access
database referenced in the previous code. You will also find a workbook called
Chapter15_SampleFiles.xls containing this procedure along with the others found
in this chapter.

When writing your own procedures, you will alter the connection string to
reference the path for your data source.

Take a moment to think about what you are doing in each step:

1. Declaring the necessary variables: Declare two variables: a string vari-
able to hold the connection string, and a Recordset object to hold the
results of the data pull. In this example, the variable called MyConnect

holds the connection string identifying the data source. Meanwhile, the
variable called MyRecordset holds the data returned by the procedure.

2. Declaring the connection string: Define the connection string for the
ADO procedure. In this scenario, you are connecting to the ZalexCorp
Restaurant Equipment and Supply.accdb found on the C drive.

Chapter 15 ■ Using VBA to Move Data between Excel and Access 373

3. Assigning data to your Recordset: Once you’ve defined your data source,
you can fill your Recordset with some data. Specify that your Recordset
is read-only and filled with data from the Query_Products query found in
the ZalexCorp Restaurant Equipment and Supply Access database. When
writing your own procedures, you can replace the Query_Products query
name with that of your own tables.

Also notice that you must set the MyRecordset variable to a new
ADODB.Recordset (Set MyRecordset = New ADODB.Recordset). VBA
requires that you instantiate the Recordset object before it can be
used.

4. Copying the Recordset into Excel: By the time you reach this step, the
MyRecordset object is filled with data from the Query_Products query.
Now, you use Excel’s CopyFromRecordset method to get it out and into
your spreadsheet. This method requires two pieces of information: The
location of the data output and the Recordset object that holds the data
you need. In this example, you are copying the data in the MyRecordset

object onto the sheet called ‘‘Your First ADO Procedure’’ starting at
cell A2.

5. Adding column labels: Interestingly enough, the CopyFromRecordset

method does not return column headers or field names. Step 5 is where
you add the column headers yourself. You are telling Excel to fill cells A1
through C1 with the respective values in the array. Then you tell Excel to
AutoFit those columns so that all the data can be seen.

Using the Code

Be sure to save your changes, and then close the Visual Basic Editor. At this
point, you can run your procedure simply by running the GetAccessData
macro.

Better still, you can get fancy and assign the macro to a button. This
gives you and other users an easy way to call the ADO procedure
whenever you need to refresh the data extract from Access. Follow these
steps:

1. Select the Insert icon from the Developer tab on the Excel ribbon.

2. Click the Form button as demonstrated in Figure 15-3; then click anywhere
on your spreadsheet to drop the button on the sheet. You will immediately
see the Assign Macro dialog box shown here in Figure 15-4.

3. Click the macro name to assign the macro to the button.

4. Click OK.

374 Part V ■ Advanced Excel and Access Integration Techniques

Figure 15-3: Insert a Form button.

Figure 15-4: Assign a macro to the button.

The reward for all your efforts will be a worksheet that pulls data directly
from Access at the click of a button! Remember, this is all without the use
of third party applications (MS Query) or manual manipulation. With ADO
and VBA, you can build all the necessary components at one time in a nicely
packaged macro, and then simply forget about it. As long as the defined
variables in your code (that is, the data source path, the Recordset, the output
path) do not change, then your ADO-based procedures will require virtually
zero maintenance.

Writing your First ADO/SQL Data Extract
Writing a data extract procedure with ADO and SQL is very similar to writing
an ADO procedure to extract data directly from an Access table. The difference
is that instead of specifying a table name as the data source, you pass a SQL

Chapter 15 ■ Using VBA to Move Data between Excel and Access 375

statement that defines the data you need. Start a new module and enter the
following code.

Sub GetAccessData_With_SQL()

’Step 1: Declare your variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

Dim MySQL As String

’Step 2: Declare your connection string

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source= C:\OffTheGrid\ZalexCorp Restaurant

Equipment and Supply.accdb“

’Step 3: Build your SQL statement

MySQL =“SELECT Region, Market, Product_Description,“ & _

“ Sum(Revenue) AS Rev, Sum(TransactionCount) AS Units“ & _

“ FROM PvTblFeed“ & _

“ GROUP BY Region, Market, Product_Description“

’Step 4: Instantiate and specify your recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open MySQL, MyConnect, adOpenStatic, adLockReadOnly

’Step 5: Copy the recordset to Excel

Sheets(“ADO and SQL“).Select

ActiveSheet.Range(“A2“).CopyFromRecordset MyRecordset

’Step 6: Add column labels

With ActiveSheet.Range(“A1:E1“)

.Value = Array(“Region“, “Market“, “Product_Description“, _

“Revenue“, “Transactions“)

.EntireColumn.AutoFit

End With

End Sub

TIP Be sure that you have set a reference to the ADO Object Library as outlined
in ‘‘Referencing the ADO Object Library’’ earlier in this chapter.

Feel free to check out Appendix B if you need a refresher on SQL syntax
fundamentals.

Running this code queries the Access database and aggregates records on
the fly to return data to an Excel sheet. Let’s take a moment to talk about what
you are doing in each step.

376 Part V ■ Advanced Excel and Access Integration Techniques

1. Declaring the necessary variables: Declare three variables: a string
variable to hold the connection string, a Recordset object to hold the
results of the data pull, and a second string variable to hold your SQL
statement. In this example, the variable called MyConnect holds the
connection string identifying the data source. Meanwhile, the variable
called MyRecordset holds the data returned by the procedure and the
variable called MySQL holds the SQL statement.

2. Declaring the connection string: Define the connection string for the
ADO procedure. In this scenario, you are connecting to the ZalexCorp
Restaurant Equipment and Supply.accdb database found on the C drive.

3. Building the SQL statement: Assign a SQL statement in the form of a
text string to the MySQL variable. You’ll notice that the SQL statement is
broken up into separate strings, each string followed by the ampersand (&)
along with an underscore (_). This technique breaks up the complete SQL
string into readable parts, making the code easier to read and manage.
The first line starts the string, and each subsequent line is concatenated to
the previous line with the ampersand (&). The underscore (_), preceded
by a space, is used as a continuation marker, indicating that the code on
the next line is part of the code on the current line.

4. Assigning data to your Recordset: Specify that your Recordset is
read-only and is filled with data returned from your SQL statement.

5. Copying the Recordset into Excel: Use Excel’s CopyFromRecordset

method to get the returned dataset into your spreadsheet. In this example,
you copy the data in the MyRecordset object onto the sheet called ‘‘ADO
and SQL’’ starting at cell A2.

6. Adding column labels: Add header columns by telling Excel to fill cells
A1 through E1 with the respective values in the array. Then you tell Excel
to AutoFit those columns so that all the data can be seen.

Using Criteria in your SQL Statements
Passing criteria through your SQL statements allows you to evaluate each
record in your dataset and selectively filter only the ones you need. This
affords you tremendous flexibility that you can only achieve through SQL.
Take a moment to review a few example SQL statements that use criteria to
filter records.

TIP To get a sense of the impact of using criteria, try replacing the SQL statement
in the example you just walked through with any one of the statements listed in
the following sections.

Chapter 15 ■ Using VBA to Move Data between Excel and Access 377

Set Numeric Criteria

Setting numeric criteria is quite simple; just select the operator you want and
you’re done. In this example, you are selecting only those records that show
revenues greater than $2,000.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE Revenue > 2000“

Set Textual Criteria

When setting criteria that is textual or text type, you need to wrap your text
in single quotes. In this example, you are selecting only records that belong to
the Denver market.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE Market = 'Denver'“

Set Date Criteria

When setting criteria for a date type field, you need to wrap your criteria in
pound (#) signs. The pound signs tags the criteria string as a date. In this
example, you are selecting only those records that have an effective date after
June 30, 2004.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE Effective_Date > #30/Jun/2004#“

Set Multiple Criteria

It’s important to mention that you are not limited to one criterion. You can
evaluate multiple criteria with your SQL statements by simply using the AND

operator. In the example shown here, you are selecting only those records that
have an effective date after June 30, 2004 and belong to the Denver market.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE (Effective_Date > #6/30/2004#) AND (Market = 'Denver')“

You can evaluate multiple criteria using the OR operator as demonstrated in
the next example. Here, you are selecting only records that belong to either
the Denver market or the Charlotte market.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE (Market = 'Denver') OR (Market = 'Charlotte'“)

378 Part V ■ Advanced Excel and Access Integration Techniques

TIP You will note that in the multiple criteria examples each criterion is wrapped
in parentheses. The parentheses are not actually necessary; the SQL statement is
valid without the parentheses. However, the parentheses are useful in visually
separating the criteria, allowing for easy reading.

Using the LIKE Operator with ADO

Access users will note that the wildcard character used in the WHERE clause is
not the asterisk (*) that is typically used in Access. Instead, the percent sign
(%) is used. This is because the SQL statement will be passed through ADO,
which only validates the percent sign as a wildcard character.

“ SELECT * FROM PvTblFeed“ & _

“ WHERE (Market Like 'C%')“

TROUBLESHOOTING ERRORS IN YOUR SQL STATEMENTS

Troubleshooting a SQL statement in VBA can be one of the most frustrating
exercises you will undertake, primarily for two reasons:

■ You are working in an environment where the SQL statement is
broken up into pieces. Although this makes it easier to determine
what the SQL statement is doing, it makes debugging problematic
since you cannot readily see the statement as a whole.

■ The error messages you get when SQL statements fail are often
vague, leaving you to guess what the problem may be.

Here’s a handy little trick you can implement to make troubleshooting a
SQL statement a bit easier. Pass your SQL statement to a message box. The
message box will enable you to see your SQL statement as a whole and more
easily point out where the discrepancy lies. Take, for example, the following
SQL statement:

MySQL =“SELECT Region, Market, Product_Description,“ & _

“ Sum(Revenue) AS Rev, Sum(TransactionCount) AS Units“ & _

“FROM PvTblFeed“ & _

“GROUP BY Region, Market, Product_Description“

This particular statement fails and throws the error shown in Figure 15-5.
The trick is to pass the MySQL string variable to a message box as demon-

strated here:

MySQL =“SELECT Region, Market, Product_Description,“ & _

“ Sum(Revenue) AS Rev, Sum(TransactionCount) AS Units“ & _

“FROM PvTblFeed“ & _

“GROUP BY Region, Market, Product_Description“

MsgBox (MySQL)

Chapter 15 ■ Using VBA to Move Data between Excel and Access 379

TROUBLESHOOTING ERRORS IN YOUR SQL STATEMENTS

Figure 15-5: This error message is vague and practically useless.

As you can see in Figure 15-6, this activates a message box that contains
your SQL statement in its entirety. Here, you can review the SQL and deter-
mine that the culprits for the error are two missing spaces, one before the
FROM clause and one before the GROUP BY clause.

Missing spaces

Figure 15-6: Using a message box allows you to more easily pinpoint errors in
your SQL statements.

That’s right; two measly spaces cause the entire SQL statement to fail.
Remember, these lines of code are not separate SQL statements; they are
actually pieces of one SQL statement that have been broken down into parts.
They are pieced back together when the function is executed. In that light, you
have to consider, and include, all syntax that is necessary to create a valid
SQL statement, including spaces. In this example, the fix for the error is simply
to add a space before the FROM and GROUP BY clauses.

MySQL =“SELECT Region, Market, Product_Description,“ & _

“ Sum(Revenue) AS Rev, Sum(TransactionCount) AS Units“ & _

“ FROM PvTblFeed“ & _

“ GROUP BY Region, Market, Product_Description“

380 Part V ■ Advanced Excel and Access Integration Techniques

Common Scenarios Where VBA Can Help

There are literally countless ways you can use the fundamentals you have
learned in this chapter. Of course, it would be impossible to go through each
example here. However, there are some common scenarios where VBA can
greatly enhance integration between Excel and Access.

Query Data from an Excel Workbook
Up until now, you have used Access as the data source for your data pulls.
However, use can also use an Excel workbook as a data source. To do so, you
would simply build a SQL statement that references the data within the Excel
workbook. The idea is to pinpoint the dataset in Excel to query by passing a
sheet name, a range of cells, or a named range to the SQL statement.

Query the Entire Worksheet: To query all of the data on a specific
worksheet, you would pass the name of that worksheet followed by
the dollar sign ($) as the table name in your SQL statement. Be sure to
encapsulate the worksheet name with square brackets. For example:

“SELECT * FROM [MySheet$]“

NOTE If the worksheet name contains spaces or characters that are not
alphanumeric, you will need to wrap the worksheet name in single quotes. For
instance: Select * from [’January; Forecast vs. Budget$’]

Query a Range of Cells: To query a range of cells within a given
worksheet, you would first identify the sheet as described above, and
then add the target range. For example:

“SELECT * FROM [MySheet$A1:G17]“

Query a Named Range: To query a named range, simply use the name of
the range as the table name in your SQL statement. For example:

“SELECT * FROM MyNamedRange“

The code shown here demonstrates how to query data from an Excel
worksheet. In this example, the entire used range in the SampleData worksheet
is queried to return only those records that belong to the North Region.

Sub GetData_From_Excel_Sheet()

’Step 1: Declare your variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

Dim MySQL As String

Chapter 15 ■ Using VBA to Move Data between Excel and Access 381

’Step 2: Declare your connection string

MyConnect =“Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source=

C:\OffTheGrid\Chapter15_SampleFile.xlsm;“ & _

“Extended Properties=Excel 12.0“

’Step 3: Build your SQL Statement

MySQL = “ SELECT * FROM [SampleData$]“ & _

“ WHERE Region =’NORTH’“

’Step 4: Instantiate and specify your recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open MySQL, MyConnect, adOpenStatic, adLockReadOnly

’Step 5: Clear previous contents

Sheets(“Excel Data Pull“).Select

ActiveSheet.Cells.Clear

’Step 6: Copy the recordset to Excel

ActiveSheet.Range(“A2“).CopyFromRecordset MyRecordset

’Step 7: Add column labels

With ActiveSheet.Range(“A1:F1“)

.Value = Array(“Region“, “Market“, “Product_Description“, _

“Revenue“, “Transactions“, “Dollar per Transaction“)

.EntireColumn.AutoFit

End With

End Sub

To query an Excel workbook, follow these steps:

1. Declaring the necessary variables: Declare three variables: a string
variable to hold the connection string, a Recordset object to hold the
results of the data pull, and a second string variable to hold your SQL
statement. In this example, the variable called MyConnect will hold the
connection string identifying the data source. Meanwhile, the variable
called MyRecordset holds the data that is returned by the procedure and
the variable called MySQL holds the SQL statement.

2. Declaring the connection string: Define the connection string for the
ADO procedure. In this scenario, you are connecting to an Excel work-
book, thus the reason for the Extended Properties argument.

3. Building the SQL statement: Assign a SQL statement in the form of a text
string to the MySQL variable. Here, you build the SQL statement just as
though you were working with a database, only you pass the worksheet
name as the table. Note that NORTH is encased in single quotes. In SQL
statements, you can use single and double quotes interchangeably.

382 Part V ■ Advanced Excel and Access Integration Techniques

4. Assigning data to your RecordSet: You specify that your Recordset is
read-only and is filled with data returned from your SQL statement.

5. Clearing cell contents: Clear the Excel Data Pull worksheet before copy-
ing the Recordset. This ensures that all data from the previous pull are
removed before bringing in fresh data.

6. Copying the Recordset into Excel: Use Excel’s CopyFromRecordset

method to get the returned dataset into your spreadsheet. In this example,
you copy the data in the MyRecordset object onto the sheet called Excel
Data Pull starting at cell A2.

7. Adding column labels: Add header columns by telling Excel to fill cells
A1 through F1 with the respective values in the array. Then tell Excel to
AutoFit those columns so that all the data can be seen.

Append Records to an Existing Excel Table
There are often times when you don’t necessarily want to overwrite the data
in your Excel worksheet when you bring in fresh data. Instead, you may want
to simply add or append data to the existing table.

In a typical scenario, you would hard-code the location or range where you
want a given Recordset to be copied. In these situations, this location must
dynamically change to reflect the first empty cell in your worksheet. The code
that follows demonstrates this technique.

Sub Append_Results()

’Step 1: Declare your variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

Dim MyRange As String

’Step 2: Declare your connection string

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source= C:\OffTheGrid\ZalexCorp Restaurant

Equipment and Supply.accdb“

’Step 3: Instantiate and specify your recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open “Query_Products“, MyConnect, adOpenStatic,

adLockReadOnly

’Step 4: Find first empty row and use that to build a dynamic range

Sheets(“AppendData“).Select

MyRange = “A“ & _

ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Row + 1

Chapter 15 ■ Using VBA to Move Data between Excel and Access 383

’Step 5: Copy the Recordset to First Empty Row

ActiveSheet.Range(MyRange).CopyFromRecordset MyRecordset

End Sub

The following steps show how to append records to an existing Excel table:

1. Declaring the necessary variables: In Step 1, you declare three variables:
a string variable to hold the connection string, a Recordset object to hold
the results of the data pull, and a second string variable to hold text that
represent a cell reference. In this example, the variable called MyConnect

holds the connection string identifying the data source. Meanwhile, the
variable called MyRecordset holds the data that is returned by the proce-
dure and the variable called MyRange holds a text string that represent a
cell reference.

2. Declaring the connection string: Define the connection string for the
ADO procedure. In this scenario, you are connecting to the ZalexCorp
Restaurant Equipment and Supply.accdb database found on the C drive.

3. Assigning data to your Recordset: Specify that your Recordset is
read-only and is filled with data from the Query_Products query found
in the ZalexCorp Restaurant Equipment and Supply Access database.

4. Finding the first empty cell: Dynamically determine the first available
empty cell that can be used as the output location for the data pull.
First, find the first empty row. This is relatively easy to do thanks to
Excel’s SpecialCells method, which helps you find the last used cell in
the worksheet, and then extracts the row number of that cell. This gives
you the last used row. To get the row number of the first empty row you
simply add 1; the next row down from the last used row will inherently
be empty.

The idea is to concatenate the SpecialCells routine with a column letter
(in this case “A“) to create a string that represents a range. For example, if
the first empty row turns out to be 10, then the code shown below would
return “A10“.
“A“ & ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Row + 1

Trapping this answer in the MyRange string variable allows you to pass
the answer to the CopyFromRecordset method in Step 5.

5. Copying the Recordset into Excel: Use Excel’s CopyFromRecordset

method to get the returned dataset into your spreadsheet. In this example,
you are copying the data in the MyRecordset object onto the sheet called
‘‘AppendData’’ starting at the cell that has been dynamically defined by
the MyRange string.

384 Part V ■ Advanced Excel and Access Integration Techniques

Append Excel Records to an Existing Access Table
You will undoubtedly find a time when you need to pull data from an Excel
file into an Access table. Again, there are several ways to get Excel data in
Access, but using the one-two-three combination of VBA, ADO and SQL can
provide some flexibility that is not easily attained using other methods.

The code that follows demonstrates how to query data from an Excel
worksheet and append the results to an existing Access table. In this example,
the SampleData worksheet is queried to return only those records that belong
to the North Region.

Note that this code is designed to be run from Access. That is to say, you
add this code to your Access database to pull data from Excel.

Sub GetData_From_Excel_Sheet()

’Step 1: Declare your variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

Dim MyTable As ADODB.Recordset

Dim MySQL As String

’Step 2: Declare your connection string

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source=C:\OffTheGrid\Chapter15_SampleFile.xlsm;“& _

“Extended Properties=Excel 12.0“

’Step 3: Build your SQL statement

MySQL = “ SELECT * FROM [SampleData$]“ & _

“ WHERE Region =’NORTH’“

’Step 4: Instantiate and specify your recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open MySQL, MyConnect, adOpenStatic, adLockReadOnly

’Step 5: Instantiate and specify your Access table

Set MyTable = New ADODB.Recordset

MyTable.Open “ExcelFeed“, CurrentProject.Connection,

adOpenDynamic, adLockOptimistic

’Step 6: Loop through each record and add to the table

Do Until MyRecordset.EOF

MyTable.AddNew

MyTable!ActiveRegion = MyRecordset!Region

MyTable!ActiveMarket = MyRecordset!Market

MyTable!Product = MyRecordset!Product_Description

MyTable!Revenue = MyRecordset!Revenue

MyTable!Units = MyRecordset!Transactions

MyTable![Dollar Per Unit] = MyRecordset![Dollar Per Transaction]

MyTable.Update

Chapter 15 ■ Using VBA to Move Data between Excel and Access 385

MyRecordset.MoveNext

Loop

End Sub

Use the following steps to append Excel records to an existing Access table:

1. Declaring the necessary variables: Declare four variables:

MyConnect is a String variable that holds the connection string identi-
fying the data source.

MyRecordset is a Recordset object that holds the results of the data
pull.

MyTable is a Recordset object that provides the structure of the existing
table.

MySQL is a String variable that holds your SQL statement.

2. Declaring the connection string: Define the connection string for the
ADO procedure. In this scenario, you are connecting to an Excel work-
book, thus the reason for the Extended Properties argument.

3. Building the SQL statement: Assign a SQL statement in the form of a text
string to the MySQL variable. Here, you build the SQL statement just as
though you were working with a database, only you pass the worksheet
name as the table.

4. Assigning data to your Recordset: Specify that your Recordset is
read-only and is filled with data returned from your SQL statement.

5. Open the target Access table into a Recordset: Open the pre-existing
local ExcelFeed table into a Recordset. Two things to note about the
Recordset declaration in Step 5:

Notice that the connection argument is referencing the internal connec-
tion CurrentProject.Connection. You use this standard connection
to assign a local table to a Recordset.

The CursorType and LockType arguments are adOpenDynamic and
adLockOptimistic, respectively. This ensures that the local table can
be updated to append the new records.

6. Loop through the Query Results and add each record to the table: Use a
loop through the records in the results Recordset and add each record to
the local ExcelFeed table. Start the loop by declaring what the procedure
will do until MyRecordset hits the end of the file. This tells VBA to keep
looping through the MyRecordset Recordset until it hits the EOF (end of
file). Next, you use the AddNew method of the Recordset to add a new
empty record to the local ExcelFeed table represented by the MyTable
Recordset.

386 Part V ■ Advanced Excel and Access Integration Techniques

From here, you simply fill the fields in the empty record you just created
with the values that were returned from your SQL statement.

NOTE Note that each field in the ExcelFeed table (represented by the MyTable
Recordset) has its counterpart in the MyRecordset Recordset.

Querying Text Files
For many, text files are not only a source of data but also very much part of
daily data operations. Given this fact, it’s worth looking into how to pull data
from text files using ADO and SQL. The connection string used to source a
text file is as follows:

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source= C:\Integration\;“ & _

“Extended Properties=Text“

A closer look at the Data Source argument reveals that only the file’s
directory is specified as the source for the data; not the actual file itself. The
Extended Properties argument is set to Text.

Outside the difference in the construct of the connection string, querying a
text file is very much similar to querying an Excel workbook.

Sub GetData_From_Text_File()

’Step 1: Declare your variables

Dim MyConnect As String

Dim MyRecordset As ADODB.Recordset

Dim MySQL As String

’Step 2: Declare your connnection string

MyConnect = “Provider=Microsoft.ACE.OLEDB.12.0;“ & _

“Data Source=C:\OffTheGrid\;“ & _

“Extended Properties=Text“

’Step 3: Build your SQL statement

MySQL = “ SELECT * FROM SalesData.csv“

’Step 4: Instantiate and specify your recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open MySQL, MyConnect, adOpenStatic, adLockReadOnly

’Step 5: Clear previous contents

Sheets(“Query Text“).Select

ActiveSheet.Cells.Clear

’Step 6: Copy the recordset to Excel

Chapter 15 ■ Using VBA to Move Data between Excel and Access 387

ActiveSheet.Range(“A2“).CopyFromRecordset MyRecordset

’Step 7: Add column labels

With ActiveSheet.Range(“A1:F1“)

.Value = Array(“Region“, “Market“, “Product_Description“, _

“Revenue“, “Transactions“, “Dollar per Transaction“)

.EntireColumn.AutoFit

End With

End Sub

Summary

Although there are many methods for moving data between Access and Excel
using the interfaces of those two programs, many of them retains an aspect
of manual involvement. VBA can help make your data transfer processes
virtually hands free.

VBA, in and of itself, does not have the capability to connect and manipulate
external data. You need to combine VBA with helper technologies such as
ADO (ActiveX Data Objects) and SQL (Structured Query Language). ADO
is a tool that helps you accomplish two tasks: connect to a data source and
specify the dataset with which to work. SQL allows you to customize your
data processes, giving you the flexibility to filter, group and sort your results.

The one-two-three combination of VBA, ADO and SQL is extremely pow-
erful and relatively easy to understand and implement. Using these three
tools together, you can process data without the need to create and maintain
multiple queries and macros. You can also perform complex, multi-layered
procedures that involve looping, record-level testing, and If...Then...Else

checks without the need to inundate your processes with many queries and
temporary tables.

C H A P T E R

16
Exploring Excel and Access

Automation

In the last few chapters, you have learned several ways to automate your
analytical processes to achieve higher productivity, controlled analysis, and
reproducibility. In this chapter, automation takes on different meaning.
Automation here will define the means of manipulating or controlling one
application with another. Why would you even want to control one applica-
tion with another? Think about all the times you have crunched data in Access
only to bring the results into Excel for presentation and distribution. Think
about all the times you have sent Excel data to Access only to open Access and
run a set of queries or output a report.

The reality is that each of these applications has its strengths, which you
routinely leverage through manual processes. So why not automate these
processes? The goal of this chapter is to give you a solid understanding of how
to use automation to control Excel from Access and vice versa.

Understanding the Concept of Binding

Each program in the Microsoft Office Suite comes with its own Object Library.
As you know, the Object Library is a kind of encyclopedia of all the objects,
methods, and properties available in each Office application. Excel has its own
Object Library, just as Access has its own Object Library, just as all the other
Office applications have their own Object Library. In order for Excel to be able
to speak to another Office program such as Access, you have to bind it to that
program.

389

390 Part V ■ Advanced Excel and Access Integration Techniques

Binding is the process of exposing the Object Library for a server application
to a client application. There are two types of binding: early binding and late
binding.

NOTE In the context of this discussion, a client application is the application
that is doing the controlling, while the server application is the application being
controlled.

Early Binding
With early binding, you explicitly point a client application to the server appli-
cation’s Object Library in order to expose its object model during design-time,
or while programming. Then you use the exposed objects in your code to call
a new instance of the application as such:

Dim XL As Excel.Application

Set XL = New Excel.Application

Early binding has several advantages:

Because the objects are exposed at design-time, the client application
can compile your code before execution. This allows your code to run
considerably faster than with late binding.

Since the Object Library is exposed during design time, you have full
access to the server application’s object model in the Object Browser.

You have the benefit of using IntelliSense. IntelliSense is the functional-
ity you experience when you type a keyword and a dot (.) or an equal
sign (=) and you see a popup list of the methods and properties available
to you.

You automatically have access to the server application’s built-in con-
stants.

Late Binding
Late binding is different in that you don’t point a client application to a specific
Object Library. Instead, you purposely keep things ambiguous, only using the
CreateObject function to bind to the needed library at run-time, or during
program execution.

Dim XL As Object

Set XL = CreateObject(“Excel.Application“)

Late binding has one main advantage: Late binding allows your automation
procedures to be version-independent. That is, your automation procedure

Chapter 16 ■ Exploring Excel and Access Automation 391

will not fail due to compatibility issues between multiple versions of a
component. For example, suppose you decide to use early binding and set
a reference to the Excel Object Library on your system. The version of the
available library on your system will be equal to your version of Excel. The
problem is that if your users have an earlier version of Excel on their machine,
your automation procedure will fail. You do not have this problem with late
binding.

BINDING CONVENTIONS IN THIS BOOK

For the purposes of this book, early binding is used for a couple of reasons:

■ The design time benefits of early binding, such as IntelliSense, is ideal for
discovering and experimenting with the methods and properties that come
with Excel and Access.

■ This chapter is written in the context of building procedures that help you
increase productivity, not building an application that many users use.
In that light, version issues do not come into play, negating the need for late
binding.

Automating Excel from Access

Processes where Access data is moved to Excel lend themselves quite nicely
to automation. This is primarily due to the nature of these two programs.
Access typically serves as the data layer in most analytical processes, while
Excel serves as the presentation. Because of this dynamic, you may find that
you often send Access data to Excel to build charts, pivot tables, or some other
presentation mechanism displaying the data. Excel Automation can literally
take you out of the report building process, creating and saving Excel reports
without any human interaction.

Creating your First Excel Automation Procedure
For your first Excel automation trick, you will build a procedure in Access that
automatically opens a new Excel workbook and adds a worksheet:

1. Open the ZalexCorp Restaurant Equipment and Supply.accdb sample
database on www.wrox.com.

2. Start a new module by clicking the Create tab in the ribbon and selecting
Module. If you are using Access 2007, you need to select Macro ➪ Module.

www.wrox.com

392 Part V ■ Advanced Excel and Access Integration Techniques

3. Before you do anything, you must set a reference to the Excel Object
Library. To do this, go up to the application menu and select Tools ➪

References. The Reference dialog box shown in Figure 16-1 will activate.

4. Scroll down until you find the entry ‘‘Microsoft Excel XX Object Library,’’
where the XX is your version of Excel. Place a check in the checkbox
next to the entry, as shown here in Figure 16-1, and then click the
OK button.

Figure 16-1: Select the Excel Object Library and click the OK button.

NOTE If you don’t set a reference to the Excel Object Library, Access gives you a
compile error, producing you this message:

Compile error: User-defined type not defined.

The good news is that once you set a reference to the Excel Object Library in a
particular database, it is set for good in that database.

Now that you have referenced the Excel Object Library, you can start writing
code. Enter the following code in your newly created module.

Function MyFirstAutomationCode()

’Step1: Declare the variables you will work with.

Dim xl As Excel.Application

Dim xlwkbk As Excel.Workbook

Dim xlsheet As Excel.Worksheet

’Step 2: Start Excel, then add a workbook and a worksheet.

Set xl = New Excel.Application

Set xlwkbk = xl.Workbooks.Add

Chapter 16 ■ Exploring Excel and Access Automation 393

Set xlsheet = xlwkbk.Worksheets.Add

’Step 3: Make Excel visible

xl.Visible = True

’Step 4: Memory Clean up.

Set xl = Nothing

Set xlwkbk = Nothing

Set xlsheet = Nothing

End Function

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In step 1, declare three variables:

xl is an object variable that exposes the Excel Application object

xlwkbk is an object variable that exposes the Excel Workbook object

xlsheet is an object variable that exposes the Excel Worksheet object

2. Starting a new instance of Excel with a new Workbook and Worksheet:
In step 2, first create a new instance of Excel and assign that instance to
your xl object variable. From here, the xl object variable is your tie into
the Excel application, exposing all objects, properties and variables that
you would normally have if you were working directly in Excel.

Next, you open a new workbook by using the Workbooks.Add method
of the xl object variable. Note that you are assigning the new workbook
to your xlwkbk variable. At this point, your xlwkbk variable actually
represents a real workbook, exposing all objects, properties and variables
that you would normally have if you were working with a workbook
directly in Excel.

Finally, you add a new worksheet by using the Worksheets.Addmethod of
the xlwkbk object variable. Note that you are assigning the new worksheet
to your xlsheet variable. At this point, your xlsheet variable actually
represents a real worksheet, exposing all objects, properties and variables
that you would normally have if you were working with a worksheet
directly in Excel.

3. Making Excel visible: By default, an instance of Excel created via automa-
tion is not visible. Although not necessary, it’s generally a good practice
to make the instance of Excel visible for a couple of reasons. First, should
anything go wrong during the procedure, debugging becomes easier if
you can see the Excel spreadsheet. Secondly, you can easily close the
instance of Excel in debug mode by closing out the Excel window. If the
instance is not visible, you have to kill it by going into the Windows Task
Manager and ending the process there.

394 Part V ■ Advanced Excel and Access Integration Techniques

4. Cleaning up memory by closing the open objects: In step 4, it is
generally good practice to release the objects assigned to your variables.
This reduces the chance of any problems caused by rogue objects that
may remain open in memory. As you can see in the code, you simply set
the variable to Nothing.

Congratulations! You have just created your first automation procedure.

Automating Data Export to Excel
Now that you have successfully created your first automation procedure, it’s
time to try something more meaningful; sending Access data to Excel, the first
step in creating an Excel report from your Access analysis.

Sending one Recordset to Excel

The process of sending your Access data to Excel can generally be broken
down into three main actions:

1. First, you identify the dataset you want to send to Excel and assign it to
a Recordset object.

2. Next, you open Excel and copy the Recordset to a spreadsheet using
Excel’s CopyFromRecordset method.

3. Finally, since the CopyFromRecordset method does not transfer column
headings, you must add your dataset’s column headings and add them
to the spreadsheet.

Let’s go through the following example procedure, where you send the
PvTblFeed table to a tab called ‘‘Pivot Table Feed.’’

Function SendRecordset()

’Step1: Declare the objects and variables you will work with

Dim MyRecordset As ADODB.Recordset

Dim xl As Excel.Application

Dim xlwkbk As Excel.Workbook

Dim xlsheet As Excel.Worksheet

Dim i As Integer

’Step 2: Start Excel, then add a workbook and a worksheet

Set xl = New Excel.Application

Set xlwkbk = xl.Workbooks.Add

Set xlsheet = xlwkbk.Worksheets.Add

xlsheet.Name = “Pivot Table Feed“

’Step3: Make the instance of Excel visible

xl.Visible = True

Chapter 16 ■ Exploring Excel and Access Automation 395

’Step 4: Assign a dataset to the recordset object

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open “PvTblFeed“, CurrentProject.Connection

’Step 5: Copy the records to the active Excel sheet

With xlsheet

xl.Range(“A2“).CopyFromRecordset MyRecordset

End With

’Step 6: Add column heading names to the spreadsheet

For i = 1 To MyRecordset.Fields.Count

xl.ActiveSheet.Cells(1, i).Value = MyRecordset.Fields(i - 1).Name

Next i

’Step 7: Memory Clean up

Set MyRecordset = Nothing

Set xl = Nothing

Set xlwkbk = Nothing

Set xlsheet = Nothing

End Function

The following outlines what the steps in the code do:

1. Declaring the necessary objects and variables: In Step 1, you first declare
five variables:

MyRecordset is a Recordset object that holds the results of the data
pull.

xl is an object variable that exposes the Excel Application object.

xlwkbk is an object variable that exposes the Excel Workbooks object.

xlsheet is an object variable that exposes the Excel Worksheet object.

i in an integer variable that is used to add column headings.

2. Starting a new instance of Excel with new Workbook and Worksheet:
Step 2 creates a new instance of Excel, opens a new workbook and adds
a new worksheet. Note that you give the new worksheet a name, ‘‘Pivot
Table Feed.’’

3. Making Excel visible: Step 3 makes the instance of Excel visible.

4. Assigning data to your Recordset: Step 4 specifies that your Record-
set is read-only and is filled with data from the PvTblFeed table
found in the ZalexCorp Restaurant Equipment and Supply.accdb Access
database.

5. Copying the Recordset into Excel: By the time you reach step 5, the
MyRecordset object is filled with data from the PvTblFeed table. In Step 5,

396 Part V ■ Advanced Excel and Access Integration Techniques

you use Excel’s CopyFromRecordset method to get it out and into your
spreadsheet. In this example, you are copying the data onto your newly
created sheet starting at cell A2.

6. Adding column headers: As you know the CopyFromRecordset method
does not return column headers or field names. There are several ways to
fill in the column headers for a dataset. In Chapter 8, you used an array
to fill in the column headers. This example demonstrates how you can
enumerate through each field in the Recordset to automatically get the
name of each header and enter it into Excel.

7. Cleaning up the open objects: This step releases the objects assigned to
your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Sending Two Datasets to Two Different Tabs in the Same
Workbook

You will sometimes come across a scenario where you have to send two or
more datasets to Excel into different tabs. This is as easy as repeating parts of
the automation procedure for a different Recordset. The following code sends
the PvTblFeed table to a tab called ‘‘Pivot Table Feed’’ and then sends the
MainSummary table to another tab in the same the workbook.

Function SendMoreThanOneRecordset()

’Step1: Declare the objects and variables you will work with

Dim MyRecordset As ADODB.Recordset

Dim xl As Excel.Application

Dim xlwkbk As Excel.Workbook

Dim xlsheet As Excel.Worksheet

Dim i As Integer

’Step 2: Start Excel, then add a workbook and a worksheet

Set xl = New Excel.Application

Set xlwkbk = xl.Workbooks.Add

Set xlsheet = xlwkbk.Worksheets.Add

xlsheet.Name = “Pivot Table Feed“

’Step3: Make the instance of Excel visible

xl.Visible = True

’Step 4: Assign a dataset to the recordset object

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open “PvTblFeed“, CurrentProject.Connection

’Step 5: Copy the records to the active Excel sheet

With xlsheet

Chapter 16 ■ Exploring Excel and Access Automation 397

xl.Range(“A2“).CopyFromRecordset MyRecordset

End With

’Step 6: Add column heading names to the spreadsheet

For i = 1 To MyRecordset.Fields.Count

xl.ActiveSheet.Cells(1, i).Value = MyRecordset.Fields(i - 1).Name

Next i

’Step 7: Close active recordset: Repeat steps 4-6 for new a recordset

MyRecordset.Close

MyRecordset.Open “ForecastSummary“, CurrentProject.Connection

Set xlsheet = xlwkbk.Worksheets.Add

xlsheet.Name = “Forecast Summary“

With xlsheet

xl.Range(“A2“).CopyFromRecordset MyRecordset

End With

For i = 1 To MyRecordset.Fields.Count

xl.ActiveSheet.Cells(1, i).Value = MyRecordset.Fields(i - 1).Name

Next i

’Step 8: Memory Clean up

Set MyRecordset = Nothing

Set xl = Nothing

Set xlwkbk = Nothing

Set xlsheet = Nothing

End Function

CHECKING FOR RECORD COUNT BEFORE AUTOMATING EXCEL

Often times, the Recordset you are sending to your spreadsheet is a query that
may or may not return records. Interestingly enough, you do not receive an
error when you use the CopyFromRecordset method on an empty Recordset.
That means that it is completely possible to automate Excel, create a work-
book, and copy no records to it. This can cause problems later, especially if
you further your automation of Excel to include building a pivot table, creating
a chart, etc.

The quick and easy workaround to this potential problem is to check your
Recordset for a record count before doing anything. In Step 3 of the example
code that follows, a simple IF statement evaluates the count of records in
the Recordset. If the record count is less than 1 (meaning the Recordset
is holding 0 records), the procedure terminates. Otherwise, the procedure
continues.

(continued)

398 Part V ■ Advanced Excel and Access Integration Techniques

CHECKING FOR RECORD COUNT BEFORE AUTOMATING EXCEL (continued)

Function TestRecordCount()

’Step1: Declare the objects and variables you will work with

Dim MyRecordset As ADODB.Recordset

’Step 2: Start a new recordset

Set MyRecordset = New ADODB.Recordset

MyRecordset.Open “Employee_Master“, _

“CurrentProject.Connection“

’Step 3: Check RecordCount

If MyRecordset.RecordCount < 1 Then

MsgBox (“There are no records to output“)

Set MyRecordset = Nothing

Exit Function

Else

’Continue with your automation code...

End If

End Function

Automating Excel Reports: Without Programming
Excel
Excel automation goes beyond getting your data to Excel. With Excel automa-
tion, you can have Access dynamically add formatting, set print options, add
an AutoFilter, create pivot tables, build charts, and the list goes on.

However, the rub here is there are countless actions you can take after
your Access data reaches Excel. Where do you begin to learn how to create a
pivot table using VBA, create and format a chart with VBA, or even add an
AutoFilter? While it’s true there are many resources that can help you learn
VBA, the reality is that this kind of a learning process takes trial and error as
well as time to build experience working with the Excel object model. Even
if programming Excel pivot tables and charts were within the scope of this
book, there are enough nuances to Excel programming that any instruction
that could fit into one chapter would fall short.

So what is an aspiring analyst to do? After all, the reason you are reading
this book is that you need to implement automation now. The answer is to
simply let Excel program for you!

In Excel, macros are used as a way to record actions that can be played
back when needed. When you start recording a macro, Excel automatically
generates one or more lines of code for every action you take. After you
stop recording, you can open the macro to review, edit, or even copy the

Chapter 16 ■ Exploring Excel and Access Automation 399

generated code. The idea here is after you send Access data to Excel, you
can perform some actions on your data while recording a macro, and then
copy the macro generated-code into the Access module where you have the
automation procedure. The next time you run the automation procedure, the
recorded macro actions will run right from Access.

To illustrate this concept, take some time to walk through the following
demonstration.

1. In the sample database, execute the SendRecordset function in the Module
titled ‘‘Excel_Automation_2.’’ Once the function finishes running, you
should have an Excel spreadsheet that looks similar to the one shown in
Figure 16-2.

Figure 16-2: This is the spreadsheet you start with when you run the SendRecordset

function.

2. In Excel, start a new macro, name it ‘‘MyMacro’’ and click the OK button.
At this point, your macro will start recording your actions.

3. Make the following formatting changes:

1. Click cell A1.

2. Go up to the Data tab and click the Filter icon.

3. Select cells A1 through I1 and change the font style to bold.

4. Select columns A through I, then click the Home tab and select Format
➪ AutoFit Column Width.

5. Click cell A1

6. Select the Insert tab and click the pivot table icon. This activates the
Create PivotTable dialog box shown in Figure 16-3. Click the OK
button to create the pivot table. A new pivot table and a PivotTable
Field List appears.

7. In the PivotTable Field List, select the check boxes next to the following
fields: Region, Market, Revenue, and TransactionCount. Figure 16-4
illustrates the selections.

400 Part V ■ Advanced Excel and Access Integration Techniques

Figure 16-3: Create a new pivot table.

Figure 16-4: Select the pivot table fields.

4. Click cell A1.

5. Stop the macro recording.

6. Now that you have finished recording the necessary actions, you can
copy the macro-generated code out of Excel and into Access. In order
to do this, click the Developer tab and select Macros. This opens up the
Macro dialog box shown in Figure 16-5. Select MyMacro, then select Edit.

7. The code in your macro should look similar to the code shown in
Figure 16-6. At this point, all you have to do is select and copy all the
code within the Sub procedure (don’t include the comments or End Sub).

Chapter 16 ■ Exploring Excel and Access Automation 401

Figure 16-5: Open your newly created macro in Edit mode to copy to the macro-generated
code.

8. Open the ‘‘Excel_Automation_2’’ module in Access and paste the code
after the step where you enumerate through the column headings
(Step 6) as shown in Figure 16-7.

Figure 16-6: Copy the macro-generated code out of Excel.

402 Part V ■ Advanced Excel and Access Integration Techniques

Figure 16-7: Copy the macro-generated code out of Excel.

TIP Be sure to paste your macro-generated code in a place within your procedure
that makes sense. For example, you don’t want the procedure to encounter this
code before the data has been sent to Excel. Generally, Excel generated code can
logically be added directly after the section of code that applies column headings.

Also, notice that in Figure 16-7, there is a clear marker that indicates where the
Excel generated code starts. It’s good practice to clearly define the point where
you are working with Excel generated code. This ensures that you can easily find
the section of code in the event you need to replace it, or remove it all together.

9. You’re almost done. Now add the appropriate application variable name
to each foreign object that is a direct property of that application object. In
other words, since the objects and properties in the macro-generated
code come from the Excel Object Library, you need to let Access
know by prefacing each of these with the name you assigned to the
Excel application. For example: Range(“A1“).Select would be edited to
xl.Range(“A1“).Select because xl is the variable name you assigned

Chapter 16 ■ Exploring Excel and Access Automation 403

to the Excel application object and Range is used as a direct property
of the Excel application. In this example, you prefix each one of the
following objects with xl.: Range, Selection, Columns, Cells, Sheets,
ActiveWorkbook, and ActiveSheet. Figure 16-8 demonstrates what your
code should look like once you have made this change.

Figure 16-8: Add the xl. variable tags you see here in bold font.

Note that you only have to add the application variable name to object
and properties that are not being used by an object or property of a higher
object. To drive this point home, take these two lines of code for example:

xl.Columns(“A:I“).Select

xl.Selection.Columns.AutoFit

Notice that when Columns is used as a property of the Selection object it
is not prefaced with the variable name xl.

WARNING Be warned that skipping Step 9 causes you to get these seemingly
unpredictable run-time errors:

Run-time error ‘1004’: Method ‘Range’ of object ‘_Global’ failed

Run-time error ‘91’: Object variable or With block variable not set

10. Save your module and test it.

404 Part V ■ Advanced Excel and Access Integration Techniques

You have just built your first fully automated Excel report! Keep in mind
that this is a simple example. The possibilities are as expansive as Excel itself.
For example, you could create a chart, create a pivot table, or apply subtotals.
Using this method, you can literally create a report purely in VBA and then
run it whenever you want.

SUPPRESSING EXCEL’S WARNING AND INFORMATIONAL MESSAGES

When building your automation procedures, you may invoke some actions
that require your input. For example, choosing to save a worksheet may
invoke a message from Excel asking if you want to overwrite the previously
saved file.

The problem with these types of messages is that they interrupt your auto-
mated procedures while Excel waits for an answer from you. Given that the
purpose of automation is to remove the element of human interaction, this
just won’t do.

If you want to suppress Excel’s warning and informational messages
that pop up occasionally, use Excel’s DisplayAlerts property. The
DisplayAlerts property is analogous to Access’ SetWarnings method: It’s
used to suppress application messages by automatically selecting Yes or OK
for the user.

To suppress Excel’s alerts, insert the following code before your macro-
generated code.

xl.DisplayAlerts = False

To turn alerts back on, insert the following code after your macro-generated
code.

xl.DisplayAlerts = True

Using Find and Replace to Adjust Macro-Generated
Code
In the previous section, you learned that there are Excel objects and properties
that you needed to point back to the Excel Application object by prefacing
them with the name you assigned to the Excel application. For example:
Range(“A1“).Select would be edited to xl.Range(“A1“).Select because xl

is the name you assigned to the Excel Application object.
The problem is that this can be quite an ordeal if you have recorded a macro

that generated a substantial block of code. It would take a long time to search
through the macro-generated code and preface each appropriate object or
property. However, there are Excel objects and properties used repeatedly in
your macro-generated code. These are Range, ActiveSheet, ActiveWorkbook,
ActiveCell, Application, and Selection. The good news is that you can

Chapter 16 ■ Exploring Excel and Access Automation 405

leverage this fact by filtering these objects and properties into the four most
commonly used keywords.

The four most common keywords are:

Range

Selection

Active

Application

This is where the Find and Replace functionality can come in handy. With
Find and Replace, you can find these keywords and preface them all in one
fell swoop. To do this, follow these steps:

1. Select all the macro-generated code in the Visual Basic Editor.

2. Then you select Edit ➪ Replace. This activates the Replace dialog box
shown in Figure 16-9.

Figure 16-9: Use the find and replace functionality to preface the four most common key
words.

3. As you can see, all you have to do is enter each keyword into the Find
What drop-down list, and enter the prefaced keyword in the Replace With
drop-down list. Keep in mind that depending on your macro-generated
code, some of these keywords may not produce any hits, which is OK.

WARNING Notice in Figure 16-9 that there is a search option called Selected
Text. This means that any of the Find and Replace functionalities that you apply
are limited to the selected text. It is extremely important that you select the
macro-generated code and ensure that the Selected Text option is active before
you start any Find and Replace procedures. Otherwise, you could inadvertently
change code in other parts of your module.

Bear in mind that these keywords only make up the bulk of the objects and
properties that may need to be prefaced in your macro-generated code. There
are others that you’ll need to preface by hand, the most common of which are:

406 Part V ■ Advanced Excel and Access Integration Techniques

Columns

Cells

Rows

Sheets

Why can’t you preface these using Find and Replace? It’s a question of
object hierarchy. Often times, these are used as properties of higher objects,
which means you would not need to preface them because the higher object is
prefaced. Here’s an example:

xl.Columns(“A:I“).Select

xl.Selection.Columns.AutoFit

Notice that when Columns is used as a property of the Selection object it
is not prefaced. Prefacing the Columns, Cells, and Rows properties manually
ensures that you don’t unintentionally cause an error.

Running an Excel Macro from Access
Admittedly, bringing your Excel macro-generated code into Access and manip-
ulating the code to run in an Access module can be a daunting prospect for
some. Fortunately, there is an easier alternative. The alternative is to keep the
macro-generated code in Excel and simply fire the macro from Access. That is
to say, Access will do nothing more than just call the macro and run it. The
following code demonstrates how to fire a macro from Access.

Function RunExcelMacro()

’Step1: Declare the objects you will work with.

Dim xl As Excel.Application

Dim xlwkbk As Excel.Workbook

’Step 2: Start Excel, then open the target workbook.

Set xl = New Excel.Application

Set xlwkbk = xl.Workbooks.Open(“C:\Book1.xlsm“)

’Step 3: Make Excel visible

xl.Visible = True

’Step 4: Run the target macro

xl.Run “Macro1“

’Step 5: Close and save the workbook, then close Excel

xlwkbk.Close (True)

xl.Quit

Chapter 16 ■ Exploring Excel and Access Automation 407

’Step 6: Memory Clean up.

Set xl = Nothing

Set xlwkbk = Nothing

End Function

The following outlines what the steps in the code do:

1. Declaring the necessary objects: In Step 1, you first declare two variables:

xl is an object variable that exposes the Excel Application object.

xlwkbk is an object variable that exposes the Excel Workbook object.

2. Starting a new instance of Excel with a new Workbook and Worksheet:
In Step 2, you create a new instance of Excel and open the target
workbook—the workbook that contains the macro you need to run.

3. Making Excel visible: Step 3 makes the instance of Excel visible.

4. Running the target macro: Step 4 runs the target macro.

5. Closing and saving the target Workbook: This step closes and saves the
target workbook. The True argument in xlwkbk.Close(True) indicates
that you want the workbook saved after the macro has run. If you do not
want to save the target workbook, change this argument to False. Also
in Step 5, you quit the Excel application, effectively closing the instance
of Excel.

6. Cleaning up open objects: This steps releases the objects assigned to
your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Optimizing Macro-Generated Code
There is no arguing that Excel’s Macro Recorder can prove to be an invaluable
tool when building an automation procedure. The macro-generated code it
provides cannot only get you up and running quickly but also can help you
learn some of Excel’s programming fundamentals. The one drawback to using
macro-generated code, however, is that the code itself is rather inefficient.
This is because the macro recorder not only records the functional actions that
give your macro its utility, but it also records mouse moves, mouse clicks,
mistakes, redundant actions, etc. This leaves you with lots of useless code
that has nothing to do with macro’s original purpose. Although the impact
of this superfluous code is typically negligible, larger automation procedures
can take speed and performance hits due to these inefficiencies. In that light,
it’s generally a good practice to take some time to clean up and optimize your
macro-generated code.

408 Part V ■ Advanced Excel and Access Integration Techniques

Removing Navigation Actions

If you want to enter a formula in a cell within Excel, you have to select that
cell first and then enter the formula. Indeed, this is true with most actions; you
have to select the cell first and then perform the action. As you are recording
a macro, you are moving around and clicking each cell on which you need
to perform an action. Meanwhile the macro recorder is generating code for
all that navigation you are doing. However, the fact is that in VBA, you
rarely have to explicitly select a cell before performing an action on it. There-
fore, all that code is superfluous and is not needed. Consider the following
macro-generated code:

Range(“A1:I1“).Select

Selection.Font.Bold = True

In this example, the macro is selecting a range of cells first and then changing
the font style to bold. It’s not necessary to select the range first. This code can
be changed to read:

Range(“A1:I1“).Font.Bold = True

Another version of this type of behavior is the shown in the following code:

Range(“A20“).Activate

ActiveCell.FormulaR1C1 = “=4+4“

In this example, a cell is activated and then a formula is entered into the cell.
Again, it is not necessary to select the cell before entering the formula. This
code can be changed to read:

Range(“A20“).FormulaR1C1 = “=4+4“

Navigation code typically makes up a majority of the superfluous entries
in your macro-generated code. These are easy to spot and change. Remember
these general rules:

If one line contains the word Select and the following line contains
Selection, you can adjust the code.

If one line contains the word Activate and the following line contains
ActiveCell, you can adjust the code.

Deleting Code that Specifies Default Settings

Certain actions you take in Excel while recording a macro generate a
pre-defined collection of default settings. To demonstrate what this means,

Chapter 16 ■ Exploring Excel and Access Automation 409

open Excel and start recording a macro. Click on any cell and simply change
the Font to 12-pitch font. Stop the recording. The code that is generated will
look similar to this:

Range(“A2“).Select

With Selection.Font

.Name = “Calibri“

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ThemeColor = xlThemeColorLight1

.TintAndShade = 0

.ThemeFont = xlThemeFontNone

End With

Remember that all you did was change the font of one cell, but here you
have a litany of properties that reiterate default settings. These default settings
are unnecessary and can be removed. This macro can and should be adjusted
to read:

Range(“A2“).Font.Size = 12

TIP You can easily spot the lines of code that represent default setting because
they are usually encapsulated within a With statement.

Cleaning Up Double Takes and Mistakes

While you are recording a macro, you will inevitably make missteps and, as
a result, redo actions once or twice. As you can imagine, the macro recorder
will steadily record these actions, not knowing they are mistakes. To illustrate
this, look at the following code:

Range(“D5“).Select

Selection.NumberFormat = “$#,##0.00“

Selection.NumberFormat = “$#,##0“

Range(“D4“).Select

Range(“D5“).Select

Range(“A2“).Select

With Selection.Font

.Name = “Calibri“

.Size = 12

.Strikethrough = False

.Superscript = False

.Subscript = False

410 Part V ■ Advanced Excel and Access Integration Techniques

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ThemeColor = xlThemeColorLight1

.TintAndShade = 0

.ThemeFont = xlThemeFontNone

End With

Range(“A2“).Select

With Selection.Font

.Name = “Calibri“

.Size = 10

.Strikethrough = False

.Superscript = False

.Subscript = False

.OutlineFont = False

.Shadow = False

.Underline = xlUnderlineStyleNone

.ThemeColor = xlThemeColorLight1

.TintAndShade = 0

.ThemeFont = xlThemeFontNone

End With

Range(“D5“).Select

Believe it or not, there is only one real action being performed here: Change
the number format of cell D5. So why are there so many lines of code?
If you look closely, you will see that number formatting has been applied
twice, first with two decimal places and then with no decimal places. In
addition, the font in Cell A2 was changed to 12-pitch font, then changed back
to 10-pitch font. If you remove these missteps, you get a more efficient set
of code.

Range(“D5“).NumberFormat = “$#,##0“

TIP When you hit the Undo command while recording a macro, the macro
recorder actually erases the lines of code that represent the actions that you are
undoing. In that light, make sure you utilize the Undo command before going back
to correct your missteps. This ensures you don’t record mistakes along with good
actions.

Temporarily Disabling Screen Updating

You will notice that while you are running an Excel macro, your screen flickers
and changes as each action is performed. This is because Excel’s default
behavior is to carry out a screen update with every new action. Unfortunately,
screen updating has a negative impact on macros. Because the macro has to

Chapter 16 ■ Exploring Excel and Access Automation 411

wait for the screen to update after every action, macro execution is slowed
down. Depending on your system memory, this can have a huge impact on
performance.

To resolve this issue, you can temporarily disable screen updating by
inserting the following code before your macro-generated code:

xl.ScreenUpdating = False

To turn screen updating back on, insert the following code after your
macro-generated code.

xl.ScreenUpdating = True

NOTE In the code example above, xl is the variable name assigned to the Excel
Application object. This can be different depending on the variable name you give
to the Excel Application object.

Automating Access from Excel

It typically doesn’t occur to most Excel users to automate Access using Excel.
Indeed, it’s difficult for most to think of situations where this would even
be necessary. Although there are admittedly few mind-blowing reasons to
automate Access from Excel, you may find some of the automation tricks found
in this section strangely appealing. Who knows? You may even implement a
few of them.

Setting the Required References
You should be familiar with the fact that if you want to work with another
object’s Object Library, you must set references. In order to work with Access,
you must set a reference to the Microsoft Access Object Library as illustrated
in Figure 16-10. In addition to the Access Object Library, you will note that
there is also a reference set to the Microsoft DAO Object Library. The DAO
(Data Access Objects) library allows you to easily create and manipulate the
database objects within Access.

NOTE It’s generally best to select the latest version of the Microsoft DAO library
available. You will notice that in Figure 16-10, latest version of the Microsoft DAO
Object Library is 3.6. Don’t be too concerned if you only have earlier versions
available; the examples in this chapter will run fine with those earlier version.

412 Part V ■ Advanced Excel and Access Integration Techniques

Figure 16-10: When automating Access, you should set a reference to both the Access
Object Library and the DAO Object Library.

At this point, open the Excel workbook called Chapter16_SampleFiles.xls
installed with the sample files for this book. There you will find the code for the
examples in this section. Take some time to review and test out each example.

Running an Access Query from Excel
Here’s a nifty technique for those of you who often copy and paste the results of
your Access queries to Excel. In this technique, you use DAO to run an Access
query in the background and output the results into Excel via a Recordset
object.

Sub RunAccessQuery()

’Step 1: Declare your variables

Dim MyDatabase As DAO.Database

Dim MyQueryDef As DAO.QueryDef

Dim MyRecordset As DAO.Recordset

Dim i As Integer

’Step 2: Identify the database and query

Set MyDatabase = DBEngine.OpenDatabase _

(“C:\OffTheGrid\ZalexCorp Restaurant Equipment and Supply.accdb“)

Set MyQueryDef = MyDatabase.QueryDefs(“Revenue by Period“)

’Step 3: Open the query

Set MyRecordset = MyQueryDef.OpenRecordset

’Step 4: Clear previous contents

Sheets(“Main“).Select

ActiveSheet.Range(“A6:K10000“).ClearContents

Chapter 16 ■ Exploring Excel and Access Automation 413

’Step 5: Copy the recordset to Excel

ActiveSheet.Range(“A7“).CopyFromRecordset MyRecordset

’Step 6: Add column heading names to the spreadsheet

For i = 1 To MyRecordset.Fields.Count

ActiveSheet.Cells(6, i).Value = MyRecordset.Fields(i - 1).Name

Next i

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

MyDatabase exposes your application via DAO.

MyQueryDef is a query definition object that exposes the target query.

MyRecordset is a Recordset object that holds the results of the data
pull.

i is an integer variable that adds column headings.

2. Setting the target database and target query: Step 2 specifies the database
that holds your target query as well as which query will be run. Assigning
the query to a QueryDef object allows you to essentially open the query
in memory.

3. Opening the query into a Recordset: In this step, you literally run the
query in memory and output the results into a Recordset. Once the results
are in a Recordset, you can use it just as you would any other Recordset.

4. Clearing contents in the spreadsheet: This step clears the ‘‘Main’’ work-
sheet before copying the Recordset. This ensures that all data from the
previous pull has been removed before bringing in fresh data.

5. Copying the Recordset into Excel: In Step 5, you use Excel’s
CopyFromRecordset method to get the returned dataset into your spread-
sheet. In this example, you are copying the data in the MyRecordset

object onto the sheet called ‘‘Main’’ starting at cell A7.

6. Adding column headers: In Step 6, you enumerate through each field in
the Recordset to automatically get the name of each header and enter it
into Excel.

Running Access Parameter Queries from Excel
An Access parameter query is interactive, prompting you for criteria before
the query is run. A parameter query is useful when you need to ask a

414 Part V ■ Advanced Excel and Access Integration Techniques

query different questions using different criteria each time it is run. To get a
firm understanding of how a parameter query can help you, build query in
Figure 16-11. With this query, you want to see the all purchase orders logged
during the 200705 system period.

Figure 16-11: This query has a hard-coded criterion for system period.

Although this query gives you what you need, the problem is that the
criterion for system period is hard-coded as 200705. That means if you want
to analyze revenue for a different period, you essentially have to rebuild the
query. Using a parameter query allows you to create a conditional analysis;
that is, an analysis based on variables you specify each time you run the query.
To create a parameter query, simply replace the hard-coded criteria with text
that you have enclosed in square brackets ([]), as shown in Figure 16-12.

Figure 16-12: To create a parameter query, replace the hard-coded criteria with text
enclosed in square brackets [].

Running a parameter query forces the Enter Parameter Value dialog box to
open and ask for a variable. Note that the text you typed inside the brackets

Chapter 16 ■ Exploring Excel and Access Automation 415

of your parameter appears in the dialog box. At this point, you would simply
enter your parameter, as shown in Figure 16-13.

Figure 16-13: Enter your criteria in the Enter Parameter Value dialog box and click OK.

By the way, you are not in any way limited in the number of parameters
you can use in your query. When you run this query, you are prompted for
both a system period and a product ID, allowing you to dynamically filter on
two data points without ever having to rewrite your query.

Figure 16-14: You can employ more than one parameter in a query.

The idea behind running an Access parameter query with Excel is simple.
Have the user input the parameters on your spreadsheet, then use automation
to run the parameter query in memory and output the results to Excel.

In the sample database, you will find a query called MyParameterQuery. A
quick look at this query in Design view (Figure 16-15) reveals that this query
checks for two parameters: region and business segment.

TIP You will notice that the parameters in Figure 16-15 have been combined
with the asterisk wildcard character (*). This useful technique forces all records to
be returned if the parameter is left blank. Without the wildcard characters, blank
parameters would cause the query to return no records. This trick essentially gives
you the option of entering the parameters to filter the records or ignore the
parameter to return all records.

Using the wildcard with a parameter also allows users to enter in a partial
parameter and still get results. Suppose, for example, that the criterion in your
parameter query is:

416 Part V ■ Advanced Excel and Access Integration Techniques

Like [Enter Lastname] & “*“

Entering A as the parameter would return all last names that start with the letter A.

Or suppose the criterion in your parameter query is:

Like “*“ & [Enter Lastname] & “*“

Entering A would return all last names that contain the letter A.

Figure 16-16 illustrates that the ‘‘Chapter16_SampleFiles.xlsm’’ workbook
has two cells designated as input fields: one for region and one for business
segment.

Figure 16-15: The MyParametersQuery asks for two parameters.

Figure 16-16: The input fields correspond with the parameters in the query called MyPa-
rameterQuery.

Take a moment to review the code that brings it all together. This tech-
nique allows you to build some interesting reporting solutions with relatively
little effort.

Chapter 16 ■ Exploring Excel and Access Automation 417

Sub RunAccessQuery()

’Step 1: Declare your variables

Dim MyDatabase As DAO.Database

Dim MyQueryDef As DAO.QueryDef

Dim MyRecordset As DAO.Recordset

Dim i As Integer

’Step 2: Identify the database and query

Set MyDatabase = DBEngine.OpenDatabase _

(“C:\OffTheGrid\ZalexCorp Restaurant Equipment and Supply.accdb“)

Set MyQueryDef = MyDatabase.QueryDefs(“MyParameterQuery“)

’Step 3: Define the Parameters

With MyQueryDef

.Parameters(“[Enter Segment]“) = Range(“D3“).Value

.Parameters(“[Enter Region]“) = Range(“D4“).Value

End With

’Step 4: Open the query

Set MyRecordset = MyQueryDef.OpenRecordset

’Step 5: Clear previous contents

Sheets(“Main“).Select

ActiveSheet.Range(“A6:K10000“).ClearContents

’Step 6: Copy the recordset to Excel

ActiveSheet.Range(“A7“).CopyFromRecordset MyRecordset

’Step 7: Add column heading names to the spreadsheet

For i = 1 To MyRecordset.Fields.Count

ActiveSheet.Cells(6, i).Value = MyRecordset.Fields(i - 1).Name

Next i

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: For step 1, declare four variables:

MyDatabase exposes your application via DAO.

MyQueryDef is a query definition object that exposes the target
query.

MyRecordset is a Recordset object that holds the results of the data
pull.

i is an integer variable that adds column headings.

418 Part V ■ Advanced Excel and Access Integration Techniques

2. Setting the target database and target query: In Step 2, you specify the
database that holds your target query as well as which query will be run.

3. Define parameters: In Step 3, you expose the query parameters in
order to assign values to each one. As you can see, the name of each
parameter matches the parameter name as entered in Query Design view
(Figure 16-15). The values assigned to each parameter come from the
corresponding input boxes on the Excel spreadsheet (Figure 16-16).

4. Opening the query into a Recordset: Step 4 runs the query in memory
and outputs the results into a Recordset.

5. Clearing contents in the Spreadsheet: Step 5 clears the ‘‘Main’’ worksheet
before copying the Recordset, ensuring that all data from the previous
pull has been removed before bringing in fresh data.

6. Copying the Recordset into Excel: In Step 6, you use Excel’s
CopyFromRecordset method to get the returned dataset into your
spreadsheet.

7. Adding column headers: In Step 7, you enumerate through each field in
the Recordset to automatically get the name of each header and enter it
into Excel.

Running an Access Macro from Excel
You can run Access macros from Excel, using automation to fire the macro
without opening Access. This technique is not only useful for running those
epic macros that involve a multi-step series of 20 queries but can also come
in handy for everyday tasks like outputting Access data to an Excel file. For
example, the following code fires an Access macro that exports a table to an
Excel file, and then opens the file with Excel.

NOTE Keep in mind that Access 2007 and 2010 have security features that may
prevent your macros from running. Feel free to review Chapter 6 to learn how to
manage macro security.

Sub OpenAccessMacro()

’Step 1: Declare your variables

Dim AC As Access.Application

’Step 2: Start Access and open the target database

Set AC = New Access.Application

AC.OpenCurrentDatabase (“C:\OffTheGrid\ZalexCorp Restaurant

Equipment and Supply.accdb“)

Chapter 16 ■ Exploring Excel and Access Automation 419

’Step 3: Run the target macro, then close Access

With AC

.DoCmd.RunMacro “MyMacro“

.Quit

End With

Workbooks.Open “C:\OffTheGrid\MyExcel_Output.xlsx“

End Sub

Opening an Access Report from Excel
As you learned in Chapter 11, Access reports allow you to build professional
looking reports that have a clean PDF-style look and feel. This example
demonstrates how you can open your Access reports right from Excel. The
appealing thing about this technique is that you don’t see Access at all; the
report goes straight to a Word rich-text file!

NOTE It takes a few seconds for Access to output the target report to rich text
format. The larger the report, the longer the conversion takes. With very large
reports, you may see the hourglass for a few minutes. Ultimately, you can weigh
the options and determine your patience threshold.

Sub OpenAccessReport()

’Step 1: Declare your variables

Dim AC As Access.Application

’Step 2: Start Access and open the target database

Set AC = New Access.Application

AC.OpenCurrentDatabase (“C:\OffTheGrid\ZalexCorp Restaurant

Equipment and Supply.accdb“)

’Step 3: Open the target report as a Word rich text file

With AC

.DoCmd.OpenReport “Revenue Report“, acViewPreview

.DoCmd.RunCommand acCmdOutputToRTF

.Quit

End With

End Sub

Opening an Access Form from Excel
There may be times when you or your clients need to switch focus to an Access
form. This example demonstrates how you can open an Access form from
Excel.

420 Part V ■ Advanced Excel and Access Integration Techniques

Sub OpenAccessForm()

’Step 1: Declare your variables

Dim AC As Access.Application

’Step 2: Start Access and open the target database

Set AC = New Access.Application

AC.OpenCurrentDatabase (“C:\OffTheGrid\ZalexCorp Restaurant

Equipment and Supply.accdb“)

’Step 3: Open the target form and make Access visible

With AC

.DoCmd.OpenForm “MainForm“, acNormal

.Visible = True

End With

End Sub

NOTE You will notice that the last few examples you walked through make use
of Access’ DoCmd object. This object exposes methods that are essentially macro
actions. That is to say, if you go to Access and start a new macro, the available
actions you will see listed there are the same ones exposed via DoCmd methods.
What’s the point? The point is that you can perform virtually any action that a
macro allows you to perform, simply by using the DoCmd object. This means that
you can build a virtual Access macro strictly with VBA.

Compacting an Access Database from Excel
During your integrated processes, you may routinely increase or decrease the
number of records and tables in your database. As time goes on, your Access
database grows in file size. This is because Access does not release file space.
All the space needed for the data you move in and out of your database are
held by your Access file, regardless if the data is still there or not. In that
light, it’s critical that you run Compact and Repair on your Access database
regularly. Among other things, running Compact and Repair defragments
your database, releasing any unused space and ensuring that your database
does not grow to an unmanageable size.

NOTE To manually compact and repair your database in Access 2007, click the
Office icon and select Manage ➪ Compact and Repair Database.

To manually compact and repair your database in Access 2010, go to the
application ribbon and select File ➪ Info ➪ Compact and Repair Database

Office automation enables you to Compact and Repair your databases right
from code. The example outlined in the following code demonstrates how to
run Compact and Repair on an Access database directly from Excel.

Chapter 16 ■ Exploring Excel and Access Automation 421

Sub CompactRepairFromExcel()

’Step 1: Declare your variables

Dim OriginalFile As String

Dim BackupFile As String

Dim TempFile As String

’Step 2: Identify the target database assign file paths

OriginalFile = “C:\OffTheGrid\MyDatabase.accdb“

BackupFile = “C:\ OffTheGrid\MyDatabaseBackup.accdb“

TempFile = “C:\ OffTheGrid\MyDatabaseTemporary.accdb“

’Step 3: Make a backup copy of database

FileCopy OriginalFile, BackupFile

’Step 4: Perform the compact and repair

DBEngine.CompactDatabase OriginalFile, TempFile

’Step 5: Delete the old database

Kill OriginalFile

’Step 6: Rename the temporary database to the old database name

Name TempFile As OriginalFile

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare three string
variables that will hold file names.

2. Assigning file names: In Step 2, you are assigning each of the string
variables a file name.

The OriginalFile string variable is assigned the file path and name of
the target database. This variable will represent your database during
the procedure.

The BackupFile string variable is assigned the file path and name of a
backup file you will create during this procedure.

The TempFile string variable is assigned the file path and name of a
temporary file you will create during this procedure.

3. Making a backup copy of the target database: In Step 3, you use the
FileCopy function to make a backup of the OriginalFile (the target
database). Although this step is not necessary for the Compact and
Repair procedure, it’s generally a good practice to make a backup of your
database before running this level of VBA on it.

422 Part V ■ Advanced Excel and Access Integration Techniques

4. Executing the Compact and Repair: To understand what is going on
from this point on, you must understand how Access actually performs
Compact and Repair. When you Compact and Repair a database manu-
ally, it seems as though Access simply compresses your original database;
this is not the case. Access actually creates a second file and essentially
copies your original database minus the empty file space. Access then
deletes the old file. You need to take the same action with your code.

In that light, Step 4 executes the Compact and Repair, specifying the
original database and specifying the file path of the temporary database.

5. Deleting the old file: At this point, you have two copies of your database:
the original database, and a second database, which is a copy of your
original without the empty file space. Step 5 deletes the original database,
leaving you with the copy.

6. Renaming the temporary file: In Step 6, you simply rename the temporary
file, giving it the name of your original database. This leaves you with a
database that is compacted and optimized.

Summary

Both Excel and Access applications have strengths, which you routinely
leverage through manual processes. For example, you may routinely crunch
data in Access only to bring the results into Excel for presentation. Or, you
may send Excel data to Access only to open Access and run a set of queries or
output a report. The objective of automation is to take all manual intervention
out of these processes by controlling one application with another.

Access data processing lends itself quite nicely to automation. The typical
automation scenario is one where you send Access data to Excel, then use
Excel automation to build charts, pivot tables, or some other presentation
mechanism displaying the data. From Excel, you can use Access automation
to fire an Access macro, run Access queries or even open Access reports.

Automation can literally take you out of the processes you have set up,
allowing them to run without any human interaction.

C H A P T E R

17
Integrating Excel and Access

with XML

As intimidating as XML may seem, it is really nothing more than a text
file that contains data wrapped in markup (tags that denote structure and
meaning). These tags essentially make a text file machine-readable. The term
‘‘machine-readable’’ essentially means that any application or Web-based
solution designed to read XML files is able to discern the structure and content
of your file.

Because XML is text-based, it is not dependent on a specific application
for construction, reading, or editing. This versatility makes XML an excellent
integration mechanism.

In this chapter, you gain a solid understanding of the fundamentals of
XML. You also get some context for XML functionality in Excel and Access
by exploring some of the ways both Excel and Access allow you to work with
XML data through the user interface.

Why XML?

Up to this point, you have explored several integration techniques that use
well-established technologies that you are sure to feel comfortable with. So the
question is: Why XML? Why should you explore a relatively new technology
that, frankly, few in the Excel and Access community are using? There are
three major benefits to using XML as an integration mechanism.

With XML, you can bypass technologies that you may not feel comfortable
with such as MS Query, SQL statements, or ADO. Imagine incorporating
external data into your Excel or Access processes without the need to manage

423

424 Part V ■ Advanced Excel and Access Integration Techniques

database connectivity or use complex SQL statements. And because XML files
are nothing more than text files, the process of moving and refreshing data, in
most cases, is faster and more streamlined.

Second, XML gives you more flexibility than standard text files. With XML,
you can import and use only the columns of data required as opposed to
importing the entire text file. You can also import different parts of the XML
file to different locations instead of importing the entire block of text into
one table.

The third and possibly most attractive reason to use XML is that you can
simply ‘‘refresh’’ your XML maps to get new data. With text files, you need to
walk through the import process again. Of course, you could write some code
to automate the import process, but again, XML allows you to bypass the need
for that.

Can you survive without using XML? Sure, you can. However, there are
enough attractive possibilities with XML to warrant a closer look.

Understanding XML

Before working with XML functionality, it’s important to understand the
makeup of an XML document and how its syntactic constructs work. Let’s
take a moment to explore the fundamental components of a standard XML
document.

The XML Declaration
The first line of an XML document is called the XML declaration. Look at an
example of a typical XML declaration:

<?xml version=“1.0“? encoding=“UTF-8“ standalone=“Yes“?>

The XML declaration typically contains three parts: a version attribute, an
optional encoding attribute, and a standalone attribute.

Version attribute: The version attribute tells the processing application
that this text file is an XML document.

Encoding attribute: You primarily use the encoding attribute to work
around character encoding issues that may be raised when dealing
with international characters and those outside of the Unicode/ASCII
standard. Since XML documents are inherently Unicode, the encod-
ing attribute is optional if the character encoding used to create the
document is UTF-8, UTF16 or ASCII. Indeed, you will find that the char-
acter encoding is omitted from many of the XML documents you may
encounter.

Chapter 17 ■ Integrating Excel and Access with XML 425

Standalone attribute: The standalone attribute tells the processing appli-
cation whether the document references an external data source. If the
document contains no reference to external data sources, it is deemed a
standalone, thus having the ‘‘Yes’’ value. Since every XML document is
inherently standalone, this attribute is optional for documents that do not
reference an external source.

Processing Instructions
As their name implies, processing instructions provide explicit instructions
to the processing application. These can be identified by distinctive tags
composed of left and right angle brackets coupled with question marks
(<?, ?>). These instructions are typically found directly under the XML
declaration and can provide any number of directives. For example, the
following processing instruction would direct Excel to open the given XML
document.

<?mso-application progid=“Excel.Sheet“?>

Comments
Comments allow XML developers to enter plain-language explanation or
remarks about the contents of the document. Just as in VBA, where the single
quote signifies a comment, XML has its own syntax to denote a comment.
Comments in XML begin with the <!-- characters and ends with the -->

characters, as in the following example.

<!--Document created by Mike Alexander-->

Elements
An element is defined by a start tag and an end tag (for example, <MyData>
</MyData>). Any data you enter in between the start and end tags makes up
the contents of that element. As you can see in the following example, the
document begins with <MyTable> and ends with </MyTable>; all the syntax
you see in between these tags makes up the content for the MyTable element.

<?xml version=“1.0“?>

<MyTable>

<Customer>

<Quarter>Q1</Quarter>

<Region>North</Region>

<Revenue>25000</Revenue>

</Customer>

</MyTable>

426 Part V ■ Advanced Excel and Access Integration Techniques

The concept of tags is a familiar one if you have worked with HTML.
However, unlike HTML, tags in XML are not predefined. That is to say, the
text ‘‘MyTable’’ has no predefined utility or meaning. You can change that text
to anything and it’s all the same to the XML document. Herein you stumble
on the beauty of XML: XML allows you to create custom tags, tags to which
you give definition and purpose. As long as you adhere to a few basic rules,
you can create and describe any number of elements by creating your own
custom tags. Here are the basic syntactic rules you must follow when creating
elements:

Every element must have a start tag, represented by left and right angle
brackets (<>), as well as a corresponding end tag represented by a left
angle bracket, back slash and right angle bracket (</>). Naturally, to avoid
errors, you need to use the same syntactical name within the start and
end tags.

Names in XML are case sensitive, so the start and end tags of an element
must match in case as well as in syntax. For example, an element defined
by the tags <Data> </data> causes a parsing error. XML is looking for
the end tag for <Data> as well as the start tag for </data>.

You must begin all element names with a letter or an underscore, never a
digit or other character. In addition, names that begin with any permutation
of xml are reserved and cannot be used.

Elements can contain numbers, text, and even other elements. Elements
are normally framed in a parent/child hierarchy. For example, in the MyTable

example, the Customer element is a child of the MyTable root element. Likewise,
the MyTable element is the parent of the Customer element. Following that logic,
the Quarter, Region, and Revenue elements are the children of the Customer

element. This parent/child hierarchy allows the XML document to describe the
arrangement of the data as well as the content. Later in this chapter, you will
discover how this parent/child hierarchy is leveraged to programmatically
move around in XML documents.

The Root Element
The root element (which is always the top-most element in an XML document)
serves as the container for all of the contents within the document. Every XML
document must have one (and only one) root element. The MyTable element
shown in the following example is the root element for this particular XML
document.

<?xml version=“1.0“?>

<MyTable>

<Customer>

Chapter 17 ■ Integrating Excel and Access with XML 427

<Quarter>Q1</Quarter>

<Region>North</Region>

<Revenue>25000</Revenue>

</Customer>

</MyTable>

In this example, the root element contains four elements, each one containing
its own content.

Attributes
Attributes in XML documents come in two flavors: data attributes and meta-
data attributes. Data attributes are used to provide the actual data for an
element. For example, the following attributes (name and age) provide the
data for the Pet element.

<Pet name=’Spot’ age=“4“>Dog</Pet>

Notice that the age attribute is wrapped in quotes although the value itself
is a number. This is because unlike elements, attributes are textual. This means
that attributes must be wrapped in either single or double quotes.

Metadata attributes typically provide descriptive information about the
contents of elements. For instance, in the following example, the Customer

element has an attribute called id which provides that Customer with a unique
identifier.

<?xml version=“1.0“?>

<MyTable>

<Customer id=“1“/>

<Quarter>Q1</Quarter>

<Region>North</Region>

<Revenue>25000</Revenue>

</MyTable>

Many new users of XML find the concept of attributes versus elements a
bit confusing. After all, you can easily convert most elements to attributes (or
vice versa) and the XML document would parse just fine. For example, the
Customer id attribute could just as easily be presented in an element as such:
<id>1</id >. However, most XML documents adhere to some general rules
of thumb when it comes to elements versus attributes:

If the content is not an actual data item but is instead a descriptor of the
data (record number, index number, unique identifier, and so on), then
an attribute is typically used.

428 Part V ■ Advanced Excel and Access Integration Techniques

Elements are used for any content that consists of multiple values.

If there is a chance that the content will expand in structure to include
children, elements are typically used.

Namespaces
The idea behind namespaces is simple. Because XML lets developers create and
name their own elements and attributes, there is a possibility that a particular
name could be used in different contexts. For instance, an XML document
may use the name ID to describe both a customer ID and an invoice ID.
Namespaces associate overlapping identifiers with Uniform Resource Identifiers
(URI), allowing applications that process XML documents to make a distinction
between similar names.

A URI is typically made up of a URL and a relative descriptor. For instance,
the following line defines a namespace. As you can image, Xmlns stands for
XML namespace.

Xmlns=“http://www.datapigtechnologies.com/customers“

The fact that URLs are used to define namespaces leads many to believe
that namespaces point to some sort of online source. URLs provide some
semblance of ownership to anyone reading the XML file. The goal of a
namespace is merely to create a unique string. So you could technically use
something like Xmlns=“arbitrary_namespace“, although it wouldn’t be very
useful in identifying ownership or utility.

As you can imagine, using a URL can lead to some fairly long namespace
strings. Most XML developers get around this problem by creating namespace
prefixes. A prefix is nothing more than an alias for the namespace. For instance,
the following namespace uses the prefix dpc. Then the dpc prefix is applied to
an attribute.

Xmlns:dpc=http://www.datapigtechnologies.com/customers

<Invoice dpc:id=“201“>

Notice that in the example illustrated that follows, the namespace is placed
directly into the root element. Any namespace declared within an element
automatically applies to all child elements.

<?xml version=“1.0“?>

<MyTable xmlns=“http://www.datapigtechnologies.com/customers“>

<Customer>

Chapter 17 ■ Integrating Excel and Access with XML 429

<Quarter>Q1</Quarter>

<Region>North</Region>

<Revenue>25000</Revenue>

</Customer>

</MyTable>

Now you may be wondering why you would use a namespace in a document
where there are no duplicate names. This is primarily to avoid overlapping
names with other XML documents that may be consumed in the same process
or application.

Creating a Simple Reporting Solution with XML

In a reporting solution, you typically have a data layer and a presentation
layer. In this section, you will discover how XML can help you easily create a
simple reporting solution where Access provides the data and Excel uses the
data in some sort of a presentation layer.

Exporting XML Data from Access
Despite the anxiety that some people feel about XML, it’s interesting to observe
that most of the XML functionality built into Excel and Access requires no
programming and little knowledge of databases. That is to say, all the steps
you need to create an XML-based reporting solution can be performed using
only the user interfaces that come with Excel and Access.

To start the export from Access, follow these steps:

1. Right click the SalesByRegion table found in the sample database and
select Export ➪ XML File. This activates the Export-XML File dialog box
where you specify the location where you want to save your XML file.
As you can see in Figure 17-1, you generally want to specify a directory
dedicated to your XML files.

Figure 17-1: Activate the Export-XML File dialog box and specify a location to save your
XML File.

430 Part V ■ Advanced Excel and Access Integration Techniques

TIP You can also start the export process by highlighting a table in your
database, selecting the External Data tab in the ribbon, and then selecting
More ➪ XML File.

2. Clicking the OK button activates the Export XML dialog box illustrated
in Figure 17-2. Here, you are given the option of exporting the schema
definition and presentation specifications as well as the data. In this
example, you only want the XML data exported; therefore, you deselect
all but that option in the dialog box.

Figure 17-2: Choose to export only the XML file.

NOTE The schema definition exports as an XSD (Extensible Schema Definition)
document, while the presentation specifications export as an XSL (Extensible
Stylesheet Language) document. XSD files dictate the layout and sequencing for
the data in an XML document, as well as the data types, and default values for
each element and attribute. An XSL file dictates the formatting rules for the
document, controlling the way the XML data is presented. The topics of XSD and
XSL are focused on areas outside the scope of this chapter, so they’re not covered
in detail here. If you want to learn more about XSD and XSL, feel free to visit
www.w3schools.com, where you can get free tutorials on these topics.

3. Once you click the OK button, your data will be saved to an XML
file in the location you specified. Access then gives you the option to
save your export process (see Figure 17-3). Here you can save the steps
of the export process so you can perform the export at the touch of a
button.

4. Simply check that you want to save your export and give your export
process a name. As you can see in Figure 17-3, you can even create a task
reminder in Outlook!

5. Once your export process is saved, you can call it by clicking the Saved
Exports button found on the External Data tab in the ribbon. This activates
the Manage Data Tasks dialog box, shown in Figure 17-4, where you can
run your export process as often as you need.

As Figure 17-5 illustrates, you can even get fancy and automate your export
by calling the saved export via a macro.

TIP Want to export only specific records to XML? Write a query. You can export
the results of a query to XML just as you would a table.

Chapter 17 ■ Integrating Excel and Access with XML 431

Figure 17-3: You can choose to save your export process so that you can perform it
routinely with the touch of a button.

Figure 17-4: You can rerun your saved export process via the Manage Data Tasks dialog
box.

Figure 17-5: You can use the RunSavedImportExport macro action to automate the
exporting of your XML data.

432 Part V ■ Advanced Excel and Access Integration Techniques

Utilize XML Data in Excel
One of the simplest ways to utilize an XML document in Excel is to open it
directly. To help demonstrate this, follow these steps:

1. Start Excel and open the SalesByRegion.xml file you just saved. Excel
immediately recognizes that the file you are opening is an XML document,
so it actives the Open XML dialog box shown in Figure 17-6.

Figure 17-6: Choose to open your XML document as an XML table.

2. Select the As an XML table option and click the OK.

Because the EmployeeSales.xml file does not have an associated schema
file (XSD), Excel infers a schema from our XML document. This means
Excel essentially creates an internal schema that will dictate the rules for
the document.

TIP Again, an XSD or schema file dictates the layout and sequencing for the data
in an XML document, as well as the data types and default values for each element
and attribute.

From here, Excel automatically creates an XML list, mapping a range of
cells to the elements in the source XML document (see Figure 17-7).

NOTE You will note in Figure 17-7 that Access has included a field called
‘‘generated,’’ specifying the date and time the XML extract was created. You can
safely delete this column if it does not suit your needs.

3. So now what? Well, you can use this data as if it were a normal range. You
can create a pivot table report, build charts, apply some fancy conditional
formatting, and so on. The nifty thing about this setup, however, is that
these cells are linked back to the XML document and can be refreshed
with the latest data by right-clicking inside the XML list and selecting
Refresh XML Data!

4. To test out the refresh function, go back to Access and add a few records
to the SalesByRegion table, as demonstrated in Figure 17-8.

5. Re-export the SalesByRegion XML file. If you saved your export process,
you can simply call it by clicking the Saved Exports button found on the
External Data tab in the Ribbon. If you did not save your export process,

Chapter 17 ■ Integrating Excel and Access with XML 433

you have to go through the steps of exporting your XML file. Either way,
the idea is to replace the previously exported SalesByRegion.xml file.
Therefore, you need to save your export in the exact same file path you
used previously.

6. Once you have updated your XML document, you can return to your
Excel file and refresh the XML list. As you can see in Figure 17-9, the
newly added records are included in the mapped range.

Figure 17-7: Your XML data automatically maps to your workbook.

Figure 17-8: Add another period’s worth of records to the SalesByRegion table.

Figure 17-9: Refreshing the XML list includes updates to your Excel file with fresh data.

Take a moment now to think about what XML allows you to do. Imagine
building an Excel-based reporting system where all data that feeds your

434 Part V ■ Advanced Excel and Access Integration Techniques

pivot tables and charts link back to XML files on a network server. Imagine
that you can update those XML files on a nightly basis using an automated
Access process. In addition, you could design your client’s workbooks to
automatically refresh on open. Moreover, remember that you are essentially
working with a text file, so your clients do not have to worry about server
drivers, passwords, and the like.

TIP If you are interested in programming XML in Excel, feel free to check out
Excel 2007 VBA Programmer’s Reference, published by Wiley, ISBN:
978-0-470-04643-2.

Creating a Data Entry Process Using XML

In many data entry processes, Excel is used as the interface to enter the data
and then the data is sent to an Access database to be stored and analyzed.
In this section, you will discover how XML can help simplify these sorts of
processes as well.

The general idea in this exercise is to create a data entry template in Access
and convert that template to an XML file. Then you use that XML file to create
a data entry form in Excel that can be completed and exported back out to
XML. The final step is to pick up the XML with Access and import it into a
source table.

Creating the Data Entry Schema in Access
Start the process by building an Access table that will generate the base XML
and the schema file. You can also use this table to capture the results of your
data entry exercise. Figure 17-10 illustrates the table that you’ll use in this
example. Save this table as ‘‘DataEntry.’’

NOTE What’s all this talk about a schema file? Well, way back in Figure 17-2,
remember that you chose to only export the XML data, not the schema or
presentation specifications. In this example, you tell Access to create the schema
file. Why? Doing so ensures that Access provides Excel with the information it
needs to map the empty fields to your worksheet.

Once you have created the source table, you can export an XML file from
the source table using the same process outlined in Figures 17-1 through
17-3 earlier in this chapter, with one exception. In the step highlighted in
Figure 17-2, you need to tell Access to create the XSD file. Figure 17-11

Chapter 17 ■ Integrating Excel and Access with XML 435

illustrates what the Export XML dialog box should look like when both XML
and XSD are selected.

Figure 17-10: Build the Access table shown here and save as ‘‘DataEntry.’’

Figure 17-11: Tell Access to create both the XML and XSD files.

Setting up the Data Entry Form in Excel
Start Excel and open the DataEntry.xml file you saved in the previous section.
Excel immediately recognizes that the file you are opening is an XML docu-
ment, activating the Open XML dialog box shown in Figure 17-12. Select the
As an XML table option and click OK.

Figure 17-12: Choose to open your XML document as an XML table.

Note that Access has included a field called ‘‘generated’’ specifying the date
and time the XML extract was created (see Figure 17-13). You need to delete
this column in order to export your results back into XML.

436 Part V ■ Advanced Excel and Access Integration Techniques

Figure 17-13: Delete the ‘‘generated’’ field.

Obviously, the idea is to distribute the data entry form and have your users
complete it. So at this point, you should take some time to format your data
entry form, making it easy to work with as shown in Figure 17-14.

Figure 17-14: Take a moment to format your data entry form.

Exporting Results from Excel to XML
So how do you get the data back into Access? Once the data entry form is
completed, Excel can export the data back into an XML file and save that file
to a specified location. To test this, fill out your data entry form and right click
anywhere inside the list. This pulls up a context menu where you will select
XML ➪ Export, as demonstrated in Figure 17-15.

Excel asks you to specify the file path of the exported XML. In this example,
you replace the DataEntry.xml file you have saved (see Figure 17-16).

Chapter 17 ■ Integrating Excel and Access with XML 437

Figure 17-15: Export the data in your list back into an XML file.

Figure 17-16: Replace the DataEntry.xml file you previously saved.

TIP Record a macro to capture the process of exporting the data in your XML list
to an XML file path. Once recoded, you can assign the macro to a button, allowing
your users to export their results at the click of a button.

Getting the Results Back into Access
Once you have an XML file with the results, all Access has to do is find the
file and import it. Start by selecting the External Data tab in the ribbon. From
there, select XML File under the Import group as illustrated in Figure 17-17.

438 Part V ■ Advanced Excel and Access Integration Techniques

Figure 17-17: Select XML File from the Import group.

This activates the Get External Data-XML File dialog box (see Figure 17-18),
where you’re asked to specify the file path of the XML file you want to import.

Figure 17-18: Specify the file path of the XML file to be imported.

When you click OK, the Import XML dialog box allows you to determine
how the XML data is imported. As you can see here in Figure 17-19, you can
choose to import only the XML structure, both the structure and the data,
or you can choose to append only the data to an existing table. Since you
have already created a table to capture the data, you will select the last option
(Append Data to Existing Table).

Figure 17-19: Append the data to the existing table DataEntry.

Chapter 17 ■ Integrating Excel and Access with XML 439

After a few clicks, your DataEntry table is updated with the data from the
XML file (Figure 17-19).

Again, no data connections, no MS Query, and no programming are needed.
Simply passing XML files between Excel and Access allows you to integrate
data between the two programs.

WHERE TO GO FROM HERE

The goal of this chapter is obviously not to make you an expert XML
developer. Rather, the goal is to give you a solid understanding of the aspects
of XML you’ll need to be familiar with when working with XML in Excel and
Access.

There are plenty of resources that will expand on the techniques found here.
So, if the topic of using XML in your Excel and Access processes has captured
your imagination, feel free to search these out.

■ www.w3shcools.com: This site gives you some free tutorials on
XML and other technologies such as XSD, Xpath, and so on.

■ Powering Office 2003 with XML (ISBN: 0764541226): Don’t let that
fact that this book covers Office 2003 deter you. Although the Excel
and Access 2007 come with new interfaces, the XML functionality
in both these programs remains virtually unchanged. Many of the
techniques and exercises found in here work nicely with Office 2007.

Summary

An XML document is little more than a text file that contains data wrapped in
tags that denote structure and meaning. These tags essentially make a text file
machine-readable, which means that any application designed to read XML
files will be able to discern the structure and content of the XML document.
Because XML is text-based, XML is not dependent on a specific application
for construction, reading, or editing. This versatility makes XML an excellent
integration mechanism.

With XML, you can bypass those technologies that you may not feel
comfortable with such as MS Query, SQL statements, or ADO. You can
incorporate external data into your Excel or Access processes without the need
to manage database connectivity or use complex SQL statements.

Despite the anxiety that some people feel about XML, most of the XML
functionality built into Excel and Access requires no programming and little
knowledge of databases. That is to say, all of the steps you need to create an

440 Part V ■ Advanced Excel and Access Integration Techniques

XML-based reporting solution can be performed using only the user interfaces
that come with Excel and Access. For example, you can open an XML file
directly with Excel. Excel will immediately recognize that the file you are
opening is an XML document, so it will active the user-friendly Open XML
dialog box.

The exercises in this chapter are very basic examples that use only a small
fraction of the power of XML. Incorporating a little creative thinking and a
handful of code via Macros or VBA will allow you to create relatively robust
XML-based processes that integrate Excel and Access quite nicely.

C H A P T E R

18
Integrating Excel and Other

Office Applications

Every data-oriented process has an application flow, a succession of appli-
cations that take the data from creation to end user. Sometimes only one
application touches a dataset, such as when you create a report and present
it in Excel. In many cases, however, data is moved from a database such as
Access, is analyzed and aggregated in Excel, and is then distributed via a
Word document, PowerPoint presentation, or even email.

As you know, the focus of this book has been on the integration of Excel
and Access. However, it is worth looking at how Excel integrates with some
other Office applications. In this chapter, you will do just that, learning how
you can integrate Excel with some of the other applications in the Microsoft
Office Suite.

NOTE All the code in this chapter is in the Chapter18_SampleFile.xlsm file you
downloaded with the sample files for this book.

Integrating Excel with Microsoft Word

It’s not unusual to see a Word document that contains a table that originated
in Excel. In most cases, that table was simply copied and pasted directly into
Word. While this is indeed a valid form of integration, there are countless
ways to integrate Excel and Word that go beyond copying and pasting data.
This section offers a few examples, demonstrating different techniques you
can leverage to integrate Excel and Word.

441

442 Part V ■ Advanced Excel and Access Integration Techniques

Creating a Dynamic Link to an Excel Table
How many times have you copied and pasted the same Excel table into Word,
only because the data changed? There is a better way. You can create a dynamic
link to your Excel data, allowing your Word document to pick up changes to
the table automatically.

Linking an Excel Table to Word

When you copy and paste a range, you are simply creating a picture of the
range. However, when you create a link to a range, Word stores the location
information to your source field and then displays a representation of the linked
data. The net effect is that when the data in your source file changes, Word
updates its representation of the data to reflect the changes. To test this concept
of linking to an Excel range, take a moment to walk through an example.

1. Open the Chapter18_SampleFile.xlsm file and go to the Revenue Table
tab. Select and copy the range of cells shown here in Figure 18-1.

Figure 18-1: Copy your range of cells.

2. Open a Word document and place your cursor where you want to display
the linked table. Go up to the Home tab in Word and select Paste ➪ Paste
Special as demonstrated in Figure 18-2.

Figure 18-2: Select Paste Special from the Home tab in Word.

Chapter 18 ■ Integrating Excel and Other Office Applications 443

3. In the Paste Special dialog box, illustrated in Figure 18-3, select the
Paste link option and choose Microsoft Excel Worksheet from the list of
document types.

Figure 18-3: Be sure to select the Paste link option and set the link as an Excel Workbook.

4. Click the OK button to apply the link. At this point, you have the table
linked to your Excel file (Figure 18-4).

Figure 18-4: Your linked table is ready.

5. Open your Excel file and change some data as demonstrated in
Figure 18-5.

Figure 18-5: Make changes to the source Excel range.

444 Part V ■ Advanced Excel and Access Integration Techniques

6. Upon returning to Word, you will see that your linked table automatically
captured the changes (see Figure 18-6)!

Figure 18-6: Word automatically captured the changes.

Preventing the Link from Automatically Updating

Word automatically captured the changes here because both the Word file and
the source Excel file were open. Close and save both files and then open Word
again. This time you will see the message shown here in Figure 18-7. Clicking
the Yes button will refresh the link.

Figure 18-7: Click Yes to refresh the link.

There may be situations where getting the message you see in Figure 18-7
is not ideal. For example, if you are distributing this document, you may not
want your clients to see this message. Also, you may have a linked table that
contains data that doesn’t change that often, so there’s no need for Word to
automatically refresh on every open. In these situations, you may want to
specify that you will always refresh the link manually. That is to say, you don’t
want Word to automatically try to refresh the link:

1. Right-click the linked table and select Linked Worksheet Object ➪ Links.
This activates the Links dialog box illustrated in Figure 18-8.

2. As you can see, the idea here is to choose the target source file from the
Source File list and select the Manual update option.

3. To manually refresh the link at any time, simply right click the linked
table and select Update Link as demonstrated in Figure 18-9.

Chapter 18 ■ Integrating Excel and Other Office Applications 445

Figure 18-8: Tell Word that you will always refresh manually.

Figure 18-9: You can manually refresh the link at any time.

Getting Excel Data to a Word Document Using
Automation
If you’re more of the automation type, here is an example of how you can copy
an Excel range into a Word document. The idea here is that instead of linking
a table, you can create your document on the fly.

To set up for a process like this, you must have a template Word document
already created. In that document, create a bookmark tagging the location
where you want your Excel data to be copied.

446 Part V ■ Advanced Excel and Access Integration Techniques

To create a bookmark in a Word document, place your cursor where
you want the bookmark, select the Insert tab, and select Bookmark (found
under the Links group). This activates the Bookmark dialog box, illustrated in
Figure 18-10. Here, you assign a name for your bookmark and click the Add
button.

Figure 18-10: Name your bookmark and click Add.

In the sample files, you will find a document called PasteTable.docx. This
document is a simple template that contains one bookmark called DataTable-
Here. In the following example code, you copy a range to that PasteTable.docx
template, using the DataTableHere bookmark to specify where to paste the
copied range.

NOTE This code is designed to run from Excel. Therefore, you need to set
a reference to the Microsoft Word Object Library. To do so, open the Visual Basic
Editor in Excel and select Tools ➪ References. The Reference dialog box will activate.
Scroll down until you find the entry ‘‘Microsoft Word XX Object Library,’’ where
the XX is your version of Word. Place a check in the checkbox next to the entry.

Sub PasteExcelTableIntoWord()

’Step 1: Declare your variables

Dim MyRange As Excel.Range

Dim wd As Word.Application

Dim wdDoc As Word.Document

Dim WdRange As Word.Range

’Step 2: Copy the defined range

Sheets(“Revenue Table“).Range(“A1:E7“).Copy

’Step 3: Open the target Word document

Set wd = New Word.Application

Set wdDoc = wd.Documents.Open(“C:\OffTheGrid\PasteTable.docx“)

wd.Visible = True

Chapter 18 ■ Integrating Excel and Other Office Applications 447

’Step 4: Set focus on the target bookmark

Set WdRange = wdDoc.Bookmarks(“DataTableHere“).Range

’Step 5: Delete the old table and paste new

On Error Resume Next

WdRange.Tables(1).Delete

WdRange.Paste ’paste in the table

’Step 6: Adjust column widths

WdRange.Tables(1).Columns.SetWidth _

(MyRange.Width / MyRange.Columns.Count), wdAdjustSameWidth

’Step 7: Reinsert the bookmark

wdDoc.Bookmarks.Add “DataTableHere“, WdRange

’Step 8: Memory cleanup

Set wd = Nothing

Set wdDoc = Nothing

Set WdRange = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

MyRange contains the target Excel range you want copied.

wd is an object variable that exposes the Word Application object.

wdDoc is an object variable that exposes the Word Document object.

wdRange is an object variable that exposes the Word Range object.

2. Copying the Excel range: Step 2 copies a range from the Revenue Table
worksheet. In this example, the range is hard-coded, but you can always
make this range into something more variable.

3. Opening the target Word document: In Step 3, you are opening an
existing target Word document that will serve as your template. Note
that you are setting the Visible property of the Word application to True.
This will ensure that you can see the action in Word as the code runs.

4. Selecting the target bookmark: In Step 4, you use Word’s Range object to
set focus on the target bookmark. This essentially selects the bookmark
as a range, allowing you to take actions in that range.

5. Deleting the old table and paste the new table: In Step 5, you delete
any table that may exist within the bookmark; then you paste the copied
Excel range. If you don’t delete any existing tables first, the copied range
will be appended to the existing data.

448 Part V ■ Advanced Excel and Access Integration Techniques

6. Adjusting column widths: When pasting an Excel range in to a Word
document, the column widths don’t always come out clean. Step 6 fixes
this issue by adjusting the column widths. Here, each column’s width is
set to a number that equals the total width of the table divided by the
number of columns in the table.

7. Reinserting the bookmarks: When you paste your Excel range to the
target bookmark, you essentially overwrite the bookmark. In Step 7, you
re-create the bookmark to ensure that the next time you run this code, the
bookmark is there.

8. Cleaning up the open objects: In Step 8, you release the objects assigned
to your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Creating a Word Mail Merge Document
One of the most requested forms of integration with Word is the mail merge.
In most cases, mail merge refers to the process of creating one letter or doc-
ument for each customer in a list of customers. For example, suppose you
had a list of customers and you wanted to compose a letter to each customer.
With mail merge, you can write the body of the letter one time and then run
the Mail Merge feature in Word to automatically create a letter for each cus-
tomer, affixing the appropriate address, name, and other information to each
letter.

To create your first mail-merge process, walk through this next example.

1. Although it’s not necessary, it’s typically a good idea to create a template
for your mail merge document. Creating a template beforehand allows you
take some time in constructing and formatting your letter or document.
Figure 18-11 shows the MyTemplate.docx file found in the sample files
for this book. Open this file.

2. Click the Mailings tab in Word and click Select Recipients ➪ Use Existing
List (Figure 18-12). This activates a dialog box asking you to select your
data source. Find and open C:\OffTheGrid\MyContacts.xlsx.

3. Once you open an existing list of resources, you see the dialog box
illustrated in Figure 18-13. The most notable aspect of this step is that you
can specify whether the file you are using as your list of recipients has
a header row. That is to say, the first row of the dataset is dedicated to
column headers.

Chapter 18 ■ Integrating Excel and Other Office Applications 449

Figure 18-11: Open your document template.

Figure 18-12: Specify the location of your list of recipients.

Figure 18-13: Specify whether your list of recipients has a header row.

450 Part V ■ Advanced Excel and Access Integration Techniques

4. Go back to the Mailings tab in Word and select the Address Block
command button (found under the Write & Insert Fields group). This
activates the dialog box shown here in Figure 18-14. Here, you specify
how you want your address block to be compiled. Word takes all the
components that make up an address and compiles them into a standard
address format. Word typically does a good job at getting this right the
first time; however, you can configure the address block if needed.

Figure 18-14: Configure the format of the address block.

5. At this point, you will see a marker in your document called Address
Block (Figure 18-15). You can move this tag to the most appropriate
location.

Figure 18-15: An address block marker defines where the address block is placed.

Chapter 18 ■ Integrating Excel and Other Office Applications 451

6. Go back to the Mailings tab in Word and select the Greeting Line
command button (you can find this under the Write & Insert Field
group). This activates the dialog box shown here in Figure 18-16. Here,
you specify how you want your greetings to be configured.

Figure 18-16: Configure the format of the greeting line.

7. At this point, you will see an additional marker in your document called
Greeting Line (Figure 18-17). Again, you can move this tag to the location
that is most appropriate.

Figure 18-17: A greeting line marker defines where the greeting is placed.

8. Go back to the Mailings tab and select the Finish and Merge command
button (Figure 18-18). As you can see, you can choose to edit the doc-
uments, print the documents, or send each document via email. In this
case, select Edit Individual Documents.

452 Part V ■ Advanced Excel and Access Integration Techniques

Figure 18-18: Activate the mail merge and choose to edit the documents.

9. After you indicated the records you want, you’ll see a set of Word
documents that contain your original template with personalized contact
information for each person in your Excel contacts list (Figure 18-19).

Figure 18-19: You have successfully performed your first mail merge!

Simulating the Word Mail Merge Function from Excel
For you automation buffs, you can also simulate the Word Mail Merge function
from Excel. The idea is relatively simple. You start with a template that contains
bookmarks identifying where each element of contact information will go.

Chapter 18 ■ Integrating Excel and Other Office Applications 453

NOTE You can open the MailMerge.docx document (found in the sample files for
this book) to take a peek at the template. However, you’ll have to open the
Chapter18_SampleFile.xlsm file to run the code example demonstrated here.

With the template set to go, the idea for the following code is to simply loop
through each contact in your contact list, assigning the component pieces of
their contact information to the respective bookmarks.

Private Sub MailMergeWithExcel()

’Step 1: Declare your variables

Dim wd As Word.Application

Dim wdDoc As Word.Document

Dim MyRange As Excel.Range

Dim MyCell As Excel.Range

Dim txtAddress As String

Dim txtCity As String

Dim txtState As String

Dim txtPostalCode As String

Dim txtFname As String

Dim txtFullname As String

’Step 2: Start Word and add a new document

Set wd = New Word.Application

Set wdDoc = wd.Documents.Add

wd.Visible = True

’Step 3: Set the range of your contact list

Set MyRange = Sheets(“Contact List“).Range(“A2:A21“)

’Step 4: Start the loop through each cell

For Each MyCell In MyRange.Cells

’Step 5: Assign values to each component of the letter

txtAddress = MyCell.Value

txtCity = MyCell.Offset(, 1).Value

txtState = MyCell.Offset(, 2).Value

txtPostalCode = MyCell.Offset(, 3).Value

txtFname = MyCell.Offset(, 5).Value

txtFullname = MyCell.Offset(, 6).Value

’Step 6:Insert the structure of your template document

wd.Selection.InsertFile “C:\OffTheGrid\MailMerge.docx“

’Step 7: Fill each relevant bookmark with its respective value

wd.Selection.Goto What:=wdGoToBookmark, Name:=“Customer“

wd.Selection.TypeText Text:=txtFullname

454 Part V ■ Advanced Excel and Access Integration Techniques

wd.Selection.Goto What:=wdGoToBookmark, Name:=“Address“

wd.Selection.TypeText Text:=txtAddress

wd.Selection.Goto What:=wdGoToBookmark, Name:=“City“

wd.Selection.TypeText Text:=txtCity

wd.Selection.Goto What:=wdGoToBookmark, Name:=“State“

wd.Selection.TypeText Text:=txtState

wd.Selection.Goto What:=wdGoToBookmark, Name:=“Zip“

wd.Selection.TypeText Text:=txtPostalCode

wd.Selection.Goto What:=wdGoToBookmark, Name:=“FirstName“

wd.Selection.TypeText Text:=txtFname

’Step 8: Clear any remaining bookmarks

On Error Resume Next

wdDoc.Bookmarks(“Address“).Delete

wdDoc.Bookmarks(“Customer“).Delete

wdDoc.Bookmarks(“City“).Delete

wdDoc.Bookmarks(“State“).Delete

wdDoc.Bookmarks(“FirstName“).Delete

wdDoc.Bookmarks(“Zip“).Delete

On Error GoTo 0

’Step 9: Go to the end, insert new page, and start with the next cell

wd.Selection.EndKey Unit:=wdStory

wd.Selection.InsertBreak Type:=wdPageBreak

Next MyCell

’Step 10: Set cursor to beginning and clean up memory

wd.Selection.HomeKey Unit:=wdStory

wd.Activate

Set wd = Nothing

Set wdDoc = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

wd is an object variable that exposes the Word Application object.

wdDoc is an object variable that exposes the Word Document object.

MyRange contains the range defining the contact list.

MyCell passes cell values into the string variables.

Then you declare six string variables. Each of the string variables will
hold a component piece of information for each contact in the contact list.

Chapter 18 ■ Integrating Excel and Other Office Applications 455

2. Opening Word and starting a new document: Step 2 opens Word with
a blank document. Note that you’re setting the Visible property of the
Word application to True. This ensures that you can see the action in
Word as the code runs.

3. Setting the range of the contact list: Step 3 defines each contact in the
contact list. Note that this range only selects the first column in the
contacts table. This is because each cell in the range must be passed
individually to string variables. Selecting only the first column gives you
one cell per row. From that one cell, you can easily adjust your cursor to
the right or left to capture the cells around it. The idea is that if you move
to the right one space, you get the value of the next field in that row. If
you move to the right two spaces, you get the value of that field, and
so on.

4. Starting looping through each contact: Step 4 starts the loop through
each contact as defined in the range set in Step 3.

5. Assigning values to each component piece of the contact’s information:
In Step 5, you use Excel’s Offset method to capture the value of each field
in a particular row. You start with the range defined in Step 3 (the first
column in the list of contacts). You then use Offset to move your cursor
a certain number of columns to the right to capture the data each relevant
field. As each field is covered, you assign their values to the appropriate
string variable.

6. Inserting the structure of your template: In Step 6, you insert your
existing template into the empty document in Word. This is tantamount
to copying the structure of your template and pasting it into a blank
document.

7. Assigning values to the bookmarks: In Step 7, you assign the value of
each string variable to its respective bookmark. As you can see in the
code, you simply select the bookmark by name, and then change the text
to equal the value of the assigned string variable.

8. Deleting bookmarks: The goal in Step 8 is to remove any stray book-
marks. If any bookmarks linger, you will get duplicate bookmarks as the
procedure loops through each cell.

9. Inserting a new document and looping to next contact: At this point
in the code, you have created a document for one contact in your list of
contacts. The idea now is to create a new blank document so that you can
perform the same procedure for the next contact.

Inserting a page break effectively creates the blank document. You then
loop back to Step 5 where you pick up the contact information for the next
row in the list. Then at Step 6, you insert the blank template (complete

456 Part V ■ Advanced Excel and Access Integration Techniques

with bookmarks) into the new page. Finally, you assign values to the
bookmarks and clean up. The For...Next loop ensures that this cycle is
repeated for each row in your contact list

10. Cleaning up the open objects: In Step 10, you release the objects assigned
to your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Integrating Excel with PowerPoint

It’s been said that up to 50 percent of PowerPoint presentations contain data
that has been copied straight out of Excel. This is not difficult to believe. It’s
often much easier to analyze and create charts and data views in Excel than
in PowerPoint. Once you create those charts and data views, why wouldn’t
you simply copy them into PowerPoint? The time and effort saved by copying
directly from Excel is too good to pass up.

This section offers up a few techniques that can help you automate the
process of getting your Excel data into PowerPoint.

Creating a PowerPoint Slide with a Title
To help get a few fundamentals down, let’s start simple and automate the
creation of a PowerPoint presentation containing one slide with a title. The
idea here is that you place this code into an Excel module and run it directly
from Excel.

NOTE Keep in mind that because this code is run from Excel, you need to set a
reference to the Microsoft PowerPoint Object Library. Again, you can set the
reference by opening the Visual Basic Editor in Excel and selecting Tools ➪

References. Scroll down until you find the entry ‘‘Microsoft PowerPoint XX Object
Library,’’ where the XX is your version of PowerPoint. Place a check in the
checkbox next to the entry.

Sub CreatePowerPointSlideWithTitle()

’Step 1: Declare variables

Dim PP As PowerPoint.Application

Dim PPPres As PowerPoint.Presentation

Dim PPSlide As PowerPoint.Slide

Dim SlideTitle As String

’Step 2: Open PowerPoint and create new presentation

Set PP = New PowerPoint.Application

Chapter 18 ■ Integrating Excel and Other Office Applications 457

Set PPPres = PP.Presentations.Add

PP.Visible = True

’Step 3: Add new slide as slide 1 and set focus to it

Set PPSlide = PPPres.Slides.Add(1, ppLayoutTitleOnly)

PPSlide.Select

’Step 4: Add the title to the slide

SlideTitle = “My First PowerPoint Slide“

PPSlide.Shapes.Title.TextFrame.TextRange.Text = SlideTitle

’Step 5: See the presentation

PP.Activate

’Step 6: Memory Cleanup

Set PPSlide = Nothing

Set PPPres = Nothing

Set PP = Nothing

End sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

PP is an object variable that exposes the PowerPoint Application

object.

PPPres is an object variable that exposes the PowerPoint Presentation
object.

PPSlide is an object variable that exposes the PowerPoint Slide object.

SlideTitle is a string variable used to pass the text for the slide title.

2. Opening PowerPoint and start a new presentation: Step 2 opens Power-
Point with an empty presentation. Note that you are setting the Visible

property of the PowerPoint application to True. This ensures that you
can see the action as the code runs.

3. Adding a new slide: In Step 3, you add a new slide to the presentation
using the Add method of Slide object. Notice that when you add a
new slide, you’ll need to provide two arguments: the index number for
the slide and the layout option for the slide. Since this is the first slide
in the presentation, the index number is 1. The default layout option
allows you to specify which one of PowerPoint’s many layout options
you want to apply to your slide. When you’re automating PowerPoint,
it’s generally best to use either ppLayoutTitleOnly (when you want a
title in your presentation) or ppLayoutBlank (when you don’t need a title
in your presentation).

458 Part V ■ Advanced Excel and Access Integration Techniques

4. Adding the title to the slide: In Step 4, you store the text for the title in a
string variable and pass that variable to PowerPoint to apply text to the
title text frame.

5. Saving the presentation: Step 5 uses the Activatemethod to set the focus
on PowerPoint, ensuring that is comes into view when the code is done
running.

6. Cleaning up the open objects: In Step 6, you release the objects assigned
to your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Copying a Range of Cells to a Presentation
Now that you have a good sense of the basic code that creates a PowerPoint
presentation, you should try adding some utility and actually copy a range
from Excel into a PowerPoint presentation. In the following code, you copy a
range from the Chapter18_SampleFile.xlsm file and paste that range to a slide
in a newly created PowerPoint presentation.

Sub CopyRangeToPresentation ()

’Step 1: Declare your variables

Dim PP As PowerPoint.Application

Dim PPPres As PowerPoint.Presentation

Dim PPSlide As PowerPoint.Slide

Dim SlideTitle As String

’Step 2: Open PowerPoint and create new presentation

Set PP = New PowerPoint.Application

Set PPPres = PP.Presentations.Add

PP.Visible = True

’Step 3: Add new slide as slide 1 and set focus to it

Set PPSlide = PPPres.Slides.Add(1, ppLayoutTitleOnly)

PPSlide.Select

’Step 4: Copy the range as a picture

Sheets(“Slide Data“).Range(“A1:J28“).CopyPicture _

Appearance:=xlScreen, Format:=xlPicture

’Step 5: Paste the picture and adjust its position

PPSlide.Shapes.Paste.Select

PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True

PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True

’Step 6: Add the title to the slide

Chapter 18 ■ Integrating Excel and Other Office Applications 459

SlideTitle = “My First PowerPoint Slide“

PPSlide.Shapes.Title.TextFrame.TextRange.Text = SlideTitle

’Step 7: Memory Cleanup

PP.Activate

Set PPSlide = Nothing

Set PPPres = Nothing

Set PP = Nothing

End sub

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

PP is an object variable that exposes the PowerPoint Application

object.

PPPres is an object variable that exposes the PowerPoint Presentation
object.

PPSlide is an object variable that exposes the PowerPoint Slide object.

SlideTitle is a string variable that passes the text for the slide title.

2. Opening PowerPoint and start a new presentation: Step 2 opens Power-
Point with an empty presentation. Note that you’re setting the Visible

property of the PowerPoint application to True. This ensures that you
can see the action as the code runs.

3. Adding a new slide and setting focus to it: In Step 3, you add a new
slide to the presentation using the Add method of Slide object. Note
that you’re using the ppLayoutTitleOnly attribute, ensuring your slide
is created with a title text frame. You then take an extra step here and
actually set focus on the slide. That is to say, you explicitly tell PowerPoint
to select this slide, making it active.

4. Copying your range as a picture: In Step 4, use the CopyPicture method
to copy the target range as a picture. The range you’re copying here is A1
to J28 in the Slide Data tab.

5. Pasting the picture into the presentation: Step 5 pastes the picture into
the active slide and centers the picture both horizontally and vertically.

6. Adding the title to the slide: In Step 6, you store the text for the title in a
string variable and then pass that variable to PowerPoint to apply text to
the title text frame.

7. Cleaning up the open objects: In Step 7, you release the objects assigned
to your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

460 Part V ■ Advanced Excel and Access Integration Techniques

Sending All Excel Charts to the Presentation
It’s not uncommon to see multiple charts on one worksheet. For example,
open the Chapter18_SampleFile.xlsm sample file and go to the Slide Data
tab. There, you will see a worksheet that contains multiple charts, one for each
Region. The idea here is that you can automate the process of copying each
one of these charts into its own slide.

The example code that follows does just that. In this code, you loop through
each chart in the specified worksheet, copying each and pasting it into its own
slide in PowerPoint.

Sub CopyAllChartsToPresentation()

’Step 1: Declare your variables

Dim PP As PowerPoint.Application

Dim PPPres As PowerPoint.Presentation

Dim PPSlide As PowerPoint.Slide

Dim PPSlideCount As Long

Dim i As Integer

’Step 2: Check for charts; exit if no charts exist

Sheets(“Slide Data“).Select

If ActiveSheet.ChartObjects.Count < 1 Then

MsgBox “No charts existing the active sheet“

Exit Sub

End If

’Step 3: Open PowerPoint and create new presentation

Set PP = New PowerPoint.Application

Set PPPres = PP.Presentations.Add

PP.Visible = True

’Step 4: Start the loop based on chart count

For i = 1 To ActiveSheet.ChartObjects.Count

’Step 5: Copy the chart as a picture

ActiveSheet.ChartObjects(i).Chart.CopyPicture _

Size:=xlScreen, Format:=xlPicture

Application.Wait (Now + TimeValue(“0:00:1“))

’Step 6: Count slides and add new slide as next available slide number

PPSlideCount = PPPres.Slides.Count

Set PPSlide = PPPres.Slides.Add(PPSlideCount + 1, ppLayoutBlank)

PPSlide.Select

’Step 7: Paste the picture and adjust its position; Go to next chart

PPSlide.Shapes.Paste.Select

PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True

Chapter 18 ■ Integrating Excel and Other Office Applications 461

PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True

Next i

’Step 8: Memory Cleanup

Set PPSlide = Nothing

Set PPPres = Nothing

Set PP = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

PP is an object variable that exposes the PowerPoint Application

object.

PPPres is an object variable that exposes the PowerPoint Presentation
object.

PPSlide is an object variable that exposes the PowerPoint Slide object.

PPSlideCount is numeric variable that helps keep track of which slide
is the target slide. i is a counter to help loop through the charts in the
worksheet.

2. Checking for charts: Step 2 is an administrative check to ensure there are
actually charts in the specified worksheet. If no charts are found, you exit
the procedure with no further action.

3. Opening PowerPoint and starting a new presentation: Step 3 opens
PowerPoint with an empty presentation. Note that you’re setting the
Visible property of the PowerPoint application to True. This ensures
that you can see the action as the code runs.

4. Starting looping through the charts: In Step 4, you establish how many
times you will loop through the procedure by capturing the number
of charts in the worksheet. In other words, if you have five charts in
the worksheet, you loop five times. You start the loop with 1 and keep
looping through the procedure until you hit the number of charts in the
worksheet. The variable i ultimately represents the chart number you are
currently on.

5. Copying your chart as a picture: In Step 5, use the CopyPicture method
to copy the chart as a picture. The variable i passes the actual chart
number you are currently working with. The Application.Wait method,
here, tells the macro to pause for a second, allowing the clipboard to catch
up with all the copying going on.

462 Part V ■ Advanced Excel and Access Integration Techniques

6. Count the slides and adding a new slide at the next available index:
In Step 6, you add a new slide to the presentation using the Add method
of the Slide object. You will notice that you are using SlideCount+1 to
specify the index number of the added slide. Because you are looping
through an unknown number of charts, you can’t hard-code the index
number for each slide. Using SlideCount+1 allows you to dynamically
assign the next available number as the slide index.

Also note that you are using ppLayoutBlank, which ensures that the
newly created slides start with a blank layout. You then take an extra step
here and actually set focus on the slide. That is to say, you explicitly tell
PowerPoint to select this slide, making it active.

7. Pasting the chart into the presentation and moving to next chart:
Step 7 pastes the picture into the active slide, centers the picture both
horizontally and vertically and then moves to the next chart.

8. Cleaning up the open objects: In Step 8, you release the objects assigned
to your variables, reducing the chance of any problems caused by rouge
objects that may remain open in memory.

Converting a Workbook into a PowerPoint Presentation

This last example takes the concept of using Excel data in PowerPoint to the
extreme. Open the sample workbook called WorkbooktoPowerpoint.xlsm. In
this workbook, you notice that each worksheet contains its own data about a
region—almost like each worksheet has its own separate slide, which provides
information on a particular region.

The idea here is that you can build a workbook in such a way that it mimics
a PowerPoint presentation; the workbook is the presentation itself and each
worksheet becomes a slide in the presentation. Once you do that, you can
easily convert that workbook into an actual PowerPoint presentation using a
bit of automation.

With this technique, you can build entire presentations in Excel where you
have better analytical and automation tools. Then you can simply convert the
Excel version of your presentation to a PowerPoint presentation.

The following code will convert the sheets of an Excel workbook to a
PowerPoint presentation.

Sub WorkbooktoPowerPoint()

’Step 1: Declare your variables

Dim pp As PowerPoint.Application

Dim PPPres As PowerPoint.Presentation

Dim PPSlide As PowerPoint.Slide

Dim xlwksht As Excel.Worksheet

Chapter 18 ■ Integrating Excel and Other Office Applications 463

Dim MyRange As String

Dim MyTitle As String

Dim Slidecount As Long

’Step 2: Open PowerPoint, add a new presentation and make visible

Set pp = New PowerPoint.Application

Set PPPres = pp.Presentations.Add

pp.Visible = True

’Step 3: Set the ranges for your data and title

MyRange = “A1:I27“

’Step 4: Start the loop through each worksheet

For Each xlwksht In ActiveWorkbook.Worksheets

xlwksht.Select

Application.Wait (Now + TimeValue(“0:00:1“))

MyTitle = xlwksht.Range(“20“).Value

’Step 5: Copy the range as picture

xlwksht.Range(MyRange).CopyPicture _

Appearance:=xlScreen, Format:=xlPicture

’Step 6: Count slides and add new slide as next available slide number

SlideCount = PPPres.Slides.Count

Set PPSlide = PPPres.Slides.Add(SlideCount + 1, ppLayoutTitleOnly)

PPSlide.Select

’Step 7: Paste the picture and adjust its position

PPSlide.Shapes.Paste.Select

pp.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True

pp.ActiveWindow.Selection.ShapeRange.Top = 100

’Step 8: Add the title to the slide then move to next worksheet

PPSlide.Shapes.Title.TextFrame.TextRange.Text = MyTitle

Next xlwksht

’Step 9: Memory Cleanup

pp.Activate

Set PPSlide = Nothing

Set PPPres = Nothing

Set pp = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare six
variables:

PP is an object variable that exposes the PowerPoint Application

object.

464 Part V ■ Advanced Excel and Access Integration Techniques

PPPres is an object variable that exposes the PowerPoint Presentation
object.

PPSlide is an object variable that exposes the PowerPoint Slide object.

xlwksht is an object variable that exposes the Worksheet object.

MyRange is a string variable that stores and passes a range name as a
string.

MyTitle is a string variable that stores and passes a title for each slide.

PPSlideCount is numeric variable that helps keep track of which slide
is the target slide.

2. Opening PowerPoint and start a new presentation: Step 2 opens Power-
Point with an empty presentation. Note that you’re setting the Visible

property of the PowerPoint application to True. This ensures that you
can see the action as the code runs.

3. Setting the ranges for your data and title: In Step 3, fill the MyRange

variable with a string representing the range you want to capture as the
slide content.

4. Starting a loop through the charts: In Step 4, you start the loop through
each worksheet in the workbook. The loop stops when all worksheets
have been looped through. Note that you’re using the Application.Wait
method, telling the macro to pause for a second. This allows the chart to
render completely before the range is copied. While you loop, you fill the
MyTitle variable with the value of cell C20. This value becomes the title
for the slide.

5. Copying your range as a picture: In Step 5, use the CopyPicture method
to copy your specified range as a picture.

6. Count the slides and add a new slide at the next available index: In
Step 6, you add a new slide to the presentation using the Add method
of the Slide object. Notice that you are using SlideCount+1 to specify
the index number of the added slide. Using SlideCount+1 allows you to
dynamically assign the next available number as the slide index. Note
that you are using the ppLayoutTitleOnly, ensuring your slide is created
with a title text frame.

7. Pasting the chart into the presentation and moving to next chart: Step
7 pastes the picture into the active slide, centers the picture horizontally,
and adjusts the picture vertically 100 pixels from the top margin.

8. Adding the title to the slide: Step 8 passes the MyTitle variable to apply
text to the title text frame.

Chapter 18 ■ Integrating Excel and Other Office Applications 465

9. Cleaning up the open objects: In Step 9, you release the objects assigned
to your variables, reducing the chance of any problems caused by rogue
objects that may remain open in memory.

Integrating Excel and Outlook

Did you know that you integrate Excel and Outlook every day? It’s true. If
you sent or received an Excel workbook through Outlook, you’ve integrated
the two programs, albeit manually. In this section, you will discover a few
examples of how to integrate Excel and Outlook in a more automated fashion.

Mailing the Active Workbook
The most fundamental Outlook task you can perform through automation
is sending an email. In the example that follows code, the active workbook is
sent to two email recipients as an attachment.

NOTE Keep in mind that because this code is run from Excel, you need to set a
reference to the Microsoft Outlook Object Library. Again, you can set the reference
by opening the Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll
down until you find the entry ‘‘Microsoft Outlook XX Object Library,’’ where the XX
is your version of Outlook. Place a check in the checkbox next to the entry.

Sub Mail_workbook_Outlook()

’Step 1: Declare your variables

Dim OLApp As Outlook.Application

Dim OLMail As Object

’Step 2: Open Outlook start a new mail item

Set OLApp = New Outlook.Application

Set OLMail = OLApp.CreateItem(0)

OLApp.Session.Logon

’Step 3: Build your mail item and send

With OLMail

.To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com“

.CC = ““

.BCC = ““

.Subject = “This is the Subject line“

.Body = “Hi there“

.Attachments.Add ActiveWorkbook.Fullname

.Send

End With

466 Part V ■ Advanced Excel and Access Integration Techniques

’Step 4: Memory cleanup

Set OLMail = Nothing

Set OLApp = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare two
variables:

OLApp is an object variable that exposes the Outlook Application

object.

OLMail is an object variable that holds a mail item.

2. Open Outlook and start a new session: In Step 2, you activate Outlook
and start a new session. Note that you’ll use OLApp.Session.Logon to log
on to the current MAPI session with default credentials. You also create
a mail item. This is equivalent to selecting the New Message button in
Outlook.

3. Build your mail item and send: In Step 3, you build the profile of
your mail item. This includes the To recipients, the CC recipients, the
BCC recipients, the Subject, the Body, and the Attachments. Note that
you enter the recipients in quotes, and you separate recipients using a
semicolon.

The standard syntax for an attachment is as follows:
.Attachments.Add “File Path“

Here, in the previous code, you specify the current workbook’s file
path with the syntax: ActiveWorkbook.Fullname. This sets the current
workbook as the attachment for the email. When the message is built,
you use the Send method to send the email.

4. Clean up the open objects: It is generally good practice to release
the objects assigned to your variables. This reduces the chance of any
problems caused by rogue objects that may remain open in memory. As
you can see in the code, you simply set variable to Nothing.

NOTE Your workbook must be saved before running the preceding code. You
cannot attach an unsaved workbook to an email.

Mailing a Specific Range
You can imagine that you may not always want to send your entire workbook
through email. The following example code demonstrates how you would
send a specific range of data rather than the entire workbook.

Chapter 18 ■ Integrating Excel and Other Office Applications 467

Sub Mail_Range()

’Step 1: Declare your variables

Dim OLApp As Outlook.Application

Dim OLMail As Object

’Step 2: Copy range, paste to new workbook, and save it

Sheets(“Revenue Table“).Range(“A1:K50“).Copy

Workbooks.Add

Range(“A1“).PasteSpecial xlPasteValues

Range(“A1“).PasteSpecial xlPasteFormats

ActiveWorkbook.SaveAs “C:\OffTheGrid\Excel_to_be_Mailed.xls“

’Step 3: Open Outlook start a new mail item

Set OLApp = New Outlook.Application

Set OLMail = OLApp.CreateItem(0)

OLApp.Session.Logon

’Step 4: Build your mail item and send

With OLMail

.To = “admin@datapigtechnologies.com; mike@datapigtechnologies.com“

.CC = ““

.BCC = ““

.Subject = “This is the Subject line“

.Body = “Hi there“

.Attachments.Add (“C:\OffTheGrid\Excel_to_be_Mailed.xls“)

.Send

End With

’Step 5: Delete the temporary Excel file

ActiveWorkbook.Close SaveChanges:=True

Kill “C:\Excel_to_be_Mailed.xls“

’Step 6: Memory cleanup

Set OLMail = Nothing

Set OLApp = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare two
variables:

OLApp is an object variable that exposes the Outlook Application

object.

OLMail.is an object variable that holds a mail item.

2. Copy the desired range to a temporary Excel file: In Step 2, you copy a
specified range and paste the values and formats to a temporary Excel
file. You then save that temporary file, giving it a file path and file name.

468 Part V ■ Advanced Excel and Access Integration Techniques

3. Open Outlook and start a new session: In Step 3, you activate Outlook
and start a new session. Note that you’ll use OLApp.Session.Logon to log
on to the current MAPI session with default credentials. You’ll also create
a mail item. This is equivalent to selecting the New Message button in
Outlook.

4. Build your mail item and send: In Step 4, you build the profile of
your mail item. This includes the To recipients, the CC recipients, the
BCC recipients, the Subject, the Body, and the Attachments. Note that
you enter the recipients in quotes, and you separate recipients using a
semicolon.

Here in Step 4, you specify your newly created temporary Excel file path
as the attachment for the email. When the message is built, you use the
Send method to send the email.

5. Delete the temporary Excel file: You don’t want to leave temporary
files hanging out there, so once the email has been sent, you delete the
temporary Excel file you created.

6. Clean up the open objects: It is generally good practice to release
the objects assigned to your variables. This reduces the chance of any
problems caused by rogue objects that may remain open in memory. As
you can see in the code, you simply set variable to Nothing.

Mailing to All Email Addresses in Your Contact List
Ever need to send out a mass mailing such as a newsletter or a memo? Instead
of manually entering your contacts’ email addresses, you can run the following
code. In this code, you send out one email, automatically adding all the email
addresses in your contact list to your email.

Sub Mail_To_All_Contacts()

’Step 1: Declare your variables

Dim OLApp As Outlook.Application

Dim OLMail As Object

Dim MyCell As Range

Dim MyContacts As Range

’Step 2: Define the range to loop through

Set MyContacts = Sheets(“Contact List“).Range(“H2:H21“)

’Step 3: Open Outlook

Set OLApp = New Outlook.Application

Set OLMail = OLApp.CreateItem(0)

OLApp.Session.Logon

’Step 4: Add each address in the contact list

With OLMail

Chapter 18 ■ Integrating Excel and Other Office Applications 469

.BCC = ““

For Each MyCell In MyContacts

.BCC = .BCC & MyCell.Value & “;“

Next MyCell

.Subject = “Chapter 18 Sample Email“

.Body = “Sample file is attached“

.Attachments.Add ActiveWorkbook.Fullname

.Send

End With

’Step 5: Memory cleanup

Set OLMail = Nothing

Set OLApp = Nothing

End sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare four
variables:

OLApp is an object variable that exposes the Outlook Application

object.

OLMail is an object variable that holds a mail item.

MyCell is an object variable that holds an Excel range.

MyContacts is an object variable that holds an Excel range.

2. Define the target range: In Step 2, you point to the MyContacts variable
to the range of cells that contains your email addresses. This is the range
of cells through which you’ll loop to add email addresses to your email.

3. Open Outlook and start a new session: In Step 3, you activate outlook
and start a new session. Note that you’ll use OLApp.Session.Logon to log
on to the current MAPI session with default credentials. You’ll also create
a mail item. This is equivalent to selecting the New Message button in
Outlook.

4. Add each address in your contact list: In Step 4, you build the profile of
your mail item. Note that you loop through each cell in the MyContacts

range and add the contents (which are email addresses) to the BCC. Here,
you are using the BCC property instead of To or CC so that each recipient
gets an email that looks as though it was sent only to him. He will not be
able to see the other email addresses, as they have been sent with BCC
(Blind Courtesy Copy).

5. Clean up the open objects: It is generally good practice to release
the objects assigned to your variables. This reduces the chance of any
problems caused by rogue objects that may remain open in memory. As
you can see in the code, you simply set variable to Nothing.

470 Part V ■ Advanced Excel and Access Integration Techniques

Saving All Attachments in a Folder

You may often find that certain processes lend themselves to the exchange of
data via email. For example, you may send a budget template out for each
branch manager to fill out and send back to you via email. Well, if there are
150 branch members, it could be a bit of a pain to bring down all those email
attachments.

The code that follows demonstrates one solution to this problem. In this
code, you use automation to search for all attachments in your inbox and save
them to a specified folder.

Sub SaveAttachments()

’Step 1: Declare your variables

Dim ns As Namespace

Dim MyInbox As MAPIFolder

Dim MItem As MailItem

Dim Atmt As Attachment

Dim FileName As String

’Step 2: Set a reference to your inbox

Set ns = GetNamespace(“MAPI“)

Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

’Step 3: Check for messages in your inbox; exit if none

If MyInbox.Items.Count = 0 Then

MsgBox “No messages in folder.“

Exit Sub

End If

’Step 4: Create directory to hold attachments

On Error Resume Next

MkDir “C:\OffTheGrid\MyAttachments\“

’Step 5: Start to loop through each mail item

For Each MItem In MyInbox.Items

’Step 6: Save each attachement then go to the next attachment

For Each Atmt In MItem.Attachments

FileName = “C:\OffTheGrid\MyAttachments\“ & Atmt.FileName

Atmt.SaveAsFile FileName

Next Atmt

’Step 7: Move to the next mail item

Next MItem

End Sub

Chapter 18 ■ Integrating Excel and Other Office Applications 471

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare five
variables:

ns is an object that exposes the MAPI namespace.

MyInbox exposes the target mail folder.

MItem exposes the properties of a mail item.

Atmt is an object variable that holds an Attachment object.

FileName is a string variable that holds the name of the attachment.

2. Point to your Inbox: In Step 2, you set the MyInbox variable to point to
the inbox for your default mail client.

3. Check for messages: In Step 3, you perform a quick check to make sure
there are actually messages in your inbox. If there are no messages, you
exit the procedure with a message box telling you there are no messages.

4. Create directory to hold attachments: In Step 4, you create a directory
to hold the attachments you find. Although you could use an existing
directory, it’s generally best to use a directory dedicated specifically for
the attachments you bring down. Here, you are creating that directory on
the fly. Note you are using On Error Resume Next. This ensures the code
does not error out if the directory you are trying to create already exists.

5. Start the loop: In Step 5, you start the loop through each mail item in the
target mail folder.

6. Loop through all attachments in each mail item: Step 6 ensures that
each mail item you loop through is checked for attachments. As you loop,
you will save each attachment you find into the specified directory you
created.

7. Move to next mail item: Step 7 loops back to Step 5 until there are no
more mail items to go through.

8. Clean up the open objects: It is generally good practice to release
the objects assigned to your variables. This reduces the chance of any
problems caused by rogue objects that may remain open in memory. As
you can see in the code, you simply set variable to Nothing.

Saving Certain Attachments to a Folder
In the previous procedure, you use automation to search for all attachments
in your inbox and save them to a specified folder. However, you’ll more

472 Part V ■ Advanced Excel and Access Integration Techniques

likely only want to save certain attachments. That is to say, those attachments
attached to emails that contain a certain subject, for example. In the following
example code, you get a demonstration of how to check for certain syntax and
selectively bring down attachments.

Sub SaveCertainAttachments()

’Step 1: Declare your variables

Dim ns As Namespace

Dim MyInbox As MAPIFolder

Dim MItem As Object

Dim Atmt As Attachment

Dim FileName As String

Dim i As Integer

’Step 2: Set a reference to your inbox

Set ns = GetNamespace(“MAPI“)

Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

’Step 3: Check for messages in your inbox; exit if none

If MyInbox.Items.Count = 0 Then

MsgBox “No messages in folder.“

Exit Sub

End If

’Step 4: Create directory to hold attachments

On Error Resume Next

MkDir “C:\OffTheGrid\MyAttachments\“

’Step 5: Start to loop through each mail item

For Each MItem In MyInbox.Items

’Step 6: Check for the words Data Submission in Subject line

If InStr(1, MItem.Subject, “Data Submission“) < 1 Then

GoTo SkipIt

End If

’Step 7: Save each with a log number; go to the next attachment

i = 0

For Each Atmt In MItem.Attachments

FileName = _

“C:\OffTheGrid\MyAttachments\Attachment-“ & i & “-“ & Atmt.FileName

Atmt.SaveAsFile FileName

i = i + 1

Next Atmt

’Step 8: Move to the next mail item

SkipIt:

Next MItem

Chapter 18 ■ Integrating Excel and Other Office Applications 473

’Step 9: Memory cleanup

Set ns = Nothing

Set MyInbox = Nothing

End Sub

The following outlines what the steps in the code do:

1. Declaring the necessary variables: In Step 1, you first declare six vari-
ables:

ns is an object that exposes the MAPI namespace.

MyInbox exposes the target mail folder.

MItem exposes the properties of a mail item.

Atmt is an object variable that holds an Attachment object.

FileName is a string variable that holds the name of the attachment.

i is an integer variable that ensures each attachment is saved as a
unique name.

2. Point to your inbox: In Step 2, you set the MyInbox variable to point to
the inbox for your default mail client.

3. Check for messages: In Step 3, you perform a quick check to make sure
there are actually messages in your inbox. If there are no messages, you
exit the procedure with a message box telling you there are no messages.

4. Create directory to hold attachments: In Step 4, you create a directory
to hold the attachments you find. Note you are using On Error Resume

Next. This ensures the code does not error out if the directory you are
trying to create already exists.

5. Start the loop: In Step 5, you start the loop through each mail item in the
target mail folder.

6. Check for the correct key words in the Subject line: In Step 6, you use
the Instr function to check if the string ‘‘Data Submission’’ is in the
Subject line of the email. If that string does not exist, then you are not
interested in the attachment there. Therefore, you force the code to go
to the SkipIt reference (in Step 8). Because the line of code immediately
following the SkipIt reference is essentially a ‘‘move next’’ command,
this has the effect of telling the procedure to move to the next mail item.

7. Loop through all attachments in each mail item: Step 7 loops through
all the attachments and saves each one into the specified directory you
created. Note that you are adding a running integer to the name of each
attachment. This is to ensure that each attachment is saved as a unique
name, helping you to avoid overwriting attachments.

474 Part V ■ Advanced Excel and Access Integration Techniques

8. Move to next mail item: Step 8 loops back to Step 5 until there are no
more mail items to go through.

9. Clean up the open objects: It is generally good practice to release
the objects assigned to your variables. This reduces the chance of any
problems caused by rogue objects that may remain open in memory. As
you can see in the code, you simply set the variable to Nothing.

Summary

Excel data has a way of touching every application in the Office suite. Excel data
is often distributed via a Word document, displayed through a PowerPoint
presentation and even shared using Outlook. Although Access is the most
well suited to integrate with Excel, these other Office applications also have
the ability to integrate with Excel. You can use Excel and Word to create a
Mail Merge document. You can automate the creation of an entire PowerPoint
presentation directly from an Excel workbook. You can send mass emails
through outlook, using nothing more than a list of email addresses in Excel.
Use the techniques you learned in this chapter to think about some of the ways
you can integrate Excel with the other applications in Office.

P a r t

VI
Appendixes

In This Part

Appendix A: Access VBA Fundamentals
Appendix B: Understanding and Using SQL
Appendix C: Query Performance, Database Corruption, and Other Thoughts
Appendix D: Data Analyst’s Function Reference

A P P E N D I X

A

Access VBA Fundamentals

If you haven’t worked much with VBA, you may want to brush up on some
of the basics before tackling the later chapters in this book (Chapters 14–18).
The purpose of this appendix is to provide a high-level overview of some of
the fundamental concepts and techniques demonstrated in the latter chapters.
Bear in mind that because the focus of this book is data analysis, this appendix
provides only an introductory look at VBA. If you are interested in an in-depth
look at programming Access VBA, consider picking up one of the following
titles:

Beginning Access 2007 VBA, by Denise Gosnell (ISBN: 0-470-04684-8)

Access 2007 VBA Programming For Dummies, by Alan Simpson (ISBN:
0-470-04653-8)

These books offer a solid introduction to VBA that is ideal for novice Access
programmers.

Covering the Basics in 10 Steps

There is no better way to learn than hands-on experience. So instead of reading
paragraph after paragraph of terms and definitions, you will cover some of
the basics of VBA in 10 steps!

477

478 Part VI ■ Appendixes

Step 1: Creating a Standard Module
Have you ever found code on the Internet that you could supposedly copy
and paste into Access to do something wonderful, but you didn’t know
where to paste it? Well, knowing where to put your code is the first step in
programming. In Access, VBA code is contained in a module.

Here are the types of modules you can use:

Standard Modules: This type is the most common, letting you store code
you can use anywhere within your database.

Form and Report Modules: These types of modules store code that you
can only use within the form or report to which they belong.

Class Modules: These modules are for hardcore programmers who want
to create and define their own custom objects.

To create a module, do the following:

1. Start a new standard module by going to the application ribbon and
selecting the Create tab.

2. From there, select the Macro dropdown menu, and then select Module
if you are using Access 2007. If you are using Access 2010, the Module
button is directly on the Ribbon.

At this point, your screen should look similar to Figure A-1.

Figure A-1: A module is the container that will hold your code and expose it to other
parts of your database.

Step 2: Creating a Function
A function is a set of instructions that returns a value. You can think of a
function as a defined task that contains the individual actions that Access
needs to perform to reach an answer or goal.

Appendix A ■ Access VBA Fundamentals 479

To create a function, go to the first empty line and type:

Function MyFirstFunction

This creates a new function named MyFirstFunction. After you press Enter
on your keyboard, Access adds a few things to your code. As you can see
in Figure A-2, a set of parentheses and the words ‘‘End Function’’ are added
automatically.

Figure A-2: Create a function that will provide the steps for your task.

Step 3: Giving Your Function Purpose with a Procedure
A function’s utility and purpose in life is defined in large part by its proce-
dures. Procedures (sometimes called routines) are the actions Access takes to
accomplish an objective.

For your first procedure, follow these steps:

1. Call a message box. Type MsgBox within the function:

Function MyFirstFunction()

MsgBox

End Function

2. After you press the space key on your keyboard, you see a tool-tip
popup, shown in Figure A-3, which shows you the valid arguments
for MsgBox. This useful functionality, called IntelliSense is a kind of
cheat sheet that allows you to quickly grasp the methods, properties,
and arguments involved in the object or function you are working
with. IntelliSense is typically activated when you enter an object or a
function and then follow it with a space, open parenthesis, period, or
equal sign.

480 Part VI ■ Appendixes

Figure A-3: Intellisense is an invaluable tool when working with VBA.

3. Finish the MsgBox function by typing I am blank years old.
At this point, your function should look like the one shown in
Figure A-4.

Figure A-4: Your function is ready to play.

Step 4: Testing Your Function
To test your function, simply place your cursor anywhere inside the function
and press the F5 key on your key board. If all goes well, you should see the
message box shown in Figure A-5.

Figure A-5: You have successfully written your first function!

Appendix A ■ Access VBA Fundamentals 481

Step 5: Declaring a Variable
A variable is a kind of placeholder for a data type. When you declare a variable,
you are telling Access to set aside memory to store a value. The amount of
memory allocated depends on the data type.

TIP To get a list of the data types available to you along with the amount of
memory that each data type requires, activate Access’s Help System and enter
Data Type Summary in the Search for: input box.

Your next question should be, ‘‘How do I know which data type to use?’’
The data type itself depends on what you are trying to accomplish with the
variable. For example, in this scenario, you want to declare a variable that will
capture your age. Because age is a number, you use the Integer data type.

To declare a variable, you must use a Dim statement. Dim, short for dimension,
explicitly lets Access know that you are declaring a variable. It is good
programming practice to declare all your variables before you start your
procedure.

Declare a new variable called MyAge as an Integer data type:

Function MyFirstFunction()

Dim MyAge as Integer

MsgBox “I am blank years old.“

End Function

Step 6: Assigning a Value to a Variable
Once you have memory set aside for a variable, you can assign a value to it.
To assign a value to a variable, simply indicate the value to which it is equal.
Here are some examples:

MyVariable = 1: This assigns a 1 to the variable called MyVariable.

MyVariable = ‘‘Access’’: This assigns the word ‘‘Access’’ to MyVariable.

MyVariable = [Forms]![MainForm].[TextBox1]: This sets the value of
MyVariable to equal the value in the TextBox1 control in the form called
MainForm.

MyVariable = InputBox(‘‘User Input’’): This sets the value of MyVariable
to equal the value of a user’s input using an InputBox.

In this scenario, you will use an InputBox to capture an age from a user
and then pass that age to the MyAge variable. You will then pass the MyAge
variable to the message box. You can see the distinct flow of information from
a user to an Access message box. Your code should look similar to the code
shown here.

482 Part VI ■ Appendixes

Function MyFirstFunction()

Dim MyAge as Integer

MyAge = InputBox(“Enter your Age“)

MsgBox “I am “ & MyAge & “ years old.“

End Function

NOTE The MsgBox is broken into three sections separated by ampersands (&):

‘‘I am ’’ (The first two words in the message)

MyAge (The variable that will return your age)

‘‘ years old.’’ (The last two words in the message)

Go ahead and test your function. To do so, place your cursor anywhere
inside the function and hit the F5 key on your keyboard. If you do everything
correctly, you should see an input dialog box, shown in Figure A-6, asking
you for your age.

Figure A-6: This InputBox will capture your age and pass it to the MyAge variable.

Step 7: Compiling Your Newly Created Function
You should get into the habit of compiling your code after you create it.
Compiling has two major benefits. First, when you compile a procedure,
Access checks your code for errors. Second, Access translates your code from
the text you can read and understand to a machine language that your
computer can understand. To compile your code, go to the application menu
and select Debug ➪ Compile xxxx (where xxxx is the name of your project).

Step 8: Saving Your Newly Created Function
Now that you have built your first function, you should save it. Go to the
application menu and select File ➪ Save xxxx (where xxxx is the name of your
project).

If your module is new, a dialog box activates, asking you to give your
module a name. Keep the debapp01fult name (Module1) and click OK. Close

Appendix A ■ Access VBA Fundamentals 483

your module and look in the Navigation Pane shown in Figure A-7 to see it in
the Modules collection.

Figure A-7: Once you save a module, you can see it in the Database Window in the
Modules collection.

Step 9: Running Your Function in a Macro
The benefit of building your VBA procedures in standard modules is that you
can run them from anywhere within your database. For example, you can run
your newly created function in a macro by simply calling your function using
the RunCode macro action.

Create a new macro and add the RunCode macro action. The function name
you are calling is MyFirstFunction(). When your Macro window looks like
the one shown in Figure A-8, save the macro and run it.

Figure A-8: You can run your VBA as part of a macro process.

If you are running Access 2007, your Macro window will look like
Figure A-9.

Figure A-9: Running the macro in Access 2007.

484 Part VI ■ Appendixes

Step 10: Running Your Function from a Form
You can also call your functions from a form. Start by creating a new form.
You can do this by selecting Blank Form on the Create tab, as demonstrated in
Figure A-10.

Figure A-10: Start a new form in Design view.

On the Design tab, select View ➪ Design View. This activates the toolbox
shown in Figure A-11. Select Button and then click anywhere on your form.
This places a command button on your form.

Figure A-11: Add a Button control to your form.

NOTE If the Command Button Wizard activates, click Cancel to close it. You do
not need that wizard for this exercise.

Right-click your newly created command button and select Build Event.
This activates the Choose Builder dialog box. Select Code Builder, and you
are taken to the form module, shown in Figure A-12. A form module serves
as a container for event procedures managed and executed by the form or its
controls.

Appendix A ■ Access VBA Fundamentals 485

Figure A-12: Create a new event using the code builder.

Access is an event-driven environment, which means that procedures are
executed with the occurrence of certain events. For example, in Figure A-12,
you will notice the procedure’s name is Command0_Click(). This means that
you are building a procedure for the button you added—which happens
to be named Command0, and this procedure will fire when the control is
clicked. You can execute your function from here by calling it. Figure A-13
demonstrates how this is done.

Figure A-13: Call your function from the command button’s event procedure.

Now you can close the VBA editor (File ➪ Close and return to Microsoft
Access) and switch to Form View by going to the application menu and
selecting View ➪ Form View. Click your command button to fire your function.

Letting Access Teach You VBA

One of the most beneficial functionalities in Access is the ability to convert
a macro to VBA code. To demonstrate how this is done, click Macros in
the Database Window and highlight the TopTenB_Child macro, as shown in
Figure A-14.

486 Part VI ■ Appendixes

Figure A-14: Highlight the macro you want to convert.

Go to the application menu and select the File ➪ Save As. This activates
the Save As dialog box. In Access 2007, the selection path is Office Icon ➪

Save As.
This activates the Save As dialog box. Here, you can indicate that you

want to save this macro as a module and then name the module. Figure A-15
demonstrates how to fill in this dialog box.

Figure A-15: Indicate that you want to save this macro as a module and then name the
module.

Next, the dialog box shown in Figure A-16 gives you the options of adding
comments and error handling to the converted VBA. In this case, you want
both, so simply click the Convert button.

Figure A-16: Tell Access to add comments and include error handling.

When the conversion is complete, select Modules in the Database window
and click the module named Converted Macro: TopTenB_Child, as shown in
Figure A-17.

Appendix A ■ Access VBA Fundamentals 487

Figure A-17: You can find your converted VBA code in the Modules collection of the
Database window.

As you can see in Figure A-18, Access has converted all the macro actions
in the TopTenB_Child macro to a VBA function complete with comments and
error handling.

Figure A-18: Your macro has been converted to a VBA function!

Keep in mind that this is not just a cool way to get out of writing code.
This is a personal tutor! Look at Figure A-18 again. With this one converted
macro, you get a firsthand look at how an If statement works, how to call

488 Part VI ■ Appendixes

queries from code, how to call macros from code, and how to handle errors.
You can create a wide variety of macros and then convert them to VBA to
learn about the syntax used for each action and to experiment by adding your
own functionality to them. For many Access developers, this was the first step
to long programming careers.

A P P E N D I X

B

Understanding and Using SQL

SQL (Structured Query Language), commonly pronounced ‘‘sequel,’’ is the
language relational database management systems such as Access use to
perform their various tasks. To tell Access to perform any kind of query, you
must convey your instructions in SQL. Don’t panic; the truth is that you have
already been building and using SQL statements without knowing it.

Here, you will discover the role that SQL plays in your dealings with Access
and learn how to understand the SQL statements generated when building
queries. You will also explore some of the advanced actions you can take
with SQL statements, allowing you to accomplish actions that go beyond the
Access user interface. The basics you learn here will lay the foundation for your
ability to perform the advanced techniques you will encounter throughout this
book.

Understanding Basic SQL

A major reason your exposure to SQL is limited is that Access is more
user-friendly than most people give it credit for being. The fact is that Access
performs a majority of its actions in user-friendly environments that hide the
real grunt work that goes on behind the scenes.

489

490 Part VI ■ Appendixes

For a demonstration of this, follow these steps:

1. In Design view, build the query you see in Figure B-1. In this relatively
simple query, you are asking for the sum of revenue by period.

Figure B-1: Build this relatively simple query in Design view.

2. Go up to the Design tab on the application ribbon and select View ➪

SQL View. Access will switch from Design view to the view you see in
Figure B-2.

Figure B-2: You can get to SQL view by selecting View ➪ SQL View.

As you can see in Figure B-2, while you were busy designing your query in
Design view, Access was diligently creating the SQL statement that will allow
the query to run. This example shows that with the user-friendly interface
provided by Access, you don’t necessarily need to know the SQL behind each
query. The question now becomes this: If you can run queries just fine without
knowing SQL, why bother to learn it?

Admittedly, the convenient query interface provided by Access does make
it a bit tempting to go through life not really understanding SQL. However, if
you want to harness the real power of data analysis with Access, it is important
to understand the fundamentals of SQL. Throughout this appendix, you will
get a solid understanding of SQL as well as insights into some techniques that
leverage it to enhance your data analysis.

Appendix B ■ Understanding and Using SQL 491

The SELECT Statement
The SELECT statement, the cornerstone of SQL, enables you to retrieve records
from a dataset. The basic syntax of a SELECT statement is:

SELECT column_name(s)

FROM table_name

The SELECT statement is most often used with a FROM clause. The FROM clause
indentifies the table or tables that make up the source for the data.

Try this:

1. Start a new query in Design view.

2. Close the Show Table dialog box (if it is open).

3. Go to the Design tab on the application ribbon and select View ➪ SQL
view.

4. In the SQL view, type the SELECT statement shown in Figure B-3, and
then run the query by selecting Run in the Design tab of the ribbon.

Figure B-3: A basic SELECT statement in SQL view.

Congratulations! You have just written your first query manually.

NOTE You may notice that the SQL statement automatically created by Access in
Figure B-2 has a semicolon at the end of it. This semicolon is not required for
Access to run the query. The semicolon is a standard way to end a SQL statement
and is required by some database programs. However, it is not necessary to end
your SQL statements with a semicolon in Access, as Access will automatically add
it when the query compiles.

Selecting Specific Columns

You can retrieve specific columns from your dataset by explicitly defining the
columns in your SELECT statement, as follows:

SELECT AccountManagerID, FullName,[Email Address]

FROM Dim_AccountManagers

492 Part VI ■ Appendixes

WARNING Any column in your database that has a name that includes spaces
or a non-alphanumeric character must be enclosed within brackets ([]) in your
SQL statement. For example, the SQL statement selecting data from a column
called Email Address would be referred to as [Email Address].

Selecting All Columns

Using the wildcard (*) allows you to select all columns from a dataset without
having to define every column explicitly.

SELECT *

FROM Dim_AccountManagers

The WHERE Clause
You can use the WHERE clause in a SELECT statement to filter your dataset
and conditionally select specific records. The WHERE clause is always used in
combination with an operator such as: = (equal), <> (not equal), > (greater
than), < (less than), >= (greater than or equal to), <= (less than or equal to),
BETWEEN (within general range).

The following SQL statement retrieves only those employees whose last
name is Winston:

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

WHERE [Last Name] = “Winston“

And this SQL statement retrieves only those employees whose hire date is
later than May 16, 2007:

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

WHERE HireDate > #5/16/2007#

NOTE Notice in the preceding two examples that the word Winston is wrapped
in quotes (“Winston“) and the date 5/16/2004 is wrapped in the number signs
(#5/16/2007#). When referring to a text value in a SQL statement, you must place
quotes around the value, while referring to a date requires you use the numbers
signs.

Appendix B ■ Understanding and Using SQL 493

Making Sense of Joins

You will often need to build queries that require two or more related tables
be joined to achieve the desired results. For example, you may want to join
an employee table to a transaction table in order create a report that contains
both transaction details and information on the employees who logged those
transactions. The type of join you use determines the records outputted.

Inner Joins

An inner join operation tells Access to select only those records from both
tables that have matching values. Records with values in the joined field that
do not appear in both tables are omitted from the query results. Figure B-4
represents the inner join operation visually.

Dim_AccountManagers Dim_Territory

Inner Join

Figure B-4: An inner join operation only selects the records that match values in both
tables. The arrows point to the records included in the results.

The following SQL statement selects only those records where the employee
numbers in the AccountManagerID field are in both the Dim_AccountMan-
agers table and the Dim_Territory table.

SELECT Region, Market, Dim_AccountManagers.AccountManagerID, FullName

FROM Dim_AccountManagers INNER JOIN Dim_Territory

ON Dim_AccountManagers.AccountManagerID = Dim_Territory.AccountManagerID

494 Part VI ■ Appendixes

Outer Joins

An outer join operation tells Access to select all the records from one table and
only the records from a second table with matching values in the joined field.
There are two types of outer joins: left joins and right joins.

A left join operation (sometimes called an outer left join) tells Access to select
all the records from the first table regardless of matching and only those
records from the second table that have matching values in the joined field.
Figure B-5 represents the left join operation visually.

Dim_AccountManagers Dim_Territory

Left Join

Figure B-5: A left join operation selects all records from the first table and only those
records from the second table with matching values in both tables. The arrows point to the
records included in the results.

This SQL statement selects all records from the Dim_AccountManagers
table and only those records in the Dim_Territory table where values for the
AccountManagerID field exist in the Dim_AccountManagers table.

SELECT Region, Market, Dim_AccountManagers.AccountManagerID, FullName

FROM Dim_AccountManagers LEFT JOIN Dim_Territory

ON Dim_AccountManagers.AccountManagerID =

Dim_Territory.AccountManagerID

A right join operation (sometimes called an outer right join) tells Access to
select all the records from the second table regardless of matching, and only
those records from the first table that have matching values in the joined field
(see Figure B-6).

Appendix B ■ Understanding and Using SQL 495

Dim_AccountManagers Dim_Territory

Right Join

Figure B-6: A right join operation selects all records from the second table and only those
records from the first table with matching values in both tables. The arrows point to the
records that are included in the results.

This SQL statement selects all records from the Dim_Territory table and
only those records in the Dim_AccountManagers table where values for the
AccountManagerID field exist in the Dim_Territory table.

SELECT Region, Market, Dim_AccountManagers.AccountManagerID, FullName

FROM Dim_AccountManagers RIGHT JOIN Dim_Territory

ON Dim_AccountManagers.AccountManagerID =

Dim_Territory.AccountManagerID

TIP Notice that in the preceding join statements, table names are listed before
each column name separated by a dot (for example, Dim_AccountManager
.AccountManagerID). When you are building a SQL statement for a query that
utilizes multiple tables, it is generally a good practice to refer to the table names
as well as field names in order to avoid confusion and errors. Access does this for
all queries automatically.

Getting Fancy with Advanced SQL Statements

You will soon realize that the SQL language itself is a quite versatile, allow-
ing you to go far beyond basic SELECT, FROM, WHERE statements. In this
section, you will explore some of the advanced actions you can accomplish
with SQL.

496 Part VI ■ Appendixes

Expanding Your Search with the Like Operator
By itself, the Like operator is no different from the equal (=) operator. For
instance, these two SQL statements will return the same number of records:

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

WHERE [Last Name] = “Winston“

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

WHERE [Last Name] Like “Winston“

The Like operator is typically used with wildcard characters to expand
the scope of your search to include any record that matches a pattern. The
wildcard characters valid in Access are shown in Table B-1.

Table B-1: Wildcard Characters Used with the Like Operator

WILDCARD
CHARACTERS DESCRIPTION PURPOSE

* Asterisk Represents any number and type
characters

? Question mark Represents any single character

Pound or hash symbol Represents any single digit

[] Brackets Allow you to pass a single char-
acter or an array of characters
to the Like operator. Any val-
ues matching the character val-
ues within the brackets will be
included in the results.

[!] The brackets with an
embedded exclamation
point

Allow you to pass a single char-
acter or an array of characters
to the Like operator. Any values
matching the character values fol-
lowing the exclamation point are
excluded from the results.

Listed in Table B-2 are some example SQL statements that use the Like

operator to select different records from the same table column.

Selecting Unique Values and Rows without Grouping
The DISTINCT predicate enables you to retrieve only unique values from the
selected fields in your dataset. For example, the following SQL statement

Appendix B ■ Understanding and Using SQL 497

Table B-2: Selection Methods using the Like Operator

WILDCARD
CHARACTER(S) SQL STATEMENT
USED EXAMPLE RESULT

* SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘A*’’

Selects all records where Field1
starts with the letter ‘‘A’’

* SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘*A*’’

Selects all records where Field1
includes the letter ‘‘A’’

? SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘???’’

Selects all records where the length
of Field1 is three characters long

? SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘B??’’

Selects all records where Field1 is a
three-letter word that starts with ‘‘B’’

SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘###’’

Selects all records where Field1 is a
number that is exactly three digits
long

SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘A#A’’

Selects all records where the value
in Field1 is a three-character value
that starts with ‘‘A,’’ contains one
digit, and ends with ‘‘A’’

#, * SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘A#*’’

Selects all records where Field1
begins with ‘‘A’’ any digit length.

[], * SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘*[$%!*/]*’’

Selects all records where Field1
includes any one of the special char-
acters shown in the SQL statement

[!], * SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘*[!a-z]*’’

Selects all records where the value
of Field1 is not a a string consisting
of only characters from a-z

[!], * SELECT Field1

FROM Table1

WHERE Field1 Like ‘‘*[!0-9]*’’

Selects all records where the value
of Field1 is a text value

498 Part VI ■ Appendixes

selects only unique job titles from the Dim_AccountManagers table, resulting
in six records:

SELECT DISTINCT AccountManagerID

FROM Dim_AccountManagers

If your SQL statement selects more than one field, the combination of
values from all fields must be unique for a given record to be included in the
results.

Using SELECT DISTINCT is different from using GROUP BY or an aggregate
query. There is no grouping going on here; Access is simply running through
the records and retrieving the unique values. To see how GROUP BY compares
to SELECT DISTINCT, read the following sections.

If you require that the entire row be unique, you could use the DISTINCTROW

predicate. The DISTINCTROW predicate enables you to retrieve only those
records for which the entire row is unique. That is to say, the combination of
all values in the selected fields does not match any other record in the returned
dataset. You would use the DISTINCTROW predicate just as you would in a
SELECT DISTINCT clause.

SELECT DISTINCTROW AccountManagerID

FROM Dim_AccountManagers

Grouping and Aggregating with the GROUP BY Clause
The GROUP BY clause makes is possible to aggregate records in your dataset
by column values. When you create an aggregate query in Design view,
you are essentially using the GROUP BY clause. The following SQL state-
ment groups the Market field and gives you the count of states in each
market:

SELECT Market, Count(State)

FROM Dim_Territory

GROUP BY Market

The HAVING Clause

When you are using the GROUP BY clause, you cannot specify criteria using the
WHERE clause. Instead, you need to use the HAVING clause. This SQL statement
groups the Market field and only gives you the count of states in the Dallas
market:

SELECT Market, Count(State)

FROM Dim_Territory

GROUP BY Market

HAVING Market = “Dallas“

Appendix B ■ Understanding and Using SQL 499

Setting Sort Order with the ORDER BY Clause
The ORDER BY clause enables you to sort data by a specified field. The
default sort order is ascending; therefore, sorting your fields in ascending
order requires no explicit instruction. The following SQL statement sorts the
resulting records in by Last Name ascending, then First Name ascending:

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

ORDER BY [Last Name], [First Name]

To sort in descending order, you must use the DESC reserved word after each
column you want sorted in descending order. The following SQL statement
sorts the resulting records in by Last Name descending, then First Name
ascending:

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

ORDER BY [Last Name] DESC, [First Name]

Creating Aliases with the AS Clause
The AS clause enables you to assign aliases to your columns and tables. There
are generally two reasons you would want to use aliases: Either you want to
make column or table names shorter and easier to read, or you are working
with multiple instances of the same table and you need a way to refer to one
instance or the other.

Creating a Column Alias

The following SQL statement groups the Market field and gives you the count
of states in each market. In addition, the alias State Count has been given to
the column containing the count of states by including the AS clause.

SELECT Market, Count(State) AS [State Count]

FROM Dim_Territory

GROUP BY Market

HAVING Market = “Dallas“

Creating a Table Alias

This SQL statement gives the Dim_AccountManagers the alias ‘‘MyTable.’’

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers AS MyTable

WHERE MyTable.[Last Name] Like “L*“

500 Part VI ■ Appendixes

SELECT TOP and SELECT TOP PERCENT
When you run a SELECT query, you are retrieving all records that meet your
definitions and criteria. When you run the SELECT TOP statement, or a top
values query, you are telling Access to filter your returned dataset to show
only a specific number of records.

Top Values Queries Explained

To get a clear understanding of what the SELECT TOP statement does, follow
these steps:

1. Build the aggregate query shown in Figure B-7.

Figure B-7: Build this aggregate query in Design view. Note that the query is sorted
descending on the Sum of LineTotal.

2. Right-click the grey area above the white query grid and then select
Properties. This activates the Property Sheet dialog box shown in
Figure B-8. In the Property Sheet dialog, change the Top Values property
to 25.

3. As you can see in Figure B-9, after you run this query, only the customers
that fall into the top 25 by sum of revenue are returned. If you want the
bottom 25 customers, simply change the sort order of the LineTotal field
to ascending.

SELECT TOP

The SELECT TOP statement is easy to spot. This is the same query used to run
the results in Figure B-9.

Appendix B ■ Understanding and Using SQL 501

SELECT TOP 25 Customer_Name, Sum(LineTotal) AS SumOfLineTotal

FROM Dim_Customers INNER JOIN Dim_Transactions

ON Dim_Customers.CustomerID =

Dim_Transactions.CustomerID

GROUP BY Customer_Name

ORDER BY Sum(LineTotal) DESC

Figure B-8: Change the Top Values property to 25.

Figure B-9: Running the query gives you the top 25 customers by revenue.

502 Part VI ■ Appendixes

Bear in mind that you don’t have to be working with totals or currency to use
a top values query. In the following SQL statement, you are returning the ten
account managers that have the earliest hire date in the company, effectively
producing a seniority report:

SELECT Top 10 AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

ORDER BY HireDate ASC

SELECT TOP PERCENT

The SELECT TOP PERCENT statement works in exactly the same way as SELECT
TOP except the records returned in a SELECT TOP PERCENT statement represent
the Nth percent of total records rather than the Nth number of records. For
example, the following SQL statement will return the top 25 percent of records
by revenue:

SELECT TOP 25 PERCENT Customer_Name, Sum(LineTotal) AS SumOfLineTotal

FROM Dim_Customers INNER JOIN Dim_Transactions ON

Dim_Customers.CustomerID =

Dim_Transactions.CustomerID

GROUP BY Customer_Name

ORDER BY Sum(LineTotal) DESC

NOTE Keep in mind that SELECT TOP PERCENT statements only give you the
top or bottom percent of the total number of records in the returned dataset, not
the percent of the total value in your records. For example, the preceding SQL
statement does not give you only those records that make up 25 percent of the
total value in the LineTotal field. It gives you the top 25 percent of total records in
the queried dataset.

Performing Action Queries via SQL Statements
You may not have thought about it before, but when you build an action
query, you are building a SQL statement that is specific to that action. These
SQL statements make it possible for you to go beyond just selecting records.

Make-Table Queries Translated

Make-Table queries use the SELECT...INTO statement to make a hard-coded
table that contains the results of your query. The following example first selects
account manager number, last name, and first name and then creates a new
table called Employees:

SELECT AccountManagerID, [Last Name], [First Name] INTO Employees

FROM Dim_AccountManagers

Appendix B ■ Understanding and Using SQL 503

Append Queries Translated

Append queries use the INSERT INTO statement to insert new rows into a
specified table. The following example will insert new rows into the Employees
table from the Dim_AccountManagers table:

INSERT INTO Employees (AccountManagerID, [Last Name],

[First Name])

SELECT AccountManagerID, [Last Name], [First Name]

FROM Dim_AccountManagers

Update Queries Translated

Update queries use the UPDATE statement in conjunction with SET in order to
modify the data in a dataset. This example updates the List_Price field in the
Dim_Products table to increase prices by 10 percent.

UPDATE Dim_Products SET List_Price = List_Price*1.1

Delete Queries Translated

Delete queries use the DELETE statement to delete rows in a dataset. In the
example here, you are deleting all rows from the Employees.

DELETE *

FROM Employees

Creating Crosstabs with the TRANSFORM Statement
The TRANSFORM statement allows the creation of a Crosstab dataset that dis-
plays data in a compact view. The TRANSFORM statement requires three main
components to work:

The field to be aggregated

The SELECT statement that determines the row content for the crosstab

The field that makes up the column of the crosstab (the ‘‘pivot field’’)

The syntax is as follows:

TRANSFORM Aggregated_Field

SELECT Field1, Field2 FROM Table1 GROUP BY Field1, Field2

PIVOT Pivot_Field

For example, the following statement creates a crosstab that shows region
and market on the rows and products on the columns, with revenue in the
center of the crosstab.

504 Part VI ■ Appendixes

TRANSFORM Sum(Revenue) AS SumOfRevenue

SELECT Region, Market

FROM PvTblFeed

GROUP BY Region, Market

PIVOT Product_Description

Using SQL Specific Queries

SQL specific queries are essentially action queries that cannot be run through
Access’ query grid. These queries must be run either in SQL view or via
code (macro or VBA). Several types of SQL Specific queries perform a specific
action. This section introduces a few of these queries, focusing on those that
you can use in Access to shape and configure data tables.

Merging Datasets with the UNION Operator
The UNION operator is used to merge two compatible SQL statements to
produce one read-only dataset. For example, the following Select statement
produces a dataset (Figure B-10) that shows revenue by region and market.

SELECT Region, Market, Sum(Revenue) AS Sales

FROM PvTblFeed

GROUP BY Region, Market

Figure B-10: This dataset shows revenue by Region and Market.

A second Select statement produces a separate dataset (Figure B-11) that
shows total revenue by region.

SELECT Region, “Total“ AS [Market], Sum(Revenue) AS Sales

FROM PvTblFeed

GROUP BY Region

Appendix B ■ Understanding and Using SQL 505

Figure B-11: This dataset shows total revenue by region

The idea is to bring these two datasets together to create an analysis that will
show detail and totals all in one table. The UNION operator is ideal for this type
of work, merging the results of the two Select statements. To use the UNION

operator, simply start a new query in SQL view and enter the following syntax:

SELECT Region, Market, Sum(Revenue) AS Sales

FROM PvTblFeed

GROUP BY Region, Market

UNION

SELECT Region, “Total“ AS [Market], Sum(Revenue) AS Sales

FROM PvTblFeed

GROUP BY Region

As you can see, the preceding statement is nothing more than the two SQL
statements brought together with a Union operator. When the two are merged
(Figure B-12), the result is a dataset that shows both details and totals in one
table!

NOTE When a union query is run, Access matches the columns from both
datasets by their position in the SELECT statement. That means two things: your
SELECT statements must have the same number of columns, and the columns in
both statements should, in most cases, be in the same order.

Figure B-12: The two datasets have now been combined to create a report that provides
summary and detail data.

506 Part VI ■ Appendixes

Creating a Table with the CREATE TABLE Statement
Often in your analytical processes, you will need to create a temporary table in
order to group, manipulate, or simply hold data. The CREATE TABLE statement
allows you to do just that with one SQL specific query.

Unlike a Make-Table query, the CREATE TABLE statement is designed to
create only the structure or schema of a table. No records are ever returned
with a CREATE TABLE statement. This statement allows you to strategically
create an empty table at any point in your analytical process.

The basic syntax for a CREATE TABLE statement is as follows:

CREATE TABLE TableName

(<Field1Name> Type(<Field Size>), <Field2Name> Type(<Field Size>))

To use the CREATE TABLE statement, simply start a new query in SQL view
and define the structure for your table.

In the following example, a new table called TempLog is created with three
fields. The first field is a Text field that can accept 50 characters, the second
field is a Text field that can accept 150 characters, and the third field is a Date
field.

CREATE TABLE TempLog

([User] Text(50), [Description] Text, [LogDate] Date)

NOTE You will notice that in the preceding example, no field size is specified for
the second text column. If the field size is omitted, Access will use the default field
size specified for the database.

Manipulating Columns with the ALTER TABLE Statement
The ALTER TABLE statement provides some additional methods of altering the
structure of a table behind the scenes. There are several clauses you can use
with the ALTER TABLE statement, four of which are quite useful in Access data
analysis: ADD, ALTER COLUMN, DROP COLUMN, and ADD CONSTRAINT.

NOTE The ALTER TABLE statement, along with its various clauses, is used much
less frequently than the SQL statements mentioned earlier in this appendix.
However, the ALTER TABLE statement comes in handy when your analytical
processes require you to change the structure of tables on the fly, helping you
avoid any manual manipulations that may have to be done.

It should be noted that there is no way to undo any actions performed using an
ALTER TABLE statement. This fact obviously calls for some caution when using
these statements.

Appendix B ■ Understanding and Using SQL 507

Adding a Column with the ADD Clause

As the name implies, the ADD clause enables you to add a column to an existing
table. The basic syntax is as follows:

ALTER TABLE <TableName>

ADD <ColumnName> Type(<Field Size>)

To use the ADD statement, simply start a new query in SQL view and
define the structure for your new column. For instance, running the example
statement shown here creates a new column called SupervisorPhone, which is
added to a table called TempLog.

ALTER TABLE TempLog

ADD SupervisorPhone Text(10)

Altering a Column with the ALTER COLUMN Clause

When using the ALTER COLUMN clause, you specify an existing column in an
existing table to work edit. You primarily use this clause to change the data
type and field size of a given column. The basic syntax is as follows:

ALTER TABLE <TableName>

ALTER COLUMN <ColumnName> Type(<Field Size>)

To use the ALTER COLUMN statement, simply start a new query in SQL view
and define changes for the column in question. For instance, the example
statement shown here changes the field size of the SupervisorPhone field.

ALTER TABLE TempLog

ALTER COLUMN SupervisorPhone Text(13)

Deleting a Column with the DROP COLUMN Clause

The DROP COLUMN clause enables you to delete a given column from an existing
table. The basic syntax is as follows:

ALTER TABLE <TableName>

DROP COLUMN <ColumnName>

To use the DROP COLUMN statement, simply start a new query in SQL view and
define which column you want to delete. For instance, running the example
statement shown here deletes the column called SupervisorPhone from the
TempLog table.

ALTER TABLE TempLog

DROP COLUMN SupervisorPhone

508 Part VI ■ Appendixes

Dynamically Adding Primary Keys with the ADD CONSTRAINT
Clause

For many analysts, Access serves as an easy-to-use ETL (Extract, Transform,
Load) tool. That is, Access allows us to extract data from many sources, then
reformat and cleanse that data into consolidated tables. Many analysts also
automate ETL processes with the use of macros that fire a series of queries.
This works quite well in most cases.

There are, however, instances where an ETL process requires primary
keys be added to temporary tables in order to keep data normalized during
processing. In these situations, most people do one of two things. They stop
the macro in the middle of processing to manually add the required primary
keys. Or they create a permanent table solely for the purpose of holding a table
where the primary keys are already set.

There is a third option. The ADD CONSTRAINT clause allows you to dynamically
create the primary keys. The basic syntax is as follows:

ALTER TABLE <TableName>

ADD CONSTRAINT CONSTRAINTNAME PRIMARY KEY (<Field Name>)

To use the ADD CONSTRAINT clause, simply start a new query in SQL view and
define the new primary key you are implementing. For instance, the example
statement shown here applies a compound key to three fields in the TempLog
table.

ALTER TABLE TempLog

ADD CONSTRAINT CONSTRAINTNAME PRIMARY KEY (User, Description, LogDate)

A P P E N D I X

C
Query Performance, Database

Corruption, and Other Thoughts

One of the most important aspects of analyzing data with Access is keeping
your database healthy. In this chapter, you will learn some of the best
practices around building and maintaining your database, ensuring that it runs
efficiently and error free. In addition, this chapter will teach you best ways to
get help in Access when you need a push in the right direction.

Optimizing Query Performance

When you are analyzing a few thousand records, query performance is not
an issue. Analytical processes run quickly and smoothly with few problems.
However, when you are moving and crunching hundreds of thousands of
records, performance becomes a huge issue. There is no getting around the
fact that the larger the volume of data, the slower your queries will run. Even
so, there are steps you can take to optimize query performance and reduce the
time it takes to run your large analytical processes.

Understanding Access’s Query Optimizer
Most relational database programs have a built-in optimizer to ensure efficient
performance, even in the face of large volumes of data. Access also has a
built-in query optimizer. Have you ever noticed that when you build a query,

509

510 Part VI ■ Appendixes

close it, and then open it again, Access sometimes shuffles your criteria and
expressions? This is because of its built-in query optimizer.

The query optimizer is charged with the task of establishing a query
execution strategy. The query execution strategy is a set of instructions given
to the Microsoft Access database engine (ACE) that tells it how to run the query
in the quickest, most cost-effective way possible. Access’s query optimizer
bases its query execution strategy on the following factors:

The size of the tables used in the query

Whether indexes exist in the tables used in the query

The number of tables and joins used in the query

The presence and scope of criteria or expressions used in the query

This execution strategy is created when the query is first run, and it is
recompiled each time you save a query or compact your database. Once a
query execution strategy has been established, the ACE database engine simply
refers to it each time the query is run, effectively optimizing the execution of
the query.

Steps You Can Take to Optimize Query Performance
You’ve heard the phrase ‘‘garbage in, garbage out,’’ referring to the fact that the
results you get out of a database are only as good as the data you put in. This
concept also applies to Access’s query optimizer. Since Access’s optimization
functionality largely depends on the makeup and utility of your tables and
queries, poorly designed tables and queries can limit the effectiveness of
Access’s query optimizer. To that end, there are actions you can take to help
maximize query optimization.

Normalizing Your Database Design

Many users who are new to Access build one large flat table and call it a
database. This structure seems attractive because you don’t have to deal with
joins and you only have to reference one table when you build your queries.
However, as the volume of data grows in a structure such as this one, query
performance will take a nosedive.

When you normalize your database to take on a relational structure, you
break up your data into several smaller tables. This has two effects. First,
you inherently remove redundant data, giving your query less data to scan.
Second, you can query only the tables that contain the information you need,
preventing the need to scan your entire database each time you run a query.

Using Indexes on Appropriate Fields

Imagine that you have a file cabinet that contains 1,000 records that are not
alphabetized. How long do you think it would take to pull out all the records

Appendix C ■ Query Performance, Database Corruption 511

that start with ‘‘S’’? You would definitely have an easier time pulling out
records in an alphabetized filing system. Indexing fields in an Access table is
analogous to alphabetizing records in a file cabinet.

When you run a query where you are sorting and filtering on a field that
has not been indexed, Access has to scan and read the entire dataset before
returning any results. As you can imagine, on large datasets, this can take a
very long time. By contrast, queries that sort and filter on fields that have
been indexed run much more quickly because Access uses the index to check
positions and restrictions.

You can create an index on a field in a table by going into the table’s
design view and adjusting the Indexed property. Figure C-1 demonstrates this
process.

Figure C-1: Create an index by changing the Indexed property.

NOTE Fields tagged as primary keys are already indexed. You can index fields
that have duplicate values by setting the Indexed property of the field to Yes
(Duplicates OK). Each table in your database can have up to 32 separate
indexes.

Now before you go out and start creating an index on every field in your
database, there is one caveat to indexing. Although indexes do speed up
select queries dramatically, they significantly slow down action queries such
as Update, Delete, and Append. This is because when you run an action
query on indexed fields, Access has to update each index in addition to the
changing the actual table. To that end, it’s important that you limit the fields

512 Part VI ■ Appendixes

that you index. A best practice is to limit your indexes to the following types
of fields:

Fields where you will routinely filter values using criteria

Fields you anticipate using as joins on other tables

Fields where you anticipate sorting values regularly

TIP Feel free to visit Chapter 2, to get a refresher on indexes.

Optimizing by Improving Query Design

You would be surprised how a few simple choices in query design can improve
the performance of your queries. Take a moment to review some of the actions
you can take to speed up your queries and optimize your analytical processes.

Avoid sorting or filtering fields that are not indexed.

Avoid building queries that select ‘‘*’’ from a table. For example, SELECT
* FROM MyTable. This forces Access to look up the field names from the
system tables every time the query is run.

When creating a totals query, include only the fields needed to achieve
the query’s goal. The more fields you include in the GROUP BY clause, the
longer the query will take to execute.

Sometimes you need to include fields in your query design only to
set criteria against them. Fields that are not needed in the final results
should be set to ‘‘not shown.’’ In other words, remove the check from the
checkbox in the Show row of the query design grid.

Avoid using open-ended ranges such as > or <. Instead, use the Between
. . . And statement.

Use smaller temporary tables in your analytical processes instead of
your large core tables. For example, instead of joining two large tables
together, consider creating smaller temporary tables limited only to the
relevant records and then joining those two. You will often find that your
processes will run faster even with the extra steps of creating and deleting
temporary tables.

Use fixed column headings in Crosstab queries whenever possible. This
way, Access does not have to take the extra step of establishing column
headings in your Crosstab queries.

Avoid using calculated fields in subqueries or domain aggregate func-
tions, because they already come with an inherent performance hit. Using
calculated fields in them compounds your query’s performance loss
considerably.

Appendix C ■ Query Performance, Database Corruption 513

NOTE Subqueries and domain aggregate queries are discussed in detail in
Chapter 7.

Compacting and Repairing Your Database Regularly

Over time, your database will change due to the rigors of daily operation.
The number of tables may have increased or decreased; you may have added
and removed several temporary tables and queries; you may have abnormally
closed the database once or twice; and the list goes on. All this action may
change your table statistics, leaving your previously compiled queries with
inaccurate query execution plans. When you compact and repair your database,
you force Access to regenerate table statistics and re-optimize your queries
so that they will recompile the next time you execute the query. This ensures
that Access will run your queries using the most accurate and efficient query
execution plans.

TIP You can set your database to automatically compact and repair each time
you close it by doing the following:

1. Click the Office icon on the upper left-hand corner of the Ribbon.

2. Click the Access Options button. This will activate the Access Options dialog box.

3. Once in the Access Options dialog box, select Current Database to display the
configuration settings for the current database. Here you will see the Compact on
Close setting.

4. Place a check next to Compact on Close and click the OK button to confirm the
change.

Handling Database Corruption

Corruption is a state where an error occurs in your Access database and causes
unpredictable behavior or, in worst-case scenarios, renders your database
unusable. To understand why corruption happens, you need to understand
how the ACE database engine manages data.

ACE administers your data in a series of blocks, each consisting of 4,096
bytes of data. When you see a table in a database, you see it as a solid object,
but it’s actually made of blocks of data. Depending on the size the table, a table
can be made of one block of data or many blocks that point to each other. Most
corruption is caused by errors that occur when writing to one or more of these
blocks. In fact, small-scale corruption happens all the time; you just don’t know
it, because ACE usually resolves these corruption issues during the course of
reading and writing data. However, sometimes ACE cannot resolve issues on
its own. In these cases, the database is corrupted.

514 Part VI ■ Appendixes

Signs and Symptoms of a Corrupted Database
There are many reasons why a database becomes corrupted. The database
may have encountered errors while writing data, table definitions may have
degraded over time, some VBA code or macro may have caused a fatal error,
and the list goes on. The point is that because corruption can be caused by
a wide range of nebulous issues, the signs and symptoms of a corrupted
database are just as expansive and just as nebulous. You’ll never see a message
explicitly stating that your database is corrupt. So how do you know if your
database is?

Databases that fall victim to corruption can generally be separated into two
categories: those that you can open and work with and those that do not open
at all.

Watching for Corruption in Seemingly Normal Databases

The dangerous thing about corrupted databases that are still usable is that you
may never know you are working with a corrupted database. It can be quite
difficult to spot the signs of this type of corruption. There are, however, some
reasonably clear indicators that strongly suggest corruption:

You get an error message stating ‘‘Invalid field data type’’ when trying
to open a table in either data view or design view or when viewing the
relationships window.

You get an error message stating ‘‘Could not find field Description’’ when
trying to compact and repair the database.

When you try to open a table, a query, a form, a report, or a data access
page, you get one of the following messages:

‘‘MSAccess can’t open the table in datasheet view’’

‘‘Record is deleted’’

‘‘Unable to carry out the command’’

‘‘There was an error executing the command’’

You get an error message stating, ‘‘Table ‘TempMSysAccessObjects’
already exists’’ when trying to compact and repair the database.

Nothing happens when you try to open or delete a linked table.

Access unexpectedly closes and then tries to send an error report.

You get an error message falsely stating that ‘‘The changes you requested
to the table were not successful because they would create duplicate
values in the index, primary key, or relationship.’’

#DELETED# starts appearing in your tables.

Access starts to drop records randomly.

Appendix C ■ Query Performance, Database Corruption 515

You get an error message stating ‘‘Invalid argument’’ when clicking on a
record.

All fields for a specific record show #Error when you run a query against
that record or view it in a form.

Common Errors Associated with Database Corruption

The problem with database corruption is that a wide range of nebulous issues
can cause it. Therefore, you will rarely see a message explicitly stating that
your database is corrupt. However, the errors listed here in Table C-1 are key
indicators that point to the possibility that your database is corrupt.

Table C-1: Errors Commonly Associated with Database Corruption

ERROR DESCRIPTION
2239 <Database Name> has detected that this database is in an inconsistent

state, and cannot attempt to recover the database because the file is
read-only. To allow Access to recover the database, close the database and
set the file to read/write, and then open the database.

2572 This database is in an unexpected state and <Database Name> cannot
open it. This database has been converted from a prior version of
<Database Name> by using the DAO CompactDatabase method instead
of the Convert Database command (click the Microsoft Office Button and
then click Convert). Converting by using the DAO CompactDatabase
method has left the database in a partially converted state. If you have a
copy of the database in its original format, click the Microsoft Office button
and then click Convert to convert it. If the original database is no longer
available, create a new database and import your tables and queries to
preserve your data and try again. Your other database objects cannot be
recovered.

3011 The Microsoft Office Access database engine could not find the object
<Object Name>. Make sure the object exists and that you spell its name
and the path name correctly.

3019 Operation invalid without a current index.

3033 You do not have the necessary permissions to use the <Object Name>

object. Have your system administrator or the person who created this
object establish the appropriate permissions for you.

3045 Could not use <File Name>; file already in use.

3049 Cannot open database <Database Name>. It may not be a database that
your application recognizes, or the file may be corrupt.

3051 The Microsoft Office Access database engine cannot open or write to the
file <File Name>. It is already opened exclusively by another user, or you
need permission to view and write its data.

Continued

516 Part VI ■ Appendixes

Table C-1: (continued)

ERROR DESCRIPTION

3078 The Microsoft Office Access database engine cannot find the input table or
query <Query Name>. Make sure it exists and that its name is spelled
correctly.

3197 The Microsoft Office Access database engine stopped the process because
you and another user are attempting to change the same data at the same
time.

3340 Query <Query Name> is corrupt.

3343 Unrecognized database format <Object Name>.

3428 A problem occurred in your database. Correct the problem by repairing
and compacting the database.

3626 The operation failed. There are too many indexes on table <Table Name>.
Delete some of the indexes on the table and try the operation again.

3734 The database has been placed in a state by user <User Name> on
machine <Machine Name> that prevents it from being opened or locked.

3800 <Name> is not an index in this table.

7801 This database is in an unrecognized format. The database may have been
created with a later version of <Database Name> than the one you are
using. Upgrade your version of <Database Name> to the current one, then
open this database.

29063 The Visual Basic for Applications project in the database is corrupt.

29072 <Database Name> has detected corruption in this file. To try to repair the
corruption, first make a backup copy of the file. Click the Microsoft Office
Button, point to Manage and then click Compact and Repair Database. If
you are currently trying to repair this corruption, you need to recreate this
file or restore it from a previous backup.

Recovering a Corrupted Database
If you have determined that your database is indeed corrupt, there are actions
you can take to attempt recovery. Keep in mind that your ability to fix a
corrupted database depends on the nature and extent of the corruption. The
idea is to follow these steps until your issue is resolved.

1. Make a backup copy of the corrupt database. Any recovery attempts
come with the possibility of permanently disabling the database. You
will definitely want a backup in case this happens.

2. Try working in another environment. Try opening and using the
database on several local machines (especially if you are working with

Appendix C ■ Query Performance, Database Corruption 517

the database through a network). If this resolves your issue, the problem
is probably not corruption. Look for other hardware or software issues.

3. Delete the .laccdb file associated with the database. When you open an
Access database, an .laccdb file is created. This file is the mechanism that
allows for multi-user operations. Deleting the associated .laccdb file will
ensure that no rogue instances of the database are left hanging around.
If you cannot delete the file, use the windows task manager and end all
instances of MSAccess and/or any other process that could be logged
into the database. In some cases, this action can actually resolve your
issue.

4. Import your database into a fresh .accdb file. Start a new database and
attempt to import your tables, queries, forms, reports, macros, data access
pages, and modules from the corrupted database. In most cases, all of
your data and code can be salvaged using this method.

5. Restore the database from a previously backed up version. If you have
a backup of your database, you may want to use it to help restore some
of the data you have lost.

6. Use an Access Repair Service. The last resort is to use an Access repair
service. These services use specialized software to restore databases; with
a success rate close to 99 percent. This will cost you between $50 and
$200, depending on the company you use and the complexity of your
issue. You can find a plethora of these services by entering corrupt Access
database into any of the major search engines.

Steps You Can Take to Prevent Database Corruption
Unfortunately, there isn’t a clear set of warnings alerting you that your
database is on the verge of corruption. By the time you know that you have a
corrupted database, it’s too late. In that light, remember that preparation is
a lot better that desperation. Get into the habit of taking a few simple measures
that will minimize the chance of corruption and prepare you for the event of a
corrupted database.

Backing Up Your Database on a Regular Basis

Having a backup of your database is like having a spare tire. There is no better
safeguard against losing data than having a spare copy of it stored away.
When you choose a backup plan, you will want to consider two things: when
and where. When should you back up your database? You will want to choose
a backup schedule that directly relates to your threshold of data loss. For
example, if you cannot lose more than one day of data, make a backup of your

518 Part VI ■ Appendixes

database every day. If daily backups are excessive, make a weekly backup.
Where should you back up you database? You will want to choose a location
that is safe, accessible, and not in the same folder as your working database.

Compacting and Repairing Your Database on a Regular Basis

There are certain things that happen through the natural course of using a
database. For example, the data blocks in the database become fragmented,
the table statistics become outmoded, and the database grows. Although none
of these occurrences directly lead to a corrupt database, they can contribute to
one if left unchecked. Many Access users think that the compact and repair
utility simply releases disk space, but several important actions are performed
with a compact and repair procedure.

The compact and repair utility:

Reclaims disk space and ensures the prevention of database bloat.

Defragments the blocks of data that make up table pages, improving
performance and making efficient use of the read ahead cache.

Resets AutoNumber fields, ensuring that the next value allocated will be
one more than the highest value in the remaining records.

Regenerates table statistics used by the query optimizer to create query
execution strategies.

Flags all queries, indicating a recompile the next time the query is
executed.

These actions can play a big part in keeping your database streamlined and
efficient. You can set your database to automatically compact and repair each
time you close it. To do this, follow these steps:

1. Click the Office Icon in the upper left-hand corner of the Ribbon.

2. Click the Access Options button. This activates the Access Options dialog
box.

3. Once in the Access Options dialog box, select Current Database to
display the configuration settings for the current database. Here you see
the Compact on Close setting.

4. Place a check next to Compact on Close and click the OK button to
confirm the change.

Avoiding Interruption of Service While Writing to Your Database

The most common cause of corruption is interruption while writing to your
database. Interrupted write processes can lead to a host of issues, from
incomplete table definitions to lost indexes. In that vein, be sure to avoid any

Appendix C ■ Query Performance, Database Corruption 519

type of abnormal or abrupt termination of Access. Following these general
guidelines will help you avoid corruption due to interrupted processes:

Always wait until all queries, macros, and procedures have completed
execution before closing Access.

Avoid using the Task Manager to shut down Access.

Never place your Access database on a file server that is regularly shut
down or rebooted.

Avoid power loss while working with your database. If your database is
on a file server, make sure the server has protection against power surges
or power outages.

Never Working with a Database from Removable Media

When you work with an Access database, additional disk space is needed
for the .laccdb file and for the normal database bloat that comes with using
Access. If you open an Access database on removable media such as a memory
stick or a ZIP disk, you run the risk of corruption due to disk space errors.
Generally, a good practice is to copy the database to your hard drive, work
with the database there, and then copy it back to the removable media when
you are done.

Getting Help in Access

As you experiment with new functions and tools in Access, you may sometimes
need a little help or a simple push in the right direction. The first place you
should look is Access’s Help system. It is true that the Help system in Access
has its flaws. To a new user, the Access Help system may seem like a clunky
add-in that returns a perplexing list of topics that has nothing to do with the
original search topic. The truth is, however, that once you learn how to use
the Access Help system effectively, it is often the fastest and easiest way to get
help on a topic. The following sections contain some tips that will help you
get the most out of Access’s help system.

Location Matters When Asking for Help
You may remember the Help system in Access 97 being a lot more user-friendly
and more effective than newer versions of Access. Rest assured that you are
not just imagining it. The fact is that the Microsoft did fundamentally change
the mechanics of the Access Help system. In Access 97, when you entered a
key word into the search index, Access did a kind of global search, throwing
your search criteria against all the topics within Access.

520 Part VI ■ Appendixes

In the later versions of Access, however, there are actually two Help systems:
one providing help on Access features and another on VBA programming
topics. Instead of doing a global search with your criteria, Access throws your
search criteria only against the Help system relevant to your current location.
This means that the help you get is determined by the area of Access in which
you are working. In that vein, if you require help on a topic that involves
VBA programming, you will need to be in the VBA Editor while performing
your search. On the other hand, if you need help on building a query, it’s best
to be in the query design view. This will ensure that your keyword search is
performed on the correct Help system.

Online Help Is Better than Offline Help
When you search for help on a topic, Access checks to see if there is an Internet
connection available. If there is, Access returns help results based on online
content from Microsoft’s site. If no Internet connection is available, Access
uses the help files locally stored with Microsoft Office. One way to maximize
the help you are getting in Access is to use the online help. Online help is
generally better than offline help because the content you find online is often
more detailed, and it includes updated information as well as links to other
resources not available offline.

Diversifying your Knowledgebase with Online Resources
Familiarize yourself with a handful of Web sites and forums dedicated to
Access. These resources can serve as supplemental help, not only for basic
Access topics, but for also giving you situation-specific tips and tricks. Table C-2
gives some sites that should get you started. These sites are free to use and are
particularly helpful when you need an extra push in the right direction.

Access topics and general
help

www.allenbrowne.com www.mvps.org/access/

Access tutorials and
samples

www.fontstuff.com
www.datapigtechnologies.com

Access discussion groups
and forums

www.microsoft.com/office/community/en-us/
default.mspx
www.utteraccess.com

A P P E N D I X

D
Data Analyst’s

Function Reference

The list outlined here is designed to provide a solid reference to the functions
that are most relevant to the realm of data analysis. Several of these functions
have been covered in detail throughout the chapters in this book.

TIP You can learn more about the functions that have not been covered here by
using the Access help system.

Abs

Abs is a math function that returns a value that represents the absolute value of
the number. That is, the magnitude of the number without the positive or negative
sign. For example, Abs(-5) would return 5.

Syntax

Abs(number)

Argument

Number (required) This is the numeric expression you are
evaluating. In a query environment, you
can use the name of a field to specify that
you are evaluating all the row values of that
field.

521

522 Part VI ■ Appendixes

Asc
Asc is a conversion function used to convert a string to its Ascii code. For example,
Asc(‘‘A’’) would return 65 because 65 is the Ascii code for the uppercase letter A. If
you pass a whole word to the Asc function, it will only return the Ascii code for the
first letter of the word.

Syntax

Asc(String)

Argument

String (required) This is the string you are evaluating. If the
string you are passing to the function
contains no characters, the function will fail
and produce a runtime error.

Atn
Atn is a math function that allows you to calculate the arctangent of a number.

Syntax

Atn(number)

Argument

Number (required) This is the numeric expression you are
evaluating.

Choose
The Choose function is a program flow function that allows you to return a value
from a list of choices based on a given position. For instance: Choose(3,
‘‘Microsoft’’, ‘‘Access’’, ‘‘Data’’, ‘‘Analysis’’) would return ‘‘Data’’ This is because
word ‘‘Data’’ is in the third position in the list of values.

Syntax

Choose(PositionNumber, List of Values Separated by Commas)

Arguments

PositionNumber (required) This is the numeric expression or field that
results in a value between 1 and the
number of available choices. If this
argument’s value is less than 1 or greater
than the number of choices in the function,
a Null value will be returned.

List of Values Separated by
Commas (required)

This is a variant expression that contains a
list of one or more values.

Appendix D ■ Data Analyst’s Function Reference 523

Chr

Chr is a conversion function used to convert an Ascii code to a string. For example,
Chr(65) would return ‘‘A’’.

Syntax

Chr(Number)

Arguments

Number (required) This is the number value that represents an
Ascii character code. If the number you are
passing to the function is not a valid Ascii
character code, the function will fail and
produce a runtime error.

Cos

The Cos function is a math function that allows you to calculate the cosine of an
angle.

Syntax

Cos(number)

Arguments

Number (required) This is the numeric expression that
represents an angle in radians.

Date
The Date function returns today’s date based on your PC’s current system date. The
Date function is key to performing any analysis that involves a time comparison in
relation to today’s date. There are no required arguments for this function; to use it,
simply enter: Date().

DateAdd

The DateAdd function returns a date to which a specified interval has been added.
In other words, the DateAdd function allows you calculate a date by adding 30
days to it, subtracting 3 weeks from it, adding 4 months to it, or so on.
For example:

DateAdd(‘‘ww’’,1,#11/30/2004#): adds 1 week, returning 12/7/2004

DateAdd(‘‘m’’,2,#11/30/2004#): adds 2 months, returning 1/30/2005

DateAdd(‘‘yyyy’’,-1,#11/30/2004#): subtracts 1 year, returning 11/30/2003

Table continued on following page

524 Part VI ■ Appendixes

Syntax

DateAdd(Interval, Number, Date)

Arguments

Interval (required) This is the interval of time that you want to
use. The intervals available are:

‘‘yyyy’’- Year

‘‘q’’ - Quarter

‘‘m’’ - Month

‘‘y’’ - Day of year

‘‘d’’ - Day

‘‘w’’ - Weekday

‘‘ww’’ - Week

‘‘h’’ - Hour

‘‘n’’ - Minute

‘‘s’’ - Second

Number (required) This is the number of intervals to add. A
positive number will return a date in the
future, while a negative number will return
a date in the past.

Date (required) This is the date value with which you are
working. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

DateDiff

The DateDiff function returns the difference between two dates based on a
specified time interval. For example, DateDiff(’yyyy’, #5/16/1972#, #5/16/2005#)
returns 33 because there is a difference of 33 years between the two dates.

Syntax

DateDiff(Interval, Date1, Date2, FirstDayOfTheWeek,
FirstWeekOfTheYear)

Arguments

Interval (required) This is the interval of time that you want to
use. The intervals available are:

yyyy’’ - Year

‘‘q’’ - Quarter

Appendix D ■ Data Analyst’s Function Reference 525

‘‘m’’ - Month

‘‘y’’ - Day of year

‘‘d’’ - Day

‘‘w’’ - Weekday

‘‘ww’’ - Week

‘‘h’’ - Hour

‘‘n’’ - Minute

‘‘s’’ - Second

Date1 (required) This is one of the two dates you want to
calculate the difference between. In a
query environment, you can use the name
of a field to specify that you are evaluating
all the row values of that field.

Date2 (required) This is one of the two dates you want to
calculate the difference between. In a
query environment, you can use the name
of a field to specify that you are evaluating
all the row values of that field.

FirstDayOfTheWeek (optional) This specifies which day you want to count
as the first day of the week. Enter 1 in this
argument to make the first day Sunday, 2
for Monday, 3 for Tuesday, and so on. If
this argument is omitted, the first day is a
Sunday by default.

FirstWeekOfTheYear
(optional)

This specifies the first week of the year. In
most cases, you would omit this argument.
This uses the first week that includes
January 1 as the default. However, you can
alter this setting by using one of the
following values.

0 - Use the NLS(National Language Sup-
port) API setting.

1 - Use the first week that includes Jan-
uary 1.

2 - Use the first week that has at least
four days.

3 - Use the first week that has seven
days.

526 Part VI ■ Appendixes

DatePart

The DatePart function allows you to evaluate a date and return a specific interval
of time represented in that date. For example, DatePart(‘‘q’’,#6/4/2004#) returns
2 (as in second quarter), the quarter represented in that date.

Syntax

DatePart(Interval, ValidDate, FirstDayOfTheWeek,
FirstWeekOfTheYear)

Arguments

Interval (required) This is the interval of time want to use. The
intervals available are:

‘‘yyyy’’ - Year

‘‘q’’ - Quarter

‘‘m’’ - Month

‘‘y’’ - Day of year

‘‘d’’ - Day

‘‘w’’ - Weekday

‘‘ww’’ - Week

‘‘h’’ - Hour

‘‘n’’ - Minute

‘‘s’’ - Second

ValidDate (required) This is the date value with which you are
working. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

FirstDayOfTheWeek (optional) This specifies which day you want to count
as the first day of the week. Enter 1 in this
argument to make the first day Sunday, 2
for Monday, 3 for Tuesday, and so on. If
this argument is omitted, the first day is a
Sunday by default.

FirstWeekOfTheYear
(optional)

This specifies the first week of the year. In
most cases, you would omit this argument.
This uses the first week that includes
January 1 as the default. However, you

Appendix D ■ Data Analyst’s Function Reference 527

can alter this setting by using one of the
following values.

0 - Use the NLS API setting.

1 - Use the first week that includes Jan-
uary 1.

2 - Use the first week that has at least
four days.

3 - Use the first week that has seven
days.

DateSerial

The DateSerial function allows you to construct a date value by combining given
year, month, and day components. This function is perfect for converting disparate
values that, together represent a date, into an actual date. For example,
DateSerial(2004, 4, 3) would return April 3, 2004.

Syntax

DateSerial(Year, Month, Day)

Arguments

Year (required) Any number or numeric expression from
100 to 9999

Month (required) Any number or numeric expression

Day (required) Any number or numeric expression

DateValue

The DateValue function allows you to convert any string or expression that
represents a valid date, time, or both into a date value. For Example,
DateValue(‘‘October 31, 2004’’) would return 10/31/2004.

Syntax

DateValue(Expression)

Arguments

Expression (required) Any string or valid expression that can
represent a valid date, time, or both

528 Part VI ■ Appendixes

Day

Day is a conversion function that converts a valid date to a number from 1 to 31,
representing the day of the month for a given date. For example,
Day(#5/16/1972#) would return 16.

Syntax

Day(ValidDate)

Arguments

ValidDate (required) This is any value that can represent a valid
date. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

DDB

DDB is a financial function that calculates the depreciation of an asset for a specific
period using the double-declining balance method or another specified method.

Syntax

DDB(Cost, Salvage, Life, Period, Factor)

Arguments

Cost (required) This is the initial cost of the asset; must be
a positive number.

Salvage (required) This is the value of the asset at the end of
its useful life; must be a positive number.

Life (required) This is the length of the useful life of the
asset.

Period (required) This is the period for which asset
depreciation is calculated.

Factor (optional) This is the rate at which the balance
declines. The default setting for this
argument is the double-declining method
(a factor of 2).

Appendix D ■ Data Analyst’s Function Reference 529

Domain Aggregate Functions

Domain aggregate functions allow you to extract and aggregate statistical
information from an entire dataset (a domain). These functions differ from an
Aggregate query in that an Aggregate query will group data before evaluating the
values, while a domain aggregate function will evaluate the values for the entire
dataset. There are 12 different domain aggregate functions, but they all have the
same Syntax.

Syntax

(“Field Name]“,“[Dataset Name]“, “[Criteria]“)

Arguments

Field Name (required) This expression identifies the field
containing the data with which you are
working. This argument must be in quotes.

Dataset Name (required) This expression identifies the table or query
you are working with; also known as the
domain. This argument must be in quotes.

Criteria (optional) This expression is used to restrict the range
of data on which the domain aggregate
function is performed. If omitted, the
domain aggregate function is performed
against the entire dataset. This argument
must be in quotes.

Additional Remarks

The 12 different domain aggregate functions are:

DSum The DSum function returns the total sum
value of a specified field in the domain.
DSum(‘‘[Sales_Amount]’’,
‘‘[TransactionMaster]’’) would give you the
total sum of sales amount in the
TransactionMaster table.

DAvg The DAvg function returns the average
value of a specified field in the domain.
DAvg(‘‘[Sales_Amount]’’,
‘‘[TransactionMaster]’’) would give you the
average sales amount in the
TransactionMaster table.

Table continued on following page

530 Part VI ■ Appendixes

DCount The DCount function returns the total
number of records in the domain.
DCount(“*“,
“[TransactionMaster]“) would give
you the total number of records in the
TransactionMaster table.

DLookup The DLookup function returns the first value
of a specified field that matches the criteria
you define within the DLookup function. If
you don’t supply criteria, the DLookup
function returns a random value in the
domain. DLookup functions are particularly
useful when you need to retrieve a value
from an outside dataset.
DLookUp(“[Last_Name]“,“[Employee_
Master]“,“[Employee_Number]=
’42620'“) would return the value in the
Last_Name field of the record where the
Employee_Number is ‘42620’.

DMin, DMax The DMin and DMax would return the
minimum and maximum values in the
domain respectively.
DMin(“[Sales_Amount]“,
“[TransactionMaster]“) would return
the lowest sales amount in the
Transactionmaster, while
DMin(“[Sales_Amount]“,
“[TransactionMaster]“) would return
the highest.

DFirst, DLast The DFirst and DLast would return the first
and last values in the domain respectively.
DFirst(“[Sales_Amount]“,
“[TransactionMaster]“) would return
the first sales amount in the
Transactionmaster while
DLast(‘‘[Sales_Amount]’’,
‘‘[TransactionMaster]’’) would return the last.

DStdev, Dstdevp, DVar, Dvarp You can use the DStdev and the DStdevp to
return the standard deviation across a
population sample and a population,
respectively. The Dvar and the Dvarp similarly
returns the variance across a population
sample and a population, respectively.

Appendix D ■ Data Analyst’s Function Reference 531

Exp

Exp is a math function that raises the base of natural logarithm’s (2.718282)
number to a power you specify.

Syntax

Exp(Number)

Arguments

Number (required) This is the numeric expression used as the
power to raise 2.718282.

FormatCurrency

FormatCurrency is a conversion function that converts an expression to a currency
using the currency symbol defined by your computer’s regional settings.

Syntax

FormatCurrency(Number,TrailingDigits,LeadingDigits,
NegativeParens,Group)

Arguments

Number (required) This is the number value you want to
convert. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

TrailingDigits (optional) This is the number of digits to the right of
the decimal you want displayed.

LeadingDigits (optional) This indicates whether a leading zero is
displayed for fractional values. The settings
for this argument are -1 for True, 0 for
False, or -2 to use the computer’s
regional/default settings.

NegativeParens (optional) This specifies if negative values should be
wrapped in parentheses. The settings for
this argument are -1 for True, 0 for False, or
-2 to use the computer’s regional settings
FormatNumber.

Group (optional) This indicates whether or not numbers are
grouped using the group delimiter
specified in the computer’s regional
settings. The settings for this argument are
-1 for True, 0 for False, or -2 to use the
computer’s regional settings.

532 Part VI ■ Appendixes

FormatDateTime

The FormatDateTime function is a conversion function that converts an expression
to a date or time.

Syntax

FormatDateTime(Date,NamedFormat)

Arguments

Date (required) This is the date/time expression you want
to convert. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

NamedFormat (optional) This is the format code specifying the
date/time format you would like to use.
The settings for this argument are as
follows:

0 - Display date as a short date and time
as a long time.

1 - Display a date using the long date
format specified in your computer’s
regional settings.

2 - Display a date using the short date
format specified in your computer’s
regional settings.

3 - Display a time using the time format
specified in your computer’s regional
settings.

4 - Display a time using the 24-hour for-
mat (hh:mm).

FormatNumber

FormatNumber is a conversion function that converts a numeric expression to a
formatted number.

Syntax

FormatNumber(Number,TrailingDigits,LeadingDigits,
NegativeParens,Group)

Appendix D ■ Data Analyst’s Function Reference 533

Arguments

Number (required) This is the number value you want to
convert. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

TrailingDigits (optional) This is the number of digits to the right of
the decimal you want displayed.

LeadingDigits (optional) This indicates whether a leading zero is
displayed for fractional values. The settings
for this argument are -1 for True, 0 for
False, or -2 to use the computer’s
regional/default settings.

NegativeParens (optional) This specifies whether negative values
should be wrapped in parentheses. The
settings for this argument are -1 for True, 0
for False, or -2 to use the computer’s
regional settings.

Group (optional) This indicates whether or not numbers are
grouped using the group delimiter
specified in the computer’s regional
settings. The settings for this argument are
-1 for True, 0 for False, or -2 to use the
computer’s regional settings.

FormatPercent

FormatPercent is a conversion function that converts a numeric expression to a
formatted percentage with a trailing percent (%) character.

Syntax

FormatPercent(Number,TrailingDigits,LeadingDigits,
NegativeParens,Group)

Arguments

Number (required) This is the number value you want to
convert. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field.

Table continued on following page

534 Part VI ■ Appendixes

TrailingDigits (optional) This is the number of digits to the right of
the decimal you want displayed.

LeadingDigits (optional) This indicates whether a leading zero is
displayed for fractional values. The settings
for this argument are 1 for True, 0 for False,
or 2 to use the computer’s regional
settings.

NegativeParens (optional) This specifies if negative values should be
wrapped in parentheses. The settings for
this argument are 1 for True, 0 for False, or
2 to use the computer’s regional settings.

Group (optional) This indicates whether or not numbers are
grouped using the group delimiter
specified in the computer’s regional
settings. The settings for this argument are
1 for True, 0 for False, or 2 to use the
computer’s regional settings.

FV

FV is a financial function that allows you to calculate an annuity’s future value. An
annuity is a series of fixed cash payments normally made against a loan over a
period of time.

Syntax

FV(Rate, PaymentPeriods, PaymentAmount, PresentValue, Type)

Arguments

Rate (required) This is the stated interest rate per period.

PaymentPeriods (required) This is the total number of payment
periods in the annuity.

PaymentAmount (required) This is the payment amount, usually
consisting of principal and interest.

PresentValue (optional) This is the present value of future
payments. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

Appendix D ■ Data Analyst’s Function Reference 535

Hour

Hour is a conversion function that converts a valid time to a number from 0 to 23,
representing the hour of the day. For example, Hour(#9:30:00 PM#) would return
21.

Syntax

Hour(ValidTime)

Arguments

ValidTime (required) This is any combination of values that can
represent valid time. In a query environ-
ment, you can use the name of a field to
specify that you are evaluating all the row
values of that field.

IIf

IIf is a program flow function allows you to create an If . . . Then . . . Else
statement, returning one value if a condition evaluates to true, and another value
if it evaluates to false.

Syntax

IIf(Expression, TrueAnswer, FalseAnswer)

Arguments

Expression (required) This is the expression you want to evaluate.

TrueAnswer (required) This is the value to return if the expression
is true.

FalseAnswer (required) This is the value to return if the expression
is false.

InStr

InStr is a text function that searches for a specified string in another string and
returns its position number. For example: InStr(‘‘Alexander, Mike’’,‘‘x’’) would
return 4 because the ‘‘x’’ is character number 4 in this string.

Syntax

InStr(Start, SearchString, FindString, Compare)

Table continued on following page

536 Part VI ■ Appendixes

Arguments

Start (optional) This is the character number to start the
search; default is 1.

SearchString (required) This is the string to be searched.

FindString (required) This is the string to search for.

Compare (optional) This specifies the type of string comparison.

Additional Remarks

The Compare argument can have the following values:

-1 Performs a comparison using the setting of
the Option Compare statement

0 Performs a binary comparison

1 Performs a textual comparison

2 (Microsoft Access only) Performs a
comparison based on information in your
database

InStrRev

InStrRev is a text function that searches for a specified string in another string and
returns its position number from the end of the string.

Syntax

InstrRev(SearchString, FindString, Start, Compare)

Arguments

SearchString (required) This is the string to be searched.

FindString (required) This is the string to search for.

Start (optional) This is character number to start the
search; default is 1.

Compare (optional) This specifies the type of string comparison.

Additional Remarks

The Compare argument can have the following values:

-1 Performs a comparison using the setting of
the Option Compare statement

0 Performs a binary comparison

1 Performs a textual comparison

2 (Microsoft Access only) Performs a
comparison based on information in your
database

Appendix D ■ Data Analyst’s Function Reference 537

IPmt

IPmt is a financial function that allows you to calculate the interest paid within a
specified period during the life of an annuity. An annuity is a series of fixed cash
payments normally made against a loan over a period of time.

Syntax

IPmt(Rate, Period, PaymentPeriods, PresentValue, FutureValue,
Type)

Arguments

Rate (required) This is the average interest rate per period.

Period (required) This is the specified payment period in
question.

PaymentPeriods (required) This is the total number of payment
periods in the annuity.

PresentValue (required) This is the present value of future
payments.

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

IRR

IRR is a financial function that calculates the internal rate of return based on serial
cash flow, payments, and receipts.

Syntax

IRR(IncomeValues, Guess)

Arguments

IncomeValues (required) These values make up an array that
represents the periodic cash flow values.
Within this array, there must be at least one
negative number and one positive number.

Guess (optional) This argument allows you to estimate the
percent of total investment that will be
returned. If this omitted, 10 percent is used.

538 Part VI ■ Appendixes

IsError

IsError is an inspection function that determines if an expression evaluates as an
error. This function returns a True or False answer.

Syntax

IsError(Expression)

Arguments

Expression (required) This is any value or expression. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

IsNull

IsNull is an inspection function that determines whether a value contains no valid
data. This function returns a True or False answer.

Syntax

IsNull(Expression)

Arguments

Expression (required) This is any value or expression. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

IsNumeric

IsNumeric is an inspection function that determines whether an expression
evaluates as a numeric value. This function returns a True or False answer.

Syntax

IsNumeric(Expression)

Arguments

Expression (required) This is any value or expression. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

Appendix D ■ Data Analyst’s Function Reference 539

LCase

The LCase function converts a string to lowercase letters.

Syntax

LCase(String)

Arguments

String (required) This is the string to be converted. In a query
environment, you can use the name of a
field to specify that you are converting all
the row values of that field.

Left

The Left function returns a specified number of characters starting from the left -
most character of the string. For example, Left(‘‘Nowhere’’, 3) would return ‘‘Now’’.

Syntax

Left(String, NumberOfCharacters)

Arguments

String (required) This is the string to be evaluated. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

NumberofCharacters
(required)

This is the number of characters you want
returned. If this argument is greater than or
equal to the number of characters in string,
the entire string is returned.

Len

The Len function returns a number identifying the number of characters in a given
string. This function is quite useful when you need to dynamically determine the
length of a string. For instance, Len(‘‘Alexander’’) would return 9.

Syntax

Len(String or Variable)

Arguments

String or Variable
(required)

This is the string or variable to be evaluated.
In a query environment, you can use the
name of a field to specify that you are
evaluating all the row values of that field.

540 Part VI ■ Appendixes

Log

The Log function is a math function that calculates the natural logarithm of a
number.

Syntax

Log(Number)

Arguments

Number (required) This is the numeric expression that is to be
evaluated; must be greater than zero.

Mid

The Mid function returns a specified number of characters starting from a specified
character position. The required Syntax for the Mid Function are: The text you are
evaluating, the starting position, and the number of characters you want returned.
For example: Mid(‘‘Lonely’’, 2, 3) captures three characters starting from character
number 2 in the string, returning ‘‘one’’ .

Syntax

Mid(String, StartPosition, NumberOfCharacters)

Arguments

String (required) This is the string to be evaluated. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

StartPosition (required) This is the position number of the character
you want to start your capture.

NumberofCharacters
(required)

This is the number of characters you want
returned. If this argument is greater than or
equal to the number of characters in string,
the entire string is returned.

Minute

The Minute function converts a valid time to a number from 0 to 59, representing
the minute of the hour. For example, Minute(#9:30:00 PM#) would return 30.

Syntax

Minute(ValidTime)

Appendix D ■ Data Analyst’s Function Reference 541

Arguments

ValidTime (required) This is any combination of values that can
represent valid time. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field

MIRR

MIRR is a financial function that calculates the internal rate of return based on
serial cash flow, payments, and receipts financed at different rates.

Syntax

MIRR(IncomeValues, FinanceRate, ReinvestRate)

Arguments

IncomeValues (required) These values make up an array that
represents the periodic cash flow values.
Within this array, there must be at least one
negative number and one positive number.

FinanceRate (required) This is the interest rate paid as the cost of
investing. The values of this argument must
be represented as decimal values.

ReinvestRate (required) This is the interest rate received on gains
from cash reinvestment. The values of this
argument must be represented as decimal
values.

Month

The Month function converts a valid date to a number from 1 to 12, representing
the month for a given date. For example, Month(#5/16/1972#) would return 5.

Syntax

Month(ValidDate)

Arguments

ValidDate (required) This is any value that can represent a valid
date. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

542 Part VI ■ Appendixes

MonthName

The MonthName function converts a numeric month designation (1 to 12) to a
month name. For instance, MonthName(8) would return August. Values less than
1 or greater than 12 will cause an error.

Syntax

MonthName(NumericMonth, Abbreviated)

Arguments

NumericMonth (required) This is a number from 1 to 12 that
represents a month. 1 represents January,
2 represents February, and so on.

Abbreviated (optional) This specifies whether the month is
abbreviated or not. If this argument is
omitted, the month is not abbreviated.
Enter 1 to return abbreviated months.

Now

The Now function returns today’s date and time based on your PC’s current system
date and time. There are no required arguments for this function; to use it, simply
enter Now().

NPer

The NPer function is a financial function that specifies the number of periods for an
annuity based on periodic, fixed payments at a fixed interest rate. An annuity is a
series of fixed cash payments normally made against a loan over a period of time.

Syntax

NPer(Rate, PaymentAmount, PresentValue, FutureValue, Type)

Arguments

Rate (required) This is the stated interest rate per period.

PaymentAmount (required) This is the payment amount, usually
consisting of principal and interest.

PresentValue (required) This is the present value of future
payments and receipts.

Appendix D ■ Data Analyst’s Function Reference 543

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

NPV

NPV is a financial function that calculates the net present value or the current
value of a future series of payments and receipts based on serial cash flow,
payments, receipts, and a discount rate.

Syntax

NPV(DiscountRate, IncomeValues)

Arguments

DiscountRate (required) This is the discount rate received over the
length of the period. The values of this
argument must be represented as decimal
values.

IncomeValues (required) These values make up an array that
represents the periodic cash flow values.
Within this array, there must be at least one
negative number and one positive number.

NZ

The NZ function allows you to tell Access to recognize Null values as another
value, preventing your null values from propagating through an expression.

Syntax

NZ(Variant, ValueIfNull)

Arguments

Variant (required) This is the data you are working with.

ValueIfNull (required in the
query environment)

This is the value you want returned if the
Variant is null.

544 Part VI ■ Appendixes

Partition

Partition is a database function that identifies the particular range in which a
number falls and returns a string describing that range. This function is useful
when you need to create a quick and easy frequency distribution.

Syntax

Partition(Number, Range Start, Range Stop, Interval)

Arguments

Number (required) This is the number you are evaluating. In a
query environment, you typically use the
name of a field to specify that you are
evaluating all the row values of that field.

Range Start (required) This is a whole number that is to be the
start of the overall range of numbers. Note
that this number cannot be less than zero.

Range Stop (required) This is a whole number that is to be the
end of the overall range of numbers. Note
that this number cannot be equal to or less
than the Range Start.

Interval (required) This is a whole number that is to be the
span of each range in the series from
Range Start to Range Stop. Note that this
number cannot be less than one.

Pmt

Pmt is a financial function that calculates the payment for an annuity based on
periodic, fixed payments at a fixed interest rate. An annuity is a series of fixed cash
payments normally made against a loan over a period of time.

Syntax

Pmt(Rate, PaymentPeriods, PresentValue, FutureValue, Type)

Arguments

Rate (required) This is the average interest rate per period.

PaymentPeriods (required) This is the total number of payment
periods in the annuity.

PresentValue (required) This is the present value of future
payments and receipts.

Appendix D ■ Data Analyst’s Function Reference 545

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

PPmt

PPmt is a financial function that allows you to calculate the principal payment for a
specified period during the life of an annuity. An annuity is a series of fixed cash
payments normally made against a loan over a period of time.

Syntax

PPmt(Rate, Period, PaymentPeriods, PresentValue, FutureValue,
Type)

Arguments

Rate (required) This is the average interest rate per period.

Period (required) This is the specified payment period in
question.

PaymentPeriods (required) This is the total number of payment
periods in the annuity.

PresentValue (required) This is the present value of future
payments and receipts.

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

546 Part VI ■ Appendixes

PV

PV is a financial function that allows you to calculate an annuity’s present value.
An annuity is a series of fixed cash payments normally made against a loan over a
period of time.

Syntax

PV(Rate, PaymentPeriods, PaymentAmount, FutureValue, Type)

Arguments

Rate (required) This is the average interest rate per period.

PaymentPeriods (required) This is the total number of payment
periods in the annuity.

PaymentAmount (required) This is the payment amount, usually
consisting of principal and interest.

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

Rate

Rate is a financial function that allows you to calculate the interest rate per period
for an annuity. An annuity is a series of fixed cash payments normally made
against a loan over a period of time.

Syntax

Rate(Periods, PaymentAmount, PresentValue, FutureValue, Type,
Guess)

Arguments

Periods (required) This is the total number of payment
periods in the annuity.

PaymentAmount (required) This is the payment amount, usually
consisting of principal and interest.

PresentValue (required) This is the present value of future
payments and receipts.

Appendix D ■ Data Analyst’s Function Reference 547

FutureValue (optional) This is the future value or final balance on a
loan or an investment upon making the
last payment. If omitted, 0 is assumed.

Type (optional) This argument specifies when payments
are due. A value of 0 means that payments
are due at the end of the payment period,
while a value of 1 means that payments
are due at the beginning of the payment
period. If omitted, 0 is assumed.

Guess (optional) This argument allows you to estimate the
percent of total investment that will be
returned. If this omitted, 10 percent is used.

Replace

Replace allows you to replace a specified substring with another substring. This
function has the same effect as the ‘‘Find and Replace’’ functionality. For example,
Replace(‘‘Pear’’, ‘‘P’’, ‘‘B’’) would return ‘‘Bear’’.

Syntax

Replace(String, Find, Replace, Start, Count, Compare)

Arguments

String (required) The full string you are evaluating. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

Find (required) The substring you need to find and replace.

Replace (required) The substring used as the replacement.

Start (optional) The position within substring to begin the
search; default is 1.

Count (optional) Number of occurrences to replace; default
is all occurrences.

Compare (optional) The kind of comparison to use.

Additional Remarks

The Compare argument can have the following values:

-1 Performs a comparison using the setting of
the Option Compare statement.

548 Part VI ■ Appendixes

0 Performs a binary comparison

1 Performs a textual comparison

2 Microsoft Access only. Performs a
comparison based on information in your
database.

Right

The Right function returns a specified number of characters starting from the right
most character of the string. For example, Left(‘‘Nowhere’’, 4) would return ‘‘here’’.

Syntax

Right(String, NumberOfCharacters)

Arguments

String (required) This is the string to be evaluated. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

NumberofCharacters
(required)

This is the number of characters you want
returned. If this argument is greater than or
equal to the number of characters in string,
the entire string is returned.

Rnd

Rnd is a math function that generates and returns a random number that is
greater than or equal to 0 but less than 1.

Syntax

Rnd(number)

Arguments

Number (optional) This numeric expression determines how
the random number is generated.

Additional Remarks

If the Number argument is
omitted from the function

The next random number in the sequence
is generated.

Appendix D ■ Data Analyst’s Function Reference 549

If the Number argument is less
than zero

The same number is generated every time.

If the Number argument is greater
than zero

The next random number in the sequence
is generated.

If the Number argument equals
zero

The most recently generated number is
returned.

Round

Round is a math function that allows you to round a number to a specified
number of decimal places. For example, Round(456.7276) returns 457.

Syntax

Round(Number, DecimalPlaces)

Arguments

Number (required) This is the numeric expression you want to
evaluate. In a query environment, you
typically use the name of a field to specify
that you are evaluating all the row values of
that field.

DecimalPlaces (optional) This is the number of places to the right of
the decimal included in the rounding. If
omitted, the Round function returns an
integer with zero decimal places.

Second

The Second function converts a valid time to a number from 0 to 59, representing
the seconds of the minute. For example, Second(#9:00:35 PM#) would return 35.

Syntax

Second(ValidTime)

Arguments

ValidTime (required) This is any combination of values that can
represent valid time. In a query
environment, you can use the name of a
field to specify that you are evaluating all
the row values of that field.

550 Part VI ■ Appendixes

Sgn

Sgn is a math function that returns an integer code associated with the sign of a
given number. If the given number is less than zero (has a negative designation),
the Sgn function returns -1. If the given number equals zero, the Sgn function
returns 0. If the given number is greater than zero (has a positive designation), the
Sgn function returns 1.

Syntax

Sgn(number)

Arguments

Number (required) This is the numeric expression you are
evaluating.

Sin

Sin is a math function that allows you to calculate the sine of an angle.

Syntax

Sin(Number)

Arguments

Number (required) This is any numeric expression that
expresses an angle in radians.

SLN

SLN is a financial function that calculates the straight-line depreciation of an asset
for one period.

Syntax

SLN(Cost, Salvage, Life)

Arguments

Cost (required) This is the initial cost of the asset; must be
a positive number.

Salvage (required) This is the value of the asset at the end of
its useful life; must be a positive number.

Life (required) This is the length of the useful life of the
asset.

Appendix D ■ Data Analyst’s Function Reference 551

Space

The Space function allows you to create a string with a specified number of spaces
to a string. This function comes in handy when you need to clear data in fixed-
length strings. For example, you can use the Space function within an expression
such as Space(5) & ‘‘Access’’ . This would change the string ‘‘Access’’ to ‘‘ Access’’ .

Syntax

Space(Number)

Arguments

Number (required) This is the number of spaces to include in
the string.

SQL Aggregate Functions

SQL aggregate functions are the most commonly used functions in Access. These
functions perform either mathematical calculations or value evaluations against a
given expression. These functions are typically used in a query environment where
the Expression argument refers to a field in a table where you are evaluating all
the row values of that field.

Syntax

Sum(Expression) Sum calculates the total value of the all the
records in the designated field or grouping.
This function is typically used with the
following data types: AutoNumber,
Currency, Date/Time, and Number.

Avg(Expression) Avg calculates the Average of all the
records in the designated field or grouping.
This function is typically used with the
following data types: AutoNumber,
Currency, Date/Time, and Number.

Count(Expression) Count simply counts the number of entries
within the designated field or grouping.
This function works with all data types.

StDev(Expression) StDev calculates the standard deviation
across all records within the designated
field or grouping. This function will only
work with the following data types:
AutoNumber, Currency, Date/Time, and
Number.

Table continued on following page

552 Part VI ■ Appendixes

Var(Expression) Var calculates the amount by which all the
values within the designated field or
grouping vary from the average value of the
group. This function will only work with the
following data types: AutoNumber,
Currency, Date/Time, and Number.

Min(Expression) Min returns the value of the record with the
lowest value in the in the designated field
or grouping. This function will only work
with the following data types: AutoNumber,
Currency, Date/Time, Number, and Text.

Max(Expression) Max returns the value of the record with
the highest value in the in the designated
field or grouping. This function will only
work with the following data types:
AutoNumber, Currency, Date/Time,
Number, and Text.

First(Expression) First returns the value of the first record in
the designated field or grouping. This
function works with all data types.

Last(Expression) Last returns the value of the last record in
the designated field or grouping. This
function works with all data types.

Sqr

Sqr is a math function that calculates the square root of a given number.

Syntax

Sqr(Number)

Arguments

Number (required) This is the numeric expression you are
evaluating.

Str

Str is a conversion function that converts a numeric value into a string
representation of the number. For instance, Str(2304) would return ‘‘ 2304’’. Note
that positive numbers converted with Str always have a leading space to represent
the positive sign. Negative numbers have a negative sign as the leading character.

Appendix D ■ Data Analyst’s Function Reference 553

Syntax

Str(Number)

Arguments

Number (required) This is the number you want to convert to a
string. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

StrConv

The StrConv function allows you to convert a string to a specified conversion
setting such as uppercase, lowercase, or proper case. For example, StrConv(‘‘my
text’’,3) would be converted to proper case, reading ‘‘My Text’’.

Syntax

StrConv(String, ConversionType, LCID)

Arguments

String (required) This is the string to be converted. In a query
environment, you can use the name of a
field to specify that you are converting all
the row values of that field.

ConversionType (required) The conversion type specifies how to
convert the string. The following constants
identify the conversion type.

1 - Converts the string to uppercase char-
acters.

2 - Converts the string to lowercase char-
acters.

3 - Converts the first letter of every word
in string to uppercase.

64 - Converts the string to Unicode using
the default system code page.

128 - Converts the string from Unicode
to the default system code page.

LCID (optional) This is the LocaleID you want to use. The
system LocaleID is the default.

554 Part VI ■ Appendixes

String

The String function allows you to return a character string of a certain length. For
example, String(4, ‘‘0’’) would return ‘‘0000’’.

Syntax

String(LengthOfString, StringCharacter)

Arguments

LengthOfString (required) This is the number of times you want to
repeat the StringCharacter.

StringCharacter (required) This is the character that will make up your
string. If you enter a series of characters,
only the first character will be used.

StrReverse

The StrReverse function returns an expression in reverse order. For instance,
StrReverse(‘‘ten’’) returns ‘‘net’’. This works with numbers too; StrReverse(5432)
returns 2345.

Syntax

StrReverse(Expression)

Arguments

Expression (required) This is the expression that contains the
characters you want reversed.

Switch

Switch is a program flow function that allows you to evaluate a list of expressions
and return the value associated with the expression determined to be true. To use
the Switch function, you must provide a minimum of one expression and one
value.

Syntax

Switch(Expression, Value)

Arguments

Expression (required) This is the expression you want to evaluate.

Value (required) This is the value to return if the expression
is true.

Appendix D ■ Data Analyst’s Function Reference 555

Additional Remarks

To evaluate multiple expressions, simply add another Expression and Value to the
function. For example: Switch(Expression1, Value 1, Expression2, Value2,
Expression3, Value3).

When the Switch function is executed, each expression is evaluated. If an
expression evaluates to true, the value that follows that expression is returned. If
more than one expression is true, the value for the first true expression is returned.

SYD

SYD is a financial function that calculates the sum-of-years’ digits depreciation of
an asset for a specified period.

Syntax

SYD(Cost, Salvage, Life, Period)

Arguments

Cost (required) This is the initial cost of the asset; must be
a positive number.

Salvage (required) This is the value of the asset at the end of
its useful life; must be a positive number.

Life (required) This is the length of the useful life of the
asset.

Period (required) This is the period for which asset
depreciation is calculated.

Tan

Tan is a math function that allows you to calculate the tangent of an angle.

Syntax

Tan(number)

Arguments

Number (required) This is any numeric expression that
expresses an angle in radians.

556 Part VI ■ Appendixes

Time

The Time function returns today’s time based on your PC’s current system time. This
function is ideal for time stamping transactions. There are no required arguments for
this function; to use it, simply enter: Time().

TimeSerial

The TimeSerial function essentially builds a time value based on the given hour,
minute, and second components. Keep in mind that this function works on a
24-hour clock, so the expression TimeSerial(18,30,0) would return 6:30:00 PM.
This function is perfect for converting disparate strings that represent a time when
combined, into an actual time.

Syntax

TimeSerial(Hour, Minute, Second)

Arguments

Hour (required) This is any number or numeric expression
that has a value between 0 and 23,
inclusive. In a query environment, you can
use the name of a field to specify that you
are evaluating all the row values of that
field; this is true for all the Syntax in this
function.

Minute (required) This is any number or numeric expression.
If the number specified for this argument
exceeds the normal range for minutes in
an hour, the function increments the hour
as appropriate. For instance, TimeSerial
(7,90,00) would return 8:30:00 AM.

Second (required) This is any number or numeric expression.
If the number specified for this argument
exceeds the normal range for seconds in a
minute, the function increments the
minutes as appropriate. For instance,
TimeSerial(7,10, 75) would return
7:11:15 AM.

TimeValue

The TimeValue function converts a string representation of a time to an actual
time value. For instance, TimeValue(‘‘4:20:37 PM’’) would return 4:20:37 PM.
The function also works on a 24-hour clock.

Appendix D ■ Data Analyst’s Function Reference 557

Syntax

TimeValue(String)

Arguments

String (required) This is any string or expression that
represents a time ranging from 0:00:00
and 23:59:59. The string can be either a
12-hour clock entry, or a 24-hour clock
entry. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

Trim, LTrim, RTrim

The Trim function effectively removes both the leading and trailing spaces from a
string. The LTrim function removes only the leading spaces, while the RTrim
function removes only the trailing spaces. These functions come in handy when
cleaning up data received from a mainframe source.

Syntax

Trim(String)LTrim(String)RTrim(String)

Arguments

String (required) This is the string you are working with. In a
query environment, you can use the name
of a field to specify that you are evaluating
all the row values of that field.

TypeName

TypeName is an inspection function that returns the type information of a variable.
For instance, TypeName(‘‘Michael’’) would return ‘‘String’’.

Syntax

TypeName(Variable)

Arguments

Variable (required) This is the variable you want to evaluate. In
a query environment, you can use the
name of a field to specify that you are
evaluating all the row values of that field.

Table continued on following page

558 Part VI ■ Appendixes

Additional Remarks

The string returned by the TypeName function can be any one of the following:

Object type An object whose type is objecttype

Byte A byte value

Integer An Integer type

Long A long integer type

Single A single-precision floating-point number

Double A double-precision floating-point number

Currency A currency value

Decimal A decimal value

Date A date value

String A string type

Boolean A boolean value

Error An error value

Empty Variable has not been initialized

Null Variable contains no valid data; a Null value

Object An object

Unknown An object whose type is unknown

Nothing An object variable that does not refer to an
object

UCase

The UCase function converts a string to uppercase letters.

Syntax

UCase(String)

Arguments

String (required) This is the string to be converted. In a query
environment, you can use the name of a
field to specify that you are converting all
the row values of that field.

Appendix D ■ Data Analyst’s Function Reference 559

Val

Val is a conversion function that extracts the numeric part of a string. For instance,
Val(‘‘5400 Legacy Drive’’) would return 5400. One caveat to the Val function is
that it stops reading the string as soon as it hits a textual character. Therefore, the
number you are extracting needs to be at the beginning of the string.

Syntax

Val(String)

Arguments

String (required) This is the string you want to evaluate. In a
query environment, you can use the name
of a field to specify that you are evaluating
all the row values of that field.

VarType

VarType is an inspection function that returns the subtype code associated with a
variant’s character type. For instance, VarType(‘‘Michael’’) would return 8 because
this is the subtype code for a string.

Syntax

VarType(Variant)

Arguments

Variant (required) This is the variant you want to evaluate. In
a query environment, you can use the
name of a field to specify that you are
evaluating all the row values of that field.

Additional Remarks

The following is a list of the subtype codes that the VarType function can return.

0 Empty (uninitialized)

1 Null (no valid data)

2 Integer

3 Long integer

4 Single-precision floating-point number

Table continued on following page

560 Part VI ■ Appendixes

5 Double-precision floating-point number

6 Currency value

7 Date value

8 String

9 Object

10 Error value

11 Boolean value

12 Variant (used only with arrays of variants)

13 Data access object

14 Decimal value

17 Byte value

36 Variants that contain user-defined types

8192 Array

Weekday

The Weekday function returns a number from 1 to 7 representing the day of the
week for a given date. 1 represents Sunday, 2 represents Monday, and so on. For
example, Weekday (#12/31/1997#) will return 4.

Syntax

Weekday(ValidDate,FirstDayOfTheWeek)

Arguments

ValidDate (required) This is any value that can represent a valid
date. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

FirstDayOfTheWeek (optional) This specifies which day you want to count
as the first day of the week. Enter 1 in this
argument to make the first day Sunday, 2
for Monday, 3 for Tuesday, and so on. If
this argument is omitted, the first day is a
Sunday by default.

Appendix D ■ Data Analyst’s Function Reference 561

WeekdayName

The WeekdayName function converts a numeric weekday designation (1 to 7) to a
weekday name. For instance, WeekdayName(7) would return Saturday. Values
less than 1 or greater than 7 will cause an error.

Syntax

WeekdayName(WeekdayNumber, Abbreviated, FirstDayOfTheWeek)

Arguments

WeekdayNumber (required) This is a number from 1 to 7 that
represents a weekday. 1 represents
Sunday, 2 represents Monday, and so on.

Abbreviated (optional) This specifies whether the weekday is
abbreviated or not. If this argument is
omitted, the weekday is not abbreviated.
Enter 1 for this argument to return
abbreviated weekdays.

FirstDayOfTheWeek (optional) This specifies which day you want to count
as the first day of the week. Enter 1 in this
argument to make the first day Sunday, 2
for Monday, 3 for Tuesday, and so on. If
this argument is omitted, the first day is a
Sunday by default.

Year

The Year function returns a whole number representing the year for a given date.
For example, Year(#5/16/1972#) would return 1972.

Syntax

Year(ValidDate)

Arguments

ValidDate (required) This is any value that can represent a valid
date. In a query environment, you can use
the name of a field to specify that you are
evaluating all the row values of that field.

Index

Symbols
() (parentheses)

criteria and, 378
function creation and, 479
operator precedence and, 122, 123,

129
subqueries in, 164, 165, 166, 175

. (period)
aliases and, 125
dot operator, 255
field names and, 15, 76
IntelliSense and, 390
parameter queries and, 143

& (ampersand)
aliases and, 125
character operator, 98, 99, 106, 107
MsgBox and, 482
underscore (_) and, 367, 376

∗ (asterisk)
% v., 378
in Customer_ListA table, 62, 63
multiplication operator, 122
Query Design view and, 35
SELECT ∗, 512
wildcard, 43, 146, 378, 415, 492, 496,

497
! (exclamation mark)

[!] wildcard, 496, 497
aliases and, 125
collection operator, 255
field names and, 15, 76, 125
parameter queries and, 143

(pound symbol)
date type field and, 265, 377
number formatting and, 325
wildcard, 496, 497

? (question mark)
processing instructions (<?, ?>),

425
wildcard, 496, 497

[] (square brackets)
aliases and, 125
field names and, 15, 76, 125
forms and, 255
parameter queries and, 143
wildcard, 496, 497

A
Aberdeen example, 33–34
Abs function, 521
.accdb files, 355
Access

563

564 Index ■ A

Access (continued)
Access from Excel (automation),

411–422
compacting Access database,

420–422
opening Access form, 419–420
opening Access report, 419
running Access macro, 418–419
running Access parameter query,

413–418
running Access query, 412–413

data entry process (XML), 434–439
data entry form in Excel, 435–436
data entry schema in Access,

434–435
exporting results from Excel to

XML, 436–437
getting results into Access,

437–439
data evolution and, 9
as data layer, 349, 391, 429
data size and, 8
data structure and, 9
as ETL tool, 508
as event-driven environment, 485
/Excel data transfer. See data

transfer processes
/Excel integration techniques. See

integration techniques
Excel v., 3–12
forms. See forms
functional complexity and, 9
Help System, 519–520

data types and, 481
functions and, 521

Help system, 519–520
macros. See macros
Object Library, 389, 411
objects, 13, 14. See also forms;

macros; modules; queries;
reports; tables

queries. See queries

reports. See reports
resources (online), 520
scalability in, 5
separation of data/presentation in,

7–8
shared processing and, 9–10
tables. See tables
transparency of analytical

processes in, 5–6
Access 2007 VBA Programming For

Dummies (Simpson, ISBN:
0–470–04653–8), 477

Access database engine (ACE), 313,
510, 513

Access Driver, 355
Access Options dialog box, 513, 518
account managers (example)
Date function and, 128–129
IIf function and, 154–156
Make-Table query and, 502
RevenueSummary table and, 68, 69
subqueries and, 165–168

ACE (Access database engine), 313,
510, 513

action arguments, 214
action queries, 56–73, 85. See also

aggregate queries; append
queries; delete queries;
Make-Table queries; update
queries

defined, 33
reasons for using, 57
select queries v., 56
SQL-specific, 504–508
subqueries in, 173–174
via SQL statements, 502–503

actions (macro actions)
defined, 210
essential, 216–218
trusted database and, 212

Activate method, 458
ActiveX Data Objects. See ADO

Index ■ A 565

ADD, 506, 507
ADD CONSTRAINT, 506, 508
‘‘Add Else’’ hyperlink, 226, 231
Address Block, 450
adLockOptimistic, 369
adLockReadOnly, 369
ADO (ActiveX Data Objects)

ADO/SQL data extract, 374–376
fundamentals, 366–374
procedure, creation of, 369–374
VBA, ADO, SQL one-two-three

combination, 365, 384, 387
ADO Object Library, 370–371, 375
adOpenDynamic, 369
adOpenForwardOnly, 369
adOpenStatic, 369
advanced analysis. See also domain

aggregate functions; macros;
subqueries

batch analysis, 209–241
descriptive statistics, 189–207
functions and, 127–136

aggregate functions, 51–56. See also
domain aggregate functions;
specific aggregate functions

SQL aggregate functions, 551–552
types of, 51–56

aggregate queries, 47–56, 85. See also
action queries

creating, 47–51
crosstab, 73–85
descriptive statistics with, 190–191,

207
domain aggregate functions v., 177
results, Make-Table query and,

59–60
aliases

ampersand and, 125
AS clause and, 499
for column names, 50–51
correlated subqueries and, 171–172

defined, 50
exclamation mark (!) and, 125
invalid alias name (error message),

45
period (.) and, 125
square brackets and, 125
table, 171, 172, 499

All Access Objects, 13, 14. See also
forms; macros; modules; queries;
reports; tables

Allow Zero Length, 65
Alt + F11, 370
ALTER COLUMN, 506, 507
ALTER TABLE statement, 506–508
ampersand (&)

aliases and, 125
character operator, 98, 99, 106, 107
MsgBox and, 482
underscore (_) and, 367, 376

And operator, 122
Annualized(), 248, 249
Append dialog box, 66
append queries, 64–69, 85

creating, 66–69
hazards of, 64–65
reasons for using, 60
subqueries in, 173

Application.Wait, 460, 461, 463, 464
arguments

action arguments, 214
calculations as, 116–117
connection strings and, 366
custom functions and, 248–251
parameters and, 146–149

AS clause, 171, 499
Asc function, 102, 522
Assign Macro dialog box, 373
asterisk (∗)

% v., 378
in Customer_ListA table, 62, 63
multiplication operator, 122

566 Index ■ A–B

asterisk (∗) (continued)
Query Design view and, 35
SELECT ∗, 512
wildcard, 43, 146, 378, 415, 492, 496,

497
Atn function, 522
Attachment (data type), 17
attachments, in folder

(Outlook/Excel integration),
470–474

attributes
Column Headings, 84, 85
XML declaration and, 424–425
XML documents and, 427–428

augmenting field values, 99–100
AutoExec macro, 232–238
automation. See also data transfer

processes; integration techniques
forms and, 255–260
macros and, 12, 209, 232–240. See

also macros
meanings of, 209, 389
VBA and, 12, 209. See also VBA

automation techniques
Access from Excel, 411–422

compacting Access database,
420–422

opening Access form, 419–420
opening Access report, 419
running Access macro, 418–419
running Access parameter query,

413–418
running Access query, 412–413

binding and, 389–391
Excel data to Word document,

445–448
Excel from Access, 391–411

automating data export to Excel,
394–398

automating Excel reports, 398–404

Excel automation procedure,
391–394

running Excel macro, 406–407
macro-generated code

adjusting, 404–406
optimizing, 407–411

AutoNumber, 16, 17, 53, 54, 185, 192,
197, 518, 551, 552

average (calculation), 194. See also
median

Avg function, 53, 551

B
background data processing,

260–265. See also VBA
benefits of, 260–261
RunSQL statements and, 261–265,

266
backups (database backups)

database corruption and, 517–518
delete query and, 61

bang operator, 255
batch analysis, 12, 209, 216, 218–232.

See also macros
Description property and, 221
naming conventions and, 218–220
setting up, 222–223

BCC, 465, 466, 467, 468, 469
Beginning Access 2007 VBA (Gosnell,

ISBN: 0–470–04684–8), 477
benchmarks
DateAdd function and, 132–134
quartile, 200–201

BETWEEN operator, 43, 145, 153, 492
binding, Object Library and,

389–391
blank values, 96–98. See also empty

strings; Null values
Bookmark dialog box, 446
bookmarks

Index ■ B–C 567

DataTableHere, 446, 447
Excel data to Word document and,

445–448
simulating Mail Merge feature

(from Excel) and, 452–456
brackets. See square brackets
Branch_Number field, 175, 180, 190,

191, 203, 206
btnRunAll, 258
btnRunMarket command button, 257
Byte, 16, 558, 560

C
Calculated data types, 17, 137–139,

140
calculation variables, 146, 147
calculations, 113–140. See also date

calculations
as arguments in functions, 116–117
average, 194
constants in, 114
errors, 122–125. See also Null values

Null values and, 123–125, 186
NZ function and, 123–125, 186, 543
operator precedence and, 122–123
syntax and, 125

Expression Builder and, 117–121
fields in, 115
in functions (as arguments),

116–117
median, 194–196
online, 137
real-time, 114, 137, 140
results of aggregation in, 115, 116
results of one calculation as

expression of another, 115–116
stored, 113–114, 139–140

California (examples)
filtering query results, 38, 39, 41, 42,

43
leading/trailing spaces and, 103

subqueries and, 164, 168
camel case, 220
capitalization. See also case

sorting by, 102
case

changing, 100–102
LCase function and, 101, 539
StrConv function and, 101, 553
UCase function and, 101, 558

Category area (pivot charts),
314–316

cboLocations combo box, 257
central repository, of custom

functions, 246–247
changing case. See case
character markers, parsing strings

with, 109–112
character operator, ampersand, 98,

99, 106, 107
Choose Builder dialog box, 258, 484
Choose Data Source dialog box, 354,

355, 356
Choose function, 522
Chr function, 523
ChrW function, 332, 335, 337, 344
class modules, 478
cleaning data. See data

transformation
client application, 390
CloseWindow, 216
Code Builder, 258, 484, 485
collapsed state (macros), 222
column alias, 499
Column Headings attribute, 84, 85
column names, aliases for, 50–51
Columns dialog box, 288
combo boxes, 255, 256, 257, 258–260
command button control, 252, 253
Command Button Wizard, 252, 484
command lines, 238–240
command-line switches, 238–240
comments (XML), 425

568 Index ■ C

Compact and Repair utility, 27,
420–422, 513, 518

CompanyNumber field, 90, 92, 95,
107, 108

comparison operators, 43, 122, 169
operator precedence and, 122
subqueries and, 169
WHERE clause and, 492

compound primary keys, 21–22
concatenation, 98–100
conditional analysis, 141–159

defined, 141, 159
IIf functions, 141, 150–156, 159, 535

crosstabs and, 154–156
mathematical errors and, 150–152
nesting, 154–156, 157, 158
saving time with, 152–154
Switch function v., 157–158

parameter queries, 143–149, 159
arguments and, 146–149
calculation variables and, 146, 147
defined, 141, 159
Enter Parameter Value dialog box

and, 142, 143, 149, 159, 414,
415

functionality of, 143
ground rules of, 143–144
multiple parameter conditions

and, 144
operators and, 145
wildcards and, 145–146, 254,

415–416
working with, 144–149

Switch function, 141, 150, 156–158,
159, 554–555

IIf function v., 157–158
power of, 156
syntax, 156–157

conditional formatting, 326–331
Conditional Formatting dialog box,

327, 331

Conditional Formatting Rules
Manager dialog box, 337, 338

conditional functions, 149–158
conditions, macros and, 223–228
connection strings, 366–368
ConnectString, 368
constants

in calculations, 114
defined, 114

Contact_FirstName field, 110, 111
Contact_LastName field, 110, 111
ContactName field, 109, 110, 112
CopyFromRecordset, 372, 373, 375, 376,

381, 382, 383, 387, 394, 395, 396,
397, 413, 417, 418

CopyPicture, 458, 459, 460, 461, 463,
464

correlated subqueries, 170–173, 192
corruption. See databases
Cos function, 523
Create PivotTable dialog box, 399
CREATE TABLE statement, 506
criteria, 38, 41, 42, 43

date criteria, 181, 377
domain aggregate functions and,

180–181
multiple criteria, 41, 42, 43, 377–378
numeric criteria, 180–181, 377
single criterion, 41, 144
in SQL statements, 376–378
textual criteria, 180, 377

criteria expression
Date function in, 127–128
double quotes and, 180

crosstab queries, 73–85
creation

Crosstab Query Wizard, 74–79
manual creation, 79–82

customizing, 82–85
Make-Table queries and, 78–79
structure of, 73

Crosstab Query Wizard, 74–79

Index ■ C–D 569

crosstabs, 12
IIf function and, 154–156
TRANSFORM statement and, 503–504

Currency (data type), 17, 53, 54, 551,
552

cursor types, 368–369
CursorType, 368
Custom Filter dialog box, 33, 272
custom functions, 244–251, 265–266

central repository of, 246–247
creating

accepts arguments, 248–251
first, 245–247

in forms, 250
in queries, 249–250
uses for, 249–251

Customer_ListA table, 62, 63

D
DAO (Microsoft Data Access

Objects), 411, 412, 413, 417, 515
DAO Object Library, 411, 412
dashboard graphics, 323, 331, 334,

335, 339–343, 344
data

duplicate. See duplicate records
importing, 22–26
linking, 27–28
/presentation, separation of, 7–8
presenting. See reports
splitting. See relational databases

Data Access Objects (DAO,
Microsoft), 411, 412, 413, 417, 515

data analysis. See also advanced
analysis

Excel
Access v., 3–12
problem areas, 3–8

indicators
data evolution, 9
data size, 8

data structure, 9
functional complexity, 9
shared processing, 9–10

data bars, 331–335
data entry process (XML), 434–439

data entry form in Excel, 435–436
data entry schema in Access,

434–435
exporting results from Excel to

XML, 436–437
getting results into Access, 437–439

data layer. See also presentation layer
Access as, 349, 391, 429
data/presentation separation and,

7–8
Data Link Properties dialog boxes,

351
Data Source, 366
data transfer processes. See also

integration techniques
Access to Excel, 347–363

automation procedure, 391–398
Drag and Drop method, 347–348,

362
Export wizard, 348–350, 363
Get External Data method,

350–353, 363
MS Query, 353–363

Excel to Access, 22–26
form to query, 251–255
pivot charts and, 321
pivot table to Excel, 303
VBA (with ADO/SQL), 365–387

ADO fundamentals, 366–374
ADO/SQL data extract, 374–376
common scenarios, 380–387
criteria in SQL statements,

376–379
data transformation, 89–112

adding text in key positions,
105–107

570 Index ■ D

data transformation, (continued)
blank values, 96–98. See also empty

strings; Null values
changing case. See case
concatenation, 98–100
duplicate records, 89–96
leading/trailing spaces, 103, 557
padding strings, 107–108
parsing strings, 109–112
replacing text, 103–104

data types, 15–17
Attachment, 17
AutoNumber, 16, 17, 53, 54, 185,

192, 197, 518, 551, 552
Calculated, 17, 137–139, 140
Currency, 17, 53, 54, 551, 552
Date/Time, 17, 53, 54, 551, 552
defined, 15
delimited text, 26
Help System and, 481
Hyperlink, 16, 17
Lookup Wizard and, 16
Memo, 16
Number, 16–17
OLE Object, 17, 340–341, 344
Text, 16, 18, 54, 552
wrong data type for parameter

(error message), 45
Yes/No, 11, 16, 17, 53

data visualizations. See visualization
techniques

database objects, 13, 14. See also
forms; macros; modules; queries;
reports; tables

databases. See also tables
backups. See backups
Compact and Repair utility, 27,

420–422, 513, 518
corruption, 513–519

interruption of service and,
518–519

preventing, 517–519

recovering, 516–517
.laccdb file and, 517, 519
relational database concept, 28–32
on removable media, 519
trusted, 211–213, 214, 216, 217, 218,

233
ZalexCorp, 347, 348, 355, 356, 357,

358
ZalexCorp Restaurant Equipment

and Supply.accdb, 372, 373,
375, 376, 382, 383, 391, 395, 412,
417, 418, 419, 420

Datasheet view, 14, 18, 19, 33, 302,
514

Date area (pivot charts), 314
date calculations, 125–137, 140

adding days to dates, 126
advanced, functions and, 127–137
Day function, 130–132, 528
days between dates, 126
grouping dates into quarters,

134–135
Month function, 130–132, 541
1900 system and, 125
simple, 126
Weekday function, 130–132, 560
Year function, 130–132, 561

date criteria, 181, 377
Date function, 127–130, 523

in criteria expression, 127–128
differences between two dates

days, 127
years, 128–130

date parameters, from form, 265
date type field, # and, 265, 377
DateAdd function, 132–134, 523–524
DateDiff function, 146–147, 167,

524–525
DatePart function, 526–527
DateSerial function, 136–137, 527
Date/Time (data type), 17, 53, 54,

551, 552

Index ■ D 571

Date/Time functions, 127–137
DateValue function, 527
DAvg function, 187, 529
Day function, 130–132, 528
DCount function, 178, 183, 184, 187,

226, 230, 530
DDB function, 528
Decimal, 17, 558, 560
Decimal Places (field property), 21
declaration, XML, 424–425
Default Value (field property), 21
delete queries, 60–63, 85

creating, 61–63
DELETE statement and, 503
deleting records from tables (based

on records from another),
62–63

hazards of, 61
reasons for using, 60
subqueries in, 174

DELETE statement, 503
DeleteObject, 216
delimited text, 26
Description property, 221
descriptive statistics, 189–207

advanced, 198–207
with aggregate queries, 190–191,

207
basic, 190–198
frequency distributions and,

202–204
inferential statistics v., 189
median and, 194–196
mode and, 192–194
percentile ranking and, 198–200
quartile standings and, 200–202
random sampling and, 196–198
rank and, 191–192

design
normalizing database design, 510
query design, 512

Design view. See also Query Design
view

defined, 15
query creation in, 48
reports and, 273–275, 285–289
table creation and, 17–19

Detail section (reports), 275
DFirst function, 179, 187, 530
dialog box

Access Options, 513, 518
Append, 66
Assign Macro, 373
Bookmark, 446
Choose Builder, 258, 484
Choose Data Source, 354, 355, 356
Columns, 288
Conditional Formatting, 327, 331
Conditional Formatting Rules

Manager, 337, 338
Create PivotTable, 399
Custom Filter, 33, 272
Data Link Properties, 351
Edit Formatting Rule, 329
Enter Parameter Value, 142, 143,

149, 159, 414, 415
Export XML, 430, 435
Export-XML File, 429
External Data Properties, 361
Field Properties, 51
Get External Data-XML File, 438
Import, 360
Insert Page Numbers, 276
Links, 444
Macro, 400
Manage Data Tasks, 430, 431
Microsoft Office Security Options,

212
New Formatting Rule, 328
New Query, 74, 91
ODBC Microsoft Access Setup, 356
Paste Special, 443
Paste Table As, 94

572 Index ■ D–E

dialog box (continued)
Properties, 221, 239, 304, 306, 311,

312, 319, 361
Property Sheet, 50, 51, 96, 174, 302,

500
Query Properties, 84
References, 370, 371, 392, 446
Replace, 405
Run, 234
Save As, 19, 486
Save Import Steps, 25–26
Show Table, 34, 35, 48, 491
Totals, 281
Zoom, 166, 175, 176

Dim_Customers table, 14, 15, 35, 39,
70, 164, 501, 502

Dim_Transactions table, 39–40, 74,
178, 179, 180

DisplayAlerts property, 404. See also
SetWarnings action

DISTINCT, 165, 496
DISTINCTROW, 498
division by zero (error message), 44
DLast function, 179, 187, 530
DLookup function, 179, 184, 185, 187,

530
DMax function, 179, 187, 530
DMin function, 179, 187, 530
DoCmd, 253, 257, 261, 262, 420
documents, XML

attributes, 427–428
comments, 425
components, 424–429
elements, 425–426
namespaces, 428–429
processing instructions, 425
root element, 426–427

domain aggregate functions, 6, 163,
177–186, 187, 529–530

aggregate queries v., 177
anatomy of, 178
guidelines for building, 179–181

list of, 178–179
parameter queries and, 178
uses for, 177, 181–186

dot operator (.), 255. See also period
Double, 16, 17, 558, 560
double quotes

attributes (XML documents) and,
427

criteria expression and, 180
SQL and, 381

Drag and Drop method, 347–348,
362

DROP COLUMN, 506, 507
DStDev function, 187, 530
DStDevP function, 179, 187, 530
DSum function, 178, 182, 184, 187, 333,

334, 529
duplicate records, 89–96

defining, 90–91
finding, 91–94
flat-file format and, 30
primary keys and, 21
relational databases and, 30–31
removing, 94–96

DVar function, 179, 187, 530
DVarP function, 179, 187, 530
dynamic link (to Excel table),

442–445

E
early binding, 390, 391
Edit Formatting Rule dialog box, 329
elements (XML), 425–426
ellipses, 227
EmailDatabaseObject, 218
embedding. See also nesting

Calculated data type and, 137–139,
140

OLE Object field and, 340–341, 344
empty strings, 97. See also Null

values

Index ■ E 573

encoding attribute (XML
declaration), 424

Enter Parameter Value dialog box,
142, 143, 149, 159, 414, 415

enumerating through combo box,
258–260

equal (=)
Like operator v., 496
WHERE and, 492

errors
calculation errors, 122–125. See also

Null values
Null values and, 123–125, 186
NZ function and, 123–125, 186, 543
operator precedence and, 122–123
syntax and, 125

database corruption, 515–516
mathematical, IIf function and,

150–152
query errors, 44–45

append queries, 64–65
delete queries, 61
Make-Table queries, 57–58
update queries, 72–73

SQL statements, 378–379
ETL (Extract, Transform, Load) tool,

508
event-driven environment, 485
Excel

/Access data transfer. See data
transfer processes

/Access integration techniques. See
integration techniques

Access v., 3–12
data entry process (XML), 434–439

data entry form in Excel, 435–436
data entry schema in Access,

434–435
exporting results from Excel to

XML, 436–437
getting results into Access,

437–439

data evolution and, 9
data size and, 8
data structure and, 9
Excel from Access (automation),

391–411
automating data export to Excel,

394–398
automating Excel reports, 398–404
Excel automation procedure,

391–394
running Excel macro, 406–407

flat-file format and, 29–30
functional complexity and, 9
Object Library, 389, 391, 392, 402
Outlook/Excel integration

techniques
mailing specific range, 466–468
mailing to email addresses in

contact list, 468–469
making active workbook, 465–466
saving attachments in folder,

470–474
PowerPoint/Excel integration

techniques
converting workbook to

presentation, 462–465
copy cells to presentation,

458–459
PowerPoint slide with title,

456–458
sending Excel charts to

presentation, 460–462
as presentation layer, 327, 429
problem areas, 3–8
records, Access table and, 384–386
scalability in, 5
separation of data/presentation in,

7–8
shared processing and, 9–10
table, appending records to,

382–383

574 Index ■ E–F

Excel (continued)
transparency of analytical

processes in, 5–6
Word/Excel integration techniques

dynamic link to Excel table,
442–445

Excel data to Word (automation),
445–448

simulating Mail Merge feature
from Excel, 452–456

Word Mail Merge feature,
448–452

workbook, query data from,
380–382

Excel 2007 Pivot Table Data Crunching
(ISBN: 0789736012), 291

Excel 2007 VBA Programmer’s
Reference (Wiley, ISBN:
978–0–470–04643–2), 434

ExcelMaster.xlsx file, 22
exclamation mark (!)

[!] wildcard, 496, 497
aliases and, 125
collection operator, 255
field names and, 15, 76, 125
parameter queries and, 143

Exp function, 531
Export wizard, 348–350, 363
Export XML dialog box, 430, 435
ExportWithFormatting, 217
Export-XML File dialog box, 429
Expression aggregate function, 54–55
Expression Builder, 117–121, 137,

246
expressions

correlated subqueries as, 173
custom functions and, 244–245. See

also custom functions
defined, 114
expression too complex (error

message), 44
nested, 44

subqueries as, 170
in update queries, 72

Extended Properties, 366–367
external data properties, 361–362
External Data Properties dialog box,

361
Extract, Transform, Load (ETL) tool,

508

F
failures. See errors
field names, 15

brackets/period/exclamation mark
and, 15, 76, 125

spaces in, 15
field properties, 19–21
Field Properties dialog box, 51
Field Size, 19–20
field values, augmenting, 99–100
fields. See also specific fields

blank, 96–98
Branch_Number, 175, 180, 190, 191,

203, 206
in calculations, 115
CompanyNumber, 90, 92, 95, 107,

108
Contact_FirstName, 110, 111
Contact_LastName, 110, 111
ContactName, 109, 110, 112
date type, # and, 265, 377
defined, 15
Forecast, 124, 125, 151
indexes on, 9, 23–25, 510–512
Memo, 16
MyTest, 98, 99, 100, 105, 106, 152,

153
OLE Object, 17, 340–341, 344
Overdue, 133, 134
Percent Increase, 137–138
Product_Category, 68, 69, 81, 277,

278, 279, 280

Index ■ F 575

Revenue, 180, 203, 248, 296, 297,
298, 300, 301, 303, 316, 330, 333

True/False, 17. See also Yes/No
as utility, 54
Warning, 133, 134

filling blank fields, 96–98
Filter area (pivot charts), 316
filtering. See also criteria

query results, 38–39
/sorting, for on-the-fly analysis,

33–34
Find and Replace feature, 104. See

also Replace function
Find Duplicates Query Wizard, 91,

92, 93, 94
First function, 54, 552
FirstDayLastMonth function, 250, 251
flat-file format, 29–30
Forecast field, 124, 125, 151
form controls

combo boxes, 255, 256, 257, 258–260
list boxes, 255, 355, 357
option groups, 255
text boxes, 251, 252, 287

form modules, 478
Format (field property), 20
Format function, 134–135
FormatCurrency function, 531
FormatDateTime function, 532
FormatNumber function, 532–533
FormatPercent function, 533–534
formatting

conditional, 326–331
number formatting (for reports),

324–326
pivot charts, 319–321

forms (Access forms), 251–260, 266
automation and, 255–260
custom functions in, 250
data transfer (form to query),

251–255
date parameters from, 265

defined, 251
frmMktRpts, 255–256, 258
functions in, 484–485
numeric parameters from, 265
syntax for referencing, 255
textual parameters from, 264–265

For...Next loop, 259, 456
frequency distributions, 202–204
frmMktRpts form, 255–256, 258
FROM, 379, 495
functional complexity, 9
functions. See also arguments;

domain aggregate functions;
specific functions

advanced analysis and, 127–136
calculations (as arguments) in,

116–117
compiling, 482
conditional, 149–158
creating, 478–482
custom, 244–251, 265–266
date calculations with, 127–137
defined, 478
DStDevP, 179, 187, 530
Expression Builder and, 117–121,

137, 246
in forms, 484–485
Help System and, 521
Insert Function wizard, 118, 119.

See also Expression Builder
in macros, 483
nested, 106
procedures and, 479–480
reference list, 521–561
Abs, 521
Asc, 102, 522
Atn, 522
Avg, 53, 551
Choose, 522
Chr, 523
ChrW, 332, 335, 337, 344
Cos, 523

576 Index ■ F

functions. (continued)
Date function. See Date function
DateAdd, 132–134, 523–524
DateDiff, 146–147, 167, 524–525
DatePart, 526–527
DateSerial, 136–137, 527
DateValue, 527
DAvg, 187, 529
Day, 130–132, 528
DCount, 178, 183, 184, 187, 226, 230,

530
DDB, 528
DFirst, 179, 187, 530
DLast, 179, 187, 530
DLookup, 179, 184, 185, 187, 530
DMax, 179, 187, 530
DMin, 179, 187, 530
DStDev, 187, 530
DSum, 178, 182, 184, 187, 333, 334,

529
DVar, 179, 187, 530
DVarP, 179, 187, 530
Exp, 531
Expression, 54–55
First, 54, 552
FirstDayLastMonth, 250, 251
Format, 134–135
FormatCurrency, 531
FormatDateTime, 532
FormatNumber, 532–533
FormatPercent, 533–534
FV, 534
Group By, 52–53
Hour, 535
IIf. See IIf functions
InStr, 109–110, 148, 149, 473,

535–536
InStrRev, 536
Int, 116–117, 129, 130, 195
IPmt, 537
IRR, 537
IsError, 538

IsNull, 538
IsNumeric, 538
Last, 54, 552
LCase, 101, 539
Left, 105–106, 110, 539
Len, 197, 539
Log, 540
LTrim, 103, 557
Max, 54, 552
Mid, 105–106, 107, 110, 540
Min, 54, 552
Minute, 540–541
MIRR, 541
Month, 130–132, 541
MonthName, 542
Now, 542
NPer, 542–543
NPV, 543
NZ, 123–125, 186, 543
Partition, 202–204, 205, 544
Pmt, 544–545
PPmt, 545
PV, 546
Rate, 546–547
Replace, 104, 547–548
Right, 105–106, 107, 108, 110, 548
Rnd, 196–197, 548–549
Round, 120, 121, 129, 549
RTrim, 103, 557
Second, 549
Sgn, 550
Sin, 550
SLN, 550
Space, 551
Sqr, 552
StDev, 53, 551
StrConv, 101, 553
STRING, 331–334, 344, 554
StrReverse, 554
Sum, 53, 551
Switch. See Switch function
SYD, 555

Index ■ F–I 577

Tan, 555
Time, 556. See also Date/Time

functions
TimeSerial, 556
TimeValue, 460, 463, 556–557
Trim, 103, 557
TypeName, 557–558
UCase, 101, 558
Var, 53, 552
VarType, 559–560
Weekday, 130–132, 560
WeekdayName, 561
Year, 130–132, 561

saving, 482–483
SQL aggregate functions, 551–552
testing, 480

FV function, 534

G
‘‘garbage in, garbage out,’’ 510
Get External Data method, 350–353,

363
Get External Data-XML File dialog

box, 438
GetAccessData, 371, 372, 373, 375
Gosnell, Denise, 477
graphics table, 340, 341–342
greater than (>), 43, 492
greater than or equal to (>=), 43, 492
Greeting Line, 451
Group, Sort, and Total pane, 277,

279, 280, 282, 286
Group By aggregate function, 52–53
GROUP BY clause, 165, 379, 498
group-by queries. See aggregate

queries
grouped reports, 276–282

H
hash symbol. See pound symbol
HAVING clause, 498

hazards. See errors
Help System (Access), 519–520

data types and, 481
functions and, 521

histogram chart, 204–207
HLOOKUP, 31
Holidays table, 131–132
Hour function, 535
hyperlink, ‘‘Add Else’’, 226, 231
Hyperlink (data type), 16, 17

I
If...Then, 224–225
If...Then...Else, 154, 157, 225–228,

243, 245, 266, 365, 387
IIf functions, 141, 150–156, 159, 535

crosstabs and, 154–156
mathematical errors and, 150–152
nesting, 154–156, 157, 158
saving time with, 152–154
Switch function v., 157–158

Import dialog box, 360
Import Spreadsheet Wizard, 22–26
ImportExportData, 212, 217
ImportExportSpreadsheet, 218
ImportExportText, 218
importing data. See data transfer

processes
IN operator, 43, 168–169
Indexed property, 511
indexes, 9, 23–25, 510–512
inferential statistics, 189
inner joins, 493
Input Mask, 20–21
Insert Function wizard, 118, 119. See

also Expression Builder
INSERT INTO, 173, 263, 503
Insert Page Numbers dialog box, 276
InStr function, 109–110, 148, 149,

473, 535–536
InStrRev function, 536

578 Index ■ I–L

Int function, (continued)
Int function, 116–117, 129, 130, 195
Integer, 16, 481, 558
integration techniques. See also

automation; data transfer
processes

Excel/Outlook, 465–474
mailing specific range, 466–468
mailing to email addresses in

contact list, 468–469
making active workbook, 465–466
saving attachments in folder,

470–474
Excel/PowerPoint, 456–465

converting workbook to
presentation, 462–465

copy cells to presentation,
458–459

PowerPoint slide with title,
456–458

sending Excel charts to
presentation, 460–462

Excel/Word, 441–456
dynamic link to Excel table,

442–445
Excel data to Word (automation),

445–448
simulating Mail Merge feature

from Excel, 452–456
Word Mail Merge feature,

448–452
XML and, 423–440

integrative techniques,
Excel/PowerPoint

converting workbook to
presentation, 462–465

copy cells to presentation, 458–459
PowerPoint slide with title,

456–458
sending Excel charts to

presentation, 460–462
IntelliSense, 390, 391, 479, 480

interruption of service, 518–519

invalid alias name (error message),

45

invalid argument (error message), 45

IPmt function, 537

IRR function, 537

Is Null operator, 43

IsError function, 538

IsNull function, 538

IsNumeric function, 538

J
Jet, 313. See also ACE

joins, 493–495

K
key violation, 64

L
.laccdb file, 517, 519

‘‘LARGE’’ update value, 152, 153

Last function, 54, 552

LastDayThisWeek(), 245–246

late binding, 390–391

Layout View, 273, 276, 277, 279, 280,

282

LCase function, 101, 539

leading/trailing spaces, 103

LTrim function and, 103, 557

RTrim function and, 103, 557

Trim function and, 103, 557

LeadList table, 90, 92, 94, 95, 100, 111

LeadList_NoDups table, 94, 95

Left function, 105–106, 110, 539

Len function, 197, 539

Index ■ L–M 579

less than (<), 43, 492
less than or equal to (<=), 43, 492
Like operator, 43, 378, 496–497
Link Spreadsheet Wizard, 27–28
linking data, Excel worksheet to

Access, 27–28
Links dialog box, 444
list boxes, 255, 355, 357
LocationMaster table, 226
lock violation, 64
LockType, 368
Log function, 540
Long Integer, 16, 17, 558, 559. See also

AutoNumber
Lookup Wizard, 16
looping
For...Next, 259, 456
with macros, 228–232

LoopList table, 229, 230, 231
LTrim function, 103, 557

M
Macro dialog box, 400
macros (Access macros), 209–241

actions
defined, 210
essential, 216–218
trusted database and, 212

advantages of, 209–210
automation and, 12, 209, 232–240
collapsed state, 222
conditions and, 223–228
conversion, to VBA code, 485–488
creating, 213–216
editing, 216
functions in, 483
If...Then scenario, 224–225
If...Then...Else scenario, 225–228
introduction to, 210–218
looping with, 228–232
scheduling, 232–240

AutoExec macro and, 232–238
command lines and, 238–240

security and, 210–213, 418
mail merge, 448
Mail Merge feature

creating document, 448–452
simulating, from Excel, 452–456

MailMerge.docx document, 453
MainSummary table, 172, 396
Make-Table queries, 57–60, 85, 502

aggregate query results and, 59–60
CREATE TABLE statement v., 506
creating, 58–60
crosstab queries and, 78–79
hazards of, 57–58
Query Design view and, 58, 68
subqueries in, 173

Manage Data Tasks dialog box, 430,
431

many-to-many relationships, 32
many-to-one-to-many relationship,

45, 73
mathematical errors, IIf function

and, 150–152
mathematical operators. See

comparison operators
Max function, 54, 552
.mdb files, 355
median, 194–196
Memo field, 16
Microsoft ActiveX Data Objects

Library, 370, 371. See also ADO
Microsoft Data Access Objects

(DAO), 411, 412, 413, 417, 515
Microsoft Office applications. See

Access; Excel; integration
techniques

Microsoft Office Security Options
dialog box, 212

Microsoft Query. See MS Query
Microsoft Query wizard, 354, 357,

359

580 Index ■ M–O

Mid function, 105–106, 107, 110, 540
Min function, 54, 552
Minute function, 540–541
MIRR function, 541
mode, 192–194
modules (VBA), 478
Month function, 130–132, 541
MonthName function, 542
moving data. See data transfer

processes
MS Query (Microsoft Query),

353–363
MS Query wizard, 354, 357, 359
multi-column report layout, 288–289
multiple criteria, 41, 42, 43, 377–378
multiple tables, queries on, 39–41
MyCell, 454, 469
MyContacts, 469
MyDatabase, 413, 417
MyParametersQuery, 416, 418
MyQueryDef, 412, 413, 417
MyRange, 383, 447, 464
MyRecordSet, 372, 373, 381, 382, 385,

386, 395, 413, 417
MySQL variable, 264, 376, 381, 385
MyTest field, 98, 99, 100, 105, 106,

152, 153
MyTitle, 463, 464

N
Name property, 252, 253, 258
namespaces, 428–429
naming conventions, 218–220

field names, 15
brackets/period/exclamation

mark and, 15, 76
spaces in, 15

object names, 218–220
overwrite warnings and, 25, 57–58,

59, 349, 404, 473
query names, 219–220

nesting. See also embedding;
subqueries

expressions, 44
functions, 106
IIf functions, 154–156, 157, 158
InStr function, 110
subqueries and, 44, 164, 165, 186

New Formatting Rule dialog box, 328
New Query dialog box, 74, 91
1900 system, 125
non-workdays/workdays, 131–132
normalizing database design, 510
not equal (<>), 492
NOT IN operator, 168–169, 175
Not operator, 43, 122
Now function, 542
NPer function, 542–543
NPV function, 543
Null values

calculation errors and, 123–125, 186
defined, 123
filling in, 96–98
NZ function and, 123–125, 186, 543

Number (data type), 16–17
number formatting (for reports),

324–326
numeric criteria, 180–181, 377
numeric parameters, from form, 265
NZ function, 123–125, 186, 543

O
Object Library

Access, 389, 411
ADO, 370–371, 375
binding and, 389–391
DAO, 411, 412
Excel, 389, 391, 392, 402
Outlook, 465
PowerPoint, 456
references and, 411–412
Word, 446

Index ■ O–P 581

Object Linking and Embedding. See
OLE

ODBC Microsoft Access Setup dialog
box, 356

Offset method, 455
OLApp, 465, 466, 468, 469
OLApp.Session.Logon, 465, 466, 467,

468, 469
OLE (Object Linking and

Embedding), 340
OLE Object field, 17, 340–341, 344
OLMail, 465, 466, 468, 469
On Click event, 253, 258
one-to-many relationships, 31–32
one-to-one relationships, 31
one-two-three combination (VBA,

ADO, SQL), 365, 384, 387
online calculations, 137. See also

Calculated data types
on-the-fly analysis. See also

subqueries
sorting/filtering for, 33–34
subqueries and, 165

OpenForm, 216, 420
OpenQuery, 216, 223, 230, 231, 253, 261,

262
OpenReport, 216, 419
OpenTable, 214, 215, 216
‘‘operation must use an updateable

query,’’ 45, 72–73
operator precedence, 122–123
operators. See also specific operators

comparison, 43, 122, 169, 492
Like, 43, 378, 496–497
parameter queries and, 145
in select queries, 41–44

optimizing query performance. See
query performance

option groups, 255
Or operator, 42, 122
ORDER BY clause, 499
out of memory (error), 44

outer joins, 494–495
Outlook Object Library, 465
Outlook/Excel integration

techniques
mailing specific range, 466–468
mailing to email addresses in

contact list, 468–469
making active workbook, 465–466
saving attachments in folder,

470–474
Overdue field, 133, 134
overflow message, 44
overwrite warnings, 25, 57–58, 59,

349, 404, 473

P
padding strings, 107–108
page break issues, 282
Page Footer section, 275–276
Page Header section, 274, 275–276
parameter prompt, 143, 145, 148–149
parameter queries, 143–149, 159

arguments and, 146–149
calculation variables and, 146, 147
defined, 141, 159
domain aggregate functions and,

178
Enter Parameter Value dialog box

and, 142, 143, 149, 159, 414, 415
functionality of, 143
ground rules of, 143–144
multiple parameter conditions and,

144
operators and, 145
wildcards and, 145–146, 254,

415–416
working with, 144–149

parameters, user-defined, 264–265
parentheses ()

criteria and, 378
function creation and, 479

582 Index ■ P

parentheses () (continued)
operator precedence and, 122, 123,

129
subqueries in, 164, 165, 166, 175

parsing strings, 109–112
Partition function, 202–204, 205, 544
passing data. See data transfer

processes
passing parameters, from form,

264–265
Password argument, 367
Paste Special dialog box, 443
Paste Table As dialog box, 94
PasteTable.docx, 446
percent (%) character, 378, 533
Percent Increase field, 137–138
percent of total (domain aggregate

functions), 182–183
percentile ranking, 198–200
period (.)

aliases and, 125
dot operator, 255
field names and, 15, 76, 125
IntelliSense and, 390
parameter queries and, 143

pivot cache, 4, 303, 352
pivot charts, 291, 313–321

Category area, 314–316
creating, 316–318
Date area, 314
Filter area, 316
formatting, 319–321
fundamentals, 314–316
Series area, 314

pivot tables, 291–313, 321
anatomy of, 292–295
creating

advanced, 300–302
basic, 295–300

Excel 2007 Pivot Table Data
Crunching, 291

options, 303–313

adding calculated total, 311–313
changing field captions, 304–305
date groupings, 308–309
expanding/collapsing fields, 304
filter for top/bottom records, 310
grouping data, 306–308
sorting data, 306

saving, 302
sending to Excel, 303

Pmt function, 544–545
pound symbol (#)

date type field and, 265, 377
number formatting and, 325
wildcard, 496, 497

Powering Office 2003 with XML (ISBN:
0764541226), 439

PowerPoint Object Library, 456
PowerPoint/Excel (integration

techniques)
converting workbook to

presentation, 462–465
copy cells to presentation, 458–459
PowerPoint slide with title,

456–458
sending Excel charts to

presentation, 460–462
PP, 457, 459, 461, 463
ppLayoutBlank, 457, 460, 462
ppLayoutTitleOnly, 457, 458, 459, 463,

464
PPmt function, 545
PPPres, 457, 459, 461, 464
PPSlide, 457, 459, 461, 464
PPSlideCount, 460, 461, 464
precedence (operator precedence),

122–123
preprogrammed functions. See

actions
presentation layer. See also data

layer; Excel; reports
Excel as, 327, 429
forms as, 251, 266

Index ■ P–Q 583

reports as, 11, 269, 289
separation of presentation/data,

7–8
presentations (PowerPoint)

cells copied to, 458–459
Excel charts sent to, 460–462
workbook converted to, 462–465

presenting data. See reports
primary keys, 19, 21–22

compound, 21–22
defined, 21
relational databases and, 30–31

PrintOut, 217
procedures (routines), 479–480
processing instructions, 425
Product_Category field, 68, 69, 81,

277, 278, 279, 280
ProductID, 52, 56, 74, 75, 77
Properties dialog box, 221, 239, 304,

306, 311, 312, 319, 361
Property Sheet dialog box, 50, 51, 96,

174, 302, 500
Property Sheet pane, 275, 283, 284,

324
Provider, 366, 367, 368
PV function, 546
PvTblFeed table, 180, 394, 395, 396

Q
QBD. See Query Design view
QBE. See Query Design view
quarters, converting dates into,

134–136
quartiles

of dataset (example), 174–176
defined, 200
quartile standings, 200–202

queries (Access queries), 11. See also
action queries; aggregate queries;
parameter queries; select queries;
SQL; specific queries

basics, 32–45
custom functions in, 249–250
data bars and, 331–335
defined, 33, 46
errors, 44–45
hazards. See errors
naming convention, 219–220
SQL-specific, 504–508
symbols and, 335–339
visualizations and. See

visualization techniques
workdays/non-workdays and,

131–132
Query Builder, 283
Query by Design. See Query Design

view
Query by Example. See Query

Design view
query design, 512
Query Design view

append query and, 66
Make-Table query and, 58, 68
MyParametersQuery and, 416, 418
ProductID and, 52
query creation and, 520
select query creation and, 34–44, 48
subquery in, 164
update query and, 70

query grid, 35, 36, 37, 38, 40, 43, 49,
63, 67, 70, 80, 81, 84, 96, 118, 121,
166, 174, 500, 504

query optimizer, 509–510, 518
query performance, 509–513
Query Properties dialog box, 84
querying text files, 386–387
Query_Products, 270, 271, 273, 274,

277, 372, 373, 382, 383
question mark (?)

processing instructions (<?, ?>),
425

wildcard, 496, 497
QuitAccess, 212, 216, 233

584 Index ■ R

R
random sampling, 196–198
ranking records, 191–192
Rate function, 546–547

real time
calculations in, 114, 137, 140
linked Excel sheets in, 27
reports in, 271, 273

Record Source property, 283, 284
record-level testing, 243, 245, 261,

266, 365, 387
records

defined, 14
duplicate. See duplicate records
quartile standings of, 200–202
ranking, 191–192

Recordset, 368–369
‘‘recordset is not updateable,’’ 45,

72–73
recovering corrupted databases,

516–517
reference list. See functions
References dialog box, 370, 371, 392,

446
relational databases, 28–32. See also

databases
relationship types, 31–32

many-to-many relationships, 32
many-to-one-to-many relationship,

45, 73
one-to-many relationships, 31–32
one-to-one relationships, 31

removable media, databases on, 519
removing leading/trailing spaces.

See leading/trailing spaces
Replace dialog box, 405
Replace function, 104, 547–548
Replication ID, 16
Report Footer section, 276
Report Header section, 274
report modules, 478

Report View, 271–272, 273, 282, 287,
326, 328, 335

Report wizard, 289
reports (Access reports), 11–12,

269–289
basics, 269–276
creating, 269–271, 283–289
data bars and, 331–335
Design view and, 273–275, 285–289
Excel reports automation, 398–404
grouped, 276–282
Layout View and, 273, 276, 277,

279, 280, 282
multi-column report layout,

288–289
number formatting and, 324–326
as presentation layer, 11, 269, 289
sections of, 274–276
sorting, 279–282
symbols and, 335–339
totaling, 279–282
viewing, 271–276
visualizations and. See

visualization techniques
XML reporting solution, 429–434

repository, of custom functions,
246–247

Required (field property), 21
Required Field set to yes, 65
Revenue field, 180, 203, 248, 296, 297,

298, 300, 301, 303, 316, 330, 333
RevenueSummary table, 68, 69
Right function, 105–106, 107, 108,

110, 548
right joins, 494
Rnd function, 196–197, 548–549
root element, 426–427
Round function, 120, 121, 129, 549
routines. See procedures
RTrim function, 103, 557
Run command, 233
Run dialog box, 234

Index ■ R–S 585

RunCode, 217, 483
RunMacro, 217, 226, 230
running count (domain aggregate

functions), 183–184
RunSavedImportExport, 212, 350, 431
RunSQL action, 217
RunSQL method, 261–262, 264
RunSQL statements, 261–265, 266

advanced techniques, 263–265
anatomy of, 262

S
SalesHistory table, 59, 61, 66, 67, 72
Save As dialog box, 19, 486
Save Import Steps dialog box, 25–26
scalability (Excel problem area), 4–5
Scheduled Task Wizard, 234
scheduling macros, 232–240

AutoExec macro and, 232–238
command lines and, 238–240

Second function, 549
second quartile of dataset (example),

174–176
security

Access, 211, 213, 233, 244, 418
macros and, 210–213, 418

Select Database dialog box, 350, 356,
357

SELECT DISTINCT, 498
select queries. See also action queries;

aggregate queries
action queries v., 56
creating, 34–44
defined, 33
on multiple tables, 39–41
operators in, 41–44

SELECT statement, 164, 165, 491–492,
500

SELECT TOP PERCENT statement, 502
SELECT TOP statement, 500–502
SELECT...INTO, 217, 502

semicolons, 466, 468, 491
separation, data/presentation, 7–8
Series area (pivot charts), 314
server application, 390
SET, 503
SetWarnings action, 211, 212, 217, 222,

230, 231, 263, 404
Sgn function, 550
shared processing, 9–10
Show Table dialog box, 34, 35, 48, 491
Simpson, Alan, 477
simulating Mail Merge feature from

Excel, 452–456
Sin function, 550
Single, 16, 558, 559
single criterion, 41, 144
single quotes

comments and, 425
SQL and, 381
textual criteria and, 180, 265, 377

slide with title (PowerPoint),
456–458

SlideTitle, 457, 459
SLN function, 550
‘‘SMALL’’ update value, 152, 153
Social Security numbers, 21
sorting

by capitalization, 102
/filtering, for on-the-fly analysis,

33–34
query results, 37–38
reports, 279–282

Source, 368
source data, report creation and,

283–284
Space function, 551
spaces

in field names, 15
leading/trailing, 103
LTrim function and, 103, 557
RTrim function and, 103, 557
Trim function and, 103, 557

586 Index ■ S

spaces (continued)
object names and, 220

SQL (Structured Query Language),
489–508. See also queries

advanced, 495–504
aggregate functions, 551–552
basic, 489–495
data transfer processes (with

VBA/ADO), 365–387
ADO fundamentals, 366–374
ADO/SQL data extract, 374–376
common scenarios, 380–387
criteria in SQL statements,

376–379
single/double quotes and, 381
VBA, ADO, SQL one-two-three

combination, 365, 384, 387
SQL statements
FROM, 379, 495
action queries via, 502–503
ADD, 506, 507
ADD CONSTRAINT, 506, 508
ALTER COLUMN, 506, 507
ALTER TABLE, 506–508
CREATE TABLE, 506
DELETE, 503
DISTINCT, 165, 496
DISTINCTROW, 498
DROP COLUMN, 506, 507
GROUP BY, 165, 379, 498
HAVING, 498
INSERT INTO, 173, 263, 503
Like operator and, 43, 378, 496–497
ORDER BY, 499
SELECT DISTINCT, 498
SELECT statement, 164, 165, 491–492,

500
SELECT TOP PERCENT statement, 502
SELECT TOP statement, 500–502
SELECT...INTO, 217, 502
SET, 503
subquery creation and, 165–168

TRANSFORM, 503–504
troubleshooting errors, 378–379
user-defined parameters and,

264–265
as variables, 264
WHERE clause, 492

wildcards and, 378
SQL view, 164, 166, 167, 174, 263,

490, 491, 504, 505, 506, 507, 508
SQL-specific queries, 504–508
Sqr function, 552
square brackets []

aliases and, 125
field names and, 15, 76, 125
forms and, 255
parameter queries and, 143
wildcard, 496, 497

standalone attribute (XML
declaration), 425

standard modules, 478
statistics. See descriptive statistics
STATS macro, 238
StDev function, 53, 551
StopMacro, 217
stored calculations, 113–114,

139–140
Str function, 552–553
StrConv function, 101, 553
STRING function, 331–334, 344, 554
strings

adding text in key positions,
105–107

empty, 97. See also Null values
padding, 107–108
parsing, 109–112

StrReverse function, 554
Structured Query Language. See SQL
subqueries, 163, 164–176, 186–187

in action queries, 173–174
comparison operators and, 169
correlated, 170–173, 192

Index ■ S–T 587

creating, SQL statements and,
165–168

as expressions, 170
ground rules, 165
nesting and, 44, 164, 165, 186
NOT IN operator and, 168–169, 175
IN operator and, 168–169
reasons for using, 165
top values, 174–176
uncorrelated, 171

subselect queries. See subqueries
Sum function, 53, 551
suppressing warning messages, 263
Switch function, 141, 150, 156–158,

159, 554–555
IIf function v., 157–158
power of, 156
quartile standings and, 201–202
syntax, 156–157

switches, command-line, 238–240
SYD function, 555
symbols (for reports/queries),

335–339
syntax, calculation errors and, 125

T
table aliases, 171, 172, 499
tables (Access tables), 10–11. See also

databases; pivot tables
ADO/SQL data extract and,

374–376
appending Excel records to,

384–386
basics, 13–28
creating, 17–19
Customer_ListA, 62, 63
defined, 13–14, 46
Dim_Customers, 14, 15, 35, 39, 70,

164, 501, 502
Dim_Transactions, 39–40, 74, 178,

179, 180

elements of, 14–15
Excel. See Excel
graphics, 340, 341–342
Holidays, 131–132
importing data into, 22–26
LeadList, 90, 92, 94, 95, 100, 111
LeadList_NoDups, 94, 95
LocationMaster, 226
LoopList, 229, 230, 231
MainSummary, 172, 396
multiple, queries on, 39–41
PvTblFeed, 180, 394, 395, 396
RevenueSummary, 68, 69
SalesHistory, 59, 61, 66, 67, 72
tblJobCodes, 263
TopTenList, 228, 229, 231
TransactionMaster, 157, 197, 529,

530
Tan function, 555
Task Scheduler, 233–238
tblJobCodes table, 263
template (mail merge document), 448
testing functions, 480
Text (data type), 16, 18, 54, 552
text boxes, 251, 252, 287
text files, querying, 386–387
textual criteria, 180, 377
textual parameters, from form,

264–265
Time function, 556. See also

Date/Time functions
TimeSerial function, 556
TimeValue function, 460, 463, 556–557
Top Values property, 174, 193, 194,

196, 197, 198, 229, 500, 501
top values queries, 174, 193, 194, 196,

197, 198, 500–502
SELECT TOP PERCENT statement, 502
SELECT TOP statement, 500–502

top values subquery, 174–176
TopTenB_Child macro, 230, 231, 232,

485, 486, 487

588 Index ■ T–V

TopTenList table, 228, 229, 231
totaling reports, 279–282
Totals dialog box, 281
Totals row, 48, 49, 68–69
trailing spaces. See leading/trailing

spaces
TransactionMaster table, 157, 197,

529, 530
TransferDatabase, 212, 217
transferring data. See data transfer

processes
TRANSFORM statement, 503–504
transformation tasks. See data

transformation
transparency, of analytical processes,

5–6
Trim function, 103, 557
True/False field, 17. See also Yes/No
trusted databases, 211–213, 214, 216,

217, 218, 233
trusted locations, 213
2009_Projections, 137–138
txtPath text box, 256
type conversion failure, 64
type mismatch in expression (error

message), 44
TypeName function, 557–558

U
UCase function, 101, 558
uncorrelated subqueries, 171
underscore character (_), 15, 76, 220,

367, 376, 426
UNION operator, 504–505
unique identifier, 30, 252, 427. See

also primary keys
Unique Values property, 45, 73, 96
update queries, 70–73, 85

case conversion and, 101
concatenation and, 98–100
creating, 70–72

expressions in, 72
failures, 72–73
hazards of, 70
parsing and, 110–112
reasons for using, 70
subqueries in, 174
UPDATE/SET and, 503

updateable datasets, 72–73
upper camel case, 220
User ID argument, 367
user-defined parameters, 264–265
utility, field as, 54

V
Val function, 559
validation rule violation, 64, 65
VALUE, 154
#VALUE error, 362
value from previous record (domain

aggregate functions), 184–186
Var function, 53, 552
variables

assigning value to, 481–482
connection strings and, 366
declaring, 481
defined, 481
SQL statements as, 264

VarType function, 559–560
VBA, ADO, SQL one-two-three

combination, 365, 384, 387
VBA (Visual Basic for Applications),

12, 243–266, 477–488
advantages of, 243, 260
automation and, 12, 209
background data processing,

260–265
books

Beginning Access 2007 VBA, 477
Excel 2007 VBA Programmer’s

Reference, 434

Index ■ V–W 589

custom functions, 244–251,
265–266

data transfer processes (with
ADO/SQL), 365–387

ADO fundamentals, 366–374
ADO/SQL data extract, 374–376
common scenarios, 380–387
criteria in SQL statements,

376–379
functions

compiling, 482
creating, 478–482
defined, 478
in forms, 484–485
in macros, 483
procedures and, 479–480
saving, 482–483
testing, 480

fundamentals, 477–488
macros converted to, 485–488
RunSQL statements, 261–265,

266
VBA Editor, 253, 257, 258, 264, 485,

520
VBE. See VBA Editor
version attribute (XML declaration),

424
views. See specific views
Visual Basic for Applications. See

VBA
visualization techniques, 323–344

advanced, 331–343
conditional formatting, 326–331
dashboard graphics, 323, 331, 334,

335, 339–343, 344
data bars, 331–335
number formatting (for reports),

324–326
symbols, 335–339

VLOOKUP, 11, 31

W
Warning field, 133, 134
warning messages, suppressing, 263
Weekday function, 130–132, 560
WeekdayName function, 561
WHERE clause, 378, 492
Where clause, 54, 55–56
wildcards

∗ (asterisk), 43, 146, 378, 415, 492,
496, 497

? (question mark), 496, 497
[] (square brackets), 496, 497
parameters with, 145–146, 254,

415–416
pound symbol (#), 496, 497
WHERE clause and, 378

wiley.com, 169
wiley.com/go/excelanalystguide,

228
Windows Task Scheduler, 233–238
wizards

Command Button Wizard, 252, 484
Crosstab Query Wizard, 74–79
Export wizard, 348–350, 363
Find Duplicates Query Wizard, 91,

92, 93, 94
Import Spreadsheet Wizard, 22–26
Insert Function wizard, 118, 119
Link Spreadsheet Wizard, 27–28
Lookup Wizard, 16
Microsoft Query wizard, 354, 357,

359
Report wizard, 289
Scheduled Task Wizard, 234

Word Object Library, 446
Word/Excel integration techniques

dynamic link to Excel table,
442–445

Excel data to Word (automation),
445–448

590 Index ■ W–Z

Word/Excel integration techniques
(continued)

simulating Mail Merge feature
from Excel, 452–456

Word Mail Merge feature, 448–452
WorkbooktoPowerpoint.xlsm, 462
workdays/non-workdays, 131–132
wrong data type for parameter (error

message), 45
wrox.com, 189, 391

X
xlwksht, 462, 463, 464
XML, 423–440

data entry process, 434–439
data entry form in Excel,

435–436
data entry schema in Access,

434–435
exporting results from Excel to

XML, 436–437
getting results into Access,

437–439
declaration, 424–425
documents

attributes, 427–428
comments, 425
components, 424–429

elements, 425–426
namespaces, 428–429
processing instructions, 425
root element, 426–427

reasons for using, 423–424
reporting solution, 429–434

exporting XML data from Access,
429–431

utilize XML data in Excel, 432–434

Y
Year function, 130–132, 561
Yes/No (data type), 11, 16, 17, 53

Z
ZalexCorp Restaurant Equipment

and Supply.accdb sample
database, 372, 373, 375, 376, 382,
383, 391, 395, 412, 417, 418, 419,
420

ZalexCorp sample database, 347,
348, 355, 356, 357, 358

zeros
division by zero (error message), 44
Null values and, 123. See also Null

values
zip codes example, 70–71
Zoom dialog box, 166, 175, 176

 Guide to
Access®

G
u

id
e

 to
 A

cce
s

s
®

The Excel® Analyst’sThe Excel
® A

nalyst’s

Michael Alexander
$39.99 US/$47.99 CAN

Database Management/General

ISBN 978-0-470-56701-2

Alexander

Use the right tool

 for the job
Like many managers, accountants, and analysts, you’ve been using Excel for data analysis. It’s a

good tool, but you’re beginning to fi nd its limitations frustrating. You’re looking for more scalability.

More transparency of analytical processes. The ability to separate data from presentation.

Access makes it all possible, and this guide helps you add Access to your analytical toolbox. Learn

the essentials of using Access, basic and advanced analysis techniques, how to build reports, and

much more. Then you can choose the right tool for every job.

• Easily move data between Excel and Access

• Normalize and store Excel data in a structured relational database

• Use Access to analyze large amounts of data

• Use Excel pivot tables with Access data

• Build reports and implement dashboard-style visualizations

• Report Access data using Excel’s presentation layer

• Automate redundant reporting and analysis using Excel and Access macros

• Save time and increase productivity by automating redundant processes using VBA

• Get external data using SQL, ADO, and XML

Michael Alexander is a Microsoft MVP and a veteran consultant. He creates and shares video tutorials with

the Microsoft Excel and Access communities via www.datapigtechnologies.com. Mike has written several

books on advanced business analysis, including Microsoft Access 2007 Data Analysis, also from Wiley.

Visit our Web site at www.wiley.com/go/excelanalystguide

www.wiley.com
www.wiley.com/go/excelanalystguide

	The Excel® Analyst's Guide to Access®
	About the Author
	Contents at a Glance
	Contents
	Introduction
	Part I: Fundamentals of Data Analysis in Access
	Chapter 1: The Case for Data Analysis in Access
	Where Data Analysis with Excel Can Go Wrong
	Deciding Whether to Use Access or Excel
	An Excel User’s Guide to Access: Don’t Panic!
	Summary

	Chapter 2: Access Basics
	Access Tables
	Understanding the Relational Database Concept
	Query Basics
	The Top Ten Query Errors
	Summary

	Chapter 3: Beyond Select Queries
	Aggregate Queries
	Action Queries
	Crosstab Queries
	Summary

	Part II: Basic Analysis Techniques
	Chapter 4: Transforming Your Data with Access
	Finding and Removing Duplicate Records
	Common Transformation Tasks
	Summary

	Chapter 5: Working with Calculations and Dates
	Using Calculations in Your Analysis
	Using Dates in Your Analysis
	The New Calculated Data Type
	Summary

	Chapter 6: Performing Conditional Analysis
	Using Parameter Queries
	Using Conditional Functions
	Summary

	Part III: Advanced Analysis Techniques
	Chapter 7: Adding Dimension with Subqueries and Domain Aggregate Functions
	Enhancing Your Analysis with Subqueries
	Domain Aggregate Functions
	Summary

	Chapter 8: Running Descriptive Statistics in Access
	Basic Descriptive Statistics
	Advanced Descriptive Statistics
	Summary

	Chapter 9: Scheduling and Running Batch Analysis
	Introduction to Access Macros
	Setting Up and Managing Batch Analysis
	Scheduling Macros to Run Nightly
	Summary

	Chapter 10: Leveraging VBA to Enhance Data Analysis
	Creating and Using Custom Functions
	Controlling Analytical Processes with Forms
	Processing Data Behind the Scenes
	Summary

	Part IV: Reports, Dashboards, and Visualization in Access
	Chapter 11: Presenting Data with Access Reports
	Access Report Basics
	Creating and Modifying Grouped Reports
	Creating a Report from Scratch
	Summary

	Chapter 12: Using Pivot Tables and Pivot Charts in Access
	Pivot Tables in Access?
	The Anatomy of a Pivot Table
	Creating a Basic Pivot Table
	Creating an Advanced Pivot Table with Details
	Saving Your Pivot Table
	Sending Your Access Pivot Table to Excel
	Pivot Table Options
	Working with Pivot Charts in Access
	Summary

	Chapter 13: Enhancing Queries and Reports with Visualizations
	Basic Visualization Techniques
	Advanced Visualization Techniques
	Summary

	Part V: Advanced Excel and Access Integration Techniques
	Chapter 14: Getting Access Data into Excel
	The Different Methods for Importing Access Data
	Summary

	Chapter 15: Using VBA to Move Data between Excel and Access
	Understanding ADO Fundamentals
	Common Scenarios Where VBA Can Help
	Summary

	Chapter 16: Exploring Excel and Access Automation
	Understanding the Concept of Binding
	Automating Excel from Access
	Automating Access from Excel
	Summary

	Chapter 17: Integrating Excel and Access with XML
	Why XML?
	Understanding XML
	Creating a Simple Reporting Solution with XML
	Creating a Data Entry Process Using XML
	Summary

	Chapter 18: Integrating Excel and Other Office Applications
	Integrating Excel with Microsoft Word
	Integrating Excel with PowerPoint
	Integrating Excel and Outlook
	Summary

	Part VI: Appendixes
	Appendix A: Access VBA Fundamentals
	Covering the Basics in 10 Steps
	Letting Access Teach You VBA

	Appendix B: Understanding and Using SQL
	Understanding Basic SQL
	Getting Fancy with Advanced SQL Statements
	Using SQL Specific Queries

	Appendix C: Query Performance, Database Corruption, and Other Thoughts
	Optimizing Query Performance
	Handling Database Corruption
	Getting Help in Access

	Appendix D: Data Analyst’s Function Reference
	Abs
	Asc
	Atn
	Choose
	Chr
	Cos
	Date
	DateAdd
	DateDiff
	DatePart
	DateSerial
	DateValue
	Day
	DDB
	Domain Aggregate Functions
	Exp
	FormatCurrency
	FormatDateTime
	FormatNumber
	FormatPercent
	FV
	Hour
	IIf
	InStr
	InStrRev
	IPmt
	IRR
	IsError
	IsNull
	IsNumeric
	LCase
	Left
	Len
	Log
	Mid
	Minute
	MIRR
	Month
	MonthName
	Now
	NPer
	NPV
	NZ
	Partition
	Pmt
	PPmt
	PV
	Rate
	Replace
	Right
	Rnd
	Round
	Second
	Sgn
	Sin
	SLN
	Space
	SQL Aggregate Functions
	Sqr
	Str
	StrConv
	String
	StrReverse
	Switch
	SYD
	Tan
	Time
	TimeSerial
	TimeValue
	Trim, LTrim, RTrim
	TypeName
	UCase
	Val
	VarType
	Weekday
	WeekdayName
	Year

	Index

