
www.allitebooks.com

http://www.allitebooks.org

Securing Hadoop

Implement robust end-to-end security for your
Hadoop ecosystem

Sudheesh Narayanan

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Securing Hadoop

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-525-9

www.packtpub.com

Cover Image by Ravaji Babu (ravaji_babu@outlook.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sudheesh Narayanan

Reviewers
Mark Kerzner

Nitin Pawar

Acquisition Editor
Antony Lowe

Commissioning Editor
Shaon Basu

Technical Editors
Amit Ramadas

Amit Shetty

Project Coordinator
Akash Poojary

Proofreader
Ameesha Green

Indexer
Rekha Nair

Graphics
Sheetal Aute

Ronak Dhruv

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sudheesh Narayanan is a Technology Strategist and Big Data Practitioner with
expertise in technology consulting and implementing Big Data solutions. With over
15 years of IT experience in Information Management, Business Intelligence, Big Data
& Analytics, and Cloud & J2EE application development, he provided his expertise
in architecting, designing, and developing Big Data products, Cloud management
platforms, and highly scalable platform services. His expertise in Big Data includes
Hadoop and its ecosystem components, NoSQL databases (MongoDB, Cassandra,
and HBase), Text Analytics (GATE and OpenNLP), Machine Learning (Mahout,
Weka, and R), and Complex Event Processing.

Sudheesh is currently working with Genpact as the Assistant Vice President
and Chief Architect – Big Data, with focus on driving innovation and building
Intellectual Property assets, frameworks, and solutions. Prior to Genpact, he was
the co-inventor and Chief Architect of the Infosys BigDataEdge product.

I would like to thank my wife, Smita and son, Aryan for their
sacrifices and support during this journey, and my dad, mom,
and sister for encouraging me at all times to make a difference by
contributing back to the community. This book would not have been
possible without their encouragement and constant support.

Special thanks to Rupak and Debika for investing their personal time
over weekends to help me experiment with a few ideas on Hadoop
security, and for being the bouncing board.

I would like to thank Shwetha, Sivaram, Ajay, Manpreet, and Venky
for providing constant feedback and helping me make continuous
improvements in my securing Hadoop journey.

Above all, I would like to acknowledge my sincere thanks to my
teacher, Prof. N. C. Jain; my leaders and coach Paddy, Vishnu Bhat,
Sandeep Bhagat, Jaikrishnan, Anil D'Souza, and KNM Rao for their
mentoring and guidance in making me who I am today, so that I
could write this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mark Kerzner holds degrees in Law, Math, and Computer Science. He has been
designing software for many years and Hadoop-based systems since 2008. He is
the President of SHMsoft, a provider of Hadoop applications for various verticals,
and a co-author of the Hadoop illuminated book/project. He has authored and
co-authored books and patents.

I would like to acknowledge the help of my colleagues, in particular,
Sujee Maniyam, and last but not the least, my multitalented family.

Nitin Pawar started his career as a Release Engineer and Tools Developer, then
moved into different roles such as operations, solutions engineering, process
engineering, and Big Data analytics. Currently, he is working as a Big Data System
Architect, and trying to solve problems related to customer success management.
He has mainly been working with technologies revolving around the first generation
Hadoop ecosystem.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Hadoop Security Overview 7

Why do we need to secure Hadoop? 8
Challenges for securing the Hadoop ecosystem 9
Key security considerations 10

Reference architecture for Big Data security 11
Summary 12

Chapter 2: Hadoop Security Design 13
What is Kerberos? 13

Key Kerberos terminologies 14
How Kerberos works? 15
Kerberos advantages 16

The Hadoop default security model without Kerberos 17
Hadoop Kerberos security implementation 19

User-level access controls 19
Service-level access controls 19
User and service authentication 20
Delegation Token 20
Job Token 20
Block Access Token 21

Summary 23
Chapter 3: Setting Up a Secured Hadoop Cluster 25

Prerequisites 25
Setting up Kerberos 26

Installing the Key Distribution Center 27
Configuring the Key Distribution Center 29
Establishing the KDC database 31
Setting up the administrator principal for KDC 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Starting the Kerberos daemons 32
Setting up the first Kerberos administrator 33
Adding the user or service principals 33
Configuring LDAP as the Kerberos database 33
Supporting AES-256 encryption for a Kerberos ticket 33

Configuring Hadoop with Kerberos authentication 34
Setting up the Kerberos client on all the Hadoop nodes 34
Setting up the Hadoop service principals 35

Creating a keytab file for Hadoop services 35
Distributing the keytab file for all the slaves 36
Setting up Hadoop configuration files 36
HDFS-related configurations 37
MRV1-related configurations 38
MRV2-related configurations 39
Setting up secured DataNode 40
Setting up the TaskController class 40

Configuring users for Hadoop 42
Automation of a secured Hadoop deployment 43
Summary 43

Chapter 4: Securing the Hadoop Ecosystem 45
Configuring Kerberos for Hadoop ecosystem components 46

Securing Hive 46
Securing Hive using Sentry 49

Securing Oozie 49
Securing Flume 52

Securing Flume sources 53
Securing Hadoop sink 54
Securing a Flume channel 55

Securing HBase 55
Securing Sqoop 59
Securing Pig 60

Best practices for securing the Hadoop ecosystem components 61
Summary 62

Chapter 5: Integrating Hadoop with Enterprise Security Systems 63
Integrating Enterprise Identity Management systems 64

Configuring EIM integration with Hadoop 66
Integrating Active-Directory-based EIM with the Hadoop ecosystem 66

Accessing a secured Hadoop cluster from an enterprise network 67
HttpFS 68
HUE 69
Knox Gateway Server 71

Summary 72

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 6: Securing Sensitive Data in Hadoop 73
Securing sensitive data in Hadoop 74

Approach for securing insights in Hadoop 75
Securing data in motion 75
Securing data at rest 76
Implementing data encryption in Hadoop 78

Summary 80
Chapter 7: Security Event and Audit Logging in Hadoop 81

Security Incident and Event Monitoring in a Hadoop Cluster 82
The Security Incident and Event Monitoring (SIEM) system 84

Setting up audit logging in a secured Hadoop cluster 86
Configuring Hadoop audit logs 86

Summary 88
Appendix: Solutions Available for Securing Hadoop 89

Hadoop distribution with enhanced security support 89
Automation of a secured Hadoop cluster deployment 90

Cloudera Manager 90
Zettaset 91

Different Hadoop data encryption options 91
Dataguise for Hadoop 91
Gazzang zNcrypt 92
eCryptfs for Hadoop 92

Securing the Hadoop ecosystem with Project Rhino 92
Mapping of security technologies with the reference architecture 93

Infrastructure security 93
OS and filesystem security 94
Application security 94
Network perimeter security 94
Data masking and encryption 94
Authentication and authorization 94
Audit logging, security policies, and procedures 95
Security Incident and Event Monitoring 95

Index 97

www.allitebooks.com

http://www.allitebooks.org

Preface
Today, many organizations are implementing Hadoop in production environments.
As organizations embark on the Big Data implementation journey, security of Big
Data is one of the major concerns. Securing sensitive data is one of the top priorities
for organizations. Enterprise security teams are worried about integrating Hadoop
security with enterprise systems. Securing Hadoop provides a detailed implementation
and best practices for securing a Hadoop-based Big Data platform. It covers the
fundamentals behind Kerberos security and Hadoop security design, and then details
the approach for securing Hadoop and its ecosystem components within an enterprise
context. The goal of this book is to take an end-to-end enterprise view on Big Data
security by looking at the Big Data security reference architecture, and detailing
how the various building blocks required by an organization can be put together to
establish a secure Big Data platform.

What this book covers
Chapter 1, Hadoop Security Overview, highlights the key challenges and requirements
that should be considered for securing any Hadoop-based Big Data platform. We
then provide an enterprise view of Big Data security and detail the Big Data security
reference architecture.

Chapter 2, Hadoop Security Design, details the internals of the Hadoop security design
and explains the key concepts required for understanding and implementing
Kerberos security. The focus of this chapter is to arrive at a common understanding
of various terminologies and concepts required for remainder of this book.

Chapter 3, Setting Up a Secured Hadoop Cluster, provides a step-by-step guide on
configuring Kerberos and establishing a secured Hadoop cluster.

Preface

[2]

Chapter 4, Securing the Hadoop Ecosystem, looks at the detailed internal interaction and
communication protocols for each of the Hadoop ecosystem components along with
the security gaps. We then provide a step-by-step guide to establish a secured Big
Data ecosystem.

Chapter 5, Integrating Hadoop with Enterprise Security Systems, focuses on the
implementation approach to integrate Hadoop security models with enterprise
security systems and how to centrally manage access controls for users in a secured
Hadoop platform.

Chapter 6, Securing Sensitive Data in Hadoop, provides a detailed implementation
approach for securing sensitive data within a Hadoop ecosystem and what are the
various data encryption techniques used in securing Big Data platforms.

Chapter 7, Security Event and Audit Logging in Hadoop, provides a deep dive into the
security incident and event monitoring system that needs to be implemented in a
secured Big Data platform. We then provide the best practices and approach for
implementing these security procedures and policies.

Appendix, Solutions Available for Securing Hadoop, provides an overview of the various
commercial and open source technologies that are available to build a secured
Hadoop Big Data ecosystem. We look into details of each of these technologies and
where they fit into the overall Big Data security reference architecture.

What you need for this book
To practice the examples provided in this book, you will need a working Hadoop
cluster. You will also need a multinode Linux cluster (a minimum of 2 nodes of
CentOS 6.2 or similar). Cloudera CDH4.1 or above is recommended. Any latest
version of Apache Hadoop distribution can also be used instead of CDH4.1.You will
have to download and install Kerberos 5 Release 1.11.3 from the MIT site (http://
web.mit.edu/kerberos/krb5-1.11/).

Who this book is for
Securing Hadoop is ideal for Hadoop practitioners (Big Data architects, developers,
and administrators) who have some working knowledge of Hadoop and wants to
implement security for Hadoop. This book is also for Big Data architects who want
to design and implement an end-to-end secured Big Data solution for an enterprise
context. This book will also act as reference guide for the administrators who are on
the implementation and configuration of Hadoop security.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "To support renewable tickets, we add the
max_renewable_life setting to your realm in kdc.conf."

A block of code is set as follows:

kdcdefaults]
kdc_ports = 88

[realms]
MYDOMAIN.COM = {
 profile = /etc/krb5.conf
 supported_enctypes = aes128-cts:normal des3-hmac-sha1:normal
 arcfour-hmac:normal des-hmac-sha1:normal des-cbc-md5:normal des-
 cbc-crc:normal des-cbc-crc:v4 des-cbc-crc:afs3
 allow-null-ticket-addresses = true
 database_name = /usr/local/var/krb5kdc/principal
 acl_file = /usr/local/var/krb5kdc/kadm5.acl
 admin_database_lockfile = /usr/local/var/krb5kd/kadm5_adb.lock
 admin_keytab = FILE:/usr/local/var/krb5kdc/kadm5.keytab
 key_stash_file = /usr/local/var/krb5kdc/.k5stash
 kdc_ports = 88
 kadmind_port = 749
 max_life = 2d 0h 0m 0s
 max_renewable_life = 7d 0h 0m 0s
}

Any command-line input or output is written as follows:

sudo service hadoop-hdfs-namenode start

sudo service hadoop-hdfs-datanode start

sudo service hadoop-hdfs-secondarynamenode start

For MRV1

sudo service hadoop-0.20-mapreduce-jobtracker start

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Hadoop Security Overview
Like any development project, the ones in Hadoop start with proof of concept
(POC). Especially because the technology is new and continuously evolving,
the focus always begins with figuring out what it can offer and how to leverage
it to solve different business problems, be it consumer analysis, breaking news
processing, and so on. Being an open source framework, it has its own nuances
and requires a learning curve. As these POCs mature and move to pilot and then to
production phase, a new infrastructure has to be set up. Then questions arise around
maintaining the newly setup infrastructure, including questions on data security
and the overall ecosystem's security. Few of the questions that the infrastructure
administrators and security paranoids would ask are:

How secure is a Hadoop ecosystem? How secure is the data residing in Hadoop?
How would different teams including business analysts, data scientists, developers,
and others in the enterprise access the Hadoop ecosystem in a secure manner? How
to enforce existing Enterprise Security Models in this new infrastructure? Are there
any best practices for securing such an infrastructure?

This chapter will begin the journey to answer these questions and provide an
overview of the typical challenges faced in securing Hadoop-based Big Data
ecosystem. We will look at the key security considerations and then present the
security reference architecture that can be used for securing Hadoop.

 The following topics will be covered in this chapter:

• Why do we need to secure a Hadoop-based ecosystem?
• The challenges in securing such an infrastructure
• Important security considerations for a Hadoop ecosystem
• The reference architecture for securing a Hadoop ecosystem

Hadoop Security Overview

[8]

Why do we need to secure Hadoop?
Enterprise data consists of crucial information related to sales, customer interactions,
human resources, and so on, and is locked securely within systems such as ERP, CRM,
and general ledger systems. In the last decade, enterprise data security has matured
significantly as organizations learned their lessons from various data security incidents
that caused them losses in billions. As the services industry has grown and matured,
most of the systems are outsourced to vendors who deal with crucial client information
most of the time. As a result, security and privacy standards such as HIPAA, HITECH,
PCI, SOX, ISO, and COBIT have evolved . This requires service providers to comply
with these regulatory standards to fully safeguard their client's data assets. This has
resulted in a very protective data security enforcement within enterprises including
service providers as well as the clients. There is absolutely no tolerance to data security
violations. Over the last eight years of its development, Hadoop has now reached a
mature state where enterprises have started adopting it for their Big Data processing
needs. The prime use case is to gain strategic and operational advantages from their
humongous data sets. However, to do any analysis on top of these datasets, we need
to bring them to the Hadoop ecosystem for processing. So the immediate question
that arises with respect to data security is, how secure is the data storage inside the
Hadoop ecosystem?

The question is not just about securing the source data which is moved from the
enterprise systems to the Hadoop ecosystem. Once these datasets land into the
Hadoop ecosystems, analysts and data scientists perform large-scale analytics and
machine-learning-based processing to derive business insights. These business
insights are of great importance to the enterprise. Any such insights in the hands of
the competitor or any unauthorized personnel could be disastrous to the business.
It is these business insights that are highly sensitive and must be fully secured.

Any data security incident will cause business users to lose their trust in the
ecosystem. Unless the business teams have confidence in the Hadoop ecosystem,
they won't take the risk to invest in Big Data. Hence, the success and failure of
Big Data-related projects really depends upon how secure our data ecosystem is
going to be.

Chapter 1

[9]

Challenges for securing the Hadoop
ecosystem
Big Data not only brings challenges for storing, processing, and analysis but also for
managing and securing these large data assets. Hadoop was not built with security
to begin with. As enterprises started adopting Hadoop, the Kerberos-based security
model evolved within Hadoop. But given the distributed nature of the ecosystem
and wide range of applications that are built on top of Hadoop, securing Hadoop
from an enterprise context is a big challenge.

A typical Big Data ecosystem has multiple stakeholders who interact with the
system. For example, expert users (business analysts and data scientists) within the
organization would interact with the ecosystem using business intelligence (BI)
and analytical tools, and would need deep data access to the data to perform various
analysis. A finance department business analyst should not be able to see the data
from the HR department and so on. BI tools need a wide range of system-level access
to the Hadoop ecosystem depending on the protocol and data that they use for
communicating with the ecosystem.

One of the biggest challenges for Big Data projects within enterprises today is
about securely integrating the external data sources (social blogs, websites,
existing ERP and CRM systems, and so on). This external connectivity needs to
be established so that the extracted data from these external sources is available
in the Hadoop ecosystem.

Hadoop ecosystem tools such as Sqoop and Flume were not built with full
enterprise grade security. Cloudera, MapR, and few others have made significant
contributions towards enabling these ecosystem components to be enterprise grade,
resulting in Sqoop 2, Flume-ng, and Hive Server 2. Apart from these, there are
multiple security-focused projects within the Hadoop ecosystem such as Cloudera
Sentry (http://www.cloudera.com/content/cloudera/en/products/cdh/
sentry.html), Hortonworks Knox Gateway (http://hortonworks.com/hadoop/
knox-gateway/), and Intel's Project Rhino (https://github.com/intel-hadoop/
project-rhino/). These projects are making significant progress to make Apache
Hadoop provide enterprise grade security. A detailed understanding of each of these
ecosystem components is needed to deploy them in production.

Another area of concern within enterprises is the need the existing enterprise
Identity and Access Management (IDAM) systems with the Hadoop ecosystem.
With such integration, enterprises can extend the Identity and Access Management
to the Hadoop ecosystem. However, these integrations bring in multiple challenges
as Hadoop inherently has not been built with such enterprise integrations in mind.

www.allitebooks.com

http://www.allitebooks.org

Hadoop Security Overview

[10]

Apart from ecosystem integration, there is often a need to have sensitive information
within the Big Data ecosystem, to derive patterns and inferences from these datasets.
As we move these datasets to the Big Data ecosystem we need to mask/encrypt this
sensitive information. Traditional data masking and encryption tools don't scale well
for large scale Big Data masking and encryption. We need to identify new means for
encryption of large scale datasets.

Usually, as the adoption of Big Data increases, enterprises quickly move to a
multicluster/multiversion scenario, where there are multiple versions of the Hadoop
ecosystem operating in an enterprise. Also, sensitive data that was earlier banned
from the Big Data platform slowly makes its way in. This brings in additional
challenges on how we address security in such a complex environment, as a small
lapse in security could result in huge financial loss for the organization.

Key security considerations
As discussed previously, to meet the enterprise data security needs for a Big Data
ecosystem, a complex and holistic approach is needed to secure the entire ecosystem.
Some of the key security considerations while securing Hadoop-based Big Data
ecosystem are:

• Authentication: There is a need to provide a single point for authentication
that is aligned and integrated with existing enterprise identity and access
management system.

• Authorization: We need to enforce a role-based authorization with
fine-grained access control for providing access to sensitive data.

• Access control: There is a need to control who can do what on a dataset, and
who can use how much of the processing capacity available in the cluster.

• Data masking and encryption: We need to deploy proper encryption and
masking techniques on data to ensure secure access to sensitive data for
authorized personnel.

• Network perimeter security: We need to deploy perimeter security for
the overall Hadoop ecosystem that controls how the data can move in and
move out of the ecosystem to other infrastructures. Design and implement
the network topology to provide proper isolation of the Big Data ecosystem
from the rest of the enterprise. Provide proper network-level security by
configuring the appropriate firewall rules to prevent unauthorized traffic.

Chapter 1

[11]

• System security: There is a need to provide system-level security by
hardening the OS and the applications that are installed as part of the
ecosystem. Address all the known vulnerability of OS and applications.

• Infrastructure security: We need to enforce strict infrastructure and physical
access security in the data center.

• Audits and event monitoring: A proper audit trial is required for any
changes to the data ecosystem and provide audit reports for various activities
(data access and data processing) that occur within the ecosystem.

Reference architecture for Big Data security
Implementing all the preceding security considerations for the enterprise data
security becomes very vital to building a trusted Big Data ecosystem within
the enterprise. The following figure shows as a typical Big Data ecosystem and
how various ecosystem components and stakeholders interact with each other.
Implementing the security controls in each of these interactions requires elaborate
planning and careful execution.

Applications

Enterprise Systems

IDAM

ERP

CRM

DW

HR

Financial

Adapters

ETL Tools

ETL Tools

Flume

Sqoop

IngestionExternal Data

Internal Data

Hadoop Based Big Data Ecosystem

HUE

DataNode
NodeManager

DataNode
NodeManager

DataNode
NodeManager

DataNode
NodeManager

NameNode ResourceManager

PigHive Oozie

Administrator Developer Analyst End User

Analytical/BI ToolsDeveloper ToolsAdmin Tools Web Portals

Social Data

Websites

Blogs and so on

Transactions

Web logs

CRM and so on

1

2

3

3

7

4

5

6

Users

Hadoop Security Overview

[12]

The reference architecture depicted in the following diagram summarizes the key
security pillars that needs to be considered for securing a Big Data ecosystem. In the
next chapters, we will explore how to leverage the Hadoop security model and the
various existing enterprise tools to secure the Big Data ecosystem.

Security
Incident and

Event
Monitoring

Masking

Infrastructure Security

Application SecurityOS Security

Network Perimeter Security

Encryption
Security
Policy
and

Procedures

AuthenticationAuthorization
73 4

44

5

5

6 6

57

In Chapter 4, Securing the Hadoop Ecosystem, we will look at the implementation
details to secure the OS and applications that are deployed along with Hadoop in the
ecosystem. In Chapter 5, Integrating Hadoop with Enterprise Security Systems, we look at
the corporate network perimeter security requirement and how to secure the cluster
and look at how authorization defined within the enterprise identity management
system can be integrated with the Hadoop ecosystem. In Chapter 6, Securing Sensitive
Data in Hadoop, we look at the encryption implementation for securing sensitive
data in Hadoop. In Chapter 7, Security Event and Audit Logging in Hadoop, we look at
security incidents and event monitoring along with the security policies required to
address the audit and reporting requirements.

Summary
In this chapter, we understood the overall security challenges for securing Hadoop-
based Big Data ecosystem deployments. We looked at the two different types (source
and insights) of data that is stored in the Hadoop ecosystem and how important
it is to secure these datasets to retain business confidence. We detailed out the key
security considerations for securing Hadoop, and presented the overall security
reference architecture that can be used as a guiding light for the overall security
design of a Big Data ecosystem. In the rest of the book, we will use this reference
architecture as a guide to implement the Hadoop-based secured Big Data ecosystem.

In the next chapter, we will look in depth at the Kerberos security model and how
this is deployed in a secured Hadoop cluster. We will look at the Hadoop security
model in detail and understand the key design considerations based on the current
Hadoop security implementation.

Hadoop Security Design
In Chapter 1, Hadoop Security Overview, we discussed the security considerations for
an end-to-end Hadoop-based Big Data ecosystem. In this chapter, we will narrow
our focus and take a deep dive into the security design of the Hadoop platform.
Hadoop security was implemented as part of the HADOOP-4487 Jira issue, starting
in late 2009 (https://issues.apache.org/jira/browse/HADOOP-4487). Currently,
there are efforts to implement SSO Authentication in Hadoop. This is currently not
production-ready, and hence will be out of scope of this book.

Hadoop security implementation is based on Kerberos. So in this chapter,
first we will be provided with a high-level overview of key Kerberos
terminologies and concepts, and then we will look into the details of the Hadoop
security implementation.

The following are the topics we'll be covering in this chapter:

• What is Kerberos?
• The Hadoop default security model
• The Hadoop Kerberos security implementation

What is Kerberos?
In any distributed system, when two parties (the client and server) have to
communicate over the network, the first step in this communication is to establish
trust between these parties. This is usually done through the authentication process,
where the client presents its password to the server and the server verifies this
password. If the client sends passwords over an unsecured network, there is a risk
of passwords getting compromised as they travel through the network.

Hadoop Security Design

[14]

Kerberos is a secured network authentication protocol that provides strong
authentication for client/server applications without transferring the password
over the network. Kerberos works by using time-sensitive tickets that are generated
using the symmetric key cryptography. Kerberos is derived from the Greek
mythology where Kerberos was the three-headed dog that guarded the gates of
Hades. The three heads of Kerberos in the security paradigm are:

• The user who is trying to authenticate.
• The service to which the client is trying to authenticate.
• Kerberos security server known as Key Distribution Center (KDC), which

is trusted by both the user and the service. The KDC stores the secret keys
(passwords) for the users and services that would like to communicate with
each other.

Key Kerberos terminologies
KDC provides two main functionalities known as Authentication Service (AS)
and Ticket Granting Service (TGS). AS is responsible for authenticating the users
and services, while the TGS provides a ticket that is a time-limited cryptographic
message. This ticket is used by the client to authenticate with the server.

The parties involved in the communication (the client and server) are known as
principals. Each party has a principal that is defined within KDC. Each party shares
the secret key (password) with the KDC. The passwords can be stored locally within
KDC, but it is good practice to manage this centrally using LDAP.

Each KDC is associated with a group known as a realm. A realm is equivalent to a
domain in Windows terminology. Principals defined within a single KDC are in the
same realm. There could be multiple KDCs, and hence multiple realms in the network.

In a multiple realm scenario, a client that authenticates with one realm can connect to
the server defined in another realm, as long as there is trust established between the
two realms/KDCs.

KDC consists of two main daemons. These daemons are:

• krb5kdc: This is the Kerberos Authentication Server and is responsible for
authenticating the client and also granting tickets.

• kadmind: This is the administrative server daemon and is responsible for
performing administrative operations such as adding a new principal,
changing passwords, and such other activities on KDC.

Chapter 2

[15]

Kerberos also provides multiple utilities that are useful for working with KDC. The
important utilities are:

• kadmin and kadmin.local: These are administrative clients for the kadmind
daemon to perform administrative tasks. kadmin.local directly connects to
the KDC database on the local server, while the kadmin process allows for
remote connectivity.

• kinit: This utility is used to authenticate with the KDC and fetch the
Kerberos ticket for the user.

• klist: This utility is used to list the Kerberos tickets currently in the client's
local credential cache.

• ktutil: This is the key tab file utility that is used to update and view the
key tab file.

• kdb5_util: This is the KDC database utility. This is used to create the KDC
database and maintain it.

How Kerberos works?
The detailed authentication and authorization flow in a Kerberos cluster is shown in
the following figure:

Request TGT Auth

Responds with encrypted
session key + TGT

Ticket Granting
Service
(TGS)
KDC

Request Service ticket
by providing TGT

Encrypted session
key and ticket
granted for service
access

Authenticates with
Service Ticket

LEGEND

Authenticator

Ticket Granting Ticket

Session Key

Service TicketTGS

Sk2Sk1

TGT

Auth

Server responds
with encrypted
timestamp

Server

Client

Authentication
Service

(AS)

TGT Sk2

Auth TGT

Sk2Auth

1

2

3

4

5

6

AuthTGT

TGT Sk1

Hadoop Security Design

[16]

The following are the key steps involved in this flow:

1. The client sends the authentication request to KDC and requests for the
Ticket Granting Ticket (TGT).

2. The KDC provides the TGT and session key to the client. The TGT is a special
ticket provided by KDC to authenticated users, which can be used to fetch
service tickets for any servers. TGT has a lifespan of 8 to 10 hours, during
which the user can request for tickets for any server with which the user
wants to communicate. The session key is a common key for the two parties
in communication. The session key is used for encryption of data between
the two parties.

3. Using the TGT, the client requests for the service ticket.
4. The KDC provides the service ticket (TGS) and the session key that can be

used for encrypting data sent to the requested server. The session key is
encrypted using the server's secret key, so that only the server can decrypt
the session key using its secret key and communicate with the user. The
session key expires after the defined time period. Usually, the time period is
limited to 8 to 10 hours.

5. The client now contacts the target server and provides the TGS. The server
will decrypt the TGS using the server's secret key and authenticate the client.

6. The server will provide the authenticator encrypted with the session key.
Now the client and server share the session key as the secret key, which will
be used for any data encryption needs.

Since the protocol is time-sensitive, it is required that all the machines which
communicate with each other should have the time synchronized with a maximum
lag of five minutes. If any server time offset is more than five minutes, it will not be
able to authenticate.

Kerberos advantages
The key advantages of using Kerberos are:

• A password never travels over the network. Only time-sensitive tickets travel
over the network.

• Passwords or secret keys are only known to the KDC and the principal.
This makes the system scalable for authenticating a large number of entities,
as the entities only need to know their own secret keys and set that secret
key in KDC.

Chapter 2

[17]

• Kerberos supports passwords or secret keys to be stored in a centralized
credential store that is LDAP-complaint. This makes it easy for the
administrators to manage the system and the users.

• Servers don't have to store any tickets or any client-specific details to
authenticate a client. The authentication request will have all the required
data to authenticate the client. The server only needs to know its own secret
key to authenticate any client.

• The client authenticates with KDC and gets the TGT that is used for all
subsequent authentications. This makes the overall authentication system
faster, as there is no need for any lookup against the credential store after
the first authentication is done.

The Hadoop default security model
without Kerberos
Now that we understand how the Kerberos security protocol works, let us look at the
details of the Hadoop default security model and its limitations.

Hadoop implements a security model similar to the POSIX filesystem, which
gives the ability to apply file permissions and restrict read-write access to files and
directories in HDFS. The user and admin can use the chmod and chown commands
to change the permissions and ownership of the file/directories, similar to the POSIX
filesystem. Hadoop does not provide any user management functionality. It uses the
operating system user within Hadoop.

By default, Hadoop doesn't support any authentication of users or Hadoop services.
A user only authenticates with the operating system during the logon process. After
that, when the user invokes the Hadoop command, the user ID and group is set by
executing whoami and bash -c groups respectively. So if a user writes their own
whoami script and adds it to the path before the Linux whoami is called, the user
should be able to impersonate any user including the super user in the Hadoop
filesystem. The permission checks in Hadoop can be enabled by setting the property
dfs.permissions to true in the hdfs-site.xml file in the configuration directory.

Hadoop Security Design

[18]

The following figure shows the core services and the data blocks in any
Hadoop deployment:

MasterNode

NameNode

ResourceManager
(or JobTracker)

Node 1

ResourceManager
(or TaskTracker)

DataNode

HDFS Data Blocks

Node 2

ResourceManager
(or TaskTracker)

DataNode

HDFS Data Blocks

Hadoop services and data blocks

The data inside the Hadoop HDFS filesystem is stored in blocks in the DataNode
directory. Once a user logs in to DataNodes, they can access the data blocks stored
in DataNodes, based on the privilege to access the DataNode directory locally
on that node. Thus, the data blocks stored in DataNode are not secured.

By default, Hadoop doesn't authenticate the services, and hence a user can run
custom services on any of the machines, and this machine can be registered as
DataNode or TaskTracker/NodeManager. Hadoop will replicate the data to all
the Hadoop DataNodes, and hence the malicious user machine that registers with
NameNode will automatically start receiving the data blocks from the Hadoop
cluster. Hadoop has a setting that restricts the machines which can register as
DataNodes to NameNode. If the dfs.hosts property in hdfs-site.xml points to
a file that contains one host per line, only those hosts will be allowed to connect
with NameNode and register. By default, this setting is turned off. This brings up
a security hole where any Hadoop client can connect to any DataNode and add
malicious data blocks or read any data block using the block ID.

Chapter 2

[19]

Hadoop Kerberos security
implementation
Enforcing security within a distributed system such as Hadoop is complex. The
detailed requirements for securing Hadoop were identified by Owen O'Malley and
others as part of the Hadoop security design. The detailed document is attached
with the ticket HADOOP-4487 at https://issues.apache.org/jira/browse/
HADOOP-4487. A summary of these requirements is explained in this section.

User-level access controls
A brief on the user-level access controls is:

• Users of Hadoop should only be able to access data that is authorized
for them

• Only authenticated users should be able to submit jobs to the Hadoop cluster
• Users should be able to view, modify, and kill only their own jobs
• Only authenticated services should be able to register themselves as

DataNodes or TaskTracker
• Data block access within DataNode needs to be secured, and only

authenticated users should be able to access the data stored in the
Hadoop cluster

Service-level access controls
Here's a gist of the service-level access controls:

• Scalable Authentication: Hadoop clusters consist of a large number of
nodes, and the authentication models should be scalable to support such
large network authentication

• Impersonation: Hadoop services should be able to impersonate the user
submitting the job so that the correct user isolation can be maintained

• Self-Served: Hadoop jobs run for long durations, so they should be able to
ensure that the jobs are able to self-renew the delegated user authentication
to complete the job

• Secure IPC: Hadoop services should be able to authenticate each other and
ensure secured communication between themselves

www.allitebooks.com

http://www.allitebooks.org

Hadoop Security Design

[20]

To achieve the preceding requirements, Hadoop leverages the Kerberos
authentication protocol and some internal-generated tokens to secure the Hadoop
cluster. Let us look into the detail of this security implementation in Hadoop.

User and service authentication
User authentication to NameNode and JobTracker services is through Hadoop's
remote procedure call using the Simple Authentication and Security Layer (SASL)
framework. Kerberos is used as the authentication protocol to authenticate the users
within SASL. All Hadoop services support Kerberos authentication. A client submits
the MapReduce job to JobTracker. MapReduce jobs are usually long-running jobs
and they need to access the Hadoop resources on behalf of the user. This is achieved
using the Delegation Token, Job Token, and the Block Access Token.

Delegation Token
A Delegation Token authentication is a two-party authentication protocol based
on JAVA SASL Digest-MD5. A Delegation Token is used between the user and
NameNode to authenticate the user. Once the user authenticates themselves with
NameNode using Kerberos, the user is provided with the Delegation Token by
NameNode. The user doesn't have to perform Kerberos authentication once he/
she obtains the Delegation Token. The user also designates the JobTracker or
ResourceManager process as the user that will renew the Delegation Token as part of
the Delegation Token request.

The Delegation Token is secured and shared with JobTracker or ResourceManager
after authentication, and JobTracker will use the Delegation Token for accessing
the HDFS resources on behalf of the user. JobTracker will automatically renew this
Delegation Token for long-running jobs.

Job Token
A job runs on the TaskNodes and the user access has to be secured in TaskNodes.
When the user submits MapReduce job to JobTracker, it will create a secret key that
will be shared with TaskTracker that will run the MapReduce job. This secret key is
the Job Token. The Job Token will be stored in the local disk of TaskTracker with
permission only for the user who submitted the job. TaskTracker starts the child JVM
task (mapper or reducer) using the user ID that submitted the job. Thus, the child JVM
run will be able to access the Job Token from the local directory and communicate
securely with TaskTracker using this Job Token. Thus, the Job Token is used to ensure
that an authenticated user submitting the job in Hadoop has access to only the folders
and jobs for which he is authorized in the local filesystem of TaskNodes.

Chapter 2

[21]

Once the Reduce jobs are started in TaskTracker, this TaskTracker contacts
TaskTracker that ran the Map task and fetches the mapper output files. The Job
Token is also used by TaskTrackers to securely communicate with each other.

Block Access Token
Any Hadoop client requesting for data from HDFS needs to fetch the data blocks
directly from DataNode after it fetches the block ID from NameNode. There should
be a secured mechanism where the user privileges are securely passed to DataNode.
The main purpose of the Block Access Token is to ensure that only authorized users
are able to access the data blocks stored in DataNodes. When a client wants to access
the data stored in HDFS, it requests NameNode to provide the block IDs for the files.
NameNode verifies the requested user's permissions for the file and provides the list
of block IDs and DataNode locations. The client then contacts DataNode to fetch the
required data block. To ensure that the authentication performed by NameNode is
also enforced at DataNode, Hadoop implements the BAT. BAT is the token provided
by NameNode to a Hadoop client to pass data access authentication information to
DataNode.

The Block Access Token implements a symmetric key encryption where both
NameNode and DataNode share a common secret key. DataNode receives this secret
key once it registers with NameNode and is regenerated periodically. Each of these
secret keys is identified by keyID.

BAT is lightweight and contains expirationDate, keyID, ownerID, blockID, and
accessModes. The access Mode defines the permission available to the user for the
requested block ID. The BAT generated by NameNode is not renewable and needs to
be fetched again once the token expires. BAT has a lifetime of 10 hours.

Thus, BAT ensures that the data blocks in DataNode are secured, and only
authorized users can access the data blocks.

Hadoop Security Design

[22]

The following figure shows the various interactions in a secured Hadoop cluster:

Client
(user)

Child JVM
(Map or Reduce)KDC

NameNode
(NN)

JobTracker
(JT)

DataNode
(DN)

TaskTracker
(TT)

Request read/write for file

Authenticate (HDFS)

Provide data for BlockID =+ Block Access Token

Request BlockID with Block Access Token

Submit map reduce Code + Configurations + Delegation Token

Request Block Access Token

Authenticate (MapRed)

Authenticate (HDFS)

Register DN

Exchange Secret key between NN and DN

Authenticate (MapRed)

Register TT

Data Read Flow from HDFS

MapReduceExecutionFlow

Create Job Token and
Block Access Token
and store in HDFS

Submit task for execution Store Job Token
and store in used directory

Start child JVM user id

Initial Authentication Flows

6

7

1

2

3

4

5

9

1

2

8

2

1

1

1
1

10

11

12
13

14

15

Authenticate (user)

Request TGT

Request NN
Service Ticket

Request JT Service
Ticket

Request NN
Delegation Token
with JT as renewal

Provid data for BlockID

Interactions in a secured Hadoop cluster

The key steps in the overall Hadoop Kerberos operations are:

• All Hadoop services authenticate themselves with KDC. DataNode registers
with NameNode. Similarly, TaskTracker registers itself with JobTracker.
NodeManagers register themselves with ResourceManager.

• A client authenticates with KDC. A client requests service tickets for
NameNode and JobTracker/ResourceManager.

• For any HDFS file access, a client contacts the NameNode server and requests
the file. NameNode authenticates the client and provides the authorization
details to the client along with the Block Access Token (BAT). The BAT is a
user required by DataNode to validate the authorization of the client and
provide access to corresponding blocks.

• For a MapReduce job submission in the Hadoop cluster, the client requests
for a Delegation Token from JobTracker. This Delegation Token is used for
submitting a MapReduce job to the cluster. The Delegation Token is renewed
by JobTracker for long-running jobs.

Chapter 2

[23]

Summary
In this chapter, we looked at the Kerberos authentication protocol and understood
the key concepts involved in implementing Kerberos. We understood the default
security implementation in Hadoop and how a Hadoop process gets the logged in
user and group details. The default security implementation has many gaps and can't
be used in production.

In a production scenario, securing Hadoop with Kerberos is essential. So we looked
at the requirements that Hadoop supports at the user and Hadoop service level to
secure the Hadoop cluster. We looked at the various internal secret keys (Delegation
Token, Block Access Token, and Job Token) that are exchanged by the various
Hadoop processes to ensure a secured ecosystem. Understanding the need and
use of these tokens is vital to debug and troubleshoot any configuration issues in a
secured Hadoop cluster. In the next chapter we will detail the procedure for securing
a Hadoop cluster.

Setting Up a Secured
Hadoop Cluster

In Chapter 2, Hadoop Security Design, we looked at the internals of Hadoop security
design and enabled ourselves to set up a secured Hadoop cluster. In this chapter, we
will look at how to set up a Kerberos authentication and then get into the details of
how to set up and configure a secure Hadoop cluster.

To set up a secured Hadoop cluster, we need to set up Kerberos authentication on
the nodes. Kerberos authentication requires reverse DNS lookup to work on all
the nodes as it uses the hostname to resolve the principal name. Once Kerberos
is installed and configured, we set up the Hadoop service principals and all user
principals. After that, we update the Hadoop configurations to enable Kerberos
authentication on all nodes and start the Hadoop cluster.

These are the topics we'll be covering in this chapter:

• Prerequisites for setting up a secure Hadoop cluster
• Setting up Kerberos
• Configuring Hadoop with Kerberos authentication
• Configuring Hadoop users in a multirealm setup

Prerequisites
The following are the prerequisites for installing a secure Hadoop cluster:

• Root or sudo access for the user installing the cluster.
• Hadoop cluster is configured and running in a non-secured mode.
• Proper file permissions are assigned to local and Hadoop system directories.

Setting Up a Secured Hadoop Cluster

[26]

• Incase, we are building Kerberos from the source code, we will need
the GCC compiler to compile the Kerberos source code. On RHEL/CentOS,
run the yum groupinstall 'Development Tools' command to install
all the dependencies.

• DNS resolutions and host mappings are working for all machines in the
cluster. Kerberos doesn't work with IP. Reverse DNS lookup on all nodes
should be working and returning the fully qualified hostname.

• The ports required for Kerberos are port 88 for KDC and port 749 for admin
services. Since all nodes will have to connect with KDC for authentication, port
88 should be open for all nodes in the cluster running the Hadoop daemons.

• The name of the Kerberos realm that will be used for authenticating the
Hadoop cluster.

Setting up Kerberos
The first step in the process to establish a secure Hadoop cluster is to set up the
Kerberos authentication and ensure that the Kerberos authentication for the Hadoop
service principals are working for all the nodes on the cluster. To set up Kerberos, we
establish a Kerberos Server (KDC) on a separate node and install the Kerberos client
on all nodes of the Hadoop cluster as shown in the following figure:

KDC
(Kerberos
Server) Slave Nodes

Kerberos
Client

Hadoop Cluster

Master Nodes
Kerberos

Client Master Nodes
Kerberos

Client

The following figure illustrates the high-level steps involved in installing and
configuring Kerberos. It also shows the various Kerberos utilities that
are available.

Chapter 3

[27]

Kerberos Installation Steps

Install Kerberos

Set up Kerberos
configurations

Create Kerberos
Database

Configure
Kerberos Admin

User

Start Kerberos
daemons

Add User and
Service Principal

1

2

3

4

5

6

Utility for changing the users
password

Maintenance utility for Kerberos
database. Used for creating Realm
etc.
Admin utility for Kerberos which
internally uses kadmind. Used for
remote administration
Admin utility that access the
Kerberos database directly

Kerberos admin server daemon
Kerberos client to authenticate with
Kerberos and retrieve the TGT

Utility to view the Kerberos tickets

Description
Kerberos Utilities

kdb5_util

kadmin

kadmin.local

kadmind

kinit

kpasswd

klist

We will use the following realm and domain for the rest of this chapter:

Domain name: mydomain.com

Realm name: MYREALM.COM

Installing the Key Distribution Center
To set up Kerberos, we need to install the Key Distribution Center (KDC) on a
secured server.

On RHEL/CentOS/Fedora, to install Kerberos, run the following command with
root privileges:

yum install krb5-server krb5-libs krb5-workstation

Setting Up a Secured Hadoop Cluster

[28]

Detailed instructions for Kerberos setup is available at the following site:

http://www.linuxproblems.org/wiki/Set_up_kerberos_on_Centos_6

For Ubuntu distribution, the apt-get command to install Kerberos is as follows:

sudo apt-get install krb5-kdc krb5-admin-server

Detailed instructions to install Kerberos in Ubuntu OS is available at the
following site:

https://help.ubuntu.com/community/Kerberos

There are multiple distributions of the KDC implementations available, and each
distribution caters to a specific version and distribution of Linux. If Kerberos needs
to be installed from the source, download the latest Kerberos distribution from the
MIT website and build the executable using the following procedure:

1. Download Kerberos from http://web.mit.edu/kerberos/dist/ using the
following command:
wget http://web.mit.edu/kerberos/dist/krb5/1.10/krb5-1.10.6-
signed.tar

2. Unpack the source code and the crypto TAR file to the installation directory
using the following command:
tar –xvf <downloaded release>

3. Untar the krb5-1.11.3.tar.gz file using the following command:
tar –xvf krb5-1.11.3.tar.gz

4. Go to the src directory, configure and compile the source code, and build the
executable using the following commands:
cd <installation directory>/src

./configure

5. After the configuration step, we proceed to make the executable using the
following command:
make

More detailed build configurations and instructions are
available at the following URL:

http://web.mit.edu/kerberos/krb5-latest/
doc/admin/install_kdc.html#install-and-
configure-the-master-kdc

Chapter 3

[29]

After the KDC installation is completed successfully, the next step is to ensure that
the configurations for the KDC are set properly. KDC can be installed as master and
slave for fault tolerance. In this setup, we will configure only the master KDC.

Configuring the Key Distribution Center
We will look at Version 5 of MIT Kerberos. This has three configuration files.
The krb5.conf file is kept inside /etc/ folder. The kdc.conf and kadm5.
acl files are placed inside the /usr/local/var/krb5kdc folder. All of these
configuration files follow the Windows INI file format.

krb5.conf is a higher-level configuration and provides the configuration related
to the location of KDCs, admin servers, and mappings of hostnames with Kerberos
realms. Most of the configurations work with the default values for the current realm
and Kerberos application.

The example configuration for the krb5.conf file are provided as follows:

[logging]

 default = FILE:/var/log/krb5libs.log

 kdc = FILE:/var/log/krb5kdc.log

 admin_server = FILE:/var/log/kadmind.log

[kdc]

 profile = /usr/local/var/krb5kdc/kdc.conf

[libdefaults]

 default_realm = MYREALM.COM

 dns_lookup_realm = false

 dns_lookup_kdc = false

 ticket_lifetime = 24h

 renew_lifetime = 7d

 forwardable = true

[realms]

 MYREALM.COM = {

 kdc = KerberosServerHostname

 admin_server = KerberosServerHostname

 }

[domain_realm]

 .mydomain.com = MYREALM.COM

 mydomain.com = MYREALM.COM

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Secured Hadoop Cluster

[30]

The following table provides the various sections inside the kdc5.conf file:

Sr no Property Description
1 libdefaults This section contains the default values used by the

Kerberos v5 library.
2 loginproperty" This section contains the default values used by the

Kerberos v5 login program.
3 appdefaults This section contains the default values that can be used

by Kerberos v5 applications.
4 realms This section contains subsections for each of the

Kerberos realm. Each subsection describes realm-specific
information, including where to find the Kerberos
servers for that realm.

5 domain_realm This section contains the relations that map domain
names and subdomains with Kerberos realm names.
This is used by programs to determine which
realm a host should be in, given its fully qualified
domain name.

6 logging This section describes the logging method used by the
various Kerberos programs.

7 capaths This section defines the authentication paths used
for cross-realm authentication. This also contains the
intermediate realms that are used in a cross-realm
authentication.

Some of the Hadoop ecosystem components (Oozie, HUE, and so on) need to renew
the Kerberos ticket. So we need to configure KDC to allow renewable tickets. To do
this,we add the renew_lifetime parameter to the libdefaults section of
krb5.conf.

The kdc.conf file contains KDC configuration information related to Kerberos
tickets, realm-specific configurations, KDC database, and logging details.

To support renewable tickets, we add the max_renewable_life setting to your
realm in kdc.conf. The key configuration that needs to be set in the kdc.conf file
is as follows:

kdcdefaults]

 kdc_ports = 88

[realms]

 MYDOMAIN.COM = {

 profile = /etc/krb5.conf

Chapter 3

[31]

 supported_enctypes = aes128-cts:normal des3-hmac-sha1:normal arcfour-
hmac:normal des-hmac-sha1:normal des-cbc-md5:normal des-cbc-crc:normal
des-cbc-crc:v4 des-cbc-crc:afs3

 allow-null-ticket-addresses = true

 database_name = /usr/local/var/krb5kdc/principal

 acl_file = /usr/local/var/krb5kdc/kadm5.acl

 admin_database_lockfile = /usr/local/var/krb5kd/kadm5_adb.lock

 admin_keytab = FILE:/usr/local/var/krb5kdc/kadm5.keytab

 key_stash_file = /usr/local/var/krb5kdc/.k5stash

 kdc_ports = 88

 kadmind_port = 749

 max_life = 2d 0h 0m 0s

 max_renewable_life = 7d 0h 0m 0s

}

The following table shows details of the sections that are found in the kdc.conf file:

Sr no Property Description
1 kdcdefaults This section contains the default values used for authentication
2 realms This section contains a separate subsections for every Kerberos

realm
3 dbdefaults This section contains the default database configurations used

by KDC for storing the principals
4 dbmodules This section contains the details for each of the database

modules based on the type of database supported
5 logging This section provides the logging configurations for every

Kerberos daemon

Establishing the KDC database
KDC stores the credentials for each of the users in the KDC database. The database
can be a file or an LDAP store. To configure a file-based KDC database, we run the
following commands using the realm name:

kdb5_util create -r MYREALM.COM -s

This command will create five files in the /usr/local/var/krb5kdc folder:

• The Kerberos database files: principal and principal.ok
• The Kerberos administrative database file: principal.kadm5
• The administrative database lock file: principal.kadm5.lock
• The stash file: .k5.MYREALM.COM.COM

Setting Up a Secured Hadoop Cluster

[32]

The stash file is a local copy of the encrypted master key that resides on the KDC's
local disk. The stash file is used to automatically authenticate the KDC itself before
starting the Kerberos daemons.

Setting up the administrator principal for KDC
Once the KDC database is created, the administrator principal should be configured
in the database. To do this, first add the administrator principal in the /var/
Kerberos/krb5kdc/kadm.acl file that contains the access control list (ACL) that
is used by the kadmind daemon to manage the Kerberos database access.

A typical kadm.acl file that provides all administrators with full privilege will have
the following entry:

*/admin@MYREALM.COM

The ACL file follows the following format:

principal permissions [target_principal [restrictions]]

The first field in this file is the principal whose permission is set. The permissions
specifies what access is granted to the principal. The permissions follow a convention
where the uppercase letters deny permission, while the lowercase letters grant the
user the requested permissions. Target principal and restrictions are optional fields.

More details on the various permissions that can be
configured can be found at:

http://web.mit.edu/kerberos/krb5-latest/
doc/admin/conf_files/kadm5_acl.html

Starting the Kerberos daemons
Once the configurations are set properly, we are ready to start the Kerberos daemons.

If Kerberos is installed through yum or apt-get, the kadmin and KDC server daemon
can be started using the following command:

service kadmin start

/sbin/service krb5kdc start

Krb5kdc is the KDC server, while the kadmin daemon enables administrators to
connect from remote machines and perform Kerberos (KDC) administration using
the kadmin client.

Chapter 3

[33]

If Kerberos is installed from the source code, then we use the krb5kdc and kadmind
commands to start these daemons in the background, and use logfiles to verify that
these daemons have started properly.

Setting up the first Kerberos administrator
Next, we configure the principal password in the KDC database using the kadmin.
local command on the master KDC server. Run the following command to set up the
administrator principal and provide the password for the administrator principal.

kadmin.local -p admin/admin

The kinit command is used to authenticate the user with KDC. We can verify the
administrator authentication using kinit to ensure that KDC is able to authenticate
the users.

kinit admin@MYREALM.COM

Adding the user or service principals
After the admin user setup is completed and the Kerberos daemons have started,
then we can add the principals to the Kerberos database using the kadmin utility.

add_principal –randkey user/mydomain.com@MYREALM.COM

Configuring LDAP as the Kerberos database
Next we can add the principals to the Kerberos database using the kadmin utility.

add_principal –randkey user/mydomain.com@MYREALM.COM

Supporting AES-256 encryption for a
Kerberos ticket
For some of the operating systems such as CentOS/Red Hat Enterprise Linux 5.6
or later, or Ubuntu with AES-256 encryption, we need to install Java Cryptography
Extension (JCE) Unlimited Strength Jurisdiction Policy File on all clusters and
Hadoop user machines.

More details on JCE can be found at the following link:

https://www.owasp.org/index.php/Using_
the_Java_Cryptographic_Extensions

Setting Up a Secured Hadoop Cluster

[34]

Configuring Hadoop with Kerberos
authentication
Once the Kerberos setup is completed and the user principals are added to KDC,
we can configure Hadoop to use Kerberos authentication. It is assumed that a
Hadoop cluster in a non-secured mode is configured and available. We will begin
the configuration using Cloudera Distribution of Hadoop (CDH4).

The steps involved in configuring Kerberos authentication for Hadoop are shown in
the following figure:

Configuring Hadoop with Kerberos

Create HDFS,
MapRed, and YARN

principals

Create HDFS,
MapRed, and YARN

keytabs

Copy the keytabs
to all slaves

Set up proper
permissions for

keytabs file

Update Hadoop
configurations

Configure secured
DataNode and

TaskTracker

1

2

3

4

5

6

Setting up the Kerberos client on all the
Hadoop nodes
In each of the Hadoop node (master node and slave node), we need to install the
Kerberos client. This is done by installing the client packages and libraries on the
Hadoop nodes.

Chapter 3

[35]

For RHEL/CentOS/Fedora, we will use the following command:

yum install krb5-libs krb5-workstation

For Ubuntu, we will use the following command:

apt-get install krb5-user

Setting up Hadoop service principals
In CDH4, there are three users (hdfs, mapred, and yarn) that are used to run the
various Hadoop daemons. All the Hadoop Distributed File System (HDFS)-related
daemons such as NameNode, DataNode, and Secondary NameNode are run under
the hdfs user, while for MRV1, the MapReduce-related daemons such as JobTracker
and TaskTracker run using the mapred user. For MRV2, the yarn user runs
ResourceManager and NodeManager, while the mapred user runs the JobHistory
server and the MapReduce application.

We need to create the hdfs, mapred, and yarn principals in KDC to ensure Kerberos
authentication for the Hadoop daemons. We have http services exposed by all these
services, so we need to create a http service principal as well. We use the following
kadmin commands to create these principals:

kadmin

kadmin: addprinc –randkey hdfs/mydomain.com@MYREALM.COM

kadmin: addprinc –randkey mapred/mydomain.com@MYREALM.COM

kadmin: addprinc –randkey http/mydomain.com@MYREALM.COM

kadmin: addprinc –randkey yarn/mydomain.com@MYREALM.COM

As a part of the Hadoop cluster setup, all the HDFS-related directories that are
exclusively used by the hdfs daemons such as the NameNode directory, the
DataNode directory, and log directories, should have the permissions with hdfs
as user and group. Also, all folders inside Hadoop and in the local filesystem used
by the MapReduce daemons exclusively such as the MapReduce local directory;
log directories should have mapred as user and group. All directories that are used
between hdfs and mapred daemons should have Hadoop as the user group.

Creating a keytab file for the Hadoop services
A keytab is a file containing pairs of Kerberos principals and encrypted keys derived
from the Kerberos password. This file is used for headless authentication with KDC
when the services run in the background without human intervention. The keytab
file is created using the kadmin commands.

Setting Up a Secured Hadoop Cluster

[36]

The hdfs and mapred users run multiple Hadoop daemons in background, so we
need to create the keytab file for the hdfs and mapred users. We also need to add
the http principal to these keytabs, so that the Web UI associated with Hadoop are
authenticated using Kerberos.

kadmin: xst -norandkey -k hdfs.keytab hdfs/mydomain.com@MYREALM.COM http/
mydomain.com@MYREALM.COM

kadmin: xst -norandkey -k mapred.keytab hdfs/mydomain.com@MYREALM.COM
http/mydomain.com@MYREALM.COM

kadmin: xst -norandkey -k yarn.keytab hdfs/mydomain.com@MYREALM.COM http/
mydomain.com@MYREALM.COM

Distributing the keytab file for all the slaves
Once the keytab file is created, it has to move to the /etc/hadoop/conf folder.
The keytab file has to be secured so that only the owner of keytab can see this file.
For this, the hdfs and mapred owner of the keytab file is changed, and the file
permission is changed to 400. The service principals for hdfs, mapred, and http has
a fully qualified domain name associated with the username. The service principal is
host-specific and is unique for each of the nodes in the cluster.

Move the keytab file to the conf folder and secure it

$sudo mv hdfs.keytab mapred.keytab /etc/hadoop/conf/

$sudo chown hdfs:hadoop /etc/hadoop/conf/hdfs.keytab

$sudo chown mapred:hadoop /etc/hadoop/conf/mapred.keytab

$sudo chmod 400 /etc/hadoop/conf/hdfs.keytab

$sudo chmod 400 /etc/hadoop/conf/mapred.keytab

The keytab file should be created specific to each node in the cluster. Distributing
and managing the keytab file in a large cluster is time consuming and error prone.
So it is better to use deployment tools and automate this deployment.

Setting up Hadoop configuration files
Next, we update the Hadoop configuration files to enable Kerberos authentication.
Before updating the Hadoop configuration file, we should shutdown the cluster.

Chapter 3

[37]

HDFS-related configurations
The following properties should be updated in the core-site.xml file in the /etc/
hadoop/conf folder. These properties enable Kerberos authentication and user
authorization within the Hadoop cluster.

Property name Value Description
hadoop.security.authentication kerberos This enables Kerberos

authentication for Hadoop
hadoop.security.authorization true This enables authorization

in Hadoop to check for file
permissions

The hdfs-site.xml file should specify the keytab file's location, which will be used
by the various Hadoop daemons accessing HDFS. The Block Access Token (described
in Chapter 2, Hadoop Security Design) has to be enabled for HDFS. The configuration
should also specify the principal names to be used by the various daemons. Both
http and hdfs principals should be mentioned for each of the daemons (NameNode,
DataNode, and Secondary NameNode). Each hdfs and http principal will be specific
to a particular node, and the principal name follows the ensuing convention:

Name/fullyqualified.domain.name@REALM.COM

In a Hadoop cluster, there will be thousands of DataNode and it will be impossible
to configure the principal manually for each DataNode. So Hadoop provides a _HOST
variable which gets resolved to the fully-qualified domain name at runtime. This
also mandates that the reverse DNS is working properly on all the hosts that are
configured this way.

The following properties should be updated in the hdfs-site.xml file:

Property name Value Description
dfs.block.access.token.
enable

true This enable security for
block access from DataNode

dfs.namenode.keytab.file /etc/hadoop/conf/
hdfs.keytab

This is the location of the
keytab file for the hdfs
user

dfs.namenode.kerberos.
principal

hdfs/_HOST@
MYREALM.COM

This is the hdfs principal
which will be used to start
NameNode

dfs.namenode.kerberos.
internal.spnego.
principal

HTTP/_HOST@
MYREALM.COM

This is the http principal
for the http service

Setting Up a Secured Hadoop Cluster

[38]

Property name Value Description
dfs.secondary.namenode.
keytab.file

/etc/hadoop/conf/
hdfs.keytab

This is the location of the
keytab file for the hdfs
user

dfs.secondary.namenode.
kerberos.principal

hdfs/_HOST@
MYREALM.COM

This is the hdfs principal
which will be used to start
Secondary NameNode

dfs.secondary.namenode.
kerberos.internal.
spnego.principal

HTTP/_HOST@
MYREALM.COM

This is the http principal
for the http service

dfs.datanode.data.dir.
perm

700 This is the DataNode
directory which should be
protected

dfs.datanode.address 0.0.0.0:1004 This DataNode RPC port
should be less than 1024

dfs.datanode.http.
address

0.0.0.0:1006 This is the DataNode HTTP
port which should be less
than 1024

dfs.datanode.keytab.file /etc/hadoop/conf/
hdfs.keytab

This is the location of the
keytab file for the hdfs
user

dfs.datanode.kerberos.
principal

hdfs/_HOST@
MYREALM.COM

This is the http principal
for the http service

MRV1-related configurations
For MRV1, the mapred-site.xml file should be configured for securing Hadoop.

The mapred-site.xml file should specify the keytab file's location, which will
be used by the JobTracker and TaskTracker daemons. The configurations should
also specify the principal names to be used by the various daemons. Each mapred
principal will be specific to a particular node. Any user running the MapReduce task
also should be configured in each of the nodes on the cluster.

Property name Value Description
mapreduce.jobtracker.
kerberos.principal

mapred/_HOST@ MYREALM.
COM

This is the mapred
principal which will be
used to start JobTracker

mapreduce.jobtracker.
keytab.file

/etc/hadoop/conf/
mapred.keytab

This is the location of
the keytab file for the
mapred user

Chapter 3

[39]

Property name Value Description
mapreduce.
tasktracker.kerberos.
principal

mapred/_HOST@ MYREALM.
COM

This is the mapred
principal which will be
used to start TaskTracker

mapreduce.
tasktracker.keytab.
file

/etc/hadoop/conf/
mapred.keytab

This is the location of
the keytab file for the
mapred user

mapred.task.tracker.
task-controller

org.apache.
hadoop.mapred.
LinuxTaskController

This is the
TaskController class to
be used for launching the
child JVM

mapreduce.
tasktracker.group

mapred This is the group that runs
TaskTracker

MRV2-related configurations
For MRV2, the yarn-site.xml file should be configured for specifying the location
of the keytab file of the yarn user for ResourceManager and NodeManager.

Property name Value Description
yarn.resourcemanager.
keytab

/etc/hadoop/conf/yarn.
keytab

This is the location of the
keytab file for the yarn
user

yarn.resourcemanager.
principal

yarn/_HOST@MYREALM.COM This is the yarn principal
name

yarn.nodemanager.
keytab

/etc/hadoop/conf/yarn.
keytab

This is the location of the
keytab file for the yarn
user

yarn.nodemanager.
principal

yarn/_HOST@MYREALM.COM This is the yarn principal
name

yarn.nodemanager.
container-executor.
class

org.apache.hadoop.
yarn.server.
nodemanager.
LinuxContainerExecutor

This is the executor
class that is launching the
applications in yarn

yarn.nodemanager.
linux-container-
executor.group

yarn This is the group that is
executing Linux containers

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Secured Hadoop Cluster

[40]

The mapred-site.xml file should be configured with the keytab file location of
the job history server. This configuration file should be present in all nodes of the
cluster. Each user running the yarn jobs should be configured in each of the nodes
on the cluster.

Property name Value Description
mapreduce.
jobhistory.keytab

/etc/hadoop/conf/
mapred.keytab

This is the location of
the keytab file for the
mapred user

mapreduce.
jobhistory.principal

mapred/_HOST@MYREALM.
COM

This is the mapred user
principal that is used for
the JobHistory server

Setting up secured DataNode
Once the Hadoop configuration files are updated, we move to DataNode and ensure
it is secured. To do this, we need to start DataNode in a secure mode. Jsvc is a set of
libraries and applications for making Java applications run on Unix more easily. Jsvc
allows the application (for example, Tomcat) to perform some privileged operations
as root and then switch to a non-privileged user. This program helps DataNode
to bind on ports less than 1024 and then run with the hdfs user. The following
configurations should be set in each of DataNodes in the /etc/default/hadoop-
hdfs-datanode folder so that DataNode can run in
a secure mode:

export HADOOP_SECURE_DN_USER=hdfs

export HADOOP_SECURE_DN_PID_DIR=/var/lib/hadoop-hdfs

export HADOOP_SECURE_DN_LOG_DIR=/var/log/hadoop-hdfs

export JSVC_HOME=/usr/lib/bigtop-utils/ or /usr/libexec/bigtop-utils

(based on the OS the corresponding variable has to be set)

Setting up the TaskController class
For MRV1, the TaskController class in the Hadoop framework defines how users
map and reduce tasks are launched and controlled. For a secured Hadoop cluster,
we need to ensure that the user who launched the MapReduce program is running
TaskNode. So we need all the users who run the MapReduce program to be defined
on all the task nodes. The TaskController class uses a setuid executable that is
included in the Hadoop distribution to launch and kill tasks on the user's behalf. The
TaskController class has a configuration file called task-controller.cfg. This
configuration file is present in the Hadoop configuration folder and uses the key-value
pair format. This configuration file should have the following configurations:

Chapter 3

[41]

Property name Value Description
hadoop.log.dir /var/log/

hadoop-
0.20-
mapreduce

Log directory should match the Hadoop
log directory. This location is used to
give the proper permissions to the user
task for writing to this logfile.

mapreduce.
tasktracker.group

mapred Group that the task tracker belongs to.

banned.users mapred, hdfs,
and bin

Users who should be prevented from
running MapReduce.

min.user.id 1000 User ID above which will be allowed to
run MapReduce.

Once all the configurations are completed, we need to propagate the configuration
files to all the slave nodes in the Hadoop cluster.

For MRV2, similar to task-controller.cfg, we need to define container-
executor.cfg with the following configurations:

Property name Value Description
yarn.nodemanager.
linux-container-
executor.group

yarn This is the group that the container
belongs to.

yarn.nodemanager.log-
dirs

/var/log/
yarn

This log directory should match to the
Hadoop log directory. This location is
used to give the proper permissions to the
user task for writing in this logfile.

banned.users hdfs, yarn,
mapred, and
bin

These are the users who should be
prevented from running MapReduce.

min.user.id 1000 This is the user ID value above which will
be allowed to run MapReduce.

Setting Up a Secured Hadoop Cluster

[42]

We can then start all the Hadoop daemons using the following commands:

sudo service hadoop-hdfs-namenode start

sudo service hadoop-hdfs-datanode start

sudo service hadoop-hdfs-secondarynamenode start

For MRV1:

sudo service hadoop-0.20-mapreduce-jobtracker start

For MRV2:

sudo service hadoop-yarn-resourcemanager start

sudo service hadoop-yarn-nodemanager start

sudo service hadoop-mapreduce-historyserver start

After the startup, verify the output looking at the logfile of the various daemons to
ensure that the security.UserGroupInformation entry within the logfile shows the
authentication performed for the Kerberos principal, for example:

INFO security.UserGroupInformation:

Login successful for user hdfs/mydomain.com@MYREALM.COM using keytab file
/etc/hadoop/conf/hdfs.keytab

Configuring users for Hadoop
All users required to run MapReduce jobs on the cluster need to be set up all the
nodes in the cluster. In a large cluster, setting up these users will be very time
consuming. So the best practice is to integrate the existing enterprise users in Active
Directory or LDAP using cross-realm authentication in Kerberos.

Users are centrally managed in Active Directory or LDAP, and we set up a one-way
cross-realm trust between Active Directory/LDAP and KDC on the cluster. Thus, the
Hadoop service principal doesn't have to be set up in Active Directory/LDAP, and
they authenticate locally on the cluster with KDC. This also ensures that the cluster
load is isolated from the rest of the enterprise. We look at how to integrate Hadoop
security with Enterprise Security Systems in subsequent chapters.

Chapter 3

[43]

Automation of a secured Hadoop
deployment
In a production environment, there are hundreds (sometimes even thousands) of
nodes in a Hadoop cluster. Managing and configuring such a large cluster is not
done manually as it is laborious and error prone. Traditionally, enterprises used
Chef/Puppet or a similar solution for cluster configuration management and
deployment, In this approach, organizations had to continuously update their chef
recipes based on the changes in Apache Hadoop releases. Instead, organizations
typically deploy Hadoop cluster deployment automation based on the Hadoop
distribution they work with. For example, in a Cloudera-based Hadoop distribution,
organizations leverages Cloudera Manager to provide cluster deployment.
automation, and management capability. For Hortonworks-based distributions,
organizations prefer Ambari. Similarly, Intel distribution has Intel Manager for
Apache Hadoop. Each of these deployment managers support secured Hadoop
deployment. The approach and details to configure the security remains the same;
however, these tools provide the automation required for seamless deployment of
the secured Hadoop cluster.

Summary
In this chapter, we looked at the steps to set up the Kerberos authentication
protocol and how to add the required principals to the KDC. We then looked at
the overall process of configuring the Hadoop security with Kerberos. The Hadoop
configurations have to be replicated in all the nodes of the cluster. All users running
MapReduce need to set up on all nodes of the cluster. Setting up users across the
entire cluster nodes can be challenging and setting up an Active Directory- or LDAP-
based authentication mechanism avoids the problem of manually creating the users
in each of the cluster nodes.

In the next chapter, we will look at how we can configure Kerberos security for the
rest of the Hadoop ecosystem such as Hive, WebHDFS, Oozie, and Flume.

Securing the
Hadoop Ecosystem

In Chapter 3, Setting Up a Secured Hadoop Cluster, we looked at how to set up Kerberos
authentication for HDFS and MapReduce components within a secured Hadoop
cluster. But in our secured Big Data journey, this is only half done. The Hadoop
ecosystem consists of various components such as Hive, Oozie, and HBase. We
need to secure all the other Hadoop ecosystem components. In this chapter, we will
look at the each of the ecosystem components and the various security challenges
for each of these components, and how to set up secured authentication and user
authorization for each of them.

Each ecosystem component has its own security challenges and needs to be
configured uniquely based on its architecture to secure them. Each of these
ecosystem components has end users directly accessing the component or a
backend service accessing the Hadoop core components (HDFS and MapReduce).

The following are the topics that we'll be covering in this chapter:

• Configuring authentication and authorization for the following Hadoop
ecosystem components:

 ° Hive
 ° Oozie
 ° Flume
 ° HBase
 ° Sqoop
 ° Pig

• Best practices in configuring secured Hadoop components

Securing the Hadoop Ecosystem

[46]

Configuring Kerberos for Hadoop
ecosystem components
The Hadoop ecosystem is growing continuously and maturing with increasing
enterprise adoption. In this section, we look at some of the most important Hadoop
ecosystem components, their architecture, and how they can be secured.

Securing Hive
Hive provides the ability to run SQL queries over the data stored in the HDFS.
Hive provides the Hive query engine that converts Hive queries provided by the
user to a pipeline of MapReduce jobs that are submitted to Hadoop (JobTracker or
ResourceManager) for execution. The results of the MapReduce executions are then
presented back to the user or stored in HDFS. The following figure shows a high-level
interaction of a business user working with Hive to run Hive queries on Hadoop:

Need user authenticationNeed user authentication

JDBC/ODBC
Apps

Hadoop Cluster

DataNode
TaskTracker

NameNodeJobTracker

Runs map-reduce by
impersonating Business user

JDBC/ODBC
Apps

Hive CLI

Hive Server

Hive Query
Engine Meta-Store

MetaStore
Server

Hive 21

3

4

ThriftThrift

Need user authentication

Business
User

There are multiple ways a Hadoop user can interact with Hive and run Hive queries;
these are as follows:

• The user can directly run the Hive queries using Command Line Interface
(CLI). The CLI connects to the Hive metastore using the metastore server and
invokes Hive query engine directly to execute Hive query on the cluster.

Chapter 4

[47]

• Custom applications written in Java and other languages interacts with Hive
using the HiveServer. HiveServer, internally, uses the metastore server and
the Hive Query Engine to execute the Hive query on the cluster.

To secure Hive in the Hadoop ecosystem, the following interactions should
be secured:

• User interaction with Hive CLI or HiveServer
• User roles and privileges needs to be enforced to ensure users have access to

only authorized data
• The interaction between Hive and Hadoop (JobTracker or ResourceManager)

has to be secured and the user roles and privileges should be propagated to
Hadoop jobs

To ensure secure Hive user interaction, there is a need to ensure that the user is
authenticated by HiveServer or CLI before running any jobs on the cluster. The user
has to first use the kinit command to fetch the Kerberos ticket. This ticket is stored
in the credential cache and used to authenticate with Kerberos-enabled systems.

Once the user is authenticated, Hive submits the job to Hadoop (JobTracker or
ResourceManager). Hive needs to impersonate the user to execute MapReduce on
the cluster. From Hive Version 0.11 onwards, HiveServer2 was introduced. The
earlier HiveServer had serious security limitations related to user authentication.

HiveServer2 supports Kerberos and LDAP authentication for the user authentication.

When HiveServer2 is configured to have LDAP authentication, Hive users are
managed using the LDAP store. Hive asks the users to submit the MapReduce
jobs to Hadoop. Thus, if we configure HiveServer2 to use LDAP, only the user
authentication between the client and HiveServer2 is addressed. The interaction of
Hive with Hadoop is insecure, and Hive MapReduce will be able to access other
users' data in the Hadoop cluster.

On the other hand, when we use Kerberos authentication for Hive users with
HiveServer2, the same user is impersonated to execute MapReduce on the Hadoop
cluster. So it is recommended that in a production environment, we configure
HiveServer2 with Kerberos to have a seamless authentication and access control for
the users submitting Hive queries. The credential store for Kerberos KDC can be
configured to be LDAP so that we can centrally manage the user credentials of the
end users.

Securing the Hadoop Ecosystem

[48]

To set up a secured Hive interactions, we need to do the following steps:

To prevent Hive metastore from unauthorized access

Create Hive keytab
file

1

2

3

Set up proper
permissions for

keytab file

Update Hive and
Hadoop

configurations

Secure the
metastore

4

5

6

Securing Hive

Create Hive principal
in KDC

Copy the Keytab to
HiveServer2 machine

�
� hive.server2.authentication (Value to Kerberos)
� hive.server2.authentication.kerberos.principal (Value name of

Kerberos Hive principal)
� hive.server2.authentication.kerberos.keytab (Value location of

keytab file)
� hive.server2.enable.impersonation (Value to true)

Add following Hive Configurations in hive-site.xmI

Add firewall rules such that only HiveServer2 can access the
metastore server. No users are allowed to directly access the
metastore server

One of the key steps in securing Hive interaction is to ensure that the Hive user is
impersonated in Hadoop, as Hive executes a MapReduce job on the Hadoop cluster.
To achieve this goal, we need to add the hive.server2.enable.impersonation
configuration in hive-site.xml, and hadoop.proxyuser.hive.hosts and hadoop.
proxyuser.hive.groups in core-site.xml.

<property>
<name>hive.server2.authentication</name>
<value>KERBEROS</value>
</property>
<property>
<name>hive.server2.authentication.kerberos.principal</name>
<value>hive/_HOST@YOUR-REALM.COM</value>
</property>
<property>

Chapter 4

[49]

<name>hive.server2.authentication.kerberos.keytab</name>
<value>/etc/hive/conf/hive.keytab</value>
</property>
<property>
<name>hive.server2.enable.impersonation</name>
<description>Enable user impersonation for
HiveServer2</description>
<value>true</value>
</property>

Securing Hive using Sentry
In the previous section, we saw how Hive authentication can be enforced using
Kerberos and the user privileges that are enforced by using user impersonation in
Hadoop by the superuser.

Sentry is the one of the latest entrant in the Hadoop ecosystem that provides fine-
grained user authorization for the data that is stored in Hive. Sentry provides fine-
grained, role-based authorization to Hive and Impala. Sentry uses HiveServer2 and
metastore server to execute the queries on the Hadoop platform. However, the user
impersonation is turned off in HiveServer2 when Sentry is used. Sentry enforces
user privileges on the Hadoop data using the Hive metastore. Sentry supports
authorization policies per database/schema. This could be leveraged to enforce user
management policies.

More details on Sentry are available at the following URL:

http://www.cloudera.com/content/cloudera/
en/products/cdh/sentry.html

Securing Oozie
Usually in a production system, there is a need to run a series of heterogeneous
tasks consisting of Pig, Hive, MapReduce, and so on in some predefined sequence.
To achieve this we use Oozie. Oozie is a workflow orchestrator and scheduler for
the Hadoop ecosystem. Oozie takes an input XML configuration file that contains
information about the sequence and dependency from the user, and executes a
workflow of jobs that may contain Hive, Pig, MapReduce, Java, or shell scripts.

www.allitebooks.com

http://www.allitebooks.org

Securing the Hadoop Ecosystem

[50]

The following figure shows the interaction of a user executing tasks on Oozie:

Oozie

Oozie App
Metastore

Tomcat

Hadoop Cluster

DataNode
TaskTracker

NameNodeJobTracker

Runs MapReduce, Hive, Pig, Java, HDFS
commands by impersonating Business user4Need user authentication

Need user authenticationWeb
Browser

Java Client

Oozie CLI

3

2

1

End User

End users access Oozie through Web Browser (Oozie web client) or Java Client
(custom Java code written to connect and submit jobs to Oozie) or Oozie CLI.
Each of these entry points needs to enforce user authentication and authorization.
Refer to 1, 2, 3 in the preceding figure.

Oozie executes the jobs on the Hadoop cluster on behalf of the end user. This needs
the Oozie user to impersonate the end user on the Hadoop cluster. This ensures that
the end user's access privileges are used by the jobs during the execution, and only
the folders authorized for the end user are allowed to be accessed. These jobs are
scheduled and they will execute the job task long after the user has submitted the job
to Oozie. This means Oozie should be able to renew any authentication ticket it has got
from the user when it submits the job to Hadoop. Refer to 4 in the preceding figure.

Oozie stores all the job information and status information in the Metastore. So it
needs to authenticate the Oozie user to the Metastore.

Chapter 4

[51]

To secure Oozie, we need to secure two different interactions. First we look at the
approach to authenticate end users while accessing Oozie securely. Next we look at
how the Oozie server is going to run jobs on a secured Hadoop cluster.

To ensure secure end users are accessing Oozie web applications, Oozie provides
user authentication to the Oozie web services. Oozie supports HTTPS (SSL)-base
encryption between Oozie server and browser.

Oozie also provides Kerberos HTTP Simple and Protected GSSAPI Negotiation
Mechanism (SPNEGO) authentication for web clients. SPNEGO protocol is used
when a client application wants to authenticate to a remote server, but is not sure
of the authentication protocols to use. For Oozie web clients, we need to set up
SPNEGO authentication on the user browser. In each browser, there is a unique
way to configure SPNEGO:

• For the IE browser, to turn on SPNEGO, we turn on Windows Integrated
Authentication and add the URL to the local intranet sites

• For Firefox, in the about:config page, configure network.negotiate-auth.
trusted-uris to the Oozie server hostname

• For Chrome browser, run the following command:

C:\Users\username\AppData\Local\Google\Chrome\Application\chrome.
exe --args --auth-server whitelist="*mydomain.com" --auto-ssl-
client-auth

Compared to SPNEGO, HTTPS (SSL)-based encryption can also be used to securely
communicate with browser client and server.

To set up Oozie on a secured Hadoop cluster, we add the Oozie principal in KDC
and use this Oozie user to start the Oozie application. Oozie user is configured
as a superuser in Hadoop. This allows an Oozie user to impersonate end users.
Hadoop limits the list of groups that will be allowed to be impersonated by the
Oozie superuser in core-site.xml. Also, we set the list of host machines through
which the Oozie superuser is going to connect to Hadoop and impersonate the end
user. Hadoop only authenticates the Oozie user, and it is the responsibility of Oozie
application to authenticate the end user and ensure that only authenticated users are
given access to submit the job to Hadoop.

Securing the Hadoop Ecosystem

[52]

We adopt the steps mentioned in the following figure to set up a secured Oozie in
the Hadoop cluster:

� oozie.authentication.type (set value to Kerberos)
� oozie.service.HadoopAccessorService.kerberos.enabled (set value

to true)
� local.realm (set value to name of KDC Realm used for

authentication)
� oozie.service.HadoopAccessorService.keytab.file (set value to

location of kevtab file)
� oozie.service.HadoopAccessorService.kerberos.principal (set

value as Oozie principal)
� oozie.authentication.kerberos.principal (set value as HTTP

principal)

Add following Kerberos Configurations in oozie-site.xmI

To prevent Oozie Metastore from unauthorized access
� Ensure Oozie metastore server is secured and no users are

allowed to directly login to this machine
� Remove all permissions from the Oozie metastore database for any

users other than Oozie
� Add farewall rules such that only Oozie webapp can access the

metastore. No users are allowed to directly access the metastore

Copy the keytab to it
Oozie sewer machine

Set up proper
permissions for

keytab file

Update Oozie-site.xml
and core-site.xml

configurations

4

5

6

7 Secure the Oozie
metastore

� hadoop.proxvuser.oozie.groups (set value to all user groups that
will be allowed to impersonated by Oozie user)

� hadoop.proxvuser.oozie.hosts (set value to all host that Oozie
super user will be allowed to connect while impersonating a user)

Add following configurations in core-site.xml

Create Oozie principal
in KDC

1

2

Securing Oozie

Set up Oozie as super
user in hadoop

Create Oozie keytab
file with Oozie and

HTTP principal

3

Securing Flume
Flume is a distributed, reliable, near real-time ingestion component in the Hadoop
ecosystem. We will narrow our focus to the latest version of Flume known as
Flume-ng. Flume has the concepts of Source, Channel, and Sink to ensure reliable
communication. All these are embedded in a single Flume Agent. Source collects the
events from the various source systems and pushes it to the channel. The channel is
usually implemented using file, RDBMS, or memory. Sink pushes data to the target
system. Channel removes the data once the sink is able to successfully deliver the
event to the target system. Thus, there are multiple handshakes as data is ingested
from multiple Source System through Flume.

Chapter 4

[53]

To establish a secured Flume interaction with Hadoop, we need to ensure that only
authentic Source System are able to ingest data through Flume. We also need to
establish the trust between the Flume Agent and Hadoop to ensure that Flume is
able to ingest the data into Hadoop on behalf of the source system process. A single
Flume Agent will need to handle multiple source systems and hence should be
able to impersonate different source system users. Also, there is a need to secure
the intermediate data persisted in the Channel persistence layer, which is typically
File or JDBC based databases. So there are usually three levels of security controls
that need to be implemented. First, Flume should ensure that the source system
processes are authenticated before they ingest data through Flume. Secondly, the
communication between Sink and Hadoop is secured. Finally, we need to ensure
that the intermediate data persisted in Channel is secured by enforcing proper
authentication, authorization, and encryption of the data.

Source
System

Different source systems pushes
data to Flume source. Each source
adapter implements its own
security model

Need to authenticate the
source system

Need Flume user to
authenticate with hadoop

Hadoop

Hadoop sinks uses Kerberos
authentication

Channel persistence
(JDBC or Files)

Web logs

Avro
Sources

Web
Service

HDFS

Hive

Base

Flume Agent

SinkSource Channel

2
1

3

H

Securing Flume sources
Each of the Flume sources provide their own authentication and authorization
mechanism and this has be configured based on the type of the Flume source used.
For example, JMS source provides the proper username and password file that can
be used to give the credentials required for authentication and authorization to the
JMS provider. The JMS provider manages the authorization based on the username.

Securing the Hadoop Ecosystem

[54]

Similarly, Avro source supports SSL-based encryption where the credentials are
managed in the Java keystore file. The following properties are used to configure
the security for Avro source:

Property Description
ssl The SSL flag should be set to true. Default it is set to false.
keystore Specify the path to the Java keystore file.
keystore-password Specify the password for the Java keystore.

keystore-type Specify the type of the Java keystore. This can be "JKS" or
"PKCS12". By default it is JKS.

Securing Hadoop sink
Similar to the Flume sources, the sinks also allow authentication and authorization
based on the type of sink. From a Hadoop ecosystem perspective, HDFS and HBase
sink are the most commonly used sinks. To configure a secured Flume agent for
HDFS and HBase sink, a Flume principal is set up in the KDC, and the keytab
file for this principal is used for authentication. The Flume user is established to
be a superuser in Hadoop and allows impersonation of the various sources that
are going to ingest data into Hadoop. This ensures that the user privileges in
Hadoop are adhered to during the data ingestion process. We need to configure the
kerberosPrincipal and kerberosKeytab properties for the sink.

The following figure shows the steps required to establish a secured Flume
interaction with Hadoop:

1

2

3

4

5

Create Flume principal
and keytab file

Copy the Flume keytab
to all machines which

runs Flume agent

Establish Flume user to
be authenticated by

NameNode

Set up Flume user as
super user in Hadoop

for impersonation

Set up Flume
configurations for

source, channel, and
sink

Securing BaseH

Chapter 4

[55]

In Hadoop, core-site.xml specifies Flume as a superuser and establishes
the group of users that will be impersonated by Flume, with the help of the
following configuration:

<property>
<name>hadoop.proxyuser.flume.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.flume.hosts</name>
<value>*</value>
</property>

We can restrict the groups that are impersonated and the hosts that can establish a
connection with Hadoop by providing the values for groups and hosts instead
of using *.

Securing a Flume channel
Flume supports memory, database, and file channels. Data security is a concern only
for database and file channels as the data is persisted external to the process running
the Flume agent. Database channel provides user authentication and authorization
controls using the standard database security mechanism and the username and
password can be provided in connection.properties.file. File channels provides
security using encryption of the data stored in the file. File channels support data
encryption using the Java keystores.

For details on the properties for configuring Flume file channels with encryption,
refer to http://flume.apache.org/FlumeUserGuide.html and navigate to the
File Channel configurations.

Securing HBase
HBase is a column-oriented, distributed NoSQL database that uses HDFS as the
distributed filesystem for storing the data. HBase leverage ZooKeeper as the
coordination services and stores the information about the HBase cluster. There are
two types of cluster nodes in a HBase cluster (Master and RegionServer). The Master
manages the organization of the data stored in HBase, while each RegionServer in
HBase hosts multiple Regions. Region is responsible for managing the data and it
resides within RegionServer.

Securing the Hadoop Ecosystem

[56]

For any client to write or read data from HBase, it needs to have connectivity with
ZooKeeper and RegionServers. Client first contacts the ZooKeeper to fetch the
information on where the keys are located and then it contacts the corresponding
RegionServer to fetch the data. The RegionServer delegates the request to the correct
Region, which finally returns the data to the client.

The data residing in a particular Region is persisted in HDFS. Thus, HBase daemons
in the RegionServer communicate with HDFS (NameNode) to store the data. The
HBase Master communicates with ZooKeeper to store the cluster details and Region
metadata. As shown in the following figure, there are two interactions that needs to
be secured to establish a secured HBase cluster. First, the HBase end users should be
authenticated with HBase. Second, the HBase daemons need to securely authenticate
itself with ZooKeeper and Hadoop. Apart from this, the data residing in the
RegionServer should be secured.

ZooKeeper

DataNode
TaskTracker
RegionServer

JobTracker NameNode

Java Client

Java Client

CLIBaseH

MasterBaseH

Hadoop Cluster with HBase

To set up a secured HBase cluster, the procedure mentioned in the following figure
needs to be followed:

Chapter 4

[57]

1

2

3

4

5

6

Establish a secured
ZooKeeper Quorum

Create HBase principal
and keytab file

Copy and secure the
HBase key tab to master

and region server

For any HBase user
create principal and
keytab file if required

Update HBase
configuration files

Securing BaseH

Set up JAAS
Authentication for

H daemons and
clients

Base

To secure the HBase daemons, the HBase configuration file /etc/hbase/conf/
hbase-site.xml, needs to be updated with the following properties:

<property>
<name>hbase.security.authentication</name>
<value>kerberos</value>
</property>
<property>
<name>hbase.rpc.engine</name>
<value>org.apache.hadoop.hbase.ipc.SecureRpcEngine</value>
</property>
<property>
<name>hbase.regionserver.kerberos.principal</name>
<value>hbase/_HOST@MYREALM.COM</value>
</property>
<property>
<name>hbase.regionserver.keytab.file</name>
<value>/etc/hbase/conf/hbase.keytab</value>
</property>
<property>

Securing the Hadoop Ecosystem

[58]

<name>hbase.master.kerberos.principal</name>
<value>hbase/_HOST@MYREALM.COM</value>
</property>
<property>
<name>hbase.master.keytab.file</name>
<value>/etc/hbase/conf/hbase.keytab</value>
</property>

For user authentication, one of the preferred way is for the HBase Java client and
HBase daemons to use Java Authentication and Authorization Service (JAAS).
To establish this secured authentication we need to configure JAAS configuration
file /etc/hbase/conf/hbase-jaas.conf with the following details:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
useTicketCache=false
 keyTab="/etc/hbase/conf/hbase.keytab"
 principal="hbase/mydomain.com@MYREALM.COM";
};

Then export the following JVM options so that JAAS authentication is enforced:

export HBASE_OPTS="$HBASE_OPTS -Djava.security.auth.login.config=/etc/
hbase/conf/hbase-jaas.conf"

This will ensure that the HBase daemons and HBase client uses the specified keytab
to authenticate itself with KDC and obtain the Kerberos ticket.

Apart from service authentication, HBase also provides user authorization on tables,
column families, and column qualifiers. Authorization is not currently supported
at row level or cell level. To secure a particular table in HBase, we use the Grant
command in HBase shell. Apart from this, there are commands to alter, revoke,
and view user permissions. These commands are used to secure the HBase tables,
column families, and column qualifiers across users. The following are the permissions
supported by HBase:

Permission Description
R This allows to perform get, scan, or exists commands

W
This allows to perform put, delete, lockRow,
unlockRow,incrementColumnValue, checkAndDelete,checkAndPut,
flush, or compact

C This allows to perform create, alter, or drop commands

A This is the admin permissions that allows to perform enable, disable,
majorCompact, grant, revoke, and shutdown commands

Chapter 4

[59]

For example, to grant delete and create table permissions on a particular column
qualifier, the following command has to be executed in HBase shell:

grant user WC table columnfamily columqualifier

The user authorization is implemented using coprocessors. Coprocessors are like
database triggers in HBase. They intercept any request to the table before and after.
These hookpoints are used to implement table-level security. So we need to add the
following settings to enable security-related coprocessors in HBase:

<property>
<name>hbase.security.authorization</name>
<value>true</value>
</property>
<property>
<name>hbase.coprocessor.master.classes</name>
<value>org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>
<property>
<name>hbase.coprocessor.region.classes</name>
<value>org.apache.hadoop.hbase.security.token.TokenProvider,
org.apache.hadoop.hbase.security.access.AccessController
</value>
</property>

Securing Sqoop
Sqoop is used for bulk transfer of data between structured sources such as RDBMS,
NoSQL, and Hadoop. The initial version of Sqoop known as Sqoop1 was built as a
command-line client tool that generated the MapReduce code based on the metadata
retrieved from a structured store such as RDBMS. The connection parameters are
provided as arguments in the command line and the credentials for the user running
the Sqoop command was used to submit the job to Hadoop. In this version, there is
no secure way to protect the user credentials as Sqoop expects clear text password.
So this version when used in a production scenario, creates a big security hole as
the passwords used for the Sqoop commands are plain text passwords kept in some
properties file.

While using Sqoop1 with secure Hadoop cluster, the user running the Sqoop
command needs to have a valid Kerberos ticket so that this ticket can be used
to authenticate with JobTracker and NameNode.

www.allitebooks.com

http://www.allitebooks.org

Securing the Hadoop Ecosystem

[60]

The key limitations of Sqoop 1 are as follows:

The credentials used for connecting to the database are plain text and specified in
the properties file Sqoop supports code generation, and this generated code can be
compromised by any malicious user to run any MapReduce code in the cluster

Sqoop2 was developed to address these limitations of Sqoop. Sqoop2 is a client
server-based model, where the database credentials are managed centrally in the
server with role-based authentication. The administrator of Sqoop2 manages the
various database connection credentials and provides the connection name which
is used by the Sqoop2 user. Thus, the user of Sqoop2 doesn't need to know the
database credentials for the database. There is a role-based security for the database
connections which defines the user-specific access to the Sqoop2 database connection.
The users are provided access to various database connections and they reference
those connections in the Sqoop commands. Sqoop2 also limited the code-generated
capability to the end users. Sqoop2 doesn't support client users to be propagated to
Hadoop by impersonation. Sqoop users are independently authenticated by Sqoop2
and they internally access the required databases using the credentials provided in
the connection, and uses Sqoop user ID to authenticate with Hadoop and submit the
job on the secured cluster. Sqoop2 jobs are submitted under the Sqoop user ID and not
using the user account. This is one of the security concern in using Sqoop2, as the user
privileges are not enforced in Hadoop when the user is performing Sqoop operations
using Sqoop2. This is planned to be addressed in the future releases of Sqoop2.

Thus, there is no support for Sqoop2 with Kerberos security by default. The user
starting the Sqoop2 service needs to obtain the Kerberos ticket using kinit from
keytab and then set up a process to renew the ticket periodically.

Securing Pig
Similar to Hive, Pig provides user the ability to write the logic in procedural way
in language known as Pig Latin, and then Pig converts this logic to a pipeline of
MapReduce jobs and executes on the Hadoop cluster.

Pig uses the user credentials to submit the job to Hadoop. So there is no need of any
additional Kerberos security authentication. Pig users need to have a valid Kerberos
ticket which is obtained by running kinit. So before starting Pig, the user should
authenticate with KDC and obtain a valid Kerberos ticket. The following are the
steps to access Pig in a secured Hadoop cluster:

1. User logs into the machine where Pig is installed with the user credentials.
2. User performs a kinit operation and gets the Kerberos ticket-granting ticket

(TGT) for the user.

Chapter 4

[61]

3. When the user invokes Pig Grunt or runs the Pig script, Hadoop fetches the
ticket from the ticket cache and uses it for authentication.

Best practices for securing the Hadoop
ecosystem components
We looked at different types of Hadoop ecosystem components and understood how
to set up a secured Hadoop ecosystem with all these components. In this section, let
us summarize these best practices as follows:

• All services that are running within the Hadoop ecosystem need to be
authenticated with KDC. This will ensure that there is no rogue process
creating malicious activity.

• It is a best practice to store the KDC credentials in an LDAP store, so that the
credentials and authorizations can be centrally managed.

• The keytab file needs to be secured, and only the user for whom the file is
created should be provided with read access to the file.

• Whenever a Java client is accessing the service, client authentication should
be done by the service using RPC authentication mechanism.

• Whenever user impersonation is used to impersonate an end user by the
service user, the service process has to be fully secured by Kerberos and
also the host running the service should have limited user access. User
authentication is crucial as any security lapse might result in a malicious
user impersonating any other valid user.

• Whenever Hadoop services are acting on end user's behalf, it is better to run
the operation as the request user by impersonation. This will ensure that only
the user-permitted operations are allowed.This ensures that the job has only
the user privileges within the cluster.

• To run secured authentication in JVM, we can use the JAAS file to perform
the authentication.

• Enforce strict firewall rules on the cluster to ensure that there is no
unauthorized access. Organizations usually restrict all traffic by configuring
a secured VLAN for the Hadoop cluster. The firewall rules are imposed on
the VLAN to ensure that there are no connections initiated from unknown
sources to the Hadoop cluster. All connections are limited to be initiated
from the gateway servers residing on the edge of the Hadoop cluster.
More details on this will be discussed in Chapter 5, Integrating Hadoop with
Enterprise Security Systems.

Securing the Hadoop Ecosystem

[62]

Summary
In this chapter, we looked at the steps that need to be adopted to set up various
Hadoop ecosystem components. At the high level, the process involves creating the
Kerberos principal for each of the components and then securing the keytab file under
the user's home directory. If the service has to impersonate the end user, then the
service principal is configured as superuser in Hadoop. Each ecosystem component
has specific configuration that needs to be updated to support secured authentication
with Kerberos. Some of the components such as Sqoop or Sqoop2, leave a certain
amount of security hole when used in production. So these components have to be
used with caution and deployed with additional security measures.

In the next chapter, we will look at how to integrate the authentication and
authorization of these ecosystem components with the Enterprise Identity
Management systems.

Integrating Hadoop with
Enterprise Security Systems

In the previous chapter, we looked at how to establish Kerberos authentication for
the Hadoop ecosystem components. Establishing the authentication is only the first
step towards providing secured access to the Hadoop ecosystem. In this chapter, we
will focus on centrally managing the authentication and authorization of the various
Hadoop users, and address the various challenges for integrating the Enterprise
Security Systems with a secured Hadoop cluster.

Once Hadoop users are centrally managed, there is a need for these users to directly
access and work on the Hadoop cluster. However, Hadoop service daemons use
multiple communication protocols to communicate with each other. This requires
multiple unsecured ports to be opened between the cluster machines. This brings in a
security concern for the organization deploying Hadoop. So, usually, Hadoop clusters
are isolated in a separate network and user access is only provided through some
servers residing on the edge of the network known as EdgeNodes, or JumpServers,
or Gateways. EdgeNodes and Gateways are servers positioned on the edge of the
Hadoop cluster that allows connectivity to both the Hadoop cluster and the corporate
networks. Hadoop users have to log in to EdgeNodes or Gateways and then access
the Hadoop resources and services. This is usually one of the concerns for end users
as every user operation usually involves two steps: firstly, copying the required files
to the Gateway server, and then executing the Hadoop operations from the Gateway
server. We will look at the various solutions available today to directly access
the Hadoop cluster from the corporate network without directly logging into the
Gateway server.

Integrating Hadoop with Enterprise Security Systems

[64]

These are the topics we'll be covering in this chapter:

• Integrating Enterprise Identity Management Systems with the
Hadoop ecosystem

• Accessing secured Hadoop cluster resources from corporate networks

Integrating Enterprise Identity
Management systems
Typically, organizations have a central user identity management system known
as Enterprise Identity Management (EIM) system using products such as IBM
Tivoli Identity Manager, Oracle Identity Manager, and Windows Active Directory.
Enterprise user's access privileges are centrally managed in these systems. These
systems manage the user credentials and their roles using groups. User authorization
is managed using these security groups. Users are assigned to groups, where each
group has a specific authorization and access privilege defined. The user inherits
group privileges based on their group membership.

By default, Hadoop uses the logged in Operating System (OS) users and the
corresponding user groups to provide the authorization within Hadoop. Hadoop
daemons (NameNode, DataNode, and so on) and ecosystem components such
as Oozie, Hive, HBase uses these group memberships to determine the level of
authorization allowed for the user. By default, this is set to the user's OS groups
defined in the Linux system. However in a large cluster, this default configuration to
fetch the OS users and corresponding groups is not a scalable solution. We need to
manage the users and their roles centrally in the EIM systems.

To manage the user's credentials and roles in an EIM system, follow these steps:

• Hadoop end users are defined with in the EIM system. User credentials are
centrally managed by the EIM system. As Hadoop uses Kerberos for user
authentication in a secured Hadoop cluster, EIM system should support
Kerberos authentication and issue a Kerberos ticket for the end users. This
user ticket will be used for authentication and access to the Hadoop resources.
The user IDs of these Hadoop users should be mapped to the corresponding
user principals defined in Kerberos using the mapping rules in Hadoop.

• User groups defined in the EIM systems needs be used by the Hadoop
daemons for authorization. In a typical production setup, user and user
group information is synchronized between EIM systems and the Hadoop
local KDC so that Hadoop daemons don't have to contact the EIM systems
for group information and can get this user group information from the
LDAP servers defined locally.

Chapter 5

[65]

• We only defined the Hadoop end users in the EIM system and not the
Hadoop service daemon users such as HDFS, MapRed, or YARN. The users
running the Hadoop service daemons are defined in the local KDC residing
in the Hadoop cluster.

• Here is the high-level interaction of a corporate user with in the Hadoop
cluster using EIM system security within a secured Hadoop cluster:

1. First, the user authenticates with the EIM system using the user credentials.
2. The EIM system issues the Kerberos ticket to the user after authentication.
3. Then the user presents this ticket to Hadoop to perform operations on the

secured Hadoop cluster. The Hadoop daemons trust the EIM system, issue
ticket due to the cross-realm trust established between Hadoop local KDC
and the EIM system.

4. The Hadoop daemon fetches the user group information from LDAP to
provide the authorized access to the user. If the user IDs and the Kerberos
principals are not the same, the mapping of the user ID to Kerberos principal
is defined in the core-site.xml.

5. To ensure that there is a centralized management of user credentials and
roles, there is a need to synchronize the user groups between the EIM system
and the local KDC. Only the roles and groups are synchronized and user
credentials are stored only in the EIM system.

6. To ensure that the Hadoop daemons authenticate the end user using
the Kerberos ticket issued by the EIM system, we need to establish the
cross-realm trust between the Hadoop local KDC and the EIM system.

Integrating Hadoop with Enterprise Security Systems

[66]

Configuring EIM integration with Hadoop
To implement integration between the EIM system and the Hadoop local KDC,
follow these steps:

1. Set up one-way trust between EIM systems and the local KDC.
2. Set up realm details for EIM and local KDC in all the nodes on the cluster to

enable cross-realm authentication.
3. Set up all end users, their credentials, and their roles in the EIM system.
4. Set up all Hadoop service principals and credentials in the local KDC.
5. Set up the synchronization of roles/groups between the EIM system and

local KDC. This can be done using LDAP synchronization connectors such as
LDAP Synchronization Connector (LSC).

6. Refer to the LSC project for more details on LDAP Synchronization.
7. Have a look at http://lsc-project.org/wiki/ for more details on LDAP

synchronization.
8. Configure the rules for transforming the principals to the corresponding

user in Kerberos. This mapping is provided by the property hadoop.
security.auth_to_local in core-site.xml. A simple rule will be
of the form as follows:
hadoop.security.auth_to_local

 RULE:[1:$1@$0](.*@MYREALM)s/@.*//
 RULE:[2:$1@$0](hdfs@.*MYREALM)s/.*/hdfs/
 DEFAULT

More details on how to set this rule are available at:

http://www.cloudera.com/content/cloudera-content/
cloudera-docs/CDH4/4.2.1/CDH4-Security-Guide/
cdh4sg_topic_19.html

Integrating Active-Directory-based EIM with
the Hadoop ecosystem
Let us look in detail at how we integrate an Active Directory-based EIM system with
a Hadoop cluster which has MIT Kerberos as the local KDC in a Windows machine
where Active Directory is installed.

1. Add the Hadoop local KDC to the Active Directory hosting the user realm.
ksetup /addkdc MYREALM.COM kdc-server MYCORPORATEDOMAIN.COM

Chapter 5

[67]

2. Add trust between the two KDC.
netdom trust MYREALM.COM /Domain:MYCORPORATEDOMAIN.COM /add /realm
/passwordt:<myPasswordforcrossrealm>

3. Set up the encryption protocol for communication between local realm and
Active Directory.
ktpass /MITRealmName MYREALM.COM /TrustEncryp <enc_type>

4. Add user principals in the Active Directory.
kadmin: addprinc -e "rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/mycorporatedomain.com@MYCORPORATEDOMAIN.COM

5. Add Hadoop service principals in the Local KDC.
kadmin: addprinc -e "rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/mydomain.com@MYREALM.COM

6. Establish the synchronization of user groups between the Active Directory
and local KDC using the LDAP synchronization connector.

Accessing a secured Hadoop cluster
from an enterprise network
Typical deployment architecture of a secured Hadoop cluster in an enterprise context
is shown in the following diagram:

Corporate Network

Client
Machines

Firewall

Gateway Server

ResourceManager NameNode

DataNode
NodeManager

Hadoop Cluster

Firewall

Client
Machines

Gateway Server

Integrating Hadoop with Enterprise Security Systems

[68]

The Corporate Network is firewalled with the Hadoop cluster and connectivity is
only provided through the EdgeNodes (also also known as Gateway Servers). The
Gateway Server allows an entry point for external applications, tools, and users
to the secured Hadoop cluster. It is deployed between the Hadoop cluster and the
corporate network. As all users log in to this machine and the credentials for the user
defined in this machine are used while accessing the Hadoop cluster, this node can
be used to provide access control, policy enforcement, logging, and gateway services
to the Hadoop environment. Depending on the number of users accessing the
Hadoop cluster, there could be more than one Gateway Server in a Hadoop cluster.

Clients in the corporate network can't directly access the Hadoop cluster. They log
in to the Gateway Servers and perform all the operations on the Hadoop cluster. All
client tools such as Hive, Pig, Oozie, and so on, are installed on the Gateway Servers
so that users need not be provided login access to every node on the cluster and
the cluster nodes are secured from any unauthorized access. Also, these tools have
connectivity to every machine on the cluster.

Clients would like to have direct access to submit jobs or browse files on the Hadoop
cluster from the corporate network without logging in to the Gateway Server.

There are multiple solutions to address this problem such as HttpFS, HUE, and Knox
Gateway. Each one has its own merits and demerits. Let's look at each one of them.

HttpFS
One solution to provide direct access for Hadoop operations from the corporate
network is by installing HttpFS on the Gateway Servers of the cluster. HttpFS can
be used to access data in HDFS on a cluster behind a firewall. HttpFS is a Java-based
web application and it runs using a preconfigured Tomcat bundled with HttpFS
binary distribution. It acts as a HTTP proxy that authenticates the clients and then
proxies the client to access the files on the cluster. It internally uses WebHDFS to
access the cluster resources.

To set up secured access to a Hadoop cluster, HttpFS should be configured to use
Kerberos security. The steps shown in the following figure are required to configure
HttpFS in secured mode:

Chapter 5

[69]

Securing HttpFS

Create HTTP and HttpFS
principal

Create keytab file with
HTTP and HttpFS

principal

Copy and secure the
keytab file so that only

HttpFS can access it

Update HttpFS
configuration files for

Kerberos

Restart HttpFS service
for configuration to

take affect

Setup HttpFS as a proxy
user in the Hadoop

core-site.xml

1

2

3

4

5

6

HttpFS acts as a proxy and uses WebHDFS to store data in the cluster. One of the
biggest limitations of HttpFS is that we can't transfer large volumes of data through
this HTTP interface. HttpFS runs as a Tomcat-based web application and the data
has to move through this application when we transfer the data to the cluster. We
should use the native RPC to transfer large volume of data.

HttpFS only provides access to work with Hadoop Distributed File System (HDFS).
When user needs to run Pig, Hive, MapReduce on the cluster, they still need to log in
to the Gateway Server.

HUE
HUE is the open source Apache Hadoop UI. HUE provides the web application to
perform the following tasks:

• Browse the HDFS filesystem
• Develop workflows that can be submitted to Oozie

Integrating Hadoop with Enterprise Security Systems

[70]

• Pig editor and executor
• Job browser for MapReduce jobs running on the secured Hadoop cluster
• UI to submit query for Hive, Impala
• Scoop command executor

One of the limitations of HUE is for file uploads and downloads from the Hadoop
cluster. HUE uses HttpFS internally to proxy the Hadoop cluster when installed on
the Gateway Server. The following diagram shows the interaction of the end users
using HUE:

LDAP
Server

Corporate Network

Client
Machines

ResourceManager NameNode

DataNode
NodeManager

Hadoop Cluster

Firewall

Client
Machines

HUE
(Web Server)

HttpFS

Gateway Server

Interacts with HUE
using web browser

Firewall

Sync LDAP users
and groups

12

HUE provides the ability to authenticate users using corporate Identity Manager.
It provides the ability to synchronize users and groups using LDAP's Add/synch
feature. Thus, the corporate users can be managed centrally through the Enterprise
Identity Manager. HUE provides access through granular control of the group's
access privileges. HUE provides secured authentication of the users using
SPNEGO-based browser authentication. User access to HUE from the corporate
network is secured over a HTTPS connection. For HTTPS access, HUE web server
needs to be configured for secured SSL access.

Refer to the HUE Project for more details on installation and configuration:
http://gethue.com/.

Chapter 5

[71]

Knox Gateway Server
Knox Gateway is another Apache project in incubation stage that addresses the
concern of secured access to the Hadoop cluster from corporate networks. Knox
Gateway provides a single point-to-point of authentication and access for Apache
Hadoop services in a cluster. Knox runs as cluster of servers in the DMZ zone isolating
the Hadoop cluster with in the corporate network. The key feature of Knox Gateway
is that it provides perimeter security for Hadoop REST APIs by limiting the network
endpoints required to access a Hadoop cluster. Thus, it hides the internal Hadoop
cluster topology from end users. Knox provides a single point for authentication and
token verification at the perimeter of the Hadoop cluster. It enables integration with
the EIM system for authentication and authorization of Hadoop services.

The following diagram shows the Knox Gateway's interaction with an end user:

EIM System

Local KDC

Corporate Network

End User

Firewall

Knox Gateway Cluster

Hadoop Cluster

NameNode ResourceManager

DataNode
NodeManager

Firewall

DataNode
NodeManager

DataNode
NodeManager

Knox is still maturing and is currently under Version 0.3. While the roadmap looks
promising, it still needs to mature before it can be deployed for production usage.
HUE can be configured to work with Knox Gateway instead of HttpFS and this will
be more secured compared to HttpFS.

Integrating Hadoop with Enterprise Security Systems

[72]

Summary
In this chapter, we looked at the various challenges for integrating a secured Hadoop
cluster with Enterprise systems. One of the main concerns for organizations adopting
Big Data is its security. Having the ability to manage Hadoop users' identity and
authorizations centrally using existing EIM systems clears the first hurdle in the
Big Data adoption journey. In this chapter, we looked at the implementation details
for integrating EIM systems with the Hadoop KDC and how seamlessly Enterprise
existing security process can be easily extended to Hadoop. Another big concern for
organizations is usually around network security. In this chapter, we detailed out the
implementation approach to enforce perimeter security around the Hadoop cluster
and how to provide end users with seamless access from corporate networks to the
secured Hadoop cluster using HttpFS, HUE, and Knox Gateway Server.

In the next chapter, we look at another important security concern for Big Data
adoption and that is about securing sensitive data residing in the Hadoop cluster.

Securing Sensitive Data
in Hadoop

In Chapter 5, Integrating Hadoop with Enterprise Security Systems, we looked at
integrating a secured Hadoop cluster with an Enterprise Identity Management
system and enforce user authorization within Hadoop. User privileges are managed
centrally and then synchronized with the secured Hadoop cluster. This enables
enterprise users to access secured Hadoop services seamlessly. As an organization
matures with their Big Data implementations, there is an increasing need to move
sensitive information into the Hadoop ecosystem to generate valuable insights.
Sensitive data in the cluster needs special protection and should be secured both
at rest and in motion.

In this chapter, we look at how to secure sensitive data within a Hadoop ecosystem.

These are the topics we'll be covering in this chapter:

• Securing sensitive data in Hadoop
• Encrypting sensitive data in Hadoop
• Implementing data encryption in Hadoop

Securing Sensitive Data in Hadoop

[74]

Securing sensitive data in Hadoop
Sensitive data inside Hadoop can be classified into two high-level categories:

• Sensitive data related to customers' personal information, customers'
financial information, and so on that exists in enterprise systems and that
needs to be brought to Hadoop for analysis.

• The Hadoop analytical process generates sensitive insights after processing
the data stored inside Hadoop. These insights are more valuable and
sensitive compared to the raw source data that is used to generate them. For
example, a retail e-commerce enterprise has detailed transactions of customer
purchases. These transaction details might not be very sensitive. This data
is brought to Hadoop for generating various insights. Using the customer
historical purchases and correlating the same with customer's household
purchases, insights related to customer purchase patterns, behavior
patterns, customer sentiment, and customer life events could be inferred.
This information is highly sensitive compared to each of the individual
transactions. These insights if not secured properly could lead to significant
losses for an enterprise.

Due to the schema-less, distributed nature of Hadoop, securing insights generated
from Hadoop is one of the most challenging tasks in a production scenario. The
Hadoop ecosystem currently lacks a robust metadata management solution to secure
these insights.

The key requirements for securing this sensitive data are:

• The insights generated should be classified and encrypted so that only
authorized users can access the insights.

• Only a limited set of users who really need to act on sensitive data should
have access to these data sets. Data access should be restricted for any non-
business user (IT user) for these sensitive data sets.

• The intermediate data that is created during the insights generation process
should be secured and removed as soon as it is not required.

• Need to track which user has downloaded the sensitive insights and
control the life cycle of such downloaded insights. This is required to
ensure compliance.

• Access to these sensitive data sets and any other local copy of the insights
should be removed once the user ceases to have authorization to access the
data sets.

• The data that is in motion during storing and retrieving the data from
Hadoop needs to be secured.

Chapter 6

[75]

Approach for securing insights in Hadoop
To secure sensitive data sets in Hadoop, there should be proper security measures
to secure these data sets while they are residing in Hadoop or while they are
transferred across the network. To protect the data in motion, it is required to
understand the underlying protocol that is used when data is transferred over the
network in Hadoop. A Hadoop client connects to NameNode using the Hadoop RPC
protocol over TCP, while the Hadoop client transfers the data to DataNode using the
HTTP protocol over TCP.

Securing data in motion
Data enters the Hadoop ecosystem through the Hadoop client, Sqoop, or Flume.
This data needs to be protected during the transfer to the Hadoop system. The SASL
authentication framework is used for encrypting the data in motion.

SASL is the authentication framework that adds authentication support for
connection-based protocols. SASL security guarantees that data exchanged between
the client and servers is encrypted and is not readable by a "man in the middle".
SASL supports multiple authentication mechanisms, for example, DIGEST-MD5,
CRAM-MD5, and so on. Typically, a SASL negotiation works as follows:

1. The client requests authentication by connecting to the server.
2. The server responds with a list of supported authentication mechanisms.
3. The client chooses one of the authentication mechanisms (for example

DIGEST-MD5).
4. The server then starts exchanging authentication messages with the client,

until the authentication succeeds or fails.
5. Once the authentication succeeds, the client and server shares the session

secrets, which are used to encrypt the transmitted data.
6. SSL uses the public key cryptography for authentication. So to verify the

authenticity of the request between the client and server, both needs to have
a shared secret.

SSL provides secured communication between the client and server. SSL enables
encryption of the message that is exchanged once the trust between the client and
server is established. This ensures that the communication using SSL is secured.

The Hadoop client uses Hadoop RPC to communicate with the Hadoop NameNode
(refer to the following figure). The Hadoop RPC mechanism supports SASL
security. SASL encryption can be enabled by configuring the property hadoop.rpc.
protection to privacy in core-site.xml. This ensures that the communication
between the Hadoop client and NameNode is secured and encrypted.

Securing Sensitive Data in Hadoop

[76]

Data transfer from the Hadoop client to DataNode uses the Hadoop data transfer
protocol that is built on top of TCP/IP. An SASL wrapper is required on top of the
Hadoop data transfer protocol to ensure secured data transfer between the Hadoop
client and DataNode. This wrapper is enabled by setting the property dfs.encrypt.
data.transfer to true in hdfs-site.xml. Once the SASL wrapper is enabled,
NameNode generates a data encryption key that is used by the Hadoop client as the
credentials for the MD5-DIGEST SASL authentication mechanism. Since DataNode
and NameNode share the secret key, this key can be used to verify the authenticity of
the request.

Sqoop, by default, doesn't provide any security for data in motion. However, Sqoop
uses JDBC within the MapReduce program to move data from RDBMS to Hadoop.
The JDBC communication can be secured using the SASL with JDBC.

Flume is another ecosystem component that is used to ingest data into Hadoop.
Flume uses the AVRO-RPC listen source to move data into Hadoop. Since Version
1.4, Flume AVRO-RPC supports secured SSL transport.

The following properties need to be set to ensure that SSL support for AVO-RPC
is enabled.

Property Description
Ssl The SSL flag should be set to true. The default value is false.
Keystore This specifies the path to the Java keystore file.
Keystore-
password This specifies the password for the Java keystore.

Keystore-type This specifies the type of the Java keystore. This can be JKS or
PKCS12. By default, it is JKS.

Securing data at rest
Hadoop stores data by splitting large files into blocks. These blocks are stored in
the local filesystem of DataNode. The individual blocks can be assembled back to
retrieve the entire file. Once the login credentials for the user (root or HDFS) who
has access to the data node is compromised, the blocks stored in the local filesystem
can be accessed. Thus, the sensitive data sets can be compromised by just breaking
the security credentials of the root or HDFS user. One solution to this problem is
to encrypt the file that is stored in Hadoop so that even if the login credential is
compromised, the data stored inside the sensitive data sets can't be accessed. There
are two ways for encrypting the data sets in Hadoop.

Chapter 6

[77]

First, when we store the file in Hadoop, the entire file can be encrypted first and
then stored in Hadoop. In this approach, the data blocks in each DataNode can't be
decrypted unless we assemble all the blocks back and create the encrypted file. This
approach is not suitable if the encrypted file needs to be accessed in MapReduce
programs. MapReduce programs read blocks of data, and hence won't be able
to decrypt the file. Then, the only option is to process the file in its entirety in
JobTracker. This is very inefficient and is not a scalable solution.

The second option is to apply the encryption on the blocks of data once it is loaded
into Hadoop. This ensures that MapReduce can process each block independently,
and the decryption logic is applied during the map phase for a MapReduce job. The
decryption key should be made available to the MapReduce job to decrypt the file.
This is provided to the MapReduce program through the job configuration. The
solution is scalable and efficient. This approach is shown in the following figure:

SASL Encryption for Data in Motion

Block Encryption for Data at REST

Hadoop Client encrypts the individual blocks
before storing to HDFS

Hadoop Client

SASL Encrypted RPC

NameNode

Hadoop Data Transfer
Protocol TCP/IP (SASL
Encr pted)y

Original File Blocks split
based on
block size

Each Block
encrypted

DataNode

2 1

To support block-level encryption in Hadoop, the client should encrypt each
individual blocks before it is transferred to DataNode for storing. Similarly, when the
file has to be reconstructed, the client will read each individual blocks and then apply
the decryption logic in the client side. This approach enables the client to manage the
encryption credentials and not store them in the Hadoop cluster.

Securing Sensitive Data in Hadoop

[78]

Currently, block-level encryption is not supported by default in Hadoop. There are
open source projects such as Project Rhino (https://github.com/intel-hadoop/
project-rhino/) that aims to bring an end-to-end encryption framework into
Hadoop. The work is still in progress (https://issues.apache.org/jira/browse/
HADOOP-9331) and till then if we want to implement the block-level compression, we
need to write custom code to support this block-level encryption.

Implementing data encryption in Hadoop
Encryption is one of the key techniques used to secure sensitive data in Hadoop.
Support for data encryption is not directly available in Hadoop; however, we can
leverage the compression file handling capability to build support for encryption.
We create a custom compression codec that supports encryption. So whenever
we need to encrypt the data, we need to set the compression codec to this custom
compression codec. This is the same technique used by Project Rhino. A sample
compression codec is available at the following location: https://github.com/
delipark/encrypted-hdfs/ by Seonyoung Park and Youngseok Lee.

The following flow diagram shows the approach to implement the custom data
encryption in Hadoop. To support custom encryption, we extend the compression
codec class that is available within the Hadoop API and implement encryption inside
this class.

Compress intermediate output of
apper, ombiner, artitionerm c p

Enable ompressionc
Set ompression lassc c

1

2

3

4

5

6

Create ustomc
a ompression odecc c

Add ompressionc
codec to Hadoop lassc

athp

Add ompressionc
odec in core-site.xmlc

(io.compression.codecs)

Set ompressionc
details in MapReduce

river lassd c

Set the
ap output ompressm c ion

lassc

Pass encryption key to
job using Job Conf

Support Encryption in MapReduce

Chapter 6

[79]

The following are the configuration files that need to be configured to support
encryption using the preceding approach:

Conf file Property Description
core-site.xml io.compression.

codecs
Sets the class name of the custom
compression codec that is implemented
to support encryption.

mapred-site.xml mapreduce.map.
output.compress

Sets to true to compress the outputs of
the maps before sent across the network.

mapred-site.xml mapreduce.map.
output.compress.
codec

Sets this to the class name of the custom
compression codec that implements
encryption.

mapred-site.xml mapreduce.output.
fileoutputformat.
compress

Sets to true to enforce compression of
the output files created.

mapred-site.xml mapreduce.output.
fileoutputformat.
compress.codec

Sets this to the class name of the custom
compression codec that implements
encryption.

mapred-site.xml mapreduce.output.
fileoutputformat.
compress.type

Sets the compression type to BLOCK
or RECORD based on the encryption
algorithm support.

One important consideration in implementing encryption in Hadoop is to ensure that
encryption is done at block-level, so that MapReduce can be executed efficiently and
the performance degradation due to encryption is not significant. AVRO and Sequence
File are two Hadoop file formats that support splits and compression formats. To
support encryption in the AVRO and Sequence File formats, we need to define custom
compression codecs that will implement the encryption as part of the compression
process and enable AVRO and Sequence File to use this compression codec.

During the MapReduce processing, the mapper is set to read encrypted data
by configuring the input compression codec and enabling compression on the
input format. The key for decryption is passed to the mapper as part of the job
configurations or by directly reading from the keystore. Encrypted data is read, and
processed intermediate results are stored locally on the TaskTracker nodes. These
intermediate results should be encrypted and for this, we can set the map output
compression class to the custom compression code class. These intermediate results
are then read by the reducers to produce the final result. The final result can be
encrypted by setting the output compression class to the custom compression codec.

The data from the Hadoop ecosystem is consumed by exporting the data to RDBMS
systems or consuming it from the NoSQL solution such as HBase, which is housed
inside Hadoop.

Securing Sensitive Data in Hadoop

[80]

When the data is exported from the Hadoop ecosystem to RDBMS, the export
program has to decrypt the data and secure it during transit using some of the data
in motion encryption techniques. Similarly, when the data is exposed out of HBase,
the data is decrypted to render to the required user. The data is decrypted using the
secured key provided by the end user who is consuming the data. One of the key
requirements within the enterprise is to support user-classification-level security.
Sensitive data within the enterprise is classified into multiple security levels. Users
are then selectively authorized for these security levels and provided access to these
classified data based on their roles and business functions.

To implement a user-classification-based security in Hadoop, we can extend the data
encryption technique mentioned earlier. Here is the approach to implement such a
user-classification-based security in a Hadoop ecosystem:

1. Each security classification level is defined with a unique encryption key
and this encryption key is stored in the credential vault. Only users who are
authorized for the corresponding security classification level can request for
the encryption key.

2. The sensitive data is encrypted using this encryption key based on the
security classification level of the data.

3. When a user runs a MapReduce job that accesses a classified dataset, the
encryption key corresponding to that security classification level is fetched
from the credential vault and passed to the MapReduce job through the job
configuration. The credential vault will return the encryption keys only if the
user is authorized for the corresponding security classification level.

This entire process of identifying the dataset classification level and fetching the
corresponding encryption key for the user from the credential vault is transparently
implemented in the MapReduce driver program. This entire process can be
transparently implemented without any change from the end user.

Summary
In this chapter, we looked at how to secure sensitive data in the Hadoop cluster.
We looked at the approaches for encryption of data in motion while block-level
encryption for data is at rest. We also looked at the MapReduce processing and ways
to enforce data encryption on the input side, intermediate data, and the final results
created by the MapReduce program. Encryption causes performance degradation and
this has to be carefully evaluated so that only sensitive data is encrypted and secured.

In the next chapter, we will look at how to identify security incidents and events in
a secured Hadoop cluster. And we will also look at how to implement auditing and
logging of user activities in the Hadoop cluster.

Security Event and Audit
Logging in Hadoop

In Chapter 6, Securing Sensitive Data in Hadoop, we looked at the approach to secure
sensitive data in a Hadoop cluster, and how we could implement block-level
encryption to protect sensitive data. In this chapter, we look at security incidents
and event monitoring that needs to be implemented in a secured Hadoop cluster.
We then discussed the best practices in security procedures and policies that need to
be adopted to secure the Hadoop ecosystem and how some of these policies can be
configured as rules in the security event and audit logging system.

A Hadoop cluster in production hosts sensitive customer information. Security of
data assets is of prime importance for organizations to have a successful big data
journey. While we focus on ensuring that the Hadoop cluster is secured through
various measures such as enforcing perimeter security, Kerberos authentication,
and authorization, there is always a possibility of security breaches by unauthorized
access or inappropriate access by privileged users. So to meet the security
compliance requirements, we need to audit the entire Hadoop ecosystem on a
periodic basis and deploy a system that generates automated alerts by security
incident and log monitoring.

In this chapter, we look at how to implement the security incident and event
monitoring approach and the procedures to set up the required audit logs in
Hadoop that are required for security compliance.

These are the topics we'll be covering in this chapter:

• Security Incident and Event Monitoring in a Hadoop cluster
• An overview of the Security Incident and Event Monitoring system
• Setting up audit logging in a secured Hadoop cluster

Security Event and Audit Logging in Hadoop

[82]

Security Incident and Event Monitoring in
a Hadoop Cluster
A Security Incident and Event Monitoring (SIEM) system is responsible for
collecting, monitoring, analyzing, and generating various security alerts for any
suspicious activity in the cluster. SIEM systems usually collect the various system
logs, network logs, and application logs to identify these security incidents and
events. Hadoop itself can be used to perform the analysis and correlation of these
security events in a batch mode.

The first step in any SIEM system is to collect the various system logs and identify
corresponding events. The following are the events that need to be monitored in a
Hadoop cluster to detect any security incidents:

• User login and authorization events: User login events in a secured Hadoop
cluster are generated when the end users or service principals authenticate
themselves within the KDC or EIM system. krb5kdc.log for the KDC in the
local Hadoop realm will contain the service login events. The central EIM
system (Active Directory or similar) will log the user authentication events.
Any user request for the service tickets for the Hadoop daemons will also be
logged. This will help in identifying details of the users who has requested
for access to the various Hadoop services.

• HDFS file operation errors: Whenever a user accesses HDFS, the file
permissions for the users are verified by NameNode before providing the
access to the blocks for the files. In case of insufficient privileges the org.
apache.hadoop.security.AccessControlException: Permission denied event
is generated Hadoop logfiles. Any access privilege issue by Hive or Pig jobs
also will generate the same error. These exceptions will be logged in to the
Hadoop daemon logs in the Hadoop log directory. These exceptions should
be monitored to identify potential security incidents. To ensure that file
permission checks are enforced by NameNode, we need to set the property
dfs.permissions.enabled to true in hdfs-site.xml.

• Hadoop RPC authorization errors: Hadoop provides the ability to control
the groups/users that are authorized to use a particular Hadoop service.
This authorization is enabled by setting the property hadoop.security.
authorization to true in core-site.xml. The user/groups access details
can be configured in hadoop-policy.xml in the conf folder. If there is any
unauthorized access request made to the Hadoop daemons, org.apache.
hadoop.security.authorize.AuthorizationException is logged in to
the Hadoop security logfile. Monitoring these exceptions can help identify
unauthorized access.

Chapter 7

[83]

• Hadoop RPC authentication errors: Hadoop RPC uses Java SASL APIs for
authentication. Quality of Protection (QoP) during authentication can be set
for this interaction. This ensures that the client is able to securely connect
with the Hadoop services and any authentication failures due to man-in-the-
middle attacks can be recorded. Hadoop provides the configuration hadoop.
rpc.protection in core-site.xml, which can be configured to enable
authentication, integrity, and confidentiality between the client and RPC
daemons. Any errors resulting from the RPC authentication are logged in the
security logfile of Hadoop.

• HDFS-sensitive file download operations: Hadoop has the ability to log every
filesystem operation to the HDFS audit logfile. This audit file can be used to
identify which user has accessed the sensitive file and downloaded these files.
It is important to keep an audit trail of the sensitive file access by authorized
users as well. The audit log provides the ability to track sensitive file access
and downloads from the Hadoop cluster. This access to sensitive files can be
captured in the SIEM system and rules configured to detect any suspicious
activities. These can be configured as security alerts in the SIEM system.

• MapReduce job events: Hadoop provides the ability to log all MapReduce
job submission and execution related events in the audit log. The job
submission, initialization, views, and modifications are logged in the audit
logfiles. This audit logfile can be used to identify which user is accessing or
running MapReduce jobs on the cluster and if there are any authentication
and authorization errors, they are logged. The MapReduce job errors can be
correlated with the HDFS filesystem access exceptions in the SIEM tool to
detect any suspicious activities.

• User access through Oozie, HUE, and WebHDFS: Each user accesses Oozie
and workflow submission is logged in to the Oozie audit logs. All user
interactions with Oozie are logged in to the audit log. This enables you to
track the details of the user that has executed a particular workflow.
HUE provides the user interface for Hadoop. The user logs in to HUE for
performing the various operations in Hadoop. Each of these interactions are
logged by HUE in the HUE logs. The exception from the HUE logs can be
monitored in the SIEM tool.
Users can directly access Hadoop through the WebHDFS REST API or
indirectly through HUE and Oozie. WebHDFS access logs are tracked by
NameNode audit logs. Any exception in the NameNode audit logs is tracked
in the SIEM tool.

Security Event and Audit Logging in Hadoop

[84]

• Exception events: Apart from the security events generated by user
authentications and authorizations, it is useful to log any exceptions in the
Hadoop cluster. These exceptions provide hints to potential vulnerabilities
in the system and can be looked at in detail to identify potential security
incidents. The SIEM tool can be used to correlate these exceptions.

The Security Incident and Event Monitoring
(SIEM) system
A typical Security Incident and Event Monitoring system consists of three
main components:

• Log and event collecting agents: These agents are installed in each of
the nodes in the cluster, which needs to collect the event and audit logs.
Typically, they are configured to ingest the Hadoop security audit logs and
event logs and collect the required elements that are published to the Event
Monitoring Server.

• Event Monitoring Server: These are central servers that receive the log
and audit events published by collecting agents. They usually have certain
listener ports which are open to listen to events published by the collecting
agents. They continuously run the policy and rule evaluation on the log
events that are received from the collecting agents. Based on the alert policies
configured, corresponding alerts are generated, which are visible through the
Event Monitoring and Audit Logging UI.

• Event Monitoring and Audit Logging UI: The user interface (UI) provides
the ability to define the Event Monitoring policies and configure the rules for
automated alerts. The UI also provides prebuilt reports that can be used to
review the policy violations, access, and authorization violations along with
any sensitive data access.

Chapter 7

[85]

The block diagram of a Security Event and Audit Logging system for a secured
Hadoop cluster is as follows:

The security event logging and auditing capabilities are provided by a few products
such as OSSEC. They provide the ability to configure rules that can be leveraged to
set up the rule for monitoring Hadoop. For detecting security incidents and alerts
from the Hadoop cluster, Hadoop audit logging needs to be enabled and configured.

OSSEC is a popular host-based intrusion detection system (HIDS) that is an open
source project owned and sponsored by Trend Micro. OSSEC provides the capability
to collect the various logs and events from the secured Hadoop cluster and process
them to create alerts. The generated alerts can also be pushed to the enterprise SIEM
tool for further actions. Further details on configuring OSSEC for event monitoring
are provided in the following link: http://www.ossec.net/.

Hadoop provides audit logs and security logs. However, they are not enabled by
default. In the next section we will see how to enable audit logging in Hadoop.

Security Event and Audit Logging in Hadoop

[86]

Setting up audit logging in a secured
Hadoop cluster
To enable security event monitoring and auditing in Hadoop, we need to enable
the logging framework to write the detailed audit trails in the logfile. Enabling
detailed audit logs needs careful planning. These logs could grow very fast if there
are continuous exceptions and could fill up the disk space. There should be a system
monitoring this log growth and taking corrective actions such as cleaning and
compressing. This can be done by configuring the Log4j.properties file in the
Hadoop configuration directory. By default, the Hadoop security and audit logfile
appenders are set to Null appenders and hence, disabled. This needs to be modified
to reflect the correct logfile location for audit and security logs. We also need to
enable the capture of the authentication logs from the local KDC.

Configuring Hadoop audit logs
The following configuration shows the audit and security logging configurations that
need to be done on all the nodes in the secured Hadoop cluster to collect the audit
and exception events related to security:

Steps for Configuring Audit Logging in Hadoop Ecosystem

Hbase Audit Logging

Oozie Audit Logging

Set up rolling file
appender in

log4j.properties

Configure audit logger
for Oozie to rolling file

appender

Configure security
access controller

logging to rolling file
appender

Set up rolling file
appender in

log4j.properties

1

2

1

2

Hadoop Audit Logging

Set up rolling file
appender in

log4j.properties
1

Configure audit logger
for RPC audit logging to

rolling file appender
2

Configure audit logger
for file system access
logging to rolling file

appender

3

Configure audit logger
for MapReduce audit
logging to rolling file

appender

4

Chapter 7

[87]

• Common properties for rolling file appender: These configurations need
to be done in log4j.properties in the /etc/hadoop/conf directory. To
enable Hadoop RPC audit logging, we need to configure the rolling file
appender in log4j.properties. Add the following configurations that set
the rolling file appender for security logging (RFAS):
hadoop.log.dir= /var/logs/auditlogs

hadoop.security.log.file=SecurityAuth-${user.name}.audit

log4j.appender.RFAS=org.apache.log4j.RollingFileAppender

log4j.appender.RFAS.File=${hadoop.log.dir}/${hadoop.security.log.
file}

log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout

log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c:
%m%n

log4j.appender.RFAS.MaxFileSize=256MB

log4j.appender.RFAS.MaxBackupIndex=20

• Hadoop RPC event logging: To enable Hadoop RPC audit logging, we need
to add the following logger in log4j.properties:
log4j.logger.SecurityLogger=INFO, RFAS

• Hadoop File System access audit logging: To enable the HDFS file access
audit information, we need to add the following logger:
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.
audit = INFO, RFAS

• Hadoop MapReduce audit logging: To enable the MapReduce
job-submission-related audit information, we need to add the
following logger:
log4j.logger.org.apache.hadoop.mapred.AuditLogger = INFO, RFAS

• Oozie audit logging: To enable Oozie-related audit information in the Oozie
logs, we need to configure the following logger in log4j.properties in the
/etc/oozie/conf directory and also add the common properties for the
rolling file appender described earlier:
log4j.logger.oozieaudit = INFO, RFAS

• HBase audit logging: To enable HBase user-level access-related audit
information in the Oozie logs, we need to configure the following logger in
log4j.properties in the /etc/hbase/conf directory along with common
properties for the rolling file appender described earlier:
log4j.logger.SecurityLogger.org.apache.hadoop.hbase.security.
access.AccessController= INFO, RFAS

Security Event and Audit Logging in Hadoop

[88]

• HUE audit logging: HUE provides access.log, which has all user-access-
related audit information in the location /var/log/hue or the logs directory
inside the installation folder.

• KDC audit logging: In a secured Hadoop cluster, the Hadoop services will
authenticate with the local KDC using the service principal, and also, all
the users will contact the local KDC to fetch the service tickets for accessing
the Hadoop services. These audit events can be captured and logged in to
a specific directory. To configure the kadmind and krb5kdc processes to
log the access logs in the specified directory, we need to update the kdc.
conf logging section. For example, add the following entry in the kdc.conf
logging section:

 [logging]

 kdc = FILE:/var/log/kdc-audit.log

 admin_server = FILE:/var/log/kadmin.log

Once the setup of the audit logging is completed in Hadoop, HBase, Oozie, HUE,
and local KDC, the audit logs have to be configured in the collection agent to fetch
the logs and process them. These configurations are specific to the SIEM tool that
is deployed and the corresponding documentation has to be referred to configure
it. The collection agent parses the logfile and extracts the required fields. Then, it
publishes the events to the monitoring server. The monitoring server executes the
rules and policies configured on these events and generates the alerts and reports.

Summary
In this chapter we looked at the general approach for identifying security incidents
and events in a secured Hadoop cluster. The SIEM systems consists of a collection
agent that gathers the events from the cluster and publishes them to the monitoring
server. The monitoring server is configured with rules and policies that are applied
on the collected events to generate security alerts and reports. We also looked at how
we configure the audit and security logs for the various components in a secured
Hadoop cluster.

Solutions Available for
Securing Hadoop

This section will focus on providing an overview of the various commercial and open
source technologies that are available to address the various security aspects, and how
they fit into the reference architecture of securing enterprise Big Data assets.

Hadoop distribution with enhanced
security support
Intel Distribution of Apache Hadoop software provides some enhanced security
features in a Hadoop distribution. Some of the key features for Intel's distribution are:

• It provides an integrated data encryption feature for sensitive data. The
encryption is based on OpenSSL 1.0.1.C, which is optimized for Intel AES-NI.

• Apart from encryption, Intel's distribution supports out of the box
compression and encryption capabilities.

• Sensitive data is never exposed either in motion or at rest. Thus, it is used to
ingest encrypted data into the Hadoop ecosystem and process the encrypted
data. Encryption keys are integrated using the Java keystore functionality.

• Intel's Manager for Apache Hadoop Software provides deployment,
management, monitoring, alerting, and security features.

• It provides a feature for managing user access to data and services using
Kerberos by creating access control lists (ACLs) and limiting user access to
data sets and services.

• Deployment and setup of the secure Hadoop cluster is automated and
integrated with key management systems.

Solutions Available for Securing Hadoop

[90]

More details on Intel's Hadoop Distribution are available
at https://hadoop.intel.com.

Automation of a secured Hadoop cluster
deployment
Let us have a look at some of the most important tools.

Cloudera Manager
Cloudera Manager is another of the most popular Hadoop Management and
Deployment Tool. Some of the key features of Cloudera Manager with respect to
securing a Hadoop Cluster are:

• Cloudera Manager automates the entire Hadoop cluster setup and enables
an automated setup of a secure Hadoop cluster with Kerberos. Cloudera
Manager automatically sets up the Keytab file in all the slave nodes, and
updates the Hadoop configuration with the required Keytab locations and
service principal details. Cloudera Manager updates the configuration files
(core-site.xml, hdfs-site.xml, mapred-site.xml, oozie-site.xml,
hue.ini, and taskcontroller.cfg) without any manual intervention.

• It supports the deployment of a role-based administration, where there are
read-only administrators who monitor the cluster while others can change
the deployments.

• It enables administrators to configure alerts specific to user activity and
access. This can be leveraged to security incidents and event monitoring.

• Cloudera can send events to enterprise SIEM tools about security incidents in
Hadoop using SNMP.

• It can integrate user credentials using LDAP with Active Directory.

More details on Cloudera Manager are available at the following
URL: http://www.cloudera.com/content/cloudera/
en/products/cloudera-manager.html.

Appendix

[91]

Zettaset
Zettaset (http://www.zettaset.com/) provides a product Zettaset Orchestrator
that provides seamless secured Hadoop deployment and management. Zettaset
doesn't provide any Hadoop distribution, but works with all distributions such
as Cloudera, Hortonworks, and Apache Hadoop. Some of the key features of the
Zettaset Orchestrator are:

• It provides an automated deployment of a secured Hadoop cluster
• It hardens the entire Hadoop deployment from an enterprise perspective to

address policy, compliance, access control, and risk management within the
Hadoop cluster environment

• It integrates seamlessly with an existing enterprise security policy framework
using LDAP and Active Directory (AD)

• It provides centralized configuration management, logging, and auditing
• It provides role-based access controls (RBACs) and enables Kerberos to be

seamlessly integrated with the rest of the ecosystem

All other platform management tools such as Ambari and Greenplum Hadoop
Deployment Manager need manual setup for establishing a secured Hadoop cluster.
The Keytab files, service principals, and the configuration files have to be manually
deployed on all nodes.

Different Hadoop data encryption options
Let us have a look at the various options available.

Dataguise for Hadoop
Dataguise (DG) for Hadoop provides a symmetric-key-based encryption of the
data. One of the key features of Dataguise is to identify and encrypt sensitive data.
It supports encryption and masking techniques for sensitive data protection. It
enables encryption of data with Hadoop API, Sqoop, and Flume. Thus, it can be used
to encrypt data moving in and out of the Hadoop ecosystem. Administrators can
schedule the data scan within the Hadoop ecosystem at regular intervals, and detect
sensitive data and encrypt or mask it. More details on Dataguise are available at
http://dataguise.com/products/dghadoop.html.

Solutions Available for Securing Hadoop

[92]

Gazzang zNcrypt
Gazzang zNcrypt provides a transparent block level encryption and provides
the ability to manage the keys used for encryption. zNcrypt acts like a virtual
filesystem that intercepts any application layer request to access the files. It encrypts
the block as it is written to the disk. zNcrypt leverages the Intel AES-NI hardware
encryption acceleration for maximum performance in the cryptographic process.
It also provides role-based access control and policy-based management of the
encryption keys. This can be used to implement multiple classification level security
in a secured Hadoop cluster.

eCryptfs for Hadoop
eCryptfs is a cryptographic stacked Linux filesystem. eCryptfs stores cryptographic
metadata in the header of each file written. When the encrypted files are copied
between hosts, the file will be decrypted with the proper key in the Linux kernel
key ring. We can set up a secured Hadoop cluster with eCryptfs on each node. This
ensures that data is transparently shared between nodes, and that all the data is
encrypted before being written to the disk.

More information on eCryptfs is available in the following link:
https://launchpad.net/ecryptfs.

Securing the Hadoop ecosystem with
Project Rhino
Project Rhino aimed to provide an integrated end-to-end data security view of the
Hadoop ecosystem.

It provides the following key features:

• Hadoop crypto codec framework and crypto codec implementation to
provide block-level encryption support for data stored in Hadoop

• Key distribution and management support so that MapReduce can decrypt
the block and execute the program as required

• Enhancing the security features of HBase by introducing cell-level
authentication for HBase, and providing transparent encryption for HBase
tables stored in Hadoop

• Standardized audit logging framework and log formats for easy audit
trail analysis

Appendix

[93]

More details on project Rhino are available at https://
github.com/intel-hadoop/project-rhino/.

Mapping of security technologies with
the reference architecture
We looked at the various commercial and open source tools that enable securing the
Big Data platform. This section provides the mapping of these various technologies
and how they fit into the overall reference architecture.

Security
Incident and

Event
Monitoring

(OSSEC, IBM
Gaurdium)

Security Auditing,
Policy (hardening)

and
Procedures
(Cloudera

Manager, Intel’s
Manager, Zettaset)

Infrastructure Security
(Kerberos, Rhino)

OS + File ystem Securitys
(SELinux, eCryptfs, zNcrypt)

Application Security
(Sentry, HUE)

Network Perimeter Security
(Knox Gateway, HttpFS)

Masking
(Dataguise, IBM Optim)

Encryption
(Intel’s Distribution, Rhino, Dataguise,

Gazzang)

Authorization
(Zettaset, Rhino)

Authentication
(Active Directory, Kerberos, Rhino)

Mapping of Technologies with Reference Architecture

Infrastructure security
Physical security needs to be enforced manually. However, unauthorized access to a
distributed cluster is avoided by deploying Kerberos security in the cluster. Kerberos
ensures that the services and users confirm their identity with the KDC before they
are provided access to the infrastructure services. Project Rhino aims to extend this
further by providing the token-based authentication framework.

Solutions Available for Securing Hadoop

[94]

OS and filesystem security
Filesystem security is enforced by providing a secured virtualization layer on
the existing OS filesystem using the file encryption technique. Files written to
the disk are encrypted and while files read from the file are decrypted on-the-fly.
These features are provided by eCryptfs and zNcrypt tools. SELinux also provides
significant protection by hardening the OS.

Application security
Tools such as Sentry and HUE provide a platform for secured access to Hadoop.
They integrate with LDAP to provide seamless enterprise integration.

Network perimeter security
One of the common techniques to ensure perimeter security in Hadoop is by
isolation of the Hadoop cluster from the rest of the enterprise. However, users still
need to access the cluster with tools such as Knox and HttpFS , that provide the
proxy layer for end users to remotely connect to the Hadoop cluster and submit jobs
and access the filesystem.

Data masking and encryption
To protect data in motion and at rest, encryption and masking techniques are
deployed. Tools such as IBM Optim and Dataguise provide large scale data masking
for enterprise data. To protect data in REST in Hadoop, we deploy block-level
encryption in Hadoop. Intel's distribution supports the encryption and compression
of files. Project Rhino enables block-level encryption similar to Dataguise
and Gazzang.

Authentication and authorization
While authentication and authorization has matured significantly, tools such as
Zettaset Orchestrator and Project Rhino enable integration with the enterprise system
for authentication and authorization.

Appendix

[95]

Audit logging, security policies, and
procedures
Common Security Audit logging for user access to Hadoop Cluster is enabled by
tools such as Cloudera Manager. Cloudera Manager also has the ability to generate
alerts and events based on the configured organizational policies. Similarly, Intel's
manager and Zettaset Orchestrator also provide the security policies enforcement in
the cluster as per organizational policies.

Security Incident and Event Monitoring
Detecting security incident and monitoring events in a Big Data platform is essential.
Open source tools such as OSSEC and IBM Gaudium enable a secured Hadoop
cluster to detect security incidents and provide easy integration with enterprise
SIEM tools.

Index
A
Access control 10
access control list (ACL) 32
Add/synch feature 70
appdefaults property 30
appender for security logging (RFAS) 87
Audits and event monitoring 11
Authentication 10
Authentication Service (AS) 14
Authorization 10

B
banned.users property 41
Big Data security

reference architecture 11
reference architecture 12

Block Access Token 21
business intelligence (BI) 9

C
capaths property 30
chmod command 17
chown command 17
Cloudera Distribution of Hadoop

(CDH4) 34
Cloudera Manager

about 43
features 90

Command Line Interface (CLI) 46
Common Security Audit logging 95
core-site.xml file 79
Corporate Network 68

D
Dataguise (DG) 91
Data masking and encryption 10
DataNode directory 18
dbdefaults property 31
dbmodules property 31
Delegation Token 20
dfs.block.access.token.enable property 37
dfs.datanode.address property 38
dfs.datanode.data.dir.perm property 38
dfs.datanode.http.address property 38
dfs.datanode.kerberos.principal property 38
dfs.datanode.keytab.file property 38
dfs.hosts property 18
dfs.namenode.kerberos.internal.spnego.

principal property 37
dfs.namenode.kerberos.principal

property 37
dfs.namenode.keytab.file property 37
dfs.secondary.namenode.kerberos.internal.

spnego.principal property 38
dfs.secondary.namenode.kerberos.principal

property 38
dfs.secondary.namenode.keytab.file

property 38
domain_realm property 30

E
eCryptfs 92
EIM

Active Directory-based EIM, integrating
with Hadoop ecosystem 66, 67

integrating 64
users credentials, managing 64, 65

[98]

EIM integration
configuring, with Hadoop 66

Enterprise Identity Management. See EIM
Enterprise Security Models 7
Enterprise Security Systems 42
event monitoring, Hadoop cluster

Exception events 84
Hadoop RPC authentication errors 83
Hadoop RPC authorization errors 82
HDFS file operation errors 82
HDFS-sensitive file download

operations 83
MapReduce job events 83
User login and authorization events 82

events
monitoring 95

Event Monitoring and Audit Logging UI 84
Event Monitoring Server 84

F
File System Security 94
Flume

about 9
channel, securing 55
securing 52, 53
sources, securing 53, 54

Flume sources
securing 53, 54

G
Gateway Server 68
Gazzang zNcrypt 92

H
Hadoop

configuring, with Kerberos
authentication 34

default security model 17, 18
sensitive data, securing in 74
users, configuring for 42

Hadoop audit logs, configuring
common properties for rolling file

appender 87
Hadoop File System access audit

logging 87

Hadoop MapReduce audit logging 87
Hadoop RPC event logging 87
HBase audit logging 87, 88
KDC audit logging 88

Hadoop-based Big Data ecosystem 7
Hadoop cluster

Audit Logging, setting up 86
events monitoring 82
Hadoop audit logs, configuring 86-88
security incident 82
setting up 25
setting up, pre-requisites 25, 26

Hadoop configuration, with Kerberos
authentication

about 34
Hadoop service principals, setting up 35
Kerberos client, setting up 34

Hadoop data encryption, options
Dataguise (DG) 91
eCryptfs 92
Gazzang zNcrypt 92

Hadoop Distributed File System (HDFS) 35
Hadoop ecosystem

Cloudera Sentry 9
Flume 9
Hive Server 2 9
Hortonworks Knox Gateway 9
Kerberos, configuring for 46
key security considerations 10
Project Rhino 9
securing 8, 45
securing, best practices 61
securing, challenges 9
securing, Project Rhino 92
Sqoop 9
Sqoop 2, Flume-ng 9

Hadoop Kerberos security implementation
about 19
Block Access Token 21
Delegation Token authentication 20
impersonation 19
Job Token 20
Secure IPC 19
Self-Served 19
service-level access controls 19-22
user authentication 20
user-level access controls 19

[99]

hadoop.log.dir property 41
hadoop.security.authentication property 37
hadoop.security.authorization property 37
Hadoop service principals

Hadoop configuration files, setting up 36
HDFS-related configurations 37
keytab file, creating 35
keytab file, distributing 36
MRV1-related configurations 38
MRV2-related configurations 39, 40
secured DataNode, setting up 40
setting up 35-42
TaskController class, setting up 40, 42

Hadoop sink
securing 54, 55

HBase
securing 55-59

Hive
securing 46-48
securing, Sentry used 49

Hive Server 2 9
host-based intrusion detection system

(HIDS) 85
HttpFS

about 68
using 68, 69

HTTP Simple and Protected
GSSAPI Negotiation
Mechanism (SPNEGO) 51

HUE
about 69, 70
limitations 70

I
Identity and Access Management (IDAM) 9
Impala 49
Infrastructure security 11
Intel Distribution, of Apache Hadoop

features 89
Intel Manager 43

J
Java Authentication and Authorization

Service (JAAS) 58

Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction
Policy File 33

Job Token 20
Jsvc 40

K
kadmind daemons 14
kadmin.local utility 15
kadmin utility 15
kdb5_util utility 15
KDC

about 14
administrator principal, setting up 32
AES-256 encryption, supporting Kerberos

ticket 33
configuring 29-31
database, establishing 31
installing 27, 28
Kerberos administrator, setting up 33
Kerberos daemons, starting up 33
LDAP, configuring as Kerberos database 33
user(service) principles, adding 33

kdcdefaults property 31
Kerberos

about 13, 14
advantages 16, 17
heads 14
kadmind daemons 14
krb5kdc daemons 14
setting up 26, 27
terminologies 14
utilities 15
working, diagram 15
working, steps 16

Kerberos configuration, for Hadoop
ecosystem

Flume, securing 52
HBase, securing 55
Hive, securing 46, 48
Oozie, securing 49-51
Pig, securing 60
Sqoop, securing 59

Kerberos, setting up
diagram 26
KDC, installing 27, 28

[100]

mapreduce.jobhistory.keytab property 40
mapreduce.jobhistory.principal property 40
mapreduce.jobtracker.kerberos.principal

property 38
mapreduce.jobtracker.keytab.file

property 38
mapreduce.tasktracker.group

property 39, 41
mapreduce.tasktracker.kerberos.principal

property 39
mapreduce.tasktracker.keytab.file

property 39
Master 55
min.user.id property 41

N
network perimeter security 94
Network perimeter security 10
Null appenders 86

O
Oozie

securing 49-51
Operating System (OS) 64

P
Pig

securing 60
principals 14
Project Rhino

about 78
used, for Hadoop ecosystem security 92

proof of concept (POC) 7

R
realm 14
realms property 30, 31
reference architecture

used, for security technologies mapping 93
reference architecture, for Big Data

security 11, 12
Region 55
RegionServer 56
role-based access controls (RBACs) 91

Kerberos utilities diagram 27
Kerberos, terminologies

Authentication Service (AS) 14
realm 14
Ticket Granting Service (TGS) 14

Kerberos, utilities
kadmin 15
kadmin.local 15
kdb5_util 15
kinit 15
klist 15
ktutil 15

Key Distribution Center. See KDC
key security considerations, Hadoop

ecosystem
access control 10
audits and event monitoring 11
authentication 10
authorization 10
Data masking and encryption 10
infrastructure security 11
Network perimeter security 10
system security 11

keystore-password property 54
keystore property 54
keystore-type property 54
keytab file 36
kinit command 33
kinit utility 15
klist utility 15
Knox Gateway Server

about 71
diagram 71

krb5kdc daemons 14
ktutil utility 15

L
LDAP Synchronization Connector (LSC) 66
libdefaults property 30
logging property 30, 31
Log and event collecting agents 84

M
mapred-site.xml file 79
mapred.task.tracker.task-controller

property 39

[101]

SIEM system
block diagram 85
Event Monitoring and Audit Logging UI 84
Event Monitoring Server 84
Log and event collecting agents 84

Simple Authentication and Security Layer
(SASL) 20

Sqoop
about 9
securing 59, 60

ssl property 54
System security 11

T
TaskController class 40
Ticket Granting Service (TGS) 14
Ticket Granting Ticket (TGT) 16

U
user-level access controls 19
users

configuring, for Hadoop 42

Y
yarn.nodemanager.container-executor.class

property 39
yarn.nodemanager.keytab property 39
yarn.nodemanager.linux-container-executor.

group property 39, 41
yarn.nodemanager.log-dirs property 41
yarn.nodemanager.principal property 39
yarn.resourcemanager.keytab property 39
yarn.resourcemanager.principal property 39

Z
Zettaset

features 91
URL 91

ZooKeeper 55

S
secured Hadoop cluster

accessing, in enterprise network 67, 68
Corporate Network 68
Gateway Server 68
HttpFS 68, 69
HUE 69, 70
Knox Gateway Server 71

secured Hadoop cluster deployment
automation

Cloudera Manager tool 90
Zettaset tool 91

secured Hadoop deployment
automating 43

securing insights approach, Hadoop
data at rest, securing 76-78
data encryption, implementing 78, 79
data in motion, securing 75, 76

security incident 95
Security Incident and Event Monitoring. See

SIEM system
security incident, Hadoop cluster 82
security technologies mapping, reference

architecture used
application security 94
audit logging 95
authentication 94
authorization 94
data masking 94
encryption 94
event Monitoring 95
File System Security 94
infrastructure security 93
network perimeter security 94
section diagram 93
Security Incident 95
security policies 95

sensitive data, securing in Hadoop
categories 74
key requirements 74
securing insights approach 75

Sentry
used, for Hive security 49

service-level access controls
about 19, 20
scalable authentication 19

Thank you for buying
Securing Hadoop

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1. Learn tools and techniques that let you
approach Big Data with relish and not fear

2. Shows how to build a complete infrastructure
to handle your needs as your data grows

3. Hands-on examples in each chapter give the big
picture while also giving direct experience

Scaling Big Data with Hadoop
and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build effi cient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1. Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks

2. Learn from interesting, real-life use cases for
Big Data search along with sample code

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Please check www.PacktPub.com for information on our titles

Hadoop MapReduce Cookbook
ISBN: 978-1-84951-728-7 Paperback: 300 pages

Recipes for analyzing large and complex datasets
with Hadoop MapReduce

1. Learn to process large and complex data sets,
starting simply, then diving in deep

2. Solve complex big data problems such as
classifications, finding relationships, online
marketing and recommendations

3. More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and
real world examples

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1. Solutions to common problems when working
in the Hadoop environment

2. Recipes for (un)loading data, analytics, and
troubleshooting

3. In depth code examples demonstrating various
analytic models, analytic solutions, and
common best practices

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Hadoop Security Overview
	Why do we need to secure Hadoop?
	Challenges for securing the Hadoop ecosystem
	Key security considerations
	Reference architecture for Big Data security

	Summary

	Chapter 2: Hadoop Security Design
	What is Kerberos?
	Key Kerberos terminologies
	How Kerberos works?
	Kerberos advantages

	The Hadoop default security model
with Kerberos
	Hadoop Kerberos security implementation
	User-level access controls
	Service-level access controls
	User and service authentication
	Delegation Token
	Job Token
	Block Access Token

	Summary

	Chapter 3: Setting up a Secured
Hadoop Cluster
	Prerequisites
	Setting up Kerberos
	Installing the Key Distribution Center
	Configuring the Key Distribution Center
	Establishing the KDC database
	Setting up the administrator principal for KDC
	Starting the Kerberos daemons
	Setting up the first Kerberos administrator
	Adding the user or service principals
	Configuring LDAP as the Kerberos database
	Supporting AES-256 encryption for a
Kerberos ticket

	Configuring Hadoop with Kerberos authentication
	Setting up the Kerberos client on all the Hadoop nodes
	Setting up the Hadoop service principals
	Creating a keytab file for the Hadoop services
	Distributing the keytab file for all slaves
	Setting up the Hadoop configuration files
	HDFS-related configurations
	MRV1-related configurations
	MRV2-related configurations
	Setting up secured DataNode
	Setting up the TaskController class

	Configuring users for Hadoop
	Automation of secured Hadoop deployment
	Summary

	Chapter 4: Securing the
Hadoop Ecosystem
	Configuring Kerberos for Hadoop ecosystem components
	Securing Hive
	Securing Hive using Sentry

	Securing Oozie
	Securing Flume
	Securing Flume sources
	Securing Hadoop sink
	Securing a Flume channel

	Securing HBase
	Securing Sqoop
	Securing Pig

	Best practices for securing the Hadoop ecosystem components
	Summary

	Chapter 5: Integrating Hadoop with Enterprise Security Systems
	Integrating Enterprise Identity Management systems
	Configuring EIM integration with Hadoop
	Integrating Active Directory-based EIM with the Hadoop ecosystem

	Accessing a secured Hadoop cluster from an enterprise network
	HttpFS
	HUE
	Knox Gateway Server

	Summary

	Chapter 6: Securing Sensitive Data
in Hadoop
	Securing sensitive data in Hadoop
	Approach for securing insights in Hadoop
	Securing data in motion
	Securing data at rest
	Implementing data encryption in Hadoop

	Summary

	Chapter 7: Security Event and Audit Logging in Hadoop
	Security Incident and Event Monitoring in a Hadoop Cluster
	The Security Incident and Event Monitoring (SIEM) system

	Setting up audit logging in a secured Hadoop cluster
	Configuring Hadoop audit logs

	Summary

	Appendix: Solutions Available for Securing Hadoop
	Hadoop distribution with enhanced security support
	Automation of secured Hadoop cluster deployment
	Cloudera Manager
	Zettaset

	Different Hadoop data encryption options
	Dataguise for Hadoop
	Gazzang zNcrypt
	eCryptfs for Hadoop

	Securing the Hadoop ecosystem with Project Rhino
	Mapping of the security technologies with the reference architecture
	Infrastructure security
	OS and filesystem security
	Application security
	Network perimeter security
	Data masking and encryption
	Authentication and authorization
	Audit logging, security policies, and procedures
	Security Incident and Event Monitoring

	Index

