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Preface

The subject of this book is the implementation of programming languages.
Programming language processors are programs that process other programs. The
primary examples of language processors are compilers and interpreters.

Programming languages are of central importance in computer science. They are
the most fundamental tools of software engineers, who are completely dependent on the
quality of the language processors they use. There is an interplay between the design of
programming languages and computer instruction sets: compilers must bridge the gap
between high-level languages and machine code. And programming language design
itself raises strong feelings among computer scientists, as witnessed by the proliferation
of language paradigms. Imperative and object-oriented languages are currently
dominant in terms of actual usage, and it is on the implementation of such languages
that this book focuses.

Programming language implementation is a particularly fascinating topic, in our
view, because of its close interplay between theory and practice. Ever since the dawn of
computer science, the engineering of language processors has driven, and has been
vastly improved by, the development of relevant theories.

Nowadays, the principles of programming language implementation are very well
understood. An experienced compiler writer can implement a simple programming lan-
guage about as fast as he or she can type. The basic techniques are simple yet effective,
and can be lucidly presented to students. Once the techniques have been mastered,
building a compiler from scratch is essentially an exercise in software engineering.

A textbook example of a compiler is often the first complete program of its size
seen by computer science students. Such an example should therefore be an exemplar of
good software engineering principles. Regrettably, many compiler textbooks offend
these principles. This textbook, based on a total of about twenty-five years’ experience
of teaching programming language implementation, aims to exemplify good software
engineering principles at the same time as explaining the specific techniques needed to
build compilers and interpreters.

The book shows how to design and build simple compilers and interpreters using
the object-oriented programming language Java. The reasons for this choice are two-
fold. First, object-oriented methods have emerged as a dominant software engineering
technology, yielding substantial improvements in software modularity, maintainability,

Xi
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xii Programming Language Processors in Java

and reusability. Secondly, Java itself has experienced a prodigious growth in popularity
since its appearance as recently as 1994, and that for good technical reasons: Java is
simple, consistent, portable, and equipped with an extremely rich class library. Soon we
can expect all computer science students to have at least some familiarity with Java.

A programming languages series

This is the fourth of a series of books on programming languages:
» Programming Language Concepts and Paradigms

e Programming Language Syntax and Semantics

* Programming Language Processors

* Programming Language Processors in Java

Programming Language Concepts and Paradigms studies the concepts underlying pro-
gramming languages, and the major language paradigms that use these concepts in
different ways; in other words, it is about language design. Programming Language
Syntax and Semantics shows how we can formally specify the syntax (form) and seman-
tics (meaning) of programming languages. Programming Language Processors studies
the implementation of programming languages, examining language processors such as
compilers and interpreters, and using Pascal as the implementation language. Program-
ming Language Processors in Java likewise studies the implementation of programming
languages, but now using Java as the implementation language and object-oriented
design as the engineering principle; moreover, it introduces basic techniques for imple-
menting object-oriented languages.

This series attempts something that has not previously been achieved, as far as we
know: a broad study of all aspects of programming languages, using consistent termi-
nology, and emphasizing connections likely to be missed by books that deal with these
aspects separately. For example, the concepts incorporated in a language must be
defined precisely in the language’s semantic specification. Conversely, a study of
semantics helps us to discover and refine elegant and powerful new concepts, which can
be incorporated in future language designs. A language’s syntax underlies analysis of
source programs by language processors; its semantics underlies object code generation
and interpretation. Implementation is an important consideration for the language
designer, since a language that cannot be implemented with acceptable efficiency will
not be used.

The books may be read as a series, but each book is sufficiently self-contained to be
read on its own, if the reader prefers.

Content of this book

Chapter 1 introduces the topic of the book. It reviews the concepts of high-level pro-
gramming languages, and their syntax, contextual constraints, and semantics. It explains
what a language processor is, with examples from well-known programming systems.

[vww allitebooks.cond
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Preface xiii

Chapter 2 introduces the basic terminology of language processors: translators,
compilers, interpreters, source and target languages, and real and abstract machines. It
goes on to study interesting ways of using language processors: interpretive compilers,
portable compilers, and bootstrapping. In this chapter we view language processors as
‘black boxes’. In the following chapters we look inside these black boxes.

Chapter 3 looks inside compilers. It shows how compilation can be decomposed
into three principal phases: syntactic analysis, contextual analysis, and code generation.
It also compares different ways of designing compilers, leading to one-pass and multi-
pass compilation.

Chapter 4 studies syntactic analysis in detail. It decomposes syntactic analysis into
scanning, parsing, and abstract syntax tree construction. It introduces recursive-descent
parsing, and shows how a parser and scanner can be systematically constructed from the
source language’s syntactic specification.

Chapter 5 studies contextual analysis in detail, assuming that the source language
exhibits static bindings and is statically typed. The main topics are identification, which
is related to the language’s scope rules, and type checking, which is related to the lan-
guage’s type rules.

Chapter 6 prepares for code generation by discussing the relationship between the
source language and the target machine. It shows how target machine instructions and
storage must be marshaled to support the higher-level concepts of the source language.
The topics covered include data representation, expression evaluation, storage
allocation, routines and their arguments, garbage collection, and the run-time
organization of simple object-oriented languages.

Chapter 7 studies code generation in detail. It shows how to organize the translation
from source language to object code. It relates the selection of object code to the seman-
tics of the source language. As this is an introductory textbook, only code generation for
a stack-based target machine is covered. (The more difficult topics of code generation
for a register-based machine, and code transformations are left to more advanced
textbooks.)

Chapter 8 looks inside interpreters. It gives examples of interpreters for both low-
level and high-level languages.

Chapter 9 concludes the book. It places the implementation of a programming lan-
guage in the context of the language’s life cycle, along with design and specification. It
also discusses quality issues, namely error reporting and efficiency.

There are several possible orders for studying the main topics of this book. The
chapter on interpretation can be read independently of the chapters on compilation.
Within the latter, the chapters on syntactic analysis, contextual analysis, and code gen-
eration can be read in any order. The following diagram summarizes the dependencies
between chapters.
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9
Conclusion

The methods described in this textbook are freely illustrated by examples. In Chapter 2,
the examples are of language processors for real programming languages. In the remain-
ing chapters, most examples are based on smaller languages, in order that the essential
points can be conveyed without the reader getting lost in detail.

Examples and case studies

A complete programming language is a synthesis of numerous concepts, which
often interact with one another in quite complicated ways. It is important that the reader
understands how we cope with these complications in implementing a complete
programming language. For this purpose we use the programming language Triangle as
a case study. An overview of Triangle is given in Section 1.4. A reader already familiar
with a Pascal-like language should have no trouble in reading Triangle programs. A
complete specification of Triangle is given in Appendix B; this includes a formal
specification of its syntax, but is otherwise informal.

We designed Triangle for two specific purposes: to illustrate how a programming
language can be formally specified (in the companion textbook Programming Language
Syntax and Semantics), and to illustrate how a programming language can be imple-
mented. Ideally we would use a real programming language, such as Pascal or Java, for
these purposes. In practice, however, real languages are excessively complicated. They
contain many features that are tedious but unilluminating to specify and to implement.
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Although Triangle is a model language, it is rich enough to write interesting programs
and to illustrate basic methods of specification and implementation. Finally, it can
readily be extended in various ways (such as adding new types, new control structures,
or packages), and such extensions are a basis for a variety of projects.

J

Educational software

A Triangle language processor is available for educational use in conjunction with this
textbook. The Triangle language processor consists of: a compiler for Triangle, which
generates code for TAM (Triangle Abstract Machine); an interpreter for TAM; and a
disassembler for TAM. The tools are written entirely in Java, and will run on any
computer equipped with a JVM (Java Virtual Machine). You can download the Triangle
language processor from our Web site:

www.dcs.gla.ac.uk/~daw/books/PLPJ/

Exercises and projects

Each chapter of this book is followed by a number of relevant exercises. These vary
from short exercises, through longer ones (marked *), up to truly demanding ones
(marked **) that could be treated as projects.

A typical exercise is to apply the methods of the chapter to a very small toy
language, or a minor extension of Triangle.

A typical project is to implement some substantial extension to Triangle. Most of
the projects are gathered together at the end of Chapter 9; they require modifications to
several parts of the Triangle compiler, and should be undertaken only after reading up to
Chapter 7 at least.

Readership

This book and its companions are aimed at junior, senior, and graduate students of com-
puter science and information technology, all of whom need some understanding of the
fundamentals of programming languages. The books should also be of interest to profes-
sional software engineers, especially project leaders responsible for language evaluation
and selection, designers and implementors of language processors, and designers of new
languages and extensions to existing languages.

The basic prerequisites for this textbook are courses in programming and data struc-
tures, and a course in programming languages that covers at least basic language con-
cepts and syntax. The reader should be familiar with Java, and preferably at least one
other high-level language, since in studying implementation of programming languages
it is important not to be unduly influenced by the idiosyncrasies of a particular language.
All the algorithms in this textbook are expressed in Java.

The ability to read a programming language specification critically is an essential
skill. A programming language implementor is forced to explore the entire language,
including its darker corners. (The ordinary programmer is wise to avoid these dark
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corners!) The reader of this textbook will need a good knowledge of syntax, and ideally
some knowledge of semantics; these topics are briefly reviewed in Chapter 1 for the
benefit of readers who might lack such knowledge. Familiarity with BNF and EBNF
(which are commonly used in language specifications) is essential, because in Chapter 4
we show how to exploit them in syntactic analysis. No knowledge of formal semantics
is assumed.

The reader should be comfortable with some elementary concepts from discrete
mathematics — sets and recursive functions — as these help to sharpen understanding of,
for example, parsing algorithms. Discrete mathematics is essential for a deeper under-
standing of compiler theory; however, only a minimum of compiler theory is presented
in this book.

This book and its companions attempt to cover all the most important aspects of a
large subject. Where necessary, depth has been sacrificed for breadth. Thus the really
serious student will need to follow up with more advanced studies. Each book has an
extensive bibliography, and each chapter closes with pointers to further reading on the
topics covered by the chapter.
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CHAPTER ONE

Introduction

In this introductory chapter we start by reviewing the distinction between low-level and
high-level programming languages. We then see what is meant by a programming lan-
guage processor, and look at examples from different programming systems. We review
the specification of the syntax and semantics of programming languages. Finally, we
look at Triangle, a programming language that will be used as a case study throughout
this book.

1.1 Levels of programming language

Programming languages are the basic tools of all programmers. A programming lan-
guage is a formal notation for expressing algorithms. Now, an algorithm is an abstract
concept, and has an existence independent of any particular notation in which it might
be expressed. Without a notation, however, we cannot express an algorithm, nor com-
municate it to others, nor reason about its correctness.

Practicing programmers, of course, are concerned not only with expressing and ana-
lyzing algorithms, but also with constructing software that instructs machines to perform
useful tasks. For this purpose programmers need facilities to enter, edit, translate, and
interpret programs on machines. Tools that perform these tasks are called programming
language processors, and are the subject of this book.

Machines are driven by programs expressed in machine code (or machine lang-
uage). A machine-code program is a sequence of instructions, where each instruction is
just a bit string that is interpreted by the machine to perform some defined operation.
Typical machine-code instructions perform primitive operations like the following:

* Load an item of data from memory address 366.
e Add two numbers held in registers 1 and 2.
e Jump to instruction 13 if the result of the previous operation was zero.

In the very early days of computing, programs were written directly in machine
code. The above instructions might be written, respectively, as follows:

» 0000 0001 0110 1110
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» 0100 0000 0001 0010
+ 1100 0000 0000 1101
Once written, a program could simply be loaded into the machine and run.

Clearly, machine-code programs are extremely difficult to read, write, and edit. The
programmer must keep track of the exact address of each item of data and each instruc-
tion in storage, and must encode every single instruction as a bit string. For small pro-
grams (consisting of thousands of instructions) this task is onerous; for larger programs
the task is practically infeasible.

Programmers soon began to invent symbolic notations to make programs easier to
read, write, and edit. The above instructions might be written, respectively, as follows:

e LOAD x
e ADD R1 R2
e JUMPZ h

where LOAD, ADD, and JUMPZ are symbolic names for operations, R1 and R2 are sym-
bolic names for registers, x is a symbolic name for the address of a particular item of
data, and h is a symbolic name for the address of a particular instruction. Having written
a program like this on paper, the programmer would prepare it to be run by manually
translating each instruction into machine code. This process was called assembling the
program.

The obvious next step was to make the machine itself assemble the program. For this
process to work, it is necessary to standardize the symbolic names for operations and
registers. (However, the programmer should still be free to choose symbolic names for
data and instruction addresses.) Thus the symbolic notation is formalized, and can now
be termed an assembly language.

Even when writing programs in an assembly language, the programmer is still work-
ing in terms of the machine’s instruction set. A program consists of a large number of
very primitive instructions. The instructions must be written individually, and put to-
gether in the correct sequence. The algorithm in the mind of the programmer tends to be
swamped by details of registers, jumps, and so on. To take a very simple example, con-
sider computing the area of a triangle with sides a, b, and ¢, using the formula:

V(s X (s — @) X (s — b) X (s — ¢))
where s=(a+b+c)/2

Written in assembly language, the program must be expressed in terms of individual
arithmetic operations, and in terms of the registers that contain intermediate results:

LOAD R1 a; ADD Rl b; ADD Rl c¢; DIV R1 #2;
LOAD R2 R1;

LOAD R3 R1; SUB R3 a; MULT R2 R3;

LOAD R3 R1; SUB R3 b; MULT R2 R3;
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LOAD R3 R1; SUB R3 c¢; MULT R2 R3;
LOAD RO R2; CALL sgrt

Programming is made very much easier if we can use notation similar to the familiar
mathematical notation:

let s = (a+b+c) /2
in sqgrt(s*(s-a)*(s-b)*(s-c))

Today the vast majority of programs are written in programming languages of this
kind. These are called high-level languages, by contrast with machine languages and
assembly languages, which are low-level languages. Low-level langoages are so called
because they force algorithms to be expressed in terms of primitive instructions, of the
kind that can be performed directly by electronic hardware. High-level languages are so
called because they allow algorithms to be expressed in terms that are closer to the way
in which we conceptualize these algorithms in our heads. The following are typical of
concepts that are supported by high-level languages, but are supported only in a rudi-
mentary form or not at all by low-level languages:

» Expressions: An expression is a rule for computing a value. The high-level language
programmer can write expressions similar to ordinary mathematical notation, using
operators such as ‘+’, ‘=7, “*’ and ‘/’.

¢ Data types: Programs manipulate data of many types: primitive types such as truth
values, characters, and integers, and composite types such as records and arrays. The
high-level language programmer can explicitly define such types, and declare con-
stants, variables, functions, and parameters of these types.

e Control structures: Control structures allow the high-level language programmer to
program selective computation (e.g., by if- and case-commands) and iterative compu-
tation (e.g., by while- and for-commands).

* Declarations: Declarations allow the high-level language programmer to introduce
identifiers to denote entities such as constant values, variables, procedures, functions,
and types.

* Abstraction: An essential mental tool of the programmer is abstraction, or separation
of concerns: separating the notion of what computation is to be performed from the
details of how it is to be performed. The programmer can emphasize this separation
by use of named procedures and functions. Moreover, these can be parameterized
with respect to the entities on which they operate.

» Encapsulation (or data abstraction): Packages and classes allow the programmer to
group together related declarations, and selectively to hide some of them. A particu-
larly important usage of this concept is to group hidden variables together with oper-
ations on these variables, which is the essence of object-oriented programming.

Section 1.5 suggests further reading on the concepts of high-level programming lan-
guages.
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1.2 Programming language processors

A programming language processor is any system that manipulates programs
expressed in some particular programming language. With the help of language
Processors we can run programs, or prepare them to be run.

This definition of language processors is very general. It encompasses a variety of
systems, including the following:

» Editors. An editor allows a program text to be entered, modified, and saved in a file.
An ordinary text editor lets us edit any textual document (not necessarily a program
text). A more sophisticated kind of editor is one tailored to edit programs expressed in
a particular language.

» Translators and compilers. A translator translates a text from one language to
another. In particular, a compiler translates a program from a high-level language to a
low-level language, thus preparing it to be run on a machine. Prior to performing this
translation, a compiler checks the program for syntactic and contextual errors.

» Interpreters. An interpreter takes a program expressed in a particular language, and
runs it immediately. This mode of execution, omitting a compilation stage in favor of
immediate response, is preferred in an interactive environment. Command languages
and database query languages are usually interpreted.

In practice, we use all the above kinds of language processor in program develop-
ment. In a conventional programming system, these language processors are usually
separate tools; this is the ‘software tools’ philosophy. However, most systems now offer
integrated language processors, in which editing, compilation, and interpretation are just
options within a single system. The following examples contrast these two approaches.

Example 1.1 Language processors as software tools

The ‘software tools’ philosophy is well exemplified by the UNIX operating system. In-
deed, this philosophy was fundamental to the system’s design.

Consider a UNIX user developing a chess-playing application in Java, using the Sun
Java Development Kit (JDK). The user invokes an editor, such as the screen editor vi,
to enter and store the program text in a file named (say) Chess. java:

vi Chess.java
Then the user invokes the Java compiler, javac:
javac Chess.java

This translates the stored program into object code, which it stores in a file named
Chess.class. The user can now test the object-code program by running it using the
interpreter, java:

java Chess
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If the program fails to compile, or misbehaves when run, the user reinvokes the
editor to modify the program; then reinvokes the compiler; and so on. Thus program
development is an edit—compile—run cycle.

There is no direct communication between these language processors. If the program
fails to compile, the compiler will generate one or more error reports, each indicating
the position of the error. The user must note these error reports, and on reinvoking the
editor must find the errors and correct them. This is very inconvenient, especially in the
early stages of program development when errors might be numerous.

O

The essence of the ‘software tools’ philosophy is to provide a small number of com-
mon and simple tools, which can be used in various combinations to perform a large
variety of tasks. Thus only a single editor need be provided, one that can be used to edit
programs in a variety of languages, and indeed other textnal documents too.

What we have described is the ‘software tools’ philosophy in its purest form. In
practice, the philosophy is compromised in order to make program development easier.
The editor might have a facility that allows the user to compile the program (or indeed
issue any system command) without leaving the editor. Some compilers go further: if
the program fails to compile, the editor is automatically reinvoked and positioned at the
first error.

These are ad hoc solutions. A fresh approach seems preferable: a fully integrated
language processor, designed specifically to support the edit—compile-run cycle.

Example 1.2 Integrated language processor

Borland JBuilder is a fully integrated language processor for Java, consisting of an
editor, a compiler, and other facilities. The user issues commands to open, edit, compile,
and run the program. These commands may be selected from pull-down menus, or from
the keyboard.

The editor is tailored to Java. It assists with the program layout using indentation,
and it distinguishes between Java keywords, literals and comments using color. The
editor is also fully integrated with the visual interface construction facilities of JBuilder.

The compiler is integrated with the editor. When the user issues the ‘compile’ com-
mand, and the program is found to contain a compile-time error, the erroneous phrase is
highlighted, ready for immediate editing. If the program contains several errors, then the
compiler will list all of them, and the user can select a particular error message and have
the relevant phrase highlighted.

The object program is also integrated with the editor. If the program fails at run-
time, the failing phrase is highlighted. (Of course, this phrase is not necessarily the one
that contains the logical error. But it would be unreasonable to expect the language
processor to debug the program automatically!)

O
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Programming Language Processors in Java

1.3 Specification of programming languages

Several groups of people have a direct interest in a programming language: the designer
who invented the language in the first place; the implementors, whose task it is to write
language processors; and the much larger community of ordinary programmers. All of
these people must rely on a common understanding of the language, for which they
must refer to an agreed specification of the language.

Several aspects of a programming language need to be specified:

Syntax is concerned with the form of programs. A language’s syntax defines what
tokens (symbols) are used in programs, and how phrases are composed from tokens
and subphrases. Examples of phrases are commands, expressions, declarations, and
complete programs.

Contextual constraints (sometimes called static semantics) are rules such as the
following. Scope rules determine the scope of each declaration, and allow us to locate
the declaration of each identifier. Type rules allow us to infer the type of each expres-
sion, and to ensure that each operation is supplied with operands of the correct types.
Contextual constraints are so called because whether a phrase such as an expression is
well-formed depends on its context.

Semantics is concerned with the meanings of programs. There are various points of
view on how we should specify semantics. From one point of view, we can take the
meaning of a program (o be a mathematical function, mapping the program’s inputs to
its outputs. (This is the basis of denotational semantics.) From another point of view,
we can take the meaning of a program to be its behavior when it is run on a machine.
(This is the basis of operational semantics.) Since this book is about language proces-
sors, i.e., systems that run programs or prepare them to be run, we shall prefer the
operational point of view.

When a programming language is specified, there is a choice between formal and

informal specification:

An informal specification is one written in English or some other natural language.
Such a specification can be readily understood by any user of the programming lan-
guage, if it is well-written. Experience shows, however, that it is very hard to make an
informal specification sufficiently precise for all the needs of implementors and pro-
grammers; misinterpretations are common. Even for the language designer, an infor-
mal specification is unsatisfactory because it can too easily be inconsistent or
incomplete.

A formal specification is one written in a precise notation. Such a specification is
more likely to be unambiguous, consistent, and complete, and less likely to be misin-
terpreted. However, a formal specification will be intelligible only to people who un-
derstand the notation in which the specification is written.

In practice, most programming language specifications are hybrids. Syntax is usually

specified formally, using BNF or one of its variants, because this notation is easy and

vww allitebooks.conl
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widely understood. But contextual constraints and semantics are usually specified infor-
mally, because their formal specification is more difficult, and the available notations
are not yet widely understood. A typical language specification, with formal syntax but
otherwise informal, may be found in Appendix B.

1.3.1 Syntax

Syntax is concerned with the form of programs. We can specify the syntax of a pro-
gramming language formally by means of a context-free grammar. This consists of the
following elements:

* A finite set of terminal symbols (or just terminals). These are atomic symbols, the
ones we actually enter at the keyboard when composing a program in the language.
Typical examples of terminals in a programming language’s grammar are ‘>=’,
‘while’, and ‘;’.

* A finite set of nonterminal symbols (or just nonterminals). A nonterminal symbol
represents a particular class of phrases in the language. Typical examples of

nonterminals in a programming language’s grammar are Program, Command,
Expression, and Declaration.

* A start symbol, which is one of the nonterminals. The start symbol represents the
principal class of phrases in the language. Typically the start symbol in a
programming language’s grammar is Program.

* A finite set of production rules. These define how phrases are composed from termi-
nals and subphrases.

Grammars are usually written in the notation BNF (Backus—Naur Form). In BNF, a
production rule is written in the form N ::= o, where N is a nonterminal symbol, and
where o is a (possibly empty) string of terminal and/or nonterminal symbols. Several
production rules with a common nonterminal on their left-hand sides:

N:a=0o
N:=f

may be grouped as:

N:=ol|B]....
The BNF symbol ‘::=" is pronounced ‘may consist of”, and ‘|’ is pronounced ‘or alterna-
tively’.

Example 1.3 Mini-Triangle syntax

Mini-Triangle is a toy programming language that will serve as a running example here
and elsewhere. (It is a subset of Triangle, the language to be introduced in Section 1.4.)
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Here is a trivial Mini-Triangle program:

! This is a comment. It continues to the end-of-line.

let
const m ~ 7;
var n: Integer
in
begin
o IR F e | W 1
putint (n)
end

Here we present the context-free grammar of Mini-Triangle.

The terminal symbols of Mini-Triangle include:

begin const do else end if
in let then var while

i : s > ( )
+ - B / < >

(These are emboldened in the production rules below. for emphasis.)
The nonterminal symbols of Mini-Triangle include:

Program (start symbol)

Command single-Command
Expression primary-Expression
V-name

Declaration single-Declaration
Type-denoter

Operator Identifier

Integer-Literal
The production rules are:
Program == single-Command

Command == single-Command
|  Command ; single-Command

single-Command = V-name := Expression
| Identifier { Expression )
|  if Expression then single-Command
else single-Command

|  while Expression do single-Command

|  let Declaration in single-Command
| begin Command end

(1.1)

(1.2a)
(1.2b)

(1.3a)
(1.3b)
(1.3¢)

(1.3d)
(1.3e)
(1.3)
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Expression = primary-Expression (1.4a)
| Expression Operator primary-Expression (1.4b)

primary-Expression ::= Integer-Literal (1.5a)
| V-name (1.5b)

| Operator primary-Expression (1.5¢)

| ( Expression ) (1.5d)

V-name = ldentifier (1.6)
Declaration = single-Declaration (1.7a)
| Declaration ; single-Declaration (1.7b)

single-Dectaration = const ldentifier ~ Expression (1.8a)
| var Identifier : Type-denoter (1.8b)

: Type-denoter = Identifier (1.9)
Operator w= o+ = x|/ <] > =]\ (1.10a-h)
Identifier = Letter | Identifier Letter | Identifier Digit (1.11a—<c)
Integer-Literal ;= Digit | Integer-Literal Digit (1.12a-b)
Comment = 1 Graphic* eol (1.13)

Production rule (1.3f) tells us that a single-command may consist of the terminal
symbol ‘begin’, followed by a command, followed by the terminal symbol ‘end’.

Production rule (1.3a) tells us that a single-command may consist of a value-or-
variable-name, followed by the terminal symbol ‘: =’, followed by an expression.

A value-or-variable-name, represented by the nonterminal symbol V-name, is the
name of a declared constant or variable. Production rule (1.6) tells us that a value-or-
variable-name is just an identifier. (More complex value-or-variable-names can be writ-
ten in full Triangle.)

Production rules (1.2a-b) tell us that a command may consist of a single-command
alone, or alternatively it may consist of a command followed by the terminal symbol *;’
followed by a single-command. In other words, a command consists of a sequence of
one or more single-commands separated by semicolons.

In production rufes (1.11a-c), (1.12a-b), and (1.13):
¢ eol stands for an end-of-line ‘character’;
o Letter stands for one of the lowercase letters ‘a’, ‘b’, ..., or ‘z’;
* Digit stands for one of the digits ‘0°, ‘1’, ..., or ‘9’;
* Graphic stands for a space or visible character.

The nonterminals Letter, Digit, and Graphic each represents a set of single characters.
Specifying them formally is simple but tedious, for example:
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Digit = 0|1]2]|3|4a|5|6]|7|8]|59

O

Each context-free grammar generates a language, which is a set of strings of
terminal symbols. We define this language in terms of syntax trees and phrases.
Consider a particular context-free grammar G.

A syntax tree of G is an ordered labeled tree such that: (a) the terminal nodes are
labeled by terminal symbols; (b) the nonterminal nodes are labeled by nonterminal sym-
bols; and (c) each nonterminal node labeled by N has children labeled by X1. ..., X, (in
order from left to right) such that N ::= X; ... X, is a production rule. More specifically,
an N-tree of G is a syntax tree whose root node is labeled by N.

A phrase of G is a string of terminal symbols labeling the terminal nodes (taken
from left to right) of a syntax tree. More specifically, an N-phrase of G is a string of
terminal symbols labeling the terminal nodes of an N-tree.

A sentence of G is an S-phrase, where $ is the start symbol. The language generated
by G is the set of all sentences of G.

Example 1.4 Mini-Triangle syntax trees

Figures 1.1 through 1.3 show some Mini-Triangle syntax trees. Some of the nonterminal
symbols have been abbreviated. The syntax trees of identifiers, operators and literals
have been elided, being of little interest.

From the syntax tree of Figure 1.1 we can see that the following is an expression
(formally, an Expression-phrase):

a2 100 n

Note that this expression will be evaluated like * (d+10) *n’, since Mini-Triangle’s
binary operators all have the same precedence. This is implicit in production rule (1.4b),
and in the shape of the syntax tree.

From the syntax tree of Figure 1.2 we can see that the following is a single-
command (formally, a single-Command-phrase):

while b do begin n := 0; b := false end

From the syntax tree of Figure 1.3 we can see that the following is a program (for-
mally, a sentence or Program-phrase):

let var y: Integer in y := y + 1

O

A grammar like that of Example 1.3 has two roles:

* The grammar tells us, for each form of phrase, what its subphrases are. For example, a
Mini-Triangle assignment command (1.3a) has two subphrases: a value-or-variable-
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name and an expression. A Mini-Triangle if-command (1.3c) has three subphrases: an
expression and two (sub)commands. The way in which a program is composed from
phrases and subphrases is called its phrase structure.

* The grammar also tells us the order in which the subphrases must be written, and the
terminal symbols with which they must be delimited. For example, a Mini-Triangle
assignment command (1.3a) consisting of a value-or-variable-name V and an expres-
sion E must be written in the form ‘V := E’. A Mini-Triangle if-command (1.3c) con-
sisting of an expression E and subcommands C; and C, must be written in the form
‘if E then C)| else Cy’. Moreover, the grammar tells us that C; and C; must be
single-commands (in order to avoid ambiguity).

Because of its concentration on concrete syntactic details, a grammar such as this
specifies what we call the concrete syntax of the language. The concrete syntax is
important to the programmer who needs to know exactly how to write syntactically
well-formed programs.

But concrete syntax has no influence on the semantics of the programs. For example,
whether the assignment command is written in the form ‘V := E” or ‘V « E’ or ‘E —
V' or ‘set V= E’ or ‘assign E to V' does not affect how the command will be
executed. These are all different in terms of concrete syntax, but all the same in terms of
phrase structure.

When specifying semantics, it is convenient to concentrate on phrase structure alone.
This is the point of abstract syntax. A grammar specifying abstract syntax generates
only a set of abstract syntax trees (ASTs). Each nonterminal node of an AST is labeled
by a production rule, and it has exactly one subtree for each subphrase. The grammar
does not generate sentences, for terminal symbols have no real role in abstract syntax.

Expression
1

]
Expression

Expression

primary-Expr. primary-Expr. primary-Expr.

| |

V-name V-name

Ident. Op. IntlLit  Op. Ident.
i H i H

d + 10 * n

Figure 1.1 Syntax tree of a Mini-Triangle expression.
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single-Command
1

single-Command
1
|
Command
[
Command single-Command
A el
Expression single-Command Expression
| = |
primary-Expr. Expression primary-Expr.
V-name V-name primary-Expr. V-name V-name
Ident. Ident. Int.Lit. Ident. Ident.
while b do begin n 1= 0 - b := false enc
Figure 1.2 Syntax tree of a Mini-Triangle single-command.
Program
single-Command
1
_ |
single-Command
1
I
Expression
|
Declaration Expression
single-Declaration primary-Expr. | primary-Expr.
1
| |
Type-denoter V-name V-name
Ident. Ident. Ident. Ident. Op. Int.Lit

let var v Integer in v = y + 1

Figure 1.3 Syntax tree of a Mini-Triangle program.
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Example 1.5 Mini-Triangle abstract syntax

Here we present a grammar specifying the abstract syntax of Mini-Triangle. This
specify only the phrase structure of Mini-Triangle. Distinctions between commands
single-commands, between declarations and single-declarations, and between exp
sions and primary-expressions, will be swept away.

The nonterminal symbols are:

Program (start symbol)

Command
Expression
V-name
Declaration
Type-denoter

The production rules are:

Program i=

Command =

Expression =

V-name o=

Declaration ::=

Type-denoter ::=

Command Program (1.1
V-name := Expression AssignCommand (1.15
Identifier { Expression } CalilCommand (1.15
Command ; Command SequentialCommand (1.15
if Expression then Command  I[fCommand (1.15
else Command

while Expression do Command WhileCommand (1.15¢
let Declaration in Command LetCommand (1151
Integer-Literal IntegerExpression (1.16¢
V-name VnameExpression (1.16b
Operator Expression UnaryExpression (1.16¢
Expression Operator Expression  BinaryExpression (1.16d
ldentifier SimpleVname (1.17
const |ldentifier ~ Expression ConstDeclaration (1.18a
var ldentifier : Type-denoter VarDeclaration (1.18b;
Declaration ; Declaration SequentialDeclaration (1.18¢)
ldentifier SimpleTypeDenoter (1.19)

Production rules in the abstract syntax look much like those in the concrete syntax.
In addition, we give each production rule a suitable label, as shown above right. We will
use these labels to label the nonterminal nodes of ASTs.

Figures 1.4 through 1.6 show some Mini-Triangle ASTs, corresponding to the (con-
crete) syntax trees of Figures 1.1 through 1.3, respectively.

The AST of Figure 1.5 represents the following command:

while b do begin n

:= 0; b := false end
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This AST’s root node is labeled WhileCommand, signifying the fact that this is a while-
command. The root node’s second child is labeled SequentialCommand, signifying the
fact that the body of the while-command is a sequential-command. Both children of the
SequentialCommand node are labeled AssignCommand.

When we write down the above command, we need the symbols ‘begin’ and ‘end’
to bracket the subcommands ‘n := 0’ and ‘b := false’. These brackets distinguish
the above command from:

while b don := 0; b := false

whose meaning is quite different. (See Exercise 1.5.) There is no trace of these brackets
in the abstract syntax, nor in the AST of Figure 1.5. They are not needed because the
AST structure itself represents the bracketing of the subcommands.

O

A program’s AST represents its phrase structure explicitly. The AST is a convenient
structure for specifying the program’s contextual constraints and semantics. It is also a
convenient representation for language processors such as compilers. For example, con-
sider again the assignment command ‘while £ do C’. The meaning of this command can
be specified in terms of the meanings of its subphrases E and C. The translation of this
command into object code can be specified in terms of the translations of £ and C into
object code. The command is represented by an AST with root node labeled ‘While-
Command’ and two subtrees representing £ and C, so the compiler can easily access
these subphrases.

In Chapter 3 we shall use ASTs extensively to discuss the internal phases of a com-
piler. In Chapter 4 we shall see how a compiler constructs an AST to represent the
source program. In Chapter 5 we shall see how the AST is used to check that the
program satisfies the contextual constraints. In Chapter 7 we shall see how to translate
the program into object code.

BinaryExpression
1
. |
BinaryExpression
VnameExpr. IntegerExpr. VnameExpr.
SimpleVname SimpleVname

Ident. Op. ImtLit. Op. Ident.

d + 10 * n

Figure 1.4 Abstract syntax tree of a Mini-Triangle expression.
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WhileCommand
|

SequentialCommand
AssignCommand AssignCommand

VnameExpr. Int.Expr. VnameExpr.
SimpleV. SimpleV. I
SimpleV. SimpleV.

I |

Ident. Ident. Int.Lit. Ident. Ident.

b n O b faise

Figure 1.5 Abstract syntax tree of a Mini-Triangle command.

Program
LetCommand
1
1
AssignCommand
BinaryExpression
VarDeclaration VnameExpr. Int.Expr.
SimpleV. |
SimpleT. SimpleV.
Ident. Ident. Ident. Ident. Op. IntLit.
1:/ Intéger y y + 1

Figure 1.6 Abstract syntax tree of a Mini-Triangle program.

1.3.2 Contextual constraints

Contextual constraints are things like scope rules and type rules. They arise from the
possibility that whether a phrase is well-formed or not may depend on its context.

Every programming language allows identifiers to be declared, and thereafter used
in ways consistent with their declaration. For instance, an identifier declared as a
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constant can be used as an operand in an expression; an identifier declared as a variable
can be used either as an operand in an expression or on the left-hand side of an assign-
ment; an identifier declared as a procedure can be used in a procedure call; and so on.

The occurrence of an identifier I at which it is declared is called a binding occur-
rence. Any other occurrence of I (at which it is used) is called an applied occurrence.
At its binding occurrence, the identifier / is bound to some entity (such as a value,
variable, or procedure). Each applied occurrence of [ then denotes that entity. A
programming language’s rules about binding and applied occurrences of identifiers are
called its scope rules.

If the programming language permits the same identifier / to be declared in several
places, we need to be careful about which binding occurrence of I corresponds to a
given applied occurrence of I. The language exhibits static binding if this can be
determined by a language processor without actually running the program; the language
exhibits dynamic binding if this can be determined only at run-time. In fact, nearly all
major programming languages do exhibit static binding; only a few languages (such as
Lisp and Smalltalk) exhibit dynamic binding.

Example 1.6 Triangle scope rules

Mini-Triangle is too simplistic a language for static binding to be an issue, so we shall
use Triangle itself for illustration. In the following Triangle program outline, binding
occurrences of identifiers are underlined, and applied occurrences are italicized:

let
const m ~ 2;
var n: Integer;

func £ (i: Integer) : Integer ~
i*m
in
begin
n := f(n); )
end

Each applied occurrence of m denotes the constant value 2. Each applied occurrence of
n denotes a particular variable. Each applied occurrence of £ denotes a function that
doubles its argument. Each applied occurrence of i denotes that function’s argument.
Each applied occurrence of Integer denotes the standard type int, whose values are
integer numbers.

Triangle exhibits static binding. The function call at point (1) above doubles its argu-
ment. Imagine a call to £ in a block where m is redeclared:

let
const m ~ 3

vww . allitebooks.cond
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in
. f(n) ... @
The function call at point (2) also doubles its argument, because the applied occurrence

of m inside the function £ always denotes 2, regardless of what m denotes at the point of
call.

In a language with dynamic binding, on the other hand, the applied occurrence of m
would denote the value to which m was most recently bound. In such a language, the
function call at (1) would double its argument, whereas the function call at (2) would
triple its argument.

]

Every programming language has a universe of discourse, the elements of which we
call values. Usually these values are classified into ypes. Each operation in the language
has an associated type rule, which tells us the expected operand type(s), and the type of
the operation’s result (if any). Any attempt to apply an operation to a wrongly-typed
value is called a type error.

A programming language is statically typed if a language processor can detect all
type errors without actually running the program; the language is dynamically typed if
type errors cannot be detected until run-time.

Example 1.7 Mini-Triangle type rules

Mini-Triangle is statically typed. Consider the following program outline:

let
vary n: Integer
in
begin
while n > 0 do )
n :=n - 1; 2)
end

The type rule of *>’ is:
If both operands are of type int, then the result is of type bool.

Thus the expression ‘n > 0’ at point (1) is indeed of type bool. Although we cannot tell
in advance what particular values n will take, we know that such values will always be
integers. Likewise, although we cannot tell in advance what particular values the expres-
sion ‘n > 0’ will take, we know that such values will always be truth values.

The type rule of ‘while E do C’ is:
E must be of type bool.
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Thus the while-command starting at point (2) is indeed well-typed.
The type rule of ‘-’ is:
If both operands are of type int, then the result is of type inz.
Thus the expression ‘nn — 17 at point (2) is indeed of type int.
The type rule of ‘V : = E’ is:
V and E must be of equivalent type.
Thus the assignment command at point (2) is indeed well-typed.

In a dynamically-typed language, each variable, parameter, etc., may take values of
any type. For example, a given variable x might contain an integer or a truth value or a
value of some other type. The same variable might even contain values of different
types at different times. Thus we could not tell in advance what type of value x will
contain, never mind what individual value. It follows that we could not tell in advance
whether evaluating an expression such as ‘x + 1’ will satisfy the type rule of ‘+’.

O

The fact that a programming language is statically typed implies the following:

* Every well-formed expression E has a unique type 7, which can be inferred without
actually evaluating E.

* Whenever E is evaluated, it will yield a value of type T. (Evaluation of E might fail
due to overflow or some other run-time error, or it might diverge, but its evaluation
will never fail due to a type error.)

In this book we shall generally assume that the source language exhibits static bind-
ing and is statically typed.

1.3.3 Semantics

Semantics is concerned with the meanings of programs, i.e., their behavior when run.
Many notations have been devised for specifying semantics formally, but so far none
has achieved widespread acceptance. Here we show how to specify the semantics of a
programming language informally.

Our first task is to specify, in general terms, what will be the semantics of each class
of phrase in the language. We may specify the semantics of commands, expressions, and
declarations as follows:

* A command is executed to update variables. [It may also have the side effect of per-
forming input—output.]

* An expression is evaluated to yield a value. [It may also have the side effect of updat-
ing variables.]
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* A declaration is elaborated to produce bindings. [It may also have the side effect of
allocating [and initializing] variables.]

In each case, the text in brackets is applicable only in certain languages.

Our remaining task is to systematically specify the semantics of each specific form
of command, expression, declaration, and so on. Here we should follow the language’s
abstract syntax. In the abstract syntax there is one production rule for each form of
phrase; in the semantics there should be one (or occasionally more than one) clause for
each form of phrase.

Example 1.8 Mini-Triangle semantics

We specified the abstract syntax of Mini-Triangle in Example 1.5. Here we specify the
semantics of Mini-Triangle, following the structure of the abstract syntax.

A command C is executed in order to update variables. (This includes input—output.)

The assignment-command ‘V : = E” is executed as follows. The expres-
sion E is evaluated to yield a value v; then v is assigned to the value-or-
variable-name V. (1.20a)

The call-command ‘/ (E)’ is executed as follows. The expression E is
evaluated to yield a value v; then the procedure bound to 7 is called with v
as its argument. (1.20b)

The sequential command ‘Cy; C;' is executed as follows. First C is exe-
cuted; then C; is executed. (1.20c¢)

The if-command ‘if E then C| else G, is executed as follows. The
expression E is evaluated to yield a truth-value f; if ¢ is true, C is exe-
cuted; if 7 is false, C5 is executed. (1.20d)

The while-command ‘while E do C’ is executed as follows. The expres-

sion E is evaluated to yield a truth-value r; if 1 is true, C is executed, and

then the while-command is executed again; if 7 is false, execution of the
while-command is completed. (1.20e)

The let-command ‘let D in C’ is executed as follows. The declaration

D is elaborated to produce bindings b; C is executed, in the environment

of the let-command overlaid by the bindings b. The bindings b have no

effect outside the let-command. (1.20f)

Note that clauses (1.20a-f) correspond respectively to production rules (1.15a-f) of
the abstract syntax.

Note also that clauses (1.20d) and (1.20e) assume that evaluation of E will yield a
truth-value. Likewise, clause (1.20a) assumes that evaluation of E will yield a value of
the same type as V. These assumptions are justified if the command is well-typed.
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An expression E is evaluated to yield a value.
The expression *IL’ yields the value of the integer-literal /L. (1.21a)
The expression V" yields the value of the value-or-variable-name V. (1.21b)

The unary expression ‘O E” yields the value obtained by applying unary
operator O to the value yielded by the expression E. (1.21¢)

The binary expression ‘E} O E;’ yields the value obtained by applying bi-
nary operator O to the values yielded by the expressions £ and E,. (1.21d)

Note that clauses (1.21a-d) correspond respectively to production rules (1.16a—d) of
the abstract syntax.

Note also that expressions have no side effects in Mini-Triangle.

A value-or-variable-name V may be identified either to yield a value or to assign a
value to a variable (as required by the context).

A simple value-or-variable-name / yields a value as follows. If 7 is bound
to a value, it yields that value. If / is bound to a variable, it yields the
value contained in that variable. (1.22)

A simple value-or-variable-name / is assigned a value v as follows. If / is
bound to a variable, it updates that variable to contain v. (1.23)

A declaration D is elaborated to produce bindings; it may also have the side effect of
allocating variables.

The constant declaration ‘const / ~ E is elaborated by binding / to the
value yielded by the expression E. (1.24a)

The variable declaration ‘var / : T" is elaborated by binding / to a newly
allocated variable, whose initial value is undefined. The variable will be
deallocated on exit from the block containing the variable declaration. (1.24b)

The sequential declaration ‘D ; D’ is elaborated by elaborating D) fol-
lowed by D, and combining the bindings they produce. D, is elaborated
in the environment of the sequential declaration, overlaid by the bindings
produced by D;. (1.24¢)

Note that clauses (1.24a—c) correspond respectively to production rules (1.18a—c) of
the abstract syntax.
O

In Chapter 7 we shall use the semantics of Mini-Triangle to build a code generator
for Mini-Triangle. In Chapter 8 we shall use the semantics to build a Mini-Triangle
interpreter.
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1.4 Case study: the programming language
Triangle

In this book we shall use small examples — such as the toy language Mini-Triangle — to
illustrate various implementation methods without getting lost in details. Nevertheless, it
is also important to illustrate how these methods can be applied to realistic programming
languages.

A major language like Pascal or Java is just too complicated for the purposes of an
introductory textbook. Instead we shall use Triangle, a small but realistic programming
language, as a case study. Triangle is a Pascal-like language, but generally simpler and
more regular. Here we give a brief overview of Triangle. (A complete description may
be found in Appendix B.)

Triangle commands are similar to Pascal’s, but for simplicity there is only one cond-
itional command and one iterative command. Unlike Pascal, Triangle has a let-
command with local declarations.

Example 1.9 Triangle commands

The following illustrates the Triangle if~-command and let-command:

if x > ¥ then
let const xcopy ~ x
in
begin x := y; y := xcopy end
else

Note the empty else-part. (It is actually a skip command.)

O

Triangle expressions are richer than Pascal’s, but free of side effects. Conditional
expressions, let-expressions with local declarations, and aggregates (record and array
expressions) are all provided. A function body is just an expression. For simplicity, only
three primitive types (denoted by the identifiers Boolean, Char, and Integer), and
two forms of composite type (records and arrays), are provided. Unlike Pascal, Triangle
is type-complete, i.e., no operations are arbitrarily restricted in the types of their oper-
ands. Thus values of any type may be passed as parameters, returned as function results,
assigned, and compared using the binary operators ‘=" and ‘\=",

Example 1.10 Triangle expressions

The following illustrates a Triangle let-expression and if-expression:



22 Programming Language Processors in Java

let
const taxable ~ if income > allowance
then income - allowance
else 0
in
taxable / 4
The following illustrates Triangle record and array types and aggregates:

let
type Date ~ record
m: Integer, d: Integer
end;
const days ~ [31, 28; 31, 30, 31, 30;
2k - il ol LA TR A ekl
var today: Date
in

if today.d < days[today.m - 1]

then {m ~ today.m, d ~ today.d + 1}
else if today.m \= 12

then {m ~ today.m + 1, d ~ 1}

else {m ~ 1, 4 ~ 1}

if today = {m ~ 2, 4 ~ 29} then ... else ...

Here days is declared to be a constant of type ‘array 12 of Integer’,i.e., anar
with elements 31, 28, 31, etc. The first if-expression yields a value of the record ty
Date, representing the day after today. The second if-expression illustrates rec
comparison.

Triangle declarations of different kinds may be mixed freely. Constant, variable, :
type declarations have been illustrated in Examples 1.9 and 1.10. A Triangle const
declaration may have any expression, of any type, on its right-hand side. T
expression must be evaluated at run-time, but thereafter the constant identifier’s valu
fixed. (The Triangle constant declaration is more general than Pascal’s, where the rig
hand side is restricted to be a constant.)

Triangle has procedure and function declarations. A procedure body is just a cc
mand, which may be (but not necessarily) a let-command. Likewise, a function bod)
just an expression, which may be (but not necessarily) a let-expression. Functions
free of side effects.

Procedures and functions may have constant, variable, procedural, or functic
parameters. These have uniform semantics: in each case the formal-parameter identi



Introduction 23

is simply bound to the corresponding argument, which is a value, variable, procedure, or
function, respectively.

Example 1.11 Triangle procedures and functions

The following function and procedure implement operations on a type Point:

type Point ~ record
x: Integer,
y: Integer
end;

func projection (pt: Point) : Point ~
{ x ~pt.x, vy ~0 - pt.y };

proc moveup (yshift: Integer, var pt: Point) -~
pt.y := pt.y + yshift;

var p: Point; var q: Point;

moveup (3, var p);
g := projection(p)

O

Triangle has the usual variety of operators, standard functions, and standard proce-
dures. These behave exactly like ordinary declared functions and procedures; unlike
Pascal, they have no special type rules or parameter mechanisms. In particular, Triangle
operators behave exactly like functions of one or two parameters.

Example 1.12 Triangle operators

The Triangle operator ‘/\’ (logical conjunction) is, in effect, declared as follows:

func /\ (bl: Boolean, b2: Boolean) : Boolean ~
if bl then b2 else false

The expression ‘a /\Db’ is, in effect, a function call:
/\(a, b)

and the more complicated expression ‘ (n > 0) /\ (sum/n > 40)’ likewise:
/N(>(n, 0), >(/(sum, n), 40))

Note that the above declaration of /\ implies that both operands of /\ are evaluated
before the function is called. (Some other programming languages allow short-circuit
evaluation: the second operand of /\ is skipped if the first operand evaluates to false.)

|
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A complete informal specification of Triangle may be found in Appendix B. E:
section is devoted to a major construct, e.g., commands, expressions, or declaratic
Within the section there are subsections describing the intended usage of the constr
its syntax (expressed in BNF), its semantics (and contextual constraints), and fin;
examples. Browse through Appendix B, attempting to fill the gaps in y
understanding of Triangle left by the brief overview here. Appendix B is intendec
serve as a model of a carefully written informal specification of a programm
language. Nevertheless, if you read carefully, you might well find loopholes!

1.5 Further reading

This book assumes that you are familiar with the basic concepts of high-level progr:
ming languages, including those summarized in Section 1.1. A detailed study of th
concepts, using terminology consistent with this book, may be found in the compan
textbook by Watt (1990). Some other good textbooks cover similar material, includ
those by Ghezzi and Jazayeri (1987), Sethi (1988), and Tennent (1981).

A very brief review of syntax and semantics was given in Section 1.3. A much fu
treatment may be found in the companion textbook by Watt (1991). The advantages
disadvantages of formal and informal specification are discussed in detail, as are vari
methods for formally specifying syntax, contextual constraints, and semantics. Ther
an introduction to formal semantics. Formal specifications of the syntax and seman
of Triangle are given as case studies.

A typical and recent example of a programming language specification is thal
Java (Gosling er al. 1996). Java’s syntax is specified formally in BNF, but its contex:
constraints and semantics are specified informally. This specification is by no me
easy reading,.

Exercises

1.1 In this chapter editors, compilers, and interpreters have been cited as kind:
language processor. Can you think of any other kinds of language processor

1.2% Recall Examples 1.1 and 1.2. Write a similar critical account of any other
P Y I
gramming system with which you are familiar.

1.3*%%  Design an editor tailored to your favorite programming language.

(Hints: Think of the editing operations you perform most frequently on y
programs. You probably delete or replace complete symbols more often 1
individual characters, and you probably delete or replace complete phrase
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expressions, commands, declarations — rather than individual lines. You proba-
bly spend a lot of time on chores such as good layout. Also think of the
commeon syntactic errors that might reasonably be detected immediately.)

According to the context-free grammar of Mini-Triangle in Example 1.3,
which of the following are Mini-Triangle expressions?

(a) true
(b) sin(x)
() -n

(d m>=n

&) m - n * 2
Draw the syntax tree and AST of each one that is an expression.
Similarly, which of the following are Mini-Triangle commands?

) n:=n+1

(g) halt
(h) put(m, n)
(i) if n >m then m := n

(j) whilen > 0 don :=n-1

Similarly, which of the following are Mini-Triangle declarations?
(k) const pi ~ 3.1416

() const y ~ x+1

(m) var b: Boolean

(n) var m, n: Integer

(0) var y: Integer; const dpy ~ 365
Draw the syntax tree and AST of the Mini-Triangle command:
while b don := 0; b := false

cited at the end of Example 1.5. Compare with Figures 1.2 and 1.5.

According to the syntax and semantics of Mini-Triangle in Examples 1.3 and
1.8, what value is written by the following Mini-Triangle program? (The stan-
dard procedure putint writes its argument, an integer value.)

let
const m ~ 2;
const n ~m + 1
in
putint(m + n * 2)

(Note: Do not be misled by your knowledge of any other languages.)



CHAPTER TWO

Language Processors

In this book we shall study two particularly important kinds of language processor:
translators (particularly compilers) and interpreters. In this chapter we start by reviewing
the basic ideas of translation and interpretation, which will already be familiar to most
readers. Then we build on these basic ideas to explore the more sophisticated ways in
which language processors can be used. A language processor is itself a program, and
thus can be processed (translated or interpreted) in just the same way as an ordinary pro-
gram. The ultimate development of this idea is bootstrapping, whereby a language pro-
cessor is used to process itself!

In this chapter we view translators and interpreters as ‘black boxes’; we concentrate
on what they do rather than how they do it. In subsequent chapters we shall look inside
them to see how they work.

2.1 Translators and compilers

A translator is a program that accepts any text expressed in one language (the trans-
lator’s source language), and generates a semantically-equivalent text expressed in an-
other language (its target language).

Example 2.1 Translators

Here are some diverse examples of translators:

(a) A Chinese-into-English translator: This is a program that translates Chinese texts
into English. The source and target languages of this translator are both natural
languages.

Natural-language translation is an advanced topic, related to artificial intelligence,
and well beyond the scope of this textbook. We shall restrict our attention to trans-
lators whose source and target languages are programming languages.

(b) A Java-into-C translator: This is a program that translates Java programs into C.
The source language is Java, and the target language is C.

26

vww allitebooks.conl



http://www.allitebooks.org

Language Processors 27

(¢) A Java-into-x86' compiler: This is a program that translates Java programs into
x86 machine code. The source language is Java, and the target language is x86
machine code.

(d) An x86 assembler: This is a program that translates x86 assembly-language pro-
grams into x86 machine code. The source language is x86 assembly language, and
the target language is x86 machine code.

O

An assembler translates from an assembly language into the corresponding machine
code. An example is the x86 assembler of Example 2.1(d). Typically, an assembler gen-
erates one machine-code instruction per source instruction.

A compiler translates from a high-level language into a low-level language. An
example is the Java-into-x86 compiler of Example 2.1(c). Typically, a compiler gener-
ates several machine-code instructions per source command.

Assemblers and compilers are the most important kinds of programming language
translator, but not the only kinds. We sometimes come across high-level translators
whose source and target languages are both high-level languages, such as the Java-into-
C translator of Example 2.1(b). A disassembler translates a machine code into the corre-
sponding assembly language. A decompiler translates a low-level language into a high-
level language. (See Exercise 2.1.)

Here the translated texts are themselves programs. The source language text is called
the source program, and the target language text is called the object program.

Before performing any translation, a compiler checks that the source text really is a
well-formed program of the source language. (Otherwise it generates error reports.)
These checks take into account the syntax and the contextual constraints of the source
language. Assuming that the source program is indeed well-formed, the compiler goes
on to generate an object program that is semantically equivalent to the source program,
i.e., that will have exactly the desired effect when run. Generation of the object program
takes into account the semantics of the source and target languages.

Translators, and other language processors, are programs that manipulate programs.
Several languages are involved: not only the source language and the target language,
but also the language in which the translator is itself expressed! The latter is called the
implementation language.

To help avoid confusion, we shall use tombstone diagrams to represent ordinary
programs and language processors, and to express manipulations of programs by
language processors. We shall use one form of tombstone to represent an ordinary
program, and distinctive forms of tombstone to represent translators and interpreters.

' We use the term x86 to refer to the family of processors represented by the Intel 80386
processor and its successors.
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An ordinary program is represented by a round-topped tombstone, as shown i1
Figure 2.1. The head of the tombstone names the program P. The base of the tombston
names the implementation language L. i.e., the language in which the program i
expressed.

Figure 2.1 Tombstone representing a program P expressed in language L.

Example 2.2 Tombstone diagrams representing programs

The following diagrams show how we represent:
(a) A program named sort expressed in Java.

(b) A program named sort expressed in x86 machine code. (By convention, we ab
breviate ‘x86 machine code’ to *x86°.)

(¢) A program named graph expressed in Basic.
sort sort graph
Java x86 Basic
(a)

Programs run on machines. A machine that executes machine code M is represente
by a pentagon inside which M is named, as shown in Figure 2.2.

o

Figure 2.2 Tombstone representing a machine M.

Example 2.3 Tombstone diagrams representing machines

The following diagrams show how we represent:

(a) An x86 machine.
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(b) A Power PC (PPC) machine.

(¢) A SPARC machine.
x86 PPC @

(a) (b) (c)

O

A program can run on a machine only if it is expressed in the appropriate machine
code. Consider running a program P (expressed in machine code M) on machine M. We
represent this by putting the P tombstone on top of the M pentagon, as shown in Fig-
ure 2.3.

must match

Figure 2.3 Running program P on machine M.

Example 2.4 Tombstone diagrams representing program execution

The following diagrams show how we represent:
(a) Running program sort (expressed in Xx86 machine code) on an x86 machine.
{b) Running program sort (expressed in PPC machine code) on a PPC machine.

(c) Attempting to run program sort (expressed in PPC machine code) on an x86
machine. Of course, this will not work; the diagram clearly shows that the machine
code in which the program is expressed does not match the machine on which we
are attempting to run the program.

(d) Attempting to run program sort (expressed in Java) on an x86 machine. This will
not work either; a program expressed in a high-level language cannot run immedi-
ately on any machine. (It must first be translated into machine code.)
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sort sort
x86 PPC
BaBgls
() (b) (© (d)

We have now introduced the elementary forms of tombstone. There are also distinc-
tive forms of tombstone to represent different kinds of language processor. A translator
is represented by a T-shaped tombstone, as shown in Figure 2.4. The head of the
tombstone names the translator’s source language S and target language 7', separated by
an arrow. The base of the tombstone names the translator’s implementation language L.’

O

Figure 2.4 Tombstone representing an S-into-T translator expressed in language L.

Example 2.5 Tombstones representing translators

The following diagrams show how we represent:

(a) A Java-into-x86 compiler, expressed in C.

(b) A Java-into-x86 compiler, expressed in x86 machine code.
(¢) A Java-into-C translator, expressed in C++.

(d) An x86 assembler, which translates from x86 assembly language into x86 machine
code, and is itself expressed in x86 machine code.

Java — x86 Java — x86 Java —» C x86 ass. — x86

G x86 C++ x86
(a) (b) (c) (d)

O

Although we use tombstones of different shapes to represent ordinary programs, translators, and
interpreters, the base of a tombstone always names the implementation language. Compare
Figures 2.1, 2.4, and 2.6.
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An S-into-T translator is itself a program, and can run on machine M only if it is ex-
pressed in machine code M. When the translator runs, it translates a source program P,
expressed in the source language S, to an equivalent object program P, expressed in the
target language T. This is shown in Figure 2.5. (The object program is shaded gray, to
emphasize that it is newly generated, unlike the translator and source program, which
must be given at the start.)

“must match

Figure 2.5 Translating a source program P expressed in language S to an object program
expressed in language 7, using an S-into-7 translator running on machine M.

Example 2.6 Compilation

The following diagram represents compilation of a Java program on an x86 machine.
Using the Java-into-x86 compiler, we translate the source program sort to an equiva-
lent object program, expressed in x86 machine code. Since the compiler is itself ex-
pressed in x86 machine code, the compiler will run on an x86 machine.

sort

Java — x86 x86

The second stage of the diagram shows the object program being run, also on an x86
machine.
L]

A cross-compiler is a compiler that runs on one machine (the host machine) but gen-
erates code for a dissimilar machine (the farget machine). The object program must be
generated on the host machine but downloaded to the target machine to be run. A cross-
compiler is a useful tool if the target machine has too little memory to accommodate the
compiler, or if the target machine is ill-equipped with program development aids. (Com-
pilers tend to be large programs, needing a good programming environment to develop,
and needing ample memory to run.)
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Example 2.7  Cross-compilation

The following diagram represents cross-compilation of a Java program to enable it to
run on a Power PC microprocessor. Using a Java-into-PPC cross-compiler, we translate
the source program sort to an equivalent object program, expressed in PPC machine
code. Since the compiler is itself expressed in x86 machine code, the compiler runs on
an x86 machine.

download

Java — PPC

The second stage of the diagram shows the object program being run on a PPC
machine, having been downloaded from the x86.
Ll

The behavior of a translator can be summarized by a few simple rules, which are
clearly evident in Figure 2.5:

* A translator (like any other program) can run on a machine M only if it is expressed in
machine code M.

* The source program must be expressed in the translator’s source language S.
* The object program is expressed in the translator’s target language T.
* The object program is semantically equivalent to the source program. (We emphasize

this by giving the source and object programs the same name.)

Example 2.8 lllegal translator interactions

The following tombstone diagrams illustrate what we cannot do with a translator;
(a) A C compiler cannot translate a Java source program.

(b) A translator expressed in x86 machine code cannot run on a PPC machine.

Java — xB6




Language Processors 33

Similarly, it should be clear that a translator expressed in C or Java cannot run on
any machine. (It must first be translated into machine code.)
O

A two-stage translator is a composition of two translators. If we have an S-into-T
translator and a 7-into-U translator, we can compose them to make a two-stage S-into-U
translator. The source language S is translated to the target language U not directly, but
via an intermediate language 7.

We can easily generalize this idea to multiple stages. An n-stage translator is a
composition of n translators, and involves n—1 intermediate languages.

Example 2.9 Two-stage compilation

Given a Java-into-C translator and a C-into-x86 compiler, we can compose them to
make a two-stage Java-into-x86 compiler, as shown below. The Java source program is
translated into C, which is then compiled into x86 machine code.

sort

Java

The two-stage compiler is functionally equivalent to a Java-into-x86 compiler.

O

A translator is itself a program, expressed in some language. As such, it can be
translated into another language.

Example 2.10 Compiling a compiler

Suppose we have a Java-into-x86 compiler expressed in C. We cannot run this compiler
at all, because it is not expressed in machine code. But we can treat it as an ordinary
source program to be translated by a C-into-x86 compiler:

Java — x86
(&
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The object program is a Java-into-x86 compiler expressed in x86 machine code (shaded
gray). We can now use this to compile Java programs, as illustrated in Example 2.6.

O

More generally, all language processors are themselves programs, and as such can
be manipulated by other language processors. For example, language processors can be
translated (as in Example 2.10) or interpreted. We shall see the importance of this later
in the chapter.

2.2 Interpreters

A compiler allows us to prepare a program to be run on a machine, by first translating
the program into machine code. The program will then run at full machine speed. This
method of working is not without disadvantages, however: the entire program must be
translated before it can even start to run and produce results. In an interactive environ-
ment, interpretation is often a more attractive method of working. Thus we come to a
new kind of language processor, an interpreter, that also allows us to run programs.

An interpreter is a program that accepts any program (the source program)
expressed in a particular language (the source language), and runs that source program
immediately.

An interpreter works by fetching, analyzing, and executing the source program
instructions, one at a time. The source program starts to run and produce results as soon
as the first instruction has been analyzed. The interpreter does not translate the source
program into object code prior to execution.

Interpretation is sensible when most of the following circumstances exist:

* The programmer is working in interactive mode, and wishes to see the results of each
instruction before entering the next instruction.

* The program is to be used once and then discarded (i.e., it is a ‘throw-away’
program), and therefore running speed is not very important.

 Each instruction is expected to be executed only once (or at least not very frequently).
* The instructions have simple formats, and thus can be analyzed easily and efficiently.

Interpretation is very slow. Interpretation of a source program, in a high-level
language, can be up to 100 times slower than running an equivalent machine-code
program. Therefore interpretation is not sensible when:

* The program is to be run in production mode, and therefore speed is important.

» The instructions are expected to be executed frequently.
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e The instructions have complicated formats, and are therefore time-consuming to
analyze. (This is the case in most high-level languages.)

Example 2.11 Interpreters

Here are some well-known examples of interpreters:

(a)

(b)

(©

(d

A Basic interpreter: Basic has expressions and assignment commands like other
high-level languages. But its control structures are low-level: a program is just a
sequence of commands linked by conditional and unconditional jumps. A Basic in-
terpreter fetches, analyzes, and executes one command at a time.

A Lisp interpreter: Lisp is a very unusual language in that it assumes a common
data structure (trees) for both code and data. Indeed, a Lisp program can manufac-
ture new code at run-time! The Lisp program structure lends itself to interpretation.
(See also Exercise 2.10.)

The UNIX command language interpreter (shell): A UNIX user instructs the
operating system by entering textual commands. The shell program reads each
command, analyzes it to extract a command-name together with some arguments,
and executes the command by means of a system call. The user can see the results
of a command before entering the next one. The commands constitute a command
language, and the shell is an interpreter for that command language.

An SQL interpreter: SQL is a database query language. The user extracts inform-
ation from the database by entering an SQL query, which is analyzed and executed
immediately. This is done by an SQL interpreter within the database management

system.
O

An interpreter is represented by a rectangular tombstone, as shown in Figure 2.6.

The head of the tombstone names the interpreter’s source language. The base of the
tombstone (as usual) names the implementation language.

Figure 2.6 Tombstone representing an S interpreter expressed in language L.

Example 2.12 Tombstones representing interpreters

The following diagrams show how we represent:

(2)

A Basic interpreter, expressed in x86 machine code.
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(b) An SQL interpreter, expressed in x86 machine code.
(¢c) The UNIX shell (command language interpreter), expressed in C.

(d) The UNIX shell, expressed in SPARC machine code.

o shell shell
Basic SQL language language
x86 x86 c SPARC

(a) (b) © Q)

O

An § interpreter is itself a program, and can run on machine M only if it is expressed
in machine code M. When the interpreter runs, it runs a source program P, which must
be expressed in source language S. We say that P runs on top of the S interpreter. This is
shown in Figure 2.7.

.. must match

- must maich

Figure 2.7 Interpreting a program P expressed in language S,
using an § interpreter running on machine M.

Example 2.13

The following diagrams show how we represent:

(a) Running program graph (expressed in Basic) on top of a Basic interpreter, which
itself runs on an x86 machine.

(b) Running program chess (expressed in Lisp) on top of a Lisp interpreter, which
itself runs on an x86 machine.

(c) Attempting to run program chess (expressed in Lisp) on top of a Basic
interpreter. Of course, this will not work; the diagram clearly shows that the
language in which the program is expressed does not match the interpreter’s source
language.

vww allitebooks.conl
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{ graph ’ 1 chess ’

Basic Lisp
Basic Lisp
x86 x86
x86 x86
~— N~
(a) (b)

2.3 Real and abstract machines

The interpreters mentioned in Example 2.12 were all for (relatively) high-level lan-
guages. But interpreters for low-level languages are also useful.

Example 2.14 Hardware emulation

Suppose that a computer engineer has designed the architecture and instruction set of a
radical new machine, Ultima. Now, actually constructing Ultima as a piece of hardware
will be an expensive and time-consuming job. Modifying the hardware to implement
design changes will likewise be costly. It would be wise to defer hardware construction
until the engineer has somehow tested the design. But how can a paper design be tested?

There is a remarkably simple method that is both cheap and fast: we write an
interpreter for Ultima machine code. E.g., we could write the interpreter in C:

Ultima

C

We can now translate the interpreter into some machine code, say M, using the C
compiler:

Ultima

C
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This gives us an Ultima interpreter expressed in M machine code (shaded gray above).
Now we can run Ultima machine-code programs on top of the interpreter, which itself
runs on M, as shown below left:

Ultima

Ultima w
M

M

S

In all respects except speed, the effect is the same as running the programs on Ultima
itself, as shown above right.

This Kind of interpreter is often called an emularor. It cannot be used to measure the
emulated machine’s absolute speed, because interpretation slows everything down. But
emulation can still be used to obtain useful quantitative information: counting memory
cycles, estimating the degree of parallelism, and so on. It can also be used to obtain
qualitative information about how well the architecture and instruction set meet the
needs of programmers.

L]

Running a program on top of an interpreter is functionally equivalent to running the
same program directly on a machine, as illustrated in Example 2.14. The user sees the
same behavior in terms of the program’s inputs and outputs. The two processes are even
similar in detail: an interpreter works in a fetch-analyze—execute cycle, and a machine
works in a fetch-decode—execute cycle. The only difference is that an interpreter is a
software artifact, whereas a machine is a hardware artifact (and therefore much faster).

Thus a machine may be viewed as an interpreter implemented in hardware. Con-
versely, an interpreter may be viewed as a machine implemented by software. We
sometimes call an interpreter an abstract machine, as opposed to its hardware counter-
part, which is a real machine. An abstract machine is functionally equivalent to a real
machine if they both implement the same language L. This is summarized in Figure 2.8.

A related observation is that there is no fundamental difference between machine
codes and other low-level languages. By a machine code we just mean a language for
which a hardware interpreter exists.
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il

L

Figure 2.8 An abstract machine is functionally equivalent to a real machine.
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2.4 Interpretive compilers

A compiler may take quite a long time to translate a source program into machine code,
but then the object program will run at full machine speed. An interpreter allows the
program to start running immediately, but it will run very slowly (up to 100 times more
slowly than the machine-code program).

An interpretive compiler is a combination of compiler and interpreter, giving some
of the advantages of each. The key idea is to translate the source program into an
intermediate language, designed to the following requirements:

* it is intermediate in level between the source language and ordinary machine code;
* its instructions have simple formats, and therefore can be analyzed easily and quickly;
« translation from the source language into the intermediate language is easy and fast.

Thus an interpretive compiler combines fast compilation with tolerable running speed.

Example 2.15 Interpretive compilation

Sun Microsystems’ Java Development Kit (JDK) is an implementation of an interpretive
compiler for Java. At its heart is the Java Virtual Machine (JVM), a powerful abstract
machine.

JVM-code is an intermediate language oriented to Java. It provides powerful
instructions that correspond directly to Java operations such as object creation, method
call, and array indexing. Thus translation from Java into JVM-code is easy and fast.
Although powerful, JVM-code instructions have simple formats like machine-code
instructions, with operation fields and operand fields, and so are easy to analyze. Thus
JVM-code interpretation is relatively fast: ‘only’ about ten times slower than machine
code.

JDK consists of a Java-into-JVM-code translator and a JVM-code interpreter, both
of which run on some machine M:
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JVM
M

AL vi prograiT Pi8 s transtated into JVMZcode, and then the JVM-code object
program is interpreted:

JVM

JVM
M

=

O

Interpretive compilers are very useful language processors. In the carly stages of
program development, the programmer might well spend more time compiling than
running the program, since he or she is repeatedly discovering and correcting simple
syntactic, contextual, and logical errors. At that stage fast compilation is more important
than fast running, so an interpretive compiler is ideal. (Later, and especially when the
program is put into production use, the program will be run many times but rarely
recompiled. At that stage fast running will assume paramount importance, so a compiler
that generates efficient machine code will be required. In Java, this problem is typically
addressed by a so-called just-in-time compiler. See Section 2.8 and Exercise 2.7)

2.5 Portable compilers

A program is portable to the extent that it can be (compiled and) run on any machine,
without change. We can measure portability roughly by the proportion of code that
remains unchanged when the program is moved to a dissimilar machine. Portability is
an economic issue: a portable program is more valuable than an unportable one, because
its development cost can be spread over more copies.

The language in which the program is expressed has a major impact on its
portability. At one extreme, a program expressed in assembly language cannot be
moved to a dissimilar machine unless it is completely rewritten, so its portability is 0%.
A program expressed in a high-level language is much more portable. Ideally, it only
needs to be recompiled when moved to a dissimilar machine, in which case its
portability is 100%. However, this ideal is often quite elusive. For example, a program’s
behavior might be altered (perhaps subtly) by moving it to a machine with a different
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character set or different arithmetic. Written with care, however, application prograi
expressed in high-level languages should achieve 95-99% portability.

Similar points apply to language processors, which are themselves programs. Indes
it is particularly important for language processors to be portable because they :
especially valuable and widely-used programs. For this reason language processors ¢
commonly written in high-level languages such as Pascal, C, and Java.

Unfortunately, it is particularly hard to make compilers portable. A compile
function is to generate machine code for a particular machine, a function that
machine-dependent by its very nature. If we have a C-into-x86 compiler expressed ir
high-level language, we should be able to move this compiler quite easily to run or
dissimilar machine, but it will still generate x86 machine code! To change the compi.
to generate different machine code would require about half the compiler to
rewritten, implying that the compiler is only about 50% portable.

It might seem that highly portable compilers are unattainable. However, the situati
is not quite so gloomy: a compiler that generates intermediate language is potential
much more portable than a compiler that generates machine code.

Example 2.16 A portable compiler kit

Consider the possibility of producing a portable Java compiler kit. Such a kit wou
consist of a Java-into-JVM-code translator, expressed both in Java and in JVM-coc
and a JVM-code interpreter, expressed in Java:

I Java — JVM Java —» JVM JVM
Java JVM Java

How can we make this work? It seems that we cannot compile Java programs un
we have an implementation of JVM-code, and we cannot use the JVM-code interpret
until we can compile Java programs! Fortunately, a small amount of work can get us o
of this chicken-and-egg situation.

Suppose that we want to get the system running on machine M, and suppose that v
already have a compiler for a suitable high-level language, such as C, on this machine.

Then we rewrite the interpreter in C:

JVM

and then compile it:
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JVM
C C - M
M
M
=

Now we have an interpretive compiler, similar to the one described in Example 2.15
Theraicnerdifforance uhaonpailen dealf Jeaipreapresseadim Wb

# 7 s WU
top of the JVM-code interpreter:
B
Java — IVM JVM
VM JVM
JVM M
M M

it
The JVM-code interpreter is much smaller and simpler than the compiler, so
rewriting the interpreter is an easy job (a few days’ work for an experienced program-

mer). Consequently, our example compiler kit as a whole would be about 95% portable.

If no suitable high-level language is available, it is even feasible to rewrite the
interpreter in assembly language.

Notice that the compiler expressed in fava is not actually needed to bootstrap the
portable compiler. 1t would, however, be used to generate the compiler expressed in

JVM-code. It would also prove to be useful in later development of the compiler after
the initial move 1o machine M.

C

The Java compiler in Example 2.16 must be interpreted, so compilation of a Java

source program will be slow. However, the compiler can be improved by bootstrapping,
as we shall see in Section 2.6.1.

2.6 Bootstrapping

A language processor, such as a translator or interpreter, is a program that processes

programs expressed in a particular language (the source language). The language
processor is expressed in some implementation language.
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Now suppose that the implementation language is the source language: the language
processor can be used to process itself! This process is called bootstrapping. The idea
seems at first to be paradoxical, but it can be made to work. Indeed, it turns out to be
extremely useful. In this section we study several kinds of bootstrapping.

2.6.1 Bootstrapping a portable compiler

In Sections 2.4 and 2.5 we looked at interpretive and portable compilers. These work by
translating from the high-level source language into an intermediate language, and then
interpreting the latter.

A portable compiler can be bootstrapped to make a true compiler — one that
generates machine code — by writing an intermediate-langnage-into-machine-code
translator.

Example 2.17 Bootstrapping an interpretive compiler to generate
machine code

Suppose that we have made a portable Java compiler kit into an interpretive compiler
running on machine M, as described in Example 2.16. We can use this to build an
efficient Java-into-M compiler, as follows.

First, we write a JVM-code-into-M translator, in Java:

|JVM———>MI

Java

(This is a substantial job, but only about half as much work as writing a complete Java-
into-M compiler.) Next, we compile this translator using the existing interpretive
compiler:

IVM - M

Java Java —» JVM
JVM
JVM

This gives a JVM-code-into-M translator expressed in JVM-code itself.

Next, we use this translator to translate itself :
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This, the actual bootstrap, gives a JVYM-code-into-M translator expressed in machine
code M.

Finally, we translate the Java-into-JVM-code translator into machine code:

Moreover, the compiler is expressed in machine code, so compilation of a Java source
program is much faster than in Example 2.16.

O

2.6.2 Full bootstrap

We have seen that a program, if it is to be portable, should be written in a suitable high-
level language, L. That implies a commitment to the language L throughout the pro-
gram’s lifetime. If we wish to make a new version of the program (e.g., to remove
known bugs, or to make it more efficient), we must edit the L source program and
recompile it. In other words, the program is maintainable only as long as an L compiler
is available.
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Exactly the same point applies to a language processor expressed in L. In Exam-
ple 2.10, we saw how a Java compiler, expressed in C, could be translated into machine
code by a C compiler (and thus enabled to run). However, this Java compiler can be
maintained only as long as a C compiler is available. If we wish to make a new version
of the Java compiler (e.g., to remove known bugs, or to generate better-quality machine
code), we will need a C compiler to recompile the Java compiler.

In general, a compiler whose source language is S, expressed in a different high-
level language L, can be maintained only as long as a compiler for L is available. This
problem can be avoided by writing the § compiler in § itself! Whenever we make a new
version of the S compiler, we use the old version to compile the new version. The only
difficulty is how to get started: how can we compile the first version of the S compiler?
The key idea is to start with a subset of S — a subset just large enough to be suitable for
writing the compiler. The method is called full bootstrap — since a whole compiler is to
be written from scratch.

Example 2.18 Full bootstrap

Suppose that we wish to build an Ada compiler for machine M. Now Ada is a very large
language, so it makes sense to build the compiler incrementally. We start by selecting a
small subset of Ada that will be adequate for compiler writing. (The Pascal-like subset
of Ada would be suitable.) Call this subset Ada-S.

We write version 1 of our Ada-S compiler in C (or any suitable language for which a
compiler is currently available):

vl
Ada-S - M

C

We compile version 1 using the C compiler:

This gives an Ada-S compiler for machine M. We can test it by using it to compile and
run Ada-S test programs.

But we prefer not to rely permanently on version | of the Ada-S compiler, because it
is expressed in C, and therefore is maintainable only as long as a C compiler is
available. Instead, we make version 2 of the Ada-S compiler, expressed in Ada-S itself:
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Ada-S — M
Ada-S

This rewriting of the compiler is not a hard job, because all the algorithms and data
structures have already been developed and tested in version 1. (In fact, we could have
wisely anticipated the rewriting, by refraining from using C features with no direct
counterparts in Ada-S.)

Now we use version | to compile version 2:

As usual, we can test version 2 of the Ada-S compiler by using it to compile and run
Ada-S test programs. We have now broken our dependency on C, because the version-2
Ada-S compiler is expressed in Ada-S itself.

Finally, we extend the Ada-S compiler to a (full) Ada compiler, giving version 3:

Ada —» M
Ada-S

and compile it using version 2:

This gives us an Ada compiler expressed in Ada itself. (Actually it is expressed in a
subset of Ada, but that does not matter.) This compiler can be used to maintain itself by
using version 3 to compile version 4, and so on.

O
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2.6.3 Half bootstrap

Suppose that we have a compiler that runs on a machine HM, and generates HM'’s
machine code; now we wish to move the compiler to run on a dissimilar machine 7M. In
this transaction HM is called the host machine, and TM is called the target machine.

If the compiler is expressed in a high-level language for which we have a compiler
on TM, just getting the compiler to run on TM is straightforward, but we would still
have a compiler that generates HM’s machine code. It would, in fact, be a cross-
compiler.

To make our compiler generate 7M’s machine code, we have no choice but to
rewrite part of the compiler. As we shall see in Chapter 3, one of the major parts of a
compiler is the code generator, which does the actual translation into the target
language. Typically the code generator is about half of the compiler. If our compiler has
been constructed in a modular fashion, it is not too difficult to strip out the old code
generator, which generated HM’s machine code; then we can substitute the new code
generator, which will generate TM’s machine code.

If the compiler is expressed in its own source language, this process is called a half
bootstrap — since roughly half the compiler must be modified. It does not depend on any
compiler or assembler being already available on the target machine — indeed, it
depends only on the host machine compiler!

Example 2.19 Half bootstrap

Suppose that we have a Ada compiler that generates machine code for machine HM.
The compiler is expressed in Ada itself, and in HM’s machine code:

Ada — HM Ada —» HM
Ada HM

We wish to bootstrap this compiler to machine TM. To be precise, we want a compiler
that runs on TM and generates 7M’s machine code.

First, we modify the compiler’s code generator to generate 7M’s machine code:

Ada —» T™M

Ada

We compile the modified compiler, using the original compiler, to obtain a cross-
compiler:
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Ada — HM

How do we test the cross-compiler? We can run it on HM to compile Ada test
programs into 7M’s machine code, and then download the object programs to TM to be
run:

download

(Visual inspection of the object code is also a good idea, but practicable only for small
test programs.)

Once we are satisfied that the cross-compiler is correct, we can use it to compile
itself into TM’s machine code (the actual bootstrap):

Finally, we download the Ada-into-TM compiler (expressed in both Ada and TM’s
machine code) to the target machine 7M, and subsequently maintain it there.

O

2.6.4 Bootstrapping to improve efficiency

The efficiency of an ordinary program can be measured with respect to either time or
space: how fast does it run, and how much storage space does it require?

When we discuss the efficiency of a compiler, the situation is more complicated. We
can measure the efficiency of the compiler itself, and we can measure the efficiency of
the object programs it generates.
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In this chapter, we are not concerned with techniques for generating efficient object
programs. But we can show that bootstrapping is a useful strategy for taking a simple
compiler and upgrading it to generate more efficient object programs. The basic idea is
to use the existing version of the compiler to compile the new version, and to do this
repeatedly to make better and better versions.

Example 2.20 Bootstrapping to improve object code

Suppose that we have an Ada compiler, version 1, that generates slow machine code.
Version | is expressed in slow machine code, as well as in Ada:

vl vl
_Adn — Mslow_ Ada — M_.;h,w_

¥ | Ada | Milow

In the diagrams we will use notation like My, and M, to indicate fast and slow
machine code, respectively. (Note that M,y and M, are the same language, the
machine code M; the subscripts are merely indications of code guality.)

When we compile Ada programs, both the version-1 compiler and its object
programs will be slow. (Why?) Our objective is to make a fast compiler that generates
fast object programs.

First, we modify version 1 to make a version-2 compiler that generates faster
machine code:

y2
Ada — Mg
Ada

We can use version | to compile version 2:

v2
[ Ada — My

Ada [ Ada — Moy

This gives us a better compiler, which we can use to compile Ada programs:
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Compilation will still be slow (since the compiler is expressed in slow machine code),
but the object program will be fast (since the generated machine code is fast).

The final stage of bootstrapping is to use version 2 to compile itself:

Ada — Mpg

[l

In practice, the bootstrapping steps illustrated in Example 2.20 would be used many
times, as the compiler is gradually improved to generate better and better object code.

2.7 Case study: the Triangle language
processor

The Triangle language processor will be used as a case study throughout this book. It
consists of a compiler, an interpreter, and a disassembler. We will study how they work
in the following chapters. Here we examine the Triangle language processor’s overall
structure. (See Figure 2.9.)
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The compiler translates Triangle source programs into TAM code. TAM (Triangle
Abstract Machine) is an abstract machine, implemented by an interpreter. TAM has
been designed to facilitate the implementation of Triangle — although it would be
equally suitable for implementing Algol, Pascal, and similar languages. Like JVM-code
(Example 2.15), TAM’s primitive operations are more similar to the operations of a
high-level language than to the very primitive operations of a typical real machine. As a
consequence, the translation from Triangle into TAM code is straightforward and fast.

The Triangle-into-TAM compiler and the TAM interpreter together constitute an
interpretive compiler, much like the one described in Example 2.15. (See Exercise 2.2.)
The TAM disassembler translates a TAM machine code program into TAL (Triangle
Assembly Language). It is used to inspect the object programs produced by the
Triangle-into-TAM compiler.

ITriangle - TAM TAM TAM — TAL

Java Java Java

Figure 2.9 The compiler, interpreter, and disassembler components
of the Triangle language processor.

2.8 Further reading

A number of authors have used tombstone diagrams to represent language processors
and their interactions. The formalism was fully developed, complete with mathematical
underpinnings, by Earley and Sturgis (1970). Their paper also presents an algorithm that
systematically determines all the tombstones that can be generated from a given initial
set of tombstones.

A case study of compiler development by full bootsirap may be found in Wirth
(1971). A case study of compiler development by half bootstrap may be found in Welsh
and Quinn (1972). Finally, a case study of compiler improvernent by bootstrapping may
be found in Ammann (1981). Interestingly, all these three case studies are interlinked:
Wirth’s Pascal compiler was the starting point for the other two developments.

Bootstrapping has a longer history, the basic idea being described by several authors
in the 1950s. (At that time compiler development itself was still in its infancy!) The first
well-known application of the idea seems to have been a program called eval, which
was a Lisp interpreter expressed in Lisp itself (McCarthy et al. 1965).

Sun Microsystems’ Java Development Kit (JDK) consists of a compiler that trans-
lates Java code to JVM code, a JVM interpreter, and a number of other tools. The
compiler (javac) is written in Java itself, having been bootstrapped from an initial
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version written in C. The interpreter (java) is written in C, for efficiency. Most web
browsers contain an embedded JVM interpreter to allow them to run Java software
downloaded from the Internet. For a comprehensive account of the Java Virtual
Machine, see Lindholm and Yellin (1999).

Java software has to be highly portable, especially applets that may be downloaded
from a host computer and run on any computer connected to the Internet. In this context,
the use of an interpretive compiler makes sense, but for some applications the run-time
performance penalty is excessive. This observation has led to the appearance of JIT
(just-in-time) compilers. A JIT compiler translates program code into machine code just
when it is loaded into memory for execution. In particular, a Java JIT compiler
translates JVM code into machine code each time a class is loaded. Since classes are
loaded dynamically (during execution), JIT compilation also happens dynamically.
Portability is not affected, since Java software is still stored on the host computer and
downloaded to the user's computer as JVM code; the JIT compiler runs on the user’s
computer. If a user does not have a JIT compiler, the same Java software can still be run
(albeit more slowly) using the JVM interpreter embedded in the user’s Internet browser.

Some Java JIT compilers are even more dynamic than suggested in the previous
paragraph. They keep track of the number of calls to individual methods, and translate
only the most frequently-executed methods into machine code. The less frequently-
executed methods remain as JVM code and are still interpreted. This more complex
scheme seems to yield a good tradeoff between compilation time and execution time.
Just-in-time compilation is explained in a paper by Adl-Tabatabai et al. (1998).

Exercises

2.1%* Consider each of the following (hypothetical) translators. Do you think the
translator might be useful in practice? Explain your answer. Also, what diffi-
culties could be anticipated in making it generate a good-quality object pro-
gram?

o

(a) aJava-into-C translator;
(b) a C-into-Java translator;
(¢) an assembly-language-into-Pascal decompiler.
2.2 From the description of the Triangle language processor in Section 2.7, use
tombstone diagrams to show:
(a) compiling a Triangle source program P;
(b) running the object program;

(c¢) disassembling the object program.
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Assume that you have the following: a machine M; a C compiler that runs on
machine M and generates machine code M; and a Java-into-C translator ex-
pressed in C. Use tombstone diagrams to represent these language processors.
Also show how you would use these language processors to:

(a) compile and run a program P expressed in C;
(b) compile the Java-into-C translator into machine code;

(¢) compile and run a program Q expressed in Java.

Assume that you have the following: a machine M; a C compiler that runs on
machine M and generates machine code M; a TAM interpreter expressed in C;
and a Pascal-into-TAM compiler expressed in C. Use tombstone diagrams to
represent these language processors. Also show how you would use these lan-
guage processors to:

(a) compile the TAM interpreter into machine code;
(b) compile the Pascal-into-TAM compiler into machine code;

{c) compile and run a program P expressed in Pascal.

The Gnu compiler kit uses a machine-independent register transfer language,
RTL, as an intermediate language. The kit includes translators from several
high-level languages (such as C, C++, Pascal) into RTL, and translators from
RTL into several machine codes (such as Alpha, PPC, SPARC). It also
includes an RTL ‘optimizer’, i.e., a program that translates RTL into more
efficient RTL. All of these translators are expressed in C.

(a) Show how you wouid install these translators on a SPARC machine,
given a C compiler for the SPARC.

Now show how you would use these translators to:
(b) compile a program P, expressed in Pascal, into SPARC machine code;

(c) compile the same program, but using the RTL optimizer to generate more
efficient object code;

(d) cross-compile a program @, expressed in C++, into PPC machine code.

The Triangle language processor (see Section 2.7) is expressed entirely in Java.
Use tombstone diagrams to show how the compiler, interpreter, and disassem-
bler would be made to run on machine M. Assume that a Java-into-M compiler
is available.

Draw tombstone diagrams to illustrate the use of a Java JIT (just-in-time)
compiler. Show what happens when a Java program P is compiled and stored
on a host machine H, and subsequently downloaded for execution on the user’s
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2.8*

2,9%

2.10*

machine U. Assume that a JIT compiler is available that runs on and generates
code for machine U.

Suppose that you have designed a language C+, which is C extended with
packages. (A package is just a named group of global declarations, some of
which are designated as exported by the package; the remaining declarations
are visible only inside the package. So packages are intended to support a
modern programming discipline, rather than adding new functionality to the
language.)

A two-stage C-into-M compiler is available, consisting of a C-into-RTL trans-
lator and an RTL-into-M translator. The two-stage compiler is available both in
C and in machine code M. Machine M is also available.

Suggest mwo different strategies for implementing C+. What are the advantages
and disadvantages of each strategy?

Suppose that an ambitious new progranuming language, Utopia, has been
designed to meet the needs of all programmers everywhere. Rather than a
single language. it is actually a series of nested sublanguages Utopia-1, Utopia-
2, and Utopia-3. The smallest sublanguage Utopia-1 has roughly the
functionality of C; Utopia-2 has some extra features; and the full language
Utopia-3 supports a variety of advanced features such as concurrency.

The motivations for defining the sublanguages were as follows. Some imple-
mentors might prefer to develop compilers for the sublanguages only; whereas
more ambitious implementors will aim to develop compilers for the full lan-
guage. Programmers who do not need the functionality of the full language can
use a compiler for a sublanguage (and such a compiler will be smaller and
faster than a compiler for the full language); but they can easily graduate to the
full language if the need arises, without having to rewrite any of their existing
programs.

You are required to develop a complete set of compilers for Utopia-1, Utopia-
2, and Utopia-3. What strategy would you adopt? You may assume that a C
compiler is available. (Note: There are several possible strategies. Weigh their
advantages and disadvantages carefully.)

Consider a programming language that allows code to be manufactured at run-
time (such as Lisp, Example 2.11(b)).
(a) What would be unusual about the specification of this language?

(b)  Why would this language normally be implemented by means of an inter-
preter?

(c) Suppose, nevertheless, that a compiler is to be designed for this language.
What would be unusual about this compiler?




WoR W R

CHAPTER THREE

Compilation

In this chapter we study the internal structure of compilers. A compiler’s basic function
is to translate a high-level source program to a low-level object program, but before
doing so it must check that the source program is well-formed. So compilation is
decomposed into three phases: syntactic analysis, contextual analysis, and code gener-
ation. In this chapter we study these phases and their relationships. We also examine
some possible compiler designs, each design being characterized by the number of
passes over the source program or its internal representation, and discuss the issues
underlying the choice of compiler design.

In this chapter we restrict ourselves to a shallow exploration of compilation. We
shall take a more detailed look at syntactic analysis, contextual analysis, and code
generation in Chapters 4, 5, and 7, respectively.

3.1 Phases

Inside any compiler, the source program is subjected to several transformations before
an object program is finally generated. These transformations are called phases. The
three principal phases of compilation are as follows:

e Syntactic analysis: The source program is parsed to check whether it conforms to the
source language’s syntax, and to determine its phrase structure.

» Contextual analysis: The parsed program is analyzed to check whether it conforms to
the source language’s contextual constraints.

* Code generation: The checked program is translated to an object program, in accor-
dance with the semantics of the source and target languages.

The three phases of compilation correspond directly to the three parts of the source
language’s specification: its syntax, its contextual constraints, and its semantics. '

' Some compilers include a fourth phase, code optimization. Lexical analysis is sometimes

treated as a distinct phase, but in this book we shall treat it as a sub-phase of syntactic analysis.

55
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Between the phases we need to represent the source program in such a way as to
reflect the analysis already done on it. A suitable choice of representation is an abstract
syntax tree (AST). The AST explicitly represents the source program’s phrase structure.
Its subtrees will correspond to the phrases (commands, expressions, declarations, etc.)
of the source program. Its leaf nodes will correspond to the identifiers, literals, and oper-
ators of the source program. All other terminal symbols in the source program can be
discarded after syntactic analysis.

We can conveniently summarize the phases of a compiler by means of a data flow
diagram.” Figure 3.1 shows the data flow diagram of a typical compiler. It shows the
successive transformations effected by the three phases. It also shows that syntactic and
contextual analysis may generate error reports, which will be transmitted to the pro-
grammer.

Let us now examine the three principal phases in more detail. We shall follow a tiny
Triangle program through all the phases of compilation. The source program is shown in
Figure 3.2, and the results of successive transformations in Figures 3.3, 3.4, and 3.7.

source program

syntactic error reports
analysis >

contextual error reports
analysis >

decorated AST

code
generation

object program

Figure 3.1 Data flow diagram for a typical compiler.

A data flow diagram summarizes data flows and transformations in a system. An arrow
represents a data flow, and is labeled by a description of the data. A rounded box represents a
transformation, and is labeled accordingly.

vww allitebooks.conl



http://www.allitebooks.org

Compilation 57

In order to be concrete, we shall explain these transformations as implemented in the
Triangle compiler that is our case study. It should be understood, however, that another
Triangle compiler could implement the transformations in a different way. The main
purpose of this section is to explain what transformations are performed, not how they
are implemented. In Section 3.2.2 we shall emphasize this point by sketching an
alternative Triangle compiler with a very different design, which nevertheless performs
essentially the same processing on the source program.

3.1.1 Syntactic analysis

The purpose of syntactic analysis is to determine the source program’s phrase structure.
This process is called parsing. It is an essential part of compilation because the subse-
quent phases (contextual analysis and code generation) depend on knowing how the
program is composed from commands, expressions, declarations, and so on.

The source program is parsed to check whether it conforms to the source language’s
syntax, and to construct a suitable representation of its phrase structure. Here we assume
that the chosen representation is an AST.

Example 3.1 Triangle AST

Syntactic analysis of the Triangle source program of Figure 3.2 yields the AST of
Figure 3.3. As we shall be studying the compilation of this program in some detail, let
us examine those parts of the AST that are numbered in Figure 3.3.

(1) The program is a let-command. It consists of a declaration (‘var n: Integer;
var c¢: Char’ in the source program) and a subcommand (‘c := '&'; n :=
n+1"). This is represented by an AST whose root node is labeled ‘LetCommand’,
and whose subtrees represent the declaration and subcommand, respectively.

(2) This is a variable declaration. It consists of an identifier (n) and a type-denoter

(Integer).

(3) This also is a variable declaration. It consists of an identifier (c) and a type-denoter
(Char).

(4) This is a sequential command. It consists of two subcommands (‘c := '&'’ and

1

n:=n+1").

(5) This is an assignment command. It consists of a value-or-variable-name on the
left-hand side (1) and an expression on the right-hand side (n+1).

(6) This value-or-variable-name is just an identifier (n).
(7) This is an expression that applies an operator (‘+’) to two subexpressions.
(8) This expression is a value-or-variable-name (n).

(9) This expression is an integer-literal (1).
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! This program is useless
! except for illustration.
let

var n: Integer;

var c: Char

in
begin
c = '&';
n := n+l
end

Figure 3.2 A Triangle source program.
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Figure 3.3 AST after syntactic analysis of the source program of Figure 3.2.

In general, the AST has terminal nodes that correspond to identifiers, literals, and
operators in the source program, and subtrees that represent the phrases of the source
program. Blank space and comments are not represented in the AST, because they
contribute nothing to the source program’s phrase structure. Punctuation and brackets
also have no counterparts in the AST, because they serve only to separate and enclose
phrases of the source program; once the source program has been parsed, they are no
longer needed. For example, the ‘begin’ and ‘end’ brackets in Figure 3.2 serve only
to enclose the sequential command ‘c := '&'; n := n+1’, thus ensuring that the
sequential command as a whole is taken as the body of the let-command. The AST’s
very structure represents this bracketing perfectly well.




If the source program contains syntactic errors, it has no proper phrase structure. In
that case, syntactic analysis generates error reports instead of constructing an AST.

3.1.2 Contextual analysis

In contextual analysis the parsed program is further analyzed, to determine whether it
conforms to the source language’s contextual constraints:

* The source language’s scope rules allow us, at compile-time, to associate each applied
occurrence of an identifier (e.g., in an expression or command) with the
corresponding declaration of that identifier, and to detect any undeclared identifiers.
(Here we are assuming that the source language exhibits static binding.)

* The source language’s type rules allow us, at compile-time, to infer the type of each
expression and to detect any type errors. (Here we are assuming that the source lan-
guage is statically typed.)

If the parsed program is represented by its AST, then contextual analysis will yield a
decorated AST. This is an AST enriched with information gathered during contextual
analysis:

* As a result of applying the scope rules, each applied occurrence of an identifier is
linked to the corresponding declaration. We show this diagrammatically by a dashed
arrow.

* As a result of applying the type rules, each expression is decorated by its type 7. We
show this diagrammatically by marking the expression’s root node “: 7.

Example 3.2  Triangle contextual analysis

Triangle exhibits static binding and is statically typed. Contextual analysis of the AST of
Figure 3.3 yields the decorated AST of Figure 3.4.

The contextual analyzer checks the declarations as follows:
(2) It notes that identifier n is declared as a variable of type int.
(3) It notes that identifier ¢ is declared as a variable of type char.
The contextual analyzer checks the second assignment command as follows:

(6) At this applied occurrence of identifier n, it finds the corresponding declaration at
(2). It links this node to (2). From the declaration it infers that n is a variable of
type int.

(8) Here, similarly, it infers that the expression n is of type int.
(9) This expression, being an integer-literal, is manifestly of type int.

(7) Since the operator ‘+’ is of type int X int — int, it checks that the left and right
subexpressions are of type int, and infers that the whole expression is of type int.
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(5) It checks that the left-hand side of the assignment command is a variable, and that
the right-hand side is an expression of equivalent type. Here both (6) and (7) are of
type int, so the assignment command is indeed well-typed.

In this way the contextual analyzer verifies that the source program satisfies all the
contextual constraints of Triangle.

O
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Figure 3.4 Decorated AST after contextual analysis of the AST of Figure 3.3

If the source program does not satisfy the source language’s contextual constraints
contextual analysis generates error reports.
Example 3.3  Detection of Triangle contextual errors

Figures 3.5 and 3.6 illustrate how contextual analysis will detect violations of scope
rules and lypt: rules. This particular Triangle program contains three contextual errors:
(1) The expression of this while-command is not of type bool.

(2) Identifier m is used but not declared.

(3) In this application of operator ‘>’, which is of type int x int — bool, one
subexpression has the wrong type.

O
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let
var n: Integer
in ! 1ll-formed program
while n/2 do
m:= 'n' > 1

Figure 3.5 An ill-formed Triangle source program.
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Figure 3.6 Discovering errors during contextual analysis of the Triangle program of Figure 3.5.

3.1.3 Code generation

After syntactic and contextual analysis, the source program has been thoroughly
checked and is known to be well-formed. Code generation is the final translation of the
checked program to an object program, in accordance with the source and target
languages’ semantics.

A pervasive issue in code generation is the treatment of identifiers that are declared
and/or used in the source program. In semantic terms, a declaration binds an identifier to
some sort of entity. For example: ‘

e A constant declaration such as ‘const m ~ 7’ binds the identifier m to the value 7.
The code generator must then replace each applied occurrence of m by the value 7.

e A variable declaration such as ‘var b: Boolean’ binds the identifier b to some
address (storage cell), which is decided by the code generator itself. The code generat-
or must then replace each applied occurrence of b by the address to which it is bound.
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A rather different issue for the compiler designer is the exact nature of the target
language: should the compiler generate machine code or the assembly language of the
target machine? Actually, the choice has only minor influence on the structure of the
compiler, and we shall not pursue the issue in this book. When presenting examples of
object code, however, we always write instructions mnemonically (as in Figure 3.7),
since this is considerably more readable than the equivalent binary machine code.

PUSH 2
LOADL 38
STORE 1[SE]
LOAD O0[SE]
LOADL 1
CALL add
STORE 0[SB]
POP 2
HALT

Figure 3.7 Object program after code generation from Figure 3.4.

Example 3.4 TAM code generation

Code generation from the decorated AST of Figure 3.4 yields the TAM object program
of Figure 3.7.

The code generator processes the declarations as follows:

(2) It allocates an address for the variable n, say 0 [SB]. It stores that address at node
(2), for later retrieval.’

(3) It similarly allocates an address for the variable c, say 1[SB]. It stores that
address at node (3), for later retrieval.

The code generator processes the second assignment command as follows:

(8) By following the link to the declaration of n, it retrieves this variable’s address,
namely 0[SB]. Then it generates the instruction ‘LOAD 0[SB]’. (When
executed, this instruction will fetch the current value of that variable.)

(9) It generates the instruction ‘LOADL 1°. (When executed, this instruction will fetch
the literal value 1.)

Here ‘0 [SB] ' means address 0 relative to the base register SB — but you will be able to follow
this example without knowing TAM's addressing mechanism.
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(7) It generates the instruction ‘CALL add’. (When executed, this instruction will add
the two previously-fetched values.)

(5) By following the link to the declaration of n, it retrieves this variable’s address,
namely O [SB]. Then it generates the instruction ‘STORE 0[SB]’. (When exe-
cuted, this instruction will store the previously-computed value in that variable.)

In this way the code generator translates the whole program into object code.

O

3.2 Passes

In the previous section we examined the principal phases of compilation, and the flow
of data between them. In this section we go on to examine and compare alternative
compiler designs.

In designing a compiler, we wish to decompose it into modules, in such a way that
each module is responsible for a particular phase. In practice there are several ways of
doing so. The design of the compiler affects its modularity, its time and space require-
ments, and the number of passes over the program being compiled.

A pass is a complete traversal of the source program, or a complete traversal of an
internal representation of the source program (such as an AST). A one-pass compiler
makes a single traversal of the source program; a multi-pass compiler makes several
traversals.

In practice, the design of a compiler is inextricably linked to the number of passes it
makes. In this section we contrast multi-pass and one-pass compilation, and summarize
the advantages and disadvantages of each.

3.2.1 Multi-pass compilation

One possible compiler design is shown by the structure diagram® of Figure 3.8.

The compiler consists of a top-level driver module together with three lower-level
modules, the syntactic analyzer, the contextual analyzer, and the code generator. First,
the compiler driver calls the syntactic analyzer, which reads the source program, parses
it, and constructs a complete AST. Next, the compiler driver calls the contextual

* A structure diagram summarizes the modules and module dependencies in a system. The
higher-level modules are those near the top of the structure diagram. A connecting line
represents a dependency of a higher-level module on a lower-level module. This dependency
consists of the higher-level module using the services (e.g., types or methods) provided by the
lower-level module.
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analyzer, which traverses the AST, checks it, and decorates it. Finally, the compiler
driver calls the code generator, which traverses the decorated AST and generates an
object program.

In general, a compiler with this design makes at least three passes over the program
being compiled. The syntactic analyzer takes one pass, and the contextual analyzer and
code generator take at least one pass each.

Compiler
Driver

=

Syntactic Contextual Code
Analyzer Analyzer Generator

Figure 3.8 Structure diagram for a typical multi-pass compiler.

Compiler
Driver

Syntactic
Analyzer

s

Contextual Code
Analyzer Generator

Figure 3.9 Structure diagram for a typical one-pass compiler.

3.2.2 One-pass compilation

An alternative compiler design is for the syntactic analyzer to control the other phases of
compilation, as shown in Figure 3.9. A compiler with this design makes a single pass
over the source program.

Contextual analysis and code generation are performed ‘on the fly’ during syntactic
analysis. As soon as a phrase (e.g., expression, command, or declaration) has been
parsed, the syntactic analyzer calls the contextual analyzer to perform any necessary
checks. It also calls the code generator to generate any object code. Then the syntactic
analyzer continues parsing the source program.
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Example 3.5 One-pass compilation

A one-pass Triangle compiler would work as follows. Consider the following Triangle
source program:

! This program is useless
! except for illustration.
let

var n: Integerm;

var ¢: Char®

in
begin
c® = 15 (G,
n® .= ny1MEB)
end

This is identical to the source program of Figure 3.2, but some of the key points in the
program have been numbered for easy reference. At these points the following actions
are taken:

(1) After parsing the variable declaration ‘var n: Integexr’, the syntactic analyzer
calls the contextual analyzer to record the fact (in a table) that identifier n is de-
clared to be a variable of type int. It then calls the code generator to allocate and
record an address for this variable, say 0 [SB].

{2) After parsing the variable declaration ‘var c: Char’, the syntactic analyzer
similarly calls the contextual analyzer to record the fact that identifier c is declared
to be a variable of type char. It then calls the code generator to allocate and record
an address for this variable, say 1 [SB].

(3) After parsing the value-or-variable-name ¢, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type char. It then calls the
code generator to retrieve its address, 1 [SB].

(4) After parsing the expression '&', the syntactic analyzer infers that it is of type
char. It then calls the code generator to generate instruction ‘LOADL 38°.

(5) After parsing the assignment command ‘c := '&'’, the syntactic analyzer calls
the contextual analyzer to check type compatibility. It then calls the code generator
to generate instruction ‘STORE 1 [ SB]’, using the address retrieved at point (3).

(6) After parsing the value-or-variable-name n, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type int. It then calls the code
generator to retrieve the variable’s address, 0 [SB].

(7) While parsing the expression n+1, the syntactic analyzer infers (by calling the
contextual analyzer) that the subexpression n is of type int, that the operator ‘+’ is
of type int X int — int, that the subexpression 1 is of type int, and hence that the
whole expression is of type int. It calls the code generator to generate instructions
‘LOAD 0[SB]’, ‘LOADL 1’°, and ‘CALL add’.
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(8) After parsing the assignment command ‘n := n+1’, the syntactic analyzer calls
the contextual analyzer to check type compatibility. It then calls the code generator
to generate instruction ‘STORE 0 [SB]".

O

3.2.3 Compiler design issues

The choice between one-pass and multi-pass compilation is one of the first and most
important design decisions for the compiler writer. It is not an easy decision, for both
designs have important advantages and disadvantages. We summarize the main issues
here.

e Speed is an issue where a one-pass compiler wins. Construction and subsequent
traversals of the AST (or other internal program representation) is a modest time
overhead in any multi-pass compiler. If the AST is stored on disk, however, the
input—output overhead is likely to be large, even dominating compilation time.

 Space might also seem to favor a one-pass compiler. A multi-pass compiler must find
memory to store the AST. But the situation is not really so clear-cut. In a multi-pass
compiler, only one of the principal modules (syntactic analyzer, contextual analyzer,
and code generator) is active at a time, so their code can share memory. In a one-pass
compiler, all these modules are active throughout compile-time, so they must be co-
resident in memory. As a result, the code of a one-pass compiler occupies more mem-
ory than the code of a multi-pass compiler.

Of course, a very large source program will give rise to a very large AST, perhaps
occupying more memory than the compiler itself. Fortunately, modern programming
languages allow larger programs to be decomposed into compilation units, which are
compiled separately; and individual compilation units tend to be moderately-sized.
(See also Exercises 3.5 and 3.6.)

» Modularity favors the multi-pass compiler. In a one-pass compiler, the syntactic
analyzer not only parses the source program but also coordinates the contextual ana-
lyzer and code generator. That is to say, it calls these modules, and maintains the data
passed to and from them. In practice, the coordinating code may swamp the syntactic
analysis code. In a multi-pass compiler, each module (including the syntactic
analyzer) is responsible for a single function.

s Flexibility is an issue that favors the multi-pass compiler. Once the syntactic analyzer
has constructed the AST, the contextual analyzer and code generator can traverse the
AST in any convenient order. In particular, the code generator can translate phrases
out of order, and sometimes this allows it to generate more efficient object code. A
one-pass compiler is restricted to check and translate the phrases in exactly the order
in which they appear in the source program.

» Semantics-preserving transformations of the source program or object program are
performed by some compilers in order to make the object code as efficient as
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possible. (These are the so-called ‘optimizing’ compilers.) Such transformations
generally require analysis of the whole program prior to code generation, so they
force a multi-pass design on the compiler.

» Source language properties might restrict the choice of compiler design. A source
program can be compiled in one pass only if every phrase (e.g., command or expres-
sion) can be compiled using only information obtained from the preceding part of the
source program. This requirement usually boils down to whether identifiers must be
declared before use. If they must be declared before use (as in Pascal, Ada, and Trian-
gle), then one-pass compilation is possible in principle. If identifiers need not be
declared before use (as in Java and ML), then multi-pass compilation is required.

Example 3.6 Pascal compiler design

In Pascal, the usual rule is that identifiers must be declared before use. Thus an applied
occurrence of an identifier can be compiled in the sure knowledge that the identifier’s
declaration has already been processed (or is missing altogether).

Consider the following Pascal block:
var n: Integer;

procedure inc;

begin
n := n+l
end;
begin
n := 0; inc

end

When a Pascal one-pass compiler encounters the command ‘n := n+1’, it has already
processed the declaration of n. It can therefore retrieve the type and address of the
variable, and subject the command to contextual analysis and code generation.

Suppose, instead, that the declaration of n follows the procedure. When the Pascal
one-pass compiler encounters the command ‘n := n+1’, it has not yet encountered the
declaration of n. So it cannot subject the command to contextual analysis and code
generation. Fortunately, the compiler is not obliged to do so: it can safely generate an
error report that the declaration of n is either misplaced or missing altogether.

O

Example 3.7 Java compiler design

The situation is different in Java, in which variable or method declarations need not be
in any particular order. The following Java class is perfectly well-formed:
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class Example {

void inc() { n n+ 1; }

int

1

void use() { n 0; inc(); }

}

The command ‘n = n + 1;  cannot be subjected to contextual analysis and code
generation until the variable declaration ‘int n;’ has been processed. A Java compiler
must therefore process variable declarations in one pass, and the commands and
expressions inside a method body in a later pass.

O

3.3 Case study: the Triangle compiler

In Section 2.7 we introduced our case study, the Triangle language processor. This
consists of a compiler, an interpreter, and a disassembler. In this section we look more
closely at the Triangle compiler, explaining its design.

The Triangle compiler has the usual three phases of syntactic analysis, contextual
analysis, and code generation, as shown in the data flow diagram of Figure 3.1. It has
three passes, having the outline structure shown in Figure 3.8. The syntactic analyzer,
contextual analyzer, and code generator modules take one pass each, communicating via
an AST that represents the source program. This was illustrated in Examples 3.1, 3.2,
and 3.4.

Omitting minor details, the compiler driver looks like this:
public class Compiler {
public static void compileProgram () [

Parser parser = new Parser(...);
Checker checker = new Checker(...);
Encoder generator = mew Encoder(...);

// Call the syntactic analyzer to parse the source program and
// construct theAsST...
Program theAST = parser.parse();

// Call the contextual analyzer to check and decorate theAST...
checker.check (theAST) ;

// Call the code generator to translate theAST to an object program...
generator.encode (theAST) ;
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public sgtatic void main (String[] args) {
compileProgram(...) ;

}

A one-pass Triangle compiler would have been perfectly feasible, so the choice of a
three-pass design needs to be justified. The Triangle compiler is intended primarily for
educational purposes, so simplicity and clarity are paramount. Efficiency is a secondary
consideration; in any case, efficiency arguments for a one-pass compiler are inconclu-
sive, as we saw in Section 3.2.3. So the Triangle compiler was designed to be as modul-
ar as possible, allowing the different phases to be studied independently of one another.

Triangle
Triangle. Triangle. Triangle.
SyntacticAnalyzer ContextualAnalyzer CodeGenerator
Triangle.

AbstractSyntaxTrees

Figure 3.10 Structure diagram for the Triangle compiler.

A detailed structure diagram of the Triangle compiler is given in Figure 3.10,
showing the main classes and packages. Here are brief explanations of the packages and
the main classes they contain:

e The Triangle.AbstractSyntaxTrees package contains classes defining the
AST data structure. There is a class for each Triangle construct, e.g., AssignCom-
mand, IfCommand, BinaryExpression, ConstDeclaration, VarDec-
laration, etc. Each class contains a constructor for building the AST for that
construct, and a visitor method used by the contextual analyzer and the code generator
to traverse the AST. The other parts of the compiler are allowed to manipulate the
fields of the AST objects directly.

¢ The Triangle.SyntacticAnalyzer package contains the Parser class (and
some classes of no concern here). The parser parses the source program, and
constructs the AST. It generates an error report if it detects a syntactic error.

e The Triangle.ContextualAnalyzer package contains the Checker class.
The checker traverses the AST, links applied occurrences of identifiers to the corre-
sponding declarations, infers the types of all expressions, and performs all necessary
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type checks. [t decorates the AST with these types. It generates an error report if it
detects a contextual error.

« The Triangle.CodeGenerator package contains the Encoder class. The
encoder traverses the decorated AST, allocates addresses to variables. and generates
TAM object code.

+ The Triangle package contains the Compiler class. The compiler simply drives
the three phases of the compilation. as described above.

Diagrams describing the complete design of the Triangle compiler are given in
Appendix D. In later chapters we shall continue this case study by looking inside the
individual packages and their classes. Detailed documentation about the contents of
each class can also be found at our Web site (see Preface, page).

3.4 Further reading

The textbook by Aho et al. (1985) offers a comprehensive treatment of all aspects of
compilation. Chapter 1 discusses compiler designs in general; Chapter 2 presents a
complete example of one-pass compilation: Chapter 11 discusses compiler design
issues; and Chapter 12 looks at several case studies of real compilers.

This book concentrates on multi-pass compilation, in the interests of clarity and
modularity. Other authors, such as Hoare (1973), have stressed the advantages of one-
pass compilation. Welsh and McKeag (1980) devote a large part of their textbook to
one-pass compilation. As a case study they develop a complete compiler for a subset of
Pascal. Welsh and Hay (1986) is a complete one-pass Pascal compiler, together with an
interpreter. That book is a fine example of literate programming.

The idea of using abstract syntax as a basis for compilation seems to be due to
McCarthy (1963). Despite the attractions of this idea, it has received scant attention in
most compiler textbooks.

Many internal representations other than ASTs are possible. of course. Lower-level
internal representations tend to be more convenient for code generation to real machine
code. A prominent example of this is the Gnu compiler kit, which uses a machine-
independent but low-level intermediate language RTL. We can then construct ‘front-
ends’ translating a variety of high-level languages to RTL, and ‘back-ends’ translating
RTL to a variety of target machine codes. (See Exercise 2.5.) If we have m front-ends
and n back-ends, we can combine these m+n components to make s distinct compilers.
This is a major saving of effort.
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Exercises

3.1

3.2

3.3

3.4*

3.5

In Examples 3.2 and 3.4, the first assignment command ‘c := '&'’ was
ignored. Describe how this command would have been subjected to contextual
analysis and code generation.

The Mini-Triangle source program below left would be compiled to the object
program below right:

let

const m ~ 7;

var x: Integer PUSH 1
in

X :=m * X LOADL 7

LOAD O0O[SB]
CALL mult
STORE 0[SB]
POP 1
HALT

Describe the compilation in the same manner as Examples 3.1, 3.2, and 3.4.
(You may ignore the generation of the PUSH, and POP instructions.)

The Mini-Triangle source program below contains several contextual errors:

let
var a: Logical;
var b: Boolean;
var 1i: Integer
in
if 4 then b := 1 = 0 else b := yes
In the same manner as Example 3.3, show how contextual analysis will detect
these errors.

Choose a compiler with which you are familiar. Find out and describe its
phases and its pass structure. Draw a data flow diagram (like Figure 3.1) and a
structure diagram (like Figure 3.8 or Figure 3.9).

Consider a source language, like Fortran or C, in which the source program
consists of one or more distinct subprograms — a main program plus some pro-
cedures or functions. Design a compiler that uses ASTs, but (assuming that in-
dividual subprograms are moderately-sized) requires only a moderate amount
of memory for ASTs.




72 Programming Language Processors in Java

3.6*

The Triangle compiler would be unable to translate a very large source
program, because of the memory required to store its AST. Consider the fol-
lowing proposal to redesign the compiler to improve its handling of very large
source programs.

One procedure/function body is to be (completely) compiled at a time. When-
ever the compiler has parsed a procedure/function declaration and constructed
its AST, it breaks off to perform contextual analysis and code generation on the
procedure/function body’s AST, and then prunes the AST leaving a stub in
place of the procedure/function body. Then the compiler resumes parsing the
source program.

Would such a restructuring of the compiler be feasible? If no, explain why not.
If yes, work through the following small source program, showing the steps
that would be taken by the compiler, along the same lines as Example 3.5:

let
var n: Integer;
proc inc () -~
Ny = At 1
in
begin n := 0; inc() end




CHAPTER FOUR

Syntactic Analysis

In Chapter 3 we saw how compilation can be decomposed into three principal phases,
one of which is syntactic analysis. In this chapter we study syntactic analysis, and
further decompose it into scanning, parsing, and abstract syntax tree construction.
Section 4.1 explains this decomposition.

The main function of syntactic analysis is to parse the source program in order to
discover its phrase structure. Thus the main topic of this chapter is parsing, and in
particular the simple but effective method known as recursive-descent parsing. Sec-
tion 4.3 explains how parsing works, and shows how a recursive-descent parser can be
systematically developed from the programming language’s grammar. This
development is facilitated by a flexible grammatical notation (EBNF) and by various
techniques for transforming grammars, ideas that are introduced in Section 4.2.

In a multi-pass compiler, the source program’s phrase structure must be represented
explicitly in some way. This choice of representation is a major design decision. One
convenient and widely-used representation is the abstract syntax tree. Section 4.4 shows
how to make the parser construct an abstract syntax tree.

In parsing it is convenient to view the source program as a stream of tokens: symbols
such as identifiers, literals, operators, keywords, and punctuation. Since the source
program text actually consists of individual characters, and a token may consist of
several characters, scanning is needed to group the characters into tokens, and to discard
other text such as blank space and comments. Scanning is the topic of Section 4.5.

4.1 Subphases of syntactic analysis

Syntactic analysis in a compiler consists of the following subphases:

» Scanning (or lexical analysis): The source program is transformed to a stream of
tokens: symbols such as identifiers, literals, operators, keywords, and punctuation.
Comments, and blank spaces between tokens, are discarded. (They are present in the
source program mainly for the benefit of human readers.)

e Parsing: The source program (now represented by a stream of tokens) is parsed to
determine its phrase structure. The parser treats each token as a terminal symbol.

73
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* Representation of the phrase structure: A data structure representing the source
program’s phrase structure is constructed. This representation is typically an abstract
syntax tree (AST).

The first two subphases are present in every compiler. The third subphase is absent
in a one-pass compiler, which has no need to construct an explicit representation of the
source program’s phrase structure.

Example 4.1  Syntactic analysis of Mini-Triangle

We shall use Mini-Triangle to illustrate syntactic analysis in a compiler. A context-free
grammar of Mini-Triangle was given in Example 1.3.

Syntactic analysis of a small Mini-Triangle source program is shown in Figures 4.1
through 4.4.

Scanning transforms the source program of Figure 4.1 to the stream of tokens shown
in Figure 4.2. Blanks (spaces, ends-of-lines, etc.) and comments (introduced by “!7)
have been discarded. Each identifier, literal, and operator is treated as a single token.

Parsing determines the phrase structure of the stream of tokens, i.e., identifies its
commands, expressions, declarations, etc. Figure 4.3 illustrates the effect of parsing.

Finally, the parser can be made to construct an AST that explicitly represents the
source program’s phrase structure. This is illustrated in Figure 4.4.

O

4.1.1 Tokens

The interface between the scanner and the parser is a stream of tokens. A foken is an
atomic symbol of the source program. A token may consist of several characters, but
these characters have little or no individual significance. For example, the letters of the
keyword ‘let’ clearly have no individual significance; they serve only to distinguish
this keyword from similarly-spelled identifiers like ‘1ot’ and ‘led’. The letters of an
identifier also have no individual significance, except to distinguish between different
identifiers.

As well as tokens, the source program may contain blank space and comments.

These are not themselves tokens because they are completely insignificant. Part of the
scanner’s function is to discard blank space and comments.'

Tokens may be classified according to their kind, as shown in Figure 4.2. For
example, the tokens ‘y’ and *Integer’ are of kind identifier, “1° is of kind integer-

' However, spaces in character-literals and string-literals (in languages that have them) form part

of tokens, and must not be discarded.
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literal, and ‘+’ is of kind operator. The criterion for classifying tokens is simply this: all
tokens of the same kind can be freely interchanged without affecting the program’s
phrase structure. Thus the identifier “y’ could be replaced by ‘x’ or ‘banana’, and the
integer-literal ‘1’ by ‘7" or ‘100°, without affecting the program’s phrase structure. On
the other hand, the token ‘let’ could not be replaced by ‘lot’ or ‘led’ or anything
else; ‘let’ is the only token of its kind.

Each token is completely described by its kind and spelling. Thus a token can be
represented simply by an object with these two fields. The different kinds of token can
be represented by small integers.

let var y: Integer
in !new year
y = y+1l

Figure 4.1 A Mini-Triangle source program.

let var | |ident.| |colon| |ident. in ident.| | bec- | |ident.|| op. intlit. || eot
- omes
let |l var Y : Int- in Y — Y + 1
eger =

Figure 4.2 The program of Figure 4.1 represented by a stream of tokens.

Program
r— N
single-Command
— N
single-Command
r~ ™
Expression
(]
Declaration Expression
r N [
single-Declaration primary-Expr.
r N G
Type-Denoter  V-name V-name  primary-Expr.
S /G [ N
Ident. Ident. Ident. Ident. Op. Int-Lit.
N N IR e YY)
let var | |ident.| |colon| |ident. in | |ident.|| bec- | |ident.|| op. |lintit.|| eot
let || var Y : Int- in h% or'nfs v + 1
eger

Figure 4.3 The program of Figure 4.1 after parsing.
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Program

LetCommand
I

AssignCommand

e

SimpleV. BinaryExpression

VarDeclaration VnameExpr. Int.Expr.

SimpleT. SimpleV.
Ident. Ident. Ident. Ident. Op.  IntLit

);r Intéger y y + 1

Figure 4.4 The program of Figure 4.1 represented by an AST.

Example 4.2  Tokens of Mini-Triangle

Mini-Triangle tokens could be represented by objects of the following class:
public class Token {

public byte kind;
public String spelling;

public Token (byte kind, String spelling) {
this.kind = kind;
this.spelling = spelling;

}

// Constants denoting different kinds of token:
public final static byte

IDENTIFIER = O,

INTLITERAL = 1,

OPERATOR = 7y

BEGIN = 3 // begin
CONST 4, // const
DO = 5 // do
ELSE = NG // else
END = e // end
IF =g, L TaE
IN =l 190 Ldn
LET = 10, // let
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THEN = 11, // then
VAR =12, // var
WHILE = 13, // while
SEMICOLON = 14, /!

COLON = 15, /7

BECOMES = 16, /] o=

IS =17, /]~
LPAREN = 18, /7oA
RPAREN = 19, /7 )

EOT = 20; // end of text

}

Note that a token of kind EOT represents the end of the source text. In both scanning
and parsing of the source program, the existence of this token will prove convenient.

O

Only the kind of each token will be examined by the parser, since different tokens of
the same kind do not affect the source program’s phrase structure. The spellings of some
tokens (identifiers, literals, operators) will be examined by the contextual analyzer
and/or code generator, so their spellings must be retained and eventually incorporated
into the AST. The spellings of other tokens (such as ‘1et’) will never be examined after
scanning. Nevertheless, it is convenient to have a uniform representation for all tokens.

4.2 Grammars revisited

In Section 1.3.1 we briefly reviewed context-free grammars, and showed how a
grammar generates a set of sentences. Each sentence is a string of terminal symbols. An
(unambiguous) sentence has a unique phrase structure, embodied in its syntax tree.

In Section 4.3 we shall see, not only how parsers work, but also how parsers can be
systematically developed from context-free grammars. The development is clearest if
we use an extension of BNF called EBNF, which is effectively BNF plus regular expres-
sions. EBNF lends itself to a variety of transformations that can be used to mould a
programming language’s grammar into a form suitable for parser development. In this
section we briefly review regular expressions and EBNF, before presenting some useful
grammar transformations.

4.2.1 Regular expressions

A regular expression (RE) is a convenient notation for expressing a set of strings of
terminal symbols. The main features of the RE notation are:

* ‘| separates alternatives;
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= “*" indicates that the previous item may be repeated zero or more times;

* ‘(" and °)’ are grouping parentheses.

The notation is summarized in Table 4.1, and illustrated by Example 4.3 below.

Table 4.1 Regular expressions.

Regular expression

This regular expression generates ...

empty € just the empty string

singleton I just the string consisting of t alone

concatenation | X ¥(orXe«Y) the concatenation of any string generated by X and
any string generated by ¥

alternative X|Y any string generated either by X or by ¥

iteration X* the concatenation of zero or more of the strings
generated by X

grouping (X) any string generated by X

Note: X and Y are arbitrary regular expressions;  is any terminal symbol.

Example 4.3 Regular expressions

Here are some REs. Each generates a set of strings of letters, as shown:

Mr|Ms

M (r|s)
ps*t

b a (n a)*

M (r | s)*

— generates { Mr, Ms}

— generates {Mr, Ms}

— generates { pt, pst, psst, pssst, ...}

— generates {ba, bana, banana, bananana, ...}

— generates { M, Mr, Ms, Mrr, Mrs, Msr, Mss, Mrrr, ...}

O

An RE generates a set of strings of terminal symbols, in other words a language.
However, REs are capable of generating only very simple languages, called regular
languages. Within programming languages, sublanguages such as identifiers and literals
are typically regular languages.

On the other hand, complete programming languages invariably exhibit self-embed-
ding. In Mini-Triangle, for example, the expression ‘a* (b+c) /d’ contains an embed-
ded subexpression, ‘b+c’; and the command ‘if x>y thenm := x elsem
contains an embedded subcommand, ‘m := x’. Self-embedding allows us to write
arbitrarily complex expressions, commands, and suchlike.

it
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In summary:

* A regular language — a language that does not exhibit self-embedding — can be
generated by an RE.

* A language that does exhibit self-embedding cannot be generated by any RE. To
generate such a language, we must write recursive production rules in either BNF or
EBNF.

4.2.2 Extended BNF

EBNF (Extended BNF) is a combination of BNF and REs. An EBNF production rule is
of the form N ::= X, where N is a nonterminal symbol and X is an extended RE, i.e., an
RE constructed from both terminal and nonterminal symbols.

Unlike BNF, the right-hand side of an EBNF production rule may use not only ‘|’
but also “*” and ‘(" and ‘)’. Unlike an ordinary RE, the right-hand side may contain non-
terminal symbols as well as terminal symbols. Thus we can write recursive production
rules, and an EBNF grammar is capable of generating a language with self-embedding.

Example 4.4 Grammar expressed in EBNF

Consider the following EBNF grammar:
Expression = primary-Expression (Operator primary-Expression)*

Identifier
( Expression )

primary-Expression n=
I

Identifier 2= a|blc|d]e
Operator = 4+ |- %7
This grammar generates expressions such as:

e

+

b
- b -c
(b * ¢)
(b +c¢c) / ad
(b - (c - (d~ e)))

A R I G
* +

Because the production rules defining Expression and primary-Expression are
mutually recursive, the grammar can generate self-embedded expressions.

O

EBNF combines the advantages of both BNF and REs. It is equivalent to BNF in
expressive power. Its use of RE notation makes it more convenient than BNF for
specifying some aspects of syntax.
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4.2.3 Grammar transformations

EBNF is a much more flexible notation than BNF. In particular, grouping of alternatives
‘(...]...]...)" and iteration ‘** make it easy to perform useful transformations on a
grammar expressed in EBNF. Here we introduce and illustrate some possible transfor-
mations. Later, in Section 4.3.4, we shall see how they are used in practice.

Left factorization
Suppose that we have alternatives of the form:
XX

where X, Y, and Z are arbitrary (extended) REs. We can replace these alternatives by the
equivalent extended RE:

X(Y|2)

The REs X Y| X Z and X (Y| Z) are equivalent in the sense that they generate exactly
the same languages. This fact was illustrated by the first two REs in Example 4.3.

Example 4.5 Left factorization
Many programming languages have alternative forms of if-command:

single-Command := V-name := Expression
| if Expression then single-Command
|  if Expression then single-Command
else single-Command

This production rule can be left-factorized as follows:

single-Command := V-name := Expression
|  if Expression then single-Command
(¢ | else single-Command)

O

Right factorization is the mirror-image of left factorization, but is less useful in
practice.
Elimination of left recursion
Suppose that we have a production rule of the form:
Niu=X|NY

where N is a nonterminal symbol, and X and Y are arbitrary extended REs. This produc-
tion rule is left-recursive. We can replace it by the equivalent EBNF production rule:

N = X (V)*
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These production rules are equivalent in the sense that they generate exactly the
same languages. The production rule N ::= X | N Y states that an N-phrase may consist
either of an X-phrase or of an N-phrase followed by a Y-phrase. This is just a roundabout
way of stating that an N-phrase consists of an X-phrase followed by any number of Y-
phrases. The production rule N ::= X (¥)* states the same thing more concisely.

Example 4.6  Elimination of left recursion

The syntax of Triangle identifiers is expressed in BNF as follows:

Identifier = Letter
|  Identifier Letter
| Identifier Digit

This production rule is a little more complicated than the form shown above, but we can
left-factorize it:

Identifier n=  Letter
|  Identifier (Letter | Digit)

and now eliminate the left recursion:

Identifier u=  Letter (Letter | Digit)*

O

As illustrated by Example 4.6, it is possible for a more complicated production rule
to be left-recursive:

N:=X|..|Xa|NY | ... |NY,
However, left factorization gives us:

N =X ... X0 | N |...|Y
and now we can apply our elimination rule:

N o= X |0 | X (Y] | Y)*

Substitution of nonterminal symbols

Given an EBNF production rule N ::= X, we may substitute X for any occurrence of N
on the right-hand side of another production rule.

If we substitute X for every occurrence of N, then we may eliminate the nonterminal
N and the production rule N ::= X altogether. (This is possible, however, only if N ::= X
is nonrecursive and is the only production rule for N.)

Whether we actually choose to make such substitutions is a matter of convenience. If
N occurs in only a few places, and if X is uncomplicated, then elimination of N ::= X
might well simplify the grammar as a whole.
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Example 4.7  Substitution

Consider the following production rules, taken from a BNF grammar of Pascal:

single-Command ::= fox Control-Variable : = Expression To-or-Downto
Expression do single-Command
|

Control-Variable ;= |dentifier
To-or-Downto w=""to
| downto

[t makes sense to eliminate Control-Variable and To-or-Downto by substitution:

single-Command ::= for Identifier : = Expression (to [ downto)
Expression do single-Command
I

The nonterminal To-or-Downto was present in the first place only because grouping
of alternatives *(...|...)" is not possible in BNF. The nonterminal Control-Variable was
present only to act as a ‘semantic clue’ — to emphasize the role this particular identifier
plays in the for-command — and not for any grammatical reason. Eliminating such
nonterminals simplifies the grammar.

O

4.2.4 Starter sets

The starter set of an RE X, written starters[[X]), is the set of terminal symbols that can
start a string generated by X. For example:

starters[his|her|its] = {h,i}
starters[(re)*set] = {r,s}

since ‘(r e)* s e t’ generates the set of strings {set, reset, rereset, ...}.

The following is a precise and complete definition of starters:

starters| €] = {}

starters|t]] = Yt} where 1 is a terminal symbol
starters[ X Y] = starters[|X] © starters[[ Y]] if X generates €

starters|X Y] = starters[| X]] if X does not generate €
starters[X | Y] = starters| X]| U starters| Y]

starters[ X*]) = starters[[X]|

(where X and Y stand for arbitrary REs).
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We can easily generalize this to define the starter set of an extended RE. There is
only one case to add:

starters([N]| = starters[X] where N is a nonterminal
symbol defined by
production rule N ::= X
In Example 4.4:

starters[ Expression]

starters[ primary-Expression

(Operator primary-Expression)*]
= starters[[primary-Expression]
starters[[identifier] U starters[ ( Expression )]
startersf[a | b | c | d | eJu {(}
= {a,b,¢, 4, e, (}

4.3 Parsing

In this section we are concerned with analyzing sentences in some grammar. Given an
input string of terminal symbols, our task is to determine whether the input string is a
sentence of the grammar, and if so to discover its phrase structure. The following
definitions capture the essence of this.

With respect to a particular context-free grammar G:

* Recognition of an input string is deciding whether or not the input string is a sentence
of G.

* Parsing of an input string is recognition of the input string plus determination of its
phrase structure. The phrase structure can be represented by a syntax tree, or other-
wise.

We assume that G is unambiguous, i.e., that every sentence of G has exactly one
syntax tree. The possibility of an input string having several syntax trees is a compli-
cation we prefer to avoid.

Parsing is a task that humans perform extremely well. As we read a document, or
listen to a speaker, we are continuously parsing the sentences to determine their phrase
structure (and then determine their meaning). Parsing is subconscious most of the time,
but occasionally it surfaces in our consciousness: when we notice a grammatical error,
or realize that a sentence is ambiguous. Young children can be taught consciously to
parse simple sentences on paper.

In this section we are interested in parsing algorithms, which we can use in syntactic
analysis. Many parsing algorithms have been developed, but there are only two basic
parsing strategies: bottom-up parsing and top-down parsing. These strategies are
characterized by the order in which the input string’s syntax tree is reconstructed. (In
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fact, a parser need not construct a syntax tree explicitly, but it is convenient to explain
these parsing strategies in terms of constructing a syntax tree.)

In the following subsections we compare bottom-up parsing and top-down parsing,
then we introduce a particular top-down parsing algorithm known as recursive descent.
We shall use the following simple grammar as a running example to illustrate different
parsing techniques.

Example 4.8 Grammar of micro-English

Here is the grammar of a tiny fragment of English, which we shall call micro-English:

Sentence u= Subject Verb Object . 4.1)
Subject = 1| aNoun | theNoun (4.2a—c)
Object == me | aNoun | the Noun (4.3a—)
Noun = cat | mat | rat (. da—c)
Verb = like | is | see | sees (4.5a-d)

The terminal symbols (shown in bold) are words such as I" and ‘me’, and the punctu-
ation mark ‘.. The nonterminal symbols are Sentence (the start symbol), Subject,
Obiject, Noun, and Verb.

The following are among the sentences generated by the micro-English grammar:
the cat sees a rat .
I like the mat .
the cat likes me .
I sees the cat .
The last example is of course ungrammatical in English, but is grammatical in micro-
English. {Seé Exercise'4.8.)

Some non-sentences in this grammar are ‘me sees the cat .’ (‘me’ is not a subject),
‘I see like a cat .” (‘like’ can be used only as a verb), and ‘I the mat see .> (verb and
object are out of order).

4.3.1 The bottom-up parsing strategy

Bottom-up parsing of an input string works as follows. The parser examines the
terminal symbols of the input string, in order from left to right, and reconstructs the
syntax tree from the bottom (terminal nodes) up (towards the root node).
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Example 4.9  Bottom-up parsing of micro-English

Recall the grammar of micro-English (Example 4.8). Consider the following input
string, consisting of six terminal symbols:

the cat sees a rat .
Bottom-up parsing of this input string proceeds as follows:

{1) The first input terminal symbol is ‘the’. The parser cannot do anything with this
terminal symbol yet, so it moves on to the next input terminal symbol, ‘cat’. Here
it can apply the production rule ‘Noun ::= cat’ (4.4a), forming a Noun-tree with the
terminal symbol ‘cat’ as subtree:

Noun

the cat

(Input terminal symbols not yet examined by the parser are shaded gray.)

(2) Now the parser can apply the production rule ‘Subject ::= the Noun’ (4.2¢), com-
bining the input terminal symbol ‘the’ and the adjacent Noun-tree into a Subject-

tree:
Subject
Noun
the cat

(3) Now the parser moves on to the next input terminal symbol, ‘sees’. Here it can
apply the production rule ‘Verb ::= sees’ (4.5d), forming a Verb-tree:

Subject
Noun Verb
the cat sees

(4) The next input terminal symbol is ‘a’. The parser cannot do anything with this
terminal symbol yet, so it moves on to the following input terminal symbol, ‘rat’.
Here it can apply the production rule ‘Noun ::= rat’ (4.4c), forming a Noun-tree:

Subject

Noun Verb Noun

the cat sees a rat
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(5) Now the parser can apply the production rule *Object::=a Noun' (4.3b),
combining the input terminal symbol ‘a’ and the adjacent Noun-tree into an
Object-tree:

Subject Object
Noun Verb Noun
the cat sees a rat -

(6) The next (and last) input terminal symbol is *.’. With this the parser can apply the
production rule ‘Sentence ::= Subject Verb Object .’ (4.1), combining the adjacent
Subject-tree, Verb-tree, Object-tree, and input terminal symbol “." into a Sentence-

tree:
Sentence
|
[
Subject Object
Noun Verb Noun
the cat sees a rat -

The parser has reduced the entire input string to a Sentence-tree. In other words, it
has successfully parsed a sentence.

Consider a particular context-free grammar G. Each production rule is of the form
N:=X,... X,, where N is a nonterminal symbol of G, and each X; is a terminal or
nonterminal symbol of G.

In general, a bottom-up parser for G works as follows. When it encounters a
sequence of terminal symbols and trees that match the right-hand side of a production
rule N ::= X... X,,, it may combine these terminal symbols and trees into a single N-tree.
The latter tree is then available for further matching. Parsing succeeds when and if the
whole of the input string has been reduced to a single S-tree, where § is the start symbol
of G.

How does the parser choose what to do at each step? This is an important issue,
since a wrong choice can lead the parser into a blind alley. At step (5) in Example 4.9,
the parser might have chosen to apply ‘Subject ::=a Noun’ (instead of the correct

‘Object ::= a Noun’):
Subject Subjectx

Noun Verb Noun

the cat sees a rat .
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In this case, the trees would nor match the right-hand side of the production rule
‘Sentence ::= Subject Verb Object .’, nor indeed any other production rule, so the parser
would be unable to make further progress. Having parsed a subject and verb, the parser
has reached a state in which it should parse an object, not another subject. In general. a
bottom-up parser must, when choosing what to do next, take into account whatever
information is available: the next input terminal symbol, and the state it has reached as a
result of previous parsing steps.

4.3.2 The top-down parsing strategy

Top-down parsing of an input string works as follows. The parser examines the terminal
symbols of the input string, in order from left to right, and reconstructs its syntax tree
from the rop (root node) down (towards the terminal nodes).

Example 4.10 Top-down parsing of micro-English

Recall the grammar of micro-English (Example 4.8). Consider once more the input
string:
the cat sees a rat .

Top-down parsing starts by making a root node labeled Sentence. Then it proceeds as
follows:

(1) The parser must decide which production rule to apply at the Sentence-node. In
fact there is only one production rule with Sentence on the left-hand side, so it has
no choice but to apply ‘Sentence ::= Subject Verb Object .’ (4.1):

Sentence
1

l [ [ |
Subject Verb. Object .

the [cat | sees | a rat

This step has made four stubs, i.e., nodes not yet connected to the input string.
(The symbols labeling the stubs, as well as the input terminal symbols not yet
examined, are shaded gray in the diagram.)

(2) Now the parser considers the leftmost stub, the node labeled Subject. It must
decide which production rule to apply to it. There are three to choose from, but it
should be clear that the appropriate one is “Subject ::= the Noun’ (4.2¢). This step
connects up the first input terminal symbol ‘the’, and makes a new stub labeled
Noun:
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Sentence

(3) The leftmost stub is now the node labeled Noun, and the parser must decide which
production rule to apply to it. If it chooses ‘Noun ::= cat’ (4.4a), it can connect the
next input terminal symbol ‘cat’ to the tree:

Sentlence
e S
Noun
the calat S e

(4)  The leftmost stub is now the node labeled Verb. If the parser chooses to apply the
production rule ‘Verb ::=sees’ (4.5d), it can connect the input terminal symbol
‘sees’ to the tree:

Sentence
|

ok

|
Subject

Noun Verb

(5) The leftmost stub is now the node labeled Object. There are three production rules
to choose from. but it should be clear that the appropriate production rule is
‘Object ::= a Noun’ (4.3b). This step connects up the next input terminal symbol
*a’, and makes a new stub labeled Noun:

Sentence
1

| I
Subject Object

Noun Verb

the (:illl scles a - -
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(6) The leftmost stub is now the (second) node labeled Noun. If the parser chooses to
apply production rule ‘Noun ::=rat’ (4.4c), it can connect the input terminal sym-
bol ‘rat’ to the tree. This step leaves the parser with a stub labeled °.” that matches
the next (and last) input terminal symbol:

Sentence
1
I
Subject Object
Noun Verb Noun
the cat sees a rat

Thus the parser has successfully parsed the input string.

O

Consider a particular context-free grammar G. In general, a top-down parser for G
starts with just a stub for the root node, labeled by S (the start symbol of G). At each
step, the parser takes the leftmost stub. If the stub is labeled by terminal symbol ¢, the
parser connects it to the next input terminal symbol, which must be 7. (If not, the parser
has detected a syntactic error.) If the stub is labeled by nonterminal symbol N, the parser
chooses one of the production rules N ::= X|...Xp, and grows branches from the node
labeled by N to new stubs labeled X1, ..., X» (in order from left to right). Parsing
succeeds when and if the whole input string is connected up to the syntax tree.

How does the parser choose which production rule to apply at each step? In the
micro-English top-down parser the choices are easy. For example, the parser can always
choose which of the production rules ‘Subject ::=..." to apply simply by examining the
next input terminal symbol: if the terminal symbol is ‘I’, it chooses ‘Subject ::= I’; or if
the terminal symbol is ‘the’, it chooses ‘Subject ::= the Noun’; or if the terminal symbol
is ‘a’, it chooses ‘Subject ::= a Noun’. Unfortunately, some grammars make the choice
more difficult; and some grammars are completely unsuited to this parsing strategy.

4.3.3 Recursive-descent parsing

The bottom-up and top-down parsing strategies outlined in the previous subsections are
the basis of a variety of parsing algorithms. We observed that a parser often has to
choose which production rule to apply next. A particular way of making such choices
gives rise to a particular parsing algorithm.

Several parsing algorithms are commonly used in compilers. Here we describe just
one, which is both effective and easy to understand.

Recursive descent is a top-down parsing algorithm. A recursive-descent parser for a
grammar G consists of a group of methods parseN, one for each nonterminal symbol
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N of G. The task of each method parseN is to parse a single N-phrase. These parsing
methods cooperate to parse complete sentences.

parse
Sentence
r L}
parse parse parse
Subject Verb Object
i~ Nl N N
parse parse
Noun Noun
(AR i o)
the cat sees a rat

Figure 4.5 Recursive-descent parsing of a micro-English sentence.

Example 4.11 Recursive-descent parser for micro-English

Let us develop a recursive-descent parser for micro-English, expressed in Java.

The grammar of micro-English (Example 4.8) has nonterminal symbols Noun, Verb,
Subject, Object, and Sentence. So the parsing methods will be:

private void parseNoun ();

,/’ / Parse a noun, i.e., ‘cat’, ‘mat’, or ‘rat’.
o s e S s ¥

private void parseVerb ();

// Parse a verb, e.g., ‘like’ or ‘sees’.

private wvoid parseSubject ();
// Parse a subject, e.g., ‘I’ or ‘a rat’.

private void parseObject ();
// Parse an object, e.g., ‘me’ or ‘a rat’.

private void parseSentence ();
/[ Parse a complete sentence.

These methods should cooperate to parse the input string “the cat sees a rat .’ as
shown in Figure 4.5. The method parseSentence parses the whole input string, but
delegates most of the work to methods parseSubject, parseVerb, and parse-
Object, before itself accepting the last terminal *.". The method parseSubject
itself accepts the terminal ‘the’, before delegating the rest of its work to method
parseNoun. The latter simply accepts ‘cat’. And so on.

Comparison of Figure 4.5 with the same sentence’s syntax tree (at the end of
Example 4.10) shows that the methods have, in effect, discovered the sentence’s phrase
structure, Thus they really do constitute a parser.
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Now let us see how to implement the parser. We need a class to contain all of the
parsing methods; let us call it Parser. This class will also contain an instance variable,
currentTerminal, that will range over the terminal symbols of the input string. (For
example, given the input string of Figure 4.5, currentTerminal will first contain
‘the’, then ‘cat’, then ‘sees’, etc., and finally ‘.’.) The Parser class, containing
currentTerminal, is declared as follows:

public class Parser {
private TerminalSymbol currentTerminal;
// Auxiliary methods will go here.

// Parsing methods will go here.
}

The current terminal is accessed by the following auxiliary method of the Parser
class:

private void accept (TerminalSymbol expectedTerminal) {
if (currentTerminal matches expectedTerminal)
currentTerminal = nextinput terminal;
else
report a syntactic error’
}

The parser will call ‘accept (r)’ when it expects the current terminal to be ¢, and
wishes to check that it is indeed ¢, before fetching the next input terminal.

The parsing methods themselves are implemented as follows. (For easy reference,
the corresponding production rules of the grammar are reproduced on the right.)

First, method parseSentence:

private void parseSentence () { Sentence ::=
parseSubject () ; Subject
parseVerb () ; Verb
parseObject () ; Object
accept () ;

}

This is easy to understand. According to the production rule, a sentence consists of a
subject, verb, object, and period, in that order. Therefore parseSentence should
encounter the subject, verb, object, and period, in that same order. It calls methods
parseSubject, parseVerb, and parseObject, one after another, to parse the
subject, verb, and object, respectively. Finally it calls accept to check that the (now)
current terminal is indeed a period.

* This type style indicates a command or expression not yet refined into Java. We will use this
convention to suppress minor details.
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Now. method parseSubject:

private void parseSubject () { Subject ::=
1t (currentTerminal matches ‘T")
accept (‘'1') ; I
else |
if (currentTerminal matches ‘a’) {
accept (‘a’) ; a
parseNoun () ; Noun
} else |
if (currentTerminal matches ‘the’) [
accept (‘the’) ; the
Jeaneallonn Y - Ndun
} else

report a syntactic error

}

This is a little more complicated. According to the production rule, a subject must have
ot O Inree Soms: Y L “aNour | or “the Nour . Meod parseSubject must decide
which form it is, and the only way to decide is to inspect the current terminal. On entry
to parseSubject, the current terminal should contain the first terminal of the subject.
If the current terminal is ‘I’ then clearly the subject is of the form ‘I’; if the current
terminal is ‘a’, then presumably the subject is of the form ‘a Noun’: if the current
terminal is “the’, then presumably the subject is of the form ‘the Noun’: otherwise the
sybigetisdnfromndy.

Now method parseNoun:
private void parseNoun () { Noun ::=

if (currentTerminal matches ‘cat’)

accept (‘cat’) ; cat
else |
if (currentTerminal matches ‘mat’)

accept (‘mat’) ; mat
else |
if (currentTerminal matches ‘rat’)

accept (‘rat’) ; rat
else

report a syntactic error
}

This is straightforward. According to the production rule, a noun must be ‘cat’, ‘mat’,
or ‘rat’, and parseNoun simply checks the contents of currentTerminal to
discover which it is. If currentTerminal does not contain one of these alternatives
then the noun is ill-formed.

Method parseObject is analogous to parseSubject, and parseVerb to
parseNoun, so we omit the details here. (See Exercise 4.6.)




The parser is initiated using the following method:

public void parse () {
currentTerminal = first input terminal;
parseSentence() ;
check that no terminal follows the sentence

}

This parser does not actually construct a syntax tree. But it does (implicitly) deter-
mine the input string’s phrase structure. For example, parseNoun whenever called
finds the beginning and end of a phrase of class Noun, and parseSubject whenever
called finds the beginning and end of a phrase of class Subject. (See Figure 4.5.)

O

In general, the methods of a recursive-descent parser cooperate as follows:

* The variable currentTerminal will successively contain each input terminal. All
parsing methods have access to this variable.

* On entry to method parselN, currentTerminal is supposed to contain the first
terminal of an N-phrase. On exit from parseN, currentTerminal is supposed to
contain the input terminal immediately following that N-phrase.

* On entry to method accept with argument 7, currentTerminal is supposed to
contain the terminal 7. On exit from accept, currentTerminal is supposed to
contain the input terminal immediately following ¢.

If the production rules are mutually recursive, then the parsing methods will also be
mutually recursive. For this reason (and because the parsing strategy is top-down), the
algorithm is called recursive descent.

4.3.4 Systematic development of a recursive-descent
parser

A recursive-descent parser can be systematically developed from a (suitable) context-
free grammar, in the following steps:

(1) Express the grammar in EBNF, with a single production rule for each nonterminal
symbol, and perform any necessary grammar transformations. In particular, always
eliminate left recursion, and left-factorize wherever possible.

(2) Transcribe each EBNF production rule N:=X to a parsing method parseN,
whose body is determined by X.

(3) Make the parser consist of:

* aprivate variable currentToken;

» private parsing methods developed in step (2);
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« private auxiliary methods accept and acceptIt (to be explained later), both
of which call the scanner;

i puplic parse meuoa Cills parsed (WHEIE S 18" UIe Sl Syh!D'Dl (SRS
_grammar), having first called the scanner to store the first input token in cur-

rentlgken.

Example 4.12 Recursive-descent parser for Mini-Triangle

Consider the language Mini-Triangle whose BNF grammar was given in Example 1.3.
We systematically develop a Mini-Triangle parser as follows.

Step (1) is to express the grammar in EBNF, performing any necessary transform-
ations. Recall production rules (1.2a-b):

Command 1= single-Command
| Command ; single-Command

The left recursion here is a BNF device for specifying a sequence of single-commands
separated by semicolons. By eliminating the left recursion, we can specify this more
directly using the ‘*’ notation of EBNF:

Command = single-Command (; single-Command)*
Now recall production rule (1.6):
V-name = Identifier

We can simplify the grammar (for parsing purposes) by substituting Identifier for V-
name wherever it appears on the right-hand side of a production rule, such as (1.3):

single-Command ::= lIdentifier := Expression
|  Identifier ( Expression )
|  if Expression then single-Command
else single-Command

I

The first two alternatives above can now be left-factorized:"

single-Command == Identifier (z= Expression | ( Expression ))
|  if Expression then single-Command
else single-Command

' Distinguish carefully between ‘(" and *)’, which are EBNF grouping parentheses, and the
emboldened *(* and *)°, which are terminal symbols of the source language. We will
consistently use this typography to distinguish between EBNF symbols and any terminal
symbols that happen to resemble them.
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These transformations are justified because they will make the grammar mor
suitable for parsing purposes. After making similar transformations to other parts of th
grammar, we obtain the following complete EBNF grammar of Mini-Triangle:

Program

single-Command (4.¢
Command = single-Command (; single-Command)* 4.5

single-Command ::= Identifier (: = Expression | ( Expression )) (4.8
|  if Expression then single-Command
else single-Command
| while Expression do single-Command
| let Declaration in single-Command
| begin Command end

Expression = primary-Expression 4.6
(Operator primary-Expression)*

primary-Expression :: Integer-Literal (4.1C
|  Identifier
| Operator primary-Expression

[ ( Expression )
Declaration ::=  single-Declaration (; single-Declaration)* 4.11

single-Declaration ::= const Identifier ~ Expression 4.12
|  var Identifier : Type-denoter

Type-denoter == ldentifier (4.13

We have excluded production rules (1.10) through (1.13), which specify the synta
of operators, identifiers, literals, and comments, all in terms of individual characters
This part of the syntax is called the language’s lexicon (or microsyntax). The lexicon i
of no concern to the parser, which will view each identifier, literal, and operator as :
single token. Instead, the lexicon will later be used to develop the scanner, in Sectio
4.5.

We shall assume that the scanner returns tokens of class Token, defined in Exam
ple 4.2. Each token consists of a kind and a spelling. The parser will examine only th
kind of each token.

Step (2) is to convert each EBNF production rule to a parsing method. The parsin;
methods will be as follows:

private void parseProgram ();

private void parseCommand () ;

private void parseSingleCommand () ;
private void parseExpression ()
private void parsePrimaryExpression {();
private void parseDeclaration ();
pPrivate void parseSingleDeclaration ();
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private void parseTypeDenoter ();
private void parseldentifier ();
private void parselntegerLiteral ();
private void parseOperator ();

Here is method parseSingleDeclaration:

private void parseSingleDeclaration () {
switch (currentToken.kind) ({ single-Declaration ::=
case Token.CONST:
{
acceptIt(); const
parseldentifier () ; Identifier
accept (Token.IS); ~
parseExpression() ; Expression
}
break;

case Token.VAR: |

{
acceptIt(); var
parseldentifier(); Identifier
accept (Token.COLON) ; :
parseTypeDenoter () ; Type-denoter

}

break;

default:

report a syntactic error

}

Note the use of the auxiliary method acceptIt, which unconditionally fetches the
next token from the source program. The following is also correct:

case Token.VAR:
{

accept (Token.VAR) ; var
parseldentifier(); Identifier
accept (Token.COLON) ; s
parseTypeDenoter () ; Type-denoter
}
break;

Here ‘accept (Token.VAR);’ would check that the current token is of kind
Token .VAR. In this context, however, such a check is redundant.

Now here is method parseCommand:
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private void parseCommand () { Command ::=
parseSingleCommand () ; single-Command
while (currentToken.kind
== Token.SEMICOLON)

{ (
acceptIt(); H
parseSingleCommand () ; single-Command
} )*

}

This method illustrates something new. The EBNF notation ‘(; single-Command)*
signifies a sequence of zero or more occurrences of ‘; single-Command’. To parse thi
we use a while-loop, which is iterated zero or more times. The condition for continuin,
the iteration is simply that the current token is a semicolon.

Method parseDeclaration is similar to parseCommand. The remainin;
methods are as follows:

private void parseProgram {) ({ Program ::=
parseSingleCommand () ; single-Command

}

private void parseSingleCommand () { single-Command ::=

switch (currentToken.kind) ({

case Token.IDENTIFIER:
{

parseldentifier(); Identifier
switch (currentToken.kind) { (
case Token.BECOMES:
{
acceptIt(); 1=
parseExpression() ; Expression
}
break;

case Token.LPAREN: |

{
acceptIt(); (
parseExpression() ; Expression
accept (Token.RPAREN) ; )
}
break;
default:
report a syntactic error
} )

break;
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case Token.IF:

{

acceptIt(): if
parseExpression() ; Expression
accept (Token.THEN) ; then
parseSingleCommand () ; single-Command
accept (Token.ELSE) ; else
parseSingleCommand() ; single-Command

}

break;

case Token.WHILE: |
{

acceptIt() ; while
parseExpression() ; Expression
accept (Token.DO) ; do
parseSingleCommand () ; single-Command
}
break;
: case Token.LET: |
{
' acceptIt(); let
' parseDeclaration(); Declaration
accept (Token. IN) ; in
| parseSingleCommand () ; single-Command
i }
break;
case Token.BEGIN: |
{
acceptIt(); begin
parseCommand () ; Command
accept (Token.END) ; end
}
break;
default:

report a syntactic error

)

private void parseExpression () ({ Expression ::=
parsePrimaryExpression() ; primary-Expression
while (currentToken.kind
== Token.OPERATOR) ({ (

-
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parseOperator () ; Operator
parsePrimaryExpression () ; primary-Expression
} y*
}

private void parsePrimaryExpression ()} {
switch (currentToken.kind) { primary-Expression ::=
case Token.INTLITERAL:
parselIntegerLiteral(); Integer-Literal
break;

case Token.IDENTIFIER: |
parselIdentifier(); Identifier
break;

case Token.OPERATOR: |
{
parseOperator () ; Operator
parsePrimaryExpression() ; primary-Expression
}

break;

case Token.LPAREN: |
{
acceptIt(); (
parseExpression() ; Expression
accept (Token.RPAREN) ; )
}

break;

default:
report a syntactic error

}

private void parseTypeDencter () { Type-denoter ::=
parseldentifier () ; Identifier
}

The nonterminal symbol Identifier corresponds to a single token, so the method
parseIdentifier is similarto accept:

private void parseIdentifier () {
if (currentToken.kind == Token.IDENTIFIER)
currentToken = gscanner.scanf() ;
else
report a syntactic error
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The methods parseIntegerLiteral and parseOperator are analogous.’
Step (3) is to assemble the complete parser:
public class Parser ({
private Token currentToken;

private void accept (byte expectedKind) ({
if (currentToken.kind == expectedKind)
currentToken = scanner.scanf();
else
report a syntactic error

}

private void acceptIt () {
currentToken = scanner.scan();

// Parsing methods, as above.

public void parse () {
currentToken = scanner.scan() ;
parseProgram() ;
if (currentToken.kind != Token.EOT)
report a syntactic error

}

The parser reads the next input token by calling the scanner. The method call ‘scan-
ner.scan ()’ constructs the next token from the input and returns it. (This will be
explained in Section 4.5.)

Note the following points:
* The parser examines only the kind of the current token, ignoring its spelling.

« After parsing the program, parse checks that the token following the program is the
end-of-text.

* The parsing methods are mutually recursive (because the production rules are
mutually recursive). For example, parseCommand calls parseSingleCommand,
which may call parseCommand recursively.

a

Later we shall enhance method parseIdentifier to construct an AST terminal node
containing the identifier’s spelling. It would be wrong to write simply ‘accept (Token.
TDENTIFIER) ;', because this would discard the identifier token, including its spelling. The
same point applies to parseIntegerLiteral, and parseOperator.
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Having worked through a complete example, let us now study in general terms ho
we systematically develop a recursive-descent parser from a suitable grammar. The tw
main steps are: (1) express the grammar in EBNF, performing any necessary transforn
ations; and (2) convert the EBNF production rules to parsing methods. It will be cot
venient to examine these steps in reverse order.

Converting EBNF production rules to parsing methods

Consider an EBNF production rule N ::= X. We convert this production rule to a parsin
method named parseN. This method’s body will be derived from the extended RE X:

private void parseN () {
parse X
}

Here ‘parse X’ is supposed to parse an X-phrase, i.e., a terminal string generated by X
(And of course the task of method parseh is to parse an N-phrase.)

Next, we perform stepwise refinement on ‘parse X’, decomposing it according to th
structure of X. (In the following, X and Y stand for arbitrary extended REs.)

* We refine ‘parse €’ to a dummy statement.
* We refine ‘parse ¢’ (where ¢ is a terminal symbol) to:
accept (1) ;

In a situation where the current terminal is already known to be ¢, the following is alsc
correct and more efficient:

acceptIt();

* We refine ‘parse N° (where N is a nonterminal symbol) to a call of the corresponding
parsing method:

parseN();
* We refine ‘parse X 1’ to:

{
parse X
parse Y
}

The reasoning behind this is simple. The input must consist of an X-phrase followed
by a Y-phrase. Since the parser works from left to right, it must parse the X-phrase and
then parse the Y-phrase.

This refinement rule is easily generalized to ‘parse X1 ... X,".

* We refine ‘parse X | ¥ to:
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switch (currentToken.kind) ({
cases in starters[X] :
parse X
break;
cases in starters[ Y] :
parse Y
break;
default:
report a syntactic error

}

The reasoning behind this is also straightforward. The input must consist of either an
X-phrase or a Y-phrase. The parser must parse one of these, and it must decide imme-
diately which it will be. It should choose *parse X’ only if the current token is one that
can start an X-phrase (since otherwise ‘parse X” would certainly fail). And likewise it
should choose ‘parse Y only if the current token is one that can start a Y-phrase. We
can express these conditions abstractly in terms of the starter sets of X and Y, and
concretely in terms of Java case labels.

The parser will work correctly only if starters[X] and starters[Y] are disjoint.
Otherwise the parser could not know whether to parse an X-phrase or a Y-phrase. In
fact, if token ¢ is in both starters[X] and starters[Y], the switch-statement will con-
tain two occurrences of ‘case t:’, and will fail to compile. (See Example 4.15.)

This refinement rule is easily generalized to ‘parse X1 | ... | X»’".
* We refine ‘parse X*’ to:

while (currentToken.kind isin starters[X])
parse X

The reasoning behind this is as follows. The input must consist of zero or more
consecutive X-phrases. The parser must repeatedly parse X-phrases, and it does this by
means of a while-loop. Before each iteration, it must decide whether to terminate or to
continue parsing X-phrases. It should continue only if the current token is one that can
start an X-phrase (since otherwise ‘parse X’ would certainly fail).

The parser will work correctly only if starters[X] is disjoint from the set of tokens
that can follow X* in this particular context. Suppose that some token 7 is in
starters[X]] and can also follow X*. When the current token is ¢, the parser will
continue parsing X-phrases even when it should terminate. (See Example 4.16.)

The following examples illustrate the stepwise refinement of parsing methods.
Example 4.13 Stepwise refinement of parseCommand

Let us follow the stepwise refinement of the method parseCommand of Example 4.12,
starting from production rule (4.7):

Command ::= single-Command (; single-Command)*

| —
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We start with the following outline of the method:

private void parseCommand () {
parse single-Command (; single-Command)*
}

Now we refine ‘parse single-Command (; single-Command)*’ to:

parseSingleCommand () ;
parse (; single-Command)*

Now we refine ‘parse (; single-Command)*’ to:

while (currentToken.kind == Token.SEMICOLON)
parse (; single-Command)

since starters{; single-Command} = {;}.
Finally we refine ‘parse (; single-Command)’ to:

{
acceptIt();
parseSingleCommand () ;

}

In this situation we know already that the current token is a semicolon, so ‘accept
It () ;’ is acorrect alternative to ‘accept (Token.SEMICOLON) ;.

[

Example 4.14 Stepwise refinement of parseSingleDeclaration

Let us also follow the stepwise refinement of the method parseSingleDeclara
tion of Example 4.12, starting from production rule (4.11):

single-Declaration ::= const Identifier ~ Expression
|  var Identifier : Type-denoter

We start with the following outline of the method:

private void parseSingleDeclaration () {
parse const ldentifier ~ Expression | var ldentifier : Type-denoter
}

Now we refine ‘parse const ... | var ...’ to:
switch (currentToken.kind) {

case Token.CONST:
parse const ldentifier ~ Expression
break;
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case Token.VAR:
parse var |dentifier : Type-denoter
break;

default:
report a syntactic error
}
since starters[const ...]| = {const} and starters[var ...]| = {var}. Fortunately,
these starter sets are disjoint.

Finally, we refine ‘parse const Identifier ~ Expression’ to:

{
acceptIt();
parseldentifier () ;
accept (Token.IS) ;
parseExpression() ;
}

and ‘parse var |dentifier : Type-denoter’ similarly, as shown in Example 4.12.

O

In defining how to refine ‘parse X | ¥ and ‘parse X*’, we stated certain conditions
that must be satisfied. These conditions are:

« If the grammar contains X | Y, starters[ X] and starters[[ Y] must be disjoint.

* If the grammar contains X*, starrers|X]| must be disjoint from the set of tokens that
can follow X* in this particular context.

A grammar that satisfies both these conditions is called an LL(1) grammar.
Recursive-descent parsing is suitable only for LL(1) grammars.

Not all programming language grammars are LL(1). In practice, however, nearly
every programming language grammar can easily be transformed to make it LL(1),
without changing the language it generates. Why this should be so is a matter for
conjecture, but often a language designer will consciously design the new language’s
syntax to be suitable for recursive-descent parsing.

The following examples illustrate grammars that are not LL(1). However. simple
transformations of these grammars are sufficient to make them LL(1).

Example 4.15 Non-LL(1) grammar for Mini-Triangle

Recall production rules (1.3a—f) in the original grammar of Mini-Triangle:

T —
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single-Command = V-name := Expression
| Identifier ( Expression )
|  if Expression then single-Command
else single-Command

The relevant starter sets are:

starters|V-name := Expression]| starters[V-name]

= {Identifier}
starters|Identifier ( Expression ) || = {ldentifier)
starters| 1€ Expression then ...|| = [if}

The first two are not disjoint, so the grammar is not LL(1).

What would happen if we tried to develop a parsing method directly from the above
production rule? The parsing method would turn out as follows:

private void parseSingleCommand () {
switch (currentToken.kind) ({

case Token.IDENTIFIER: ({
parseVname () ;
accept (Token.BECOMES) ;
parseExpression() ;

)

break;

case Token.IDENTIFIER: f{
parseldentifier();
accept (Token.LPAREN) ;
parseExpression() ;
accept (Token.RPAREN)

}

break;

case Token.IF:

default:

}
This parser is clearly incorrect, and will not compile due to the duplicate case label.

Fortunately the problematic production rule can easily be transformed, by
substitution and left factorization, to solve this particular problem. This was done in
Example 4.12.

O
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Example 4.16 Non-LL(1) grammar for Algol

Consider the following production rules taken from a grammar of Algol:
Block = begin Declaration (; Declaration)* ; Command end
Declaration = integer ldentifier (, Identifier)*

Here starters[; Declaration] = {;}, and the set of terminals that can follo
‘(7 Declaration)*’ in this context is {; }. These sets are not disjoint, so the grammar
not LL(1).

If we tried to develop a parsing method directly from the production rule definir
Block, we would get:

private void parseBlock () {
accept (Token.BEGIN) ;
parseDeclaration() ;
while (currentToken.kind == Token.SEMICOLON)
{
acceptIt();
parseDeclaration() ;
}
accept (Token.SEMICOLON) ;
parseCommand () ;
accept (Token.END) ;
}

This is clearly incorrect. Iteration will continue as long as the current token is a semict
lon. But this might be the semicolon that separates the declarations from the comman
e.g., the second semicolon in:

begin integer i; integer j; i := j+1 end
Then parseBlock would attempt to parse the command ‘i := j+1’ as a declaration
Fortunately, we can transform the production rule defining Block:
Block ::= begin Declaration ; (Declaration ; )* Command end

This does not affect the generated language, but leads to the following correct parsin
method:

private void parseBlock () {
accept (Token.BEGIN) ;
parseDeclaration() ;
accept (Token.SEMICOLON) ;
while (currentToken.kind == Token.INTEGER)
{
parseDeclaration|() ;
accept (Token.SEMICOLON) ;
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parseCommand () ;
accept (Token.END) ;
}

This eliminates the problem, assuming that starters[Declaration ; ] is disjoint from
starters[Command].

]

The above examples are quite typical. Although the LL(1) condition is quite restric-
tive, in practice most programming language grammars can be transformed to make
them LL(1) and thus suitable for recursive-descent parsing.

Performing grammar transformations

Left factorization is essential in some situations, as illustrated by the following example.

Example 4.17 Left factorization

In Example 4.12, the production rule ‘V-name ::= ldentifier’ was eliminated. The
occurrences of V-name on the right-hand sides of (1.3a) and (1.5b) were simply replaced
by Identifier, giving:

single-Command := lIdentifier : = Expression
|  Identifier ( Expression )
| if Expression then single-Command
else single-Command
|

The starter sets are not disjoint:
starters[|dentifier : = Expression]| = {ldentifier}

starters([ldentifier ( Expression ) ]

{ Identifier}
However, the substitution created an opportunity for left factorization:

single-Command = Identifier (: = Expression | ( Expression ))
|  if Expression then single-Command
else single-Command
I

This is an improvement, since now the relevant starter sets are disjoint:
starters[ : = Expression]| = {:=}

starters] ( Expression )] = {(}

L

Left recursion must always be eliminated if the grammar is to be LL(1). The
following example shows why.
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Example 4.18 Left recursion elimination

Recall production rules (1.2a-b) in the grammar of Mini-Triangle:

Command ;= single-Command
| Command ; single-Command

In Example 4.12 we eliminated this left recursion, yielding:
Command = single-Command (; single-Command)*

What would happen if we omitted this transformation? First we would compute the
relevant starter sets:

starters|single-Command]| { Identifier, 1, while, let, begin]
starters|Command ; single-Command] = { Identifier, 1£, while, let, begin}

Then we would write the parsing method like this:

private void parseCommand () {
switch (currentToken.kind) (

case Token.IDENTIFIER:

case Token.IF:

case Token.WHILE:

case Token.LET:

case Token.BEGIN:
parseSingleCommand () ;
break;

case Token.IDENTIFIER:

case Token.IF:

case Token.WHILE:

case Token.LET:

case Token.BEGIN: ({
parseCommand () ;
accept (Token.SEMICOLON) ;
parseSingleCommand () ;

}

break;

default:
report a syntactic error

)

This method cannot tell which way to go if the current token is an identifier, “if’,
‘while’, ‘let’, or ‘begin’. It simply does not have the information required to make a
correct decision. (In fact, this method will fail to compile due to the duplicate case
labels.)
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In general, a grammar that exhibits left recursion cannot be LL(1). Any attempt to
convert left-recursive production rules directly into parsing methods would result in an
incorrect parser. It is easy to see why. Given the left-recursive production rule:

N:=X|NY
we find:
starters|[N Y]} = starters][N]| = starters||X] w starters[N Y]

so starters[[X] and starters[[N Y] cannot be disjoint.

4.4 Abstract syntax trees

A recursive-descent parser determines the source program’s phrase structure implicitly,
in the sense that it finds the beginning and end of each phrase. In a one-pass compiler,
this is quite sufficient for the syntactic analyzer to know when to call the contextual
analyzer and code generator. In a multi-pass compiler, however, the syntactic analyzer
must construct an explicit representation of the source program’s phrase structure. Here
we shall assume that the representation is to be an AST.

4.4.1 Representation

The following example illustrates how we can define ASTs in Java.

Example 4.19 Abstract syntax trees of Mini-Triangle

Figure 4.4 shows an example of a Mini-Triangle AST. Below we summarize all possibie
forms of Mini-Triangle AST, showing how each form relates to one of the production
rules of the Mini-Triangle abstract syntax (Example 1.5):

* Program ASTs (P):

Program
(1.14)
C
¢ Command ASTs (O):
AssignCommand CallCommand SequentialCommand
015 ——  (LIsb — (1.15¢)
V E Identifier FE Cy Cy

speiling
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IfCommand ‘WhileCommand LetCommand
[ e s i st g sty o4 (515D
E Cy Cy E C D C

» Expression ASTs (E):

IntegerExpression VnameExpression
(1.16a) (1.16b)
IntegerLiteral Vv
spelling
UnaryExpression BinaryExpression
(L16e) [——F— (Ll6d)
Operator E Ey  Operator Ej
apefi'ing speilmg

* V-name ASTs (V):

SimpleVname

(1.17)
Identifier
speffing
» Declaration ASTs (D):
ConstDeclaration VarDeclaration SequentialDeclaration
(1.18a) o ] o d:180) ] (1.18¢)
Identifier E Identifier T Dy Dy
| |
spelling spelling
* Type-denoter ASTs (7):
SimpleTypeDenoter
(1.19)
Identifier
i
spelling

Each AST node has a tag that determines what (if any) subtrees that node has. For
example:

| * A node with tag ‘IfCommand’ is the root of a Command AST with three subtrees: an
Expression AST and two Command ASTs.
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* A node with tag ‘ConstDeclaration’ is the root of a Declaration AST with two
subtrees: an Identifier AST and an Expression AST.

* A node with tag ‘Identifier’ is the root of an Identifier AST. This is just a terminal
node, whose only content is its spelling.

We need to define Java classes that capture the structure of Mini-Triangle ASTs. We
begin by introducing an abstract class, called AST, for all abstract syntax trees:

public abstract class AST {

}
Every node in the AST will be an object of a subclass of AST.
* Program ASTs:
public class Program extends AST {
public Command C; // body of program
}

Program has only a single form, consisting simply of a Command, so the class
Program simply contains an instance variable for the command that is the body of the
program.

For each nonterminal in the Mini-Triangle abstract syntax that has several forms
(such as Command), we introduce an abstract class (such as Command), and several
concrete subclasses.

* Command ASTs:
public abstract class Command extends AST { ... }

public class AssignCommand extends Command {
public Vname V; // left-side variable
public Expression E; // right-side expression

}

public class CallCommand extends Command ({

public Identifier I; // procedure name
public Expression E; // actual parameter
}
public class SeguentialCommand extends Command
public Command Cl, C2; // subcommands
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public class IfCommand extends Command {
public Expression E; // if condition
public Command Cl1l, C2; // true and false commands

}

public class WhileCommand extends Command ({
public Expression E; // loop condition
public Command C; // body of loop

}

public class LetCommand extends Command {
public Declaration D; // block declarations
public Command C; // body of block

}

Command is a subclass of AST, and defines any features that are common to all
Command ASTs. The root node of any particular Command AST will be an object of
some subclass of Command. We introduce a concrete class for each distinct form of
command in the abstract syntax: AssignCommand, IfCommand, WhileCommand,
etc. Each of these concrete classes is a subclass of Command, and contains instance
variables for the subtrees of the corresponding form of command. For example,
AssignCommand contains instance variables of class Vname and Expression.

For each of the remaining nonterminals (Expression, V-name, Declaration, and Type-
denoter), we similarly introduce an abstract class and a group of concrete subclasses.

» Expression ASTs:

public abstract class Expression extends AST { ... }

public class UnaryExpression extends Expression {
public Operator O; // unary operator symbol
public Expression E; // operand

}

public class BinaryExpression extends Expression {
public Operator O; // binary operator symbol
public Expression El, E2; // left and right operands

}
e V-name ASTs:

public abstract class Vname extends AST { ... }
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public class SimpleVname extends Vname {
public TIdentifier T; // value-or-variable name

}
* Declaration ASTs:

public abstract class Declaration extemds AST { ... }

public class ConstDeclaration extends Declaration {
public Identifier I; // constant name
public Expression E; // constant value

}

public class VarDeclaration extends Declaration {
public Identifier I; // variable name
public TypeDenoter T; // variable type

}

public class SequentialDeclaration extends Declaration

{
public Declaration D1, D2; // subdeclarations

}

* Type-denoter ASTs:

public abstract class TypeDenoter extemds AST { ... }

public class SimpleTypeDenoter extends TypeDenoter {
public Identifier I; // type name

)

Finally we introduce an abstract class, Terminal, to represent the terminal nodes
in the AST. A terminal node corresponds to a token (identifier, integer-literal, or
operator) in the Mini-Triangle source program. The only data at a terminal node is the
spelling of that token, so the Terminal class includes an instance variable for the
spelling. We then introduce concrete classes for each distinct kind of terminal node
(Identifier, IntegerLiteral, Operator).

* Terminal nodes:

public abstract class Terminal extends AST {
public String spelling; // token spelling from scanner

}

public class Identifier extends Terminal { ... }
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public class IntegerLiteral extends Terminal { ... }
public class Operator extends Terminal { ... }

In order to construct an AST, each concrete class must also define a suitable con-
structor. For example, the constructor for the AssignCommand class would be defined
as follows:

public AssignCommand (Vname V, Expression E) {
this.V = V;
this.E = E;

}

and the constructor for the Identi fier class would be defined as follows:

public Identifier (String spelling) ({
this.spelling = spelling;
}
]

The Java representation of ASTs illustrated in Example 4.19 is not the only possibil-
ity. Exercise 4.16 suggests an alternative representation.

To make the syntactic analyzer construct the AST, we must augment the parser with
calls to the constructors of the various concrete classes. This is explained next.

4.4.2 Construction

It is straightforward to make a recursive-descent parser construct an AST to represent
the source program’s phrase structure. We enhance the parser as follows:

* We make each method parseN, as well as parsing an N-phrase, return that phrase’s
AST as its result.

* We make the body of parseN construct the N-phrase’s AST by combining the ASTs
of any subphrases (or by creating a terminal node).
Thus, for production rule N ::= X:
private ASTy parseN () {
ASTy itsAST;
parse X, at the same time constructing i tsAST

return 1tsAST;
}

where AST)y is the abstract subclass of AST corresponding to nonterminal N.
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Example 4.20 Construction of Mini-Triangle ASTs

Here we enhance the Mini-Triangle parser of Example 4.12, to construct an AST
representing the source program. The enhanced parsing methods will be as follows:

private Program parseProgram () ;

private Command parseCommand () ;

private Command parseSingleCommand () ;
private Expression parseExpression ();
private Expression parsePrimaryExpression () ;
private Declaration parseDeclaration ();
private Declaration parseSingleDeclaration ();
private TypeDenoter parseTypeDenoter ();
private Identifier parseldentifier ();
private IntegerLiteral parselntegerLiteral ();
private Operator parseOperator () ;

Each returns an AST of the appropriate class.

Here is the enhanced method parseSingleDeclaration (with the enhance-
ments italicized for emphasis):

private Declaration parseSingleDeclaration () {
Declaration declAST;
switch (currentToken.kind) {

case Token.CONST: {
acceptIt();
Identifier 1AST = parseldentifier();
accept (Token.IS);
Expression eAST = parseExpression();
declAST = new ConstDeclaration (iAST, eAST);
}

break;

case Token.VAR: {
acceptIt();
Identifier iAST = parseldentifier();
accept (Token.COLON) ;
TypeDenoter tAST = parseTypeDenoter();
declAST = new VarDeclaration (iAST, tAST);
}

break;

default:
report a syntactic error

}
return declAST;
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This method is fairly typical. It has been enhanced with a local variable, dec1AST, in
which the AST of the single-declaration will be stored. The method eventually returns
this AST as its result. Local variables 1AST, eAST, and tAST are introduced where
required to contain the ASTs of the single-declaration’s subphrases.

Here is the enhanced method parseCommand:

private Command parseCommand () {
Command c¢lAST = parseSingleCommand() ;
while (currentToken.kind == Token.SEMICOLON) {
acceptIt();
Command c2AST = parseSingleCommand () ;
clAST = new SequentialCommand(clAST, c2AST);
}
return clAST;
1

This method contains a loop, arising from the iteration ‘*' in production rule (4.7),
which in turn was introduced by eliminating the left recursion in (1.2a-b). We must be
careful to construct an AST with the correct structure. The local variable c1AST is used
to accumulate this AST.

Suppose that the command being parsed is ‘t := x; x :=y; y := t’. Then after
the method parses ‘t :=x’, it sets c1AST to the AST for ‘t := x’; after it parses ‘x : =
y’, it updates ¢1AST to the AST for ‘t := x; x :=y’; and after it parses ‘y := t’°, it
updates c1AST to the AST for ‘t :=x; x:=y; y :=t’.

Here is an outline of the enhanced method parseSingleCommand:

private Command parseSingleCommand () {
Command comAST;
switch (currentToken.kind) {

case Token.IDENTIFIER: {
Identifier 1iAST = parseldentifier();
switch (currentToken.kind) (
case Token.BECOMES: {
acceptIt();
Expression eAST = parseExpression();
comAST = new AssignCommand (iAST, eAST);
}
break;
case Token.LPAREN: {
acceptIt();
Expression eAST = parseExpression();
accept (Token.RPAREN) ;
comAST = new CallCommand(iAST, eAST);
}
break;
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in default:
ns report a syntactic error
re }
}
break;
case Token.IF:
case Token.WHILE:
case Token.LET: {
acceptIt();
Declaration dAST = parseDeclaration();
accept (Token.IN) ;
Command cAST = parseSingleCommand() ;
comAST = new LetCommand(dAST, cAST);
), }
e break;
o

case Token.BEGIN: {
acceptIt();
comAST = parseCommand () ;
accept (Token.END) ;

}
break;

default:
report a syntactic error

3

return comAST;

}

If the single-command turns out to be of the form ‘begin C end’, there is no need t
construct a new AST, since the ‘begin’ and ‘end’ are just command brackets. So i
this case the method immediately stores C’s AST in comAST.

The method parseIdentifier constructs an AST terminal node:

private Identifier parseIdentifier () {
Identifier 1idAST;

if (currentToken.kind == Token.IDENTIFIER) {
idAST = new Identifier(currentTOken.spelling);
currentToken = scanner.scan();

} else

report a syntactic error
return i1dAST;
}

The methods parseIntegerLiteral and parseOperator do likewise.
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The complete parser is:
public class Parser {
private Token currentToken;
// Auxiliary methods.
// Enhanced parsing methods, as above.

public Program parse () {
currentToken = scanner.scan();
Program progAST = parseProgram() ;
if (currentToken.kind != Token.EOQT)
report a syntactic error
return progAST;

4.5 Scanning

The purpose of scanning is to recognize tokens in the source program. Scanning is
somewhat analogous to parsing, but works at a finer level of detail. In parsing, the
terminal symbols are tokens, which are to be grouped into larger phrases such as
expressions and commands. In scanning, the terminal symbols are individual characters,
which are to be grouped into tokens.

As well as tokens. the source program contains separators: blank space, comments,
and the like. Separators serve to separate tokens, and to assist human readers of the
program. But only tokens contribute to the program’s phrase structure.

We can systematically develop a scanner in much the same way as a parser. We start
with a lexical grammar specifying the source language’s lexicon. This grammar’s
terminal symbols are individual characters, and its nonterminal symbols include Token
and Separator. The lexical grammar must not exhibit self-embedding.

We develop the scanner as follows:

(1) Express the lexical grammar in EBNF, performing any necessary grammar
transformations. {

(2) Transcribe each EBNF production rule N :=X to a scanning method scanh,
whose body is determined by X.

(3) Make the scanner consist of:

* a private variable currentChar;
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* private auxiliary methods take and takeIt;

e private scanning methods developed in step (2), enhanced to record each token’s
kind and spelling;

* a public scan method that scans ‘Separator* Token’, discarding any separators
but returning the token that follows them.

The scanning methods will be analogous to the parsing methods we met in Sec-
tion 4.3. On entry to scanhN, currentChar is supposed to contain the first character
of a character sequence of kind N; on exit, currentChar is supposed to contain the
character immediately following that character sequence.

Likewise, the auxiliary methods take and takeIt are analogous to the parser’s
auxiliary methods accept and acceptIt. Both take and takeIt will fetch the
next character from the source text and store it in currentChar; however, take will
do so only if its argument character matches currentChar.

The method scan is supposed to fetch the next token from the source program, each
time it is called. But the next token might turn out to be preceded by some separators.
This is the reason for scanning ‘Separator* Token’. In this we are assuming that the
source language has a conventional lexicon: separators may be used freely between
tokens. (Most modern programming languages do follow this convention.)

Example 4.21 Scanner for Mini-Triangle

The lexical grammar of Mini-Triangle is partly given by production rules (1.10) through
(1.13). We add production rules for Token and Separator:

Token u= Identifier | Integer-Literal | Operator | 4.14)
sl ele=]~]C]) | eot

Identifier = Letter | Identifier Letter | Identifier Digit (4.15)

Integer-Literal == Digit | Integer-Literal Digit (4.16)

Operator w= 4| = * |7 <|I>] =]\ (4.17)

Separator = Comment | space | eol (4.18)

Comment ::= 1 Graphic* eol 4.19)

In these production rules:

* space stands for a space character;

« eol stands for an end-of-line ‘character’;
¢ eot stands for an end-of-text ‘character’.

(Visible characters can be expressed as themselves in (E)BNF, but these invisible
characters cannot.) Also:

* Digit stands for one of the digits ‘0, ‘1’, ..., or ‘9’;
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« Letter stands for one of the lowercase letters ‘a’, ‘b’, ..., or ‘z’:
 Graphic stands for a space or visible character.

Each of these nonterminals represents a group of single characters. Specifying them
formally would be straightforward but tedious.

Note a very important point: the nonterminal symbol Identifier actually encompasses
both identifiers and keywords. It turns out that any attempt to distinguish between
identifiers and keywords in the lexical grammar gets us into difficulties. (See Exer-
cise 4.18 for the reason.) We shall return to this point later.

Let us now develop a scanner for Mini-Triangle. A class definition for Token was
given in Example 4.2.

Step (1) is to express the lexical grammar in EBNF and make any necessary trans-
formations. We eliminate left recursion in (4.15) and (4.16), giving:

Identifier =  Letter (Letter | Digit)* (4.20)
Integer-Literal == Digit Digit* (4.21)
Now we can simplify the lexical grammar by substitution and left factorization:

Token := Letter (Letter | Digit)* | Digit Digit* | (4.22)
| =*[71<]>]=]|\]
ils=lo |~ C]) | eot

Separator ::= 1 Graphic* eol |space | eol (4.23)

Step (2) is to convert the production rules to scanning methods, as below. (For the
moment, ignore the code in italics: it anticipates enhancements to be made in step (3).)

private byte scanToken () { Token ::=
switch (currentChar) ({

case 'a': case 'b': case 'c':
case 'y': case 'z':
takeIt () ; Letter
while (isLetter (currentChar)
| | isDigit (currentChar))
takeIt(); (Letter | Digit)*
return Token.IDENTIFIER;

case '0': case 'l': case '2':
case '3': case '4': case '5':
case '6': case '7': case '8':

case '9': |
takeIt(); Digit
while (isDigit (currentChar))
takeIt () ; Digit*

return Token.INTLITERAL;
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case '+': case '-': case '¥*':

case '/': case '<': case '>':

case '=': case '\\': |
takeIt(); +[=[*[7]<|>]=]\
return Token.OPERATOR;

case ';': |
takeIt();
return Token.SEMICOLON;

-

case ':': |
takeIt();
if (currentChar == '=') {
takeIt(); (=
return Token.BECOMES;

}
else |
return Token.COLON; € )

case '~': |
takeIt(); ~
return Token.IS;

case '(': |
takeIt(); (
return Token.LPAREN;

case ')': |
takeIt(); )
return Token.RPAREN;

case '\000': |
return Token.EOT; eot

default:
report a lexical error
}

1
private void scanSeparator () { Separator ::=
switch (currentChar) ({
case '!': {
takeIt(); Sy
while (
isGraphic (currentChar))
takeIt(); Graphic*
take('\n'); eol
)

break;
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case ' ': case '\n': |
takeIt(); space | eol
break;

}

}

The auxiliary methods isDigit. isLetter, and isGraphic (not shown here)
perform the obvious tests.

Step (3) is to assemble the complete scanner, and make it determine the token’s kind
and spelling. We can easily make scanToken return a small integer representing the
token’s kind: the necessary enhancements are italicized above. We can also make the
auxiliary methods take and takeIt store the current character in the token’s spelling
(before fetching the next source character).

Here is the complete scanner, including the auxiliary methods:
public class Scanner {
private char currentChar = firstsource character;

// Kind and spelling of the current token:
private byte currentKind;
private StringBuffer currentSpelling;

private void take (char expectedChar) ({
if (currentChar == expectedChar) ({
currentSpelling.append (currentChar) ;
currentChar = next source character;
} else
report a lexical error

}

private void takeIt () |
currentSpelling.append (currentChar) ;
currentChar = next source character;

}

private boolean isDigit (char c) {
// Returns true iff the character c is a digit.
}

private boolean isLetter (char c) ({
// Returns true iff the character c is a letter.
}

private boolean isGraphic (char o
... // Returns true iff the character c is a graphic.
}
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private byte scanToken () {
// As above.
}

private void scanSeparator () {
// As above.
J;

public Token scan () {
while (currentChar == '
|| currentChar =
|| currentChar == '\n')
scanSeparator() ; Separator®
currentSpelling =
new StringBuffer("");
currentKind = scanToken() ; Token
return new Token (currentKind,
currentSpelling.toString()) ;

]

L} '

n =

}

The lexical grammar did not distinguish between identifiers and keywords. Never-
theless, the scanner must properly classify these tokens. We can conveniently make this
happen in the Token constructor, by checking whether the token’s spelling matches any
of the keywords. The modifications to the Token class definition (originally given in
Example 4.2) are italicized below:

public class Token {

public byte kind;
public String spelling;

public Token (byte kind, String spelling) {
this.kind = kind; this.spelling = spelling;
// If kindis IDENTIFIER and spelling matches one
// of the keywords, change the token’s kind accordingly:
if (kind == IDENTIFIER)
for (int k = BEGIN; k <= WHILE; k++)
if (spelling.equals(spellings(k])) {(
this.kind = k; break;
}
}

// Constants denoting different kinds of token:

public final static byte
IDENTIFIER = 0, INTLITERAL = 1, OPERATOR = 2,
BEGIN = 3, CONST = 4, DO = 5; ELSE = 6; END = 7,
IF = 8, IN = 9, LET = 10, THEN = 11, VAR = 12,

WHILE = 13, SEMICOLON = 14, COLON = 15,

. - .
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BECOMES = 16, IS
RPAREN = 19, EOT

17, LPAREN = 18,
20;

1l

// Spellings of different kinds of token (must correspond to the

// token kinds above):

private final static String[] spellings = {
"<identifier>", "<integer-literal>",
"<operator>", "begin", "const", "do", "else",
Htaleliln HEn gy Chahatl, il s et s i s et
“While", ll; n’ N:H' n::n' n__u' nruf r!) n, "“feot:‘"

O

It is worth reflecting why it made sense to eliminate the nonterminals ldentifier,
Integer-Literal, Operator, and Comment in Example 4.21. This had the effect of elimi-
nating several methods (scanIdentifier, scanIntegerLiteral,
scanOperator, and scanComment) that would otherwise have been developed as
part of the scanner. Such a transformation is always possible, because a lexical grammar
by definition generates a regular language, so any of its nonterminals can be eliminated
by substitution. The transformation was motivated simply by efficiency considerations:
measurements have shown that scanning can consume a surprisingly large proportion of
compilation time, if not carefully implemented.

Finally, note that since a lexical grammar must generate a regular language, the
scanner is always nonrecursive. (By contrast, the context-free grammar of a high-level
language invariably exhibits self-embedding, so the parser is always recursive.)

4.6 Case study: syntactic analysis in the
Triangle compiler

The Triangle syntactic analyzer consists of a package Triangle.Syntactic-
Analyzer, which contains Parser, Scanner, and Token classes. The Parser
class depends on the separate package Triangle.AbstractSyntaxTrees, which
contains all of the class definitions for ASTs.

4.6.1 Scanning

The Scanner class performs scanning much as described in Section 4.5. The Token
class has instance variables kind and spelling as shown in Example 4.21. It also
has an additional instance variable, position, which is used to note the token's
position in the source program. The spelling and position fields are useful for
generating error reports.
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The lexical grammar of Triangle expressed in EBNF may be found in Section B.8.
Before developing the scanner, the lexical grammar was modified in two respects:
¢ The production rule for Token was modified to add end-of-text as a distinct token.
¢ Keywords were grouped with identifiers. (See Exercise 4.18 for an explanation.)

Most nonterminals were eliminated by substitution. The result was a lexical grammar
containing only individual characters, nonterminals that represent individual characters
(i.e., Letter, Digit, Graphic, and Blank), and the nonterminals Token and Separator:

Token u= Letter (Letter | Digit)* | Digit Digit* | (4.24)
Op-character Op-character® | * Graphic *
sl leE@= =~y ol o]y]
end-of-text

Separator = I Graphic* end-of-line | Blank (4.25)

The Triangle scanner was then developed from this lexical grammar, following the
procedure described in Section 4.5.

4.6.2 Abstract syntax trees

The package Triangle.AbstractSyntaxTrees contains the class definitions for
the AST, in a style similar to that of Example 4.19. Each concrete subclass contains a
constructor for creating a new AST node, and the parser uses these to construct the
complete AST of the whole program.

The package Triangle.AbstractSyntaxTrees does not actually hide the
AST representation, so other parts of the compiler can directly access the instance
variables representing the subtrees of a node. However, the package does define a
design pattern, known as a visitor, for traversing the AST. This design pattern is used by
the later phases of the compiler. (Visitors will be explained in Chapter 5.)

In the Triangle compiler, an AST node contains more fields than shown in Exam-
ple 4.19. One such field, position, records the position of the corresponding phrase
in the source program. This is derived from the position fields of the phrase’s con-
stituent tokens, and is useful for generating error reports. Every node in the AST has an
associated position, so position is declared as an instance variable of the AST class.
Some other fields (decl, type, and entity) are specific to certain classes of nodes
(principally identifiers, expressions, and declarations, respectively), and are therefore
declared as instance variables of the appropriate AST subclasses. These other fields will
be used later by the contextual analyzer and code generator to decorate the AST.

4.6.3 Parsing

The Parser class contains a recursive-descent parser, as described in Section 4.3. The
parser calls the scan method of the Scanner class to scan the source program, one
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token at a time. It calls the constructors of the Triangle.AbstractSyntaxTrees
classes to construct the AST representing the source program.

The grammar of Triangle may be found in Appendix B, in the subsections entitled
‘Syntax’. The parser was developed systematically from this grammar, much as de-
scribed in Section 4.3.4.

The grammar transformations were mostly straightforward, but one transformation
required particular care. The Triangle grammar includes the following production rules:

single-Command = V-name := Expression (4.26a)
Identifier ( Actual-Parameter-Sequence ) (4.26b)

primary-Expression = V-name (4.27a)
| Identifier ( Actual-Parameter-Sequence ) (4.27b)

V-name = ldentifier (4.28a)
|  V-name . Identifier (4.28b)
|  V-name [ Expression ] (4.28¢)

The right-hand sides of both (4.26a) and (4.26b) have identifiers in their starter sets, and
so fail to satisfy the LL(1) condition. For the same reason, (4.27a) and (4.27b) fail to
satisfy the LL(1) condition.

After left factorization and elimination of left recursion in (4.28a—c), we obtain:
V-name == Identifier (. Identifier | [ Expression 1)* (4.29)
Substitution for V-name in (4.26a) and (4.28a), followed by left factorization, yields:

Identifier ( (. Identifier | [ Expression ])*
: = Expression
| ¢ Actual-Parameter-Sequence )
)

single-Command

primary-Expression ::= Identifier ( (. Identifier | [ Expression ])*
| ¢ Actual-Parameter-Sequence )
)
I

These production rules do satisfy the LL(1) condition, but they are messy. A nontrivial
extended RE has been substituted for V-name in two places. If we proceed to develop a
parser from these production rules, a nontrivial section of parsing code will appear in
two different places.

Instead, we further transform (4.29) by introducing an auxiliary nonterminal symbol:

V-name Identifier rest-of-V-name (4.30)

rest-of-V-name (. Identifier | [ Expression ])* (4.31)
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and now substitute for V-name:

single-Command

i

Identifier ( rest-of-V-name := Expression (4.32)
| ( Actual-Parameter-Sequence )
)

I

primary-Expression = Identifier ( rest-of-V-name (4.33)
| ¢ Actual-Parameter-Sequence )
)
|

These production rules satisfy the LL(1) condition, since:

starters|[rest-of-V-name : = Expression] =  starters[rest-of-V-name]] u {:=
= {. L :=}

starters| ( Actual-Parameter-Sequence ) | =  {(}

Thus they are suitable for developing into parsing methods.

4.6.4 Error handling

If the syntactic analyzer discovers that the source program is not, in fact, a sentence of
the Triangle grammar, it reports a syntactic error. It takes care to compose error reports
that are helpful to the programmer. Let us see how this is done.

As already noted, positional information is recorded in tokens and in AST nodes.
This information allows error reports generated by the syntactic analyzer (and other
modules) to be related to the source program.

Some syntactic errors are detected by method accept. Since its argument is the
expected token ¢, this method can easily compose a suitable report. For example, the ill-
formed Triangle command ‘if m > nmax :=melse max :=n’ will trigger a report
like ‘error: “then’ expected here’, together with positional information.

Other syntactic errors are detected in the situation illustrated by this parsing method:

private void parseSingleDeclaration () {
switch (currentToken.kind) {
case Token.CONST: {
acceptIt();

}
break;
case Token.VAR:
acceptIt();

}

break;
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default:
report a syntactic error
}

Here too it is easy to compose a suitable report. For example, the ill-formed Triangle
declaration ‘d ~ 7" will trigger a report like “error: ““d” cannot start a declaration’.

The way in which parsing procedures are written can influence the quality of error
handling. Suppose that the above parsing method were written this way instead:

private void parseSingleDeclaration () {

if (currentToken.kind == Token.CONST) {
acceptIt();
} else {

accept (Token.VAR) ;

}

This method would correctly parse well-formed single-declarations, but its error
reporting would be inferior. For example, the ill-formed single-declaration ‘d ~ 7°
would trigger a misleading report like ‘error: “var™ expected here’. (The actual error is
a missing ‘const’.)

The Triangle scanner was made to return a special ‘error’ token, rather than
reporting a lexical error as described in Section 4.5. The error token would then cause
the parser to report a syntactic error. This tactic was found to result in better and more
consistent error reporting overall.

The Triangle syntactic analyzer simply terminates after detecting and reporting a
syntactic error. If it were part of an integrated language processor this would be reason-
able behavior, since the Triangle programmer could immediately edit the erroneous part
of the source program and recompile.

The Triangle compiler is a self-contained program, however, so the syntactic
analyzer really ought to recover and continue parsing, in an attempt to discover and
report any further syntactic errors in the source program. Error recovery is an interesting
issue that will be discussed further in Section 9.2.1.

4.7 Further reading

A more detailed account of context-free grammars and regular expressions may be
found in Chapter 2 of the companion textbook by Watt (1991).

The study of grammars, scanning, and parsing was one of the first major topics in
computer science, and a large body of theory and practice has been accumulated. A
variety of parsing algorithms have been developed. both top-down (the recursive-
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descent and backtracking algorithms) and bottom-up (Earley’s algorithm, various
precedence algorithms, and the LR algorithm). The major triumph of this research has
been the discovery of algorithms for generating scanners and parsers automatically from
lexical grammars and (suitable) context-free grammars, respectively. A comprehensive
account of the theory of scanning and parsing may be found in Aho and Ullman (1972).

For practical application in compilers, the recursive-descent and LR algorithms are
now generally held to be the best. Both algorithms are described in Chapter 4 of Aho et
al. (1985), emphasizing practical application rather than theory. Chapter 3 of the same
textbook covers scanning, including finite-state scanning (a good alternative to the
algorithm described in Section 4.5).

In Section 4.3 we saw how to construct a parser from the source language’s context-
free grammar, and in Section 4.5 how to construct a scanner from its lexical grammar. It
is striking how straightforward the construction algorithms are — almost mechanical.
This is also true for other algorithms such as finite-state scanning and LR parsing. A
variety of tools have been developed that generate scanners and parsers automatically.

Among the best-known are the UNIX tools Lex and Yacc. Lex (Lesk and Schmidt
1975) accepts the lexical grammar of a source language S, and from it generates a finite-
state scanner for S, expressed in C. Analogously, Yacc (Johnson 1975) accepts the
context-free grammar of §, and from it generates an LR parser for S, also expressed in
C. Both Lex and Yacc are described in Aho et al. (1985), which explains how they work
and shows how to use them in practical applications. More recently, versions of Lex and
Yacc have appeared that generate scanners and parsers in languages other than C.

JavaCC (www . suntest.com/JavaCC/) is a powerful tool that can be used to
generate a complete syntactic analyzer — scanner, parser, and tree builder — expressed in
Java. JavaCC accepts a grammar expressed in EBNF, and the generated parser uses
recursive descent.

Exercises

Section 4.1

4.1 Perform syntactic analysis of the Mini-Triangle program:
begin while true do putint(l); putint(Q) end
along the lines of Figures 4.1 through 4.4.

4.2 Modify the class Token (Example 4.2) so that the instance variable spell-
ing is left empty unless the token is an identifier, literal, or operator.
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Section 4.2

4.3

In the following grammar fragment, factorize and eliminate left recursion
wherever possible:

Numeral := Digits | Digits . Digits
|  Digits e Sign Digits
|  Digits . Digits e Sign Digits
Digits = Digit | Digits Digit
Digit = 0]1]2]3
4.4 (a) Compute the starter set of the RE (Pascal|C|C++[Java).
(b) Compute the starter set of the RE ((0 |1]2)* (a|b) o).
(c) Compute the starter sets of Digit, Digits, and Numeral in the grammar
fragment of Exercise 4.3.
(d) Compute the starter sets of Subject and Object in the grammar of Exam-
ple 4.8.

Section 4.3

4.5 Consider the micro-English grammar of Example 4.8.

(a) Perform a bottom-up parse of the micro-English sentence ‘I like the mat
., along the lines of Example 4.9.

(b) Perform a top-down parse of the same sentence, along the lines of Exam-
ple 4.10.

(c) Show how the micro-English recursive-descent parser (Example 4.11)
would parse the same sentence, using a diagram like Figure 4.5.

4.6 Complete the methods parseObject and parseVerb of the micro-English
parser (Example 4.11).

4.7 The micro-English parser (Example 4.11) contains many duplicated checks.
Point these out, and show how to eliminate them by using acceptIt rather
than accept.

4.8 The micro-English grammar (Example 4.8) generates some sentences, such as

‘I sees the cat .’ that are ungrammatical in English itself.

(a) Modify the grammar to ensure that the subject agrees with the verb. ‘T’
should agree with ‘like’ or ‘see’, and other subjects should agree with ‘is’
or ‘sees’.

(b) Modify the micro-English parser (Example 4.11) accordingly.
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A calculator accepts commands according to the following EBNF grammar:

Command := Expression =

Expression ::=  Numeral ((+ | - | *) Numeral)*

Numeral = Digit Digit*

Digit = 0]1)2|3|4|5|6]7|8]|9

(a) Construct a recursive-descent parser for a calculator command. The termi-
nal symbols should be individual characters.

(b) Enhance the parser to display the command’s result.

The following EBNF grammar generates a subset of the UNIX shell command
language:

Script = Command*

Command ::= Filename Argument* eol
|  Variable = Argument eol
| if Filename Argument* then eol
Command*
else eol
Command*
£i eol
|  for Variable in Argument* eol
do eol
Command*
od eol

Argument := Filename | Literal | Variable
The start symbol is Script. The token eol corresponds to an end-of-line.
Construct a recursive-descent parser for this language. Treat filenames, literals,
and variables as single tokens.
Consider the rules for converting EBNF production rules to parsing methods

(Section 4.3.4).

(a) Suggest an alternative refinement rule for ‘parse X | ¥°, using an if-
statement rather than a switch-statement.

(b) In some variants of EBNF, [X] is used as an abbreviation for X | €.
Suggest a refinement rule for ‘parse [X]’.

(¢) In some variants of EBNF, X* is used as an abbreviation for X X*.
Suggest a refinement rule for ‘parse X+’.

In each case, state any condition that must be satisfied for the refinement rule
to be correct.
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4.12%

Suppose that an if-command with no else-part is added to Mini-Triangle:

single-Command ::= ;

|  if Expression then single-Command
else single-Command

|  if Expression then single-Command

This gives rise to the well-known ‘dangling else’ ambiguity, illustrated by the
if-command:

if E; then if E; then C| else & (4.34)

where C; and C; are (say) assignment commands. The if-command (4.34) has
two possible phrase structures, depending on whether ‘else C5’ is associated
with *if E, then ..." or with ‘if E; then ...". Demonstrate the ambiguity
by showing two different syntax trees for (4.34).

Modify the parsing method parseSingleCommand (Example 4.12) to in-
clude the new form of if-command. How will your parsing method behave
when required to parse (4.34)?

The ‘dangling else’ ambiguity is also found in Pascal and C. These languages
require the ambiguity to be resolved by pairing each ‘else’ with the nearest
unmatched *i €. How does your parser’s behavior relate to this requirement?

Section 4.4

4.13

4.14%

Complete the enhanced Mini-Triangle parser of Example 4.20. Take particular
care to construct correct ASTs for expressions. For example, the AST for the
expression ‘a - b + ¢’ should be the left-branching tree in (a) below. (The
right-branching tree (b) is the AST for‘a- (b+c)’.)

(a) BinaryExpression (b) BinaryExpression
1

= | : 1

BinaryExpression BinaryExpression

VnameExpr. | VnameExpr. | VnameExpr. VnameExpr. | VnameExpr. | VnameExpr.

SimpleV, SimpleV. SimpleV. SimpleV. SimpleV. SimpleV.

| l | |

Ident. Op. Ident. Op. Ident, Ident. Op. Ident. Op. Ident.

: H i H i i i
i i i i i E | i

a - b + c a = b + (!

The grammar of expressions in Mini-Triangle treats all binary operators alike:
they all have the same priority, and they all associate to the left. Thus ‘a - b *
¢ is treated as equivalent to * (a - b) * ¢’
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The following grammar of expressions gives “** and */" higher priority than
“+7and *-":

Expression ::= secondary-Expression
|  Expression add-Operator
secondary-Expression

secondary-Expression :: primary-Expression
secondary-Expression muit-Operator

primary-Expression

primary-Expression = Numeral

| variable

| ( Expression )
add-Operator = o+ | -
mult-Operator s= * |/

In this grammar, ‘a - b * ¢’ is treated as equivalent to ‘a - (b * c) ", but ‘a -
b + ¢’ is treated as equivalent to * (a - b) +c’.

(a) Construct a recursive-descent parser from this grammar of expressions.

(b) Extend your parser to construct an AST. (Note that the concrete syntactic
changes do not affect the abstract syntax.)

4.15  Suppose that a method display is to be added to class AST (Example 4.19).
Given the Mini-Triangle AST of Figure 4.4, for example, display should
output something like this:

Program
LetCommand
VarDeclaration
Identifier vy
SimpleTypeDenoter
Identifier Integer
AssignCommand
SimpleVname
Identifier y
BinaryExpression

Outline an implementation of display.

4.16* Consider the following alternative to the representation of ASTs presented in
Section 4.4.1. AST nodes are simply classified as nonterminal nodes and termi-
nal nodes. A nonterminal node contains a tag and an array of children. The tag
distinguishes between different forms of phrases, such as an assignment-com-
mand, an if-command, a binary-expression, etc. Each child is just a pointer to
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another AST node. A terminal node contains a tag and a spelling. The tag dis-
tinguishes between an identifier, a literal, and an operator.

(a) Reimplement the class AST for Mini-Triangle.

(b) Provide this class with a method display, as specified in Exercise 4.15.

Section 4.5

4.17 The Mini-Triangle scanner (Example 4.21) stores the spellings of separators,
including comments, only to discard them later. Modify the scanner to avoid
this inefficiency.

4.18%  Suppose that the Mini-Triangle lexical grammar (Example 4.21) were modified
as follows, in an attempt to distinguish between identifiers and keywords (such
as ‘1f’, ‘then’, ‘else’, etc.):

Token = ldentifier | Integer-Literal | Operator |
if|then|else] .. |
ilele=]~1C])[eot

[dentifier = Letter (Letter | Digit)*

Point out a serious problem with this lexical grammar. (Remember that the ter-
minal symbols are individual characters.) Can you see any way to remedy this
problem?

4.19 (a) Modify the Mini-Triangle lexical grammar (Example 4.21) as follows.
Allow identifiers to contain single embedded underscores, e.g., ‘set—up’
(but not ‘set_up’, nor ‘set— , nor ‘—up’). Allow real-literals, with a
decimal point surrounded by digits, e.g., ‘3.1416° (but not ‘4.’, nor
.1257).

(b) Modity the Mini-Triangle scanner accordingly.

General

4.20* Consider a hypothetical programming language, NewSpeak, with an English-
like syntax (expressed in EBNF) as follows:

Program 2= Command .
Command = single-Command single-Command*

= donothing

|  store Expression in Variable

| if Condition : single-Command
otherwise : single-Command

| do Expression times : single-Command

single-Command




4.21%%*

4.22%*
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Expression = Numeral
| Variable
| sumof Expression and Expression
| product of Expression and Expression

Condition = Expression is Expression

|  Expression is less than Expression
Numeral ;= Digit Digit*
Variable n= Letter Letter*

Consecutive keywords and variables must be separated by blank space; other-
wise blank space may be inserted freely between symbols.

Design and implement a syntactic analyzer for Newspeak:

(a) Decide which NewSpeak symbols should be tokens, and how they should
be classified. Define the class Token. Then implement a NewSpeak
scanner.

(b) Name and specify the parsing methods in a recursive-descent parser for
NewSpeak. Then implement the NewSpeak parser.

Design and implement a complete syntactic analyzer for your favorite pro-
gramming language.

A cross-referencer is a language processor that lists each identifier that occurs
in the source program, together with the line numbers where that identifier oc-
curs. Starting with either the Mini-Triangle syntactic analyzer or the syntactic
analyzer you implemented in Exercise 4.21:

(a) Modify the scanner so that every token contains a field for the line number
where it occurs.

(b) Develop a simple cross-referencer, reusing appropriate parts of your syn-
tactic analyzer.

(c) Now make your cross-referencer distinguish between defining and applied

occurrences of each identifier.

A pretty-printer is a language processor that reproduces the source program
with consistent indentation and spacing. Starting with either the Mini-Triangle
syntactic analyzer or the syntactic analyzer you implemented in Exercise 4.21:

(a) Develop a simple pretty-printer, reusing appropriate parts of your syntactic
analyzer. At this stage your pretty-printer need not reproduce comments.

(b) Now make your pretty-printer reproduce comments.



CHAPTER FIVE

Contextual Analysis

Given a parsed program, the purpose of contextual analysis is to check that the program
conforms to the source language’s contextual constraints. For a typical programming
language (statically typed and with static bindings), contextual constraints consist of:

» Scope rules: These are rules governing declarations and applied occurrences of
identifiers.

* Type rules: These are rules that allow us to infer the types of expressions, and to
decide whether each expression has a valid type.

It follows that contextual analysis consists of two subphases:

* Identification: applying the source language’s scope rules to relate each applied
occurrence of an identifier to its declaration (if any).

* Type checking: applying the source language’s type rules to infer the type of each
expression, and compare that type with the expected type.

In Section 5.1 we study identification, and in Section 5.2 we study type checking. In
Section 5.3 we develop a particular contextual analysis algorithm, combining identifi-
cation and type checking in a single pass, and show how the results of contextual
analysis may be recorded. Throughout, we assume that the source language exhibits
static bindings and is statically typed.

5.1 Identification

The first task of the contextual analyzer is to relate each applied occurrence of an
identifier in the source program to the corresponding declaration. If there is no corre-
sponding declaration, the source program is ill-formed, and the contextual analyzer must
generate an error report. This task is called identification. Once an applied occurrence
of an identifier has been identified, the contextual analyzer will check that the identifier
is used in a way consistent with its declaration: that is type checking, to be considered in
Section 5.2.

Identification can have a disproportionate effect on the efficiency of the whole
compiler, Longer source programs contain more applied occurrences of identifiers, and

136
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hence require more identifications to be performed. But also. longer source programs
contain more declarations, so each identification is likely to take more time — especially
if identification is implemented naively. Some compilers (and assemblers) are indeed
very slow, for this reason.

If the source program is represented by an AST, a naive identification algorithm
would be to search the AST: starting from a leaf node representing an applied
occurrence of an identifier, find the subtree representing the corresponding declaration
of that identifier. But such an algorithm would be very cumbersome. (See Exercise 357

A better method is to employ an identification table that associates identifiers with
their attributes. The basic operations on the identification table are as follows:

* Make the identification table empty.
* Add an entry associating a given identifier with a given attribute.
* Retrieve the attribute (if any) associated with a given identifier.

An identifier’s attribute consists of information relevant to contextual analysis, and
is obtained from the identifier’s declaration. The attribute could be information distilled
from the declaration, or just a pointer to the declaration itself. For the moment we need
not be specific, since the attributes do not influence the structure of the identification
table. We shall return to attributes in Section 5.1.4.

Each declaration in a program has a definite scope, which is the portion of the pro-
gram over which the declaration takes effect. A block is any program phrase that
delimits the scope of declarations within it. For example, Triangle has a block
command, of the form ‘let D in C’, in which the scope of each declaration in D
extends over the subcommand C. A Triangle procedure declaration, of the form ‘proc /
(FPS) ~ C, is also a block, in which the scope of each formal parameter in F'PS is the
procedure body C.

The organization of the identification table depends on the source language’s block
Structure, which is the textual relationship of blocks in programs. There are three poss-
ibilities:

* Monolithic block structure (exemplified by Basic and Cobol).
* Flat block structure (exemplified by Fortran).
* Nested block structure (exemplified by Pascal, Ada, C, and Java).

These block structures are covered in the following subsections.

5.1.1 Monolithic block structure

A programming language exhibits monolithic block structure if the only block is the
entire program. All declarations are global in scope.

A language with monolithic block structure has very simple scope rules, typically:
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(la) No identifier may be declared more than once.

(1b) For every applied occurrence of an identifier /, there must be a corresponding
declaration of /. (In other words, no identifier may be used unless declared.)

In the case of monolithic block structure, the identification table should contain
entries for all declarations in the source program. There will be at most one entry for
each identifier. Each entry in the table consists of an identifier / and the attribute A
associated with it.

Example 5.1 Monolithic block structure

Consider a hypothetical programming language in which a program takes the form:

program
D
begin
(&)
end

D is a sequence of declarations (the only ones in the program). C is a command se-
quence, the executable part of the program. In this example it is not important what
kinds of declaration and command are provided. What is important is that the only block
is the whole program.

Figure 5.1 shows a program outline, together with a picture of the identification table
after all declarations have been processed. The table contains one entry for each
declared identifier. The declarations are numbered for cross-referencing, and in the table
each identifier’s attribute is shown as a cross-reference to the identifier’s declaration.

O

Adttributes and identification tables can be defined by the Java classes outlined here:

public class Attribute ({
// Attribute details.
}

public class IdentificationTable {
// Variables representing the identification table.

public IdentificationTable ()
// Make an empty identification table.
Bose 1)

public void enter (String id, Attribute attr)
// Add an entry to the identification table, associating identifier 1d
// with attribute attr.

iz,
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public Attribute retrieve (String id)
// Return the attribute associated with identifier 14 in the identification
// table. If there is no entry for id, return null.
et
}

The contextual analyzer will use these operations as follows:
* To create a new table, the ITdentificationTable constructor will be called.
» At a declaration of identifier /, the method enter will be called to add an entry for /.

» At an applied occurrence of identifier /, the method retrieve will be called to find
the entry for /. If there is no such entry, an error report will be generated.

The identification table should be organized for efficient retrieval. A good imple-
mentation would be a standard data structure such as a binary search tree or a hash table.
(See Exercise 5.1.)

program
(1) integer b = 10
(2) integer n

(3) char c

begin
rais Ident. | Auttr.
n=n2#*bhb b (N
':n;;:ite e B @
c (3)

end

Figure 5.1 Identification table: monolithic block structure.

5.1.2 Flat block structure

A programming language exhibits flat block structure if a program can be partitioned
into several disjoint blocks. There are two scope levels:

* Some declarations are local in scope. Applied occurrences of locally declared
identifiers are restricted to a particular block.

* Other declarations are global in scope. Applied occurrences of locally declared
identifiers are allowed anywhere in the program. In effect, the program as a whole is a
block, enclosing all the other blocks.

The scope rules for a language with flat block structure might be:

(2a) No globally declared identifier may be redeclared globally. (But the same identifier
may also be declared locally.)
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(Zb) No locally declared identifier may be redeclared in the same block. (But the same
identifier may be declared locally in several different blocks.)

(2¢) For every applied occurrence of an identifier /7 in a block B, there must be a
corresponding declaration of /. This must be either a global declaration of / or a
declaration of / local to B.

In the case of flat block structure, the identification table should contain entries for
both global and local declarations. The contents of the table will vary during contextual
analysis. During analysis of block B, the table should contain entries both for global
declarations and for declarations local to B. Once analysis of B is completed, the entries
for local declarations should be discarded. It follows that the entries for local and global
declarations must be distinguished in some way.

‘ (1) procedure ! Level | Ident. Attr.
| global Q (1
A = T local r 2)
local pi (3)

Level | Ident. | Atr.

global Q (1)

global R )
local (e (5)

Level | Ident. Adtr.
global Q (1
global R “)

program

Level | Ident. Adttr.

global 0 (1)

B 00 | global | R @
" [Tocal A1 ()

local b 7)

local G (8)

Figure 5.2 Identification table: flat block structure.
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Example 5.2  Flat block structure

Consider a hypothetical programming language in which a main program takes the
form:

program
D
begin
C
end

The main program’s body is a block, and the declarations D are local to it. The main
program may be preceded by a number of procedure declarations, which take the form:

procedure /[
D

begin
C

end

The procedure body is a block, and the declarations D are local to it. The procedure
declaration itself is global in scope.

Figure 5.2 shows a program outline, with the blocks shaded to distinguish between
global and local scopes. It also shows a picture of the identification table as it stands
during contextual analysis of each block.

During analysis of procedure Q, the table contains a global entry for Q itself, and
local entries for r and pi. The body of Q may contain applied occurrences of these
identifiers only. If the contextual analyzer encounters any other identifier, that identifier
will not be found in the table, and the contextual analyzer will generate an error report.
After analysis of Q, all the local entries are removed from the table. Similar points can
be made about the other two blocks.

Note that the program contains two local declarations of identifier ¢. This causes no
confusion, because the two declarations are local to different blocks. Their entries never
appear in the identification table at the same time.

O

We still need the TdentificationTable constructor and the enter and
retrieve methods specified in Section 5.1.1, but the latter method now has a slightly
more complicated specification:

public Attribute retrieve (String id)

// Return the attribute associated with identifier id in the identification

// table. If there are both global and local entries for id, return the attribute
// from the local entry. If there is no entry for id, return null.

{S o)

In addition, we need the following new methods:
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public void openScope ()

// Add a local scope level to the identification table, with no entries yet
// belonging to it.

()

public void closeScope ()

// Remove the local scope level from the identification table, and all
// entries belonging to it.

{ =k

The contextual analyzer will use the operations as follows:
* To create a new table, the IdentificationTable constructor will be called.
= At the start of a block, openScope will be called.
» At the end of a block, closeScope will be called.

* At a declaration of identifier /, enter will be called to add an entry for /. If open-
Scope has been called but not canceled by closeScope, the new entry will be
marked as local; otherwise it will be marked as global.

* Atan applied occurrence of identifier /, retrieve will be called to find the entry for
1. 1f there is no such entry, an error report will be generated.

It is still easy to implement the identification table. The only minor complication is
to distinguish the global and local declaration entries. (See Exercise 5.2.)

5.1.3 Nested block structure

A programming language exhibits nested block structure if blocks may be nested one
within another. Thus there may be many scope levels:

* Declarations in the outermost block are global in scope. We say that the outermost
block is at scope level 1.

* Declarations inside an inner block are local to that block. Every inner block is
completely enclosed by another block. If enclosed by the outermost block, we say that
the inner block is at scope level 2; if enclosed by a level-2 block, we say that the inner
block is at scope level 3; and so on.

The scope rules for a language with nested block structure are typically as follows:

(3a) No identifier may be declared more than once in the same block. (But the same
identifier may be declared in different blocks, even if they are nested.)

(3b) For every applied occurrence of an identifier / in a block B, there must be a
corresponding declaration of /. This declaration must be in B itself, or (failing that)
in the block B” that immediately encloses B, or (failing that) in the block B tha
immediately encloses B”, etc. (In other words, the corresponding declaration is in
the smallest enclosing block that contains any declaration of 1.)

—
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In the case of nested block structure, the identification table should contain entries
for declarations at all scope levels. Again, the contents of the table will vary during
contextual analysis. During analysis of block B, the table should contain entries for
declarations in B, entries for declarations in the block B~ that encloses B, entries for
declarations in the block B”” that encloses B”, etc. Once analysis of B is completed, the
entries for the declarations in B should be discarded. To make this possible, each entry
should contain a scope level number.

Example 5.3 Nested block structure

The language Mini-Triangle introduced in Example 1.3 has block commands of the
form ‘let D in C'. These may be nested. Mini-Triangle’s scope rules are (3a) and (3b)
above.

Figure 5.3 shows a program outline, with the blocks shaded to indicate their scope
levels. Tt also shows a picture of the identification table as it stands during contextual
analysis of each block.

During analysis of the outermost block, the table contains only entries for identifiers
a (declaration (1)) and b (declaration (2)). These entries are marked as level 1.

During analysis of the innermost block, the table contains entries for all the declar-
ations in this block (marked as level 3), the enclosing block (level 2), and the outermost
block (level 1). Notice that there are two entries for b (declarations (2) and (3)), but this
is legitimate since they are in different blocks, and so their scope levels are different. If
the innermost block contains an applied occurrence of b, the table must be searched in
such a way as to retrieve attribute (3) —in accordance with scope rule (3b).

O

We still need the TdentificationTable constructor, and the enter, re-
trieve, openScope, and closeScope methods, but some of these now have
maodified specifications:

public Attribute retrieve (String id)

/ /- Return the attribute associated with identifier id in the

/./ - identification table. If there are several entries for id,

/7 return the attribute from the entry at the highest scope level.
/¢ If there is no entry for 1d, return null.

£ vee

public void openScope () .
/7 Add a new highest scope level to the identification table.
facie &

public void closeScope ()

// Remove the highest scope level from the identification table,
// and all entries belonging to it.

{ .. 1
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These are generalizations of the operations specified in Section 5.1.2.
The contextual analyzer will use the operations as follows:

* To create a new, empty table, the IdentificationTable constructor will be
called.

» At the start of a block, openScope will be called.
» At the end of a block, closeScope will be called.

» At a declaration of identifier /, enter will be called to add an entry for /. (This entry
will contain a scope level number determined by the number of calls of openScope
not yet canceled by calls of closeScope.)

= At an applied occurrence of identifier I, retrieve will be called to find the correct
entry for /. If there is more than one entry for /, the one with the highest scope level
number will be retrieved. If there is no entry for /, an error report will be generated.

Nested block structure makes implementation of the identification table a more
challenging problem. There may be several entries for each identifier, although there is
at most one entry for each (scope level, identifier) combination. The table must be
searched in such a way that the highest-level entry is retrieved when there are several
entries for the same identifier. And, as usual, retrieval efficiency is important. Some
possible implementations are outlined in Section 5.4 and in Exercises 5.4 and 5.5.

5.1.4 Attributes

So far we have been deliberately unspecific about the nature of the attributes associated
with identifiers in the identification table. These attributes are stored in the table, and
later retrieved, but they have no influence on the structure of the table.

Let us now look at these attributes in more detail. At an applied occurrence of an
identifier /, the attribute associated with [ is retrieved for use in type checking. If [
occurs as an operand in an expression, the type checker will need to ensure that / has
been declared as a constant or variable, and will need to know its type. If 1 occurs as the
left-hand side of an assignment command, the type checker will need to ensure that / has
been declared as a variable (not a constant), and again will need to know its type. If /
oceurs as the first symbol in a procedure call, the type checker will need to ensure that /
has indeed been declared as a procedure, and will need to know the types of its formal
parameters (for comparison with the types of the actual parameters). These examples
illustrate the kind of information that must be included in attributes.

One possibility is for the contextual analyzer to extract type information from
declarations, and store that information in the identification table. Later that information
can be retrieved whenever required.




Contextual Analysis 145

oe

Key:

scope level 3

scope level 2

let scope level 1

(1) var a: Integer;
(2) var b: Boolean

in Gewrs 1 — Level | Ident. | Attr.
s 1 a (1)
; ] b [6)
Level | Ident. Adtr.
| a (n
I b 2)
2 b (3)
2 c 4
Level | Ident. Attr.
1 a (n
1 b 2)
2 b (3)
2 c (4)
3 d (5)
Level | Ident. | Atir.
| a (n
| b (2)
e 2 d 6)
end 2 e @

Figure 5.3 Identification table: nested block structure.

Example 5.4  Mini-Triangle attributes

Consider a Mini-Triangle contextual analyzer that extracts type information from ¢
declaration, and uses that information to construct an attribute.

For Mini-Triangle, the relevant information is just whether the declaration is of ¢
constant or a variable, and whether its type is bool or int. (Other information, such as the
actual value of a constant, is irrelevant in contextual analysis of Mini-Triangle.)

Thus the type Attribute could be defined as follows:
public class Attribute {

byte kind; // either CONST or VAR
byte type; // either BOOL or INT
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// Kinds of declaration:
public static final byte CONST = 0, VAR = 1;

// Types:
public static final byte BOOL = 0, INT = 15

}

Consider the Mini-Triangle program outlined in Figure 5.3. When the contextual
analyzer processes declaration (1), it calls enter with identifier a and an attribute
whose fields are VAR and INT. Whenever it processes an applied occurrence of a, it
calls retrieve with identifier a. and thus retrieves that attribute. Using the attribute, it
determines that a denotes an integer variable. Other declarations are treated similarly.

O

Example 5.5 Triangle attributes

Now imagine a one-pass compiler for Triangle itself. Here the information to be
extracted from a declaration is rather complicated, for several reasons. First, there are
several kinds of declaration — constant, variable, procedure, function, and type — with
different information provided in each case. Secondly, a procedure or function declar-
ation includes a list of formal parameters, and each formal parameter may be a constant,
variable, procedural, or functional parameter. Third, the language provides not only
primitive types, but also whole families of record and array types.

The classes required to represent types could be defined along the following lines:
public abstract class Type { ... }
public class BoolType extends Type { ... }
public class CharType extends Type { ... }
public class IntType extends Type { ... }

public class RecordType extends Type ({
FieldList fields; // alist of (identifier, type) pairs
}

public class ArrayType extends Type {
int elementCount;
Type elementType;

}

And the classes required to represent attributes could be defined as follows:

public abstract class Attribute { ... }
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public class ConstAttribute extends Attribute {
Type type;
}

public class VarAttribute extends Attribute {
Type type;
}

public class ProcAttribute extends Attribute {
Formallist formals; // alistof (identifier, attribute) pairs

}

public class FuncAttribute extends Attribute {
FormalList formals; // alistof (identifier, attribute) pairs
Type resultType;

}

public class TypeAttribute extends Attribute {
Type type;

}

O

For a realistic source language, the information to be stored in the identification table
is quite complex, as Example 5.5 illustrates. A lot of tedious programming is required to
declare and construct the attributes.

Fortunately, this can be avoided if the source program is represented by an AST.
This is because the AST itself contains the information about identifiers that we need to
store and retrieve. The information associated with an identifier / can be accessed via a
pointer to the subtree that represents the declaration of /. In other words, we can replace
the class Attribute with the class Declaration throughout the definition of the

IdentificationTable class (assuming the AST representation described in
Section 4.4.1).

Example 5.6 Mini-Triangle attributes represented by declaration ASTs

Consider once more the Mini-Triangle program outlined in Figure 5.3. Figure 5.4 shows
part of the AST representing this program, including one of the inner blocks, with the
subtree representing each block shaded to indicate its scope level. Figure 5.4 also shows
a picture of the identification table as it stands during contextual analysis of each block.

When the contextual analyzer visits the declaration at subtree (1), it calls enter
with identifier a and a pointer to subtree (1). Whenever it visits an applied occurrence of
a, it calls retrieve with identifier a, and thus retrieves the pointer to subtree (1). By
inspecting this subtree, it determines that a denotes an integer variable. The other
declarations are treated similarly.

0
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Figure 5.4 Identification table: relationship to AST.

5.1.5 Standard environment

Most programming languages contain a standard collection of predefined constants,
variables, types, procedures and functions that the programmer can use without having
to introduce them explicitly. For example, there is the package java. lang in Java, the
standard prelude in Haskell, and the package Standard in Ada. This collection we call
the standard environment of the language.

At the start of identification, therefore, the identification table is not empty, but
already contains entries corresponding to the declarations of the standard environment.
This presents us with a slight problem, as we must construct the corresponding attributes
for these identifiers. In the example languages above, this can be achieved by processing
the text of the appropriate package before starting on the source program. In other cases,
however, the contextual analyzer must contain code that explicitly constructs the
corresponding attribute values and enters them into the identification table.
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A programming language must also specify the appropriate scope rule for the
standard environment. Most programming languages consider the standard environment
to be a scope enclosing the whole program, so that the source program may contain a
declaration of an identifier present in the standard environment without causing a scope
error. Some other programming languages (such as C) introduce the standard environ-
ment at the same scope level as the global declarations of the source program.

If the standard environment is to be at a scope enclosing the whole program, the
declarations of the standard environment should be entered at scope level O in the
identification table.

Example 5.7  Standard environment in Mini-Triangle

The standard environment of Mini-Triangle contains the following constant, type,
procedure, and operator declarations:

type Boolean ~ ...;

const false ~ ...;

const true ~ ...;

func \ (b: Boolean) : Boolean ~ ...;
type Integer ~ ...;

const maxint ~ ...;

func + (il: Integer, i2: Integer) : Integer ~ ...;
func - (il: Integer, 12: Integer) : Integer ~ ...;
func * (il: Integer, i2: Integer) : Integer ~ ...;
func / (il: Integer, i2: Integer) : Integer ~ ...;
func < (il: Integer, 12: Integer) : Boolean ~ ...;
func > (il: Integer, i2: Integer) : Boolean ~ ...;

proc putint (i: Integer) -~ ...;

In addition, the following operator is available for every type 7' (i.e., both Integer
and Boolean):

func = (vall: T, val2: T) : Boolean ~ ...;

Here, a unary operator declaration is treated like a function declaration with one
argument, and a binary operator declaration is treated like a function declaration with
two arguments. The operator symbol is treated like a normal identifier. The contextual
analyzer only requires information about the types of the arguments and result of an
operator, and so these declarations have no corresponding expressions.
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* Binary operator application: Consider the expression ‘E; O E>’, where O is a binary
operator of type 7' X 75 — T3. The type checker ensures that £;’s type is equivalent
to 7y, and that E5’s type is equivalent to 75, and thus infers that the type of ‘E| O Ey
is T3. Otherwise there is a type error.

In general, the type of a nontrivial expression is inferred from the types of its
subexpressions, using the appropriate type rule.

In some phrases the type checker must test whether an inferred type is equivalent to
an expected type, or test whether two inferred types are equivalent to each other. In a
typical language, the type of the expression in an if- or while-command must be
equivalent to the type bool; and the type of an actual parameter must be equivalent to
the type of the corresponding formal parameter. So the type checker must be able to test
whether two given types T and T are equivalent.

Example 5.8  Mini-Triangle type checking

Mini-Triangle has only two types (denoted by Boolean and Integer), so they can
easily be represented as follows:

public class Type {
private byte kind; // either BOOL or INT

public static final byte
BOOL = 0, INT = 1;

public static Type (byte sort) {
this.sort = sort;

}

public boolean equals (Object other) {
// Test whether this type is equivalent to other .
Type otherType = (Type) other;
return (this.kind == otherType.kind) ;

}

It is a simple matter to infer the type of an applied occurrence of a constant or
variable identifier 7, provided that a link has already been established to the declaration
of I. If 7 is declared in a constant declaration, whose right-side expression’s type has
been inferred to be 7, then the type of the applied occurrence of 7 is T

ConstDeclaration SimpleVname ConstDeclaration SimpleVname : T
SR | Y l
Ident. ...Expr. " Ident. _’ Ident. ...Expr. " Ident.
o der Hon
x ) x x x
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(We show the inferred type T by annotating the AST node with *: 7".)

If I is declared in a variable declaration, whose right side is type 7, then the type of
the applied occurrence of / is T

VarDeclaration SimpleVname VarDeclaration SimpleVname : T
Idgnt. T ) Idefnt. —’ Idf?nt. T Idgnt.
An application of a binary operator such as ‘<’ would be handled as follows:

BinaryExpression BinaryExpression : bool
...Expr.  Op. ...Expr. ...Expr. Op. ...Expr.
| int I int I int | | int
< e <

The operator ‘<’ is of type int x int — bool. Having checked that the type of Ej is
equivalent to int, and that the type of E is equivalent to int, the type checker infers that
the type of ‘E; < E;’ is bool. Other operators would be handied similarly.

O

Of course, Mini-Triangle type checking is exceptionally simple: the representation
of types is trivial, and testing for type equivalence is also trivial. Type checking is more
complicated if the source language has composite types. For example, Triangle array
and record types have component types, which are unrestricted. Thus we need to
represent types by trees.

Furthermore, there are two possible definitions of type equivalence.

Some programming languages (such as Triangle) adopt structural equivalence,
whereby two types are equivalent if and only if their structures are the same. If types are
represented by trees, structural equivalence can be tested by comparing the structures of
these trees. If the implementation language is Java, then this kind of equality is conven-
tionally tested by an equals method in the Type class.

Other programming languages (such as Pascal and Ada) adopt name equivalence.

Every occurrence of a type constructor (e.g., array or record) creates a new and

distinct type. In this case type equivalence can be tested simply by comparing pointers

to the objects representing the types: distinct objects (created at different times)

| represent types that are not equivalent, even if they happen to be structurally similar. If

f the implementation language is Java, then this kind of equality is tested by the ‘==’
' operator applied to objects of class Type.
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In Section 5.4 we shall return to look at a more realistic example of type checking, in
the context of the Triangle compiler.

5.3 A contextual analysis algorithm

Contextual analysis consists of identification and type checking. Each applied occurr-
ence of an identifier must be identified before type checking can proceed. Identification
could, in principle, be completed before type checking is started, but there would be
little advantage in that. Instead, identification and type checking are usually interleaved
in a single pass over the source program (or its representation). If the source program is
represented by an AST, contextual analysis can be done in a single depth-first traversal.

Throughout this section, we shall assume that the AST is represented as described in
Section 4.4.1.

5.3.1 Decoration

The results of contextual analysis can be recorded by decorating the AST, as explained
in Section 3.1.2. The following decorations prove to be useful:

« The results of identification can be recorded by making an explicit link from each
applied occurrence of an identifier / to the corresponding declaration of /. This has the
advantage of making the decorated AST a self-contained representation of the source
program; the identification table may be discarded once identification is complete. In
the compiler, we represent this link by a pointer field in each identifier node. In dia-
grams, we show this link as a dashed arrow.

» The results of rype checking can be recorded by storing each expression E’s inferred
type T at the root node of E. In the compiler, we represent this by a type field in each
expression node. In diagrams, we show this inferred type by an annotation *: 7° to the
right of the expression node. The same point applies to the other typed phrases such as
value-or-variable-name.

Example 5.9  Representation of decorated ASTs

A class AST suitable for representing Mini-Triangle undecorated ASTs was defined in
Example 4.19. Here we extend the definition of AST and its subclasses to make them
suitable for Mini-Triangle decorated ASTs, by means of additional instance variables
(italicized here for emphasis):

public abstract class Expression extends AST {
// The expression’s type:
public Type type;
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public abstract class Vname extends AST ({
// The value-or-variable-name’s type, and an indication of whether
// itis a variable or a value:
public Type type;
public boolean variable;

}

public class Identifier extemnds Terminal ({
// A pointer to the identifier's declaration (applied occurrences only):
public Declaration decl;

)

public class Operator extends Terminal ({
// A pointer to the operator’s declaration:
public OperatorDeclaration decl;

}

(The decoration of an operator node will be explained later.)

5.3.2 Visitor classes and objects

The work to be done by the contextual analyzer depends on the class of phrase to be
checked. Checking of a command C will determine simply whether C is well-formed or
not. Checking of an expression E will determine whether E is well-formed, but also
infer the type of E. Checking of a declaration D will determine whether D is well-
formed, but also make entries in the identification table for the identifiers declared in D.

In more detail, the checking of a command depends on the particular form of that
command. For example, checking an assignment-command ‘V := E’ entails (i)
checking V to determine its type and ensure that it is a variable, (ii) checking E to
determine its type, and (iii) testing whether the two types are equivalent. Checking a
block-command ‘let D in C’ entails (i) opening an inner scope, (ii) checking D, (iii)
checking C, and (iv) closing the inner scope. Similarly, the checking of an expression or
declaration depends on the particular form of expression or declaration.

In all cases, checking a particular phrase entails checking its subphrases (if any). If
the source program is represented by an AST, contextual analysis therefore entails
traversing the AST, visiting the nodes in some suitable order. We shall see in Chapter 7
that code generation also entails traversing the AST, visiting the nodes in some
(possibly different) order. Therefore the compiler should be designed such that AST
traversals are organized systematically.
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The work of the contextual analyzer will be done by a set of visitor methods. The
will be exactly one visitor method, visitA, for each concrete AST subclass A. The
visitor methods will cooperate to traverse the AST in the desired order.

Example 5.10 Mini-Triangle visitor methods

The visitor methods for Mini-Triangle are summarized by the following Java interface

public interface Visitor {
// Programs:
public Object visitProgram
(Program prog, Object arg);

// Commands:
public Object visitAssignCommand
(AssignCommand com, Object arg);
public Object visitCallCommand
(CallCommand com, Object arg);
public Object visitSequentialCommand
(SequentialCommand com, Object arg);
public Object visitIfCommand
(IfCommand com, Object arg);
public Object visitWhileCommand
(WhileCommand com, Object arg);
public Object visitLetCommand
(LetCommand com, Object arg);

// Expressions:

public Object visitIntegerExpression
(IntegerExpression expr, Object arg);

public Object visitVnameExpression
(VnameExpression expr, Object arg);

public Object visitUnaryExpression
(UnaryExpression expr, Object arg);

public Object visitBinaryExpression
(BinaryExpression expr, Object arg);

// Value-or-variable-names:
public Object visitSimpleVname
(SimpleVname vname, Object arg);

// Declarations:
public Object visitConstDeclaration
(ConstDheclaration decl, Object arg);
public Object visitVarDeclaration
(VarDeclaration decl, Object arg);
public Object visitSequentialDeclaration
(SequentialDeclaration decl, Object arg);
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// Type-denoters:
public Object visitSimpleTypeDenoter
(SimpleTypeDenoter type, Object arg):

// ldentifiers:
public Object visitIdentifier
(Identifier id, Object arg);

// Operators:
public Object visitOperator
(Operator op, Object arg);

(]

Each visitor method has an argument that is the subtree (phrase) to be visited. It also
has an Object argument to allow additional data to be passed into the method, where
required. Finally, it has an Object result to allow data to be passed out of the method,
where required.

For example, the result of each visit...Expression method in the contextual
analyzer will be the expression’s type, whereas the result of each visit.. Command
method will be null. (Later we shall see why it is worthwhile to provide every visitor
method with both an Object argument and an Object result.)

We will organize AST traversals using the object-oriented visitor design pattern.
Given a set of node classes, a visitor class is one that implements the corresponding set
of visitor methods. For example, a Mini-Triangle AST visitor class is one that imple-
ments the Visitor interface defined in Example 5.10. A visitor object (an object of a
visitor class) therefore contains a particular set of visitor methods.

Any AST (raversal can be implemented as a visitor object. In fact, both the
contextual analyzer and the code generator can be implemented as visitor objects. We
enhance the AST class with an instance method visit, which can be used to visit any
AST node:

public abstract class AST {

public abstract Object visit
(Visitor v, Object arg);
}
Like the visitor methods, visit has an Object argument and an Object result. It

also has a Visitor argument; this tells it which particular visitor object (i.e., which
particular set of visitor methods) to apply to the AST node and its descendants.

Each concrete subclass of AST must implement the visit method, simply by
calling the appropriate visitor method. For example, the AssignCommand and
IfCommand classes will implement visit as follows:
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public class AssignCommand extends Command {

public Object visit (Visitor v, Object arg) {
return v.visitAssignCommand (this, arg):;
}
public class IfCommand extends Command {
public Object visit (Visitor v, Object arg) {
return v.visitIfCommand(this, arg);
¥

Each visit method ‘knows’ which particular visitor method to call. For example,
IfCommand’s visit method knows that this is an IfCommand object, so it calls
the v.visitIfCommand method, passing this (and arg) as arguments. In general,
the visit method in the concrete AST subclass A simply calls v.visitA:

public class A extends ... {
public Object visit (Visitor v, Object arg) {
return v.visit A(this, arg):;

}

When visitA visits an AST node, it may visit any child of that node by calling that
child’s own visit method.

5.3.3 Contextual analysis as a visitor object

The contextual analyzer is a visitor object that performs identification and type
checking. Each visitor method visitA in the contextual analyzer will check a node of
class A, generating an error report if it determines that the phrase represented by the
node is ill-formed. Visitor methods in the contextual analyzer can conveniently be called
checking methods.

Example 5.11 Mini-Triangle contextual analysis

The Mini-Triangle contextual analyzer is an implementation of the Visitor interface
given in Example 5.10.

We shall assume the following representation of Mini-Triangle types, adapted from
Example 5.8:

public class Type {
private byte kind; // either BOOL, INT or ERROR
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public static final byte
BOOL = 0, INT = 1, ERROR = -1;

public static Type (byte kind) {
this.kind = kind;
}

public boolean eguals (Object other) ({
Type otherType = (Type) other;
return (this.kind == otherType.kind
|| this.kind == ERROR
|| otherType.kind == ERROR);
}
public static Type bool = new Type (BOOL) ;
public statiec Type int = mew Type (INT) ;
public static Type error = mnew Type (ERROR) ;
}

The Mini-Triangle visitor/checking methods are summarized in Table 5.1. Now we
outline how they are implemented.

Table 5.1 Summary of visitor/checking methods for the Mini-Triangle contextual analyzer.

Phrase class Visitor/checking method(s) Behavior of visitor/checking method(s)

Program visitProgram Check that the program is well-formed, and
return null.
Command visit..Command Check that the command is well-formed and

return null.

Expression visit..Expression Check that the expression is well-formed,
decorate it with its type, and return that type.

V-name visitSimpleVname Check that the value-or-variable-name is well-
formed, decorate it with its type and a flag
indicating if it is a variable, and return that type.

Declaration visit..Declaration Check that the declaration is well-formed, enter
all declared identifiers into the identification
table, and return null.

Type-Denoter | visit..TypeDenoter Check that the type-denoter is well-formed,
decorate it with its type, and return that type.

Identifier visitIdentifier Check that the identifier is declared, link the
applied occurrence of the identifier to its
declaration, and return that declaration,

Operator visitOperator Check that the operator is declared, link the
applied occurrence of the operator 1o its
declaration, and return that declaration.
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Each of the visit...Command visitor/checking methods checks that the given
command is well-formed. (The method’s result is null, and the arg object is ignored.)
The following are typical:

public Object visitAssignCommand
(AssignCommand com, Object arg) {

Type vType = (Type) com.V.visit (this, null);
Type eType = (Type) com.E.visit (this, null);
if (! com.V.variable)

// Report an error — the left side is not a variable.
if (! eType.equals(vType))

// Report an error — the left and right sides are not of

// equivalent type.
return null;

}

public Object visitSequentialCommand
(SequentialCommand com, Object arg) {
com.Cl.visit (this, null);
com.C2.visit (this, null);
return null;

}

public Object visitIfCommand
(IfCommand com, Object arg) {
Type eType = (Type) com.E.visit (this, null);
if (! eType.equals (Type.bool))
// Report an error — the expression is not boolean.
com.Cl.visit (this, null);
com.C2.visit (this, null);
return null;
}

public Object visitLetCommand
(LetCommand com, Object arg) ({
idTable.openScope () ;
com.D.visit (this, null);
com.C.visit (this, null);
idTable.closeScope() ;
return null;

} :
These visitor/checking methods are fairly self-explanatory. In the case of the assignment
command ‘V := E’, visitAssignCommand calls V.visit to check V and

E.visit to check E, then ensures that V is indeed a variable and that V's type is
equivalent to E’s type. In the case of the if-command ‘if E then C; else (7',
vigitIfCommand calls E.visit, C;.visit, and C5.visit, and ensures that E’s
type is bool.
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Here idTable is the identification table used during contextual analysis. It is an
object of class IdentificationTable, as given in Section 5.1.3.

Each of the visit...Expression visitor/checking methods checks that the
expression is well-formed, and decorates the expression node with its inferred type. The
method’s result is that type. (The arg object is ignored.)

public Object visitIntegerExpression
(IntegerExpression expr, Object arg) ({
expr.type = Type.int; // decoration
return expr.type;
}

public Object visitVnameExpression
(VnameExpression expr, Object arg) {
Type vIType = (TypeDenoter) expr.V.visit(this, null);
expr.type = vType; // decoration
return expr.type;
1

public Object visitBinaryExpression
(BinaryExpression expr, Object arg) {

Type elType = (Type) expr.El.visit(this, null);
Type e2Type = (Type) expr.E2.visit(this, null);
OperatorDeclaration opdecl =
(OperatorDeclaration) expr.O.visit(this, null);
if (opdecl == null) {
// Report an error — no such operator.
expr.type = Type.error; // decoration
} else if (opdecl instanceof
BinaryOperatorDeclaration) {
BinaryOperatorDeclaration bopdecl =
(BinaryOperatorDeclaration) opdecl;
if (! elType.equals (bopdecl.operandlType))
// Report an error — the left subexpression has the wrong type.
if (! e2Type.equals (bopdecl.operand2Type) )
// Report an error — the right subexpression has the
// wrong type.
expr.type = bopdecl.resultType; // decoration
} else { )
// Report an error — the operator is not a binary operator.
expr.type = Type.error; // decoration

}
return expr.type;
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The visitor/checking methods visitIntegerExpression and visitVname-
Expression are self-explanatory. In the case of a binary operator application ‘E} O
Ey’, visitBinaryExpression assumes that O.visit returns a pointer to a
‘declaration’ of operator O, where the operator’s operand and result types may be found.
(This declaration will be the attribute value returned by searching the identification table
for the operator.) Method visitUnaryExpression is similar to visitBinary-
Expression.

The visitSimpleVname visitor/checking method checks that the value-or-
variable-name is well-formed, and decorates it with its inferred type together with an
indication of whether it is a variable or not. The method’s result is the inferred type.
(The arg object is ignored.) The following are typical:

public Object visitSimpleVname
(SimpleVname vname, Object arg) {
Declaration decl =
(Declaration) vname.I.visit (this, null);
if (decl == null) {
// Report an error — this identifier is not declared.
vname. type = Type.error;

vname.variable = true; // decoration

} else if (decl instanceof ConstDeclaration) ({
vname.type = ((ConstDeclaration) decl) .E.type;
vname.variable = false; // decoration

} else if (decl instanceof VarDeclaration) {
vname.type = ((VarDeclaration) decl) .T.type;
vhame.variable = true; // decoration

}
return vname.type;

}

Each of the visit...Declaration visitor/checking methods checks that the
declaration is well-formed, and enters all declared identifiers into the identification
table. (The method’s result is null, and the arg object is ignored.)

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg) {
decl.E.visit(this, null); // resultis ignored
idTable.enter{(decl.I.spelling, decl);
return null;
}

public Object visitVarDeclaration
(VarDeclaration decl, Object arg) {
decl.T.visit (this, null); // result is ignored
idTable.enter{(decl.I.spelling, decl);
return null;
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public Object visitSequentialDeclaration
(SequentialDeclaration decl, Object arg) {
decl.Dl.visit(this, null);
decl.D2.visit(this, null);
return null;

}

Each of the visitConstDeclaration and visitVarDeclaration visi-
tor/checking methods makes an entry in the identification table for the declared identi-
fier. This entry consists of the identifier’s spelling and a pointer to the declaration itself.
Also, in both of these visitor/checking methods, a subtree is visited only for the side-
effect of decorating that subtree with type information; the type information returned by
the visitor/checking method is ignored.

The visitor/checking method visitSimpleTypeDenoter (not shown) checks
whether the given type-denoter is the identifier ‘Boolean’ or ‘Integexr’, decorates
the node with the corresponding type (Type object), and returns that type.

The visitIdentifier visitor/checking method links an applied occurrence of
an identifier to the corresponding declaration (if any). Its result is a pointer to that
declaration. (The arg object is ignored.).

public Object visitIdentifier
(Identifier id, Object arg) {
id.decl = idTable.retrieve [/ decoration,
(id.spelling) ; // possibly null
return id.decl;

}

Finally, the contextual analyzer must define a method that checks an entire program.
The completed contextual analyzer becomes:

public final class Checker implements Visitor ({
private IdentificationTable idTable;
// Visitor/checking methods, as above.

public void check (Program prog) {
idTable = new IdentificationTable();
idTable.enter (" false", ...);
idTable.enter ("true", ...);

idTable.enter ("putint", ...);
prog.visit (this, null);

}

Method check illustrates how the source language’s standard environment can be
handled. It initializes the identification table with entries for all standard constants,



Contextual Analysis 163

types, procedures, and so on. These entries will then be retrieved in the usual way at
applied occurrences of the corresponding identifiers.

O

Making the contextual analyzer a visitor object has important advantages:

« It brings all of the contextual analyzer code together in a single class, Checker. This
makes the contextual analyzer easier to study and modify. (The principal alternative,
whereby each AST subclass contains its own visitor/checking method, would result in
the contextual analyzer code being spread over a large number of class definitions,
and thus harder to understand and harder to modify.)

« It ensures that the AST traversal is complete, i.e., that the contextual analyzer includes
the code to visit every class of node in the AST. (The alternative, whereby the contex-
tual analyzer traverses the AST in an ad hoc manner, would risk accidental omission
of code for some classes of node.)

+ The same structure can later be used for the code generator, and indeed for any other
process that needs to traverse the AST.

5.4 Case study: contextual analysis in the
Triangle compiler

The Triangle contextual analyzer consists of a package Triangle.Contextual-
Analyzer that contains the Checker and IdentificationTable classes. The
Checker class depends on the package Triangle.AbstractSyntaxTrees,
which contains all of the class definitions for ASTs,

Triangle has static bindings and is statically-typed. The Triangle contextual analyzer
works in much the same way as described in Section 5.3, interleaving identification and
type checking in a single traversal of the AST. It is structured as a visitor object.

54.1 Identification

Triangle exhibits nested block structure, so identification is performed with the aid of a
multilevel identification table as described in Section 5.1.3. The attribute stored in each
table entry is a pointer to a declaration in the AST. At each applied occurrence of an
identifier /, the table is used to find the corresponding declaration of I, and the applied
occurrence is linked to this declaration. Once contextual analysis of the source program
is completed, the identification table is no longer required and is discarded.

The current implementation of the identification table is naive. It is a stack in which
each entry contains a scope level, an identifier, and a declaration. Method enter
pushes a new entry on to the stack. Method retrieve searches the stack from the top
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down, i.e., it uses linear search. Method openScope simply increments the current
scope level. Method closeScope pops entries belonging to the current scope level,
which it then decrements.

Two rather better implementations of the identification table are suggested by
Exercises 5.4 and 5.5.

(1 (2) 3)

bool char int
(4 5) (6) (7)
ArrayTypeDenoter ArrayTypeDenoter ArrayTypeDenoter ArrayTypeDenote
Int.Lit.  char Int.Lit.  char Int.Lit.  char Int.Lit, int
9 10 10 10
(®) )
Record TypeDenoter RecordTypeDenoter
MultiFieldDenoter MultiFieldDenoter
1
[ I I [ | |
Ident. int  SingleFieldDenoter Ident. char  SingleFieldDenoter
n Ident.  char c IdLInl. int
c n

Figure 5.5 Representation of Triangle types by small ASTs.

54.2 Type checking

Triangle has not only primitive types (denoted by Boolean, Char, and Integer) but
also array types and record types. An array type is characterized by the number and type
of the elements. A record type is characterized by the identifiers, types, and order of its
fields. These types are conveniently represented by small ASTs. So there is no need for
the class Type used in Section 5.3; it is replaced by the class TypeDenotex. The
ASTs used to represent the following Triangle types are shown in Figure 5.5:

(1) Boolean

(2) Char

(3) Integer

4) array 9 of Char
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(5) array 10 of Char

6) array 10 of Char

(7) array 10 of Integer

8) record n: Integer, c¢: Char end
©9) record c¢: Char, n: Integer end

In Triangle type equivalence is structural. Of the types shown in Figure 5.5, only (5)
and (6) are equivalent to each other. To test whether two types are equivalent, the type
checker just compares their ASTs structurally. This test is performed by defining an
equals method in each subclass of TypeDenoter. Class TypeDenoter itself is
enhanced as follows:

public abstract class TypeDenoter extends AST {
public abstract boolean equals (Object other);

}

Type identifiers in the AST would complicate the type equivalence test. To remove
this complication, the visitor/checking methods for type-denoters are made to eliminate
all type identifiers. This is achieved by replacing each type identifier by the type it
denotes.

Figure 5.6 shows the ASTs representing the following Triangle declarations:

type Word ~ array 8 of Char;
var wl: Word;
var w2: array 8 of Char

Initially the type subtrees (1) and (2) in the two variable declarations are different. After
these subtrees have been checked, however, the type identifiers ‘Char’ and ‘Word’
have been eliminated. The resulting subtrees (3) and (4) are structurally similar. The
elimination of type identifiers makes it clear that the types of variables wl and w2 are
equivalent.

A consequence of this transformation is to make each type ‘subtree’ (and hence the
whole AST) into a directed acyclic graph. Fortunately, this causes no serious complic-
ation in the Triangle compiler. (But recursive types — as found in Pascal, Ada, and ML -
would cause a complication: see Exercise 5.9.)

The Triangle type checker infers and checks the types of expressions and value-or-
variable-names in much the same way as in Example 5.8. Types are tested for structural
equivalence by using the equals method of the TypeDenoter class. (Instead,
comparing types by means of ‘==" would implement name equivalence.)
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(1) Before: | | |
TypeDeclaration VarDeclaration VarDeclaration
(2)
ArrayTypeDenoter ArrayTypeDenoter

(1
SimpleT. SirzlpleT. SimpleT.
~ | | |

Ident. IntLit. Ident. Ident. Ident. Ident. Int.Lit. Ident.

Wo:rd 8 thar wl wo'rd w2 8 Ch‘ar

(2) After: | | |
TypeDeclaration VarDeclaration VarDeclaration
(3) (4
ArrayTypeDenoter ArrayTypeDenoter
Ident. IntLit. char  Ident. Ident. IntLit.  char
: ‘ i 5
word 8 wl w2 8

543

Figure 5.6 Triangle ASTs before and after elimination of type identifiers.

Standard environment

Like all programming languages, Triangle has a standard environment (described in
Section B.9). This is represented by a collection of small ASTs, representing the
‘declarations’ of the standard identifiers. Some of these ‘declarations” are:

(0
(2)
(3)
)
(5)
(6)
)
(8)

type Boolean ~ ...;

const false ~ ...;

const true ~ ...;

func eof () : Boolean ...;

proc get (var c: Char ...;

proc put (e: Chax) — .. 3

func \ (b: Boolean) : Boolean ~ ...;

func < (il: Integer, i2: Integer) : Boolean =~ ...

The ASTs corresponding to these ‘declarations’ are shown in Figure 5.7. There are ‘type
declarations’ for standard types, such as Boolean (1): ‘constant declarations™ for
standard constants, such as false (2) and true (3); ‘function declarations’ for
standard functions, such as eof (4); and ‘procedure declarations’ for standard pro-
cedures, such as put (5) and get (6).
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Before analyzing a source program, the contextual analyzer initializes the identifi-
cation table with entries for the standard identifiers, at scope level 0, as shown in Figure
5.8. The attribute stored in each of these entries is a pointer to the appropriate ‘declar-
ation’. Thus standard identifiers are treated in exactly the same way as identifiers dec-
lared in the source program.

o)) @ 3

TypeDeclaration ConstDeclaration ConstDeclaration
Ident. bool Ident EmptyExpr. Ident EmptyExpr.
Booiean faise tr‘ue
4)
FuncDeclaration

I I |
Ident. EmptyFP. bool EmptyExpr.

eéf

(5) (6)
ProcDeclaration ProcDeclaration
! I | I I
Ident. SingleFP. SkipCommand Ident. SingleFP. SkipCommand
put ConstFP. get VarFP.
Ident. char Ident. char
duIIImy durI\my
) &
UnaryOpDeclaration BinaryOpDeclaration
1
M I | I
Op. bool bool Op. int int bool
\ :

Figure 5.7 Small ASTs representing the Triangle standard environment (abridged).
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Level | Ident. Attr.
0 Boolean hH
0 false (2)
0 true 3)
0 eof “4)
0 put 5)
0 get ©)
0 \ M
0 < (8

Figure 5.8 Identification table for the Triangle standard environment (abridged).

The Triangle standard environment also includes a collection of unary and binary
operators. It is convenient to treat operators in much the same way as identifiers, as
shown in Figures 5.7 and 5.8.'

The representation of the Triangle standard environment therefore includes small
ASTs representing ‘operator declarations’, such as one for the unary operator ‘\’ (7),
and one for the binary operator ‘<’ (8). (See Figure 5.7.) An ‘operator declaration’
merely defines the types of the operator’s operand(s) and result. Entries are also made
for operators in the identification table. (See Figure 5.8.) At an application of operator
0, the identification table is used to retrieve the ‘operator declaration’ of O, and thus to
find the operand and result types for type checking.

5.5 Further reading

For a more detailed discussion of declarations, scope, and block structure, see Chapter 4
of the companion textbook by Watt (1990). Section 2.5 of the same textbook discusses
simple type systems (of the kind found in Triangle, Pascal, and indeed most program-
ming languages). Chapter 7 goes on to explore more advanced type systems. Coercions
(found in most languages) are implicit conversions from one type to another. Overload-
ing (found in Ada and Java) allows several functions/procedures/methods with different
bodies and different types to have a common identifier, even in the same scope. In a
function/procedure/method call with this common identifier, a technique called overload
resolution is needed to identify which of several functions/procedures/methods is being
called. Paramerric polymorphism (found in ML) allows a single function to operate

' Indeed, some programming languages, such as ML and Ada, actually allow operators to be

declared like functions in the source program. This emphasizes the analogy between operators
and function identifiers.
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uniformly on arguments of a family of types (e.g., the list types). Moreover, the types of
functions, parameters, etc., need not be declared explicitly. Polymorphic type inference
is a technique that allows the types in a source program to be inferred in the context of a
polymorphic type system.

For a comprehensive account of type checking, see Chapter 6 of Aho et al. (1985).
As well as elementary techniques, the authors discuss techniques required by the more
advanced type systems: type checking of coercions, overload resolution, and polymor-
phic type inference. For some reason, however, Aho et al. defer discussion of identifi-
cation to Chapter 7 (run-time organization).

A classic paper on polymorphic type inference by Milner (1978) was the genesis of
the type system that was adopted by ML, and borrowed by later functional languages.

For a good short account of contextual analysis in a one-pass compiler for a Pascal
subset, see Chapter 2 of Welsh and McKeag (1980). The authors clearly explain ways of
representing the identification table, attributes, and types. They also present a simple
error recovery technique that enables the contextual analyzer to generate sensible error
reports when an identifier is declared twice in the same scope, or not declared at all.

The visitor pattern used to structure the Triangle compiler is not the only possible
object-oriented design. One alternative design, explained in Appel (1997), is to associate
the checking methods (and the encoding methods in the code generator) for a particular
AST object with the AST object itself. This design is initially easier to understand than
the visitor design pattern, but it has the disadvantage that the checking methods (and
encoding methods) are spread all over the AST subclass definitions instead of being
grouped together in one place.

You should be aware of a lack of standard terminology in the area of contextual
analysis. Identification tables are often called ‘symbol tables’ or ‘declaration tables’.
Contextual analysis itself is often misnamed ‘semantic analysis’.

Exercises

Section 5.1

5.1 Consider a source language with monolithic block structure, as in Section
5.1.1, and consider the following ways of implementing the identification table:
(a) an ordered list;
(b) abinary search tree;
(c) ahash table.

In each case implement the IdentificationTable class, including the
methods enter and retrieve.

In efficiency terms, how do these implementations compare with one another?
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5.2

5.3

5.4%

5.5%

Consider a source language with flat block structure, as in Section 5.1.2.
Devise an efficient way of implementing the identification table. Implement the
IdentificationTable class, including the methods enter, retrieve,
openScope, and closeScope.

For a source language with nested block structure, as in Section 5.1.3, we could
implement the identification table by a stack of binary search trees (BSTs).
Each BST would contain entries for declarations at one scope level. Consider
the innermost block of Figure 5.3, for example. At the stack top there would be
a BST containing the level-3 entries; below that there would be a BST
containing the level-2 entries; and at the stack bottom there would be a BST
containing the level-1 entries.

Implement the IdentificationTable class, including the methods en-
ter, retrieve, openScope, and closeScope.

In efficiency terms, how does this implementation compare with that used in
the Triangle compiler (Section 5.4.1)?

For a source language with nested block structure, we can alternatively imple-
ment the identification table by a sparse matrix, with columns indexed by scope
levels and rows indexed by identifiers. Each column links the entries at a par-
ticular scope level. Each row links the entries for a particular identifier, in order
from innermost scope to outermost scope. In the innermost block of Figure 5.3,
for example, the table would look like Figure 5.9.

Implement the TdentificationTable class, including the methods en-
ter, retrieve, openScope, and closeScope.

In efficiency terms, how does this implementation compare with that used in
the Triangle compiler (Section 5.4.1), and with a stack of binary search trees
(Exercise 5.3)7

Outline an identification algorithm that does not use an identification table, but
instead searches the AST. For simplicity, assume monolithic block structure.

In efficiency terms, how does this algorithm compare with one based on an
identification table?
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Figure 5.9 Representation of the identification table by a sparse matrix.

Section 5.2

5.6

57

5.8%

Draw (undecorated) ASTs representing the following type declarations.

(a) Triangle type declarations:

type Age

type Letter
type Alphanum

type Nam

e

= Integer;
char;
Char;
= array 20

type Address = array 20
type City

type ZipCode

= array 10
array 10

of Letter;
of Char;

of Letter;
of Alphanum

Eliminate the type identifiers (as in Figure 5.6). Which of the types are

structurally equivalent to one another?

(b) Repeat with the corresponding type definitions in Pascal. (Note: Pascal
adopts name equivalence of types, rather than structural equivalence.)

Suppose that name equivalence were to be adopted in Triangle. How would the
Triangle contextual analyzer be modified?

Consider the following Triangle record types:

type T1
type T2
type T3

record i: Integer; c: Char end;
record j: Integer; h: Char end;

record c: Char;

i: Integer end
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5.9

5.10

No two of these types are equivalent, since a Triangle record type is character-
ized by the identifiers, types, and order of its fields. The TypeDenoter
class’s equals method tests whether the two type ASTs are structurally
identical.

Suppose, hypothetically, that two alternative ways of characterizing a Triangle
record type are being considered. In each case, describe how the equals
method would be modified.

(a) A record type is to be characterized only by the types and order of its
fields (ignoring their identifiers). Thus types T1 and T2 (but not T3) are
to be equivalent.

(b) A record type is to be characterized only by the identifiers and types of its
fields (ignoring their order). Thus types T1 and T3 (but not T2) are to be
equivalent.

In Pascal, type definitions may be mutually recursive, e.g.:

type IntList = ~ IntNode;
IntNode = record
head: Integer;
tail: IntList
end

These definitions introduce two new types: IntList is a pointer to an
IntNode record, and IntNode is a record that contains an integer and an
IntList pointer.

Draw (undecorated) ASTs representing these type definitions. Then eliminate
the type identifiers (as in Figure 5.6). What do you observe about the trans-
formed ASTs? Why would this complicate type checking if Pascal adopted
structural equivalence for types?

Suppose that Mini-Triangle were to be extended with single-parameter function
declarations:

single-Declaration

func Identifier ( Identifier : Type-denoter )
: Type-denoter ~
Expression

and function calls:

primary-Expression ::

| Identifier ( Expression )

Describe how function calls would be type-checked.



CHAPTER SIX

Run-Time Organization

A programming language supports high-level concepts such as types and values,
expressions, variables, procedures, functions, and parameters. The target machine
typically supports low-level concepts such as bits, bytes, words, registers, stacks,
addresses, and (subjroutines. The gap between the higher and lower levels is often
called the semantic gap. Bridging this gap is the task of the code generator.

Before writing a code generator, however, we must decide how to marshal the
resources of the target machine (instructions, storage, and system software) in order to
implement the source language. This is called run-time organization, and is the subject
of this chapter.

The following are key issues in run-time organization:

e Data representation: How should we represent the values of each source-language
type in the target machine?

» Expression evaluation: How should we organize the evaluation of expressions,
taking care of intermediate results?

» Storage allocation: How should we organize storage for variables, taking into
account the different lifetimes of global, local, and heap variables?

» Routines: How should we implement procedures, functions, and parameters, in terms
of low-level routines?

We shall study all these topics in this chapter, together with another topic of ever-
increasing interest:

* Run-time organization for object-oriented languages: How should we represent
objects and methods?

A thorough knowledge of run-time organization is essential for implementors of
language processors, but a basic knowledge is useful to any serious programmer. In
order to make rational programming decisions, the application programmer should have
a feel for the efficiency of various high-level language constructs. An example is the
choice of data structures: as we shall see, records and static arrays can be represented
very efficiently, but the representations of dynamic arrays and recursive types carry
overheads (indirect addressing, garbage collection) that might be unacceptable in some
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applications. This chapter covers all of these topics, for the sake of completeness,
although not all of them are essential to understand the Triangle language processor.

6.1 Data representation

Programming languages provide high-level data types such as truth values, integers,
characters, records, and arrays, together with operations over these types. Target
machines provide only machine ‘types’ such as bits, bytes, words, and double-words,
together with low-level arithmetic and logical operations. To bridge the semantic gap
between the source language and the target machine, the implementor must decide how
to represent the source language’s types and operations in terms of the target machine’s
types and operations.

In the following subsections we shall survey representations of various types. As we
study these representations, we should bear in mind the following fundamental
principles of data representation:

» Nonconfusion: Different values of a given type should have different representations.
e Unigqueness: Each value should always have the same representation.

The nonconfusion requirement should be self-evident. If two different values are
confused, i.e., have the same representation, then comparison of these values will
incorrectly treat the values as equal.

Nevertheless, confusion does arise in practice. A well-known example is the approx-
imate representation of real numbers: real numbers that are slightly different mathemat-
ically might have the same approximate representation. This confusion is inevitable,
however, given the design of our digital computers. So language designers must formul-
ate the semantics of real-number operations with care; and programmers on their part
must learn to live with the problem, by avoiding naive comparisons of real numbers.

On the other hand, confusion can and must be avoided in the representations of
discrete types, such as truth values, characters, and integers.

If the source language is statically typed, the nonconfusion requirement refers only
to values of the same type; values of distinct types need not have distinct represent-
ations. Thus the word 00...00, may represent the truth value false, the integer 0, the real
number 0.0, and so on. Compile-time type checks will ensure that values of different
types cannot be used interchangeably at run-time, and therefore cannot be confused.
Thus we can be sure that if 00...00, turns up as an operand of a logical operation, it
represents false, whereas if it turns up as an operand of an arithmetic operation, it
represents the integer 0.

The uniqueness requirement is likewise self-evident. Comparison of values would be
complicated by the possibility of any value having more than one representation. Cor-
rect comparison is possible, however, so uniqueness is desirable rather than essential.
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An example of nonuniqueness is the ones-complement representation of integers, in
which zero is represented both by 00...00, and by 11...11,. (These are +0 and -0!) A
simple bit-string comparison would incorrectly treat these values as unequal, so a more
specialized integer comparison must be used. The alternative twos-complement repre-
sentation does give us unique representations of integers.

As well as these fundamental principles, we should bear in mind the following
pragmatic issues in data representation:

» Constant-size representation: The representations of all values of a given type should
occupy the same amount of space.

* Direct representation or indirect representation: Should the values of a given type be
represented directly, or indirectly through pointers?

Constant-size representation makes it possible for a compiler to plan the allocation
of storage. Knowing the type of a variable, but not its actual value, the compiler will
know exactly how much storage space the variable will occupy.

The direct representation of a value x is just the binary representation of x itself,
which consists of one or more bits, bytes, or words. This is illustrated in Figure 6.1(a).

The indirect representation of x is a handle, which points to a storage area (usually
in the heap) that contains the binary representation of x. See Figure 6.1(b).

To understand the distinction, it is helpful to visualize what happens when the value
x is copied (e.g., passed as an argument). With the direct representation, it is the binary
representation of x that is copied. With the indirect representation, it is only the handle
to x that is copied. The direct representation is so called because x can be accessed using
direct addressing; the indirect representation is so called because x must be accessed
using indirect addressing.

The choice of direct or indirect representation is a key design decision in run-time
organization. Implementations of imperative languages like Pascal and C adopt the
direct representation wherever possible, because values can be accessed more efficiently
by direct addressing, and because the overheads of heap storage management are avoid-
ed. Implementations of functional languages like ML and Haskell usually adopt the
indirect representation, because it simplifies the implementation of polymorphic func-
tions. Implementations of object-oriented languages like Java adopt the direct represent-
ation for primitive types and the indirect representation for objects (see Section 6.7).

X handle X handle

(a) (b) ©

Figure 6.1 (a) Direct representation of a value x; (b) indirect representation of a value x;
(c) indirect representation of a value y, of the same type as x but requiring
more space.
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Indirect representation is essential for types whose values vary greatly in size. For
example, a list or dynamic array may have any number of elements, and clearly the total
amount of space depends on the number of elements. For types such as this, indirect
representation is the only way to satisfy the constant-size requirement. This is illustrated
in Figure 6.1(b) and (c) where, although the values x and y occupy different amounts of
space, the handles to x and y occupy the same amount of space.

We now survey representations of the more common types found in programming
languages. We shall assume direct representation wherever possible, i.e., for primitive
types, records, disjoint unions, and static arrays. But we shall see that indirect represen-
tation is necessary for dynamic arrays and recursive types.

We shall use the following notation:

* #T stands for the cardinality of type 7, i.e., the number of distinct values of type T.
For example, #[Boolean] = 2.

* size T stands for the amount of space (in bits, bytes, or words) occupied by each value
of type T. If indirect representation is used, only the handle is counted.

We use emphatic brackets to enclose a specific type-denoter, as in #[Boolean] or
size[Boolean] or size[larray 8 of Charl].

If a direct representation is chosen for values of type 7, we can assert the inequality:
size T2 log, (#T), or equivalently 20i2e D) > #T 6.1)

where size T is expressed in bits. This follows from the nonconfusion requirement: in n
bits we can represent at most 2" distinct values if we are to avoid confusion.

6.1.1 Primitive types

The primitive types of a programming language are those whose values are primitive,
i.e., cannot be decomposed into simpler values. Examples of primitive types are Boo-
lean, Char, and Integer. Most programming languages provide these types,
equipped with the elementary logical and arithmetic operations.

Machines typically support such types and operations directly, so the choice of
representation is straightforward.

The values of the type Boolean are the truth values false and true. We can
represent a truth value by one word, one byte, or even a single bit. (Since #[Boolean]
= 2, clearly size[Boolean] > 1 bit.)

Using a single bit, the conventional representations are O for false and 1 for true.
Using a byte or word, the conventional representations are 00...00, for false, and either
00...015 or 11...11, for true. The operations on truth values — negation, conjunction,
and disjunction — can be implemented by the machine’s logical NOT, AND, and OR oper-
ations. (See also Exercise 6.2.)
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The values of the type Char are the elements of a character set. Sometimes the
source language specifies a particular character set. For example, Ada specifies the ISO-
Latinl character set, which consists of 28 distinct characters, and Java specifies the
Unicode character set, which consists of 216 distinct characters. Most programming
languages, however, are deliberately unspecific about the character set. This allows the
compiler writer to choose the target machine’s ‘native’ character set. Typically this
consists of 27 or 28 distinct characters. In any case, the choice of character set
determines the representation of individual characters. For example, ISO defines the
representation of character ‘A’ to be 01000001,. We can represent a character by one
byte or one word.

The values of the type Integer are integer numbers. Obviously we cannot repre-
sent an unbounded range of integers within a fixed amount of space. All major program-
ming languages take account of this in their semantics: Integer denotes an
implementation-defined' bounded range of integers. The binary representation of
integers is determined by the target machine’s arithmetic unit, and almost always
occupies one word. The source language’s integer operations can then, for the most part,
be implemented by the corresponding machine operations.

In Pascal and Triangle, Integer denotes the range —maxint, ..., -1, 0, +1, ...,
+maxint, where the constant maxint is implementation-defined. In this case we have
#[Integer] = 2 X maxint + 1, and therefore we can specialize (6.1) as follows:

2 size[Integer] > 2 x maxint + 1 (6.2)

If the word size is w bits, then size[ Integer] = w. To ensure that (6.2) is satisfied, the
implementation should define maxint =2%-1 -1,

In Java, int denotes the range 231, ..., -1, 0, +1, ..., 42311 In this case we have
#[int] =232,

Example 6.1 Primitive data representations in TAM

TAM is the target machine of the Triangle compiler. Storage is organized in 16-bit
words. There are no smaller storage units, but multi-word objects are addressable. The
Triangle primitive types are represented as follows:

Type Representation Size

Boolean | 00...00, for false; 00...01, for true | 1 word

Char Unicode representation 1 word

Integer | twos-complement representation 1 word

Thus maxint = 215 - 1 = 32767.

O

' An attribute of a programming language L is implementation-defined if it is not defined by the

specification of L, but must be defined by each individual L language processor.
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Example 6.2  Primitive data representations in the Intel Pentium

The Intel Pentium processor is ubiquitous. Storage is organized in 8-bit bytes, 16-bit
half-words, 32-bit words, and 64-bit double-words. Primitive types could be represented
as follows:

Type Representation Size
Boolean | 00000000, for false; 111111115 for true | 1 byte

Char ASCII representation 1 byte

Integer |twos-complement representation 1 half-word or 1 word

Thus maxint = 215 — 1 = 32767, or maxint = 231 — 1 = 2147483647.

O

Some programming languages allow the programmer to define new primitive types.
An example is the enumeration type of Pascal. The values of such a type are called
enumerands. Enumerands can be represented by small integers.

Example 6.3 Enumerand representation

Consider the following Pascal type definition:
type Color = (red, orange, yellow, green, blue)

This creates a new enumeration type consisting of five enumerands, which we shall
write as red, orange, yellow, green, and blue. It also binds the identifiers red, orange,
etc., to these enumerands.’

The enumerands will be represented by 00...000, for red, 00...001, for orange,
00...010, for yellow, 00...011, for green, and 00...100, for blue. Since #[Color] = 5,
clearly size[Coloxr] = 3 bits. In practice we would use one byte or one word.

O

To generalize, consider the enumeration type defined by:
type T = (ly, I, .... L,y)

We can represent each I; by (the binary equivalent of) i. Since #7 = n, size T 2 logy n
bits.

The enumeration type is equipped with operations such as succ (which returns the
successor of the given enumerand) and ord (which returns the integer representation of
the given enumerand). The representation chosen allows succ to be implemented by
the target machine’s INC operation (if available). The ord operation becomes a NOP.

® We must distinguish between the identifiers and the enumerands they denote, because the
identifiers could be redeclared.
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6.1.2 Records

Now we proceed to examine the representation of composite types. These are types
whose values are composed from simpler values.

A record consists of several fields, each of which has an identifier. A record type
designates the identifiers and types of its fields, and all the records of a particular type
have fields with the same identifiers and types. The fundamental operation on records is
field selection, whereby we use one of the field identifiers to access the corresponding
field.

Records occur obviously in Pascal, Ada, and Triangle, and as structs in C.

There is an obvious and good direct representation for records: we simply juxtapose
the fields, i.e., make them occupy consecutive positions in storage. This representation
is compact, and makes it easy to implement field selection very efficiently.

Example 6.4 Triangle record representation

Consider the record types and variables introduced by the following Triangle declar-
ations:

type Date = record
yv: Integer,
m: Integer,
d: Integer
end;

type Details = record
female: Boolean,
dob: Date,
status: Char
end;

var today: Date;
var her: Details

Assume for simplicity that each primitive value occupies one word. Then the
variables today and her (after initialization) would look like this:

her.female true

her.dob.y 1978
today.y | 2000 her.dob her.dob.m 5
today.m 1 her.dob.d 5
today.d 1 her.status ‘u

Each box in the diagram is a word. A variable of type Date (such as today) occupies
three consecutive words, one for each of its fields. A variable of type Details (such
as her) occupies five consecutive words, one for its field female, three for its field
dob, and one for its field status.
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We can predict not only the total size of each record variable, but also the position of
each field relative to the base of the record. If today is located at address 100 (i.e., it
occupies the words at addresses 100 through 102), then today .y is located at address
100, today.m is located at address 101, and today.d is located at address 102. In
other words, the fields y, m, and d have offsets of 0, 1, and 2, respectively, within any
record of type Date. Likewise, the fields female, dob, and status have offsets of
0, 1, and 4, respectively, within any record of type Details.

Summarizing:

size[Datel] = 3 words
address[today .v] = address[today] +0
address[today .m] = address[today] + 1
address[today .d] = address[today] +2
size[Details] = 5 words
address[her . female] = address[her] +0
address[her . dobl] = address{her]| + 1

address[her .dob.vy] address[her .dob] + 0
address[her .dob.m] addressher . dob] + 1
address[her .dob.d] = address[her .dob] + 2
address[her.status] address[her] + 4

address[her] + 1
addressher] + 2
address[her] + 3

I

O

We shall use the notation address v to stand for the address of variable v. If the
variable occupies several words, this means the address of the first word. We use
emphatic brackets [...]} to enclose a specific variable-name, as in address[her . dob].

Let us now generalize from this example. Consider a record type T and variable r:
type T = record I1: Ty, ..., I,: T, end; 6.3)
var r: T

We represent each record of type T by juxtaposing its » fields, as shown in Figure 6.2. It
is clear that:

size T = size T\ + ... +size Ty, (6.4)

This satisfies the constant-size requirement. If size T, ..., and size T, are all constant,
then size T is also constant.

The implementation of field selection is simple and efficient. To access field [; of the
record r, we use the following address computation:

addressfir. I;] = address r + (size Ty + ... + size T_y) (6.5)

Since size Ty, ..., and size Tl-_[ are all constant, the address of the field r.[; is just a
constant offset from the base address of r itself. Thus, if the compiler knows the address
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of the record, it can determine the exact address of any field, and can generate code to
access the field directly. In these circumstances, field selection is a zero-cost operation!

However, note that some machines have alignment restrictions, which may force
unused space to be left between record fields. Such alignment restrictions invalidate
equations (6.4) and (6.5). (See Exercise 6.9.)

r.1y value of type T
r.np value of type T»
r.]n ............................. value of type Tn

Figure 6.2 Representation of a record r.

6.1.3 Disjoint unions

A disjoint union consists of a tag and a variant part, in which the value of the tag
determines the type of the variant part. Mathematically we can describe a disjoint union
type as follows:

T="T+..+T, (6.6)

In each value of type T, the variant part is a value chosen from one of the types T}, ...,
or T,; the tag indicates which one. The fundamental operations on disjoint unions are:
(a) tag testing; and (b) for each component type T}, projection of the variant part to give
an ordinary value of type T;. (The projection operation must be designed with care to
avoid any loophole in the type rules of a statically-typed language.)

Disjoint unions occur as variant records in Pascal and Ada, as unions in Algol-68,
and as so-called datatypes in Haskell and ML. In a variant record, the tag is just a field,
and each possible variant is a distinct field (or tuple of fields); projection is then similar
to field selection from an ordinary record. In the other languages mentioned, projection
is done by pattern matching.

A suitable representation for a disjoint union is juxtaposition of the tag and variant
part. But there is a complication: the variant part may have several possible types, and
therefore several possible sizes. Therefore, we must be careful to satisfy the constant-
size requirement. Fortunately, this is not difficult.

Example 6.5 Pascal variant record representation

Consider the following Pascal variant record type:
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type Number = record
case acc: Boolean of
true: ( i: Integer );
false: ( r: Real )
end;

var num: Number

Every value of type Number has a tag field, named acc, and a variant part. The value
of the tag determines the form of the variant part. If the tag is true, the variant part is an
integer field named i. If the tag is false, the variant part is a real field named r.

Assume that a truth value or integer occupies one word, but a real number occupies
two words. Then the variable num would look like this:

num.acc
num. 1

num.acc false

num.r | 3.1416

or

Some values of type Number occupy two words; others occupy three words. This
apparently contradicts the constant-size requirement, which we wish to avoid at all
costs. We want the compiler to allocate a fixed amount of space to each variable of type
Number, and let it change form within this space. To be safe we must allocate three
words: one word for the tag field, and two words for the variant part. The fields i and r
can be overlaid within the latter two words. When the tag is true, one word is unused
(shaded gray in the diagram), but this is a small price to pay for satisfying the constant-
size requirement. Thus:

size[Number] 3 words

address[num] + 0
address[num] + 1
address[num] + 1

address[num. acc]
address[num. i]|
address[num. r]|

Now consider the following variant record type, which illustrates an empty variant
and a variant with more than one field:

type Shape = (point, circle, box);
Figure = record
case s: Shape of
point: ( );
circle: ( r: Integer );
box: ( h, w: Integer )
end;

var fig: Figure

Every value of type Figure has a tag field, named s, and a variant part. The value of
the tag (point, circle, or box) determines the form of the variant part. If the tag is point,
the variant part is empty. If the tag is circle, the variant part is an integer field named r.
If the tag is box, the variant part is a pair of integer fields named h and w.
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Assume that each primitive value occupies one word. Then the variable £ig would
look like this:

fig.s fig.s fig.s box
or fig.r or fig.h 3
fig.w 4

(The enumerands point, circle, and box would be represented by small integers, as
discussed in Section 6.1.1.) :

It is easy to see that:
size[Figure] = 3 words

address[fig.s] = address[£ig] +0
address[fig.r] address[£ig] + 1
address[fig.h] address[fig] + 1

address[fig.w] = address[ftig] +2
O
Let us now generalize. Consider a Pascal variant record type T and variable u:
type T = record 6.7)
case lpg: Tag of
vi: (I Tp);
Ve (Iy: Ty)
end;
var u: T
where each variant is labeled by one possible value of the type Tiag = {v}, ..., va}. We
represent each record of type T by juxtaposing its tag field and variant part. Within the
variant part we overlay the different variants, which are of types T, T5, ..., and T},. This
representation is shown in Figure 6.3. It is clear that:
size T = size Ttag + max (size Ty, ..., size Ty) (6.8)
This satisfies the constant-size requirement. If size Ttag, size T1, ..., and size T, are all

constant, then size T is also constant.

The operations on variant records are easily implemented. To access the tag and
variant fields of the variant record u, we use the following address computations:

address[u . Iag] = addressu +0 6.9)
addresslu . I;]

Il

address u + size Tag (6.10)
— both being constant offsets from the base address of u.

This analysis can easily be generalized to variants with no fields or many fields, as in
Example 6.5.
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. Itklg

value of
type T value of
’ type T,

value of
type Tl or

w1y ..or... u.l,

Figure 6.3 Representation of a disjoint union (variant record) u.

6.1.4 Static arrays

An array consists of several elements, which are all of the same type. The array has a
bounded range of indices (which are usually integers), and for each index it has exactly
one element. The fundamental operation on arrays is indexing, whereby we access an
individual element by giving its index; in general, this index is evaluated at run-time.

A static array is an array whose index bounds are known at compile-time. A suitable
direct representation for a static array is to juxtapose the array elements, in order of
increasing indices. The indexing operation is implemented by a run-time address
computation.

For the moment we make the simplifying assumption that the lower index bound is
zero. This is the case in the programming languages Triangle, C, and Java. (Later we
shall relax this assumption.)

Example 6.6 Triangle array representation

Consider the array types and variables introduced by these Triangle declarations:

type Name = array 6 of Char:;
type Coding = record
c: Char, n: Integer

end;
var me: Name;
var us: array 2 of Name;

var code: array 3 of Coding

The variable me is just an array of six characters (indexed from O through 5). The
variable us is an array of two elements, each of which is itself an array of six
characters. The variable code is an array of three elements, each of which is a record
with two fields.

Assume again that each primitive value occupies one word. Then the variables me,
us, and code would be represented as follows:
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me[0] W’
me{1l] [P us (0101 W’
me[2] ‘¢ us[0][1] ‘a’
me[3] ‘L us[0]1(2] ‘¢
mefd] [ 7 uslO ustor13) [y
me[5] < us[0] (4] <
f us[0][5] <
codel0].c ‘r us[1]1[0] ‘B’
code [01 code[0].n 1 us{1] (1] ‘r
code[l].c vV’ o us[1]([2] ‘0’
codell] § codell).n 5 us (119 0211 [3] ‘W
code(2].c D6 us[1l][4] ‘n’
codef2] code[2].n 10 L us{1]([5] -
It is easy to see that:
size[ Name] = 6 X size[Char] = 6 words
sizelarray 2 of Namel = 2 X size[Name] = 12 words
size[array 3 of Coding] = 3 xysize[Coding]] = 6 words
address[me [01]] = address[me] + 0
address[me [3]] = address[[me] + 3
address[me [i]] = address[me] +i
address[code[2]1]] = address[code] +4

address[code [il] = address[code] + 2i
address[code [i] .n] address[[code [i]1] + 1
address[us [i]] address[us] + 6i
addressfus [i]1 [j1] addressfus [i]1] +J

address[code] + 2i + 1

o
I

address[us] + 6i +j

(]

Let us now generalize from this example. Consider a Triangle array type T and array
variable a:

type T = array n of Telem:; (6.1D)
var a: T

Each array of type T has n elements, indexed from O through n—1. We represent each
array by juxtaposing its elements, as shown in Figure 6.4. It is clear that:

size T = nxsize Telem (6.12)

This satisfies the constant-size requirement. The number of elements # is constant, so if
size Telem 1S constant, then size T is also constant.

Since the elements of the array a are positioned in order of increasing index, and
since the first element has index 0, the element with index i is addressed as follows:

addresslalil] = address a + (i X size Telem) (6.13)

Here size Telem is known at compile-time, but (in general) the value of i is known only
at run-time. Thus array indexing implies a run-time address computation.
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al0]
all]
al2]

* values of type Tolem

aln-1]

Figure 6.4 Representation of a zero-based static array

Now let us consider static arrays where the programmer may choose both the lowe;
and upper index bounds, as in Pascal.

Example 6.7 Pascal array representation

Consider the array variables introduced by the following Pascal declarations:

var grade: array [-2..3] of Char;
gnp: array [2000..2004] of Integer

This declares two arrays: grade is an array of six elements of type Char, and gnp is
an array of five elements of type Integer.

Assume that each primitive value occupies one word. Then the arrays would be
represented as follows:

grade[-2] ‘G’

grade[-1] ‘B anp[2000] | 13500
grade[0] ‘N’ gnp([2001] | 14200
grade[l] el gnp[2002] 15000 |
grade([2] ‘B’ anp(2003] | 15200 |
grade[3] A gnp[2004] | 15100

It is easy to see that:
size[larray [-2..3] of Integer] = 6 words

address[grade] + 0

address|grade[-2] ]|
address[[grade[0] | address||lgradel] + 2
addresslgrade [2] ]| address|grade] + 4
address|lgrade [i]] = address|grade] — (-2) + i

sizelarray [2000..2004] of Integer] = 5 words

addresslgnp [20031]
addresslgnp [i]]]

address|[gnp] + 3
address|gnp]] — 2000 + i

To be concrete, suppose that address[grade]] = 100 (i.e., grade occupies the
words at addresses 100 through 105). Then address|grade [i]] = 100 — (-2) + i =
102 + i. So we can compute the address of any element of this array with a single run-
time addition (rather than a subtraction and an addition).
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But what is the significance of this number 102? It is just address[grade [0]]. We
call this address the origin of the array grade. An array’s origin coincides with its base
address only if its lower bound is zero.

Similarly, address{anp [i]] = address[anp {011 + i, where the origin of the array
gnp is address[gnp [0]] = address|gnp] — 2000. Of course, this particular array has
no element with index 0, but that does not prevent us from using its origin (which is just
a number!) to compute the addresses of its elements at run-time.

O

Let us now generalize. Consider a Pascal array type T and array variable a:
type T = array [I..u] of Telem; (6.14)
var a: T

The constants [ and u are the lower and upper index bounds, respectively, of the array
type. Each array of type T has (u — [ + 1) elements, indexed from [ through u. As before,
we represent each array by juxtaposing its elements, as shown in Figure 6.5. It is clear
that:

sizeT = (u—-1+1)xsize Telem (6.15)
Again, this satisfies the constant-size requirement, since [ and u are constant.
The element of array a with index i is addressed as follows:

address[ail] address a + (i — 1) X size Telem

address a — (I X size Telem) + (¢ X size Telem)

From this we can determine the origin addressfa{0]], and use it to simplify the
formula:

address{a 011
address[alil]l

address a — (I X size Tglem) (6.16)
addressa(0]] + (i X size Telem) (6.17)

Equation (6.17) has the same form as (6.13). The only difference is that ¢ [0] no longer
need be the first element of the array a. Indeed, a [0] might not even exist! But that
does not matter, as we saw in Example 6.7, because addressfla [01] is just a number.

There is more to array indexing than an address computation. An index check is also
needed, to ensure that the evaluated index lies within the array’s index bounds. When an
array of the type T of (6.14) is indexed by i, the index check must ensure that:

l<i<u ‘ (6.18)

Since the index bounds / and u are known at compile-time, the compiler can easily
generate such an index check.
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alll
afli+1]
all+2]

* values of type Telem

atw) L

Figure 6.5 Representation of a static array a.

6.1.5 Dynamic arrays

A dynamic array is an array whose index bounds are not known until run-time. Dyn-
amic arrays are found in Algol and Ada. In such languages, different dynamic arrays of
the same type may have different index bounds, and therefore different numbers of
elements. How then can we make dynamic arrays satisfy the constant-size requirement?

We are forced to adopt an indirect representation, in which the dynamic array’s
handle (also called an array descriptor) contains not only a pointer to the array’s
elements but also the array’s index bounds. The handle has a constant size.

Example 6.8 Ada dynamic array representation

Consider the array type and variables introduced by the following Ada declarations:
type String is array (Integer range <>) of Character;

d: String (1 .. k);
s: String{(m .. n - 1);

This declares a new array type String, and two variables of type String. The first
variable, d, contains elements indexed from 1 to the value of k, and the second variable,
s, contains elements indexed from the value of m to the value of n-1.

The values of type String are arrays of characters, indexed by integers. Different
arrays of type String may have different index bounds; moreover, these index bounds
may be evaluated at run-time. Operations such as concatenation and lexicographic
comparison are applicable to any arrays of type String, even if they have different
numbers of elements. But any attempt to assign one array of type String to another
will fail at run-time unless they happen to have the same number of elements.

A suitable representation for arrays of type String is as follows. Each array’s
handle contains the array’s origin, i.e., the address of the (possibly notional) element
with index 0. The handle also contains the array’s lower and upper index bounds. The
array’s elements are stored separately.

Suppose that the variables k, m, and n turn out to have values 7, 0, and 4, respec-
tively. Then the array d will have index bounds 1 and 7, and the array s will have index
bounds 0 and 3. The arrays will look like this:
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origin . >
d 4§ lower bound ‘ST | a(l)
upper bound ‘o a(2)
& | am)
‘a, a(4)
‘0 d(s)
‘o | de)
‘o’ a(7)
origin L > T s(0)
s {4 lower bound ‘¢’ s(1)
upper bound ‘€ s(2)
‘€ s(3)
handle elements

Each array’s handle occupies 3 words exactly (assuming that integers and addresses
occupy one word each). The elements of d occupy 7 words, whereas the elements of s
occupy 4 words (assuming that characters occupy one word each). Since the elements
are stored separately, we take size[ String] to be the size of the handle:

size[[String] = 3 words

Likewise, we shall take address[[d] to be the address of d’s handle. The address of
element A (0) is stored at offset O within the handle. Thus the address of an arbitrary
element can be computed as follows:

address[A (i) ]

address[d(0)] +1i
content(address[d]) + i

where content(x) stands for the content of the word at address x.

Let us now generalize. Consider an Ada array type T and array variable a;
type T is array (Integer range <>) of Telem; (6.19)
a: T (E| .. Ep);

We represent each array of type T by a handle, consisting of an address and two
integers, as shown in Figure 6.6. Thus:

size T = address-size + 2 X size[Integer] (6.20)

where address-size is the amount of space required to store an address — usually one
word. Equation (6.20) clearly satisfies the constant-size requirement.

The declaration of array variable a is elaborated as follows. First the expressions E|
and E; are evaluated to yield a’s index bounds. Suppose that their values turn out to be /
and u, respectively. Space is then allocated for (¥ — I + 1) elements, juxtaposed in the
usual way, but located separately from a’s handle. The array’s origin is computed as
follows:

addressla (0) ] = address{a ()] - (I X size Telem) (6.21)
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The values addresslla (0) ], [, and u are stored in a’s handle, as shown in Figure 6.6. As
usual, @ (0) might not actually exist; but that does not matter, because addressfa(0) ]
is just a number.

The element with index i will be addressed as follows:

addressfa (i) = address[a(0) ] + (i X size Telem)
content(address|all) + (i X size Telem) (6.22)

1l

The index bounds of @ are stored at constant offsets within a’s handle. Using these,
the above address computation should be preceded by the following index check:

[<i<u (6.23)
where [ content(address|a]l + address-size)
content(address[all + address-size + size[ Integ erl)

=
I

al(l)
[ E g s 5 )
origin i - I ()
a § lower bound l
upper bound u -
alu)
handle elements of type Telem

Figure 6.6 Representation of a dynamic array a.

6.1.6 Recursive types

A recursive type is one defined in terms of itself. Values of a recursive type T have
components that are themselves of type T. Typical examples are lists (the tail of a list
being itself a list) and trees (the subtrees being themselves trees).

In Pascal recursive types are defined by means of pointers. A record cannot contain a
record of the same type, but a record may contain a pointer to a record of the same type.

Example 6.9  Pascal linked list representation

In Pascal we define linked lists of integers by means of a pair of mutually recursive type
definitions:

Il

~IntNode;
record
head: Integer;
tail: IntList
end;
var primes: IntList

type IntList
IntNode
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Here, IntList is a pointer to an IntNode record, which contains an Integer and a
further IntList pointer. A nonempty list is represented by a pointer to a record,
whose fields contain the list’s head and tail. An empty list is represented by the special
pointer value nil, which points to nothing.

A list consisting of the integers 2, 3, 5, and 7 would be represented as follows:
prines [ o—] 3

handle 2

Y

Y

o= =Fl

A value of type IntList is represented by a pointer, so typically:
size[IntList] = 1 word

Each node of the list will occupy two words (assuming that integers also occupy one
word). There may be any number of nodes, of course, so the total amount of space
occupied by the list is unbounded. However, the size of its handle is constant.

O

In general, the amount of storage occupied by a pointer will be:
size~T| = address-size (6.24)

The value address-size is implementation-defined. It is, however, the same for all
pointer types in a given implementation.

The same indirect representation can be adopted for lists in other programming
languages, whether the list type is built-in or programmer-defined. Even if the language
supports recursive type definitions (without pointers), pointers must still be used to
represent values of the recursive type. For example, in ML:

datatype intlist = nil | cons of (int * intlist);
val primes = cons(2, cons(3, cons(5, cons(7, nil))))

Here, intlist is a datatype with two constructors. The first, nil, represents an empty
intlist, and the second, cons, combines an int and an intlist to produce an
intlist. The constructors, nil and cons, as well as being used to create values of
type intlist (such as primes), are also used as the tags in pattern matching. The
representation illustrated in Example 6.9 would still be suitable. Thus:

sizelintlist] = address-size

Similar principles apply to the representation of other recursive types such as trees.
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6.2 Expression evaluation

Historically, one of the first distinguishing characteristics of high-level programming
languages was that they allowed the programmer to write algebraic expressions, such as
the following Triangle expressions:

2 = (h + w)
(0 < i) /\ (i <= n)
el ke iy (G =l e 9 )

Such expressions are concise, and the notation is familiar from mathematics.

The implementation problem is the need to keep intermediate results somewhere,
during evaluation of the more complicated expressions. For example, during evaluation
of the expression ‘a * b+ (1 - (c * 2) )", the subexpressions ‘a * b’, ‘c * 2°, and ‘1
- (c * 2) 7 will give rise to intermediate results.

The problem can be seen in a more general setting if we consider the semantics of
such expressions (1.21d). To evaluate an expression of the form ‘E; O E,’, we must
evaluate both the subexpressions Ej and E,, then apply the binary operator O to the two
intermediate results. If we evaluate E; first, then its result must be kept somewhere safe
during the evaluation of E».

Many machines provide registers that can be used to store intermediate results. Such
a machine typically provides registers named R0, R1, R2, and so on, and instructions
like those listed in Table 6.1. (Depending on the details of the instruction set, x could be
the address of a storage cell, a literal, another register, etc.)

Example 6.10 Expression evaluation in a register machine

To evaluate the expression *(a * b) + (1 - (c * 2) )’ on our register machine, we
could use the following sequence of instructions:

LOAD Rl a —now R1 contains the value of a
MULT R1 b —now R1 contains the value of a*b
LOAD R2 #1 —now R2 contains the literal value 1
LOAD R3 c¢ — now R3 contains the value of ¢

MULT R3 #2 —now R3 contains the value of c*2
SUB R2 R3 —now R2 contains the value of 1- (c*2)
ADD R1 R2 —now R1 contains the value of a*b+ (1-(c*2))

Of course, if address[a]l = 100 (say). the first instruction would really be ‘LOAD R1
100°, and the other instructions likewise. In order to make our examples of object code
readable, we will adopt the convention that a stands for address|all, b for address[b],
and so on.

O
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Table 6.1 Typical instructions in a register machine

Instruction Meaning
STORE Ri a | Store the value in register i at address a.
LOAD Ri x | Fetch the value of x and place it in register i.
ADD Ri x | Fetch the value of x and add it to the value in register i.
SUB  Ri x | Fetch the value of x and subtract it from the value in register i.
MULT Ri x | Fetch the value of x and multiply it into the value in register i.

The object code for expression evaluation in registers is efficient but rather compli-
cated. A compiler generating such code must assign a specific register to each
intermediate result. It is important to do this well, but quite tricky. In particular, a
problem arises when there are not enough registers for all the intermediate results. (See

Exercise 6.11.)

A very different kind of machine is one that provides a stack for holding
intermediate results. This allows us to evaluate expressions in a very natural way. Such
a machine typically provides instructions like those listed in Table 6.2.

Example 6.11 Expression evaluation in a stack machine

To evaluate the expression ‘(a * b) + (1 - (¢ * 2) )’ on our stack machine, we could
use the sequence of instructions shown below left. Note the one-to-one correspondence
with the same expression’s postfix representation, shown below right.

LOAD a
LOAD b
MULT
LOADL 1
LOAD <
LOADL 2
MULT
SUB
ADD

* N QPP D0 W

Figure 6.7 shows the effect of each instruction on the stack, assuming that the stack

is initially empty.’

3

O

In Figure 6.7 and throughout this book, the stack is shown growing downwards, with the stack

top nearest the bottom of the diagram. If this convention seems perverse, recall the convention
for drawing trees in computer science textbooks! Shading indicates the unused space beyond

the stack top.
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Table 6.2 Typical instructions in a stack machine

Instruction Meaning

STORE a Pop the top value off the stack and store it at address a.

LOAD a Fetch a value from address a and push it on to the stack.

LOADL n Push the literal value n on to the stack.

ADD Replace the top two values on the stack by their sum.
SUB Replace the top two values on the stack by their
difference.
MULT Replace the top two values on the stack by their product.
(1) After LOAD a: (2) After LOAD b: (3) After MULT:
value of a value of a - value of a*b
= value of b
-+ unused
space stack
growth
(4) After LOADL 1: (5) After LOAD c: (6) After LOADL 2:
value of a*b valueofa*b | == - value of a*b
1 1
valueofe | wepeew value of ¢
(7) After MULT: (8) Alfter SUB: (9) After ADD:
------------ value of a*b -~ yalue of a*b value of
T [ A 8 ST 8 ) [ T e - value of (a*b) +
1-(c*2) (1-(c*2))

Viiluc “r c*2

Figure 6.7 Evaluation of (a*b)+(1-(c*2)) ona stack.

The stack machine requires more instructions than a register machine to evaluate an
expression, but the individual instructions are simpler. There is one instruction for each
operator, and one for each operand. In fact, as we noted in Example 6.11, the instruction
sequence is in one-to-one correspondence with the expression’s postfix representation.
Because the problem of register assignment is removed, code generation for a stack
machine is much simpler than code generation for a register machine.

The net effect of evaluating a (sub)expression on the stack is to leave its result at the
stack top, on top of whatever was there already. For example, consider the evaluation of
the subexpression ‘c * 2" — steps (5) through (7) in Figure 6.7. The net effect is to push
the value of ‘c * 2’ on to the stack top, and meanwhile the two values already on the
stack remain undisturbed.
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These desirable and simple properties of evaluation on the stack hoid true regardless
of how complicated the expression is. An expression involving function calls can be
evaluated in just the same way. Likewise, an expression involving operands of different
types (and therefore different sizes) can be evaluated in just the same way.

(1) After LOADL 0: (2) After LOAD n: (3) After LT:
-+ value of 0<n
value of n
(4) After LOAD n: (5) After CALL odd: (6) After AND:
value of O<n value of O<n » value of
- value of n value of (0<n) /\
odd (n) odd (n)

Figure 6.8 Evaluation of ‘(0 < n) /\ odd(n)’ on a stack.

Example 6.12 Evaluation of function calls in a stack machine

To evaluate the expression ‘(0 <n) /\ odd(n)’ on our stack machine, we could use
the following sequence of instructions:

LOADL O

LOAD n

LT

LOAD n

CALL odd
AND

Figure 6.8 shows the effect of each instruction on the stack, assuming that the stack
is initially empty. The instructions ‘LT’ and ‘AND’ are analogous to ‘ADD’, ‘SUR’, etc.,
in that each replaces two values at the stack top by a single value, but some of the values
involved are truth values rather than integers.

Note the analogy between ‘CALL odd’ and instructions like ‘ADD’, ‘L'T’, etc. — each
takes its argument(s) from the stack top, and replaces them by its result.

O
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6.3 Static storage allocation

We now study the allocation of storage to variables. In this section we consider only
global variables. In Section 6.4 we shall consider local variables, and in Section 6.6
heap variables.

Each variable in the source program requires enough storage to contain any value
that might be assigned to it. The compiler cannot know, in general, which particular
values will be assigned to the variable. But if the source language is statically typed, the
compiler will know the variable’s type, 7. Thus, as a consequence of constant-size
representation, the compiler will know how much storage needs to be allocated to the
variable, namely size T.

The simplest case is storage allocation for global variables. These are variables that
exist (and therefore occupy storage) throughout the program’s run-time. The compiler
can simply locate these variables at some fixed positions in storage. In this way it can
decide each global variable’s exact address. (More precisely, the compiler decides each
global variable’s address relative to the base of the storage region in which global
variables are located.) This is called static storage allocation.

Example 6.13 Static storage allocation
Consider the following Triangle program outline:

let
type Date = record
y: Integer,
m: Integer,
d: Integer

end;
var a: array 3 of Integer;
var b: Boolean;
var c¢: Char;
var t: Date

in

Assuming that each primitive value occupies one word, the global variables a, b, c,
and t would be laid out as shown in Figure 6.9. Thus:

addressa] = 0
address|b]
address|c]|
address|t] =

I
o
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ali]
a all]
al2]

b
18]
t.y
B t.m
t.d
.................. unused
space

Figure 6.9 Layout of global variables for the program of Example 6.13.

6.4 Stack storage allocation

Let us now take into account local variables. A local variable v is one that is declared
inside a procedure (or function). The variable v exists (i.e., occupies storage) only
during an activation of that procedure. This time interval is called a lifetime of v. If the
same procedure is activated several times, then v will have several lifetimes. (Each
activation creates a distinct variable.)

Example 6.14 Stack storage allocation

Consider the following outline of a Triangle program, containing parameterless pro-
cedures ¥ and Z:

let
var a: array 3 of Integer;
var b: Boolean;
var c: Char;

proc Y () ~
let
var d: Integer;
var e: record ¢: Char, n: Integer end

in
proc Z () -~
let
var f: Integer
in
begin ...; Y(); ... end

in
begin ...; Y(); ...; Z(); ... end
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The variables a, b, and ¢ are global. The variables d and e are local to procedure Y.
The variable £ is local to procedure Z.

The main program calls ¥ directly. Later it calls Z, which itself calls Y.

The lifetimes of the global and local variables are summarized in Figure 6.10. The
lifetime of each local variable corresponds to an activation of the procedure in which it
is declared. Since there are two activations of Y, its local variables have two lifetimes.

time I
lifetime of global variables iz
lifetime of lifetime of variables local to 2~
variables T —
local to Y lifetime of
variables
local to ¥
Program Program Return Program Z calls Return Return Program
starts  calls Y fromy calls 2 Y fromY fromZ stops

Figure 6.10 Lifetimes of global and local variables in the program of Example 6.14.

There are two important observations that we can make about programs with global
and local variables:

« The global variables are the only ones that exist throughout the program’s run-time.

« The lifetimes of local variables are properly nested. That is to say, the later a local
variable is created, the sooner it must be deleted. The reason why variables’ lifetimes
are nested is simply that the procedure activations themselves are nested.

The first observation suggests that we should use static allocation for global
variables only. The second observation suggests that for local variables we should use a
stack. On entry to a procedure, we expand the stack to make space at the stack top for
that procedure’s local variables. On return, we release that space by contracting the
stack. This is stack storage allocation.

6.4.1 Accessing local and global variables

For the moment, we assume that a procedure may access global variables and its own
local variables only. (This is the case in languages such as Fortran and C.)

The stack allocation method, in detail, works as follows. The global variables are
always at the base of the stack (and therefore in fixed locations). At each point during
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run-time, the stack also contains a number of frames — one frame for each currently
active procedure. Each procedure’s frame contains space for its own local variables.
Whenever a procedure is called, a new frame is pushed on to the stack. Whenever a
procedure returns, its frame is popped off the stack.

Example 6.15 Stack frames

Consider again the Triangle program of Example 6.14. Successive snapshots of the
stack are shown in Figure 6.11. (SB, ST, and LB are registers. The roles of these
registers and of the dynamic links will be explained shortly.)

(1) After

program

starts:

SB—

globals

ST

(5) After
Y:

Z calls

SB—7*

globals

L

LB—

—
frame
for z

—e

frame
fory

-

(2) After program
calls v:

SB

LB—»

globals

frame
for v

-

(6) After return
from ¥:

SB

globals

frame
for 2

(3) After return

(4) After program

from ¥: calls Z:
SB— SB
globals globals
ST LB—>
frame
for Z
ST

(7) After return
from Z:

SB—»

ST

globals

dynamic
links

Figure 6.11 Stack snapshots in the program of Example 6.14 (showing dynamic links).
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Initially. when the main program is running, only the global variables are occupying
storage — snapshot (1). When the program calls procedure Y. a frame with space for ¥’s
local variables is pushed on to the stack — snapshot (2). When Y returns, this frame is
popped, leaving only the global variables — snapshot (3). Later, when the program calls
procedure Z, a frame for Z is pushed on to the stack — snapshot (4). When 2 in turn calls
Y, a frame for Y is pushed on top of that one — snapshot (5). And so on.

Compare Figure 6.11 in detail with Figure 6.10. This shows that the period during
which the frame for Z is on the stack coincides with the lifetime of Z’s local variables,
i.e., the activation of Z. Similarly. each period during which the frame for ¥ is on the
stack coincides with a lifetime of ¥’s local variables, i.e.. an activation of Y.

O

The stack of course varies in size. Furthermore, the position of a particular frame
within the stack cannot always be predicted in advance. For example, during the two
activations of procedure Y in Example 6.15, the frames that provide space for Y's local
variables are in two different positions. So that variables can be addressed within the
frames, registers must be dedicated to point to the frames. These dedicated registers,
named SB, ST, and LB, are shown in Figure 6.11.

Register SB (Stack Base) is fixed, pointing to the base of the stack. This is where the
global variables are located. So the global variables can be addressed relative to SB:

LOAD d[SB] — fetch the value of the global variable at address d.
STORE d[SB] — store a value in the global variable at address d.

Register LB (Local Base) points to the base of the topmost frame in the stack. This
frame always contains the local variables of the currently running procedure. So these
local variables can be addressed relative to LB.

LOAD d[LB] — fetch the value of the local variable at address d relative to
the frame base.
STORE d[LB] — store a value in the local variable at address d relative to

the frame base.

Register ST° (Stack Top) points to the very top of the stack, i.e., the top of the
topmost frame. If the currently running procedure evaluates an expression on the stack,
the topmost frame expands and contracts, and ST keeps track of the frame boundary.

What about the frames that lie below the topmost one? Each such frame contains the
local variables of a procedure that is active but not currently running. That frame is
temporarily fixed in size. In the absence of a register pointing to the frame, the variables
it contains cannot (currently) be accessed. Therefore only the global variables and the
currently running procedure’s local variables can be accessed.

As well as space for local variables, a frame contains certain housekeeping inform-
ation, known collectively as link data:
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* The return address is the code address to which control will be returned at the end of
the procedure activation. It is the address of the instruction following the call instruc-
tion that activated the procedure in the first place.

* The dynamic link is a pointer to the base of the underlying frame in the stack. It is the
old content of LB, which will be restored at the end of the procedure activation.

The dynamic links are shown in Figure 6.11. Notice that they link together all the
frames on the stack, in reverse order of creation.

A frame typically has the layout shown in Figure 6.12. The part shown as ‘local
data’ contains space for local variables. It may be expanded to make space for
anonymous data, such as the intermediate results of expression evaluation — but only
when the frame is topmost in the stack. Since there are two words of link data, the local
variables start at address displacement 2 within each frame.

e dynamic link
return address

link data

local data

Figure 6.12 Layout of a frame (with dynamic but not static link).

Example 6.16 Accessing global and local variables

Consider again the Triangle program of Example 6.14. The layout of the globals and of
the two procedures’ frames would be as shown in Figure 6.13.

Here are some examples of instructions to access global and local variables:

LOAD 0[SB] — for any part of the program to fetch the value of global
variable a [0]

LOAD 4[SB] — for any part of the program to fetch the value of global
variable ¢

LOAD 2[LB] — for procedure Y to fetch the value of its local variable d

LOAD 4[LB] — for procedure Y to fetch the value of its local variable e . n

LOAD 2[LB] — for procedure 2 to fetch the value of its local variable £

[t might appear that the local variables d and £ have the same address, 2[LB]. But
remember that d can be accessed only by procedure Y, and while that procedure is
running LB is pointing to the base of a frame containing Y's local variables. Similarly, £
can be accessed only by procedure Z, and while that procedure is running LB is pointing
to the base of a frame containing Z’s local variables.

i
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al0] o == dynamic link
all] return address
al2] d £

b B%E

= =i frame for Z

globals frame for ¥

Figure 6.13 Layout of globals and frames for the program of Example 6.14.

The compiler cannot determine the absolute address of a local variable; but it can
determine its address displacement relative to the base of the frame containing it. In
order that the local variable can be accessed at run-time, we need only arrange that a
particular register (such as LB) points to the base of the frame.

Stack allocation is economical of storage. If static allocation were used on the
program of Example 6.14, every variable would occupy storage space throughout the
program’s run-time. With stack allocation, however, only some of the local variables
occupy storage at any particular time. This is illustrated by Figure 6.11. (At snapshot
(5) ., all the local variables are occupying storage at the same time: but this rarely
happens in real programs with many procedures.)

Even more importantly, stack storage allocation works well in the presence of
recursive procedures, whereas static allocation would not work at all. The effect of
recursion will be discussed in Section 6.5.4.

6.4.2 Accessing nonlocal variables

So far we have assumed that a procedure can access only global variables and its own
local variables. Now we remove this restriction. Procedures are allowed to be nested.
Moreover, a procedure P may directly access any nonlocal variable, i.e., a variable that
is not local to P but is local to an enclosing procedure. (This is the case in languages
such as Pascal and Ada.)

As we have already observed, the compiler cannot determine the absolute address of
any variable (other than a global), but only its address displacement within a frame. To
access the variable at run-time, we must arrange for a particular register to point to the
base of that frame. We use SB to point to the global variables, and LB to point to the
frame containing variables local to the running procedure. Now we also need registers
pointing to any frames that contain accessible nonlocal variables. We introduce registers
L1, L2, etc., for this purpose.

Example 6.17 Accessing nonlocal variables

Figure 6.14 shows an outline of a Triangle program with nested procedures. The levels
of nesting are indicated by shades of gray. As a consequence of Triangle’s scope rules:
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* Procedure P can access global variables and its own local variables.

* Procedure Q can access global variables, its own local variables, and variables local to
the enclosing procedure P.

* Procedure R can access global variables, its own local variables, and variables local to
the enclosing procedures P and Q.

* Procedure S can access global variables, its own local variables, and variables local to
the enclosing procedure P.

Figure 6.15 shows a possible sequence of stack snapshots as this program runs.

let
var gl: Integer;
var g2: array 3 of Boolean;

prog P_() ~
let
var pl: Boolean;
var p2: Integer;

proc 0 () ~

Key:
¢ routine level 3
in
begin ... end !P! routine level 2
: | routine level 1
in b o™ 10
begin ... end routine leve

Figure 6.14 A Triangle program with global and local variables.

Consider snapshot (2), taken when procedure P has called procedure Q. At this time,
register LB points to the frame that contains Q’s local variables, and register L1 points to
the underlying frame that contains P’s local variables. This is necessary because Q can
access P’s local variables. © might contain instructions like the following:
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(1) After program
calls P:

SB
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globals
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frame
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for P
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frame
for P
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Figure 6.15 Stack snapshots in Example 6.17 (showing static links).
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LOAD d[SB] — for procedure Q to fetch the value of a global variable
LOAD d[LB] — for procedure Q to fetch the value of a variable local to itself
LOAD dI[L1] — for procedure Q to fetch the value of a variable local to P

where in each case d is the appropriate address displacement.

Now consider snapshot (5), also taken when procedure P has called procedure Q, but
this time indirectly through S. At this time also, LB points to the frame that contains Q’s
local variables, and L1 points to the underlying frame that contains P’s local variables.
So the above instructions will still work correctly. No register points to the frame that
contains S’s local variables. This is correct, because Q may not directly access these
variables.

The following snapshot (6) illustrates a situation where R, the most deeply-nested
procedure, has been activated by Q. Now register LB points to R’s frame, register L1
points to the frame belonging to Q (the procedure immediately enclosing R), and register
L2 points to the frame belonging to P (the procedure immediately enclosing Q). This
allows R to access not only its own local variables, but also variables local to Q and P:

LOAD d[SB] — for procedure R to fetch the value of a global variable
LOAD d[LB] — for procedure R to fetch a variable local to itself
LOAD d[L1] — for procedure R to fetch a variable local to Q

LOAD d[L2] — for procedure R to fetch a variable local to P

But no register points to the frame containing S’s local variables, since R may not
directly access these variables.

O

By arranging for registers L1, L2, etc., to point to the correct frames, we allow each
procedure to access nonlocal variables. To achieve this, we need to add a third item to
the link data in each frame. Consider a routine (procedure or function) R that is enclosed
by routine R’ in the source program. In a frame that contains variables local to routine R:

e The static link is a pointer to the base of an underlying frame that contains variables
local to R”. The static link is set up when R is called. (This will be demonstrated in
Section 6.5.1.)

The static links were shown in Figure 6.15. Notice that the static link in a frame for
Q always points to a frame for P, since it is P that immediately encloses Q in the source
program. Similarly, the static link in a frame for R always points to a frame for Q, and
the static link in a frame for S always points to a frame for P. (The static link in a frame
for P always points to the globals, but that static link is actually redundant.)

The layout of a stack frame is now as shown in Figure 6.16. Since there are now
three words of link data, the local variables now start at address displacement 3. Figure
6.17 shows the layout of frames for the procedures in Figure 6.14.
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L static link
link data =D dynamic link
return address

local data

Figure 6.16 Layout of a frame (with dynamic and static links).

gl T | t =] &=l t &1 static link

{ = = = = dynamic link
gz

return address

pl r
2 1 5
globals ¢ o frame forR S
frame for P

frame for Q
frame for S

Figure 6.17 Layout of globals and frames for the program of Figure 6.14 (with static links).

The static links allow us to set up the registers L1, L2, etc. LB points to the first
word of the topmost frame, which is the static link and points to a frame for the
enclosing routine. Therefore:

L1 = content(LB) (6.25)

where content(r) stands for the content of the word to which register r points. In turn, L1
points to the next static link. Therefore:

L2
L3

content(LL1) content(content(LB)) (6.26)
content(L2) = content(content(content(LB))) (6.27)

I

1]

These equations are invariants: L1, L2, etc., automatically change whenever LB
changes, i.e., on a routine call or return.

At any moment during run-time:
* Register SB points to the global variables.

* Register LB points to the topmost frame, which always belongs to the routine R that is
currently running.

* Register L1 points to a frame belonging to the routine R’ that encloses R in the source
program,

= Register L2 points to a frame belonging to the routine R” that encloses R’ in the
source program.
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And so on.

The collection of registers LB, L1, L2, ..., and SB is often called the display. The
display allows access to local, nonlocal, and global variables. The display changes
whenever a routine is called or returns.

The critical property of the display is that the compiler can always determine which
register to use to access any variable. A global variable is always addressed relative to
SB. A local variable is always addressed relative to LB. A nonlocal variable is addressed
relative to one of the registers L1, L2, .... The appropriate register is determined entirely
by the nesting levels of the routines in the source program.

We assign routine levels as follows: the main program is at routine level 0; the body
of each routine declared at level O is at routine level I; the body of each routine declared
at level 1 is at routine level 2; and so on.

Let v be a variable declared at routine level /, and let v’s address displacement be d.
Then the current value of v is fetched by various parts of the code as follows:

If =0 (i.e., v is a global variable):

LOAD d[SB] — for any code to fetch the value of v

If />0 (i.e., vis alocal variable):
LOAD d[LB] — for code at level [ to fetch the value of v
LOAD d[L1] — for code at level /+1 to fetch the value of v
LOAD d[L2] — for code at level [+2 to fetch the value of v

Storing to variable v is analogous.

6.5 Routines

A routine (or subroutine) is the machine-code equivalent of a procedure or function in a
high-level language. Control is transferred to a routine by means of a call instruction (or
instruction sequence). Control is transferred back to the caller by means of a return
instruction in the routine.

When a routine is called, some arguments may be passed to it. An argument could
be, for example, a value or an address. There may be zero, one, or many arguments. A
routine may also return a result — that is if it corresponds to a function in the high-level
language.

We have already studied one aspect of routines, namely allocation of storage for
local variables. In this section we study other important aspects:

* protocols for passing arguments to routines and returning their results

s how static links are determined
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* the arguments themselves

* the implementation of recursive routines.

6.5.1 Routine protocols

When a routine is called, the arguments are computed by the caller, and used by the
called routine. Thus we need a suitable routine protocol. a convention to ensure that the
caller deposits the arguments in the place where the called routine expects to find them.
Conversely, the routine’s result (if any) is computed by the routine, and used by the
caller. Thus the routine protocol must also ensure that, on return, the called routine
deposits its result in the place where the caller expects to find it.

There are numerous possible routine protocols. Sometimes the implementor has to
design a protocol from scratch. More often, the operating system dictates a standard
protocol to which all compilers must conform. In every case, the choice of protocol is
influenced by the target machine, such as whether the latter is a register machine or a
stack machine.

Example 6.18 Routine protocol for a register machine

In a register machine, the routine protocol might be:
* Pass the first argument in R1, the second argument in R2. etc.
» Return the result (if any) in RO.

Such a simple protocol works only if there are fewer arguments than registers, and if
every argument and result is small enough to fit into a register. In practice, a more
elaborate protocol is needed. (See Exercise 6.20.)

O

Example 6.19 Routine protocol for a stack machine

In a stack machine, the routine protocol might be:
* Pass the arguments at the stack top.
* Return the result (if any) at the stack top, in place of the arguments.

This protocol places no limits on the number of arguments. nor on the sizes of the
arguments or result.

O

The stack-based routine protocol of Example 6.19 is simple and general. For that
reason it is adopted by the abstract machine TAM. Variants of this protocol are also
adopted by machines equipped with both registers and stacks (such as the Pentium). Due
to the popularity of this protocol, we shall study the TAM routine protocol in detail.
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Some routines (functions) have results, whereas others (procedures) do not. For the
sake of simplicity, we shall discuss the protocol in terms of the more general case,
namely a routine with a result. We can treat a procedure as a routine with a 0-word
‘result’. (Compare the use of a void function in C or Java, or a unit function in ML,
to achieve the effect of a procedure.)

Before calling a routine, the caller is responsible for evaluating the arguments and
pushing them on to the stack top. (Since expression evaluation is done on the stack, as in
Section 6.2, the stack top is where the arguments will be evaluated anyway.) After
return, the caller can expect to find the result at the stack top, in the place formerly
occupied by the arguments. This is shown in Figure 6.18. The net effect of calling the
routine (ignoring any side effects) will be to replace the arguments by the result at the
stack top.

(1) Just before the call: (2) Just after return:
SB— SB—>
l —— | e —
e e
LLB—# LB —=
argu- result
ments ST >
ST —»| = id
y ik | 1l

Figure 6.18 The TAM routine protocol.

The called routine itself is responsible for evaluating its result and depositing it in
the correct place. Let us examine a call to some routine R, from the point of view of the
routine itself (see Figure 6.19):

(1) Immediately before the call, the arguments to be passed to R must be at the stack
top.

(2) The call instruction pushes a new frame, on top of the arguments. Initially, the new
frame contains only link data. Its return address is the address of the code
following the call instruction. Its dynamic link is the old content of LB. Its static
link is supplied by the call instruction. Now LB is made to point to the base of the
new frame, and control is transferred to the first instruction of R.
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(3) The instructions within R may expand the new frame, to make space for local
variables and to perform expression evaluation. These instructions can access the
arguments relative to LB. Immediately before return, R evaluates its result and
leaves it at the stack top.

(4) The return instruction pops the frame and the arguments, and deposits the result in
the place formerly occupied by the arguments. LB is reset using the dynamic link,
and control is transferred to the instruction at the return address.

TAM has a single call instruction that does all the work described in step (2). Some
other machines have a less powerful call instruction, and we need a sequence of instruc-
tions to do the same work. TAM also has a single return instruction that does all the
work described in step (4).

(1) Just before call: ~ (2) Justafterentry:  (3) Just before return: (4) Just after return:

SB SB SB —»] SB -
——— 1 __ ER
LB~ LB—>
argu- argu- argu- result
ments ments ments ST —»
data data
iy local
data
result
ST

Figure 6.19 TAM routine call and return (in detail).

Example 6.20 Passing arguments

Consider the following Triangle program, containing a function F with two parameters,
and a procedure W with one parameter:

let var g: Integer;

func F (m: Integer, n: Integer) : Integer -~
m *n;
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proc W (i: Integer) ~
let const s ~ 1 * i
in
begin
putint(F(i, s));
putint(F(s, s))
end
in
begin
getint (var g);
W(g+1)
end

This (artificial) program reads an integer, and writes the cube and fourth power of it
successor.

(1) Just after reading (2) Just before call to  (3) Just after (4) Just before call to
g: W: computing s: F:
SB—#»g] 3 | SB g 3 j SB—#g 3
ST arg. i 4 arg. 1 4
LB %% LB 1%«
data data
s S 16
ST ' - ) {#1 4
args 4
ST

(5) Just before return  (6) Just after return (7) Just after return
from F: from F: from W:
SB—¥g 3 SB—#g 3
arg. i 4 arg. 1 4
o1 —»
1k LB link
data data
S 16 s 16
m 4
args.{ n 16 ST
r—
LB %%

Figure 6.20 Arguments and results in Example 6.20.
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Figure 6.20 shows a sequence of stack snapshots. The main program first reads an
integer, say 3, into the global variable g — snapshot (1). Then it evaluates ‘g+1’, which
yields 4, and leaves that value at the stack top as the argument to be passed to procedure
W — snapshot (2).

On entry to procedure W, a new frame is pushed on to the stack top, and the
argument becomes known to the procedure as i. The constant s is defined by evaluating
‘i*i’, which yields 16 — snapshot (3). Next, the procedure prepares to evaluate ‘F (i,
s)’ by pushing the two arguments, 4 and 16, on to the stack top — snapshot (4).

On entry to function F, a new frame is pushed on to the stack, and the arguments
become known to the function as m and n, respectively. F immediately evaluates ‘m*n’
to determine its result, 64, and leaves that value on the stack top — snapshot (5). On
return from F, the topmost frame and the arguments are popped. and the result is
deposited in place of the arguments — snapshot (6). This value is used immediately as an
argument to putint, which writes it out.

Similarly, W evaluates ‘F (s, s)’, yielding 256, and passes the result as an argument
to putint. Finally, on return from W, the topmost frame and the argument are popped;
this time there is no result to replace the arguments — snapshot (7).

It is instructive to study the corresponding object code. It would look something like
this (using symbolic names for routines, and omitting some minor details):

PUSH 1 — expand globals to make space for g
LOADA 0[SB] — push the address of g
CALL getint -—read an integer into g
LOAD 0[SB] — push the value of g
CALL succ —add |
CALL(SB) W — call W (using SB as static link)
POP 1 — contract globals
HALT
W: LOAD -1[LB] - push the value of i
LOAD -1[LB] - push the value of i
CALL mult — multiply; the result will be the value of s
LOAD -1[LB] - push the value of i
LOAD 3[LB] — push the value of s
CALL(SB) F — call F (using SB as static link)
CALL putint —write the value of F (i, s)
LOAD 3[LB] — push the value of s
LOAD 3 [LB] — push the value of s
CALL(SB) F —call F (using SB as static link)
CALL putint —write the value of F (s, s)

RETURN (0) 1

— return, replacing the 1-word argument
by a 0-word ‘result’
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F: LOAD -2[LB] - push the value of m
LOAD -1[LB] - push the value of n
CALL mult — multiply
RETURN (1) 2 — return, replacing the 2-word argument pair

by a 1-word result

Here the instruction ‘LOADA d [r] " (load address) pushes the address d + register r on to
the stack, and ‘RETURN (n) d’ returns from the current routine with an n-word result,
removing d words of argument data. (Note: In TAM, operations like addition, subtrac-
tion, logical negation, etc., are performed by calling primitive routines — add, sub,
not, ete. This avoids the need to provide many individual instructions — ADD, SUB,
NOT, etc.)

O

6.5.2 Static links

One loose end in our description of the routine protocol is how the static link is deter-
mined. Recall that the static link is needed only for a source language with nested block
structure (such as Pascal, Ada, or Triangle). The scope rules of such a language guaran-
tee that, at the time of call, the correct static link is in one or other of the display
registers. The caller need only copy it into the newly-created frame.

Example 6.21 Static links

Consider the outline Triangle program of Figure 6.14. Some stack snapshots were
shown in Figure 6.15.

When P calls Q, the required static link is a pointer to a frame for P itself, since P
encloses Q in the source program, and the caller can find that pointer in LB — snapshots
(1) and (2). Similarly, when P calls S, the required static link is a pointer to a frame for
P itself, since P encloses S, and the caller can find that pointer in LB — snapshots (3) and
(4).

When S calls Q, the required static link is a pointer to a frame for P, since P encloses
0, and the caller can find that pointer in L1 — snapshots (4) and (5).

If R were to call Q or S, the required static link would be a pointer to a frame for P,
since P encloses Q and S, and the caller could find that pointer in L2 — snapshot (6).

Here is a summary of all the possible calls in this program:

CALL(SB) P — for any call to P

CALL (LB) Q@ —for Ptocall Q

CALL(L1) © — for Q to call Q (recursively)
CALL(L2) ©Q —for R to call Q

CALL(L1) Q —for Stocall Q
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CALL (LB) R —forQtocall R
CALL(L1) R — for R to call R (recursively)
CALL(LB) S —forPtocall S
CALL(L1l) S —forQtocall S
CALL(L2) S —forRtocall S
CALL(L1) S — for S to call S (recursively)

(In the TAM call instruction, the field in parentheses nominates the register whose
content is to be used as the static link.)

In general, the compiler can always determine which register to use as the static link
in any call instruction. A call to a global routine (i.e., one declared at the outermost level
of the source program) always uses SB. A call to a local routine (i.e., one declared
inside the currently running routine) always uses LB. A call to any other routine uses
one of the registers L1, L2, .... The appropriate register is determined entirely by the
nesting levels of the routines in the source program.

Let R be a routine declared at routine level / (thus the body of R is at level /+1). Then
R is called as follows:

If /=0 (i.e., R is a global routine):

CALL(SB) R — for any call to R

If />0 (i.e., R is enclosed by another routine):
CALL (LB) R — for code at level [ to call R
CALL(L1) R — for code at level [+1 to call R
CALL(L2) R — for code at level /+2 to call R

(Compare this with the code used for addressing variables, at the end of Section 6.4.2.)

6.5.3 Arguments

We have already seen some examples of argument passing. We now examine two other
aspects of arguments: how the called routine accesses its own arguments, and how
arguments are represented under different parameter mechanisms.

According to the routine protocol studied in the previous subsection, the arguments
to be passed to a routine are deposited at the top of the caller’s frame (or at the top of
the globals, if the caller is the main program). Since the latter frame is just under the
called routine’s frame, the called routine can find its arguments just under its own
frame. In other words, the arguments have small negative addresses relative to the base
of the called routine’s frame. In all other respects, they can be accessed just like
variables local to the called routine.
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Example 6.22 Accessing arguments

In the Triangle program of Example 6.17, the two routines accessed their arguments as
follows:

LOAD -1[LB] — for procedure W to fetch its argument i
LOAD -2[LB] — for function F to fetch its argument m
LOAD -1[LB] — for function F to fetch its argument n

O

We can easily implement a variety of parameter mechanisms:

» Constant parameter (as in Triangle and ML) or value parameter (as in Pascal, C, and
Java): The argument is an ordinary value (such as an integer or record). The caller
evaluates an expression to compute the argument value, and leaves it on the stack.

» Variable parameter (as in Triangle and Pascal) or reference parameter (as in C++):
The argument is the address of a variable. The caller simply pushes this address on to
the stack.

* Proceduralffunctional parameter (as in Triangle, Pascal, and ML): The argument is a
(static link, code address) pair representing a routine. This pair, known as a closure,
contains just the information that will be needed to call the argument routine.

Constant parameters have already been illustrated, in Example 6.20. Value param-
eters differ in only one respect: the formal parameter is treated as a local variable, and
thus may be updated. If procedure W had a value parameter i, the procedure body could
contain assignments to i, implemented by ‘STORE -1 [LB]’. Note, however, that the
word corresponding to i will be popped on return from P, so any such updating would
have no effect outside the procedure. This conforms to the intended semantics of value
parameters.

Example 6.23 Variable parameter

Consider the following outline Triangle program. containing a procedure S with a
variable parameter n as well as a constant parameter i:

let
proc S (var n: Integer, i: Integer) =~
n =0T 1;
var b: record y: Integer, m: Integer, d: Integer end

begin

Dl = A = 1978 m ~ 5; & —~ 5%
S(var b.m, 6);

end

Figure 6.21 shows some snapshots of the stack as this program runs.
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The procedure call *S (var b.m, 6) works by first pushing the address of the
variable b .m, along with the value 6, and then calling S.

The procedure S itself works as follows. Its first argument is the address of some
variable. S can access the variable by indirect addressing. It can fetch the variable’s
value by an indirect load instruction, and update it by an indirect store instruction.

We can see this by studying the TAM code corresponding to the above program:

LOADL 1978

LOADL 5
LOADL 5
STORE (3) O0[SB] — store a record value in b
LOADA 1[SB] — push the address of b.m
LOADL 6 — push the value 6
CALL(SB) S —call S
S: LOAD -2[LB] - push the argument address n
LOADI — push the value contained at that address
LOAD -1[LB] - push the argument value i
CALL add —add (giving the value of n+1)
LOAD -2[LB] - push the argument address n
STORETI — store the value of n+1 at that address
RETURN (0) 2 — return, replacing the 2-word argument

pair by a 0-word ‘result’

Here the instruction LOADI (load indirect) pops an address off the stack, and then
fetches a value from that address. STORET (store indirect) pops an address and a value,
and then stores that value at that address.

O
(1) Just after assign-  (2) Just before call to  (3) Just after entry to  (4) Just before return
ment to b: St S: from s:

SB—> 1978 SB[l 1978 SB—» 1978 SB—> 1978
b 5 b 3 b 3 b 11
S 5 5

#1 — | n — | n *—

args.{ 0 args.{ 5 o args.{ i I3

2l 2 i (Rair e i

data data

Figure 6.21 Variable and constant parameters in Example 6.23.




Run-Time Organization 217

6.5.4 Recursion

We have already noted that stack allocation is more economical of storage than static
allocation. As a bonus, stack allocation supports the implementation of recursive
routines. In fact, there is nothing to add to the techniques introduced in Section 6.4; we
need only illustrate how stack allocation works in the presence of recursive routines.

Example 6.24 Recursion

Consider the following Triangle program. It includes a recursive procedure, P, that
writes a given nonnegative integer, i, to a given base, b, in the range 2—10:

let
proc P (i: Integer, b: Integer) ~
let const @ ~ chr(i//b + ord('0'))
in
iF d- k< B then
put (d)
else
begin P(i//b, b); put(d) end;
var n: Integer

in

begin

getint(var n); P(n, 8)

end

time ’
lifetime of global variables | i
lifetime of variables local to P .-
lifetime of variables local to P i
i !
! lifetime of variables
' local to P
Program Program P calls P calls Return  Return  Return Program
starts  calls P itsell  itselfl fromP fromP fromP stops

recurs-  recurs-
ively  ively

Figure 6.22 Lifetimes of variables local to the recursive procedure of Example 6.24.

Figure 6.22 shows the lifetimes of the variables in this program (and also formal
parameters such as i and b, and declared constants such as d, because they too occupy
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storage). Note that each recursive activation of P creates a new set of local variables,
which coexist with the local variables of continuing activations. In Figure 6.22, like
Figure 6.10, all the variable’s lifetimes are nested. This suggests that stack allocation
will cope with recursion.

(1) Just before (2) Just before recurs-  (3) Just before 2nd (4) Just after P comp-
program calls P: ive call to P: recursive call to P: utes d:
SB—#n 92 SB—#n 92 SB—#n 92 < SB-—#n 92 |
#1 92 i 92 i 92 i 92
argsy an argsy ] j args.{ b 3 = args.{ b 3 =l
ST LB—W i | ik | link |
data data data
d 4’ d B 4‘ d ‘4
args. :; - args.{ ; L args.{ é Ial
ST Lp—# IiEnk Ik |
data data
al_—=x al_=x
#1 1 i 1
argsy as args.{ % 3 i
ST LB == li?l'l-{.#
data

=

| (5) After P writes *1"  (6) After P writes ‘3" (7) After P writes ‘4’
| and returns: and returns: and returns:

SB—#nl 9 Jjeq SB—#nf 097 SB—#n
L ok
args_{ i o L= ST
1K 1K
data data
d sg' d VE
it s_[ ; 11 ST
LB—* liﬁnk
data
d - »

ST

Figure 6.23 Stack snapshots for the recursive procedure of Example 6.24.

‘ Figure 6.23 shows some stack snapshots as this program runs. Having read a value
I into n, say 92, the main program pushes a pair of arguments, here 92 and 8, in
|
|
|
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preparation for calling P — snapshot (1). Inside P these arguments are known as i and b,
respectively. In the constant definition, d is defined to be ‘4’. Now, since the value of ‘i
< b’ is false, P pushes a pair of arguments, here 11 and 8, in preparation for calling
itself recursively — snapshot (2). Inside P these arguments are known as i and b. At this
point there are two activations of P, the original one and the recursive one, and each
activation has its own arguments i and b. In the constant definition, using the current
activation’s i and b, d is defined to be ‘3’. Now, since the value of ‘i < b’ is again
Jfalse, P pushes a pair of arguments, here 1 and 8, in preparation for calling itself
recursively — snapshot (3). In this third activation of P, d is defined to be ‘1°, but the
value of *i < b’ turns out to be rrue — snapshot (4). So P merely writes ‘17, then returns
to the second activation of itself — snapshot (5). This activation writes ‘3’, and then
returns to the original activation of P — snapshot (6). This activation writes ‘4", and then
returns to the main program — snapshot (7).

O

6.6 Heap storage allocation

In Section 6.4 we saw how local variables are allocated storage. A lifetime of a local
variable corresponds exactly to an activation of the procedure, function, or block within
which the local variable was declared. Since their lifetimes are always nested, local
variables can be allocated storage on a stack.

On the other hand, a heap variable is allocated (created) by executing an allocator
(such as new in Pascal, malloc in C, or new in Java). The allocator returns a pointer
through which the heap variable can be accessed. Later the heap variable may be
deallocated, either explicitly by executing a deallocator (such as dispose in Pascal or
free in C), or automatically (as in Java). The heap variable’s lifetime extends from the
time it is allocated until the time it is deallocated.

Thus heap variables behave quite differently from local variables. Consequently they
demand a different method of storage allocation, called heap storage allocation.

Example 6.25 Heap storage allocation

Consider the following outline of a Pascal program. which manipulates linked lists:

type IntList = ...; {linked list of integers}
Symbol = array [l1..2] of Char;
SymList = ...; {linked list of symbols }

var ns: IntList; ps: SymList;

procedure insertI (i: Integer; var 1l: IntList);
o {Insert a node containing i at the front of list 1.}
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procedure deletel (i: Integer; var 1l: IntList):

o {Delete the first node containing i from list 1.}
procedure insertS (s: Symbol; var 1l: SymList);
S5 {Insert a node containing s at the front of list 1.}
procedure deleteS (s: Symbol; var 1: SymList);
s { Delete the first node containing s from list 1.}
ek R=Felklls ps := nil; (1)
insertI (6, ns); insertS('Cu', ps);
insertI (9, ns); insertS('Ag', ps);
insertI (10, ns); insertS('Au', ps); (2)
deletel (10, ms); deleteS('Cu', ps)r G
insertI (12, ns); insertS('Pt', ps); 4)

Here, the heap variables are nodes of linked lists. Procedures insertI and
insertsS allocate nodes, and procedures deletel and deleteS deallocate nodes.

Figure 6.24 shows the lifetimes of the heap variables. Observe that there is no partic-
ular pattern to their lifetimes: the program allocates and deallocates them whenever it
chooses. Those not deallocated by the program cease to exist when the program stops.

lifetime of global variables >

E lifetime of node wi1=h 6 >
; lifetime of node with ‘Cu’ =

; lifetime of node with 9 w

1 i >

I -

lifetime of node with ‘Ag’

lifetime of node with 10~

Y

lifetime of node with ‘Au’
I =

. lifetime of node =

, with 12
' lifetime of node
with ‘Pt’
Program (1) (2) 3 @ Program
starts stops

Figure 6.24 Lifetimes of heap variables in Example 6.25.
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6.6.1 Heap management

Since heap variables can be allocated and deallocated at any time, their lifetimes bear no
particular relationship to one another. So these variables are allocated on a heap, a
storage region managed differently from a stack.

The heap will expand and (occasionally) contract as the program runs. Let us assume
that registers HB (Heap Base) and HT (Heap Top) point to the boundaries of the heap.
(Note the analogy with SB and ST, which point to the boundaries of the stack.)

Since the stack and the heap both expand and contract, it is a good idea to place
them at opposite ends of the available storage space. Contraction of the stack leaves
more space for the heap to expand, and vice versa. It is only when the stack and heap
collide that the program must fail due to storage exhaustion.

(2) After allocating sev- (3) After deallocating (4) After allocating
eral heap variables: some heap variables: more heap variables:
SB—¥ SB— SB—
ns —1 ns —_1 ns =1 _ -
ps o—_1 ps —_1 ps —_1|
ST—>4 SITE=——= ST —»
. HT—> o [*
hE=l s blild "o'-____:j
HT—» el | == ‘Au’ il ‘Au’
e f——
10| . N
._‘——-ﬂ_ \g"@\ gﬂ-‘p
‘Ag’ ‘Ag’ kg Ag
o—_| ® °
B —9 = 0 |«
*— | —1 o—1 |
‘Cu’ HF—>® PR
Bl e aap — 7
~ & HF—> {8 2ap |
BN - (i Y 0
[ o °
HB—* HB— HB—>

Figure 6.25 Snapshots of the heap in Example 6.25.

Figure 6.25 shows several snapshots of the heap as the program of Example 6.25
runs. The heap is initially empty, but expands as nodes are allocated — snapshot (2).
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When nodes are deallocated, gaps appear — snapshot (3). Some of these gaps may be
partly or wholly refilled as further nodes are allocated — snapshot (4).

Deallocation of a heap variable at the heap top causes the heap to contract. But
deallocation elsewhere in the heap leaves a gap, i.e., a piece of unused storage sur-
rounded by used storage. (This never happens in the stack, where deallocation always
takes place at the stack top.) Gaps may appear in the heap at any time. and they have to
be managed. Thus the object program must be supported by a run-time module called
the heap manager.

The heap manager privately maintains a free list, which is a linked list of gaps within
the heap. Each gap contains a size field, and a link to the next gap. The size fields are
necessary because the gaps are of differing sizes. The heap manager needs a pointer to
the first gap in the free list; we shall call this HF (Heap Free-list pointer). In Figure 6.25,
the free list is initially empty — snapshot (2), but later accumulates some gaps —
snapshots (3) and (4).

A simple heap manager works as follows. To allocate a heap variable of size s, the
heap manager searches the free list for a gap of size at least s:

* Ifit finds a gap whose size is s exactly, it removes that gap from the free list.

* If it finds a gap whose size is greater than s, it replaces that gap in the free list by the
residual gap.

* If there is no gap big enough, it expands the heap by the amount s.
* If there is no room to expand the heap, storage is exhausted and the program fails.
To deallocate a heap variable, the heap manager simply adds it to the free list.

All this seems very straightforward, but in practice such a simple heap manager does
not work very well. One major problem is fragmentation. As many allocations and
deallocations take place, gaps tend to become smaller and more numerous. (This can
already be seen in snapshot (4) of Figure 6.25.) When the heap manager tries to allocate
a heap variable, there might be no single gap big enough, although the rotal amount of
free space is sufficient.

There are several techniques for reducing fragmentation:

* When allocating a heap variable, the heap manager could choose the smallest gap that
is big enough (rather than choosing just any gap). This technique implies an increased
time overhead on allocation, because the entire free list must be searched — unless the
heap manager keeps the gaps sorted by size, which implies an increased time
overhead on deallocation. This technique helps to preserve large gaps for when they
are really needed, but also tends to make many very small gaps.’

This is a best-fit allocation algorithm. A worst-fit allocation algorithm is also worth considering.
It makes very small gaps less frequent, but also tends to split up large gaps.
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* When deallocating a heap variable, the heap manager could coalesce the heap variable
with any adjacent gap(s). In a naive implementation, this technique implies an in-
creased time overhead on deallocation, because the entire free list must be searched.
(See Example 6.26 and Exercise 6.22.) A more sophisticated algorithm is possible
that uses additional space to allow adjacent regions to be coalesced without the need
to search the free list (Standish 1998).

* The heap manager could occasionally compact the heap by shifting heap variables
together. This technique is quite complicated to manage: to shift a heap variable, the
heap manager must find and redirect all pointers to that heap variable. The technique
implies a large time overhead whenever the heap is compacted, because the whole
heap is affected. (See Example 6.27 and Exercise 6.23.)

Example 6.26 Coalescence in the heap

Figure 6.26 illustrates coalescence of gaps in the heap. Deallocating heap variable ¢
allows the space it occupied to be coalesced with an adjacent gap. Deallocating heap
variable b is even more effective, since the space it occupied can be coalesced with two
adjacent gaps. (What would the free list look like without coalescence of gaps?)

O

(1) Initially: (2) After dealloc- (3) After dealloc-
ating ¢: ating b:

Figure 6.26 Coalescing deallocated heap variables with adjacent gaps in the heap.
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Example 6.27 Heap compaction

Figure 6.27 illustrates heap compaction. To understand this, start by convincing yourself
that the states of the heap before and after compaction are equivalent.

Since a pointer is represented by the address of the heap variable it points to, moving

a heap variable to a different address implies that every pointer to it must be adjusted.

There are two pointers to heap variable ¢: one in the stack, a second in another heap

variable, b. Indeed, b and ¢ point to each other. All these pointers have to be adjusted
consistently.

O

(1) Initially: (2) After compact-
ing the heap:

e

HT—] =
€ o]
Pu)
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¢
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._,--—'—'
>
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Figure 6.27 Compacting the heap.

Example 6.27 illustrates the complications that can arise in heap compaction. There
may be several pointers to the same heap variable. Pointers may be located both in the
stack and in other heap variables. All such pointers must be found and adjusted.

To implement heap compaction, the heap manager must create a table containing the
old address and new address of each heap variable. Then, for every pointer in the stack
or heap, it must use the table to replace the old address by the new address. Finally it
can actually copy the heap variables to their new addresses.

Compaction is usually combined with garbage collection, so we defer a more
detailed explanation until Section 6.6.3.
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6.6.2 Explicit storage deallocation

Programming languages differ in how they allow heap variables to be deallocated. In
this subsection we study explicit storage deallocation. A program may explicitly
deallocate a heap variable by, for example, calling dispose in Pascal, or free in C.

Example 6.28 Explicit storage deallocation

The procedure deletelI of Example 6.25 might be implemented as follows:

procedure deletel (i: Integer; var 1l: IntList);
{Delete the first node containing i from list 1.}
var p, q: IntList;
begin
o {Make ¢ point to the first node containing i in list 1,
and make p point to the preceding node (if any). }
if g = 1 then
{If q is at the start of the list, then delete it by making
the head of the list point to g’s successor. }
1L := gt.tail
else
{ Otherwise remove node g by making the previous node p
point to g’s successor. }
poLEadl w2 e tanl;
{Node g” is now no longer part of the list and the space associated
with it can be deallocated. }
dispose (q)
end {deletel}

O

Explicit storage deallocation is efficient, and allows the programmer fine control
over heap storage allocation.

In Examples 6.25 and 6.28 explicit storage deallocation was used in a controlled
manner. In practice, however, explicit storage deallocation is notoriously error-prone.
Two problems arise frequently in practice: garbage accumulation and dangling pointers.

A heap variable is inaccessible, or garbage, if there exists no pointer to it. If such a
heap variable has not been deallocated, the space it occupies is wasted.

Example 6.29 Garbage in the heap

Figure 6.28 illustrates how garbage can appear. At first p and g point to different heap
variables, a and b, respectively — snapshot (1). After the assignment ‘p := g’, both p
and g point to b — snapshot (2). Now there exists no pointer to a, so the latter is garbage.
Worse still, there is no way to retrieve this situation; without a pointer to a, it cannot be




226 Programming Language Processors in Java

explicitly deallocated.

This situation could have been averted by greater care on the programmer’s part: a
should have been deallocated before the assignment ‘p : = q’.

O
(1) Initially: (2) Afterp :=
SB—» SB —»
P ."——'—-—._.___ P .""-——-._.__
-l
HT—»
b o b P
a = a
HBR—» HR—»

Figure 6.28 Garbage in the heap.

Since pointers can be copied, several pointers to the same heap variable might exist
at the same time. When one of these pointers is used to deallocate the heap variable, the
other pointers are left pointing to a gap. They are called dangling pointers.

The program might accidentally use a dangling pointer to update a heap variable that
no longer exists. The effect will be to corrupt the gap left by deallocation, or perhaps to
corrupt a new heap variable subsequently allocated (by chance) in that gap.

Example 6.30 Dangling pointer

The following Pascal program fragment illustrates a possible effect of a dangling
pointer:

VAT D5 pErs T s s AMD

new(p); p~ := valueof type T1;
a := p; (n
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-

dispose (p) ; @
new(r); r” := valueoftypeT2; 3)
g” := valueof type T1; (4

Figure 6.29 shows the effect. At first, both p and q point to the same heap variable,
which contains a value of type T1 — snapshot (1). Now the program uses dispose (p)
to deallocate p”, which adds this heap variable to the free list, and which (in a typical
implementation) changes p to nil. But of course dispose knows nothing about q.
(How could it?) So g still contains the same address, which is a dangling pointer —
snapshot (2). Any assignment to g* now would corrupt the gap.

Later the program executes ‘new (r)’, and then stores a value of type T2 in the
newly allocated heap variable — snapshot (3). This new heap variable might (purely by
chance) be located at the same address as the old one, as shown in snapshot (3).

This is a situation in which a disaster is just waiting to happen. The program might
attempt to inspect g~ expecting to find a value of type T1. Worse still, it might attempt
to store a value of type T1 in g”, which would corrupt the value already there.

O

(1) Initially: (2) Alter dispose (p): (3) Afternew (r) ; r°:= ...
SB—» SB —» SB—»

P .‘-""""-——.. o] [ ] 2] ®

r D r 0 o o— |

ST—B ST ST—i
HT—]

Bl

HT—
< = Bl
value of :"l ueTo2
Spe e

HB=—= HB—»

Figure 6.29 Effect of a dangling pointer.
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The situation illustrated in Figure 6.29 is no less than a violation of Pascal’s type
rules, which are supposed to guarantee that every pointer of type ~T is either nil or
points to a heap variable of type 7. To restore the guarantee, a Pascal implementation
would have to take extreme measures. One measure would be never to allocate a heap
variable in space released by deallocation. But this would prevent the heap from ever
contracting. An alternative measure would be to make dispose find. and change to
nil, all pointers to the deallocated heap variable. But this would imply a large time
overhead, negating the main advantage of explicit storage deallocation.

6.6.3 Automatic storage deallocation and garbage
collection

In a programming language that supports explicit storage deallocation, the appearance
of garbage is usually a consequence of a programming error. In a language that does not
support explicit storage deallocation, garbage must inevitably appear. A heap variable
becomes inaccessible when the last pointer to it is overwritten (as in Example 6.29) or
otherwise ceases to exist.

Fortunately, automatic storage deallocation of inaccessible heap variables is
possible. The space they occupied can then be recycled by being added to the free list.
The recycling process is called garbage collection, and is performed by a heap manager
routine called the garbage collector.

Garbage collection is a feature of the run-time support for some imperative
languages (such as Ada), most object-oriented languages (including Java), and all
functional languages (such as Lisp and ML). It is generally not provided for languages
(such as Pascal and C) that have explicit storage deallocation.

Many garbage collection algorithms have been invented. Mark-sweep garbage
collection is a simple and commonly-used algorithm. The idea is to mark as accessible
every heap variable that can be reached (directly or indirectly) by pointers from the
stack. All other heap variables are inaccessible and may be deallocated.

Example 6.31 Mark—sweep garbage collection

Figure 6.30 illustrates mark—-sweep garbage collection. The initial state of the heap
shows typical patterns. The stack contains pointers to some of the heap variables (b and
/). These heap variables in turn contain pointers to other heap variables (f and k), and so
on (d). But there are also some inaccessible heap variables to which no pointers exist (c,
¢, g, and i), and others to which the only pointers are themselves in inaccessible heap
variables (a).

The garbage collector starts by marking all heap variables as inaccessible (shown
by x).

Next, the garbage collector follows all chains of pointers from the stack, marking
each heap variable it reaches as accessible (shown by V). By following the first pointer
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from the stack it reaches b. It marks b as accessible. By following the second pointer
from the stack it reaches j; by following the pointers in j it reaches f and /; and by
following the pointer in f'it reaches d. It marks all these heap variables as accessible. By
following the third pointer from the stack it reaches j: but it has already marked j as
accessible, so it need take no further action there.

(1) Just before garb- (2) After marking all ~ (3) After marking all  (4) After sweeping all

age collection: heap variables as accessible heap inaccessible heap
inaccessible: variables: variables:
SB—» SB—» SB—» SB
—1 —1 —1 —1
—1 — | —| —]
o—1 | o— | o—| | o—] |
ST—1 : ST —» ST ST
] ] R e
HT— < HT—{ % - HT—{ v < HT—] ¥ <
Jod od Jel Jed
o *— [ . >
i X i X :|
y ]
I X p Von Vou
g e Xip
-} w . -} \.f " '\II f i}
f ! / /
o ] *— -
P :| = = :|
/
d Svd Vod Ll
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C « €
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HB—» HB—» HB—» HB—>

Figure 6,30 Mark—sweep garbage collection.
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The garbage collector finishes by scanning the heap for heap variables still marked
as inaccessible: a, ¢, e, g, and i. These really are inaccessible, so the garbage collector
deallocates them.

O

Mark—sweep garbage collection may be seen to be a simple graph algorithm. The
heap variables and the stack are the nodes of a directed graph, and the pointers are the
edges. Our aim is to determine the largest subgraph in which all nodes can be reached
from the stack node. The mark—sweep garbage collection algorithm can be expressed
recursively as follows:

Procedure to collect garbage:
mark all heap variables as inaccessible;
scan all frames in the stack;
add all heap variables still marked as inaccessible to the free list.

Procedure to scan the storage region R:
for each pointer p in R:
if p points to a heap variable v that is marked as inaccessible:
mark v as accessible;
scan v.

For this algorithm to work, it must be able to visit all heap variables, it must know
the size of each, and it must be able to mark each as accessible or inaccessible. One way
to meet these requirements is to extend each heap variable with the following hidden
fields: a size field; a link field (used to connect all heap variables into a single linked
list, to permit them all to be visited); and a 1-bit accessibility field. These hidden fields
are used by the garbage collector but invisible to the programmer.

Another requirement is that pointers must be distinguishable from other data in the
store. (This is a requirement not only for garbage collection, but also for heap compac-
tion as described in Section 6.6.2.) This is an awkward problem: pointers are
represented by addresses, which typically have exactly the same form as integers. Some
clever techniques have been devised to solve this problem — see Wilson (1992).

6.7 Run-time organization for object-
oriented languages

Object-oriented (OO) languages give rise to interesting and special problems in run-time
organization. An object is a special kind of record. Attached to each object are some
methods, each method being a kind of procedure or function that is able to operate on
that object. Objects are grouped into classes, such that all objects of the same class have
identical structure and identical methods.

We shall assume the following more precise definitions:
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* An object is a group of instance variables, to which a group of instance methods are
attached.

* An instance variable is a named component of a particular object.

* An instance method is a named operation, which is attached to a particular object and
is able to access that object’s instance variables.

e An object class (or just class) is a family of objects with similar instance variables and
identical methods.

In a pure OO language, all instance variables would be private, leaving the instance
methods as the only way to operate on the objects. In practice, most OO languages (such
as Java and C++) allow the programmer to decide which of the instance variables are
public and which are private. Anyway, this issue does not affect their representation.

An instance-method call explicitly identifies a particular object, called the receiver
object, and a particular instance method attached to that object. In Java, such a method
call has the form:

Ey.I(Ey, ..., Ep

The expression K is evaluated to yield the receiver object. The identifier / names an
instance method attached to that object. The expressions Ej, ... , E, are evaluated to
yield the arguments passed to the method.

Although an object is somewhat similar to a record, the representation of an object
must reflect the close association between the object and its instance methods. From an
object we must be able to locate the attached instance methods. In turn, each instance
method must somehow ‘know’ which object it is attached to.

Example 6.32 Java object representation (single class)

Consider the following Java class:

class Point {
// A Point object represents a geometric point located at (x, y).

protected int x, y:

(1) public Point (int x, int y) {
this.x = x; this.y = vy;
}

2) public void move {int dx, int dy) {.
this.x += dx; this.y += dy;
}

3) public float area () {
return 0.0;
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(4) public float dist (Point that) {.
int - dx = this.ax - that.x:
int dy = this.y - that.y;
return Math.sgrt (dx*dx + dy*dy);

}

Associated with class Point is a unique class-object that looks like this:

Point class-object

Point ®———» constructor (1)
move &——» method (2)
area ®&———» mcthod (3)
dist &——» method (4)

The Point class-object contains the addresses of the class’s instance methods named
move, area, and dist, as well as its constructor.

An object of class Point looks like this:’

class | @————® Point class-object
X

Y

A Point object consists of the instance variables named x and y, together with a class-
fag. The class-tag is just a pointer to the Point class-object. Class-tags serve to
distinguish objects of different classes. (Later we shall see why this is necessary.) They
also serve to link each object to the methods of that object’s class.

Objects are created by the allocator new. (They are heap variables in the
terminology of Section 6.6.) Each variable declared with class Point may be assigned
a pointer to a Point object:

Point p = new Point (2, 3);
Point g = new Point (0, 0);
p.move(l, 1);

q class *—
x __3_\

Y 4 Point class-object

class *—
2 e ()
Y 0

Now the method call ‘q.dist (p)’ would return 5.0.

Object assignment copies only the pointer (not the object itself*):

Note that throughout this section, we assume that a class only has a single constructor.

3

The Java clone method can be used to copy an object.
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\ .

Point class-object

(=]
=
Z
DOT -hmT

Now p and g point to the same object. The method call ‘g.dist (p)’ returns 0.0. The
method call ‘p.move (1, 1)’ would update the object that both p and g point to.

The method call ‘p.move (1, 1) works as follows. The receiver object is the
object that p points to. The address of the called method is found by following the
pointer from the receiver object to the corresponding class-object, where the address of
the instance method named move is found. As well as the explicit arguments (both 1 in
this case), the receiver object is passed as an implicit argument, and bound to the
keyword this. In this way the instance method *knows’ which object it is attached to.

Note that a side effect of the assignment ‘g = p;’ above was to leave one of the
objects inaccessible. A garbage collector is needed to deallocate inaccessible objects.

O

A subclass of class C, say §, is a family of objects similar to objects of class C, but
possibly with extra instance variables, extra methods, and/or overridden methods. C is
known as the superclass of S.

Any object of subclass S can be treated like an object of class C, simply by ignoring
its extra instance variables and methods.

By default, each instance method of class C is inherifed by subclass S. In other
words, the same method code is attached to objects of class C and to objects of class S.
(The language’s scope rules must ensure that the body of the inherited method accesses
only the instance variables of C, not those of S.)

Alternatively, an instance method of class C can be overridden by a method of the
same name in class S. In other words, different method code is attached to objects of
class C and to objects of class S. (The overriding method may access the instance vari-
ables of S, not just those of C.)

Here we shall assume that the OO language enforces single inheritance, i.c., each
class has at most one superclass. This is (more or less) the case in Java.’

" C++ supports multiple inheritance, whereby a class may have several superclasses. Java
actually supports a limited form of multiple inheritance, via interfaces.




234 Programming Language Processors in Java

The superclass of Point in Example 6.32 is Object, by default. A consequence of
this is that Point inherits the methods of class Object (but for simplicity we have
omitted these inherited methods in the Point class-object).

Example 6.33 Java object representation (class and subclasses)

Consider the following Java classes, both of which are subclasses of Point:

class Circle extends Point {
// A Circle object represents a circle of radius r, centered at (x, y).

protected int r;

(5) public Circle (int x, int y, int r) {
this-ax = 2 this.y = y;  this.r = 7;
}

(6) public int radius () {
return this.r;

}

(7) public double area () {
double pi = 3.1416;
return pi * this.r * this.r;

}

class Box extends Point ({
// A Box object represents a rectangle of width w and depth 4,
// centered at (x. y).

protected int w, d;

(8) public Box (int x, int vy, int w, int d) (
this.x = x; this.y = y; this.w = w; this.d = 4;
}

(9) public int width () {
return this.w;
1

(100 public int depth () {
return this.d;

}
(1) public double area () {
return (double) (this.w * this.d);
}

}

The Circle and Box class-objects look like these:
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Circle class-object Box class-object
Circle &——1——» constructor (5) Box &———» constructor (8)
move ———» method (2) move &———» method (2)
area &————» method (7) area &————» method (11)
dist ———» method (4) dist &—+—» method (4)
radius ———» method (6) width &———» method (9)
depth &—+—» method (10)

The Circle class-object is an extension of the Point class-object in Example 6.32. It
starts with the instance methods named move (which is inherited from the Point
class), area (which is overridden), and dist (which is inherited); these are followed
by the extra method named radius. The Box class-object is likewise an extension of
the Point class-object, but its extra instance methods are named width and depth.

Objects of classes Circle and Box look like these:

class &———» Circle class-object class &———» Box class-object
x x
Y Y
r W
d

Each Circle object starts with a class-tag and the instance variables x and y; these are
followed by the extra instance variable named r. Its class-tag is a pointer to the
Circle class-object. A Box object is similar, but its extra instance variables are named
w and d. Its class-tag is a pointer to the Box class-object.

The following code illustrates the behavior of Circle and Box objects:

int s = 4;
Point p = null;
Circle ¢ = new Circle(0, 3*s, s);
Box b ='new Box(0, s, 2%*s,; 2%*s);
b [eeres]
c class — Circle class-object

b y
r

class

—® Box class-object

ALEN X

mm;cT &;cT

Now the method call ‘c.dist (b)’ would return 8.0, since dist is inherited by class
Circle (and by class Box): the answer is in fact the distance between the centers of c
and b.

P = ¢
p.move (20, 20);
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P
c class @—1— Circle class-object
x 20
b ' 32
r -
class ®&———» Box class-object
2 | ) |
¥ 4
/i =
d 8

Now the Point variable p points to an object of class Circle, which is legal. The
program can still access p.x and p.y, but any attempt to access p.r would be a type
error. In this context the object pointed to by p is treated like a Point object. However,
the method call ‘p.area ()’ would return 50.3, not 0.0. because it is actually the
overriding method (7) that is called.

In detail, the method call ‘p.area ()’ works as follows. The receiver object is the
object that p points to. The address of the called method is found by following the
pointer from the receiver object to the corresponding class-object, which in this example
is the Circle class-object, and there the instance method named move is (7) rather
than (3). Thus method overriding works as required.

O

This example illustrates several important points:

* Each instance variable has a fixed offset relative to the base of every object that
contains it. Assuming that class-tags and integers occupy one word each, the instance
variables x and y have offsets | and 2. respectively, not only in Point objects but
also in Circle and Box objects (and indeed in objects of any subclass of Point). A
variable such as p can point to any Point, Circle, or Box object, but the address-
ing formula for p.x (or p.y) does not depend on the class of object that p clrrently
points to.

* Likewise, every instance method has a fixed offset relative to the base of every class-
object that ‘contains” it. Assuming that code pointers occupy one word each, the inst-
ance methods move, area, and dist have offsets 1, 2, and 3, respectively, not only
in the Point class-object but also in the Circle and Box class-objects (and indeed
in the class-object of any subclass of Point). Thus a method call such as ‘p.area
() can be implemented efficiently using the known offset of area. (Relative to the
cost of an ordinary procedure call, an instance-method call carries an overhead of two
indirections. This is the price we must pay for dynamic method selection.)

* Method inheritance and overriding work as required. All objects of the same class
have class-tags that point to the same class-object. But each subclass has a distinct
class-object, in which some methods are the same as those of the superclass-object
(the inherited methods), some methods are different (the overridden methods), and
some methods are extra,
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So far we have neglected class variables and methods. A class variable is a variable
associated with a class, but not a component of a particular object. A class method is an
operation associated with a class, but not attached to a particular object.

Class variables are global in terms of their lifetime, so static storage allocation is
sufficient. Class methods are like ordinary procedures, so they also need no special
treatment. It may be convenient to make class variables and class methods part of the
corresponding class-object.

6.8 Case study: the abstract machine TAM

TAM (the Triangle Abstract Machine) was designed specifically to support the imple-
mentation of high-level programming languages, and in particular the run-time organiz-
ation techniques described in Sections 6.1 through 6.6. Thus:

* The low-address end of the data store is reserved as a stack. This is used both for
stack storage allocation and for expression evaluation. Operations are provided for
pushing and popping values at the stack top.

* The high-address end of the data store is reserved as a heap. Operations are provided
for allocating and deallocating heap variables.

* The call and return instructions handle frames automatically. The call instruction
pushes a new frame, with all its link data. The return instruction pops a frame, and
also replaces the routine’s arguments by its result (if any).

* There are no general-purpose registers that could be used for storing data. All
registers are dedicated to specific purposes: registers SB and ST delimit the stack;
registers HB and HT delimit the heap; register LB points to the topmost frame on the
stack; and so on. Updating of registers is always implicit: LB is updated by call and
return instructions; ST is updated by load, store, and many other instructions; and so
on.

In these respects TAM is quite similar to some other real and abstract stack machines
(such as the JVM, see Section 2.4). But a detailed look at TAM reveals a number of

interesting design features, some of which are discussed below. A complete description
of TAM may be found in Appendix C.

TAM is implemented by an interpreter. This interpreter is described in Section 8.3,
and is available from our Web site.
Addressing and registers

Most instructions have address operands. An address operand is always of the form
‘d[r]’, where r names a register that points to the base of a store segment or frame, and d
is a displacement:

address denoted by d[r] = d + register r
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This method of addressing is used uniformly for accessing global variables within the
global segment, local and nonlocal variables within stack frames, and instructions within
the code segment.

The registers SB, LB, L1, L2, etc., together form a display: SB allows access tc
global variables; LB allows access to local variables; and L1, L2, etc., allow access tc
nonlocal variables.

An interesting implementation decision is how exactly to maintain the registers L1,
L2, etc. They are related to LB by the invariants:

L1 content(LB)
L2 = content(content(LLB))

1]

Thus registers L1, L2, etc., change whenever LB changes, i.e., on a routine call or
return. But it turns out that these registers are rarely needed in practice.” So, rather than
updating these registers on every routine call or return, it is more efficient to compute
L1 or L2 or whichever only when and if needed. In fact, the interpreter can compute the
address of any variable as follows:

address denoted by d[SB] = d+SB

address denoted by d[LB] = d+LB
address denoted by d[L1] = d+Ll = d+ content(LB)
address denoted by d[L2] = d+L2 = d+ content(content(LB))

and so on. Thus L1, L2, etc., are redundant! Although they can be named in the address
operands of instructions, they need not exist as actual registers.

Primitive routines

The machine’s primitive operations are provided by a set of primitive routines, such as
add, mult, 1t, and not. A primitive routine behaves like an ordinary routine, as far as
the caller is concerned. That is to say, the caller must evaluate and push its arguments
before calling the primitive routine, and on return the caller can expect to find the result
at the stack top in place of the arguments. This design avoids the need for a large
number of distinct instructions (such as ADD, MULT, LT, and NOT). It has the further
advantage of allowing a primitive to be treated exactly like an ordinary routine, e.g., we
can pass it as an argument represented by a closure (see Section 6.5.2).

Each primitive routine has a dedicated address in the code store. Thus a call to a
primitive routine can be trapped by the interpreter and treated appropriately.

One study of a collection of Pascal programs suggested that, in practice, accesses to global
variables (49%) and to local variables (49%) are far more common than accesses to nonlocal
variables (2%).




Run-Time Organization 239

Data representation

TAM storage is organized in words. However, the instruction set provides consistent
support for composite values of any size from 1 word to 255 words. In the LOAD,
STORE, and some other instructions there is an 8-bit size field, n. that indicates how
many words are to be loaded, stored, or whatever. For example, the following
instruction sequence:

LOAD(6) 4[LB] — push 6 words from address 4 in the local frame
STORE (6) 21[SB] — store them to address 21 in the global segment

copies a 6-word value (perhaps a record or an array) from one place to another in the
store. As well as copying multi-word values, we can pass them as arguments to routines,
return them as results, and so on.

In practice, most load and store instructions work on single-word values. By conven-
tion, therefore, we abbreviate ‘LOAD (1)’ to ‘LOAD’, ‘STORE (1)’ to ‘STORE’, efc.,
when writing instructions in mnemonic form.

6.9 Further reading

The essential background to the material presented in this chapter is a knowledge of
basic programming language concepts. See the companion textbook by Watt (1990),
and in particular Chapter 2 (primitive and composite types), Chapter 3 (variables and
storage), and Chapter 5 (procedures, functions, and parameters).

The main topics of this chapter are covered in any good compiler textbook. See, for
example, Chapter 7 of Aho et al. (1985).

Data representation has long been part of compiler writers” folklore. A classic
treatment of the topic may be found in a pair of illuminating papers by Hoare (1972,
1975). A more theoretical view of data representation issues — in the context of algebraic
specification of data types — may be found in Chapter 6 of the companion textbook by
Watt (1991).

Static storage allocation was used in implementations of the earliest programming
languages (Fortran and Cobol). These languages deliberately rejected recursion in order
to make static allocation feasible. When the Algol-like languages (Algol-60 and its
successors) introduced recursion and nested block structure, stack storage allocation was
developed to implement them, along with the use of display registers to access nonlocal
variables. A classic account of this method may be found in Dijkstra (1960).

Heap storage allocation and garbage collection were first developed when Lisp
introduced recursive data structures. Most object-oriented and all functional languages
rely heavily on garbage collection. This topic is both fascinating and difficult, and
remains an active research area. For a more detailed account, see Wilson (1992) or
Jones and Lins (1996). For an alternative introduction to heap management, see Chapter
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7 of Standish (1998).

In functional programming languages. functions are first-class values, i.c.. they can
be passed as arguments, returned as function results, incorporated in data structures, and
so on. In such a language local variables have lifetimes that are not strictly nested, so
stack storage allocation as described in Section 6.4 is unsuitable. See Cardelli (1984) for
an account of a run-time organization suitable for ML, a typical example of this kind of
language. (The run-time organization described in this chapter is, however, perfectly
suitable for languages — such as Triangle, Pascal, and even Fortran — that allow
functions and procedures to be passed as arguments.)

Exercises
Section 6.1
6.1 Consider the following Pascal types:
type
Player = (white, black);
Piece = (pawn, knight, bishop,
rook, queen, king);
Square = record
case empty: Boolean of
ey Sy
false: ( occupant: Piece;
owner: Player )
end;
Board = array [1..8] of
array [1..8] of Square;
State = record
pos: Board;

next: Player;
moves: Integer
end
Or consider the following C types:
typedef enum {white, black} Player;

typedef enum {pawn, knight, bishop,
rook, queen, king} Piece:;
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6.3

6.4

6.5
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typedef struct
int empty; /* | if square is empty,
otherwise 0 */
Piece occupant;
Player owner:;
} Square;

typedef Square Board[8] [8];

typedef struct {
Board pos;
Player next;
int moves ;
} State;

(a) Show how these types would be represented, and state the size of each
type. Assume that the target machine is TAM, in which every primitive
value occupies one word.

(b) Repeat, but now assume that the target machine has byte addressing, with
I word = 4 bytes = 32 bits.
In Pascal, the type Boolean behaves like an enumeration type:
type Boolean = (false, true)

and is therefore equipped with operations such as succ, pred, and ord as
well as the logical operations. How does this influence the choice of represent-
ation for Pascal truth values?

Many real machines have a choice of integer representations (word or double-
word), and a corresponding choice of machine operations (ADD or DADD,
MULT or DMULT, etc.).

Assuming that the source language has a single type Integer, the compiler
writer has to make a choice between the two representations. List the
arguments in favor of each. How does your favorite compiler make this choice?

Consider the record type T of (6.3). Express #7 in terms of #7}. .... and #T,.
Check that your #7T', together with size T (6.4). satisfies (6.1).

In Pascal, the programmer can choose not only the index bounds but also the
index fype of a static array.
(a) Show how the following arrays would be represented:

var freq: array ['a'..'z'] of Integer;
pixel: array [Color] of 0..15

where Color is defined as in Example 6.3.
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6.6

6.7

6.8%

6.9

(b)  Generalize (6.15), (6.16), and (6.17) to cater for the general case:
type T = array [Tipdex] of Telem
where Tipdex may be any primitive discrete type, i.e., Boolean, Char,

Integer, an enumeration type, or a subrange thereof.

In Triangle (or Pascal), the effect of a multi-dimensional array may be obtained
by an array of arrays: see array us in Example 6.6. Generalize (6.12) and
(6.13) to cater for the two-dimensional case:

type T = array m of array n of Tuem

In Ada, the programmer can choose the index type of a dynamic array.
(a) Show how the array freq would be represented:

type Profile is
array (Character range <>) of Integer;

first: Character := 'a';
last: Character := 'z';
freq: Profile (first .. last);

(b)  Generalize (6.20), (6.21), and (6.22) to cater for the general case:
type T is array (Tipdex range <>) of Telem:
az: T(E) .. F5):
where Tipgex may be any primitive discrete type, i.e., Boolean, Char-

acter, Integer, or an enumeration type, and where E; and E> are ex-
pressions of type Tindex-

Suggest a representation for two-dimensional dynamic arrays, as in Ada:

type T is
array (7| range <>, T» range <>) of Telem:

a: T(Ey..EBy, Ez..E4);

Suppose that a machine’s storage is organized as follows. A word is 4 bytes or
32 bits. Byte addressing is used. Every single-word and multi-word variable
must be located on a word boundary, i.e., its byte address must be a multiple of
4. (This is an example of an alignment restriction.)

Assuming that the types Boolean, Char, 1..12, and 1..31 occupy one
byte each, show how the following Pascal variables would be represented in
storage:
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tyvpe Date = record
de il B1s:
T P D
y: Integer
end;
Name = array [1..10] of Char;

Person = record
surname, forename: Name;

dob: Date;
female: Boolean
end;

var today: Date;
us: array [1..2] of Person

Section 6.2

6.10  Consider the Triangle expression ‘(0 <n) /\ odd (n)’ whose evaluation on
a stack machine was illustrated in Example 6.12. Illustrate the same expres-
sion’s evaluation on a different stack machine with byte addressing. Assume
that stack elements may differ in size, that a truth value occupies 1 byte, and
that an integer occupies 4 bytes.

6.11 In most programming languages, the semantics of the expression ‘E| O E>’
(where O is a binary operator) are such that the subexpressions £; and E; may
be evaluated in any order.

(a) Consider the expression ‘(a * b) + (1 - (c * 2) )" and the correspond-
ing instruction sequence in Example 6.10. Find a shorter instruction se-
quence that evaluates this expression using only two registers.

(b) Now consider a machine with a single register (the accumulator). How
could this expression be evaluated on such a machine?

Section 6.3
6.12  Consider a Pascal program with the type definitions of Exercise 6.1 and the
following global variable declarations:

var computer, human: Player;
initial: Board;
current: State

or the corresponding C extexrn declarations.

Show how the global variables would be located in storage, assuming a target
machine with | word = 4 bytes = 32 bits. Write down the address of each
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6.13

variable, assuming that the first variable is located at address 0.

Suppose that a Triangle program has the following global variable declarations:
var vi: Ty; ...; var vy,: T,
Write down a formula for address v;. Assume that address v =0.

Observe that each variable's address depends on the order of the variable
declarations. But the semantics of Triangle places no significance on the order
of variable declarations. Discuss this paradox.

Section 6.4

6.14

6.15

6.16*

Consider the Triangle program of Example 6.20. Suppose that the main
program calls procedure Y, which in turn calls procedure Z. Draw a stack
snapshot at each point during this sequence. Show frames and dynamic links as
in Figure 6.11; also show individual global and local variables.

Consider the Triangle program of Figure 6.14. Suppose that the main program
calls procedure P, which in turn calls procedure Q, which in turn calls
procedure R, which in turn calls procedure S.

(a) Draw a stack snapshot at each point during this sequence. Show frames
and static links as in Figure 6.15; also show individual global, local, and
nonlocal variables.

(b) According to Example 6.17, procedure R can fetch a variable local to Q by
an instruction of the form ‘LOAD d[L1]’. Write down the instruction that
R would use to fetch the value of q. Verify that this instruction will work
correctly at the point when R is running during the above sequence.

(¢)  Which nonlocal variables may procedure S access? Verify that these non-
local variables, and no others, are indeed accessible at the point when S is
running during the above sequence. Write down instructions for S to fetch
the values of these nonlocal variables.

Algol is a programming language with nested block structure. (In this respect it
is much like Triangle, with procedures and block (let-) commands.) It has a few
primitive types, namely Boolean, integer, and real. Its only composite
type is the (dynamic) array. Arrays are indexed by integers. and their elements
are always primitive — arrays of arrays are not supported. An example of an ar-
ray declaration is:

real array v [1 : n]
where n must have been declared in an enclosing scope.

Design a run-time organization suitable for Algol. In particular, decide where
the handle and elements of a dynamic array such as v should be located.
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6.17** In this chapter, SB, LB, L1, L2, etc., are classified as display registers. SB
always points to the globals: LB points to the topmost frame, which belongs to
the currently running routine R; L1 points to a frame belonging to the routine
R” immediately enclosing R: L2 points to a frame belonging to the routine R”
immediately enclosing R"; etc.

An alternative form of display consists of registers D0, D1, D2, etc. D0 always
points to the globals: D1 points to a frame belonging to a routine whose body is
at level 1; D2 points to a frame belonging to a routine whose body is at level 2;
etc. If the currently running routine R has its body at level n, Dn points to the
topmost frame (which belongs to R): and D(n+1), D(n+2), etc., are undefined.
This is illustrated in Figure 6.31, which corresponds to part of Figure 6.15.
How should DO, D1, D2, etc., be updated:
(a) when code at level m calls a routine S whose body is at level n (< m+1)?
(b) when S returns?
Discuss the advantages and disadvantages of this form of display.
(5) After S calls Q: (6) Alter Q calls R: (7) After return from (8) After return
R: from Q:
DO~ e DO < D) D> Lt
globals globals globals globals
DI e— = DI e— = DI e— j= D1 ==
frame frame frame frame
for P for P for P for P
—t — 1 15| D2oliie=t
frame frame frame frame
for S for s for s for s
D2 — | D2 o— f= D2 e—1 ST
frame frame frame
for Q for Q for Q
ST —» D3 e&—1  ST-»>
frame
for R
ST —

Figure 6.31 An alternative form of display (cf. Figure 6.15).
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Section 6.5

6.18%*

6.19

6.20*

Consider the following Triangle program:

let
func sgr (i: Integer): Integer ~
TN Ta ke

func even (i: Integer): Boolean ~
(a2 =0T

func power (x: Integer, n: Integer): Integer -~
1 & D=0V Ehen
1
else if even(n) then
sqgr (power(x, n / 2))
else
sgr (power (x, n / 2)) * x

in

Draw stack snapshots, showing arguments and results. at relevant points as this
program evaluates:

(a) power (2, 1)
(b) power (2, 6)

Consider the routine protocols of Examples 6.18 and 6.19. Compare the code
that would be used to evaluate the following function calls:

@) Efa,dbne)
(b) f(g(a), h(b, c), 4)

Assume the instruction sets of Tables 6.1 and 6.2, augmented by suitable CALL
instructions.

Consider a target machine that has just eight general-purpose single-word
registers, RO through R7. Design a routine protocol that uses these registers as
much as possible, but also allows for multi-word arguments and for a large
number of arguments.

Section 6.6

6.21

Consider the following outline Pascal program:

type Enthist = ...; {linked list of integers }
var p: Integer;
pPs, ns: IntList;
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function cons (n: Integer; ns: IntList)
IntList;
o {Return the list obtained by inserting n
at the front of ns.}

procedure removeMultiples (n: Integer;
var ns: IntList);

Soir {Remove n and all its multiples from ns.}
begin
ps = nil;
ns := cons(3, cons(5, cons(7, cons(9, cons (11,
cons (13, cons(1l5, cons(17, cons (19,
cons (21, cons(23, cons (25, cons (27,
cons (29, cons (31, cons (33, cons(35,
cons (37, nil))))))))))))))))));
repeat

p := ns”.head;
removeMultiples (p, ns);

ps := cons(p, ps)
until ns = nil
end

Function cons allocates a new node, and procedure removeMultiple
deallocates one or more nodes. Draw snapshots of the heap after the first fiv
iterations of the loop. Do this for each of the following heap managers:

Version 1: On allocation, the heap manager just uses the first gap in the fre
list. On deallocation, the new gap is just added to the front of the free list.

Version 2: On allocation, the heap manager uses the smallest gap that is bi

enough. On deallocation, the new gap is coalesced with any adjacent gap(s).

6.22*  Design an algorithm that coalesces adjacent gaps in the heap whenever a hea
variable is deallocated, as illustrated by Figure 6.26.

6.23%  Design an algorithm that compacts the heap, as illustrated by Figure 6.2}
When should heap compaction be done?

Section 6.7

6.24  Consider the following Java class:

class Date {
short day, month; int year;

public Date (short day, short month,
int year) { ... }
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public short getDay () { ... }
public short getMonth () { ... }
public int get¥earyi(dinc: '}

public int difference (Date today) {
// Return the difference between this date and today
// in whole years.

}

Draw the representations of the Date class-object and a Date object as illus
trated in Example 6.32.

6.25 Consider the following Java classes (which use the Date class from Exer
cise 6.24):

class Person {
String name; Date dob;

public Person (name, dob) { ... }

public int age (Date today) { ... }
}

class staff extends Person ({
String staffId;
int salary;

public Staff (String name, Date dob,
String staffId, int salary)

{legin. )

public String getStaffIid () { ... }

public int getSalary () { ... }

public void setSalary (int salary) { ... )}

}

class Faculty extends Staff {
Course([] teaches;

public Faculty (String name, Date dob,
String staffid,
int salary) (.}

public void assign (Course course) £ e )

}

class Student extends Person {
String studentId;
Course[] studies;
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public Student (String name, Date dob,
String studentId) { ... }

public void enrol (Course course) { ... }

3

Draw the representations of the Person, Staff, Faculty and Student

class-objects and an example object of each class, as illustrated in Exam-
ple 6.33.

Using the class definitions from Exercise 6.25, consider the following hypo-
thetical class definition:

class TeachingAssistant extends Staff, Student

{ ...}

This would be an example of multiple inheritance (which is not supported in
Java). Consider how an object in the class TeachingAssistant could be
represented. Note that such an object would contain only a single occurrence of
the instance variables of Person, which would be inherited from both Staff
and Student.



CHAPTER SEVEN

Code Generation

Syntactic and contextual analysis are concerned with analysis of the source program;
thus they are dependent only on the source language. Code generation is concerned with
translation of the source program to object code, and so is dependent on both the source
language and the target machine (whether real or abstract). It is possible to expound
general principles of syntactic or contextual analysis, as in Chapters 4 and 5. But the
influence of the target machine makes it much harder to expound general principles of
code generation.

The main problem is that target machines are extremely varied. Some machines
provide registers for storage of intermediate results; others provide a stack: still others
provide both. Some machines provide instructions with zero, one. two. or three
operands, or a mixture of these. Some machines provide a single addressing mode;
others provide many. The structure of a code generator is heavily influenced by such
aspects of the target machine architecture. A code generation algorithm suitable for one
target machine might be difficult or impossible to adapt to a dissimilar target machine.

The major subproblems of code generation are the following:

* Code selection. This is the problem of deciding which sequence of target machine
instructions will be the object code of each phrase in the source program. For this
purpose we write code templates. A code template is a general rule specifying the
object code of all phrases of a particular form (e.g., all assignment commands, or all
function calls). In practice, code selection is often complicated by special cases.

* Storage allocation. This is the problem of deciding the storage address of each
variable in the source program. The code generator can decide the address of each
global variable exactly (static storage allocation), but it can decide the address of
each local variable only relatively (stack storage allocation).

* Register allocation. If the target machine has registers, they should be used to hold
intermediate results during expression evaluation. The code generator, knowing that a
particular register contains the current value of variable v, should take advantage of
that to save a memory cycle when the value of v is needed. Many complications arise
in practice: there might not be enough registers to evaluate a complex expression; or
some registers might be reserved for particular purposes (such as indexing).

Code generation for a stack machine is significantly easier than code generation for a
register machine. As we saw in Chapter 6, we need a stack anyway to implement

250
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procedures and local variables. A stack is also convenient for expression evaluation. The
problem of register allocation simply disappears. In this book, therefore, we consider
only code generation for a stack machine, and concentrate on the subproblems of code
selection and storage allocation. We use the abstract machine TAM as an illustrative
target machine. (TAM was introduced in Chapter 6, and is fully described in Appen-
dix C.)

7.1 Code selection

The function of the code generator is to translate source programs to semantically
equivalent object programs. When we design a code generator, therefore, we must be
guided by the semantics of the source language. Now a semantic specification is
generally structured in terms of the semantics of phrases such as expressions,
commands, and declarations. In code generation we should follow the same structure:
we should specify the translation of source programs to object programs inductively, by
specifying the translation of individual phrases to object code.

Usually there are many correct translations of a given program or phrase. There may
be several sequences of instructions that correctly perform a given source-language
operation. So a basic task of the code generator is to decide which sequence of instruc-
tions to generate in each case. This is called code selection.

7.1.1 Code templates

In general, we specify code selection inductively over the phrases of the source
language, using code functions and code templates. The following example introduces
the basic idea.

Example 7.1 Code functions and code templates

Consider translation of some hypothetical source language to object code. We can
specify the translation of commands to object code by introducing the following code
function:

execute : Command — Instruction™®

This function will translate each command C to a sequence of target-machine instruc-
tions that achieves the effect of executing C. We must define this function over all the
commands in the source language. This we do by means of code templates.

Consider a sequential command, typically of the form *Cy; C,'. Its semantics was
specified by (1.20c):
The sequential command ‘C; ; C3 is executed as follows. First C| is exe-
cuted; then 5 is executed.
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We can easily specify the translation of ‘Ci; Gy’ to object code by means of the
following code template:

execute [C) ; o] =
execute C|
execute Cy

This code template may be read as follows: the code to execute *Cy; €5 consists of the
code to execute Cy, followed by the code to execute Cs.

Most code templates contain specific instructions. For example, the code template
for a simple assignment command */ : = E, where [ is a variable identifier, might look
like this:

execute |1 : = E]| =
evaluate E
STORE a where a = address of variable named /

This code template may be read as follows: the code to execute *J : = £ consists of the
code to evaluate E, followed by a STORE instruction whose operand field is the address
of the variable /.

For instance, here is a possible translation of a sequential command containing two
assignment commands:'

( LOAD f
execute [£ := £*n] LOAD n
execute [£ := £%n; CALL mult
n:=n-1] 4 STORE f
LOAD n
execute [n :=n-1] CALL pred
\ STORE n

]

Each code template specifies the object code to which a phrase is translated. in terms
of the object code to which its subphrases are translated. If a phrase is primitive (i.e.,
contains no subphrases), then its code template should specify its object code directly. A
complete set of code functions and code templates specifies the translation of the entire
source language to object code. More precisely:

* The object code of each source-language phrase is the sequence of instructions to
which it will be translated. The object code is in Instruction®.

The actual machine instructions will contain numerical addresses. Here we write £ and n to
stand for the addresses of variables £ and n. and mult and pred for the addresses of the
respective primitive routines. We will use this convention freely, to make the examples
readable.
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* For each phrase class P in the source language’s abstract syntax, we introduce a code
JSunction, f;, that translates each phrase in class P to object code:

[ P — Instruction*

* We define the code function f; by a number of code templates, with (at least) one code
template for each distinct form of phrase in class P. If some form of phrase in P has
subphrases Q and R, then the corresponding code template will look something like
this:

fl...Q...R...] =

where f, and fi are code functions appropriate for subphrases Q and R. (The order
shown above is not fixed: Q’s object code may precede or follow R’s object code.)

A code specification is a collection of code functions and code templates. It must
cover the entire source language, i.e.. it must specify the translation of every well-
formed source program to object code. Let us now examine a complete code
specification.

Example 7.2 Code specification for Mini-Triangle to TAM code

Consider the language Mini-Triangle, whose syntax and semantics were given in
Examples 1.3 and 1.8. We will present a code specification for the translation from
Mini-Triangle to TAM code.

The relevant phrase classes in this language are Program, Command, Expression,
Operator, V-name, and Declaration. We first introduce code functions for these phrase
classes:

run : Program — Instruction* (7.1)
execute : Command — Instruction* (7.2)
evaluate : Expression — Instruction® (7.3)
fetch : V-name — Instruction® (7.4)
assign : V-name — Instruction* (7.5)
elaborate : Declaration — Instruction* (7.6)

The object code of each phrase is a sequence of instructions that will behave as shown
in Table 7.1.

(Mini-Triangle has other phrase classes, but these will not have corresponding code
functions. There are two code functions for V-name. which will be used in different
contexts.)
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[ Table 7.1 Summary of code functions for Mini-Triangle.

Phrase class | Code function Effect of generated object code
I Program run P Run the program P and then halt, starting and finishing with an
I empty stack.
Command execute C Execute the command C, possibly updating variables, but
neither expanding nor contracting the stack.
Expression | evaluate E Evaluate the expression E. pushing its result on to the stack
top, but having no other effect.
V-name fetch V Push the value of the constant or variable named V on to the
stack top.
V-name assign V Pop a value from the stack top, and store it in the variable
named V.
Declaration | elaborate D Elaborate the declaration D, expanding the stack to make space

for any constants and variables declared therein.

A Mini-Triangle program is simply a command C. The program is run simply by
executing C and then halting. The code template for a program is therefore as follows:
run [C] = (7.7)
execute C
HALT
The code templates for commands are as follows:

execute [V : = E]| = (7.8a)
evaluate E
assign V

This is easy to understand: ‘evaluate E’ will have the net effect of pushing the value
yielded by £ on to the stack, and ‘assign V' will pop that value and store it in the var-

iable V.
execute [[I ( E )] = (7.8b)
evaluate E
CALL p where p = address of primitive routine /

This is the code template for a procedure call. Since there are no procedure declarations
in Mini-Triangle, / must be the identifier of a predefined procedure such as putint.
The above CALL instruction calls the corresponding primitive routine in TAM.

execute [Cy ; C3] = (7.8¢)
execute C)
execute Cs

This was explained in Example 7.1.
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execute [1f E then C| else G3] = (7.8d)
evaluate E
JUMPIF (0) g
execute C)
JUMP h
g: execute Cs
h:

Here the code ‘evaluate E* will have the net effect of pushing a truth-value on to the
stack. The JUMPIF instruction will pop and test this value. If it is 0 (representing false),
control will be transferred to g where the code ‘execute G will be selected; otherwise
the code ‘execute C|* will be selected. (The labels g and h stand for the addresses of the
following instructions.)

execute [while Edo C] = (7.8e)
JUMP h
g: execute C
h: evaluate E
JUMPIF (1) g

Here again, the code ‘evaluate E* will have the net effect of pushing a truth-value on to
the stack. The JUMPIF instruction will pop and test this value. If it is 1 (representing
frue), the code ‘execute C' will be iterated; otherwise iteration will cease. The initial
JUMP instruction ensures that the code ‘evaluate E' will be executed first; this is in
accordance with the semantics of the while-command. (See Exercise 7.1 for discussion
of an alternative code template.)

execute [let D in C] = (7.86)
elaborate D
execute C
POP(0) s if >0
where s = amount of storage allocated by D

This code template shows how storage allocation and deallocation comes in. The code
‘elaborate D will expand the stack, as a consequence of allocating storage for constants
and variables declared in D. The code ‘execute C* will be able to access these variables.
The POP instruction contracts the stack to its original size — in effect. deallocating these
constants and variables,

The code templates for expressions are as follows. In each case the object code must
have the net effect of pushing a value on to the stack.

evaluate [[IL] = (7.9a)
LOADL v where v = value of IL

The LOADL instruction will simply push the integer-literal’s value v on to the stack top.

evaluate [V] = (7.9b)
Jetch V
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This is self-explanatory.

evaluate [O E] = (7.9¢)
evaluate E
CALL p where p = address of primitive routine
corresponding to O
evaluate [E) O E5] = (7.9d)

evaluate E;

evaluate Ey

CALL p where p = address of primitive routine
corresponding to O

The above two code templates show how applications of unary and binary operators will
be translated. Note how expression evaluation exploits the stack: the object code will
first evaluate the operand(s), and then apply the operation corresponding to O. The latter
is achieved by calling an appropriate primitive routine, e.g., not for *\’ , add for *+’ ,
or 1t for ‘<’,

In Mini-Triangle, a value-or-variable-name is just an identifier that has been
declared as a constant or variable. Being global, that constant or variable will be
addressed relative to register SB. Here (anticipating Section 7.3) we assume that its
address has already been determined:

fetch 1] = (7.10)
LOAD d[SB] where d = address bound to [ (relative to SB)

assign 1] = (7.11)
STORE d[SB] where d = address bound to [ (relative to SB)

The code templates for declarations are as follows. In each case the object code must
expand the stack to make space for the declared constants and variables.

elaborate |[const I ~ E|| = (7.12a)
evaluate E

The constant declaration’s object code must expand the stack by enough space to
contain the constant’s value. The code ‘evaluate E* will do that, simply by depositing
the value at the stack top. (In addition, the constant’s address must be bound to / for
future reference — this address will be needed whenever (7.10) is applied, We will see in
Section 7.3 how this is done.)

elaborate |vaxr Il : T| = (7.12b)
PUSH 1

This PUSH instruction will expand the stack by one word, enough space to
accommodate the newly allocated variable. (The only types in Mini-Triangle are truth
values and integers, and these occupy one word each in TAM.) The newly allocated
variable is not initialized. (The variable’s address must be bound to / for future reference
— this address will be needed whenever (7.10) or (7.11) is applied.)
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elaborate [Dy ; D2l = (7.12¢)
) elaborate Dy
elaborate Dy

Notethatmoodetemplates (7. 12&—c)1t13asnmplemattcrtopredlctthctotalamountof
storage nllocated by the declarauon This mfomatwn is reqm:red in (7. Bt') _
R . 0O

Example 7.3 Translatzon of a while-command

The following translation illustrates oode templates (7.8a) and (7.8e), among others:

f ' 30: JuMP 35
( 31: LOAD i
execute [i :=i-2] ] 32 LOADL 2
execute [while i > 0 do 33; CALL sub
1:=1-2] o | 34: STORE 1

35; LOAD 1
evaluate [1 > 0] ‘L 36: LOADL 0
| o 37 can gt

\ : ~38: JUMPIF(1) 31

‘Here we are assuming that the while-command’s object code starts at address 30. The
numbers to the left of the instructions are their addresses.”
O

Example 7.4 Translation of a let-command

The following translatton of a let-command illustrates code templates (7.8f) and (7.12b),
among others:

e!_abora_t_e [var i:Integer] PUSH 1

execute [let ' - LOAD 1

var i:Integer execute [1 :=i+2] LOADL 2
ini :=1i+2] - : CALL  add

' : . STORE i

POP(0) 1

The code generated from this let-command expands the stack by one word to allocate
storage for the local variable i, and later contracts the stack by one word to deallocate it.
The address of this word say 1, is used to access the variable within the let-command.

- O

* Usually we omit instruction addresses, but we show them in insgru_ctioi: sequences that include
jump instructions. '
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Example 7.5 Code templates for Triangle values and variables

Code templates (7.10), (7.11), and (7.12b) assume that every Mini-Triangle value
occupies one word exactly. This is justified because Mini-Triangle supports only truth
values and integers, which occupy one word each in TAM.

The full Triangle language, on the other hand, supports a variety of types including
arrays and records. A value or variable of type T will occupy a number of words given
by size T. (See Section 6.1.) For Triangle we must generalize the code templates to take
this into account:

fetch 1T = (7.13)
LOAD(s) dISB] where s = size(type of 1),
d = address bound to 7 (relative to SB)

assign 1] = (7.14)

STORE (s) d[SB] where s = size(type of ),
d = address bound to [ (relative to SB)

elaborate [var I : T = (7.15)
PUSH s where s = size T

We shall use these more general code templates from now on. They are still valid for
Mini-Triangle, in which size 7" is always 1.

O

7.1.2 Special-case code templates

There are often several ways to translate a given source-language phrase to object code,
some more efficient than others. For example, the TAM code to evaluate the expression
‘n + 1’7 could be:

(a) LOAD n or (b) LOAD n
LOADL 1 CALL succ
CALL add

Object code (a) follows code template (7.9d). That code template is always applicable,
being valid for any binary operator and for any subexpressions. Object code (b) is
correct only in the special case of the binary operator ‘+’ being applied to the literal
value 1. When applicable, this special case gives rise to more efficient object code. It
could be specified as follows:

evaluate [E) + 1] =
evaluate E|
CALL succ

A special-case code template is one that is applicable only to phrases of a special
form. Invariably such phrases are also covered by a more general code template. A
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special-case code template is worth having if phrases of the special form occur fre-
quently, and if they allow translation into particularly efficient object code. The follow-
ing example illustrates another common special case.

Example 7.6 Mini-Triangle constant declarations

The right side of a constant declaration is frequently a literal, as in:

let
const n ~ 7

in
. n ...n ..
Code template (7.12a) specifies that the code ‘elaborate [const n ~ 7]’ will deposit
the value 7 in a suitable cell (at the current stack top). Whenever n is used, code

template (7.10) specifies that the value will be loaded from that cell. The following
translation illustrates these code templates:

( elaborate [const n ~ 7] 4 LOADL 7
elaborate [var 1: Integer] { PUSH 1
execute [let constn~7; LOAD n
var i: Integer { execute [1 :=n*n] | LOAD =n
ini :=n*n]j CALL mult
STORE 1
\ POP (0) 2

The first instruction ‘LOADL 7° makes space for the constant n on the stack top.
Instructions of the form ‘LOAD n’ fetch the constant’s value, wherever required. The
final instruction ‘POP (0) 2’ pops the constant and variable off the stack.

A much better translation is possible: simply use the literal value 7 wherever n is
fetched. This special treatment is possible whenever an identifier is bound to a known
value in a constant declaration. This is expressed by the following special-case code
templates:

fetch [I] = (7.16)
LOADL v where v = value bound to 7 (if known)
elaborate [const I ~ IL] = (7.17)

(i.e., no code)

In (7.17) no code is required to elaborate the constant declaration. It is sufficient that the
value of the integer-literal /L is bound to / for future reference. In (7.16) that value is
incorporated into a LOADL instruction. Thus the object code is more efficient in both
places. The following alternative translation illustrates these special-case code
templates:
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( elaborate [const n ~ 7]
elaborate [var i: Integer] { PUSH 1
execute [let constn~7; LOADL 7
var 1: Integer execute [1 :=n*n] | LOADL 7
ini :=n*n] CALL mult
STORE i
POP(0) 1

\

In this object code, each applied occurrence of n has been translated to the literal value
7, and the instruction to elaborate the declaration of n has been eliminated.

O

7.2 A code generation algorithm

A code specification does more than specify a translation from the source language to
object code. It also suggests an algorithm for performing this translation. This algorithm
traverses the decorated AST representing the source program, emitting target-machine
instructions one by one. Both the order of traversal and the instructions to be emitted are
determined straightforwardly by the code templates.

In this section we see how to develop a code generator from a code specification.
We illustrate this with the Mini-Triangle code specification of Example 7.2.

7.2.1 Representation of the object program

Since its basic function is to generate an object program consisting of target-machine
instructions, the code generator must obviously define representations of instructions
and instruction sequences. This is easy, as the following example illustrates.

Example 7.7 Representing TAM instructions

A code generator that generates TAM object code must represent TAM instructions and
their fields (see Section C.2):

public class Instruction {

public byte op; // op-code (0 .. 15)

public byte «r; // register field (0 .. 15)

public byte n; // length field (0 .. 255)

public short d; // operand field (=32767 .. +32767)

public static final byte // op-codes (Table C.2)
LOADop = 0, LOADACp = 1,
LOADIop 2, LOADLop 3,
STOREOD 4, STOREIop 5,
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CALLop S 6 L CGATINT O 2=k i
RETURNop = 8,
PUSHop = 10, POPop = 11,
JUMPop = 124 | JUMPTop = 13,
JUMPIFop = 14, HALTop = 15;

public static final byte // register numbers (Table C.1)
(eheyed e ol B0 Helntid B=URE S0 e sy = R P s L e 1 e
SBr = 4, STy = Bz HBr = 6, HTr = 7.,
) i 3 ] I 4 i L2y =105 L3r =11
10 b et e L S L% o e S B 5 e S L ) =) S = T S

public Instruction (byte op, byte r, byte n,
short d)
(i erle)

}
Now the object program can be represented as follows:

private Instruction[] code = nmew Instruction[1024];
private short nextInstrAddr = 0; // address of next instruction
// 1o be stored in code

The code generator will append instructions in the correct order by successive calls to
the following method:

private void emit (byte op, byte n, byte r, short d) {
// Append an instruction with fields op, n, r, d to the object program.
code [nextInstrAddr++] =
new Instruction(op, n, r, d);

7.2.2 Systematic development of a code generator

A code specification determines the action of a code generator. The code generator will
consist of a set of encoding methods, which cooperate to traverse the decorated AST
representing the source program. There will be one encoding method for each ordinary
code template, and its task will be to emit object code according to that code template.

In Section 5.3.2 we showed how to design a contextual analyzer as a visitor object.
This consisted of a set of visitor methods, visitA, one for each concrete subclass A of
AST. These visitor methods performed tasks appropriate to contextual analysis (identifi-
cation and type checking).

Here we will show how to design a code generator likewise as a visitor object. In
this case the visitor methods visitA will perform tasks appropriate to code generation.
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Many of these visitor methods will simply be encoding methods. For example, the
visitor/encoding methods for commands will be visitAssignCommand, visit-
CallCommand, etc., and their implementations will be determined by the code
templates for ‘execute [V : = E|’, ‘execute [I ( E } 1, etc.

Table 7.2 Summary of visitor/encoding methods for the Mini-Triangle code generator.

Phrase class Visitor/encoding method Behavior of visitor/encoding method
Program visitProgram Generate code as specified by ‘run P’.
Command visit...Command Generate code as specified by ‘execute C’.
Expression visit...Expression Generate code as specified by ‘evaluate E’.
V-name visit...Vname Return an entity description for the given value-

or-variable-name (explained in Section 7.3.)

Declaration visit...Declaration | Generate code as specified by ‘elaborate D’.

Type-denoter | visit...TypeDenoter | Return the size of the given type.

Example 7.8 Mini-Triangle-to-TAM code generator

Let us design a code generator that translates Mini-Triangle to TAM object code. We
shall assume the code specification of Example 7.2, and the definition of AST and its
subclasses in Example 4.19.

The code generator will include visitor/encoding methods for commands, expres-
sions, and declarations:

public Object visit...Command
(...Command com, Object arg);
// Generate code as specified by ‘execute com’.

public Object visit...Expression
(...Expression expr, Object arg);
// Generate code as specified by ‘evaluate expr’.

public Object visit...Declaration
(...Declaration decl, Object arg);
// Generate code as specified by ‘elaborate decl’.

There will be one visitor/encoding method for each form of command (visit-
AssignmentCommand, visitIfCommand, visitWhileCommand, etc.). Each
such method will have an argument com of the appropriate concrete subclass of Com-
mand (AssignmentCommand, IfCommand, WhileCommand, etc.). Each such
method will also have an Object argument and an Object result, but for the moment
these will not actually be needed.




Likewise there will be one visitor/encoding method for each form of expression, and
one visitor/encoding method for each form of declaration.

Value-or-variable-names cannot be mapped so simply on to the visitor pattern. There
are two code functions for value-or-variable-names, fetch and assign, each with its own
code template. So we need distinct visitor and encoding methods. The encoding
methods will be:

private void encodeFetch (Vname vname) ;
// Generate code as specified by ‘fetch vname’.

private void encodeAssign (Vname vname) ;
// Generate code as specified by ‘assign vname’.

Each of these encoding methods will call the visitor method (visit...Vname) to find
out information about the run-time representation of vname. However, they will use
this information differently: one to generate a LOAD instruction, the other to generate a
STORE instruction.

There is a single encoding method for a program, visitProgram, that will
generate code for the entire program:

public Object visitProgram (Program prog, Object arg);
// Generate code as specified by ‘run prog’.

The visitor/encoding methods of the Mini-Triangle code generator are summarized
in Table 7.2.

Now that we have designed the code generator, let us implement some of the
encoding methods. The following method generates code for a complete program, using
code template (7.7):

public Object visitProgram run [C] =
(Program prod,
Object arg) {
prog.C.visit(this, arg); execute C
emit (Instruction.HALTop, 0, 0, 0); HALT
}

(For ease of comparison, we show each code template alongside the corresponding code
generator steps.)

Now let us implement the visitor/encoding methods for commands. Each such
method translates one form of command to object code, according to the corresponding
code template (7.8a—1):

public Object visitAssignCommand execute [V : = E] =
(AssignCommand com,
Object arg) {
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com.E.visit (this, arg); evaluate E
encodeAssign (com.V) ; assign'V
return null;
}
public Object visitCallCommand execute [I1 (E) ] =
(CallCommand com,
Object arg) {
com.E.visit (this, arg); evaluate E
short p = address of primitive routine
named com. I;
emit (Instruction.CALLop, CALL p
Instruction.SBr,
Instruction.PBr, p);
return null;
}
public Object visitSequentialCommand execute [Cy ; Co =
(SequentialCommand com,
Object arg) {
com.Cl.visit(this, arg); execute C|
com.C2.visit (this, arg); execute Cy
return null;
}
public Object visitLetCommand execute |[let D
(LetCommand com, inCli=
Object arg) {
com.D.visit (this, arg); elaborate D
com.C.visit (this, arg); execute C
short s = amount of storage allocated by D ;
if (s > 0) ifs>0
emit (Instruction.POPop, 0, 0, s); POP(0) s
return null;
}

The visitIfCommand and visitWhileCommand methods, omitted here, will
be implemented in Example 7.9. The visitLetCommand method will be completed
in Example 7.13.

In visitCallCommand, the address of a primitive routine / relative to PB is
determined from information associated with the declaration of that routine. The various
primitive routines and their addresses are given in Table C.3.

Now let us implement the visitor/encoding methods for expressions. Each such
method translates one form of expression to object code, according to the corresponding
code template (7.9a-d):
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public Object visitIntegerExpression evaluate [IL] =
(IntegerExpression expr,
Object arg) {
short v = valuation(expr.IL.spelling);
emit (Instruction.LOADLop, 0, 0, v); LOADL v
return null;

}

public Object visitVnameExpression evaluate | V] =
(VnameExpression expr,
Object arg) {
encodeFetch(expr.V) ; fetch V
return null;

3

public Object visitUnaryExpression evaluate O E]
(UnaryExXxpression expr,
Object arg) {
expr.E.visit(this, arg); evaluate E
short p = address of primitive routine
named expr.O;
emit (Instruction.CALLop, CALL p
Instruction.SBr,
Instruction.PBr, p):;
return null;

}

public Object visitBinaryExpression evaluate [E; O
(BinaryExpression expr, E] =
Object arg) {
expr.El.visit (this, arg); evaluate E,
expr.E2.visit (this, arg); evaluate Eo
short p = address of primitive routine
named expr.Q;
emit (Instruction.CALLop, CALL p
Instruction. SBr,
Instruction.PBr, p);
return null;

}

In visitIntegerExpression, we used the following auxiliary function:

private static short valuation (String intLit)
// Return the value of the integer-literal spelied intLit.

The visitor/encoding methods for declarations, and the encoding methods encod
Fetch and encodeAssign, will be implemented in Example 7.13.
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Finally, the code generator must define a method that initiates the AST traversal.
The completed code generator becomes:

public final class Encoder implements Visitor ({

// Auxiliary methods, as above.
// Visitor/fencoding methods, as above.

public void encode (Program prog) {
prog.visit (this, null);

O

Compare the code generator developed in Example 7.8 with the code specification of
Example 7.2. For the most part, it is easy to see how the code generator was developed:

* For each AST concrete subclass A there is an encoding method, visitA. This
method has an argument that represents a phrase of class A. The implementation of
visitA is developed from the corresponding code template.

* Wherever a code template applies a code function to a subphrase, visit is applied to
that subphrase to generate the corresponding object code. Where the subphrase is a
value-or-variable-name, however, the auxiliary method encodeFetch or en-
codeAssign is applied to the subphrase.

* Wherever a code template contains a target machine instruction, the auxiliary method
emit is called to append that instruction to the object program.

The encoding methods developed in this way cooperate to traverse the AST, gener-
ating the object program one instruction at a time.

In a code template, the order of the object code most commonly follows the order of
the subphrases. But sometimes the order is different, as in code templates (7.8a) and
(7.8e). This causes no difficulty to our code generator: it simply traverses the AST in the
order specified by the code templates.’

A special-case code template does not turn into a distinct encoding method. Instead,
it influences the behavior of the encoding method that deals with the more general case.
For example, the special-case code templates (7.16) and (7.17) influence the behavior of
the encoding methods encodeFetch and visitConstDeclaration, as we shall
see in Example 7.13.

Now we have outlined a code generator, but a number of particular problems require
particular solutions. The following subsection deals with the problem of generating code

' On the other hand, out-of-order code generation cannot easily be achieved by a one-pass
compiler, since such a compiler generates object code ‘on the fly’ as it parses the source
program,
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for control structures. Thereafter Sections 7.3 and 7.4 deal with the problems of generat-
ing code for declared constants and variables, procedures, functions, and parameters.

7.2.3 Control structures

The code generator appends one instruction at a time to the object program. It can easily
determine the address of each instruction, simply by counting the instructions as they
are generated.

Source-language control structures, such as if-commands and while-commands, are
implemented using unconditional and conditional jump instructions. The destination
address (i.e., the address of the instruction to which the jump is directed) is the operand
field of the jump instruction. A backward jump causes no problem, because the jump
instruction is generated after the instruction at the destination address, so the destination
address is already known. But a forward jump is awkward, because the jump instruction
must be generated before the instruction at the destination address, and the destination
address cannot generally be predicted at the time the jump instruction is generated.

Fortunately, there is a simple solution to the problem of forward jumps, a technique
known as backpatching. When the code generator has to generate a forward jump, it
generates an incomplete jump instruction, whose destination address is temporarily set
to (say) zero. At the same time the code generator records the address of the jump
instruction in a local variable. Later, when the destination address becomes known, the
code generator goes back and patches it into the jump instruction.”

The following example illustrates the method. Recall that the code generator
maintains a variable, nextInstrAddr, that contains the address of the next
instruction to be generated, and is incremented whenever an instruction is appended to
the object program. (See Example 7.7.)

Example 7.9 Backpatching

Recall code template (7.8e):

execute [while Edo C] =
JUMP h
g: execute C
h: evaluate E
JUMPIF (1) g

Here g stands for the address of the first instruction of the object code ‘execute C’, and h
stands for the address of the first instruction of the object code ‘evaluate E’. Let us see
how visitWhileCommand should implement this code template.

* A similar solution to a similar problem is also used in one-pass assemblers.
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The backward jump instruction ‘JUMPIF (1) g° is easily generated as follows.
Immediately before code is generated for ‘execute C’, the next instruction address is
saved in a variable, say g, local to visitWhileCommand. When the backward jump
instruction is later generated, the address in g is used as its destination address.

When the forward jump instruction ‘JUMP /’ is to be generated, on the other hand,
its destination address is not yet known. Instead, an incomplete JUMP instruction is
generated, with a zero address field. The address of this incomplete instruction is saved
in another local variable, say j. Later, just before code is generated for ‘evaluate E’, the
next instruction address is noted, and patched into the instruction at address 7.

For instance, in Example 7.3 we saw the translation of ‘while i > 0 do i := 1 -
2’. Here we show in detail how visitWhileCommand generates this object code:

(1) It saves the next instruction address (say 30) in 7.

(2) It generates a JUMP instruction with a zero address field:
30: JUMP O

(3) It saves the next instruction address (namely 31) in g.

(4) It translates the subcommand ‘i := i - 2’ to object code:

31: LOAD 1
32: LOADL 2
33: CALL sub
34: STORE 1

(5) It takes the next instruction address (namely 35), and patches it into the address
field of the instruction whose address was saved in § (namely 30):

30. JUMP 35
(6) It translates the expression ‘i > 0 to object code:

35 LOAD 1
36: LOADL 0
37: CALL gt

(7) It generates a JUMPIF instruction whose address field contains the address that
was saved in g (namely 31):

38: JUMPIF(1) 31

The following encoding methods illustrate how backpatching is implemented:

public Object visitWhileCommand ( execute [while £
(WhileCommand com, do C] =
Object arg) {
short j = nextInstrAddr; e
emit (Instruction.JUMPop, O, JUMP h

Instruction.CBr, 0);
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short g = nextInstrAddr; g:
com.C.visit (this, arg); execute C
short h = nextInstrAddr; h:
patch(j, h);

com.E.visit (this, arg); evaluate E
emit (Instruction.JUMPIFop, 1, JUMPIF (1) g

Instruction.CBr, g);
return null;

}
public Object visitIfCommand execute [1f E
(IfCommand com, then C)
Object arg) { else (4] =
com.E.visit (this, arg); evaluate E
short i = nextInstrAddr; i:
emit (Instruction.JUMPIFop, O, JUMPIF (0) g
Instruction.CBr, 0);
com.Cl.visit(this, arg); execute C|
short j = nextInstrAddr; B
emit (Instruction.JUMPop, O, JUMP h
Instruction.CBr, 0);
short g = nextInstrAddr; g:
patch(i, g9);
com.C2.visit (this, arg); execute C,
short h = nextInstrAddr; h:
patch(j, nextInstrAddr):
return null;
}

Here we have used the following auxiliary method for patching instructions:

private void patch (short addr, short d) {
// Store d in the operand field of the instruction at address addr.
codeladdr].d = d;

7.3 Constants and variables

In a source program, the role of each declaration is to bind an identifier / to some entity,
such as a value, variable, or procedure. Within the scope of its declaration, there may be
many applied occurrences of [ in expressions, commands, and so on. Each applied
occurrence of I denotes the entity to which I was bound.
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In an object program, each entity will have a suitable representation, which is
decided by the code generator. Identifiers will not themselves occur in the object
program. Instead, the code generator translates each applied occurrence of an identifier
to (the representation of) the corresponding entity.

How the code generator handles identifiers and declarations is the topic of this
section and Section 7.4. Here we concentrate on declarations and applied occurrences of
constants and variables, and the closely related topic of storage allocation. In Section 7.4
we go on to consider procedures, functions, and parameters.

7.3.1 Constant and variable declarations

A constant declaration binds an identifier to an ordinary value (such as a truth-value,
integer, or record). We studied the representation of values of various types in Sec-
tion 6.1,

A variable declaration allocates a variable and binds an identifier to it. A variable
will be represented by one or more consecutive storage cells, based at a particular data
address.

The code generator, when it visits a constant or variable declaration, must decide
how to represent the declared entity (as a value or address). It should create an entity
description, containing details of how the declared entity will be represented, and bind
the identifier to that entity description for future reference. The following example
illustrates the idea, and also suggests a simple method by which the code generator can
represent the binding of identifiers to entity descriptions.

Example 7.10 Accessing a known value and known address

Consider the following Mini-Triangle command:

let
const b ~ 10;
var i: Integer
in
i
Figure 7.1(a) shows the decorated AST representing this command. The sub-AST (1)
represents the declaration of b, and the applied occurrence of b at (5) has been linked to
(1). The sub-AST (2) represents the declaration of i. and the applied occurrences of i at
(3) and (4) have been linked to (2).

The constant declaration binds the identifier b to the integer value 10. The variable
declaration binds the identifier i to a newly allocated integer variable, whose address
must be decided by the code generator. To be concrete. let us suppose that this address
is 4 (relative to SB).
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Each applied occurrence of b should be translated to the value 10 (more precisely, to
the target-machine representation of 10), and each applied occurrence of i should be
translated to the address 4. So the subcommand ‘i := 1 * b’ should be translated to the
following object code:

LOAD 4([sSB] - fetch from the address bound to i
LOADL 10 — fetch the value bound to b

CALL mult - multiply

STORE 4[SB] - store to the address bound to i

Now let us see how this treatment of identifiers can be achieved. The code generator
first visits the declarations. It creates an entity description for the known value 10, and
attaches that entity description to the declaration of b at (1). It creates an entity descrip-
tion for the known address 4, and attaches that entity description to the declaration of i
at (2). Figure 7.1(b) shows the AST at this point.

Thereafter, when the code generator encounters an applied occurrence of b, it
follows the link to the declaration (1). From the entity description attached to (1) it
determines that b denotes the known value 10. Likewise, when the code generator
encounters an applied occurrence of 1, it follows the link to the declaration (2). From
the entity description attached to (2) it determines that i denotes the known address 4.

(|

Example 7.11 Accessing an unknown value

Consider the following Mini-Triangle command:

let var x: Integer
in
let const y ~ 365 + x
in
putint (y)

Figure 7.2 shows the decorated AST representing this command. The applied occur-
rences of x and y at (3) and (4) have been linked to the corresponding declarations at (1)
and (2), respectively.

The variable declaration binds the identifier x to a newly allocated integer variable.
To be concrete, let us suppose that its address is 5 (relative to SB).

The constant declaration binds the identifier v to an integer value that is unknown at
compile-time. So the code generator cannot simply translate an applied occurrence of y
to the value that it denotes. (Contrast the constant declaration of Example 7.10.)

Fortunately, there is a simple solution to this problem. The code generator translates
the constant declaration to object code that evaluates the unknown value and stores it at
a known address. Suppose that the value of y is to be stored at address 6 (relative to
SB). Then the applied occurrence of y in ‘putint(y)’ should be translated to an
instruction to fetch the value contained at address 6:
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Figure 7.1 Entity descriptions for a known value and a known address.
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LOAD 6[SE] — fetch the value bound to y
CALL putint — write it

The code generator first visits the declarations. It creates an entity description for the
known address 5, and attaches that entity description to the declaration of x at (1). It
creates an entity description for an unknown value at address 6, and attaches that entity
description to the declaration of y at (2). These entity descriptions are shown in Fig-
ure 7.2.

Thereafter, whenever the code generator encounters an applied occurrence of vy, it
follows the link to the declaration (2). From the entity description attached to (2) it
determines that y denotes the unknown value contained at address 6.

O

Program
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v ¥
known address unknown value
address =5 size = 1

address = 6

Figure 7.2 Entity descriptions for a known address and an unknown value.

In summary, the code generator handles declarations and applied occurrences of
identifiers as follows:

* When it encounters a declaration of identifier I, the code generator binds I to a newly

created entity description. This entity description contains details of the entity bound
to L.
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* When it encounters an applied occurrence of identifier /, the code generator consults
the entity description bound to I, and translates the applied occurrence of I to the
described entity.

If the source program is represented by a decorated AST, there is a particularly
simple way to bind an identifier I to an entity description: simply attach the entity
description to the sub-AST that represents the declaration of 1. Every applied occurrence
of I has already been linked to the corresponding declaration of . So, whenever the code
generator encounters an applied occurrence of 1, it follows the link to the declaration of
I, and there it finds the attached entity description.

In declarations, identifiers may be bound to entities such as values and addresses.
Each entity may be either known or unknown (at compile-time). All combinations are
possible, and all actually occur in some languages:

* Known value: This describes a value bound in a constant declaration whose right side
is a literal.

* Unknown value: This describes a value bound in a constant declaration whose right
side must be evaluated at run-time, or an argument value bound to a constant param-
eter.

*» Known address.: This describes an address allocated and bound in a variable declar-
ation.

* Unknown address: This describes an argument address bound to a variable
parameter.

(Constant and variable parameters will be discussed in Section 7.4.3.)

We can systematically deal with both known and unknown entities by the techniques
illustrated in Examples 7.10 and 7.11. In general:

* If an identifier 7 is bound to a known entity, the code generator creates an entity
description containing that known entity, and attaches that entity description to the
declaration of /. It translates each applied occurrence of I to that known entity.

* If an identifier / is bound to an unknown entity, the code generator generates code to
evaluate the unknown entity and store it at a known address, creates an entity descrip-
tion containing that known address, and attaches that entity description to the declar-
ation of /. At each applied occurrence of /, the code generator generates code to fetch
the unknown entity from the known address.

An important task for the code generator is to allocate addresses for variables (and
unknown values). We study this topic in the following subsections. We shall take
advantage of the constant-size requirement explained in Section 6.1: given the type of a
variable, the code generator knows exactly how much storage must be allocated for it.
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7.3.2 Static storage allocation

Consider a source language with only global variables. As explained in Section 6.3,
static storage allocation is appropriate for such a language. The code generator can
determine the exact address of every variable in the source program.

Example 7.12 Addressing global variables

Consider the following Mini-Triangle program:

let
var a: Integer;
var b: Boolean;
var c: Integer;
var d: Integer
in
begin
end
If the target machine is TAM, each variable of type Boolean or Integer will
occupy one word. If instead the target machine is the x86, each variable of type Boo-

lean will occupy one byte, and each variable of type Integer will occupy one half-
word (= 2 bytes). The following table summarizes the allocated addresses in each case:

Variable TAM address (words) x86 address (bytes)
a 0 0
b | 2
c 2, 3
d 3 5

Now consider the following Mini-Triangle program with nested blocks:

let var a: Integer
in
begin

-

let var b: Boolean;
var c: Integer
in
begin ... end;

et

let var d: Integer
in
begin ... end;

end




276 Programming Language Processors in Java

Now the variables b and ¢ can safely occupy the same storage as the variable d.
since they can never coexist. The following table summarizes the allocated addresses
when the target machine is TAM or the x86:

Variable TAM address (words) x86 address (bytes)
a 0 0
b | 2
c 2 3
d | 2

O

The code generator must keep track of how much storage has been allocated at each
point in the source program. We can arrange this by using the additional Object
argument of each visitor/encoding method to indicate how much storage is already in
use. Since elaborating a declaration may allocate extra storage, we use the Object
result of a declaration’s visitor/encoding method to pass back the amount of extra
storage it has allocated. We also use the Object result of an expression’s
visitor/encoding method to pass back the size of the expression’s result. In both cases,
the result will be of class Short.

Example 7.13 Static storage allocation in the Mini-Triangle code
generator
We define entity descriptions as follows:

Public abstract class RuntimeEntity ({
public short size;

}

public class KnownValue extends RuntimeEntity {
public short value; // the known value itself

}

public class UnknownValue extends RuntimeEntity {
public short address; // the address where the
// unknown value is stored

}

public class KnownAddress extends RuntimeEntity {
public short address; // the known address itself

}

Each of these classes should be equipped with a suitable constructor.
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In addition, to each nonterminal node of the AST we add a field entity, which is
initially null but can later be updated to point to an entity description:

public abstract class AST {

public RuntimeEntity
entity; // used in declaration nodes, mainly

}
In the Mini-Triangle code generator, we enhance the visitor/encoding methods as

follows:
public Object wvisit...Command
(...Command com, Object arg) {
short gs = shortvValueOf (arg) ;
// Generate code as specified by ‘execute com’.
//  gs is the amount of global storage already in use.
return null;
}
public Object visit...Expression
(...Expression expr, Object arg) ({
short gs = shortvalueOf (arg);
// Generate code as specified by ‘evaluate expr’.
// gs is the amount of global storage already in use.
return new Short (size of expr’s result) ;
}
public Object wvisit...Declaration
(...Declaration decl, Object arg) {
short gs = shortvValueOf (arg) ;
// Generate code as specified by ‘elaborate decl’.
// gs is the amount of global storage already in use.
return new Short (amount of extra storage allocated by decl) ;
}

Here and elsewhere, the following auxiliary method proves useful:

private static short shortValueOf (Object obj) {
return ((Short) obj).shortvValue();

}
Recall the code templates for declarations (7.12a), (7.17),.(7.15), and (7.12¢):

elaborate [const I ~ E] =
evaluate E

elaborate [const [ ~ IL]| = (special case)

(i.e., no code)
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elaborate [var ] : T =
PUSH s

elaborate [D ; D>] =
elaborate D
elaborate Dy

where s = size T

These are implemented by the following visitor/encoding methods:

public Object visitConstDeclaration
(ConstDeclaration decl,
Object arg) {
short gs = shortValueOf (arg);
if (decl.E instanceof
IntegerExpression) {
IntegerLiteral IL =
( (IntegerExpression) decl.E).IL;
decl.entity = new KnownValue

(1, valuation(IL.spelling)):
return new Short(0);
} else {
short s = shortValueOf (

decl.E.visit(this, arg));
decl.entity = new UnknownValue
(s, gs);
return new Short(s):;

}

public Object visitVarDeclaration
(VarDeclaration decl,
Object arg) {

shortvValueOf (arg) ;

shortvValueOf (decl.T.visit

(this, null));
emit (Instruction.PUSHop, 0, O,
decl.entity = new KnownAddress
(1, gs);
return new Short(s);

short gs =
short s =

s);

}

public Object visitSequentialDeclaration
(SequentialDeclaration decl,
Object arg) ({
short gs = shortValueOf (arg);
short sl = shortvValueOf (

decl.Dl.visit(this, arg));

elaborate [[cons’
I~1IL] -
(no code)

elaborate [[cons-
I~ E]

evaluate E

elaborate [var

I1:T]

s=size T
PUSH s

elaborate [Dq ;
Dr]

elaborate D
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short s2 = shortValueOf (
decl.D2.visit (this, elaborate D,
new Short (gs + s1)));
return new Short(sl + s2);
}

The statement ‘decl.entity = new KnownaAddress(...);’ creates an entity
description for a known address and attaches it to the declaration node in the AST.
Entity descriptions for known and unknown values are created and attached to the AST
in an analogous way.

Recall the code template for a let-command (7.8():

execute [let D in C] =
elaborate D
execute C
POP(0) s its>0
where s = amount of storage allocated by D

The corresponding visitor/encoding method in Example 7.8 omitted one important
detail: how does it determine the amount of storage allocated by D? We can now see
that this information is supplied by the visitor/encoding method for a declaration:

public Object visitLetCommand execute [let D
(LetCommand com, inC] =
Object arg) {
short gs = shortvValueOf (arg) ;
short s = shortvValueOf (

com.D.visit (this, arg)); elaborate D
com.C.visit (this, new Short (gs + s)); execute C
if (s > 0) ifs>0

emit (Instruction.POPop, 0, 0, s); POP(0) s

return null;

}

Now recall the code templates for value-or-variable-names, namely (7.14), (7.16),
and (7.13):

assign [I] =
STORE (s) d[SB] where s = size(type of I,
d = address bound to 7 (relative to SB)

fetch [I] = . (special case)
LOADL v where v = value bound to 7 (if known)
fetch [[I] =
LOAD (s) d[SB] where s = size(type of 1),
d = address bound to 7 (relative to SB)
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These are implemented by the following encoding methods:

private void encodeAssign (Vname vname, short s) {
RuntimekEntity entity =
(RuntimeEntity) vname.visit(this, null);
short d = ((KnownlAddress) entity) .address;
emit (Instruction.STOREop, s, Instruction.SBr, d);
}

private void encodeFetch (Vname vname, short s) {
RuntimeEntity entity =
(RuntimeEntity) vname.visit(this, null);
if (entity instanceof KnownValue) ({

short v = ((KnownValue) entity) .value
emit (Instruction.LOADLop, 0, 0, Vv);
} else {
short d = (entity instanceof UnknownValue) *?

( (UnknownValue) entity) .address
{ (KnownAddress) entity) .address;
emit (Instruction.LOADop, s, Instruction.SBr, d);

}

In encodeAssign we can safely assume that entity is an instance of Known-
Address. (The contextual analyzer will already have checked that [ is a variable
identifier.) In encodeFetch, however, entity could be an instance of
KnownValue, UnknownValue, or KnownAddress.

Both encodeFetch and encodeAssign visit vname. The corresponding visitor
method simply returns the corresponding entity description:

public Object visitSimpleVname
(SimplevVname vname, Object arg) {
return vname.I.decl.entity;

}

(Recall that the contextual analyzer has linked each applied occurrence of identifier / to
the corresponding declaration of I. The field decl represents this link. Therefore,
I.decl.entity points to the entity description bound to I.)

Finally, method encode starts off code generation with no storage allocated:

public void encode (Program prog) {
prog.visit (this, new Short(0));
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7.3.3 Stack storage allocation

Consider now a source language with procedures and local variables. As explained in
Section 6.4, stack storage allocation is appropriate for such a language. The code
generator cannot predict a local variable’s absolute address, but it can predict the
variable’s address displacement relative to the base of a frame — a frame belonging to
the procedure within which the variable was declared. At run-time, a display register
will point to the base of that frame, and the variable can be addressed relative to that
register. The appropriate register is determined entirely by a pair of routine levels
known to the code generator: the routine level of the variable’s declaration, and the
routine level of the code that is addressing the variable. (See Section 6.4.2 for details.)

To make the code generator implement stack storage allocation, we must modify the
form of addresses in entity descriptions. The address of a variable wiil now be held as a
pair (I, d), where [ is the routine level of the variable’s declaration, and d is the
variable’s address displacement relative to its frame base. As in Section 6.4.2, we assign
a routine level of 0 to the main program, a routine level of 1 to the body of each
procedure or function declared at level 0, a routine level of 2 to the body of each
procedure or function declared at level 1, and so on.

Example 7.14 Storage allocation for global and local variables

Recall the Triangle program of Figure 6.14. The same program is outlined in Figure 7.3,
with each procedure body shaded to indicate its routine level.

Entity descriptions are shown attached to the variable declarations in the source
program. (This is for clarity. In reality, of course, the entity descriptions would be
attached to the sub-ASTs that represent these declarations, as in Figures 7.1 and 7.2.)

The addresses of the global variables g1 and g2 are shown as (0, 0) and (0, 1),
meaning displacements of 0 and 1, respectively, relative to the base of the level-0O frame
(i.e., the globals).

The addresses of the local variables pl and p2 are shown as (1, 3) and (I, 4),
meaning displacements of 3 and 4, respectively, relative to the base of a level-1 frame.
The address of the local variable g is shown as (2, 3), meaning a displacement of 3
relative to the base of a level-2 frame. And so on.

Notice that the address displacements of local variables start at 3. The reason is that
the first three words of a frame contain link data, as shown in Figure 6.16.

O
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Tl wry aoydeimeaied by the lollowing ~elteselie weo »| known address
vardl siintegen; S=—=—-m=rrrss address = (0,0)
var g2: array 3 of Boolean; —-~-—._. e

~~~~~~~~~ »| known address
proc P () ~ address = (0,1)
let
var pl: Boolean; = 7 i imie—em—emim »| known address

var p2: Integer;-._

address = (1,3)

PrBcOR (D RS e R i~~~ >

known address
address = (1,4)

in
begin ... end

known address
address = (2,3)

........... —p| known address

address = (3,3)

known address
address = (2,3)

Key:

routine level 3
routine level 2
routine level 1

routine level 0

Figure 7.3 Entity descriptions in the presence of stack allocation.

The code templates (7.13) and (7.14) assumed static storage allocation. They must

be modified to take account of stack storage allocation.

Example 7.15 Code templates for global and local variables

Although Mini-Triangle has no procedures, let us anticipate their introduction — just in

order to study the code generator’s treatment of local variables.

follows:

SJetch |1 =
LOAD(s) d[r] where s = size(type of ),
(/, d) = address bound to /,
¢l = current routine level,
r=display-register(cl, I)

The code templates for fetch (7.13) and assign (7.14) would be generalized as

(7.18)
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assign {11 = (7.19)
STORE (s) d[r] where s = size(type of I),
(1, d) = address bound to I,
cl = current routine level,
r = display-register(cl, l)

The current routine level, ¢/, is the routine level of the code that is addressing the
variable.

The auxiliary function display-register(cl, 1) selects the display register that will
enable code at routine level ¢/ to address a variable declared at routine level [:

SB ifI=0 (7.20a)
LB ifi>0andcl=1 (7.20b)
display-register(cl, ) = L1 ifl>0andcl=1+1 (7.20¢)
L2 ifl>0andcl=1+2 (7.20d)

Note that the special-case code template (7.16) is unaffected.

O

In order to implement (7.18) and (7.19), the code generator must know the routine
level of each command, expression, and so on. Previously, all variables were allocated
at level 0, and the argument passed to each encoding method was simply the size of the
global frame. Now the argument must include both the level and the size of the current
frame. For this purpose let us introduce a Frame class with appropriate instance
variables:

public class Frame {
public byte level;
public short size;

Example 7.16 Stack storage allocation in the Mini-Triangle code
generator

We generalize entity descriptions as follows:
public abstract class RuntimeEntity {
public short size;
}

public class KnownValue extends RuntimeEntity {
public short value; // the known value itself
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public class UnknownValue extends RuntimeEntity {
public EntityAddress address; // the address where the
// unknown value is stored

}

public class KnownAddress extends RuntimeEntity {
public EntityAddress address; // the known address itself

}

public class EntityAddress {
public byte level;
public short displacement;

}

In the Mini-Triangle code generator, we enhance the visitor/encoding methods as
follows:

public Object wvisit...Command
(...Command com, Object arg) {
Frame frame = (Frame) arg;
// Generate code as specified by ‘execute com’.
// frame.level is the routine level of com.
// frame.size is the amount of frame storage already in use.
return null;

}

public Object visit...Expression
(...Expression expr, Object arg) {
Frame frame = (Frame) arg;
// Generate code as specified by ‘evaluate expr’.
// frame.level is the routine level of expr.
// frame.size is the amount of frame storage already in use.
return new Short (size of expr’sresult) ;

}

public Object visit...Declaration
(...Declaration decl, Object arg) {
Frame frame = (Frame) arg;
// Generate code as specified by ‘elaborate decl’.
// frame.level is the routine level of decl.
// frame.size is the amount of frame storage already in use.
return new Short (amount of extra storage allocated by decl) ;

}

We can provide encodeAssign and encodeFetch with explicit Frame
arguments:
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private void encodeAssign
(Vname vname, Frame frame, short s) ({
// Generate code as specified by ‘assign vname’.
// frame.level is the routine level of vname.
// s is the size of the value to be assigned.

}

private void encodeFetch
(Vname vname, Frame frame, short s) {
// Generate code as specified by ‘ferch vname’.
// frame.level is the routine level of vname.
// s is the size of the value to be assigned.
}

The following method implements code template (7.19):

private void encodeAssign
(Vname vname, Frame frame, short s) ({
RuntimeEntity entity =
(RuntimeEntity) vname.visit(this, null);
EntityAddress address =
( (KnownAddress) entity) .address;
emit (Instruction.STOREop, s,
displayRegister (frame.level, address.level),
address.displacement) ;

}
The following method implements code templates (7.16) and (7.18):

private void encodeFetch (Vname vname,
Frame frame, short s) {
RuntimeEntity entity =
(RuntimeEntity) vname.visit (this, null);
if (entity instanceof KnownvValue)

short v = ((KnownValue) entity) .value;
emit (Instruction.LOADLop, 0, 0, v);
} else {

EntityAddress address =
(entity instanceof UnknownvValue) °?
( (UnknownvValue) entity) .address
( (KnownAddress) entity) .address;
emit(Instruction.LOADop, s,
displayRegister (frame.level,
address.level), address.displacement) ;

}

The following auxiliary method displayRegister implements equations (7.20):
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private byte displayRegister

(byte currentLevel, byte entityLevel)
{ ...}

The following methods show how the entity descriptions are now set up:

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg) {
Frame frame = (Frame) arg:;
if (decl.E instanceof IntegerExpression) {
IntegerLiteral IL =
((IntegerExpression) decl.E).IL;
decl.entity = new KnownValue
(1, valuation(IL.spelling));
return new Short(0);
} else {
short s =
shortvalueOf (decl.E.visit (this, frame));
decl.entity = new UnknownValue
(s, frame.level, frame.size);
return new Short(s);

}

public Object visitVarDeclaration
(VarDeclaration decl, Object arg) {
Frame frame = (Frame) arg;
short s = shortValueOf (decl.T.visit(this, null));
emit (Instruction.PUSHop, 0, 0, s);
decl .entity = new KnownaAddress
(1, frame.level, frame.size);
return new Short(s);

}

When the appropriate visitor/encoding method is called to transiate a procedure body,
the frame level must be incremented by one and the frame size set to 3, leaving just
enough space for the link data:

Frame outerFrame = ..;
Frame localFrame = new Frame(outerFrame.level + 1, 3);

Finally, method encode starts off with a frame at level 0 and with no storage
allocated:

public void encode (Program prog) {
Frame globalFrame = new Frame(0, 0);
prog.visit (this, globalFrame) ;
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7.4 Procedures and functions

In this section we study how the code generator handles procedure and function declar-
ations, procedure and function calls, and the association between actual and formal
parameters. We start by looking at global procedures and functions. Then we consider
nested procedures and functions. Finally we examine the implementation of parameter
mechanisms.

A procedure declaration binds an identifier to a procedure, and a function declaration
binds an identifier to a function. The run-time representation of a procedure or function
is a routine. At its simplest, a routine is just a sequence of instructions with a designated
entry address.

7.4.1 Global procedures and functions

Consider a programming language in which all procedures are declared globally. In the
implementation of such a language, a routine is completely characterized by its entry
address (i.e., the address of its first instruction). The routine is called by a call
instruction that designates the entry address. This instruction will pass control to the
routine, where control will remain until a return instruction is executed.

From the above, we see that the code generator should treat a procedure declaration
as follows. It should create an entity description for a known routine, containing the
routine’s entry address, and bind that entity description to the procedure identifier. At an
applied occurrence of this identifier, in a procedure call, the code generator should
retrieve the corresponding routine’s entry address, and generate a call instruction
designating that entry address.

Example 7.17 Code templates for Mini-Triangle plus global procedures

Consider again the language Mini-Triangle, for which code templates were given in
Example 7.2. Let us now extend Mini-Triangle with parameterless procedures. The
syntactic changes, for procedure declarations and procedure calls, are as follows:

Declaration n=LL
proc ldentifier { ) ~ Command (7.21)

Command =L
| Identifier ( ) (7.22)

We shall assume that all procedure declarations are global, not nested.

The code template specifying translation of a procedure declaration to TAM code
would be:
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elaborate [procl () ~C] = (7.23)
JUMP ¢
e: execute C
RETURN({O) O
g:
The generated routine body consists simply of the object code ‘execute C’ followed by a
RETURN instruction. The two zeros in the RETURN instruction indicate that the routine
has no result and no arguments. Since we do not want the routine body to be executed at
the point where the procedure is declared, only where the procedure is called, we must
generate a jump round the routine body. The routine’s entry address, ¢, must be bound
to I for future reference.

The code template specitying transiation of a procedure call would be:

execute [I ()] = (7.24)
CALL(SB) e where ¢ = entry address of routine bound to /

This is straightforward. The net effect of executing this CALL instruction will be simply
to execute the body of the routine bound to 1.

O

Example 7.18 Object code for Mini-Triangle plus global procedures

The following extended Mini-Triangle program illustrates a procedure declaration and
call:

let

var n: Integer;

proc p ()

n :=n * 2

in

begin

n := 9;

p()

end

The corresponding object program illustrates code templates (7.23) and (7.24):

elaborate [var n:

Integer] 0: PUSH 1
1. JUMP 7
2: LOAD 0[SB]
elaborate [procp () ~ execute [n :=n*2] 3: LOADL 2
n:=n*2] 4. CALL mult
5: STORE 0[sB]
6: RETURN(0) O




execute [n := 9] 7:

execute [beginn := 9; 8:
p() end] execute [p ()] 9

10:

11:
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LOADL 9
STORE 0[SB]
CALL(SB) 2

POP (0) 1
HALT

The corresponding decorated AST and entity descriptions are shown in Figure 7.4.

O

A function is translated in much the same way as a procedure. The only essential

difference is in the code that returns the function result.

Program
LetCommand
1
SequentialDeclaration
1
(]
ProcDeclaration -————=-===-——————-eo oo BN

,’I \\
e . l N
f AssignCommand N
|
|
E BinaryExpression SequentialCommand
i
!

VarDeclaration _ VnameExpr.

’, \ SV

v [ NTm—== A inted ehatbadend nieiedbbt a)
, I 1 \\ \
! int v SimpleV.SimpleV.
’ LN N |
! ! N\ \ \
: Ident. ! Ident. Ident. Ident. Op.
.
\ n L P n n * 2
b N

known routine
address =2

known address
address = (0,0)

AssignCommand

\
Int.Expr. SimpleV. Int.Expr.

e ————————

CallCommand |

/
/
/
/
/’
/
e

| e

Int.Lit. Ident. Int.Lit. Ident.

n 9 D

Figure 7.4 Entity description for a known routine.
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Example 7.19 Code templates for Mini-Triangle plus global functions

Suppose that Mini-Triangle is to be extended with parameterless functions. The
syntactic changes are as follows:

Declaration n= oL
| func ldentifier ( ) : Type-denoter ~ Expression (7.25)

Expression =L
| Identifier () (7.26)

As in Example 7.17, we shall assume that all function declarations are global.

The code template specifying translation of a function declaration to TAM code
would be:

elaborate [funcl () : T~ E] = (7.27)
JUMP g
e: evaluate E
RETURN (s) O where s = size T
g:

This RETURN instruction returns a result of size s, that result being the value of E. The
function has no arguments, so the RETURN instruction removes 0 words of arguments
from the stack.

The code template specifying translation of a function call to TAM code would be:

evaluate [I ()] = (7.28)
CALL(SB) e where e = entry address of routine bound to /

which is similar to (7.24).

O

7.4.2 Nested procedures and functions

Now consider a source language that allows procedures and functions to be nested, and
allows them to access nonlocal variables. In this case the implementation needs static
links, as explained in Section 6.4.2. The call instruction (or instruction sequence) must
designate not only the entry address of the called routine but also an appropriate static
link.

Suppose that a procedure is represented by a routine R in the object code. R’s entry
address is known to the code generator, as we have already seen. The appropriate static
link for a call to R will be the base address of a frame somewhere in the stack. This base
address is not known to the code generator. But the code generator can determine which
display register will contain that static link, at the time when R is called. The appropriate
register is determined entirely by a pair of routine levels known to the code generator:
the routine level of R’s declaration and the routine level of the code that calls R.
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The address of routine R must, therefore, be held as a pair (/, ), where [ is the rout-
ine level of R’s declaration (with global routines at level 0), and e is R’s entry address.

Example 7.20 Nested procedures

The Triangle program outline of Figure 7.3 is reproduced in Figure 7.5, with entity
descriptions shown attached to the procedure declarations.

The entity description for procedure P describes it as a known routine with address
(0, 3), signifying that P was declared at level 0, and its entry address is 3. The entity
description for procedure Q describes it as a known routine with address (1, 6),
signifying that Q was declared at level 1, and its entry address is 6. And so on.

O

The code template (7.24) in Example 7.17 assumed global procedures only. It must
be modified to take account of nested procedures.

let
var gl: Integer;
var g2: array 3 of Boolean;
known routine
To P g TR TSRS s B o
DL e address = (0,3)
var pl: Boolean;
var p2: Integer;
proc Q () ~ - known routine
address = (1,6)
known routine
address = (2,8)
e, . — . . — p| known routine
address = (1,25)
Key:
in routine level 3
begin ... end !P! | routine level 2
in routine level |
begin ... end routine level ()

Figure 7.5 Entity descriptions for nested routines.
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Example 7.21 Code templates for Mini-Triangle plus nested procedures

Consider again the language Mini-Triangle extended with parameterless procedures.
The syntax is unchanged from Example 7.17, but now we shall allow nested procedure
declarations.

The code template for a procedure declaration is unchanged:

elaborate [procl { ) ~C] = (7.29)
JUMP g
e: execute C
RETURN(O) O
g
but now the entity description bound to I must include the address pair (/, e), where [ is
the current routine level, and e is the entry address.

The code template for a procedure call becomes:

execute[I ( )] = (7.30)
CALL(r}) e where (I, e) = address of routine bound to /,
¢l = current routine level,
r = display-register(cl, I

The net effect of executing this CALL instruction will be to execute the command C that
is the body of the procedure bound to I, using the content of register r as the static link.
The latter is determined using the auxiliary function display-register, which is defined
by equations (7.20).

O

Example 7.22 Code generation for Mini-Triangle plus nested procedures

Code template (7.29) would be implemented by the following new visitor/encoding
method:

public Object visitProcDeclaration elaborate [proc I
(ProcDeclaration decl, ()~C] =
Object arg) {
Frame outerFrame = (Frame) arg;
short j = nextInstrAddr; J:
emit (Instruction.JUMPop, 0, JUMP g
Instruction.CBr, 0); ‘
short e = nextInstrAddr; e:
decl.entity = new KnownRoutine
(2, outerFrame.level, e);
Frame localFrame = new Frame
{outerFrame.level + 1, 3);
decl.C.visit(this, localFrame); execute C
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emit (Instruction.RETURNop, 0, 0, 0); RETURN(Q) O
short g = nextInstrAddr; g:

patch(j, g);:

return new Short(0);

}
This assumes a new kind of entity description:

public class KnownRoutine extends RuntimeEntity {
public EntityAddress address;

3

where address . level is the level of the routine and address.displacement is
its entry address.

Code template (7.30) would be implemented by the following visitor/fencoding
method:

public Object visitCallCommand execute [1 ()] =
(CallCommand com,
Object arg) {
Frame frame = (Frame) arg;
EntityAddress address =
( (KnownRoutine)
com.I.decl.entity) .address;
emit (Instruction.CALLop, CALL(r) e
displayRegister(
frame.level,
address.level),
Instruction.CBr,
address.displacement) ;
return null;

7.4.3 Parameters

Now let us consider how the code generator implements parameter passing. Every
source language has one or more parameter mechanisms, the means by which
arguments are associated with the corresponding formal parameters.

As explained in Section 6.5.1, a routine protocol is needed to ensure that the calling
code deposits the arguments in a place where the called routine expects to find them. If
the operating system does not impose a routine protocol, the language implementor must
design one, taking account of the source language’s parameter mechanisms and the
target machine architecture.
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The routine protocol adopted in TAM is for the calling code to deposit the argu-
ments at the stack top immediately before the call. Thus the called routine can address
its own arguments using negative displacements relative to its own frame base. The
code generator can represent the address of each argument in the usual way by a pair (/,
d), where [ is the routine level of the routine’s body and d is the negative displacement.

Example 7.23 Addressing parameters

Recall the Triangle program of Example 6.23, whose run-time behavior was shown in
Figure 6.21. The same program is reproduced in Figure 7.6, with appropriate entity
descriptions attached to the declarations and formal parameters.

The constant parameter i will be bound to an argument value whenever procedure S
is called. Therefore its entity description is that of an unknown value, stored at address

(1, =1).

The variable parameter n, on the other hand, will be bound to an argument address.
Therefore its entity description is that of an unknown address, which is itself stored at
address (1, -2). This entity description implies that each applied occurrence of n must
be implemented by indirect addressing.

In TAM, indirect addressing is supported by the instructions LOADT (load indirect)
and STORET (store indirect). These were illustrated in Example 6.23.
OJ

known routine
address = (0,1)

| unknown address
address = (1,-2)

| unknown value

var b: record™ - address = (1, -1)
y: Integer; ~T==-o. e
m: Integer; = T »| known address
d: Integer address = (0,0)

end
in
begin
D EE g Key:

S (var .1.3'.111, 6);

.| routine level |
end routine level 0

Figure 7.6 Entity descriptions for constant and variable parameters.

Now we have encountered all combinations of known and unknown values, and
known and unknown addresses, in entity descriptions. We must therefore generalize our
code templates for value-or-variable-names accordingly.
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Example 7.24 Code templates for procedures with parameters

Consider Mini-Triangle extended with procedures, and constant and variable param-
eters. For simplicity we shall assume that each procedure has a single formal parameter.
The syntactic changes, for procedure declarations and procedure calls, are as follows:

Declaration =
| proc Identifier ( Formal-Parameter ) ~ Command (7.31)
Formal-Parameter ::= Identifier : Type-denoter (7.32a)
| var Identifier :+ Type-denoter (7.32b)
Command =L
| Identifier ( Actual-Parameter ) (7.33)
Actual-Parameter ::= Expression (7.34a)
| var V-name (7.34b)

Production rules (7.32a) and (7.34a) are concerned with constant parameters; production
rules (7.32b) and (7.34b) are concerned with variable parameters.

The code template for a procedure declaration is now:

elaborate [procl ( FP ) ~ (] = (7.35)
JUMP g
e: execute C
RETURN(0) d where d = size of formal parameter FP
g:

Since the TAM routine protocol requires the caller to push the argument on to the stack,
the routine body itself contains no code corresponding to the formal parameter FP.

The code template specifying translation of a procedure call to TAM code is now:

execute [I ( AP )] = (7.36)
pass-argument AP
CALL(r) e where (I, €) = address of routine bound to I,
¢l = current routine level,
r=display-register(cl, [)

The code templates for actual parameters are:

pass-argument [E] = (7.37a)
evaluate E
pass-argument [var V] = (7.37b)

fetch-address V
Code template (7.37b) uses a new code function for value-or-variable-names:
Sfetch-address : V-name — Instruction* (7.38)

where ‘fetch-address V' is code that will push the address of the variable V on to the
stack top.
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The code templates for value-or-variable-names are generalized as follows:

fetch 1] =
(i) if Iis bound to a known value:
LOADL v where v = value bound to 7

(i1) if I is bound to an unknown value or known address:
LOAD (s) dlrl where s = size(type of I),
(I, d) = address bound to 7,
¢l = current routine level,
r = display-register(cl, I)

(iti) if 7is bound to an unknown address:
LOAD (1) dlr]
LOADI (s) where s = size(type of I),
(/, d) = address bound to I,
¢l = current routine level,
r = display-register(cl, [)

assign [I] =
(i) if Iis bound to a known address:
STORE(s) dlr] where s = size(type of I),
({, d) = address bound to 1,
¢l = current routine level,
r=display-register(cl, I)

(ii) if I is bound to an unknown address:
LOAD(1) dir]
STOREI (s) where s = size(type of 1),
(I, d) = address bound to I,
cl = current routine level,
r=display-register(cl, [)

fetch-address [I] =
(i) if I'is bound to a known address:
LOADA d|[r] where (I, d) = address bound to /,
cl = current routine level,
r = display-register(cl, [)
(ii) if / is bound to an unknown address:
LOAD(1) dIlr] where (I, d) = address bound to 1,

cl = current routine level,
r =display-register(cl, )

(7.39)

(7.40)

(7.41)
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7.5 Case study: code generation in the
Triangle compiler

The Triangle code generator consists of a package Triangle.CodeGenerator that
contains the Encoder, and the classes for the various kinds of run-time entity. The
Encoder class depends on the package Triangle.AbstractSyntaxTrees,
which contains all of the class definitions for ASTs, and on the package TAM, which
contains the definition of the Triangle abstract machine.

The Triangle code generator was designed and implemented using techniques
similar to those described in this chapter. Some extensions were necessary to deal with
particular features of Triangle. Here we briefly discuss some of these extensions.

7.5.1 Entity descriptions

The Triangle code generator deals with a wide variety of entities and entity descriptions,
some of which we have not yet met. The following kinds of entity description are used:

» Known value: This describes a value bound in a constant declaration whose right side
is a literal, e.g.:

const daysPerWeek ~ 7;
const currency ~ 's!

o Unknown value: This describes a value bound in a constant declaration, if obtained by
evaluating an expression at run-time, e.g.:’

const area ~ length * breadth;
const nul ~ chr(0)

It also describes an argument value bound to a constant parameter, e.g., the value
bound to n in:

func odd (n: Integer) : Boolean ~

¢ Known address: This describes an address allocated and bound in a variable declar-
ation. The code generator represents each address by a (level, displacement) pair, as
described in Section 7.3.3.

e Unknown address: This describes an argument address bound to a variable parameter,
e.g., the address bound to n1 in:

proc inc (var n: Integer) -~

In principle, nul in this example could be treated as bound to a known value. However, the
code generator would have to be enhanced to evaluate the expression ‘chr (0)’ itself, using a
technique called constant folding.
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» Known routine: This describes a routine bound in a procedure or function declaration,
e.g., the routines bound to inc and odd in the above examples.

e Unknown routine: This describes an argument routine bound to a procedural or
functional parameter, e.g., the routine bound to p in:

proc filter (func p (x: Integer): Boolean;
var 1l: IntegerList) -~

* Primitive routine: This describes a primitive routine provided by the abstract
machine. Primitive routines are bound in the standard environment to operators and
identifiers, e.g., to ‘+’, ‘<’, eof, and get.

» Equality routine: This describes one of the primitive routines provided by the abstract
machine for testing (in)equality of two values. Equality routines are generic, in that
the values can be of any size. Equality routines are bound to the operators ‘=" and
6\:’.

e Field: This describes a field of a record type. Every record field has a known offset
relative to the base of the record (see Section 6.1.2), and the field’s entity description
includes this offset.

e Type representation: This describes a type. Every type has a known size, which is
constant for all values of the type (see Section 6.1), and the type’s entity description
includes that size.

7.5.2 Constants and variables

A value-or-variable-name in the Triangle program identifies a constant or variable.
Either a constant or a variable may be used as an expression operand, but only a variable
may be used on the left side of an assignment command. These two usages give rise to
two different code functions on value-or-variable-names:

fetch : V-name — Instruction™
assign : V-name — Instruction*

In the little language Mini-Triangle used as a running example in this chapter, a
value-or-variable-name was just an identifier (declared in a constant or variable declar-
ation). Accordingly, ferch was defined by a single code template (plus a special-case
code template), and assign by a single code template.

More realistic programming languages have composite types, and operations to
select components of composite values and variables. In Triangle, a record value-or-
variable-name can be subjected to field selection, and an array value-or-variable-name
can be indexed.
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Example 7.25 Addressing composite variables

Consider the following Triangle declarations:

type Name = array 15 of Char;
TelNumber = array 10 of Char;
Entry = record

name: Name;
num: TelNumber
end;
Directory = record
count: Integer;
entry: array 100 of Entry
end;

var dir: Directory
Now, the following are all value-or-variable-names:
dir
dir.count
dir.entry
dir.entry[1i]
dir.entry[i] .num

dir.entry[i] .name
dir.entry[i] .name([]]

The code generator will compute the following type sizes:

size[Name]| = 15x1 = 15 words
size[ TelNumber] = 10x1 = 10 words
size[Entryl] = 15+10 = 25 words
sizelarray 100 of Entry] = 100x25 = 2500 words
size[Directory] = 1+2500 = 2501 words

It will also compute the offsets of the fields of record type Entry:

offset[name] = 0 words
offset[num] 15 words

and those of record type Directory:

offsetcount] 0 words
offset]entry] = 1 word

As in Section 6.1, we use the notation address v for the address of variable (or
constant) v. For the various components of dir we find:

addressf[dir] +0
address[dir] + 1

address[dir .count]

address[dir.entry]

address[dir.entry[i]] address[dir] + 1 + 25i
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address[dir.entry[i] .num] = address|dir]] + | +25i+ 15
= address|dir] + 16 + 25i

address|dir.entry[i] . namel] = address|[dir] + 1 +25i+0
= address[[dir] + | + 25i

address[dir.entry[i] .name[7] I = address[dir] + 1 + 25+
= address[dir] + 1 + (25i +)

where i and j are the values of i and 5.

In each case the address formula contains some constant terms. These constant terms
are accumulated by the code generator, simplifying the address formula to the sum of (at
most) three terms: the address of the entire variable (or constant), plus a known offset,
plus an unknown value. The known offset is obtained by adding together the offsets of
any record fields. The unknown value is determined by evaluating array indices at run-
time.

The following instruction sequences illustrate how the Triangle code generator uses
this information. To be concrete, assume that address|dir] = (0, 100):

fetch [dir.count] -[ LOAD(1) 100([sSB]
evaluate [[1] { LOAD (1) i
LOADL 25
fetch [dir .entry[i]] CALL mult
LOADA 101 [SB]
CALL add
LOADI (25)
evaluate [1]] -[ LOAD (1) i
LOADL 25
fetch [dir.entry[i] .num] CALL mult
LOADA 116 [SB]
CALL add
LOADI (10)

In each case, the known offset is added into the displacement part of address[dix].
Thus the address arithmetic implied by field selection can be done entirely at compile-
time. Only indexing must be deferred until run-time.

O

7.6 Further reading

The target machine architecture strongly influences the structure of a code generator.
Once upon a time, machines were designed by engineers with no knowledge of code
generation. Such machines often had cunning features that skilled assembly language
programmers could exploit, but were very difficult for code generators to exploit. But
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now nearly all programs — even operating systems — are written in high-level languages.
So it makes more sense for the machine to support the code generator by, for example,
providing a simple regular instruction set. A lucid discussion of the interaction between
code generation and machine design may be found in Wirth (1986).

Almost all real machines have general-purpose and/or special-purpose registers;
some have a stack as well. The number of registers is usually small and always limited.
It is quite hard to generate object code that makes effective use of registers. Code
generation for register machines is therefore beyond the scope of this introductory
textbook. For a thorough treatment, see Chapter 9 of Aho er al. (1985).

The code generator described in this chapter works in the context of a multi-pass
compiler: it traverses an AST that represents the entire source program. In the context of
a one-pass compiler, the code generator would be structured rather differently: it would
be a collection of methods, which can be called by the syntactic analyzer to generate
code ‘on the fly’ as the source program is parsed. For a clear account of how to organize
code generation in a one-pass compiler, see Welsh and McKeag (1980).

The sheer diversity of machine architectures is a problem for implementors. A
common practice among software vendors is to construct a family of compilers, trans-
lating a single source language to several different target machine languages. These
compilers will have a common syntactic analyzer and contextual analyzer, but a distinct
code generator will be needed for each target machine. Unfortunately, a code generator
suitable for one target machine might be difficult or impossible to adapt to a dissimilar
target machine. Code generation by pattern matching is an attractive way to reduce the
amount of work to be done. In this method the semantics of each machine instruction is
expressed in terms of low-level operations. Each source-program command is translated
to a combination of these low-level operations; code generation then consists of finding
an instruction sequence that corresponds to the same combination of operations. A
survey of code generation by pattern matching may be found in Ganapathi et al. (1982).

Fraser and Hansen (1995) describe in detail a C compiler with three alternative
target machines. This gives a clear insight into the problems of code generation for
dissimilar register machines.

Exercises

Section 7.1

7.1 The Triangle compiler uses code template (7.8e) for while-commands, but
many compilers use the following alternative code template:
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7.2%

7.3*%

execute [while Edo (] =
g: evaluate E
JUMPIF (0) h
execute C
JUMP g
h:

Convince yourself that the alternative code template is semantically equivalent
to (7.8e).

Apply the alternative code template to determine the object code of:
execute [whilen>0don :=n - 2]
Compare with Example 7.3, and show that the object code is less efficient.

Why, do you think, is the alternative code template commonly used?

Suppose that Mini-Triangle is to be extended with the following commands:
@ Vi, Vy:=E, E

This is a simultaneous assignment: both E;| and E, are to be evaluated,
and then their values assigned to the variables V| and V>, respectively.

b C. G

This is a collateral command: the subcommands C; and C, are to be exe-
cuted in any order chosen by the implementor.

(c) if EthenC

This is a conditional command: if E evaluates to true, C is executed,
otherwise nothing.

(d) repeat Cuntil F

This is a loop command: E is evaluated at the end of each iteration (after
executing C), and the loop terminates if its value is true.

(e) repeat Cywhile Edo ()

This is a loop command: E is evaluated in the middle of each iteration
(after executing Cy but before executing C»), and the Joop terminates if its
value is false.

Write code templates for all these commands.

Suppose that Mini-Triangle is to be extended with the following expressions:
(a) if Ej thenkEjelse E;

This is a conditional expression: if E evaluates to true, E, is evaluated,
otherwise E3 is evaluated. (F; and E3 must be of the same type.)
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(b) letDink

This is a block expression: the declaration D is elaborated, and the resul-
tant bindings are used in the evaluation of E.

(¢) beginC; yieldEend

Here the command C is executed {making side effects), and then E is
evaluated.

Write code templates for all these expressions.

Section 7.2

7.4%

7.5%

Implement the visitor/encoding methods visit...Expression (along the
lines of Example 7.8) for the expressions of Exercise 7.3.

Implement the visitor/encoding methods visit...Command (along the lines
of Example 7.8) for the commands of Exercise 7.2. Use the technique
illustrated in Example 7.9 for generating jump instructions.

Section 7.3

7.6

7.7*

7.8%

Classify the following declarations according to whether they bind identifiers
to known or unknown values, variables, or routines.

(a) Pascal constant, variable, and procedure declarations, and Pascal value,
variable, and procedural parameters.

(b) ML value and function declarations, and ML parameters.

(¢) Javalocal variable declarations, and Java parameters.

Suppose that Mini-Triangle is to be extended with a for-command of the form
‘for I from E| to E, do C’, with the following semantics. First, the expres-
sions E and E» are evaluated, yielding the integers m and n, respectively. Then
the subcommand C is executed repeatedly, with I bound to the integers m, m+1,
..., h in successive iterations. If m > n, C is not executed at all. The scope of /
is C, which may fetch / but may not assign to it.

(a) Write a code template for the for-command.

(b) Use it to implement a visitor/encoding method visitForCommand
(along the lines of Example 7.13).

Suppose that Mini-Triangle is to be extended with array types, as found in

Triangle itself. The relevant extensions to the Mini-Triangle grammar are:

V-name =L
| V-name [ Expression ]
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Type-denoter = ..
|  array Integer-Literal of Type-denoter

(a) Modify the Mini-Triangle code specification accordingly.

(b) Modify the Mini-Triangle code generator accordingly.

Section 7.4

7.9%

7.10%

Modify the Mini-Triangle code generator to deal with parameterized pro-
cedures, using the code templates of Example 7.24.

A hypothetical programming language’s function declaration has the form
‘func I ( FP) : T~ (), i.e., its body is a command. A function body may
contain one or more commands of the form ‘result E’. This command
evaluates expression E, and stores its value in an anonymous variable
associated with the function. On return from the function, the latest value
stored in this way is returned as the function’s result.

(a) Modify the Mini-Triangle code specification as if Mini-Triangle were ex-
tended with functions of this form.

(b) Modify the Mini-Triangle code generator accordingly.




CHAPTER EIGHT

Interpretation

An interpreter takes a source program and executes it immediately. Immediacy is the
key characteristic of interpretation; there is no prior time-consuming translation of the
source program into a low-level representation.

In an interactive environment, immediacy is highly advantageous. For example, the
user of a command language expects an immediate response from each command; it
would be absurd to expect the user to enter an entire sequence of commands before
seeing the response from the first one. Similarly, the user of a database query language
expects an immediate answer to each query. In this mode of working, the ‘program’ is
entered once and then discarded.

The user of a programming language, on the other hand, is much more likely to
retain the program for further use, and possibly further development. Even so,
translation from the programming language to an intermediate language followed by
interpretation of the intermediate language (i.e., interpretive compilation) is a good
alternative to full compilation, especially during the early stages of program
development.

In this chapter we study two kinds of interpretation:
* iterative interpretation
* recursive interpretation.

Iterative interpretation is suitable when the source language’s instructions are all
primitive. The instructions of the source program are fetched, analyzed, and executed,
one after another. Iterative interpretation is suitable for real and abstract machine codes,
for some very simple programming languages, and for command languages.

Recursive interpretation is necessary if the source language has composite instruc-
tions. (In this context, ‘instructions’ could be statements, expressions, and/or declar-
ations.) Interpretation of an instruction may trigger interpretation of its component
instructions. An interpreter for a high-level programming language or query language
must be recursive. However, recursive interpretation is slower and more complex than
iterative interpretation, so we usually prefer to compile high-level languages, or at least
translate them to lower-level intermediate languages that are suitable for iterative
interpretation.

305
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8.1 Iterative interpretation

Conventional interpreters are iterative: they work in a fetch-analyze—execute cycle. This
is captured by the followin g iterative interpretation scheme:

initialize

do {
fetch the next instruction
analyze this instruction
execute this instruction

} while (still running) ;

First, an instruction is fetched from storage, or in some cases entered directly by the
user. Second, the instruction is analyzed into its component parts. Third, the instruction
is executed. The whole cycle is then repeated.

Typically the source language has several forms of instruction, so execution of an
instruction decomposes into several cases, one case for each form of instruction.

In the following subsections we apply this scheme to the interpretation of machine
code, the interpretation of simple command languages, and the interpretation of simple
programming languages.

8.1.1 Iterative interpretation of machine code

An interpreter of machine code is often called an emulator. It is worth recalling here
that a real machine M is functionally equivalent to an emulator of M’s machine code.
The only difference is that a real machine uses electronic (and perhaps parallel)
hardware to fetch, analyze, and execute instructions. and is therefore much faster than
an emulator. (Refer back to Section 2.3 for a fuller discussion of this point.)

A machine-code instruction is essentially a record, consisting of an operation field
(usually called the op-code) and some operand fields. Instruction analysis (or decoding)
is simply unpacking these fields. Instruction execution is controlled by the op-code.

To implement an emulator, we employ the following simple techniques:

* Represent the machine’s storage by an array. If storage is partitioned, for example
into separate stores for code and data, then represent each store by a separate array.

* Represent the machine’s registers by variables. This applies equally to visible and
hidden registers.' One register, the code pointer or program counter, will contain the
address of the next instruction to be executed. Another, the sratus register, will be
used to control program termination.

Hidden registers are those that cannot be accessed explicitly, even by a machine-code program.
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* Fetch each instruction from the (code) store.
* Analyze each instruction by isolating its op-code and operand field(s).

* Execute each instruction by means of a switch-statement, with one case for each
possible value of the op-code. In each case, emulate the instruction by updating
storage and/or registers.

Example 8.1  Interpreter for Hypo

Consider the hypothetical machine, Hypo, summarized in Table 8.1.

Hypo has a 4096-word code store that contains the instructions of the program. An
instruction consists of a 4-bit op-code op and a 12-bit operand field d. Details of the
instructions are given in Table 8.1. The program counter, PC, contains the address of the
next instruction to be executed. The instruction located at address 0 will be executed
first.

Hypo also has a 4096-word data store and a 1-word accumulator, ACC. Each word
consists of 16 bits. Data may be placed anywhere in the data store.

Figure 8.1 illustrates the Hypo code store and data store. The illustrative program in
the code store takes two integers (already stored at addresses 0 and 1) and computes
their product (at address 2). (For greater readability, the program is also shown with
mnemonic op-codes.)

Figure 8.2 illustrates how the machine’s state — data store, accumulator, and program
counter — would change during the first few execution steps of the stored program.

The following class represents Hypo instructions:

public class Hypolnstruction {

public byte op; // op-code field (0 .. 7)
public short d; // operand field (0 .. 4095)
public static final byte // op-codes, as in Table 8.1

STOREop = 0, LOADop
LOADLop = 2, ADDop
SUBop = 4, JUMPop
JUMPZop = 6, HALTop

it
=] U e

e

}
The following class represents the machine’s state:
public class HypoState {

public static final short CODESIZE
public static final short DATASIZE

4096;
4096;

// Code store ...
public HypoInstruction[] code =
new HypoInstruction[CODESIZE];
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// Data store ...
public short{] data = new short[DATASIZE];

// Registers ...

public shoxt PC;
public short ACC;
public byte status;

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;
}

Here the code store is represented by an array of instructions, code; the data store is
represented by an array of words, data; and the registers are represented by variables
PC, ACC, and status.

The following class will implement the Hypo loader and emulator:
public class Hypolnterpreter extends HypoState {

public void load () {
// Load the program into the code store,
// starting at address 0.

}

public void emulate () {
// Run the program contained in the code store,
// starting at address O.

}

The following method is the emulator proper. Its control structure is a switch-
statement within a loop, preceded by initialization of the registers. Each case of the
switch-statement follows directly from Table 8.1.

public void emulate () {

// Initialize ...
PC = 0; ACC = 0; status = RUNNING;

do {

// Petch the next instruction ...
HypoInstruction instr = code[PC++];

// Analyze this instruction ...
byte op = instr.op;
short d = instr.d;

// Execute this instruction ...
switch (op) {
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case STOREop: data[d] = ACC; break;

case LOADoOpD: ACC = datald]; break;
case LOADLop: ACC = d; break;
case ADDop: ACC += datald]; break;
case SUBop: ACC -= datald]; break;
case JUMPop: PC = d; break;
case JUMPzop: 1if (ACC == 0) PC = d; break;
case HALTop: status = HALTED; break;
default: status = FAILED;
}
} while (status == RUNNING) ;

}

This emulator has been kept as simple as possible, for clarity. But it might behave
unexpectedly if, for example, an ADD or SUB instruction overflows. A more robust
version would set status to FAILED in such circumstances. (See Exercise 8.1.)

O]

When we write an interpreter like that of Example 8.1, it makes no difference
whether we are interpreting a real machine code or an abstract machine code. For an
abstract machine code, the interpreter will be the only implementation. For a real
machine code, a hardware interpreter (processor) will be available as well as a software
interpreter (emulator). Of these, the processor will be much the faster. But an emulator
is much more flexible than a processor: it can be adapted cheaply for a variety of
purposes. An emulator can be used for experimentation before the processor is ever
constructed. An emulator can also easily be extended for diagnostic purposes. (Exercises
8.2 and 8.3 suggest some of the possibilities.) So, even when a processor is available, an
emulator for the same machine code complements it nicely.

Table 8.1 Instruction set of the hypothetical machine Hypo.

Op-code Instruction Meaning
0 STORE d word at address d < ACC
1 LOAD d ACC « word at address d
2 LOADL d ACC «d
3 ADD d ACC « ACC + word at address d
4 SUB d ACC « ACC —word at address d
5 JUMP d PCed
6 JUMPZ d PC «—d,if ACC=0
7 HALT stop execution
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8.1.2 Iterative interpretation of command languages

Command languages (such as the UNIX shell language) are relatively simple languages.
In normal usage, the user enters a sequence of commands, and expects an immediate
response to each command. Each command will be executed just once. These factors
suggest interpretation of each command as soon as it is entered. In fact, command
languages are specifically designed to be interpreted. Below -we illustrate interpretation
of a simple command language.

Example 8.2 Interpreter for Mini-Shell

Consider a simple command language, Mini-Shell, that allows us to enter commands
such as:

delete a b ¢
create f
list
edit £
/bin/sort £
print £ 2
quit
The above is an example of a script, which is just a sequence of commands. Each

command is to be executed as soon as it is entered.

Mini-Shell provides several built-in commands. In addition, any executable program
(such as /bin/soxrt) can be run simply by giving the name of the file containing it. A
command can be passed any number of arguments, which may be filenames or literals.
The commands and their meanings are given in Table 8.2.

Table 8.2 Commands in Mini-Shell.

Command Argument(s) Meaning
create filename Create an empty file with the given name.
delete filename, ... filename, | Delete all the named files.
edit filename Edit the named file.
list none List the names of all files owned by the current user.
print filename number Print the given number of copies of the named file.
Run execut- filename arg; ... arg,, Run the executable program contained in the named
able program file, with the given arguments.
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The syntax of a script is as follows:

Script = Command* (8.1)
Command ;= Command-Name Argument* end-of-line (8.2)
Argument = Filename (8.3a)
| Literal (8.3b)
Command-Name ’= create (8.4a)
| delete (8.4b)
|  edit (8.4¢)
| list (8.4d)
| print (8.4e)
| quit (8.41)
| Filename (8.4g)

Production rules for Filename and Literal have been omitted here.
In the Mini-Shell interpreter, we can represent commands as follows:

public class MiniShellCommand {
public String name;
public String[] args;

}

The following class represents the Mini-Shell state:
public class MiniShellState {

// File store ...
public ...;

// Registers ...
public byte status; // RUNNING or HALTED or FATLED

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;
}

There is no need for either a code store or a code pointer, since each command will be
executed only once, as soon as it is entered.

The following class will implement the Mini-Shell interpreter:
public class MiniShell extends MiniShellState {

public void interpret () {
// Execute the commands entered by the user,
// terminating on command quit.
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public MiniShellCommand readAnalyze () {

// Read, analyze, and return the next command entered by the user.
}

public void create (String fname) {
// Create an empty file with the given name.

}

public void delete (String[] fnames) ({
// Delete all the named files.
}

public void edit (String fname) {
// Edit the named file.
}

public void list (){
// List names of all files owned by the current user.

}

public void print (String fname, String copies) {
// Print the given number of copies of the named file.
}

public void exec (String fname, String[] args) {
// Run the executable program contained in the named file, with
// the given arguments.

}

It will be convenient to combine fetching and analysis of commands. This is done by
method readAnalyze.

The following method is the interpreter proper. It just reads, analyzes, and executes
the commands, one after another:

public void interpret () {

// Initialize ...
status = RUNNING;

do {
// Fetch and analyze the next instruction ...
MiniShellCommand com = readAnalyze() ;

// Execute this instruction ...

if (com.name.equals("create"))
create(com.args([0]) ;

else if (com.name.equals{"delete"))
delete(com.args) ;
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else if (com.name.equals("edit"))
edit (com.args([0]);

else if (com.name.equals("list"))
list();

else if (com.name.equals("print"))
print (com.args[0], com.args[1l]);

else if (com.name.equals("quit™))
status = HALTED;

else // executable program
exec (com.name, COm.args);

} while (status == RUNNING) ;

8.1.3 Iterative interpretation of simple programming
languages

Iterative interpretation is also possible for certain programming languages, provided that
a source program is just a sequence of primitive commands. The programming language
must not include any composite commands, i.e., commands that contain subcommands.

In the iterative interpretation scheme, the ‘instructions’ are taken to be the
commands of the programming language. Analysis of a command consists of syntactic
and perhaps contextual analysis. This makes analysis far slower and more complex than
decoding a machine-code instruction. Execution is controlled by the form of command,
as determined by syntactic analysis.

Example 8.3  Interpreter for Mini-Basic

Consider a simple programming language, Mini-Basic, with the following syntax
(expressed in EBNF):

Program = Command* (8.5)
Command ::= Variable = Expression (8.6a)
| read Variable (8.6b)
| write Variable (8.6¢)
|  go Label (8.6d)
| i £ Expression Relational-Op Expression (8.6¢)
go Label
| stop (8.6f)
Expression = primary-Expression (8.7a)

| Expression Arithmetic-Op primary-Expression  (8.7b)
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primary-Expression 1=  Numeral (8.8a)

|  Variable (8.8b)

| ( Expression ) (8.8¢)
Arithmetic-Op = o+ | = * |/ (8.9a-d)
Relational-Op = = \=|<|=<]|>=]|> (8.10a-1)
Variable = alble|.. |z (8.11a-z)
Label = Digit Digit* (8.12)

A Mini-Basic program is just a sequence of commands. The commands are
implicitly labeled 0, 1, 2, etc., and these labels may be referenced in go and if
commands. The program may use up to twenty-six variables, which are predeclared.

The semantics of Mini-Basic programs should be intuitively clear. All values are real
numbers. The program shown in Figure 8.3 reads a number (into variable a), computes
its square root accurate to two decimal places (in variable b), and writes the square root.

It is easy to imagine a Mini-Basic abstract machine. The Mini-Basic program is
loaded into a code store, with successive commands at addresses 0, 1, 2, etc. The code
pointer, CP, contains the address of the command due to be executed next.

The program’s data are held in a data store of 26 cells, one cell for each variable.
Figure 8.3 illustrates the code store and data store. Figure 8.4 shows how the abstract
machine’s state would change during the first few execution steps of the square-root
program, assuming that the number read is 10.0.

We must decide how to represent Mini-Basic commands in the code store. The
choices, and their consequences, are as follows:

(a) Source text: Each command must be scanned and parsed at run-time (i.e., every
time the command is fetched from the code store).

(b) Token sequence: Each command must be scanned at load-time, and parsed at run-
time.

(¢y AST: All commands must be scanned and parsed at load-time.

Choice (a), illustrated in Figure 8.3, would slow the interpreter drastically. Choice (c) is
better but would slow the loader somewhat. Choice (b) is a reasonable compromise, SO
let us adopt it here:

class Token {
byte kind;
String spelling;
}

class ScannedCommand {
Token([] tokens;
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Although a sequence of tokens is a convenient way of representing a command in
storage, it would be inconvenient for execution. Analysis of a scanned command should
parse it and translate it to an internal form suitable for execution. In Mini-Basic all
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there is only one data type, so there is no need for type checking.

For this internal form let us adopt the command’s AST. Note that only a single AST
will exist at any one time, representing the current command to be executed. We
introduce an abstract class for command ASTs, equipped with a method to execute a
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public abstract class Command {
// A Command object is an AST representing a Mini-Basic command.

public void execute (MiniBasicState state);
// Execute the command, using state.

3
And similarly for expression ASTs:

public abstract class Expression {
// An Expression object is an AST representing a Mini-Basic
// expression.

public float evaluate (MiniBasicState state);
// Evaluate the expression, using state, and return its result.
}

Later we shall define concrete subclasses for particular forms of commands and expres-
sions. These will implement the methods execute and evaluate, which we shall
call interpreting methods.

Note that we must allow the interpreting methods to access the state of the Mini-
Basic abstract machine, hence their argument state. The following class will represent
the abstract machine state:

public class MiniBasicState {

public static final short CODESIZE
public static final short DATASIZE

4096;
26;

// Code store ...
public ScannedCommand[] code =
ScannedCommand [CODESIZE] ;

// Data store ...
public float[] data = new float[DATASIZE];

// Registers ...
public short CP;
public byte status;

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;

}

Here the code store is represented by an array of scanned commands, code. The
data store is represented by an array of real numbers, data, indexed by variable
addresses (using 0 for a, 1 for b, ..., 25 for z). The registers are represented by
variables CP and status.
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The following class will define the Mini-Basic interpreter:

public clasg MiniBasicInterpreter
extends MiniBasicState {

public void load () {
// Load the program into the code store, starting at address 0.
}
public void run () {
// Run the program in the code store, starting at address 0.
}
public static Command parse

(ScannedCommand scannedCom) {
// Parse scannedCom, and return the corresponding
// command AST.

}

Note that we need a method, here called parse, to parse a scanned command an
translate it to an AST.

The following method is the interpreter proper. It just fetches, analyzes, and execute
the commands, one after another:

public void run () {
// Initialize ...
CP = 0; status = RUNNING;
do {
// Fetch the next instruction ...

ScannedCommand scannedCom = code([CP++];

// Analyze this instruction ...
Command analyzedCom = parse {scannedCom) ;

// Execute this instruction ...
analyzedCom.execute ( {MiniBagicState) this);

} while (status == RUNNING) ;
}

Now we must define how to represent and execute analyzed commands. We intrc
duce a subclass of Command for each form of command in Mini-Basic:

public class AssignCommand extends Command ({
byte V; // left-side variable address
Expression E; // right-side expression
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public void execute (MiniBasicState state) {
state.data[V] = E.evaluate(state);

}

public class GoCommand extends Command {
short L; // destination label

public void execute (MiniBasicState state) {
state.CP = L;

}

public class IfCommand extends Command ({
Token R; // relational-op
Expression El, E2; // subexpressions
short L; // destination label

public void execute (MiniBasicState state) {
float numl = El.evaluate(state);
float num2 = E2.evaluate(state);
if compare(R, numl, num2)
state.CP = L;
}

private static boolean compare
(Token relop, £loat numl, float num2) {
// Return the result of applying relational operator
// relop tonuml and num?2.

}
public class StopCommand extends Command {

public void execute (MiniBasicState state) {
state.status = state.HALTED;

}

(The Command subclasses ReadCommand and WriteCommand, and the various
Expression subclasses, are omitted here. See Exercise 8.5.)

Study the object-oriented design of this interpreter. Once we decided to represent
each command by an AST, we had to introduce the abstract class Command, and its
subclasses AssignCommand, GoCommand, etc. We then found it convenient to equip
each subclass of Command with an interpreting method, execute, allowing the
interpreter to use dynamic method selection to select the right code to execute a particu-
lar command. However, these interpreting methods were outside the MiniBasic-
Interpreter class, so we had to pass the abstract machine state to them via their
argument state.
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The alternative to dynamic method selection would have been to make the interpret-
er test the subclass of each command before executing it, along the following lines:
// Execute this instruction ...

if (analyzedCom instanceof AssignCommand) {

AssignCommand com = (AssignCommand) analyzedCom;
datalcom.V] = evaluate(com.E);

}

else if (analyzedCom instanceof GoCommand) {
GoCommand com = (GoCommand) analyzedCom;
CP = com.L;

}

else ...

But this would not be in the true spirit of object-oriented design!

8.2 Recursive interpretation

Modern programming languages are higher-level than the simple programming
language of Example 8.3. In particular, commands may be composite: they may contain
subcommands, subsubcommands, and so on.

It is possible to interpret higher-level programming languages. However, the iterat-
ive interpretation scheme is inadequate for such languages. Analysis of each command
in the source program entails analysis of its subcommands, recursively. Likewise, exec-
ution of each command entails execution of its subcommands, recursively. Thus we are
driven inexorably to a two-stage process, whereby the entire source program is analyzed
before interpretation proper can begin. This gives rise to the recursive interpretation
scheme:

fetch and analyze the program
execute the program

where both analysis and execution are recursive.

We must decide how the program will be represented at each stage. If it is supplied
in source form, ‘fetch and analyze the program’ must perform syntactic and contextual
analysis of the program. A decorated AST is therefore a suitable representation for the
result of the analysis stage. Therefore ‘execute the program’ will operate on the pro-
gram’s decorated AST.

Example 8.4 Interpreter for Mini-Triangle

Consider a recursive interpreter for the programming language Mini-Triangle of
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Examples 1.3 and 1.8. Assume that the analyzed program is to be represented by a
decorated AST. The source program will be subjected to syntactic and contextual
analysis, and also storage allocation, before execution commences.

We must choose a representation of Mini-Triangle values. These include not only
truth values and integers, but also undefined (which is the initial value of a variable).
The following classes represent all these types of values:

public abstract class Value { }

public class IntValue extends Value {
public short i;
}

p_ublic class BoolValue extends Value {
public boolean b;
}

public class Undefinedvalue extends Value {

}

We assume that each of these classes is equipped with a suitable constructor.
The following class will define the abstract machine state:
public class MiniTriangleState {
public static final short DATASIZE = ...;

// Code store ...
Program program; // decorated AST

// Data store ...
Valuel[] data = new Value[DATASIZE];

// Register ...
byte status;

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;

}

Here we represent the data store, as usual, by an array. The ‘code store’ is just the
decorated AST representing the Mini-Triangle program. We assume the class AST, and
its subclasses Program, Command, Expression, Declaration, etc., defined in
Example 4.19.

The following class will implement the Mini-Triangle interpreter. In particular,
methods fetchAnalyze and run will implement the two stages of the recursive
interpretation scheme.

public class MiniTriangleProcessor
extends MiniTriangleState implements Visitor {
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public void fetchAnalyze () {
// Load the program into the code store, after
// subjecting it to syntactic and contextual analysis.

3
public void run () {

// Run the program contained in the code store.
3

// Visitor/interpreting methods ...

public Object visit...Command
(...Command com, Object arg);
// Execute com, returning null (and ignoring arg).

public Object visit...Expression
(...Expression expr, Object arg):;
// Evaluate expr, returning its result (and ignoring arg).

public Object visit...Declaration
(...Declaration decl, Object arg);
// Elaborate decl, returning null (and ignoring arg).

// Other interpreting methods ...

private Value fetch (Vname vname) ;
// Return the value of the constant or variable vname.

private void assign (Vname vname, Value val);
// Assign val to the variable vname.

// Auxiliary methods ...

private static short valuation
(IntegerLiteral intLit);
// Return the value of intLit.

private static Value applyUnary
(Operator op, Value wval);
// Return the result of applying unary operator op to val.

private static Value applyBinary
(Operator op, Value vall, Value val2);
// Retarn the result of applying binary operator op to vall and val2.

private static void callStandardProc
(Identifier id, Value val);
// Call the standard procedure named id, passing val as its argument.

}

This Mini-Triangle processor is a visitor object (see Section 5.3.2), in which the visitor
methods act as interpreting methods.
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The visitor/interpreting methods for commands are implemented as follows:

public Object visitAssignCommand
(AssignCommand com, Object arg) {
Value val = (Value) com.E.visit(this, null);
assign{com.V, val);
return null;

}

public Object visitCallCommand
(CallCommand com, Object arg) {
Value val = (Value) com.E.visit(this, null);
callStandardProc(com.I, wval);
return null;

}

public Object visitSequentialCommand
(SequentialCommand com, Object arg) {
com.Cl.visit(this, null);
com.C2.visit(this, null);
return null;

}

public Object visitIfCommand
(IfCommand com, Object arg) {

BoolValue val = (BoolValue) com.E.visit (this, null)
if (val.b) com.Cl.visit(this, null);
else com.C2.visit(this, null);

return null;
}

public Object visitWhileCommand
(WhileCommand com, Object arg) {

for (;;) {
BoolValue val = (BoolvValue)
com.E.visit(this, null);
if (! val.b) break;

com.C.visit(this, null);
}
return null;

}

public Object visitLetCommand
(LetCommand com, Object arg) {
com.D.visit(this, null);
com.C.visit(this, null);
return null;
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The visitor/interpreting methods for expressions are implemented as follows:

public Object visitIntegerExpression
(IntegerExpression expr, Object arg)
return new IntValue(valuation(expr.IL));

}

public Object visitVnameExpression
(VnameExpression expr, Object arg) {
return fetch{expr.V);
}

public Object visitUnaryExpression
(UnaryExpression expr, Object arg) {
Value val = (Value) expr.E.visit(this, null);
return applyUnary(expr.O, val);
}

public Object visitBinaryExpression
(BinaryExpresion expr, Object arg) {
Value vall = (Value) expr.El.visit(this, null);
Value val2 = (Value) expr.E2.vigit(this, null);
return applyBinary(expr.0O, vall, val2);

}
The visitor/interpreting methods for declarations are implemented as follows:

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg)

KnownAddress entity = (KnownAddress) decl.entity;
Value val = (Value) decl.E.visit(this, null);
data[entity.address] = val;

return null;
}

public Object visitVarDeclaration
(VarDeclaration decl, Object arg) {
KnownAddress entity = (KnownAddress) decl.entity;
datal[entity.address] = new Undefinedvalue() ;
return null;

}

public Object visitSequentialDeclaration
(SequentialDeclaration decl,
Object arg) {
decl.Dl.visit (this, null);
decl.D2.visit(this, null);
return null;
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Finally, the auxiliary methods for value-or-variable-names are implemented as
follows:

private Value fetch (Vname vname) {
KnownAddress entity =
(KnownAddress) vname.visit(this, null);
return datalentity.address];

}

private void assign (Vname vname, Value wval) {
KnownAddress entity =
(KnownAddress) vname.visit (this, null);
datalentity.address] = val;
}

To fetch and analyze a Mini-Triangle program, we need the following:

* A parser. The class Parser of Example 4.12 exports a method parse, which
parses a Mini-Triangle source program and returns the corresponding AST.

* A contextual analyzer. The class Checker of Example 5.11 exports a method
check, which performs identification and type checking on a given AST and deco-
rates it accordingly.

* A static storage allocator. Let us assume a class StorageAllocator that exports
a method allocateAddresses. This method visits each constant and variable
declaration in a given AST, allocates a suitable address to the declared constant or
variable, and records that address in a KnownAddress entity description attached to
the declaration. (See Example 7.13.)

public void fetchAnalyze () {
Parser parser = new Parser(...);
Checker checker = new Checker(...):;
StorageAllocator allocator = new StorageAllocator();
program = parser.parse();
checker.check (program) ;
allocator.allocateAddresses (program) ;

’

}
To run the program, we simply visit the program command:

public void run () {
program.C.visit (this, null);

3

This design for a Mini-Triangle recursive interpreter reuses the visitor design pattern
already exploited in our Mini-Triangle contextual analyzer (Example 5.11) and code
generator (Example 7.8). This design allows the interpreting methods to be located in
the MiniTriangleInterpreter class, where they have direct access to the
abstract machine state.
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A design similar to that of Example 8.3 would be a reasonable alternative. That
would entail equipping each Command subclass with an execute method, each
Expression subclass with an evaluate method, each Declaration subclass
with an elaborate method, and so on. Each of these interpreting methods would be
passed the abstract machine state as an argument.

O

The kind of interpreter we have Just illustrated analyzes the entire source program
before execution commences. Thus it forgoes one of the usual advantages of interpret-
ation, that is immediacy. This explains why recursive interpretation is not generally used
for higher-level programming languages. For such languages, a better alternative is
compilation of source programs to a simple intermediate language, followed by iterative
interpretation of the intermediate language, as outlined in Section 2.4.

Some notable exceptions to the general rule, namely Lisp and Prolog, will be
discussed in Section 8.4.

8.3 Case study: the TAM interpreter

The abstract machine TAM was outlined in Section 6.8. and is fully described in
Appendix C. It is the target machine of the Triangle compiler.

TAM is implemented by an interpreter that is in most respects similar to other
machine-code interpreters, such as that of Example 8.1. But of course it is more
sophisticated, since TAM directly supports many features of high-level languages.

The TAM package includes the classes Instruction, State, and Intexr-
preter outlined here.

The following class represents TAM instructions (Figure C.5):

public class Instruction {

public byte op; // op-code (0 .. 15), from Table C.2
public byte r; // register field (0 .. 15), from Table C.1
public byte n; // length field (0 .. 255)

public short d; // operand field (=32767 .. +32767)

}

The following class represents the TAM state. The code and data stores are repre-
sented as usual by arrays. The registers are represented by variables (with read-only
registers declared as £inal).

public class State {

public static final short CODESIZE
public static final short DATASTIZE = .
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// Code store ...
public Instruction|] code =
new Instruction[CODESIZE];

// Data store ...
public short[] data = new short[DATASIZE];

// Registers ...

public short final CB = 0;

public short CT;

public short final PB = CODESIZE;
public short final PT = CODESIZE + 28;
public short final SB = 0;

public short ST;

public short final HB = DATASIZE;
public short HT;

public short LB;

public short CP;

public byte status;

public static final byte // status values
RUNNING = 0, HALTED = 1, FAILED = 2;
}

The following class implements the TAM interpreter proper:
public class Interpreter extends State {

public void loadProgram () {
// Load the program into the code store, starting at address 0.
// Set CT to the address of the last instruction + 1.

}

public void runProgram () {
// Run the program contained in the code store,
// starting at address 0.

}

3

The interpreter proper is as follows. Its main control structure is a switch-stateny
within a loop. There is one case for each of the fifteen valid op-codes, and a default c:
for invalid op-codes:

public void runProgram () {

// Initialize ...
ST = SB; HT = HB; LB = SB; CP = CB;
status = RUNNING;
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do {
// FPetch the next instruction ...
Instruction instr = code[CP++];

// Analyze this instruction ...

byte op = instr.op;
byte r = instr.r;
byte n = instr.n;
short 4 = instr.d;

// Execute this instruction ...
switch (op) {

case LOADop:
case LOADAop:
case LOADIop:
case LOADLop:
case STOREop:
case STOREIop:
case CALLop:
case CALLIop:
case RETURNop:
case PUSHop:
case POPop:
case JUMPop:
case JUMPIFop:

case HALTop: status = HALTED; break;
default: status = FAILED;
}
} while (status == RUNNING) ;

}

The fact that TAM is a stack machine gives rise to many differences in detail from
an interpreter for a register machine. Load instructions push values on to the stack, and
store instructions pop values off the stack. For example, the TAM LOADL instruction is
interpreted as follows:

case LOADLop:
data[ST++] = d;
break;

(Register ST points to the word immediately above the stack top, as shown in Fig-
ure C.1.)

Further differences arise from the special design features of TAM (outlined in
Section 6.8).
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Addressing and registers

The operand of a LOAD, LOADA, or STORE instruction is of the form ‘d[r1’, where r is
usually a display register, and d is a constant displacement. The displacement d is added
to the current content of register r.

The display registers allow addressing of global variables (using SB), local variables
(using LB), and nonlocal variables (using L1, L2, ...). The latter registers are related to
LB by the invariants L1 = content(LLB), L2 = content(content(LB)), and so on — see
(6.25-27) in Section 6.4.2.

As explained in Section 6.8, it is not really worthwhile to have separate registers for
access to nonlocal variables. The cost of updating them (on every routine call and
return) outweighs the benefit of having them immediately available to compute the
addresses of nonlocal variables. In the TAM interpreter, therefore, L1, L2, etc., are only
pseudo-registers: their values are computed only when needed, using the above
invariants. This is captured by the following auxiliary method in the interpreter:

private static short relative (short d, byte r) {
// Return the address defined by displacement 4 relative to register r.
switch (r) {

case SBr: return d + SB;

case LBr: return d + LB;
case Llir: return d + datalLB];
case L2r: return d + datal[datal[LB]];

}

For example, the LOAD and STORE instructions (on the simplifying assumption that the
length field n is 1) would be interpreted as follows:

case LOADoOp: {

short addr = relative(d, r);
data[ST++] = dataladdr];
break;

b

case STOREop: {
short addr = relative(d, r);
datal[addr] = datal[--ST];
break;

}

The operand of a CALL, JUMP, or JUMPIF instruction is also of the form ‘d[r]’,
where r is generally CB or PB, and d is a constant displacement. As usual, the displace-
ment d is added to the content of register r. The auxiliary method relative also
handles these cases.




330 Programming Language Processors in Java

Primitive routines

Each primitive routine (such as mult, 1¢, or not) has a designated address within the
code store’s primitives segment, which is delimited by registers PB and PT. (See
Figure C.1.) Thus the interpreter traps any call to an address within the primitives
segment:

case CALLop: {
short addr = relative(d, r):;
if (addr >= PB)
// Execute the primitive operation at address addr.
else
// Call the code routine at address addr.
break;
}

The interpreter performs the appropriate primitive operation itself. For example, mult,
1t, and not are interpreted as follows:

case mult: {
——SY.
data[ST-1] *= data[ST];
break;

]

data[ST-1] (data[ST-1] < datal[ST]) ? 1 : 0;
break;

}

case not: {
data[ST-1] = 1 - data[ST-1]; // replacing O by 1, or 1 by 0
break;

8.4 Further reading

Interpretation is still popular despite the obvious performance problems. Indeed, since
an interpreter is easier to implement than a compiler, many programming languages rely
on an interpreter for their first implementation (see Section 9.1.3).

The original Basic was one of the few ‘high-level’ programming languages for
which interpretation was normal. A typical Basic language processor allowed programs
to be entered, edited, and executed incrementally. Such a language processor could run
on a microcomputer with very limited storage, hence its popularity in the early days of
microcomputers. But this was possible only because the language was very primitive
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indeed. Its control structures were more typical of a low-level language, making it
unattractive for serious programmers. More recently, ‘structured’ dialects of Basic have
become more popular, and compilation has become an alternative to interpretation.

Recursive interpretation is less common. However, this form of interpretation has
long been associated with Lisp (McCarthy ef al. 1965). A Lisp program is not just
represented by a tree: it is a tree! Several features of the language — dynamic binding,
dynamic typing, and the possibility of manufacturing extra program code at run-time —
make interpretation of Lisp much more suitable than compilation. A description of a
Lisp interpreter may be found in McCarthy et al. (1965). Lisp has always had a devoted
band of followers, but not all are prepared to tolerate slow execution. A more recent
successful dialect, Scheme (Kelsey et al. 1998), has discarded Lisp’s problematic
features in order to make compilation feasible.

It is noteworthy that two popular programming languages, Basic and Lisp, both
suitable for interpretation but otherwise utterly different, have evolved along somewhat
parallel lines, spawning structured dialects suitable for compilation!

Another example of a high-level language suitable for interpretation is Prolog. This
language has a very simple syntax, a program being a flat collection of clauses, and it
has no scope rules and few type rules to worry about. Interpretation is almost forced by
the ability of a program to modify itself by adding and deleting clauses at run-time.

Exercises

8.1 Make the Hypo interpreter of Example 8.1 detect the following exceptional
conditions, and set the status register accordingly:

(a) overflow;
(b) invalid instruction address;
(¢) invalid data address.

(Assume that Hypo may have less than 4096 words of code store and less than
4096 words of data store, thus making conditions (b) and (c) possible.)

8.2 Make the Hypo interpreter of Example 8.1 display a summary of the machine
state after executing each instruction. Display the contents of ACC and CP, the
instruction just executed, and a selected portion of the data store.

8.3* Make the Hypo interpreter of Example 8.1 into an interactive debugger.
Provide the following facilities: (a) execute the next instruction only (single-
step); (b) set or remove a breakpoint at a given instruction; (c) execute
instructions until the next breakpoint; (d) display the contents of ACC and CP;
(e) display a selected portion of the data store; (f) terminate execution.

8.4**  Write an emulator for a real machine with which you are familiar.
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8.5

8.6

8.7*

8.8%

8.9%

Fill in the missing details of the Mini-Basic interpreter of Example 8.3.

The Mini-Basic interpreter of Example 8.3 represents each stored command as
a token sequence.

(@)  Discuss in detail the advantages and disadvantages of this choice of repre-
sentation, and of the other possible representations. Assume a typical
Basic-style language processor, in which the user may interactively enter,
edit, or delete any command.

(b) How does the choice of representation influence the method analyze,
the method that loads a command into the code store, and the method that
edits a stored command?

Extend the Mini-Basic interpreter of Example 8.3 to deal with the following
extensions:

Command ::= ¥
|  perform Label to Label
|  while Expression Relational-Op Expression
do Command

The effect of ‘perform L; to L>" is to execute the commands labeled L
through L (where L; must not follow L»). This is a kind of parameterless pro-
cedure call.

The effect of ‘while E| R E; do C is to repeat the subcommand C as long as
the comparison ‘E; R E5’ yields true. C is restricted to be a primitive command
(i.e., it may not itself be a while-command).

Do these extensions lead you to reconsider the choice of representation for a
stored command (Exercise 8.6)?

Extend the Mini-Shell interpreter of Example 8.2 to deal with a new command.
call. This takes a single argument, a filename. The named file is expected to
contain a Mini-Shell script, whose commands are to be executed one after an-
other.

Suppose that Mini-Basic (Example 8.3) is to be replaced by a structured dialect
with similar expressive power. The syntax of commands is to become:

Command ::= Variable = Expression

|  read Variable

| write Variable

|  if Expression Relational-Op Expression
then Command* else Command* end

|  while Expression Relational-Op Expression
do Command* end

| stop
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Expressions, operators, and variables are unchanged, but labels are removed.
Write a recursive interpreter for this structured dialect.

The TAM interpreter (Section 8.3) sacrifices efficiency for clarity. For
example, the fetch/analyze/execute cycle could be combined and replaced by a
single switch-statement of the form:

switch ((instr = code[CP++]) .0op) {
case LOADop:

3

Another efficiency gain could be achieved by holding the top one or two stack
elements in simple variables, and possibly avoiding the unnecessary updating
of the stack pointer during a long sequence of arithmetic operations. (This is
effectively turning TAM into a register machine!)

Consider these and other possible improvements to the TAM interpreter, and
develop a more efficient implementation. Compare your version with the origi-
nal TAM interpreter, and measure the performance gain.




CHAPTER NINE

Conclusion

The subject of this book is programming language implementation. As we study this
subject, we should remember that implementation is only part of the programming
language life cycle, where it takes its place along with programming language design
and specification. In Section 9.1 we discuss the programming language life cycle,
emphasizing the interactions among design, specification, and implementation. We also
distinguish between cheap, low-quality implementations (prototypes) and high-quality
implementations.

This naturally leads to a discussion of quality issues in implementation. In previous
chapters we have concentrated on introducing the basic methods of compilation and
interpretation, and relating these to the source language’s specification. Correctness of
the implementation, with respect to the language specification, has been our primary
consideration. Quality of the implementation is a secondary consideration, although still
very important. The key quality issues are error reporting and efficiency. Sections 9.2
and 9.3 discuss these issues, as they arise both at compile-time and at run-time.

9.1 The programming language life cycle

Every programming language has a life cycle, which has some similarities to the well-
known software life cycle. The language is designed to meet some requirement. A
formal or informal specification of the language is written in order to communicate the
design to other people. The language is then implemented by means of language pro-
cessors. Initially, a prototype implementation might be developed so that programmers
can try out the language quickly. Later, high-quality (industrial-strength) compilers will
be developed so that realistic application programming can be undertaken.

As the term suggests, the programming language life cycle is an iterative process.
Language design is a highly creative and challenging endeavor, and no designer makes a
perfect job at the first attempt. The experience of specifying or implementing a new
language tends to expose irregularities in the design. Implementors and programmers
might discover flaws in the specification, such as ambiguity, incompieteness, or incon-
sistency. They might also discover unpleasant features of the language itself, features
that make the language unduly hard to implement efficiently, or unsatisfactory for
programming.

334
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In any case, the language might have to be redesigned, respecified, and reimple-
mented, perhaps several times. This is bound to be costly, i.e., time-consuming and ex-
pensive. It is necessary, therefore, to plan the life cycle in order to minimize costs.

Figure 9.1 illustrates a life cycle model that has much to recommend it. Design is
immediately followed by specification. (This is needed to communicate the design to
implementors and programmers.) Development of a prototype follows, and development
of compilers follows that. Specification, prototyping, and compiler development are
successively more costly, so it makes sense to order them in this way. The designer gets
the fastest possible feedback, and costly compiler development is deferred until the
language design has more or less stabilized.

I Specification '
A
Y

Compilers

~

y

Manuals,
textbooks

Figure 9.1 A programming language life cycle model.

9.1.1 Design

The essence of programming language design is that the designer selects concepts and
decides how to combine them. This selection is, of course, determined largely by the
intended use of the language. A variety of concepts have found their way into program-
ming languages: basic concepts such as values and types, storage, bindings, and abstrac-
tion; and more advanced concepts such as encapsulation, polymorphism, exceptions,
and concurrency. A single language that supports all these concepts is likely to be very
large and complex indeed (and its implementations will be large, complex, and costly).
Therefore a judicious selection of concepts is necessary.
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The designer should strive for simplicity and regularity. Simplicity implies that the
language should support only the concepts essential to the applications for which the
language is intended. Regularity implies that the language should combine these
concepts in a systematic way, avoiding restrictions that might surprise programmers or
make their task more difficult. (Language irregularities also tend to make
implementation more difficult.)

A number of principles have been discovered that provide useful guidance to the
designer:

* The type completeness principle suggests that no operation should be arbitrarily
restricted in the types of its operands. For instance, operations like assignment and
parameter passing should, ideally, be applicable to all types in the language.

* The abstraction principle suggests that, for each program phrase that specifies some
kind of computation, there should be a way of abstracting that phrase and parameter-
izing it with respect to the entities on which it operates. For instance, it should be
possible to abstract any expression to make a function, or (in an imperative language)
to abstract any command to make a procedure,

* The correspondence principle su ggests that, for each form of declaration, there should
be a corresponding parameter mechanism. For instance, it should be possible to take a
block with a constant definition and transform it into a procedure (or function) with a
constant parameter.

These are principles, not dogma. Designers often have to make compromises (for
example to avoid constructions that would be unduly difficult to implement). But at
least the principles help the designer to make the hard design decisions rationally and
fully conscious of their consequences.

The main purpose of this brief discussion has been to give an insight into why
language design is so difficult. Pointers to more extensive discussions of language
design may be found in Section 9.4.

9.1.2 Specification

A new language design exists only in the mind of the designer until it is communicated
to other people. For this purpose a precise specification of the language’s syntax and
semantics must be written. The specification may be informal, formal, or (most com-
monly) a hybrid.

Nearly all language designers specify their syntax formally, using BNF, EBNF or
syntax diagrams. These formalisms are widely understood and easy to use. Some older
languages, such as Fortran and Cobol. did not have their syntax formalized, and it is
noteworthy that their syntax is clumsy and irregular. Formal specification of syntax
tends to encourage syntactic simplicity and regularity, as illustrated by Algol (the
language for which BNF was invented) and its many successors. For example, the
carlier versions of Fortran had several different classes of expression, permissible in
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different contexts (assignment, array indexing, loop parameters); whereas Algol from
the start had just one class of expression, permissible in all contexts.

Similarly, formal specification of semantics tends to encourage semantic simplicity
and regularity. Unfortunately, few language designers yet attempt this. Semantic
formalisms are much more difficult to master than BNF. Even then, writing a semantic
specification of a real programming language (as opposed to a toy language) is a
substantial task. Worst of all, the designer has to specify, not a stable well-understood
language, but one that is gradually being designed and redesigned. Most semantic
formalisms are ill-suited to meet the language designer’s requirements, so it is not
surprising that almost all designers content themselves with writing informal semantic
specifications.

The advantages of formality and the disadvantages of informality should not be
underestimated, however. Informal specifications have a strong tendency to be inconsis-
tent or incomplete or both. Such specification errors lead to confusion when the langu-
age designer seeks feedback from colleagues, when the new language is implemented,
and when programmers try to learn the new language. Of course, with sufficient invest-
ment of effort, most specification errors can be detected and corrected, but an informal
specification will probably never be completely error-free. The same amount of effort
could well produce a formal specification that is at least guaranteed to be precise.

The very act of writing a specification tends to focus the designer’s mind on aspects
of the design that are incomplete or inconsistent. Thus the specification exercise
provides valuable and timely feedback to the designer. Once the design is completed,
the specification (whether formal or informal) will be used to guide subsequent
implementations of the new language.

9.1.3 Prototypes

A prototype is a cheap low-quality implementation of a new programming language.
Development of a prototype helps to highlight any features of the language that are hard
to implement. The prototype also gives programmers an early opportunity to try out the
language. Thus the language designer gains further valuable feedback. Moreover, since
a prototype can be developed relatively quickly, the feedback is timely enough to make
a language revision feasible. A prototype might lack speed and good error reporting; but
these qualities are deliberately sacrificed for the sake of rapid implementation.

For a suitable programming language, an interpreter might well be a useful
prototype. An interpreter is very much easier and quicker to implement than a compiler
for the same language. The drawback of an interpreter is that an interpreted program
will run perhaps 100 times more slowly than an equivalent machine-code program.
Programmers will quickly tire of this enormous inefficiency, once they pass the stage of
trying out the language and start to use it to build real applications.

A more durable form of prototype is an interpretive compiler. This consists of a
translator from the programming language to some suitable abstract machine code,
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together with an interpreter for the abstract machine. The interpreted object program
will run ‘only’ about 10 times more slowly than a machine-code object program.
Developing the compiler and interpreter together is still much less costly than
developing a compiler that translates the programming language to real machine code.
Indeed, a suitable abstract machine might be available ‘off the shelf’, saving the cost of
writing the interpreter.

Another method of developing the prototype implementation is to implement a
translator from the new language into an existing high-level language. Such a translation
is usually straightforward (as long as the target language is chosen with care). Clearly
the existing target language must already be supported by a suitable implementation.
This was precisely the method chosen for the first implementation of C++, which used
the cfront translator to convert the source program into C.

Development of the prototype must be guided by the language specification, whether
the specification is formal or informal. The specification tells the implementor which
programs are well-formed (i.e., conform to the language’s syntax and contextual
constraints) and what these programs should do when run.

9.1.4 Compilers

A prototype is not suitable for use over an extended period by a large number of
programmers building real applications. When it has served its purpose of allowing
programmers to fry out the new language and provide feedback to the language
designer, the prototype should be superseded by a higher-quality implementation. This
is invariably a compiler — or, more likely, a family of compilers, generating object code
for a number of target machines. Such a high-quality implementation is referred as an
industrial-strength compiler.

The work that went into developing a prototype need not go to waste. If the
prototype was an interpretive compiler, for example, we can bootstrap it to make a
compiler that generates real machine code (see Section 2.6).

Development of compilers must be guided by the langnage specification. A syntactic
analyzer can be developed systematically from the source language’s syntactic specifi-
cation (see Chapter 4). A specification of the source language’s scope rules and type
rules should guide the development of a contextual analyzer (see Chapter 5). Finally, a
specification of the source language’s semantics should guide the development of a code
specification, which should in turn be used to develop a code generator systematically
(see Chapter 7).

In practice, contextual constraints and semantics are rarely specified formally. If we
compare separately-developed compilers for the same language, we often find that they
are consistent with respect to syntax, but inconsistent with respect to contextual con-
straints and semantics. This is no accident, because syntax is usually specified formally,
and therefore precisely, and everything else informally, leading inevitably to misunder-
standing.
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9.2 Error reporting

All programmers make errors — frequently. A high-quality language processor assists
the programmer to locate and correct these errors. Here we examine detection and
reporting of both compile-time and run-time errors.

9.2.1 Compile-time error reporting

The language specification defines a set of well-formed programs. A minimalist view of
a compiler’s function is that it simply rejects any ill-formed program. But a good-quality
compiler should be more helpful.

As well as rejecting an ill-formed program, the compiler should report the location
of each error, together with some explanation. It should at least distinguish between the
major categories of compile-time error:

* Syntactic error: missing or unexpected characters or tokens. The error report might
indicate what characters or tokens were expected.

e Scope error: a violation of the language’s scope rules. The error report should
indicate which identifier was declared twice, or used without declaration.

o Type error: a violation of the language’s type rules. The error report should indicate
which type rule was violated, and/or what type was expected.

Ideally the error report should be self-explanatory. If this is not feasible, it should at
least refer to the appropriate section of the language specification.

If the compiler forms part of an integrated language processor, and thus the pro-
grammer can switch very easily between editing and compiling, it is acceptable for the
compiler to halt on detecting the first error. The compiler should highlight the erroneous
phrase and pass control immediately to the editor. The programmer can then correct the
error and reinvoke the compiler.

On the other hand, a ‘batch’ or ‘software tool” compiler — one intended to compile
the entire source program without interaction with the programmer — should detect and
report as many errors as it can find. This allows the programmer to correct several errors
after each compilation. This requirement has a significant impact on the compiler’s
internal organization. After detecting and reporting an error, the compiler should attempt
error recovery. This means that the compiler should try to get itself into a state where
analysis of the source program can continue as normally as possible. Unfortunately,
effective error recovery is difficult.

Example 9.1 Reporting syntactic errors

The following Triangle program fragment contains some common syntactic errors:
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let
var score: Integer;
var grade: Char

(1) var pass: Boolean
in
begin
wels
(2) if 50 <= score /\ score < 60 then
(3) grade := 'C';
4) pass = true
(5) else
end

These errors should be detected during parsing.

AL (1), the token *var’ is encountered unexpectedly. Clearly, the error is a missing
semicolon between the declarations, and the best error recovery is to continue parsing as
if the semicolon had been there.

After the assignment command at (3), a semicolon is encountered where ‘else’ was
expected. Here error recovery is more difficult. (Recall that the parser works in a single
pass through the source program. and has not yet seen the tokens after the semicolon.)
There are two reasonable ways in which the parser might attempt to recover at this
point:

(a) The parser might assume that the else-part of the if-command is missing, and
continue as if the if-command had been completely parsed. Given the above source
program, this error recovery would turn out badly: the parser would later and unex-
pectedly encounter the token ‘else’ at (5). and would spuriously report a
syntactic error at that point.

(b)  Alternatively, the parser might skip tokens in the hope of finding the expected
‘else’. Given the above source program, this error recovery would turn out rea-
sonably well: the parser would find the token ‘else’ at (5), and would then
resume parsing the if-command. The only drawback is that the parser would skip
the tokens ‘pass = true’, and thus would overlook the syntactic error there.

In contrast, given a different program where the ‘else’ really was missing, error
recovery (a) would turn out well, but (b) would turn out badly.

The expression at (2) illustrates another problem with error reporting. This
expression is syntactically well-formed, but the Triangle parser will treat this expression
as equivalent to ‘((50 <= score) /\ score) < 60" — not at all what the
programmer intended! Consequently, contextual analysis will report type errors in
connection with the operators */\" and ‘<’. The programmer’s actual mistake, however,
was the syntactic mistake of failing to parenthesize the expression properly.

|5
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Example 9.2  Reporting contextual errors

The following Triangle program fragment contains scope and type errors:

let
var phonenum: Integer;
var local: Boolean

in
begin
H if phonenum|[0] = '0' then
) locale := false
else
end

These errors should be detected during contextual analysis.

Consider the expression at (1). The phrase ‘phonenum[0]’ clearly violates the
indexing operation’s type rule, since phonenum is not of array type. But what error
recovery is appropriate? It is not at all obvious what type should be ascribed to
‘phonenum[0]’, to allow type checking to continue. If the type checker ascribes the
type int, for example, then at the next step it will find that the operands of ‘=" appear to
violate that operator’s type rule (one operand being int and the other char), and it will
generate a second error report, which is actually spurious. Fortunately, the result type of
‘=" does not depend on the types of its operands, so the type checker should obviously
ascribe the type bool to the expression ‘phonenum[0] = '0'’. At the next step the
type checker will find that this expression satisfies the if-command’s type rule.

At (2), there is an applied occurrence of an identifier, 1ocale, that has not been de-
clared, in violation of a scope rule. Again, what error recovery is appropriate? Suppose
that the type checker arbitrarily chooses int as the type of 1ocale. Subsequently the
type checker will find that the assignment command’s type rule appears to be violated
(one side being int and the other bool), and again it will generate a spurious error report.

O

To facilitate error recovery during type checking, it is useful for the type checker to
ascribe a special improper type, error-type, to any ill-typed expression. The type
checker can then ignore error-type whenever it is subsequently encountered. This
technique would avoid both the spurious error reports mentioned in Example 9.2.

As these examples illustrate, it is easy for a compiler to discover that the source
program is ill-formed, and to generate error reports; but it is difficult to ensure that the
compiler never generates misleading error reports. There is a genuine tension between
the task of compiling well-formed source programs and the need to make some sense of
ill-formed programs. A compiler is structured primarily to deal with well-formed source
programs, so it must be enhanced with special error recovery algorithms to make it deal
reasonably with ill-formed programs.
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Syntactic error recovery is particularly difficult. At one extreme, an over-ambitious
error recovery algorithm might induce an avalanche of spurious error reports. At the
opposite extreme, an over-cautious error recovery algorithm might skip a large part of
the source program and fail to detect genuine syntactic errors.

9.2.2 Run-time error reporting

Run-time error reporting is a completely different but equally important problem.
Among the more common run-time errors are:

* arithmetic overflow
= division by zero
= out-of-range array indexing

These errors can be detected only at run-time, because they depend on values computed
at run-time.'

Some run-time errors are detected by the target machine. For example, overflow
may result in a machine interrupt. But in some machines the only effect of overflow is to
set a bit in the condition code register, and the object program must explicitly test this
bit whenever there is a risk of overflow.

Other run-time errors are not detected by the machine at all, but instead must be
detected by tests in the object program. For example, out-of-range array indexing might
result in computing the address of a word that is not actvally part of the array. This is
usually not detected by the machine unless the computed address is outside the
program’s address space.

These examples illustrate only typical machine behavior. Real machines range from
one extreme, where no run-time errors are detected automatically, to the opposite
extreme, where all the more common run-time errors are detected automatically. The
typical situation is that some run-time errors are detected by hardware, leaving others to
be detected by software.

Where a particular run-time error is not detected by hardware, the compiler shoulc
generate code to test for the error explicitly. In array indexing, for example, the compiler
should generate code not only to evaluate the index but also to check whether it lies
within the array’s index range.

' If the language is dynamically typed, i.e., a variable can take values of different types a

different times, then type errors also are run-time errors. However, we do not conside
dynamically-typed languages here.
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Example 9.3 Detecting array indexing errors

The following Triangle program fragment illustrates array indexing:

let
var name: array 4 of Char;
var i: Integer

in
begin

() name[i] := ' ';
end
Assume that characters and integers occupy one word each, and that the addresses of

global variables name and i are 200 and 204, respectively. Thus name occupies words
200 through 203; and the address of name [i] is 200 + /, provided that 0 < i < 3.

The Triangle compiler does not currently generate index checks. The assignment
command at (1) will be translated to object code like this (omitting some minor details):

LOADL 48 — fetch the blank character

LOAD 204 — fetch the value of i

LOADL 200 — fetch the address of name [0]

CALL add — compute the address of name [1]
STORET — store the blank character at that address

This code is dangerous. If the value of i is out of range, the blank character will be
stored, not in an element of name, but in some other variable — possibly of a different
type. (If the value of 1 happens to be 4, then 1 itself will be corrupted in this way.)

We could correct this deficiency by making the compiler generate object code with
index checks, like this:

LOADL 48 — fetch the blank character

LOAD 204 — fetch the value of 1

LOADL 0 — fetch the lower bound of name

LOADL 3 — fetch the upper bound of name

CALL rangecheck - check that the index is within range
LOADL 200 - fetch the address of name [0]

CALL add — compute the address of name [1]
STORETI — store the blank character at that address

The index check is italicized for emphasis. The auxiliary routine rangecheck, when
called with arguments i, m, and n, is supposed to return i if m < i < n, or to fail
otherwise. The space cost of the index check is three instructions, and the time cost is
three instructions plus the time taken by rangecheck itself.

O
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Software run-time checks are expensive in terms of object-program size and speed.
Without them, however, the object program might overlook a run-time error, eventually
failing somewhere else, or terminating with meaningless results. And, let it be empha-
sized, if a compiler generates object programs whose behavior differs from the language
specification, it is simply incorrect. The compiler should, at the very least, allow the
programmer the option of including or suppressing run-time checks. Then a program’s
unpredictable behavior would be the responsibility of the programmer who opts to
suppress run-time checks.

Whether the run-time check is performed by hardware or software, there remains the
problem of generating a suitable error report. This should not only describe the nature of
the error (e.g., ‘arithmetic overflow’ or ‘index out of range’), but should also locate it in
the source program. An error report stating that overflow occurred at instruction address
1234 (say) would be unhelpful to a programmer who is trying to debug a high-level
language program. A better error report would locate the error at a particular line in the
source program.

The general principle here is that error reports should relate to the source program
rather than the object program. Another example of this principle is a facility to display
the current values of variables during or after the running of the program. A simple
storage dump is of little value: the programmer cannot understand it without a detailed
knowledge of the run-time organization assumed by the compiler (data representation,
storage allocation, layout of stack frames, layout of the heap, etc.). Better is a symbolic
dump that displays each variable’s source-program identifier, together with its current
value in source-language syntax.

Example 9.4 Reporting run-time errors

Consider the Triangle program fragment of Example 9.3. Suppose that an out-of-range
index is detected at (1). The following error report and storage dump are expressed
largely in object-program terms:

Array indexing error at instruction address 1234.
Data store at this point:

address content
200 74
201 97
202 118
203 97
204 10

This information is hard to uanderstand, to put it mildly. It is not clear which array
indexing operation failed. There is no indication that some of the words in the data store
constitute an array. There is no distinction between different types of data such as
integers and characters.
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The following error report and storage dump are expressed more helpfully in source-
program terms:

Array indexing error at line 45.
Data store at this point:

name - [le, van, 'V', 'a']
i = 10

Here the programmer can tell at a glance what went wrong.

(|

But how can the source-program line number be determined at run-time? One
possible technique is this. We dedicate a register (or storage cell) that will contain the
current line number. The compiler generates code to update this register whenever
control passes from one source-program line to another. Clearly, however, this
technique is costly in terms of extra instructions in the object program.

An alternative technique is as follows. The compiler generates a table relating line
numbers to instruction addresses. If the object program stops, the code pointer is used to
search the table and determine the corresponding line number. This technique has the
great advantage of imposing no time or space overheads on the object program. (The
line-number table can be stored separately from the object program, and loaded only if
required.)

The generation of reliable line-number information, however, is extremely difficult
in the presence of heavily-optimized code. In this case, the code generator may have
eliminated some of the original instructions, and substantially re-ordered others, making
it very difficult to identify the line number of a given instruction. In the worst case, a
single instruction may actually be part of the code for several different lines of source
code.

To generate a symbolic storage dump requires more sophisticated techniques. The
compiler must generate a ‘symbol table’ containing the identifier, type, and address of
each variable in the source program, and the identifier and entry address of each
procedure (and function). If the object program stops, using the symbol table each (live)
variable can be located in the data store. The variable’s identifier can be printed along
with its current value, formatted according to its type. If one or more procedures are
active at the time when the program stops, the store will contain one or more stack
frames. To allow the symbolic dump to cover local variables, the symbol table must
record which variables are local to which procedures, and the procedure to which each
frame belongs must be identified in some way. (See Exercise 9.16.)

This problem is compounded on a register machine, where a variable might be
located in a register and not in the store. It is also compounded for heavily-optimized
code, where several variables with disjoint lifetimes may share the same memory
location.
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9.3 Efficiency

When we consider efficiency in the context of a compiler, we must carefully distinguish
between compile-time efficiency and run-time efficiency. They are not the same thing at
all; indeed, there is often a tradeoff between the two. The more a compiler strives to
generate efficient (compact and fast) object code, the less efficient (bulkier and slower)
the compiler itself tends to become.

The most efficient compilers are those that generate abstract machine code, where
the abstract machine has been designed specifically to support the operations of the
source language. Compilation is simple and fast because there is a straightforward trans-
lation from the source language to the target language, with few special cases to worry
about. Such is the Triangle compiler used as a case study in this book. Of course, the
object code has to be interpreted, imposing a significant speed penalty at run-time.

Compilers that generate code for real machines are generally less efficient. They
must solve a variety of awkward problems. There is often a mismatch between the
operations of the source language and the operations provided by the target machine.
The target-machine operations are often irregular, complicating the translation. There
might be many ways of translating the same source program into object code, forcing
the compiler writer to implement lots of special cases in an attempt to generate the best
possible object code.

9.3.1 Compile-time efficiency

Let us examine a compiler from the point of view of algorithmic complexity. ldeally, we
would like the compiler to run in O(n) time,” where n is some measure of the source
program’s size (for example, the number of tokens). In other words, a 10-fold increase
in the size of the source program should result in a 10-fold increase in compilation time.
A compiler that runs in O(n?) time is normally unacceptable: a 10-fold increase in the
size of the source program would result in a 100-fold increase in compilation time! In
practice, O(n log n) might be an acceptable compromise.

If all phases of a compiler run in O(n) time, then the compiler as a whole will run in
O(n) time.” But if just one of the phases runs in O(n?2) time, then the compiler as a whole

The O-notation is a way of estimating the efficiency of a program. Let n be the size of the
program’s input. If we state that the program’s running time is O(n), we mean that its running
time is proportional to n. (The actual running time could be 100n or 0.01x.) Similarly, O(n log
) time means time proportional to n log n, O(n2) time means time proportional to n%, and so
on. In estimates of algorithmic complexity, the constants of proportionality are generally less
important than the difference between, for example, O(n) and O(n?).

Suppose that phase A runs in time an, and phase B in time bn (where a and b are constants).
Then the combination of these phases will run in time an + bn = (a + b)n, which is still O(n).
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will run in O(n?) time." In general, compilation time is dominated by the phase with the
worst time complexity.

The parsing, type checking, and code generation algorithms described in Chapters 4,
5, and 7 do in fact run in O(n) time. However, identification is often a weak link.

Assume that the number of applied occurrences of identifiers in the source program
is O(n), and that the average number of entries in the identification table is O(n). If
linear search is used, each identification will take O(n) time, so total identification time
will be O(n?). If instead some kind of binary search is used, each identification will take
O(log n) time, so total identification time will be O(n log n). With clever use of hashing
it is possible to bring each identification down to almost constant time, so total
identification time will be O(n), the ideal.

There are other weak links in some compilers. Some code transformation al gorithms
run in O(n?) time, as we shall see in the next subsection. An extreme case is the poly-
morphic type inference algorithm used in an ML compiler, which runs in 0(22") time in
pathological cases. (Fortunately these cases never arise in practice!)

9.3.2 Run-time efficiency

Let us now consider the efficiency of object programs, and in particular programs that
run on real machines. Perhaps the most problematic single feature of real machines is
the fact that they provide general-purpose registers. Computer architects provide
registers because they speed up object programs. But compilers have to work harder to
generate object programs that make effective use of the registers.

Example 9.5 Code generation for a register machine
The following Triangle command:
a := (b*c) - (d + (e*f))

would be translated to the following TAM code:

LOAD b
LOAD ¢
CALL mult
LOAD d
LOAD e
LOAD f

CALL mult

“ Suppose that phase A runs in time an, and phase B in time bn? (where a and b are constants).
Then the combination of these phases will run in time an + bn?. Even if « is much greater than
b, the second term will eventually dominate as n increases.
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CALL add
CALL sub
STORE a

As we saw in Chapter 7, a simple efficient code generator can easily perform this
translation. The code generator has no registers to worry about.

Now suppose that the target machine has a pool of registers and a typical one-
address instruction set. Now the command might be translated to object code like this:

LOAD R1 b

MULT R1 c
LOAD R2 d
LOAD R3 e
MULT R3 £

ADD R2 R3
SUB R1 R2
STORE R1 a

Although this is comparatively straightforward, some complications are already evident.
The code generator must allocate a register for the result of each operation. It musi
ensure that the register is not reused until that result has been used. (Thus R1 cannot be
used during the evaluation of ‘d + (e*f)’, because at that time it contains the unusec
result of evaluating ‘b*c’.) Furthermore, when the right operand of an operator is ¢
simple variable, the code generator should avoid a redundant joad by generating, for
example, ‘MULT R1 ¢’ rather than ‘LOAD R2 ¢’ followed by ‘MULT R1 R2’.

The above is not the only possible object code, nor even the best. One improvemen
is to evaluate ‘d + (e*£f)’ before ‘b*c’. A further improvement is to evaluate ‘ (e*f)
+ & instead of ‘d + (e*f)’, exploiting the commutativity of ‘+’. The combined effec
of these improvements is to save an instruction and a register:

LOAD R1 e
MULT R1 £
ADD Rl d
LOAD R2Z b
MULT R2 ¢
SUB R2 R1

STORE R2 a

The trick illustrated here is to evaluate the more complicated subexpression of a binary
operator first.

But that is not all. The compiler might decide to allocate registers to selectec
variables throughout their lifetimes. Supposing that registers R6 and R7 are thu
allocated to variables a and d, the object code could be further improved as follows:
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LOAD Rl e
MULT R1 £
ADD R1 R7
LOAD R6 b
MULT R6 ¢
SUB R6 R1

0

Several factors make code generation for a register machine rather complicated.
Register allocation is one factor. Another is that compilers must in practice achieve code
improvements of the kind ilfustrated above — programmers demand nothing less!

But even a compiler that achieves such improvements will still generate rather
mediocre object code (typically four times slower than hand-written assembly code). A
variety of algorithms have been developed that allow a compiler to generate much more
efficient object code (typically twice as slow as hand-written assembly code). These are
called code transformation (or code optimization’) algorithms. Some of the more
common code transformations are:

» Constant folding: 1f an expression depends only on known values, it can be evaluated
at compile-time rather than run-time.

e Common subexpression elimination: If the same expression occurs in two different
places, and is guaranteed to yield the same result in both places, it might be possible
to save the result of the first evaluation and reuse it later.

» Code movement: 1t a piece of code executed inside a loop always has the same effect,
it might be possible to move that code out of the loop, where it will be executed fewer
times.

Example 9.6  Constant folding

Consider the following Java program fragment:

static double pi = 3.1416;

double volume = 4/3 * pi * r * v * r;

The compiler could replace the subexpression ‘4/3 * pi’ by 4.1888. This constant
folding saves a run-time division and multiplication. The programmer could have
written ‘4 .1888 * r * r * r’ in the first place, of course, but only at the expense of
making the program less readable and less maintainable.

The following illustrates a situation where only the compiler can do the folding.

s

The more widely used term, code optimization, is actually inappropriate: it is infeasible for a
compiler to generate truly optimal object code.
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Consider the following Triangle program fragment:

type Date = record
y: Integer, m: Integer, d: Integer
end;
var hol: array 6 of Date

hol[2].m := 12

The relevant addressing formula is:

address[hol [2] .m] address[hol [2]]+ 1
addressfhol] +2x3 + 1

addressfholl] +7

(assuming that each integer occupies one word). Furthermore, if the compiler decide
that address[hol] = 20 (relative to SB), then address[hol[2] .m] can be folded 1
the constant address 27. This is shown in the following object code:

LOADL 12
STORE 27 [SB]

Address folding makes field selection into a compile-time operation. It even maks
indexing of a static array by a literal into a compile-time operation.
|

Example 9.7 Common subexpression elimination

Consider the following Triangle program fragment:

var x: Integer; var y: Integer; var z: Integer

(x-y) * (x-y+z)

Here the subexpression ‘x-y’ is a common subexpression. If the compiler takes 1
special action, the two occurrences of this subexpression will be translated into tv
separate instruction sequences, as in object code (a) below. But their results are guara
teed to be equal, so it would be more efficient to compute the result once and then coj
it when required, as in object code (b) below.

(a) LOAD x (b) LOAD x
LOAD y LOAD y
CALL sub CALL sub - computes the value of x-3
LOAD x LOAD -1[ST] - copies the value of x-y
LOAD y LOAD z
CALL sub CALL add
LOAD =z CALL mult
CALL add

CALL mult



Conclusion 351

Now consider the following Triangle program fragment:

type T = ...;

var a: array 10 of T; wvar b: array 20 of T
ali] := bli]

Here there is another, less obvious, example of a common subexpression. It is revealed
in the addressing formulas fora[i] andb[i]:

addressfla[1]]
address[b[1i1]

address[a] + (i X 4)
address[b] + (i X 4)

where i is the value of variable 1, and where we have assumed that each value of type T
occupies four words.

The common subexpression ‘x-y’ could have been eliminated by modifying the
source program. But the common subexpression ‘i X 4’ can be eliminated only by the
compiler, because it exists only at the target machine level.

O

Example 9.8 Code movement

Consider the following Triangle program fragment:

var name: array 3 of array 10 of Char

i := 0;
while i < 3 do
begin
j = 0;
while j < 10 do
begin name(i] [j] := ' '; J := j + 1 end;
i :=1 + 1
end

The addressing formula for name [1] [J] is:
address[name (1] [J11] = address[name] + (i X 10) +j

(assuming that each character occupies one word). A straightforward translation of this
program fragment will generate code to evaluate address[name] + (i x 10) inside the
inner loop. But this code will yield the same address in every iteration of the inner loop,
since the variable i is not updated by the inner loop.

The object program would be more efficient if this code were moved out of the inner
loop. (It cannot be moved out of the outer loop, of course, because the variable i is
updated by the outer loop.)

O



352 Programming Language Processors in Java

Constant folding is a relatively straightforward transformation, requiring only local
analysis, and is performed even by simple compilers. For example, the Triangle
compiler performs constant folding on address formulas.

Other code transformations such as common subexpression elimination and code
movement, on the other hand, require nontrivial analysis of large parts of the source
program, to discover which transformations are feasible and safe. To ensure that
common subexpression elimination is safe, the relevant part of the program must be
analyzed to ensure that no variable in the subexpression has been updated between the
first and second evaluations of the subexpression. To ensure that code can be safely
moved out of a loop, the whole loop must be analyzed to ensure that the movement does
not change the program’s behavior.

Code transformation algorithms always slow down the compiler, in an absolute
sense, even when they run in O(n) time. But some of these algorithms, especially ones
that require analysis of the entire source program, may consume as much as O(n?) time.

Code transformations are only occasionally justified. During program development,
when the program is compiled and recompiled almost as often as it is run, fast compil-
ation is more important than generating very efficient object code. It is only when the
program is ready for production use, when it will be run many times without recompil-
ation, that it pays to use the more time-consuming code transformation algorithms.

For an industrial-strength compiler, a sensible compromise is to provide optional
code transformation algorithms. The programmer (who is the best person to judge) can
then compile the program without code transformations during the development phase,
and can decide when the program has stabilized sufficiently to justify compiling it with
code transformations.

9.4 Further reading

More detailed discussions of the major issues in programming language design and
specification, and their interaction, may be found in the concluding chapters of the
companion textbooks by Watt (1990, 1991). Interesting accounts of the design of a
number of major programming languages — including Ada, C, C++, Lisp, Pascal,
Prolog, and Smalltalk — may be found in Bergin and Gibson (1996).

A formal specification of a programming language makes a more reliable guide to
the implementor than an informal specification. More radically, it might well be feasible
to use a suitable formal specification of a programming language to generate an imple-
mentation automatically. A system that does this is called a compiler generator.
Development of compiler generators has long been a major goal of programming
languages research.

Good-quality compiler generators are not yet available, but useful progress has been
made. From a syntactic specification we can generate a scanner and parser, as described
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in Chapters 3 and 4 of Aho er al. (1985). The idea of generating an interpreter from a
formal semantic specification is explored in Sections 4.4 and 8.4 of Watt (1991).
Generating compilers from semantic specifications is the hardest problem. Lee (1989)
surveys past efforts in this direction, which have succeeded in generating only poor-
quality compilers.

A large variety of syntactic error recovery methods have been proposed and used in
practice. One method, which is particularly suitable for use in conjunction with a
recursive-descent parser, is described in Welsh and McKeag (1980).

Code transformation is a major topic in compilers. A detailed account is beyond the
scope of this textbook. Instead, see the very extensive account in Chapter 10 of Aho et
al. (1985). Although code transformation is now regarded as an advanced topic, surpris-
ingly it was one of the first topics to engage the attention of compiler writers. In the
1950s, the writers of the first Fortran compiler went to extraordinary lengths to generate
efficient object code, perceiving that this was the only way to attract hard-bitten
assembly-language programmers to Fortran. The resulting compiler was noteworthy
both for its Byzantine compiling algorithms and for its remarkably good object code!

Fortunately, our understanding of compiling algorithms — and of programming
language design and specification — has developed a long way since those early days. In
this textbook, and in its companions, we have tried to convey this understanding to a
wide readership. We hope we have succeeded!

Exercises

9.1 Obtain a sample of ill-formed programs. (A first programming course should
be a good source of such programs!) Compile them, and study the error reports.
Does the compiler detect every error, and report it accurately? Does the com-
piler generate any spurious error reports?

9.2 Write a critical account of your favorite language processor’s reporting of run-
time errors and its diagnostic facilities. Does it detect every run-time error?
Does it report errors in source-program terms? Does it provide a symbolic
diagnostic facility?

93 Obtain a sample of well-formed programs, varying in size. Using your favorite
compiler, measure and plot compilation time against_source program size (#).
Do you think that the compiler takes O(n) time, O(n log n) time, or worse?

9.4 Obtain a sample of working programs. Using a compiler with a code transfor-
mation option, measure these programs’ running time with and without code
transformation. (If the compiler has several ‘levels’ of code transformation, try
them all.)
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9.5* Consider the following Triangle program fragment:

var a: array ... of Integer
i1 :=m-1; j := n; pivot := al[n];
while i < j do
begin
i := 1+ 1; while al[i] < pivot do i := 1 + 1;
j := 3 - 1; while al[j] > pivot do j := J - 1;
if i < j then
begin
t := alil; ali] := aljl; aljl := ¢t
end
end;
t = afil; aflil := alnl; aln] := t

(a) Find out the object code that would be generated by the Triangle
compiler.

(b) Write down the object code that would be generated by a Triangle com-
piler that performs code transformations such as constant folding,
common subexpression elimination, and code movement.

Projects with the Triangle language processor

All of the following projects involve modifications to the Triangle language processor,
so you will need to obtain a copy. (It is available from our Web site. See page xv of the
Preface for downloading instructions.)

Nearly every project involves a modification to the language. Rather than plunging
straight into implementation, you should first specify the language extension. Do this by
modifying the informal specification of Triangle in Appendix B, following the same
style.

9.6**  Extend Triangle with additional loops as follows.
(a) A repeat-command:

repeat C until E

is executed as follows. The subcommand C is executed, then the expres-
sion E is evaluated. If the value of the expression is true, the loop termi-
nates, otherwise the loop is repeated. The subcommand C is therefore
executed at least once. The type of the expression E must be Boolean.

(b) A for-command:

for I from E; to E; do C
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is executed as follows. First, the expressions E; and E, are evaluated,
yielding the integers m and n (say), respectively. Then the subcommand C
is executed repeatedly, with identifier / bound in successive iterations to
each integer in the range m through n. If m > n, C is not executed at all.
(The scope of I is C, which may use the value of / but may not update it.
The types of E} and E) must be Integer.) Here is an example:

for n from 2 to m do
if prime(n) then
putint(n)
Extend Triangle with a case-command of the form:

case E of

ILy: Cy;
IL,: Cg;
else:

This command is executed as follows. First E is evaluated; then if the value of
E matches the integer-literal IL;, the corresponding subcommand C; is
executed. If the value of E matches none of the integer-literals, the
subcommand Cy is executed. (The expression E must be of type Integer,
and the integer-literals must all be distinct.) Here is an example:

case today.m of

2: days := 1f leap then 29 else 28;
4: days := 30;
6: days := 30;

9: days := 30;
11: days := 30;
elgse: days := 31
Extend Triangle with an initializing variable declaration of the form:

var [ := F

This declaration is elaborated by binding / to a newly created variable. The
variable’s initial value is obtained by evaluating E. The lifetime of the variable
is the activation of the enclosing block. (The type of I will be the type of E.)

Extend Triangle with unary and binary operator declarations of the form:
func O (I;: T7) : T ~ E
func O (I1: Ty, Ih: T) : T ~ E

Operators are to be treated like functions. A unary operator application ‘O E’ is
to be treated like a function call ‘O (E)’, and a binary operator application ‘E,
O Ey’ is to be treated like a function call ‘O (E,, Ep)’ .
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Here are some examples:

func -- (i: Integer) : Integer ~ 0 - n;

func ** (b: Integer, n: Integer) : Integer ~
ifn=20
then 1
elsen * (b ** (n-1)) ! assuming that n > 0

(Notes: The Triangle lexicon, Section B.8, already provides a whole class of
operators from which the programmer may choose. The Triangle standard envi-
ronment, Section B.9, already treats the standard operators ‘+’, ‘=, ‘*’, etc.,
like predeclared functions.)

9.10%* Replace Triangle’s constant and variable parameters by value and result
parameters. Design your own syntax.

9.11%* Extend Triangle with enumeration types. Provide a special enumeration type
declaration of the form:

enum type I ~ (I}, ..., I,)

which creates a new and distinct primitive type with n values, and respectively
binds the identifiers /i, ..., and [, to these values. Make the generic operations
of assignment, ‘=", and *\=" applicable to enumeration types. (They are appli-
cable to all Triangle types.) Provide new operations of the form ‘succ E’ (suc-
cessor) and ‘pred E’ (predecessor), where succ and pred are keywords.

9.12*%* Extend Triangle with a new family of types, string s, whose values are
strings of exactly n characters (n > 1). Provide string-literals of the form
"c1...cy". Make the generic operations of assignment, ‘=", and ‘\=" applicable
to strings. Provide a new binary operator ‘<<’ (lexicographic comparison). Fi-
nally, provide an array-like string indexing operation of the form ‘V[E]’,
where V names a string value or variable. (Hint: Represent a string in the same
way as a static array.)

Or:

Extend Triangle with a new type, String, whose values are character strings
of any length (including the empty string). Provide string-literals of the form
"cy...cy" (n20). Make the generic operations of assignment, ‘=", and ‘\=" ap-
plicable to strings. Provide new binary operators ‘<<’ (lexicographic compari-
son) and ‘++’ (concatenation). Finally, provide an array-like string indexing
operation of the form ‘V[E]’, and a substring operation of the form
‘VIE|:E;]1’, where V names a string value or variable. But do not permit
string variables to be selectively updated. (Hint: Use an indirect representation
for strings. The handle should consist of a length field and a pointer to an array
of characters stored in the heap. In the absence of selective updating, string
assignment can be implemented simply by copying the handle.)
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9.13** Extend Triangle with recursive types. Provide a special recursive type declar-

9.14%*

ation of the form:
rec type I ~ T

where the type-denoter T may contain applied occurrences of 7. (Typically, T
will be a record type containing one or more fields of type /.) Every recursive
type is to include a special empty value, denoted by the keyword nil. Do not
permit variables of recursive types to be selectively updated. Example:

rec type IntList ~
record head: Integer, tail: IntList end;

func cons (n: Integer, ns: IntList): IntList ~
{head ~ n, tail ~ ns};

proc putints (ns: IntList) -~
if ns \= nil then
begin
putint (ns.head); put(' ');
putints(ns.tail)
end;

var primes: IntList
primes := cons (2, cons(3, cons(5,

cons(7, cons (11, nil)))));
putInts (primes)

(Hint: See Section 6.1.6 for a suggested indirect representation of recursive
types. In the absence of selective updating, assignment can be implemented
simply by copying the handle.)

Extend Triangle with packages.
(a) First make package declarations of the form:
package I ~ D end

This declaration is elaborated as follows. 7 is bound to a package of enti-
ties declared in D. The packaged entities may be constants, variables,
types, procedures, functions, or any mixture of these. A packaged entity
declared with identifier 7, is named /$1, outside the package declaration.
Example: .

package Graphics -~

type Point -~
record h: Integer, v: Integer end;

func cart (x: Integer, y: Integer): Point ~
{h ~x, v ~ vy};
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D.15%*

9.16%*

9.17%*

9.18%*

proc movehoriz (dist: Integer, var p: Point) ~
p-h := p.h + dist

end;

var z: Graphics$Point

Z := GraphicsS$cart(3, 4);
Graphics$movehoriz (7, z)

(b)  Further extend Triangle with package declarations of the form:
package [/ ~ D; where D; end

A declaration of this form supports information hiding. Only the entities
declared in Dy are visible outside the package. The entities declared in D>
are visible only in D;.

Modify the Triangle language processor to perform run-time index checks.
wherever necessary. (Hint: Add a new primitive routine rangecheck to
TAM, as suggested in Example 9.3.)

Modify the Triangle language processor to produce run-time error reports and
symbolic dumps along the lines illustrated in Example 9.4. You will have to
modify both the compiler and the interpreter. (Hint: First, restrict your attention
to global variables of primitive type. Then deal with procedures and local vari-
ables. Finally, deal with variables of composite type.)

Modify the Triangle compiler to perform constant folding wherever possible.
Modify the Triangle compiler to perform code movement in the following
circumstances. Suppose that in the following loop:

while ... do ... E ...

the (sub)expression E is invariant, i.e., it does not use the value of any variable
that is updated anywhere in the loop. Then transform the loop to:

let const [ ~ E
in
whitlier o dol 5T ..

where / is some identifier not used elsewhere in the loop. (Hint: Implement this
by a transformation of the decorated AST representing the source program.)
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Answers to Selected Exercises

Specimen answers to about half of the exercises are given here. Some of the answers are
given only in outline.

Answers 1

1.1

14

1.5

Other kinds of language processor: syntax checkers, cross-referencers, pretty-
printers, high-level translators, program transformers, symbolic debuggers, etc.

Mini-Triangle expressions: (a) and (e) only. (Mini-Triangle has no functions,
no unary operators, and no operator ‘>=".)

Commands: (f) and (j) only. (Mini-Triangle procedures have exactly one pa-
rameter each, and there is no if-command without an else-part.)

Declarations: (1), (m), and (o). (Mini-Triangle has no real-literals, and no multi-
ple variable declarations.)

AST:

SequentialCommand
L

r
WhileCommand

AssignCommand AssignCommand

VnameExpr. l Int.Expr. VnameExpr.

SimpleV. SimpleV.
SimpleV. SimpleV.

Ident. Ident. IntLit. Ident. Ident.

b n O b faise

359
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1.6 The value written is 10.
Answers 2
2.2 (a) Compiling and (b) running a Triangle program:
# : g :
TAM
TAM
M
M
=
(c) Disassembling the object program:
P
TAM [ TAM — TAL
M
M
The purpose of the disassembler is to allow the programmer to read the
compiler’s object code.
24 (a) Compiling the TAM interpreter:

TAM TAM
(e C > M M
M
M
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(b) Compiling the Pascal compiler:

Pascal — TAM
C

(c)

TAM
TAM
M

M
S S

2.8 Strategy 1: Extend the C-into-RTL translator to become a C+-into-RTL trans-
lator, and compile it. Composed with the RTL-into-M translator, this gives a
two-stage C+ compiler (similar to the given C compiler):

Strategy 2: Write a C+-into-C translator (a preprocessor) in C, and compile it.
Composed with the two-stage C-into-M compiler, this gives a three-stage C+
compiler:

Strategy 2 requires more work, because the preprocessor must not only analyze
the C+ source program, but also generate a C object program (requiring good
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2.9

layout if intended to be readable). Moreover the resulting compiler will be
slower, being three-stage rather than two-stage. The advantage of strategy 2 is
that the resulting compiler will be more modular: any improvements in the C-
into-RTL translator will benefit the C+ compiler as well as the C compiler.

Write an initial version of the Utopia-1 compiler in C, and compile it using the
C compiler:

Utopia-1 — M

Then rewrite the Utopia-1 compiler in Utopia-1 itself, and compile it using the
initial version:

Utopia-1 - M

Utopia-1{ Utopia-1 — M [

Extend the Utopia-1 compiler to become a Utopia-2 compiler, still expressed in
Utopia-1. Compile it using the Utopia-1 compiler:

Utopia-2 - M

Utopia-1| Utopia-1 — M |

Extend the Utopia-2 compiler to become a Utopia-3 compiler, still expressed in
Utopia-1. Compile it using the Utopia-1 compiler:

Utopia-3 - M

Utopia-1{ Utopia-1 — M

(Alternatively, the Utopia-3 compiler could be written in Utopia-2.)
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Answers 3

33 The contextual errors are (i) ‘Logical’ is not declared; (ii) the expression of
the if-command is not of type bool; and (iii) ‘ves’ is not declared:

Program
LetCommand
|
[ |
SequentialDeclaration IfCommand
1 | 1
AssignCommand AssignCommand
VarDeclaration SimpleV. BinaryExpression : bool
: bool
VnameExpy. VnameExpr. Int.Expr. SimpleV.
:int s int rint
— | I
SimpleT. SimpleV. SimpleV. SimpleV.
l | :int ' :int : bool
Ident.  Ident. Ident. Ident. Ident. Op. IntLit. Ident. Ident.
<‘;1 Logical i b 1 = O b yés
35 In brief, compile one subprogram at a time. After parsing a subprogram and

constructing its AST, perform contextual analysis and code generation on the
AST. Then prune the AST: replace the subprogram’s body by a stub, and retain
only the part(s) of the AST that will be needed to compile subsequent calls to
the subprogram (i.e., its identifier, formal parameters, and result type if any).

The maximum space requirement will be for the largest subprogram’s AST,
plus the pruned ASTs of all the subprograms.

3.6 This restructuring would be feasible. It would be roughly similar to Answer
3.5, although the interleaving of syntactic analysis, contextual analysis, and
code generation would be more complicated.

Answers 4

4.3 After repeated left factorization and elimination of left recursion:

Numeral = Digits (. Digits | €) (e Sign Digits | £)
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Digits == Digit Digit*

4.4 (ay {C,J],P}
(b {0,1,2,a,b}
(c) startersDigit] = starters{ Digits] = startersfNumeral] = {0, 1, 2, 3}
(d) srarters[Subject] = {1, a, the}; starters[Object] = {me, a, the}.

4.9 Parsing methods (with enhancements italicized):

private void parseCommand () {
int expval = parseExpression();
accept('=');
print (expval);

}

private int parseExpression () {
int expval = parseNumeral () ;

while (currentChar == '+'
|| currentChar == '-'
| | currentChar == '*') {
char op = currentChar;
acceptIt();

int numval = parseNumeral ();
switch (op) {

case '+': expval += numval; break;
case '-': expval -= numval; break;
case '*': expval *= numval; break;
}

}

return expval;

}

private int parseNumeral () {
int numval = parseDigit();
while (igDigit (currentChar))
numval = 10*numval + parseDigit():;
return numval;

}
private byte parseDigit () {
if ('0' <= currentChar && currentChar <= '9')
byte digval = currentChar - '0°';

currentChar = nextinput character;
return digval;

} else
report a lexical error
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4.11  (a) Refine ‘parse X| Y to:

if (currentToken.kind isin starters[X])
parse X

else if (currentToken.kind isin starters[Y])
parse Y

else
report a syntactic error

This is correct if and only if starters[X] and starters[[ Y] are disjoint.
(b) Refine ‘parse [X]’ to:

if (currentToken.kind isin startersX])
parse X

This is correct if and only if starters[X] is disjoint from the set of tok
that can follow [X] in this particular context.

(c) Refine ‘parse X*’ to:

do
parse X
while (currentToken.kindis in starters[X]) ;

This is correct if and only if starters[X] is disjoint from the set of tok
that can follow X in this particular context.

4.12 After left factorization:

single-Command ::=
| if Expression then single-Command
(else single-Command | €)
|

The tokens that can follow a single-command are {else, end}. This set is
disjoint from starters[else single-Command] = {else}, so the gramma
not LL(1). (In fact, no ambiguous grammar is LL(1).)

The parsing method obtained by converting this production rule would be:

private void parseSingleCommand () {
switch (currentToken.kind) {

case Token.IF: {
acceptIt();
parseExpression () ;
accept (Token.THEN) ;
parseSingleCommand () ;
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if (currentToken.kind == Token.ELSE) {
acceptIt():;
parseSingleCommand () ;

Given (4.34) as input, parseSingleCommand would accept ‘if E; then’,
and then call itself recursively. The recursive activation of parseSingle-
Command would accept ‘if E, then C| else C,’, and then return. The
original activation would then also return.

This behavior is exactly what Pascal and C specify.

4.14 After eliminating left recursion:

Expression := secondary-Expression (add-Operator
secondary-Expression)*
secondary-Expression = primary-Expression (mult-Operator

primary-Expression)*
Parsing procedures (with AST enhancements in italics):

private Expression parseExpression () {
Expression elAST =
parseSecondarvExpression() ;
while (currentToken.kind ==
Token.ADDOPERATOR) {
Operator opAST = parseAddOperator();
Expression e2AST =
parseSecondaryExpression ();
elAST = new BinarvExpression|(
elAST, opAST, e2ZAST);
}
return elAST;
}

private Expression parseSecondaryExpression () {
Expression elAST = parsePrimaryExpression();
while (currentToken.kind ==
Token .MULTOPERATOR) {
Operator opAST = parseMultOperator();
Expression e2AST =
parsePrimaryExpression|() ;
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elAST = mew BinaryvExpression(
elAST, opAST, eZ2AST);

}
return elAST;

}
Procedure parsePrimaryExpression would be similar to the corre
sponding method in Example 4.12,
(a) Define an abstract class AST together with concrete subclasses Nonter.

minalAST and TerminalAST:

public abstract class AST
public byte tag;

public static final byt / /  tag values

IDENTIFIER = 0,
INTLITERAL = 1,
OPERATOR = 2,
PROGRAM = 3,
ASSIGNCOMMAND = -4,
CALLCOMMAND = 5,
CONSTDECLARATION = 15,
VARDECLARATION = 16,
SEQDECLARATION = 17,
SIMPLETYPEDENOTER = 18;

}
PILTLITTLTIL I I T T 07700770707 10077010771077117

public class NonterminalAST extends AST {
public AST[] children;

public NonterminalAST (byte tag,
AST[] children) {
this.tag = tag; this.children = children;

}

LIELTITIT LI L T 0T R 7 i i1 7770 0711001117

public class TerminalAST extends AST {
public String spelling;

public TerminalAST (byte tag,
String spelling) {
this.tag = tag; this.spelling = spelling;
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(b) To display an AST:

public abstract class AST {

public void display (byte level);
}

LIL1ILT7 7777777777777 77777777777070777777777777

public class NonterminalAST extends AST {

public void display (byte level) {
for (int 1 = 0; i < level; i++)
print(" ");
switch (this.tag) {
case AST.PROGRAM:
println("Program"); break;
}
for (int 1 = 0;
1 < this.children.length; i++)
this.children[i] .display(level+1);

}
LETPITI7 000077770 77707770777777777777777777777

public class TerminalAST extends AST {

public void display (byte level) {
for (int 1 = 0; i < level; i++)
print (" ");
switch (this.tag) {
case AST.IDENTIFIER:
print ("Identifier "); break;
}
println(this.spelling);

}

4.18 This lexical grammar is ambiguous. The scanning procedure would turn «
follows:

private byte scanToken () {
switch (currentChar) {
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case 'a': case 'b': case 'c': case 'd':

case 'y': case 'z':
takeIt();
while (isLetter (currentChar)
| isDigit (currentChar))
takeIt();
return Token.IDENTIFIER;

case 'i':
takeIt(); take('f');
return Token.IF;
case 't':
takeIt(); take('h'); take('e'); take('n');

return Token.THEN;

case 'e':
takeIt(); take('l'); take('s'); take('e'):
return Token.ELSE;

}

This method will not compile. Moreover, there is no reasonable way to fix it.

Answers 5

5.2

5.3

One possibility would be a pair of subtables, one for globals and one for locals.
(Each subtable could be an ordered binary tree or a hash table.) There would
also be a variable, the current level, set to either global or local. Constructor
IdentificationTable would set the current level to global, and would
empty both subtables. Method enter would add the new entry to the global or
local subtable, according to the current level. Method retrieve would search
the local subtable first, and if unsuccessful would search the global subtable
second. Method openScope would change the current level to local. Method
closeScope would change it to global, and would also empty the local
subtable.

Constructor IdentificationTable would make the stack contain a single
empty binary tree. Method enter would add the new entry to the tormost bi-
nary tree. Method retrieve would search the binary trees in turn, starting
with the topmost, and stopping as soon as it finds a match. Method open-
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5.9 Undecorated AST:

TypeDeclaration TypeDeclaration
' |
PointerTypeD. RecordTypeDenoter
FieldList
Field Field
SimpleT. SimpleT. SimpleT.

Ident. Ident. Ident. Ident. Ident. Ident. Ident.
IntList IntNode IntNode hd Integer t1 IntList

After elimination of type identifiers:

TypeDeclaration TypeDeclaration
— '
PointerTypeD.
L
RecordTypeDenoter
FieldList
Field Field
1
Ident. Ident.  Ident. int Ident. J
LN s
IntList IntNode hd £l

The AST has been transformed to a directed graph, with the mutually recursive
types giving rise to a cycle.

The complication is that the equals method must be able to compare two
(possibly cyclic) graphs for structural equivalence. It must be implemented
carefully to avoid nontermination. '

5.10 Consider the function call ‘7 (E)’. Check that / has been declared by a
function declaration, say ‘func I (I’: T°) : T ~ E”. Check that the type of
the actual parameter E is equivalent to the formal parameter type T". Infer that
the type of the function call is 7.
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Answers 6

6.3

6.5

6.6

6.8

Advantage of single-word representation:

* It is economical in storage.

Advantages of double-word representation:

« It is closer to the mathematical (unbounded) set of integers.

* Overflow is less likely.

(a)

fregl'a'l 9 pixel [red] 1
freql{'b’] 3 pixel[orange] 15
freqgql'c'] 4 pixel [yellow] 3
pixel [green]

pixel [blue] 0

freq('z'] Q

(b) Every Tipdex has a minimum value, min Tipdex; @ maximum value, 7
Tindex; and an ord function that maps the values of the type
consecutive integers. Thus:

size T = (u-1+1)Xsize Telem
address[ a[01] = address a — (I X size Telem)
address[ alil] = address[ al0]1] + (ord (i) X size Telem)

where | = ord(min Tipdex) and u = ord(max Tipdex)-

For two-dimensional arrays:

size T = mXxnxsize Telem
address ali] [j1] = address a + (i X (n X size Telem)) +
¢ x size Telem)

Make the handle contain the lower and upper bounds in both dimensions,
well as a pointer to the elements. Store the elements themselves row by row (
in Example 6.6). If [, u, [”, and u” are the values of Eq, E,, E3, and E4, respe
tively, then we get:
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a(l,l”)
all,I’'+1)
row [
a(l,u’)
origin . > a(0,0)
lower bound 1 l
a { upper bound 1 U
lower bound 2 I
upper bound 2 U alu,l’)
alu, '+1)
handle —_—
| alu,u’)

elements of type Telem

6.11 (a) Evaluate subexpression ‘1 - (¢ * 2)’ before ‘a * b’:

LOAD R1 ¢
MULT R1 #2
LOAD R2 #1
SUB R2 RI1
LOAD R1 a
MULT R1 b
ADD R1 R2

(b) Save the accumulator’s contents to a temporary location (say temp)
whenever the accumulator is needed to evaluate something else:

LOAD ¢
MULT #2
STORE temp
LOAD #1

SUB temp
STORE temp
LOAD a
MULT b
ADD temp

(In general, more than one temporary location might be needed.)

6.13 Address of global variable v; is:
address v; = size Ty + ... + size T;_;

Only the addresses allocated to the variables are affected by the order of the
variable declarations. The net behavior of the object program is not affected.
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6.16

6.17

Let each frame consist of a static part and a dynamic part. The static part
accommodates variables of primitive type, and the handles of dynamic arrays.
The dynamic part expands as necessary to accommodate elements of dynamic
arrays. The frame containing v would look like this:

static link L link
dynamic link [
return address data
origin - static
v 3§ lower bound 1 \ part of
upper bound n frame
4
v[1] J
elements { v[2] dynamic
of v part of
frame
vin]
)

Since everything in the static part is of constant size, the compiler can
determine each variable’s address relative to the frame base. This is not true for
the dynamic part, but the array elements there are always addressed indirectly
through the handles.

There are three cases of interest. If n = m+1, S is local to the caller. If n =m, S
is at the same level as the caller. If n < m, S encloses the caller.

(a) On call, push S’s frame on to the stack. In all cases, set Dn to point to the
base of the new frame. (Nore: If n < m, D(n+1), ..., and Dm become
undefined.)

(b) On return, pop S’s frame off the stack. If n = m+1, do nothing else. If n =
m, reset Dm to point to the base of the (now) topmost frame. If n < m,
reset other display registers using the static links: D(m-1) « content
(Dm); ...; Dn « content (D(n+1)). (Note: If n = m+1, Dn becomes
undefined.)

There is no need to change DO, D1, ..., D(n—1) at either the call or the return,
since these registers point to the same frames before, during, and after the acti-
vation of §.

Advantages and disadvantages (on the assumption that DO, D1, etc., are all true
registers):

*« Nonlocal variables can be accessed as efficiently as local or global variables.




Answers to Selected Exercises 37

* The display registers must be updated at every call and return.

* The caller must reset the display registers after return, since S does not know
where it was called from, i.e., it does not know 1.

* Complications arise when § is an unknown routine (e.g., an argument), be-
cause then the caller does not know n.

6.19 (a)
Stack machine code Register machine code
. LOAD a LOAD R1 a
LOAD b LOAD R2 b
LOAD ¢ LOAD R3 ¢
CALL £ CALL i
(b)
LOAD a LOAD Rl a
CALL ¢ CALL g
STORE RO temp
LOAD b LOAD R1 b
LOAD ¢ LOAD R2 ¢
CALL h CALL h
LOAD R2 RO
LOAD d LOAD R3 d
LOAD 'R1 temp
CALL f CALL £

6.23 The following algorithm uses an address translation table, in which each entry
(a, a”) consists of a heap variable’s old address a together with its new address
a” after compaction.

Procedure to compact the heap:
calculate the new address of all heap variables;
move and adjust all heap variables;
adjust the heap top HT;
adjust all pointers in the stack.

Procedure to calculate the new address of all heap variables:
set the current new address newAddr to HB;
for each heap variable hv, in order of distance from HB:
subtract the size of hv from newAddr:
add an entry for (address of hv, newAddr) to the table.
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Procedure to move and adjust all heap variables:
for each heap variable hv, in order of distance from HB:
for each pointer p in hv:
find an entry (p. q) in the table;
replace p by q;
find an entry (address of hv, r) in the table;
copy hv to address r.

Procedure to adjust all pointers in the stack:
for each pointer p in the stack:
find an entry (p. g) in the table;
replace p by q.

This algorithm assumes that the heap variables are linked (by hidden fields) i

order of increasing distance from HB.

Answers 7

7.1

7.2

Code template (7.8¢) gives rise to object code in which one jump instruction i
executed per iteration. The code template of Exercise 7.1 gives rise to objec
code in which two jump instructions are executed per iteration, which i

slower.

The code template of Exercise 7.1 is commonly used because it is suitable fo

one-pass compilation.

(@)  execute[Vy , Vo :=E,| , 5] =
evaluate E|
evaluate E>
assign Vs
assign V),

(b) execute|C, , C5] =
execute C)
execute C

(c) execute]| 1 E then C| =
evaluate E
JUMPIF (0) g
execute C
g:

(d) execute|repeat Cuntil E] =
g: execute C
evaluate E
JUMPIF (0) g



7.3

7.5

Answers to Selected Exercises 3

(e) execute[repeat C;while Edo G] =

JUMP h
g: execute Co
h: execute C|

evaluate E

JUMPIF (1) g

(a) evaluate[if E| then E, else Esz] =
evaluate Eq
JUMPIF (0) g
evaluate E»
JUMP h
g: evaluate E;
h:

(b) evaluate[let D in E] =
elaborate D
evaluate E
POP(n) s ifs>0
where s = amount of storage allocated by D,
n = size (type of E)

(¢) evaluatelbegin C ; yield Eend] =
execute C
evaluate E

Selected encoding methods:

(a) public Object visitSimAssignCommand
(SimAssignCommand com, Object arg) {

com.El.visit(this, arg):;

com.E2.visit (this, arg);
encodeAssign(com.V2) ;

encodeAssign(com.V1) ;

return null;

}

(c) public Object visitIfOnlyCommand
(IfOnlyCommand com, Object arg) {
com.E.visit (this, arg);
short i = nextInstAddr;
emit (Instruction.JUMPIFop, O,
Instruction.CBr, 0);
com.C.visit (this, arg);
short g = nextInstrAddr;
patch(i, g);
return null;
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(d) public Object visltRepeatCommand

17 (@)

(b)

}

(RepeatCommand com,
short g = nextInstraddr;
com.C.visit (this, arg);
com.E.visit(this, arg):
emit{Instruction.JUMPIFop, O,

Instruction.CBr, g);
return null;

The most efficient solution is:

execute[for I fromEy to Eydo Cl =

Object arg) {

evaluate E» — compute final value
evaluate E| — compute initial value of /
JUMP h
g: execute C
CALL succ — increment current value of 7
h: LOAD -1[ST] — fetch current value of /
LOAD -3[ST] — fetch final value
CALL le — test current value < final value
JUMPIF (1) g —if so, repeat
POP(0) 2 — discard current and final values

At g and at A, the current value of 7 is at the stack top (at address
-1[ST]), and the final value is immediately underlying (at address

-2

[sT]).

This solution requires the introduction of two new AST classes. The first
is a Command AST used to represent the for-command itself. The second
is a Declaration AST used to represent the (pseudo-)declaration of the for-
command control variable. This is because the identification table stores
Declaration ASTs as attributes.

public class ForCommand extends Command {

}

// Declaration of control variable...
public ForDeclaration D;

// Subphrases of for-command. ..
public Expression E1, E2;
public Command C;

L1707 70000777070 7070777077777777777777777777777
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public class ForDeclaration

}

extends Declaration {
/ / The contextual analyzer links all applied occurrences of the
/ / control variable to the ForDeclaration AST in the
/ / corresponding ForCommand AST.

public Identifier I;

LEEPTETTEFLEG TP T E b T eridir i il i iritrrir iy

public Object visitForCommand

}

(ForCommand com,
Object arg) |
short gs = shortValueOf (arg) ;
com.D.entity = new UnknownValue(l,
gs + 1);
com.E2.visit (this, arg);
com.El.visit(this, new short(gs + 1));
short i = nextInstrAddr;
emit (Instruction.JUMPop, O,
Instruction.CBr, 0);
short g = nextInstraddr;
com.C.visit (this, new short(gs + 2));
emit{Instruction.CALLop, Instruction.SBr,
Instruction.PBr,
address of primitive routine succ) ;
short h = nextInstrAddr;
patch(i; h});
emit (Instruction.LOADop, 1,
Instruction.8Tr, -1);
emit (Instruction.LOADop, 1,
Instruction.STr, -3);
emit (Instruction.CALLop, Instruction.SBr,
Instruction.PBr, address of primitive routine le) ;
emit (Instruction.JUMPIFop, 1,
Instruction.CBr, g);
emit (Instruction.POPop, 0, 0, 2);
return null;

The ForCommand visitor/encoding method first creates a run-time entity
description for the control variable 1, and attaches it to the corresponding
ForDeclaration. Provided that the contextual analyzer has linked
each applied occurrence of the control variable to the For-Declara-
tion, the loop body C will be able to fetch (but not assign to) the control
variable.
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7.10 (a) Reserve space for the result variable just above the link data in the func
tion’s frame (i.e., at address 3 [LB]):

elaborate[func ! (FP) : T~ C] =

JUMP g
e: PUSH n where n=size T
execute C
RETURN (n) d where d = size of FP
g:
execute[result E] =
evaluate E

STORE (n) 3[LB] where n = size (type of E)
(b)

public Object visitFuncDeclaration
(FuncDeclaration decl,
Object arg) {

Frame f = (Frame) arg;

short i = nextInstrAddr;

emit(Instruction.JUMPop, O,
Instruction.CBr, 0);

short e = nextInstrAddr;

decl.entity =
new KnownRoutine (2, f.level, e);

Frame f1 = new Frame(f.level + 1, 0);

short d = shortvValueOf
decl.FP.visit(this, f1));

// ... creates a run-time entity for the formal parameter,

// and returns the size of the parameter.

short n = shortvalueOf (
decl.T.visit(this, null));

emit (Instruction.PUSHop, 0, 0, n);

Frame f2 = new Frame(f.level + 1, 3 + n);

decl.C.visit(this, £2);

emit (Instruction.RETURNop, n, 0, d);

short g = nextInstrAddr;

patch(i, g);

return new Short(0);
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public Object visitResultCommand
(ResultCommand com,
Object arg) {

short n =
shortValueOf (com.E.visit (this, arg)):;

emit(Instruction.STOREop, n,
Instruction.LBr, 3);
return null;

Answers 8

8.3 In outline:

public abstract class UserCommand {
public abstract void perform
(HypoInterpreter interp);
}
[1777777777777777777777777777777777777777777777

public class StepCommand extends UserCommand ({

public void perform
(HypoInterpreter interp) ({

interp.step();

}
L1777 07 0070070000700 7707707707707 77777 7707777777770

public class RunCommand extends UserCommand {

public void perform
(HypoInterpreter interp) {

do {
interp.step() ;
} while (! interp.breaklinterp.CP]

&& (interp.status ==
HypoState.RUNNING) ) ;

}
JI17T77 0700770700700 700707007777 007777777777777
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public class ShowRegistersCommand
extends UserCommand

}
L1770 0777 77777707707 7777777777777007070700707777

public class ShowDataStoreCommand
extends UserCommand ({

}
LITTLLTPT 7777777777 777777777777777770777777777

public class TerminateCommand
extends UserCommand {

public void perform
(HypoInterpreter interp) {
interp.status = HypoState.HALTED;

}
LILTILLT LTI 7 0007700007007 7777077777777

public class ToggleBreakpointCommand
extends UserCommand {

public short point; // The breakpoint address to toggle

public void perform
(HypoInterpreter interp) {
interp.break[this.point] =
! interp.breaklthis.point];

}
LITELLT700P 7077700777 077777777777777777077777777

public class Hypolnterpreter extends HypoState ({

public static boolean[] break =
new boolean[CODESIZE];

UserCommand command;
private void clearBreakpoints () 1
for (int 4 = 0; 4 < CODESIZE; d++)
break[d++] = false;
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private UserCommand interact () {
. // Obtain a command from the user.

}

public void step () {
// Fetch the next instruction ...
HypolInstruction instr = code [PC++] ;
// Analyze this instruction ...
// Execute this instruction ...

}

public void emulate () {
// initialize ...
PC = 0; ACC = 0; status = RUNNING;
clearBreakpoints() ;
do {

command = interact();
command.perform(this) ;

} while (status == RUNNING) ;

}

}
8.6 (a) Advantages and disadvantages of storing commands as text:

* Loading and editing are easy.

* Commands have to be scanned and parsed whenever fetched for exe
tion, which is slow.

Advantages and disadvantages of storing commands as tokens:
* Loading and editing are fairly easy.

* Commands have to be parsed whenever fetched for execution, which
moderately slow.

Advantages and disadvantages of storing commands as ASTs:
* Commands have to be scanned and parsed when loaded.
* Editing is awkward,
* Commands are immediately ready for execution.

(b) Answer implied by the above.
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8.8 In outline:
public class MiniShell extends MiniShellState {

public MiniShellCommand readAnalyze () {
// Read and analyze the next command from the user.

}
public MiniShellCommand readAnalyze
(FileInputStream script) {
// Read and analyze the next command from file script.

}

public void execute (MiniShellCommand com) {

if (com.name.equals("create")) {

}

else if (com.name.equals('"call")) {
File input = new File(com.args[0]);
FileInputStream script =
new FileInputStream(input) ;
while (more commandsin script) {
MiniShellCommand subCom =
readAnalyze (script) ;
execute (subCom) ;

}

} else // executable program
exec (com.name, com.args) ;

3

public void interpret () {

// Initialize ...
status = RUNNING;

do {

// Fetch and analyze the next instruction ...
MiniShellCommand com = readAnalyze();

// Execute this instruction ...
execute (com) ;

} while (status == RUNNING) ;
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Answers 9

9.5

In outline:

Common subexpressions are: ‘1 < 3’ at points (1); the address of a[1i’
points (2); the address of a [ ]at points (3); the address of a [n] at points (4

var a: array ... of Integer
i :=m - 1; J := n; pivot := alnl;
while i < § do
begin
i =1+ 1;
while a[i11® < pivot do 1 := i + 1;
=3 -1;

while al[31® > pivot do 7
if 1 < 3 then

Il
.

1
.

begin
t 1= alil®@®;
alil® := a[310);
aljl1® =t
end
end;

t := al[i]19@;

ali]® := a[n]®;

anl® := t




APPENDIX B

Informal Specification of the
Programming Language Triangle

B.1 Introduction

Triangle is a regularized extensible subset of Pascal. It has been designed as a model
language to assist in the study of the concepts, formal specification, and implementation
of programming languages.

The following sorts of entity can be declared and used in Triangle:
* A value is a truth value, integer, character, record, or array.

* A variable is an entity that may contain a value and that can be updated. Each variable
has a well-defined lifetime.

* A procedure is an entity whose body may be executed in order to update variables. A
procedure may have constant, variable, procedural, and functional parameters.

* A function is an entity whose body may be evaluated in order to yield a value. A
function may have constant, variable, procedural, and functional parameters.

* A type is an entity that determines a set of values. Each value, variable, and function
has a specific type.

Each of the following sections specifies part of the language. The subsection headed
Syntax specifies its grammar in BNF (except for Section B.8 which uses EBNF). The
subsection headed Semantics informally specifies the semantics (and contextual
constraints) of each syntactic form. Finally, the subsection headed Examples illustrates
typical usage.

B.2 Commands

A command is executed in order to update variables. (This includes input—output.)

387
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Syntax

A single-command is a restricted form of command. (A command must be enclosed
between begin ... end brackets in places where only a single-command is allowed.)

Command = single-Command
Command ; single-Command

single-Command ::=
| V-name := Expression
| Identifier ( Actual-Parameter-Sequence )
| begin Command end
| let Declaration in single-Command
| if Expression then single-Command
else single-Command
|  while Expression do single-Command

(The first form of single-command is empty.)

Semantics
= The skip command ‘ * has no effect when executed.

= The assignment command ‘V := E’ is executed as follows. The expression E is
evaluated to yield a value; then the variable identified by V is updated with this value.
(The types of V and E must be equivalent.)

e The procedure calling command ‘I(APS)’ is executed as follows. The actual-
parameter-sequence APS is evaluated to yield an argument list; then the procedure
bound to I is called with that argument list. ( must be bound to a procedure. APS
must be compatible with that procedure’s formal-parameter-sequence.)

e The sequential command ‘C;; Cy’ is executed as follows. Cy is executed first; then
C» is executed.

e The bracketed command ‘begin C end’ is executed simply by executing C.

s The block command ‘let D in C’ is executed as follows. The declaration D is
elaborated; then C is executed, in the environment of the block command overlaid by
the bindings produced by D. The bindings produced by D have no effect outside the
block command.

e The if-command ‘if E then C; else (5’ is executed as follows. The expression E
is evaluated; if its value is true, then C; is executed; if its value is false, then C; is
executed. (The type of E must be Boolean.)

e The while-command ‘while E do C’ is executed as follows. The expression E is
evaluated; if its value is true, then C is executed, and then the while-command is
executed again; if its value is false, then execution of the while-command is com-
pleted. (The type of E must be Boolean.)
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Examples

The following examples assume the standard environment (Section B.9), and also the
following declarations:

var i: Integer;
var s: array 8 of Char;
var t: array 8 of Char;

proc sort (var a: array 8 of Char) ~
(@ s[i] := '*'; t :=s
(b) getint(var i); putint(i); puteol()
(¢) sort(var s)

(d) if s(il > s[i+1l] then

let var ¢ : Char
in
begin
c := s(il; slil := s[i+1l]; s[i+l] := ¢
end
else ! skip
e) i := 7;
while (i > 0) /\ (s[i1i] = ' ') do
i:=1i -1

B.3 Expressions

An expression is evaluated to yield a value. A record-aggregate is evaluated to construct
a record value from its component values. An array-aggregate is evaluated to construct
an array value from its component values.

Syntax

A secondary-expression and a primary-expression are progressively more restricted
forms of expression. (An expression must be enclosed between parentheses in places
where only a primary-expression is allowed.)

Expression 1= secondary-Expression
|  let Declaration in Expression
| if Expression then Expression else Expression

secondary-Expression primary-Expression

| secondary-Expression Operator primary-Expression
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primary-Expression = Integer-Literal

Character-Literal

V-name

Identifier ( Actual-Parameter-Sequence )
Operator primary-Expression

( Expression )

{ Record-Aggregate }

[ Array-Aggregate ]

Record-Aggregate Identifier ~ Expression

ldentifier ~ Expression , Record-Aggregate

i

Array-Aggregate Expression

Expression , Array-Aggregate

Semantics

The expression ‘/L’ yields the value of the integer-literal /L. (The type of the expres-
sion is Integer.)

The expression ‘CL’ yields the value of the character-literal CL. (The type of the
expression is Char.)

The expression ‘V’, where V is a value-or-variable-name, yields the value identified
by V, or the current value of the variable identified by V. (The type of the expression
is the type of V)

The function calling expression ‘I{APS)’ is evaluated as follows. The actual-
parameter-sequence APS is evaluated to yield an argument list; then the function
bound to 7 is called with that argument list. (/ must be bound to a function. APS must
be compatible with that function’s formal-parameter-sequence. The type of the
expression is the result type of that function.)

The expression ‘O E’ is, in effect, equivalent to a function call ‘O (E)".
The expression ‘Ey O Ey’ is, in effect, equivalent to a function call ‘O (E;, Ej3) .
The expression ‘ (E) * yields just the value yielded by E.

The block expression ‘let D in E’ is evaluated as follows. The declaration D is
elaborated; then E is evaluated, in the environment of the block expression overlaid
by the bindings produced by D. The bindings produced by D have no effect outside
the block expression. (The type of the expression is the type of E.)

The if-expression ‘if F; then E; else E3’ is evaluated as follows. The expression
E; is evaluated; if its value is true, then E, is evaluated; if its value is false, then Ej is
evaluated. (The type of E; must be Boolean. The type of the expression is the same
as the types of E, and E3, which must be equivalent.)
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The expression ‘{RA}’ yields just the value yielded by the record-aggregate RA. (The
type of ‘{I} ~Eq{, ..., I, ~E,} is ‘record I}: Ty, ..., I,: T, end’, where the
type of each E; is T;. The identifiers I, ..., I,, must all be distinct.)

The expression ‘[AA]’ yields just the value yielded by the array-aggregate AA. (The
typeof ‘[Ey, ..., E,]1"is ‘array n of T°, where the type of every E; is T.)

The record-aggregate ‘I ~ E’ yields a record value, whose only field has the identifier
I and the value yielded by E.

The record-aggregate ‘/ ~ E, RA’ yields a record value, whose first field has the
identifier 7 and the value yielded by F, and whose remaining fields are those of the
record value yielded by RA.

The array-aggregate ‘E’ yields an array value, whose only component (with index 0)
is the value yielded by E.

The array-aggregate ‘E, AA’ yields an array value, whose first component (with
index 0) is the value yielded by E, and whose remaining components (with indices 1,
2, ...) are the components of the array value yielded by AA.

Examples

The following examples assume the standard environment (Section B.9), and also the
following declarations:

var current: Char;
type Date ~ record
yv: Integer, m: Integer, d: Integer
end;
var today: Date;

func multiple (m: Integer, n: Integer) : Boolean ~
func leap (yr: Integer) : Boolean ~ ...
(@ {y ~ today.y + 1, m ~ 1, 4 ~ 1}

(b) [31, if leap(today.y) then 29 else 28,
31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

(¢) eof ()

(d) (multiple(yr, 4) /\ \multiple(yr, 100))
\/ multiple(yr, 400)

(e) let
const shift ~ ord('a'} - ord('A');
func capital (ch : Char) : Boolean -~
(ord('A') <= ord(ch))
/\ (ord(ch) <= ord('z'))
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in
if capital (current)
then chr (ord{(current) + shift)
else current

B.4 Value-or-variable names

A value-or-variable-name identifies a value or variable.

Syntax
V-name = ldentifier
| V-name . Identifier
|  V-name [ Expression ]
Semantics

The simple value-or-variable-name ‘I’ identifies the value or variable bound to 1. (
must be bound to a value or variable. The type of the value-or-variable-name is the
type of that value or variable.)

The qualified value-or-variable-name ‘V. I identifies the field  of the record value or
variable identified by V. (The type of V must be a record type with a field I. The type
of the value-or-variable-name is the type of that field.)

The indexed value-or-variable-name ‘V[E]’ identifies that component, of the array
value or variable identified by V, whose index is the value yielded by the expression
E. If the array has no such index, the program fails. (The type of E must be
Integer, and the type of V must be an array type. The type of the value-or-variable-
name is the component type of that array type.)

Examples

The following examples assume the standard environment (Section B.9), and also the
following declarations:

type Date ~ record
m : Integer, d : Integer
end;
const xmas ~ {m ~ 12, d ~ 25};
var easter : Date;
var holiday : array 10 of Date

(a) easter

(b) xmas
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(c) xmas.m

(d) holiday

(e) holidavy[7]
(f) holiday[2].m

B.5 Declarations

A declaration is elaborated to produce bindings. Elaborating a declaration may also have
the side effect of creating and updating variables.

Syntax

A single-declaration is just a restricted form of declaration.

Declaration ;= single-Declaration
| Declaration ; single-Declaration

single-Declaration := const ldentifier ~ Expression
|  war Identifier : Type-denoter
[ proc ldentifier ( Formal-Parameter-Sequence ) ~
single-Command
|  func Identifier ( Formal-Parameter-Sequence )
: Type-denoter ~ Expression
|  type Identifier ~ Type-denoter

Semantics

The constant declaration ‘const [ ~ E’ is elaborated by binding /.to the value
yielded by the expression E. (The type of / will be the type of E.)

The variable declaration ‘var I : 7" is elaborated by binding 7 to a newly created
variable of type 7. The variable’s current value is initially undefined. The variable
exists only during the activation of the block that caused the variable declaration to be
elaborated.

The procedure declaration ‘proc I (FPS) ~ C° is elaborated by binding 7 to a
procedure whose formal-parameter-sequence is FPS and whose body is the command
C. The effect of calling that procedure with an argument list is determined as follows:
FPS is associated with the argument list; then C is executed, in the environment of the
procedure declaration overlaid by the bindings of the formal-parameters.

The function declaration ‘func I (FPS) : T ~ E’ is elaborated by binding [ to a
function whose formal-parameter-sequence is FPS and whose body is the expression
E. The effect of calling that function with an argument list is determined as follows:
FPS is associated with the argument list; then E is evaluated to yield a value, in the
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environment of the function declaration overlaid by the bindings of the formal-
panRiaEs. (The fypr o E miee oo eqquivalien 1o tne type denoted oy 7.)

* The type declaration ‘type I ~ T" is elaborated by binding 7 to the type denoted by T.

* The sequential declaration ‘D;; D5’ is elaborated by elaborating D followed by 15,
and combining the bindings they produce. D, is elaborated in the environment of the
sequential declaration, overlaid by the bindings produced by D). (D and D, must not
produce bindings for the same identifier.)

Examples
The following examples assume the standard environment (Section B.9):

(a) const minchar ~ chr(0)

(b) var name: array 20 of Char;
var initial: Char

(¢) proc inc (var n: Integer) ~n :=n + 1

(d) func odd (n: Integer) : Boolean ~
(TSNS = ()

(¢) func power (a: Integer, n: Integer) : Integer ~
TN =N0
then 1
else a * power(a, n - 1)

(f) type Rational ~
record num: Integer, den: Integer end

B.6 Parameters

Formal-parameters are used to parameterize a procedure or function with respect to
(some of) the free identifiers in its body. On calling a procedure or function, the formal-
parameters are associated with the corresponding arguments, which may be values,
variables, procedures, or functions. These arguments are yielded by actual-parameters.

Syntax

Formal-Parameter-Sequence

|  proper-Formal-Parameter-Sequence

proper-Formal-Parameter-Sequence
= Formal-Parameter
I Formal-Parameter , proper-Formal-Parameter-Sequence
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Formal-Parameter ::= . Identifier : Type-denoter
|  war Identifier :+ Type:denoter
| proc |dentifier { Formal-Parameter-Sequence )
| func Identifier ( Formal-Parameter-Sequence )
¢ Type-denoter

Actual-Parameter-Sequence

| proper-Actual-Parameter-Sequence

proper-Actual-Parameter-Sequence
=  Actual-Parameter
| Actual-Parameter , proper-Actual-Parameter-Sequence

Actual-Parameter ::= Expression
|  wvar V-name
|  proc Identifier
| func Identifier

(The first form of actual-parameter-sequence and the first form of formal-parameter-
sequence are empty.)

Semantics

* A formal-parameter-sequence ‘FPy, ..., FP,’ isassociated with a list of arguments,
by associating each FP; with the ith argument. The corresponding actual-parameter-
sequence ‘AP, ..., AP, yields a list of arguments, with each AP; yielding the ith
argument. (The number of actual-parameters must equal the number of formal-
parameters, and each actual-parameter must be compatible with the corresponding
formal-parameter.  The actual-parameter-sequence must be empty if the formal-
parameter-sequence is empty .)

* The formal-parameter *7 : 71" is associated with an argument value by binding 7 to
that argument. The corresponding actual-parameter must be of the form ‘E’, and the
argument value is obtained by evaluating E. (The type of E must be equivalent to the
type denoted by T.)

* The formal-parameter ‘var I : T is associated with an argument variable by binding
I'to that argument. The corresponding actual-parameter must be of the form ‘var V’,
and the argument variable is the one identified by V. (The type of V must be
equivalent to the type denoted by 7)

* The formal-parameter ‘proc I ( FPS )’ is associated with an argument procedure by
binding 7 to that argument. The corresponding actual-parameter must be of the form
‘proc I’, and the argument procedure is the one bound to /. ( must be bound to a
procedure, and that procedure must have a formal-parameter-sequence equivalent to
FPS.)

* The formal-parameter ‘func I ( FPS ) : T’ is associated with an argument function
by binding 7 to that argument. The corresponding actual-parameter must be of the
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form ‘func I’, and the argument function is the one bound to I. (I must be bound to a
function, and that function must have a formal-parameter-sequence equivalent to FPS
and a result type equivalent to the type denoted by T.)

Examples
The following examples assume the standard environment (Section B.9):

(a) while \eol() do
begin get (var ch); put(ch) end;
geteol(); puteol()

(b) proc increment (var count: Integer) -~
count := count + 1

increment (var fregln])

(¢) func uppercase (letter: Char) : Char ~
if (ord('a') <= ord(letter))
/\ (ord(letter) <= ord('z'))
then chr(ord(letter)-ord('a')+ord('A'))
else letter

if uppercase(request) = 'Q' then quit

(d) type Point ~ record x: Integer, y: Integer end;
proc shiftright (var pt: Point, xshift: Integer) ~
pt.x := pt.x + xshift

shiftright (var penposition, 10)

() proc iteratively (proc p (n: Integer),
var a: array 10 of Integer) ~
let var i: Integer

in
begin
i := 0;
while i < 10 do
begin p(ali]); 1 := i + 1 end
end;

var v : array 10 of Integer

iteratively(proc putint, var v)
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B.7 Type-denoters

A type-denoter denotes a data type. Every value, constant, variable, and function has a
specified type.

A record-type-denoter denotes the structure of a record type.

Syntax
Type-denoter = ldentifier
| array Integer-Literal of Type-denoter
| record Record-Type-denoter end
Record-Type-denoter ::= Identifier : Type-denoter
| Identifier : Type-denoter , Record-Type-denoter
Semantics

The type-denoter ‘I’ denotes the type bound to I.

The type-denoter ‘array IL of T’ denotes a type whose values are arrays. Each
array value of this type has an index range whose lower bound is zero and whose
upper bound is one less than the integer-literal /L. Each array value has one
component of type T for each value in its index range.

The type-denoter ‘record RT end’ denotes a type whose values are records. Each
record value of this type has the record structure denoted by RT.

The record-type-denoter ‘I : T denotes a record structure whose only field has the
identifier I and the type 7.

The record-type-denoter ‘I : T, RT denotes a record structure whose first field has
the identifier 7 and the type T, and whose remaining fields are determined by the
record structure denoted by RT. I must not be a field identifier of RT.

(Type equivalence is structural:
Two primitive types are equivalent if and only if they are the same type.

The type record ..., [;: T;, ... end is equivalent to record ..., I;": T;", ...
end if and only if each J; is the same as /;” and each T; is equivalent to 7';".

The type array n of T is equivalent to array n” of T"ifandonly if n =n"and T
is equivalent to 77.)

Examples

(a) Boolean

(b) array 80 of Char



398 Programming Language Processors in Java

() record y: Integer, m: Month, d: Integer end

(d) record
size:

Integer,

entry: array 100 of

end

B.8 Lexicon

record
name: array 20 of Char,
number: Integer

end

At the lexical level, the program text consists of tokens, comments, and blank space.

The tokens are literals, identifiers, operators, various reserved words, and various
punctuation marks. No reserved word may be chosen as an identifier.

Comments and blank space have no significance, but may be used freely to improve
the readability of the program text. However, two consecutive tokens that would
otherwise be confused must be separated by comments and/or blank space.

Syntax
Program

Token

Integer-Literal
Character-Literal
Identifier
Operator
Comment

Blank

Graphic

(Token | Comment | Blank)*

Integer-Literal | Character-Literal | Identifier | Operator |
array |begin | const |do|else|end |

func |if |in|let |of |proc | record |

then | type | var |[while |
clelalole=l~lCI)lC[2]C]2

Digit Digit*

' Graphic'

Letter (Letter | Digit)*
Op-character Op-character*
! Graphic* end-of-line
space | tab | end-of-line

Letter | Digit | Op-character | space [tab | . |z |; |, |
o R M 0 N R
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Letter z= a|blc|d|e|f|g|h|i|j|k]|1l|m]|
nlo|lplalris|t|u|v|w|x|y|z]|
AlB|c|D|E|F|G|H|I|T|K|L|M]
Njo|r|Q|R|s|T|U|V|w|x|Y|Z

Digit w= 0|1]|2|3]|4]|5]|6|7]|8]|9

Op-character = #|=]*|/]=l<|>|\ | &|l@]%]r]?

(Note: The symbols space, tab, and end-of-line stand for individual characters that
cannot stand for themselves in the syntactic rules.)

Semantics

* The value of the integer-literal d,,...d dy is d,}10" + ... + d;x10 + dy,.

e The value of the character-literal '¢' is the graphic character c.

» Every character in an identifier is significant. The cases of the letters in an identifier
are also significant.

* Every character in an operator is significant. Operators are, in effect, a subclass of
identifiers (but they are bound only in the standard environment, to unary and binary

functions).

Examples

(a) Integer-literals: 0 1987

(b) Character-literals: %! VA e

(¢) Identifiers: x pi v101 Integer get gasFlowRate

(d) Operators: + * <= \/

B.9 Programs

A program communicates with the user by performing input—output.

Syntax

Program := Command

Semantics

 The program ‘C’ is run by executing the command C in the standard environment.
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Example
let
type Line ~
record
length: Integer,
content: array 80 of Char
end;
proc getline (var 1l: Line) ~
begin
l.length := 0;
while eol() do
begin
get(var l.content[l.length]);
l.length := l.length + 1
end;
geteol ()
end;
proc putreversedline (l1: Line) -~
let var i : Integer
in
begin
i := 1l.length;
while i > 0 do
begin
= WS e
put (l.content[i])
end;
puteol ()
end;
var currentline: Line
in
while eof () do
begin

getline(var currentline) ;
putreversedline (currentline)
end
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Standard environment

The standard environment includes the following constant, type, procedure, and

function declarations:

type Boolean ~ ...; ! truth values
const false ~ ...; ! the truth value false
const true ~ ...; ! the truth value true
type Integer ~ ...; ! integers up to maxint in magnitude
const maxint ~ ...; ! implementation-defined maximum integer
type Char ~ ...; ! implementation-defined characters
func \ (b: Boolean) : Boolean ~
..; ! notb, i.e., logical negation
func /\ (bl: Boolean, b2: Boolean) : Boolean ~
..; ! bl and b2, i.e., logical conjunction
func \/ (bl: Boolean, b2: Boolean) : Boolean -~
..; ! blorb2,i.e., logical disjunction
func + (il: Integer, i2: Integer) : Integer ~
;! ilplusiz,
! failing if the result exceeds maxint in magnitude
func - (il: Integer, i2: Integer) : Integer -~
..; ! 11 minus i2,
t failing if the result exceeds maxint in magnitude
func * (il: Integer, i2: Integer) : Integer ~
...; ! i1 times 12,
! failing if the result exceeds maxint in magnitude
func / (il: Integer, i2: Integer) : Integer ~
..; ! 11 divided by 12, truncated towards zero,
! failing if 12 is zero
func // (il: Integer, i2: Integer) : Integer ~
..; ! 11 modulo i2, failing unless i2 is positive
func < (il: Integer, i2: Integer) : Boolean ~
..; ! trueiff 11 is less than 12 ‘
func <= (il: Integer, i2: Integer) : Boolean ~
..; ! trueiff i1 is less than or equal to 12
func > (il: Integer, i2: Integer) : Boolean -~

..; ! trueiff 11 is greater than i2
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func >= (il: Integer, i2: Integer) : Boolean ~
..; ! true iff i1 is greater than or equal to 12

func chr (i: Integer) : Char ~
..; | character whose internal code is i,
! failing if no such character exists

func ord (c¢: Char) : Integer ~
..; ! internal code of ¢

func eof () : Boolean ~
..; ! true iff end-of-file has been reached in input

func eol () : Boolean ~
..; ! true iff end-of-line has been reached in input

proc get (var c¢: Char) ~
..; | read the next character from input and assign it to c,
! failing if end-of-file already reached

proc put (c: Char) ~
..; ! write character c to output

proc getint (var i: Integer) -~
..; ! read an integer literal from input and assign its value
! to i, failing if the value exceeds maxint in magnitude,
! or if end-of-file is already reached

proc putint (i: Integer) ~
..; | write to output the integer literal whose value is i

proc geteol () ~
..; ! skip past the next end-of-line in input,
! failing if end-of-file is already reached

proc puteol () ~
..; 1 write an end-of-line to output

In addition, the following functions are available for every type T:

fune = (vall: T, val2: T) : Boolean ~
..; ! trueiff vall is equal to val2

func \= (vall: T, val2: T) : Boolean ~
! true iff vall is not equal to val2




APPENDIX C

Description of the Abstract
Machine TAM

TAM is an abstract machine whose design makes it especially suitable for executing
programs compiled from a block-structured language (such as Algol, Pascal, or Trian-
gle). All evaluation takes place on a stack. Primitive arithmetic, logical, and other
operations are treated uniformly with programmed functions and procedures.

C.1 Storage and registers

TAM has two separate stores:

* Code Store, consisting of 32-bit instruction words (read only).
* Data Store, consisting of 16-bit data words (read—write).

The layouts of both stores are illustrated in Figure C.1.

Each store is divided into segments, whose boundaries are pointed to by dedicated
registers. Data and instructions are always addressed relative to one of these registers.

While a program is running, the segmentation of Code Store is fixed, as follows:

* The code segment contains the program’s instructions. Registers CB and CT point to
the base and top of the code segment. Register CP points to the next instruction to be
executed, and is initially equal to CB (i.e., the program’s first instruction is at the base
of the code segment).

¢ The primitive segment contains ‘microcode’ for elementary arithmetic, logical, input—
output, heap, and general-purpose operations. Registers PB and PT point to the base

and top of the primitive segment. :
While a program is running, the segmentation of Data Store may vary:

e The stack grows from the low-address end of Data Store. Registers SB and ST point
to the base and top of the stack, and ST is initially equal to SB.

e The heap grows from the high-address end of Data Store. Registers HB and HT point
to the base and top of the heap, and HT is initially equal to HB.

403
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Code Store
CB—>

Data Store
SB

global
segment

code
segment

CP—# stack

frame

LB

heap
segment

PT —»
Figure C.1 Layout of the TAM Code Store and Data Store.

HB—

Both stack and heap can expand and contract. Storage exhaustion arises when ST
and HT attempt to cross over.

The stack itself consists of one or more segments:

* The global segment is always at the base of the stack, and contains global data used
by the program.

* The stack may contain any number of other segments, known as frames. Each frame
contains data local to an activation of some routine, Calling a routine causes a new
frame to be pushed on to the stack; return from a routine causes the topmost frame to
be popped. The topmost frame may expand and contract, but the underlying frames
are (temporarily) fixed in size. Register LB points to the base of the topmost frame.

Figure C.2 shows the outline of a source program in some block-structured
language. Figure C.3 shows successive stack snapshots while this program is running:

(1) The main program has called procedure P. Register LB points to the topmost
frame, which belongs to P.

(2) Procedure P has called procedure S. Register LB points to the topmost frame,
which belongs to S; register L1 points to a frame belonging to P.
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(3) Procedure S has called procedure Q. Register LB points to the topmost frame,
which belongs to Q; register L1 still points to a frame belonging to P.

(4) Procedure Q has called procedure R. Register LB points to the topmost frame,
which belongs to R; register L1 now points to a frame belonging to Q; register L2
points to a frame belonging to P.

proc P()~

Figure C.2 Outline of a source program.

Global, local, and nonlocal data can be accessed as follows:

LOAD (n)
LOAD (n)
LOAD (n)
LOAD (n)
LOAD (n)

d[SB]
d[LB]
d[L1]
d[L1]
d[L2]

— for any procedure to load global data

— for any procedure to load its own local data
— for procedure Q or S to load data local to P
— for procedure R to load data local to Q

— for procedure R to load data local to P

In each case an n-word object is loaded from address d relative to the base of the
appropriate segment. Storing is analogous to loading.

In general, register LB points to the topmost frame, which is always associated with
the routine R whose code is currently being executed; register L1 points to a frame
associated with the routine R” that textually encloses R in the source program; register
L2 points to a frame associated with the routine R*” that textually encloses R”; and so on.
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(1) After program

calls P:

SB —»

LB

global
segment

—

frame
for p

ST

(2) After P calls S:

SB —=

L1 —®

LB

Bl
global
segment

—

L)

frame
for P

p— |

—

frame
for S

ST

(3) After S calls Q:

SB —=

LB

global
segment

frame
for P

frame
for s

frame
forQ

ST

—— =

_?[’

Bl

(4) After Q calls R:

SB—»] <t
global
segment|

L2 e— fu

frame
for P

—

frame
for s

L'*’W

frame
for Q

—

LB—» *—|
frame
for R

o~

Figure C.3 Snapshots of the TAM stack (showing static links but not dynamic links).

All accessible data in the stack may be addressed relative to registers SB, LB, L1, L2,

etc., as follows:
d[SB]
d[LB]
d[L1]
d[L2]

In each case an object is accessed at address d relative to the base of the appropriate
segment. (In practice, registers L1, L2, etc., are used far less often than LB and SB.)

— for any routine to access global data
— for any routine to access its own local data

— for routine R to access data local to R”
— for routine R to access data local to R”*

The layout of a frame is illustrated in Figure C.4. Consider a frame associated with

routine R:

* The static link points to an underlying frame associated with the routine that textually
encloses R in the source program.

* The dynamic link points to the frame immediately underlying this one in the stack.

* The return address is the address of the instruction immediately following the call
instruction that activated R.
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static link
e dynamic link
return address

Figure C.4 Layout of a TAM frame.

There are sixteen registers, summarized in Table C.1. Every register is dedicated to a
particular purpose. (No instructions use registers to operate on data.) Some of the

registers are constant.

L1, L2, etc., are only pseudo-registers — whenever needed for addressing nonlocal
data, they are dynamically evaluated from LB using the invariants L1 = content(LB), L2
= content(content(LB)), etc., where content(a) means the word contained at address a.
This works because LB points to the first word of a frame, which contains its static link,
which in turn points to the first word of an underlying frame, and so on.

Table C.1 Summary of TAM registers.

Register | Register | Register name Behavior
number | mnemonic
0 CB Code Base constant
1 CcT Code Top constant
2 PB Primitives constant
Base
3 PT Primitives Top | constant
4 SB Stack Base constant
5 ST Stack Top changed by most instructions
6 HB Heap Base constant
7 HT Heap Top changed by heap routines
8 LB Local Base changed by call and return instructions
9 L1 Local base 1 L1 = content(L.LB)
10 L2 Local base 2 L2 = content(content(LLB))
11 L3 Local base 3 | L3 = content(content(content(LB)))
12 L4 Local base 4 L4 = content(content(content(content(LB))))
13 L5 Local base 5 L5 = content(content(content(content(content(LLB)))))
14 L6 Local base 6 L6 = content(content(content(
content(content(content(LB)))))
15 CpP Code Pointer changed by all instructions
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C.2 Instructions

All TAM instructions have a common format, illustrated in Figure C.5. The op field
contains the operation code. The r field contains a register number, and the d field
usually contains an address displacement (possibly negative); together these define the
operand’s address (d + register r). The n field usually contains the size of the operand.
The TAM instruction set is summarized in Table C.2.

Eare n | d |
4 bits 4 bits 8 bits 16 bits (signed)

Figure C.5 TAM instruction format.

C.3 Routines

Every TAM routine must strictly respect the protocol illustrated in Figure C.6. Assume
that routine R accepts d words of arguments and returns an n-word result. Immediately
before R is called, its arguments must be at the stack top. (If R takes no arguments,
d =0.) On return from R, its arguments must be replaced at the stack top by its result. (If
R does not return a result, n = 0.)

(1) Just before the call: (2) Just after return:
SB —» SB —»
‘_._._'_._,_-—l-' -._'_._._,_,_-—F
‘_'_._'_,_,_-—l-' -._'_._._,_._-—'-
LB —» LB —»
d words | argu- nwords | result
ments ST

ST

Figure C.6 Stack layout before and after calling a TAM routine.
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There are two kinds of routine in TAM:

» code routines

* primitive routines

A code routine consists of a sequence of instructions stored in the code segment.

Control is transferred to the first instruction of that sequence by a CALL or CALLT
instruction, and subsequently transferred back by a RETURN instruction. Figure C.7
illustrates the layout of the stack during a call to a code routine R.

(1) Just before call: ~ (2) Just after entry: (3) Just before return: (4) Just after return:
SB—» SB SB —» SB —»
L o2 === A s s
e S LB 3 anls —
LB —# LB —
d words | argu- d words | argu- d words | argu- nwords | ‘result
ments ments ments ST
ST LB jink LB=™1 jink
data data
ST local
data
n words | result

()
(2)

s R

Figure C.7 Stack layout before, during, and after calling a TAM code routine.

Immediately before the call, R's arguments (if any) must be at the stack top.

The call instruction pushes a new frame on top of the arguments and makes LB
point to the base of that frame. The frame’s static link is supplied by the call
instruction. (The instruction “CALL (n) ..." takes the address in register n as the
static link. The instruction ‘CALLI’ takes the static link from the closure at the
stack top.) The frame’s dynamic link is the address formerly in register LB. The
frame’s return address is the address of the instruction immediately following the
call instruction. At this stage the new frame contains only these three words.

The instructions of R may expand the topmost frame, e.g., by allocating space for
local data. Immediately before the return, R must place any result at the stack top.
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(4) The return instruction ‘RETURN (n) d’ pops the topmost frame and replaces the d
words of arguments by the n-word result. LB is reset using the dynamic link, and
control is transferred to the instruction at the return address.

Since R’s arguments lie immediately below its frame, R can access the arguments
using negative displacements relative to LB. For example:

LOAD(1l) -d[LB] — for R to load its first argument (1 word)
LOAD(1l) -1[LB] — for R to load its last argument (1 word)

A primitive routine is one that performs an elementary arithmetic, logical, input—
output, heap, or general-purpose operation. The primitive routines are summarized in
Table C.3. Each primitive routine has a fixed address in the primitive segment. TAM
traps every call to an address in that segment, and performs the corresponding operation
directly.

Table C.2 Summary of TAM instructions.

Op-code | Instruction mnemonic Effect
0 LOAD (n) d[r] Fetch an n-word object from the data address (d + register r),
and push it on to the stack.
LOADA d[r] Push the data address (d + register ) on to the stack.
2 LOADI (n) Pop a data address from the stack, fetch an n-word object
from that address, and push it on to the stack.
3 LOADL d Push the 1-word literal value d on to the stack.
STORE (n) d[r] Pop an n-word object from the stack, and store it at the data

address (d + register r).

5 STOREI (n) Pop an address from the stack, then pop an n-word object
from the stack and store it at that address.

6 CALL (n) d[r] Call the routine at code address (d + register r), using the
address in register n as the static link.

7 CALLI Pop a closure (static link and code address) from the stack,
then call the routine at that code address.

8 RETURN (n) d Return from the current routine: pop an n-word result from
the stack, then pop the topmost frame, then pop d words of
arguments, then push the result back on to the stack.

9 - (unused)

10 PUSHd i Push d words (uninitialized) on to the stack.

11 POP(n) d Pop an n-word result from the stack, then pop d more words,
then push the result back on to the stack.

12 JUMP dr} Jump to code address (d + register r).

13 JUMPI Pop a code address from the stack, then jump to that address.

14 JUMPIF (n) d[r] Pop a 1-word value from the stack, then jump to code

address (d + register r) if and only if that value equals n.

15 HALT Stop execution of the program.
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Table C.3 Summary of TAM primitive routines.

Address | Mnemonic | Arguments | Result Effect

PB + 1 id w w’ Setw’ =w.

PB +2 not t t Sett' =-t.

PB+3 and t, t’ Sett' =t Aty

PB +4 or t1, 1y t Sett =11 v 1.

PB+5 succ i i’ Seti"=i+1.

PB +6 pred i i’ Seti"=i-1.

PB +7 neg i i Seti’=—1.

PB + 8 add i1, i i’ Seti" =iy +iy.

PB+9 sub iy, ip i’ Seti”=1i] —ip.

PB + 10 mult i1, ip i’ Seti” =iy X ip.

PB + 11 div i1, ip i Set i" =11 / iy (truncated).

PB + 12 mod i1, ip i Set i” = i1 modulo i5.

PB+13 1t iy, iy t Sett” = true iff iy < ip.

PB + 14 le iy, ip t Set ¢ = true iff i} < i).

PB + 15 ge i1, Ip t Set t” = true iff i 2 is.

PB + 16 gt i1, i2 t Set t” = true iff i} > ip.

PB + 17 eq V], Vo, 1 v Set t” = true iff vi = vo (where vy and v, are
n-word values).

PB + 18 ne Vi, V2, 1 t Set t” = true iff v| # v (where v| and v; are
n-word values).

PB + 19 eol - r Set 1 = true iff the next character to be read
is an end-of-line.

PB + 20 eof - t Set ¢” = true iff there are no more characters
to be read (end of file).

PB +21 get a - Read a character, and store it at address a.

PB + 22 put - Write the character c.

PB +23 geteol - - Read characters up to and including the next
end-of-line.

PB +24 puteol - - ‘Write an end-of-line.

PB + 25 getint a - Read an integer-literal (optionally preceded
by blanks and/or signed), and store its value
at address a.

PB+26 | putint i - Write an integer-literal whose value is i.

PB + 27 new n a’ Set a” = address of a newly allocated n-
word object in the heap.

PB +28 | dispose n,a - Deallocate the n-word object at address a in
the heap.

(See notes overleaf.)
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Notes for Table C.3:

* a denotes a data address

* ¢ denotes a character

* i denotes an integer

* ndenotes a non-negative integer

* tdenotes a truth value (0 for false or 1 for true)
* vdenotes a value of any type

* wdenotes any 1-word value




APPENDIX D

Class Diagrams for the Triangle
Compiler

This appendix uses class diagrams to summarize the structure of the Triangle compiler,
which is available from our Web site (see Preface, page xv).

The Triangle compiler has broadly the same structure as the Mini-Triangle compiler
used throughout the text of this book. It is discussed in more detail in Sections 3.3, 4.6,
5.4, and 7.5.

The class diagrams are expressed in UML (Unified Modeling Language). UML is
described in detail in Booch er al. (1999). However, the following points are worth
noting. The name of an abstract class is shown in ifalics, whereas the name of a concrete
class is shown in bold. Private attributes and methods are prefixed by a minus sign (-),
whereas public attributes and methods are prefixed by a plus sign (+). The definition of
a class attribute or method is underlined. The name of a method parameter is omitted
where it is of little significance.
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D.1 Compiler

The following diagram shows the overall structure of the compiler, including the
syntactic analyzer (scanner and parser), the contextual analyzer, and the code generator:

Triangle::ErrorReporter «interface»
Triangle::AbstractSyntaxTrees:: Visitor

8

+ «constructor» ErrorReporter ()
+ reportError (: String, : String,

: SourcePosition) : void
+ reportRestriction (: String) : void

™~

Triangle::ContextualAnalyzer::Checker

+ «constructor» Checker (: ErrorReporter)
+ check (ast : Program) : void

Triangle::SyntacticAnalyzer::Parser Triangle::CodeGenerator::Encoder
+ «constructor» Parser (: Scanner, + «constructor» Encoder (¢ ErrgrRepaorter)
: ErrorReporter) + encodeRun (: Program, : boolean) : void

+ parseProgram ( ) : Program + saveObjectProgram (: String) : void
Triangle::SyntacticAnalyzer::Scanner Triangle::StdEnvironment
+ «constructor» Scanner {: SourceFile) + anyType : TypeDenoter
+scan () : Token + booleanType : TypeDenoter

+ charType : TypeDenoter

+ errorType : TypeDenoter
+ integerType : TypeDenoter

Triangle::Compiler

+ main (: String[]) : void
— compileProgram (sourceName : String, objectName : String,

showing AST : boolean, showingTable : boolean) : boolean
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D.2 Abstract syntax trees

The diagrams in this section show the class hierarchy used in the representation of
Triangle ASTs. Each major syntactic class is presented in a separate diagram. These
diagrams show class names only, omitting constructors and methods.

The following diagram shows the immediate subclasses of the AST class. Most of
these are abstract classes representing the main syntactic phrases. Note that Formal-
Parameter is a subclass of Declaration in order that formal parameters may be included
in the identification table during contextual analysis.

Triangle:: AbstractSyntaxTrees

AST ActualParameter

ActualParameter-
Sequence

ArrayAggregate

— Command

— Declaration FormalParameter

Expression

|| FormalParameter-
Sequence

-—( Program

— RecordAggregate

— Terminal

TypeDenoter <<}—{ FieldTypeDenoter

L Vname
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D.2.1 Commands

The following diagram shows the individual concrete classes for each form of
command:

Triangle::AbstractSyntax Trees

Command <J— AssignCommand

CallCommand

EmptyCommand

IfCommand

LetCommand

SequentialCommand

I T 1 11

WhileCommand
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D.2.2 Expressions

The following diagram shows the individual concrete classes for each form of
expression:

Triangle::AbstractSyntaxTrees

Expression <<l ArrayExpression

— BinaryExpression

— CallExpression

— CharacterExpression

— EmptyExpression

— IfExpression

— IntegerExpression

— LetExpression

—  RecordExpression

—— UnaryExpression

‘—  VnameExpression

The following diagram shows the individual concrete subclasses for a record
aggregate:

Triangle:: AbstractSyntaxTrees

RecordAggregate y<]—|: SingleRecordAggregate

MultipleRecordAggregate
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The following diagram shows the individual concrete subclasses for an array

aggregate:

Triangle::AbstractSyntaxTrees

ArrayAggregate

SingleArrayAggregate

MultipleArrayAggregate

D.2.3 Value-or-variable names

The following diagram shows the individual concrete subclasses for each form of value-

or-variable name:

Triangle:: AbstractSyntaxTrees

Vname

DotVname

SimpleVname

SubscriptVname
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D.2.4 Declarations

The following diagram shows the individual concrete classes for each form of
declaration:

Triangle::AbstractSyntaxTrees
Declaration <} BinaryOperator-
Declaration
T ConstDeclaration
— FormalParameter ConstFormal-
Parameter
— FuncDeclarati
v ration L FuncFormal-
Parameter
_— ProcDeclaration
ProcFormal-
— SequentialDeclaration Parameter
TypeDeclaration VarFormal-
Parameter
| UnaryOperator-
Declaration
L] VarDeclaration
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D.2.5 Parameters

The following diagram shows the individual concrete subclasses for each form of actual
parameter:

Triangle:: AbstractSyntaxTrees

ActwalParameter <7} ConstActualParameter

— FuncActualParameter

—1 ProcActualParameter

—  VarActualParameter

The following diagram shows the individual concrete subclasses for each form of
actual parameter sequence:

Triangle::AbstractSyntaxTrees

ActualParameterSequence EmptyActualParameterSequence

MultipleActualParameterSequence

SingleActualParameterSequence

The following diagram shows the individual concrete subclasses for each form of
formal parameter sequence:

Triangle:: AbstractSyntaxTrees

FormalParameterSeqnence EmptyFormalParameterSequence

MultipleFormalParameterSequence

SingleFormalParameterSequence
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D.2.6 Type-denoters

The following diagram shows the individual concrete subclasses for each form of type-
denoter:

Triangle:: AbstractSyntaxTrees

TypeDenoter <} AnyTypeDenoter

-— ArrayTypeDenoter

—— BoolTypeDenoter

— CharTypeDenoter

ErrorTypeDenoter

MultipleField-

- FieldTypeDenot.
ieldTypeDenoter TypeDenoter

] IntTypeDenoter

SingleField-
TypeDenoter

RecordTypeDenote

— SimpleTypeDenoter

D.2.7 Terminals

The following diagram shows the individual concrete subclasses for each form of
terminal node:

Triangle:: AbstractSyntaxTrees

Terminal <} CharacterLiteral

— Identiﬁer

— IntegerLiteral

— Operator
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D.3 Syntactic analyzer

The following diagram shows the internal structure of the syntactic analyzer.

SourceFile

+ «constructor» SourceFile (: String)

+ getSource ( ) : char
+ getCurrentLine ( ) : int

/

+ «constructors Scanner (: SourceFile)
+ scan () : Token

Scanner =

Token

—kind : int
—spelling : String
— position : SourcePosition

+ «constructor» Token (: int,

: String, : SourcePosition)

Parser

— currentToken : Token

+ «constructor» Parser (: Sci

: ErrorReporter

+ parseProgram ( ) : Program

SyntaxError

Java::lang::Exception

SourcePosition

+ start : int
+ finish : int

+ aconstructors

SourcePosition (; int, : int)
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D.4 Contextual analyzer

The following diagram shows the internal structure of the contextual analyzer.

IdentificationTable IdEntry
—level : int +1id : String
— latest : IdEntry + attr : Declaration
+ level : int
+ «constructor» IdentificationTable () + previous : IdEntry
+ openScope () : void
+ closeScope () : void + «constructor» IdEntry (
+ enter (: String, : Declaration) : void : String, : Declaration,
+ retrieve (: String) : Declaration . int, : IdEntry)
Checker

— idTable : IdentificationTable

+ «constructor» Checker (: ErrorReporter)
+ check (: Program) : void
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D.5S Code generator

The following diagram shows the internal structure of the code generator.

Frame

+ level : int
+ size :int

TAM::State

+ code : Instruction | |
+data:int | |

RuntimeEntity

Encoder = [l «constructor» State ( )
= nextInstrAddr : int
+ «constructor» Encoder (: ErrorReporter -~ — .
+ encodeRun (: Program, : boolean) : void TAM::Instruction
+ saveObjectProgram (: String) : void
+op : byte
+1: byte
/ +n: byte
+d : short

+LOADop : int =0

+ LOADAop :int = |
+LOADIop :int =2
+ LOADLop : int =3
+STOREop : int = 4

+ «constructor» Instruction (op : byte,
r:byte, n: byte, d : short)

+ write (: DataOutputStream) : void
+ read (: DatalnputStream) : void
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The above declarations of the standard environment are not syntactically valid in
Mini-Triangle, and so cannot be introduced by processing a normal input file. In fact,
these declarations are entered into the identification table using a method called estab-
lishStandardEnvironment, which the contextual analyzer calls before checking
the source program.

Once the standard environment is entered in the identification table, the source
program can be checked for any type errors. At every applied occurrence of an
identifier, the identification table will be searched in exactly the same way (regardless of
whether the identifier turns out to be in the standard environment or the source
program), and its corresponding attribute used to determine its type.

O

5.2 Type checking

The second task of the contextual analyzer is to ensure that the source program contains
no type errors. The key property of a statically-typed language is that the compiler can
detect any type errors without actually running the program. In particular, for every
expression E in the language, the compiler can infer either that E has some type T or
that E is ill-typed. If E does have type T, then evaluating E will always yield a value of
that type 7. If E occurs in a context where a value of type 7" is expected, then the
compiler can check that T is equivalent to 7°, without actually evaluating E. This is the
task that we call type checking.

Here we shall focus on the type checking of expressions. Bear in mind, however,
that some phrases other than expressions have types, and therefore also must be type-
checked. For example, a variable-name on the left-hand side of an assignment command
has a type. Even an operator has a type. We write a unary operator’s type in the form
T\ — T», meaning that the operator must be applied to an operand of type T, and will
yield a result of type 7,. We write a binary operator’s type in the form Ty x Tp — T3,
meaning that the operator must be applied to a left operand of type T| and a right
operand of type T,, and will yield a result of type T5.

For most statically-typed programming languages, type checking is straightforward.
The type checker infers the type of each expression bottom-up (i.e., starting with literals
and identifiers, and working up through larger and larger subexpressions):

* Literal: The type of a literal is immediately known.

* Identifier: The type of an applied occurrence of identifier / is obtained from the
corresponding declaration of I.

o Unary operator application: Consider the expression ‘O E°, where O is a unary
operator of type 71 — T>. The type checker ensures that E’s type is equivalent to Ty,
and thus infers that the type of ‘O E’ is T,. Otherwise there is a type error.
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