
Programming Language
Processors in Java

COMPILERS AND INTERPRETERS

DAVID A WATT
University of Glasgow, Scotland
and
DERYCK F BROWN
The Robert Gordon University, Scotland

An imprint of Pearson Education
Harlow, England . London . New York . Reading, Massachusetts . San Francisco . Toronto . Don Mills, Ontario . Sydney
Tokyo . Singapore . Hong Kong . Seoul . Taipei . Cape Town . Madrid . Mexico City . Amsterdam . Munich . Paris . Milan

www.allitebooks.com

http://www.allitebooks.org

Pearson Education Limited
Edinburgh Gate
Harlow
Essex, CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
http://www.pearsoneduc.com

First published 2000

0 Pearson Education Limited 2000

The rights of David A Watt and Deryck F Brown to be identified as authors of this
Work have been asserted by them in accordance with the Copyright, Designs and
Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the Publishers or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd.,
90 Tottenham Court Road London W l P OLP.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Pearson Education Limited has made every
attempt to supply trademark information about manufacturers and their products
mentioned in this book. A list of the trademark designations and their owners appears
on page x.

ISBN 0 130 25786 9

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Library of'Congrrss Cutaloging-in-Publication Data
Watt, David A. (David Anthony)

Programming language processors in Java : compilers and interpreters / David A. Watt
and Deryck F. Brown

p. cm.
Includes bibliographical references.
ISBN 0-1 3425786-9 (case)
1. Java (Computer program language) 2. Compilers (Computer programs) 3.

Interpreters (Computer programs) 1. Brown, Deryck F. 11. Title.

Typeset by 7
Printed an bound in Great Britain by Biddles Ltd, www.biddles.co.uk

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface

1 Introduction
1.1 Levels of programming language
1.2 Programming language processors
1.3 Specification of programming languages

1.3.1 Syntax
1.3.2 Contextual constraints
1.3.3 Semantics

1.4 Case study: the programming language Triangle
1.5 Further reading

Exercises

2 Language Processors
Translators and compilers
Interpreters
Real and abstract machines
interpretive compilers
Portable compilers
Bootstrapping
2.6.1 Bootstrapping a portable compiler
2.6.2 Full bootstrap
2.6.3 Half bootstrap
2.6.4 Bootstrapping to improve efficiency
Case study: the Triangle language processor
Further reading
Exercises

3 Compilation
3.1 Phases

3.1.1 Syntactic analysis
3.1.2 Contextual analysis
3.1.3 Code generation

3.2 Passes

www.allitebooks.com

http://www.allitebooks.org

vi Programming Language Processors in Java

3.2.1 Multi-pass compilation
3.2.2 One-pass compilation
3.2.3 Compiler design issues

3.3 Case study: the Triangle compiler
3.4 Further reading

Exercises

4 Syntactic Analysis
4.1 Subphases of syntactic analysis

4.1.1 Tokens
4.2 Grammars revisited

4.2.1 Regular expressions
4.2.2 Extended BNF
4.2.3 Grammar transformations
4.2.4 Starter sets

4.3 Parsing
4.3.1 The bottom-up parsing strategy
4.3.2 The top-down parsing strategy
4.3.3 Recursive-descent parsing
4.3.4 Systematic development of a recursive-descent parser

4.4 Abstract syntax trees
4.4.1 Representation
4.4.2 Construction

4.5 Scanning
4.6 Case study: syntactic analysis in the Triangle compiler

4.6.1 Scanning
4.6.2 Abstract syntax trees
4.6.3 Parsing
4.6.4 Error handling

4.7 Further reading
Exercises

5 Contextual Analysis
5.1 Identification

5.1.1 Monolithic block structure
5.1.2 Flat block structure
5.1.3 Nested block structure
5.1.4 Attributes
5.1.5 Standard environment

5.2 Typechecking
5.3 A contextual analysis algorithm

5.3.1 Decoration
5.3.2 Visitor classes and objects
5.3.3 Contextual analysis as a visitor object

5.4 Case study: contextual analysis in the Triangle compiler

www.allitebooks.com

http://www.allitebooks.org

Contents vii

5.4.1 Identification
5.4.2 Type checking
5.4.3 Standard environment

5.5 Further reading
Exercises

6 Run-Time Organization
6.1 Data representation

6.1.1 Primitive types
6.1.2 Records
6.1.3 Disjoint unions
6.1.4 Static arrays
6.1.5 Dynamic arrays
6.1.6 Recursive types

6.2 Expression evaluation
6.3 Static storage allocation
6.4 Stack storage allocation

6.4.1 Accessing local and global variables
6.4.2 Accessing nonlocal variables

6.5 Routines
6.5.1 Routine protocols
6.5.2 Static links
6.5.3 Arguments
6.5.4 Recursion

6.6 Heap storage allocation
6.6.1 Heap management
6.6.2 Explicit storage deallocation
6.6.3 Automatic storage deallocation and garbage collection

6.7 Run-time organization for object-oriented languages
6.8 Case study: the abstract machine TAM
6.9 Further reading

Exercises

7 Code Generation
7.1 Code selection

7.1.1 Code templates
7.1.2 Special-case code templates

7.2 A code generation algorithm
7.2.1 Representation of the object program
7.2.2 Systematic development of a code generator
7.2.3 Control structures

7.3 Constants and variables
7.3.1 Constant and variable declarations
7.3.2 Static storage allocation
7.3.3 Stack storage allocation

www.allitebooks.com

http://www.allitebooks.org

viii Programming Language Processors in Java

7.4 Procedures and functions
7.4.1 Global procedures and functions
7.4.2 Nested procedures and functions
7.4.3 Parameters

7.5 Case study: code generation in the Triangle compiler
7.5.1 Entity descriptions
7.5.2 Constants and variables

7.6 Further reading
Exercises

8 Interpretation
8.1 Iterative interpretation

8.1.1 Iterative interpretation of machine code
8.1.2 Iterative interpretation of command languages
8.1.3 Iterative interpretation of simple programming languages

8.2 Recursive interpretation
8.3 Case study: the TAM interpreter
8.4 Further reading

Exercises

9 Conclusion
9.1 The programming language life cycle

9.1.1 Design
9.1.2 Specification
9.1.3 Prototypes
9.1.4 Compilers

9.2 Error reporting
9.2.1 Compile-time error reporting
9.2.2 Run-time error reporting

9.3 Efficiency
9.3.1 Compile-time efficiency
9.3.2 Run-time efficiency

9.4 Further reading
Exercises
Projects with the Triangle language processor

Appendices

A Answers to Selected Exercises
Answers 1
Answers 2
Answers 3
Answers 4
Answers 5
Answers 6

www.allitebooks.com

http://www.allitebooks.org

Contents ix

Answers 7
Answers 8
Answers 9

B Informal Specification of the Programming Language Triangle
B. 1 Introduction
B.2 Commands
B.3 Expressions
B.4 Value-or-variable names
B.5 Declarations
B.6 Parameters
B.7 Type-denoters
B.8 Lexicon
B.9 Programs

C Description of the Abstract Machine TAM
C. 1 Storage and registers
C.2 Instructions
C.3 Routines

D Class Diagrams for the Triangle Compiler
D.l Compiler
D.2 Abstract syntax trees

D.2.1 Commands
D.2.2 Expressions
D.2.3 Value-or-variable names
D.2.4 Declarations
D.2.5 Parameters
D.2.6 Type-denoters
D.2.7 Terminals

D.3 Syntactic analyzer
D.4 Contextual analyzer
D.5 Code generator

Bibliography

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

The subject of this book is the implementation of programming languages.
Programming language processors are programs that process other programs. The
primary examples of language processors are compilers and interpreters.

Programming languages are of central importance in computer science. They are
the most fundamental tools of software engineers, who are completely dependent on the
quality of the language processors they use. There is an interplay between the design of
programming languages and computer instruction sets: compilers must bridge the gap
between high-level languages and machine code. And programming language design
itself raises strong feelings among computer scientists, as witnessed by the proliferation
of language paradigms. Imperative and object-oriented languages are currently
dominant in terms of actual usage, and it is on the implementation of such languages
that this book focuses.

Programming language implementation is a particularly fascinating topic, in our
view, because of its close interplay between theory and practice. Ever since the dawn of
computer science, the engineering of language processors has driven, and has been
vastly improved by, the development of relevant theories.

Nowadays, the principles of programming language implementation are very well
understood. An experienced compiler writer can implement a simple programming lan-
guage about as fast as he or she can type. The basic techniques are simple yet effective,
and can be lucidly presented to students. Once the techniques have been mastered,
building a compiler from scratch is essentially an exercise in software engineering.

A textbook example of a compiler is often the first complete program of its size
seen by computer science students. Such an example should therefore be an exemplar of
good software engineering principles. Regrettably, many compiler textbooks offend
these principles. This textbook, based on a total of about twenty-five years' experience
of teaching programming language implementation, aims to exemplify good software
engineering principles at the same time as explaining the specific techniques needed to
build compilers and interpreters.

The book shows how to design and build simple compilers and interpreters using
the object-oriented programming language Java. The reasons for this choice are two-
fold. First, object-oriented methods have emerged as a dominant software engineering
technology, yielding substantial improvements in software modularity, maintainability,

www.allitebooks.com

http://www.allitebooks.org

xii Programming Language Processors in Java

and reusability. Secondly, Java itself has experienced a prodigious growth in popularity
since its appearance as recently as 1994, and that for good technical reasons: Java is
simple, consistent, portable, and equipped with an extremely rich class library. Soon we
can expect all computer science students to have at least some familiarity with Java.

A programming languages series

This is the fourth of a series of books on programming languages:

Programming Language Concepts and Paradigms

Programming Language Syntax and Semantics

Programming Language Processors

Programming Language Processors in Java

Programming Language Concepts and Paradigms studies the concepts underlying pro-
gramming languages, and the major language paradigms that use these concepts in
different ways; in other words, it is about language design. Programming Language
Syntax and Semantics shows how we can formally specify the syntax (form) and seman-
tics (meaning) of programming languages. Programming Language Processors studies
the implementation of programming languages, examining language processors such as
compilers and interpreters, and using Pascal as the implementation language. Program-
ming Language Processors in Java likewise studies the implementation of programming
languages, but now using Java as the implementation language and object-oriented
design as the engineering principle; moreover, it introduces basic techniques for imple-
menting object-oriented languages.

This series attempts something that has not previously been achieved, as far as we
know: a broad study of all aspects of programming languages, using consistent termi-
nology, and emphasizing connections likely to be missed by books that deal with these
aspects separately. For example, the concepts incorporated in a language must be
defined precisely in the language's semantic specification. Conversely, a study of
semantics helps us to discover and refine elegant and powerful new concepts, which can
be incorporated in future language designs. A language's syntax underlies analysis of
source programs by language processors; its semantics underlies object code generation
and interpretation. Implementation is an important consideration for the language
designer, since a language that cannot be implemented with acceptable efficiency will
not be used.

The books may be read as a series, but each book is sufficiently self-contained to be
read on its own, if the reader prefers.

Content of this book

Chapter 1 introduces the topic of the book. It reviews the concepts of high-level pro-
gramming languages, and their syntax, contextual constraints, and semantics. It explains
what a language processor is, with examples from well-known programming systems.

www.allitebooks.com

http://www.allitebooks.org

Preface xiii

Chapter 2 introduces the basic terminology of language processors: translators,
compilers, interpreters, source and target languages, and real and abstract machines. It
goes on to study interesting ways of using language processors: interpretive compilers,
portable compilers, and bootstrapping. In this chapter we view language processors as
'black boxes'. In the following chapters we look inside these black boxes.

Chapter 3 looks inside compilers. It shows how compilation can be decomposed
into three principal phases: syntactic analysis, contextual analysis, and code generation.
It also compares different ways of designing compilers, leading to one-pass and multi-
pass compilation.

Chapter 4 studies syntactic analysis in detail. It decomposes syntactic analysis into
scanning, parsing, and abstract syntax tree construction. It introduces recursive-descent
parsing, and shows how a parser and scanner can be systematically constructed from the
source language's syntactic specification.

Chapter 5 studies contextual analysis in detail, assuming that the source language
exhibits static bindings and is statically typed. The main topics are identification, which
is related to the language's scope rules, and type checking, which is related to the lan-
guage's type rules.

Chapter 6 prepares for code generation by discussing the relationship between the
source language and the target machine. It shows how target machine instructions and
storage must be marshaled to support the higher-level concepts of the source language.
The topics covered include data representation, expression evaluation, storage
allocation, routines and their arguments, garbage collection, and the run-time
organization of simple object-oriented languages.

Chapter 7 studies code generation in detail. It shows how to organize the translation
from source language to object code. It relates the selection of object code to the seman-
tics of the source language. As this is an introductory textbook, only code generation for
a stack-based target machine is covered. (The more difficult topics of code generation
for a register-based machine, and code transformations are left to more advanced
textbooks.)

Chapter 8 looks inside interpreters. It gives examples of interpreters for both low-
level and high-level languages.

Chapter 9 concludes the book. It places the implementation of a programming lan-
guage in the context of the language's life cycle, along with design and specification. It
also discusses quality issues, namely error reporting and efficiency.

There are several possible orders for studying the main topics of this book. The
chapter on interpretation can be read independently of the chapters on compilation.
Within the latter, the chapters on syntactic analysis, contextual analysis, and code gen-
eration can be read in any order. The following diagram summarizes the dependencies
between chapters.

xiv Programming Language Processors in Java

Processors

6 Run-Time

Conclusion u
Examples and case studies
The methods described in this textbook are freely illustrated by examples. In Chapter 2,
the examples are of language processors for real programming languages. In the remain-
ing chapters, most examples are based on smaller languages, in order that the essential
points can be conveyed without the reader getting lost in detail.

A complete programming language is a synthesis of numerous concepts, which
often interact with one another in quite complicated ways. It is important that the reader
understands how we cope with these complications in implementing a complete
programming language. For this purpose we use the programming language Triangle as
a case study. An overview of Triangle is given in Section 1.4. A reader already familiar
with a Pascal-like language should have no trouble in reading Triangle programs. A
complete specification of Triangle is given in Appendix B; this includes a formal
specification of its syntax, but is otherwise informal.

We designed Triangle for two specific purposes: to illustrate how a programming
language can be formally specified (in the companion textbook Programming Language
Syntax and Semantics), and to illustrate how a programming language can be imple-
mented. Ideally we would use a real programming language, such as Pascal or Java, for
these purposes. In practice, however, real languages are excessively complicated. They
contain many features that are tedious but unilluminating to specify and to implement.

Preface xv

Although Triangle is a model language, it is rich enough to write interesting programs
and to illustrate basic methods of specification and implementation. Finally, it can
readily be extended in various ways (such as adding new types, new control structures,
or packages), and such extensions are a basis for a variety of projects.

Educational software
A Triangle language processor is available for educational use in conjunction with this
textbook. The Triangle language processor consists of: a compiler for Triangle, which
generates code for TAM (Triangle Abstract Machine); an interpreter for TAM; and a
disassembler for TAM. The tools are written entirely in Java, and will run on any
computer equipped with a JVM (Java Virtual Machine). You can download the Triangle
language processor from our Web site:

Exercises and projects
Each chapter of this book is followed by a number of relevant exercises. These vary
from short exercises, through longer ones (marked *), up to truly demanding ones
(marked **) that could be treated as projects.

A typical exercise is to apply the methods of the chapter to a very small toy
language, or a minor extension of Triangle.

A typical project is to implement some substantial extension to Triangle. Most of
the projects are gathered together at the end of Chapter 9; they require modifications to
several parts of the Triangle compiler, and should be undertaken only after reading up to
Chapter 7 at least.

Readership
This book and its companions are aimed at junior, senior, and graduate students of com-
puter science and information technology, all of whom need some understanding of the
fundamentals of programming languages. The books should also be of interest to profes-
sional software engineers, especially project leaders responsible for language evaluation
and selection, designers and implementors of language processors, and designers of new
languages and extensions to existing languages.

The basic prerequisites for this textbook are courses in programming and data struc-
tures, and a course in programming languages that covers at least basic language con-
cepts and syntax. The reader should be familiar with Java, and preferably at least one
other high-level language, since in studying implementation of programming languages
it is important not to be unduly influenced by the idiosyncrasies of a particular language.
All the algorithms in this textbook are expressed in Java.

The ability to read a programming language specification critically is an essential
skill. A programming language implementor is forced to explore the entire language,
including its darker corners. (The ordinary programmer is wise to avoid these dark

xvi Programming Language Processors in Java

corners!) The reader of this textbook will need a good knowledge of syntax, and ideally
some knowledge of semantics; these topics are briefly reviewed in Chapter 1 for the
benefit of readers who might lack such knowledge. Familiarity with BNF and EBNF
(which are commonly used in language specifications) is essential, because in Chapter 4
we show how to exploit them in syntactic analysis. No knowledge of formal semantics
is assumed.

The reader should be comfortable with some elementary concepts from discrete
mathematics - sets and recursive functions - as these help to sharpen understanding of,
for example, parsing algorithms. Discrete mathematics is essential for a deeper under-
standing of compiler theory; however, only a minimum of compiler theory is presented
in this book.

This book and its companions attempt to cover all the most important aspects of a
large subject. Where necessary, depth has been sacrificed for breadth. Thus the really
serious student will need to follow up with more advanced studies. Each book has an
extensive bibliography, and each chapter closes with pointers to further reading on the
topics covered by the chapter.

Acknowledgments

Most of the methods described in this textbook have long since passed into compiler
folklore, and are almost impossible to attribute to individuals. Instead, we shall mention
people who have particularly influenced us personally.

For providing a stimulating environment in which to think about programming lan-
guage issues, we are grateful to colleagues in the Department of Computing Science at
the University of Glasgow, in particular Malcolm Atkinson, Muffy Calder, Quintin
Cutts, Peter Dickman, Bill Findlay, John Hughes, John Launchbury, Hermano Moura,
John Patterson, Simon Peyton Jones, Fermin Reig, Phil Trinder, and Phil Wadler. We
have also been strongly influenced, in many different ways, by the work of Peter
Buneman, Luca Cardelli, Edsger Dijkstra, Jim Gosling, Susan Graham, Tony Hoare,
Jean Ichbiah, Mehdi Jazayeri, Robin Milner, Peter Mosses, Atsushi Ohori, Bob Tennent,
Jim Welsh, and Niklaus Wirth.

We wish to thank the reviewers for reading and providing valuable comments on an
earlier draft of this book. Numerous cohorts of undergraduate students taking the
Programming Languages 3 module at the University of Glasgow made an involuntary
but essential contribution by class-testing the Triangle language processor, as have three
cohorts of students taking the Compilers module at the Robert Gordon University.

We are particularly grateful to Tony Hoare, editor of the Prentice Hall International
Series in Computer Science, for his encouragement and advice, freely and generously
offered when these books were still at the planning stage. If this book is more than just
another compiler textbook, that is partly due to his suggestion to emphasize the connec-
tions between compilation, interpretation, and semantics.

Glasgow and Aberdeen
July, 1999

D.A.W.
D.F.B.

CHAPTER ONE

Introduction

In this introductory chapter we start by reviewing the distinction between low-level and
high-level programming languages. We then see what is meant by a programming lan-
guage processor, and look at examples from different programming systems. We review
the specification of the syntax and semantics of programming languages. Finally, we
look at Triangle, a programming language that will be used as a case study throughout
this book.

1 Levels of programming language
/-'

Programming languages are the basic tools of all programmers. A programming lan-
guage is a formal notation for expressing algorithms. Now, an algorithm is an abstract
concept, and has an existence independent of any particular notation in which it might
be expressed. Without a notation, however, we cannot express an algorithm, nor com-
municate it to others, nor reason about its correctness.

Practicing programmers, of course, are concerned not only with expressing and ana-
lyzing algorithms, but also with constructing software that instructs machines to perform
useful tasks. For this purpose programmers need facilities to enter, edit, translate, and
interpret programs on machines. Tools that perform these tasks are called programming
language processors, and are the subject of this book.

Machines are driven by programs expressed in machine code (or muchine lang-
uage). A machine-code program is a sequence of instructions, where each instruction is
just a bit string that is interpreted by the machine to perform some defined operation.
Typical machine-code instructions perform primitive operations like the following:

Load an item of data from memory address 366.

Add two numbers held in registers 1 and 2.

Jump to instruction 13 if the result of the previous operation was zero.

In the very early days of computing, programs were written directly in machine
code. The above instructions might be written, respectively, as follows:

2 Programming Language Processors in Java

Once written, a program could simply be loaded into the machine and run.

Clearly, machine-code programs are extremely difficult to read, write, and edit. The
programmer must keep track of the exact address of each item of data and each instruc-
tion in storage, and must encode every single instruction as a bit string. For small pro-
grams (consisting of thousands of instructions) this task is onerous; for larger programs
the task is practically infeasible.

Programmers soon began to invent symbolic notations to make programs easier to
read, write, and edit. The above instructions might be written, respectively, as follows:

LOAD x

ADD R1 R2

JUMPZ h

where LOAD, ADD, and JUMPZ are symbolic names for operations, R1 and R2 are sym-
bolic names for registers, x is a symbolic name for the address of a particular item of
data, and h is a symbolic name for the address of a particular instruction. Having written
a program like this on paper, the programmer would prepare it to be run by manually
translating each instruction into machine code. This process was called assembling the
program.

The obvious next step was to make the machine itself assemble the program. For this
process to work, it is necessary to standardize the symbolic names for operations and
registers. (However, the programmer should still be free to choose symbolic names for
data and instruction addresses.) Thus the symbolic notation is formalized, and can now
be termed an assembly language.

Even when writing programs in an assembly language, the programmer is still work-
ing in terms of the machine's instruction set. A program consists of a large number of
very primitive instructions. The instructions must be written individually, and put to-
gether in the correct sequence. The algorithm in the mind of the programmer tends to be
swamped by details of registers, jumps, and so on. To take a very simple example, con-
sider computing the area of a triangle with sides a , b, and c, using the formula:

d(s x (S - a) x (s - b) x (s - c))
where s = (a + b + c) I 2

Written in assembly language, the program must be expressed in terms of individual
arithmetic operations, and in terms of the registers that contain intermediate results:

LOAD R1 a; ADD R1 b; ADD R1 c; DIV R1 # 2 ;
LOAD R2 R1;
LOAD R3 R1; SUB R3 a; MULT R2 R3;
LOAD R3 R1; SUB R3 b; MULT R2 R3;

Introduction 3

LOAD R3 R1; SUB R3 c; MULT R2 ~ 3 ;
LOAD RO R2; CALL sqrt

Programming is made very much easier if we can use notation similar to the familiar
mathematical notation:

let s = (a+b+c) / 2
in sqrt (s* (s-a) * (s-b) * (s-c))

Today the vast majority of programs are written in programming languages of this
kind. These are called high-level languages, by contrast with machine languages and
assembly languages, which are low-level languages. Low-level languages are so called
because they force algorithms to be expressed in terms of primitive instructions, of the
kind that can be performed directly by electronic hardware. High-level languages are so
called because they allow algorithms to be expressed in terms that are closer to the way
in which we conceptualize these algorithms in our heads. The following are typical of
concepts that are supported by high-level languages, but are supported only in a rudi-
mentary form or not at all by low-level languages:

Expressions: An expression is a rule for computing a value. The high-level language
programmer can write expressions similar to ordinary mathematical notation, using
operators such as '+', '-', '*', and '/ '.

Data types: Programs manipulate data of many types: primitive types such as truth
values, characters, and integers, and composite types such as records and arrays. The
high-level language programmer can explicitly define such types, and declare con-
stants, variables, functions, and parameters of these types.

Control structures: Control structures allow the high-level language programmer to
program selective computation (e g , by if- and case-commands) and iterative compu-
tation (e.g., by while- and for-commands).

Declarations: Declarations allow the high-level language programmer to introduce
identifiers to denote entities such as constant values, variables, procedures, functions,
and types.

Abstraction: An essential mental tool of the programmer is abstraction, or separation
of concerns: separating the notion of what computation is to be performed from the
details of how it is to be performed. The programmer can emphasize this separation
by use of named procedures and functions. Moreover, these can be parameterized
with respect to the entities on which they operate.

Encapsulation (or data abstraction): Packages and classes allow the programmer to
group together related declarations, and selectively to hide some of them. A particu-
larly important usage of this concept is to group hidden variables together with oper-
ations on these variables, which is the essence of object-oriented programming.

Section 1.5 suggests further reading on the concepts of high-level programming lan-
guages.

4 Programming Language Processors in Java

1.2 Programming language processors

A programming language processor is any system that manipulates programs
expressed in some particular programming language. With the help of language
processors we can run programs, or prepare them to be run.

This definition of language processors is very general. It encompasses a variety of
systems, including the following:

Editors. An editor allows a program text to be entered, modified, and saved in a file.
An ordinary text editor lets us edit any textual document (not necessarily a program
text). A more sophisticated kind of editor is one tailored to edit programs expressed in
a particular language.

Translators and compilers. A translator translates a text from one language to
another. In particular, a compiler translates a program from a high-level language to a
low-level language, thus preparing it to be run on a machine. Prior to performing this
translation, a compiler checks the program for syntactic and contextual errors.

Interpreters. An interpreter takes a program expressed in a particular language, and
runs it immediately. This mode of execution, omitting a compilation stage in favor of
immediate response, is preferred in an interactive environment. Command languages
and database query languages are usually interpreted.

In practice, we use all the above kinds of language processor in program develop-
ment. In a conventional programming system, these language processors are usually
separate tools; this is the 'software tools' philosophy. However, most systems now offer
integrated language processors, in which editing, compilation, and interpretation are just
options within a single system. The following examples contrast these two approaches.

Example 1.1 Language processors as software tools

The 'software tools' philosophy is well exemplified by the UNIX operating system. In-
deed, this philosophy was fundamental to the system's design.

Consider a UNIX user developing a chess-playing application in Java, using the Sun
Java Development Kit (JDK). The user invokes an editor, such as the screen editor v i ,
to enter and store the program text in a file named (say) C h e s s . j ava :

Then the user invokes the Java compiler, j a v a c :

j a v a c C h e s s . j a v a

This translates the stored program into object code, which it stores in a file named
C h e s s . c l a s s . The user can now test the object-code program by running it using the
interpreter, j a v a :

java C h e s s

Introduction 5

If the program fails to compile, or misbehaves when run, the user reinvokes the
editor to modify the program; then reinvokes the compiler; and so on. Thus program
development is an edit-compile-run cycle.

There is no direct communication between these language processors. If the program
fails to compile, the compiler will generate one or more error reports, each indicating
the position of the error. The user must note these error reports, and on reinvoking the
editor must find the errors and correct them. This is very inconvenient, especially in the
early stages of program development when errors might be numerous.

0

The essence of the 'software tools' philosophy is to provide a small number of com-
mon and simple tools, which can be used in various combinations to perform a large
variety of tasks. Thus only a single editor need be provided, one that can be used to edit
programs in a variety of languages, and indeed other textual documents too.

What we have described is the 'software tools' philosophy in its purest form. In
practice, the philosophy is compromised in order to make program development easier.
The editor might have a facility that allows the user to compile the program (or indeed
issue any system command) without leaving the editor. Some compilers go further: if
the program fails to compile, the editor is automatically reinvoked and positioned at the
first error.

These are ad hoc solutions. A fresh approach seems preferable: a fully integrated
language processor, designed specifically to support the edit-compile-run cycle.

Example 1.2 Integrated language processor

Borland JBuilder is a fully integrated language processor for Java, consisting of an
editor, a compiler, and other facilities. The user issues commands to open, edit, compile,
and run the program. These commands may be selected from pull-down menus, or from
the keyboard.

The editor is tailored to Java. It assists with the program layout using indentation,
and it distinguishes between Java keywords, literals and comments using color. The
editor is also fully integrated with the visual interface construction facilities of JBuilder.

The compiler is integrated with the editor. When the user issues the 'compile' com-
mand, and the program is found to contain a compile-time error, the erroneous phrase is
highlighted, ready for immediate editing. If the program contains several errors, then the
compiler will list all of them, and the user can select a particular error message and have
the relevant phrase highlighted.

The object program is also integrated with the editor. If the program fails at run-
time, the failing phrase is highlighted. (Of course, this phrase is not necessarily the one
that contains the logical error. But it would be unreasonable to expect the language
processor to debug the program automatically !)

0

www.allitebooks.com

http://www.allitebooks.org

Introduction 7

widely understood. But contextual constraints and semantics are usually specified infor-
mally, because their formal specification is more difficult, and the available notations
are not yet widely understood. A typical language specification, with formal syntax but
otherwise informal, may be found in Appendix B.

1.3.1 Syntax
Syntax is concerned with the form of programs. We can specify the syntax of a pro-
gramming language formally by means of a context-free grammar. This consists of the
following elements:

A finite set of terminal symbols (or just terminals). These are atomic symbols, the
ones we actually enter at the keyboard when composing a program in the language.
Typical examples of terminals in a programming language's grammar are '>=',
' w h i l e ' , and '; '.

A finite set of nonterminal symbols (or just nonteminals). A nonterminal symbol
represents a particular class of phrases in the language. Typical examples of
nonterminals in a programming language's grammar are Program, Command,
Expression, and Declaration.

A start symbol, which is one of the nonterminals. The start symbol represents the
principal class of phrases in the language. Typically the start symbol in a
programming language's grammar is Program.

A finite set of production rules. These define how phrases are composed from termi-
nals and subphrases.

Grammars are usually written in the notation BNF (Backus-Naur Form). In BNF, a
production rule is written in the form N ::= a, where N is a nonterminal symbol, and
where a is a (possibly empty) string of terminal andlor nonterminal symbols. Several
production rules with a common nonterminal on their left-hand sides:

may be grouped as:

The BNF symbol '::=' is pronounced 'may consist of', and 'I' is pronounced 'or alterna-
tively'.

Example 1.3 Mini-Triangle syntax

Mini-Triangle is a toy programming language that will serve as a running example here
and elsewhere. (It is a subset of Triangle, the language to be introduced in Section 1.4.)

Introduction 9

Expression

V-name

Declaration

Type-denoter

Operator

ldentifier

Integer-Literal

Comment

primary-Expression
Expression Operator primary-Expression

Integer-Literal
V-name
Operator primary-Expression
(Expression)

ldentifier

single-Declaration
Declaration ; single-Declaration

const ldentifier - Expression
var ldentifier : Type-denoter

ldentifier

+ 1 - 1 * 1 / 1 < 1 > 1 = 1 \
Letter I ldentifier Letter I ldentifier Digit

Digit 1 Integer-Literal Digit

! Graphic* eol

Production rule (1.30 tells us that a single-command may consist of the terminal
symbol 'begin', followed by a command, followed by the terminal symbol 'end'.

Production rule (1.3a) tells us that a single-command may consist of a value-or-
variable-name, followed by the terminal symbol ' : =', followed by an expression.

A value-or-variable-name, represented by the nonterminal symbol V-name, is the
name of a declared constant or variable. Production rule (1.6) tells us that a value-or-
variable-name is just an identifier. (More complex value-or-variable-names can be writ-
ten in full Triangle.)

Production rules (1.2a-b) tell us that a command may consist of a single-command
alone, or alternatively it may consist of a command followed by the terminal symbol ' ; '
followed by a single-command. In other words, a command consists of a sequence of
one or more single-commands separated by semicolons.

In production rules (1.1 la-c), (1.12a-b), and (1.13):

eol stands for an end-of-line 'character';

Letter stands for one of the lowercase letters 'a', 'b', . . ., or ' 2 ' ;

Digitstandsforoneofthedigits ' O ' , 'l', ..., or '9 ' ;

Graphic stands for a space or visible character.

The nonterminals Letter, Digit, and Graphic each represents a set of single characters.
Specifying them formally is simple but tedious, for example:

Introduction

Example 1.5 Mini-Triangle abstract syntax

Here we present a grammar specifying the abstract syntax of Mini-Triangle. This
specify only the phrase structure of Mini-Triangle. Distinctions between commands
single-commands, between declarations and single-declarations, and between exp~
sions and primary-expressions, will be swept away.

The nonteminal symbols are:

Program (start symbol)
Command
Expression
V-name
Declaration
Type-denoter

The production rules are:

Program ::= Command

Command ::= V-name : = Expression
I ldentifier (Expression)
I Command ; Command
I i f Expression then Command

else Command
I while Expression do Command
I l e t Declaration i n Command

Expression ::= Integer-Literal
I V-name
(Operator Expression
I Expression Operator Expression

V-name ::= Identifier

Declaration ::= const ldentifier - Expression
I var ldentifier : Type-denoter

Program

WhileCommand
Letcommand

IntegerExpression
VnameExpression
UnaryExpression
BinaryExpression

ConstDeclaration
VarDeclaration

I Declaration ; Declaration SequentialDeclaration (1.18~)

Type-denoter ::= Identifier SimpleTypeDenoter (1 .19)

Production rules in the abstract syntax look much like those in the concrete syntax.
In addition, we give each production rule a suitable label, as shown above right. We will
use these labels to label the nonterminal nodes of ASTs.

Figures 1.4 through 1.6 show some Mini-Triangle ASTs, corresponding to the (con-
crete) syntax trees of Figures 1.1 through 1.3, respectively.

The AST of Figure 1.5 represents the following command:

while b do begin n := 0 ; b := false end

14 Programming Language Processors in Java

This AST's root node is labeled Whilecommand, signifying the fact that this is a while-
command. The root node's second child is labeled Sequentialcommand, signifying the
fact that the body of the while-command is a sequential-command. Both children of the
Sequentialcommand node are labeled Assigncommand.

When we write down the above command, we need the symbols 'begin' and 'end'
to bracket the subcommands 'n : = 0' and 'b : = false'. These brackets distinguish
the above command from:

while b do n := 0; b : = false

whose meaning is quite different. (See Exercise 1 S.) There is no trace of these brackets
in the abstract syntax, nor in the AST of Figure 1.5. They are not needed because the
AST structure itself represents the bracketing of the subcommands.

0

A program's AST represents its phrase structure explicitly. The AST is a convenient
structure for specifying the program's contextual constraints and semantics. It is also a
convenient representation for language processors such as compilers. For example, con-
sider again the assignment command 'while E do C'. The meaning of this command can
be specified in terms of the meanings of its subphrases E and C. The translation of this
command into object code can be specified in terms of the translations of E and C into
object code. The command is represented by an AST with root node labeled 'While-
Command' and two subtrees representing E and C, so the compiler can easily access
these subphrases.

In Chapter 3 we shall use ASTs extensively to discuss the internal phases of a com-
piler. In Chapter 4 we shall see how a compiler constructs an AST to represent the
source program. In Chapter 5 we shall see how the AST is used to check that the
program satisfies the contextual constraints. In Chapter 7 we shall see how to translate
the program into object code.

BinaryExpression

BinaryExpression

1dent. Op. 1nt.Lit. op. Ident.

VnameExpr.

I
SimpleVname

I

Figure 1.4 Abstract syntax tree of a Mini-Triangle expression.

I
SimpleVname

I

Introduction 15

AssignCommand AssignCommand

VnameExpr.

Ident. Ident. 1nt.iit. 1dent. 1dent.

Figure 1.5 Abstract syntax tree of a Mini-Triangle command.

Program

I
Letcommand

BinaryExpression

VarDeclaration , , Simplev. V n a m T

SimpleT. Simplev.

Ident. Ident. Ident. Ident. Op. 1nt.Lit.

y Integer

Figure 1.6 Abstract syntax tree of a Mini-Triangle program.

1.3.2 Contextual constraints

Contextual constraints are things like scope rules and type rules. They arise from the
possibility that whether a phrase is well-formed or not may depend on its context.

Every programming language allows identifiers to be declared, and thereafter used
in ways consistent with their declaration. For instance, an identifier declared as a

16 Programming Language Processors in Java

constant can be used as an operand in an expression; an identifier declared as a variable
can be used either as an operand in an expression or on the left-hand side of an assign-
ment; an identifier declared as a procedure can be used in a procedure call; and so on.

The occurrence of an identifier I at which it is declared is called a binding occur-
rence. Any other occurrence of I (at which it is used) is called an applied occurrence.
At its binding occurrence, the identifier I is bound to some entity (such as a value,
variable, or procedure). Each applied occurrence of I then denotes that entity. A
programming language's rules about binding and applied occurrences of identifiers are
called its scope rules.

If the programming language permits the same identifier I to be declared in several
places, we need to be careful about which binding occurrence of I corresponds to a
given applied occurrence of I. The language exhibits static binding if this can be
determined by a language processor without actually running the program; the language
exhibits dynamic binding if this can be determined only at run-time. In fact, nearly all
major programming languages do exhibit static binding; only a few languages (such as
Lisp and Smalltalk) exhibit dynamic binding.

Example 1.6 Triangle scope rules

Mini-Triangle is too simplistic a language for static binding to be an issue, so we shall
use Triangle itself for illustration. In the following Triangle program outline, binding
occurrences of identifiers are underlined, and applied occurrences are italicized:

let
const g - 2;
var a: Integer;
func f (i: Integer) : Integer -

i * m
in

begin
... ,
n := f(n); (1)

. . .
end

Each applied occurrence of m denotes the constant value 2. Each applied occurrence of
n denotes a particular variable. Each applied occurrence of f denotes a function that
doubles its argument. Each applied occurrence of i denotes that function's argument.
Each applied occurrence of Integer denotes the standard type int, whose values are
integer numbers.

Triangle exhibits static binding. The function call at point (1) above doubles its argu-
ment. Imagine a call to f in a block where m is redeclared:

let
const g - 3

www.allitebooks.com

http://www.allitebooks.org

Introduction 17

The function call at point (2) also doubles its argument, because the applied occurrence
of m inside the function f always denotes 2, regardless of what m denotes at the point of
call.

In a language with dynamic binding, on the other hand, the applied occurrence of m
would denote the value to which m was most recently bound. In such a language, the
function call at (1) would double its argument, whereas the function call at (2) would
triple its argument.

0

Every programming language has a universe of discourse, the elements of which we
call values. Usually these values are classified into types. Each operation in the language
has an associated type rule, which tells us the expected operand type(s), and the type of
the operation's result (if any). Any attempt to apply an operation to a wrongly-typed
value is called a type error.

A programming language is statically typed if a language processor can detect all
type errors without actually running the program; the language is dynamically typed if
type errors cannot be detected until run-time.

Example 1.7 Mini-Triangle type rules

Mini-Triangle is statically typed. Consider the following program outline:

let
var n: In tege r

in
begin
...
while n > 0 do (1)

n : = n - 1; (2)

. . .
end

The type rule of 'z' is:

If both operands are of type int, then the result is of type bool.

Thus the expression 'n > 0' at point (I) is indeed of type bool. Although we cannot tell
in advance what particular values n will take, we know that such values will always be
integers. Likewise, although we cannot tell in advance what particular values the expres-
sion 'n > 0' will take, we know that such values will always be truth values.

The type rule of 'while E do C' is:

E must be of type bool.

18 Programming Language Processors in Java

Thus the while-command starting at point (2) is indeed well-typed.

The type rule of '-' is:

If both operands are of type int, then the result is of type int.

Thus the expression 'n - 1' at point (2) is indeed of type int.

The type rule of 'V : = E' is:

V and E must be of equivalent type.

Thus the assignment command at point (2) is indeed well-typed.

In a dynamically-typed language, each variable, parameter, etc., may take values of
any type. For example, a given variable x might contain an integer or a truth value or a
value of some other type. The same variable might even contain values of different
types at different times. Thus we could not tell in advance what type of value x will
contain, never mind what individual value. It follows that we could not tell in advance
whether evaluating an expression such as 'x + 1' will satisfy the type rule of '+'.

The fact that a programming language is statically typed implies the following:

Every well-formed expression E has a unique type T, which can be inferred without
actually evaluating E.

Whenever E is evaluated, it will yield a value of type T. (Evaluation of E might fail
due to overflow or some other run-time error, or it might diverge, but its evaluation
will never fail due to a type error.)

In this book we shall generally assume that the source language exhibits static bind-
ing and is statically typed.

1.3.3 Semantics

Semantics is concerned with the meanings of programs, i.e., their behavior when run.
Many notations have been devised for specifying semantics formally, but so far none
has achieved widespread acceptance. Here we show how to specify the semantics of a
programming language informally.

Our first task is to specify, in general terms, what will be the semantics of each class
of phrase in the language. We may specify the semantics of commands, expressions, and
declarations as follows:

A command is executed to update variables. [It may also have the side effect of per-
forming input-output.]

An expression is evaluated to yield a value. [It may also have the side effect of updat-
ing variables.]

Introduction 23

is simply bound to the corresponding argument, which is a value, variable, procedure, or
function, respectively.

Example 1.11 Triangle procedures and finctions

The following function and procedure implement operations on a type Point:

type Point - record
x: Integer,
y: Integer

end ;

func projection (pt: Point) : Point -
{ x - pt-x, y - 0 - pt.y I ;

proc moveup (yshift: Integer, var pt: Point) -
pt.y : = pt.y + yshift;

. . .
var p: Point; var q: Point;
. . .
moveup(3, var p);
q := projection(p)

Triangle has the usual variety of operators, standard functions, and standard proce-
dures. These behave exactly like ordinary declared functions and procedures; unlike
Pascal, they have no special type rules or parameter mechanisms. In particular, Triangle
operators behave exactly like functions of one or two parameters.

Example 1.12 Triangle operators

The Triangle operator ' / \ ' (logical conjunction) is, in effect, declared as follows:

func / \ (bl: Boolean, b2: Boolean) : Boolean -
if bl then b2 else false

The expression 'a / \b' is, in effect, a function call:

/\(a, b)

and the more complicated expression ' (n > 0) / \ (sum/n > 4 0) ' likewise:

/\(>(n, O), >(/(sum, n), 40))

Note that the above declaration of / \ implies that both operands of / \ are evaluated
before the function is called. (Some other programming languages allow short-circuit
evaluation: the second operand of / \ is skipped if the first operand evaluates to false.)

0

Introduction 25

3ach
ions.
ruct,
]ally
your
.d to
ning

am-
lese
lion
ling

dler
and
OUS

e is
tics

of
:ual
ans

of

ro-

expressions, commands, declarations - rather than individual lines. You proba-
bly spend a lot of time on chores such as good layout. Also think of the
common syntactic errors that might reasonably be detected immediately.)

1.4 According to the context-free grammar of Mini-Triangle in Example 1.3,
which of the following are Mini-Triangle expressions?

(a) true

(b) sin(x)

(c) -n

(d) m 2= n

(e) m - n * 2

Draw the syntax tree and AST of each one that is an expression.

Similarly, which of the following are Mini-Triangle commands?

(f) n : = n + 1

(g) halt

(h) put (m, n)

(i) if n > m then m : = n

) while n > 0 do n : = n-1

Similarly, which of the following are Mini-Triangle declarations?

(k) const pi - 3 .I416
(1) const y - x+l
(m) var b: Boolean

(n) var m, n: Integer

(0) var y: Integer; const dpy - 365
1.5 Draw the syntax tree and AST of the Mini-Triangle command:

while b do n : = 0; b : = false

cited at the end of Example 1.5. Compare with Figures 1.2 and 1.5.

1.6 According to the syntax and semantics of Mini-Triangle in Examples 1.3 and
1.8, what value is written by the following Mini-Triangle program? (The stan-
dard procedure putint writes its argument, an integer value.)

let
const m - 2;
const n - rn + 1

in
putint(m + n * 2)

(Note: Do not be misled by your knowledge of any other languages.)

www.allitebooks.com

http://www.allitebooks.org

Language Processors 27

(c) A ~ava-into-x86' compiler: This is a program that translates Java programs into
x86 machine code. The source language is Java, and the target language is x86
machine code.

(d) An x86 assembler: This is a program that translates x86 assembly-language pro-
grams into x86 machine code. The source language is x86 assembly language, and
the target language is x86 machine code.

0

An assembler translates from an assembly language into the corresponding machine
code. An example is the x86 assembler of Example 2.l(d). Typically, an assembler gen-
erates one machine-code instruction per source instruction.

A compiler translates from a high-level language into a low-level language. An
example is the Java-into-x86 compiler of Example 2.l(c). Typically, a compiler gener-
ates several machine-code instructions per source command.

Assemblers and compilers are the most important kinds of programming language
translator, but not the only kinds. We sometimes come across high-level translutors
whose source and target languages are both high-level languages, such as the Java-into-
C translator of Example 2.l(b). A disassembler translates a machine code into the corre-
sponding assembly language. A decompiler translates a low-level language into a high-
level language. (See Exercise 2.1 .)

Here the translated texts are themselves programs. The source language text is called
the source program, and the target language text is called the object program.

Before performing any translation, a compiler checks that the source text really is a
well-formed program of the source language. (Otherwise it generates error reports.)
These checks take into account the syntax and the contextual constraints of the source
language. Assuming that the source program is indeed well-formed, the compiler goes
on to generate an object program that is semantically equivalent to the source program,
i.e., that will have exactly the desired effect when run. Generation of the object program
takes into account the semantics of the source and target languages.

Translators, and other language processors, are programs that manipulate programs.
Several languages are involved: not only the source language and the target language,
but also the language in which the translator is itself expressed! The latter is called the
implementation language.

To help avoid confusion, we shall use tombstone diagrams to represent ordinary
programs and language processors, and to express manipulations of programs by
language processors. We shall use one form of tombstone to represent an ordinary
program, and distinctive forms of tombstone to represent translators and interpreters.

' We use the term x86 to refer to the family of processors represented by the Intel 80386
processor and its successors.

Language Processors 29

(b) A Power PC (PPC) machine.

(c) A SPARC machine.

A program can run on a machine only if it is expressed in the appropriate machine
code. Consider running a program P (expressed in machine code M) on machine M. We
represent this by putting the P tombstone on top of the M pentagon, as shown in Fig-
ure 2.3.

Figure 2.3 Running program P on machine M.

Example 2.4 Tombstone diagrams representing program execution

The following diagrams show how we represent:

(a) Running program sort (expressed in x86 machine code) on an x86 machine.

(b) Running program sort (expressed in PPC machine code) on a PPC machine.

(c) Attempting to run program sort (expressed in PPC machine code) on an x86
machine. Of course, this will not work; the diagram clearly shows that the machine
code in which the program is expressed does not match the machine on which we
are attempting to run the program.

(d) Attempting to run program sort (expressed in Java) on an x86 machine. This will
not work either; a program expressed in a high-level language cannot run immedi-
ately on any machine. (It must first be translated into machine code.)

Language Processors 3 1

An S-into-T translator is itself a program, and can run on machine M only if it is ex-
pressed in machine code M. When the translator runs, it. translates a source program P,
expressed in the source language S, to an equivalent object program P, expressed in the
target language T. This is shown in Figure 2.5. (The object program is shaded gray, to
emphasize that it is newly generated, unlike the translator and source program, which
must be given at the start.)

.....
must "'.'must match

.... ___,_.._'"

match

Figure 2.5 Translating a source program P expressed in language S to an object program
expressed in language T, using an S-into-T translator running on machine M.

Example 2.6 Compilation

The following diagram represents compilation of a Java program on an x86 machine.
Using the Java-into-x86 compiler, we translate the source program s o r t to an equiva-
lent object program, expressed in x86 machine code. Since the compiler is itself ex-
pressed in x86 machine code, the compiler will run on an x86 machine.

The second stage of the diagram shows the object program being run, also on an x86
machine.

0

A cross-compiler is a compiler that runs on one machine (the host machine) but gen-
erates code for a dissimilar machine (the target machine). The object program must be
generated on the host machine but downloaded to the target machine to be run. A cross-
compiler is a useful tool if the target machine has too little memory to accommodate the
compiler, or if the target machine is ill-equipped with program development aids. (Com-
pilers tend to be large programs, needing a good programming environment to develop,
and needing ample memory to run.)

Language Processors 35

The instructions have complicated formats, and are therefore time-consuming to
analyze. (This is the case in most high-level languages.)

Example 2.11 Interpreters

Here are some well-known examples of interpreters:

A Basic interpreter: Basic has expressions and assignment commands like other
high-level languages. But its control structures are low-level: a program is just a
sequence of commands linked by conditional and unconditional jumps. A Basic in-
terpreter fetches, analyzes, and executes one command at a time.

A Lisp interpreter: Lisp is a very unusual language in that it assumes a common
data structure (trees) for both code and data. Indeed, a Lisp program can manufac-
ture new code at run-time! The Lisp program structure lends itself to interpretation.
(See also Exercise 2.10.)

The UNIX command language interpreter (shell): A UNIX user instructs the
operating system by entering textual commands. The shell program reads each
command, analyzes it to extract a command-name together with some arguments,
and executes the command by means of a system call. The user can see the results
of a command before entering the next one. The commands constitute a command
language, and the shell is an interpreter for that command language.

An SQL interpreter: SQL is a database query language. The user extracts inform-
ation from the database by entering an SQL query, which is analyzed and executed
immediately. This is done by an SQL interpreter within the database management
system.

An interpreter is represented by a rectangular tombstone, as shown in Figure 2.6.
The head of the tombstone names the interpreter's source language. The base of the
tombstone (as usual) names the implementation language.

Figure 2.6 Tombstone representing an S interpreter expressed in language L.

Example 2.12 Tombstones representing interpreters

The following diagrams show how we represent:

(a) A Basic interpreter, expressed in x86 machine code.

www.allitebooks.com

http://www.allitebooks.org

Language Processors 37

Basic

Basic

chess

Lisp

Lisp

x86

(b)

chess

Lisp

Basic

(c)

2.3 Real and abstract machines

The interpreters mentioned in Example 2.12 were all for (relatively) high-level lan-
guages. But interpreters for low-level languages are also useful.

Example 2.14 Hardware emulation

Suppose that a computer engineer has designed the architecture and instruction set of a
radical new machine, Ultima. Now, actually constructing Ultima as a piece of hardware
will be an expensive and time-consuming job. Modifying the hardware to implement
design changes will likewise be costly. It would be wise to defer hardware construction
until the engineer has somehow tested the design. But how can a paper design be tested?

There is a remarkably simple method that is both cheap and fast: we write an
interpreter for Ultima machine code. E.g., we could write the interpreter in C:

Ultima L-l
We can now translate the interpreter into some
compiler:

machine code, say M, using the C

Language Processors 39

v
Figure 2.8 An abstract machine is functionally equivalent to a real machine.

2.4 Interpretive compilers

A compiler may take quite a long time to translate a source program into machine code,
but then the object program will run at full machine speed. An interpreter allows the
program to start running immediately, but it will run very slowly (up to 100 times more
slowly than the machine-code program).

An interpretive compiler is a combination of compiler and interpreter, giving some
of the advantages of each. The key idea is to translate the source program into an
intermediate language, designed to the following requirements:

it is intermediate in level between the source language and ordinary machine code;

its instructions have simple formats, and therefore can be analyzed easily and quickly;

translation from the source language into the intermediate language is easy and fast.

Thus an interpretive compiler combines fast compilation with tolerable running speed.

Example 2.15 Interpretive compilation

Sun Microsystems' Java Development Kit (JDK) is an implementation of an interpretive
compiler for Java. At its heart is the Java Virtual Machine (JVM), a powerful abstract
machine.

JVM-code is an intermediate language oriented to Java. It provides powerful
instructions that correspond directly to Java operations such as object creation, method
call, and array indexing. Thus translation from Java into JVM-code is easy and fast.
Although powerful, JVM-code instructions have simple formats like machine-code
instructions, with operation fields and operand fields, and so are easy to analyze. Thus
JVM-code interpretation is relatively fast: 'only' about ten times slower than machine
code.

JDK consists of a Java-into-JVM-code translator and a JVM-code interpreter, both
of which run on some machine M:

Language Processors

character set or different arithmetic. Written with care, however, application prograi
expressed in high-level languages should achieve 95-99% portability.

Similar points apply to language processors, which are themselves programs. Inder
it is particularly important for language processors to be portable because they :
especially valuable and widely-used programs. For this reason language processors :
commonly written in high-level languages such as Pascal, C, and Java.

Unfortunately, it is particularly hard to make compilers portable. A compile
function is to generate machine code for a particular machine, a function that
machine-dependent by its very nature. If we have a C-into-x86 compiler expressed ir
high-level language, we should be able to move this compiler quite easily to run or
dissimilar machine, but it will still generate x86 machine code! To change the compi
to generate different machine code would require about half the compiler to
rewritten, implying that the compiler is only about 50% portable.

It might seem that highly portable compilers are unattainable. However, the situatil
is not quite so gloomy: a compiler that generates intermediate language is potential
much more portable than a compiler that generates machine code.

Example 2.1 6 A portable compiler kit

Consider the possibility of producing a portable Java compiler kit. Such a kit wou
consist of a Java-into-JVM-code translator, expressed both in Java and in JVM-coc
and a JVM-code interpreter, expressed in Java:

How can we make this work? It seems that we cannot compile Java programs un
we have an implementation of JVM-code, and we cannot use the JVM-code interpret
until we can compile Java programs! Fortunately, a small amount of work can get us o
of this chicken-and-egg situation.

Suppose that we want to get the system running on machine M, and suppose that v
already have a compiler for a suitable high-level language, such as C, on this machine.

Then we rewrite the interpreter in C:

and then compile it:

Language Processors 43

I
Now suppose that the implementation language is the source language: the language

processor can be used to process itself! This process is called bootstrapping. The idea
seems at first to be paradoxical, but it can be made to work. Indeed, it turns out to be
extremely useful. In this section we study several kinds of bootstrapping.

2.6.1 Bootstrapping a portable compiler

I In Sections 2.4 and 2.5 we looked at interpretive and portable compilers. These work by
translating from the high-level source language into an intermediate language, and then
interpreting the latter.

A portable compiler can be bootstrapped to make a true compiler - one that
generates machine code - by writing an intermediate-language-into-machine-code
translator.

I Example 2.1 7 Bootstrapping an interpretive compiler to generate
machine code

Suppose that we have made a portable Java compiler kit into an interpretive compiler
running on machine M, as described in Example 2.16. We can use this to build an
efficient Java-into-M compiler, as follows.

First, we write a JVM-code-into-M translator, in Java:

JVM -+ M

(This is a substantial job, but only about half as much work as writing a complete Java-
into-M compiler.) Next, we compile this translator using the existing interpretive
compiler:

This gives a JVM-code-into-M translator expressed in JVM-code itself.

Next, we use this translator to translate itself:

Language Processors 45

Exactly the same point applies to a language processor expressed in L. In Exam-
ple 2.10, we saw how a Java compiler, expressed in C, could be translated into machine
code by a C compiler (and thus enabled to run). However, this Java compiler can be
maintained only as long as a C compiler is available. If we wish to make a new version
of the Java compiler (e.g., to remove known bugs, or to generate better-quality machine
code), we will need a C compiler to recompile the Java compiler.

In general, a compiler whose source language is S, expressed in a different high-
level language L, can be maintained only as long as a compiler for L is available. This
problem can be avoided by writing the S compiler in S itself! Whenever we make a new
version of the S compiler, we use the old version to compile the new version. The only
difficulty is how to get started: how can we compile thefirst version of the S compiler?
The key idea is to start with a subset of S - a subset just large enough to be suitable for
writing the compiler. The method is called full bootstrap - since a whole compiler is to
be written from scratch.

Example 2.18 Full bootstrap

Suppose that we wish to build an Ada compiler for machine M. Now Ada is a very large
language, so it makes sense to build the compiler incrementally. We start by selecting a
small subset of Ada that will be adequate for compiler writing. (The Pascal-like subset
of Ada would be suitable.) Call this subset Ada-S.

We write version 1 of our Ada-S compiler in C (or any suitable language for which a
compiler is currently available):

We compile version 1 using the C compiler:

This gives an Ada-S compiler for machine M. We can test it by using it to compile and
run Ada-S test programs.

But we prefer not to rely permanently on version 1 of the Ada-S compiler, because it
is expressed in C, and therefore is maintainable only as long as a C compiler is
available. Instead, we make version 2 of the Ada-S compiler, expressed in Ada-S itself:

www.allitebooks.com

http://www.allitebooks.org

Language Processors 47

2.6.3 Half bootstrap

Suppose that we have a compiler that runs on a machine HM, and generates HM's
machine code; now we wish to move the compiler to run on a dissimilar machine TM. In
this transaction HM is called the host machine, and TM is called the target machine.

If the compiler is expressed in a high-level language for which we have a compiler
on TM, just getting the compiler to run on TM is straightforward, but we would still
have a compiler that generates HM's machine code. It would, in fact, be a cross-
compiler.

To make our compiler generate TM's machine code, we have no choice but to
rewrite part of the compiler. As we shall see in Chapter 3, one of the major parts of a
compiler is the code generator, which does the actual translation into the target
language. Typically the code generator is about half of the compiler. If our compiler has
been constructed in a modular fashion, it is not too difficult to strip out the old code
generator, which generated HM's machine code; then we can substitute the new code
generator, which will generate TM's machine code.

If the compiler is expressed in its own source language, this process is called a half
bootstrap - since roughly half the compiler must be modified. It does not depend on any
compiler or assembler being already available on the target machine - indeed, it
depends only on the host machine compiler!

Example 2.19 Half bootstrap

Suppose that we have a Ada compiler that generates machine code for machine HM.
The compiler is expressed in Ada itself, and in HM's machine code:

We wish to bootstrap this compiler to machine TM. To be precise, we want a compiler
that runs on TM and generates TM's machine code.

First, we modify the compiler's code generator to generate TM's machine code:

We compile the modified compiler, using the original compiler, to obtain a cross-
compiler:

Language Processors 5 1

The compiler translates Triangle source programs into TAM code. TAM (Triangle
Abstract Machine) is an abstract machine, implemented by an interpreter. TAM has
been designed to facilitate the implementation of Triangle - although it would be
equally suitable for implementing Algol, Pascal, and similar languages. Like JVM-code
(Example 2.15), TAM'S primitive operations are more similar to the operations of a
high-level language than to the very primitive operations of a typical real machine. As a
consequence, the translation from Triangle into TAM code is straightforward and fast.

The Triangle-into-TAM compiler and the TAM interpreter together constitute an
interpretive compiler, much like the one described in Example 2.15. (See Exercise 2.2.)
The TAM disassembler translates a TAM machine code program into TAL (Triangle
Assembly Language). It is used to inspect the object programs produced by the
Triangle-into-TAM compiler.

Triangle + TAM c+ TAM 4 TAL c+
Figure 2.9 The compiler, interpreter, and disassembler components

of the Triangle language processor.

Further reading

A number of authors have used tombstone diagrams to represent language processors
and their interactions. The formalism was fully developed, complete with mathematical
underpinnings, by Earley and Sturgis (1970). Their paper also presents an algorithm that
systematically determines all the tombstones that can be generated from a given initial
set of tombstones.

A case study of compiler development by full bootstrap may be found in Wirth
(1971). A case study of compiler development by half bootstrap may be found in Welsh
and Quinn (1972). Finally, a case study of compiler improvement by bootstrapping may
be found in Ammann (1981). Interestingly, all these three case studies are interlinked:
Wirth's Pascal compiler was the starting point for the other two developments.

Bootstrapping has a longer history, the basic idea being described by several authors
in the 19.50s. (At that time compiler development itself was still in its infancy !) The first
well-known application of the idea seems to have been a program called eval, which
was a Lisp interpreter expressed in Lisp itself (McCarthy et al. 1965).

Sun Microsystems' Java Development Kit (JDK) consists of a compiler that trans-
lates Java code to JVM code, a JVM interpreter, and a number of other tools. The
compiler (javac) is written in Java itself, having been bootstrapped from an initial

Language Processors 53

2.3 Assume that you have the following: a machine M; a C compiler that runs on
machine M and generates machine code M; and a Java-into-C translator ex-
pressed in C. Use tombstone diagrams to represent these language processors.
Also show how you would use these language processors to:

(a) compile and run a program P expressed in C;

(b) compile the Java-into-C translator into machine code;

(c) compile and run a program Q expressed in Java.

2.4 Assume that you have the following: a machine M; a C compiler that runs on
machine M and generates machine code M; a TAM interpreter expressed in C;
and a Pascal-into-TAM compiler expressed in C. Use tombstone diagrams to
represent these language processors. Also show how you would use these lan-
guage processors to:

(a) compile the TAM interpreter into machine code;

(b) compile the Pascal-into-TAM compiler into machine code;

(c) compile and run a program P expressed in Pascal.

2.5 The Gnu compiler kit uses a machine-independent register transfer language,
RTL, as an intermediate language. The kit includes translators from several
high-level languages (such as C, C++, Pascal) into RTL, and translators from
RTL into several machine codes (such as Alpha, PPC, SPARC). It also
includes an RTL 'optimizer', i.e., a program that translates RTL into more
efficient RTL. All of these translators are expressed in C.

(a) Show how you would install these translators on a SPARC machine,
given a C compiler for the SPARC.

Now show how you would use these translators to:

(b) compile a program P, expressed in Pascal, into SPARC machine code;

(c) compile the same program, but using the RTL optimizer to generate more
efficient object code;

(d) cross-compile a program Q, expressed in C++, into PPC machine code.

2.6 The Triangle language processor (see Section 2.7) is expressed entirely in Java.
Use tombstone diagrams to show how the compiler, interpreter, and disassem-
bler would be made to run on machine M. Assume that a Java-into-M compiler
is available.

2.7 Draw tombstone diagrams to illustrate the use of a Java JIT (just-in-time)
compiler. Show what happens when a Java program P is compiled and stored
on a host machine H, and subsequently downloaded for execution on the user's

CHAPTER THREE

Compilation

In this chapter we study the internal structure of compilers. A compiler's basic function
is to translate a high-level source program to a low-level object program, but before
doing so it must check that the source program is well-formed. So compilation is
decomposed into three phases: syntactic analysis, contextual analysis, and code gener-
ation. In this chapter we study these phases and their relationships. We also examine
some possible compiler designs, each design being characterized by the number of
passes over the source program or its internal representation, and discuss the issues
underlying the choice of compiler design.

In this chapter we restrict ourselves to a shallow exploration of compilation. We
shall take a more detailed look at syntactic analysis, contextual analysis, and code
generation in Chapters 4, 5, and 7, respectively.

Inside any compiler, the source program is subjected to several transformations before
an object program is finally generated. These transformations are called phases. The
three principal phases of compilation are as follows:

Syntactic analysis: The source program is parsed to check whether it conforms to the
source language's syntax, and to determine its phrase structure.

Contextual analysis: The parsed program is analyzed to check whether it conforms to
the source language's contextual constraints.

Code generation: The checked program is translated to an object program, in accor-
dance with the semantics of the source and target languages.

The three phases of compilation correspond directly to the three parts of the source
language's specification: its syntax, its contextual constraints, and its semantics. '

' Some compilers include a fourth phase, code optimization. Lexical analysis is sometimes
treated as a distinct phase, but in this book we shall treat it as a sub-phase of syntactic analysis.

www.allitebooks.com

http://www.allitebooks.org

Compilation 57

In order to be concrete, we shall explain these transformations as implemented in the
Triangle compiler that is our case study. It should be understood, however, that another
Triangle compiler could implement the transformations in a different way. The main
purpose of this section is to explain what transformations are performed, not how they
are implemented. In Section 3.2.2 we shall emphasize this point by sketching an
alternative Triangle compiler with a very different design, which nevertheless performs
essentially the same processing on the source program.

3.11 Syntactic analysis

The purpose of syntactic analysis is to determine the source program's phrase structure.
This process is called parsing. It is an essential part of compilation because the subse-
quent phases (contextual analysis and code generation) depend on knowing how the
program is composed from commands, expressions, declarations, and so on.

The source program is parsed to check whether it conforms to the source language's
syntax, and to construct a suitable representation of its phrase structure. Here we assume
that the chosen representation is an AST.

Example 3.1 Triangle AST

Syntactic analysis of the Triangle source program of Figure 3.2 yields the AST of
Figure 3.3. As we shall be studying the compilation of this program in some detail, let
us examine those parts of the AST that are numbered in Figure 3.3.

The program is a let-command. It consists of a declaration (' v a r n : I n t e g e r ;
v a r c : Char ' in the source program) and a subcommand ('c : = ' & ' ; n : =

n+l ') . This is represented by an AST whose root node is labeled 'Letcommand',
and whose subtrees represent the declaration and subcommand, respectively.

This is a variable declaration. It consists of an identifier (n) and a type-denoter
(I n t e g e r) .

This also is a variable declaration. It consists of an identifier (c) and a type-denoter
(Char).

This is a sequential command. It consists of two subcommands ('c : = ' & ' ' and
'n : = n+l ') .

This is an assignment command. It consists of a value-or-variable-name on the
left-hand side (n) and an expression on the right-hand side (n+l) .

This value-or-variable-name is just an identifier (n).

This is an expression that applies an operator ('+') to two subexpressions.

This expression is a value-or-variable-name (n).

This expression is an integer-literal (1).

If the source program contains syntactic errors, it has no proper phrase structure. In
that case, syntactic analysis generates error reports instead of constructing an AST.

3.1.2 Contextual analysis

In contextual analysis the parsed program is further analyzed, to determine whether it
conforms to the source language's contextual constraints:

The source language's scope rules allow us, at compile-time, to associate each applied
occurrence of an identifier (e.g., in an expression or command) with the
corresponding declaration of that identifier, and to detect any undeclared identifiers.
(Here we are assuming that the source language exhibits static binding.)

The source language's type rules allow us, at compile-time, to infer the type of each
expression and to detect any type errors. (Here we are assuming that the source lan-
guage is statically typed.)

If the parsed program is represented by its AST, then contextual analysis will yield a
decorated AST. This is an AST enriched with information gathered during contextual
analysis:

As a result of applying the scope rules, each applied occurrence of an identifier is
linked to the corresponding declaration. We show this diagrammatically by a dashed
arrow.

As a result of applying the type rules, each expression is decorated by its type T. We
show this diagrammatically by marking the expression's root node ': 7".

Example 3.2 Triangle contextual analysis

Triangle exhibits static binding and is statically typed. Contextual analysis of the AST of
Figure 3.3 yields the decorated AST of Figure 3.4.

The contextual analyzer checks the declarations as follows:

(2) It notes that identifier n is declared as a variable of type int.

(3) It notes that identifier c is declared as a variable of type char.

The contextual analyzer checks the second assignment command as follows:

(6) At this applied occurrence of identifier n, it finds the corresponding declaration at
(2). It links this node to (2). From the declaration it infers that n is a variable of
type int.

(8) Here, similarly, it infers that the expression n is of type int.

(9) This expression, being an integer-literal, is manifestly of type int.

(7) Since the operator '+' is of type int x int -+ int, it checks that the left and right
subexpressions are of type int, and infers that the whole expression is of type int.

Compilation 6 1

let
var n: Integer

in ! ill-formed program
while n / 2 do

m : = 'n' > 1

Figure 3.5 An ill-formed Triangle source program.

Program

I
Letcommand

(1) l
Whilecommand

I

BinaryE&ession : i n x

VarDeclaration \\, VnameExpr.

int ‘, SimpleV.
int (2)

Ident. Ident. Op. 1nt.Lit. Ident. Char.Lit. Op. 1nt.Lit.

n / 2 m 'n' > 1

Figure 3.6 Discovering errors during contextual analysis of the Triangle program of Figure 3.5.

3.1.3 Code generation

After syntactic and contextual analysis, the source program has been thoroughly
checked and is known to be well-formed. Code generation is the final translation of the
checked program to an object program, in accordance with the source and target
languages' semantics.

A pervasive issue in code generation is the treatment of identifiers that are declared
andor used in the source program. In semantic terms, a declaration binds an identifier to
some sort of entity. For example:

A constant declaration such as 'const m - 7' binds the identifier m to the value 7.
The code generator must then replace each applied occurrence of m by the value 7.

A variable declaration such as 'var b: Boolean' binds the identifier b to some
address (storage cell), which is decided by the code generator itself. The code generat-
or must then replace each applied occurrence of b by the address to which it is bound.

Compilation 63

(7) It generates the instruction 'CALL add'. (When executed, this instruction will add
the two previously-fetched values.)

(5) By following the link to the declaration of n, it retrieves this variable's address,
namely 0 [SB] . Then it generates the instruction 'STORE 0 [SB] '. (When exe-
cuted, this instruction will store the previously-computed value in that variable.)

In this way the code generator translates the whole program into object code.

0

3.2 Passes

In the previous section we examined the principal phases of compilation, and the flow
of data between them. In this section we go on to examine and compare alternative
compiler designs.

In designing a compiler, we wish to decompose it into modules, in such a way that
each module is responsible for a particular phase. In practice there are several ways of
doing so. The design of the compiler affects its modularity, its time and space require-
ments, and the number of passes over the program being compiled.

A pass is a complete traversal of the source program, or a complete traversal of an
internal representation of the source program (such as an AST). A one-pass compiler
makes a single traversal of the source program; a multi-pass compiler makes several
traversals.

In practice, the design of a compiler is inextricably linked to the number of passes it
makes. In this section we contrast multi-pass and one-pass compilation, and summarize
the advantages and disadvantages of each.

3.2.1 Multi-pass compilation

One possible compiler design is shown by the structure diagram4 of Figure 3.8.

The compiler consists of a top-level driver module together with three lower-level
modules, the syntactic analyzer, the contextual analyzer, and the code generator. First,
the compiler driver calls the syntactic analyzer, which reads the source program, parses
it, and constructs a complete AST. Next, the compiler driver calls the contextual

A structure diagram summarizes the modules and module dependencies in a system. The
higher-level modules are those near the top of the structure diagram. A connecting line
represents a dependency of a higher-level module on a lower-level module. This dependency
consists of the higher-level module using the services (e.g., types or methods) provided by the
lower-level module.

Compilation 65

Example 3.5 One-pass compilation

A one-pass Triangle compiler would work as follows. Consider the following Triangle
source program:

! This program is useless
! except for illustration.
let

var n: lntegedl);
var c:

in
begin
c(3) : = ' & ' (4x5);

n(6) : = n+1(7)(8)
end

This is identical to the source program of Figure 3.2, but some of the key points in the
program have been numbered for easy reference. At these points the following actions
are taken:

After parsing the variable declaration 'var n: Integer', the syntactic analyzer
calls the contextual analyzer to record the fact (in a table) that identifier n is de-
clared to be a variable of type in?. It then calls the code generator to allocate and
record an address for this variable, say 0 [SB] .

After parsing the variable declaration 'var c : Char', the syntactic analyzer
similarly calls the contextual analyzer to record the fact that identifier c is declared
to be a variable of type char. It then calls the code generator to allocate and record
an address for this variable, say 1 [SB] .

After parsing the value-or-variable-name c, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type char. It then calls the
code generator to retrieve its address, 1 [SB] .

After parsing the expression & ' , the syntactic analyzer infers that it is of type
char. It then calls the code generator to generate instruction 'LOADL 3 8'.

After parsing the assignment command 'c : = ' & ' ', the syntactic analyzer calls
the contextual analyzer to check type compatibility. It then calls the code generator
to generate instruction 'STORE 1 [SB] ', using the address retrieved at point (3).

After parsing the value-or-variable-name n, the syntactic analyzer infers (by
calling the contextual analyzer) that it is a variable of type int. It then calls the code
generator to retrieve the variable's address, 0 [SB] .

While parsing the expression n+l, the syntactic analyzer infers (by calling the
contextual analyzer) that the subexpression n is of type int, that the operator '+' is
of type int x int + int, that the subexpression 1 is of type int, and hence that the
whole expression is of type int. It calls the code generator to generate instructions
'LOAD 0 [SBI ', 'LOADL l', and 'CALL add'.

Compilation 67

possible. (These are the so-called 'optimizing' compilers.) Such transformations
generally require analysis of the whole program prior to code generation, so they
force a multi-pass design on the compiler.

Source language properties might restrict the choice of compiler design. A source
program can be compiled in one pass only if every phrase (e.g., command or expres-
sion) can be compiled using only information obtained from the preceding part of the
source program. This requirement usually boils down to whether identifiers must be
declared before use. If they must be declared before use (as in Pascal, Ada, and Trian-
gle), then one-pass compilation is possible in principle. If identifiers need not be
declared before use (as in Java and ML), then multi-pass compilation is required.

Example 3.6 Pascal compiler design

In Pascal, the usual rule is that identifiers must be declared before use. Thus an applied
occurrence of an identifier can be compiled in the sure knowledge that the identifier's
declaration has already been processed (or is missing altogether).

Consider the following Pascal block:

var n: Integer;

procedure inc;
begin
n := n+l
end ;

begin
n : = 0; inc
end

When a Pascal one-pass compiler encounters the command 'n : = n+17, it has already
processed the declaration of n. It can therefore retrieve the type and address of the
variable, and subject the command to contextual analysis and code generation.

Suppose, instead, that the declaration of n follows the procedure. When the Pascal
one-pass compiler encounters the command 'n : = n+17, it has not yet encountered the
declaration of n. So it cannot subject the command to contextual analysis and code
generation. Fortunately, the compiler is not obliged to do so: it can safely generate an
error report that the declaration of n is either misplaced or missing altogether.

0

Example 3.7 Java compiler design

The situation is different in Java, in which variable or method declarations need not be
in any particular order. The following Java class is perfectly well-formed:

Compilation 69

public static void main (String[] args) {

A one-pass Triangle compiler would have been perfectly feasible, so the choice of a
three-pass design needs to be justified. The Triangle compiler is intended primarily for
educational purposes, so simplicity and clarity are paramount. Efficiency is a secondary
consideration; in any case, efficiency arguments for a one-pass compiler are inconclu-
sive, as we saw in Section 3.2.3. So the Triangle compiler was designed to be as modul-
ar as possible, allowing the different phases to be studied independently of one another.

Triangle

Triangle. Triangle. Triangle.
SyntacticAnalyzer ContextualAnalyzer CodeGenerator

Figure 3.10 Structure diagram for the Triangle compiler

A detailed structure diagram of the Triangle compiler is given in Figure 3.10,
showing the main classes and packages. Here are brief explanations of the packages and
the main classes they contain:

The Triangle .AbstractSyntaxTrees package contains classes defining the
AST data structure. There is a class for each Triangle construct, e.g., AssignCom-
mand, Ifcommand, BinaryExpression, ConstDeclaration, VarDec-
laration, etc. Each class contains a constructor for building the AST for that
construct, and a visitor method used by the contextual analyzer and the code generator
to traverse the AST. The other parts of the compiler are allowed to manipulate the
fields of the AST objects directly.

The Triangle. SyntacticAnalyzer package contains the Parser class (and
some classes of no concern here). The parser parses the source program, and
constructs the AST. It generates an error report if it detects a syntactic error.

The Triangle. ContextualAnalyzer package contains the Checker class.
The checker traverses the AST, links applied occurrences of identifiers to the corre-
sponding declarations, infers the types of all expressions, and performs all necessary

Compilation 7 1

Exercises

In Examples 3.2 and 3.4, the first assignment command 'c : = ' & ' ' was
ignored. Describe how this command would have been subjected to contextual
analysis and code generation.

The Mini-Triangle source program below left would be compiled to the object
program below right:

let
const m - 7;
var x: Integer PUSH 1

in
x : = m * x LOADL 7

LOAD O[SB]
CALL mult
STORE 0 [SB]
POP 1
HALT

Describe the compilation in the same manner as Examples 3.1, 3.2, and 3.4.
(You may ignore the generation of the PUSH, and POP instructions.)

The Mini-Triangle source program below contains several contextual errors:

let
var a: Logical;
var b: Boolean;
var i: Integer

in
if i then b : = i = 0 else b := yes

In the same manner as Example 3.3, show how contextual analysis will detect
these errors.

Choose a compiler with which you are familiar. Find out and describe its
phases and its pass structure. Draw a data flow diagram (like Figure 3.1) and a
structure diagram (like Figure 3.8 or Figure 3.9).

Consider a source language, like Fortran or C, in which the source program
consists of one or more distinct subprograms - a main program plus some pro-
cedures or functions. Design a compiler that uses ASTs, but (assuming that in-
dividual subprograms are moderately-sized) requires only a moderate amount
of memory for ASTs.

CHAPTER FOUR

Syntactic Analysis

In Chapter 3 we saw how compilation can be decomposed into three principal phases,
one of which is syntactic analysis. In this chapter we study syntactic analysis, and
further decompose it into scanning, parsing, and abstract syntax tree construction.
Section 4.1 explains this decomposition.

The main function of syntactic analysis is to parse the source program in order to
discover its phrase structure. Thus the main topic of this chapter is parsing, and in
particular the simple but effective method known as recursive-descent parsing. Sec-
tion 4.3 explains how parsing works, and shows how a recursive-descent parser can be
systematically developed from the programming language's grammar. This
development is facilitated by a flexible grammatical notation (EBNF) and by various
techniques for transforming grammars, ideas that are introduced in Section 4.2.

In a multi-pass compiler, the source program's phrase structure must be represented
explicitly in some way. This choice of representation is a major design decision. One
convenient and widely-used representation is the abstract syntax tree. Section 4.4 shows
how to make the parser construct an abstract syntax tree.

In parsing it is convenient to view the source program as a stream of tokens: symbols
such as identifiers, literals, operators, keywords, and punctuation. Since the source
program text actually consists of individual characters, and a token may consist of
several characters, scanning is needed to group the characters into tokens, and to discard
other text such as blank space and comments. Scanning is the topic of Section 4.5.

4.1 Subphases of syntactic analysis

Syntactic analysis in a compiler consists of the following subphases:

Scanning (or lexical analysis): The source program is transformed to a stream of
tokens: symbols such as identifiers, literals, operators, keywords, and punctuation.
Comments, and blank spaces between tokens, are discarded. (They are present in the
source program mainly for the benefit of human readers.)

Parsing: The source program (now represented by a stream of tokens) is parsed to
determine its phrase structure. The parser treats each token as a terminal symbol.

Syntactic Analysis 75

literal, and '+' is of kind operator. The criterion for classifying tokens is simply this: all
tokens of the same kind can be freely interchanged without affecting the program's
phrase structure. Thus the identifier 'y ' could be replaced by 'x' or 'banana', and the
integer-literal '1' by '7' or 'loo', without affecting the program's phrase structure. On
the other hand, the token '1 e t' could not be replaced by '1 o t' or '1 ed' or anything
else; 'let' is the only token of its kind.

Each token is completely described by its kind and spelling. Thus a token can be
represented simply by an object with these two fields. The different kinds of token can
be represented by small integers.

let var y: Integer
in !new year

y : = y+l

Figure 4.1 A Mini-Triangle source program.

R ~ ~ ~ ~ ~ , ~ ~ ~ , ~ R R
eger . -

Figure 4.2 The program of Figure 4.1 represented by a stream of tokens.

Program
f \

Declaration
f >

-l

Expression

Expression
n

Type-Denoter V-name V-name primary-Expr.
n n n n

Ident. Ident. Ident. Ident. Op. Int-Lit.
n n n nnn RmmFRAFlRRRRn

eger

Figure 4.3 The program of Figure 4.1 after parsing.

Syntactic Analysis 77

THEN = 11,
VAR = 12,
WHILE = 13,
SEMICOLON = 14,
COLON = 15,
BECOMES = 16,
IS = 17,
LPAREN = 18,
RPAREN = 19,
EOT = 20;

1

/ / then
/ / var
/ / while
/ / ;
/ / :

/ / : =

/ / -
/ / (

/ /)
/ / end of text

Note that a token of kind EOT represents the end of the source text. In both scanning
and parsing of the source program, the existence of this token will prove convenient.

0

Only the kind of each token will be examined by the parser, since different tokens of
the same kind do not affect the source program's phrase structure. The spellings of some
tokens (identifiers, literals, operators) will be examined by the contextual analyzer
andlor code generator, so their spellings must be retained and eventually incorporated
into the AST. The spellings of other tokens (such as 'let') will never be examined after
scanning. Nevertheless, it is convenient to have a uniform representation for all tokens.

4.2 Grammars revisited

In Section 1.3.1 we briefly reviewed context-free grammars, and showed how a
grammar generates a set of sentences. Each sentence is a string of terminal symbols. An
(unambiguous) sentence has a unique phrase structure, embodied in its syntax tree.

In Section 4.3 we shall see, not only how parsers work, but also how parsers can be
systematically developed from context-free grammars. The development is clearest if
we use an extension of BNF called EBNF, which is effectively BNF plus regular expres-
sions. EBNF lends itself to a variety of transformations that can be used to mould a
programming language's grammar into a form suitable for parser development. In this
section we briefly review regular expressions and EBNF, before presenting some useful
grammar transformations.

4.2.1 Regular expressions

A regular expression (RE) is a convenient notation for expressing a set of strings of
terminal symbols. The main features of the RE notation are:

'I' separates alternatives;

Syntactic Analysis 79

In summary:

A regular language - a language that does not exhibit self-embedding - can be
generated by an RE.

A language that does exhibit self-embedding cannot be generated by any RE. To
generate such a language, we must write recursive production rules in either BNF or
EBNF.

4.2.2 Extended BNF

EBNF (Extended BNF) is a combination of BNF and REs. An EBNF production rule is
of the form N ::= X, where N is a nonterminal symbol and X is an extended RE, i.e., an
RE constructed from both terminal and nonterminal symbols.

Unlike BNF, the right-hand side of an EBNF production rule may use not only 'I'
but also '*' and '(' and ')'. Unlike an ordinary RE, the right-hand side may contain non-
terminal symbols as well as terminal symbols. Thus we can write recursive production
rules, and an EBNF grammar is capable of generating a language with self-embedding.

Example 4.4 Grammar expressed in EBNF

Consider the following EBNF grammar:

Expression . . .- primary-Expression (Operator primary-Expression)*

primary-Expression ::= Identifier
I (Expression)

ldentifier

Operator

This grammar generates expressions such as:

e
a + b
a - b - c
a + (b * C)

a * (b + c) / d
a - (b - (C - (d - el))

Because the production rules defining Expression and primary-Expression are
mutually recursive, the grammar can generate self-embedded expressions.

0

EBNF combines the advantages of both BNF and REs. It is equivalent to BNF in
expressive power. Its use of RE notation makes it more convenient than BNF for
specifying some aspects of syntax.

Syntactic Analysis 81

These production rules are equivalent in the sense that they generate exactly the
same languages. The production rule N ::= X 1 N Y states that an N-phrase may consist
either of an X-phrase or of an N-phrase followed by a Y-phrase. This is just a roundabout
way of stating that an N-phrase consists of an X-phrase followed by any number of Y-
phrases. The production rule N ::= X (Y)* states the same thing more concisely.

Example 4.6 Elimination of left recursion

The syntax of Triangle identifiers is expressed in BNF as follows:

Identifier . Letter
I ldentifier Letter
1 ldentifier Digit

This production rule is a little more complicated than the form shown above, but we can
left-factorize it:

Identifier . Letter
I ldentifier (Letter I Digit)

and now eliminate the left recursion:

ldentifier . .- . Letter (Letter I Digit)*

As illustrated by Example 4.6, it is possible for a more complicated production rule
to be left-recursive:

N ::= XI 1 ... 1 Xm 1 NYI 1 ... 1 NY,

However, left factorization gives us:

N ::= (X I 1 ... lXm) 1 N(Yl 1 ... 1 Y,)

and now we can apply our elimination rule:

N ::= (XI 1 ... 1Xm) (Yl 1 ... 1 Y,)*

Substitution of nonterminal symbols
Given an EBNF production rule N ::= X, we may substitute X for any occurrence of N
on the right-hand side of another production rule.

If we substitute X for every occurrence of N, then we may eliminate the nonterminal
N and the production rule N ::= X altogether. (This is possible, however, only if N ::= X
is nonrecursive and is the only production rule for N.)

Whether we actually choose to make such substitutions is a matter of convenience. If
N occurs in only a few places, and if X is uncomplicated, then elimination of N ::= X
might well simplify the grammar as a whole.

Syntactic Analysis 83

We can easily generalize this to define the starter set of an extended RE. There is
only one case to add:

where N is a nonterminal
symbol defined by
production rule N ::= X

In Example 4.4:

starters[[Expression] = starters[[primary-Expression
(Operator primary-Expression)*]

= starters[[primary-Expression]
= starters[[ldentifier] u starters[[(Expression)]
= starters[[a 1 b I c I d I el u { ()
= l a , b, c, d, e, (1

4.3 Parsing

In this section we are concerned with analyzing sentences in some grammar. Given an
input string of terminal symbols, our task is to determine whether the input string is a
sentence of the grammar, and if so to discover its phrase structure. The following
definitions capture the essence of this.

With respect to a particular context-free grammar G:

Recognition of an input string is deciding whether or not the input string is a sentence
of G.

Parsing of an input string is recognition of the input string plus determination of its
phrase structure. The phrase structure can be represented by a syntax tree, or other-
wise.

We assume that G is unambiguous, i.e., that every sentence of G has exactly one
syntax tree. The possibility of an input string having several syntax trees is a compli-
cation we prefer to avoid.

Parsing is a task that humans perform extremely well. As we read a document, or
listen to a speaker, we are continuously parsing the sentences to determine their phrase
structure (and then determine their meaning). Parsing is subconscious most of the time,
but occasionally it surfaces in our consciousness: when we notice a grammatical error,
or realize that a sentence is ambiguous. Young children can be taught consciously to
parse simple sentences on paper.

In this section we are interested in parsing algorithms, which we can use in syntactic
analysis. Many parsing algorithms have been developed, but there are only two basic
parsing strategies: bottom-up parsing and top-down parsing. These strategies are
characterized by the order in which the input string's syntax tree is reconstructed. (In

Syntactic Analysis 85

Example 4.9 Bottom-up parsing of micro-English

Recall the grammar of micro-English (Example 4.8). Consider the following input
string, consisting of six terminal symbols:

the cat sees a rat.

Bottom-up parsing of this input string proceeds as follows:

(I) The first input terminal symbol is 'the'. The parser cannot do anything with this
terminal symbol yet, so it moves on to the next input terminal symbol, 'cat'. Here
it can apply the production rule 'Noun ::= cat' (4.4a), forming a Noun-tree with the
terminal symbol 'cat' as subtree:

Noun

I
the cat

(Input terminal symbols not yet examined by the parser are shaded gray.)

(2) Now the parser can apply the production rule 'Subject ::= the Noun' (4.2c), com-
bining the input terminal symbol 'the' and the adjacent Noun-tree into a Subject-
tree:

Subject

I I
the cat

(3) Now the parser moves on to the next input terminal symbol, 'sees'. Here it can
apply the production rule 'Verb ::= sees' (4.5d), forming a Verb-tree:

Subject c.dun Verb

(4) The next input terminal symbol is 'a'. The parser cannot do anything with this
terminal symbol yet, so it moves on to the following input terminal symbol, 'rat'.
Here it can apply the production rule 'Noun ::= rat' (4.4c), forming a Noun-tree:

Subject

G u n Verb Noun

I I I
the cat sees a

I
rat

I Syntactic Analysis 89

(6) The leftmost stub is now the (second) node labeled Noun. If the parser chooses to
apply production rule 'Noun ::= rat' (4.4c), it can connect the input terminal sym-
bol 'rat' to the tree. This step leaves the parser with a stub labeled '.' that matches
the next (and last) input terminal symbol:

Sentence

the cat sees a rat

I

Thus the parser has successfully parsed the input string.

Subject

Consider a particular context-free grammar G. In general, a top-down parser for G
starts with just a stub for the root node, labeled by S (the start symbol of G). At each
step, the parser takes the leftmost stub. If the stub is labeled by terminal symbol t , the
parser connects it to the next input terminal symbol, which must be t. (If not, the parser
has detected a syntactic error.) If the stub is labeled by nonterminal symbol N, the parser
chooses one of the production rules N ::= XI.. .Xn, and grows branches from the node
labeled by N to new stubs labeled XI, ..., X, (in order from left to right). Parsing
succeeds when and if the whole input string is connected up to the syntax tree.

Object

How does the parser choose which production rule to apply at each step? In the
micro-English top-down parser the choices are easy. For example, the parser can always
choose which of the production rules 'Subject ::= . . .' to apply simply by examining the
next input terminal symbol: if the terminal symbol is 'I', it chooses 'Subject ::= 1'; or if
the terminal symbol is 'the', it chooses 'Subject ::= the Noun'; or if the terminal symbol
is 'a', it chooses 'Subject ::= a Noun'. Unfortunately, some grammars make the choice
more difficult; and some grammars are completely unsuited to this parsing strategy.

4.3.3 Recursive-descent parsing

The bottom-up and top-down parsing strategies outlined in the previous subsections are
the basis of a variety of parsing algorithms. We observed that a parser often has to
choose which production rule to apply next. A particular way of making such choices
gives rise to a particular parsing algorithm.

Several parsing algorithms are commonly used in compilers. Here we describe just
one, which is both effective and easy to understand.

Recursive descent is a top-down parsing algorithm. A recursive-descent parser for a
grammar G consists of a group of methods parseN, one for each nonterminal symbol

Syntactic Analysis 91

Now let us see how to implement the parser. We need a class to contain all of the
parsing methods; let us call it Parser. This class will also contain an instance variable,
currentTermina1, that will range over the terminal symbols of the input string. (For
example, given the input string of Figure 4.5, currentTermina1 will first contain
'the', then 'cat', then 'sees', etc., and finally '.'.) The Parser class, containing
currentTermina1, is declared as follows:

public class Parser {

private TerminalSymbol currentTermina1;

. . . / / Auxiliary methods will go here.

. . . / / Parsing methods will go here.
1

The current terminal is accessed by the following auxiliary method of the Parser
class:

private void accept (Terminalsymbol expectedTermina1) {

if (currentTermina1 matches expectedTermina1)
currentTermina1 = next input terminal ;

else
report a syntactic error2

1

The parser will call 'accept (t) ' when it expects the current terminal to be t, and
wishes to check that it is indeed t , before fetching the next input terminal.

The parsing methods themselves are implemented as follows. (For easy reference,
the corresponding production rules of the grammar are reproduced on the right.)

First, method parsesentence:

private void parsesentence 0 { Sentence ::=
parsesubj ect () ; Subject
parseverb () ; Verb
parseObj ect () ; Object
accept ('.') ;

1

This is easy to understand. According to the production rule, a sentence consists of a
subject, verb, object, and period, in that order. Therefore parsesentence should
encounter the subject, verb, object, and period, in that same order. It calls methods
parsesubject, parseverb, and parseobject, one after another, to parse the
subject, verb, and object, respectively. Finally it calls accept to check that the (now)
current terminal is indeed a period.

This type style indicates a command or expression not yet refined into Java. We will use this
convention to suppress minor details.

The parser is initiated using the following method:

public void parse () {

currentTermina1 = first input terminal ;
parsesentence();
check that no terminal follows the sentence

I
This parser does not actually construct a syntax tree. But it does (implicitly) deter-

mine the input string's phrase structure. For example, parseNoun whenever called
finds the beginning and end of a phrase of class Noun, and parsesubj ect whenever
called finds the beginning and end of a phrase of class Subject. (See Figure 4.5.)

0

In general, the methods of a recursive-descent parser cooperate as follows:

The variable currentTermina1 will successively contain each input terminal. All
parsing methods have access to this variable.

On entry to method parseN, currentTermina1 is supposed to contain the first
terminal of an N-phrase. On exit from parseN, currentTermina1 is supposed to
contain the input terminal immediately following that N-phrase.

On entry to method accept with argument t , current~erminal is supposed to
contain the terminal t . On exit from accept, currentTermina1 is supposed to
contain the input terminal immediately following t .

If the production rules are mutually recursive, then the parsing methods will also be
mutually recursive. For this reason (and because the parsing strategy is top-down), the
algorithm is called recursive descent.

4.3.4 Systematic development of a recursive-descent
parser

A recursive-descent parser can be systematically developed from a (suitable) context-
free grammar, in the following steps:

(1) Express the grammar in EBNF, with a single production rule for each nonterminal
symbol, and perform any necessary grammar transformations. In particular, always
eliminate left recursion, and left-factorize wherever possible.

(2) Transcribe each EBNF production rule N : :=X to a parsing method parseN,
whose body is determined by X.

(3) Make the parser consist of:

a private variable currentToken;

private parsing methods developed in step (2);

Syntactic Analysis 9

These transformations are justified because they will make the grammar mor
suitable for parsing purposes. After making similar transformations to other parts of th
grammar, we obtain the following complete EBNF grammar of Mini-Triangle:

Program ..- . single-Command (4.t

Command ..- . single-Command (; single-Command)" (4.7

single-Command ::= Identifier (: = Expression ((Expression)) (4.8
I if Expression then single-Command

else single-Command
I while Expression do single-Command
(let Declaration in single-Command
I begin Command end

Expression . . .- primary-Expression
(Operator primary-Expression)"

primary-Expression ::= Integer-Literal
I ldentifier
I Operator primary-Expression
((Expression)

Declaration ..- . single-Declaration (; single-Declaration)" (4.1 1

single-Declaration ::= const ldentifier - Expression
I var ldentifier : Type-denoter

Type-denoter ..- . Identifier (4.13

We have excluded production rules (1.10) through (1 .I 3), which specify the synta
of operators, identifiers, literals, and comments, all in terms of individual characters
This part of the syntax is called the language's lexicon (or microsyntax). The lexicon i
of no concern to the parser, which will view each identifier, literal, and operator as ,

single token. Instead, the lexicon will later be used to develop the scanner, in Sectioi
4.5.

We shall assume that the scanner returns tokens of class Token, defined in Exam
ple 4.2. Each token consists of a kind and a spelling. The parser will examine only th~
kind of each token.

Step (2) is to convert each EBNF production rule to a parsing method. The parsin1
methods will be as follows:

private void parseprogram 0 ;
private void parsecommand () ;

private void parseSingleCommand () ;

private void parseExpression 0;
private void parsePrimaryExpression 0 ;
private void parseDeclaration 0 ;
private void parseSingleDeclaration 0 ;

96 Programming Language Processors in Java

private void parseTypeDenoter 0;
private void parseIdentifier 0;
private void parse1ntegerLiteral 0;
private void parseoperator 0;

Here is method parseSingleDec larat ion:

private void parseSingleDeclaration () {

switch (currentToken.kind) { single-Declaration ::=

case Token.CONST:
{

acceptIt () ; const
parseIdentifier0; Identifier
accept(Token.IS); -
parseExpression(); Expression

1
break ;

case Token.VAR: I
{

acceptIt () ; var
parseIdentifier0; Identifier
accept(Token.COLON);
parseTypeDenoter0; Type-denoter

I I
I

break ;

default : 1
report a syntactic error

I
1

Note the use of the auxiliary method accept1 t, which unconditionally fetches the
next token from the source program. The following is also correct:

case Token.VAR:

accept (Token .VAR) ;
parseIdentifier0;
accept(Token.COLON);
parseTypeDenoter0;

I
break ;

var
ldentifier

Type-denoter

Here 'accept (Token.VAR) ;' would check that the current token is of kind
Token. VAR. In this context, however, such a check is redundant.

Now here is method parsecommand:

Syntactic Analysis 9

private void parsecommand () { Command ::=
parseSingleCommand(); single-Command
while (currentToken.kind

== Token.SEMIC0LON)
{ (

acceptIt () ; I

parsesinglecommand(); single-Command
1 > *

1

This method illustrates something new. The EBNF notation '(; single-Command)*
signifies a sequence of zero or more occurrences of '; single-Command'. To parse thi
we use a while-loop, which is iterated zero or more times. The condition for continuin<
the iteration is simply that the current token is a semicolon.

Method parseDeclaration is similar to parsecommand. The remainin;
methods are as follows:

private void parseprogram () {

parseSingleCommand();
1

private void parseSingleCommand () {

switch (currentToken.kind) {

case Token.1DENTIFIER:
{

parseIdentifier0;
switch (currentToken-kind) {
case Token.BECOMES:

{
acceptIt () ;

parseExpression();
1
break ;

case Token.LPAREN:

acceptIt () ;
parseExpression();
accept(Token.RPAREN) ;

1
break ;

default :
report a syntactic error

1
1
break ;

Program ::=
single-Command

Identifier

: =
Expression

I

(

Expression
1

Syntactic Analysis 99

Operator
primary-Expression

>*

private void parsePrimaryExpression () {

switch (currentToken.kind) { primary-Expression ::=
case Token.INTLITERAL:

parseIntegerLiteral(); Integer-Literal
break ;

case Token.IDENTIFIER:
parseIdentifier0;
break ;

case Token.OPERATOR:
I

parseoperator();
parsePrimaryExpression();

1
break;

case Token.LPAREN:

acceptIt () ;

parseExpression () ;
accept(Token.RPAREN);

ldentifier

Operator
primary-Expression

(

Expression
1

break ;

default:
report a syntactic error

1

private void parseTypeDenoter 0 { Type-denoter ::=
parseIdentifier0; Identifier

1

The nonterminal symbol ldentifier corresponds to a single token, so the method
parseIdentif ier is similar to accept:

private void parseIdentifier () {

if (currentToken-kind == Token.1DENTIFIER)
currentToken = scanner.scan0;

else
report a syntactic error

1

Syntactic Analysis I(

Having worked through a complete example, let us now study in general terms ho
we systematically develop a recursive-descent parser from a suitable grammar. The tw
main steps are: (1) express the grammar in EBNF, performing any necessary transforn
ations; and (2) convert the EBNF production rules to parsing methods. It will be cot
venient to examine these steps in reverse order.

Converting EBNF production rules to parsing methods
Consider an EBNF production rule N ::= X. We convert this production rule to a parsin
method named pa r seN. This method's body will be derived from the extended REX:

private void p a r s e N () {

parse X
I

Here 'parse X' is supposed to parse an X-phrase, i.e., a terminal string generated by J
(And of course the task of method p a r s e N is to parse an N-phrase.)

Next, we perform stepwise refinement on 'parse X' , decomposing it according to th
structure of X. (In the following, X and Y stand for arbitrary extended REs.)

We refine 'parse E' to a dummy statement.

We refine 'parse t' (where t is a terminal symbol) to:

a c c e p t (t) ;

In a situation where the current terminal is already known to be t , the following is alsc
correct and more efficient:

We refine 'parse N' (where N is a nonterminal symbol) to a call of the corresponding
parsing method:

p a r s e N () ;

We refine 'parse X Y to:

{
parse X
parse Y

The reasoning behind this is simple. The input must consist of an X-phrase followed
by a Y-phrase. Since the parser works from left to right, it must parse the X-phrase and

1 then parse the Y-phrase.

I This refinement rule is easily generalized to 'parse XI . . . Xn' .

Syntactic Analysis

We start with the following outline of the method:

private void parsecommand () {

parse single-Command (; single-Command)"
1

Now we refine 'parse single-Command (; single-Command)*' to:

parseSingleCornmand();
parse (; single-Command)"

Now we refine 'parse (; single-Command)"' to:

while (currentToken.kind == Token.SEMICOLON)
parse (; single-Command)

since starters[; single-Command] = [;).

Finally we refine 'parse (1 single-Command)' to:

{
acceptIt () ;

parsesinglecommand();
1

In this situation we know already that the current token is a semicolon, so 'accept
It () ; ' is a correct alternative to 'accept (Token . SEMICOLON) ; '.

[

Example 4.14 Stepwise refinement of parse~ingle~eclara tion

Let us also follow the stepwise refinement of the method parseSingleDeclara
t ion of Example 4.12, starting from production rule (4.1 1):

single-Declaration ::= const ldentifier - Expression
I var ldentifier : Type-denoter

We start with the following outline of the method:

private void parseSingleDeclaration () {

parse const ldentifier - Expression 1 var ldentifier : Type-denoter
1

Now we refine 'parse const . . . I var . . . ' to:

switch (currentToken.kind) {

case Token.CONST:
parse const ldentifier - Expression
break ;

Syntactic Analysis 107

This eliminates the problem, assuming that starters[[Declaration ; 1) is disjoint from
starters[Command].

The above examples are quite typical. Although the LL(1) condition is quite restric-
tive, in practice most programming language grammars can be transformed to make
them LL(1) and thus suitable for recursive-descent parsing.

Performing grammar transformations

Left factorization is essential in some situations, as illustrated by the following example.

Example 4.1 7 Left factorization

In Example 4.12, the production rule 'V-name ::=Identifier' was eliminated. The
occurrences of V-name on the right-hand sides of (1.3a) and (1 Sb) were simply replaced
by Identifier, giving:

single-Command ::= ldentifier : = Expression
I ldentifier (Expression)
I if Expression then single-Command

else single-Command
I ...

The starter sets are not disjoint:

startersl[ldentifier : = Expression] = { Identifier)

startersl[ldentifier (Expression) I] = { Identifier]

However, the substitution created an opportunity for left factorization:

single-Command ::= Identifier (: = Expression 1 (Expression))
I if Expression then single-Command

else single-Command
1 ...

This is an improvement, since now the relevant starter sets are disjoint:

starters1 : = Expression] = { : =)

starterst (Expression) lJ = (()

0

Left recursion must always be eliminated if the grammar is to be LL(1). The
following example shows why.

Syntactic Analysis 109

In general, a grammar that exhibits left recursion cannot be LL(1). Any attempt to
convert left-recursive production rules directly into parsing methods would result in an
incorrect parser. It is easy to see why. Given the left-recursive production rule:

N ::= X 1 N Y

we find:

startersl[N YJI = startersl[NJ = starters[Xlj u startersl[N YJ

so startersl[fl and starters[N Y j cannot be disjoint.

4.4 Abstract syntax trees

A recursive-descent parser determines the source program's phrase structure implicitly,
in the sense that it finds the beginning and end of each phrase. In a one-pass compiler,
this is quite sufficient for the syntactic analyzer to know when to call the contextual
analyzer and code generator. In a multi-pass compiler, however, the syntactic analyzer
must construct an explicit representation of the source program's phrase structure. Here
we shall assume that the representation is to be an AST.

4.4.1 Representation

The following example illustrates how we can define ASTs in Java.

Example 4.19 Abstract syntax trees of Mini-Triangle

Figure 4.4 shows an example of a Mini-Triangle AST. Below we summarize all possible
forms of Mini-Triangle AST, showing how each form relates to one of the production
rules of the Mini-Triangle abstract syntax (Example 1.5):

Program ASTs (P):

Program

I (1.14)
C

Command ASTs (C):

Assigncommand CallCommand el (1.15a) (1.15b)

V E Identifier E

spelling

Syntactic Analysis 1 1 1

A node with tag 'ConstDeclaration' is the root of a Declaration AST with two
subtrees: an ldentifier AST and an Expression AST.

A node with tag 'Identifier' is the root of an ldentifier AST. This is just a terminal
node, whose only content is its spelling.

We need to define Java classes that capture the structure of Mini-Triangle ASTs. We
begin by introducing an abstract class, called AST, for all abstract syntax trees:

public abstract class AST {

Every node in the AST will be an object of a subclass of AST.

Program ASTs:

public class Program extends AST {

public Command C; / / body of program

Program has only a single form, consisting simply of a Command, so the class
Program simply contains an instance variable for the command that is the body of the
program.

For each nonterminal in the Mini-Triangle abstract syntax that has several forms
(such as Command), we introduce an abstract class (such as Command), and several
concrete subclasses.

Command ASTs:

public abstract class Command extends AST { ...)

public class AssignCommand extends Command {

public Vname V; / / left-side variable
public Expression E; / / right-side expression

public class CallCommand extends Command {

public Identifier I; / / procedure name
public Expression E; / / actual parameter

public class Sequentialcommand extends Command {

public Command C1, C2; / / subcommands

Syntactic Analysis 1 15

Example 4.20 Construction of Mini-Triangle ASTs

Here we enhance the Mini-Triangle parser of Example 4.12, to construct an AST
representing the source program. The enhanced parsing methods will be as follows:

private
private
private
private
private
private
private
private
private
private
private

Program
Command
Command
Expression
Expression
Declaration
Declaration
TfleDeno t er
Identifier
In t egerli teral
Opera tor

parseprogram () ;

parsecommand 0 ;
parseSingleComrnand 0 ;
parseExpression 0 ;
parse~rimary~xpression () ;

parseDeclaration 0;
parse~ingle~eclaration 0 ;
parseTypeDenoter () ;

parseIdentif ier () ;

parse1ntegerLiteral 0 ;
parseoperator () ;

Each returns an AST of the appropriate class.

Here is the enhanced method parseSingleDeclaration (with the enhance-
ments italicized for emphasis):

private Declaration parseSingleDeclaration () {

Decl ara ti on declAST;
switch (currentToken.kind) {

case Token.CONST: {

acceptIt () ;
Identifier iAST = parseIdentifier0 ;
accept (Token. IS) ;
Expression eAST = parseExpression () ;
declAST = new Cons tDecl ara ti on (iAST, eAST) ;

1
break ;

case Token.VAR: {

acceptIt () ;
Identifier iAST = parseIdentifier () ;

accept(Token.COL0N);
TypeDenoter tAST = parseTypeDenoter () ;
declAST = new VarDeclara tion (iAST, tAST) ;

1
break ;

default :
report a syntactic error

J
return declAST;

I 16 Programming Language Processors in Java

This method is fairly typical. It has been enhanced with a local variable, declAST, in
which the AST of the single-declaration will be stored. The method eventually returns
this AST as its result. Local variables iAST, eAST, and tAST are introduced where
required to contain the ASTs of the single-declaration's subphrases.

Here is the enhanced method parsecommand:

private Command parsecommand () {

Command clAST = parseSingleCommand() ;
while (currentToken.kind == Token.SEMICOLON) {

acceptIt () ;

Command c2AST = parseSingleComrnand();
clAST = new Sequen tialCommand (clAST, c2AST) ;

1
return clAST;

This method contains a loop, arising from the iteration '*' in production rule (4.7),
which in turn was introduced by eliminating the left recursion in (1.2a-b). We must be
careful to construct an AST with the correct structure. The local variable clAST is used
to accumulate this AST.

Suppose that the command being parsed is 't : = x; x : = y; y : = t'. Then after
the method parses 't : = x', it sets clAST to the AST for 't : = x'; after it parses 'x : =
y', it updates clAST to the AST for 't : = x; x : = y'; and after it parses 'y : = t', it
updates c lAST to the AST for ' t : = x; x : = y; y := t'.

Here is an outline of the enhanced method parseSingleCommand:

private Command parseSingleCommand () {

Command comAST;
switch (currentToken. kind) {

case Token.IDENTIFIER: {

Identifier iAST = parseIdentifier0 ;
switch (currentToken.kind) {
case Token.BECOMES: {

acceptIt () ;

Expression eAST = parseExpression () ;
comAST = new ~ssignCommand (iAST, eAST) ;

1
break ;

case Token.LPAREN: {

acceptIt () ;

Expression eAST = parseExpression0;
accept(Token.RPAREN);
comAST = new Call Command (iAST, eAST) ;

break ;

Syntactic Analysis 1

default :
report a syntactic error

I
1
break ;

case Token.IF:
. . .

case Token.WHILE:
. . .

case Token.LET: {

acceptIt () ;

D e c l a r a t i o n dAST = parseDeclaration () ;
accept(Token.IN);
Command CAST = parseSingleCommand();
comAST = new Letcommand (dAST, CAST) ;

1
break ;

case Token.BEGIN: {

acceptIt () ;

comAST = parsecommand () ;
accept(Token.END);

}
break ;

default :
report a syntactic error

1
return comAST;

1

If the single-command turns out to be of the form 'begin C end', there is no need 1
construct a new AST, since the 'begin' and 'end' are just command brackets. So i
this case the method immediately stores C's AST in comAST.

The method parseIdentif ier constructs an AST terminal node:

private I d e n t i f i e r parseIdentif ier () {

I d e n t i f i e r i dAST;
if (currentToken.kind == Token-IDENTIFIER) {

idAST = new I d e n t i f i e r (c u r r e n t T o k e n . s p e l l i n g) ;
currentToken = scanner.scan();

) else
report a syntactic error

return i dAST;

1

The methods parseIntegerLitera1 and parseoperator do likewise.

Syntactic Analysis 119

private auxiliary methods t a k e and t a k e 1 t ;

private scanning methods developed in step (2) , enhanced to record each token's
kind and spelling;

a public s c a n method that scans 'Separator* Token', discarding any separators
but returning the token that follows them.

The scanning methods will be analogous to the parsing methods we met in Sec-
tion 4.3. On entry to scanN, c u r r e n t c h a r is supposed to contain the first character
of a character sequence of kind N; on exit, c u r r e n t c h a r is supposed to contain the
character immediately following that character sequence.

Likewise, the auxiliary methods t a k e and t a k e I t are analogous to the parser's
auxiliary methods a c c e p t and a c c e p t I t . Both t a k e and t a k e I t will fetch the
next character from the source text and store it in c u r r e n t c h a r ; however, t a k e will
do so only if its argument character matches c u r r e n t c h a r .

The method s c a n is supposed to fetch the next token from the source program, each
time it is called. But the next token might turn out to be preceded by some separators.
This is the reason for scanning 'Separator* Token'. In this we are assuming that the
source language has a conventional lexicon: separators may be used freely between
tokens. (Most modern programming languages do follow this convention.)

Example 4.21 Scanner for Mini-Triangle

The lexical grammar of Mini-Triangle is partly given by production rules (1.10) through
(1.13). We add production rules for Token and Separator:

Token . Identifier I Integer-Literal I Operator I (4.14)
; l : l : = l - l (1) l eo t

Identifier . . .- Letter I Identifier Letter I Identifier Digit (4.15)

Integer-Literal . . .- Digit I Integer-Literal Digit (4.16)

Operator ::= + ~ - ~ * ~ / ~ < ~ > ~ = ~ \ (4.17)

Separator ..- . Comment I space I eol (4.18)

Comment ..- . ! Graphic* eol (4.19)

In these production rules:

space stands for a space character;

eol stands for an end-of-line 'character';

eot stands for an end-of-text 'character'.

(Visible characters can be expressed as themselves in (E)BNF, but these invisible
characters cannot.) Also:

Digit stands for one of the digits ' O ' , 'l', . . ., or '9';

Syntactic Analysis 125

The lexical grammar of Triangle expressed in EBNF may be found in Section B.8.
Before developing the scanner, the lexical grammar was modified in two respects:

The production rule for Token was modified to add end-of-text as a distinct token.

Keywords were grouped with identifiers. (See Exercise 4.18 for an explanation.)

Most nonterminals were eliminated by substitution. The result was a lexical grammar
containing only individual characters, nonterminals that represent individual characters
(i.e., Letter, Digit, Graphic, and Blank), and the nonterminals Token and Separator:

Token ::= Letter (Letter I Digit)* I Digit Digit* I (4.24)
Op-character Op-character* I Graphic

. l ~ l ; l : ~ ~ l = ~ l ~ l ~ l ~ l ~ l l l ~ l l l
end-of-text

Separator ::= ! Graphic* end-of-line I Blank (4.25)

The Triangle scanner was then developed from this lexical grammar, following the
procedure described in Section 4.5.

4.6.2 Abstract syntax trees

The package Triangle. AbstractSyntaxTrees contains the class definitions for
the AST, in a style similar to that of Example 4.19. Each concrete subclass contains a
constructor for creating a new AST node, and the parser uses these to construct the
complete AST of the whole program.

The package Triangle .AbstractSyntaxTrees does not actually hide the
AST representation, so other parts of the compiler can directly access the instance
variables representing the subtrees of a node. However, the package does define a
design pattern, known as a visitor, for traversing the AST. This design pattern is used by
the later phases of the compiler. (Visitors will be explained in Chapter 5.)

In the Triangle compiler, an AST node contains more fields than shown in Exam-
ple 4.19. One such field, position, records the position of the corresponding phrase
in the source program. This is derived from the position fields of the phrase's con-
stituent tokens, and is useful for generating error reports. Every node in the AST has an
associated position, so position is declared as an instance variable of the AST class.
Some other fields (decl, type, and entity) are specific to certain classes of nodes
(principally identifiers, expressions, and declarations, respectively), and are therefore
declared as instance variables of the appropriate AST subclasses. These other fields will
be used later by the contextual analyzer and code generator to decorate the AST.

4.6.3 Parsing

The Parser class contains a recursive-descent parser, as described in Section 4.3. The
parser calls the scan method of the Scanner class to scan the source program, om

Syntactic Analysis 129

descent and backtracking algorithms) and bottom-up (Earley's algorithm, various
precedence algorithms, and the LR algorithm). The major triumph of this research has
been the discovery of algorithms for generating scanners and parsers automatically from
lexical grammars and (suitable) context-free grammars, respectively. A comprehensive
account of the theory of scanning and parsing may be found in Aho and Ullman (1 972).

For practical application in compilers, the recursive-descent and LR algorithms are
now generally held to be the best. Both algorithms are described in Chapter 4 of Aho et
al. (1985), emphasizing practical application rather than theory. Chapter 3 of the same
textbook covers scanning, including finite-state scanning (a good alternative to the
algorithm described in Section 4.5).

In Section 4.3 we saw how to construct a parser from the source language's context-
free grammar, and in Section 4.5 how to construct a scanner from its lexical grammar. Tt
is striking how straightforward the construction algorithms are - almost mechanical.
This is also true for other algorithms such as finite-state scanning and LR parsing. A
variety of tools have been developed that generate scanners and parsers automatically.

Among the best-known are the UNIX tools Lex and Yacc. Lex (Lesk and Schmidt
1975) accepts the lexical grammar of a source language S, and from it generates a finite-
state scanner for S, expressed in C. Analogously, Yacc (Johnson 1975) accepts the
context-free grammar of S, and from it generates an LR parser for S, also expressed in
C. Both Lex and Yacc are described in Aho et al. (1985), which explains how they work
and shows how to use them in practical applications. More recently, versions of Lex and
Yacc have appeared that generate scanners and parsers in languages other than C.

JavaCC (www. suntest. corn/ JavaCC/) is a powerful tool that can be used to
generate a complete syntactic analyzer - scanner, parser, and tree builder - expressed in
Java. JavaCC accepts a grammar expressed in EBNF, and the generated parser uses
recursive descent.

Exercises

Section 4.1

4.1 Perform syntactic analysis of the Mini-Triangle program:

begin while true do putint(1); putint(0) end

along the lines of Figures 4.1 through 4.4.

4.2 Modify the class Token (Example 4.2) so that the instance variable spell-
ing is left empty unless the token is an identifier, literal, or operator.

Syntactic Analysis 131

4.9 A calculator accepts commands according to the following EBNF grammar:

Command ::= Expression =

Expression ::= Numeral ((+ (- (*) Numeral)*

Numeral ::= Digit Digit*

(a) Construct a recursive-descent parser for a calculator command. The termi-
nal symbols should be individual characters.

(b) Enhance the parser to display the command's result.

4.10* The following EBNF grammar generates a subset of the UNIX shell command
language:

Script ..- . Command*

Command ::= Filename Argument* eol
I Variable = Argument eol

I if Filename Argument* then eol
Command*
else eol
Command*
f i eol

I for Variable in Argument* eol
do eol
Command*
od eol

Argument ::= Filename I Literal (Variable

The start symbol is Script. The token eol corresponds to an end-of-line.

Construct a recursive-descent parser for this language. Treat filenames, literals,
and variables as single tokens.

4.11* Consider the rules for converting EBNF production rules to parsing methods
(Section 4.3.4).

(a) Suggest an alternative refinement rule for 'parse X I Y , using an if-
statement rather than a switch-statement.

(b) In some variants of EBNF, [a is used as an abbreviation for X (E.

Suggest a refinement rule for 'parse [XI'.

(c) In some variants of EBNF, Xt is used as an abbreviation for X X*.
Suggest a refinement rule for 'parse X+'.

In each case, state any condition that must be satisfied for the refinement rule
to be correct.

134 Programming Language Processors in Java

another AST node. A terminal node contains a tag and a spelling. The tag dis-
tinguishes between an identifier, a literal, and an operator.

(a) Reimplement the class AST for Mini-Triangle.

(b) Provide this class with a method display, as specified in Exercise 4.15.

Section 4.5

4.17 The Mini-Triangle scanner (Example 4.21) stores the spellings of separators,
including comments, only to discard them later. Modify the scanner to avoid
this inefficiency.

4.18* Suppose that the Mini-Triangle lexical grammar (Example 4.21) were modified
as follows, in an attempt to distinguish between identifiers and keywords (such
as ' i f ', 'then', 'e lse ' , etc.):

Token ..- . Identifier I Integer-Literal I Operator (
if 1 t h e n (e l s e 1 ... 1
; ~ : ~ : = ~ - ~ (~) ~ e o t

Identifier ::= Letter (Letter (Digit)"

Point out a serious problem with this lexical grammar. (Remember that the ter-
minal symbols are individual characters.) Can you see any way to remedy this
problem?

4.19 (a) Modify the Mini-Triangle lexical grammar (Example 4.21) as follows.
Allow identifiers to contain single embedded underscores, e.g., 'set-up'
(but not ' s e t u p ' , nor 'set-', nor '-up'). Allow real-literals, with a
decimal point surrounded by digits, e.g., ' 3 . 1 4 1 6 ' (but not ' 4 . ', nor
' . 1 2 5 ') .

(b) Modify the Mini-Triangle scanner accordingly.

General

4.20* Consider a hypothetical programming language, Newspeak, with an English-
like syntax (expressed in EBNF) as follows:

Program . . .- .-

Command . .- . .-
Command .
single-Command single-Command*

do nothing
store Expression in Variable
if Condition : single-Command

otherwise : single-Command
do Expression times : single-Command

Syntactic Analysis 135

Expression ..- ..-
I
I
I

Condition ..-
I

Numeral . .- . .-

Variable . .- . .-

Numeral
Variable
sum of Expression and Expression
product of Expression and Expression

Expression is Expression
Expression is less than Expression

Digit Digit*

Letter Letter*

Consecutive keywords and variables must be separated by blank space; other-
wise blank space may be inserted freely between symbols.

Design and implement a syntactic analyzer for Newspeak:

(a) Decide which Newspeak symbols should be tokens, and how they should
be classified. Define the class Token. Then implement a Newspeak
scanner.

(b) Name and specify the parsing methods in a recursive-descent parser for
Newspeak. Then implement the Newspeak parser.

4.21** Design and implement a complete syntactic analyzer for your favorite pro-
gramming language.

4.22"" A cross-referencer is a language processor that lists each identifier that occurs
in the source program, together with the line numbers where that identifier oc-
curs. Starting with either the Mini-Triangle syntactic analyzer or the syntactic
analyzer you implemented in Exercise 4.21:

(a) Modify the scanner so that every token contains a field for the line number
where it occurs.

(b) Develop a simple cross-referencer, reusing appropriate parts of your syn-
tactic analyzer.

(c) Now make your cross-referencer distinguish between defining and applied
occurrences of each identifier.

4.23** A pretty-printer is a language processor that reproduces the source program
with consistent indentation and spacing. Starting with either the Mini-Triangle
syntactic analyzer or the syntactic analyzer you implemented in Exercise 4.21:

(a) Develop a simple pretty-printer, reusing appropriate parts of your syntactic
analyzer. At this stage your pretty-printer need not reproduce comments.

(b) Now make your pretty-printer reproduce comments.

Contextual Analysis 147

public class ConstAttribute extends Attribute {

Type type;
1

public class VarAttribute extends Attribute {

Type type;

public class ProcAttribute extends Attribute {

FormalLis t formals ; / / a list of (identifier, attribute) pairs

public class FuncAttribute extends Attribute {

FormalList formals ; / / a list of (identifier, attribute) pairs
Type resultType;

1

public class TypeAttribute extends Attribute {

Type type;
1

0

For a realistic source language, the information to be stored in the identification table
is quite complex, as Example 5.5 illustrates. A lot of tedious programming is required to
declare and construct the attributes.

Fortunately, this can be avoided if the source program is represented by an AST.
This is because the AST itself contains the information about identifiers that we need to
store and retrieve. The information associated with an identifier I can be accessed via a
pointer to the subtree that represents the declaration of I. In other words, we can replace
the class Attribute with the class Declaration throughout the definition of the
Identif icationTable class (assuming the AST representation described in
Section 4.4.1).

Example 5.6 Mini-Triangle attributes represented by declaration ASTs

Consider once more the Mini-Triangle program outlined in Figure 5.3. Figure 5.4 shows
part of the AST representing this program, including one of the inner blocks, with the
subtree representing each block shaded to indicate its scope level. Figure 5.4 also shows
a picture of the identification table as it stands during contextual analysis of each block.

When the contextual analyzer visits the declaration at subtree (I) , it calls enter
with identifier a and a pointer to subtree (1). Whenever it visits an applied occurrence of
a, it calls retrieve with identifier a, and thus retrieves the pointer to subtree (1). By
inspecting this subtree, it determines that a denotes an integer variable. The other
declarations are treated similarly.

0

Contextual Analysis 149

A programming language must also specify the appropriate scope rule for the
standard environment. Most programming languages consider the standard environment
to be a scope enclosing the whole program, so that the source program may contain a
declaration of an identifier present in the standard environment without causing a scope
error. Some other programming languages (such as C) introduce the standard environ-
ment at the same scope level as the global declarations of the source program.

If the standard environment is to be at a scope enclosing the whole program, the
declarations of the standard environment should be entered at scope level 0 in the
identification table.

Example 5.7 Standard environment in Mini-Triangle

The standard environment of Mini-Triangle contains the following constant, type,
procedure, and operator declarations:

type Boolean - . . . ;

const false - ... ;

const true - ... ;

func \ (b: Boolean) : Boolean - ... ;

type Integer - ... ;

const maxint - ... ;

func + (il: Integer, i2: Integer) : Integer - ...;

func - (il: Integer, i2: Integer) : Integer - ... ;

func * (il: Integer, i2: Integer) : Integer - ... ;

func / (il: Integer, i2: Integer) : Integer - ... ;

func < (il: Integer, i2: Integer) : Boolean - ...;

func > (il: Integer, i2: Integer) : Boolean - ... ;

proc putint (i: Integer) - .,.;

In addition, the following operator is available for every type T (i.e., both Integer
and Boolean):

func = (vall: T , va12: T) : Boolean - ... ;

Here, a unary operator declaration is treated like a function declaration with one
argument, and a binary operator declaration is treated like a function declaration with
two arguments. The operator symbol is treated like a normal identifier. The contextual
analyzer only requires information about the types of the arguments and result of an
operator, and so these declarations have no corresponding expressions.

152 Programming Language Processors in Java

(We show the inferred type T by annotating the AST node with ': T'.)

If I is declared in a variable declaration, whose right side is type T, then the type of
the applied occurrence of I is T:

I
VarDeclaration

I
SimpleVname

I
VarDeclaration

I
SimpleVname : T e, ---- -- I ,-J-, ----- --- -- I

Ident. Ident. T
- -

Ident. T Ident.

An application of a binary operator such as 'i' would be handled as follows:

I
BinaryExpression

m
. . .Expr. Op. . . .Expr.

I
BinaryExpression : boo1

m
. .Expr. Op. . . .Expr.

I : int / I : int 1 : in t / I : int
< <

The operator '<' is of type int x int + bool. Having checked that the type of E l is
equivalent to int, and that the type of E2 is equivalent to int, the type checker infers that
the type of ' E l < E2' is bool. Other operators would be handled similarly.

0

Of course, Mini-Triangle type checking is exceptionally simple: the representation
of types is trivial, and testing for type equivalence is also trivial. Type checking is more
complicated if the source language has composite types. For example, Triangle array
and record types have component types, which are unrestricted. Thus we need to
represent types by trees.

Furthermore, there are two possible definitions of type equivalence.

Some programming languages (such as Triangle) adopt structural equivalence,
whereby two types are equivalent if and only if their structures are the same. If types are
represented by trees, structural equivalence can be tested by comparing the structures of
these trees. If the implementation language is Java, then this kind of equality is conven-
tionally tested by an e q u a l s method in the Type class.

Other programming languages (such as Pascal and Ada) adopt name equivalence.
Every occurrence of a type constructor (e.g., array or r e c o r d) creates a new and
distinct type. In this case type equivalence can be tested simply by comparing pointers
to the objects representing the types: distinct objects (created at different times)
represent types that are not equivalent, even if they happen to be structurally similar. If
the implementation language is Java, then this kind of equality is tested by the '=='
operator applied to objects of class Type.

Contextual Analysis 1

The work of the contextual analyzer will be done by a set of visitor methods. The
will be exactly one visitor method, visitA, for each concrete AST subclass A. The
visitor methods will cooperate to traverse the AST in the desired order.

Example 5.10 Mini-Triangle visitor methods

The visitor methods for Mini-Triangle are summarized by the following Java interface

public interface Visitor {

/ / Programs:
public Object visitprogram

(Program prog, Object arg);

/ / Commands:
public Object visitAssignCommand

(Assigncommand corn, Object arg);
public Object visitCallCommand

(CallCommand corn, Object arg);
public Object visitSequentialCommand

(SequentialCommand corn, Object arg);
public Object visitIfCommand

(Ifcommand com, Object arg);
public Object visitWhileCommand

(Whilecommand com, Object arg);
public Object visitLetCommand

(Letcommand com, Object arg);

/ / Expressions:
public Object visitIntegerExpression

(IntegerExpression expr, Object arg);
public Object visitVnameExpression

(VnarneExpression expr, Object arg)
public Object visitUnaryExpression

(UnaryExpression expr, Object arg)
public Object visitBinaryExpression

(BinaryExpression expr, Object arg

/ / Value-or-variable-names:
public Object visitsimplevname

(Simplevname vname, Object arg);

/ / Declarations:
public Object visitConstDeclaration

(ConstDeclaration decl, Object arg);
public Object visitVarDeclaration

(VarDeclaration decl, Object arg);
public Object visitSequentialDeclaration

(SequentialDeclaration decl, Object arg);

Contextual Analysis 157

public class Assigncommand extends Command {

...
public Object visit (Visitor v, Object arg) {

return v.visitAssignCommand(this, arg);
1

}

public class Ifcommand extends Command {

...
public Object visit (Visitor v, Object arg) {

return v.visitIfCommand(this, arg);
1

1

Each visit method 'knows' which particular visitor method to call. For example,
I£ Command's visit method knows that this is an If Command object, so it calls
the v. visitIfCommand method, passing this (and arg) as arguments. In general,
the visit method in the concrete AST subclass A simply calls v. visi tA:

public class A extends ... {

. . .
public Object visit (Visitor v, Object arg) {

return v.visitA(this, arg);
I

1

When visi tA visits an AST node, it may visit any child of that node by calling that
child's own visit method.

5.3.3 Contextual analysis as a visitor object

The contextual analyzer is a visitor object that performs identification and type
checking. Each visitor method visitA in the contextual analyzer will check a node of
class A, generating an error report if it determines that the phrase represented by the
node is ill-formed. Visitor methods in the contextual analyzer can conveniently be called
checking methods.

Example 5.11 Mini- Triangle contextual analysis

The Mini-Triangle contextual analyzer is an implementation of the Visitor interface
given in Example 5.10.

We shall assume the following representation of Mini-Triangle types, adapted from
Example 5.8:

public class Type C
private byte kind; / / either BOOL, I N T or ERROR

Contextual Analysis 161

The visitorlchecking methods visit IntegerExpress ion and vis i tVname-
Expression are self-explanatory. In the case of a binary operator application ' E l 0
E2', visitBinaryExpression assumes that 0 . visit returns a pointer to a
'declaration' of operator 0, where the operator's operand and result types may be found.
(This declaration will be the attribute value returned by searching the identification table
for the operator.) Method visitUnaryExpression is similar to visitBinary-
Expression.

The visit S imp1 evname visitorlchecking method checks that the value-or-
variable-name is well-formed, and decorates it with its inferred type together with an
indication of whether it is a variable or not. The method's result is the inferred type.
(The arg object is ignored.) The following are typical:

public Object visitSimpleVname
(Simplevname vname, Object arg) {

Declaration decl =

(Declaration) vname.I.visit (this, null);
if (decl == null) {

. . . / / Report an error - this identifier is not declared.
vname.type = Type.error;
vname-variable = true; / / decoration

) else if (decl instanceof ConstDeclaration) {

vname.type = ((ConstDeclaration) decl) .E.type;
vname.variable = false; / / decoration

} else if (decl instanceof VarDeclaration) {

vname.type = ((VarDeclaration) decl) .T.type;
vname.variable = true; / / decoration

1
return vname.type;

1

Each of the visit ... Declaration visitorlchecking methods checks that the
declaration is well-formed, and enters all declared identifiers into the identification
table. (The method's result is null, and the arg object is ignored.)

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg) {

decl.E.visit(this, null); / / result is ignored
idTable.enter(decl.I.spelling, decl);
return null;

public Object visitVarDeclaration
(VarDeclaration decl, Object arg) {

decl .T.visit (this, null) ; / / result is ignored
idTable.enter(decl.I.spelling, decl);
return null;

Contextual Analysis 165

(5) array 10 of Char
(6) array 10 of Char
(7) array 10 of Integer
(8) record n: Integer, c: Char end
(9) record c: Char, n: Integer end

In Triangle type equivalence is structural. Of the types shown in Figure 5.5, only (5)
and (6) are equivalent to each other. To test whether two types are equivalent, the type
checker just compares their ASTs structurally. This test is performed by defining an
equals method in each subclass of TypeDenoter. Class TypeDenoter itself is
enhanced as follows:

public abstract class TypeDenoter extends AST {

public abstract boolean equals (Object other);

Type identifiers in the AST would complicate the type equivalence test. To remove
this complication, the visitorlchecking methods for type-denoters are made to eliminate
all type identifiers. This is achieved by replacing each type identifier by the type it
denotes.

Figure 5.6 shows the ASTs representing the following Triangle declarations:

type Word - array 8 of Char;
var wl: Word;
var w2: array 8 of Char

Initially the type subtrees (1) and (2) in the two variable declarations are different. After
these subtrees have been checked, however, the type identifiers 'Char' and 'Word'
have been eliminated. The resulting subtrees (3) and (4) are structurally similar. The
elimination of type identifiers makes it clear that the types of variables wl and w2 are
equivalent.

A consequence of this transformation is to make each type 'subtree' (and hence the
whole AST) into a directed acyclic graph. Fortunately, this causes no serious complic-
ation in the Triangle compiler. (But recursive types - as found in Pascal, Ada, and ML -
would cause a complication: see Exercise 5.9.)

The Triangle type checker infers and checks the types of expressions and value-or-
variable-names in much the same way as in Example 5.8. Types are tested for structural
equivalence by using the equals method of the TypeDenoter class. (Instead,
comparing types by means of '==' would implement name equivalence.)

Contextual Analysis 167

Before analyzing a source program, the contextual analyzer initializes the identifi-
cation table with entries for the standard identifiers, at scope level 0, as shown in Figure
5.8. The attribute stored in each of these entries is a pointer to the appropriate 'declar-
ation'. Thus standard identifiers are treated in exactly the same way as identifiers dec-
lared in the source program.

(1) (2) (3)
TypeDeclaration ConstDeclaration ConstDeclaration

l - l
Ident. boo1

i - l I
Ident EmptyExpr. Ident EmptyExpr.

~ooiean faise true

(4)
FuncDeclaration -

Ident. EmptyFP. bool EmptyExpr.

eof

(5) (6)
ProcDeclaration ProcDeclaration -

Ident. SingleFP. SkipCommand
-

Ident. SingleFP. SkipCommand

r - l
Ident. char

Op. boo1 bool

get
I

VarFP.

el
Ident. char

dummy

(8)
BinaryOpDeclaration -

Op. int int boo1

Figure 5.7 Small ASTs representing the Triangle standard environment (abridged).

168 Programming Language Processors in Java

Figure 5.8 Identification table for the Triangle standard environment (abridged).

The Triangle standard environment also includes a collection of unary and binary
operators. It is convenient to treat operators in much the same way as identifiers, as
shown in Figures 5.7 and 5.8.'

Attr.

(1)

(2)

Level

0

0

The representation of the Triangle standard environment therefore includes small
ASTs representing 'operator declarations', such as one for the unary operator ' \ ' (7),
and one for the binary operator '<' (8). (See Figure 5.7.) An 'operator declaration'
merely defines the types of the operator's operand(s) and result. Entries are also made
for operators in the identification table. (See Figure 5.8.) At an application of operator
0, the identification table is used to retrieve the 'operator declaration' of 0, and thus to
find the operand and result types for type checking.

Ident.
Boolean

false

Further reading

For a more detailed discussion of declarations, scope, and block structure, see Chapter 4
of the companion textbook by Watt (1990). Section 2.5 of the same textbook discusses
simple type systems (of the kind found in Triangle, Pascal, and indeed most program-
ming languages). Chapter 7 goes on to explore more advanced type systems. Coercions
(found in most languages) are implicit conversions from one type to another. Overload-
ing (found in Ada and Java) allows several functions/procedures/methods with different
bodies and different types to have a common identifier, even in the same scope. In a
function/procedure/method call with this common identifier, a technique called overload
resolution is needed to identify which of several functions/procedures/methods is being
called. Parametric polymorphism (found in M L) allows a single function to operate

' Indeed, some programming languages. such as ML and Ada, actually allow operators to be
declared like functions in the source program. This emphasizes the analogy between operators
and function identifiers.

Contextual Analysis 169

uniformly on arguments of a family of types (e.g., the list types). Moreover, the types of
functions, parameters, etc., need not be declared explicitly. Polymorphic type inference
is a technique that allows the types in a source program to be inferred in the context of a
polymorphic type system.

For a comprehensive account of type checking, see Chapter 6 of Aho et al. (1985).
As well as elementary techniques, the authors discuss techniques required by the more
advanced type systems: type checking of coercions, overload resolution, and polymor-
phic type inference. For some reason, however, Aho et al. defer discussion of identifi-
cation to Chapter 7 (run-time organization).

A classic paper on polymorphic type inference by Milner (1978) was the genesis of
the type system that was adopted by ML, and borrowed by later functional languages.

For a good short account of contextual analysis in a one-pass compiler for a Pascal
subset, see Chapter 2 of Welsh and McKeag (1980). The authors clearly explain ways of
representing the identification table, attributes, and types. They also present a simple
error recovery technique that enables the contextual analyzer to generate sensible error
reports when an identifier is declared twice in the same scope, or not declared at all.

The visitor pattern used to structure the Triangle compiler is not the only possible
object-oriented design. One alternative design, explained in Appel (1 997), is to associate
the checking methods (and the encoding methods in the code generator) for a particular
AST object with the AST object itself. This design is initially easier to understand than
the visitor design pattern, but it has the disadvantage that the checking methods (and
encoding methods) are spread all over the AST subclass definitions instead of being
grouped together in one place.

You should be aware of a lack of standard terminology in the area of contextual
analysis. Identification tables are often called 'symbol tables' or 'declaration tables'.
Contextual analysis itself is often misnamed 'semantic analysis'.

Exercises

Section 5.1

5.1 Consider a source language with monolithic block structure. as in Section
5.1.1, and consider the following ways of implementing the identification table:

(a) an ordered list;
(b) a binary search tree;
(c) a hash table.

In each case implement the Identif icationTable class, including the
methods enter and retrieve.

In efficiency terms, how do these implementations compare with one another?

170 Programming Language Processors in Java

5.2 Consider a source language with flat block structure, as in Section 5.1.2.
Devise an efficient way of implementing the identification table. Implement the
Ident if icat ionTable class, including the methods enter, retrieve,
openscope, and closescope.

5.3" For a source language with nested block structure, as in Section 5.1.3, we could
implement the identification table by a stack of binary search trees (BSTs).
Each BST would contain entries for declarations at one scope level. Consider
the innermost block of Figure 5.3, for example. At the stack top there would be
a BST containing the level-3 entries; below that there would be a BST
containing the level-2 entries; and at the stack bottom there would be a BST
containing the level- 1 entries.

Implement the I dent i f i ca t i onTabl e class, including the methods en-
ter, retrieve, openscope, and closescope.

In efficiency terms, how does this implementation compare with that used in
the Triangle compiler (Section 5.4.1)?

5.4* For a source language with nested block structure, we can alternatively imple-
ment the identification table by a sparse matrix, with columns indexed by scope
levels and rows indexed by identifiers. Each column links the entries at a par-
ticular scope level. Each row links the entries for a particular identifier, in order
from innermost scope to outermost scope. In the innermost block of Figure 5.3,
for example, the table would look like Figure 5.9.

Implement the Identif icationTable class, including the methods en-
ter, retrieve, openscope, and closescope.

In efficiency terms, how does this implementation compare with that used in
the Triangle compiler (Section 5.4.1), and with a stack of binary search trees
(Exercise 5.3)?

5.5" Outline an identification algorithm that does not use an identification table, but
instead searches the AST. For simplicity, assume monolithic block structure.

In efficiency terms, how does this algorithm compare with one based on an
identification table?

CHAPTER SIX

Run-Time Organization

A programming language supports high-level concepts such as types and values,
expressions, variables, procedures, functions, and parameters. The target machine
typically supports low-level concepts such as bits, bytes, words, registers, stacks,
addresses, and (sub)routines. The gap between the higher and lower levels is often
called the semantic gap. Bridging this gap is the task of the code generator.

Before writing a code generator, however, we must decide how to marshal the
resources of the target machine (instructions, storage, and system software) in order to
implement the source language. This is called run-time organization, and is the subject
of this chapter.

The following are key issues in run-time organization:

Data representation: How should we represent the values of each source-language
type in the target machine?

Expression evaluation: How should we organize the evaluation of expressions,
taking care of intermediate results?

Storage allocation: How should we organize storage for variables, taking into
account the different lifetimes of global, local, and heap variables?

Routines: How should we implement procedures, functions, and parameters, in terms
of low-level routines?

We shall study all these topics in this chapter, together with another topic of ever-
increasing interest:

Run-time organization for object-oriented languages: How should we represent
objects and methods?

A thorough knowledge of run-time organization is essential for implementors of
language processors, but a basic knowledge is useful to any serious programmer. In
order to make rational programming decisions, the application programmer should have
a feel for the efficiency of various high-level language constructs. An example is the
choice of data structures: as we shall see, records and static arrays can be represented
very efficiently, but the representations of dynamic arrays and recursive types carry
overheads (indirect addressing, garbage collection) that might be unacceptable in some

174 Programming Language Processors in Java
8
i

applications. This chapter covers all of these topics, for the sake of completeness,
although not all of them are essential to understand the Triangle language processor.

6.1 Data representation I i
Programming languages provide high-level data types such as truth values, integers,
characters, records, and arrays, together with operations over these types. Target I
machines provide only machine 'types' such as bits, bytes, words, and double-words,
together with low-level arithmetic and logical operations. To bridge the semantic gap
between the source language and the target machine, the implementor must decide how

i
to represent the source language's types and operations in terms of the target machine's
types and operations.

i
In the following subsections we shall survey representations of various types. As we 1

study these representations, we should bear in mind the following fundamental
principles of data representation:

Nonconfusion: Different values of a given type should have different representations.
i

Uniqueness: Each value should always have the same representation.

The nonconfusion requirement should be self-evident. If two different values are
confused, i.e., have the same representation, then comparison of these values will
incorrectly treat the values as equal.

Nevertheless, confusion does arise in practice. A well-known example is the approx-
imate representation of real numbers: real numbers that are slightly different mathemat-
ically might have the same approximate representation. This confusion is inevitable,
however, given the design of our digital computers. So language designers must formul-
ate the semantics of real-number operations with care; and programmers on their part
must learn to live with the problem, by avoiding naive comparisons of real numbers.

On the other hand, confusion can and must be avoided in the representations of
discrete types, such as truth values, characters, and integers.

If the source language is statically typed, the nonconfusion requirement refers only
to values of the same type; values of distinct types need not have distinct represent-
ations. Thus the word 00.. .002 may represent the truth value false, the integer 0, the real
number 0.0, and so on. Compile-time type checks will ensure that values of different
types cannot be used interchangeably at run-time, and therefore cannot be confused.
Thus we can be sure that if 00 ... 002 turns up as an operand of a logical operation, it
represents false, whereas if it turns up as an operand of an arithmetic operation, it
represents the integer 0.

The uniqueness requirement is likewise self-evident. Comparison of values would be
complicated by the possibility of any value having more than one representation. Cor-
rect comparison is possible, however, so uniqueness is desirable rather than essential.

Run-Time Organization 175

An example of nonuniqueness is the ones-complement representation of integers, in
which zero is represented both by 00.. .002 and by 1 1.. .112. (These are +O and -0!) A
simple bit-string comparison would incorrectly treat these values as unequal, so a more
specialized integer comparison must be used. The alternative twos-complement repre-
sentation does give us unique representations of integers.

As well as these fundamental principles, we should bear in mind the following
pragmatic issues in data representation:

Constant-size representation: The representations of all values of a given type should
occupy the same amount of space.

Direct representation or indirect representation: Should the values of a given type be
represented directly, or indirectly through pointers?

Constant-size representation makes it possible for a compiler to plan the allocation
of storage. Knowing the type of a variable, but not its actual value, the compiler will
know exactly how much storage space the variable will occupy.

The direct representation of a value x is just the binary representation of x itself,
which consists of one or more bits, bytes, or words. This is illustrated in Figure 6.l(a).

The indirect representation of x is a handle, which points to a storage area (usually
in the heap) that contains the binary representation of x. See Figure 6.l(b).

To understand the distinction, it is helpful to visualize what happens when the value
x is copied (e.g., passed as an argument). With the direct representation, it is the binary
representation of x that is copied. With the indirect representation, it is only the handle
to x that is copied. The direct representation is so called because x can be accessed using
direct addressing; the indirect representation is so called because x must be accessed
using indirect addressing.

The choice of direct or indirect representation is a key design decision in run-time
organization. Implementations of imperative languages like Pascal and C adopt the
direct representation wherever possible, because values can be accessed more efficiently
by direct addressing, and because the overheads of heap storage management are avoid-
ed. Implementations of functional languages like ML and Haskell usually adopt the
indirect representation, because it simplifies the implementation of polymorphic func-
tions. Implementations of object-oriented languages like Java adopt the direct represent-
ation for primitive types and the indirect representation for objects (see Section 6.7).

Figure 6.1 (a) Direct representation of a value x; (b) indirect representation of a value x;
(c) indirect representation of a value y, of the same type as x but requiring
more space.

176 Programming Language Processors in Java

Indirect representation is essential for types whose values vary greatly in size. For
example, a list or dynamic array may have any number of elements, and clearly the total
amount of space depends on the number of elements. For types such as this, indirect
representation is the only way to satisfy the constant-size requirement. This is illustrated
in Figure 6.l(b) and (c) where, although the values x and y occupy different amounts of
space, the handles to x and y occupy the same amount of space.

We now survey representations of the more common types found in programming
languages. We shall assume direct representation wherever possible, i.e., for primitive
types, records, disjoint unions, and static arrays. But we shall see that indirect represen-
tation is necessary for dynamic arrays and recursive types.

We shall use the following notation:

#T stands for the cardinality of type T, i.e., the number of distinct values of type T.
For example, # [B o o l e a n] = 2.

size T stands for the amount of space (in bits, bytes, or words) occupied by each value
of type T. If indirect representation is used, only the handle is counted.

We use emphatic brackets to enclose a specific type-denoter, as in # [B o o l e a n] or
sizel[Boolean] or sizel[array 8 o f Char] .

If a direct representation is chosen for values of type T, we can assert the inequality:

size T 2 log2 (#T), or equivalently 2(si~e T, 2 #T (6.1)

where size T is expressed in bits. This follows from the nonconfusion requirement: in n
bits we can represent at most 2n distinct values if we are to avoid confusion.

6.1.1 Primitive types

The primitive types of a programming language are those whose values are primitive,
i.e., cannot be decomposed into simpler values. Examples of primitive types are Boo-
l e a n , Char , and I n t e g e r . Most programming languages provide these types,
equipped with the elementary logical and arithmetic operations.

Machines typically support such types and operations directly, so the choice of
representation is straightforward.

The values of the type B o o l e a n are the truth values false and true. We can
represent a truth value by one word, one byte, or even a single bit. (Since #[Boolean] l
= 2, clearly size[Boolean] 2 1 bit.)

Using a single bit, the conventional representations are 0 for false and 1 for true.
Using a byte or word, the conventional representations are 00.. .002 for false, and either
00.. .012 or 11.. .1 12 for true. The operations on truth values - negation, conjunction,
and disjunction - can be implemented by the machine's logical NOT, AND, and OR oper-
ations. (See also Exercise 6.2.)

Run-Time Organization 177

The values of the type Cha r are the elements of a character set. Sometimes the
source language specifies a particular character set. For example, Ada specifies the ISO-
Latin1 character set, which consists of 28 distinct characters, and Java specifies the
Unicode character set, which consists of 216 distinct characters. Most programming
languages, however, are deliberately unspecific about the character set. This allows the
compiler writer to choose the target machine's 'native' character set. Typically this
consists of 27 or 28 distinct characters. In any case, the choice of character set
determines the representation of individual characters. For example, IS0 defines the
representation of character 'A' to be 010000012. We can represent a character by one
byte or one word.

The values of the type I n t e g e r are integer numbers. Obviously we cannot repre-
sent an unbounded range of integers within a fixed amount of space. All major program-
ming languages take account of this in their semantics: I n t e g e r denotes an
implementation-defined' bounded range of integers. The binary representation of
integers is determined by the target machine's arithmetic unit, and almost always
occupies one word. The source language's integer operations can then, for the most part,
be implemented by the corresponding machine operations.

In Pascal and Triangle, I n t e g e r denotes the range -muxint, ..., -1, 0, +1, ...,
+maxint, where the constant maxint is implementation-defined. In this case we have
#[[IntegerlJ = 2 x maxint + 1, and therefore we can specialize (6.1) as follows:

If the word size is w bits, then size[[IntegerJ = w. To ensure that (6.2) is satisfied, the
implementation should define maxint = 2W-1 - 1 .

In Java, i n t denotes the range -23l, ..., -1,0, +1, ..., In this case we have
t i n t] = 232.

Example 6.1 Primitive data representations in TAM

TAM is the target machine of the Triangle compiler. Storage is organized in 16-bit
words. There are no smaller storage units, but multi-word objects are addressable. The

Thus maxint = 215 - 1 = 32767.

Triangle primitive types are represented as follows:

' An attribute of a programming language L is implementation-defined if it is not defined by the
specification of L. but must be defined by each individual L language processor.

Size

1 word

1 word

1 word

Type

Boolean

C h a r

Integer

Representation

00 ... 002 for false; 00 ... 012 for true

Unicode representation

twos-complement representation

178 Programming Language Processors in Java

Example 6.2 Primitive data representations in the Intel Pentium

The Intel Pentium processor is ubiquitous. Storage is organized in 8-bit bytes, 16-bit
half-words, 32-bit words, and 64-bit double-words. Primitive types could be represented
as follows:

Thus maxint = 215 - 1 = 32767, or maxint = 231 - 1 = 2147483647.

TY pe

Boolean

Char

Integer

Some programming languages allow the programmer to define new primitive types.
An example is the enumeration type of Pascal. The values of such a type are called
enumerands. Enumerands can be represented by small integers.

Example 6.3 Enumerand representation

Representation

000000002 for false; 1 1 1 1 1 1 1 12 for true

ASCII representation

twos-complement representation

Consider the following Pascal type definition:

Size

l byte

1 byte

1 half-word or 1 word

t y p e C o l o r = (r e d , o r a n g e , y e l l o w , g r e e n , b lue)

This creates a new enumeration type consisting of five enumerands, which we shall
write as red, orunge, yellow, green, and blue. It also binds the identifiers r e d , o r a n g e ,
etc., to these enumerands.'

The enumerands will be represented by 00.. .0002 for red, 00.. .0012 for orange,
00.. .O1 02 for yellow, 00.. ,0112 for green, and 00.. . 1002 for blue. Since # [c o l o r] = 5 ,
clearly size[[Color]l 2 3 bits. In practice we would use one byte or one word.

0

To generalize, consider the enumeration type defined by:

We can represent each Ii by (the binary equivalent of) i. Since #T = n , size T 2 log2 n
bits.

The enumeration type is equipped with operations such as s u c c (which returns the
successor of the given enumerand) and o r d (which returns the integer representation of
the given enumerand). The representation chosen allows s u c c to be implemented by
the target machine's INC operation (if available). The o r d operation becomes a NOP.

We must distinguish between the identifiers and the enumerands they denote, because the
identifiers could be redeclared.

Run-Time Organization 179

6.1.2 Records

Now we proceed to examine the representation of composite types. These are types
whose values are composed from simpler values.

A record consists of several fields, each of which has an identifier. A record type
designates the identifiers and types of its fields, and all the records of a particular type
have fields with the same identifiers and types. The fundamental operation on records is
field selection, whereby we use one of the field identifiers to access the corresponding
field.

Records occur obviously in Pascal, Ada, and Triangle, and as s t r u c t s in C.

There is an obvious and good direct representation for records: we simply juxtapose
the fields, i.e., make them occupy consecutive positions in storage. This representation
is compact, and makes it easy to implement field selection very efficiently.

Example 6.4 Triangle record representation

Consider the record types and variables introduced by the following Triangle declar-
ations:

type Date = record
y: Integer,
m: Integer,
d: Integer

end ;

type Details = record
female: Boolean,
dob : Date,
status: Char

end ;

var today: Date;
var her: Details

Assume for simplicity that each primitive value occupies one word. Then the
variables today and her (after initialization) would look like this:

her.female

today. y
her, { h e . d o . Y rl

t0day.m
her. dob. m
her. dob. d

today. d her.status

Each box in the diagram is a word. A variable of type Date (such as today) occupies
three consecutive words, one for each of its fields. A variable of type Details (such
as her) occupies five consecutive words, one for its field female, three for its field
dob, and one for its field status.

180 Programming Language Processors in Java

We can predict not only the total size of each record variable, but also the position of
each field relative to the base of the record. If t o d a y is located at address 100 (i.e., it
occupies the words at addresses 100 through 102), then t o d a y . y is located at address
100, t o d a y .m is located at address 101, and t o d a y . d is located at address 102. In
other words, the fields y , m, and d have offsets of 0, 1, and 2, respectively, within any
record of type D a t e . Likewise, the fields f e m a l e , d o b , and s t a t u s have offsets of
0, 1, and 4, respectively, within any record of type D e t a i l s .

Summarizing:

sizefDa ten = 3 words

address f today . y j = addressutoday] + 0
address[t o d a y . m] = address[today]I + 1
address f today . d j = address f today] + 2

s i z e f ~ e t a i l s] = 5 words

addressfher . f e m a l e] = address[[her] + 0
addressther . doh] = address[herj + 1
addressfher . d o b . y] = addressl[her . d o b] + 0 = uddress[[her] + 1
addremuher . d o b . mj = addressfher . d o b j + 1 = address([her]l + 2
address[[her . d o b . d] = addressther . d o b] + 2 = addressl[herj + 3
addressuher . s t a t u s] = addressl[her] + 4

0

We shall use the notation address v to stand for the address of variable v. If the
variable occupies several words, this means the address of the first word. We use
emphatic brackets I[. . .]I to enclose a specific variable-name, as in addressfher . d o b] .

Let us now generalize from this example. Consider a record type T and variable r:

t y p e T = r e c o r d 1, : T I , ... , I,: T, e n d ; (6.3)

v a r r : T

We represent each record of type T by juxtaposing its n fields, as shown in Figure 6.2. It
is clear that:

size T = size T I + . . . + size T, (6.4)

This satisfies the constant-size requirement. If size T 1 , ..., and size T, are all constant,
then size T is also constant.

The implementation of field selection is simple and efficient. To access field Ii of the
record r, we use the following address computation:

addressur . Ii] = address r + (size T I + . . . + size Ti_,) (6.5)

Since size T 1 , . . ., and size TiPl are all constant, the address of the field r . Ii is just a
constant offset from the base address of r itself. Thus, if the compiler knows the address

Run-Time Organization 18 1

of the record, it can determine the exact address of any field, and can generate code to
access the field directly. In these circumstances, field selection is a zero-cost operation!

However, note that some machines have alignment restrictions, which may force
unused space to be left between record fields. Such alignment restrictions invalidate
equations (6.4) and (6.5). (See Exercise 6.9.)

value of type TI

value of type T2

... ...

Figure 6.2 Representation of a record r.

6.1.3 Disjoint unions

A disjoint union consists of a tag and a variant part, in which the value of the tag
determines the type of the variant part. Mathematically we can describe a disjoint union
type as follows:

T = T I + ... + T, (6.6)

In each value of type T, the variant part is a value chosen from one of the types T I ,
or T,; the tag indicates which one. The fundamental operations on disjoint unions are:
(a) tag testing; and (b) for each component type Ti, projection of the variant part to give
an ordinary value of type Ti. (The projection operation must be designed with care to
avoid any loophole in the type rules of a statically-typed language.)

Disjoint unions occur as variant records in Pascal and Ada, as unions in Algol-68,
and as so-called datatypes in Haskell and ML. In a variant record, the tag is just a field,
and each possible variant is a distinct field (or tuple of fields); projection is then similar
to field selection from an ordinary record. In the other languages mentioned, projection
is done by pattern matching.

A suitable representation for a disjoint union is juxtaposition of the tag and variant
part. But there is a complication: the variant part may have several possible types, and
therefore several possible sizes. Therefore, we must be careful to satisfy the constant-
size requirement. Fortunately, this is not difficult.

Example 6.5 Pascal variant record representation

Consider the following Pascal variant record type:

182 Programming Language Processors in Java

type Number = record
case acc: Boolean of

true: (i: Integer) ;

false: (r: Real)

end ;

var num: Number

Every value of type Number has a tag field, named acc, and a variant part. The value
of the tag determines the form of the variant part. If the tag is true, the variant part is an
integer field named i. If the tag is false, the variant part is a real field named r.

Assume that a truth value or integer occupies one word, but a real number occupies
two words. Then the variable num would look like this:

n u m . acc
n u m . i 01

n U m . r n u m a c c El 3.1416

Some values of type Number occupy two words; others occupy three words. This
apparently contradicts the constant-size requirement, which we wish to avoid at all
costs. We want the compiler to allocate a fixed amount of space to each variable of type
Number, and let it change form within this space. To be safe we must allocate three
words: one word for the tag field, and two words for the variant part. The fields i and r
can be overlaid within the latter two words. When the tag is true, one word is unused
(shaded gray in the diagram), but this is a small price to pay for satisfying the constant-
size requirement. Thus:

size[[NumberJ = 3 words

Now consider the following variant record type, which illustrates an empty variant
and a variant with more than one field:

type Shape = (point, circle, box);
Figure = record

case s: Shape of
point: () ;

circle: (r: Integer) ;

box : (h, w: Integer)

end ;

var fig: Figure

Every value of type Figure has a tag field, named s, and a variant part. The value of
the tag (point, circle, or box) determines the form of the variant part. If the tag is point,
the variant part is empty. If the tag is circle, the variant part is an integer field named r.
If the tag is box, the variant part is a pair of integer fields named h and w.

Run-Time Organization 183

Assume that each primitive value occupies one word. Then the variable f i g would
look like this:

(The enumerands point, circle, and box would be represented by small integers, as
discussed in Section 6.1.1 .)

It is easy to see that:

s i z e [F i g u r e] = 3 words

a d d r e s s [[f i g . s J = a d d r e s s [[f i g] + O
address[[f i g . r] = address[[£ i g] + 1
a d d r e s s [[f i g . h] = a d d r e s s [[f i g] + l
address[f i g . wJ = address[[f i g] + 2

Let us now generalize. Consider a Pascal variant record type T and variable u:

t y p e T = r e c o r d
c a s e Itag: Ttag of

v] : (I 1 : T I) ;
. . .
vn: (I n : T n)

e n d ;

v a r u : T

where each variant is labeled by one possible value of the type Ttag = { v l , . . ., v,,}. We
represent each record of type T by juxtaposing its tag field and variant part. Within the
variant part we overlay the different variants, which are of types T I , T2, . . ., and Tn. This
representation is shown in Figure 6.3. It is clear that:

size T = size Ttag + max (size T I , . . . , size Tn) (6.8)

This satisfies the constant-size requirement. If size T,,,, size TI, . . ., and size T, are all
constant, then size T is also constant.

The operations on variant records are easily implemented. To access the tag and
variant fields of the variant record u, we use the following address computations:

address[[u . ItagJ = address u + 0 (6.9)

addressru . Ii] = address u + size Ttag (6.10)

- both being constant offsets from the base address of u.

This analysis can easily be generalized to variants with no fields or many fields, as in
Example 6.5.

184 Programming Language Processors in Java

Figure 6.3 Representation of a disjoint union (variant record) u.

6.1.4 Static arrays

An array consists of several elements, which are all of the same type. The array has a
bounded range of indices (which are usually integers), and for each index it has exactly
one element. The fundamental operation on arrays is indexing, whereby we access an
individual element by giving its index; in general, this index is evaluated at run-time.

A static array is an array whose index bounds are known at compile-time. A suitable
direct representation for a static array is to juxtapose the array elements, in order of
increasing indices. The indexing operation is implemented by a run-time address
computation.

For the moment we make the simplifying assumption that the lower index bound is
zero. This is the case in the programming languages Triangle, C, and Java. (Later we
shall relax this assumption.)

Example 6.6 Triangle array representation

Consider the array types and variables introduced by these Triangle declarations:

type Name = array 6 of Char;
type Coding = record

c: Char, n: Integer
end ;

var me : Name;
var us: array 2 of Name;
var code: array 3 of Coding

The variable me is just an array of six characters (indexed from 0 through 5). The
variable us is an array of two elements, each of which is itself an array of six
characters. The variable code is an array of three elements, each of which is a record
with two fields.

Assume again that each primitive value occupies one word. Then the variables me,
us, and code would be represented as follows:

Run-Time Organization 185

It is easy to see that:

size[[Name] = 6 x sizeI[Char] = 6 words
s izeuarray 2 o f Name] = 2 x size([Name] = 12 words
s ize[[array 3 o f C o d i n g] = 3 x sizeI[Coding] = 6 words

address[me [0]] = addressl[me] + 0
addressI[me [3 1] = addressl[me] + 3
addressI[me [i] 1 = address[[me] + i
address[[code [2 I] = addressl[code] + 4
address[code [i] 1 = address[[code]l + 2i
address[[code [i] . n] = addressI[code [i l] + 1 = addressl[code] + 2i + 1
addressI[us [i]]l = address[usJ + 6i
addressl[us [i l [j]]l = addressI[us [i]] + j = address[us] + 6i + j

0

Let us now generalize from this example. Consider a Triangle array type T and array
variable a:

t y p e T = a r r a y n o f Telem; (6.1 1)

v a r a : T

Each array of type T has n elements, indexed from 0 through n-1. We represent each
array by juxtaposing its elements, as shown in Figure 6.4. It is clear that:

size T = n x size Tel,, (6.12)

This satisfies the constant-size requirement. The number of elements n is constant, so if
size Telem is constant, then size T is also constant.

Since the elements of the array a are positioned in order of increasing index, and
since the first element has index 0, the element with index i is addressed as follows:

addressI[a [i I] = address a + (i x size Tele,) (6.13)

Here size Telem is known at compile-time, but (in general) the value of i is known only
at run-time. Thus array indexing implies a run-time address computation.

Run-Time Organization 187

But what is the significance of this number 102? It is just addressfgrade [O] I). We
call this address the origin of the array g r a d e . An array's origin coincides with its base
address only if its lower bound is zero.

Similarly, addressfgnp [i] I) = addressfgnp [O] I) + i, where the origin of the array
g n p is addressl[gnp [01 I) = addressfgnpI) - 2000. Of course, this particular array has
no element with index 0, but that does not prevent us from using its origin (which is just
a number!) to compute the addresses of its elements at run-time.

17

Let us now generalize. Consider a Pascal array type T and array variable a:

type T = a r r a y [I . .u] of Telem; (6.14)

v a r a : T

The constants 1 and u are the lower and upper index bounds, respectively, of the array
type. Each array of type T has (u - 1 + 1) elements, indexed from 1 through u. As before,
we represent each array by juxtaposing its elements, as shown in Figure 6.5. It is clear
that:

size T = (u - I + 1) x size Telem (6.1 5)

Again, this satisfies the constant-size requirement, since 1 and u are constant.

The element of array a with index i is addressed as follows:

addressfa [i l l = address a + (i - 1) x size Telem
= address a - (I x size Telem) + (i x size Telem)

From this we can determine the origin addressfa [0] I), and use it to simplify the
formula:

addressta [0 I] = address a - (I x size Telem) (6.16)

addressl[a [il I) = addressUa [O] I) + (i x size Te& (6.17)

Equation (6.17) has the same form as (6.13). The only difference is that a [0 I no longer
need be the first element of the array a. Indeed, a [O] might not even exist! But that
does not matter, as we saw in Example 6.7, because address[a [O] I) is just a number.

There is more to array indexing than an address computation. An index check is also
needed, to ensure that the evaluated index lies within the array's index bounds. When an
array of the type T of (6.14) is indexed by i, the index check must ensure that:

Since the index bounds 1 and u are known at compile-time, the compiler can easily
generate such an index check.

188 Programming Language Processors in Java

Figure 6.5 Representation of a static array a.

6.1.5 Dynamic arrays

A dynamic array is an array whose index bounds are not known until run-time. Dyn-
amic arrays are found in Algol and Ada. In such languages, different dynamic arrays of
the same type may have different index bounds, and therefore different numbers of
elements. How then can we make dynamic arrays satisfy the constant-size requirement?

We are forced to adopt an indirect representation, in which the dynamic array's
handle (also called an array descriptor) contains not only a pointer to the array's
elements but also the array's index bounds. The handle has a constant size.

Example 6.8 Ada dynamic array representation

Consider the array type and variables introduced by the following Ada declarations:

type String is array (Integer range <>) of Character;

d: String(1 . . k);
s: String (m . . n - 1);

This declares a new array type String, and two variables of type String. The first
variable, d, contains elements indexed from I to the value of k, and the second variable,
s , contains elements indexed from the value of m to the value of n-1.

The values of type String are arrays of characters, indexed by integers. Different
arrays of type String may have different index bounds; moreover, these index bounds
may be evaluated at run-time. Operations such as concatenation and lexicographic
comparison are applicable to any arrays of type String, even if they have different
numbers of elements. But any attempt to assign one array of type String to another
will fail at run-time unless they happen to have the same number of elements.

A suitable representation for arrays of type String is as follows. Each array's
handle contains the array's origin, i.e., the address of the (possibly notional) element
with index 0. The handle also contains the array's lower and upper index bounds. The
array's elements are stored separately.

Suppose that the variables k, m, and n turn out to have values 7, 0, and 4, respec-
tively. Then the array d will have index bounds 1 and 7, and the array s will have index
bounds 0 and 3. The arrays will look like this:

{ ?%%bound rv
upper bound

origin
lower bound
upper bound

Run-Time Organization

handle elements

Each array's handle occupies 3 words exactly (assuming that integers and addresses
occupy one word each). The elements of d occupy 7 words, whereas the elements of s
occupy 4 words (assuming that characters occupy one word each). Since the elements
are stored separately, we take size[String]l to be the size of the handle:

s i z e [r~ t r i ng I J = 3 words

Likewise, we shall take address[[dIJ to be the address of d's handle. The address of
element d (0) is stored at offset 0 within the handle. Thus the address of an arbitrary
element can be computed as follows:

where content(x) stands for the content of the word at address x.

Let us now generalize. Consider an Ada array type T and array variable a :

t y p e T i s array (I n t e g e r r a n g e <>) of Telem; (6.19)

We represent each array of type T by a handle, consisting of an address and two
integers, as shown in Figure 6.6. Thus:

size T = address-size + 2 x size[[Int e g e r] (6.20)

where address-size is the amount of space required to store an address - usually one
word. Equation (6.20) clearly satisfies the constant-size requirement.

The declaration of array variable a is elaborated as follows. First the expressions E l
and E2 are evaluated to yield a's index bounds. Suppose that their values turn out to be 1
and u, respectively. Space is then allocated for (u - 1 + 1) elements, juxtaposed in the
usual way, but located separately from a's handle. The array's origin is computed as
follows:

addressl[a (0) 1] = addressl[a (1)]I - (1 x size Telem) (6.21)

Run-Time Organization

Table 6.1 Typical instructions in a register machine

I Instruction I Meaning I
1 STORE Ri a I Store the value in register i at address a. I
I LOAD Ri x I Fetch the value of x and place it in register i. I

I MULT Ri x I Fetch the value of x and multiply it into the value in register i. I

ADD Ri x

SUB Ri x

The object code for expression evaluation in registers is efficient but rather compli-
cated. A compiler generating such code must assign a specific register to each
intermediate result. It is important to do this well, but quite tricky. In particular, a
problem arises when there are not enough registers for all the intermediate results. (See
Exercise 6.1 1 .)

Fetch the value of x and add it to the value in register i.

Fetch the value of x and subtract it from the value in register i.

A very different kind of machine is one that provides a stack for holding
intermediate results. This allows us to evaluate expressions in a very natural way. Such
a machine typically provides instructions like those listed in Table 6.2.

Example 6.1 1 Expression evaluation in a stack machine

To evaluate the expression ' (a * b) + (1 - (c * 2)) ' on our stack machine, we could
use the sequence of instructions shown below left. Note the one-to-one correspondence
with the same expression's postfix representation, shown below right.

LOAD a a
LOAD b b
MULT *
LOADL 1 1
LOAD c c
LOADL 2 2
MULT *
SUB -

ADD +

Figure 6.7 shows the effect of each instruction on the stack, assuming that the stack
is initially empty.3

0

In Figure 6.7 and throughout this book, the stack is shown growing downwards, with the stack
top nearest the bottom of the diagram. If this convention seems perverse, recall the convention
for drawing trees in computer science textbooks! Shading indicates the unused space beyond
the stack top.

Run-Time Organization 195

These desirable and simple properties of evaluation on the stack hold true regardless
of how complicated the expression is. An expression involving function calls can be
evaluated in just the same way. Likewise, an expression involving operands of different
types (and therefore different sizes) can be evaluated in just the same way.

(1) After LOADL 0: (2) After LOAD n: (3) After LT:
........ value of O<n

........ value of n

(4) After LOAD n: (5) After CALL odd: (6) After AND:

Figure 6.8 Evaluation of ' (0 < n) / \ odd (n) ' on a stack.

Example 6.12 Evaluation of function calls in a stack machine

To evaluate the expression '(0 < n) / \ odd (n) ' on our stack machine, we could use
the following sequence of instructions:

LOADL 0
LOAD n
LT
LOAD n
CALL odd
AND

Figure 6.8 shows the effect of each instruction on the stack, assuming that the stack
is initially empty. The instructions 'LT' and 'AND' are analogous to 'ADD', 'SUB', etc.,
in that each replaces two values at the stack top by a single value, but some of the values
involved are truth values rather than integers.

Note the analogy between 'CALL odd' and instructions like 'ADD', 'LT', etc. - each
takes its argument(s) from the stack top, and replaces them by its result.

0

Run-Time Organization 205

LOAD d [SB] - for procedure Q to fetch the value of a global variable
LOAD d [LB I - for procedure Q to fetch the value of a variable local to itself
LOAD d [L1] - for procedure Q to fetch the value of a variable local to P

where in each case d is the appropriate address displacement.

Now consider snapshot (5), also taken when procedure P has called procedure Q, but
this time indirectly through S. At this time also, LB points to the frame that contains Q's
local variables, and L1 points to the underlying frame that contains P's local variables.
So the above instructions will still work correctly. No register points to the frame that
contains S's local variables. This is correct, because Q may not directly access these
variables.

The following snapshot (6) illustrates a situation where R, the most deeply-nested
procedure, has been activated by Q. Now register LB points to R's frame, register L1
points to the frame belonging to Q (the procedure immediately enclosing R), and register
L2 points to the frame belonging to P (the procedure immediately enclosing Q). This
allows R to access not only its own local variables, but also variables local to Q and p:

LOAD d [SB] - for procedure R to fetch the value of a global variable
LOAD d [L B] - for procedure R to fetch a variable local to itself
LOAD d [L 1 1 - for procedure R to fetch a variable local to Q
LOAD d [L2 1 - for procedure R to fetch a variable local to P

But no register points to the frame containing S's local variables, since R may not
directly access these variables.

0

By arranging for registers L1, L2, etc., to point to the correct frames, we allow each
procedure to access nonlocal variables. To achieve this, we need to add a third item to
the link data in each frame. Consider a routine (procedure or function) R that is enclosed
by routine R' in the source program. In a frame that contains variables local to routine R:

The static link is a pointer to the base of an underlying frame that contains variables
local to R'. The static link is set up when R is called. (This will be demonstrated in
Section 6.5.1 .)

The static links were shown in Figure 6.15. Notice that the static link in a frame for
Q always points to a frame for p, since it is p that immediately encloses Q in the source
program. Similarly, the static link in a frame for R always points to a frame for Q, and
the static link in a frame for S always points to a frame for P. (The static link in a frame
for P always points to the globals, but that static link is actually redundant.)

The layout of a stack frame is now as shown in Figure 6.16. Since there are now
three words of link data, the local variables now start at address displacement 3. Figure
6.17 shows the layout of frames for the procedures in Figure 6.14.

Run-Time Organization 207

And so on.

The collection of registers LB, LI , L2, ..., and SB is often called the display. The
display allows access to local, nonlocal, and global variables. The display changes
whenever a routine is called or returns.

The critical property of the display is that the compiler can always determine which
register to use to access any variable. A global variable is always addressed relative to
SB. A local variable is always addressed relative to LB. A nonlocal variable is addressed
relative to one of the registers L1, L2, The appropriate register is determined entirely
by the nesting levels of the routines in the source program.

We assign routine levels as follows: the main program is at routine level 0; the body
of each routine declared at level 0 is at routine level 1; the body of each routine declared
at level 1 is at routine level 2; and so on.

Let v be a variable declared at routine level 1, and let v's address displacement be d.
Then the current value of v is fetched by various parts of the code as follows:

If 1 = 0 (i.e., v is a global variable):
LOAD d[SB] - for any code to fetch the value of v

If 1 > 0 (i.e., v is a local variable):
LOAD d [LB] - for code at level 1 to fetch the value of v
LOAD d[Ll] - for code at level 1+1 to fetch the value of v
LOAD d[L2] - for code at level 1+2 to fetch the value of v

Storing to variable v is analogous.

Routines

A routine (or subroutine) is the machine-code equivalent of a procedure or function in a
high-level language. Control is transferred to a routine by means of a call instruction (or
instruction sequence). Control is transferred back to the caller by means of a return
instruction in the routine.

When a routine is called, some arguments may be passed to it. An argument could
be, for example, a value or an address. There may be zero, one, or many arguments. A
routine may also return a result - that is if it corresponds to a function in the high-level
language.

We have already studied one aspect of routines, namely allocation of storage for
local variables. In this section we study other important aspects:

protocols for passing arguments to routines and returning their results

how static links are determined

Run-Time Organization 21

proc W (i: Integer) -
let const s - i * i
in

begin
putint (F (i, s)) ;
putint (F(s, s))
end

in
begin
getint (var g) ;
w (g+l)
end

This (artificial) program reads an integer, and writes the cube and fourth power of it
successor.

(1) Just after reading (2) Just before call to (3) Just after (4) Just before call to
g: W: computing s: F:

(5) Just before return (6) Just after return (7) Just after return
from F: from I?: from W:

arg. i

Figure 6.20 Arguments and results in Example 6.20.

Run-Time Organization 231

An object is a group of instance variables, to which a group of instance methods are
attached.

An instance variable is a named component of a particular object.

An instance method is a named operation, which is attached to a particular object and
is able to access that object's instance variables.

An object class (or just class) is a family of objects with similar instance variables and
identical methods.

In a pure 00 language, all instance variables would be private, leaving the instance
methods as the only way to operate on the objects. In practice, most 00 languages (such
as Java and C++) allow the programmer to decide which of the instance variables are
public and which are private. Anyway, this issue does not affect their representation.

An instance-method call explicitly identifies a particular object, called the receiver
object, and a particular instance method attached to that object. In Java, such a method
call has the form:

Eo.I(E1, ..., E,l)

The expression Eo is evaluated to yield the receiver object. The identifier I names an
instance method attached to that object. The expressions El , ... , En are evaluated to
yield the arguments passed to the method.

Although an object is somewhat similar to a record, the representation of an object
must reflect the close association between the object and its instance methods. From an
object we must be able to locate the attached instance methods. In turn, each instance
method must somehow 'know' which object it is attached to.

Example 6.32 Java object representation (single class)

Consider the following Java class:

class Point {

/ / A Point object represents a geometric point located at (x, y).

protected int x, y;

(1) public Point (int x, int y) {

this.x = x; this.y = y;

(2) public void move (int dx, int dy) {.

this.x += dx; this.y += dy;
1

(3) public float area () {

return 0.0;
1

Run-Time Organization 249

public Student (String name, Date dob,
String studentId) { ... 1

public void enrol (Course course) { ...)

1

Draw the representations of the Person, Staff, Faculty and Student
class-objects and an example object of each class, as illustrated in Exam-
ple 6.33.

6.26" Using the class definitions from Exercise 6.25, consider the following hypo-
thetical class definition:

class ~eachingAssistant extends Staff, Student

This would be an example of multiple inheritance (which is not supported in
Java). Consider how an object in the class TeachingAssistant could be
represented. Note that such an object would contain only a single occurrence of
the instance variables of Person, which would be inherited from both Staff
and Student.

258 Programming Language Processors in Java

Example 7.5 Code templates for Triangle values and variables

Code templates (7.10), (7.11), and (7.12b) assume that every Mini-Triangle value
occupies one word exactly. This is justified because Mini-Triangle supports only truth
values and integers, which occupy one word each in TAM.

The full Triangle language, on the other hand, supports a variety of types including
arrays and records. A value or variable of type Twill occupy a number of words given
by size T. (See Section 6.1 .) For Triangle we must generalize the code templates to take
this into account:

fetch [IJ = (7.13)
LOAD (s) d [S B] where s = size(type of I) ,

d = address bound to I (relative to SB)

assign ([Q = (7.14)
STORE (s 1 d [SB I where s = size(type of I),

d = address bound to I (relative to SB)

elaborate [var I : TJ =
PUSH s where s = size T

We shall use these more general code templates from now on. They are still valid for
Mini-Triangle, in which size T is always 1.

7.1.2 Special-case code templates

There are often several ways to translate a given source-language phrase to object code,
some more efficient than others. For example, the TAM code to evaluate the expression
'n + 1' could be:

(a) LOAD n or (b) LOAD n
LOADL 1 CALL succ
CALL add

Object code (a) follows code template (7.9d). That code template is always applicable,
being valid for any binary operator and for any subexpressions. Object code (b) is
correct only in the special case of the binary operator '+' being applied to the literal
value 1. When applicable, this special case gives rise to more efficient object code. It
could be specified as follows:

evaluate [El + 13 =
evaluate El
CALL succ

A special-case code templute is one that is applicable only to phrases of a special
form. Invariably such phrases are also covered by a more general code template. A

Code Generation 259

special-case code template is worth having if phrases of the special form occur fre-
quently, and if they allow translation into particularly efficient object code. The follow-
ing example illustrates another common special case.

Example 7.6 Mini-Triangle constant declarations

The right side of a constant declaration is frequently a literal, as in:

let
. . .
const n - 7

Code template (7.12a) specifies that the code 'elaborate [const n - 71' will deposit
the value 7 in a suitable cell (at the current stack top). Whenever n is used, code
template (7.10) specifies that the value will be loaded from that cell. The following
translation illustrates these code templates:

execute [[let const n - 7;
vari: Integer

in i : = n*n]

' elaborate [[const n - 71 LOADL 7
elaborate [[var i : Integer] PUSH 1 I LOAD n

execute [[i : = n*n] LOAD n
CALL mult
STORE i
POP(O)2

The first instruction 'LOADL 7' makes space for the constant n on the stack top.
Instructions of the form 'LOAD n' fetch the constant's value, wherever required. The
final instruction 'POP (0) 2' pops the constant and variable off the stack.

A much better translation is possible: simply use the literal value 7 wherever n is
fetched. This special treatment is possible whenever an identifier is bound to a known
value in a constant declaration. This is expressed by the following special-case code
templates:

fetch [[Ill = (7.16)
LOADL v where v = value bound to I (if known)

elaborate [[cons t I - IL] =
(i.e., no code)

In (7.17) no code is required to elaborate the constant declaration. It is sufficient that the
value of the integer-literal IL is bound to I for future reference. In (7.16) that value is
incorporated into a LOADL instruction. Thus the object code is more efficient in both
places. The following alternative translation illustrates these special-case code
templates:

260 Programming Language Processors in Java

I elaborate [const n - 71
elaborate [var i : Integer]

execute [[let const n - 7 ;
vari: Integer execute [[i : = nxn1]

in i : = nXn]

i

PUSH 1
LOADL 7
LOADL 7
CALL mult
STORE i
POP(0) 1

In this object code, each applied occurrence of n has been translated to the literal value
7, and the instruction to elaborate the declaration of n has been eliminated.

0

7.2 A code generation algorithm

A code specification does more than specify a translation from the source language to
object code. It also suggests an algorithm for performing this translation. This algorithm
traverses the decorated AST representing the source program, emitting target-machine
instructions one by one. Both the order of traversal and the instructions to be emitted are
determined straightforwardly by the code templates.

In this section we see how to develop a code generator from a code specification.
We illustrate this with the Mini-Triangle code specification of Example 7.2.

7.2.1 Representation of the object program

Since its basic function is to generate an object program consisting of target-machine
instructions, the code generator must obviously define representations of instructions
and instruction sequences. This is easy, as the following example illustrates.

Example 7.7 Representing TAM instructions

A code generator that generates TAM object code must represent TAM instructions and
their fields (see Section (2.2):

public class Instruction {

public byte op; / / op-code (0 .. 15)
public byte r; / / register field (0 .. 15)
public byte n; / / length field (0 .. 255)
public short d; / / operand field (-32767 .. +32767)

pub1 ic static final byte / / op-codes (Table C.2)
LOADop = 0, LOADAop = 1,
LOADIop = 2, LOADLop = 3,
STOREop = 4, STOREIop = 5,

262 Programming Language Processors in Java

Many of these visitor methods will simply be encoding methods. For example, the
visitorlencoding methods for commands will be vi s i tAs s igncommand, visit-
Callcommand, etc., and their implementations will be determined by the code
templates for 'execute I[V : = a', 'execute ([I (E)]', etc.

Table 7.2 Summary of visitorlencoding methods for the Mini-Triangle code generator.

I Phrase class I Visitor/encoding method I Behavior of visitorlencoding method I
I Program I visitprogram I Generate code as specified by 'run P'. I

Command visit.. .Command Generate code as specified by 'execute C'.

Expression visit . . .Expression Generate code as specified by 'evaluate E' .

V-name visi t...Vname Return an entity description for the given value-
or-variable-name (explained in Section 7.3.)

Declaration visit.. .Declarat ion Generate code as specified by 'elaborate D'.

I Type-denoter I visit.. .TypeDenoter I Return the size of the given type. I

Example 7.8 Mini-Triangle-to-TAM code generator

Let us design a code generator that translates Mini-Triangle to TAM object code. We
shall assume the code specification of Example 7.2, and the definition of AST and its
subclasses in Example 4.19.

The code generator will include visitorlencoding methods for commands, expres-
sions, and declarations:

public Object visit ... Command
(...Command corn, Object arg) ;

/ / Generate code as specified by 'execute corn'.

public Object visit ... Expression
(...Expression expr, Object arg) ;

/ / Generate code as specified by 'evaluate expr'.

public Object visit ... Declaration
(...Declaration decl, Object arg) ;

/ / Generate code as specified by 'elaborate decl'.

There will be one visitorlencoding method for each form of command (visit-
AssignmentCommand, visi tI f Command, visi twhilecommand, etc.). Each
such method will have an argument com of the appropriate concrete subclass of Com-
mand (AssignmentCommand, Ifcommand, Whilecommand, e t ~ .) . Each such
method will also have an Ob j ec t argument and an Ob j ec t result, but for the moment
these will not actually be needed.

Likewise there will be one visitorlencoding method for each form of expression, and
one visitorlencoding method for each form of declaration.

Value-or-variable-names cannot be mapped so simply on to the visitor pattern. There
are two code functions for value-or-variable-names, fetch and assign, each with its own
code template. So we need distinct visitor and encoding methods. The encoding
methods will be:

private void encodeFetch (Vname vname);
/ / Generate code as specified by 'fetch vname'.

private void encodeAssign (Vname vname);
/ / Generate code as specified by 'assign vname'.

Each of these encoding methods will call the visitor method (visit ... vname) to find
out information about the run-time representation of vname. However, they will use
this information differently: one to generate a LOAD instruction, the other to generate a
STORE instruction.

There is a single encoding method for a program, visitprogram, that will
generate code for the entire program:

public Object visitprogram (Program prog, Object arg);
/ / Generate code as specified by 'run prog'.

The visitorlencoding methods of the Mini-Triangle code generator are summarized
in Table 7.2.

Now that we have designed the code generator, let us implement some of the
encoding methods. The following method generates code for a complete program, using
code template (7.7):

public Object visitprogram run ([a =
(Program prog,
Object arg) {

prog.C.visit(this, arg); execute C
emit(Instruction.HALTop, 0, 0 , 0); HALT

1

(For ease of comparison, we show each code template alongside the corresponding code
generator steps.)

Now let us implement the visitorlencoding methods for commands. Each such
method translates one form of command to object code, according to the corresponding
code template (7.8a-f):

public Object visitAssignCommand execute [V : = ZQ =
(AssignCommand com,
Object arg) {

Code Generation

public Object visitIntegerExpression evaluate [[IL] =
(IntegerExpression expr,
Object arg) {

short v = valuation(expr.IL.spelling);
emit(Instruction.LOADLop, 0, 0, v);
return null;

1

public Object visitVnameExpression
(VnameExpression expr,
Object arg) {

encodeFetch(expr.V);
return null;

1

public Object visitUnaryExpression
(UnaryExpression expr,
Object arg) {

expr.E.visit(this, arg);
short p = address of primitive routine

named expr -0 ;
emit(Instruction.CALLop,

Instruction.SBr,
Instruction.PBr, p);

return null;
I

public Object visitBinaryExpression
(BinaryExpression expr,
Object arg) {

expr.El.visit(this, arg);
expr.E2.visit(this, arg);
short p = address of primitive routine

named expr . 0 ;
emit(Instruction.CALLop,

Instruction.SBr,
Instruction.PBr, p);

return null;
1

LOADL v

evaluate I[VJ =

fetch V

evaluate [[O EJ =

evaluate E

CALL p

evaluate [E l 0
Ezll =

evaluate E l
evaluate E2

CALL p

In visit IntegerExpress ion, we used the following auxiliary function:

private static short valuation (String intLit)
/ / Return the value of the integer-literal spelled intLi t.

The visitorlencoding methods for declarations, and the encoding methods encod
Fetch and encodeass ign, will be implemented in Example 7.13.

Code Generation 267

for control structures. Thereafter Sections 7.3 and 7.4 deal with the problems of generat-
ing code for declared constants and variables, procedures, functions, and parameters.

7.2.3 Control structures

The code generator appends one instruction at a time to the object program. It can easily
determine the address of each instruction, simply by counting the instructions as they
are generated.

Source-language control structures, such as if-commands and while-commands, are
implemented using unconditional and conditional jump instructions. The destination
address (i.e., the address of the instruction to which the jump is directed) is the operand
field of the jump instruction. A backward jump causes no problem, because the jump
instruction is generated after the instruction at the destination address, so the destination
address is already known. But a forward jump is awkward, because the jump instruction
must be generated before the instruction at the destination address, and the destination
address cannot generally be predicted at the time the jump instruction is generated.

Fortunately, there is a simple solution to the problem of forward jumps, a technique
known as backpatching. When the code generator has to generate a forward jump, it
generates an incomplete jump instruction, whose destination address is temporarily set
to (say) zero. At the same time the code generator records the address of the jump
instruction in a local variable. Later, when the destination address becomes known, the
code generator goes back and patches it into the jump instr~ction.~

The following example illustrates the method. Recall that the code generator
maintains a variable, nextInstrAddr, that contains the address of the next
instruction to be generated, and is incremented whenever an instruction is appended to
the object program. (See Example 7.7.)

Example 7.9 Backpatching

Recall code template (7.8e):

execute [whi 1 e E do Cj =
JUMP h

g : execute C
h : evaluate E

JUMPIF (1) g

Here g stands for the address of the first instruction of the object code 'execute C', and h
stands for the address of the first instruction of the object code 'evaluate E'. Let us see
how v i s i tWhi lecomrnand should implement this code template.

A similar solution to a similar problem is also used in one-pass assemblers.

Code Generation 269

short g = nextInstrAddr; g :
com.C.visit(this, arg); execute C
short h = nextInstrAddr; h :
patch(j, h);
com.E.visit (this, arg) ; evaluute E
emit(Instruction.JUMPIFop, 1, JUMPIF (1) g

Instruction.CBr, g);
return null;

1

public Object visitIfCommand
(Ifcommand com,
Object arg) C

com. E.visit (this, arg) ;
short i = nextInstrAddr;
emit(~nstruction.JUMPIFop, 0,

Instruction.CBr, 0);
com.Cl.visit(this, arg);
short j = nextInstrAddr;
emit(Instruction.JUMPop, 0,

~nstruction.CBr, 0);
short g = nextInstrAddr;
patch(i, 9);
com.C2 .visit (this, arg) ;
short h = nextInstrAddr;
patch(j, nextInstrAddr);
return null;

1

execute [if E
then C1
else C2] =

evaluate E
1 :

JUMPIF(0) g

execute C1
j :
JUMP h

execute C2
h :

Here we have used the following auxiliary method for patching instructions:

private void patch (short addr, short d) {

/ / Store d in the operand field of the instruction at address addr.
code [addr] .d = d;

1

7.3 Constants and variables

In a source program, the role of each declaration is to bind an identifier I to some entity,
such as a value, variable, or procedure. Within the scope of its declaration, there may be
many applied occurrences of I in expressions, commands, and so on. Each applied
occurrence of I denotes the entity to which I was bound.

Code Generation 27 1

Each applied occurrence of b should be translated to the value 10 (more precisely, to
the target-machine representation of lo), and each applied occurrence of i should be
translated to the address 4. So the subcommand 'i : = i * b' should be translated to the
following object code:

LOAD 4 [S B]
LOADL 10
CALL mult
STORE 4 [SB]

- fetch from the address bound to i
- fetch the value bound to b
- multiply
- store to the address bound to i

Now let us see how this treatment of identifiers can be achieved. The code generator
first visits the declarations. It creates an entity description for the known value 10, and
attaches that entity description to the declaration of b at (1). It creates an entity descrip-
tion for the known address 4, and attaches that entity description to the declaration of i
at (2). Figure 7.1 (b) shows the AST at this point.

Thereafter, when the code generator encounters an applied occurrence of b, it
follows the link to the declaration (1). From the entity description attached to (1) it
determines that b denotes the known value 10. Likewise, when the code generator
encounters an applied occurrence of i, it follows the link to the declaration (2). From
the entity description attached to (2) it determines that i denotes the known address 4.

0

Example 7.11 Accessing an unknown value

Consider the following Mini-Triangle command:

let var x: Integer
in

let const y - 365 + x
in

putint (y)

Figure 7.2 shows the decorated AST representing this command. The applied occur-
rences of x and y at (3) and (4) have been linked to the corresponding declarations at (1)
and (2), respectively.

The variable declaration binds the identifier x to a newly allocated integer variable.
To be concrete, let us suppose that its address is 5 (relative to SB).

The constant declaration binds the identifier y to an integer value that is unknown at
compile-time. So the code generator cannot simply translate an applied occurrence of y
to the value that it denotes. (Contrast the constant declaration of Example 7.10.)

Fortunately, there is a simple solution to this problem. The code generator translates
the constant declaration to object code that evaluates the unknown value and stores it at
a known address. Suppose that the value of y is to be stored at address 6 (relative to
SB). Then the applied occurrence of y in 'putint(y) ' should be translated to an
instruction to fetch the value contained at address 6:

Code Generation 273

LOAD 6CSBI - fetch the value bound to y
CALL p u tin t - write it

The code generator first visits the declarations. It creates an entity description for the
known address 5 , and attaches that entity description to the declaration of x at (1). It
creates an entity description for an unknown value at address 6, and attaches that entity
description to the declaration of y at (2). These entity descriptions are shown in Fig-
ure 7.2.

Thereafter, whenever the code generator encounters an applied occurrence of y, it
follows the link to the declaration (2). From the entity description attached to (2) it
determines that y denotes the unknown value contained at address 6.

Program

I
LetCommand

I
LetCommand

I

(2) 1
ConstDeclaration 4--\,

\, SimpleV.

t. 1nt.Lit. Op. Ident. Ident. Ident. len
! ; ! ;
! j

! x x putint y

known address unknown value
address = 5

address = 6

Figure 7.2 Entity descriptions for a known address and an unknown value.

In summary, the code generator handles declarations and applied occurrences of
identifiers as follows:

When it encounters a declaration of identifier I, the code generator binds I to a newly
created entity description. This entity description contains details of the entity bound
to I.

278 Programming Language Processors in Java

elaborate [var I : T]I =
PUSH s where s = size T

elaborate [[Dl ; D2] =
elaborate Dl
elaborate D2

These are implemented by the following visitorlencoding methods:

public Object visitConstDeclaration
(ConstDeclaration decl,
Object arg) {

short gs = shortValueOf(arg);
if (dec1.E instanceof

IntegerExpression) {
IntegerLiteral IL =

((IntegerExpression) dec1.E) .IL;
decl.entity = new KnownValue

(1, valuation(IL.spel1ing));
return new Short(0);

1 else {

short s = shortValueOf(
decl.E.visit(this, arg));

decl.entity = new Unknownvalue
(s, gs);

return new Short(s) ;
1

1

public Object visitVarDeclaration
(VarDeclaration decl,
Object arg) {

short gs = shortValueOf(arg);
short s = shortValueOf(decl.T.visit

(this, null));
emit(Instruction.PUSHop, 0, 0, s);
decl.entity = new KnownAddress

(1, gs);
return new Short(s) ;

1

public Object visitSequentialDeclaration
(SequentialDeclaration decl,
Object arg) {

short gs = shortValueOf(arg);
short sl = shortValueOf(

decl.Dl.visit(this, arg));

elaborate [[cons
I - ILJj =

(no code)

elaborate [[cons.
I - a

evaluate E

elaborate [var
I : T j

s = size T
PUSH s

elaborate [Dl ;
0211 =

elaborate Dl

280 Programming Language Processors in Java

These are implemented by the following encoding methods:

private void encodeAssign (Vname vname, short s) {

RuntimeEntity entity =

(RuntimeEntity) vname.visit(this, null);
short d = ((KnownAddress) entity) .address;
emit(Instruction.STOREop, s, Instruction.SBr, d);

1

private void encodeFetch (Vname vname, short s) {

RuntimeEntity entity =

(RuntimeEntity) vname.visit(this, null);
if (entity instanceof KnownValue) {

short v = ((KnownValue) entity) .value
emit(Instruction.LOADLop, 0, 0, v);

1 else {

short d = (entity instanceof Unknownvalue) ?

((Unknownvalue) entity).address :
((KnownAddress) entity) .address;

emit(Instruction.LOADop, s, Instruction.SBr, d);

In encodeAssign we can safely assume that entity is an instance of Known-
Address. (The contextual analyzer will already have checked that I is a variable
identifier.) In encodeFetch, however, entity could be an instance of
KnownValue, Unknownvalue, or KnownAddress.

Both encodeFetch and encodeAssign visit vname. The corresponding visitor
method simply returns the corresponding entity description:

public Object visitsimplevname
(Simplevname vname, Object arg) {

return vname.I.decl.entity;
1

(Recall that the contextual analyzer has linked each applied occurrence of identifier I to
the corresponding declaration of I. The field decl represents this link. Therefore,
1 . decl . entity points to the entity description bound to I.)

Finally, method encode starts off code generation with no storage allocated:

public void encode (Program prog) {

prog.visit(this, new Short(0));

I Code Generation 28 1

7.3.3 Stack storage allocation

Consider now a source language with procedures and local variables. As explained in
Section 6.4, stack storage allocation is appropriate for such a language. The code
generator cannot predict a local variable's absolute address, but it can predict the
variable's address displacement relative to the base of a frame - a frame belonging to
the procedure within which the variable was declared. At run-time, a display register
will point to the base of that frame, and the variable can be addressed relative to that
register. The appropriate register is determined entirely by a pair of routine levels
known to the code generator: the routine level of the variable's declaration, and the
routine level of the code that is addressing the variable. (See Section 6.4.2 for details.)

To make the code generator implement stack storage allocation, we must modify the
form of addresses in entity descriptions. The address of a variable will now be held as a
pair (1, d), where 1 is the routine level of the variable's declaration, and d is the
variable's address displacement relative to its frame base. As in Section 6.4.2, we assign
a routine level of 0 to the main program, a routine level of 1 to the body of each
procedure or function declared at level 0, a routine level of 2 to the body of each
procedure or function declared at level 1, and so on.

Example 7.14 Storage allocation for global and local variables

Recall the Triangle program of Figure 6.14. The same program is outlined in Figure 7.3,
with each procedure body shaded to indicate its routine level.

Entity descriptions are shown attached to the variable declarations in the source
program. (This is for clarity. In reality, of course, the entity descriptions would be
attached to the sub-ASTs that represent these declarations, as in Figures 7.1 and 7.2.)

The addresses of the global variables g l and g2 are shown as (0, 0) and (0, I),
meaning displacements of 0 and 1, respectively, relative to the base of the level-0 frame
(i.e., the globals).

The addresses of the local variables p l and p2 are shown as (1, 3) and (1, 4),
meaning displacements of 3 and 4, respectively, relative to the base of a level-1 frame.
The address of the local variable q is shown as (2, 3), meaning a displacement of 3
relative to the base of a level-2 frame. And so on.

Notice that the address displacements of local variables start at 3. The reason is that
the first three words of a frame contain link data, as shown in Figure 6.16.

0

284 Programming Language Processors in Java

public class Unknownvalue extends
public EntityAddress address;

public class KnownAddress extends
public EntityAddress address;
. . .

public class EntityAddress {

public byte level;
public short displacement;

In the Mini-Triangle code generator, we enhance
follows:

RuntimeEntity {

/ / the address where the
/ / unknown value is stored

RuntimeEntity {

/ / the known address itself

the visitorlencoding methods as

public Object visit ... Command
(...Command com, Object arg) {

Frame frame = (Frame) arg;
. . . / / Generate code as specified by 'execute corn'.

/ / frame . level is the routine level of com.
/ / frame . size is the amount of frame storage already in use.

return null;
1

public Object visit ... Expression
(...Expression expr, Object arg) {

Frame frame = (Frame) arg;
. . . / / Generate code as specified by 'evaluate expr'.

/ / frame . level is the routine level of expr.
/ / frame . size is the amount of frame storage already in use.

return new Short (size of expr's result) ;

public Object visit ... Declaration
(...Declaration decl, Object arg) {

Frame frame = (Frame) arg;
. . . / / Generate code as specified by 'elaborate decl'.

/ / frame . leve 1 is the routine level of dec 1.
/ / frame . size is the amount of frame storage already in use.

return new Short (amount of extra storage allocated by dec 1) ;
I

We can provide encodeAssign and encodeFetch with explicit Frame
arguments:

Code Generation 2E

private void encodeAssign
(Vname vname, Frame frame, short s) {

... / / Generate code as specified by 'assign vname'.
/ / frame . level is the routine level of vname.
/ / s is the size of the value to be assigned.

1

private void encodeFetch
(Vname vname, Frame frame, short s) {

. . . / / Generate code as specified by 'fetch vname'.
/ / frame . level is the routine level of vname.
/ / s is the size of the value to be assigned.

1

The following method implements code template (7.19):

private void encodeAssign
(Vname vname, Frame frame, short s) {

RuntimeEntity entity =

(RuntimeEntity) vname.visit(this, null);
EntityAddress address =

((KnownAddress) entity) .address;
emit(Instruction.STOREop, s,

displayRegister(frame.leve1, address.level),
address.disp1acement);

1

The following method implements code templates (7.16) and (7.18):

private void encodeFetch (Vname vname,
{ Frame frame, short s)

RuntimeEntity entity =

(RuntimeEntity) vname.visit
if (entity instanceof KnownValue)

short v = ((KnownValue) entity
emit(Instruction.LOADLop, 0 , 0

1 else
EntityAddress address =

(this, null) ;
C

) .value;
, v) ;

(entity instanceof Unknownvalue) ?

((Unknownvalue) entity) .address :
((KnownAddress) entity) .address;

emit(Instruction.LOADop, s,
displayRegister(frame.level,

address.level), address-displacement);
1

1

The following auxiliary method displayRegister implements equations (7.20):

286 Programming Language Processors in Java

private byte displayRegister
(byte currentlevel, byte entitylevel)

{ ... 1

The following methods show how the entity descriptions are now set up:

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg) {

Frame frame = (Frame) arg;
if (dec1.E instanceof IntegerExpression) {

IntegerLiteral IL =

((IntegerExpression) dec1.E) .IL;
decl.entity = new KnownValue

(1, valuation(IL.spelling));
return new Short(0) ;

1 else {

short s =
shortValueOf(decl.E.visit(this, frame));

decl.entity = new Unknownvalue
(s, frame.leve1, frame.size);

return new Short(s);
1

1

public Object visitvar~eclaration
(VarDeclaration decl, Object arg) {

Frame frame = (Frame) arg;
short s = shortValueOf(decl.T.visit(this, null));
emit(Instruction.PUSHop, 0, 0, s);
decl.entity = new KnownAddress

(1, frame.leve1, frame.size);
return new Short(s) ;

1

When the appropriate visitorlencoding method is called to translate a procedure body,
the frame level must be incremented by one and the frame size set to 3, leaving just
enough space for the link data:

Frame outerFrame = ... ;
Frame 1ocalFrame = new Frame(outerFrame.level + 1, 3);

Finally, method encode starts off with a frame at level 0 and with no storage
allocated:

public void encode (Program prog) {

Frame globalFrame = new Frame(0, 0);
prog.visit(this, globalFrame);

1

288 Programming Language Processors in Java

elaborate [[proc I () - Cj =
JUMP g

e : execute C
RETURN (0) 0

g :

The generated routine body consists simply of the object code 'execute C' followed by a
RETURN instruction. The two zeros in the RETURN instruction indicate that the routine
has no result and no arguments. Since we do not want the routine body to be executed at
the point where the procedure is declared, only where the procedure is called, we must
generate a jump round the routine body. The routine's entry address, e, must be bound
to I for future reference.

The code template specifying translation of a procedure call would be:

execute [[I () 1 = (7.24)
CALL(SB) e where e = entry address of routine bound to I

This is straightforward. The net effect of executing this CALL instruction will be simply
to execute the body of the routine bound to I.

0

Example 7.18 Object code for Mini-Triangle plus global procedures

The following extended Mini-Triangle program illustrates a procedure declaration and
call:

let
var n: Integer;

proc P () -
n : = n * 2

in
begin
n : = 9;

PO
end

The corresponding object program illustrates code templates (7.23) and (7.24):

elaborate [[var n :
Integer]

elaborate [[proc p () - <
n := n*2]

I 0: PUSH 1
I : JUMP 7
2: LOAD 0 [SBI

execute ([n : = n*2] 2
4: CALL mu1 t
5: STORE 0 [SBI

i 6: RETURN (0) 0

Code Generation 289

execute [n : = 9j 7: LOADL 9
execute [[begin n : = 9 ; 8: STORE 0 [SBI

P () endl 9: CALL (SB) 2
10: POP(0) 1
11: HALT

The corresponding decorated AST and entity descriptions are shown in Figure 7.4.

0

A function is translated in much the same way as a procedure. The only essential
difference is in the code that returns the function result.

Program

I
Letcommand

!
\
\
\

!
!
! Ident. i Ident. Ident. Ident. OD. 1nt.Lit. Ident. 1nt.Lit. Ident.

known address
address = 2

Figure 7.4 Entity description for a known routine.

290 Programming Language Processors in Java

Example 7.19 Code templates for Mini-Triangle plus global functions

Suppose that Mini-Triangle is to be extended with parameterless functions. The
syntactic changes are as follows:

Declaration ..- ..- ...
(func ldentifier () : Type-denoter - Expression (7.25)

Expression .- .- . . .
I Identifier (1

As in Example 7.17, we shall assume that all function declarations are global.

The code template specifying translation of a function declaration to TAM code
would be:

elaborate [func I () : T - EJ = (7.27)
JUMP g

e : evaluate E
RETURN (s) 0 where s = size T

s:
This RETURN instruction returns a result of size s, that result being the value of E. The
function has no arguments, so the RETURN instruction removes 0 words of arguments
from the stack.

The code template specifying translation of a function call to TAM code would be:

evaluate [I () J = (7.28)
CALL (SB) e where e = entry address of routine bound to I

which is similar to (7.24).

7.4.2 Nested procedures and functions

Now consider a source language that allows procedures and functions to be nested, and
allows them to access nonlocal variables. In this case the implementation needs static
links, as explained in Section 6.4.2. The call instruction (or instruction sequence) must
designate not only the entry address of the called routine but also an appropriate static
link.

Suppose that a procedure is represented by a routine R in the object code. R's entry
address is known to the code generator, as we have already seen. The appropriate static
link for a call to R will be the base address of a frame somewhere in the stack. This base
address is not known to the code generator. But the code generator can determine which
display register will contain that static link, at the time when R is called. The appropriate
register is determined entirely by a pair of routine levels known to the code generator:
the routine level of R's declaration and the routine level of the code that calls R.

292 Programming Language Processors in Java

Example 7.21 Code templates for Mini-Triangle plus nested procedures

Consider again the language Mini-Triangle extended with parameterless procedures.
The syntax is unchanged from Example 7.17, but now we shall allow nested procedure
declarations.

The code template for a procedure declaration is unchanged:

elaborate [proc I () - a = (7.29)
JUMP g

e : execute C
RETURN (0) 0

g :

but now the entity description bound to I must include the address pair (1, e), where 1 is
the current routine level, and e is the entry address.

The code template for a procedure call becomes:

execute [I () 1 = (7.30)
CALL(r) e where (1, e) = address of routine bound to I,

cl = current routine level,
r = display-register(c1, 1)

The net effect of executing this CALL instruction will be to execute the command C that
is the body of the procedure bound to I, using the content of register r as the static link.
The latter is determined using the auxiliary function display-register, which is defined
by equations (7.20).

Example 7.22 Code generation for Mini-Triangle plus nested procedures

Code template (7.29) would be implemented by the following new visitorlencoding
method:

public Object visitProcDeclaration elaborate [proc I
(~roc~eclaration decl, ()-c'n =
Object arg) {

Frame outerFrame = (Frame) arg;
short j = nextInstrAddr; j :
emit(Instruction.JUMPop, 0 , JUMP g

Instruction.CBr, 0) ;
short e = nextInstrAddr; e :
decl.entity = new ~nownRoutine

(2, outerFrame.leve1, e);
Frame 1ocalFrame = new Frame

(outerFrame.leve1 + 1, 3);
decl.C.visit(this, 1ocalFrame); execute C

Code Generation 293

emit(Instruction.RETURNop, 0, 0, 0); RETURN(0) 0
short g = nextInstrAddr; g:

~atch(j, 9);
return new Short(0);

3

This assumes a new kind of entity description:

public class KnownRoutine extends RuntimeEntity {

public EntityAddress address;
. . .

1

where address. level is the level of the routine and address. displacement is
its entry address.

Code template (7.30) would be implemented by the following visitorlencoding
method:

public Object visitCallCommand
(CallCommand com,
Object arg) {

Frame frame = (Frame) arg;
EntityAddress address =

((KnownRoutine)
com.1.decl.entity) .address

emit(Instruction.CALLop,
displayRegister(

frame.leve1,
address.level),

Instruction.CBr,
address.displacement);

return null;
1

execute [I ()I =

7.4.3 Parameters

Now let us consider how the code generator implements parameter passing. Every
source language has one or more parameter mechanisms, the means by which
arguments are associated with the corresponding formal parameters.

As explained in Section 6.5.1, a routine protocol is needed to ensure that the calling
code deposits the arguments in a place where the called routine expects to find them. If
the operating system does not impose a routine protocol, the language implementor must
design one, taking account of the source language's parameter mechanisms and the
target machine architecture.

Code Generation 295

Example 7.24 Code templates for procedures with parameters

Consider Mini-Triangle extended with procedures, and constant and variable param-
eters. For simplicity we shall assume that each procedure has a single formal parameter.
The syntactic changes, for procedure declarations and procedure calls, are as follows:

Declaration ..- ..- ...
I proc ldentifier (Formal-Parameter) - Command (7.31)

Formal-Parameter ::= ldentifier : Type-denoter
I var ldentifier : Type-denoter

Command . .- ...
(ldentifier (Actual-Parameter)

Actual-Parameter ::= Expression
I var V-name

Production rules (7.32a) and (7.34a) are concerned with constant parameters; production
rules (7.32b) and (7.34b) are concerned with variable parameters.

The code template for a procedure declaration is now:

elaborate [[proc I (FP) - CJ = (7.35)
JUMP g

e : execute C
RETURN (0) d where d = size of formal parameter FP

g :

Since the TAM routine protocol requires the caller to push the argument on to the stack,
the routine body itself contains no code corresponding to the formal parameter FP.

The code template specifying translation of a procedure call to TAM code is now:

execute [[I (AP)]I = (7.36)
pass-argument AP
CALL (r) e where (I, e) = address of routine bound to I,

cl = current routine level,
r = display-register(c1, 1)

The code templates for actual parameters are:

pass-argument [[a =
evaluate E

pass-argument [var Vj =
fetch-address V

Code template (7.37b) uses a new code function for value-or-variable-names:

fetch-address : V-name -+ Instruction* (7.38)

where tfetch-address V' is code that will push the address of the variable V on to the
stack top.

296 Programming Language Processors in Java

The code templates for value-or-variable-names are generalized as follows:

fetch [ZJj =

(i) if I is bound to a known value:
LOADL v where v = value bound to I

(ii) if I is bound to an unknown value or known address:
LOAD(s) d [r] wheres=size(typeofI),

(1, 6) = address bound to I,
cl = current routine level,
r = display-register(c1, I)

(iii) if I is bound to an unknown address:
LOAD(1) d [r]
LOAD1 (s) where s = size(type of I),

(I, d) = address bound to I,
e l= current routine level,
r = display-register(c1, 1)

assign [[a =
(i) if I is bound to a known address:

STORE (s) d [r] where s = size(type of I),
(I, 4 = address bound to I,
cl = current routine level,
r = display-register(c1, I)

(ii) if I is bound to an unknown address:
L O A D (1) d [r]
STORE1 (s) where s = size(type of I),

(I, 6) = address bound to I,
cl = current routine level,
r = display-register(c1, I)

fetch-address [[Ij =
(i) if I is bound to a known address:

LOADA d [r] where (I, d) = address bound to I,
cl = current routine level,
r = display-register(c1, I)

(ii) if I is bound to an unknown address:
LOAD (1) d [r] where (I, d) = address bound to I,

e l= current routine level,
r = display-register(c1, 1)

Code Generation 297

7.5 Case study: code generation in the
Triangle compiler

The Triangle code generator consists of a package Triangle. CodeGenerator that
contains the Encoder, and the classes for the various kinds of run-time entity. The
Encoder class depends on the package Triangle. Abstract SyntaxTrees,
which contains all of the class definitions for ASTs, and on the package TAM, which
contains the definition of the Triangle abstract machine.

The Triangle code generator was designed and implemented using techniques
similar to those described in this chapter. Some extensions were necessary to deal with
particular features of Triangle. Here we briefly discuss some of these extensions.

7.5.1 Entity descriptions

The Triangle code generator deals with a wide variety of entities and entity descriptions,
some of which we have not yet met. The following kinds of entity description are used:

Known value: This describes a value bound in a constant declaration whose right side
is a literal, e.g.:

const daysperweek - 7;
const currency - ' $ I

Unknown value: This describes a value bound in a constant declaration, if obtained by
evaluating an expression at run-time, e.g.:'

const area - length * breadth;
const nu1 - chr (0)

It also describes an argument value bound to a constant parameter, e.g., the value
bound to n in:

func odd (n: Integer) : Boolean - ...
Known address: This describes an address allocated and bound in a variable declar-
ation. The code generator represents each address by a (level, displacement) pair, as
described in Section 7.3.3.

Unknown address: This describes an argument address bound to a variable parameter,
e.g., the address bound to n in:

proc inc (var n: Integer) - ...

' In principle, nu1 in this example could be treated as bound to a known value. However, the
code generator would have to be enhanced to evaluate the expression 'chr (0) ' itself, using a
technique called constant folding.

298 Programming Language Processors in Java

Known routine: This describes a routine bound in a procedure or function declaration,
e.g., the routines bound to inc and odd in the above examples.

Unknown routine: This describes an argument routine bound to a procedural or
functional parameter, e.g., the routine bound to p in:

proc filter (func p (x: Integer): Boolean;
var 1: IntegerList) - ...

Primitive routine: This describes a primitive routine provided by the abstract
machine. Primitive routines are bound in the standard environment to operators and
identifiers, e.g., to '+', '<', eof, and get.

Equality routine: This describes one of the primitive routines provided by the abstract
machine for testing (in)equality of two values. Equality routines are generic, in that
the values can be of any size. Equality routines are bound to the operators '=' and
' \=' .

Field: This describes a field of a record type. Every record field has a known offset
relative to the base of the record (see Section 6.1.2), and the field's entity description
includes this offset.

Type representation: This describes a type. Every type has a known size, which is
constant for all values of the type (see Section 6.1), and the type's entity description
includes that size.

7.5.2 Constants and variables

A value-or-variable-name in the Triangle program identifies a constant or variable.
Either a constant or a variable may be used as an expression operand, but only a variable
may be used on the left side of an assignment command. These two usages give rise to
two different code functions on value-or-variable-names:

fetch : V-name -t Instruction*
assign : V-name 4 Instruction*

In the little language Mini-Triangle used as a running example in this chapter, a
value-or-variable-name was just an identifier (declared in a constant or variable declar-
ation). Accordingly, fetch was defined by a single code template (plus a special-case
code template), and assign by a single code template.

More realistic programming languages have composite types, and operations to
select components of composite values and variables. In Triangle, a record value-or-
variable-name can be subjected to field selection, and an array value-or-variable-name
can be indexed.

Code Generation 295

Example 7.25 Addressing composite variables

Consider the following Triangle declarations:

type Name = array 15 of Char;
TelNumber = array 10 of Char;
Entry = record

name: Name;
num: TelNumber

end ;
Directory = record

count: Integer;
entry: array 100 of Entry

end ;

var dir: Directory

Now, the following are all value-or-variable-names:

di r
dir . count
dir. entry
dir.entry[i]
dir.entry[i] .num
dir.entry[i] .name
dir.entry [i] .name [j]

The code generator will compute the following type sizes:

size[[Name] = 1 5 x 1 = 15words
size([TelNumber] = 1 0 x 1 = lowords
sizel[Entry] = 15 + 10 = 25 words
size[[array 100 of Entry] = 100 x 25 = 2500 words
sizeIDirec tory] = 1 + 2500 = 2501 words

It will also compute the offsets of the fields of record type Entry:

offset([name] = 0 words
offsetl[num] = 15 words

and those of record type Directory:

offset[count] = 0 words
offset[[ent ry] = 1 word

As in Section 6.1, we use the notation address v for the address of variable (or
constant) v. For the various components of dir we find:

addresstdir . count] = addressl[dir] + 0

address[dir . entry] = address([dir] + 1

addressIdir . entry [i] 1 = address[dir] + 1 + 25i

Code Generation 301

now nearly all programs - even operating systems - are written in high-level languages.
So it makes more sense for the machine to support the code generator by, for example,
providing a simple regular instruction set. A lucid discussion of the interaction between
code generation and machine design may be found in Wirth (1 986).

Almost all real machines have general-purpose andlor special-purpose registers;
some have a stack as well. The number of registers is usually small and always limited.
It is quite hard to generate object code that makes effective use of registers. Code
generation for register machines is therefore beyond the scope of this introductory
textbook. For a thorough treatment, see Chapter 9 of Aho et al. (1985).

The code generator described in this chapter works in the context of a multi-pass
compiler: it traverses an AST that represents the entire source program. In the context of
a one-pass compiler, the code generator would be structured rather differently: it would
be a collection of methods, which can be called by the syntactic analyzer to generate
code 'on the fly' as the source program is parsed. For a clear account of how to organize
code generation in a one-pass compiler, see Welsh and McKeag (1980).

The sheer diversity of machine architectures is a problem for implementors. A
common practice among software vendors is to construct a family of compilers, trans-
lating a single source language to several different target machine languages. These
compilers will have a common syntactic analyzer and contextual analyzer, but a distinct
code generator will be needed for each target machine. Unfortunately, a code generator
suitable for one target machine might be difficult or impossible to adapt to a dissimilar
target machine. Code generation by pattern matching is an attractive way to reduce the
amount of work to be done. In this method the semantics of each machine instruction is
expressed in terms of low-level operations. Each source-program command is translated
to a combination of these low-level operations; code generation then consists of finding
an instruction sequence that corresponds to the same combination of operations. A
survey of code generation by pattern matching may be found in Ganapathi et al. (1982).

Fraser and Hansen (1995) describe in detail a C compiler with three alternative
target machines. This gives a clear insight into the problems of code generation for
dissimilar register machines.

Exercises

Section 7.1

7.1 The Triangle compiler uses code template (7.8e) for while-commands, but
many compilers use the following alternative code template:

302 Programming Language Processors in Java

execute ([whi 1 e E do a =
g : evaluate E

JUMPIF (0) h
execute C
JUMP g

h :

Convince yourself that the alternative code template is semantically equivalent
to (7.8e).

Apply the alternative code template to determine the object code of:

execute ([w h i l e n > 0 do n : = n - 21

Compare with Example 7.3, and show that the object code is less efficient.

Why, do you think, is the alternative code template commonly used?

7.2" Suppose that Mini-Triangle is to be extended with the following commands:

(a) VI , V2 : = El , E2

This is a simultaneous assignment: both El and E2 are to be evaluated,
and then their values assigned to the variables V1 and V2, respectively.

(b) C1 , C2

This is a collateral command: the subcommands C1 and C2 are to be exe-
cuted in any order chosen by the implementor.

(c) i f E t h e n C

This is a conditional command: if E evaluates to true, C is executed,
otherwise nothing.

(d) r e p e a t C u n t i l E

This is a loop command: E is evaluated at the end of each iteration (after
executing C), and the loop terminates if its value is true.

(e) r e p e a t C1 w h i l e E do C2

This is a loop command: E is evaluated in the middle of each iteration
(after executing C1 but before executing C2), and the loop terminates if its
value is false.

Write code templates for all these commands.

7.3* Suppose that Mini-Triangle is to be extended with the following expressions:

(a) if El then E2 e l s e E3

This is a conditional expression: if E evaluates to true, E2 is evaluated,
otherwise E3 is evaluated. (E2 and E3 must be of the same type.)

Code Generation 303

(b) let D inE

This is a block expression: the declaration D is elaborated, and the resul-
tant bindings are used in the evaluation of E.

(c) begin C ; yield E end

Here the command C is executed (making side effects), and then E is
evaluated.

Write code templates for all these expressions.

Section 7.2

7.4* Implement the visitor/encoding methods visit . . .Express ion (along the
lines of Example 7.8) for the expressions of Exercise 7.3.

7.5* Implement the visitor/encoding methods visit . . .Command (along the lines
of Example 7.8) for the commands of Exercise 7.2. Use the technique
illustrated in Example 7.9 for generating jump instructions.

Section 7.3

7.6 Classify the following declarations according to whether they bind identifiers
to known or unknown values, variables, or routines.

(a) Pascal constant, variable, and procedure declarations, and Pascal value,
variable, and procedural parameters.

(b) ML value and function declarations, and ML parameters.

(c) Java local variable declarations, and Java parameters.

7.7" Suppose that Mini-Triangle is to be extended with a for-command of the form
'for I from El to Ez do C', with the following semantics. First, the expres-
sions El and E2 are evaluated, yielding the integers rn and n, respectively. Then
the subcommand C is executed repeatedly, with I bound to the integers rn, rn+ 1,
. . ., n in successive iterations. If m > n, C is not executed at all. The scope of I
is C, which may fetch I but may not assign to it.

(a) Write a code template for the for-command.

(b) Use it to implement a visitor/encoding method visitForCommand
(along the lines of Example 7.13).

7.8" Suppose that Mini-Triangle is to be extended with array types, as found in
Triangle itself. The relevant extensions to the Mini-Triangle grammar are:

V-name . .- . .- . . .
I V-name [Expression I

304 Programming Language Processors in Java

Type-denoter ::= . . .
(array Integer-Literal of Type-denoter

(a) Modify the Mini-Triangle code specification accordingly.

(b) Modify the Mini-Triangle code generator accordingly.

Section 7.4

7.9" Modify the Mini-Triangle code generator to deal with parameterized pro-
cedures, using the code templates of Example 7.24.

7.10" A hypothetical programming language's function declaration has the form
'func I (FP) : T - C', i.e., its body is a command. A function body may
contain one or more commands of the form ' r e s u l t E'. This command
evaluates expression E, and stores its value in an anonymous variable
associated with the function. On return from the function, the latest value
stored in this way is returned as the function's result.

(a) Modify the Mini-Triangle code specification as if Mini-Triangle were ex-
tended with functions of this form.

(b) Modify the Mini-Triangle code generator accordingly.

CHAPTER EIGHT

Interpretation

An interpreter takes a source program and executes it immediately. Immediacy is the
key characteristic of interpretation; there is no prior time-consuming translation of the
source program into a low-level representation.

In an interactive environment, immediacy is highly advantageous. For example, the
user of a command language expects an immediate response from each command; it
would be absurd to expect the user to enter an entire sequence of commands before
seeing the response from the first one. Similarly, the user of a database query language
expects an immediate answer to each query. In this mode of working, the 'program' is
entered once and then discarded.

The user of a programming language, on the other hand, is much more likely to
retain the program for further use, and possibly further development. Even so,
translation from the programming language to an intermediate language followed by
interpretation of the intermediate language (i.e., interpretive compilation) is a good
alternative to full compilation, especially during the early stages of program
development.

In this chapter we study two kinds of interpretation:

iterative interpretation

recursive interpretation.

Iterative interpretation is suitable when the source language's instructions are all
primitive. The instructions of the source program are fetched, analyzed, and executed,
one after another. Iterative interpretation is suitable for real and abstract machine codes,
for some very simple programming languages, and for command languages.

Recursive interpretation is necessary if the source language has composite instruc-
tions. (In this context, 'instructions' could be statements, expressions, andlor declar-
ations.) Interpretation of an instruction may trigger interpretation of its component
instructions. An interpreter for a high-level programming language or query language
must be recursive. However, recursive interpretation is slower and more complex than
iterative interpretation, so we usually prefer to compile high-level languages, or at least
translate them to lower-level intermediate languages that are suitable for iterative
interpretation.

308 Programming Language Processors in Java

/ / Data store . . .
public short[] data = new short[DATASIZE] ;

/ / Registers ...
public short PC;
public short ACC;
public byte status;

public static final byte / / statusvalues
RUNNING = 0, HALTED = 1, FAILED = 2 ;

1

Here the code store is represented by an array of instructions, code; the data store is
represented by an array of words, data; and the registers are represented by variables
PC, ACC, and status.

The following class will implement the Hypo loader and emulator:

public class HypoInterpreter extends Hypostate I

public void load () {

. . . / / Load the program into the code store,
/ / starting at address 0.

1

public void emulate () {

. . . / / Run the program contained in the code store,
/ / starting at address 0.

1

The following method is the emulator proper. Its control structure is a switch-
statement within a loop, preceded by initialization of the registers. Each case of the
switch-statement follows directly from Table 8.1.

public void emulate () {

/ / Initialize . . .
PC = 0; ACC = 0; status = RUNNING;

/ / Fetch the next instruction . . .
HypoInstruction instr = code[PC++l;

/ / Analyze this instruction . . .
byte op = instr.op;
short d = instr.d;

/ / Execute this instruction . . .
switch (op) {

Interpretation 309

case STOREop:
case LOADop:
case LOADLop:
case ADDop:
case S U B O ~ :
case JUMPO~:
case JUMPZop:
case HALTop:

data[d] = ACC; break;
ACC = data[d]; break;
ACC = d; break;
ACC += data [dl ; break;
ACC -= data [dl ; break;
PC = d; break;
if (ACC == 0) PC = d; break;
status = HALTED; break;

default: status = FAILED;

This emulator has been kept as simple as possible, for clarity. But it might behave
unexpectedly if, for example, an ADD or SUB instruction overflows. A more robust
version would set status to FAILED in such circumstances. (See Exercise 8.1 .)

0

When we write an interpreter like that of Example 8.1, it makes no difference
whether we are interpreting a real machine code or an abstract machine code. For an
abstract machine code, the interpreter will be the only implementation. For a real
machine code, a hardware interpreter (processor) will be available as well as a software
interpreter (emulator). Of these, the processor will be much the faster. But an emulator
is much more flexible than a processor: it can be adapted cheaply for a variety of
purposes. An emulator can be used for experimentation before the processor is ever
constructed. An emulator can also easily be extended for diagnostic purposes. (Exercises
8.2 and 8.3 suggest some of the possibilities.) So, even when a processor is available, an
emulator for the same machine code complements it nicely.

Table 8.1 Instruction set of the hypothetical machine Hypo.

1 7 1 HALT I s t o ~ execution I

Op-code

0

I

2

3

4

5

6

Instruction

STORE d

LOAD d

LOADL d

ADD d

SUB d

JUMP d

J U M P Z d

-

Meaning

word at address d t ACC

ACC t word at address d

ACC t d

ACC t ACC + word at address d

ACC t ACC -word at address d

P C t d

P C t d . i f A C C = O

Interpretation 3 1 1

8.1.2 Iterative interpretation of command languages

Command languages (such as the UNIX shell language) are relatively simple languages.
In normal usage, the user enters a sequence of commands, and expects an immediate
response to each command. Each command will be executed just once. These factors
suggest interpretation of each command as soon as it is entered. In fact, command
languages are specifically designed to be interpreted. Below we illustrate interpretation
of a simple command language.

Example 8.2 Interpreter for Mini-Shell

Consider a simple command language, Mini-Shell, that allows us to enter commands
such as:

d e l e t e a b c
c r e a t e f
l i s t
e d i t f
/ b i n / s o r t f
p r i n t f 2
q u i t

The above is an example of a script, which is just a sequence of commands. Each
command is to be executed as soon as it is entered.

Mini-Shell provides several built-in commands. In addition, any executable program
(such as / b i n / s o r t) can be run simply by giving the name of the file containing it. A
command can be passed any number of arguments, which may be filenames or literals.
The commands and their meanings are given in Table 8.2.

Table 8.2 Commands in Mini-Shell.

list I none I List the names of all files owned by the current user.

Command

create

delete

edit

Argument(s)

filename

filename, . . . filename,

filename

print

Run execut-
able program

Meaning

Create an empty file with the given name.

Delete all the named files.

Edit the named file.

filename number

filename arg, . . . arg,

-- -- --

Print the given number of copies of the named file.

Run the executable program contained in the named
file, with the given arguments.

3 12 Programming Language Processors in Java

The syntax of a script is as follows:

Script ..- . Command* (8.1)

Command . . .- Command-Name Argument* end-of-line (8.2)

Argument . . .- Filename
1 Literal

Command-Name ::= create
1 delete
I edit
I list
I print

I w i t
I Filename

Production rules for Filename and Literal have been omitted here.

In the Mini-Shell interpreter, we can represent commands as follows:

public class MiniShellCommand {

public String name;
public String[] args;

1

The following class represents the Mini-Shell state:

public class ~iniShellState {

/ / File store . . .
public ... ;

/ / Registers . . .
public byte status; / / RUNNINGorHALTEDorFAILED

public static final byte / / status values
RUNNING = 0, HALTED = 1, FAILED = 2 ;

1

There is no need for either a code store or a code pointer, since each command will be
executed only once, as soon as it is entered.

The following class will implement the Mini-Shell interpreter:

public class Minishell extends Minishellstate {

public void interpret () {

. . . / / Execute the commands entered by the user,
/ / terminating on command quit.

Interpretation 3 13

public MiniShellCommand readlnalyze 0 {

. . . / / Read, analyze, and return the next command entered by the user.

public void create (String fname) {

. . . / / Create an empty file with the given name.
I

public void delete (String[] £names) {

. . . / / Delete all the named files.

public void edit (String fname) {

. . . / / Edit the named file.
I

public void list () {

. . . / / List names of all files owned by the current user.
1

public void print (String fname, String copies) {

. . . / / Print the given number of copies of the named file.
I

public void exec (String fname, String[] args) {

. . . / / Run the executable program contained in the named file, with
/ / the given arguments.

It will be convenient to combine fetching and analysis of commands. This is done by
method readAnalyze.

The following method is the interpreter proper. It just reads, analyzes, and executes
the commands, one after another:

public void interpret () {

/ / Initialize . . .
status = RUNNING;

do C
/ / Fetch and analyze the next instruction . . .
MiniShellCommand com = readAnalyze0 ;

/ / Execute this instruction . . .

else if (com.name.equals("delete"))
delete(com.args);

3 14 Programming Language Processors in Java

else if (com.name.equals("edit"))
edit (com.args [O]) ;

else if (com.name.equals("list"))
list () ;

else if (com.name.equals("print"))
print(com.args[O], com.args[l]);

else if (com.name.equals("quit"))
status = HALTED;

else / / executable program
exec (com. name, com. args) ;

} while (status == RUNNING);

8.1.3 Iterative interpretation of simple programming
languages

Iterative interpretation is also possible for certain programming languages, provided that
a source program is just a sequence of primitive commands. The programming language
must not include any composite commands, i.e., commands that contain subcommands.

In the iterative interpretation scheme, the 'instructions' are taken to be the
commands of the programming language. Analysis of a command consists of syntactic
and perhaps contextual analysis. This makes analysis far slower and more complex than
decoding a machine-code instruction. Execution is controlled by the form of command,
as determined by syntactic analysis.

Example 8.3 Interpreter for Mini-Basic

Consider a simple programming language, Mini-Basic, with the following syntax
(expressed in EBNF):

Program ..- . Command* (8.5)

Command . .- . Variable = Expression (8.6a)
1 read Variable (8.6b)
(write Variable (8 .6~)
(go Label (8.6d)
(if Expression Relational-Op Expression (8.6e)

go Label

I stop (8.60

Expression ..- . primary-Expression (8.7a)
I Expression Arithmetic-Op primary-Expression (8.7b)

Interpretation 3 15

primary-Expression ::= Numeral
I Variable
I (Expression)

Arithmetic-Op ::= + [- [* I / (8.9a-d)

Relational-Op

Variable . a 1 b 1 c 1 ... 1 z (8.1 1 a-z)

Label ..- . Digit Digit* (8.12)

A Mini-Basic program is just a sequence of commands. The commands are
implicitly labeled 0, 1, 2, etc., and these labels may be referenced in g o and i f
commands. The program may use up to twenty-six variables, which are predeclared.

The semantics of Mini-Basic programs should be intuitively clear. All values are real
numbers. The program shown in Figure 8.3 reads a number (into variable a) , computes
its square root accurate to two decimal places (in variable b), and writes the square root.

It is easy to imagine a Mini-Basic abstract machine. The Mini-Basic program is
loaded into a code store, with successive commands at addresses 0, 1, 2, etc. The code
pointer, CP, contains the address of the command due to be executed next.

The program's data are held in a data store of 26 cells, one cell for each variable.
Figure 8.3 illustrates the code store and data store. Figure 8.4 shows how the abstract
machine's state would change during the first few execution steps of the square-root
program, assuming that the number read is 10.0.

We must decide how to represent Mini-Basic commands in the code store. The
choices, and their consequences, are as follows:

(a) Source text: Each command must be scanned and parsed at run-time (i.e., every
time the command is fetched from the code store).

(b) Token sequence: Each command must be scanned at load-time, and parsed at run-
time.

(c) AST: All commands must be scanned and parsed at load-time.

Choice (a), illustrated in Figure 8.3, would slow the interpreter drastically. Choice (c) is
better but would slow the loader somewhat. Choice (b) is a reasonable compromise, so
let us adopt it here:

class Token {

byte k i n d ;
S t r i n g s p e l l i n g ;

1

class ScannedCornrnand {

Token [1 t o k e n s ;
1

Interpretation 3 17

public abstract class Command {

/ / A Command object is an AST representing a Mini-Basic command.

public void execute (MiniBasicState state);
/ / Execute the command, using state.

And similarly for expression ASTs:

public abstract class Expression {

/ / An Expression object is an AST representing a Mini-Basic
/ / expression.

public float evaluate (MiniBasicState state);
/ / Evaluate the expression, using state, and return its result.

Later we shall define concrete subclasses for particular forms of commands and expres-
sions. These will implement the methods execute and evaluate, which we shall
call interpreting methods.

Note that we must allow the interpreting methods to access the state of the Mini-
Basic abstract machine, hence their argument state. The following class will represent
the abstract machine state:

public class ~iniBasicState {

public static final short CODESIZE = 4096;
public static final short DATASIZE = 26;

/ / Code store . . .
public ScannedCommand[] code =

ScannedCommand[CODESIZE];

/ / Data store . . .
public float[] data = new float[DATASIZEl;

/ / Registers . . .
public short CP;
public byte status;

public static final byte / / status values
RUNNING = 0, HALTED = 1, FAILED = 2;

Here the code store is represented by an array of scanned commands, code. The
data store is represented by an array of real numbers, data, indexed by variable
addresses (using 0 for a, 1 for b, ..., 25 for z). The registers are represented by
variables Cp and status.

318 Programming Language Processors in Java

The following class will define the Mini-Basic interpreter:

public class MiniBasicInterpreter
extends Mini~asicState {

gublic void load (1 {

. . . / / Load the program into the code store, starting at address 0.
1

gublic void run () {

. . . / / Run the program in the code store, starting at address 0.
1

public static Command parse
(ScannedCommand scannedcom) {

. . . / / Parse scannedcom, and return the corresponding
/ / command AST.

1
1

Note that we need a method, here called parse, to parse a scanned command an
translate it to an AST.

The following method is the interpreter proper. It just fetches, analyzes, and execute
the commands, one after another:

public void run () {

/ / Initialize . . .
CP = 0; status = RUNNING;

do {
/ / Fetch the next instruction . . .
ScannedCommand scannedcom = code[CP++l;

/ / Analyze this instruction . . .
Command analyzedcom = parse(scannedC0m) ;

/ / Execute this instruction . . .
analyzedCom.execute((MiniBasicState) this);

) while (status == RUNNING);
1

Now we must define how to represent and execute analyzed commands. We intrc
duce a subclass of Command for each form of command in Mini-Basic:

public class Assigncommand extends Command {

byte V; / / left-side variable address
Expression E ; / / right-side expression

Interpretation 3 I!

public void execute (MiniBasicState state) {

state.data[V] = E.evaluate(state);
1

1

public class GoCommand extends Command {

short L ; / / destination label

public void execute (MiniBasicState state) {

state.CP = L;
1

1

public class Ifcommand extends Command {

Token R; / / relational-op
Express ion El, E2 ; / / subexpressions
short L ; / / destination label

public void execute (MiniBasicState state) {

float numl = El.evaluate(state) ;
float nwn2 = E2.evaluate(state);
if compare(R, numl, num2)

state.CP = L;

1

private static boolean compare
(Token relop, float numl, float num2) {

. . . / / Return the result of applying relational operator
/ / relop to numl and num2.

1
1

public class Stopcommand extends Command {

public void execute (MiniBasicState state) {

state.status = state.HALTED;
1

1

(The Command subclasses Readcommand and Writecommand, and the various
Expression subclasses, are omitted here. See Exercise 8.5.)

Study the object-oriented design of this interpreter. Once we decided to represent
each command by an AST, we had to introduce the abstract class Command, and its
subclasses Assigncommand, GoCommand, etc. We then found it convenient to equip
each subclass of Command with an interpreting method, execute, allowing the
interpreter to use dynamic method selection to select the right code to execute a particu-
lar command. However, these interpreting methods were outside the MiniBasic-
Interpreter class, so we had to pass the abstract machine state to them via their
argument st ate.

320 Programming Language Processors in Java

The alternative to dynamic method selection would have been to make the interpret-
er test the subclass of each command before executing it, along the following lines:

/ / Execute this instruction . .

if (analyzedcom instanceof AssignCommand) {

AssignCommand com = (Assigncommand) analyzedcom;
data[com.V] = evaluate(c0m.E) ;

1

else if (analyzedcom instanceof GoCommand) {

GoCommand corn = (Gocommand) analyzedcom;
CP = c0m.L;

I

else ...

But this would not be in the true spirit of object-oriented design!

8.2 Recursive interpretation

Modern programming languages are higher-level than the simple programming
language of Example 8.3. In particular, commands may be composite: they may contain
subcommands, subsubcommands, and so on.

It is possible to interpret higher-level programming languages. However, the iterat-
ive interpretation scheme is inadequate for such languages. Analysis of each command
in the source program entails analysis of its subcommands, recursively. Likewise, exec-
ution of each command entails execution of its subcommands, recursively. Thus we are
driven inexorably to a two-stage process, whereby the entire source program is analyzed
before interpretation proper can begin. This gives rise to the recursive interpretation
scheme:

fetch and analyze the program
execute the program

where both analysis and execution are recursive.

We must decide how the program will be represented at each stage. If it is supplied
in source form, 'fetch and analyze the program' must perform syntactic and contextual
analysis of the program. A decorated AST is therefore a suitable representation for the
result of the analysis stage. Therefore 'execute the program' will operate on the pro-
gram's decorated AST.

Example 8.4 Interpreter for Mini-Triangle

Consider a recursive interpreter for the programming language Mini-Triangle of

Interpretation 32 1

Examples 1.3 and 1.8. Assume that the analyzed program is to be represented by a
decorated AST. The source program will be subjected to syntactic and contextual
analysis, and also storage allocation, before execution commences.

We must choose a representation of Mini-Triangle values. These include not only
truth values and integers, but also undefined (which is the initial value of a variable).
The following classes represent all these types of values:

public abstract class Value I 1

public class IntValue extends Value {

public short i;
I

public class BoolValue extends Value {

public boolean b;
1

public class UndefinedValue extends Value {

We assume that each of these classes is equipped with a suitable constructor.

The following class will define the abstract machine state:

public class MiniTriangleState {

public static final short DATASIZE = ... ;

/ / Code store . . .
Program program; / / decorated AST

/ / Data store . . .
Value [1 data = new Value [DATASIZE] ;

/ / Register . . .
byte status;

public static final byte / / status values
RUNNING = 0 , HALTED = 1, FAILED = 2;

1

Here we represent the data store, as usual, by an array. The 'code store' is just the
decorated AST representing the Mini-Triangle program. We assume the class AST, and
its subclasses Program, Command, Expression, Declaration, etc., defined in
Example 4.19.

The following class will implement the Mini-Triangle interpreter. In particular,
methods fetchAnalyze and run will implement the two stages of the recursive
interpretation scheme.

public class MiniTriangleProcessor
extends MiniTriangleState implements Visitor {

322 Programming Language Processors in Java

public void fetchAnalyze () {

. . . / / Load the program into the code store, after
/ / subjecting it to syntactic and contextual analysis.

1

public void run () {

. . . / / Run the program contained in the code store.
1

/ / Visitorlinterpreting methods . . .

public Object visit ... Command
(...Command com, Object arg) ;

/ / Execute com, returning null (and ignoring arg).

public Object visit ... Expression
(...Expression expr, Object arg) ;

/ / Evaluate expr, returning its result (and ignoring arg).

public Object visit ... Declaration
(...Declaration decl, Object arg) ;

/ / Elaborate decl, returning null (and ignoring arg).

/ / Other interpreting methods . . .
private Value fetch (Vname vname) ;

/ / Return the value of the constant or variable vname.

private void assign (Vname vname, Value val);
/ / Assign val to the variable vname.

/ / Auxiliary methods

private static short valuation
(IntegerLiteral intlit);

/ / Return the value of intLi t.

private static Value applyunary
(Operator op, Value val);

/ / Return the result of applying unary operator op to val.

private static Value applyBinary
(Operator op, Value vall, Value va12);

/ / Return the result of applying binary operator op to vall and va12.

private static void callstandardproc
(Identifier id, Value val);

/ / Call the standard procedure named id, passing val as its argument.

This Mini-Triangle processor is a visitor object (see Section 5.3.2), in which the visitor
methods act as interpreting methods.

Interpretation

The visitorlinterpreting methods for commands are implemented as follows:

public Object visitAssignCommand
(Assigncommand com, Object arg) {

Value val = (Value) corn. E .visit (this, null) ;
assign(com.V, val) ;
return null;

1

public Object visitcallcommand
(Callcommand corn, Object arg) {

Value val = (Value) com.E.visit(this, null);
callStandardProc(com.I, val);
return null;

I

public Object visitSequentialCommand
(Sequentialcommand com, Object arg) {

corn. Cl .visit (this, null) ;
com.C2.visit(this, null);
return null;

1

public Object visitIfCommand
(Ifcommand corn, Object arg) {

BoolValue val = (BoolValue) com.E.visit(this, null)
if (val .b) com.Cl .visit (this, null) ;
else com.C2.visit(this, null);
return null;

1

public Object visitWhileCommand
(Whilecommand corn, Object arg) {

for (; ;) C
BoolValue val = (BoolValue)

com.E.visit (this, null) ;
if (! va1.b) break;
corn.C.visit(this, null);

1
return null;

1

public Object visitLetCommand
(Letcommand corn, Object arg) {

corn.D.visit(this, null);
corn.C.visit(this, null);
return null;

1

324 Programming Language Processors in Java

The visitorlinterpreting methods for expressions are implemented as follows:

public Object visitIntegerExpression
(IntegerExpression expr, Object arg)

return new IntValue(valuation(expr.IL));
1

public Object visitVnameExpression
(VnameExpression expr, Object arg) {

return fetch(expr.V) ;
1

public Object visitUnaryExpression
(UnaryExpression expr, Object arg) {

Value val = (Value) expr.E.visit(this, null);
return applyUnary(expr.0, val);

1

public Object visitBinaryExpression
(BinaryExpresion expr, Object arg) {

Value vall = (Value) expr.El.visit(this, null);
Value va12 = (Value) expr.E2.visit(this, null);
return applyBinary(expr.0, vall, va12);

1

The visitorlinterpreting methods for declarations are implemented as follows:

public Object visitConstDeclaration
(ConstDeclaration decl, Object arg)

KnownAddress entity = (KnownAddress) decl.entity;
Value val = (Value) decl.E.visit(this, null);
data[entity.address] = val;
return null;

1

public Object visitVarDeclaration
(VarDeclaration decl, Object arg) {

KnownAddress entity = (KnownAddress) decl.entity;
data[entity.addressl = new UndefinedValue();
return null;

1

public Object visitSequentialDeclaration
(SequentialDeclaration decl,
Object arg) {

decl.Dl.visit(this, null);
decl.D2.visit(this, null);
return null;

1

Interpretation :

/ / Code store . . .
public Instruction [I code =

new Instruction[COD~SIZE];

/ / Data store . . .
public short[] data = new short[DATASIZE] ;

/ / Registers . . .
public short final
public short
public short final
public short final
public short final
public short
public short final
public short
public short
public short
public byte

CB = 0;
CT ;
PB = CODESIZE;
PT = CODESIZE + 28;
SB = 0;
ST ;
HB = DATASIZE;
HT ;
LB ;
CP;
status ;

public static final byte / / status values
RUNNING = 0, HALTED = 1, FAILED = 2;

1

The following class implements the TAM interpreter proper:

public class Interpreter extends State {

public void loadprogram () {

. . . / / Load the program into the code store, starting at address 0.

. . . / / Set CT to the address of the last instruction + 1.
1

public void runprogram () {

. . . / / Run the program contained in the code store,
/ / starting at address 0.

1

The interpreter proper is as follows. Its main control structure is a switch-statem1
within a loop. There is one case for each of the fifteen valid op-codes, and a default c:
for invalid op-codes:

public void runprogram () {

/ / Initialize . . .
ST = SB; HT = HB; LB = SB; CP = CB;
Status = RUNNING;

328 Programming Language Processors in Java

do {

/ / Fetch the next instruction . . .
Instruction instr = code[CP++];

/ / Analyze this instruction . . .
byte op = instr.op;
byte r = instr.r;
byte n = instr-n;
short d = instr.d;

/ / Execute this instruction . .
switch (op) {

case LOADop: . . .
case LOADAop: ...
case LOADIop: ...
case LOADLop: ...
case STOREop: ...
case STOREIop: ...
case CALLop: . . .
case CALLIop: ...
case RETURNop: ...
case PUSHop: . . .
case POPop: . . .
case JUMPop: . . .
case JUMPIFO~: ...

case HALTop: status = HALTED; break;

default : status = FAILED;
1

) while (status == RUNNING);
1

The fact that TAM is a stack machine gives rise to many differences in detail from
an interpreter for a register machine. Load instructions push values on to the stack, and
store instructions pop values off the stack. For example, the TAM LOADL instruction is
interpreted as follows:

case LOADLop:
data[ST++] = d;
break ;

(Register ST points to the word immediately above the stack top, as shown in Fig-
ure C. 1 .)

Further differences arise from the special design features of TAM (outlined in
Section 6.8).

Interpretation 329

I Addressing and registers
The operand of a LOAD, LOADA, or STORE instruction is of the form 'd [r] ', where r is
usually a display register, and d is a constant displacement. The displacement d is added
to the current content of register r.

The display registers allow addressing of global variables (using SB), local variables
(using LB), and nonlocal variables (using L1, L2, . . .). The latter registers are related to
LB by the invariants L1 = content(LB), L2 = content(content(LB)), and so on - see
(6.25-27) in Section 6.4.2.

As explained in Section 6.8, it is not really worthwhile to have separate registers for
access to nonlocal variables. The cost of updating them (on every routine call and
return) outweighs the benefit of having them immediately available to compute the
addresses of nonlocal variables. In the TAM interpreter, therefore, L1, L2, etc., are only
pseudo-registers: their values are computed only when needed, using the above
invariants. This is captured by the following auxiliary method in the interpreter:

private s ta t i c short relative (short d, byte r) {

/ / Return the address defined by displacement d relative to register r.
switch (r) C

. . .
case SBr: return d + SB;
case LBr: return d + LB;
case Llr: return d + data[LB];
case L2r: return d + data[data[LBll;
. . .

For example, the LOAD and STORE instructions (on the simplifying assumption that the
length field n is 1) would be interpreted as follows:

I

case LOADop: {

short addr = relative (d, r) ;
data[ST++] = data[addr] ;
break ;

1

case STOREop: {

short addr = relative (d, r) ;
data [addr] = data [--ST] ;
break ;

1

The operand of a CALL, JUMP, or JUMPIF instruction is also of the form 'd [r l ',
where r is generally CB or PB, and d is a constant displacement. As usual, the displace-
ment d is added to the content of register r. The auxiliary method relative also
handles these cases.

Interpretation 33 1

indeed. Its control structures were more typical of a low-level language, making it
unattractive for serious programmers. More recently, 'structured' dialects of Basic have
become more popular, and compilation has become an alternative to interpretation.

Recursive interpretation is less common. However, this form of interpretation has
long been associated with Lisp (McCarthy et al. 1965). A Lisp program is not just
represented by a tree: it is a tree! Several features of the language - dynamic binding,
dynamic typing, and the possibility of manufacturing extra program code at run-time -
make interpretation of Lisp much more suitable than compilation. A description of a
Lisp interpreter may be found in McCarthy et al. (1965). Lisp has always had a devoted
band of followers, but not all are prepared to tolerate slow execution. A more recent
successful dialect, Scheme (Kelsey et al. 1998), has discarded Lisp's problematic
features in order to make compilation feasible.

It is noteworthy that two popular programming languages, Basic and Lisp, both
suitable for interpretation but otherwise utterly different, have evolved along somewhat
parallel lines, spawning structured dialects suitable for compilation!

Another example of a high-level language suitable for interpretation is Prolog. This
language has a very simple syntax, a program being a flat collection of clauses, and it
has no scope rules and few type rules to worry about. Interpretation is almost forced by
the ability of a program to modify itself by adding and deleting clauses at run-time.

Exercises

Make the Hypo interpreter of Example 8.1 detect the following exceptional
conditions, and set the status register accordingly:

(a) overflow;
(b) invalid instruction address;
(c) invalid data address.

(Assume that Hypo may have less than 4096 words of code store and less than
4096 words of data store, thus making conditions (b) and (c) possible.)

Make the Hypo interpreter of Example 8.1 display a summary of the machine
state after executing each instruction. Display the contents of ACC and CP, the
instruction just executed, and a selected portion of the data store.

Make the Hypo interpreter of Example 8.1 into an interactive debugger.
Provide the following facilities: (a) execute the next instruction only (single-
step); (b) set or remove a breakpoint at a given instruction; (c) execute
instructions until the next breakpoint; (d) display the contents of ACC and CP;
(e) display a selected portion of the data store; (f) terminate execution.

Write an emulator for a real machine with which you are familiar.

Interpretation 333

Expressions, operators, and variables are unchanged, but labels are removed.
Write a recursive interpreter for this structured dialect.

8.10** The TAM interpreter (Section 8.3) sacrifices efficiency for clarity. For
example, the fetch/analyze/execute cycle could be combined and replaced by a
single switch-statement of the form:

switch ((instr = c o d e [C P + +]) . o p) {
case LOADop: ...

Another efficiency gain could be achieved by holding the top one or two stack
elements in simple variables, and possibly avoiding the unnecessary updating
of the stack pointer during a long sequence of arithmetic operations. (This is
effectively turning TAM into a register machine!)

Consider these and other possible improvements to the TAM interpreter, and
develop a more efficient implementation. Compare your version with the origi-
nal TAM interpreter, and measure the performance gain.

CHAPTER NINE

Conclusion

The subject of this book is programming language implementation. As we study this
subject, we should remember that implementation is only part of the programming
language l$e cycle, where it takes its place along with programming language design
and specification. In Section 9.1 we discuss the programming language life cycle,
emphasizing the interactions among design, specification, and implementation. We also
distinguish between cheap, low-quality implementations (prototypes) and high-quality
implementations.

This naturally leads to a discussion of quality issues in implementation. In previous
chapters we have concentrated on introducing the basic methods of compilation and
interpretation, and relating these to the source language's specification. Correctness of
the implementation, with respect to the language specification, has been our primary
consideration. Quality of the implementation is a secondary consideration, although still
very important. The key quality issues are error reporting and efficiency. Sections 9.2
and 9.3 discuss these issues, as they arise both at compile-time and at run-time.

9.1 The programming language life cycle

Every programming language has a life cycle, which has some similarities to the well-
known software life cycle. The language is designed to meet some requirement. A
formal or informal specification of the language is written in order to communicate the
design to other people. The language is then implemented by means of language pro-
cessors. Initially, a prototype implementation might be developed so that programmers
can try out the language quickly. Later, high-quality (industrial-strength) compilers will
be developed so that realistic application programming can be undertaken.

As the term suggests, the programming language life cycle is an iterative process.
Language design is a highly creative and challenging endeavor, and no designer makes a
perfect job at the first attempt. The experience of specifying or implementing a new
language tends to expose irregularities in the design. Implementors and programmers
might discover flaws in the specification, such as ambiguity, incompleteness, or incon-
sistency. They might also discover unpleasant features of the language itself, features
that make the language unduly hard to implement efficiently, or unsatisfactory for
programming.

Conclusion 335

In any case, the language might have to be redesigned, respecified, and reimple-
mented, perhaps several times. This is bound to be costly, i.e., time-consuming and ex-
pensive. It is necessary, therefore, to plan the life cycle in order to minimize costs.

Figure 9.1 illustrates a life cycle model that has much to recommend it. Design is
immediately followed by specification. (This is needed to communicate the design to
implementors and programmers.) Development of a prototype follows, and development
of compilers follows that. Specification, prototyping, and compiler development are
successively more costly, so it makes sense to order them in this way. The designer gets
the fastest possible feedback, and costly compiler development is deferred until the
language design has more or less stabilized.

,

Specification

I

Compilers Ad
Manuals,

Figure 9.1 A programming language life cycle model.

9.1.1 Design

The essence of programming language design is that the designer selects concepts and
decides how to combine them. This selection is, of course, determined largely by the
intended use of the language. A variety of concepts have found their way into program-
ming languages: basic concepts such as values and types, storage, bindings, and abstrac-
tion; and more advanced concepts such as encapsulation, polymorphism, exceptions,
and concurrency. A single language that supports all these concepts is likely to be very
large and complex indeed (and its implementations will be large, complex, and costly).
Therefore a judicious selection of concepts is necessary.

Conclusion 337

different contexts (assignment, array indexing, loop parameters); whereas Algol from
the start had just one class o f expression, permissible in all contexts.

Similarly, formal specification o f semantics tends to encourage semantic simplicity
and regularity. Unfortunately, few language designers yet attempt this. Semantic
formalisms are much more difficult to master than BNF. Even then, writing a semantic
specification o f a real programming language (as opposed to a toy language) is a
substantial task. Worst o f all, the designer has to specify, not a stable well-understood
language, but one that is gradually being designed and redesigned. Most semantic
formalisms are ill-suited to meet the language designer's requirements, so it is not
surprising that almost all designers content themselves with writing informal semantic
specifications.

The advantages o f formality and the disadvantages o f informality should not be
underestimated, however. Informal specifications have a strong tendency to be inconsis-
tent or incomplete or both. Such specification errors lead to confusion when the langu-
age designer seeks feedback from colleagues, when the new language is implemented,
and when programmers try to learn the new language. O f course, with sufficient invest-
ment o f effort, most specification errors can be detected and corrected, but an informal
specification will probably never be completely error-free. The same amount o f effort
could well produce a formal specification that is at least guaranteed to be precise.

The very act o f writing a specification tends to focus the designer's mind on aspects
o f the design that are incomplete or inconsistent. Thus the specification exercise
provides valuable and timely feedback to the designer. Once the design is completed,
the specification (whether formal or informal) will be used to guide subsequent
implementations o f the new language.

Prototypes

A prototype is a cheap low-quality implementation o f a new programming language.
Development o f a prototype helps to highlight any features o f the language that are hard
to implement. The prototype also gives programmers an early opportunity to try out the
language. Thus the language designer gains further valuable feedback. Moreover, since
a prototype can be developed relatively quickly, the feedback is timely enough to make
a language revision feasible. A prototype might lack speed and good error reporting; but
these qualities are deliberately sacrificed for the sake o f rapid implementation.

For a suitable programming language, an interpreter might well be a useful
prototype. An interpreter is very much easier and quicker to implement than a compiler
for the same language. The drawback o f an interpreter is that an interpreted program
will run perhaps 100 times more slowly than an equivalent machine-code program.
Programmers will quickly tire o f this enormous inefficiency, once they pass the stage o f
trying out the language and start to use it to build real applications.

A more durable form o f prototype is an interpretive compiler. This consists o f a
translator from the programming language to some suitable abstract machine code,

338 Programming Language Processors in Java

together with an interpreter for the abstract machine. The interpreted object program
will run 'only' about 10 times more slowly than a machine-code object program.
Developing the compiler and interpreter together is still much less costly than
developing a compiler that translates the programming language to real machine code.
Indeed, a suitable abstract machine might be available 'off the shelf', saving the cost of
writing the interpreter.

Another method of developing the prototype implementation is to implement a
translator from the new language into an existing high-level language. Such a translation
is usually straightforward (as long as the target language is chosen with care). Clearly
the existing target language must already be supported by a suitable implementation.
This was precisely the method chosen for the first implementation of C++, which used
the cf r o n t translator to convert the source program into C.

Development of the prototype must be guided by the language specification, whether
the specification is formal or informal. The specification tells the implementor which
programs are well-formed (i.e., conform to the language's syntax and contextual
constraints) and what these programs should do when run.

9.1.4 Compilers

A prototype is not suitable for use over an extended period by a large number of
programmers building real applications. When it has served its purpose of allowing
programmers to try out the new language and provide feedback to the language
designer, the prototype should be superseded by a higher-quality implementation. This
is invariably a compiler - or, more likely, a family of compilers, generating object code
for a number of target machines. Such a high-quality implementation is referred as an
industrial-strength compiler.

The work that went into developing a prototype need not go to waste. If the
prototype was an interpretive compiler, for example, we can bootstrap it to make a
compiler that generates real machine code (see Section 2.6).

Development of compilers must be guided by the language specification. A syntactic
analyzer can be developed systematically from the source language's syntactic specifi-
cation (see Chapter 4). A specification of the source language's scope rules and type
rules should guide the development of a contextual analyzer (see Chapter 5). Finally, a
specification of the source language's semantics should guide the development of a code
specification, which should in turn be used to develop a code generator systematically
(see Chapter 7).

In practice, contextual constraints and semantics are rarely specified formally. If we
compare separately-developed compilers for the same language, we often find that they
are consistent with respect to syntax, but inconsistent with respect to contextual con-
straints and semantics. This is no accident, because syntax is usually specified formally,
and therefore precisely, and everything else informally, leading inevitably to misunder-
standing.

Conclusion 339

9.2 Error reporting

All programmers make errors - frequently. A high-quality language processor assists
the programmer to locate and correct these errors. Here we examine detection and
reporting of both compile-time and run-time errors.

9.2.1 Compile-time error reporting

The language specification defines a set of well-formed programs. A minimalist view of
a compiler's function is that it simply rejects any ill-formed program. But a good-quality
compiler should be more helpful.

As well as rejecting an ill-formed program, the compiler should report the location
of each error, together with some explanation. It should at least distinguish between the
major categories of compile-time error:

Syntactic error: missing or unexpected characters or tokens. The error report might
indicate what characters or tokens were expected.

Scope error: a violation of the language's scope rules. The error report should
indicate which identifier was declared twice, or used without declaration.

Type error: a violation of the language's type rules. The error report should indicate
which type rule was violated, and/or what type was expected.

Ideally the error report should be self-explanatory. If this is not feasible, it should at
least refer to the appropriate section of the language specification.

If the compiler forms part of an integrated language processor, and thus the pro-
grammer can switch very easily between editing and compiling, it is acceptable for the
compiler to halt on detecting the first error. The compiler should highlight the erroneous
phrase and pass control immediately to the editor. The programmer can then correct the
error and reinvoke the compiler.

On the other hand, a 'batch' or 'software tool' compiler - one intended to compile
the entire source program without interaction with the programmer - should detect and
report as many errors as it can find. This allows the programmer to correct several errors
after each compilation. This requirement has a significant impact on the compiler's
internal organization. After detecting and reporting an error, the compiler should attempt
error recovery. This means that the compiler should try to get itself into a state where
analysis of the source program can continue as normally as possible. Unfortunately,
effective error recovery is difficult.

Example 9.1 Reporting syntactic errors

The following Triangle program fragment contains some common syntactic errors:

Conclusion 341

Example 9.2 Reporting contextual errors

The following Triangle program fragment contains scope and type errors:

let
var phonenum: Integer;
var local: Boolean

in
begin
... ,
if phonenum [O] = ' 0 ' then

locale : = false
else

. . .
end

These errors should be detected during contextual analysis.

Consider the expression at (1). The phrase 'phonenum [O] ' clearly violates the
indexing operation's type rule, since phonenum is not of array type. But what error
recovery is appropriate? It is not at all obvious what type should be ascribed to
'phonenum [0] ', to allow type checking to continue. If the type checker ascribes the
type int, for example, then at the next step it will find that the operands of '=' appear to
violate that operator's type rule (one operand being int and the other chur), and it will
generate a second error report, which is actually spurious. Fortunately, the result type of
'=' does not depend on the types of its operands, so the type checker should obviously
ascribe the type bool to the expression 'phonenum [0] = ' 0 ' '. At the next step the
type checker will find that this expression satisfies the if-command's type rule.

At (2), there is an applied occurrence of an identifier, locale, that has not been de-
clared, in violation of a scope rule. Again, what error recovery is appropriate? Suppose
that the type checker arbitrarily chooses int as the type of locale. Subsequently the
type checker will find that the assignment command's type rule appears to be violated
(one side being int and the other bool), and again it will generate a spurious error report.

To facilitate error recovery during type checking, it is useful for the type checker to
ascribe a special improper type, error-type, to any ill-typed expression. The type
checker can then ignore error-type whenever it is subsequently encountered. This
technique would avoid both the spurious error reports mentioned in Example 9.2.

As these examples illustrate, it is easy for a compiler to discover that the source
program is ill-formed, and to generate error reports; but it is difficult to ensure that the
compiler never generates misleading error reports. There is a genuine tension between
the task of compiling well-formed source programs and the need to make some sense of
ill-formed programs. A compiler is structured primarily to deal with well-formed source
programs, so it must be enhanced with special error recovery algorithms to make it deal
reasonably with ill-formed programs.

342 Programming Language Processors in Java

Syntactic error recovery is particularly difficult. At one extreme, an over-ambitious
error recovery algorithm might induce an avalanche of spurious error reports. At the
opposite extreme, an over-cautious error recovery algorithm might skip a large part of
the source program and fail to detect genuine syntactic errors.

9.2.2 Run-time error reporting

Run-time error reporting is a completely different but equally important problem.
Among the more common run-time errors are:

arithmetic overflow

division by zero

out-of-range array indexing

These errors can be detected only at run-time, because they depend on values computed
at run-time.'

Some run-time errors are detected by the target machine. For example, overflow
may result in a machine interrupt. But in some machines the only effect of overflow is to
set a bit in the condition code register, and the object program must explicitly test this
bit whenever there is a risk of overflow.

Other run-time errors are not detected by the machine at all, but instead must be
detected by tests in the object program. For example, out-of-range array indexing might
result in computing the address of a word that is not actually part of the array. This is
usually not detected by the machine unless the computed address is outside the
program's address space.

These examples illustrate only typical machine behavior. Real machines range from
one extreme, where no run-time errors are detected automatically, to the opposite
extreme, where all the more common run-time errors are detected automatically. The
typical situation is that some run-time errors are detected by hardware, leaving others to
be detected by software.

Where a particular run-time error is not detected by hardware, the compiler should
generate code to test for the error explicitly. In array indexing, for example, the compile^
should generate code not only to evaluate the index but also to check whether it lies
within the array's index range.

' If the language is dynamically typed, i s . , a variable can take values of different types a
different times, then type errors also are run-time errors. However, we do not conside
dynamically-typed languages here.

Conclusion 343

Example 9.3 Detecting array indexing errors

The following Triangle program fragment illustrates array indexing:

l e t
va r name: a r r a y 4 of Char;
var i: In teger

i n
begin

. . .
end

Assume that characters and integers occupy one word each, and that the addresses of
global variables name and i are 200 and 204, respectively. Thus name occupies words
200 through 203; and the address of name [i] is 200 + i, provided that 0 I i I 3.

The Triangle compiler does not currently generate index checks. The assignment
command at (1) will be translated to object code like this (omitting some minor details):

LOADL 48 - fetch the blank character
LOAD 204 - fetch the value of i
LOADL 2 00 - fetch the address of name [0]
CALL add - compute the address of name [i 3
STORE1 - store the blank character at that address

This code is dangerous. If the value of i is out of range, the blank character will be
stored, not in an element of name, but in some other variable - possibly of a different
type. (If the value of i happens to be 4, then i itself will be corrupted in this way.)

We could correct this deficiency by making the compiler generate object code with
index checks, like this:

LOADL 48 - fetch the blank character
LOAD 204 - fetch the value of i
LOADL 0 - fetch the lower bound of name
LOADL 3 - fetch the upper bound of name
CALL rangecheck -check that the index is within range
LOADL 200 - fetch the address of name [0]
CALL add - compute the address of name [i I
STORE1 - store the blank character at that address

The index check is italicized for emphasis. The auxiliary routine rangecheck, when
called with arguments i, rn, and n, is supposed to return i if rn 5 i I n, or to fail
otherwise. The space cost of the index check is three instructions, and the time cost is
three instructions plus the time taken by rangecheck itself.

0

344 Programming Language Processors in Java

Software run-time checks are expensive in terms of object-program size and speed.
Without them, however, the object program might overlook a run-time error, eventually
failing somewhere else, or terminating with meaningless results. And, let it be empha-
sized, if a compiler generates object programs whose behavior differs from the language
specification, it is simply incorrect. The compiler should, at the very least, allow the
programmer the option of including or suppressing run-time checks. Then a program's
unpredictable behavior would be the responsibility of the programmer who opts to
suppress run-time checks.

Whether the run-time check is performed by hardware or software, there remains the
problem of generating a suitable error report. This should not only describe the nature of
the error (e.g., 'arithmetic overflow' or 'index out of range'), but should also locate it in
the source program. An error report stating that overflow occurred at instruction address
1234 (say) would be unhelpful to a programmer who is trying to debug a high-level
language program. A better error report would locate the error at a particular line in the
source program.

The general principle here is that error reports should relate to the source program
rather than the object program. Another example of this principle is a facility to display
the current values of variables during or after the running of the program. A simple
storage dump is of little value: the programmer cannot understand it without a detailed
knowledge of the run-time organization assumed by the compiler (data representation,
storage allocation, layout of stack frames, layout of the heap, etc.). Better is a symbolic
dump that displays each variable's source-program identifier, together with its current
value in source-language syntax.

Example 9.4 Reporting run-time errors

Consider the Triangle program fragment of Example 9.3. Suppose that an out-of-range
index is detected at (1). The following error report and storage dump are expressed
largely in object-program terms:

Array indexing error at instruction address 1234
Data store at this point:

address content

This information is hard to understand, to put it mildly. It is not clear which array
indexing operation failed. There is no indication that some of the words in the data store
constitute an array. There is no distinction between different types of data such as
integers and characters.

Conclusion 345

The following error report and storage dump are expressed more helpfully in source-
program terms:

Array indexing error at line 45.
Data store at this point:

name = ['J', 'a', 'v', 'a']
i = 10

Here the programmer can tell at a glance what went wrong.

But how can the source-program line number be determined at run-time? One
possible technique is this. We dedicate a register (or storage cell) that will contain the
current line number. The compiler generates code to update this register whenever
control passes from one source-program line to another. Clearly, however, this
technique is costly in terms of extra instructions in the object program.

An alternative technique is as follows. The compiler generates a table relating line
numbers to instruction addresses. If the object program stops, the code pointer is used to
search the table and determine the corresponding line number. This technique has the
great advantage of imposing no time or space overheads on the object program. (The
line-number table can be stored separately from the object program, and loaded only if
required.)

The generation of reliable line-number information, however, is extremely difficult
in the presence of heavily-optimized code. In this case, the code generator may have
eliminated some of the original instructions, and substantially re-ordered others, making
it very difficult to identify the line number of a given instruction. In the worst case, a
single instruction may actually be part of the code for several different lines of source
code.

To generate a symbolic storage dump requires more sophisticated techniques. The
compiler must generate a 'symbol table' containing the identifier, type, and address of
each variable in the source program, and the identifier and entry address of each
procedure (and function). If the object program stops, using the symbol table each (live)
variable can be located in the data store. The variable's identifier can be printed along
with its current value, formatted according to its type. If one or more procedures are
active at the time when the program stops, the store will contain one or more stack
frames. To allow the symbolic dump to cover local variables, the symbol table must
record which variables are local to which procedures, and the procedure to which each
frame belongs must be identified in some way. (See Exercise 9.16.)

This problem is compounded on a register machine, where a variable might be
located in a register and not in the store. It is also compounded for heavily-optimized
code, where several variables with disjoint lifetimes may share the same memory
location.

346 Programming Language Processors in Java

9.3 Efficiency

When we consider efficiency in the context of a compiler, we must carefully distinguish
between compile-time efficiency and run-time efficiency. They are not the same thing at
all; indeed, there is often a tradeoff between the two. The more a compiler strives to
generate efficient (compact and fast) object code, the less efficient (bulkier and slower)
the compiler itself tends to become.

The most efficient compilers are those that generate abstract machine code, where
the abstract machine has been designed specifically to support the operations of the
source language. Compilation is simple and fast because there is a straightforward trans-
lation from the source language to the target language, with few special cases to worry
about. Such is the Triangle compiler used as a case study in this book. Of course, the
object code has to be interpreted, imposing a significant speed penalty at run-time.

Compilers that generate code for real machines are generally less efficient. They
must solve a variety of awkward problems. There is often a mismatch between the
operations of the source language and the operations provided by the target machine.
The target-machine operations are often irregular, complicating the translation. There
might be many ways of translating the same source program into object code, forcing
the compiler writer to implement lots of special cases in an attempt to generate the best
possible object code.

9.3.1 Compile-time efficiency

Let us examine a compiler from the point of view of algorithmic complexity. Ideally, we
would like the compiler to run in O(n) time,' where n is some measure of the source
program's size (for example, the number of tokens). In other words, a 10-fold increase
in the size of the source program should result in a 10-fold increase in compilation time.
A compiler that runs in 0(n2) time is normally unacceptable: a 10-fold increase in the
size of the source program would result in a 100-fold increase in compilation time! In
practice, O(n log n) might be an acceptable compromise.

If all phases of a compiler run in O(n) time, then the compiler as a whole will run in
O(n) time.' But if just one of the phases runs in 0(n2) time, then the compiler as a whole

* The 0-notation is a way of estimating the efficiency of a program. Let n be the size of the
program's input. If we state that the program's running time is O(n), we mean that its running
time is proportional to n. (The actual running time could be lOOn or 0.01n.) Similarly, O(n log
n) time means time proportional to n log n, 0(n2) time means time proportional to n2, and so
on. In estimates of algorithmic complexity, the constants of proportionality are generally less
important than the difference between, for example, O(n) and 0(n2).

Suppose that phase A runs in time an, and phase B in time bn (where a and b are constants).
Then the combination of these phases will run in time an + bn = (u + b)n, which is still O(n).

348 Programming Language Processors in Java

CALL add
CALL sub
STORE a

As we saw in Chapter 7, a simple efficient code generator can easily perform this
translation. The code generator has no registers to worry about.

Now suppose that the target machine has a pool of registers and a typical one-
address instruction set. Now the command might be translated to object code like this:

LOAD R1 b
MULT R1 c
LOAD R2 d
LOAD R3 e
MULT R3 f
ADD R2R3
SUB R1 R2
STORE R1 a

Although this is comparatively straightforward, some complications are already evident
The code generator must allocate a register for the result of each operation. It musl
ensure that the register is not reused until that result has been used. (Thus R1 cannot bc
used during the evaluation of 'd + (e* £ 1 ', because at that time it contains the unusec
result of evaluating 'bXc'.) Furthermore, when the right operand of an operator is 2

simple variable, the code generator should avoid a redundant load by generating, foi
example, 'MULT R1 c' rather than 'LOAD R2 c' followed by 'MULT R1 R2'.

The above is not the only possible object code, nor even the best. One improvemenl
is to evaluate 'd + (e* f) ' befare 'b*c'. A further improvement is to evaluate ' (e* f)
+ d' instead of 'd + (e* f) ', exploiting the commutativity of '+'. The combined effec
of these improvements is to save an instruction and a register:

LOAD R1 e
MULT R1 f
ADD R1 d
LOAD R2 b
MULT R2 c
SUB R2 R1
STORE R2 a

The trick illustrated here is to evaluate the more complicated subexpression of a binarj
operator first.

But that is not all. The compiler might decide to allocate registers to selectec
variables throughout their lifetimes. Supposing that registers R6 and R7 are thu:
allocated to variables a and d, the object code could be further improved as follows:

LOAD R1 e
MULT R1 f
ADD R1 R7
LOAD R6 b
MULT R6 c
SUB R6 R1

Conclusion 349

Several factors make code generation for a register machine rather complicated.
Register allocation is one factor. Another is that compilers must in practice achieve code
improvements of the kind illustrated above - programmers demand nothing less!

But even a compiler that achieves such improvements will still generate rather
mediocre object code (typically four times slower than hand-written assembly code). A
variety of algorithms have been developed that allow a compiler to generate much more
efficient object code (typically twice as slow as hand-written assembly code). These are
called code transformation (or code optimizationr) algorithms. Some of the more
common code transformations are:

Constant folding: If an expression depends only on known values, it can be evaluated
at compile-time rather than run-time.

Common subexpression elimination: If the same expression occurs in two different
places, and is guaranteed to yield the same result in both places, it might be possible
to save the result of the first evaluation and reuse it later.

Code movement: If a piece of code executed inside a loop always has the same effect,
it might be possible to move that code out of the loop, where it will be executed fewer
times.

Example 9.6 Corzstarzt folding

Consider the following Java program fragment:

static double pi = 3.1416;
. . .
double volume = 4 1 3 * pi * r * r * r;

The compiler could replace the subexpression '4 / 3 * pi ' by 4.1888. This constant
folding saves a run-time division and multiplication. The programmer could have
written ' 4 .1888 * r * r * r' in the first place, of course, but only at the expense of
making the program less readable and less maintainable.

The following illustrates a situation where only the compiler can do the folding.

' The more widely used term, code optimization, is actually inappropriate: it is infeasible for a
compiler to generate truly optimal object code.

350 Programming Language Processors in Java

Consider the following Triangle program fragment:

type Date = r eco rd
y: I n t e g e r , m: I n t e g e r , d : I n t e g e r

end ;
var h o l : array 6 of Date
. . .
h o l [2] .m : = 12

The relevant addressing formula is:

address[hol [2] . mJ = addres:

(assuming that each integer occupies one word). Furthermore, if the compiler decidt
that addressl[hol]l = 20 (relative to SB), then addressl[hol [2 I .m]l can be folded 1

the constant address 27. This is shown in the following object code:

LOADL 12
STORE 27 [SB]

Address folding makes field selection into a compile-time operation. It even makc
indexing of a static array by a literal into a compile-time operation.

I

Example 9.7 Common subexpression elimination

Consider the following Triangle program fragment:

v a r x : I n t e g e r ; v a r y: I n t e g e r ; v a r z : I n t e g e r

Here the subexpression 'x-y' is a common subexpression. If the compiler takes I

special action, the two occurrences of this subexpression will be translated into tv
separate instruction sequences, as in object code (a) below. But their results are guara
teed to be equal, so it would be more efficient to compute the result once and then col
it when required, as in object code (b) below.

(a) LOAD x (b) LOAD x
LOAD y LOAD y
CALL sub CALL sub - computes the value of x-:
LOAD x LOAD - 1 [ST] - copies the value of x-y
LOAD y LOAD z
CALL sub CALL add
LOAD z CALL mult
CALL add
CALL mult

Conclusion 35 1

Now consider the following Triangle program fragment:

type T = ... ;
var a: array 10 of T; var b: array 20 of T

Here there is another, less obvious, example of a common subexpression. It is revealed
in the addressing formulas for a [i] and b [i] :

where i is the value of variable i, and where we have assumed that each value of type T
occupies four words.

The common subexpression 'x-y' could have been eliminated by modifying the
source program. But the common subexpression ' i x 4' can be eliminated only by the
compiler, because it exists only at the target machine level.

0

Example 9.8 Code movement

Consider the following Triangle program fragment:

var name: array 3 of array 10 of Char
. . .
i : = 0;
while i < 3 do

begin
j : = 0;
while j < 10 do

begin name[il [j l : = ' I ; j : = j + 1 end;
i : = i + l
end

The addressing formula for name [i] [j] is:

(assuming that each character occupies one word). A straightforward translation of this
program fragment will generate code to evaluate addressl[name] + (i x 10) inside the
inner loop. But this code will yield the same address in every iteration of the inner loop,
since the variable i is not updated by the inner loop.

The object program would be more efficient if this code were moved out of the inner
loop. (It cannot be moved out of the outer loop, of course, because the variable i is
updated by the outer loop.)

0

352 Programming Language Processors in Java

Constant folding is a relatively straightforward transformation, requiring only local
analysis, and is performed even by simple compilers. For example, the Triangle
compiler performs constant folding on address formulas.

Other code transformations such as common subexpression elimination and code
movement, on the other hand, require nontrivial analysis of large parts of the source
program, to discover which transformations are feasible and safe. To ensure that
common subexpression elimination is safe, the relevant part of the program must be
analyzed to ensure that no variable in the subexpression has been updated between the
first and second evaluations of the subexpression. To ensure that code can be safely
moved out of a loop, the whole loop must be analyzed to ensure that the movement does
not change the program's behavior.

Code transformation algorithms always slow down the compiler, in an absolute
sense, even when they run in O(n) time. But some of these algorithms, especially ones
that require analysis of the entire source program, may consume as much as 0(n2) time.

Code transformations are only occasionally justified. During program development,
when the program is compiled and recompiled almost as often as it is run, fast compil-
ation is more important than generating very efficient object code. It is only when the
program is ready for production use, when it will be run many times without recompil-
ation, that it pays to use the more time-consuming code transformation algorithms.

For an industrial-strength compiler, a sensible compromise is to provide optional
code transformation algorithms. The programmer (who is the best person to judge) can
then compile the program without code transformations during the development phase,
and can decide when the program has stabilized sufficiently to justify compiling it with
code transformations.

9.4 Further reading

More detailed discussions of the major issues in programming language design and
specification, and their interaction, may be found in the concluding chapters of the
companion textbooks by Watt (1990, 1991). Interesting accounts of the design of a
number of major programming languages - including Ada, C, C++, Lisp, Pascal,
Prolog, and Smalltalk - may be found in Bergin and Gibson (1996).

A formal specification of a programming language makes a more reliable guide to
the implementor than an informal specification. More radically, it might well be feasible
to use a suitable formal specification of a programming language to generate an imple-
mentation automatically. A system that does this is called a compiler generator.
Development of compiler generators has long been a major goal of programming
languages research.

Good-quality compiler generators are not yet available, but useful progress has been
made. From a syntactic specification we can generate a scanner and parser, as described

354 Programming Language Processors in Java

9.5" Consider the following Triangle program fragment:

var a: array ... of Integer
...
i : = m - 1; j := n; pivot : = a[nl;
while i < j do

begin
i : = i + 1; while a[i] < pivot do i := i + 1;
j : = j - 1; while a [j J > pivot do j : = j - 1;
if i < j then

begin
t : = a[i]; a[i] := a[j]; a[j] : = t
end

end ;
t := a[i]; a[i] := a[n]; a[n] := t

(a) Find out the object code that would be generated by the Triangle
compiler.

(b) Write down the object code that would be generated by a Triangle com-
piler that performs code transformations such as constant folding,
common subexpression elimination, and code movement.

Projects with the Triangle language processor

All of the following projects involve modifications to the Triangle language processor,
so you will need to obtain a copy. (It is available from our Web site. See page xv of the
Preface for downloading instructions.)

Nearly every project involves a modification to the language. Rather than plunging
straight into implementation, you should first speciSy the language extension. Do this by
modifying the informal specification of Triangle in Appendix B, following the same
style.

9.6** Extend Triangle with additional loops as follows.

(a) A repeat-command:

repeat C until E

is executed as follows. The subcommand C is executed, then the expres-
sion E is evaluated. If the value of the expression is true, the loop termi-
nates, otherwise the loop is repeated. The subcommand C is therefore
executed at least once. The type of the expression E must be Boolean.

(b) A for-command:

for I from El to E2 do C

Conclusion 355

is executed as follows. First, the expressions El and E2 are evaluated,
yielding the integers m and n (say), respectively. Then the subcommand C
is executed repeatedly, with identifier I bound in successive iterations to
each integer in the range rn through n. If m > n, C is not executed at all.
(The scope of I is C, which may use the value of I but may not update it.
The types of El and E2 must be Integer.) Here is an example:

for n from 2 to m do
if prime(n) then

putint (n)

9.7"" Extend Triangle with a case-command of the form:

case E of
IL1: C 1 ;
... ,
IL, : C,;
else: Co

This command is executed as follows. First E is evaluated; then if the value of
E matches the integer-literal ILi, the corresponding subcommand Ci is
executed. If the value of E matches none of the integer-literals, the
subcommand Co is executed. (The expression E must be of type Integer,
and the integer-literals must all be distinct.) Here is an example:

case t0day.m of
2: days : = if leap then 29 else 2 8 ;
4: days : = 30 ;
6 : days : = 30 ;
9: days : = 3 0 ;

11: days := 30 ;
else: days : = 3 1

9.8** Extend Triangle with an initializing variable declaration of the form:

var I : = E

This declaration is elaborated by binding I to a newly created variable. The
variable's initial value is obtained by evaluating E. The lifetime of the variable
is the activation of the enclosing block. (The type of I will be the type of E.)

9.9"" Extend Triangle with unary and binary operator declarations of the form:

func 0 (I I : TI) : T - E
func 0 (Il: T I , 12: T2) : T - E

Operators are to be treated like functions. A unary operator application '0 E' is
to be treated like a function call '0 (E) ', and a binary operator application 'El
0 E2' is to be treated like a function call '0 (El , E2) '.

356 Programming Language Processors in Java

Here are some examples:

func -- (i: Integer) : Integer - 0 - n;
func * * (b: Integer, n: Integer) : Integer -

i f n = O
then 1
else n * (b * * (n-1)) ! assuming that n > 0

(Notes: The Triangle lexicon, Section B.8, already provides a whole class of
operators from which the programmer may choose. The Triangle standard envi-
ronment, Section B.9, already treats the standard operators '+', '-', '*', etc.,
like predeclared functions.)

Replace Triangle's constant and variable parameters by value and result
parameters. Design your own syntax.

Extend Triangle with enumeration types. Provide a special enumeration type
declaration of the form:

which creates a new and distinct primitive type with n values, and respectively
binds the identifiers 11, ..., and In to these values. Make the generic operations
of assignment, '=', and ' \= ' applicable to enumeration types. (They are appli-
cable to all Triangle types.) Provide new operations of the form 'succ E' (suc-
cessor) and 'pred E' (predecessor), where suc c and pred are keywords.

Extend Triangle with a new family of types, string n, whose values are
strings of exactly n characters (n 2 1). Provide string-literals of the form
" el . . .en " . Make the generic operations of assignment, '=', and ' \ =' applicable
to strings. Provide a new binary operator '<<' (lexicographic comparison). Fi-
nally, provide an array-like string indexing operation of the form ' V I E] ',
where V names a string value or variable. (Hint: Represent a string in the same
way as a static array.)

Or:
Extend Triangle with a new type, String, whose values are character strings
of any length (including the empty string). Provide string-literals of the form
" el.. .en " (n 2 0). Make the generic operations of assignment, '=', and ' \ =' ap-
plicable to strings. Provide new binary operators '<<' (lexicographic compari-
son) and '++' (concatenation). Finally, provide an array-like string indexing
operation of the form ' V [E] ', and a substring operation of the form
' V I E I : E2] ', where V names a string value or variable. But do not permit
string variables to be selectively updated. (Hint: Use an indirect representation
for strings. The handle should consist of a length field and a pointer to an array
of characters stored in the heap. In the absence of selective updating, string
assignment can be implemented simply by copying the handle.)

APPENDIX A

Answers to Selected Exercises

Specimen answers to about half of the exercises are given here. Some of the answers are
given only in outline.

Answers 1

1.1 Other kinds of language processor: syntax checkers, cross-referencers, pretty-
printers, high-level translators, program transformers, symbolic debuggers, etc.

1.4 Mini-Triangle expressions: (a) and (e) only. (Mini-Triangle has no functions,
no unary operators, and no operator '>='.)

Commands: (f) and 0) only. (Mini-Triangle procedures have exactly one pa-
rameter each, and there is no if-command without an else-part.)

Declarations: (I), (m), and (0). (Mini-Triangle has no real-literals, and no multi-
ple variable declarations.)

1.5 AST:

Whilecommand

AssignCommand

VnameExpr. ' l - l - Int.Expr. VnameExpr.

1 SimpleV.

SimpleV.

I

SimpleV. I
SimpleV. I I

Ident. Ident. 1nt.Lit. Ident. Ident.

b n 0 b faise

Answers to Selected Exercises 363

Answers 3

3.3 The contextual errors are (i) 'Logical' is not declared; (ii) the expression of
the if-command is not of type bool; and (iii) 'yes' is not declared:

Program

Ident. Ident.

I I
Assigncommand Assigncommand

r-l

3.5 In brief, compile one subprogram at a time. After parsing a subprogram and
constructing its AST, perform contextual analysis and code generation on the
AST. Then prune the AST: replace the subprogram's body by a stub, and retain
only the part(s) of the AST that will be needed to compile subsequent calls to
the subprogram (i.e., its identifier, formal parameters, and result type if any).

The maximum space requirement will be for the largest subprogram's AST,
plus the pruned ASTs of all the subprograms.

3.6 This restructuring would be feasible. It would be roughly similar to Answer
3.5, although the interleaving of syntactic analysis, contextual analysis, and
code generation would be more complicated.

Answers 4

4.3 After repeated left factorization and elimination of left recursion:

Numeral ::= Digits (. Digits I E) (e Sign Digits I r)

364 Programming Language Processors in Java

Digits ..- . Digit Digit*

4.4 (a) {C ,J ,P l

(b) IO, L2, a, bl

(c) starters[Digitl) = starters[Digits]l = sturters[Numerall) = (0, 1, 2, 3)

(d) starters[SubjectJ = {I, a, the); startersl[Objectl) = {me, a, the).

4.9 Parsing methods (with enhancements italicized):

private void parsecommand () {

int expval = parseExpression () ;
accept('=') ;

print (expval) ;
1

private int parseExpression 0 {

int expval = parseNumeral0;
while (currentchar == ' + '

1) currentchar == I - '

1 (currentchar == I * ') {

char op = currentchar;
acceptIt (1 ;
int numval = parseNumeral() ;
switch (op) i
case ' + ' : expval += numval; break;
case ' - I - . expval -= numval; break;
case I * ' : expval *= numval; break;
1

1
return expval;

1

private int parseNumera1 () {

int numval = parseDigi t () ;
while (isDigit(currentChar))

numval = 1 O*numval + parseDigi t () ;
return numval;

3

private byte parseDigit () {

if ('0' <= currentchar && currentchar <= ' 9 ')
byte digval = currentchar - '0';
currentchar = next input character;
return digval ;

1 else
report a lexical error

Answers to Selected Exercises

4.11 (a) Refine 'parse X I Y to:

i f (currentToken. kind is in startersl[XJ)
parse X

else i f (currentToken. kind is in starters[lYJ)

parse Y
else

report a syntactic error

This is correct if and only if starters[[XJ and startersl[).?l are disjoint.

(b) Refine 'parse [a' to:

if (currentToken . kind is in startersI[XJ)
parse X

This is correct if and only if startersl[Xll is disjoint from the set of tok
that can follow [a in this particular context.

(c) Refine 'parse X+' to:

do
parse X

w h i l e (currentToken. kind is in startersl[q) ;

This is correct if and only if startersl[XJ is disjoint from the set of tok
that can follow X+ in this particular context.

4.12 After left factorization:

single-Command ::= . . .
(i f Expression then single-Command

(e l s e single-Command I E)

I ...

The tokens that can follow a single-command are {else, end]. This set is
disjoint from starters[el se single-Command] = {else], so the gramma
not LL(1). (In fact, no ambiguous grammar is LL(I).)

The parsing method obtained by converting this production rule would be:

private void parseSingleCommand () {

s w i t c h (currentToken.kind) {

case Token.IF: {

acceptIt () ;

parseExpression();
accept(Token.THEN);
parseSingleCommand();

368 Programming Language Processors in Java

(b) To display an AST:

public abstract class AST {

public void display (byte level);
1

public class ~onterrninal~~~ extends AST {

public void display (byte level) {

for (int i = 0; i < level; i++)
print(" ") ;

switch (this. tag) {

case AST.PROGRAM:
println("Program"); break;

. . .
1
for (int i = 0;

i this.children.length; i++)
this.children[i] .display(level+l) ;

1
1

public class TerminalAST extends AST {

public void display (byte level) {

for (int i = 0; i < level; i++)
print(" ") ;

switch (this. tag) {

case AST.IDENTIFIER:
print("1dentifier ") ; break;

4.18 This lexical grammar is ambiguous. The scanning procedure would turn (

follows:

private byte scanToken () {

switch (currentchar) {

Answers to Selected Exercises 369

case 'a8: case 'bl: case 'c': case 'dl:
. . .
case ' y ' : case ' z ' :

takeIt (;

while (isLetter(currentChar)
I I isDigit(currentChar1)

takeIt () ;

return Token.IDENTIFIER;

case 'i':
takeIt0; take('£');
return Token.IF;

case ' t ' :
takeIt () ; take('hl) ; take('e0) ; take('nl) ;

return Token-THEN;

case 'en:
takeIt0; take('l8); take('sl); take('el);
return Token.ELSE;

This method will not compile. Moreover, there is no reasonable way to fix it.

Answers 5

5.2 One possibility would be a pair of subtables, one for globals and one for locals.
(Each subtable could be an ordered binary tree or a hash table.) There would
also be a variable, the current level, set to either global or locul. Constructor
Identif icationTable would set the current level to global, and would
empty both subtables. Method enter would add the new entry to the global or
local subtable, according to the current level. Method retrieve would search
the local subtable first, and if unsuccessful would search the global subtable
second. Method openscope would change the current level to local. Method
closescope would change it to global, and would also empty the local
subtable.

5.3 Constructor Identi f icat ionTable would make the stack contain a single
empty binary tree. Method enter would add the new entry to the tormost bi-
nary tree. Method retrieve would search the binary trees in turn, starting
with the topmost, and stopping as soon as it finds a match. Method open-

Answers to Selected Exercises 37 1

5.9 Undecorated AST:

TypeDeclaration

SimpleT.

I
Ident.

I
Ident.

1nt~ist 1nt~ode

TypeDeclaration *
I

FieldList

Ident. Ident. 1d&. 1dent. 1dent.

After elimination of type identifiers:
TypeDeclaration TypeDeclaration

The AST has been transformed to a directed graph, with the mutually recursive
types giving rise to a cycle.

I

f -4
PointerTypeD.

I

The complication is that the equals method must be able to compare two
(possibly cyclic) graphs for structural equivalence. It must be implemented
carefully to avoid nontermination.

I

>
RecordTypeDenoter

I
FieldList '

Field Field
I

I

5.10 Consider the function call 'I (E) '. Check that I has been declared by a
function declaration, say 'f unc I (I' : T') : T - E". Check that the type of
the actual parameter E is equivalent to the formal parameter type T'. Infer that
the type of the function call is T.

Ident.
r - l

Ident. Ident. int Ident.
L

IntList ~ n t ~ o d e hd t 1

372 Programming Language Processors in Java

Answers 6

6.3 Advantage of single-word representation:

It is economical in storage.

Advantages of double-word representation:

It is closer to the mathematical (unbounded) set of integers.

Overflow is less likely.

6.5 (a)

pixel [redl
pixel [orange]
pixel [yellow]
pixel [green]

... pixel [blue]

freq['zr1

(b) Every Tindex has a minimum value, min a maximum value, n:
Tindex; and an ord function that maps the values of the type
consecutive integers. Thus:

size T = (u - 1 + 1) x size Telem
address[[a [0]]I = address a - (I x size Tele,)
address[a [i] 1 = address[[a [0] + (ord (i) x size Telem)

where 1 = ord(min Tindex) and u = ord(max Tinde,).

6.6 For two-dimensional arrays:

size T = rn X n X size Tele,
address1 a [il [j] 1 = address a + (i x (n x size Telem)) +

(j X size Telem)

6.8 Make the handle contain the lower and upper bounds in both dimensions,
well as a pointer to the elements. Store the elements themselves row by row (
in Example 6.6). If 1, u, 1', and u' are the values of El, E2, Eg, and E4, respc
tively, then we get:

Answers to Selected Exercises 373

origin
lower bound 1
upper bound I
lower bound 2
upper bound 2

handle row u { t-
elements of type Tele,

(a) Evaluate subexpression '1 - (c * 2) ' before 'a * b':

LOAD R1 c
MULT R1 #2
LOAD R2 #1
SUB R2 R1
LOAD R1 a
MULT R1 b
ADD R1 R2

(b) Save the accumulator's contents to a temporary location (say temp)
whenever the accumulator is needed to evaluate something else:

LOAD c
MULT #2
STORE temp
LOAD #1
SUB temp
STORE temp
LOAD a
MULT b
ADD temp

(In general, more than one temporary location might be needed.)

Address of global variable vi is:

address vi = size TI + . . . + size Ti-,

Only the addresses allocated to the variables are affected by the order of the
variable declarations. The net behavior of the object program is not affected.

374 Programming Language Processors in Java

6.16 Let each frame consist of a static part and a dynamic part. The static part
accommodates variables of primitive type, and the handles of dynamic arrays.
The dynamic part expands as necessary to accommodate elements of dynamic
arrays. The frame containing v would look like this:

link
data

static
part of
frame

dynamic
part of
frame

Since everything in the static part is of constant size, the compiler can
determine each variable's address relative to the frame base. This is not true for
the dynamic part, but the array elements there are always addressed indirectly
through the handles.

6.17 There are three cases of interest. If n = m+l, S is local to the caller. If n = m, S
is at the same level as the caller. If n < m, S encloses the caller.

(a) On call, push S's frame on to the stack. In all cases, set Dn to point to the
base of the new frame. (Note: If n < m, D(n+l), ..., and Dm become
undefined.)

(b) On return, pop S's frame off the stack. If n = m+l, do nothing else. If n =
m, reset Dm to point to the base of the (now) topmost frame. If n < m,
reset other display registers using the static links: D(m-1) t content
(Dm); ...; Dn t content (D(n+l)). (Note: If n = m+l , Dn becomes
undefined.)

There is no need to change DO, D l , . . ., D(n-1) at either the call or the return,
since these registers point to the same frames before, during, and after the acti-
vation of S.

Advantages and disadvantages (on the assumption that DO, D l , etc., are all true
registers):

Nonlocal variables can be accessed as efficiently as local or global variables.

Answers to Selected Exercises 3'

(e) e x e c u t e u r e p e a t C 1 w h i l e E do C2J =
JUMP h

g : execute C2
h : execu teC1

evaluate E
J U M P I F (1) g

7.3 (a) evaluate[[i f El then E2 e l se E3J =
evaluate El
J U M P I F (0) g
evaluate E2
JUMP h

g : evaluate E3
h :

(b) e v a l u a t e [l e t D i n E]I =
e labora te D
evaluate E
P O P (n) s i f s > O

where s = amount of storage allocated by D:
n = size (type of E)

(c) e v a l u a t e ([b e g i n C ; y ie ld E end] =
execute C
evaluate E

7.5 Selected encoding methods:

(a) public O b j e c t v i s i t S i m ~ s s i g n ~ o m r n a n d
(S i m A s s i g n C o r n r n a n d c o m , O b j e c t a rg) {

c o m . E l . v i s i t (t h i s , a r g) ;
c o m . E 2 . v i s i t (t h i s , a r g) ;
e n c o d e A s s i g n (c o m . V 2) ;
e n c o d e A s s i g n (c o m . V l) ;
re turn n u l l ;

1

(c) public O b j e c t v i s i t I f O n l y C o m m a n d
(I f O n l y C o m m a n d c o m , O b j e c t arg) {

c o m . E . v i s i t (t h i s , a rg) ;
short i = n e x t I n s t A d d r ;
emit(Instruction.JUMPIFop, 0 ,

I n s t r u c t i o n . C B r , 0) ;
c o m . C . v i s i t (t h i s , a r g) ;
short g = n e x t I n s t r A d d r ;

p a t c h (i , g) ;
re turn n u l l ;

1

378 Programming Language Processors in Java

(d) public Object visitRepeatCommand
(Repeatcommand com, Object arg) {

short g = nextInstrAddr;
com.C.visit(this, arg) ;
com.E.visit(this, arg);
emit(Instruction.JUMPIFop, 0,

Instruction.CBr, g) ;
return null;

I

7.7 (a) The most efficient solution is:

execute([for I from El to E2 do C'J =
evaluate E2 - compute final value
evaluate El - compute initial value of I
JUMP h

g: execute C
CALL succ - increment current value of I

h : LOAD -1[STl - fetch current value of I
LOAD -3 [ST] - fetch final value
CALL le - test current value I final value
JUMPIF(1) g - if so, repeat
POP(0) 2 - discard current and final values

At g and at h, the current value of I is at the stack top (at address
-1 [ST]), and the final value is immediately underlying (at address
-2 [ST]).

(b) This solution requires the introduction of two new AST classes. The first
is a Command AST used to represent the for-command itself. The second
is a Declaration AST used to represent the (pseudo-)declaration of the for-
command control variable. This is because the identification table stores
Declaration ASTs as attributes.

public class Forcommand extends Command {

. . .
/ / Declaration of control variable.. .
public ForDeclaration D;

/ / Subphrases of for-command.. .
public Expression El, E2;
public Command C;

1

380 Programming Language Processors in Java

7.10 (a) Reserve space for the result variable just above the link data in the func
tion's frame (i.e., at address 3 [LB]):

JUMP g
e: PUSH n

execute C
RETURN (n) d

g :

execute[resul t E]I =
evaluate E
STORE(n) 3 [LB]

(b)

where n = size T

where d = size of FP

where n = size (type of E)

public Object visitFuncDeclaration
(FuncDeclaration decl,
Object arg) {

Frame £ = (Frame) arg;
short i = nextInstrAddr;
emit(Instruction.JUMPop, 0,

Instruction.CBr, 0);
short e = nextInstrAddr;
decl.entity =

new KnownRoutine(2, £.level, e) ;
Frame £1 = new Frame(f.leve1 + 1, 0);
short d = shortValueOf(

decl.FP.visit(this, £1)) ;
/ / . . . creates a run-time entity for the formal parameter,
/ / and returns the size of the parameter.
short n = shortValueOf(

decl.T.visit(this, null));
emit(Instruction.PUSHop, 0, 0, n);
Frame £2 = new Frame(£ .level + 1, 3 + n) ;
decl .C.visit (this, £2) ;
emit(Instruction.RETURNop, n, 0, d) ;
short g = nextInstrAddr;
patch(i, 9);
return new Short(0);

1

Answers to Selected Exercises :

public Object visitResultCommand
(Resultcommand com,
Object arg) {

short n =
shortValue0f(com.E.visit(this, arg)) ;

emit(Instruction.STOREop, n,
Instruction-LBr, 3);

return null;
1

Answers 8

8.3 In outline:

public abstract class UserCommand {

public abstract void perform
(HypoInterpreter interp);

1

public class Stepcommand extends UserCommand {

public void perform
(HypoInterpreter interp) {

interp. step () ;

1
1

public class Runcommand extends UserCommand {

public void perform
(HypoInterpreter interp) {

do {
interp. step () ;

} while (! interp.break[interp.CP]
&& (interp.status ==

HypoState.RUNNING)) ;

1
1

382 Programming Language Processors in Java

public class ShowRegistersCommand
extends UserCommand {

public class ShowDataStoreCommand
extends UserCommand {

public class Terminatecommand
extends UserCommand {

public void perform
(HypoInterpreter interp) {

interp.status = HypoState.HALTED;

public class ToggleBreakpointCommand
extends UserCommand {

public short point ; / / The breakpoint address to toggle

public void perform
(HypoInterpreter interp) {

interp.break[this.point] =
! interp.break[this.point];

1
1

public class HypoInterpreter extends Hypostate {

...
public static boolean[] break =

new boolean[CODESIZEl;
UserCommand command;

private void clearBreakpoints () {

for (int d = 0 ; d < CODESIZE; d++)
break [d++] = false;

1

384 Programming Language Processors in Java

8.8 In outline:

public class Minishell extends Minishellstate {

public MiniShellCommand readAnalyze () {

/ / Read and analyze the next command from the user.

public MiniShellCommand readAnalyze
(FileInputStream script) {

/ / Read and analyze the next command from file script.

public void execute (~iniShellCommand corn) {

else if (com.narne.equals("ca11")) {
File input = new File(com.args[O]);
FileInputStream script =

new FileInputStream(input);
while (morecommandsinscript) {

MiniShellCommand subcorn =
readAnalyze(script);

execute(subCorn);
1

1 else / / executable program
exec (corn. name, corn. args) ;

1

public void interpret () {

/ / Initialize . . .
status = RUNNING;

/ / Fetch and analyze the next instruction . . .
MiniShellCommand com = readAnalyze0;

/ / Execute this instruction . . .
execute (com) ;

) while (status == RUNNING);
1

Answers to Selected Exercises ?

Answers 9

9.5 In outline:

Common subexpressions are: 'i < j ' at points (1) ; the address of a [i :
points (2); the address of a [j I at points (3); the address of a [n] at points (4

var a : a r r a y ... of In teger
...
i : = m - 1 ; j := n; pivo t := aCn];
while i < j(') do

begin
i : = i + 1;
while a [i ~ (~) < pivot do i : = i + 1;
j := j - 1;

while a [j ~ (~) > pivot do j : = j - 1 ;
i f i i j(') then

begin
t := a [i ~ (~) ;
a [i] (2) := a [j] (3) ;

a[j1(3) : = t
end

end ;
t : = a [i] (2) ;
a [i] (2) := a [n ~ (~) ;
a [n ~ (~) : = t

APPENDIX B

Informal Specification of the
programming Language Triangle

B.l Introduction

Triangle is a regularized extensible subset of Pascal. It has been designed as a model
language to assist in the study of the concepts, formal specification, and implementation
of programming languages.

The following sorts of entity can be declared and used in Triangle:

A value is a truth value, integer, character, record, or array.

A variable is an entity that may contain a value and that can be updated. Each variable
has a well-defined lifetime.

A procedure is an entity whose body may be executed in order to update variables. A
procedure may have constant, variable, procedural, and functional parameters.

A function is an entity whose body may be evaluated in order to yield a value. A
function may have constant, variable, procedural, and functional parameters.

A type is an entity that determines a set of values. Each value, variable, and function
has a specific type.

Each of the following sections specifies part of the language. The subsection headed
Syntax specifies its grammar in BNF (except for Section B.8 which uses EBNF). The
subsection headed Semantics informally specifies the semantics (and contextual
constraints) of each syntactic form. Finally, the subsection headed Examples illustrates
typical usage.

B.2 Commands

A command is executed in order to update variables. (This includes input-output.)

388 Programming Language Processors in Java

Syntax
A single-command is a restricted form of command. (A command must be enclosed
between begin ... end brackets in places where only a single-command is allowed.)

Command ..- . . single-Command
I Command ; single-Command

single-Command ::=
I V-name : = Expression
I Identifier (Actual-Parameter-Sequence
I begin Command end
I let Declaration in single-Command
I if Expression then single-Command

else single-Command
I while Expression do single-Command

(The first form of single-command is empty.)

Semantics
The skip command ' ' has no effect when executed.

The assignment command ' V : = E' is executed as follows. The expression E is
evaluated to yield a value; then the variable identified by V is updated with this value.
(The types of V and E must be equivalent.)

The procedure calling command 'I(APS) ' is executed as follows. The actual-
parameter-sequence APS is evaluated to yield an argument list; then the procedure
bound to I is called with that argument list. (I must be bound to a procedure. APS
must be compatible with that procedure's formal-parameter-sequence.)

The sequential command 'C1 ; C2' is executed as follows. C1 is executed first; then
C2 is executed.

The bracketed command 'begin C end' is executed simply by executing C.

The block command 'let D in C' is executed as follows. The declaration D is
elaborated; then C is executed, in the environment of the block command overlaid by
the bindings produced by D. The bindings produced by D have no effect outside the
block command.

The if-command ' i f E then C1 else C2' is executed as follows. The expression E
is evaluated; if its value is true, then C1 is executed; if its value is false, then C2 is
executed. (The type of E must be Boolean.)

The while-command 'while E do C' is executed as follows. The expression E is
evaluated; if its value is true, then C is executed, and then the while-command is
executed again; if its value is false, then execution of the while-command is com-
pleted. (The type of E must be Boolean.)

Informal Specification of the Programming Language Triangle 389

Examples
The following examples assume the standard environment (Section B.9), and also the
following declarations:

var i: Integer;
var s: array 8 of Char;
var t: array 8 of Char;

proc sort (var a: array 8 of Char) - ...

(b) getint(var i); putint(i); puteol()

(d) if s[i] > s[i+l] then
let var c : Char
in

begin
c : = s[i]; s[i] := s[i+l]; s[i+ll := c
end

else ! skip

(e) i : = 7 ;
while (i > 0) / \ (s[i] = ' ') do

i : = i - 1

Expressions

An expression is evaluated to yield a value. A record-aggregate is evaluated to construct
a record value from its component values. An array-aggregate is evaluated to construct
an array value from its component values.

Syntax
A secondary-expression and a primary-expression are progressively more restricted
forms of expression. (An expression must be enclosed between parentheses in places
where only a primary-expression is allowed.)

Expression ..- . secondary-Expression
I l e t Declaration i n Expression

I i f Expression then Expression e l s e Expression

secondary-Expression ::= primary-Expression
I secondary-Expression Operator primary-Expression

390 Programming Language Processors in Java

Record-Aggregate ..- ..-
I

Array-Aggregate . .- -
I

Integer-Literal
Character-Literal
V-name
ldentifier (Actual-Parameter-Sequence)
Operator primary-Expression
(Expression)
{ Record-Aggregate)
[Array-Aggregate I

ldentifier - Expression
ldentifier - Expression , Record-Aggregate

Expression
Expression , Array-Aggregate

Semantics
The expression 'IL' yields the value of the integer-literal IL. (The type of the expres-
sion is I n t e g e r .)

The expression 'CL' yields the value of the character-literal CL. (The type of the
expression is C h a r .)

The expression 'V', where V is a value-or-variable-name, yields the value identified
by V, or the current value of the variable identified by V. (The type of the expression
is the type of V.)

The function calling expression 'Z (APS) ' is evaluated as follows. The actual-
parameter-sequence APS is evaluated to yield an argument list; then the function
bound to I is called with that argument list. (I must be bound to a function. APS must
be compatible with that function's formal-parameter-sequence. The type of the
expression is the result type of that function.)

The expression '0 E' is, in effect, equivalent to a function call '0 (E) '.

The expression 'El 0 E2' is, in effect, equivalent to a function call '0 (E l , E2) '.

The expression ' (E) ' yields just the value yielded by E.

The block expression ' l e t D i n E' is evaluated as follows. The declaration D is
elaborated; then E is evaluated, in the environment of the block expression overlaid
by the bindings produced by D. The bindings produced by D have no effect outside
the block expression. (The type of the expression is the type of E.)

The if-expression ' i f El t h e n E2 e l s e E3' is evaluated as follows. The expression
El is evaluated; if its value is true, then E2 is evaluated; if its value is false, then E3 is
evaluated. (The type of El must be Boo lean . The type of the expression is the same
as the types of E2 and E3, which must be equivalent.)

Informal Specification of the Programming Language Triangle 391

The expression ' { R A) ' yields just the value yielded by the record-aggregate R4. (The
type of ' { I I - E l , ... , In - En} ' is 'record II : T I , ... , I,: T , end', where the
type of each Ei is Ti. The identifiers I 1, . . ., I, must all be distinct.)

The expression ' [A A I ' yields just the value yielded by the array-aggregate AA. (The
type of ' [E 1 , . . . , En] ' is 'array n of T, where the type of every Ei is T.)

The record-aggregate ' I - E' yields a record value, whose only field has the identifier
I and the value yielded by E.

The record-aggregate 'I - E , RA' yields a record value, whose first field has the
identifier I and the value yielded by E, and whose remaining fields are those of the
record value yielded by RA.

The array-aggregate 'E' yields an array value, whose only component (with index 0)
is the value yielded by E.

The array-aggregate ' E , AA' yields an array value, whose first component (with
index 0) is the value yielded by E, and whose remaining components (with indices 1,
2, . . .) are the components of the array value yielded by AA.

Examples

The following examples assume the standard environment (Section B.9), and also the
following declarations:

var current: Char;
type Date - record

y: Integer, m: Integer, d: Integer
end ;

var today: Date;

func multiple (m: Integer, n: Integer) : Boolean -
. . .

func leap (yr: Integer) : Boolean - ..

(a) {y - t0day.y + 1, m - 1, d - 1)
(b) [3 1 , if leap(t0day.y) then 29 else 28,

3 1 , 3 0 , 3 1 , 30 , 3 1 , 31 , 30, 3 1 , 30 , 311

(d) (multiple(yr, 4) / \ \multiple(yr, 100))
\ / multiple(yr, 400)

(e) let
const shift - ord('al) - ord('A1);
func capital (ch : Char) : Boolean -

(ord('A1) <= ord(ch))
/ \ (ord(ch) <= ord('Z1))

392 Programming Language Processors in Java

in
if capital (current)
then chr(ord(current) + shift)
else current

B.4 Value-or-variable names

A value-or-variable-name identifies a value or variable.

Syntax
V-name ::= Identifier

1 V-name . Identifier
I V-name [Expression I

Semantics
The simple value-or-variable-name 'I' identifies the value or variable bound to I. (I
must be bound to a value or variable. The type of the value-or-variable-name is the
type of that value or variable.)

The qualified value-or-variable-name ' V . I' identifies the field I of the record value or
variable identified by V. (The type of V must be a record type with a field I. The type
of the value-or-variable-name is the type of that field.)

The indexed value-or-variable-name ' V [E] ' identifies that component, of the array
value or variable identified by V, whose index is the value yielded by the expression
E. If the array has no such index, the program fails. (The type of E must be
Integer, and the type of V must be an array type. The type of the value-or-variable-
name is the component type of that array type.)

Examples

The following examples assume the standard environment (Section B.9), and also the
following declarations:

type Date - record
m : Integer, d : Integer

end ;
const m a s - {m - 12, d - 251;
var easter : Date;
var holiday : array 10 of Date

(a) easter

(b) m a s

396 Programming Language Processors in Java

form 'func I', and the argument function is the one bound to I. (1 must be bound to a
function, and that function must have a formal-parameter-sequence equivalent to FPS
and a result type equivalent to the type denoted by T.)

Examples

The following examples assume the standard environment (Section B.9):

(a) while \eol () do
begin get (var ch) ; put (ch) end;

geteol() ; puteol ()

(b) proc increment (var count: Integer) -
count : = count + 1

(c) func uppercase (letter: Char) : Char -
if (ord('al) <= ord(1etter))

/ \ (ord(1etter) <= ord('zl))
then chr(ord(1etter)-ord('a1)+ord('A'))

else letter

...
if uppercase(request) = ' Q ' then w i t

(d) type Point - record x: Integer, y: Integer end;
proc shiftright (var pt: Point, xshift: Integer) -

pt.x := pt.x + xshift
. . .
shiftright(var penposition, 10)

(e) proc iteratively (proc p (n: Integer),
var a: array 10 of Integer

let var i: Integer
in

begin
i : = 0;
while i < 10 do

begin p(a[i]); i : = i + 1 end
end ;

var v : array 10 of Integer
. . .
iteratively(proc putint, var v)

Informal Specification of the Programming Language Triangle 397

A type-denoter denotes a data type. Every value, constant, variable, and function has a
specified type.

A record-type-denoter denotes the structure of a record type.

Syntax
Type-denoter . Identifier

I array Integer-Literal of Type-denoter
I record Record-Type-denoter end

Record-Type-denoter ::= ldentifier : Type-denoter

I ldentifier : Type-denoter , Record-Type-denoter

Semantics

The type-denoter ' I ' denotes the type bound to I.

The type-denoter 'array IL of T' denotes a type whose values are arrays. Each
array value of this type has an index range whose lower bound is zero and whose
upper bound is one less than the integer-literal IL. Each array value has one
component of type T for each value in its index range.

The type-denoter 'record RT end' denotes a type whose values are records. Each
record value of this type has the record structure denoted by RT.

The record-type-denoter ' I : T' denotes a record structure whose only field has the
identifier I and the type T.

The record-type-denoter ' I : T , RT denotes a record structure whose first field has
the identifier I and the type T, and whose remaining fields are determined by the
record structure denoted by RT. I must not be a field identifier of RT.

(Type equivalence is structural:

Two primitive types are equivalent if and only if they are the same type.

The type record .. . , I;: T i , . . . end is equivalent to record . .. , li' : Ti ' , . . .
end if and only if each Ii is the same as I;' and each Ti is equivalent to Ti'.

The type array n of T is equivalent to array n' of T' if and only if n = n' and T
is equivalent to T'.)

Examples

(a) Boolean

(b) array 80 of Char

Informal Specification of the Programming Language Triangle 399

Digit ::= 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

(Note: The symbols space, tab, and end-of-line stand for individual characters that
cannot stand for themselves in the syntactic rules.)

Semantics
The value of the integer-literal d,. . .dido is d,xlOn + . . . + d l x 1 0 + do.

The value of the character-literal ' c ' is the graphic character c.

Every character in an identifier is significant. The cases of the letters in an identifier
are also significant.

Every character in an operator is significant. Operators are, in effect, a subclass of
identifiers (but they are bound only in the standard environment, to unary and binary
functions).

Examples

(a) Integer-literals: 0 1 9 8 7

(b) Character-literals: ' % ' ' z ' ' ' '

(c) Identifiers: x p i vlOl Integer get gasFlowRate

(d) Operators: + * <= \ /

Programs

A program communicates with the user by performing input-output.

Syntax

Program ::= Command

Semantics

The program 'C' is run by executing the command C in the standard environment.

Informal Specification of the Programming Language Triangle 401

Standard environment

The standard environment includes the following constant, type, procedure, and
function declarations:

type Boolean - ... ; ! truth values

cons t false - . . . ; ! the truth value false

cons t true - . . . ; ! the truth value true

type Integer - . . . ; ! integers up to maxint in magnitude

cons t maxint - . . . ; ! implementation-defined maximum integer

type Char - . . . ; ! implementation-defined characters

func \ (b: Boolean) : Boolean -
... ; ! not b, i.e., logical negation

func / \ (b l : Boolean, b 2 : Boolean) : Boolean -
.. . ; ! b l and b2, i.e., logical conjunction

func \ / (b l : Boolean, b 2 : Boolean) : Boolean -
. . . ; ! b l or b2, i.e., logical disjunction

func + (il: Integer, i 2 : Integer) : Integer -
... ; ! il plus i 2 ,

! failing if the result exceeds maxint in magnitude

func - (il: Integer, i 2 : Integer) : Integer -
... ; ! il minus i 2 ,

! failing if the result exceeds maxint in magnitude

func * (il: Integer, i 2 : Integer) : Integer -
...; ! i l t i m e s i 2 ,

! failing if the result exceeds maxint in magnitude

func / (il: Integer, i 2 : Integer) : Integer -
. . . ; ! i 1 divided by i 2 , truncated towards zero,

! failing if i 2 is zero

func / / (il: Integer, i 2 : Integer) : Integer -
. . . ; ! i 1 modulo i 2 , failing unless i 2 is positive

func < (il: Integer, i 2 : Integer) : Boolean -
... ; ! t r ue i f f i l i s l e s s than i2

func <= (il: Integer, i 2 : Integer) : Boolean -
. . . ; ! true iff i 1 is less than or equal to i 2

func > (il: Integer, i 2 : Integer) : Boolean -
. . . ; ! true iff i 1 is greater than i 2

402 Programming Language Processors in Java

func >= (il: Integer, i2: Integer) : Boolean -
. . . ; ! true iff i 1 is greater than or equal to i2

func chr (i: Integer) : Char -
. . . ; ! character whose internal code is i,

! failing if no such character exists

func ord (c: Char) : Integer -
. . . ; ! internal code of c

func eof () : Boolean -
. . . ; ! true iff end-of-file has been reached in input

func eol () : Boolean -
. . . ; ! true iff end-of-line has been reached in input

proc get (var c: Char) -
. . . ; ! read the next character from input and assign it to c,

! failing if end-of-file already reached

proc put (c: Char) -
. . . ; ! write character c to output

proc getint (var i: Integer) -
. . . ; ! read an integer literal from input and assign its value

! to i, failing if the value exceeds maxint in magnitude,
! or if end-of-file is already reached

proc putint (i: Integer) -
. . . ; ! write to output the integer literal whose value is i

proc geteol () -
. . . ; ! skip past the next end-of-line in input,

! failing if end-of-file is already reached

proc puteol () -
. . . ; ! write an end-of-line to output

In addition, the following functions are available for every type T:

func = (vall: T, va12: T) : Boolean -
... ; ! t rue i f fva l l i s equa l tova l2

func \= (vall: T, va12: T) : Boolean -
... ! t rueiffval l isnotequaltova12

APPENDIX C

Description of the Abstract
Machine TAM

TAM is an abstract machine whose design makes it especially suitable for executing
programs compiled from a block-structured language (such as Algol, Pascal, or Trian-
gle). All evaluation takes place on a stack. Primitive arithmetic, logical, and other
operations are treated uniformly with programmed functions and procedures.

C.l Storage and registers

TAM has two separate stores:

Code Store, consisting of 32-bit instruction words (read only)

Data Store, consisting of 16-bit data words (read-write).

The layouts of both stores are illustrated in Figure C.l

Each store is divided into segments, whose boundaries are pointed to by dedicated
registers. Data and instructions are always addressed relative to one of these registers.

While a program is running, the segmentation of Code Store is fixed, as follows:

The code segment contains the program's instructions. Registers CB and CT point to
the base and top of the code segment. Register CP points to the next instruction to be
executed, and is initially equal to CB (i.e., the program's first instruction is at the base
of the code segment).

The primitive segment contains 'microcode' for elementary arithmetic, logical, input-
output, heap, and general-purpose operations. Registers PB and PT point to the base
and top of the primitive segment.

While a program is running, the segmentation of Data Store may vary:

The stack grows from the low-address end of Data Store. Registers SB and ST point
to the base and top of the stack, and ST is initially equal to SB.

The heap grows from the high-address end of Data Store. Registers HB and HT point
to the base and top of the heap, and HT is initially equal to HB.

410 Programming Language Processors in Java

(4) The return instruction 'RETURN (n) d' pops the topmost frame and replaces the d
words of arguments by the n-word result. LB is reset using the dynamic link, and
control is transferred to the instruction at the return address.

Since R's arguments lie immediately below its frame, R can access the arguments
using negative displacements relative to LB. For example:

LOAD(1) -d[LBl - for R to load its first argument (1 word)
LOAD (1) -1 [LB] - for R to load its last argument (I word)

A primitive routine is one that performs an elementary arithmetic, logical, input-
output, heap, or general-purpose operation. The primitive routines are summarized in
Table C.3. Each primitive routine has a fixed address in the primitive segment. TAM
traps every call to an address in that segment, and performs the corresponding operation
directly.

Table C.2 Summary of TAM instructions.

Op-code Instruction mnemonic Effect

0 LOAD(n) d [r l Fetch an n-word object from the data address (d + register r),
and push it on to the stack.

1 LOADAd[r] Push the data address (d + register r) on to the stack.

2 LOADI(n) Pop a data address from the stack, fetch an n-word object
from that address, and push it on to the stack.

3 LOADL d Push the 1-word literal value d o n to the stack.

4 S T O R E (n) d [r] Pop an n-word object from the stack, and store it at the data
address (d + register r).

5 STORE1 (n) Pop an address from the stack, then pop an n-word object
from the stack and store it at that address.

6 CALL(n) d [r l Call the routine at code address (d + register r), using the
address in register n as the static link.

7 CALL1 Pop a closure (static link and code address) from the stack,
then call the routine at that code address.

8 RETURN(n)d Return from the current routine: pop an n-word result from
the stack, then pop the topmost frame, then pop d words of
arguments, then push the result back on to the stack.

9 - (unused)

10 PUsHd Push d words (uninitialized) on to the stack.

11 POP(n) d Pop an n-word result from the stack, then pop d more words,
then push the result back on to the stack.

12 JUMP d [r] Jump to code address (d + register r).

13 JUMP1 Pop a code address from the stack, then jump to that address.

14 JUMPIF (n) d [r] Pop a I -word value from the stack, then jump to code
address (d + register r) if and only if that value equals n.

15 HALT Stop execution of the program.

Description of the Abstract Machine TAM 41 1

Table C.3 Summary of TAM primitive routines.

Address 1 Mnemonic Arguments (Result I Effect

w I w' I Set w'= w.

P B + ~ I n o t

P B + 3 I and t2 t' Set t' = t l A t2.

t l , t2 t' Set t' = tl v t2.

1 i' S e t i ' = i + l . P B + 5 I s u c c

i i , i2 i' Set i' = i l + i2.

i l , i2 i' Set i' = i l - i2.

i l , i2 i' Set i' = il x i2.

i l , i2 i' Set i' = il / i2 (truncated).

i l , i2 i' Set i' = i l modulo i2.

i l , i2 t' Set t' = true iff i l < i2.

i l , i2 t' Set t' = true iff i l 5 i2.

i ~ , i2 t' Set t' = true iff i l 2 i2.

i] , i2 t' Set t' = true iff il > i2.

v l , ~ 2 , n t' Set t' = true iff vl = v2 (where v l and v2 are
n-word values).

v l , v2, n t' Set t' = true iff vl # v2 (where v l and v2 are
n-word valuesl

PB + 9 I s u b

P B + l l I d i v

P B + 1 2 1 mod

- I ' I Set t' = true iff the next character to be read
is an end-of-line.

Set t' = true iff there are no more characters

end-of-line.

P B + 2 1

PB + 23 g e t e o l

PB + 24 1 DU t e o l - 1 - 1 Write an end-of-line.

a - Read an integer-literal (optionally preceded
by blanks and/or signed), and store its value
at address a.

. .
1 - Write an integer-literal whose value is i.

n a ' Set a ' = address of a newly allocated n-
word object in the heap.

PB + 28 I d i s p o s e n , a I - 1 Deallocate the n-word object at address a in
the heau.

(See notes overleaf.)

APPENDIX D

Class Diagrams for the Triangle
Compiler

This appendix uses class diagrams to summarize the structure of the Triangle compiler,
which is available from our Web site (see Preface, page xv).

The Triangle compiler has broadly the same structure as the Mini-Triangle compiler
used throughout the text of this book. It is discussed in more detail in Sections 3.3, 4.6,
5.4, and 7.5.

The class diagrams are expressed in UML (Unified Modeling Language). UML is
described in detail in Booch et al. (1999). However, the following points are worth
noting. The name of an abstract class is shown in italics, whereas the name of a concrete
class is shown in bold. Private attributes and methods are prefixed by a minus sign (-),
whereas public attributes and methods are prefixed by a plus sign (+). The definition of
a class attribute or method is underlined. The name of a method parameter is omitted
where it is of little significance.

414 Programming Language Processors in Java

D.l Compiler

The following diagram shows the overall structure of the compiler, including the
syntactic analyzer (scanner and parser), the contextual analyzer, and the code generator:

Triangle: :ErrorReporter
Triang1e::AbstractSyntaxTrees::Visitor

+ *(constructor* ErrorReoorter ()
+ reportError (: String, : String,

: SourcePosition) : void
+ reportRestriction (: String) : void

A

Triang1e::ContextualAnalyzer::Checker

I I + monstructorn Checker (: ErrorRe~orter)
+ check (ast : Program) : void I I

+ **constructors Parser r: Scanner,
: ErrorReporter)

+ parseprogram () : Program

+ <constructor>> Scanner i: SourceFile)
+ scan () : Token

+ aconstructora Encoder i: ErrorReoorter)
+ encodeRun (: Program, : boolean) : void
+ saveObjectProgram (: String) : void

I

Triang1e::StdEnvironment

+ anvTvoe : TvpeDenoter
+ booleanTv~e : TvoeDenoter
+ charTvoe : Ty~eDenoter
+ errorTvoe : Tv~eDenoter
+ integerTvoe : Tv~eDenoter
...

+ main (: Strinell) : void
- com~ileProgram (sourceName : String. obiectName : Str in~ ,

showingAST : boolean, showinvTable : boolean) : boolean

Class Diagrams for the Triangle Compiler 4 15

D.2 Abstract syntax trees

The diagrams in this section show the class hierarchy used in the representation of
Triangle ASTs. Each major syntactic class is presented in a separate diagram. These
diagrams show class names only, omitting constructors and methods.

The following diagram shows the immediate subclasses of the AST class. Most of
these are abstract classes representing the main syntactic phrases. Note that Formal-
Parameter is a subclass of Declaration in order that formal parameters may be included
in the identification table during contextual analysis.

AST ActualParameter

-

-

-

-

-

-

-

ActualParameter-
Sequence

ArrayAggregate

Command

Declaration

Expression

FormalParameter-
Sequence

Program

FormalParumeter

416 Programming Language Processors in Java

D.2.1 Commands

The following diagram shows the individual concrete classes for each form of
command:

Ifcommand

Letcommand

I

Command

-

Assigncommand

Callcommand

Class Diagrams for the Triangle Compiler 417

D.2.2 Expressions

The following diagram shows the individual concrete classes for
expression:

Expression I

EmptyExpression

VnameExpression

each form of

The following diagram shows the individual concrete subclasses for a record
aggregate:

41 8 Programming Language Processors in Java

The following diagram shows the individual concrete subclasses for an array
aggregate:

I

SingleArray Aggregate

D.2.3 Value-or-variable names

The following diagram shows the individual concrete subclasses for each form of value-
or-variable name:

Class Diagrams for the Triangle Compiler 419

D.2.4 Declarations

The following diagram shows the individual concrete classes for each form of
declaration:

Declaration

H UnaryOperator-
Declaration I

-

-

Parameter

BinaryOperator-
Declaration

ConstDeclaration

FuncFormal-
Parameter

ProcFormal-
Parameter

FormalParameter

-

-

FuncDeclaration

ProcDeclaration

SequentialDeclaration

TypeDeclaration

1

Class Diagrams for the Triangle Compiler 421

D.2.6 Type-denoters

The following diagram shows the individual concrete subclasses for each form of type-
denoter:

CharTypeDenoter c

TypeDenoter AnyTypeDenoter

ErrorTypeDenoter

-

-

FieldTypeDenoter MultipleField-
TypeDenoter

ArrayTypeDenoter

BoolTypeDenoter

IntTypeDenoter I I SineleField- I
TypeDenoter

SimpleTypeDenoter

D.2.7 Terminals

The following diagram shows the individual concrete subclasses for each form of
terminal node:

CharacterLiteral

Identifier

IntegerLiteral

Operator

Terrninul

-

-

-

Class Diagrams for the Triangle Compiler

D.4 Contextual analyzer

The following diagram shows the internal structure of the contextual analyzer.

IdEntry

- level : int
- latest : IdEntry r
+ <<constructor>> IdentificationTable ()
+ openScope () : void
+ closeScope () : void
+ enter (: String, : Declaration) : void
+ retrieve (: String) : Declaration

I

Checker

I - idTable : IdentificationTable

+ attr : Declaration
+ level : int
+ previous : IdEntry

+ constructor* IdEntrv (
: String, : Declaration,
: int, : IdEntrv)

+ <<constructor>> Checker (: ErrorReporter)
+ check (: Program) : void

150 Programming Language Processors in Java

The above declarations of the standard environment are not syntactically valid in
Mini-Triangle, and so cannot be introduced by processing a normal input file. In fact,
these declarations are entered into the identification table using a method called estab-
lishStandardEnvironment, which the contextual analyzer calls before checking
the source program.

Once the standard environment is entered in the identification table, the source
program can be checked for any type errors. At every applied occurrence of an
identifier, the identification table will be searched in exactly the same way (regardless of
whether the identifier turns out to be in the standard environment or the source
program), and its corresponding attribute used to determine its type.

0

Type checking

The second task of the contextual analyzer is to ensure that the source program contains
no type errors. The key property of a statically-typed language is that the compiler can
detect any type errors without actually running the program. In particular, for every
expression E in the language, the compiler can infer either that E has some type T or
that E is ill-typed. If E does have type T, then evaluating E will always yield a value of
that type T. If E occurs in a context where a value of type T' is expected, then the
compiler can check that T is equivalent to T', without actually evaluating E. This is the
task that we call type checking.

Here we shall focus on the type checking of expressions. Bear in mind, however,
that some phrases other than expressions have types, and therefore also must be type-
checked. For example, a variable-name on the left-hand side of an assignment command
has a type. Even an operator has a type. We write a unary operator's type in the form
T1 + T2, meaning that the operator must be applied to an operand of type T I , and will
yield a result of type T2. We write a binary operator's type in the form T1 x T2 4 T3,
meaning that the operator must be applied to a left operand of type T I and a right
operand of type T2, and will yield a result of type T3.

For most statically-typed programming languages, type checking is straightforward.
The type checker infers the type of each expression bottom-up (i.e., starting with literals
and identifiers, and working up through larger and larger subexpressions):

Literal: The type of a literal is immediately known.

Identifier: The type of an applied occurrence of identifier I is obtained from the
corresponding declaration of I.

Unary operator application: Consider the expression '0 E', where 0 is a unary
operator of type TI + T2. The type checker ensures that E's type is equivalent to T I ,
and thus infers that the type of '0 E' is T2. Otherwise there is a type error.

	Cover
	Contents
	Preface
	1. Introduction
	2. Language Processors
	3. Compilation
	4. Syntactic Analysis
	5. Contextual Analysis
	6. Run-Time Organization
	7. Code Generation
	8. Interpretation
	9. Conclusion
	A. Answers to Selected Excercises
	B. Informal Specification of the Programming Language "Triangle"
	C. Description of the Abstract Machine "TAM"
	D. Class Diagrams for the Triangle Compiler

