
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Pentaho
®

 Kettle Solutions

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Pentaho® Kettle
Solutions

Building Open Source ETL Solutions
with Pentaho Data Integration

Matt Casters
Roland Bouman
Jos van Dongen

www.allitebooks.com

http://www.allitebooks.org

Pentaho® Kettle Solutions: Building Open Source ETL Solutions with
Pentaho Data Integration

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-63517-9
ISBN: 9780470942420 (ebk)
ISBN: 9780470947524 (ebk)
ISBN: 9780470947531 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the appro-
priate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to
the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representa-
tions or warranties with respect to the accuracy or completeness of the contents of this work
and specifically disclaim all warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or promotional materials.
The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as
a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommenda-
tions it may make. Further, readers should be aware that Internet Web sites listed in this work
may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care
Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

Library of Congress Control Number: 2010932421

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Pentaho is a registered trademark of Pentaho, Inc. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc. is not associated with any product
or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

For my wife and kids, Kathleen, Sam and Hannelore.
Your love and joy keeps me sane in crazy times.

—Matt

For my wife, Annemarie, and my children, David, Roos,
Anne and Maarten. Thanks for bearing with me—I love you!

—Roland

For my children Thomas and Lisa, and for Yvonne, to whom
I owe more than words can express.

—Jos

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

About the Authors

Matt Casters has been an independent business intelligence consultant for many years
and has implemented numerous data warehouses and BI solutions for large companies.
For the last 8 years, Matt kept himself busy with the development of an ETL tool called
Kettle. This tool was open sourced in December 2005 and acquired by Pentaho early
in 2006. Since then, Matt took up the position of Chief Data Integration at Pentaho. His
responsibility is to continue to be lead developer for Kettle. Matt tries to help the Kettle
community in any way possible; he answers questions on the forum and speaks occasion-
ally at conferences all around the world. He has a blog at http://www.ibridge.be and
you can follow his @mattcasters account on Twitter.

Roland Bouman has been working in the IT industry since 1998 and is currently work-
ing as a web and business intelligence developer. Over the years he has focused on
open source software, in particular database technology, business intelligence, and
web development frameworks. He’s an active member of the MySQL and Pentaho com-
munities, and a regular speaker at international conferences, such as the MySQL User
Conference, OSCON and at Pentaho community events. Roland co-authored the MySQL

5.1. Cluster Certification Guide and Pentaho Solutions, and was a technical reviewer for
a number of MySQL and Pentaho related book titles. He maintains a technical blog at
http://rpbouman.blogspot.com and tweets as @rolandbouman on Twitter.

Jos van Dongen is a seasoned business intelligence professional and well-known author
and presenter. He has been involved in software development, business intelligence, and
data warehousing since 1991. Before starting his own consulting practice, Tholis Consulting,
in 1998, he worked for a top tier systems integrator and a leading management consult-
ing firm. Over the past years, he has successfully implemented BI and data warehouse
solutions for a variety of organizations, both commercial and non-profit. Jos covers new
BI developments for the Dutch Database Magazine and speaks regularly at national and
international conferences. He authored one book on open source BI and is co-author of the
book Pentaho Solutions. You can find more information about Jos on http://www.tholis
.com or follow @josvandongen on Twitter.

www.allitebooks.com

http://www.allitebooks.org

viii

Executive Editor

Robert Elliott

Project Editor

Sara Shlaer

Technical Editors

Jens Bleuel
Sven Boden
Kasper de Graaf
Daniel Einspanjer
Nick Goodman
Mark Hall
Samatar Hassan
Benjamin Kallmann
Bryan Senseman
Johannes van den Bosch

Production Editor

Daniel Scribner

Copy Editor

Nancy Rapoport

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Marketing Manager

Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Lynsey Stanford

Compositor

Maureen Forys,
Happenstance Type-O-Rama

Proofreader

Nancy Bell

Indexer

Robert Swanson

Cover Designer

Ryan Sneed

Credits

www.allitebooks.com

http://www.allitebooks.org

ix

This book is the result of the efforts of many individuals. By convention, authors receive
explicit credit, and get to have their names printed on the book cover. But creating this book
would not have been possible without a lot of hard work behind the scenes. We, the authors,
would like to express our gratitude to a number of people that provided substantial contri-
butions, and thus help define and shape the final result that is Pentaho Kettle Solutions.

First, we’d like to thank those individuals that contributed directly to the material
that appears in the book:

Ingo Klose suggested an elegant solution to generate keys starting from a given ■

offset within a single transformation (this solution is discussed in Chapter 8,
“Handling Dimension Tables,” subsection “Generating Surrogate Keys Based
on a Counter,” shown in Figure 8-2).

Samatar Hassan provided text as well as working example transformations to ■

demonstrate Kettle’s RSS capabilities. Samatar’s contribution is included almost
completely and appears in the RSS section of Chapter 21, “Web Services.”

Thanks to Mike Hillyer and the MySQL documentation team for creating and main-■

taining the Sakila sample database, which is introduced in Chapter 4 and appears
in many examples throughout this book.

Although only three authors appear on the cover, there was actually a fourth one: We ■

cannot thank Kasper de Graaf of DIKW-Academy enough for writing the Data Vault
chapter, which has benefited greatly from his deep expertise on this subject. Special
thanks also to Johannes van den Bosch who did a great job reviewing Kasper’s work
and gave another boost to the overall quality and clarity of the chapter.

Thanks to Bernd Aschauer and Robert Wintner, both from Aschauer EDV ■

(http://www.aschauer-edv.at/en), for providing the examples and screen-
shots used in the section dedicated to SAP of Chapter 6, “Data Extraction.”

Daniel Einspanjer of the Mozilla Foundation provided sample transformations ■

for Chapter 7, “Cleansing and Conforming.”

Acknowledgments

x Acknowledgments

Thanks for your contributions. This book benefited substantially from your efforts.
Much gratitude goes out to all of our technical reviewers. Providing a good technical

review is hard and time-consuming, and we have been very lucky to find a collection
of such talented and seasoned Pentaho and Kettle experts willing to find some time in
their busy schedules to provide us with the kind of quality review required to write a
book of this size and scope.

We’d like to thank the Kettle and Pentaho communities. During and before the writ-
ing of this book, individuals from these communities provided valuable suggestions
and ideas to all three authors for topics to cover in a book that focuses on ETL, data
integration, and Kettle. We hope this book will be useful and practical for everybody
who is using or planning to use Kettle. Whether we succeeded is up to the reader, but
if we did, we have to thank individuals in the Kettle and Pentaho communities for
helping us achieve it.

We owe many thanks to all contributors and developers of the Kettle software project.
The authors are all enthusiastic users of Kettle: we love it, because it solves our daily
data integration problems in a straightforward and efficient manner without getting
in the way. Kettle is a joy to work with, and this is what provided much of the drive to
write this book.

Finally, we’d like to thank our publisher, Wiley, for giving us the opportunity to write
this book, and for the excellent support and management from their end. In particular,
we’d like to thank our Project Editor, Sara Shlaer. Despite the often delayed deliveries
from our end, Sara always kept her cool and somehow managed to make deadlines
work out. Her advice, patience, encouragement, care, and sense of humor made all the
difference and form an important contribution to this book. In addition, we’d like to
thank our Executive Editor Robert Elliot. We appreciate the trust he put into our small
team of authors to do our job, and his efforts to realize Pentaho Kettle Solutions.

—The authors

Writing a technical book like the one you are reading right now is very hard to do
all by yourself. Because of the extremely busy agenda caused by the release process
of Kettle 4, I probably should never have agreed to co-author. It’s only thanks to the
dedication and professionalism of Jos and Roland that we managed to write this book
at all. I thank both friends very much for their invitation to co-author. Even though
writing a book is a hard and painful process, working with Jos and Roland made it all
worthwhile.

When Kettle was not yet released as open source code it often received a lukewarm
reaction. The reason was that nobody was really waiting for yet another closed source ETL
tool. Kettle came from that position to being the most widely deployed open source
ETL tool in the world. This happened only thanks to the thousands of volunteers who
offered to help out with various tasks. Ever since Kettle was open sourced it became
a project with an every growing community. It’s impossible to thank this community
enough. Without the help of the developers, the translators, the testers, the bug reporters,
the folks who participate in the forums, the people with the great ideas, and even the
folks who like to complain, Kettle would not be where it is today. I would like to espe-
cially thank one important member of our community: Pentaho. Pentaho CEO Richard
Daley and his team have done an excellent job in supporting the Kettle project ever

 Acknowledgments xi

since they got involved with it. Without their support it would not have been possible
for Kettle to be on the accelerated growth path that it is on today. It’s been a pleasure
and a privilege to work with the Pentaho crew.

A few select members of our community also picked up the tough job of review-
ing the often technical content of this book. The reviewers of my chapters, Nicholas
Goodman, Daniel Einspanjer, Bryan Senseman, Jens Bleuel, Samatar Hassan, and Mark
Hall had the added disadvantage that this was the first time that I was going through
the process of writing a book. It must not have been pretty at times. All the same they
spent a lot of time coming up with insightful additions, spot-on advice, and to the point
comments. I do enormously appreciate the vast amount of time and effort that they put
into the reviewing. The book wouldn’t have been the same without you guys!

—Matt Casters

I’d like to thank both my co-authors, Jos and Matt. It’s an honor to be working with
such knowledgeable and skilled professionals, and I hope we will collaborate again in
the future. I feel our different backgrounds and expertise have truly complemented each
other and helped us all to cover the many different subjects covered in this book.

I’d also like to thank the reviewers of my chapters: Benjamin Kallman, Bryan
Senseman, Daniel Einspanjer, Sven Boden, and Samatar Hassan. Your comments and
suggestions made all the difference and I thank you for your frank and constructive
criticism.

Finally, I’d like to thank the readers of my blog at http://rpbouman.blogspot.com/.
I got a lot of inspiration from the comments posted there, and I got a lot of good feedback
in response to the blog posts announcing the writing of Pentaho Kettle Solutions.

—Roland Bouman

Back in October 2009, when Pentaho Solutions had only been on the shelves for two
months and Roland and I agreed never to write another book, Bob Elliot approached
us asking us to do just that. Yes, we had been discussing some ideas and already con-
cluded that if there were to be another book, it would have to be about Kettle. And this
was exactly what Bob asked us to do: write a book about data integration using Kettle.
We quickly found out that Matt Casters was not only interested in reviewing, but in
actually becoming a full author as well, an offer we gladly accepted. Looking back, I
can hardly believe that we pulled it off, considering everything else that was going on
in our lives. So many thanks to Roland and Matt for bearing with me, and thank you
Bob and especially Sara for your relentless efforts of keeping us on track.

A special thank you is also warranted for Ralph Kimball, whose ideas you’ll find
throughout this book. Ralph gave us permission to use the Kimball Group’s 34 ETL
subsystems as the framework for much of the material presented in his book. Ralph also
took the time to review Chapter 5, and thanks to his long list of excellent comments the
chapter became a perfect foundation for Parts II, III, and IV of the book.

Finally I’d like to thank Daniel Einspanjer, Bryan Senseman, Jens Bleuel, Sven Boden,
Samatar Hassan, and Benjamin Kallmann for being an absolute pain in the neck and
thus doing a great job as technical reviewers for my chapters. Your comments, questions
and suggestions definitely gave a big boost to the overall quality of this book.

—Jos van Dongen

xiii

Contents at a Glance

Introduction xxxi

Part I Getting Started 1

Chapter 1 ETL Primer 3

Chapter 2 Kettle Concepts 23

Chapter 3 Installation and Configuration 53

Chapter 4 An Example ETL Solution—Sakila 73

Part II ETL 111

Chapter 5 ETL Subsystems 113

Chapter 6 Data Extraction 127

Chapter 7 Cleansing and Conforming 167

Chapter 8 Handling Dimension Tables 207

Chapter 9 Loading Fact Tables 245

Chapter 10 Working with OLAP Data 269

Part III Management and Deployment 293

Chapter 11 ETL Development Lifecycle 295

Chapter 12 Scheduling and Monitoring 321

Chapter 13 Versioning and Migration 341

Chapter 14 Lineage and Auditing 357

Part IV Performance and Scalability 375

Chapter 15 Performance Tuning 377

Chapter 16 Parallelization, Clustering, and Partitioning 403

Chapter 17 Dynamic Clustering in the Cloud 433

Chapter 18 Real-Time Data Integration 449

Part V Advanced Topics 463

Chapter 19 Data Vault Management 465

Chapter 20 Handling Complex Data Formats 497

Chapter 21 Web Services 515

Chapter 22 Kettle Integration 569

Chapter 23 Extending Kettle 593

Appendix A The Kettle Ecosystem 629

Appendix B Kettle Enterprise Edition Features 635

Appendix C Built-in Variables and Properties Reference 637

Index 643

xiv Contents at a Glance

xv

Introduction xxxi

Part I Getting Started 1

Chapter 1 ETL Primer 3
OLTP versus Data Warehousing 3
What Is ETL? 5

The Evolution of ETL Solutions 5
ETL Building Blocks 7

ETL, ELT, and EII 8
ELT 9
EII: Virtual Data Integration 10

Data Integration Challenges 11
Methodology: Agile BI 12
ETL Design 14
Data Acquisition 14

Beware of Spreadsheets 15
Design for Failure 15
Change Data Capture 16

Data Quality 16
Data Profiling 16
Data Validation 17

ETL Tool Requirements 17
Connectivity 17
Platform Independence 18
Scalability 18
Design Flexibility 19
Reuse 19
Extensibility 19

Contents

xvi Contents

Data Transformations 20
Testing and Debugging 21
Lineage and Impact Analysis 21
Logging and Auditing 22

Summary 22

Chapter 2 Kettle Concepts 23
Design Principles 23
The Building Blocks of Kettle Design 25

Transformations 25
Steps 26
Transformation Hops 26
Parallelism 27
Rows of Data 27
Data Conversion 29

Jobs 30
Job Entries 31
Job Hops 31
Multiple Paths and Backtracking 32
Parallel Execution 33
Job Entry Results 34

Transformation or Job Metadata 36
Database Connections 37

Special Options 38
The Power of the Relational Database 39
Connections and Transactions 39
Database Clustering 40

Tools and Utilities 41
Repositories 41
Virtual File Systems 42

Parameters and Variables 43
Defining Variables 43
Named Parameters 44
Using Variables 44

Visual Programming 45
Getting Started 46
Creating New Steps 47
Putting It All Together 49

Summary 51

Chapter 3 Installation and Configuration 53
Kettle Software Overview 53

Integrated Development Environment: Spoon 55
Command-Line Launchers: Kitchen and Pan 57
Job Server: Carte 57
Encr.bat and encr.sh 58

Installation 58

 Contents xvii

Java Environment 58
Installing Java Manually 58
Using Your Linux Package Management System 59

Installing Kettle 59
 Versions and Releases 59
Archive Names and Formats 60
Downloading and Uncompressing 60
Running Kettle Programs 61
Creating a Shortcut Icon or Launcher for Spoon 62

Configuration 63
Configuration Files and the .kettle Directory 63
The Kettle Shell Scripts 69

General Structure of the Startup Scripts 70
Adding an Entry to the Classpath 70
Changing the Maximum Heap Size 71

Managing JDBC Drivers 72
Summary 72

Chapter 4 An Example ETL Solution—Sakila 73
Sakila 73

The Sakila Sample Database 74
DVD Rental Business Process 74
Sakila Database Schema Diagram 75
Sakila Database Subject Areas 75
General Design Considerations 77
Installing the Sakila Sample Database 77

The Rental Star Schema 78
Rental Star Schema Diagram 78
Rental Fact Table 79
Dimension Tables 79
Keys and Change Data Capture 80
Installing the Rental Star Schema 81

Prerequisites and Some Basic Spoon Skills 81
Setting Up the ETL Solution 82

Creating Database Accounts 82
Working with Spoon 82

Opening Transformation and Job Files 82
Opening the Step’s Configuration Dialog 83
Examining Streams 83
Running Jobs and Transformations 83

The Sample ETL Solution 84
Static, Generated Dimensions 84

Loading the dim_date Dimension Table 84
Loading the dim_time Dimension Table 86

Recurring Load 87
The load_rentals Job 88

xviii Contents

The load_dim_staff Transformation 91
Database Connections 91
The load_dim_customer Transformation 95
The load_dim_store Transformation 98
The fetch_address Subtransformation 99
The load_dim_actor Transformation 101
The load_dim_film Transformation 102
The load_fact_rental Transformation 107

Summary 109

Part II ETL 111

Chapter 5 ETL Subsystems 113
Introduction to the 34 Subsystems 114

Extraction 114
Subsystems 1–3: Data Profiling, Change Data Capture, and

Extraction 115
Cleaning and Conforming Data 116

Subsystem 4: Data Cleaning and Quality Screen
Handler System 116

Subsystem 5: Error Event Handler 117
Subsystem 6: Audit Dimension Assembler 117
Subsystem 7: Deduplication System 117
Subsystem 8: Data Conformer 118

Data Delivery 118
Subsystem 9: Slowly Changing Dimension Processor 118
Subsystem 10: Surrogate Key Creation System 119
Subsystem 11: Hierarchy Dimension Builder 119
Subsystem 12: Special Dimension Builder 120
Subsystem 13: Fact Table Loader 121
Subsystem 14: Surrogate Key Pipeline 121
Subsystem 15: Multi-Valued Dimension Bridge Table Builder 121
Subsystem 16: Late-Arriving Data Handler 122
Subsystem 17: Dimension Manager System 122
Subsystem 18: Fact Table Provider System 122
Subsystem 19: Aggregate Builder 123
Subsystem 20: Multidimensional (OLAP) Cube Builder 123
Subsystem 21: Data Integration Manager 123

Managing the ETL Environment 123
Summary 126

Chapter 6 Data Extraction 127
Kettle Data Extraction Overview 128

File-Based Extraction 128
Working with Text Files 128
Working with XML files 133
Special File Types 134

www.allitebooks.com

http://www.allitebooks.org

 Contents xix

Database-Based Extraction 134
Web-Based Extraction 137

Text-Based Web Extraction 137
HTTP Client 137
Using SOAP 138

Stream-Based and Real-Time Extraction 138
Working with ERP and CRM Systems 138

ERP Challenges 139
Kettle ERP Plugins 140
Working with SAP Data 140
ERP and CDC Issues 146

Data Profiling 146
Using eobjects.org DataCleaner 147

Adding Profile Tasks 149
Adding Database Connections 149
Doing an Initial Profile 151
Working with Regular Expressions 151
Profiling and Exploring Results 152
Validating and Comparing Data 153
Using a Dictionary for Column Dependency Checks 153
Alternative Solutions 154
Text Profiling with Kettle 154

CDC: Change Data Capture 154
Source Data–Based CDC 155
Trigger-Based CDC 157
Snapshot-Based CDC 158
Log-Based CDC 162
Which CDC Alternative Should You Choose? 163

Delivering Data 164
Summary 164

Chapter 7 Cleansing and Conforming 167
Data Cleansing 168

Data-Cleansing Steps 169
Using Reference Tables 172

Conforming Data Using Lookup Tables 172
Conforming Data Using Reference Tables 175

Data Validation 179
Applying Validation Rules 180
Validating Dependency Constraints 183

Error Handling 183
Handling Process Errors 184

Transformation Errors 186
Handling Data (Validation) Errors 187

Auditing Data and Process Quality 191
Deduplicating Data 192

xx Contents

Handling Exact Duplicates 193
The Problem of Non-Exact Duplicates 194
Building Deduplication Transforms 195

Step 1: Fuzzy Match 197
Step 2: Select Suspects 198
Step 3: Lookup Validation Value 198
Step 4: Filter Duplicates 199

Scripting 200
Formula 201
JavaScript 202
User-Defined Java Expressions 202
Regular Expressions 203

Summary 205

Chapter 8 Handling Dimension Tables 207
Managing Keys 208

Managing Business Keys 209
Keys in the Source System 209
Keys in the Data Warehouse 209
Business Keys 209
Storing Business Keys 210
Looking Up Keys with Kettle 210

Generating Surrogate Keys 210
The “Add sequence” Step 211
Working with auto_increment or IDENTITY Columns 217
Keys for Slowly Changing Dimensions 217

Loading Dimension Tables 218
Snowflaked Dimension Tables 218

Top-Down Level-Wise Loading 219
Sakila Snowflake Example 219
Sample Transformation 221
Database Lookup Configuration 222
Sample Job 225

Star Schema Dimension Tables 226
Denormalization 226
Denormalizing to 1NF with the “Database lookup” Step 226
Change Data Capture 227

Slowly Changing Dimensions 228
Types of Slowly Changing Dimensions 228
Type 1 Slowly Changing Dimensions 229

The Insert / Update Step 229
Type 2 Slowly Changing Dimensions 232

The “Dimension lookup / update” Step 232
Other Types of Slowly Changing Dimensions 237

Type 3 Slowly Changing Dimensions 237
Hybrid Slowly Changing Dimensions 238

 Contents xxi

More Dimensions 239
Generated Dimensions 239

Date and Time Dimensions 239
Generated Mini-Dimensions 239

Junk Dimensions 241
Recursive Hierarchies 242

Summary 243

Chapter 9 Loading Fact Tables 245
Loading in Bulk 246

STDIN and FIFO 247
Kettle Bulk Loaders 248

MySQL Bulk Loading 249
LucidDB Bulk Loader 249
Oracle Bulk Loader 249
PostgreSQL Bulk Loader 250
Table Output Step 250

General Bulk Load Considerations 250
Dimension Lookups 251

Maintaining Referential Integrity 251
The Surrogate Key Pipeline 252

Using In-Memory Lookups 253
Stream Lookups 253

Late-Arriving Data 255
Late-Arriving Facts 256
Late-Arriving Dimensions 256

Fact Table Handling 260
Periodic and Accumulating Snapshots 260
Introducing State-Oriented Fact Tables 261
Loading Periodic Snapshots 263
Loading Accumulating Snapshots 264
Loading State-Oriented Fact Tables 265
Loading Aggregate Tables 266

Summary 267

Chapter 10 Working with OLAP Data 269
OLAP Benefits and Challenges 270

OLAP Storage Types 272
Positioning OLAP 272
Kettle OLAP Options 273

Working with Mondrian 274
Working with XML/A Servers 277
Working with Palo 282

Setting Up the Palo Connection 283
Palo Architecture 284
Reading Palo Data 285
Writing Palo Data 289

Summary 291

xxii Contents

Part III Management and Deployment 293

Chapter 11 ETL Development Lifecycle 295
Solution Design 295

Best and Bad Practices 296
Data Mapping 297
Naming and Commentary Conventions 298
Common Pitfalls 299

ETL Flow Design 300
Reusability and Maintainability 300

Agile Development 301
Testing and Debugging 306

Test Activities 307
ETL Testing 308

Test Data Requirements 308
Testing for Completeness 309
Testing Data Transformations 311
Test Automation and Continuous Integration 311
Upgrade Tests 312

Debugging 312
Documenting the Solution 315

Why Isn’t There Any Documentation? 316
Myth 1: My Software Is Self-Explanatory 316
Myth 2: Documentation Is Always Outdated 316
Myth 3: Who Reads Documentation Anyway? 317

Kettle Documentation Features 317
Generating Documentation 319

Summary 320

Chapter 12 Scheduling and Monitoring 321
Scheduling 321

Operating System–Level Scheduling 322
Executing Kettle Jobs and Transformations from

the Command Line 322
UNIX-Based Systems: cron 326
Windows: The at utility and the Task Scheduler 327

Using Pentaho’s Built-in Scheduler 327
Creating an Action Sequence to Run Kettle Jobs and

Transformations 328
Kettle Transformations in Action Sequences 329
Creating and Maintaining Schedules with the

Administration Console 330
Attaching an Action Sequence to a Schedule 333

Monitoring 333
Logging 333

Inspecting the Log 333

 Contents xxiii

Logging Levels 335
Writing Custom Messages to the Log 336

E-mail Notifications 336
Configuring the Mail Job Entry 337

Summary 340

Chapter 13 Versioning and Migration 341
Version Control Systems 341

File-Based Version Control Systems 342
Organization 342
Leading File-Based VCSs 343

Content Management Systems 344
Kettle Metadata 344

Kettle XML Metadata 345
Transformation XML 345
Job XML 346
Global Replace 347

Kettle Repository Metadata 348
The Kettle Database Repository Type 348
The Kettle File Repository Type 349
The Kettle Enterprise Repository Type 350

Managing Repositories 350
Exporting and Importing Repositories 350
Upgrading Your Repository 351

Version Migration System 352
Managing XML Files 352
Managing Repositories 352
Parameterizing Your Solution 353

Summary 356

Chapter 14 Lineage and Auditing 357
Batch-Level Lineage Extraction 358
Lineage 359

Lineage Information 359
Impact Analysis Information 361

Logging and Operational Metadata 363
Logging Basics 363
Logging Architecture 364

Setting a Maximum Buffer Size 365
Setting a Maximum Log Line Age 365
Log Channels 366
Log Text Capturing in a Job 366

Logging Tables 367
Transformation Logging Tables 367
Job Logging Tables 373

Summary 374

xxiv Contents

Part IV Performance and Scalability 375

Chapter 15 Performance Tuning 377
Transformation Performance: Finding the Weakest Link 377

Finding Bottlenecks by Simplifying 379
Finding Bottlenecks by Measuring 380
Copying Rows of Data 382

Improving Transformation Performance 384
Improving Performance in Reading Text Files 384

Using Lazy Conversion for Reading Text Files 385
Single-File Parallel Reading 385
Multi-File Parallel Reading 386
Configuring the NIO Block Size 386
Changing Disks and Reading Text Files 386

Improving Performance in Writing Text Files 387
Using Lazy Conversion for Writing Text Files 387
Parallel Files Writing 387
Changing Disks and Writing Text Files 387

Improving Database Performance 388
Avoiding Dynamic SQL 388
Handling Roundtrips 388
Handling Relational Databases 390

Sorting Data 392
Sorting on the Database 393
Sorting in Parallel 393

Reducing CPU Usage 394
Optimizing the Use of JavaScript 394
Launching Multiple Copies of a Step 396
Selecting and Removing Values 397
Managing Thread Priorities 397
Adding Static Data to Rows of Data 397
Limiting the Number of Step Copies 398
Avoiding Excessive Logging 398

Improving Job Performance 399
Loops in Jobs 399
Database Connection Pools 400

Summary 401

Chapter 16 Parallelization, Clustering, and Partitioning 403
Multi-Threading 403

Row Distribution 404
Row Merging 405
Row Redistribution 406
Data Pipelining 407
Consequences of Multi-Threading 408

Database Connections 408

 Contents xxv

Order of Execution 409
Parallel Execution in a Job 411

Using Carte as a Slave Server 411
The Configuration File 411
Defining Slave Servers 412
Remote Execution 413
Monitoring Slave Servers 413
Carte Security 414
Services 414

Clustering Transformations 417
Defining a Cluster Schema 417
Designing Clustered Transformations 418
Execution and Monitoring 420
Metadata Transformations 421

Rules 422
Data Pipelining 425

Partitioning 425
Defining a Partitioning Schema 425
Objectives of Partitioning 427
Implementing Partitioning 428
Internal Variables 428
Database Partitions 429
Partitioning in a Clustered Transformation 430

Summary 430

Chapter 17 Dynamic Clustering in the Cloud 433
Dynamic Clustering 433

Setting Up a Dynamic Cluster 434
Using the Dynamic Cluster 436

Cloud Computing 437
EC2 438

Getting Started with EC2 438
Costs 438
Customizing an AMI 439
Packaging a New AMI 442
Terminating an AMI 442
Running a Master 442
Running the Slaves 443
Using the EC2 Cluster 444
Monitoring 445
The Lightweight Principle and Persistence Options 446

Summary 447

Chapter 18 Real-Time Data Integration 449
Introduction to Real-Time ETL 449

Real-Time Challenges 450
Requirements 451

xxvi Contents

Transformation Streaming 452
A Practical Example of Transformation Streaming 454
Debugging 457
Third-Party Software and Real-Time Integration 458
Java Message Service 459

Creating a JMS Connection and Session 459
Consuming Messages 460
Producing Messages 460
Closing Shop 460

Summary 461

Part V Advanced Topics 463

Chapter 19 Data Vault Management 465
Introduction to Data Vault Modeling 466
Do You Need a Data Vault? 466
Data Vault Building Blocks 467

Hubs 467
Links 468
Satellites 469
Data Vault Characteristics 471
Building a Data Vault 471

Transforming Sakila to the Data Vault Model 472
Sakila Hubs 472
Sakila Links 473
Sakila Satellites 474

Loading the Data Vault: A Sample ETL Solution 477
Installing the Sakila Data Vault 477
Setting Up the ETL Solution 477
Creating a Database Account 477
The Sample ETL Data Vault Solution 478

Sample Hub: hub_actor 478
Sample Link: link_customer_store 480
Sample Satellite: sat_actor 483

Loading the Data Vault Tables 485
Updating a Data Mart from a Data Vault 486

The Sample ETL Solution 486
The dim_actor Transformation 486
The dim_customer Transformation 488
The dim_film Transformation 492
The dim_film_actor_bridge Transformation 492
The fact_rental Transformation 493
Loading the Star Schema Tables 495

Summary 495

 Contents xxvii

Chapter 20 Handling Complex Data Formats 497
Non-Relational and Non-Tabular Data Formats 498
Non-Relational Tabular Formats 498

Handling Multi-Valued Attributes 498
Using the Split Field to Rows Step 499

Handling Repeating Groups 500
Using the Row Normaliser Step 500

Semi- and Unstructured Data 501
Kettle Regular Expression Example 503

Configuring the Regex Evaluation Step 504
Verifying the Match 507

Key/Value Pairs 508
Kettle Key/Value Pairs Example 509

Text File Input 509
Regex Evaluation 510
Grouping Lines into Records 511
Denormaliser: Turning Rows into Columns 512

Summary 513

Chapter 21 Web Services 515
Web Pages and Web Services 515

Kettle Web Features 516
General HTTP Steps 516
Simple Object Access Protocol 517
Really Simple Syndication 517
Apache Virtual File System Integration 517

Data Formats 517
XML 518

Kettle Steps for Working with XML 518
Kettle Job Entries for XML 519

HTML 520
JavaScript Object Notation 520

Syntax 521
JSON, Kettle, and ETL/DI 522

XML Examples 523
Example XML Document 523

XML Document Structure 523
Mapping to the Sakila Sample Database 524

Extracting Data from XML 525
Overall Design: The import_xml_into_db Transformation 526
Using the XSD Validator Step 528
Using the “Get Data from XML” Step 530

Generating XML Documents 537
Overall Design: The export_xml_from_db Transformation 537
Generating XML with the Add XML Step 538
Using the XML Join Step 541

xxviii Contents

SOAP Examples 544
Using the “Web services lookup” Step 544

Configuring the “Web services lookup” Step 544
Accessing SOAP Services Directly 546

JSON Example 549
The Freebase Project 549

Freebase Versus Wikipedia 549
Freebase Web Services 550
The Freebase Read Service 550
The Metaweb Query Language 551

Extracting Freebase Data with Kettle 553
Generate Rows 554
Issuing a Freebase Read Request 555
Processing the Freebase Result Envelope 556
Filtering Out the Original Row 557
Storing to File 558

RSS 558
RSS Structure 558

Channel 558
Item 559

RSS Support in Kettle 560
RSS Input 561
RSS Output 562

Summary 567

Chapter 22 Kettle Integration 569
The Kettle API 569

The LGPL License 569
The Kettle Java API 570

Source Code 570
Building Kettle 571
Building javadoc 571
Libraries and the Class Path 571

Executing Existing Transformations and Jobs 571
Executing a Transformation 572
Executing a Job 573

Embedding Kettle 574
Pentaho Reporting 574
Putting Data into a Transformation 576
Dynamic Transformations 580
Dynamic Template 583
Dynamic Jobs 584
Executing Dynamic ETL in Kettle 586
Result 587
Replacing Metadata 588

Direct Changes with the API 589
Using a Shared Objects File 589

www.allitebooks.com

http://www.allitebooks.org

 Contents xxix

OEM Versions and Forks 590
Creating an OEM Version of PDI 590
Forking Kettle 591

Summary 592

Chapter 23 Extending Kettle 593
Plugin Architecture Overview 593

Plugin Types 594
Architecture 595
Prerequisites 596

Kettle API Documentation 596
Libraries 596
Integrated Development Environment 596
Eclipse Project Setup 597
Examples 598

Transformation Step Plugins 599
StepMetaInterface 599

Value Metadata 605
Row Metadata 606

StepDataInterface 607
StepDialogInterface 607

Eclipse SWT 607
Form Layout 607
Kettle UI Elements 609
Hello World Example Dialog 609

StepInterface 614
Reading Rows from Specific Steps 616
Writing Rows to Specific Steps 616
Writing Rows to Error Handling 617
Identifying a Step Copy 617
Result Feedback 618
Variable Substitution 618
Apache VFS 619
Step Plugin Deployment 619

The User-Defined Java Class Step 620
Passing Metadata 620
Accessing Input and Fields 620
Snippets 620
Example 620

Job Entry Plugins 621
JobEntryInterface 622
JobEntryDialogInterface 624

Partitioning Method Plugins 624
Partitioner 625

Repository Type Plugins 626
Database Type Plugins 627
Summary 628

xxx Contents

Appendix A The Kettle Ecosystem 629
Kettle Development and Versions 629
The Pentaho Community Wiki 631
Using the Forums 631
Jira 632
##pentaho 633

Appendix B Kettle Enterprise Edition Features 635

Appendix C Built-in Variables and Properties Reference 637
Internal Variables 637
Kettle Variables 640
Variables for Configuring VFS 641
Noteworthy JRE Variables 642

Index 643

xxxi

More than 50 years ago the first computers for general use emerged, and we saw a
gradually increasing adoption of their use by the scientific and business world. In those
early days, most organizations had just one computer with a single display and printer
attached to it, so the need for integrating data stored in different systems simply didn’t
exist. This changed when in the late 1970s the relational database made inroads into the
corporate world. The 1980s saw a further proliferation of both computers and databases,
all holding different bits and pieces of an organization’s total collection of information.
Ultimately, this led to the start of a whole new industry, which was sparked by IBM
researchers Dr. Barry Devlin and Paul Murphy in their seminal paper “An architecture
for a business and information system” (first published in 1988 in IBM Systems Journal,
Volume 27, Number 1). The concept of a business data warehouse was introduced for
the first time as being “the single logical storehouse of all the information used to report
on the business.” Less than five years later, Bill Inmon published his landmark book,
Building the Data Warehouse, which further popularized the concepts and technologies
needed to build this “logical storehouse.”

One of the core themes in all data warehouse–related literature is the concept of
integrating data. The term data integration refers to the process of combining data from
different sources to provide a single comprehensible view on all of the combined data.
A typical example of data integration would be combining the data from a warehouse
inventory system with that of the order entry system to allow order fulfillment to be
directly related to changes in the inventory. Another example of data integration is merg-
ing customer and contact data from separate departmental customer relationship man-
agement (CRM) systems into a corporate customer relationship management system.

NOTE Throughout this book, you’ll find the terms “data integration” and

“ETL” (short for extract, transform, and load) used interchangeably. Although

technically not entirely correct (ETL is only one of the possible data integra-

tion scenarios, as you’ll see in Chapter 1), most developers treat these terms

as synonyms, a sin that we’ve adopted over the years as well.

Introduction

xxxii Introduction

In an ideal world, there wouldn’t be a need for data integration. All the data needed
for running a business and reporting on its past and future performance would be
stored and managed in a single system, all master data would be 100 percent correct,
and every piece of external data needed for analysis and decision making would be
automatically linked to our own data. This system wouldn’t have any problems with
storing all available historical data, nor with offering split-second response times when
querying and analyzing this data.

Unfortunately, we don’t live in an ideal world. In the real world, most organizations
use different systems for different purposes. They have systems for CRM (Customer
Relationship Management), for accounting, for sales and sales support, for supporting
a help desk, for managing inventory, for supporting a logistics process, and the list goes
on and on. To make things worse, the same data is often stored and maintained inde-
pendently, and probably inconsistently, in different systems. Customer and product data
might be available in all the aforementioned systems, and when a customer calls to pass
on a new telephone number or a change of address, chances are that this information is
only updated in the CRM system, causing inconsistency of the customer information
within the organization.

To cope with all these challenges and create a single, integrated, conformed, and
trustworthy data store for reporting and analysis, data integration tools are needed.
One of the more popular and powerful solutions available is Kettle, also known as
Pentaho Data Integration, which is the topic of this book.

The Origins of Kettle

Kettle originated ten years ago, at the turn of the century. Back then, ETL tools could
be found in all sorts of shapes and forms. At least 50 known tools competed in this
software segment. Beneath that collection of software, there was an even larger set of
ETL frameworks. In general, you could split up the tools into different types based on
their respective origin and level of sophistication, as shown in Figure 1.

Quick

Hacks

Code

Generators
Frameworks Engines

Figure 1: ETL tool generations

Quick hacks:■ These tools typically were responsible for extraction of data or the
load of text files. A lot of these solutions existed out there and still do. Words such
as “hacker” and “hacking” have an undeservedly negative connotation. Business
intelligence can get really complex and in most cases, the quick hacks make the
difference between project disaster and success. As such, they pop up quite easily

 Introduction xxxiii

because someone simply has a job to do with limited time and money. Typically,
these ETL quick hack solutions are created by consultancy firms and are meant
to be one-time solutions.

Frameworks: ■ Usually when a business intelligence consultant does a few similar
projects, the idea begins to emerge that code needs to be written in such a way
that it can be re-used on other projects with a few minor adjustments. At one
point in time it seemed like every self-respecting consultancy company had an
ETL framework out there. The reason for this is that these frameworks offer a
great way to build up knowledge regarding the ETL processes. Typically, it is
easy to change parameters for extraction, loading, logging, change data capture,
database connections, and such.

Code generators:■ When a development interface is added as an extra level of
abstraction for the frameworks, it is possible to generate code for a certain plat-
form (C, Java, SQL, and so on) based on sets of metadata. These code generators
come in different types, varying from one-shot generators that require you to
maintain the code afterward to full-fledge ETL tools that can generate everything
you need. These kinds of ETL tools were also written by consultancy companies
left and right, but mostly by known, established vendors.

Engines:■ In the continuing quest by ETL vendors to make life easier for their
users, ETL engines were created so that no code had to be generated. With these
engines, the entire ETL process can be executed based on parameterization and
configuration, i.e. the description of the ETL process itself as described throughout
this book. This by itself does away with any code generation, compilation, and
deployment difficulties.

Based on totally non-scientific samples of projects that were executed back then, it’s
safe to say that over half of the projects used quick hacks or frameworks. Code genera-
tors in all sorts of shapes and forms accounted for most of the rest, with ETL engines
only being used in exceptional cases, usually for very large projects.

NOTE Very few tools were available under an open source license ten years

ago. The only known available tool was Enhydra Octopus, a Java-based code

generator type of ETL tool (available at www.enhydra.org/tech/octopus/).

To its credit and benefit to its users, it’s still available as a shining example of

the persistence of open source.

It’s in this software landscape that Matt Casters, the author of Kettle and one of the
authors of this book, was busy with consultancy, writing quick hacks and frameworks,
and deploying all sorts of code generators.

Back in the early 2000s he was working as a business intelligence consultant, usually
in the position of a data warehouse architect or administrator. In such a position, you
have to take care of bridging the well-known gap between information and commu-
nication technology and business needs. Usually this sort of work was done without a
big-vendor ETL tool because those things were prohibitively costly back then. As such,
these tools were too expensive for most, if not all, small-to-medium–sized projects. In

xxxiv Introduction

that situation, you don’t have much of a choice: You face the problem time after time
and you do the best you can with all sorts of frameworks and code generation. Poor
examples of that sort of work include a program, written in C and embedded SQL
(ESQL/C) to extract data from Informix; an extraction tool written in Microsoft Visual
Basic to get data from an IBM AS/400 Mainframe system; and a complete data ware-
house consisting of 35 fact tables and 90 slowly changing dimensions for a large bank,
written manually in Oracle PL/SQL and shell scripts.

Thus, it would be fair to say that Matt knew what he was up to when he started
thinking about writing his own ETL tool. Nevertheless, the idea to write it goes back
as far as 2001:

Matt: “I’m going to write a new piece of software to do ETL. It’s going to take up some

time left and right in the evenings and weekends.”

Kathleen (Matt’s wife): “Oh, that’s great! How long is this going to take?”

Matt: “If all goes well, I should have a first somewhat working version in three years and

a complete version in five years.”

The Design of Kettle

After more than ten years of wrestling with ETL tools of dubious quality, one of the
main design goals of Kettle was to be as open as possible. Back then that specifically
meant:

Open, readable metadata (XML) format■

Open, readable relational repository format■

Open API■

Easy to set up (less than 2 minutes)■

Open to all kinds of databases■

Easy-to-use graphical user interface■

Easy to pass data around■

Easy to convert data from/to any possible format■

During the first two years, progress was slow while a lot of work was spent figuring
out what the ultimate list of capabilities would be for the new ETL tool. The idea to create
a parallel ETL engine comes from that time frame. Multiple negative experiences with
quick hacks, frameworks, and code generators led to the conviction that the solution
had to be engine-based.

Because Matt’s background was primarily with the C programming language, he
started dabbling with things like client/server code to test passing data between pro-
cesses and servers. Testing different scenarios taught him a lot about performance
bottlenecks in the encoding/decoding of data. As a consequence, one of the major

 Introduction xxxv

design principles became to leave rows of data untouched as much as possible. To date,
this principle is still present in Kettle.

NOTE The name “Kettle” came originally from “KDE ETTL Environment”

because the original plan was to write the software on top of the K Desktop

Environment (www.kde.org). It was later renamed recursively “Kettle

ETTL Environment” after that plan was dropped.

Ultimately, it was the lack of decent drivers for the multitude of relational databases
that drove the development to the new and upcoming Java programming language.
Work on that started in early 2003. The Standard Widget Toolkit (SWT) was chosen
because Matt had prior negative experiences with the performance and look of the then
available Java AWT (Abstract Window Toolkit). In contrast, SWT (Standard Widget
Toolkit) used native operating system widgets to speed up things on the screen and
comparatively looked good on all operating systems.

Combine a Java newbie with advanced ETL topics, and you will not be surprised to
hear that for the first year of development, the Kettle codebase was a complete mess.
The code didn’t have packages; it was unstructured and had funky (C-style) naming
conventions. Exception handling was unheard of and crashes were not exceptional.
The only thing this embryonic version of Kettle had going for it really was the fact that
it worked. It was capable of reading text files, reading from databases, and writing to
databases, and it had a versatile JavaScript step that allowed you to get by most tough
problems. Most of all, it was very flexible and easy to use. This was, after all, a business
intelligence tool, not a Java project.

However, it was clear that at some point it needed to become a lot better. So help
arrived in the early years in the form of a friend, Wim De Clercq, the co-owner of ixor
(www.ixor.be) and a senior enterprise Java architect. He explained the basics of core
Java concepts such as packages and exception handling. Time was spent reading up on
design patterns such as singletons to simplify the code.

Listening to that advice meant performing massive amounts of code changes. As a
consequence, it was not unusual back then for Matt to spend weekends doing noth-
ing but re-factoring code in Eclipse, rewriting tens of thousands of lines of code. But,
bit by bit, over the course of many weeks and months, things kept going in the right
direction.

Kettle Gets Some Traction

These initial positive results were shared with peers, colleagues, and other senior BI
consultants to hear what they thought of Kettle. That’s how the news spread around
slowly, and that’s how in 2004, Kettle got deployed at the Flemish Traffic Center
(www.verkeerscentrum.be) where billions of rows of data had to be integrated from
thousands of data sources all over Belgium. There was no time to write new code and no
money to buy a big name ETL tool—so Kettle entered the picture. The specific tasks that
had to be performed at the traffic center led to many improvements that could be imple-
mented in a full time capacity for the first time. Consequently, Kettle improved very fast
in that period. For example, the database drivers improved dramatically because now

xxxvi Introduction

there were really diverse test cases. It was also around that time that messages got out
to the world to let people know they could download a gratis (free of charge, not open
source) copy of Kettle for their own use.

Reactions were few but mostly positive. The most interesting response came from
a nice person named Jens Bleuel in Germany who asked if it was possible to integrate
third-party software into Kettle, more specifically an SAP/R3 connector. Kettle version
1.2 was just deployed at the Traffic Center and it would certainly be possible to put code
in there, but it didn’t have a plugin architecture. Jens’ request to integrate existing SAP/
R3 code into Kettle was the main reason to develop the plugin system, and this became
version 2.0 of Kettle. Ultimately, this effort took until the end of 2004. It was a fairly com-
plete release with support for slowly changing dimensions, junk dimensions, 28 steps
and 13 databases. It was then that the real potential of the tool started to show. This in
turn led to the creation by Jens Bleuel of the very first Kettle plugin, ProSAPCON, used
to read data from an SAP/R3 server.

Kettle Goes Open Source

There was a lot of excitement during that period, and Matt and Jens agreed to start
promoting the sale of Kettle from the kettle.be website and via the newfound partner
Proratio (www.proratio.de), the company where Jens was working at that time.

Improvements kept coming and evaluation requests and interest mounted. However,
doing development and sales for a complete ETL tool is too big a task for any single
person. Matt discovered also that working on Kettle was fun, but selling it was not.
He had to find a way to concentrate on the fun part of Kettle development. So by late
summer 2005, the decision was made to go open source. This would let Kettle sell itself
as well as attract contributions from external developers.

When the code and free downloads of version 2.2 were first published in December
2005, the response was massive. The download package that was put up on JavaForge
got downloaded around 35,000 times in the first week alone. The news spread all over
the world pretty quickly.

Given the large number of open source projects that had turned into “abandon-
ware,” it was important to build a community around Kettle as fast as possible. That
meant answering (literally) thousands of e-mails and forum posts in the next few years.
Fortunately, help quickly arrived in the form of an open source business intelligence
company called Pentaho (www.pentaho.com), which acquired the rights to the source
code and employed Matt as lead developer of Kettle. Later, Kettle was re-branded as
Pentaho Data Integration.

Help also arrived in the form of many developers, translators, reviewers, doc writers,
and thousands of bug reports without whose help Kettle would not be where it is today.

About This Book

The beginnings of Pentaho Kettle Solutions go back to August 2009, around the time when
the first book by Roland and Jos, Pentaho Solutions, was released. Just like anyone who
has run his or her first marathon, they proclaimed to each other “never again.” But, as

 Introduction xxxvii

they saw the enthusiastic responses to the first book, the tone of the conversation gradu-
ally changed and soon they were saying that if there were to be another book, it had to
be about Kettle and data integration. When Bob Elliot, the publisher of the first Pentaho
book, approached them about the possibility of writing a Kettle book, the topics and
table of contents were already well underway. To their relief (and surprise), both their
spouses encouraged them to go ahead. The good news kept coming; after consulting
Matt Casters about helping out with the review process, he offered to become one of
the main authors, an offer that was gladly accepted, of course.

The same motivation that spurred the writing of Pentaho Solutions still holds today:
There’s an ongoing and increasing interest in open source and free software solutions,
combined with a growing recognition that business intelligence (BI) solutions are essential
in measuring and improving an organization’s performance. These BI solutions require
an integrated collection of data that is prepared in such a way that it is directly usable for
analysis, reporting, and dashboarding. This is the key reason why most BI projects start
with a data integration effort, and why this book is invaluable in assisting you with this.

Over the past decade, open source variants of more and more types of software
have become commonly accepted and respected alternatives to their more costly and
less flexible proprietary counterparts. The fact that software is open source is often
mistaken for being free of cost, and although that might be true if you only look at
the license costs, a BI solution cannot (and never will) be free of cost. There are costs
associated with hardware, implementation, maintenance, training, and migration, and
when this is all added up it turns out that licenses make up only a small portion of the
total lifecycle cost of any software solution. Open source, however, is much more than
a cheaper way of acquiring software. The fact that the source code is freely available to
anyone ensures better code quality because it is more likely that bugs are found when
more people have access to the source than just the core developers. The fact that open
source software is built on open standards using standard programming languages
(mostly Java) makes it extremely flexible and extensible. And the fact that most open
source software is not tied to a particular operating system extends this flexibility and
freedom even further.

What is usually lacking, however, is a good set of documentation and manuals. Most
open source projects provide excellent quality software, but developers usually care more
about getting great software out than delivering proper documentation. And although
you can find many good sources of information about Kettle, we felt there was a need for
a single source of information to help an ETL developer on his or her way in discovering
the Kettle toolset and building robust data integration solutions. That is exactly what
this book is for—to help you to build data integration solutions using Kettle.

Who Should Read This Book

This book is meant for anyone who wants to know how to deliver ETL solutions using
Kettle. Maybe you’re an IT manager looking for a cost-efficient ETL solution, an IT
professional looking to broaden your skill set, or a BI or data warehouse consultant
responsible for developing ETL solutions in your organization. Maybe you’re a software
developer with a lot of experience building open source solutions but still new to the
world of data integration. And maybe you’re already an experienced ETL developer

xxxviii Introduction

with deep knowledge of one or more of the existing proprietary tools. In any case, we
assume you have a hands-on mentality because this is a hands-on book. We do expect
some familiarity with using computers to deliver information, installing software, and
working with databases, but most of the topics will be explained right from the start.
Of course, the data integration concepts are explained as well, but the primary focus
is on how to transform these concepts into a working solution. That is exactly why the
book is called Pentaho Kettle Solutions.

What You Will Need to Use This Book

In order to use this book, you need only two things: a computer and an Internet con-
nection. All the software we discuss and use in this book is freely available over the
Internet for download and use. The system requirements for the computer you will
need are fairly moderate; in fact, any computer that is less than four years old will do
the job just fine, as long as you have at least 1 gigabyte of RAM installed and 2 gigabytes
of free disk space available for downloading and installing software.

The various chapters contain URLs where you can find and download the software
being used and the accompanying installation instructions. As for Pentaho, there are, apart
from the actual source code of course, four versions of the software that you can use:

GA (General Availability) releases: ■ These are the stable builds of the software,
usually not the most recent ones but surely the most reliable.

Release candidates: ■ The “almost ready” next versions of the software, possibly
with a few minor bugs still in them.

Milestone releases: ■ These are created more frequently and allow you to work
with recent versions introducing new features.

Nightly builds: ■ The most up-to-date versions of the software, but also the least
stable ones.

When writing this book, we mostly worked with the nightly builds that generally
precede the GA releases by three months or more. At the time of writing, the GA ver-
sion of Kettle 4.0 has just been released. This means that when you read this book, the
software used in this book will have already been put through its paces and most initial
bugs will be fixed. This allows you to work through the material using a stable, bug-free
product, and you can concentrate on building solutions, not fixing bugs.

The complete list with download options is available online at http://wiki
.pentaho.com/display/COM/Community+Edition+Downloads.

What You Will Learn from This Book

This book will teach you:

What data integration is, and why you need it■

The concepts that form the foundation of the Kettle solution■

How to install and configure Kettle, both on a single computer and a client/■

server environment

www.allitebooks.com

http://www.allitebooks.org

 Introduction xxxix

How to build a complete end-to-end ETL solution for the MySQL Sakila demo ■

database

What the 34 subsystems of ETL are and how they translate to the Kettle toolkit■

How Kettle can be used for data extraction, cleansing and conforming, handling ■

dimension tables, loading fact tables, and working with OLAP cubes

What the Kettle development lifecycle looks like■

How to take advantage of Pentaho’s Agile BI tools from within the Kettle devel-■

opment environment

How to schedule and monitor jobs and transformations■

How to work with multiple developers and manage different versions of an ETL ■

solution

What data lineage, impact analysis, and auditing is, and how Kettle supports ■

these concepts

How to increase the performance and throughput of Kettle using partitioning, ■

parallelization, and dynamic clustering

How to use complex files, web services, and web APIs■

How to use Kettle to load an enterprise data warehouse designed according to ■

the Data Vault principles

How to integrate Kettle with other solutions and how to extend Kettle by devel-■

oping you own plugins

How This Book Is Organized

This book explains ETL concepts, technologies, and solutions. Rather than using a
single example, we use several scenarios to illustrate the various concepts, although
the MySQL Sakila example database is heavily used throughout the book. When the
example relies on a database, we have taken care to ensure the sample code is compat-
ible with the popular and ubiquitous MySQL database (version 5.1).

These samples provide the technical details necessary to understand how you can
build ETL solutions for real-world situations. The scope of these ETL solutions ranges
from the level of the departmental data mart to the enterprise data warehouse.

Part I: Getting Started

Part I of this book focuses on gaining a quick and high-level understanding of the
Kettle software, its architecture, and its capabilities. This part consists of the following
chapters:

Chapter 1: ETL Primer—Introduces the main concepts and challenges found in
data-integration projects. We explain what the difference between transaction
and analytical systems is, where ETL fits in, and how the various components of
an ETL solution work to solve data-integration problems.

xl Introduction

Chapter 2: Kettle Concepts—Provides an overview of the design principles used
as the foundations for Kettle and the underlying architecture of the software. We
explain the basic building blocks, consisting of jobs, transformations, steps, and
hops, and how they interact with each other. You’ll also learn how Kettle inter-
acts with databases and how this can be influenced by setting database-specific
options. This chapter also contains a hands-on mini tutorial to quickly walk you
through Kettle’s user interface.

Chapter 3: Installation and Configuration—Explains how and where to obtain
the Kettle software and how to install it. We explain which programs make up
Kettle, and how these different programs relate to each other and to building
ETL solutions. Finally, we explain various configuration options and files and
where to find them.

Chapter 4: An Example ETL Solution—Sakila—Explains how to build a complete
ETL solution based on the popular MySQL Sakila sample database. Based on a
standard star schema designed for this chapter, you’ll learn how to work with
slowly changing dimensions and how to work with lookup steps for loading fact
tables. An important topic is the use of mapping steps in a transformation to be
able to re-use existing transformations.

Part II: ETL

The second part of this book is entirely devoted to the 34 ETL subsystems as laid out
by Dr. Ralph Kimball and his colleagues from the Kimball Group in their latest book,
The Kimball Group Reader (Wiley, 2010) and before that in the 2nd edition of The Data

Warehouse Lifecycle Toolkit (Wiley, 2008), one of the best-selling data warehousing books
in history. This part includes the following chapters:

Chapter 5: ETL Subsystems—Provides an introduction to the various subsystems
and their categorization. The four categories used are Extracting, Cleansing and
Conforming, Delivering, and Managing. In this chapter, we also explain how Kettle
supports each of the subsystems. The chapter is not only the foundation to the other
chapters in this part of the book, but is essential reading to understand the way ETL
solutions in general should be architected.

Chapter 6: Data Extraction—Covers the first main category of subsystems con-
sisting of data profiling, change data capture, and the extract system itself. We
explain what data profiling is and why this should always be the first activity
in any ETL project. Change data capture (CDC) is aimed at detecting changes
in a source system for which we provide several solutions that can be used in
conjunction with Kettle.

Chapter 7: Cleansing and Conforming—This second main ETL subsystem cat-
egory is where the real action of the ETL process takes place. In most cases, it’s
not enough to read data from different sources and deliver it somewhere else.
Data must be made uniform; redundant or duplicate data needs to be deleted; and
multiple encoding schemes need to be conformed to a single uniform encoding

 Introduction xli

for the data warehouse. Many of the Kettle steps that can be used for transform-
ing data are explained and used in example transformations, including the new
Fuzzy Lookup step using advanced string matching algorithms that can be used
to deduplicate data.

Chapter 8: Handling Dimension Tables—This is part of the third subsystem cat-
egory, Delivering. We start by explaining what dimension tables are. We describe
the various load and update types for these tables using the “Dimension lookup /
update” step, and give special attention to subsystem 10, the surrogate key generator.
Special dimension types such as time dimensions, junk, or heterogeneous dimen-
sions and mini dimensions are covered as well, and we conclude by explaining
recursive hierarchies.

Chapter 9: Loading Fact Tables—This chapter covers loading the different types
of fact tables. The first half of the chapter is devoted to the various load strategies
that can be used to update fact tables and explains how to accommodate for late-
or early-arriving facts. We introduce and demonstrate the different bulk loaders
present in Kettle. Apart from the most familiar fact table type, the transaction fact
table, we also explain the periodic and accumulating fact tables. Finally, a new
type of fact table is introduced, the state oriented fact table.

Chapter 10: Working with OLAP Data—This is an entire chapter devoted to only
one of the subsystems (20, OLAP cube builder). In this chapter, we illustrate how
to work with the three types of OLAP sources and targets: reading data from
XML/A and Mondrian cubes, and reading from and loading Palo cubes.

Part III: Management and Deployment

Where the previous part of this book focused on how to build solutions, the chapters
in this part focus on how to deploy and manage them.

Chapter 11: ETL Development Lifecycle—This chapter takes one step back and
discusses how to design, develop, and test an ETL solution using the tools avail-
able in Kettle. We cover the new Agile BI tools and how they can help speed up
the development process, and explain what types of testing are required before
a solution can be delivered.

Chapter 12: Scheduling and Monitoring—Covers the different scheduling
options. We describe standard operating system scheduling tools such as cron and
the Windows Task Scheduler, and the built-in Pentaho BI scheduler. Monitoring
running jobs and transformations can be done directly from the design environ-
ment, but we also show you how to use the logging tables to retrieve information
about completed or failed jobs.

Chapter 13: Versioning and Migration—Explains how to keep different versions
of Kettle jobs and transformations, enabling a roll back to a previous version if
necessary. Another important topic covered in this chapter is the separation of
development, test, acceptance, and production environments and how to migrate
or promote Kettle objects from one stage to the next.

xlii Introduction

Chapter 14: Lineage and Auditing—In this chapter, you learn how to use the Kettle
metadata to find out where data came from and where it is used. For auditing
purposes, it’s important to be able to keep track of when jobs ran, how long they
took, and how many and what changes were made to the data. To accommodate
for this, Kettle has extensive logging capabilities, which we describe in detail.

Part IV: Performance and Scalability

This part of the book is all about speeding up the ETL process. Several options are
available for increasing extract, transform, and load speeds, and each chapter covers
a specific class of solutions that can be used in a Kettle environment. The following
chapters cover these topics:

Chapter 15: Performance Tuning—Explains the inner workings of the transfor-
mation engine and assists you in detecting performance bottlenecks. We present
several solutions to improve performance and throughput. A large part of this
chapter is devoted to speeding up the processing of text files and pushing data
through the Kettle stream as fast as possible.

Chapter 16: Parallelization, Clustering, and Partitioning—Describes more tech-
niques to increase Kettle’s performance. Two classes of strategies exist: scale up
and scale out. A scale up strategy aims at taking advantage of the processing
power in a single machine by leveraging multi-core CPUs and large amounts of
memory. Scale out means distributing a task to multiple different servers. We
explain both strategies and the way they can be used from within Kettle.

Chapter 17: Dynamic Clustering in the Cloud—Shows you how to take advan-
tage of the huge computing power that’s available on demand nowadays. The
chapter explains how to apply the clustering principles presented in Chapter
16 to a cloud environment, in this case the Amazon Elastic Computing Cloud
(EC2). You’ll learn how to dynamically expand and decline a computing cluster
based on the expected workload in order to minimize cost and maximize peak
performance.

Chapter 18: Real-Time Data Integration—Takes a look at how a perpetual
stream of data can be handled by Kettle. As explained in this chapter, the Kettle
engine is stream-based in its genes. All it takes to handle real-time, streaming
data is to connect to a permanent data stream or message queue and fire up the
transformation.

Part V: Advanced Topics

The Advanced Topics part of this book covers miscellaneous subjects to illustrate the
power of Kettle, how to extend this power, and how to use it from third-party applica-
tions, for instance a custom Java application.

Chapter 19: Data Vault Management—Explains what the Data Vault (DV) model-
ing technique for enterprise data warehousing is and how Kettle can be used to load
the three types of tables that make up a DV schema: hubs, links, and satellites.

 Introduction xliii

Chapter 20: Handling Complex Data Formats—Shows you how to work with data
of a non-relational nature. Different types of semi-structured and unstructured data
are covered, including the way data in a key/value pair format can be transformed
into regular tables, how to use regular expressions to structure seemingly unstruc-
tured data, and how to deal with repeating groups and multi-valued attributes. The
ability to handle key/value pair data stores is becoming more relevant as many of
the so-called schema-less or NoSQL databases store their data in this format.

Chapter 21: Web Services—Takes a deep dive into the world of data available on
the World Wide Web. The chapter covers the main components of the Web, and
describes the various methods for accessing data from the Web within Kettle, such
as HTTP GET, POST, and SOAP. We also thoroughly explain data formats such as
XML, JSON and RSS, and show how to process these formats with Kettle.

Chapter 22: Kettle Integration—Illustrates the various ways in which Kettle
can be used from external applications. The Kettle API is described and several
examples help you on your way to embedding Kettle jobs and transformations in
a custom application. One of the easiest ways to do this is to use Pentaho Reports,
which can use a Kettle transformation as a data source.

Chapter 23: Extending Kettle—Teaches you how to write your own plugins to
augment the already extended capabilities of Kettle. This final chapter covers
the prerequisites and tools you need, and describes how to develop the various
types of plugins: steps, job entries, partitioning methods, repository types, and
database types.

Appendixes

We conclude the book with a few quick references.

Appendix A: The Kettle Ecosystem—Draws a map of the Kettle world and
explains who’s involved, where to get (or give!) help, and how to interact with
others using the forums. We also explain how to work with Jira, Pentaho’s issue
management system, to find out about and track bugs, monitor their status, and
see what’s on the roadmaps.

Appendix B: Kettle Enterprise Edition Features—Explains the differences
between the two editions of Kettle and highlights the extra features available in
the Enterprise Edition.

Appendix C: Built-in Variables and Properties Reference—Provides an over-
view of all default Kettle variables and properties you can call and use from
within your Kettle solutions.

Prerequisites

This book is mainly about Kettle, and installing and using this software are the primary
topics of this book. Chapter 3 describes the installation and configuration of Kettle,
but there are other pieces of software you’ll need in order to follow along with all the

xliv Introduction

examples and instructions in this book. This section points you to these tools and shows
you how to get and install them.

Java

Kettle (and the rest of the Pentaho stack for that matter) runs on the Java platform.
Although Java is ubiquitous and probably already installed on your system, we do
provide installation instructions and considerations in Chapter 3.

MySQL

The MySQL database is the default database we use throughout the book. It can be
obtained from the MySQL website at http://dev.mysql.com/downloads/mysql.
The MySQL database is available for almost any current operating system and can be
installed either by downloading and running the installer for your environment, or by
using the standard repositories for a Linux system. If you’re running Ubuntu and don’t
have a MySQL server installed yet, you can do so very quickly by opening a terminal
screen and executing the command sudo apt-get install mysql-server. Because
this will only install the server, you might also want to download and install the GUI
tools to work with the database outside of the Kettle environment. Starting with version
5.2, the MySQL Workbench now contains the database modeling, management, and
query tools in one integrated solution.

SQL Power Architect

To model your target environment, we strongly recommend using a data modeling tool
because this capability is not available in the Kettle solution, nor anywhere else in the
Pentaho toolset. One of the best open source solutions around is Power Architect, which
is used in this book as well. You can find the tool on the download page of SQLPower,
the Canadian company that develops and maintains Power Architect, which is located
at www.sqlpower.ca/page/architect.

Eclipse

Kettle is programmed in Java, using the Eclipse IDE (Integrated Development
Environment), and the final chapter of this book contains instructions for develop-
ing your own Kettle plugins using Eclipse. Eclipse is a versatile tool that can be used
to program solutions in any programming language you can think of. Thanks to the
architecture of the tool, it can also be used for data modeling, report creation, data min-
ing, and so on by using plugins and switching to different perspectives. Eclipse can be
obtained from the download page at www.eclipse.org/downloads. If you’re running
Ubuntu, it’s in the standard repositories and can be installed either from the Software
Center (Developer Tools ➪ IDEs in 10.04 or Programming in 9.10), or by running sudo
apt-get install eclipse from the command line.

 Introduction xlv

On the Website

All the example material used in the book is available for download from the compan-
ion website at Wiley (www.wiley.com/go/kettlesolutions). The downloads are
organized into folders for each chapter, in which you will find:

Power*Architect data models for the sample databases in the book■

All PDI jobs and transformations■

SQL Scripts for examples and modifications■

Further Resources

Numerous books are available on the specific topics covered in this book. Many chap-
ters contain references for further reading and links to websites that contain additional
information. If you are new to business intelligence and data warehousing in general
(or want to keep up with the latest developments), here are some good places to start:

http://en.wikipedia.org/wiki/Business_intelligence■

http://www.kimballgroup.com■

http://b-eye-network.com■

http://www.tdwi.org■

We also encourage you to visit our websites, where you can find our contact informa-
tion in case you want to get in touch with us directly:

Matt Casters:■ www.ibridge.be

Roland Bouman:■ rpbouman.blogspot.com

Jos van Dongen:■ www.tholis.com

P a r t

I
Getting Started

In This Part

Chapter 1: ETL Primer

Chapter 2: Kettle Concepts

Chapter 3: Installation and Configuration

Chapter 4: An Example ETL Solution—Sakila

www.allitebooks.com

http://www.allitebooks.org

3

C H A P T E R

1

ETL Primer

The introduction of this book described the need for data integration. This chapter
provides a starting point to the wonderful world of data integration and explains the
differences and similarities among the three main forms of data integration: ETL, ELT,
and EII. To fully understand the reasoning behind using a data warehouse and an
ETL solution to load and update data, we start by explaining the differences between
a transaction and an analysis database.

OLTP versus Data Warehousing

The first question one might ask is how source data systems differ from business intel-

ligence (BI) systems (sometimes still called decision support systems or DSS). An individual
transaction system, often denoted by the acronym OLTP (short for OnLine Transaction
Processing), needs to be able to very quickly retrieve a single record of information. When
multiple records are needed they are usually tied to a single key that has been retrieved
before. Think of an order with the accompanying order lines in an order entry system
or a personnel record with all salary and bonus information in an HR system. What’s
more: this data often needs to be updated as well, usually just one record at a time.

The biggest difference between an OLTP and a BI database (the data warehouse, or DWH)
is the amount of data analyzed in a single transaction. Whereas an OLTP handles many
concurrent users and queries touching only a single record or limited groups of records
at a time, a data warehouse must have the capability to operate on millions of records to

4 Part I ■ Getting Started

answer a single query. Table 1-1 shows an overview of the major differences between an
OLTP and a data warehouse.

Table 1-1: OLTP versus Data Warehouse

CHARACTERISTIC OLTP DATA WAREHOUSE

System scope/view Single business process Multiple business subjects

Data sources One Many

Data model Static Dynamic

Dominant query type Insert/update Read

Data volume per
transaction

Small Big

Data volume Small/medium Large

Data currency Current timestamp Seconds to days old

Bulk load/insert/update No Yes

Full history available No Yes

Response times < 1 second < 10 seconds

System availability 24/7 8/5

Typical user Front office Staff

Number of users Large Small/medium

Of course, it’s not as black and white as this table might indicate. The distinctions listed
are a rather classic way of looking at the two types of systems. More and more often, busi-
ness intelligence systems are being used as part of the primary business process. A call
center agent might have a screen in front of her with not only customer details such as
name and address, but also information about order and payment history retrieved from an
operational data store (ODS) or a data warehouse. Many CRM systems are already capable of
showing a credit or customer score on-the-fly, items that have been pre-calculated in the data
warehouse and are available on demand for front office workers. This means that the more
the data warehouse is used for operational purposes, the more the same requirements apply
as for OLTP systems, especially regarding system availability and data currency.

Probably the most discussed characteristic of the data warehouse is the required
response time. Ten years ago, it wasn’t a problem when a report query took one or two
minutes to retrieve and display its data. Nowadays users expect response times similar
to what they’re accustomed to when using a search engine. More than ten seconds and
users get impatient, start clicking refresh buttons (which will sometimes re-issue the
query, making the problem even worse), and eventually avoid using the data warehouse
because it’s so slow. On the other hand, when the data warehouse is used for data min-
ing purposes, analysts find a response time of several hours totally acceptable, as long
as the result to their inquiry is valuable.

 Chapter 1 ■ ETL Primer 5

What Is ETL?

You know of course that ETL is short for extract, transform, and load; no secrets here.
But what exactly do we mean by ETL? A simple definition could be “the set of processes
for getting data from OLTP systems into a data warehouse.” When we look at the roots
of ETL it’s probably a viable definition, but for modern ETL solutions it grossly over-
simplifies the term. Data is not only coming from OLTP systems but from websites,
flat files, e-mail databases, spreadsheets, and personal databases such as Access as
well. ETL is not only used to load a single data warehouse but can have many other
use cases, like loading data marts, generating spreadsheets, scoring customers using
data mining models, or even loading forecasts back into OLTP systems. The main ETL
steps, however, can still be grouped into three sections:

 1. Extract: All processing required to connect to various data sources, extract the data
from these data sources, and make the data available to the subsequent process-
ing steps. This may sound trivial but can in fact be one of the main obstacles in
getting an ETL solution off the ground.

 2. Transform: Any function applied to the extracted data between the extraction
from sources and loading into targets. These functions can contain (but are not
limited to) the following operations:

Movement of data■

Validation of data against data quality rules■

Modification of the content or structure of the data■

Integration of the data with data from other sources■

Calculation of derived or aggregated values based on processed data■

 3. Load: All processing required to load the data in a target system. As we show
in Chapter 5, this part of the process consists of a lot more than just bulk load-
ing transformed data into a target table. Parts of the loading process include, for
instance, surrogate key management and dimension table management.

The remainder of this section examines how ETL solutions evolved over time and
what the main ETL building blocks look like.

The Evolution of ETL Solutions

Data integration needs have existed as long as data has been available in a digital format.
In the early computing days, before ETL tools existed, the only way to get data from
different sources and integrate it in one way or another was to hand-code scripts in
languages such as COBOL, RPG, and later in Perl or PL/SQL. Although this is called
the first generation of ETL solutions, it may surprise you that today, about 45 percent
of all ETL work is still conducted by using hand-coded programs/scripts. This might
have made sense in the days when ETL tools had a six-figure price tag attached to them,
but currently there are many open source and other low-cost alternatives available

6 Part I ■ Getting Started

so there’s really no point in hand-coding ETL jobs anymore. The main drawbacks of
hand-coding are that it is:

Error prone■

Slow in terms of development time■

Hard to maintain■

Lacking metadata■

Lacking consistent logging/error handling■

The second generation of ETL tools (actually the first if we’re talking about “tools”
rather than the broader “solutions”) tried to overcome these weaknesses by generat-
ing the required code based on the design of an ETL flow. In the early 1990s, products
such as Prism, Carlton, and ETI emerged but most were acquired later by other ETL
vendors. ETI is probably the only independent vendor left from those early days that
still offers a code-generating solution. The fact that code generators are listed here as
second-generation ETL solutions doesn’t necessarily mean they are outdated. It’s rather
the contrary; code generators are alive and kicking, with Oracle’s Warehouse Builder
arguably being the most well-known product in this category. The popular open source
tool Talend is another example of a code-generation solution.

Code generators have their pros and cons; the biggest disadvantage is that most code
generators can work with only a limited set of databases for which they can generate
code. Soon after the code generators came into use, a third generation of ETL tools
emerged. These were based on an engine where all the data processing took place,
and a set of metadata that stored all the connection and transformation rules. Because
engines have a generic way of working and all the transformation logic is independent
from both the source and the target data stores, engine-based ETL tools, in general,
are more versatile than code-generating tools. Kettle is a typical example of an engine-
based tool; other familiar names in this area are Informatica Powercenter and SQL
Server Information Services.

Both code generators and engine-based tools offer some help in discovering the
structure of the underlying data sources and the relationships between them, although
some tools are more capable in doing this than others. They also require that a target
data model is developed either before or during the design of the data transformation
steps. After this design phase, the target schema has to be mapped against the source
schema(s). This whole process is still very time consuming, and as a result, a new gen-
eration of data warehouse tools emerged that are model driven. MDA tools (for Model

Driven Architecture) try to automate the data warehouse and data mart design process
from the ground up by reading the source data model and generating both the target
schema and all required data mappings to populate the target tables. There are only
a few such tools on the market, with Kalido and BIReady being the most well known.
They are no silver bullets, however; MDA tools still require a skilled data warehouse
architect to reap the benefits from them. Although they cannot solve every data integra-
tion challenge they can be a huge time (and thus money) saver.

 Chapter 1 ■ ETL Primer 7

DATA WAREHOUSE VERSUS DATA MART

In this book, the terms data warehouse and data mart are often used as if

they are interchangeable items. They’re not, and they differ widely in scope,

model, and applicability. A data warehouse is meant to be the single, inte-

grated storehouse of (historical) data that can be used for supporting an orga-

nization’s decision process. As such, it contains data covering a wide range

of topics and business processes, for instance finance, logistics, marketing,

and customer support. Often, a data warehouse cannot be accessed directly

by end user tools. A data mart, in contrast, is meant for direct access by end

users and end user tools, and has a limited specific analytical purpose, for

instance Retail Sales or Customer Calls.

ETL Building Blocks

The best way to look at an ETL solution is to view it as a business process. A business
process has input, output, and one or more units of work, the process steps. These steps
in turn also have inputs and outputs, and perform an operation to transform the input
into the output. Think, for example, of a claims department at an insurance company.
There’s a big sign on the door that says Claims Department, which tells the purpose
and main process of the department: handling claims. Within the department, each
desk or sub-department might have its own specialty: health insurance claims, car
insurance claims, travel insurance claims, and so on. When a claim is received at the
office, it is checked to find out to which desk it should be sent. The claims officer can
then determine whether all required information to handle the claim is available and
if not, send it back with further instructions to the submitter. Each day at 9 a.m. this
process of handling claims starts, and it runs until 5 p.m.

This example is a lot like an ETL process: data arrives or is retrieved and a validation
step determines what kind of data it is. The data is then sent to a specific transforma-
tion that is designed to handle that specific data. When the transformation can process
the data, it’s delivered to the next transformation or a destination table, and in the case
of errors, it is transferred to an error handling routine. Each night at 3 a.m., the job is
started by a scheduler and it ends when all data is processed.

You might now have a global feeling of how ETL processes are designed. From the
preceding examples you can deduce that there must be some mechanism to control
the overall process flow, and other more specific parts of the process that do the actual
transformation. The first part is called a job in Kettle terminology, and the latter part
consists of transformations. Jobs are the traffic agents of an ETL solution, and transforma-
tions are the basic building blocks. Individual transformations can be chained together
in a logical order, just like a business process, to form a job that can be scheduled and
executed. A transformation in turn can also consist of several steps. A step is the third
basic building block of a Kettle solution, and the connection between steps and trans-
formation is formed by hops. You’ll read a lot more about jobs, transformations, steps,

8 Part I ■ Getting Started

and hops in the remainder of this book, but these four building blocks enable you to
develop any imaginable ETL solution. Chapter 2 provides a more detailed introduction
to these four concepts.

ETL, ELT, and EII

The term data integration encompasses more than just ETL. With ETL, data is extracted
from one or more source systems and, possibly after one or more transformation steps,
physically stored in a target environment, usually a data warehouse. To be able to dis-
tinguish between ETL and other forms of data integration, we need a way of classifying
and describing these other mechanisms.

Figure 1-1 shows a classic example of a data warehouse architecture. In this figure
there are multiple source systems, a staging area where data is extracted to, a central
warehouse for storing all historical data, and finally data marts that enable end users
to work with the data. Between each of these building blocks a data integration process
is used, as shown by the ETL blocks.

Files

DBMS

ERP

DBMS

CSV
Files

DBMS

Staging
Area

Central Warehouse and
Data Marts

ETL ETL ETL

Sources ETL Process Data Warehouse End User Layer

Figure 1-1: Classic data warehouse architecture

This is an architecture that has been used for the past 20 years and has served us
well. In fact, many current data warehouse projects still use an architecture similar to
the one shown in Figure 1-1. This picture clearly shows that ETL tools are used not only
to extract data and load a data warehouse, but also to populate data marts and possibly
other databases like an operational data store (not present in the diagram).

Figure 1-1 also shows that there is an intermediate step between the source systems
and the data warehouse, called the staging area. This part of the overall architecture
is merely a drop zone for data; it serves as an intermediate area to get data out of the
source systems as quickly as possible. A staging area doesn’t necessarily need to be a
database system; in many cases, using plain ASCII files to stage data works just as well
and is sometimes a faster solution than first inserting the data into a database table.

 Chapter 1 ■ ETL Primer 9

NON-ETL USE FOR ETL TOOLS

ETL tools are used for more than data warehouse purposes alone. Because

they offer a wide range of connectivity and transformation options, another

often seen use case is data migration. With the help of a tool like Kettle it is

fairly easy to connect to database A and migrate all the data to database B. In

fact, Kettle has two wizards (Copy Table and Copy Tables) that will handle this

for you automatically, including generating the new target tables using the

target database SQL syntax.

A third and more complex use case is data synchronization, meaning that

two (or more) databases are being kept in sync using ETL tools. Although this

can be achieved to a certain level, it is not the most common way of using ETL.

Usually there are time constraints (changes made in database A need to be

available in database B within the shortest achievable amount of time), which

make the batch orientation of most ETL tools an unlikely choice for synchroni-

zation purposes.

ELT

ELT (short for extract, load, and transform) is a slightly different approach to data
integration than ETL. In the case of ELT, the data is first extracted from the source(s),
loaded into the target database, and then transformed and integrated into the desired
format. All the heavy data processing takes place inside the target database. The advan-
tage of this approach is that in general, a database system is better suited for handling
large workloads where hundreds of millions of records need to be integrated. Database
systems are also usually optimized for I/O (throughput), which helps to process data
faster, too.

There is a big “but” here: In order to benefit from an ELT approach, the ELT tool
needs to know how to use the target database platform and the specific SQL dialect
being used. This is the reason there aren’t a lot of ELT solutions on the market and why
a general-purpose ETL tool such as Kettle lacks these capabilities. Nevertheless, most of
the traditional closed source ETL vendors augmented their tools with pushdown SQL
capabilities, basically resulting in supporting ETLT (extract, transform, load, transform)
scenarios, where transformation can take place either within the engine (especially for
operations not supported by the target database), or after loading inside the database.
Leading database vendors such as Microsoft (SQL Server Integration Services) and
Oracle (Oracle Warehouse Builder) have a headstart here and have had ETLT capabilities
by design because their tools were already tightly integrated with the database. Oracle
even bought Sunopsis some time ago, a company that created one of the few special-
ized ELT solutions on the market (now available as Oracle Data Integrator). Others,
like Informatica and Business Objects, have added pushdown SQL capabilities to their
products in later releases. An excellent overview of the pros and cons of ETL and ELT
can be found in this blog by Dan Linstedt, the inventor of the Data Vault data ware-
house modeling technique: http://www.b-eye-network.com/blogs/ linstedt/
archives/2006/12/etl_elt_-_chall.php.

10 Part I ■ Getting Started

A special product that should be mentioned here is LucidDB. This open source colum-
nar BI database took the ETL and ELT concepts one step further and is capable of han-
dling all the ETL functionality inside the database using extensions to standard ANSI
SQL. To do this, LucidDB uses so called wrappers around different data sources. After
a wrapper is defined for a source (which could be a database, a text file, or even a Web
service), the source can be accessed using standard SQL to perform any operation that
the SQL language supports. This architecture, of course, makes LucidDB also capable
of acting as a lightweight EII solution (Enterprise Information Integration), which we
cover in the next section.

EII: Virtual Data Integration

Both ETL and ELT move or copy data physically to another data store, from the OLTP
to the data warehouse system. The reasons for using a separate data warehouse and
hence, moving the data to that datastore, were explained in the earlier section “OLTP
versus Data Warehousing.” In more and more cases, however, there is no need to move
or copy data. In fact, most users don’t even care whether there is an ETL process and
a data warehouse complemented with data marts: They just want access to their data!
In a way, the data warehouse architecture displayed in Figure 1-1 is like the kitchen of
a restaurant. As a customer, I don’t really care how my food is prepared—I just want
it served in a timely matter and it should taste great. Whatever happens behind those
swinging doors is really none of my business. The same applies to a data warehouse:
Users don’t really care how their data is processed; they just want to access it quickly
and easily.

So instead of physically integrating data, it is virtually integrated, making the data
accessible in real time when it is needed. This is called enterprise information integration,
or EII; other terms such as data federation and data virtualization are used as well and have
the same meaning. The main advantage of this approach is, of course, the fact that data
is always up-to-date. Another advantage is that there is no extra storage layer and no
extra data duplication. Some data warehouse environments copy the same data three or
four times: once in a staging area, then an operational data store (ODS), the data ware-
house itself, and finally the data marts. By using virtual data integration techniques,
the data is accessible for an end user as if it were a data mart, but in reality the EII tool
takes care of all the translations and transformations in the background.

Although EII sounds like a winning strategy, it does have some drawbacks. Table 1-2
highlights the differences between using a physical and virtual data integration
approach.

You can draw some conclusions from Table 1-2. One is that managing large volumes
of cleansed, current data using a virtual approach will be challenging, if not impossible.
Another conclusion might be that ETL is a tool that typically belongs in the physical
integration category, but as you will see in Chapter 22, Pentaho Reporting can be used
to invoke Kettle data integration jobs as a data source on an ad-hoc basis, offering some
of the advantages of a virtual data warehouse solution combined with all the function-
ality of a full-fledged ETL tool.

 Chapter 1 ■ ETL Primer 11

Table 1-2: Virtual versus Physical Data Integration

CHARACTERISTIC PHYSICAL VIRTUAL

Data currency
Query performance/latency
Frequency of access
Diversity of data sources
Diversity of data types
Non-relational data sources
Transformation and cleansing
Performance predictability
Multiple interfaces to same data
Large query/data volume
Need for history/aggregation
Legend: =Weak, =Acceptable, =Strong

©Mark Madsen, Third Nature, Inc., 2009. All Rights Reserved. Used with Permission.

Data Integration Challenges

Data integration typically poses a number of challenges that need to be addressed and
resolved before your solution is up and running. These challenges can be of a political,
organizational, functional, or technical nature.

First and foremost, you’ll need to find out which data is needed to answer the ques-
tions that your organization wants answered and build a solid business case and project
plan for delivering that required information. Without a proper business case for start-
ing a business intelligence project, you’ll likely fail to get the necessary sponsorship.
Technological barriers can be challenging but are in most cases removable; organiza-
tional barriers are much harder to take away. Although we won’t cover these topics
further in this book we just wanted to raise awareness about this important topic.

NOTE For more information, see Ralph Kimball’s Data Warehouse Lifecycle

Toolkit (2nd edition). Chapter 3 addresses gathering business requirements.

A good plan and a business case might get you the necessary support to start a
project, but they are not enough to deliver successful solutions. For this, a solid meth-
odology is needed as well, and of course a team of bright and experienced people won’t
hurt either. For many years IT projects were run using a waterfall approach where a
project had its initiation phase, followed by design, development, testing, and moving

12 Part I ■ Getting Started

to production. For business intelligence projects, of which ETL is an important part, this
never worked quite well. As you’ll see in the following section, a more agile approach
fits the typical steps in a BI project much better.

On a more detailed level, you need to face the ETL design challenges, and define
how your jobs and transformations will be built, not in a pure technical sense, but in a
more functional way. There are many ways in which an ETL tool can be used to solve a
specific problem, and no matter which approach is taken, it’s mandatory that the same
conceptual design is used to tackle similar problems. For instance, if the team decides
to stage data to files first, stick to that and don’t mix in staging data to a database for
some parts of the solution, unless absolutely necessary.

After solving the organizational, project, and design challenges, the first technical
issue is finding out where to get the data from, in what format it is available, and what
exactly makes up the data you’re interested in. Not only might it be a challenge to get
access to the data, but connecting to the systems that host the data can be a major issue,
too. A lot of the data available in enterprise information systems resides on mainframe
computers or other hard-to-access systems such as older proprietary UNIX editions.

Large data volumes are also a challenge. Extracting all the data from the source sys-
tems every time you run an ETL job is not feasible in most circumstances. Therefore you
need to resolve the issue of identifying what has changed in your source systems to be
able to retrieve only the data that has been inserted, updated, or deleted. In some cases,
this issue cannot be gracefully resolved and a brute force approach needs to be taken
that compares the full source data set to the existing data set in the data warehouse.

Other challenges have to do with the way the data needs to be integrated; suppose
there are three different systems where customer data is stored, and the information
in these systems is inconsistent or conflicting? Or how do you handle incomplete,
inconsistent, or missing data?

Methodology: Agile BI

One of the first challenges in any project is to find a good way to build and deliver the
solution, including proper documentation. This holds true for any software package,
not only for ETL. Over the years, many project management and software develop-
ment methodologies have seen the light of day. Maybe you remember the days of the
structured analysis and design methodologies, as developed in the 70s by people like
Ed Yourdon and Tom DeMarco. These approaches all had a so-called waterfall model
in common, meaning that one step in the analysis or design phase needs to be complete
before you can move on to the next one. You can find more background information about
these methods at http://en.wikipedia.org/wiki/Structured_Analysis.

During the 80s and 90s, developers found that these structured, waterfall-based meth-
ods weren’t always helpful, especially when requirements changed during the project. To
cope with these changing requirements, different “agile” development methods emerged,
with Scrum arguably being the best-known example. What’s so special about agile devel-
opment? To make that clear, the founders and proponents of agile methodologies came
up with the Agile Manifesto, which declares the values of the agile methodology:

Individuals and interactions over processes and tools■

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ ETL Primer 13

Working software over comprehensive documentation■

Customer collaboration over contract negotiation■

Responding to change over following a plan■

The Agile Manifesto (full text available on http://agilemanifesto.org) also
contains 12 guiding principles that define what Agile is. In short, it’s about:

Early and frequent delivery of working software■

Welcoming changing requirements■

Business and IT working closely together■

Reliance on self-motivated developers and self-organizing teams■

Frequent, face-to-face conversations to discuss issues and progress■

Keeping it simple: maximizing the amount of work not done■

NOTE There is an abundant amount of information about agile development

and the Scrum methodology available online. A good place to start is http://

en.wikipedia.org/wiki/Scrum_(development).

Now what has all this to do with business intelligence, and more specifically, ETL?
Well, in the case of Pentaho and Kettle: everything! Pentaho has always embraced
agile development methods (especially Scrum) to incrementally develop and release
new versions of their BI platform and components. Development phases are measured
and communicated in Sprints and Milestones, which is also reflected in the download
versions you can obtain from the CI (Continuous Integration) repositories. During
2009, Pentaho decided to translate the experience the company had with using agile
development methods into an agile BI approach. The intention is not only to support
BI developers with a solid methodology, but also to adapt the Pentaho BI suite and all
constituent components in such a way that they enforce, enable, and support an agile
way of working. The first part of the BI suite that was changed and extended is Kettle,
which is the reason we introduced the agile concepts here. You’ll see more about the
agile capabilities of Kettle later in the book, but as you might already wonder how
Kettle supports an agile way of working, here’s a look at the basic capabilities Kettle
has to offer.

Once you’ve installed Kettle, it will take only a couple of minutes before you have con-
nected to a data source, read some data, added a transformation, and delivered the data
to a destination table. Because Kettle is an engine-based solution, it automatically takes
care of a lot of things for you, which helps speed up the process. Kettle also contains a
vast (and perhaps at first glance overwhelming) number of standard components and
transformation steps. These are prebuilt code blocks that also help in minimizing the
development effort and maximizing the speed of solution delivery. Changes in data
fields or data types are automatically propagated to subsequent steps in the process,
and Kettle can also generate the change scripts needed to alter the final destination
table. The integrated modeling and ad-hoc visualization tools enable you to directly
show the results of your work to the end user and play with the data in an iterative

14 Part I ■ Getting Started

way. Developers and business users can therefore work closely together using the same
toolset. Deviations from plan or from the user’s expectations can be taken into account
immediately and the jobs and transformations can be changed accordingly.

Because Kettle is tightly linked to the Agile BI initiative by Pentaho, it might be
worthwhile to read up on the methodology and how Kettle supports it on the Agile
BI wiki. You can find this info at http://wiki.pentaho.com/display/AGILEBI/
Welcome+to+Agile+Business+Intelligence.

ETL Design

Even when (or perhaps, especially when) an agile approach is taken, your ETL process
needs to be designed in one way or another. Because an ETL solution in many respects
resembles a workflow or business process, it might make sense to use a flowchart
drawing tool to create a high-level design before you start building. Most users will be
familiar with flowchart diagrams and can comment and help make your design better.
On a more detailed level, it is important to define which parts of the solution are to be
reusable and which are not. For instance, creating a date dimension is usually a one-
time effort within a data warehouse project. So for an individual project it makes sense
to not spend too much time developing a flexible and database-independent solution
and just develop a standard script for this. On the other hand, when you’re a consultant
working for many different customers, it absolutely makes sense to have a generic date
dimension generator in your toolbox.

From this discussion, it’s easy to see what the most important question is when you
start building a data transformation: Should it be reusable in other parts of the solu-
tion or not? Depending on the answer, you might spend some extra time in making
the transformation generic, for instance by adding extra parameters that enable you
to choose a type of database, a date/time format, or other things that change between
different solutions.

Data Acquisition

As explained earlier, getting access to and retrieving data from source systems is the first
challenge you encounter when an ETL project is started. Don’t automatically assume that
this is only a technical problem; in many cases not being able to access data directly is
caused by internal politics or guidelines. ERP vendors also try to make it difficult or even
impossible to access the data in their systems directly. The widely used SAP/R3 system,
for instance, has specific clauses in the software license that prohibit direct connections to
the underlying database other than by the means provided by SAP. Most financial institu-
tions that run their mission-critical systems on a mainframe also won’t let you access these
systems directly so you’re dependent on data feeds delivered by FTP or via a web service.
This isn’t necessarily a disadvantage; the SAP system consists of more than 70,000 tables so
finding the ones with the data you’re interested in might be a very time-consuming task.
For situations like this, you need tools that are able to interpret the ERP metadata, which
displays a business view of the data. Fortunately, Kettle not only contains a standard data
input step for acquiring data from SAP/R3, but also for getting data out of Salesforce.com,
arguably the most used and advanced online CRM application. For other standard ERP

 Chapter 1 ■ ETL Primer 15

and CRM solutions such as SugarCRM, OpenERP, ADempiere, or Peoplesoft, you might
have to revert to third-party solutions or build your own input step. The capability to read
data from a mainframe directly is unfortunately not available so in those cases it’s best to
have this data delivered from the system in a readable format such as ASCII or UniCode
(older mainframe systems still use EBCDIC). More information about accessing ancient
Cobol systems and the specific file format challenges involved can be found at http://
jymengant.ifrance.com/jymengant/jurassicfaq.html.

Beware of Spreadsheets

A major challenge in the field of data acquisition has to do with the way and the format
in which the data is delivered. A notorious troublemaker in this area is Excel, so the
best advice we can give is to just never accept a data delivery in Excel, unless you can
be sure it’s system-generated and that it’s created on the same machine by a process
that’s owned by the same user. Excel data problems occur frequently when different
internationalization settings are used, causing dates and numeric fields to change from
one session to another. As a result, your carefully designed and tested transformation
will fail, or at least will generate incorrect results (which is basically the same but harder
to track). Most problems, however, are caused by users who will tell you they haven’t
changed anything but who did, perhaps even unknowingly.

Design for Failure

Even if access to the data isn’t a problem and the solution you’ve built looks rock solid,
you always need to make sure that the data source is available before you kick off a
process. One basic design principle is that your ETL job needs to be able to fail gracefully
when a data availability test fails. Kettle contains many features to do this. You can:

Test a repository connection.■

Ping a host to check whether it’s available.■

Wait for a SQL command to return success/failure based on a row count ■

condition.

Check for empty folders.■

Check for the existence of a file, table, or column.■

Compare files or folders.■

Set a timeout on FTP and SSH connections.■

Create failure/success outputs on every available job step.■

It’s also a good idea to add error handling at the job and transformation level. When
loading a data warehouse, dependencies often exist between tables. A good example
is that a fact table cannot be loaded before all dimension loads have completed. When
one of the dimension loads fails, the complete job should fail, too. A good design then
lets you correct the errors and enables you to restart the job where only the failed and
not-yet-run parts will execute.

16 Part I ■ Getting Started

Change Data Capture

The first step in an ETL process is the extraction of data from various source systems
and passing the data to the next step in the process. A best practice here is the inter-
mediate storage of the extracted data in staging tables or files to make restarts possible
without the need of retrieving all data again. This seems like a trivial task, and in the
case of initially loading a data warehouse it usually is, apart from challenges incurred
from data volumes and slow network connections. But after the initial load, you don’t
want to repeat the process of completely extracting all data again. This wouldn’t be
of much use anyway because you already have an almost complete set of data, and it
only needs to be refreshed to reflect the current status. All you’re interested in is what
has changed since the last data load, so you need to identify which records have been
inserted, modified, or even deleted. The process of identifying these changes and only
retrieving records that are different from what you already loaded in the data ware-
house is called Change Data Capture or CDC.

Basically, there are two main categories of CDC processes, intrusive and non-intrusive.
By intrusive, we mean that a CDC operation has a possible performance impact on the
system the data is retrieved from. It is fair to say that any operation that requires execut-
ing SQL statements in one form or another is an intrusive technique. The bad news is
that most available methods to capture changed data are intrusive, leaving only one
non-intrusive option. CDC is covered in depth in Chapter 6.

Data Quality

Much of what is said in the previous section applies here as well: you have to assume
that there are quality problems in your data and therefore need to design your transfor-
mations to handle these problems. In fact, this isn’t entirely true: data quality problems
need to be resolved in the source systems, not in the ETL process. However, fixing data
quality issues before starting a data warehouse project is a luxury that not many orga-
nizations can afford. There’s always a pressing need to deliver a solution quickly, and
even if serious data quality problems are discovered during the project, they are usually
dealt with later or not at all. Hence knowing what’s wrong with your data and knowing
what to do about it are essential parts of the ETL developer’s job description.

Two categories of tools are available to deal with data quality problems. First, you’ll
need to define a baseline by profiling the data and investigating how good the qual-
ity actually is, using a data profiling tool. The purpose of this exercise is twofold: to
communicate the results of this exercise back to the data owner (hopefully a business
manager with the authority to do something about it), and to serve as input for the data
validation steps in the ETL jobs. Second, there are data quality tools that constantly
monitor and augment the data based on business and quality rules. In Kettle, the Data
Validation step serves as a built-in data quality tool.

Data Profiling

One of the first things to do when starting an ETL project is profile the source data.
Profiling will tell you how much data there is and what it looks like, both technically

 Chapter 1 ■ ETL Primer 17

and statistically. The most common form of profiling is column profiling, where for each
column in a table the appropriate statistics are created. Depending on the data type
this will give you insight into things like the following:

Number of NULL or empty values■

Number of distinct values■

Minimum, maximum, and average value (numeric fields)■

Minimum, maximum, and average length (string fields)■

Patterns (for example, ###-###-#### for phone numbers)■

Data distribution■

Although most of these operations can be performed using Kettle transformations or
just plain SQL, it’s better to use a specialized tool such as Data Cleaner from eobjects.
Chapter 6 covers data profiling in more detail.

WARNING Data profiling will only get you so far; logical and/or cross-

 system quality issues cannot be detected by most data profiling tools, and in

order to detect them, a global business glossary and metadata system needs to

be in place first. These systems are still very rare.

Data Validation

Profiling is meant for reporting and setting a baseline, while validation is part of the
regular ETL jobs. A simple example is as follows: Some column in a source system
can technically contain NULL values, but there is a business rule stating that this is a
required field. Profiling revealed that there are several records with a NULL value in
this column. To cope with this situation, a validation step is needed that contains the
rule NOT NULL for this column, and when the column does contain a NULL value, an
alternative action should be started. This could be omitting the record and writing it to
an error table, replacing the NULL value with a default value such as Unknown, flagging
the record as unreliable, or any other action that is deemed necessary.

ETL Tool Requirements

While this book is specifically about Kettle, it’s useful to have an overview of the
required features and functionality of an ETL tool in general. This will enable you to
decide whether Kettle is the right tool for the job at hand. Each of the following sections
first describes the requirement in general and then explains how Kettle provides the
required functionality or feature.

Connectivity

Any ETL tool should provide connectivity to a wide range of source systems and data
formats. For the most common relational database systems, a native connector (such

18 Part I ■ Getting Started

as OCI for Oracle) should be available. At a minimum, the ETL should be able to do
the following:

Connect to and get data from the most common relational database systems ■

including Oracle, MS SQL Server, IBM DB/2, Ingres, MySQL, or PostgreSQL.

Read data from ASCII files in a delimited or fixed format.■

Read data from XML files (XML is the lingua franca of data interchange).■

Read data from popular Office formats such as Access databases or Excel ■

spreadsheets.

Get files from external sites using FTP, SFTP, or SSH (preferably without ■

scripting).

In addition to this, there might be the need to read data using a web service, or to read
an RSS feed. In case you need to get data from an ERP system such as Oracle E-Business
Suite, SAP/R3, PeopleSoft, or JD/Edwards, the ETL tool should provide connectivity
options for these systems as well.

Out of the box, Kettle has input steps for Salesforce.com and SAP/R3. For other ERP
or financial systems, an alternative or additional solution might be required. Of course
it’s always possible to have these systems export a data set to an ASCII file and use
that as a source.

Platform Independence

An ETL tool should be able to run on any platform and even a combination of different
platforms. Maybe a 32-bit operating system works for the initial development phase,
but when data volumes increase and available batch windows decrease, a more power-
ful solution is required. In other cases, development takes place on a Windows or Mac
development PC, but production jobs run on a Linux cluster. You shouldn’t have to take
special measures to accommodate for this in your ETL solution.

Scalability

Scalability is a big issue; data volumes increase year after year and your systems needs
to be able to handle this. Three options should be available for processing large amounts
of data:

Parallelism: ■ Enables a transformation to run many streams in parallel, thus utiliz-
ing modern multi-core hardware architectures

Partitioning: ■ Enables the ETL tool to take advantage of specific partitioning
schemes to distribute the data over the parallel streams

Clustering: ■ Enables the ETL process to divide the workload over more than one
machine

This last option especially can be cost prohibitive with proprietary ETL solutions
that are licensed per server or per CPU.

 Chapter 1 ■ ETL Primer 19

Kettle, being a Java-based solution, runs on any computer that has a Java Virtual
Machine installed. Any step in a transformation can be started multiple times in par-
allel to speed up processing. Kettle will then determine how the data is distributed
over the different streams. For better control, a partitioning scheme can be used to
make sure that each parallel stream contains data with the same characteristics. This
resembles how database partitioning works, but Kettle has no specific facilities to work
with database partitions. (The benefit of having such a capability is debatable because
the database itself is probably better capable of distributing data over the partitions
than an ETL tool would be.)

The most advanced scalability feature arguably is the clustering option, which lets
Kettle spread the workload over as many machines as deemed necessary. Part IV of this
book covers all these scalability features in depth, but a good source to whet your appe-
tite is the white paper written by one of the technical reviewers of this book, Nicholas
Goodman of Bayon Technologies. It can be found at http://www.bayontechnologies
.com/bt/ourwork/pdi_scale_out_whitepaper.php.

Design Flexibility

An ETL tool should provide a developer the freedom to use any desirable flow design
and should not limit people’s creativity or design requirements by offering only a
fixed way of working. ETL tools can be classified as either process- or map-based. A
map-based tool offers a fixed set of steps between source and target data, thus severely
limiting the freedom to design jobs. Map-based tools are often easy to learn and get
you started very quickly, but for more complex tasks, a process-based tool is most
likely the better choice. With a process-based tool like Kettle, you can always add
additional steps or transformations if needed because of changes in the data or busi-
ness requirements.

Reuse

Being able to reuse existing parts of your ETL solution is also an indispensable feature.
An easy way of doing this is to copy and paste or duplicate existing transformation
steps, but that’s not really reuse. The term reuse refers to the capability to define a step or
transformation once and call the same component from different places. Within Kettle
this is achieved by the Mapping step, which lets you reuse existing transformations
over and over as subcomponents in other transformations. Transformations themselves
can be used multiple times in multiple jobs, and the same applies to jobs which can be
reused as subjobs in other jobs as well.

Extensibility

There isn’t a single ETL tool in the world that offers everything that’s needed for every
imaginable data transformation task, not even Kettle. This means that it must be pos-
sible to extend the basic functionality of the tool in some way or another. Almost all
ETL tools offer some kind of scripting option to programmatically perform complex

20 Part I ■ Getting Started

tasks not available in the program itself. Only a few ETL tools, however, offer the option
to add standard components yourself by offering an API or other means to extend the
toolset. In between these options is a third way that lets you define functions that can
be written using a script language and called from other transformations or scripts.

With Kettle, you get it all. Scripting is provided by the Java Script step, and by saving
this as a transformation it can be reused in a mapping, resulting in a standard reusable
function. In fact, any transformation can be reused in a mapping so creating standard
components this way isn’t limited to scripting alone. And Kettle is, of course, built with
extensibility in mind, offering a plugin-enabled platform. The plugin architecture makes
it possible for third parties to develop additional components for the Kettle platform.
Several examples of these additional plugins are covered in this book, but it’s impor-
tant to note that all components you find in Kettle, even the ones that are available
by default, are actually plugins. The only difference between built-in and third-party
plugins could be the available support: If you buy a third-party plugin (for instance a
SugarCRM connector), support is provided by the third party, not by Pentaho.

Data Transformations

A good deal of the work involved with an ETL project has something to do with trans-
forming data. Between acquisition and delivery, the data needs to be validated, joined,
split, combined, transposed, sorted, merged, cloned, de-duplicated, filtered, deleted,
replaced, and whatnot. It’s hard to tell what the minimum set of available transforma-
tions should be because data transformation requirements differ greatly between organi-
zations, projects, and solutions. Nevertheless, there seems to be a common denominator
of basic functions that most of the leading ETL tools (including Kettle) offer:

Slowly Changing Dimension support■

Lookup values■

Pivot and unpivot■

Conditional split■

Sort, merge, and join■

Aggregate■

The only difference between tools is the way these transformations need to be
defined. Some tools, for instance, offer a standard SCD (Slowly Changing Dimension)
transformation in a single step, while others generate the needed transformations with
a wizard. Even Kettle doesn’t cover all transformation requirements out of the box. A
good example of a missing component is a hierarchy flattener. By hierarchy we mean
a single table that refers to itself, for instance an employee table where each employee
record has an employee ID and a manager ID. The manager ID in the employee record
points to an employee ID of another employee who is the manager. Oracle has had a
standard “connect by prior” function to cope with this for ages and some ETL tools
have a similar feature; in Kettle you’d have to manually handle this issue.

 Chapter 1 ■ ETL Primer 21

Testing and Debugging

This requirement hardly needs further explanation. Even though an ETL solution is
not (at least, we hope not) written in a program language such as Java or C++, it can
be looked at as such. This means that what applies to application programming also
applies to ETL development: Testing should be an integral part of the project. To be able
to test, you need test cases that cover any possible (or at least, the most likely) scenario
in a “what if” kind of way. The following are some examples of such scenarios:

What if we don’t get the data delivered on time?■

What if the process breaks halfway through the transformation?■

What if the data in column XYZ contains NULL values?■

What if the total number of rows transformed doesn’t match the total number ■

of rows extracted?

What if the result of this calculation doesn’t match the total value retrieved from ■

another system?

Again, the message here is to design for failure. Don’t expect that things will work;
just assume that things will fail at some point. When designing tests, it’s important to
differentiate between black box testing (also known as functional testing) and white box
testing. In case of the former, the ETL solution is considered a black box where the inner
workings are not known to the tester. The only known variables are the inputs and the
expected outputs. White box testing (also known as structural testing), on the other hand,
specifically requires that the tester knows the inner workings of the solution and devel-
ops tests to check whether specific transformations behave as expected. Both methods
have their advantages and disadvantages, which are covered in Chapter 11.

Debugging is an implicit part of white box testing and enables a developer or tester
to run a program step by step to investigate what exactly goes wrong at what point.
Not all ETL tools offer extensive debugging functionality where you can step through a
transformation row by row, inspecting individual rows and variable allocations. Kettle
offers extensive debugging features for both jobs and transformations, as covered in
Chapter 11.

Lineage and Impact Analysis

A mandatory feature of any ETL tool is the ability to read the metadata to extract
information about the flow of data through the different transformations. Data lineage
and impact analysis are two related features that are based on the ability to read this
metadata. Lineage is a backward-looking mechanism that will show for any data item
where it came from and which transformations were applied to it. This would include
calculations and new mappings, such as when price and quantity are used as input
fields to calculate revenue. Even if the field’s price and quantity are omitted from
further processing, the data lineage function should reveal that the field revenue is
actually based on price and quantity.

22 Part I ■ Getting Started

Impact analysis works the other way around: Based on a source field, the impact on
the subsequent transformations and ultimately, destination tables is revealed. You can
find in-depth coverage of these subjects in Chapter 14.

Logging and Auditing

The data in the data warehouse needs to be reliable and trustworthy because that’s one
of the purposes of a data warehouse: provide an organization with a reliable source
of information. To guarantee this trustworthiness and have a system of record for all
data transformations, the ETL tool should provide facilities for logging and auditing.
Logging takes care of recording all the steps that are executed when an ETL job is run,
including the exact start and end timestamps for every step. Auditing facilities create
a complete trace of the actions performed on the data, including number of rows read,
number of rows transformed, and number of rows written. This is a topic where Kettle
actually leads the market, as you will see in Chapters 12 and 14.

Summary

This chapter introduced ETL and its history, and explained why data integration is needed.
The basic building blocks of a Kettle solution were introduced briefly to give you a feel-
ing for what will be covered in the rest of the book. We also explained the difference and
similarities between ETL, ELT, and EII and showed the advantages of each method.

We presented the major challenges you might face when developing ETL solutions:

Getting business sponsorship and creating a business case■

Choosing a good methodology to guide your work■

Designing ETL solutions■

Data acquisition and the problem with spreadsheets■

Handling data quality issues using profiling and validation■

Finally, we highlighted the general requirements of an ETL tool and briefly described
how Kettle meets the requirements for the following:

Connectivity■

Platform independence and scalability■

Design flexibility and component reuse■

Extensibility■

Data transformations■

Testing and debugging■

Lineage and impact analysis■

Logging and auditing■

All the topics introduced in this chapter are covered extensively in the rest of this
book.

www.allitebooks.com

http://www.allitebooks.org

23

C H A P T E R

2

Kettle Concepts

In this chapter we cover the various concepts behind Kettle. We take a look at the gen-
eral design principles and describe the various data integration building blocks. First
we show you how row level data integration is performed using transformations. Then
we explain how you can handle basic workflow using jobs.

You will learn about the following Kettle concepts:

Database connections■

Tools and utilities■

Repositories■

Virtual File Systems■

Parameters and variables■

Visual programming■

Design Principles

Let’s start with a look at some of the core design principles that have been put in
place since the very beginning of Kettle’s development. Previous negative experiences
with other tools and frameworks obviously colored the decisions that have been taken.
However, it’s especially interesting to look at the positive things that were retained
from these experiences.

24 Part I ■ Getting Started

Ease of development: ■ It’s clear that as a data warehouse and ETL developer, you
want to spend time on the creation of a business intelligence solution. Every hour
you spend on the installation of software is wasted. The same principle applies to
the configuration as well. For example, when Kettle came on the market, pretty
much every Java-based tool that existed forced the user to explicitly specify the
Java driver class name and JDBC URL just to create a database connection. This
is not the sort of problem that can’t be overcome with a few Internet searches but
it is something that draws attention away from the real issues. Because of that,
Kettle has always tried to steer clear of these types of problems.

Avoiding the need for custom program code: ■ In general, an ETL tool needs to
make simple things simple and hard things possible. That means that such a tool
needs to provide standard building blocks to perform those tasks and operations
that are repeatedly required by the ETL developer. There is no barrier to program-
ming something in Java or even JavaScript if it gets the job done. However, every
line of code adds complexity and a maintenance cost to your project. It makes a
lot of sense not to have to deal with it.

All functionality is available in the user interface: ■ There are very few exceptions
to this golden principle. (The kettle.properties and shared.xml file in the
Kettle home directory are the exceptions.) If you don’t expose all functionality
through a user interface, you are actually wasting the time of both the developer
as well as the end user. Expert ETL users still need to learn the hidden features
behind the engine.

In Kettle, ETL metadata can be expressed in the form of XML, via a repository,
or by using the Java API. One hundred percent of the features in these forms of
ETL metadata can be edited through the graphical user interface.

No naming limitation: ■ ETL solutions are full of names: database connections,
transformations and their steps, data fields, jobs, and so on all need to have a
proper name. It’s no fun creating ETL functionality if you have to worry about
any naming restrictions, (such as length and choice of characters) imposed by your
ETL tool. Rather, the ETL tool needs to be clever enough to deal with whatever
identifier the ETL developer sees fit. This in turn allows the ETL solution to be as
self-descriptive as possible, partly reducing the need for extra documentation, and
allows for a further reduction in the ever-present maintenance cost of a project.

Transparency: ■ Any ETL tool that allows you to describe how a certain piece of
work is done suffers from a lack of transparency. After all, if you would write
the same functionality yourself, you would know exactly what is going on or
you could at least figure it out. Allowing people to see what is going on in the
various parts of a defined ETL workload is crucial. This, in turn, will speed up
development and lower maintenance costs.

The various parts of an ETL workload should not have a direct influence on one
another. They should also pass data in the same order as defined. This principle
of data isolation has a big impact on transparency that can only be appreciated
by people who worked with ETL tools that didn’t enforce this principle.

 Chapter 2 ■ Kettle Concepts 25

Flexible data paths: ■ For an ETL developer, creativity is extremely important.
Creativity allows you to not only enjoy your work but also find the quickest path
to a certain ETL solution. Kettle was designed from the ground up to be as flexible
as possible with respect to the data paths that can be put in place. Distributing
or copying data among various targets such as text files and relational databases
should be possible. The inverse, merging data from various data sources, should
also be very simple and part of the core engine.

Only map impacted fields: ■ While some find it visually pleasing to see hundreds
of arrows map input and output fields in various ETL tools, it is also a mainte-
nance nightmare in a lot of cases. Every building block in the ETL workload adds
to the maintenance cost because fields are added and changed all the time during
the development of any ETL solution.

An important core principle of Kettle is that all fields that are not specified are
automatically passed on the next building block in the ETL workload. This mas-
sively reduces the maintenance cost. It means, for example, that source fields can
be added to the input and they will automatically show up in the output unless
you take measures to prevent this.

The Building Blocks of Kettle Design

Every data integration tool uses different names to identify the various parts of the tool,
its underlying concepts, and the things you can build with it, and Kettle is no exception.
This section introduces and explains some of the Kettle specific terminology. After read-
ing this section you will not only have an understanding of how data is transformed
on a row level in a transformation and how workflow is handled with jobs, you will
also learn about details like data types and data conversion options.

Transformations

A transformation is the workhorse of your ETL solution. It handles the manipulation of
rows or data in the broadest possible meaning of the extraction, transformation, and
loading acronym. It consists of one or more steps that perform core ETL work such
as reading data from files, filtering out rows, data cleansing, or loading data into a
database.

The steps in a transformation are connected by transformation hops. The hops define
a one-way channel that allows data to flow between the steps that are connected by the
hop. In Kettle, the unit of data is the row, and a data flow is the movement of rows from
one step to another step. Another word for such a data flow is a record stream.

Figure 2-1 shows an example of a transformation in which data is read from a data-
base table and written to a text file.

In addition to steps and hops, transformations can also contain notes. Notes are little
boxes that can be placed anywhere in a transformation and can contain arbitrary text.
Notes are intended to allow the transformation to be documented.

26 Part I ■ Getting Started

Figure 2-1: A simple transformation example

Steps

A step is a core building block in a transformation. It is graphically represented in the
form of an icon; Figure 2-1 shows two steps, “Table input” and “Text file output.” Here
are some of the key characteristics of a step:

A step needs to have a name that is unique in a single transformation.■

Virtually every step is capable of reading as well as writing rows of data (the ■

single exception is the Generate Rows step, which only writes data).

Steps write data to one or more ■ outgoing hops. To the step that is connected at
the other end of the hop, that hop is an incoming hop. Steps read data arriving
through the incoming hops.

Most steps can have multiple outgoing hops. A step can be configured to either ■

distribute or copy data to its outgoing hops. When distributing data, the step alter-
nates between all outgoing hops for each outbound row (this is known as a round

robin). When copying data, each row is sent to all outgoing hops.

When running a transformation, one or more copies of each step are started, each ■

running in its own thread. During the run, all step copies run simultaneously,
with rows of data constantly flowing through their connecting hops.

Beyond these standard capabilities, each step obviously has a distinct functionality
that is represented by the step type. For example, in Figure 2-1, the “Table input” step
executes an SQL query to read data from a relational database, and writes the data as
rows to its outgoing hop(s), and the “Text file output” step reads rows from its incom-
ing hop(s), and writes them to a text file.

Transformation Hops

A hop, represented by an arrow between two steps, defines the data path between the
steps. The hop also represents a row buffer called a row set between two steps. (The
size of the row sets can be defined in the transformation settings.) When a row set is
full, the step that writes rows halts if there is room. When a row set is empty, the step
doing the reading will wait a bit until rows are available again.

 Chapter 2 ■ Kettle Concepts 27

NOTE While creating new hops, please remember that loops are not allowed

in transformations. That is because a transformation heavily depends on the

previous steps to determine the field values that are passed from one step to

another.

Parallelism

The simple rules enforced by the hops allow steps to be executed in a parallel nature
in separate threads. That is because rows are forced through the transformation step
network, causing a maximum amount of parallelism. The rules also allow data to be
processed in a streaming fashion with minimal memory consumption. In data ware-
housing, you are often dealing with massive amounts of data so this is a core require-
ment for any serious ETL tool.

As far as Kettle is concerned, it is not possible to define an order of execution, and
it is not possible or necessary to identify any start or end to a transformation. This
is because all steps are executed in parallel: when a transformation is started, all its
steps are started and keep reading rows from their incoming hops and pushing out
rows to their outgoing hops until there are no more rows left, terminating the step’s
run. The transformation as a whole stops after the last step has terminated. That said,
functionally a transformation almost always does have a definite start and an end.
For example, the transformation shown in Figure 2-1 “starts” at the “Table input” step
(because that step generates rows) and “ends” at the “Text file output” step (because
that step writes the rows to file and does not lead them into another subsequent step
for further processing).

The remarks made earlier about the (im)possibility of identifing a transformation’s
start and end may seem paradoxical or even contradictory. In reality, it isn’t that com-
plicated—it’s just a matter of perspective. Although you may envision an individual
row flowing through the transformation, visiting subsequent steps and thus following
a definitive path from start to end, many rows are flowing through the transformation
during the run. While the transformation is running, all steps are working simultane-
ously in such a way that it is impossible to pinpoint to which one step the transforma-
tion has progressed.

If you need to perform tasks in a specific order, refer to the “Jobs” section later in
this chapter.

Rows of Data

The data that passes from step to step over a hop comes in the form of a row of data. A
row is a collection of zero or more fields that can contain the data in any of the follow-
ing data types:

String■ : Any type of character data without any particular limit.

Number■ : A double precision floating point number.

Integer■ : A signed long integer (64-bit).

28 Part I ■ Getting Started

BigNumber■ : A number with arbitrary (unlimited) precision.

Date■ : A date-time value with millisecond precision.

Boolean■ : A Boolean value can contain true or false.

Binary■ : Binary fields can contain images, sounds, videos, and other types of
binary data.

Each step is capable of describing the rows that are being put out. This row descrip-
tion is also called row metadata. It contains these pieces of information:

Name:■ The name of the field should be unique in a row.

Data type:■ The data type of the field.

Length:■ The length of a String, or number of a BigNumber data type.

Precision:■ The decimal precision of a number of a BigNumber data type.

Mask: ■ The representation format (or conversion mask). This will come into play
if you convert numeric (Number, Integer, BigNumber) or Date data types to
String. This happens, for example, during data preview in the user interface or
during serialization to text or XML.

Decimal: ■ The decimal symbol in a number. This symbol is culturally defined and
is typically either a dot (.) or a comma (,).

Group: ■ The grouping symbol. This symbol is also culturally defined and is typi-
cally either a comma (,), a dot (.), or a single quotation mark (‘).

Step origin:■ Kettle keeps track of the origin of a field in the row meta-data. This
allows you to quickly identify at which step in the transformation the field was
last modified or.

Here are a few data type rules to remember when designing your transformations:

All the rows in a row set always need to have the same layout or structure. This ■

means that when you lead outgoing hops from several different steps to one
receiving step, all layout of the rows of each of these hops needs to have the same
fields with the same data types, and in the same order.

Beyond the data type and name, field metadata is not enforced during the execu-■

tion of a transformation. This means that a String is not automatically cut to the
specified length and that floating point numbers are not rounded to the specified
precision. This functionality is explicitly available in a few steps.

By default, empty ■ Strings (“”) are considered to be the equivalent of NULL
(empty).

NOTE The behavior that empty strings and NULL are considered equivalent

can be changed by setting the KETTLE_EMPTY_STRING_DIFFERS_FROM_NULL

variable. Further details can be found in Appendix C.

 Chapter 2 ■ Kettle Concepts 29

Data Conversion

Data conversion takes place either explicitly in a step like Select Values, where you can
change the data type of a field, or implicitly, for example when you are storing numeric
data in a VARCHAR column in a relational database. Both types of data conversion are
handled in the exact same way by using a combination of the data and the description
of the data.

Date to String Conversion

The internal Date representation contains all the information you need to represent
any date/time with millisecond precision. To convert between the String and Date
data types you only need to specify a conversion mask. For information on Date and
Time formats, see from the table under “Date and Time Patterns” in the Sun Java API
documentation, located at http://java.sun.com/j2se/1.4.2/docs/api/java/
text/SimpleDateFormat.html. The mask can contain any of the Letter codes shown
in that table for representation purposes. Other characters can be included if they are
put between single quotes.

For example, Table 2-1 shows a few popular examples of date conversion masks for
December 6, 2009 at 21 hours, 6 minutes and 54.321 seconds.

Table 2-1: Date Conversion Examples

CONVERSION MASK (FORMAT) RESULT

yyyy/MM/dd’T’HH:mm:ss.SSS 2009/12/06T21:06:54.321

h:mm a 9:06 PM

HH:mm:ss 21:06:54

M-d-yy 12-6-09

Numeric to String Conversion

Numeric data (Number, Integer, and BigNumber) is converted to and from String
using these field metadata components:

Conversion mask■

Decimal symbol■

Grouping symbol■

Currency symbol■

The numeric conversion mask determines how a numeric value is represented in a
textual format. It has no bearing on the actual precision or rounding of the numeric
data itself. You can find all the allowed symbols and formatting rules in the Java API
documentation at http://java.sun.com/j2se/1.4.2/docs/api/java/text/
DecimalFormat.html.

Table 2-2 shows a few popular examples of numeric conversion masks.

30 Part I ■ Getting Started

Table 2-2: A Few Numeric Conversion Mask Examples

VALUE
CONVERSION
MASK

DECIMAL
SYMBOL

GROUPING
SYMBOL RESULT

1234.5678 #,###.## . , 1,234.57

1234.5678 000,000.00000 , . 001.234,56780

-1.9 #.00;-#.00 . , -1.9

1.9 #.00;-#.00 . , 1.9

12 00000;-00000 00012

Other Conversions

Table 2-3 provides a short list of other conversions that occur between data types.

Table 2-3: Other Data Type Conversions

FROM TO DESCRIPTION

Boolean String This is converted to Y or N unless the length is 3 or
higher. In that case, the result is true or false.

String Boolean A case-insensitive comparison is made and Y,
True, Yes, and 1 all convert to true. Any other
String is converted to false.

Integer

Date

Date

Integer
The Integer long value is considered to be the
number of milliseconds that passed since January
1, 1970, 00:00:00 GMT. For example, September
12th 2010 at noon is converted to Integer
1284112800000 and vice-versa.

Jobs

In most ETL projects, you need to perform all sorts of maintenance tasks. For example,
you want to define what needs to be done in case something goes wrong and how files
need to be transferred; you want to verify if database tables exist, and so on. It’s also
important that these tasks be performed in a certain order. Because transformations
execute all steps in parallel, you need a job to handle this.

A job consists of one or more job entries that are executed in a certain order. The order
of execution is determined by the job hops between job entries as well as the result of
the execution itself. Figure 2-2 shows a typical job that handles the loading of a data
warehouse.

Like a transformation, a job can contain notes for documentation purposes.

 Chapter 2 ■ Kettle Concepts 31

Figure 2-2: A typical job that updates a data warehouse

Job Entries

A job entry is a core building block of a job. Like a step, it is also graphically represented
in the form of an icon. However, if you look a bit closer, you see that job entries differ in
a number of ways:

While the name of a new job entry needs to be unique, it is possible to create so-■

called shadow copies of a job entry. This will allow you to place the same job entry
in a job on multiple locations. The shadow copy is backed by the same informa-
tion, so that if you edit one copy, you edit them all.

A job entry passes a result object between job entries. While this result object can ■

contain rows of data, they are not passed in a streaming fashion. Rather, after
the job entry finishes, the rows are transferred all at once to the subsequent job
entry.

All job entries are executed in a certain sequence by default. Only in special cases ■

are they executed in parallel.

Because a job executes job entries sequentially, you must define a starting point. This
starting point comes in the form of the special job entry called Start. As a consequence,
you can only put one Start entry in any one job.

Job Hops

Job hops are used in a job to define an execution path between job entries. This is done
in the form of the link between two job entries as well as a result evaluation type. This
evaluation type can be any of these:

Unconditional:■ This means that the next job entry is executed no matter what
happened in the previous one. This evaluation type is indicated by a lock icon
over a black hop arrow as shown in Figure 2-2.

Follow when result is true:■ This job hop path is followed when the result of the
previous job entry execution was true. This typically means that it ran without

32 Part I ■ Getting Started

a problem. This type is indicated with a green success icon drawn over a green
hop arrow.

Follow when result is false:■ This job hop path is followed when the result of the
previous job entry execution was false, or unsuccessful. This is indicated by a red
stop icon drawn over a red hop arrow.

The evaluation type can be set by using the hop’s right-click menu or by cycling
through the options by clicking on the small hop icons.

Multiple Paths and Backtracking

Job entries are executed using a so called backtracking algorithm. The path itself is
determined by the actual outcome (success or failure) of the job entries. However, a
back-tracking algorithm means that a path of job entries is always followed until the
very end before a next possibility is considered.

Consider the example shown in Figure 2-3.

Figure 2-3: Serial execution of multi-paths using back-tracking

In the situation shown in Figure 2-3, job entries A, B, and C are executed in
sequence:

First the “Start” job entry searches all next job entries and finds “A” and “C”.■

“A” is executed.■

“A” then searches all next job entries and finds C.■

“C” is executed.■

“C” searches all the next job entries but comes up blank.■

“A” has no further job entries to execute.■

 Chapter 2 ■ Kettle Concepts 33

“Start” has one more job entry to execute: “C”.■

“C” is executed.■

“C” searches all next job entries but comes up blank.■

“Start” has no more job entries to execute.■

The job finishes.■

However, because no order is defined, it could have been CAB as well.
The back-tracking nature of a job is important for two main reasons:

The result of a job itself (for nesting purposes) is taken from the last job entry ■

that was executed. Because the execution order of the job entries could be ABC
or CAB we have no guarantee that the result of job entry C is taken. It could just
as well be A.

In cases where you create loops (which is allowed in a job) you will be putting a ■

burden on the application stack as all the job entries and their results will be kept
in memory for evaluation. See Chapter 15 for more information on this topic.

Parallel Execution

Sometimes it is necessary to execute job entries or entire jobs in parallel. This is pos-
sible, too. A job entry can be told to execute the next job entries in parallel, as shown
in Figure 2-4.

Figure 2-4: Parallel execution of job entries

In the example in Figure 2-4, job entries A and C are started at the same time. Please
note that in instances where you have a number of sequential job entries, these are
executed in parallel as well. For example, take the case illustrated in Figure 2-5.

34 Part I ■ Getting Started

Figure 2-5: Two simultaneous sequences of job entries

In this situation, the job entries [A, B, Log1] and [C, D, Cleanup Tables] are executed
in parallel in two threads. Usually this is a desired behavior. However, sometimes you
want to have a few job entries executed in parallel and then continue with other work. In
that situation, it’s important to put all the job entries that need to be executed in parallel
in a new job. This job can then be executed in another job, as shown in Figure 2-6.

Figure 2-6: Parallel load as part of a larger job

Job Entry Results

The result of the execution of a job entry not only determines what the next job entry
is that will be executed. It also passes the result object itself to the next job entry. The
result object contains the following pieces of information:

A list of result rows:■ These result rows can be set in a transformation using the
“Copy rows to result” step. They can be read back using the “Get rows from
result” step. Certain job entries such as Shell, Transformation, or Job have an
option to loop over the result rows, allowing for advanced parameterization of
transformations or jobs.

A list of file names:■ These file names are assembled during the execution of a
job entry. The list contains the names of all the files a job entry comes in contact
with. For example, if a transformation read and processed ten XML files, the
names of the files read will be present in the result object. It is possible to access
these file names in a transformation using the “Get files from result” step. This
step will also expose the type of file. Type GENERAL is associated with all forms
of input and output files whereas the LOG type is reserved for Kettle log files that
are written.

 Chapter 2 ■ Kettle Concepts 35

The number of lines read, written, input, output, updated, deleted, rejected, ■

and in error by a transformation: For more information on how to configure
these metrics to be passed, please see Chapter 14.

The exit status of a Shell job entry:■ This will allow you to specifically evaluate
the result of a shell script return value.

In addition to simple usage such as looping and file handling in certain job entries, it
is also possible to perform more advanced evaluations using the JavaScript job entry.

Table 2-4 describes the exposed objects and variables.

Table 2-4: Expressions You Can Use in the JavaScript Job Entry

EXPRESSION
DATA
TYPE MEANING

previous_result.getResult() Boolean true if the previous
job entry was exe-
cuted successfully,
false if there was
some error.

previous_result.getExitStatus() or
exit_status

Int Exit status of previ-
ous shell script job
entry.

previous_result.getEntryNr() or nr int The entry number
is increased every
time a job entry is
executed.

previous_result.getNrErrors() or
errors

long The number of
errors, also available
as variable errors.

previous_result.getNrLinesInput() or
lines_input

long The number of rows
read from a file or
database.

previous_result.getNrLinesOutput() or
lines_output

long The number of rows
written to a file or
database.

previous_result.getNrLinesRead() or
lines_read

long The number of rows
read from previous
steps.

previous_result.getNrLinesUpdated()
or lines_updated

long The number of rows
updated in a file or
database.

previous_result.getNrLinesWritten()
or lines_written

long The number of rows
written to next step.

Continued

36 Part I ■ Getting Started

EXPRESSION
DATA
TYPE MEANING

previous_result.getNrLinesDeleted()
or lines_deleted

long The number of
deleted rows.

previous_result.getNrLinesRejected()
or lines_rejected

long The number of rows
rejected and passed
to another step via
error handling.

previous_result.getRows() List The result rows.

previous_result.getResultFilesList() List The list of all the
files used in the pre-
vious job entry (or
entries).

previous_result.getNrFilesRe-
trieved() or files_retrieved

int The number of files
retrieved from FTP,
SFTP, and so on.

In the JavaScript job entry, it would as such be possible to specify alternative condi-
tions to see whether or not a certain path should be followed.

For example, it is possible to count the number of rejected rows in a transformation.
If that number is higher than 50, you could determine that the transformation failed,
even though this is not the standard behavior. The script would be:

lines_rejected <= 50

Transformation or Job Metadata

Transformations and jobs are core building blocks in the Kettle ETL tool. As discussed,
they can be represented in XML, stored in a repository, or in the form of the Java API.
This makes it crucial to highlight a few core metadata properties:

Name:■ The name of the transformation or job. Even though this is not an absolute
requirement, we recommend that you use a name that is unique not only within
a project, but even among various ETL projects and departments. This will help
during remote execution or storage in a central repository.

Filename:■ This is the file name or URL where the transformation or job is loaded
from. This property is set only when the object is stored in the form of an XML
file. When loaded from a repository, this property is not set.

Directory:■ This is the directory (folder) in a Kettle repository where the transfor-
mation or job is loaded from. When it is loaded from an XML file, this property
is not set.

Table 2-4 (continued)

 Chapter 2 ■ Kettle Concepts 37

Description:■ You can use this optional field to give a short description of what
the transformation or job does. If you use a Kettle repository, this description will
be shown in the file listing of the Repository explorer dialog.

Extended description:■ Another optional field that you can use to give an extended
description to the transformation or job.

Database Connections

Kettle database connections are used by transformations and jobs alike to connect
to relational databases. Kettle database connections are actually database connection
descriptors: they are a recipe that can be used to open an actual connection with a
database. By definition, the actual connection with the RDBMS is made available at
runtime. The act of defining the Kettle database connection by itself does not open a
connection to the database.

Unfortunately, very few databases behave in exactly the same way. As a result, we’ve
seen a growing number of options appearing in the Database Connection dialog, shown
in Figure 2-7, to cover all the possibilities.

Figure 2-7: The Database Connection dialog

38 Part I ■ Getting Started

You need to specify three main options in the Database Connection dialog:

Connection Name:■ The name identifies a connection. As such, it needs to be a
unique name in any job or transformation.

Connection Type: ■ Select the type of relational database server that you want to
access from the list. Your choice will determine the Settings and Access options
that will be available. It will also influence what SQL dialect certain Kettle steps
and job entries will use to generate SQL statements.

Access:■ From this list, you select the type of access you want to use. Typically, we
recommend that you use a Native (JDBC) connection. However, it is also possible
to use a predefined ODBC data source (DSN), a JNDI data source, or an Oracle
OCI (using Oracle naming services) connection.

Depending on the options you selected, you will be presented with a set of database-
specific options to fill in on the right side of the dialog. For example, in Figure 2-7 you
can see Oracle specific tablespace options that will only appear for that specific data-
base type.

These typically include the following options:

Host Name:■ This is the hostname or IP address of the database server.

Database Name■ : For database servers that support multiple databases, you can
specify the name of the database to access here.

Port Number■ : The default port for the selected connection type will be filled in.
Make sure to verify that this value is correct.

User Name and Password■ : The user name and password you want to use to log
in to the database server.

Special Options

For most users, the default settings of the database connections available from the
General tab of the dialog are sufficient. However, once in a while you might need to
use one of the options in the Advanced section of the dialog:

Supports boolean data type:■ The Boolean (or bit) data type is treated differently in
most types of database servers. Even between different versions of the same con-
nection type there are important differences to be found. A lot of databases don’t
have any support for Boolean data types at all. For this reason, Kettle defaults to
the population of a single character (char(1)) field with either Y or N for Boolean
fields in a transformation. However, if you enable this option, Kettle will gener-
ate the correct SQL dialect for the chosen database type if the database supports
a Boolean data type.

Quote all in database: ■ This forces all identifiers (table and field names) to be
quoted. This is useful if you suspect that Kettle’s internal list of reserved keywords
is not up-to-date or if you want to retain the case of identifiers in the database.

Force all to lower case:■ This option converts all identifiers (table and field names)
to lowercase.

 Chapter 2 ■ Kettle Concepts 39

Force all to upper case:■ This option converts all identifiers (table and field names)
to uppercase.

The preferred schema name:■ You can specify the preferred schema (also called
catalog in certain databases) name for this connection. This schema is used when
no other value is known.

SQL statements to execute after connecting: ■ These SQL statements can be used
to modify certain connection parameters. For example, they are used to pass ses-
sion license–related information to the database or to enable certain debugging
features.

In addition to these advanced options, a number of database-specific features can be
specified in the “Options” section of the dialog. There you can specify a list of driver-
specific parameters. For a few database types (MySQL, for example) Kettle will set a
few default values to help out. For a detailed list of options, consult the documentation
of the database driver that you are using. For a number of database connection types
Kettle will present this documentation in the form of a browser page that appears when
you press the Help button on the Options tab of the dialog.

Finally, it is possible to enable the Apache Commons Database Connection pooling
back end that ships with Kettle. Doing so will make sense only in those situations where
you are running lots of very small transformations or jobs with short-lived database
connections. It will not limit the number of simultaneous database connections in any
possible way. See also Chapter 15 for more information.

The Power of the Relational Database

Relational databases are advanced pieces of software that usually specialized in areas
such as joining, sorting, and merging data. Compared to a streaming data engine such
as Kettle, they have one big advantage: the data they reference is already stored on disk.
When a relational database performs join or sort operations, it can simply use refer-
ences to the data and can avoid loading all the data in memory. This gives it a distinct
performance advantage. The drawback is obviously that loading the data in a relational
database is a separate performance bottleneck.

For ETL developers, this means that, when it is possible, it is usually beneficial to
let a database perform a join or sort operation. If it is not possible to perform a join in
a database because the data comes from different sources, have the database perform
the sort operation to prepare for the join in the ETL tool.

Connections and Transactions

A Kettle database connection is only used during the execution of a job or transforma-
tion. In a job, every job entry opens and closes the actual connections to the database
independently. The same happens in a transformation. However, because of the paral-
lel nature of a transformation, each step that uses a Kettle database connection will
open a separate actual database connection and start a separate transaction. While this
generally provides great performance for most common situations, it can cause severe

40 Part I ■ Getting Started

locking and referential integrity problems when different steps update information in
the same table.

To remedy the problems that may arise from opening multiple actual database con-
nections, Kettle allows you to enable the “Make transformation database transactional”
option. This option can be set for the entire transformation in the Transformation
Settings dialog. When this option is enabled, the transformation open a single actual
database connection for each different Kettle database connection. Furthermore, Kettle
will perform a COMMIT when the transformation finishes successfully and a ROLLBACK
if this is not the case..

Database Clustering

When one large database is no longer up to the task, you can think about using multiple
smaller databases to handle the load. One way to spread the load is by partitioning
the data with a technique that is called database partitioning or database sharding. With
this method, you divide the entire dataset into a number of groups called partitions (or
shards), each of which is stored in a separate database server instance. This architecture
has the distinct advantage that it can greatly reduce the number of rows per table and per
database instance. The combination of all the shards is called a database cluster in Kettle.

Typically, the partitioning method involves calculating the remainder of a division on
an identifier to determine the target database server instance that stores the particular
shard. This and other partitioning methods are available in Kettle (see Chapter 16 for
more information).

The result of this partitioning calculation is a number between 0 and the number
of partitions minus one. If you want to use this feature, this is the number of actual
database connections that you need to specify in the Clustering section of the database
connection dialog. For example, suppose you have defined five database connections to
five different shards in a cluster. You could then execute a query in a Table Input step
that you are executing in a partitioned fashion, as shown in Figure 2-8.

Figure 2-8: Reading information

from a database cluster

As a result, the same query will be executed five times against the five shards. All
steps in Kettle that open database connections have been modified to make use of this
partitioning feature. For example, the Table Output step will make sure that the correct
row arrives at the correct shard when executed in a partitioned fashion.

 Chapter 2 ■ Kettle Concepts 41

Tools and Utilities

Kettle contains a number of tools and utilities that help you in various ways and in vari-
ous stages of your ETL project. The core tools of the Kettle software stack include:

Spoon:■ A graphical user interface that will allow you to quickly design and man-
age complex ETL workloads.

Kitchen:■ A command-line tool that allows you to run jobs

Pan:■ A command-line tool that allows you to run transformations.

Carte:■ A lightweight (around 1MB) web server that enables remote execution of
transformations and jobs. A Carte instance also represents a slave server, a key
part of Kettle clustering (MPP).

Chapter 3 provides more detailed information on these tools.

Repositories

When you are faced with larger ETL projects with many ETL developers working
together, it’s important to have facilities in place that enable cooperation. Kettle provides
a way of defining repository types in a pluggable and flexible way. This has opened
up the way for different types of repositories to be used. However, the basics will
remain the same regardless of which repository type is used: They will all use the same
graphical user interface elements and the stored metadata will also be the same. There
are several types of repositories: database, Pentaho, and file repositories.

Database repository:■ The database repository was created to centrally store ETL
information in a relational database. A repository of this type is easy to create:
Simply create a new database connection to an empty database schema. If you
don’t have anything in that schema yet, you can use the Database Repository
dialog to create a new set of repository tables and indexes.

Because of this ease of use, the database repository has remained popular despite
the lack of important version management and relational integrity features.

Pentaho repository:■ The Pentaho repository type is a plug-in that is installed
as part of the Enterprise Edition of Pentaho Data Integration. It is backed by a
content management system (CMS) that will make sure that all the important
characteristics of the ideal repository are met, including version management
and referential integrity checks.

File repository: ■ This simplified repository type allows you to define a repository
in any kind of folder. Because Kettle uses a Virtual File System back end, this
includes non-trivial locations such as zip files, web servers, and FTP servers.

Regardless of the type, the ideal repository should possess these features:

Central storage:■ Store your transformations and jobs in a central location. This
will give ETL users access to the latest view on the complete project.

42 Part I ■ Getting Started

File locking:■ This feature is useful to prevent other users from changing a trans-
formation or job you are working on.

Revision management:■ An ideal repository stores all previous versions of trans-
formations and jobs for future reference. It allows you to open previous versions
as well as see the detailed change log. For more information see Chapter 13.

Referential integrity checking:■ This feature will verify the referential integrity of
a repository. This capability is needed to make sure there won’t be any missing
links, missing transformations, jobs, or database connections in a repository.

Security:■ A secure repository prevents unauthorized users from changing or
executing ETL logic.

Referencing:■ It is very useful for a data integration developer to be able to reor-
ganize transformations and jobs, or to be able to simply rename them. It should
be possible to do this in such a way that references to these transformations and
jobs are kept intact.

Virtual File Systems

Flexible and uniform file handling is very important to any ETL tool. That is why Kettle
supports the specification of files in the broadest sense as URLs. The Apache Commons
VFS back end that was put in place will then take care of the complexity for you. For
example, with Apache VFS, it is possible to process a selection of files inside a .zip
archive in exactly the same way as you would process a list of files in a local folder. For
more information on how to specify VFS files, visit the Apache VFS website at http://
commons.apache.org/vfs/.

Table 2-5 shows a few typical examples.

Table 2-5: Examples of VFS File Specifications

FILENAME DESCRIPTION

Filename: /data/input/
customers.dat

This file is defined using the classic (non-
VFS) way and will be found and read as
such.

Filename: file:///data/input/
customers.dat

This same file will be read from the local
file system using the Apache VFS driver.

Job: http://www.kettle.be/
GenerateRows.kjb

This file can be loaded in Spoon, executed
using Kitchen, and referenced in the Job
job entry. Every time the XML file is trans-
parently loaded from the web server.

Folder: zip:file:///C:/input/
salesdata.zip
Wildcard: .*\.txt$

This folder/wildcard combination can be
entered in steps like “Text file input.” The
specification of the wildcard will search
and read all the files in the specified zip
file that end with .txt.

 Chapter 2 ■ Kettle Concepts 43

Parameters and Variables

It’s very important when using a data integration tool that certain aspects of your work
can be parameterized. This makes it easy to keep your work maintainable. For example,
it’s important that the location of a folder with input files be specified in one central
location so that the various components of the data integration tool can make use of
that value. In Kettle, you do this with variables.

Defining Variables

Each variable has a unique name and contains a string of any length. Variables are set
either at system level or dynamically in a job. They have a specific scope that makes it
possible to run the same job or transformation in parallel with different variables set
on the same system, Java Virtual Machine, or J2EE container without a problem.

There are two main ways that a variable is instantiated: It can be set by the system or
defined by the user. System variables include those defined by the Java Virtual Machine
(such as java.io.tmpdir, the system’s location for temporary files) and those defined
by Kettle (such as Internal.Kettle.Version, containing the version of Kettle you’re
using).

NOTE For more information on the various types of system variables and

how they influence your environment, please see Appendix C.

Variables can be set in multiple ways. The most common way of defining a variable
is to place it in the kettle.properties file in the Kettle home directory (${KETTLE_
HOME}/.kettle). The most convenient way of editing this file is by using the editor,
located in version 4.0 under the “Edit ➪Edit the kettle.properties file” menu.

You can also set variables dynamically during the execution of a job. There are
various ways to do this, but the easiest way to do it is with a transformation. The Set
Variables step allows you to set a variable with the appropriate scope for use in the
current job. For more dynamic situations you can also use a JavaScript step or the User
Defined Java Class step. Figure 2-9 shows a job that first sets a number of variables after
which it uses them in a sub-job.

Figure 2-9: Defining and using variables in a job

Finally, variables can also be formally specified when you declare them as named
parameters.

44 Part I ■ Getting Started

Named Parameters

If there are variables that you consider to be parameters for your transformation or job,
you can declare them in the Parameters tab of the respective settings dialogs. Figure 2-10
shows the Parameters tab, where you can enter the parameter name, its default value,
and a description.

Figure 2-10: Defining named parameters

The main advantage of using named parameters is that they are explicitly listed,
documented with a description, and carry an optional default value. This makes it
obvious that you can set values for them in a job or a transformation.

Once you have defined parameters, you can specify values for them in all possible
locations where you execute a transformation or job: in the execution dialogs, at the Pan
or Kitchen command line, or in the Transformation or Job job entries.

For example, you could run a transformation with a non-default value for the input
folder location:

user@host:$ sh pan.sh -file:/pentaho/read-input-file.ktr -param:

 INPUT_FOLDER=/tmp/input/

You can find more details on using Kitchen and Pan and specifying parameter and
variable values on the command line in Chapters 3 and 12.

Using Variables

All input fields where variables can be used in Kettle are annotated with a diamond-
shaped icon showing a red dollar sign on the upper-right of the input field. For example,
the CSV Input step contains many fields that can be specified using variables, includ-
ing the Filename, Delimiter, and Enclosure fields, as shown in Figure 2-11.

Figure 2-11: Using variables in Spoon

 Chapter 2 ■ Kettle Concepts 45

Entering variables is easy. Simply press Ctrl+Space to see the list of all variables that
are known to Kettle at that time. If you hover over the input field, you will see the actual
value of the complete expression.

As you can see in the example, variables are recognizable by the enclosing ${} sym-
bols. The name of the variable is always enclosed within the curly brackets—for exam-
ple, ${INPUT_FOLDER}.

Even though it is less common, you can also surround the name of the variable with
double percent signs (%%)—for example, %%INPUT_FOLDER%%.

One final special form of variable notation is the specification of hexadecimal values.
You can specify binary values by listing a comma-separated list of hexadecimal values
inside the $[] symbols (note that these are square brackets, not curly brackets). For
example, the following value encodes the 123456 ASCII string $[31,32,33,34,35,36].
This method of entering data is useful on the rare occasion when you need to specify
non-readable binary “character” symbols like $[01].

NOTE Variables are parsed at runtime in a recursive fashion. Because of

this, it is possible to use variables in the value of another variable. This makes

it easy to define variables in a very generic and re-usable fashion.

Visual Programming

Kettle can be categorized under the group of visual programming languages (VPLs) because
it lets its users create complex ETL programs and workflows simply by the graphical
construction of diagrams. The diagrams in the case of Kettle are transformations and
jobs. Visual programming is a core concept of Kettle because it allows you to quickly
set up complex ETL jobs and lowers maintenance. It also brings the world of IT closer
to the business requirements by hiding a lot of non-essential technical complexities.

NOTE For more information on Visual programming languages, see http://

en.wikipedia.org/wiki/Visual_programming_language.

In this section, we show you how you can get started right away with Kettle. We do
this with a simple example that reads data from a text file and stores it into a database.
We do not intend this as a full primer or beginners’ guide to Kettle. Rather, it is an
introduction to get started for those who are in a hurry. For a more detailed practical
example of how you can solve complex ETL problems, see Chapter 4.

NOTE This chapter does not cover the installation or configuration of Kettle.

If you have not yet installed Kettle, you’ll need to refer to Chapter 3 and install

Kettle to follow along with the example.

46 Part I ■ Getting Started

Getting Started

Visual programming in Kettle is done with a graphical user interface called Spoon.
Once you start Spoon on your system, you are presented with a welcome page leading
you to information on how to get started, samples, documentation, and much more.
In our case, we want to create a new transformation that will read data from a text file
and store it into a database table. To do this, we click the “New file” icon (represented
by a page of paper with a dog-eared corner) in the toolbar and select Transformation,
as shown in Figure 2-12.

NOTE Note that the principles described in this section for transformations

are applicable to jobs as well.

Figure 2-12: Creating a new transformation

When you create a new transformation, you are presented with an empty canvas on
which you can design your ETL workload, as in Figure 2-13.

 Chapter 2 ■ Kettle Concepts 47

Figure 2-13: An empty canvas

Creating New Steps

On the left-hand side of the blank page, you can see all sorts of categories listed. Under
these category headings, there are many steps that can be used to design the transforma-
tion. For this example, you are looking for a step that can read from a CSV file. Typing
CSV in the quick search box next to the Steps label, as shown in Figure 2-14, will list
all steps that might be useful.

Figure 2-14: Finding CVS-related steps

48 Part I ■ Getting Started

In this case, you want to use the “CSV file input” step to read data. To place it in your
transformation, simply click on the “CSV file input” step in the Input category and drag
it onto the canvas on the right. A new icon will appear on the blank page with a “CSV
file input” label below. This icon, shown in Figure 2-15, represents the functionality of
reading a CSV file.

Figure 2-15: A brand new step

To configure this step, double-click on the icon or click the Edit (pencil) icon in the
graphical slide-out menu and select “Edit step.” The slide-out menu appears when you
hover over a step icon for a few seconds, as shown in Figure 2-16.

Figure 2-16: The graphical slide-out menu

You will be presented with a dialog that allows you to edit all aspects of the step, as
shown in Figure 2-17.

Figure 2-17: Configuring the “CSV file input” step

 Chapter 2 ■ Kettle Concepts 49

NOTE You can also access the dialog by selecting the step context menu

(the downward arrow) from the graphical slide-out menu and selecting the

“Edit step” option.

 For this example, you want to provide Kettle with the location of the file you’re read-
ing, the delimiter, the optional enclosure, and various other fields. Once that is done,
you can test the step by clicking the Preview button that is found in most steps that
read data. When you are satisfied with the output of the step, click the OK button and
that part of the challenge will be completed.

Putting It All Together

The next step is to store the data from the CSV file in a database table. To accomplish this,
you will use the quick search box again to look for a step that could accomplish this feat.
Type in the word table and select the “Table output” step from the results. The mouse-
over tooltip of that entry says: “Write information to a database table” and that is exactly
what you want to do. Drag this step to the right of the “CSV file input” step that is already
on the canvas. Your canvas should look like Figure 2-18.

Figure 2-18: Adding the “Table output” step

Before you configure a step, it’s usually a good idea to connect it with a hop to its
predecessor. This is useful because it allows Kettle to know what kind of information
is being sent to the step. That in turn allows for the automatic configuration of a lot of
step options.

The creation of a hop is easy: Simply click the Output icon (a page with a green arrow
in the lower left corner) in the step’s graphical slide-out menu. That will cause a gray
arrow to be drawn on the canvas that will turn blue once you move it to the “Table
output” step, as shown in Figure 2-19.

Figure 2-19: Creating a new hop

Clicking the left mouse button once when the arrow is blue will create a new hop.
(Other ways of creating new hops include dragging from one step icon to another with
the middle mouse button or with the left mouse button while keeping the Shift key
pressed.) Because the “CSV file input” step is capable of error handling, you are asked
which type of output you want to handle with this hop. If read errors in the step (con-
version errors, missing fields, and so on) are not handled, the whole transformation

50 Part I ■ Getting Started

will fail. However, if you use error handling, the rows with an error in them will be
sent to another step where they can be placed in another file or database table, as shown
in Figure 2-20.

Figure 2-20: Selecting the type of output

In this simple example, you simply want to use the main output of the “CSV file
input” step so select that option. Now both steps are connected with a hop.

All that’s left to do now is edit the settings of the “Table output” step and you’re
done. Again, you can double-click on the “Table output” step, use the slide-out menu,
or use the context menu to bring up the step’s dialog. Figure 2-21 shows the dialog to
configure the “Table output” step.

Figure 2-21: Configuring the “Table output” step

The first thing you notice when you open the dialog is that you need a database con-
nection to make this step function properly. You can do this easily with the New button
and the information in the “Database connections” section earlier in this chapter. You
can then complete the required information in the dialog by specifying the schema and
table name where the data is to go to. If the database table does not exist yet or needs

 Chapter 2 ■ Kettle Concepts 51

to be altered, you can use the SQL button at any time to generate the appropriate DDL
for the specified database type.

When you are done, click OK and the transformation is finished. You can now click
the Run icon (the green arrow pointing to the right) to execute the transformation. This
will allow you to save the transformation and give it a name and description.

While this is a simple example, a lot of technology was used, including file reading,
writing to a database, data conversion, error handling, parallel processing, and much
more. However, to make it work, you didn’t have to write a single line of programming
code, nor was any code generated. The two main tasks, reading and writing, are clearly
represented by the two icons on the transformation canvas, which makes it very easy to
maintain. The transformation also addressed the complex issue of routing data simply
with the creation of hops between steps. All this leads to a very short development time
for your ETL solution.

Summary

In this chapter, we introduced some Kettle design considerations and explained the
core Kettle building blocks. We finished with an introduction to visual programming
in Kettle. Here are a few notable things you learned:

Data in the form of rows of data is manipulated in a transformation by steps.■

Job entries are the basic components of a job. They are executed in sequence based ■

on the result of a previous job entry.

Database connections can be defined in transformations and jobs. You learned ■

how to use the various parameters in the database dialog.

There are different repository types and they each have specific benefits.■

You can use the Virtual File System to flexibly specify files in various locations.■

You can use variables and named parameters to make your transformations and ■

jobs re-usable and easy to configure.

How to get started with visual programming and how to easily create a ■

transformation.

53

C H A P T E R

3

Installation and Configuration

This chapter provides a high-level overview of the collection of tools included in a Kettle
installation, and provides detailed instructions for their installation and configuration.
Fortunately, installing Kettle is a fairly straightforward task, but it is helpful to refer to
a single overview of all tasks involved, which is what this chapter aims to provide.

NOTE If you’ve already successfully installed Kettle, it’s likely you’re already

familiar with many of the topics discussed here. You may want to skim over

some of this chapter.

In addition to providing an overview, this chapter covers a few detailed configura-
tion topics that apply to particular real-world Kettle scenarios. These sections may not
make a lot of sense until you encounter those scenarios, so the subsequent chapters of
the book will refer back to the relevant sections of this chapter.

Kettle Software Overview

Kettle is a single product, but consists of multiple programs that are used in different
phases of the ETL development and deployment cycle. Each program serves a particular
purpose and is more or less independent of the others. However, all of the programs
depend on a common set of Java archives that make up the actual data integration
engine. An overview of the main Kettle programs is shown in Figure 3-1.

54 Part I ■ Getting Started

Kettle Program Hardware / Infrastructure

Spoon: IDE for developing, testing,
debugging and monitoring jobs
and transformations

Kitchen, Pan: Command-line driven
job and transformation runners used
for OS-level scheduling

Carte: Light-weight HTTP server used
for remote execution and parallel
execution of jobs and transformations
on a scale-out cluster

Workstation with GUI

Development environment

Server with command-line interface

Scale-out cluster of servers running
Carte HTTP daemon

Job / transformation de�nition store

Production environment

Develop

Deploy

Job / transformation
repository (database or
version control system)

Job / transformation
de�nition �les

(�le system)

Figure 3-1: Overview of Kettle programs

The following list briefly explains the purpose of each of the different programs
listed in Figure 3-1:

Spoon:■ The integrated development environment. Offers a graphical user inter-
face for creating and editing job and transformation definitions. Spoon can also
be used to execute and debug jobs and transformations, and it also includes
functionality for performance monitoring.

Kitchen:■ A command line–driven job runner, which can be used to integrate
Kettle with OS-level scripts. It is typically used to schedule jobs with a scheduler
such as cron, at, or the Windows Task Scheduler.

Pan:■ A command line–driven program just like Kitchen, but it is used for execut-
ing transformations instead of jobs.

 Chapter 3 ■ Installation and Configuration 55

Carte:■ A light-weight server (based on the Jetty HTTP server) that runs in the
background and listens for requests to run a job. Carte is used to distribute
and coordinate job execution across a collection of computers forming a Kettle

cluster.

These programs are described in more detail in the following sections.

Integrated Development Environment: Spoon

Spoon is Kettle’s integrated development environment (IDE). It offers a graphical user
interface based on SWT, the standard widget toolkit. As such, it is predominantly used
as an ETL development tool.

You can start Spoon by executing the corresponding shell script found in the Kettle
home directory. For Windows users, the script is called Spoon.bat, and for UNIX-
like operating systems, the script is called spoon.sh. Windows users can also use the
executable Kettle.exe to start Spoon.

NOTE In this book, Spoon is heavily used throughout Chapters 4 to 11, and

you’re guaranteed to know it inside out by the time you’ve finished this book.

A screenshot of Spoon is shown in Figure 3-2.

Figure 3-2: Spoon

In Figure 3-2, you can clearly see the main features of Spoon: a main menu bar across
the top, and below that, an application window vertically divided in two main parts.
The workspace on the right-hand side provides a tab interface to work with all jobs and

56 Part I ■ Getting Started

transformations that are currently open, and the left side of the application window
features a tree view.

The workspace itself is horizontally divided: the upper part is called the canvas, where
ETL developers can create jobs and transformations by simply drawing a diagram that
models the effect of the job or transformation. In Figure 3-2, the activated tab shows a
transformation diagram.

Diagramming a job or transformation is a matter of adding job entries and trans-
formation steps onto the canvas. You can add elements to the canvas from the context
menu or drag them from the tree view if it is in Design mode, as in Figure 3-2. These
job entries and transformation steps can then be connected using hops. In the diagram,
the hops are shown as lines drawn from the center of one job entry or transformation
step to the other. The hops define the flow of control (in case of jobs) or flow of data (in
case of transformations).

The mode of the tree view can be controlled using the two large toolbar buttons
immediately above the tree view. In View mode, shown in Figure 3-3, the tree view
offers an alternate view of the opened jobs and transformations, allowing easy access
to the individual steps, hops and any other resources, such as database connections.

Figure 3-3: The tree view in View mode

Utilities for executing and debugging jobs and transformations are integrated into
Spoon, allowing ETL developers to test their jobs and transformations without leaving
the IDE. A number of these functionalities can be accessed through the buttons on the
toolbar, which is located in the workspace right above the canvas.

NOTE Testing and debugging are discussed in detail in Chapter 11.

 Chapter 3 ■ Installation and Configuration 57

Spoon also features facilities for logging and monitoring the execution of jobs and
transformations. Some of these functionalities are shown in the Execution Results panel,
which is shown in the bottom half of the workspace in Figure 3-2.

NOTE Monitoring is discussed further in Chapters 12 and 15.

Command-Line Launchers: Kitchen and Pan

Jobs and transformations can be executed from within the graphical Spoon environ-
ment, but it is not very practical to do so unless you’re developing, testing, or debugging.
After the development phase, when you need to deploy your jobs and transformations,
Spoon is not of much use.

For deployment, you typically need to be able to invoke your jobs and transformations
from the command line so they can be integrated with shell scripts and the operating
system’s job scheduler. The Kitchen and Pan command-line tools were designed espe-
cially for this purpose. As such, Kitchen and Pan are typically used after the ETL devel-
opment phase to execute jobs and transformations on production environments.

Pan and Kitchen are very similar in concept and usage, and the list of available
 command-line options is virtually identical for both tools. The only difference between these
tools is that Kitchen is designed for running jobs, whereas Pan runs transformations.

Kitchen can be started by running its corresponding shell script from the Kettle home
directory. The script is called Kitchen.bat for windows users, and kitchen.sh for
UNIX-like systems. Similarly, the script for Pan is called Pan.bat on Windows, and
pan.sh for UNIX-like operating systems.

NOTE Kitchen and Pan are discussed in detail in Chapter 12.

Job Server: Carte

The Carte program is a job runner, just like Kitchen. But unlike Kitchen, which runs
immediately after invocation on the command line, Carte is started and then continues
running in the background as a server (daemon).

While Carte is running, it waits and listens for requests on a predefined network
port (TCP/IP). Clients on a remote computer can make a request to a machine running
Carte, sending a job definition as part of the message that makes up the request. When
a running Carte instance receives such a request, it authenticates the request, and then
executes the job contained within it. Carte supports a few other types of requests, which
can be used to communicate progress and monitor information.

Carte is a crucial building block in Kettle clustering. Clustering allows a single job
or transformation to be divided and executed in parallel by multiple computers that
are running the Carte server, thus distributing the workload.

NOTE Carte and clustering are discussed in detail in Chapters 16 and 17.

58 Part I ■ Getting Started

Encr.bat and encr.sh

The Kettle home directory contains a few more .bat and .sh scripts, which are better
classified as utilities rather than standalone programs like Spoon, Pan, Kitchen, and
Carte. One of these utilities deserves to be mentioned here: the Encr.bat and encr.sh
scripts can be used to encrypt a plain-text password. While using Kettle, passwords pop
up in a number of places:

In database connections defined in jobs and transformations.■

In job entries and transformation steps that connect to a server, (such as an SMPT ■

server, FTP server, or HTTP server).

Carte requires authentication in order to process requests for job execution and prog-■

ress information. With the default authentication method, the password is specified
in the kettle.pwd file, which is discussed in more detail later in this chapter.

In configuration files that are read by the various Kettle programs, such as the ■

kettle.properties file discussed later in this chapter.

Although passwords can be entered in plaintext in all these instances, it is good
practice to encrypt them with the Encr.bat or encr.sh script. This prevents an unau-
thorized person from seeing and abusing the plaintext password.

Installation

The following section describes the steps that are necessary to install and run Kettle
programs.

Java Environment

Kettle is a Java program; it requires a Java runtime (that is, a Java Virtual Machine or
JVM, and a set of standard classes) to run. You may already have Java installed, but for
completeness, we discuss Java installation in the remainder of this section.

We recommend using the Sun Java Runtime Environment (JRE), version 1.6 if you just
want to run Kettle programs. If you want to build Kettle from source and/or develop
Kettle plugins, you should obtain the Sun Java Development Kit (JDK), also version 1.6.

NOTE You can try to use a JRE or JDK from other vendors if you like, but all

examples that appear in this book were tested and developed using Sun JDK

version 1.6

Installing Java Manually

The site http://java.sun.com/javase/downloads/index.jsp lets you down-
load executable installation programs to install Java for a variety of operating systems,
including Windows, Sun Solaris, and Linux. Simply choose the Java version of your

 Chapter 3 ■ Installation and Configuration 59

preference and the appropriate platform (for example, Linux x64 or Windows) to down-
load an installation executable. After downloading, run the executable and follow the
instructions provided by the installer.

If you are running an operating system for which the Sun website does not offer
a suitable version, you should refer to the website of your operating system vendor.
For example, Mac OSX users should go to http://developer.apple.com/java/
download/ and find a suitable installation executable there. As with the installation
executables provided by Sun, executing such an installer should provide the appropri-
ate instructions to complete the installation process.

Using Your Linux Package Management System

If you’re using a popular Linux distribution such as Debian (or compatible distribu-
tions such as Ubuntu), Red Hat (or compatible distributions such as Fedora or CentOS),
or SUSE/openSUSE, installing your Java environment can be done using the package
management system of that particular distribution.

For example, on Ubuntu, Java can be installed conveniently using the synaptic pack-
age manager. Just search for a package called sun-java6-jre or sun-java6-jdk (for
the runtime environment and the development kit respectively), select it, and click to
install. Alternatively, you can install it from the command line using a utility such as
apt-get:

shell> sudo apt-get install sun-java6-jdk

If your operating system does not offer package management, or the package manage-
ment system does not provide the required Java version, you should go to the Oracle’s
Java downloads website and download an appropriate installation program yourself.

Installing Kettle

Kettle is distributed as a single compressed archive. Downloads are hosted on
 sourceforge.net as part of the Pentaho business intelligence project at http://
sourceforge.net/projects/pentaho, and you can find all available versions
beneath the Data Integration folder at http://sourceforge.net/projects/
pentaho/files.

 Versions and Releases

On the SourceForge site you’ll find a separate folder for each available version, where the
folder name indicates the version. For example, at the time of this writing, the current
version is 4.0.0, which is contained in the 4.0.0-stable folder, and the folder called
3.2.0-stable contains archives for the stable release of the previous 3.2.0 version.

NOTE In this book, all examples were tested on version 4.0, but it’s possible

and even likely that many things described in this book also apply to other

Kettle versions.

60 Part I ■ Getting Started

You may also find folders for more recent versions that have a -RCxx or -Mxx postfix
instead of -stable. These folders correspond to a release candidate (RC) and a mile-
stone (M) release respectively, where xx is a number indicating the specific version.
For example, the folder 4.0.1-RC1 contains the release candidate for the upcoming
4.0.1 version.

NOTE SourceForge is the proper site for downloading the actual Kettle

releases, but it does not provide the latest bugfix releases nor binaries for the

latest development builds.

Binaries for the latest development builds for Kettle as well as other

Pentaho products are continuously produced through the Hudson continu-

ous integration platform. You can download the Hudson builds from http://

ci.pentaho.com/. For a specific product, simply click the respective tab and

choose the appropriate download file there. For example, for Kettle, click the

Data Integration tab.

Bugfix releases are released periodically through SourceForge, but in some

cases, you may not be able to wait that long. In such cases, you should con-

sider checking out the Kettle source code from Subversion and building Kettle

yourself from source.

You can check out the Kettle source from the Subversion URL svn://

source.pentaho.org/svnkettleroot/Kettle/trunk. This process is

described in detail in Chapter 22. You can build using the Ant build tool,

which is available from http://ant.apache.org/.

Archive Names and Formats

The version-specific folders contain the actual archive file, which is available in .zip
and .tar.gz formats. The archive files are named according to the pattern pdi-ce-
version.extension, where pdi stands for Pentaho Data Integration and ce stands for
Community Edition. For example, pdi-ce-4.0.0-stable.zip is the zip archive file
for the current 4.0.0 stable release. Windows users would typically download the .zip
archive, whereas users of UNIX-like systems should download a .tar.gz archive.

Downloading and Uncompressing

You can download the archive file of your choice directly from the SourceForge web
page using your web browser. Alternatively, you can download it from the terminal
using a command-line utility such as wget. For example, the following line would
download the .tar.gz archive for the 4.0.0-stable release to the current working direc-
tory (the command should all be on one line, but is wrapped here to fit on the page):

shell> wget http://sourceforge.net/projects/pentaho/files/

Data%20Integration/4.0.0-M2/pdi-ce-javadoc-4.0.0-M2.tar.gz/download

 Chapter 3 ■ Installation and Configuration 61

Uncompressing the archive is done in the usual way for the respective format. For
example, on UNIX-like systems the .tar.gz archive can be conveniently extracted
using tar with a command line like this:

shell> tar -zxvf pdi-ce-4.0.0-stable.tar.gz

On Windows, you can use a utility such as Peazip, or the Windows integrated zip
utility. You can typically invoke these by right-clicking on the .zip archive and choos-
ing “Extract here” or “Extract to folder” from the context menu.

Kettle doesn’t care to which location it is extracted on your system, so you should
extract it to a location that is most suitable for your situation. For example, on a Windows
development machine, it makes a lot of sense to create a kettle or a pentaho directory
in the Program Files directory for this task. On UNIX-like systems, you could create
such a directory in your home directory in case you’re setting up your own develop-
ment environment, while a location such as /opt/pentaho or /opt/kettle may be
more suitable for a production environment.

Extracting the archive file yields a directory called data-integration, which con-
tains the actual software and resources. It is advisable to rename the data- integration
directory so that it reflects the version you originally obtained. A sensible choice is to
rename it simply to the exact name of the archive file, minus the extension:

shell> mv data-integration pdi-ce-4.0.0-M2

In the remainder of this book, we will refer to the Kettle home directory to indicate any
such directory containing the Kettle software.

Renaming the directory to something that clearly contains the Kettle version allows
you and possibly others working in the same environment to see at a glance which ver-
sion of Kettle is being used. It also allows you to maintain different versions of Kettle
next to each other in a common parent directory, which can be convenient in case you
need to test a newer version before upgrading.

Running Kettle Programs

All Kettle programs can be started using shell scripts which are located in the Kettle
home directory. There are some minor differences between Windows and UNIX-like
platforms because of the differences in the command shells in these respective plat-
forms, but there are more similarities than differences.

Note that the script files assume that the Kettle home directory is also the current
working directory. This means that you’ll have to explicitly set the current working
directory to the Kettle home directory when calling the Kettle scripts from your own
scripts.

Windows

After extraction, Windows users can run Kettle programs simply by executing a batch file
located within the Kettle home directory. For example, to design transformations and jobs,

62 Part I ■ Getting Started

you can double-click Spoon.bat to start up Spoon, or you can run Kitchen.bat directly
from the command line, or call it from within your own .bat files to execute jobs.

UNIX-like systems

For UNIX-like systems, you can execute Kettle programs by running the corresponding
.sh script. It is possible you still need to make the .sh files executable before you can
run the Kettle programs. For example, if your current working directory is your Kettle
home directory, you can run:

shell> chmod ug+x *.sh

You should now be able to run the Kettle programs by executing their respective
scripts, provided Kettle home is your current working directory.

Creating a Shortcut Icon or Launcher for Spoon

Because you’ll be running Spoon mostly from within a graphically enabled worksta-
tion, you might want to add a shortcut or launcher to your taskbar, menu, or desktop
(or its equivalent on your system).

Adding a Windows Shortcut

Windows users can open the Windows Explorer and navigate to the Kettle home direc-
tory. From there, right-click on Spoon.bat and choose the “Create shortcut” option
from the context menu. This will create a new shortcut (.lnk file) in the Kettle home
directory that can be used to launch Spoon.

Right-click the newly created shortcut file and choose Properties from the context
menu. This will open the properties dialog showing the shortcut tab page. In that tab
page, the Target and Start in fields should be filled in correctly already, so do not edit
those fields.

It’s a good idea to add the Kettle icon to your shortcut to make it easier to recognize
when it appears on your desktop. To do this, click the “Change icon” button, and use
the “Browse…” button to navigate to the Kettle home directory. Select the spoon.ico
file and confirm the changes by pressing OK. Then, confirm the shortcut’s properties
dialog, again by pressing OK.

You can now drag the shortcut to your desktop, quick launch toolbar, or Start menu.
Typically, Windows will make a copy of the shortcut as soon as you drop it on any of
these items, so you can place more shortcuts in other places without having to re-create
the shortcut and associating the icon again.

Creating a Launcher for the GNOME Desktop

For the GNOME desktop, which is the default desktop environment on many popular
Linux distributions, you can create a launcher on your desktop by right-clicking the
desktop background and choosing Create Launcher from the context menu. This opens
the Create Launcher dialog.

In the Create Launcher dialog, ensure that the Type field is set to Application. Enter
Spoon as the name for the new launcher. Click the Browse button next to the Command

 Chapter 3 ■ Installation and Configuration 63

field. This will open a file browser dialog. Navigate to the Kettle home directory, and
select the spoon.sh file. Click the Open button to close the file browser and assign the
full command line to the command field of the launcher.

To specify an icon, click the button with the launchpad icon on the left of the Create
Launcher dialog to open the “Browse icons” dialog. Use the Browse button to open a
file browser, and navigate to the Kettle home directory. Click the open button to return
to the “Browse icons” dialog, which should now display spoon.ico and spoon.png
icons. Select the spoon.png icon and press OK to confirm.

Optionally, fill in a description and then confirm the Create Launcher dialog to place
the launcher on your desktop. If you like, you can drag the launcher and drop it on the
main menu to add it there. To create a launcher for one of the submenus, open the menu
editor via System ➪ Preferences ➪ Main menu. There, navigate to the appropriate
submenu (for example, Programming) and click the New Item button. This will open
the Create Launcher dialog, which you can fill in as described above to add a launcher
on the desktop.

Configuration

There are a number of factors in Kettle’s environment that influence the way Kettle
behaves. Some are genuine configuration files; others are pieces of external software
that integrate with Kettle. Together, we refer to this as Kettle’s configuration.

In the remainder of this section, you will learn which components make up Kettle’s
configuration, and how you should manage these when working with Kettle.

Configuration Files and the .kettle Directory

A number of files influence the behavior of Kettle programs. As such, these files are
considered to be part of Kettle’s configuration, and in many cases they should be man-
aged when migrating and/or upgrading. The files are:

.spoonrc■

jdbc.properties■

kettle.properties■

kettle.pwd■

repositories.xml■

shared.xml■

Some of these files are read only by one Kettle program, and others are shared by
more than one. For most (but not all) of these files, a separate instance is created in a
.kettle directory, which by default resides beneath the home directory of each user,
allowing each user to have its own settings. (On UNIX-like systems, the home directory
is typically /home/<user>; on Windows, the home directory is by default located at
C:\Documents and Settings\user, where user stands for the actual username.)

64 Part I ■ Getting Started

The location of the .kettle directory can be changed explicitly by setting it in a
KETTLE_HOME environment variable. For example, on a production machine, you most
likely want to ensure that all users use the same configuration for running jobs and
transformations, and explicitly setting KETTLE_HOME to a single location ensures every-
body will be using the same configuration files. Alternatively, it may be convenient to
maintain one particular configuration per ETL project, in which case you would set
the value of the KETTLE_HOME environment variable accordingly before running any
of the Kettle program scripts.

The following subsections discuss each file in more detail.

.spoonrc

As the name implies, the .spoonrc file is used to store preferences and program state
of Spoon. Other Kettle programs do not use this file. It is stored in the .kettle direc-
tory beneath the user’s home directory, so there are multiple instances of this file, one
for each Spoon user. Items that are typically stored in .spoonrc are:

General settings and defaults: ■ In Spoon, these settings can be viewed and edited
in the General tab of the Kettle Options dialog. You can open the Options dialog
via the main menu ➪ Edit ➪ Options.

Look and feel preferences, such as font sizes and colors: ■ In Spoon, these can be
viewed and edited in the Look and Feel tab of the Kettle properties dialog.

Program state data:■ Such as the most recently used files list.

Normally you should not edit .spoonrc manually. However, it does make sense to
overwrite the .spoonrc file of a new Kettle installation with one that contains your pref-
erences. For this reason it also makes sense to ensure .spoonrc is included in your file
system backups.

jdbc.properties

For each Kettle installation there is a single jdbc.properties file, and it is stored in the
simple-jndi directory beneath the Kettle home directory. This file is used for storing
database connection data for database connection objects of the JNDI type. Kettle can
utilize JNDI for referring to JDBC connection data such as the host IP address, and for
user credentials, which can then be used for specifying database connection objects
for transformations and jobs.

NOTE JNDI stands for Java Naming and Directory Interface, which is a Java

standard that allows names to be used to refer to a server or service. You

can find out more about JNDI at the Sun website at http://java.sun.com/

products/jndi/.

Note that JNDI is just one way that Kettle can be used to specify database

connection data; database connection data may also be stored inside the

local database connection objects of a transformation or job or as part of the

PDI repository. We include it here because JNDI database connections form

part of the Kettle configuration.

 Chapter 3 ■ Installation and Configuration 65

In jdbc.properties, JNDI connection data is stored as a set of multiple lines, each
of which specifies a key/value pair, separated by an equal sign. The value appears after
the equal sign. The key appears before the equal sign, and is itself composed of the JNDI
name and a property name, separated by a forward slash. The lines for one particular
connection are defined by the JNDI name, tying together the set of properties that make
up the data required to establish a connection. The following properties are defined:

type■ : Value is always javax.sql.DataSource.

driver■ : Fully qualified class name of the Java class that implements the JDBC
Driver class.

url■ : The JDBC URL that the driver should use to connect with the database.

user■ : The username that should be used when establishing the connection.

password■ : The user’s password.

The following example illustrates how a JNDI connection is stored in jdbc
.properties:

SampleData/type=javax.sql.DataSource

SampleData/driver=org.hsqldb.jdbcDriver

SampleData/url=jdbc:hsqldb:hsql://localhost/sampledata

SampleData/user=pentaho_user

SampleData/password=password

In this example, the JNDI name is SampleData, which can be used to establish a connec-
tion to an HSQL database as the user pentaho_user having the password password.

You can add your own connections in jdbc.properties, following the format of
the SampleData JNDI connection snippet. Kettle currently does not offer any graphi-
cal user interface to do this, but it is quite easy to use a simple text editor for this task.

Because the connections defined in jdbc.properties can be used by transforma-
tions and jobs, you should take proper measures to manage this file. At the very least,
you should include it in system backups.

Another thing to be aware of is how to handle deployment. After developing trans-
formations and jobs that rely on JNDI connections, you should find some way to cre-
ate JNDI connections of the same name in the jdbc.properties file located at the
deployment target.

Depending on your particular scenario, you may want to assign exactly the same
values to the properties as you specified in your local jdbc.properties file, ensuring
that the connections you used in your development environment are exactly the same
as the ones you use on your deployment platform. However, in many cases it is more
likely that there are dedicated development and/or testing databases, in which case
you want to set up your local jdbc.properties so that it uses your local development
database. On the deployment target, your jdbc.properties file would define exactly
the same JNDI names, but specify connection data corresponding to the production
environment. Because the transformations and jobs only refer to the JNDI connection
by name, you can transparently apply your transformations and jobs on any environ-
ment without having to change the job and transformations themselves.

66 Part I ■ Getting Started

kettle.properties

The kettle.properties file is a general store for global Kettle properties. Properties
are to Kettle what environment variables are to an operating system shell: they are
global string variables that you can use to parameterize your jobs and transformations.
For example, you can create properties to hold database connection data, paths on the
file system, or simply constants that play a role in your transformation or job.

You can edit the kettle.properties file using a plain-text editor. Each property is
denoted on its own line as a key/value pair, separated by an equal sign. The key appears
before the equal sign, and is used as property name; whatever comes after the equal sign
is the property value. After defining such a property, you can refer to its value using the
key name. Here’s an example to illustrate what the contents of kettle.properties
might look like:

#connection parameters for the db server

DB_HOST=dbhost.domain.org

DB_NAME=sakila

DB_USER=sakila_user

DB_PASSWORD=sakila_password

#path from where to read input files

INPUT_PATH=/home/sakila/import

#path to store the error reports

ERROR_PATH=/home/sakila/import_errors

With these properties in kettle.properties, transformations and jobs can refer to
these values by using a notation like ${<propertyname>} or %%<propertyname>%% in
any configuration field of the transformation step or job entry that supports variables.
For example, Figure 3-4 shows the configuration dialog of the CSV input step.

Figure 3-4: Referencing variables set in the kettle.properties file

 Chapter 3 ■ Installation and Configuration 67

As you can see, instead of “hard wiring” the directory in the transformation, the
variable reference ${INPUT_PATH} is used inside the value for the Filename field. You
can use variables this way whenever there’s a small dollar icon immediately next to the
configuration dialog field. At runtime, the variable reference will evaluate to /home/
sakila/import because this was specified in the kettle.properties file.

The way in which properties can be used, and even the syntax for creating them, is
similar to what you saw for JNDI connection data in jdbc.properties. For example,
you can use different kettle.properties files on your development and production
environment, with the express purpose of managing the differences between them.

Despite the similarities between using jdbc.properties and kettle.properties, it
is worthwhile to point out a few differences. First, currently JNDI can be used for database
connections only, whereas properties can be used for any purpose. Also, keys for kettle
.properties can have more or less arbitrary names, whereas the properties for JNDI
connections are predefined and geared at configuring JDBC database connections.

A final point worth noting about the kettle.properties file is that there are a few
predefined properties that are meant to configure a default repository. These settings
have an effect only when you’re using a repository to store transformations and jobs.
The keys for these properties are:

KETTLE_REPOSITORY■ : The name of the default repository

KETTLE_USER■ : The name of the repository user

KETTLE_PASSWORD■ : The password for the repository user

With these properties in place, Kettle programs will automatically use the repository
identified by the value set for the KETTLE_REPOSITORY property and connect to it using
the values set for KETTLE_USER and KETTLE_PASSWORD as credentials.

NOTE Repositories are covered in more detail in the section about

 repositories.xml, later in this chapter, and in Chapter 13.

kettle.pwd

Executing a job using the Carte service requires authentication. The exact method of
authentication can be configured, but this is a specialized topic that is outside the scope
of this chapter. By default, Carte is configured to support only basic authentication. For
this type of authentication, the credentials are stored in the kettle.pwd file, which is
located in the pwd directory beneath the Kettle home directory. By default, the contents
of the kettle.pwd file are:

Please note that the default password (cluster) is obfuscated

using the Encr script provided in this release

Passwords can also be entered in plaintext as before

#

cluster: OBF:1v8w1uh21z7k1ym71z7i1ugo1v9q

The last line is the only functional line. It defines a user called cluster, as well
as the obfuscated password (which happens to be cluster as well). As the comment

68 Part I ■ Getting Started

indicates, the obfuscated password was generated using the Encr.bat or encr.sh
script discussed previously.

If you are using the Carte service, (especially if that service is accessible from outside
your private network), you should most certainly edit kettle.pwd and at least change
the default credentials. There is no separate editor or tool available to do this: simply
use any text editor and make the changes by directly editing the file.

repositories.xml

Kettle has the capability to manage transformations, jobs, and resources such as data-
base connections using a centralized repository. If you do not use a repository, trans-
formations and jobs will be stored in files, and each job or transformation will keep its
own copy of configuration data for items such as database connections.

Kettle repositories can have a relational database as backend, or you can have plugins
that utilize another data store as backend, such as a version control system like subver-
sion. These features are discussed in Chapter 13.

To make it easier to work with repositories, Kettle maintains a list of known
repositories in a repositories.xml file. There are two standard locations for a
 repositories.xml file:

The ■ .kettle directory beneath the user’s home directory. This file is read by
Spoon, Kitchen, and Pan.

The Carte service will read the ■ repositories.xml file in the directory from which
Carte was started. If there is no repositories.xml file, it will use the default
repositories.xml file stored in the .kettle directory beneath the user’s home
directory.

For the development platform, you are not required to edit this file manually; it is
automatically maintained by Spoon whenever you connect to a new repository. But
for deployment, things may be different. For each repository name referenced in the
deployed transformations or jobs, an entry must be found with a matching name in
whatever repositories.xml file is being used. And just as you saw for the jdbc
.properties and kettle.properties files, it is possible or even likely that the actual
repository that should be used on the deployment platform differs from that being used
on the development platform.

In practice, it is most convenient to simply copy the repositories.xml file from the
development environment and manually modify it for the deployment environment.
This topic is covered in detail in Chapter 13.

shared.xml

Kettle supports a concept referred to as shared objects. Shared objects are things like
transformation steps, database connection definitions, slave server definitions, and so on
that are defined once and then reused (shared) among multiple transformations or jobs.
Note that there is some overlap in functionality with repositories, which can also be used
to share connections and slave server definitions. There are a few differences, however.
A repository is typically a central store that can be accessed by multiple developers; as
such it is an ideal way to maintain all objects pertaining to a particular project.

 Chapter 3 ■ Installation and Configuration 69

To share an object, activate the tree view View mode in Spoon, and locate the object
that you wish to share. Right-click it, and then choose Share from the context menu.
Be sure to save the file; otherwise the share is not recorded. Objects shared in this way
will automatically be available in each new job or transformation you create, and can
always be located in the tree view when in the View mode. However, shared steps and
job entries are not automatically placed on the canvas; you’ll have to drag them from
the tree view unto the canvas in order to use them in your transformation or job.

Shared objects are stored in a file called shared.xml. By default, a shared.xml
file is stored in the .kettle directory beneath the home directory of the current user.
However, jobs and transformations can specify a custom location for the shared objects
file. This allows you to conveniently manage and reuse all objects that are repeatedly
needed in all transformations and jobs for a specific project.

For transformations as well as jobs, you can use Spoon to set the location of the shared
objects file. For both jobs and transformations, this is done in the Properties dialog,
which you can open via the Settings option of the main menu. For jobs, you can specify
the file in the Shared objects file field on the Log tab page. For transformations, you’ll
find this field on the Miscellaneous tab page.

NOTE You may use variables to specify the location of the shared proper-

ties file. For example, in a transformation you could use a location like the

following:

 ${Internal.Transformation.Filename.Directory}/shared.xml

This allows all transformations in the same directory to use the same

shared objects file, regardless of the actual directory in which the transforma-

tion resides.

For deployment, you need to ensure that any shared object files that are directly or
indirectly used in the developed transformations and jobs are also available on the
deployment platform. Typically, the shared objects files should be identical for both
environments, and any environment-specific settings should be taken care of using
the kettle.properties file.

The Kettle Shell Scripts

In some cases, you may need to tweak the shell scripts that are used to launch the vari-
ous Kettle programs. The most common reasons to do this are:

To add additional entries to the Java classpath. This is necessary in case your job ■

or transformation directly or indirectly (via plugins) refers to Java classes that
are not by default accessible.

To change the settings of the Java Virtual Machine, such as the amount of memory ■

that it can utilize.

70 Part I ■ Getting Started

General Structure of the Startup Scripts

The structure of all the Kettle startup scripts is quite similar:

An initial string is built to set the classpath later on. In this step, a number of core ■

.jar files are added to the classpath.

A string is built containing the file names of all ■ .jar files residing in and below
the libext directory.

File names of other ■ .jar files are added to the classpath. These file names are
specific for the particular program that is invoked by the script. For example, the
Spoon startup scripts add the names of a number of SWT .jar files in this step,
which are used to build the Spoon graphical user interface.

A string is built with a number of options for the Java Virtual Machine. The class-■

path built in the previous steps is included in that string. The option that sets the
maximum heap size that can be utilized is added to the string in this step.

The Java executable is executed using the string of options built in the previous ■

steps. In this line the fully qualified name of the Java class that actually imple-
ments the specific Kettle program is passed to the Java executable.

Adding an Entry to the Classpath

Kettle allows you to use Java expressions in your transformations. For example, the
JavaScript step allows you to instantiate Java objects and call their methods, and the User
Defined Java Expression step lets you write Java expressions directly. These topics are
discussed in detail in the “Scripting” section in Chapter 7.

You have to make sure that any classes that you want to use in your Java expressions
are already included in the classpath. The easiest way to achieve this is to create a new
directory beneath the libext directory located in the Kettle home directory and put
any .jar files you want to add to the classpath in there. For the .sh scripts, this works
perfectly because of the following lines:

**

** JDBC & other libraries used by Kettle: **

**

for f in `find $BASEDIR/libext -type f -name “*.jar”`\

 `find $BASEDIR/libext -type f -name “*.zip”`

do

 CLASSPATH=$CLASSPATH:$f

done

 Chapter 3 ■ Installation and Configuration 71

These lines simply loop over all .jar and .zip files located in or below the libext
directory. Unfortunately, the equivalent section for the .bat files looks like this:

REM Loop the libext directory and add the classpath.

REM The following command would only add the last jar:

REM FOR %%F IN (libext*.jar) DO call set CLASSPATH=%CLASSPATH%;%%F

REM So the circumvention with a subroutine solves this ;-)

FOR %%F IN (libext*.jar) DO call :addcp %%F

FOR %%F IN (libext\JDBC*.jar) DO call :addcp %%F

FOR %%F IN (libext\webservices*.jar) DO call :addcp %%F

FOR %%F IN (libext\commons*.jar) DO call :addcp %%F

FOR %%F IN (libext\web*.jar) DO call :addcp %%F

FOR %%F IN (libext\pentaho*.jar) DO call :addcp %%F

FOR %%F IN (libext\spring*.jar) DO call :addcp %%F

FOR %%F IN (libext\jfree*.jar) DO call :addcp %%F

FOR %%F IN (libext\mondrian*.jar) DO call :addcp %%F

FOR %%F IN (libext\salesforce*.jar) DO call :addcp %%F

FOR %%F IN (libext\feeds*.jar) DO call :addcp %%F

As you can see in the .bat scripts, the directories below the libext directory are
hard-coded within the script. This means you’ll have to add your own line here to
ensure that the .jar files inside the subdirectory you added to libext are read and
added to the classpath as well.

Changing the Maximum Heap Size

All Kettle startup scripts explicitly specify a maximum heap space. For example, in
pan.bat you can find a line that reads:

REM **

REM ** Set java runtime options **

REM ** Change 512m to higher values in case you run out of memory. **

REM **

set OPT=-Xmx512M -cp %CLASSPATH% ...more options go here...

If you are experiencing Out of Memory errors when running certain jobs or transfor-
mations, or if the computer that you’re running Java on has substantially more physical
memory available than 512 Megabytes, you can try to increase the value. When changing
the amount of memory, just be careful to change the number 512 only to some other
integer. Other modifications, such as accidentally removing the trailing M, will lead to
unexpected results that may be hard to debug.

NOTE For the original documentation on the command-line parameters,

see http://java.sun.com/javase/6/docs/technotes/tools/solaris/

java.html.

72 Part I ■ Getting Started

Managing JDBC Drivers

Kettle ships with a large number of JDBC drivers. A given JDBC driver typically resides
in a single Java archive (.jar) file. Kettle keeps all of its JDBC drivers in the JDBC direc-
tory beneath the libext directory, which resides in the Kettle home directory.

To add a new driver, simply drop the .jar file containing the driver into the libext/
JDBC directory. The scripts for starting Spoon, Kettle, and Pan automatically loop
through the contents of this directory, and add all these .jars to the classpath.

NOTE The new database driver does not become automatically available to

any Kettle program that happens to be running at the time of adding the new

driver. Only those .jar files that are present in the libext/JDBC directory

before running the startup script will be available to Kettle.

When you upgrade or replace a driver, be sure to also remove the old .jar file. If
you want to keep the old .jar file, be sure to move it to a directory that is completely
outside of the Kettle home directory, or one of its descendent directories. This ensures
you can’t accidentally load the old driver again.

Summary

This chapter provided an overview of the Kettle programs. We discussed how to
install Kettle, and how to manage several aspects of its configuration. In particular,
you learned:

Spoon is the integrated development environment you use to create and design ■

transformations and jobs.

Kitchen and Pan are command-line lauchers for running Kettle jobs and trans-■

formations respectively.

Carte is a server to run Kettle jobs remotely.■

How to install Java (which is a pre-requisite for running Kettle programs).■

How to obtain Kettle from sourceforge, and how to install it.■

How to use the Kettle scripts to run the individual Kettle programs.■

The different files that make up a Kettle’s configuration.■

73

C H A P T E R

4

An Example ETL Solution—Sakila

After the gentle introduction to ETL and Kettle provided by the first two chapters and
the installation and configuration guide provided in Chapter 3, it’s finally time to get
a bit of hands-on experience with Kettle. Using a fairly uncomplicated yet sufficiently
realistic ETL solution, this chapter will give you a quick impression of Kettle’s features
and capabilities. In addition, you’ll get just enough experience in using the Spoon
program to follow through with the more complicated examples in the remainder of
this book.

This chapter does not provide a detailed step-by-step instruction on how to build
this solution yourself. Instead, we provide all the necessary instructions to set up this
solution on your own system using transformations and jobs that are available on this
book’s website at www.wiley.com/go/kettlesolutions. As we discuss the design
and constructs used in the example, we will refer to specific chapters and sections in the
remainder of this book that contain more detailed descriptions of a particular feature
or technique used in the example.

Sakila

Our example ETL solution is based on a fairly simple star schema that can be used to
analyze rentals for a fictitious DVD rental store chain called Sakila. This star schema
is based on the sakila database schema, which is a freely obtainable sample database
for MySQL.

74 Part I ■ Getting Started

NOTE The sakila sample database was originally developed by Mike Hillyer

who was at the time a technical writer for MySQL AB. Since its release in

March 2006, the sakila sample database has been maintained and distributed

by the MySQL documentation team. More information about the sample data-

base can be found in the relevant MySQL documentation pages at http://

dev.mysql.com/doc/sakila/en/sakila.html. You can find download

and installation instructions in that document. For your convenience, the SQL

scripts for setting up the sakila database are also available on the book’s

website in the download area for this chapter, and this chapter provides

detailed installation instructions.

There is a port for Sakila available for PostgreSQL called pagila. This can

be obtained via the dbsamples project hosted on pgFoundry at http://

pgfoundry.org/projects/dbsamples. You can find instructions to set

up pagila at http://www.postgresonline.com/journal/index.php?/

archives/36-REST-in-PostgreSQL-Part-1-The-DB- components.htm.

The sample ETL solution described in this chapter is designed to periodically extract
new or changed data from the original sakila schema, which thus acts as source data-
base. The data is then transformed to fit the heavily denormalized rental star schema.
Finally, the data is loaded into the rental star schema, which thus acts as the target
database.

The following sections briefly discuss the schemas of both source and target data-
bases. This should help you later on to understand how the sample ETL solution works
and why it was built this way.

The Sakila Sample Database

For a full description of all objects in the sakila database schema, you should refer
to the official documentation at http://dev.mysql.com/doc/sakila/en/sakila
.html. However, the schema is quite simple and easy to grasp, and its essence can be
easily understood when looking at the business process.

DVD Rental Business Process

The sakila database is a sample database to support the primary business process for
a chain of brick-and-mortar DVD rental stores. The following list defines a few key
activities of its business process to help you understand how the sakila database could
support this business process:

Each store maintains its own inventory of films for rental, which is updated by ■

one of the store’s staff members whenever customers pick up or return DVDs.

Some descriptive data concerning the films are maintained, such as its categories ■

(such as action, adventure, comedy, and so on), cast, rating, and whether the DVD

 Chapter 4 ■ An Example ETL Solution—Sakila 75

has some special features (such as deleted scenes and theatrical trailers). This data
may be used to print out labels to physically mark DVD boxes.

In order to become a customer, people have to register with one of the stores ■

belonging to the chain.

Customers can enter any of the stores and pick up one or more DVDs for rental. ■

Customers are also expected to return previously rented DVDs within a fixed
rental duration that is specified per DVD.

Rentals must be paid for. Any customer can make a payment at any time for any ■

rented item.

Sakila Database Schema Diagram

Figure 4-1 shows the database schema for the sakila sample database . The diagram
reveals a typical normalized schema (having a respectable number of heavily inter-
related tables), which is optimized for online transactional processing (OLTP).

NOTE For your convenience, the diagram is available as a Power*Architect

file on this book’s website. You can find the file, sakila.architect, in the

download area beneath the folder for this chapter. The diagram was prepared

with version 0.9.16 of the software.

Sakila Database Subject Areas

Figure 4-1 suggests an organization into four subject areas. This categorization allows
the reader to quickly identify the key tables of the database schema along with their
most important related tables. While you could think of other useful ways to categorize
the tables in the database schema, the categories we suggest are:

Films:■ Comprises the film table and a number of tables containing additional
information pertaining to films, such as category, actor, and language.

Stores:■ Has the store table and the related staff and inventory tables.

Customers:■ Holds the customer table along with the customer-related rental
and payment tables.

Location:■ Holds the country, city, and address tables, which participate in
the normalized storage of customer, store, and staff addresses.

cu
st

o
m

e
rs

st
o

re
s

�
lm

s

lo
ca

ti
o

n

ac
to

r
ac

to
r_

id
: S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
PK

]
ir

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

la
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

in
ve

nt
or

y
in

ve
nt

or
y_

id
: M

ED
IU

M
IN

T
U

N
SI

G
N

ED
(8

) [
PK

]
il

m
_i

d:
 S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
FK

]
st

or
e_

id
: T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

PF
K]

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

st
or

e
st

or
e_

id
: T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

PK
]

m
an

ag
er

_s
ta

f_
id

: T
IN

YI
N

T
U

N
SI

G
N

ED
(3

) [
FK

]
ad

dr
es

s_
id

: S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

FK
]

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

st
af

st
af

_i
d:

 T
IN

YI
N

T
U

N
SI

G
N

ED
(3

) [
PK

]
ir

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

la
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
ad

dr
es

s_
id

: S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

FK
]

pi
ct

ur
e:

 B
LO

B(
25

5)
em

ai
l:

VA
RC

H
A

R(
50

)
st

or
e_

id
: T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

FK
]

ac
tiv

e:
 B

IT
(1

)
us

er
na

m
e:

 V
A

RC
H

A
R(

16
)

pa
ss

w
or

d:
 V

A
RC

H
A

R(
40

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

re
nt

al
re

nt
al

_i
d:

 IN
T(

8)
 [P

K]
re

nt
al

_d
at

e:
 D

AT
ET

IM
E

in
ve

nt
or

y_
id

: M
ED

IU
M

IN
T

U
N

SI
G

N
ED

(8
) [

FK
]

cu
st

om
er

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

FK
]

re
tu

rn
_d

at
e:

 D
AT

ET
IM

E
st

af
_i

d:
 T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

FK
]

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

pa
ym

en
t

pa
ym

en
t_

id
: S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
PK

]
cu

st
om

er
_i

d:
 S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
FK

]
st

af
_i

d:
 T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

FK
]

re
nt

al
_i

d:
 IN

T(
8)

 [F
K]

am
ou

nt
: D

EC
IM

A
L(

5,
2)

pa
ym

en
t_

da
te

: D
AT

ET
IM

E
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

cu
st

om
er

cu
st

om
er

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PK
]

st
or

e_
id

: T
IN

YI
N

T
U

N
SI

G
N

ED
(3

) [
FK

]
ir

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

la
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
em

ai
l:

VA
RC

H
A

R(
50

)
ad

dr
es

s_
id

: S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

FK
]

ac
tiv

e:
 B

IT
(1

)
cr

ea
t_

da
te

: D
AT

ET
IM

E
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

la
ng

ua
ge

la
ng

ua
ge

_i
d

TI
N

YI
N

T
U

N
SI

G
N

ED
(3

) [
PK

]
na

m
e:

 C
H

A
R(

20
)

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

ca
te

go
ry

ca
te

go
ry

_i
d:

 T
IN

YI
N

T
U

N
SI

G
N

ED
(3

) [
PK

]
na

m
e:

 V
A

RC
H

A
R(

25
)

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

il
m

_c
at

eg
or

y

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

il
m

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PF
K]

ca
te

go
ry

_i
d:

 T
IM

YI
N

T
U

N
SI

G
N

ED
(3

) [
PF

K]

il
m

_t
ex

t
il

m
_i

d:
 S

M
A

LL
IN

T(
5)

 [P
FK

]
tit

le
: V

A
RC

H
A

R(
64

)
de

sc
rip

tio
n:

 te
xt

(2
55

)

co
un

tr
y

co
un

tr
y_

id
: S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
PK

]
co

un
tr

y:
 V

A
RC

H
A

R(
50

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

ad
dr

es
s

ad
dr

es
s_

id
: S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
PK

]
ad

dr
es

s:
VA

RC
H

A
R(

50
)

ad
dr

es
s2

: V
A

RC
H

A
R(

50
)

di
st

ric
t:

 V
A

RC
H

A
R(

20
)

ci
ty

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

FK
]

po
st

al
_c

od
e:

 V
A

RC
H

A
R(

10
)

ph
on

e:
 V

A
RC

H
A

R(
20

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

ci
ty

ci
ty

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PK
]

ci
ty

: V
A

RC
H

A
R(

50
)

co
un

tr
y_

id
: S

M
A

LL
IN

T
U

N
SI

G
N

ED
(5

) [
FK

]
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

il
m

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PK
]

tit
le

: V
A

RC
H

A
R(

64
)

de
sc

rip
tio

n:
 T

EX
T(

25
5)

re
le

as
e_

ye
ar

: Y
EA

R
la

ng
ua

ge
_i

d:
 T

IN
YI

N
T

U
N

SI
G

N
ED

(3
) [

FK
]

or
ig

in
al

_l
an

gu
ag

e_
id

: T
IN

YI
N

T
U

N
SI

G
N

ED
(3

) [
FK

]
re

nt
al

_d
ur

at
io

n:
 T

IN
YI

N
T

U
N

SI
G

N
ED

(3
)

re
nt

al
_r

at
e:

 D
EC

IM
A

L(
4,

2)
le

ng
th

: S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
)

re
pl

ac
em

en
t_

co
st

: D
EC

IM
A

L(
5,

2)
ra

tin
g:

 E
N

U
M

(5
)

sp
ec

ia
l_

fe
at

ur
es

: S
ET

(5
4)

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

ac
to

r_
id

: S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PF
K]

il
m

_i
d:

 S
M

A
LL

IN
T

U
N

SI
G

N
ED

(5
) [

PF
K]

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

il
m

_a
ct

or
il

m

Fi
g
u

re
 4

-1
:

Th
e
 S

ak
ila

 s
am

p
le

 d
at

ab
as

e

 Chapter 4 ■ An Example ETL Solution—Sakila 77

General Design Considerations

To further understand the sakila database schema, it helps to be aware of a few general
design considerations:

The sakila schema uses singular object names as table names. ■

Every table has an automatically incrementing surrogate primary key. The column that ■

stores the key value is easily recognized as the column having a name like <table-
name>_id. For example, the key of the film table is the film_id column.

Foreign key constraints consistently refer to the primary key and the foreign key ■

column keeps the name of the original primary key column. For example, the
address_id column of the store table refers to the address_id column of
the address table.

Every table has a ■ last_update column of the TIMESTAMP type, which is automati-
cally updated to the current date and time whenever a row is added or modified.

Installing the Sakila Sample Database

You can download the sakila sample database from the MySQL documentation website.
It is currently distributed as a compressed archive containing MySQL-compatible SQL
script files. The archive is available in the .tar.gz format as well as the .zip format.
You can find the links to the actual archives on this page: http://dev.mysql.com/
doc/index-other.html. Alternatively, you can download these archives from this
book’s website in the download folder for Chapter 4.

Before you can install the sakila sample database, you should first install a recent
version of the MySQL RDBMS software. You’ll need at least version 5.0, but we recom-
mend the latest stable version. For instructions on obtaining, installing, and configuring
MySQL, please refer to the official MySQL documentation at http://dev.mysql.com/
doc/refman/5.1/en/installing.html.

After you have installed the MySQL RDBMS software and downloaded the sakila
sample database archive, refer to the sakila setup guide at http://dev.mysql.com/
doc/sakila/en/sakila.html for detailed installation instructions. Alternatively,
use the following instructions:

 1. Uncompress the.tar.gz or .zip archive containing the SQL script files. You
should now have two files, sakila-schema.sql and sakila-data.sql.

 2. Connect to MySQL using the mysql command-line client. Be sure to log on as a
user that has the appropriate permissions to create a new database.

 3. Run the sakila-schema.sql and sakila-data.sql scripts by using the SOURCE
command. For example, if you unpacked the script in /home/me/sakila, you
could type:

mysql> SOURCE /home/me/sakila/sakila-schema.sql

and then:

mysql> SOURCE /home/me/sakila/sakila-data.sql

78 Part I ■ Getting Started

The Rental Star Schema

The rental star schema is directly derived from the original sakila sample database.
It is just one example of a number of possible dimensional models that focuses on the
rental business process.

Rental Star Schema Diagram

A diagram of the rental star schema is shown in Figure 4-2.

what?

dim_ilm
ilm_key: INT UNSIGNED(8) [PK]
ilm_last_update: TIMESTAMP(10)
ilm_id: INTEGER(10)
ilm_title: VARCHAR(64)
ilm_description: TEXT(255)
ilm_release_year: SMALLINT UNSIGNED(5)
ilm_language: VARCHAR(20)
ilm_original_language: VARCHAR(20)
ilm_rental_duration: TINYINT(3)
ilm_rental_rate: DECIMAL(4)
ilm_duration: INTEGER(8)
ilm_replacement_cost: DECIMAL(5)
ilm_rating_code: CHAR(5)
ilm_rating_text: VARCHAR(30)
ilm_has_trailers: CHAR (4)
Film_has_commentaries: CHAR(4)
Film_has_deleted_scenes: CHAR(4)
Film_has_behind_the_scenes: CHAR(4)
Film_in_category_action: CHAR(4)
Film_in_category_animation: CHAR(4)
Film_in_category_children: CHAR(4)
Film_in_category_classics: CHAR(4)
Film_in_category_comedy: CHAR(4)
Film_in_category_documentary: CHAR(4)
Film_in_category_drama: CHAR(4)
Film_in_category_family: CHAR(4)
Film_in_category_foreign: CHAR(4)
Film_in_category_games: CHAR(4)
Film_in_category_horror: CHAR(4)
Film_in_category_music: CHAR(4)
Film_in_category_new: CHAR(4)
Film_in_category_scii: CHAR(4)
Film_in_category_sports: CHAR(4)
Film_in_category_travel: CHAR(4)

who?

dim_customer
customer_key: INT UNSIGNED(8) [PK]
customer_last_update: TIMESTAMP(10)
customer_id: INT UNSIGNED(8)
customer_irst_name: VARCHAR(45)
customer_last_name: VARCHAR(45)
customer_email: VARCHAR(50)
customer_active: CHAR(3)
customer_created: DATE
customer_address: VARCHAR(64)
customer_district: VARCHAR(20)
customer_postal_code: VARCHAR(10)
customer_phone_number: VARCHAR(20)
customer_city: VARCHAR(50)
customer_country: VARCHAR(50)
customer_version_number: SMALLINT UNSIGNED(5)
customer_valid_from: DATE
customer_valid_through: DATE

how much?

fact_rental
rental_id: INTEGER(10) [PK]
rental_last_update: TIMESTAMP(10)
customer_key: INT UNSIGNED(8) [FK]
staf_key: INT UNSIGNED(8) [FK]
ilm_key: INT UNSIGNED(8) [FK]
store_key: INT UNSIGNED(8) [FK]
rental_date_key: INTERGER(8) [FK]
return_date_key: INTERGER(10) [FK]
return_time_key: INTEGER(8) [FK]
count_returns: INTEGER(10)
count_rentals: INT UNSIGNED(8)
rental_duration: INTEGER(10)

where?

dim_store
store_key: INT UNSIGNED(8) [PK]
store_last_update: TIMESTAMP(10)
store_id: INT UNSIGNED(8)
store_address: VARCHAR(64)
store_district: VARCHAR(20)
store_postal_code: VARCHAR(10)
store_phone_number: VARCHAR(20)
store_city: VARCHAR(50)
store_country: VARCHAR(50)
store_manager_staf_id: INT UNSIGNED(8)
store_manager_irst_name: VARCHAR(45)
store_manager_last_name: VARCHAR(45)
store_version_number: SMALLINT UNSIGNED(5)
store_valid_from: DATE
store_valid_through: DATE

when?

dim_date
date_key: INT UNSIGNED(8) [PK]
date_value: DATE(0) [AK]
date_short: CHAR(12)
date_medium: CHAR(16)
date_long: CHAR(24)
date_full: CHAR(32)
day_in_year: SMALLINT UNSIGNED(5)
day_in_month: TINYINT UNSIGNED(3)
is_irst_day_in_month: CHAR(10)
is_last_day_in_month: CHAR(10)
day_abbreviation: CHAR(3)
day_name: CHAR(12)
week_in_year: TINYINT UNSIGNED(3)
week_in_month: TINYINT UNSIGNED(3)
is_irst_Day_in_week: CHAR(10)
is_last_Day_in_week: CHAR(10)
month_number: TINYINT UNSIGNED(3)
month_abbreviation: CHAR(3)
month_name: CHAR(12)
year2: CHAR(2)
year4: SMALLINT(5)
quarter_name: CHAR(2)
quarter_number: TINYINT(3)
year_quarter: CHAR(7)
year_month_number: CHAR(7)
year_month_abbreviation: CHAR(8)

dim_time
time_key: INT UNSIGNED(8) [PK]
time_value: TIME(0)
hours24: TINYINT UNSIGNED(3)
hours12: TINYINT UNSIGNED(3)
minutes: TINYINT UNSIGNED(3)
seconds: TINYINT UNSIGNED(3)
am_pm: ENUM(3)

dim_staf
staf_key: INT UNSIGNED(8) [PK]
staf_last_update: TIMESTAMP(10)
staf_id: INT UNSIGNED(8)
staf_irst_name: VARCHAR(45)
staf_last_name: VARCHAR(45)
staf_store_id: INT UNSIGNED(8)
staf_version_number: SMALLINT UNSIGNED(5)
staf_valid_from: DATE
staf_valid_through: DATE
staf_active: CHAR(3)

ilm_key: INT UNSIGNED(8) [PFK]
actor_key: INTEGER(10) [PFK]
actor_weighing_factor: DECIMAL(3)

dim_ilm_actor_bridge

actor_key: INTEGER(10) [PK]
actor_last_update: TIMESTAMP(10)
actor_id: INTEGER(10)
actor_last_name: VARCHAR(45)
actor_irst_name: VARCHAR(45)

dim_actor

Figure 4-2: The rental star schema

 Chapter 4 ■ An Example ETL Solution—Sakila 79

NOTE If you want to examine the star schema more closely yourself, you can

find a copy of the Power*Architect file on this book’s website, located in this

chapter’s folder. It’s called sakila-rental-star.architect. The diagram

was prepared with SQL Power Architect version 0.9.16. The version is impor-

tant, as older versions of the software may not be able to load the file.

Figure 4-2 reveals a typical dimensionally modeled database schema, having one
central fact table called fact_rental, which is related to multiple dimension tables. A
dimensional model like this is optimal for online analytical processing (OLAP) require-
ments. It is also a typical star schema because almost all dimensions are modeled as
a single, denormalized dimension table that is only related to the fact table and not to
the other dimension tables.

NOTE There is one notable exception to the dimension tables not being

related to each other: the dim_actor and dim_film tables are related to each

other with a so-called bridge table called dim_film_actor_bridge. The pur-

pose of this construct is described in the subsection “Dimension Tables” later

in this chapter.

The following sections describe the elements found in this star schema and their
purpose.

Rental Fact Table

The fact table is called fact_rental and contains a few columns to store the quan-
titative metrics pertaining to the performance of the rental business process (count_
returns, count_rentals, and rental_duration). In addition, it contains a set of
columns to refer to the keys of the dimension tables. The dimension table rows identified
by these key columns provide the context for the state of the business at the time when
particular values for the metrics were obtained.

The fact_rental table corresponds directly to the original rental table in the
sakila schema: One row in the rental table generates one row in the fact_rental
table.

Dimension Tables

We previously explained that the rental star schema models each dimension as
a single dimension table. The dimension tables all follow the naming convention
dim_<dimension-name>, where <dimension-name> is a descriptive name for the
subject of the dimension.

Analogous to how we categorized the sakila database diagram (Figure 4-1) in a
number of subject areas, Figure 4-2 suggests that the dimension tables are organized
into four groups containing conceptually related dimensions (plus a fifth group, “how
much?,” that is in the fact table):

80 Part I ■ Getting Started

who?:■ In this group, we find the dim_customer and dim_staff dimension
tables, which represent the customer and the staff member who participate in a
rental. Both dimensions are modeled as type 2 slowly changing dimensions: the
special %_version_number, %_valid_from, and %_valid_through columns
serve to distinguish between multiple records pertaining to the same physical
customer or staff member. This allows one to track the history.

when?:■ This group contains dimension tables that mark the point in time when
a rental or a return occurred. The dim_date dimension represents the calendar
day. This is a so-called role-playing dimension because it is used to mark both
the rental as well as the return date. The dim_time dimension is used to identify
in which moment during the day a rental occurred.

where?:■ The dim_store dimension is used to identify from which store the DVD
was rented. Like the dim_staff and dim_customer dimension tables, this is
also a type 2 slowly changing dimension, having a set of columns to keep track
of the different store record versions through time.

what?:■ This group contains the dim_actor and dim_film dimension tables,
which have the role of being the subjects of a rental. Only the dim_film table is
directly related to the fact_rental table because the film is the actual object that
is rented or returned. But because a film has a cast, consisting of multiple actors,
the actors are in a sense also a subject of the rental. This is where the so-called
bridge table dim_film_actor_bridge comes into play, which relates actors to
films. In addition, it stores a weighting factor that can be used to attenuate the
values of the metrics in the fact table proportional to how much a particular actor
contributed to a film. By multiplying the raw metrics with the weighting factor,
one can analyze rentals in terms of actors and still treat the attenuated metrics
as if they were additive. For example, one can sensibly answer the question: In
the last month, how many rentals did we have for films with Robert De Niro or
Al Pacino (or both)?

In the case of the rental star schema, the derivation of dimension tables from the
original sakila schema is so straightforward that each dimension table (save for the dim_
date and dim_time tables) corresponds directly with one table in the original sakila
schema. For example, the dim_store dimension table corresponds with the original
store table, and the dim_actor table corresponds with the original actor table.

Keys and Change Data Capture

With the exception of dim_date and dim_time, the dimension tables each have their
own automatically incrementing column that serves as the surrogate primary key. The
dim_date and dim_time tables also have a key but as you will see later, this is a so-
called smart key. These smart keys are directly derived from parts of the date and time
value respectively, which has some practical advantages for the ETL process, as well
as for partitioning the fact table.

 Chapter 4 ■ An Example ETL Solution—Sakila 81

The key values of the dimension tables are used by the fact_rental table to refer
to the dimension tables. For any given dimension table, the key column is called
 <dimension-name>_key, where <dimension-name> is the dimension name without
the dim_ prefix that is used in the table name.

When we discussed the general design considerations of the sakila database schema,
we mentioned that every table in the source schema has a last_update column, which
is used to store a TIMESTAMP value of the last change (or addition) on a per-row basis.
As you will see in the following section, the existence of these columns is extremely
convenient for capturing data changes, which is necessary for incrementally loading
the rental star schema. Although there are several ways to exploit this feature, the
rental star schema takes a very straightforward approach: Each dimension table keeps
its own copy of the last_update column to store the values from the last_update
column of its corresponding table in the original sakila schema. This allows you to do
a single query on each dimension table to obtain the date/time of the last loaded row,
which can then be used to identify and extract all added and/or changed rows in its
corresponding table in the source database.

In addition to the surrogate primary key, each dimension table also contains a column
that stores the value of the primary key column from the original sakila schema. For
example, the dim_film table in the rental star schema corresponds to the film table in
the original sakila schema and thus has a film_id column to store the values from the
corresponding film.film_id column. As you will see in the next section, these columns
are extremely important to determine whether to add or update rows in the dimension
tables to reflect the changes that occurred in the source database since the last load.

Installing the Rental Star Schema

You can download SQL script files for the rental star schema from this book’s website.
Just like the sakila sample database, the script files are archived and available as a .zip
and a .tar.gz archive.

So, the installation procedure for the rental star schema is the same as for the original
sakila sample database: Simply unpack the archive and use the SOURCE command in the
MySQL command line utility to execute the scripts. The only difference with the sakila
sample database are the actual file names. For the rental star schema, the files for the
schema and the data are called sakila_dwh_schema.sql and sakila_dwh_data.sql,
respectively.

Note that the ETL solution described later in this chapter will actually load the tables
in the rental star schema based on the contents of an existing sakila schema, so you
might want to consider installing only the schema and not the data. If you do load the
data from the SQL script file, then the ETL solution will still run fine: It just won’t find
any new changes to load.

Prerequisites and Some Basic Spoon Skills

We are about to dive into the details of our sample ETL solution, and you are encour-
aged to follow along and examine its nuts and bolts directly—“live” so to speak on your

82 Part I ■ Getting Started

own computer, running your own copy of Spoon. So before you actually look at the
individual transformations and jobs of the sample ETL solution, it is a good idea to first
obtain the files that make up the sample solution and verify that you can open them.

In addition, for those readers who are not yet familiar with Spoon, it might be a good
idea to obtain a few basic skills in working with Spoon. Working through the “Visual
Programming” section in Chapter 2 is an excellent way to get started. The following
section lists a few basic operations just to get you started. As the Spoon user interface
is quite intuitive, we’re confident that you’ll be able to figure out many things about
working with Spoon yourself as you go.

Setting Up the ETL Solution

You can obtain all these files from this book’s website in the folder for Chapter 4. All files
are available in .zip and .tar.gz archives called ch4_ktr_and_kjb_files. Simply
download the archive, and extract it to some location on your hard disk.

Creating Database Accounts

The transformations for the ETL solution use two particular database accounts to access
the sakila and rental star schema: a sakila account, which is used to read from the
sakila sample database, and a sakila_dwh account, which is used to read from and
write to the rental star schema. To create these accounts, use the mysql command line
client to log into MySQL as a user with SUPER privileges, such as the built-in root
account. Then, enter these commands:

CREATE USER sakila IDENTIFIED BY ‘sakila’;

GRANT ALL PRIVILEGES ON sakila.* TO sakila;

CREATE USER sakila_dwh IDENTIFIED BY ‘sakila_dwh’;

GRANT ALL PRIVILEGES ON sakila_dwh.* TO sakila_dwh;

For your convenience, these commands are also available as a SQL script file (create_
sakila_accounts.sql), which is included in the ch4_ktr_and_kjb_files archive
along with the kettle transformation and job files.

Working with Spoon

We assume you already installed Kettle and can successfully run the Spoon program
prior to setting up the sample ETL solution. For instructions on how to install Kettle
and run the Spoon program, see Chapter 3.

Opening Transformation and Job Files

You can open individual files in Spoon by choosing the main menu and then File ➪
Open. This will open a file browser, which you can use to navigate to the directory
where you extracted the archive.

 Chapter 4 ■ An Example ETL Solution—Sakila 83

Opening the Step’s Configuration Dialog

We pointed out previously that this chapter does not provide step-by-step instructions
to build the ETL solution yourself. Instead, we are confident that you’ll get an idea how
to do this yourself by simply going back and forth between the book and the transfor-
mation in Spoon. So, if you’re curious about some detail of the inner workings of the
transformations, good! Simply double-click on any step of your transformation to open
a dialog that reveals the specific configuration of that step.

Don’t worry if you don’t immediately understand everything that you might find
inside these configuration dialogs. In the subsequent chapters, a great number of dif-
ferent steps are covered in detail, with specific examples on how to configure and use
them in a practical situation.

Examining Streams

Kettle transformations are all about manipulating streams of records. Therefore, it is
quite natural to want to try to understand the effect of a particular transformation step
by examining the layout of its incoming and outgoing streams. To do this, right-click on
the step, and choose either the “Show input fields” or the “Show output fields” option
from the context menu. This will open a dialog showing the name, data type, format,
originating step, and much more for all fields that together make up the stream. For an
example of what this looks like, see Figure 4-3.

Figure 4-3: Examining the layout of incoming and outgoing streams

Running Jobs and Transformations

If you need to run a job or transformation, find the “Run this transformation or job”
button (hereafter: Run button) on the toolbar. It’s the button with the green arrowhead
pointing to the right, which appears as the first button on the toolbar right above the

84 Part I ■ Getting Started

workspace. You will notice a dialog popping up, which you can use to configure all
kinds of run-time settings. For now, however, you can simply confirm the dialog by
pressing OK.

As soon as your transformation is running, you should see the Execution Results
pane appear at the bottom of Spoon’s workspace. You can see what it looks like in the
bottom right side of Figure 3-2 in the preceding chapter. In this pane, use the “Step
Metrics” tab page to get an overview of which step is doing what, and how fast it is
doing it. This is most useful for troubleshooting performance problems. Use the Logging
tab for a text-based log output. This is most useful for debugging and troubleshooting
errors. These and other tabs are discussed in depth in Chapters 12 and 15.

While the transformation is running, the Run button will appear to be disabled.
Instead, the Pause and Stop buttons located immediately to right of the Run button
will be enabled, allowing you to suspend or abort the running transformation. For
now, ignore these buttons; simply use them as an indicator that the transformation is
still running and hasn’t finished yet.

The Sample ETL Solution

Now that we have described the respective database schemas, we can examine how the
ETL solution manages to load the data from the sakila sample database into the rental
star schema. In the remainder of this section, we will describe each job and transforma-
tion that we used to load the rental star schema.

Static, Generated Dimensions

The dim_date and dim_time dimension tables are static: They are initially loaded with
a generated dataset and do not need to be periodically reloaded from the sakila sample
database (although one might need to generate more data for the dim_date table at
some point to account for dates in the far future).

In Kimball’s 34 ETL subsystems framework, covered in Chapter 5, dimensions such
as time and date belong to the domain of the Special Dimensions Manager. Although
that term may suggest a specialized device that “manages the special dimensions,” it
is better to think of it as a conceptual bucket to classify all dimension types that cannot
be neatly derived from the source system. In the case of Kettle, there is nothing special
about loading date and time dimensions: You simply create a transformation that gen-
erates whatever data you feel will fit the requirements and load it into its respective
dimension table(s).

Loading the dim_date Dimension Table

The transformation file for loading the dim_date dimension table is called load_dim_
date.ktr. Figure 4-4 shows what it looks like in Spoon.

A brief description of the steps in Figure 4-4 appears in the next few paragraphs.

 Chapter 4 ■ An Example ETL Solution—Sakila 85

Figure 4-4: The load_dim_date transformation

Generate 10 years

The transformation works by first generating about 10 years worth of rows (10 × 366 =
3660) using a step of the Generate Rows type, which is labeled “Generate 10 years” in
Figure 4-4. The generated rows have a few fields with constant values, and one of these
constants is the initial date, which was set at 2000-01-01. Other constants include the
language and country code.

Day Sequence

The generated rows are fed into the Day Sequence step in Figure 4-4. This step is of the
Sequence type, and its purpose is to generate an incrementing number for each row
passed by the incoming stream. In the subsequent step, this sequence number will be
added to the initial date in order to generate a series of consecutive calendar dates.

Calculate Dimension Attributes

The Calculate Dimension Attributes step is the heart of the transformation shown in
Figure 4-4. This is a step of the Modified Java Script Value type. In this step, the field
values from the stream incoming from the Day Sequence step are bound to JavaScript
variables, which are then used to compute various representations of the date, in dif-
ferent formats.

One of the first computations performed in the Calculate Dimension Attributes step
is the addition of the sequence number and the initial date, yielding the calendar day.
Then, subsequent JavaScript expressions are applied to the calendar day result to yield
different formats that represent the date or a part thereof. In addition to generating all
kinds of human-friendly date formats, a JavaScript expression is also used to generate
the smart key used to identify the rows in the dim_date table.

Some of these JavaScript expressions use the language and country code (originally
specified in the initial “Generate 20 years” step) to achieve locale-specific formats. For
example, this allows the date 2009-03-09 to be formatted as Monday, March 9, 2009
if the country code is gb and the language code is en, whereas that same date would be
formatted as lundi 9 mars 2009 if the country code is ca, with fr as language code.

This Calculate Dimension Attributes step illustrates two more points of interest. You
may have noticed that this step is adorned with a little “x4” label, which appears at the
left top of the square icon. This label is not part of the step itself; it is a result from spawn-
ing multiple copies of this step. You can specify the number of copies by right-clicking

86 Part I ■ Getting Started

on a step and choosing “Change number of copies to start” from the context menu. The
benefits of doing this are explained in detail in Chapters 15 and 16.

Load dim_date

The final step of the transformation is a “Table output step” labeled “Load dim_date.”
This step accepts the rows from the stream incoming from the “Calculate Dimension
Attributes” step, and generates and executes the appropriate SQL command(s) to insert
rows into the dim_table dimension table.

Running the Transformation

If your database is running and you set up the sakila_dwh schema and correspond-
ing user account, you should be able to simply run the transformation and load the
dim_date table. The transformation should complete in a matter of seconds on a rea-
sonably idle modern laptop or desktop computer.

Loading the dim_time Dimension Table

The transformation file for loading the dim_time dimension table is called load_dim_
time.ktr. The transformation is shown in Figure 4-5.

Figure 4-5: The load_dim_time Transformation

The load_dim_time transformation introduces one new type of step: In addition
to steps of the types Generate Rows, Sequence, Modified Java Script Value, and “Table
output,” it also uses a step of the type “Join rows (cartesian product).” Again, we briefly
discuss the key components of the transformation in the paragraphs that follow.

Generating Hours, Minutes, and Seconds

Just like the load_dim_date transformation shown in Figure 4-4, the load_dim_time
transformation initially uses the Generate Rows step type to generate the data. However,
in this case, three instances of the Generate Rows step type run in parallel:

The step labeled “Generate hours” generates 24 rows to represent the number ■

of hours per day.

 Chapter 4 ■ An Example ETL Solution—Sakila 87

The step labeled “Generate minutes” generates 60 rows, representing the number ■

of minutes per hour.

The step labeled “Generate seconds” also generates 60 rows, but these represent ■

the number of seconds per minute.

Each of the Generate Rows steps is immediately followed by its own step of the
Sequence type to actually obtain a series of consecutive integer values representing 0–23
hours, 0–59 minutes, and 0–59 seconds respectively. In the hours branch, the sequence
step is followed by the Modified Java Script Value step labeled “Calculate hours12” to
obtain a 2 × 12 hour representation of the hour. In addition, this step also calculates the
AM/PM indicator to complement the 12 hour notation.

Cartesian Product

The following point of interest in the load_dim_time transformation is the “Cartesian
product” step. This step is an instance of the “Join rows (cartesian product)” step type,
which joins all incoming streams and creates one outgoing stream that consists of the
Cartesian product of the incoming streams. That is, it will generate all possible combi-
nations of all rows found in the incoming streams, and for each combination, emit one
record containing all the fields found in the incoming streams.

It is possible to restrain steps of the “Join rows (cartesian product)” step type to gen-
erate only specific combinations of rows, but in this case generating all combinations is
intentional, leading to a total of 24 * 60 * 60 = 86400 rows, each representing one second
in a 24-hour day. (This is actually not entirely correct because it does not take any leap
seconds into account. For now we will ignore this minor issue and move on.)

Calculate Time and Table out dim_time

The “Cartesian product” step is followed by another Modified Java Script Value type
step and a Table Output type step. Functionally, these steps are analogous to the last
two steps in the load_dim_date transformation: The values in the incoming stream
are modified using JavaScript expressions to generate all desired representations of the
time of day, including the smart key of the dim_time dimension table, and then this
data is inserted into the dimension table, finalizing this transformation.

Running the Transformation

Here, the same instruction applies as to the load_dim_date transformation. Assuming
your database is running, and you properly set up the sakila_dwh schema and data-
base account, you should be able to run this transformation and load the dim_time
dimension table within a couple of seconds.

Recurring Load

In the previous section, we discussed the construction and load of the special dim_time
and dim_date dimension tables. Because loading these tables is virtually a one-shot
operation, you shouldn’t consider them to be truly part of the ETL process proper.

88 Part I ■ Getting Started

In this section, we cover the process of extracting any data changes that occurred in the
sakila schema since the last load of the rental star schema (if ever), and then transforming
that data to load the dimension tables and fact table of the rental star schema.

The load_rentals Job

The entire ETL procedure for the rental star schema is consolidated into one single
Kettle job called load_rentals.kjb. This does all the work of updating and main-
taining the dimension tables and loading the fact table. You can open jobs in Spoon
via the main menu, just as you can with transformations. Figure 4-6 shows what the
job looks like in Spoon.

Figure 4-6: The load_rentals job

We discuss the key elements of this job in the remainder of this section.

Start

The first element in the load_rentals job shown in Figure 4-6 is the job entry labeled
START. Every valid job has exactly one START job entry, which forms the entry point
of the entire job: This is where job execution begins.

Various Transformation Job Entries

The START job entry is connected to a sequence of transformation job entries. The hop
between the START job entry and the first transformation job entry is adorned with a
little lock: This symbol indicates an unconditional hop, which means that the execution
path of the job as a whole will always follow this path, even if the preceding job entry did
not execute successfully. Later in this section, you learn about other job hop types.

The transformation job entries that follow the START job entry all refer to a particular
transformation that performs a distinct part of the process. For example, the load_
dim_staff job entry executes the load_dim_staff.ktr transformation (which loads
the dim_staff dimension table), and the subsequent load_dim_customer job entry
executes the load_dim_customer.ktr transformation (which loads the dim_customer
dimension table), and so on and so forth.

To see exactly which transformation file is associated with a particular transformation
job entry, double-click the job entry. A dialog titled “Job entry details for this transfor-
mation” will pop up and allow you to configure the job entry. For example, double-click
the load_dim_store job entry (the third transformation shown in Figure 4-6), and
you’ll get a configuration dialog like the one shown in Figure 4-7.

 Chapter 4 ■ An Example ETL Solution—Sakila 89

Figure 4-7: The configuration dialog for the load_dim_store transformation job entry

Note that in Figure 4-7, the field “Name of job entry” contains the value load_dim_
store. The value of this field directly corresponds to the label shown for that job entry
on the canvas shown in Figure 4-6. Also note that in Figure 4-7, the “Transformation
filename” field has the value:

${Internal.Job.Filename.Directory}/load_dim_store.ktr

The first part, ${Internal.Job.Filename.Directory}, indicates a built-in Kettle
variable that evaluates at runtime to whatever directory the current job resides in.
Together with the remainder of the value, /load_dim_store.ktr, this will form the
file name of an existing transformation file.

NOTE Variables are an important tool to make your transformations and

jobs more independent of particular resources such as files and servers. The

example shown in Figure 4-7 illustrates this well: Instead of hard-wiring the

exact path on the file system in the job entry, the location can be specified

relative to the location of the current job itself using the ${Internal.Job.

Filename.Directory} built-in variable.

Variables were briefly discussed in Chapter 3 and will be discussed in more

detail throughout this book.

You should realize that the occurrence of load_dim_store in the “Transformation
filename” fields is completely unrelated to the value used for the “Name of job entry” field.
That is to say, you are free to choose whatever name you like to label the job entry. For
the load_rentals job example, the choice was made to let the job entry names correspond
directly and unambiguously with the name of the associated transformation file.

To open the transformation itself, right-click the transformation job entry and choose
the “Open transformation” option from the context menu. We recommend that you
keep the load_rentals job open while working through this chapter, as this is an easy
and convenient way to browse through all the relevant transformations.

90 Part I ■ Getting Started

Different Types of Hops and Flow of Execution

In the load_rentals job, each transformation step entry has a success hop: This is the
hop that is adorned with a green checkmark and points straight ahead to the following
job entry. Each transformation job entry also has an failure hop, which is adorned with
a red Do Not Proceed icon and points down to a Mail Failure job entry.

When you run the job, the job entries are executed in a serial fashion: First, the
load_dim_staff job entry will be started and execute its transformation. If that fin-
ishes successfully, the job will follow the “success” hop and proceed to the load_dim_
customer job entry, which will in turn execute its associated transformation, and so
on, until the last transformation is executed successfully and the job proceeds with the
final Mail Success job entry. Because there are no job entries beyond the Mail Success
job entry, the job will finish here.

Of course, it is also possible that a particular job entry does not execute successfully.
In this case, the job will follow the error hop and proceed to the Mail Failure job, thereby
prematurely finishing the job.

Serial Execution

Note that the serial execution of the job entries is quite different from what happens
when executing a transformation: In a transformation, all steps are started at once and
execute simultaneously, processing rows as they are queued at the input side of the
step, and emitting them on the output side.

The serial execution of job entries is an excellent way of synchronizing work that
must be done according to a particular flow. For example, in this particular job, the
START job entry is first followed by a sequence of job entries (load_dim_staff through
load_dim_film) that load a dimension table. The very last transformation job entry
(load_fact_rental) is responsible for loading the fact_rental fact table. This
ensures that the dimension tables will always be loaded with whatever new dimen-
sion rows are required before the fact table is loaded with any rows that attempt to
reference these new dimension rows.

Mail Job Entries

The Mail job entries were briefly mentioned when we discussed the different types of
hops. The significance of the Mail job entries in this transformation is to always provide
some sort of notification to a system administrator about the final status of a job: Either
all transformation job entries succeed, and a success message is sent, or one of them
fails, ending the job prematurely and sending a failure notice. (Sending notifications
only in the event of failure would be a bad idea because it would then be impossible to
distinguish between successful execution and a broken mailserver.)

To witness the effect of the Mail job entries, you should configure them so the entries
know which mail server to use and how to authenticate against the mail server (if
required). To configure the mail entries, simply double-click them, and fill out the
appropriate fields in the Addresses and Server tab pages. If you can’t figure out exactly
what to fill in, then don’t worry at this point—you should still be able to run this job
and load the rental star schema without properly configuring these job entries. You just
won’t receive a notification e-mail to inform you about the status of the job.

 Chapter 4 ■ An Example ETL Solution—Sakila 91

Running the Job

Running jobs is done in exactly the same way as running transformations. Running the
entire job may take a little while, but will typically finish in less than a minute. You do
not need to worry about restarting the job, or running the individual transformations
called by this job afterward, as it should simply detect that there aren’t any changes to
process if the rental star schema is up-to-date.

The load_dim_staff Transformation

The first transformation to be executed by the load_rentals job is called load_dim_staff.
You can either open the transformation from the context menu of the load_dim_staff
job entry within the load_rentals job, or open the load_dim_staff.ktr file directly
using the Spoon main menu. Figure 4-8 shows the design of the load_dim_staff
transformation.

Figure 4-8: The load_dim_staff transformation

The purpose of this transformation is to load the dim_staff dimension table. We
will discuss exactly how this is done in the remainder of this section.

Database Connections

All transformations included in the load_rentals job define two distinct database con-
nections: one is called sakila, which points to the sakila sample database (the source);
the other is called sakila_dwh and points to the rental star schema database (the target).
Note that these connections correspond directly to the two database accounts that were
set up in the “Prerequisites and Some Basic Spoon Skills” section earlier in this chapter.
If you haven’t set up these two database accounts yet, now is a good time to revisit the
subsection on “Creating Database Accounts” before you proceed.

You can see these database connections in the left pane tree view if you switch to
View mode and then expand the “Database connections” folder. Figure 4-9 shows an
example of what this may look like.

92 Part I ■ Getting Started

Figure 4-9: The database

connections in the sidebar

To examine or modify the definition of a database connection, double-click it in the
tree view. The Database Connection dialog will pop up. For example, double-clicking
the sakila connection should pop up a dialog like the one shown in Figure 4-10.

Figure 4-10: The Database Connection dialog for the sakila connection

As you can see in Figure 4-10, quite a lot is going on in this dialog. Because this is
one of the most frequently used dialogs in Kettle, we will briefly discuss some of the
elements in this dialog.

 Chapter 4 ■ An Example ETL Solution—Sakila 93

In the far left side of the dialog, you can select from among the categories of configura-
tion tasks. Typically, you can do almost everything you need from the General category
(which is the selected category in the dialog shown in Figure 4-10), but in some cases,
you need to visit the others, too. For example, in Chapter 17 you learn how to use the
Clustering page to define a cluster of database servers.

On the right side of the dialog, you first see a “Connection name” field. This is used
to provide a unique name for this connection. This name will then be used throughout
the job or transformation to refer to this connection.

Immediately beneath the “Connection name” field are two columns. The right column
contains a Connection Type list and an Access list. Use the Connection Type list to select
the RDBMS product that you would like to connect to. In the unlikely event that you
find that none of the 30-something list entries match your database server, you can use
the “Generic database” option to specify an arbitrary JDBC connection.

From the Access list you can select which interface should be used to connect to the
database. In the vast majority of cases, you should be able to use Native (JDBC) access.
In the rare case that you cannot obtain a JDBC driver for your database, you can try to
establish an ODBC connection. ODBC connections are implemented through the Sun
JDBC/ODBC bridge.

NOTE In addition to JDBC and ODBC, you can also use JNDI connections.

JNDI connections are technically also JDBC connections, but defined using

the Java Naming and Directory Interface. Configuring JNDI connections is

explained in more detail in Chapter 3.

The left side of the dialog contains a Settings pane. The Settings pane displays a
number of fields that must be used to specify the actual connection details. It is hard
to define exactly which fields will be listed here, as it is entirely dependent upon the
selections made in the Connection Type list as well as the Access list.

Changed Data Capture and Extraction

The first two steps of the load_dim_staff transformation are of the “Table input” type.
Steps of this type can execute a SQL statement against a preconfigured database con-
nection and turn the results retrieved from a RDBMS into an outgoing record stream.

The max_dim_staff_last_update step uses the connection to sakila_dwh to
execute a query like this:

SELECT COALESCE(
 MAX(staff_last_update),
 ‘1970-01-01’
) AS max_dim_staff_last_update
FROM dim_staff

The intention of this query is to obtain a single row from the dim_staff dimen-
sion table that returns the most recent date/time when either an update or an insert
was performed on the staff table in the sakila source schema. This works because
the dim_staff.staff_last_update column is filled with values coming from the

94 Part I ■ Getting Started

staff.last_update column, which in turn are automatically generated whenever an
insert or an update occurs on the respective row.

The “Table output” step labeled Staff is used to extract staff member data. It executes
a query like this against the sakila schema:

SELECT *
FROM staff
WHERE last_update > ?

The question mark (?) in this query denotes a placeholder for a value. It is used in the
WHERE clause to select only those rows from the staff table for which the value of
the last_update column is more recent than the value of the placeholder.

The value for the placeholder is supplied by the previous max_dim_staff_last_
update step, which we know yields the most recent date/time of the staff rows that
were already loaded into the dim_staff dimension table. Effectively, this setup ensures
that the outgoing stream of the Staff step will only contain rows that are newer than
the already loaded rows, thus capturing only the changed data.

Capturing changed data is a major topic in any ETL solution, and recognized as ETL
subsystem 2. It is discussed in more detail in Chapters 5 and 6.

Converting and Recoding the Active Flag

The next two steps in the transformation are “Select values” and “Map active.” Together,
these serve to convert a flag of the Boolean data type that indicates whether the staff
member is currently working for the Sakila rental store chain into a textual Yes/No
value, which is more suitable for presentation in reports and analyses.

Steps of the “Select values” type can be used to perform general manipulations on
the incoming stream, such as removing fields, renaming fields, converting field values
to another data type, and optionally applying a particular output format. The “Map
active” step is of the “Value mapper” type. As the name implies, steps of this type can
be used to look up a particular output value depending on the value of a particular
field in the incoming stream, thus mapping a value.

The process of converting and recoding data is one example of conforming data. This
is recognized as ETL subsystem 8 and is described in more detail in Chapters 5 and 9.
Both the “Select values” step and the “Value mapper” step offer functionality that is
very useful for cleaning and conforming activities.

Loading the dim_staff Type 2 Slowly Changing Dimension Table

The final step in the load_dim_staff transformation is loading the dim_staff table.
This table is a type 2 slowly changing dimension: Any changes in the source database
of the original row result in the addition of another version of the dimension row in
the target database.

All rows that represent different versions of the same staff member can be grouped
through the original staff_id key value. In addition, the dimension table has a pair of
staff_valid_from and staff_valid_through columns, which are used to indicate
to which period in time that particular version of the staff row applies. As a bonus,

 Chapter 4 ■ An Example ETL Solution—Sakila 95

there’s also a staff_version_number column, which maintains the version number
of the row.

Managing slowly changing dimensions is ETL subsystem 9 (Slowly Changing
Dimension Processor), which is further explained in Chapter 5. Kettle offers a special-
ized “Dimension lookup / update” step, which makes maintaining a type 2 slowly
changing dimension a relatively easy task. The exact usage of this particular step is
beyond the scope of this chapter, but will be fully explained in Chapter 8.

The load_dim_customer Transformation

The load_dim_customer transformation is associated with the second transformation
job entry in the load_rentals job. Its purpose is to load the dim_customer dimension
table. The transformation is shown in Figure 4-11.

Figure 4-11: The load_dim_customer transformation

The load_dim_customer transformation has virtually the same structure as the
load_dim_staff transformation shown previously in Figure 4-8:

The transformation starts with two steps of the “Table output” type to capture ■

the changed data and extract it.

The transformation ends with a “Dimension lookup/update,” which serves to ■

maintain the type 2 slowly changing customer dimension, and load the date into
the dim_customer dimension table.

Before loading the data into the ■ dim_customer dimension table, the values from
the active column in the customer table are recoded into an explicit Yes/No
field.

96 Part I ■ Getting Started

The Fetch Customer Address SubTransformation

The load_dim_customers transformation contains one extra kind of step in addition
to the steps it has in common with the load_dim_staff transformation shown in
Figure 4-8. The extra step is labeled Fetch Customer Address and is of the “Mapping
(subtransformation)” type. Steps of the “Mapping (subtransformation)” type allow the
reuse of an existing transformation.

To examine to which reusable transformation a step of the “Mapping (subtransfor-
mation)” type refers, simply double-click it to open its configuration dialog. Figure 4-12
shows an example of the configuration of the Fetch Customer Address step in the
load_dim_customers transformation. To load the transformation itself, simply right-
click the step and choose the “Open mapping (subtransformation)” option from the
context menu.

Figure 4-12: The configuration of the Fetch Customer Address step

As you can see in Figure 4-12, the Fetch Customer Address step refers to the fetch_
address.ktr file. This transformation is described later in this chapter. Steps of the
“Mapping (subtransformation)” type allow variables to be used to refer to a particular
transformation file, just like transformation job entries (refer to Figure 4-7).

NOTE Note that in this case, the variable is slightly different from

the one used in transformation job entries. Instead of ${Internal.Job

.Filename.Directory}, the Fetch Customer Address step uses ${Internal

.Transformation.Filename.Directory}. At runtime, this evaluates to the

directory of the current transformation—that is to say, the directory wherein

the load_dim_customer.ktr file resides.

 Chapter 4 ■ An Example ETL Solution—Sakila 97

Possible confusion may arise from the fact that the variable that was used

earlier as shown in Figure 4-7, ${Internal.Job.Filename.Directory},

could also have been used for the Fetch Customer Address step. However,

this would have evaluated to the location of the load_rentals.kjb job

file because this is the context job that is calling the load_dim_customers

transformation.

In our setup of the sample ETL solution, it would not have made a differ-

ence as long as the load_dim_customers transformation was called from

the load_rentals job because the job file resides in the same directory

as the transformation files. However, it is good to be aware of the possibility

that the variables Internal.Job.Filename.Directory and Internal

.Transformation.Filename.Directory do not necessarily refer to the

same location. You can experience this first hand when running the load_

dim_customers transformation directly (that is, not calling it from a job):

In this case, the variable Internal.Job.Filename.Directory would not

have been initialized because it is not applicable, whereas the Internal

.Transformation.Filename.Directory variable would still refer to the

directory of the current transformation file.

Functionally, the purpose of the Fetch Customer Address step is to look up the cus-
tomer’s address. This is necessary because of the denormalized design of the dim_cus-
tomer dimension table, which contains the customer’s address data coming from the
sakila.address table as well as its related sakila.city and sakila.country tables.
The dim_store dimension table follows the same denormalized design, and because
the same tables are involved, this is an excellent opportunity for reuse.

NOTE The effect of a step of the “Mapping (subtransformation)” type is

similar to the way some programming languages allow another source file to

be included in the main source code file, with similar benefits—a piece of logic

that is required multiple times needs to be built and tested only once, and any

maintenance due to changing requirements or bug fixes can be applied in just

one place.

Often, reuse barely needs justification: It can mean enormous savings in

development and maintenance time as compared to the most likely alterna-

tive, which is duplication of transformation logic. But to be fair, reuse also has

its price, as you have a greater responsibility to design a stable interface for

the reusable component, and modifying the reusable component could nega-

tively impact the total ETL solution in many places instead of just one.

In the particular case of the rental star schema, you could argue that need-

ing to look up addresses twice was wrong in the first place: If the star schema

design had been a little more relaxed, and you allowed for a central conformed

location dimension table, the dim_customer and dim_store dimension tables

could have been snowflaked and could use what Kimball refers to as a location

outrigger, essentially normalizing those dimensions that need location data

by referring to a single conformed location dimension table. Basically, this is

98 Part I ■ Getting Started

another form of reuse, but at the level of the data warehouse instead of in the

ETL procedure.

The question of whether to normalize or to denormalize is excellent tinder

to spark a religious war between various BI and data warehousing experts,

and we do not want to side with either approach at this point. Rather, we just

want to use this opportunity to mention that Kettle has the option of reusing

transformation logic, and that this can be powerful in fighting duplication of

logic. Whether using this tool to solve this particular problem in the rental star

schema is appropriate is a question we leave for the reader to answer.

The load_dim_store Transformation

The load_dim_store transformation has a structure that is very similar to that of the
load_dim_customer transformations. The purpose of the load_dim_store transfor-
mation is to load the dim_store type 2 slowly changing dimension table. The load_
dim_store transformation is shown in Figure 4-13.

Figure 4-13: The load_dim_store transformation

The mechanism for capturing changed data is exactly the same as the one used
in the load_dim_staff and load_dim_customer transformations, as is the usage of
the “Dimension lookup / update” step type for the task of actually loading the table
and maintaining the dimension history. The obvious difference is that in this case,
the source table is store and the target table is dim_store. And just like the load_
dim_customer transformation, the load_dim_store transformation uses a “Mapping
(subtransformation)” step to call upon the fetch_address transformation to fetch the
store’s address data.

The load_dim_store transformation also introduces one step type we haven’t
encountered before: the Store Manager Lookup step, which is of the “Database lookup”

 Chapter 4 ■ An Example ETL Solution—Sakila 99

type. This step type is used to look up values in a database, based on a SQL query. The
SQL query is parameterized using values from the incoming stream, and typically these
parameters map to a primary key or unique constraint defined at the database level. The
outgoing stream contains all the fields present in the incoming stream, plus the fields
that are added by the lookup. This can be used for a number of purposes:

Cleaning and conforming data:■ Similar to a Value Mapper step, a “Database
lookup” step can be used to clean and conform data, the difference being that the
lookup values for the Value Mapper step have to be entered as literals, whereas
the lookup values for the “Database lookup” step are sourced from a relational
database.

Denormalization:■ Similar to how the join operator in a SQL statement pulls
together columns from multiple tables, the “Database lookup” step combines
the fields from the incoming record stream with the columns fetched by the
database query.

Dimension key lookups:■ When loading fact tables, the “Database lookup” step
can be quite useful to find keys in a dimension table based on the natural keys
present in the main stream.

NOTE Kettle offers other lookup steps, which offer functionality beyond the

simple “Database lookup” step, such as the “Dimension lookup / update” step

and the “Combination lookup / update” step, which can be used for lookups

of a more advanced nature such as for a type 2 slowly changing dimension or

maintaining a junk dimension. This subject is covered in detail in Chapter 8.

Thus, the “Database lookup” step is a useful general-purpose tool, which can be
used in several of the ETL subsystems described in Chapter 5: subsystem 8 (Data
Conformer), subsystem 14 (Surrogate Key Pipeline) and subsystem 17 (Dimension
Manager System).

Functionally, the Store Manager Lookup in the load_dim_store transformation
serves to denormalize the data sourced from the store table in the source database,
which is necessary before the data can be loaded into the dim_store dimension. So in
this case, the “Database lookup” step is used as a dimension handler (subsystem 17).

The fetch_address Subtransformation

We just mentioned how the load_dim_customer and load_dim_store transforma-
tions use a “Mapping (subtransformation)” step to call the fetch_address transfor-
mation file as part of the main transformation. You can load the transformation either
directly from the main menu by opening the fetch_address.ktr file, or you can
use choose the “Open mapping (subtransformation)” option in the context menu of
either the “Fetch Customer address” or “Fetch Store address” steps in the load_dim_
customer or load_dim_store transformation, respectively. The fetch_address
transformation is shown in Figure 4-14.

100 Part I ■ Getting Started

Figure 4-14: The fetch_address transformation

The remainder of this section describes the key elements in this transformation.

Address Data Lookup Cascade

The fetch_address transformation consists mainly of a series of steps of the “Database
lookup” type. In Figure 4-14, these are the steps labeled as Lookup Address, Lookup City,
and Lookup Country. In a sense, these steps form a lookup cascade: The Lookup Address
step fetches a row from the address table based on the value of an address_id field
in the incoming stream, and as a result of the lookup, a city_id field (among others)
is added to the outgoing stream. In turn, the Lookup City step uses the value of the
city_id field to fetch the corresponding row from the city table, and the city fields,
including the country_id, are added to the outgoing stream. Finally, this country_id is
used to fetch a row from the country table. By this time, the outgoing stream has gained
all address data corresponding to the value of the address_id field in the incoming
stream of the Lookup Address step.

More Denormalization: Concatenating Address Lines

In the sakila database, the address table contains two columns for storing multiple-line
addresses: address and address2. The dim_customer and dim_store dimension
tables only support a single address column, so something must be done when deal-
ing with a multi-line address.

The fetch_address transformation contains a step of the Filter type labeled “Is
there a second address line?” that splits the incoming stream of addresses into two
outgoing streams: one stream having multi-line addresses, and one stream having
only single-line addresses.

The multi-line addresses follow the “true” outgoing stream, which is the top stream
in Figure 4-14. You can recognize it because the corresponding hop is adorned with a
checkmark. These addresses are then further processed using JavaScript, concatenating
both address lines into a single one.

Both the processed multi-line addresses as well as the single-line addresses are then
led into the “Select values” step. In this transformation, the “Select values” step has the
task of selecting only those fields that should be exposed to the calling transformation.
For example, this step discards all the intermediate key fields such as city_id and
country_id.

While it is possible to simply expose all the fields that have accumulated in the course
of the fetch_address transformation, it would be a bad idea. It would be harder for

 Chapter 4 ■ An Example ETL Solution—Sakila 101

anybody trying to call this as a subtransformation because you would have to figure
out which fields are really useful and which aren’t. In addition, a calling transformation
may start to accidentally or intentionally rely on these fields, and when maintaining
the fetch_address transformation you would have to be committed to ensuring that
these fields remain supported, too.

Subtransformation Interface

The initial and final steps of the fetch_address transformation are of the “Mapping
input specification” (labeled “Input address_id”) and “Mapping output specification”
(labeled “Output Address”) types respectively. These step types are typical for any
transformation that is used as a subtransformation, and they define the interface of
the subtransformation.

Steps of the “Mapping input specification” type can be seen as special input steps
that define the point(s) where the incoming stream from the calling transformation is
to be injected into the subtransformation, and determine which fields to draw from
the incoming stream. For example, the “Input address_id” step specifies it expects to
receive an incoming stream containing an input_id field from the calling transforma-
tion. Steps of the “Mapping output specification” type can be seen as special output
steps that define at which point the stream of the local transformation is to be exposed
to the calling transformation as an outgoing stream.

The load_dim_actor Transformation

The load_dim_actor transformation is responsible for loading the dim_actor dimen-
sion table. Figure 4-15 shows what it looks like.

Figure 4-15: The fetch_address

transformation

This is by far the simplest transformation yet. It uses the same changed data capture
device as all prior transformations. It introduces one new step type: Insert / Update.

The Insert / Update Step Type

The load_dim_actor transformation uses an Insert / Update step to load the date
into the dim_actor table. Steps of this type work by checking a number of fields in the

102 Part I ■ Getting Started

incoming stream against the key of a database table. If the database already contains
a row matching the key, it performs an update, assigning the values from a number of
specified fields to corresponding database columns. If the row does not already exist,
it inserts those values and creates a new row instead.

For the dim_actor table, this is exactly what we want: The dim_actor dimension
table is not a slowly changing dimension (at least, not type 2). We do require an update,
for example, when a typo in an actor’s name is corrected in the sakila source database.

The load_dim_film Transformation

The load_dim_film transformation has the responsibility of loading both the dim_
film dimension table and the dim_film_actor_bridge table. The transformation is
shown in Figure 4-16.

Figure 4-16: The load_dim_film transformation

The load_dim_film transformation is the most complex transformation we’ve
shown so far. In part, this is because it loads two tables. If you look at Figure 4-16, you
can see the top half, which runs from the initial max_fim_film_last_update step way

 Chapter 4 ■ An Example ETL Solution—Sakila 103

down to the load_dim_film step. This part is responsible for loading the dim_film
dimension table. The remainder, starting from the “Get film_actor” step up to and
including the final dim_film_actor_bridge step, is responsible for loading the dim_
film_actor_bridge table. Another reason for the size and complexity is that the rental
fact star schema solves several multi-valued dimension problems, which all happen to
surround the dim_film table. Finally, the dim_film table itself has its share of regular
denormalization issues as well, namely the references to both the film’s language and
the film’s original language.

First, let’s take a look at the elements that the load_dim_film transformation has
in common with the transformations you’ve seen so far:

The usual changed data capture feature is found in the initial two “Table input” ■

steps, max_film_last_update and Film.

Two “Database lookup” steps, “Lookup Language” and “Lookup Original ■

Language” are used to denormalize the film’s language data.

The codes that appear in the ■ rating column of the original film table are recoded
using a Value Mapper step labeled Rating Text.

We won’t discuss this part of the transformation any further as it should be rather
clear how this is achieved with the techniques described prior to this section. As for
the yet undescribed techniques:

The ■ special_features field in the original film table is a non-atomic list of
values (based on the MySQL SET data type), which is transformed into a set of
Yes/No flags (the film_has_% columns) in the dim_film table.

The possible multiple categories stored in the ■ film_category and category
tables in the original sakila schema are flattened and denormalized to yet another
collection of Yes/No flags (the film_is_% columns) in the dim_film table.

This concludes the summary of transformations required to load the dim_film
table. As for the dim_film_actor_bridge table, there are two related but distinct
things going on:

For each row added to the ■ dim_film dimension table, the list of actors has to be
retrieved, and for each actor, the value of the actor_key must be looked up in
the previously loaded dim_actor table in order to add rows to the dim_film_
actor_bridge table.

For each row that is added to the ■ dim_film_actor_bridge table, a weighting
factor has to be calculated and assigned to achieve the desired allocation of the
dim_actor dimension to the metrics in the fact_rental fact table.

The following sections discuss some of these transformation techniques in more
detail.

Splitting the special_features List

In order to create the flags for the special features, the comma-separated list of values
stored in the original film table is first normalized to a set of rows. This allows for
much more opportunity to process the values for individual special features.

104 Part I ■ Getting Started

The Normalize Special Features step is responsible for parsing and splitting the list
of special features. This step is of the “Split field to rows” type. Steps of this type have
the potential of seemingly duplicating a single row in the input string into just as many
rows in the output stream as there are distinct items in the list.

For example, if one row from the incoming stream has a special_features list such
as ‘Deleted Scenes,Trailers’, then the Normalize Special Features step will emit
two rows to the output stream: one having only ‘Deleted Scenes’ and one having
only ‘Trailers’. Apart from the special_feature field, the remaining fields will
be exactly identical across these two rows (thus seemingly duplicated).

Flattening Individual Special Features to Yes/No Flags

Although normalizing the list of special features to multiple rows of individual spe-
cial feature values increases your opportunities for processing the individual special
feature value, it also introduces a de-duplication problem. Somehow we would like to
re-flatten (and thus, deduplicate) the multiple rows for each film, but now storing each
individual special feature value in its own column instead of a list in a single column.
This is achieved with the Denormalize Special Features to ‘Yes’ Columns step.

The Denormalize Special Features to ‘Yes’ Columns step is of the “Row denormaliser”
type. It is called this because it pivots a field collection of rows into a repeating group
of columns. This is best explained by examining the configuration of the Denormalize
Special Features to ‘Yes’ Columns step (see Figure 4-17).

Figure 4-17: Configuration of the Denormalize Special Features to ‘Yes’ Columns step

Three items in the configuration dialog shown in Figure 4-17 are of major importance:

The key field:■ This is the field that you wish to be denormalized into a repeating
group.

The fields that make up the grouping:■ In this grid you identify all the fields that
define how the multiple rows are to be flattened. Basically, these are all the fields
from the incoming stream that you want to retain.

 Chapter 4 ■ An Example ETL Solution—Sakila 105

Target fields:■ This grid defines which fields are to be added to the outgoing stream.
This is used to specify how the occurrence of unique values in the key field should
be mapped to a repeating group. For example, if the first row in this grid specifies
that whenever the key field happens to have the value Trailers, the value Yes
should be stored in the newly created field called tmp_has_trailers.

NOTE The explanation of the “Target fields” in the “Row denormaliser”

configuration dialog is slightly incorrect. The value that is to be stored in the

new field is not simply Yes; it is actually whatever happens to be the value of

the field called Yes. Figure 4-16 includes a step labeled Add Yes/No (imme-

diately preceding the Denormalize Special Features to ‘Yes’ Columns step),

which actually defines two constant fields, called Yes and No, having the

respective values Yes and No.

Creating Flags for the Film Categories

In the sakila database, a film can belong to multiple categories. This information is
stored in the film_category table, which has foreign keys to both the film table as
well as the category table. In the rental star schema, the category data is stored in the
dim_film dimension table by creating a Yes/No flag for each category. The approach
to loading this data is in part akin to the solution used for the special features.

In Figure 4-16, the “Get film_categories” step is responsible for obtaining the list of
categories per film. This is a step of the “Database join” type. The “Database join” step
type is a close relative of the “Database lookup” step type, which you first encountered
in our discussion of the load_dim_store transformation earlier in this chapter.

Like the “Database lookup,” the “Database join” step type executes a SQL query
that is parameterized using values from the incoming stream against a database. But
whereas the parameters for the “Database lookup” step type are typically mapped to
the columns of a primary key or unique constraint in order to look up a single row
from the database, the parameters for the “Database join” step type typically map to
the columns of a foreign key in order to retrieve a collection of related detail rows. Just
like the “Database lookup,” the “Database join” step type adds a number of specified
fields from the database to the outgoing stream, but whereas the “Database lookup”
step can at most emit one row to the outgoing stream for each row in the incoming
stream, the “Database join” step type typically emits one row to the outgoing stream
for each row returned from the database. Another way of putting it is to say that the
“Database join” step mirrors the behavior of a “Database lookup” step, and performs
a “Database look-down.”

The effect is quite similar to the situation that you saw when denormalizing the spe-
cial features in the previous subsection: The “Get film_categories” step has the potential
of seemingly duplicating the incoming rows while adding the category. And just as
we described for the special features flags, a “Row denormaliser” step type labeled
Denormalize Categories to ‘Yes’ Columns is used to re-flatten the rows corresponding
to one film and create a repeating group of Yes/No fields.

106 Part I ■ Getting Started

Loading the dim_film Table

The actual loading of the dim_film dimension table is achieved by the load_dim_film
step. This step is of the “Combination lookup” type, which bears some similarity to the
“Dimension lookup / update” step type, which you first encountered in our discussion
of the load_dim_staff transformation much earlier in this chapter.

We discuss the “Combination lookup” step type in more detail in Chapter 8, “Handling
Dimension Tables.” For now, just think of this step as similar to the Insert / Update step
that was used in the load_dim_actor transformation: It will insert a row into the dim_
film dimension if it doesn’t exist already, and update the dimension row if it does.

One difference with the Insert / Update step type is that the “Combination lookup”
step type will also return the key of the dimension row. This is exactly why we chose
this particular step type here: We need the key of dim_film rows so we can use them
later in the transformation to load the dim_film_actor_bridge table.

Loading the dim_film_actor_bridge Table

The first step in loading the dim_film_actor_bridge table is to fetch the film’s actors
from the film_actor table in the sakila database. This is achieved by another step of
the “Database join” type, labeled “Get film_actor.” You need to obtain two more pieces
of data to actually load the bridge table, and this is why the “Get film_actor” step has
two outgoing hops.

First, you need to look up the value of the actor_key from the dim_actor table. This
is a straightforward task for the “Database lookup” step, and in the load_dim_film
transformation this is achieved by the “Lookup dim_actor” step.

Second, you need to calculate a weighting factor and store that together with each
film_key/actor_key combination in the dim_film_actor_bridge table. Because
the sakila database doesn’t store any data that could help you determine the actual
contribution of each actor to a film, you simply assume that each actor has an equal
weight. So, to calculate the weighting for any actor of a given film, you can simply do
the following:

Weighting factor = 1 / <#actors in this film>

This calculation is achieved by two steps in the load_dim_film transformation:

The “Calculate actor count” step is of the “Group by” type, and does two things: ■

Like the GROUP BY clause in the SQL language, it groups rows from the incom-
ing stream based on a specified field (or collection of fields). In addition, it can
also generate one or more aggregate values for the entire group. The grouped
rows are then emitted to the outgoing steam, with extra fields for any aggregates
calculated by the “Group by” step (where applicable).

In this case, the rows were grouped using the film_key, and in addition, we
seized the opportunity to calculate the number of actors (per film_key), which
is returned to the outgoing stream in the count_actors field.

The “Calculate Actor weighting factor” step is of the Calculator type and per-■

forms the division 1/count_actors and assigns the result to the actor_
weighting_factor field.

 Chapter 4 ■ An Example ETL Solution—Sakila 107

We just obtained the actor_key and the actor_weighting_factor, but these
data are still confined to their own stream. The “Lookup actor weighting factor” step
does the job of rejoining them. This step is of the “Stream lookup” type, and uses the
film_key in the stream coming out of the “Lookup dim_actor” step to find a matching
row in the stream coming out of the “Calculate Actor weighting factor” step, thereby
conveying the actor_weighting_factor field from the “Calculate Actor weighting
factor” to the outgoing stream of the “Lookup actor weighting factor” step.

After performing the “Lookup actor weighting factor” step, we gained a single stream
having the film_key, actor_key, and actor_weighting_factor. This stream can
be conveniently loaded into the dim_film_actor_bridge table using a simple step
of the Insert / Update step.

The load_fact_rental Transformation

The load_fact_rental transformation is the final transformation that is called from
the load_rentals job. All prior transformations in the load_rentals job have the purpose of
loading a dimension table, and this transformation concludes the ETL solution by loading
the fact_rental fact table. Figure 4-18 shows what the transformation looks like.

Figure 4-18: The load_fact_rental transformation

The structure of the load_fact_rental transformation is quite unlike what we
encountered in any of the other transformations that are called from the load_rentals job.
The other transformations are mostly occupied with various operations to denormalize
data in order to load a dimension table, whereas the essence of this transformation lies

108 Part I ■ Getting Started

in calculating metrics and looking up corresponding dimension keys. So although the
load_fact_rental transformation hardly introduces any new step types, it’s still a
good idea to describe its key elements.

Changed Data Capture

The transformation starts with the familiar pattern of two “Table output” steps to
capture changed data. This is achieved by the max_fact_rental_last_update and “Get
New Rentals to load” steps.

A minor difference in comparison to the other transformations is that instead of the
last_update column, the rental_id column is used to detect the changes. This works
just as well as the last_update column because the values for the rental_id are
generated and automatically incrementing. The only drawback to using the rental_id
is that we won’t detect any updates to the rental table. For now, we will assume that
this is not a problem.

Obtaining Date and Time Smart Keys

In our discussion of the load_dim_date and load_dim_time transformations, we men-
tioned that the dim_time and dim_date dimension tables use a smart key. The value of
these smart keys is obtained simply by converting the various date and time values to
a particular string format. This is achieved by the “Get date and time keys” step. This
allows us to retrieve the keys without actually querying the dimension tables.

Calculating Metrics

The fact_rental table has three metrics:

count_rentals■ : This is a so-called factless fact. By definition, the existence of a
row in the original rental table, and thus in the fact_rental table, automati-
cally counts as one rental. This is implemented at the database level by giving
the column a default value of 1.

count_returns■ : Depending on whether the rental is known to have been fol-
lowed up by a return, this column is either NULL (which means that so far, the
rental has not been followed up by a return) or 1 (which means that the rental is
known to have been followed up by a return).

rental_duration■ : Depending on whether the rental is known to have been fol-
lowed up by a return, this column is either NULL (which means that so far, the rental
has not been followed up by a return) or the total duration between the rental and
return date, measured in seconds.

Because the fact_rental table keeps track of both rentals as well as returns, the sta-
tus of the metrics for one particular fact row may change over time. This is an extremely
simple but complete example of an accumulating snapshot fact table.

The Filter step labeled “return date?” is responsible for checking if the return date
is available. The “true” path leads to a Calculator step labeled “calculate rental dura-
tion,” which does the job of setting the count_returns metric to 1 and subtracting
the rental date from the return date to calculate the value of the rental_duration

 Chapter 4 ■ An Example ETL Solution—Sakila 109

metric. The “false” path leads to the “rental duration null” step, which assigns NULL to
the count_returns and rental_duration metrics.

Looking Up Keys of Regular Dimension Tables

The rental table in the sakila database has an inventory_id column to reference a
particular inventory, rather than referring directly to a row in the store or film table.
So to look up the dimension key values, we first need to look up the inventory. This is
achieved by the “Lookup film_id and store_id (from inventory)” step. The store_id
and film_id, which are thus obtained can now be used to look up the actual dimen-
sion keys.

Looking Up Keys of Type 2 Slowly Changing Dimension Tables

For the type 2 slowly changing dimensions, you cannot simply use the original ID
column to look up a dimension row because the type 2 slowly changing dimensions
can have multiple rows for one such particular key. Whenever you have to look up a
row from a type 2 slowly changing dimension table, you need to know the ID as well
as the context period. Only then can you try to find the correct version of the dimen-
sion row.

In Figure 4-18, this is achieved by the “Lookup dim customer key,” “Lookup dim store
key,” and “Lookup dim staff key” steps, which are all of the “Dimension lookup / update”
type. We already encountered this step type when loading the respective dimension
tables in the load_dim_customer, load_dim_store and load_dim_staff transformations.
But this time, this type of step is used to look up dimension keys in the dimension table,
instead of loading new rows into the dimension tables. This is explained in further detail
in Chapter 8.

Loading the Fact Table

The final step in the transformation is an Insert / Update step. Because this is an accu-
mulating snapshot fact table, we need to be able to update the fact table in case the status
of the rental changes (that is, when the rental is followed up by a return).

Summary

In this chapter, we covered a lot of ground. Using a fairly simple example source data-
base we explained key features in Kettle required to load a target star schema. This
chapter covered:

The business process of the fictitious Sakila DVD rental business and the structure ■

and purpose of the sakila sample database

The Sakila rental star schema, and how it relates to the original sakila sample ■

database

Basic Spoon skills, including how to open and run jobs and transformations, ■

several ways for setting up database connections, how to edit and review the

110 Part I ■ Getting Started

configuration of job entries and transformation steps, and how to examine the
hops between them

Using jobs to organize the execution flow of transformations and send notifica-■

tions of success and failure via e-mail

Obtaining database data using steps of the “Table input” type and parameterizing ■

this step to set up a simple changed data capture mechanism

Recoding values with a Value Mapper type step■

Loading a type 2 slowly changing dimension and looking up dimension keys■

How to reuse a transformation by calling it as subtransformation■

Loading a type 1 slowly changing dimension using a Insert / Update step■

How to normalize a single valued list into rows, and then denormalize rows into ■

a set of columns

Calculating aggregates and metrics■

While all these things were discussed in this chapter, the focus was mainly on “the
bigger picture” and subsequent chapters will discuss the underlying concepts of the
example and provide detailed practical information about the many Kettle features.

P a r t

II
ETL

In This Part

Chapter 5: ETL Subsystems

Chapter 6: Data Extraction

Chapter 7: Cleansing and Conforming

Chapter 8: Handling Dimension Tables

Chapter 9: Loading Fact Tables

Chapter 10: Working with OLAP Data

113

C H A P T E R

5

ETL Subsystems

As surprising as it may sound, until a few years ago there was no book available that
was solely dedicated to the challenges involved with ETL. Sure, ETL was covered as part
of delivering a BI solution, but many people needed more in-depth guidance to help
them successfully implement an ETL solution, independent of the tools used. The book
The Data Warehouse ETL Toolkit by Ralph Kimball and Joe Caserta (Wiley Publishing,
2004) filled that gap. A bit later, the ideas of that book found their way into an article,
“The 38 Subsystems of ETL,” which added more structure to the various tasks that are
part of an ETL project.

NOTE The original article can still be found online at http://

intelligent-enterprise.informationweek.com/showArticle

.jhtml?articleID=54200319. The most recent version can be found in The

Kimball Group Reader, article 11.2, “The 34 Subsystems of ETL,” pp. 430–434

(Wiley 2010). The names of the subsystems in this book are taken from the

latter reference since the names have been altered slightly compared to ear-

lier publications.

In 2008, Wiley published the second edition of one of the best-selling BI books ever:
The Data Warehouse Lifecycle Toolkit, also by Ralph Kimball and his colleagues in the
Kimball Group. In that book, the subsystems were restructured a second time, resulting
in a slightly condensed list consisting of 34 ETL subsystems. We were fortunate to get
Ralph’s permission to use this list as the foundation for Part II of this book, in which we
show you many practical ways that Kettle can help to implement those 34 subsystems.
This chapter serves as an introduction and points to the chapters in the book where the

114 Part II ■ ETL

specific subsystems are covered. In this way, this chapter serves as a cross-reference
that will help you translate the theoretical foundation found in the books written by
Kimball et al. to the practical implementations using Kettle.

This chapter assumes you’re familiar with the concepts behind dimensional modeling
and data warehousing. If you’re not, Part II of our first book, Pentaho Solutions (Wiley,
2009), offers an excellent introduction. The previously mentioned books written by
Ralph Kimball and company are also highly recommended, as is his classic introduc-
tory work, The Data Warehouse Toolkit, Second Edition (Wiley, 2002).

Introduction to the 34 Subsystems

As explained in The Data Warehouse Lifecycle Toolkit, the 34 subsystems provide a frame-
work that helps us understand and categorize the implementation and management of
an ETL solution. Before you can start such an implementation, you need a clear under-
standing of the requirements, existing systems, and available skills and technology
to know what is expected and what the enablers and constraints are when delivering
the solution. Many of the 34 subsystems are about managing the solution, primar-
ily because the lifetime of a system only begins when the project result is delivered.
Management is one of the four main components that comprise the subsystems. These
components are:

Extraction: ■ In Chapter 1, the ETL introduction, we introduced data extrac-
tion as a major challenge in any ETL effort. Subsystems 1 through 3 cover this
component.

Cleaning and conforming: ■ No matter what data warehouse architecture is used,
at some point the data needs to be cleansed and conformed to business require-
ments. In a Kimball-style data warehouse, these steps are executed before the
data enters the data warehouse (“single version of the truth”). When applying the
Data Vault architecture, the data is added to the data warehouse “as is” (“single
version of the facts”) and cleansing/conforming takes place in the subsequent
steps. Subsystems 4 through 8 cover this part of the process.

Delivering: ■ Thirteen of the 34 subsystems are devoted to delivering the data to
the target database. Delivering means more than just writing the data to a certain
destination, but also covers all transformations needed to get the data in the
required dimension and fact tables.

Managing: ■ As mentioned earlier, a system must be managed and monitored
when it is part of the basic information infrastructure of an organization. An ETL
solution is no exception to this rule, so subsystems 22 to 34 cover these manage-
ment activities.

Extraction

The first step in any ETL solution is invariably the extraction of data from various
sources, as we explained in Chapter 1. Of the many challenges involved with getting

 Chapter 5 ■ ETL Subsystems 115

access to source data, the political issues are often the hardest ones to tackle. The “owner”
of a system is usually charged with preventing unauthorized users from accessing the
system because of the potential for decreased performance when another process is
accessing the system. Another concern is the restrictions enforced in the systems license:
some ERP vendors (such as SAP or Oracle) prohibit direct access to the underlying
databases on the penalty of refusing further support.

Subsystems 1–3: Data Profiling, Change Data Capture,
and Extraction

As Chapter 6 is entirely devoted to the subjects of profiling, change data capture (CDC),
and extraction, we won’t go into much detail on these three subsystems here. In short,
they provide the following:

Subsystem 1: Data Profiling System■ —This subsystem is aimed at gaining insight
into the content and structure of the various data sources. A profile provides
simple statistics such as row counts and number of NULL values in a column,
but also more sophisticated analysis such as word patterns. At the time of this
writing, the latest development version of Kettle has only limited data profiling
capabilities. Until more advanced built-in tools become available, you can use
Kettle in conjunction with other open source tools to gain insight into the data
you’re accessing in various source systems, as you’ll see in the next chapter.

Subsystem 2: Change Data Capture System■ —The goal of this subsystem is to
detect changes in source systems that were made since the last time the data
warehouse was loaded. Currently, no special tools are available within Kettle
to help you get a change data capture solution up and running, but a couple of
techniques such as time-stamped CDC or taking snapshots can be applied without
the use of any additional tools.

Subsystem 3: Extraction System■ —The third subsystem, extraction, is meant for
getting data from different sources into the ETL process. Kimball makes a clear
distinction between file- and stream-based extraction, the latter not necessarily
meaning a real-time stream. From a Kettle perspective, this distinction is a bit
artificial because the moment the data is accessed, whether from a database,
real-time feed, file, Web service or any other source, the data flows through the
transformations as a stream. The only distinction that really matters is whether
the source data can change during the time that the Kettle job runs. So it’s not
a matter of file versus stream, but more static versus dynamic. This distinction
becomes very important in case of failure. As we explained in Chapter 1, any ETL
solution should be designed for failure. When your source is static (as most files
will be), it’s easy to restart the job from the start. In case of a dynamic source such
as a transaction database, it could be that the data has already changed since you
started the failed job. Think, for instance, about a job that loads sales data. All
dimensions have loaded correctly, but then halfway through processing the sales
order lines, there’s a power failure. It could well be that since the load started, a
new customer with new sales transactions has been added to the source system.

116 Part II ■ ETL

Unless you fully reprocess the dimension information first, this would cause
loading transaction records with unknown customer references. Depending on
the kind of CDC solution implemented, recovery from these kinds of failures
can be very tricky.

Cleaning and Conforming Data

The rationale behind adding steps to clean the data and conform it to business require-
ments before adding the content to the data warehouse is the simple fact that there isn’t a
single organization in the world that doesn’t have a data quality problem. Organizations
that have all their critical information stored in a single system are pretty rare, too; usu-
ally there are one or more systems in place to support the primary business process, with
possibly separate solutions for business processes such as finance, HR, purchasing, or
customer relationship management. Each of these systems stores the data in a way that
is unique to that particular system. This means that in system A, the customer gender
could be stored as F (for female), M (for male), and U (for unknown), whereas system
B would have the same information coded as 0, 1, and NULL. All these sources need
to be aligned to whatever rules apply for the data warehouse.

Subsystem 4: Data Cleaning and Quality Screen Handler System

Cleansing or cleaning data refers to fixing or tidying up dirty data that comes into the
ETL process. We cannot stress enough that the most sensible location to clean this data
is in the source systems where the data originates. However, there’s usually a sharp
contrast between the available time to develop the data warehouse on the one hand,
and the time needed to execute the required data quality projects on the other. So for
better or worse, you’ll have to find a way to get a cleaned set of information to the end
user. That doesn’t mean that all efforts to improve data quality at the source are doomed
to fail; on the contrary, an ETL project is preeminently suited to support data quality
improvement projects. First, the profiling phase shows clearly what’s wrong with the
data. Second, the business rules that apply to the cleansing transformations in the ETL
processes are not much different from what is needed in the source systems. And last
but not least, involvement of the business users is mandatory to define those business
rules because only the business users can tell you what the correct values should be.

Ideally, business users/data owners, source system developers/managers, and ETL
developers can start an ongoing data quality process. In many cases, however, the big-
gest source for incorrect data is the users that enter data into the system.

For one of our clients, we recently developed a solution that consisted of an ETL
process to read and transform source data from an operational system. The target is
an inspection system where all required data are visually inspected and flagged if
incorrect. The ETL transformation automatically flags common errors such as empty
required fields and incorrectly formatted or missing phone numbers. On a weekly basis,
the results of these quality checks are reported back to the people responsible for data
entry in the source system. Although the business requirement is a 100 percent error-free
data entry process, the average rate of correct data entries was below 50 percent before

 Chapter 5 ■ ETL Subsystems 117

the improvement project started. By making the errors visible to everyone involved, the
percentage of correctly entered data went up to almost 90 percent in the first year. This
example shows how a simple ETL process, combined with a few standard reports, can
help to educate users and thus help in improving overall data quality.

In Chapter 7, you can read how Kettle can be used to achieve the results described in
the case study along with many other scenarios for cleansing and conforming data.

Subsystem 5: Error Event Handler

The error event handler is also covered in Chapter 7. The purpose of such a handler is to
record every error event that occurs during an ETL load. This enables an organization
to constantly monitor and analyze errors and their causes, whether the errors are due to
data quality issues, system errors, or other causes. Kimball mentions the need for a sepa-
rate error event schema to capture those errors, but in the case of Kettle a separate schema
isn’t necessary. As you’ll see in Chapter 7, Kettle already contains many features to handle
error event logging out of the box.

Subsystem 6: Audit Dimension Assembler

While an error event schema is separated from all other data in the data warehouse,
an audit dimension is an intrinsic part of the data warehouse tables. The audit dimen-
sion is a special table that is linked to each fact table in the data warehouse and con-
tains metadata about the changes made to the fact table, including information about
the actual event such as the exact load date and time and the quality indication for the
loaded record(s). In fact, the addition of an audit dimension augments the dimensional
model in such a way that many of the advantages of using the Data Vault architecture
(see Chapter 19) apply to the dimensional data warehouse as well. Details of the audit
dimension are also covered in Chapter 7.

Subsystem 7: Deduplication System

Deduplication is probably the hardest problem to tackle in an ETL project, even more
so because most ETL tools don’t offer a facility to automate this process in an easy way.
In almost all cases, deduplication is about eliminating double entries of customer data,
or trying to unify conflicting customer data from different source systems. Although
customer data represents the biggest source for data to be deduplicated, other kinds of
data can have the same problems. Any entity that can be classified as “reference data”
and can contain a fairly large number of entries is prone to duplicates. Examples of
these are product or supplier data.

If you’re familiar with Microsoft Access, you might think that deduplication is a
trivial problem that is easily tackled with the Find Duplicate Query Wizard. Well, for
exact matches in key information such as a phone number or street address, the prob-
lem is indeed trivial. Unfortunately, life usually doesn’t get that simple. Names and
addresses are misspelled or abbreviated in different ways, phone numbers are entered
incorrectly, new addresses are entered in one system but not in others, and the list goes

118 Part II ■ ETL

on and on. In many cases, fuzzy logic, pattern matching, soundex functions, and other
data mining techniques must be applied to get a grip on this problem. Determining that
JCJM VanDongen is the same person as Dongen, van Jos or that Bouman RP equals Roland

Bouman can be a daunting task. Several advanced (and expensive) tools are available
that do an excellent job at this but unfortunately Kettle isn’t one of them. Nevertheless,
Chapter 7 includes some pointers on how to handle deduplication from within Kettle,
and of course you can always revert to a solution like DQ Guru by SQLPower, a special-
ized and powerful tool that can help you deduplicate reference data. DQ Guru is open
source; you can find more info at http://www.sqlpower.ca/page/dqguru.

Subsystem 8: Data Conformer

A conforming system builds on the functionality delivered by the deduplication sub-
system and the previous data quality steps. Its purpose is to conform all incoming
fact records from various source systems to the same conformed dimension records.
Think, for example, about an organization that has a complaints management system
in place, which is likely to have its own customer database. In order to link the com-
plaints records to sales information, the customer data from the sales system and the
complaints management system need to be integrated into a single customer dimension.
When loading the facts from both the sales and the complaints management system,
the data needs to be linked to these unique customer records in the customer dimen-
sion table. A common approach to this problem is to keep all the natural keys from the
different source systems so that during fact loads, lookups can be performed against
the correct key column in the dimension table. Chapter 9 covers these fact loads and
lookup functions in Kettle in more detail.

Data Delivery

Delivery of new data includes a lot more than just appending new records to a target
database. First, there are many ways to update dimension tables, as reflected in the
different slowly changing dimensions techniques. You need to generate surrogate keys,
look up the correct dimension key values, make sure the dimension records are loaded
before the fact records arrive, and prepare the fact records for loading. Loading facts
can also be challenging because of the large data volumes, a requirement to update fact
records, or both. There are also special tables and data storage options such as OLAP
databases that require special attention. This is why a large number of the 34 subsystems
are part of the data delivery category.

Subsystem 9: Slowly Changing Dimension Processor

Slowly Changing Dimensions (SCDs) are the cornerstone of the Dimensional Data
Warehouse or Bus Architecture. Remember that a dimension is a table which contains the
information needed to analyze or group facts. A customer dimension might, for instance,
contain the field city, making it possible to summarize and compare customer sales by
city. Whenever a customer moves to a different city, a change to the customer table in the

 Chapter 5 ■ ETL Subsystems 119

source system is made. The slowly changing dimension processor takes care of handling
those changes according to the defined rules for each column in the dimension table.
Basically there are three SCD types:

Overwrite:■ Replaces the old value with the new one

Create new rows:■ Marks the current row as “old” and sets an end time stamp,
while creating a new record at the same time which is flagged as “current” with
a new start timestamp

Add new column:■ Adds a new column to the table to store the updated value
while keeping the current value in its original column.

In Chapter 7 of Pentaho Solutions, we extended this list with the following three SCD
types:

Add a mini-dimension:■ Table attributes that change more frequently are sepa-
rated from the main dimension table and stored in their own table.

Separate history table:■ Each change is stored as an historical record in a separate
table, together with the change type and change timestamp. A table like that
would be useful to answer questions such as “how many customers moved from
Florida to California last year?”

Hybrid:■ A combination of types 1, 2, and 3 (1 + 2 + 3 = 6).

Chapter 8 covers the first three SCD types and explains how Kettle can be used to
support those different approaches.

Subsystem 10: Surrogate Key Creation System

The ETL system needs to be able to generate surrogate keys. Within Kettle this is rela-
tively easy because it contains a special Add Sequence step that can generate artificial
keys within Kettle or call a database sequence generator. This is great for an initial load
or when creating a time dimension, but not for updating dimension tables. That’s where
the “Dimension lookup / update” and “Combination lookup / update” steps come in.
Both these steps have three ways of generating a new surrogate key value:

Use table (actually: column) maximum + 1.■

Use a database sequence.■

Use an auto increment field.■

The latter is also supported by the Table Output step.

Subsystem 11: Hierarchy Dimension Builder

Of special consideration is building and managing the hierarchies in the data ware-
house. In fact, the complete name for this subsystem is hierarchy dimension builder for

fixed, variable, and ragged hierarchies. Hierarchies are the means by which users analyze
data on different levels of aggregation. A simple example of a hierarchy can be found in

120 Part II ■ ETL

the time dimension. In reality, most time dimensions contain more than one hierarchy:
one for Year-Quarter-Month-Day, and one for Year-Week-Day. The time dimension is
also a perfect example of a balanced hierarchy, where all levels have an equal depth and
the same number of members. More complex hierarchies can be found in organiza-
tional structures, which often are unbalanced or variable (subtrees of variable depth) or
ragged (equal depth but some levels have no data). For an example of the latter, think of
geographic information where a hierarchy might look like Country-Region-State-City.
Some countries do not have regions, states, or both, causing a ragged hierarchy. Both
unbalanced and ragged hierarchies are often implemented as a recursive relation in a
source system. Kettle offers some (but not all!) capabilities to flatten these hierarchies,
as you will see in Chapter 8.

Subsystem 12: Special Dimension Builder

In addition to the slowly changing category of dimensions, a dimensionally modeled
data warehouse usually contains at least one special dimension, the time dimension.
Also considered special are the following types of dimensions:

Junk dimensions■ (also called garbage dimensions): Contain “leftover” attributes
that need to be available for analysis but don’t fit in other dimension tables. Items
such as status flags, yes/no, and other low cardinality fields are good candidates
for putting in a junk dimension.

Mini-dimensions: ■ Used to split off fast-changing attributes from a big or monster
dimension, but also useful in other cases. This is why we list mini-dimensions
as SCD type 4.

Shrunken or rolled dimensions: ■ Subsets of regular dimension tables that are cre-
ated and updated from their base dimension to avoid inconsistencies. Shrunken
dimensions are needed when data is aggregated to accommodate for a lower level
of granularity, such as when details are stored on day level but an aggregate is
rolled up to a monthly level.

Static dimensions: ■ Usually small translation or lookup tables that have no origin
in a source system, such as descriptions for status codes and gender.

User maintained dimensions: ■ Custom descriptions, groupings, and hierarchies
not available in source systems but required for reporting. These dimensions can
be of any kind; what distinguishes them is the fact that the content is maintained
by users, not the data warehouse team (although this is often initially the case)
or an ETL process.

Most of the dimension-loading techniques are covered in Chapter 8. User-maintained
dimensions are a bit different; they also require an application to maintain the user
data, a topic that is beyond the scope of this book. We do have a tip, however: Take a
look at Wavemaker, an open source rapid application development tool that lets you
build a maintenance screen in minutes. You can find more information at http://
dev.wavemaker.com/.

 Chapter 5 ■ ETL Subsystems 121

Subsystem 13: Fact Table Loader

Before fact records can enter the data warehouse, the data must be prepared for load-
ing. Fact table building is not a process per se; it’s just listed as a separate subsystem to
raise the awareness of the three different kinds of fact tables:

Transaction grain fact table: ■ Each transaction or event, such as a point of sale
transaction or a call made, is recorded as a separate fact row and, as such, loaded
into the data warehouse.

Periodic snapshot fact table: ■ Not every recorded action is stored in the data
warehouse; rather, a “picture” of the data taken at regular intervals is stored, such
as daily or monthly inventory levels or monthly account balances.

Accumulating snapshot fact table: ■ The content of the record stored in the fact
table is constantly updated when new information becomes available; the data
warehouse record always reflects the latest available data. Think of an order pro-
cess: this is a process with several separate dates such as an order date, expected
ship date, actual ship date, expected delivery date, actual delivery date, and
payment date. As the process progresses, the order record is updated with new
expected or actual dates. Each time the data warehouse is loaded, this new infor-
mation updates the existing fact record as well.

(Please note that in the last version of the 34 subsystems documentation, the full name
of this subsystem is “Fact table loader for transaction, periodic snapshot, and accumulating
snapshots grains.”) Fact loads usually consist of many, sometimes millions, of rows. In
order to handle these loads quickly, most database systems have some kind of bulk loader,
which circumvents the regular transaction engine and loads the data into the destination
table directly. Sometimes, in order to further speed up the process, all the indexes on the
fact table are dropped before the load starts and re-created again after the load finishes.
Chapter 9 covers the different fact table load techniques in depth.

Subsystem 14: Surrogate Key Pipeline

This subsystem takes care of retrieving the correct surrogate key to use with the fact
record that’s being loaded. The term “pipeline” is used because the fact load looks like a
process where each subsequent step performs a lookup using the column’s natural key
to find the corresponding surrogate key. To make this process as efficient as possible,
the current distinct set of natural and surrogate keys from the dimension table can be
preloaded into memory. Chapter 9 explains how this is achieved in Kettle using the
“Database lookup” and “Stream lookup” steps.

Subsystem 15: Multi-Valued Dimension Bridge Table Builder

Bridge tables are needed to allow for variable depth hierarchies, such as a customer
with subsidiaries and sub-subsidiaries where the organizations at each level can pur-
chase goods. If you want to be able to roll up the data to the mother company level,
you need a way to accomplish this. A bridge table can do that task. You can also use a

122 Part II ■ ETL

bridge table when there are multiple dimension entries that have a relation to a single
fact or other dimension table. Think of movie ticket sales and movie actors; if you want
to summarize the revenue by actor, you need a bridge table with weighing factors to
distribute the revenue over all the individual actors that performed in the movie (or
those that are listed on the movie poster). Kettle doesn’t provide specific functionality
for building and maintaining bridge tables, but in Chapter 4 we showed a small example
in the Sakila transformations.

Subsystem 16: Late-Arriving Data Handler

Until now our discussion assumed that all data arrived or was extracted at the same
time. Unfortunately this isn’t always the case: both fact and dimension records can
arrive late. For fact records this doesn’t have to be a big problem; the only extra measure
to be taken is looking up the surrogate key that was valid at the time of the transaction.
It suffices to add extra conditions for valid_from and valid_to dates. Those fields are
available in the “Dimension lookup / update” step by default. Late-arriving dimension
data is a more serious problem: in this case the facts have already been loaded but the
dimension information wasn’t up-to-date at the time of loading. When the dimension
updates finally arrive and result in a new record in case of a type 2 SCD, the newly
created surrogate key should be used to update an existing fact row that contains the
previous version. A variation to this is when a new fact arrives that contains a natural
customer key that’s not yet known in the dimension table. In that case, you need to
create a new dimension record first, with all fields set to a default or dummy value and
use the surrogate key from this record. Later, when the correct customer data arrives
from the source system, the dummy values can be updated. Late-arriving dimension
data is covered in Chapter 8, late-arriving facts in Chapter 9.

Subsystem 17: Dimension Manager System

The 34 subsystems describe the dimension manager as “the centralized authority who
prepares and publishes conformed dimensions to the data warehouse community.” This
centralized authority is responsible for all tasks related to dimension management, and
as such is more a way of organizing things. In Chapter 8, we cover how to best organize
the management of dimension tables using Kettle.

Subsystem 18: Fact Table Provider System

This subsystem is another organizational approach and handles the activities involved
with creating, managing, and using fact tables within the data marts. Note that sub-
system 17 and 18 work together as a pair: the fact table provider subscribes to the
dimensions managed by the dimension manager and attaches them to their fact tables.
Chapter 9 provides more detail about this subsystem.

 Chapter 5 ■ ETL Subsystems 123

Subsystem 19: Aggregate Builder

For as long as databases have been used for analytical purposes, there has been an
unquenchable thirst for performance. This “need for speed” led to several solutions;
among these, the use of aggregate tables is the solution with the most dramatic impact.
Decreasing the average response time from 30 minutes to a couple of milliseconds has
always been a great way to make customers happy, and that’s what aggregate tables
can do. Unfortunately, having aggregate tables in place is not enough; they need to
be maintained (still something Kettle can do for you), and your database needs to be
aware of the available aggregates to take advantage of them. This is where there is still
a sharp distinction between closed source products such as Oracle, SQL Server, and
DB/2 (which all have automatic aggregate navigation capabilities), and open source
databases such as MySQL, PostgreSQL, and Ingres. The only open source product that
is aggregate table–aware is Mondrian, but these aggregate tables are better created and
maintained using Mondrian’s own Aggregation Designer. Alternatively, you can use
one of the special analytical databases around such as LucidDB, InfoBright, MonetDB,
InfiniDB, or Ingres/Vectorwise, or, in case of LucidDB, a combination of a fast data-
base and the Pentaho Aggregation Designer. Generation and population of aggregation
tables are one-time–only activities, however; neither LucidDB nor PAD maintains the
aggregates after the data warehouse is refreshed. In Chapter 9, we discuss how you can
use Kettle to do this for you.

Subsystem 20: Multidimensional (OLAP) Cube Builder

OLAP databases have a special (storage) structure that enables these cubes to pre-
aggregate data when it is loaded. Some OLAP databases can only be written and not
updated, so in those cases the data needs to be flushed before an updated set can be
loaded again. Other OLAP databases (for example, Microsoft Analysis Services) allow
fact updates but have their own loading mechanism that’s not available within Kettle.
Chapter 10 is entirely devoted to handling OLAP data and shows how the Palo plugin
can be used to populate a Palo cube.

Subsystem 21: Data Integration Manager

This subsystem is used to get data out of the data warehouse and send it to other envi-
ronments, usually for offline data analysis or other special purposes such as sending
an order overview to a specific customer. In Chapter 22, we show you how Kettle can
be used to make this data available on a regular basis.

Managing the ETL Environment

The final section of this overview contains the 14 ETL subsystems required for manag-
ing the environment. Because Part III of this book covers all these subsystems in depth,
we provide just a brief overview here with the pointers to the respective chapters.

124 Part II ■ ETL

Subsystem 22: Job Scheduler■ —The Community Edition of Kettle doesn’t have its
own scheduler but relies on external schedulers such as the Pentaho BI Scheduler or
cron. Chapter 12 contains everything related to scheduling and logging of jobs.

Subsystem 23: Backup System■ — Backing up the intermediate data obtained
and created during ETL processing should be part of your ETL solution. Ralph
Kimball recommends staging (backing up) the data in three places in the ETL
pipeline: 1) immediately after extracting, before any modifications are made to the
data; 2) after cleaning, deduplicating, and conforming while possibly still in flat
file or normalized data formats; and 3) after final preparation of the BI-accessible
data sets. Backing up the data warehouse itself is usually not the responsibility
of the ETL team but you should work closely together with the DBAs to create
a failure-proof solution.

Subsystem 24: Recovery and Restart System—■ An important part of ETL design
is being able to restart a job when it fails somewhere during the process. Missing
or duplicate entries need to be avoided at all cost so this subsystem is quite
important. Following the strategy described in the previous subsystem makes
restarting a failed job a lot easier. Chapter 11 covers this aspect of the ETL design
as part of the broader testing and debugging topic.

Subsystem 25: Version Control System, and Subsystem 26: Version Migration ■

System from development to test to production—There are several ways to imple-
ment a version control system; Chapter 13 covers these topics in depth. Kettle has
built-in versioning capabilities, but only in the Enterprise Edition. This doesn’t
mean that you can’t use a separate version control system such as SVN or CVS. It
also doesn’t mean that version management should be considered an afterthought;
we’d like to repeat the note written by Ralph Kimball on this subject.

You do have a master version number for each part of your ETL system as well as

one for the system as a whole, don’t you? And, you can restore yesterday’s complete

ETL metadata context if it turns out that there is a big mistake in the current release?

Thank you for reassuring us.

The Data Warehouse Lifecycle Toolkit, 2nd Edition,
by Ralph Kimball et al., Wiley, 2008

Subsystem 27: Workflow Monitor■ — Ever tried to bake a cake without using a
timer or an oven thermostat? Pretty hard, isn’t it? It’s similar to running an ETL
job without having the means to monitor the process in detail to show you exactly
what’s going on. How many rows have been processed and how fast were they
processed? How much memory is consumed? Which records are being rejected
and why? All these questions are answered by the workflow monitor, or, in Kettle
terminology, the logging architecture. You can learn more about logging and the
Kettle logging architecture in Chapters 12 and 14.

Subsystem 28:■ Sort System—For some operations (such as the Kettle “Group
by” and Sorted Merge steps), the data needs to be sorted first. Of course Kettle
has a “Sort rows” step for this that operates in memory and pages to disk if the

 Chapter 5 ■ ETL Subsystems 125

dataset becomes too large, but for extremely large files a separate sort tool might
be necessary. We don’t cover these specialized tools but simply rely on the “Sort
rows” step to do our sorting.

Subsystem 29: Lineage and Dependency Analyzer—■ ETL systems should provide
both lineage and impact analysis capabilities. Lineage works backward from a
target data element and shows where it originated and what operations are per-
formed on the data. Dependency or impact analysis works the other way around:
From the viewpoint of a source column all following steps and transformations
are displayed, showing the impact a change on that particular field or table will
have on the rest of the system. At the time of this writing, Kettle has some capa-
bilities to show the impact of a transformation step on a database, but full lineage
and dependency analysis is still planned for a future version of Kettle Enterprise
Edition. Chapter 14 covers what can be done using the current version by reading
the Kettle metadata.

Subsystem 30: Problem Escalation System—■ In case something goes wrong (and
believe us, it will!), you need to be notified as soon as possible. Chapter 7 covers
error handling and notification.

Subsystem 31: Parallelizing/Pipelining System—■ To be able to process large
amounts of data in a short timeframe, tasks should be able to run in parallel, maybe
even with the workload spread over multiple machines. Chapters 15 and 16 cover
these topics. Kettle’s easy-to-use clustering capabilities are especially worth mention-
ing; this enables an organization to dynamically add capacity (for example, during
a nightly batch load) and turn it off again when it’s no longer needed (when the job
has completed). Running these operations in a cloud environment such as Amazon’s
Elastic Computing Cloud (EC2) avoids large hardware investments while at the
same time offering a large on-demand capacity at very low operational costs.

Subsystem 32: Security System—■ Security and compliance are hot topics in mod-
ern IT environments. The data warehouse, where all of an organization’s informa-
tion is available in an integrated fashion, is an especially strong target for data
theft. And because in a lot of cases the ETL process has direct access to the source
systems, the ETL solution itself is an attractive target as well.

Subsystem 33: Compliance Reporter—■ Most of the measures that are needed
for full compliance are already covered by other subsystems. Compliance means
that there should be a complete audit trail of where the data came from and what
operations have been performed on it (lineage), what the data looked like when it
was received into the data warehouse (timestamped backups), what the value was
at each particular point in time (audit table; SCD type 2), and who had access to
the data (logging). A good data modeling technique that has compliance written
all over it is the Data Vault, covered in Chapter 19.

Subsystem 34: Metadata Repository Manager—■ The goal of this final subsystem
is to capture all business, process, and technical metadata related to the ETL
system. An important part of this metadata is to document the system, which is
covered in Chapter 11, and of course the entire Kettle architecture is metadata-
driven, as discussed in Chapter 2.

126 Part II ■ ETL

Summary

This chapter introduced and explained the 34 ETL subsystems, as defined by Ralph
Kimball, and linked all these subsystems to available Kettle components and relevant
chapters in this book. The list of subsystems can also be viewed as the definition of ETL
architecture in general: it prescribes what each subsystem should cover, not exactly how
it should be implemented or exactly what the tool should do. As such, it is a magnificent
list of requirements to validate any ETL solution available, not just Kettle. The four main
areas that make up the 34 subsystems are:

Extraction:■ Getting the data from the various source systems

Cleaning and conforming data:■ Transforming and integrating the data to prepare
it for the data warehouse

Delivering data:■ Loading and updating the data in the data warehouse

Managing the environment:■ Controlling and monitoring the correct processing
of all components of the ETL solution

As this chapter also showed, there are a few tasks that are not yet fully covered by
Kettle (most notably data lineage and impact analysis) but in general, Kettle is an excel-
lent tool that can handle even the most challenging data integration task.

127

C H A P T E R

6

Data Extraction

The first step in an ETL process is getting data from one or more data sources. As we
discussed in Chapters 1 and 5, this is a demanding task because of the complexity and
variety of these different data sources. In a traditional data warehouse environment,
data is usually extracted from an organization’s transaction systems, such as financial
applications or ERP systems. Most of these systems store their data in a relational
database such as MySQL, Oracle, or SQL Server. As challenging as this may be from
a functional point of view (we’ll take a closer look at ERP systems later in this chap-
ter), technically it’s pretty straightforward to connect to a MySQL database using a
JDBC driver and extract data from it. It gets more interesting when the database isn’t
relational and there’s also no driver available to connect to it. In those situations you
often end up having the data delivered in a flat file format such as a comma-separated
ASCII file. An even trickier variation to this topic is data that is owned by someone else
and is stored outside the corporate firewall, perhaps by a client or vendor company.
In that case, a direct connection is usually not feasible so getting flat files might be the
only option. In the case of data stored on the Internet, even flat files are not an option.
(Imagine yourself calling Google, asking the company to FTP you some data set on a
regular basis.) As you’ll see later in this chapter, Kettle provides several ways to read
data from the Internet, ranging from a simple RSS reader to a Salesforce.com connector
or a web services reader.

The first section of this chapter is an overview of the various components available
in Kettle for extracting data. The next section is about data profiling, an important but
often undervalued task in an ETL project. Data profiling shows you the structure of the
data and, by calculating a set of useful statistics, gives you insight into the content and

128 Part II ■ ETL

quality of the extracted data. Kettle already contains some profiling functionality, but
we’ll cover a more complete tool for this task as well—eObjects.org DataCleaner.

The third section in the chapter covers Change Data Capture (CDC) and the way in
which Kettle can be used to support the various CDC techniques. The last section covers
the techniques that can be used to hand off the data to the next step in the ETL process.

Kettle Data Extraction Overview

The first thing a novice Kettle user will discover when starting Spoon for the first time
is the fact that extraction steps are actually called input steps. This makes perfect sense,
as these steps input data into the Kettle data stream. The second thing that strikes most
people is the large number of available input steps. Although these inputs cover most of
Kettle’s functionality to extract data, it’s not the complete set of available data handling
steps. Generally the steps needed to prepare the data for reading (especially with files) are
available at the job level, while the steps for the actual reading of the data are available at
the transformation level. To clarify this, the following sections use a categorization of the
options for handling data and data extraction that’s based on the type of data extracted,
not necessarily the distinction Kettle uses in the Spoon interface. Note that this is just a
general overview of what’s available; for detailed job and transformation step documenta-
tion and samples use the Kettle documentation available online. Just select Help ➪ Show
the welcome screen from the menu bar to open the documentation home page.

File-Based Extraction

When using files in an ETL process, the distinction made in Kettle is pretty straightforward:
Basic read and write operations are all available as transformation steps, whereas anything
that has to do with file management (moving, copying, creating, deleting, comparing,
compressing, and uncompressing) can be found in the “File management” job steps.

NOTE It is not necessary to create a file before you can use a “Text file out-

put” step. This step will create the file automatically if it’s not found.

Working with Text Files

Text files are probably the easiest ones to handle with an ETL tool. There’s little magic
involved in reading from or writing to them—they are easily transportable, can be
compressed efficiently, and any plain editor can be used to view them (unless, of course,
the file is several gigabytes big and you only have Windows Notepad at your disposal).
Basically, there are two flavors of text files:

Delimited:■ Each field or column is separated by a character or tab. Common terms
used for these files are CSV (for Comma Separated Values) and tab-delimited
files.

 Chapter 6 ■ Data Extraction 129

Fixed width:■ Each field or column has a designated width and length. Although
fixed-width file formats are very reliable, they require more work to set up the file
definition. Kettle offers some visual aids with the Get Fields option in the “Fixed
file input” step, but if you can choose between a delimited and fixed width format,
the delimited version is the preferred solution

For both types of files, the file encoding (the character set used for the file) can be
selected. UTF-8 is more or less the standard these days, but other encodings such as
US-ASCII or Windows-1252 are still widely used. In order to get the correct translation
of the data in your files, it is important to set the right file encoding. Unfortunately, in
many cases you cannot tell what encoding is right by just looking at the file or even
at the content, so it’s always a good idea to have both sender and receiver of the file
conform to the same standard.

TIP There’s a simple trick to reveal the file encoding: Just open the file in your

favorite browser and select View ➪ Character Encoding (Firefox) or View➪

Encoding (Internet Explorer).

The most basic text file input available is the “CSV file input” step, which lets you use
a single delimited file as input. Before you can process a file using this step (or even show
the content of the file), the delimiter and fields need to be specified. If you’re not sure what
delimiter or enclosure is being used, you’ll have to revert to a text editor to first visually
inspect the contents of the file. Processing multiple files in a single load is also quite cum-
bersome with the “CSV file input” step and its sibling, the “Fixed file input” step.

Both these input steps are basically simplified versions of the “Text file input” step,
which we think is the more powerful and preferred solution for handling text data. This
step is capable of a lot more than the previously mentioned input steps, including:

Reading file names from a previous step.■

Reading multiple files in a single run.■

Reading files from compressed ■ .zip or .gzip archives.

Showing the content of the data file without specifying the structure. Note that ■

you must specify the Format (DOS, Unix, Mixed) before you can view a file
because Kettle needs to know what line delimiter is used.

Specifying an escape character. This can be used to read fields containing commas ■

in a comma-separated file. A common escape character is a backslash, enabling
the value “wait\, then continue” to be read correctly as “wait, then continue”
without reading the comma as a field separator.

Error handling.■

Filtering.■

Date format locale specification.■

All this power comes at a price, however; the “Text file input” step will take up more
memory and processing power than both the “CSV file input” step and the “Fixed file
input” step.

130 Part II ■ ETL

EXAMPLE: PROCESSING MULTIPLE TEXT FILES

In this case study, we’ll show you how a common scenario can be translated

into a Kettle solution. The scenario is as follows:

Get the directory name from a parameter table. ■

Specify a subset of files to be read based on a search string. ■

Read the files. ■

The example files are custfile1.txt and custfile2.txt, each contain-

ing 25,000 rows of customer data. You can obtain these files from the book’s

companion website at www.wiley.com/go/kettlesolutions or have them

generated by the Fake Name Generator on http://www.fakenamegenerator

.com. To follow along with this example, download these files and put them

in a separate directory. You can name this directory and the files anything you

like, but to follow along make sure the file names start with cust.

The first task is to create a new transformation and add a “Text file input”

step. Before you can accept file names from a previous step, you must define the

file layout, so open the step, browse to one of the files and add it to the Selected

files list. Before you can show the content of the file, make sure that the correct

Format (DOS, Unix, Mixed) is set in the Content tab. Now you can open the file

using the “Show file content” button, which will reveal the fact that there is a

single header line, and the fields are delimited with the pipe (|) symbol. Use

this information to set the correct values for Header, Number of header lines,

Separator, and Enclosure in the Content tab.

After defining the file layout, select the Fields tab and click Get Fields.

Kettle will now try to determine what type of data is stored in the respective

fields. Although Kettle does a pretty good job of guessing the field info, it’s

not without its flaws. Fields that start with a number (such as an address field

containing values in the form ‘2342 Wilwood Street’, or a field with values

like ‘23;44;33’) will be identified as integer data, which is incorrect. In this

example, the field StreetAddress is read as an Integer field with length 4,

which needs to be changed into String with length 35. Later in this chapter we

look at using data profiling as another means to determine what type of data

each field contains.

To verify that your data looks correct, click Preview rows. If Kettle appears

to have captured your file layout and data types correctly, you can close this

step. We continue by adding the steps needed to dynamically provide the file

name information to the “Text file input” step you just created. These addi-

tional steps will precede the one you just created.

First, add a “Get file names” step. Note that you can add multiple files

or directories in the “Selected files” list, just like in the “Text file input”

step. For now just enter the directory name and the wildcard for matching

only the customer files. This last option requires a regular expression in the

form ^cust.+, which will search for all files starting with the string cust.

Figure 6-1 shows what the step looks like after entering this information.

 Chapter 6 ■ Data Extraction 131

EXAMPLE: PROCESSING MULTIPLE TEXT FILES

Figure 6-1: Get customer files

You can now preview the result and see whether the correct files will be

found by clicking Preview rows; this will display a result similar to the one

shown in Figure 6-2.

Figure 6-2: Preview of Get File Names

Next, connect the step Get File Names to the “Text file input” step. Open

the latter step, mark the “Accept file names from previous step” checkbox and

select Get File Names as the step to read filenames from. The field to use as

a file name is, of course, filename. Note that you cannot use the “Preview

rows” option anymore, but you can run a Preview on the step to check that it

works. Also note that you could have used the same path and regular expres-

sion directly in the Text file input step, but there’s a good reason for using an

extra step. The Get File Names step enables you to read the directory name

and file mask from a previous step, and when this information is stored in

an external parameter table, you can create a very flexible solution. We don’t

have such a table available but you can mimic an external table by using a

Data Grid step. Add a Data Grid step to the canvas and create two string fields

(source_dir and source_pattern) on the Meta tab and enter the same

directory and regex information used before. The Data tab should now look

similar to the one in Figure 6-3.

Continued

132 Part II ■ ETL

EXAMPLE: PROCESSING MULTIPLE TEXT FILES (continued)

Figure 6-3: Data Grid with directory name

The “Get file names” step can now be adjusted by selecting the “Filename

is defined in a field” checkbox and selecting the source_dir and source_

pattern fields, as shown in Figure 6-4.

Figure 6-4: Get file names

In production environments, the Data Grid step should be replaced by a

“Table input” step. Another approach could be to split the transformation in

two and use a separate step to assign a variable based on a value retrieved

from a parameter table. The assigned variable can then be used in a subse-

quent step that only needs to contain the “Text file input” step where the file

name is replaced by the variable. The regex needs to be entered manually in

that case.

As you can see from these examples, there are many approaches to achieve

the same result. It all depends on how flexible your solution needs to be;

a more flexible solution could take longer to design and build, but can be

parameterized in such a way that it can run unaltered on development, test,

and production environments. More on solutions design can be found in

Chapter 11.

 Chapter 6 ■ Data Extraction 133

Working with XML files

XML is short for eXtensible Markup Language and is an open standard for defining and
describing both structure and content of data in a plain text format. Although an XML
extension might reveal the fact that you are dealing with an XML file, that’s only part
of the story. XML is a meta language that forms the basis for more specific implementa-
tions such as the OpenOffice OpenDocument format or formats like RSS or Atom. Many
other systems are capable of exchanging information in an XML format, which makes
XML a kind of lingua franca for data exchange. An XML file is basically just text and
can be opened with any text editor such as Notepad or vi. This means that all available
file management and file transfer operations can be used for XML files as well.

XML files are not only basic text files, but need to adhere to strict specifications as
well. Kettle has four validation options to check whether and how an XML file can be
processed:

Check if XML file is well formed:■ Basic check of whether all opening/closing
tags are complete and the nesting structure is well balanced.

DTD Validator:■ Checks the content of the XML file based on a Data Type
Definition file, which can be either internal (contained inside the XML file) or
external (separate DTD file).

XSD Validator (Job): ■ Checks the content of the XML file based on an XML Schema
Definition file.

XSD Validator (Transformation):■ Same as previous, but can also check valid XML
inside a specific input field such as a database column that contains XML data.

After checking the validity of the structure, the XML can be read using the “Get data
from XML” input step. The main challenge when working with XML is to decipher the
nesting structure of the file. The result of the step is a flattened and un-nested data
structure that can be used to store the data in a relational database. Conversely, the
“Add XML column” step is used to convert flat data to XML data.

If you need to transform the XML file into anything else—another XML file with a
different structure, plain text, or an HTML file—you’ll need the “XSL transformation”
job step. XSL is short for eXtensible Stylesheet Language, and XSLT is the abbreviation
for XSL Transformations, an XML language for transforming XML documents. As
with the XSD validator, there is a step with the same name at both the job and the
transformation level. The latter lets you apply an XSL transformation to a stream field
containing XML data; the former reads in an entire XML file. An excellent resource with
an in-depth explanation of XSLT including examples is the Wikipedia page http://
en.wikipedia.org/wiki/XSL_Transformations. In order to try the examples on
the web page, it suffices to save the example files to your local machine and use these
in your own Kettle XSL transformation step.

Chapter 21 covers everything you need to know about XML formats and the way to
read data from and write data to XML files.

134 Part II ■ ETL

Special File Types

Somewhere in between files and real databases are file formats that look like a database
but really aren’t. This doesn’t need to cause any problems: The problems arise when
people start using these file systems as if they were real databases. Kettle contains a
collection of steps to deal with these file-based storage types, which we’ll list here for
completeness:

Access Input:■ Many organizations have Access databases that are essential to
running their operations. They typically started out as lightweight prototypes
or single-user solutions, and then got “discovered” by other users and put on
a network drive, where they suddenly became mission-critical solutions. Kettle
contains an Access Input step that lets you retrieve data from these files, but
note that the database cannot be secured (there’s no way to pass username and
password). Older versions such as Access 2000 are also not supported. If you
need to access older or secured databases, use an ODBC connection from the
“Table input” step.

XBase Input:■ Back in the 1980s and early 1990s, dBase III, IV, and V were popular
PC-type “databases.” Kettle offers the XBase Input step to read data from these
files, which can still be useful if you need to obtain data from, for example, sci-
entific research. Many of these data sets are still available as DBF files.

Excel Input:■ We cannot stress enough that you should do everything in your
power to avoid having to use Excel as input. If you must, however, the Kettle
step for reading those files works great and looks and operates a lot like the “Text
file input” step discussed earlier.

For other, special, file types such as LDAP, LDIF, ESRI Shapefiles, and Property files,
please refer to the online steps documentation.

Database-Based Extraction

With the term database, people usually refer to an RDBMS (Relational Database
Management System) such as Oracle, SQL Server, or MySQL. In the context of data
extraction, this is still a valid way to look at the database world, but things are shift-
ing toward other approaches as well. Most notable are the “no-sql” or “not only SQL”
databases such as Hadoop, Hypertable, CouchDB, or Amazon SimpleDB. An extensive
overview of this category of data stores is available at http://nosql-database.org/.
For our discussion, we’ll initially stick to the more classic view of the database world,
starting with the data extraction workhorse, the “Table input” step. Although this step
is well documented in the online step guide, a working example showing how to work
with parameterization and variable substitution is the subject of the next case study.

 Chapter 6 ■ Data Extraction 135

EXAMPLE: CREATING PARAMETERIZED QUERIES

For these examples, we’ll use the Sakila database that was used in Chapter 4.

In fact, one example of using parameterized queries is already described in

“The load_dim_staff Transformation” section of that chapter. Basically, there

are two ways to parameterize a query: using variable substitution and using

parameters. The latter technique is used in Chapter 4, and boils down to the

following: The step prior to the “Table input” step retrieves one or more values

that are passed on to the “Table input” step, where these values are placed

inside the query where question marks are located. A small but completely

working solution illustrating this principle is shown in Figure 6-5.

Figure 6-5: Parameterized query

The Data Grid step is used here for illustrative purposes and can be

replaced by any other step that can get these parameters to the “Table input”

step. You’ll see another example in the CDC discussion later in this chapter.

The second technique is based on using variables. These variables have to

be set in a separate transformation that must be executed prior to the execu-

tion of the transformation containing the “Data input” step; otherwise, it can-

not be guaranteed that the variables get their value assigned prior to the start

of the “Data input” step. Figure 6-6 shows this Set Vars transformation, which

can be used as the first transformation in a job.

Continued

136 Part II ■ ETL

EXAMPLE: CREATING PARAMETERIZED QUERIES (continued)

Figure 6-6: Set Variables transformation

The transformation using these set variables now contains a single “Table

input” step where the variables are being replaced by the assigned values, as

shown in Figure 6-7.

Figure 6-7: Table input with variable replacement

For completeness, the screenshot in Figure 6-8 shows the job with the

respective transformations to be executed to set the variables and read the

data from the database based on the parameterized query.

Figure 6-8: Variable-based “Table input” job

 Chapter 6 ■ Data Extraction 137

Web-Based Extraction

Getting data from the Web poses its own challenges but can sometimes be remarkably
simple, too. Kettle offers various options to get data from the Web, but none of these
options is a so-called “HTML scraper.” This means that the data needs to be exposed
in a structured manner in order to be readable by a Kettle transformation. Because
Chapter 21 covers using web services and web APIs in depth, we only touch on the
various options in this section.

Text-Based Web Extraction

A file can simply be put on a website and be made accessible via HTTP. If this is the case,
getting the data into Kettle is a piece of cake because you simply use the URL as the
file name in a “Text file input” step that uses the Apache VFS and thus handles HTTP
as a file location automatically. The following URL with ISO 3166 country names and
codes provides an example of such a file: http://www.ip2location.com/download/
iso3166.txt.

HTTP Client

A second way to retrieve structured data from the Internet is to use the “HTTP client”
step. This is a simple way of retrieving data because it can only make a call to a URL
and the result is returned as a string. This result can be regular text that can be saved
as a delimited file, or in an XML format that needs to be processed using the “Get data
from XML” step. If you want to experiment with the different options for retrieving
data using the HTTP client, you can use the GeoNames web services on http://
ws.geonames.org. As an example, let’s retrieve country info for the Netherlands using
an HTTP client step.

First, create a new transformation and add a Generate Rows step. You need this because
the HTTP client is a lookup step and needs input to be triggered; otherwise it doesn’t do
anything. Set the Limit to 1 and add a single field called countryurl of type String.
The value of the field will be the URL that will be called, and can be used as follows:

http://ws.geonames.org/countryInfo■ retrieves all country info in XML
format.

http://ws.geonames.org/countryInfoCSV ■ retrieves all country info in CSV
format.

Adding a specific country code by using the country parameter limits the ■

result to one specified country. For instance the URL http://ws.geonames
.org/countryInfoCSV?country=NL will return only the information for the
Netherlands in CSV format.

Next, add an “HTTP client” step and connect the two steps. For the “HTTP client”
step, select the “Accept URL from field?” checkbox and select countryurl as the URL
field name. Now you can do a preview, which will output the data similar to what you
can see in Figure 6-9.

138 Part II ■ ETL

Figure 6-9: HTTP client preview

Using SOAP

SOAP, an acronym for Simple Object Access Protocol, is not as simple as the name implies.
Rather than reviewing the ongoing discussion between advocates and opponents of
the SOAP protocol, we’ll limit ourselves to covering the basics needed to use a SOAP
call for retrieving Internet data. You can find background information about SOAP and
web services at http://en.wikipedia.org/wiki/Web_service.

Chapter 21 takes a close look at web data extraction, including the use of SOAP, so
if you want to dig right in just move on to that chapter.

Stream-Based and Real-Time Extraction

The data integration world is becoming more and more real-time, meaning that there
should be minimal delay between the occurrence of an event and the data showing up
in a report or analysis. Although most people will look at Kettle as a batch-oriented
ETL tool, it is in fact process-type agnostic. In Chapter 18, we show you how to retrieve
streaming data from Twitter using Kettle, and in Chapter 22 you see that Kettle can also
be used to deliver an extraction result in real-time data to a Pentaho Report.

Working with ERP and CRM Systems

Enterprise Resource Planning, or ERP, systems are meant to support all of an organiza-
tion’s business processes, from HR to procurement to production, shipping, and invoic-
ing. The history of ERP systems started some 30 years ago when the first Manufacturing
Requirements Planning (MRP) systems were designed to support manufacturing pro-
cesses. Later, these first-generation MRP systems with a narrow focus were succeeded
by Manufacturing Resources Planning (MRP II) solutions that covered a broader range
of business processes but were still somewhat limited in scope and still mainly targeted
at supporting manufacturing processes. As these systems matured and started to cover
the full range of business processes, including HR, finance, and customer manage-
ment, the M in MRP seemed a bit outdated so it was replaced by the E for Enterprise.
This highlighted the fact that any organization could now benefit from this class of
software solutions, not only manufacturing companies.

 Chapter 6 ■ Data Extraction 139

Over the past decades, many MRP and ERP vendors emerged (and some also went
out of business again). The most well-known commercial solutions today with the big-
gest market shares and revenues are SAP/R3, Oracle E-Business Suite, and Microsoft
Dynamics AX, with the former two targeting large multinational corporations while
the latter is more focused on the Small and Medium Business (SMB) market. For many
companies, however, ERP might have offered the breadth of solutions, but not the depth
needed for specific purposes. Organizations such as Siebel and PeopleSoft (now both
Oracle), Salesforce.com, and Amdocs thrived on the increased interest in specialized
solutions for HR, CRM, and Sales support.

As a result of high costs and complexity of the proprietary solutions, open source
alternatives soon followed; currently ERP applications such as OpenBravo, OpenERP,
Adempiere, and TinyERP can in many cases compete against their high-priced com-
mercial counterparts. One of the biggest open source success stories in the sales force
automation and CRM space is SugarCRM, which offers both a community and profes-
sional/enterprise edition.

This section first explains what’s special about ERP data and then shows you how
the new SAP Input step can be used to obtain data from the market-leading SAP/R3
ERP system.

ERP Challenges

ERP systems such as SAP, J/D Edwards, and Lawson have two things in common: a
huge collection of tables in the database and an extreme form of normalization and
data encoding. This makes it hard, if not impossible, to access the underlying database
directly. More often than not, the tables and columns have cryptic names such as f4211
instead of Sales Order. SAP in particular is a notoriously complex system, and the license
terms of the software even prohibit direct access through a database connection. To
date, a standard SAP installation consists of over 70,000 tables and most of the logic
and metadata is programmed in the application, not in the database. The only way to
get meaningful information out of the database is to use the interfaces that SAP offers.
Almost all ERP vendors offer a solution like the one depicted in Figure 6-10, where an
abstraction layer is used to access the underlying data. These abstraction layers have
several advantages:

No need to know the underlying database structure.■

Easy navigation of available components.■

The vendor can change the implementation of the database without “breaking” ■

the extraction logic.

There could be a cost involved as well: performance. The process of calling an API
that needs to do translations by looking up metadata and then accessing the database,
translating the data based on the metadata, and sending it back to the calling process
takes time. Nevertheless, it is usually the only way to get to the data so it’s a good idea
to first check how much time the extraction process takes and whether it fits in avail-
able batch windows.

140 Part II ■ ETL

ETL Process

Interface name

Link1
Link2
...

Business data name1
Business data name2
...

ERP Data

Figure 6-10: Business data layer

Kettle ERP Plugins

Because of the plugin architecture of Kettle, several commercial third-party plugins
have been available for some time to get data from systems such as SAP or SugarCRM.
The Pentaho community developed several new open source plugins for Kettle 4, so for
some of these systems, data access support is now available in the standard installation
as well. The following options are available at the time of this writing:

SAP Input step:■ Allows Kettle to retrieve data from an SAP installation using
SAP interface calls.

SalesForce.com input step:■ Allows Kettle to retrieve data from SalesForce using
the standard web service calls.

SalesForce.com output steps:■ Using the same published set of web services, it is
possible to insert, update, delete, and upsert data in a SalesForce database.

Working with SAP Data

There are many ways to get data from an SAP system, most notably by invoking Remote
Function Calls (RFCs) or calling a Business Application Programming Interface (BAPI).
Austrian Pentaho Partner Aschauer EDV developed the open source Kettle plugin that
can work with both RFCs and BAPIs. The following workflow demonstrates how the
SAP plugin can be used to retrieve Billing Document information from the Financial
module of SAP/R3.

NOTE The authors wish to thank Bernd Aschauer and Robert Wintner, both

from Aschauer EDV (http://www.aschauer-edv.at/en), for providing the

example screenshots used in this section.

 Chapter 6 ■ Data Extraction 141

In order to be able to use the SAP Input step, the SAP Java Connector library (sapjco3
.jar or similar) needs to be downloaded from the SAP support site and copied to the
Kettle libext directory. After this, you can drag an SAP Input step to the canvas and
connect to an SAP system. An SAP connection requires more than a server address,
username and a password; Figure 6-11 shows an example connection with the correct
values entered.

Figure 6-11: SAP/R3 connection

As shown in Figure 6-11, each SAP instance has a system number, and for connect-
ing you’ll need to provide the client ID and language used as well. This is exactly the
same information as required to connect to SAP using the standard SAP client. After
you enter the required information, the Test button on the connection screen will show
whether the connection can be made successfully.

After making the connection, you can use the function browser by clicking the “Find
it” button in the SAP Input step screen. This will open a dialog box where you can search
for functions with a specific name using wildcards, as shown in Figure 6-12.

Figure 6-12: SAP Function Browser

142 Part II ■ ETL

Each selected function can have multiple input and output fields, which will be
displayed by the SAP Input step after you select the required function, as shown in
Figure 6-13.

Figure 6-13: SAP Input step

The values for the input fields can be set in Kettle prior to using the SAP Input step
by using a Data Grid or Generate Rows step, or by retrieving the data from another
source such as an external parameter table. In this case, it suffices to define four string
columns in a Generate Rows step and limit the row generation to a single row, as dis-
played in Figure 6-14.

Figure 6-14: Generate Rows for SAP Input step parameters

A complete transformation to test whether this will give you the required data looks
remarkably simple then. Figure 6-15 shows the required steps to set input values, retrieve
data from SAP, and send the stream to a Dummy plugin.

 Chapter 6 ■ Data Extraction 143

Figure 6-15: Kettle transformation reading SAP data

The preview issued on the Dummy step will show that the input step extracts the
required data, as displayed in Figure 6-16.

Figure 6-16: SAP Billingdoc data

This first example showed you how to use a standard function that returned the
data in a directly usable format. One of the more generic RFCs is the RFC_READ_TABLE
function, which can be used to read data from any table. The drawback of this step
is twofold: You need to know something of the structure of the data that needs to be
retrieved (at least the field names), and the return value is a single column that you
need to split manually. Nevertheless, it’s a flexible way of getting any kind of data from
an SAP system. Figure 6-17 shows what the “SAP Input” step looks like when using
the RFC_READ_TABLE function to retrieve data from the G/L Account Master table
called SKAT, which contains the account descriptions. Other important master tables
in an SAP/R3 FI (finance) installation are KNB1 (Customer Master) and LFA1 (Vendor
Master), names that still show the German heritage of the product: KN is short for Kunde
(Customer), and LF for Lieferant (Vendor).

144 Part II ■ ETL

Figure 6-17: SAP Input step using RFC_READ_TABLE

Figure 6-17 also shows that the structure of the input and output is entirely differ-
ent from the first example transformation. Now you need to specify the delimiter, the
table name, the number of rows to read and skip, and the fieldnames and filter to use.
As you can see in the screenshot, the fieldname and filter are of type Table, meaning
that multiple values can be provided. The Generate Rows step used to create this input
data is displayed in Figure 6-18 and shows how this step can be used to pass the correct
values to the SAP Input step.

Figure 6-18: SAP RFC_READ_TABLE input specification

 Chapter 6 ■ Data Extraction 145

Before the data can be used, it has to be split, now using the same delimiter speci-
fied in the Generate Rows step. The Kettle “Field splitter” step type makes this a very
straightforward process, as shown in Figure 6-19.

Figure 6-19: Using the “Field splitter” to divide output fields into columns

If you take a careful look at Figures 6-18 and 6-19, you’ll notice that different field
names are being used. That’s because in order to access the fields in an SAP system,
you’ll need to exactly specify the field names used. The Field splitter lets you define
your own names for the fields; the only thing that’s important is the ordinal position
and data type of the field, not the name. Figure 6-20 then shows the final output of the
RFC_READ_TABLE function call that retrieved 100 rows as specified.

Figure 6-20: RFC_READ_TABLE output showing G/L Accounts

146 Part II ■ ETL

ERP and CDC Issues

The SAP/R3 examples in the previous section showed an easy way to obtain data from
this ERP system, and based on user demand there will undoubtedly appear more
ERP input steps as time will pass. There is one major issue with this way of working,
however: there is no way of retrieving only changed, inserted, or deleted data. To work
around this, you can take one of the following three approaches:

File delivery■ : The SAP team can be asked to develop a custom program that
delivers only changed data in a text file. In many projects this is the default way
of operating since access to the SAP system is prohibited for the ETL process

Work with snapshots:■ In the Snapshot-Based CDC section later in this chapter
we’ll show you how to use snapshots and the Kettle Merge Join step to detect
changes in data sets.

Augment the RFCs:■ For CDC purposes, it could make sense to add additional
parameters to an RFC to enable filtering changed data, but that needs to be done
on the SAP side.

Data Profiling

Data profiling is the process of collecting statistics and other information about the data
available in different source systems. The obtained information is invaluable for the
further design of your data warehouse and ETL processes. Data profiling is also an
important part of any data quality initiative; before quality can be improved, a baseline
must be established indicating what the current state of the data is. Profiling can be
performed at three different levels:

Column profile: ■ Collects statistics about the data in a single column.

Dependency profile: ■ Checks for dependencies within a table between different
columns.

Join profile:■ Checks for dependencies between different tables.

The starting point for profiling is always the column-level profile, which generates
useful information about the data in a column, including but not limited to:

Number of distinct values: ■ How many unique entries does the column
contain?

Number of NULL and empty values: ■ How many records have no value or an
empty value?

Highest and lowest values■ : Not only for numeric but also for textual data.

Numeric sum, median, average, and standard deviation: ■ Various calculations
on the numeric values and value distribution.

 Chapter 6 ■ Data Extraction 147

String patterns and length: ■ Are the values correctly stored? (For example, German
postal codes should contain five digits.)

Number of words, number of upper and lowercase characters: ■ What’s the total
number of words in the column and are the words all upper, lower or mixed
case?

Frequency counts:■ What are the top and bottom N items in a column?

Most data-profiling tools can deliver this information and sometimes even more.
It gets trickier when you look at the profiling within a single table to identify correla-
tions and interdependencies. Examples of this are combinations of postal code-to-city,
city-to-region, and region-to-country. Obviously, a city name is dependent on a postal
code, the region name on the city, and the country on the region. These dependencies
violate the third normal form so when finding these relationships in a third normal
form source system, you should take extra care, especially regarding the address infor-
mation. Sometimes the relations are not very clear or are even confusing, which makes
it hard to distinguish correct from incorrect entries. This is exactly the reason that so
many expensive address matching and cleansing solutions exist. Take, for instance, the
city-region combination: There are more than ten states in the United States with a city
named Hillsboro. Without additional knowledge of the country or ZIP codes, it’s hard
to tell whether a record contains erroneous information or not. For these cases, you’ll
need external information to validate the data against.

Inter-table relationships are easier to profile; it is simply a matter of evaluating
whether a relationship is correctly enforced. In an order entry system, it shouldn’t be
possible to find a customer number in the order table that does not exist in the customer
table. The same relationship test can be used to find out how many customers are in the
customer table but not (yet) in the order table. The same applies to products and order
details, inventory and suppliers, and so on.

Using eobjects.org DataCleaner

Currently, the community edition of the Pentaho BI suite does not contain data profil-
ing capabilities, so we will use a tool named DataCleaner developed by the open source
community eobjects.org. (Kettle 4.1 will contain a Data Profile feature as one of the
Database Explorer functions.) The software can be obtained from http://datacleaner
. eobjects.org/ and is very easy to install. On Windows, you simply unzip the package
and start datacleaner.exe. On a Linux machine, after unpacking the tar.gz file you
first need to make the datacleaner.sh shell script executable to start the program. If
you are using the GNOME desktop environment, this is very easy: Just right-click the file
and open the properties. Then go to the Permissions tab and select the Execute option
“Allow executing file as program.” Now you can double-click on the datacleaner.sh
file and the program will start. If you want a more convenient way to start the program
next time, you can create a shortcut (in Windows) or a launcher (in GNOME).

DataCleaner performs three main tasks:

Profile: ■ All the column profiling tasks described earlier. The idea here is to gain
insight into the state of your data. You can thus use the profiling task whenever
you want to explore and take the temperature of your database.

148 Part II ■ ETL

Validate:■ To create and test validation rules against the data. These validation
rules can then later be translated (by hand) into Pentaho Data Integration valida-
tion steps. The validator is useful for enforcing rules onto your data and monitor-
ing the data that does not conform to these rules.

Compare:■ To compare data from different tables and schemas and check for
consistency between them.

From these descriptions, it’s immediately clear that DataCleaner does not provide
intra-table profiling capabilities as a direct option, but there are other ways to accom-
plish this with the tool, as we’ll show later.

The first thing you need, of course, is a connection to the database you want to profile.
For each type of database, DataCleaner needs the corresponding driver, which enables
the communication between the tool and the database. Before we explain how to add
drivers and connections, let’s take a first look at the available functions. DataCleaner
starts with the New task panel open, which allows you to choose one of the three
main options: Profile, Validate, and Compare. Click on Profile to start a new profiling
task. You’ll see an almost empty two-pane screen with some options and the “No data
selected” indication in the left pane (see Figure 6-21).

Figure 6-21: Profiling task

Now select “Open database,” select the DataCleaner sampledata entry, and click
Connect to Database. All other fields have been set already. When you open the PUBLIC
tree node on the left by clicking on the + sign, the list with tables appears. Each table
can be opened individually, which displays the available columns. To add a column
to the data selection, just double-click it. You’ll notice that the table name is added to
the Table(s) field, and the column to the Column(s) field. To remove a column from the
selection, double-click it again or use Clear Selection to completely remove the selected
tables and columns. The Preview option shows a sample of the selected data; the number
of rows to be retrieved can be adjusted after clicking the button. The default value often
suffices to get a first impression of the content of the data. Each table gets its selected
columns displayed in a separate window.

 Chapter 6 ■ Data Extraction 149

Next to the “Data selection” tab is the Metadata tab. When you click this tab, the
technical metadata of the selected columns is displayed. The field type, field length,
and especially the Nullable indication give you a first impression of the kind of data
to be expected.

Adding Profile Tasks

After selecting some columns to profile, you can add different profiles. DataCleaner
contains the following standard profile options:

Standard measures: ■ Row count, number of NULL values, empty values, highest
and lowest value.

String analysis: ■ Percentage of upper and lowercase characters, percentage of
non-letter characters, minimum and maximum number of words, and the total
number of words and characters in the column.

Time analysis: ■ Lowest and highest date value, plus number of records per year.

Number analysis: ■ Highest, lowest, sum, mean, geometric mean, standard devia-
tion, and variance.

Pattern finder: ■ Finds and counts all patterns in a character column. Mostly used
for phone numbers, postal codes, or other fields that should conform to a specific
alpha-numeric pattern. Pattern examples are 9999 aa (4 digits, space, 2 charac-
ters), aaa-999 (3 characters, hyphen, 3 digits).

Dictionary matcher: ■ Matches the selected columns against the content of an exter-
nal file or another database column (a “dictionary”).

Regex matcher: ■ Matches columns against a regular expression.

Date mask matcher: ■ Matches text columns against date patterns; this cannot
be used with date fields, only with text fields containing date and/or time
information.

Value distribution: ■ Calculates the top and bottom N values in a column based on
their frequency, or ranks the number of occurrences and calculates the frequency
percentage for each value. The value for N can be any number between 0 and
50; the default is 5.

The collection of profiles in a task is very flexible; it’s possible to add profiles of the
same type to a single task. Each task can be saved as well, but this will only save the con-
nection and task profiles, not the profiler results. This last option is a separate function
and saves the results in an XML file, which is unfortunately for the moment a one-way
street; DataCleaner cannot read these files back. Persisting profile results is part of the
roadmap for future releases.

Adding Database Connections

One of the first things to do when setting up the data profiling environment is to add
the correct database drivers and store the connections to your own databases for easy

150 Part II ■ ETL

selection. The first task is pretty straightforward; in the main DataCleaner screen, select
File➪ Register database driver. There are two ways to add a new driver. The first is
to automatically download and install the driver. This option is available for MySQL,
PostgreSQL, SQL Server/Sybase, Derby, and SQLite. The second way of doing this is to
manually register a .jar file with the drivers. To help you find the drivers, DataCleaner
contains the option to visit the driver website for the most common database drivers,
such as those for Oracle or IBM DB2. After downloading a driver, you’ll need to refer-
ence it by selecting the file and the correct driver class. For MySQL, we will use the
Automatic download and install option.

NOTE If you already installed the MySQL JDBC driver, there’s no need to

download it again; just register your existing .jar file.

Adding the connection so you can select it from the drop-down list in the Open
Database dialog box is a bit more complicated. For that you need to alter the DataCleaner
configuration file, which can be found in the DataCleaner folder and is called
 datacleaner-config.xml. To edit XML files, it’s best to use a plain-text editor that
understands the XML syntax. For the Windows platform, the open source Notepad++
can be used; on a Linux machine, just right-click the file and open with Text editor.
Look for the part in the file that says:

 <!-- Named connections. Add your own connections here. -->.

Below this line there’s an empty entry for the drop-down list; just leave that where
it is. The second entry is the connection to the sample data. Copy the sample data part
that starts with <bean and ends with </bean>, including the start and end bean tags.
Paste it right below the closing tag of the sample data entry and adjust the information
to reflect your own settings. The following code shows the entry as it should look for
the connection to the sakila database on your local machine:

<bean class=”dk.eobjects.datacleaner.gui.model.NamedConnection”>

 <property name=”name” value=”sakila database” />

 <property name=”connectionString”

value=”jdbc:mysql://localhost:3306” />

 <property name=”username” value=”sakila” />

 <property name=”password” value=”sakila” />

 <property name=”tableTypes”>

 <list>

 <value>TABLE</value>

 </list>

 </property>

</bean>

To have DataCleaner also connect to the correct catalog, for instance the Sakila cata-
log, an extra line should be added below the password property line, like this:

<property name=”catalog” value = “sakila” />

 Chapter 6 ■ Data Extraction 151

We don’t recommend storing passwords in plain-text files; in fact, we strongly oppose
doing so, and in this case you can leave the password field empty as well. In that case,
you’ll need to provide the password each time you create a new profiling task.

To use DataCleaner with sources other than the sakila database, you can find exam-
ples of the XML bean-element for other popular databases in the online DataCleaner
documentation.

Doing an Initial Profile

The DataCleaner profiler has been optimized to allow you to do a rather quick and at
the same time insightful profile with little effort. To get started with profiling, you can
add the Standard Measures, String Analysis, Number Analysis, and Time Analysis
profiles by repeatedly clicking the Add Profile button in the top-right corner of the
Profile task window. You can apply these profiles to all the columns of your database
to get the initial insight.

Working with Regular Expressions

Regular expressions, or regexes, are a way of masking and describing data, mainly for
validation purposes but also to find certain patterns in a text. Several books have been
written about working with regular expressions so we refer to existing information
here. DataCleaner contains both a regex matcher as one of the profiles as well as a regex
validation as part of the validator. Before you can use regular expressions, you’ll need
to add them to the Regex catalog in the main DataCleaner screen. Initially this cata-
log is empty, but it’s easy to add regexes. When you click “New regex,” three options
appear. The first one is to create a new regex manually and the last one is to get a regex
from the .properties file. The second option is the most interesting: When you select
Import from the RegexSwap, an online library is opened with a large collection of
existing regexes to pick from. It is also possible to contribute your own regexes to the
RegexSwap at http://datacleaner.eobjects.org/regexswap for others to (re)use.
After importing a regex from the RegexSwap, you can open it to change its name and
the expression itself, and there’s an option to test the expression by inputting strings
you want to validate. If the RegexSwap doesn’t fulfill your needs, a vast number of
regular expressions are available on other Internet websites as well. The site http://
regexlib.com, for example, contains regexes for U.S. phone numbers and ZIP codes.
Another great site, especially if you want to learn the regular expression syntax, is
www.regular-expressions.info.

For a very simple example of using a regex validation, create a new Profiler task, con-
nect to the Sakila database, and select the Address table in the Data Selection tab.
Now add a Regex matcher with the Add profile option and keep only the Integer
regex to validate the phone field in the address table, as shown in Figure 6-22.

152 Part II ■ ETL

Figure 6-22: Regex match of phone number

Regular expressions are also a powerful component in the Kettle toolkit for handling
all kinds of things. You already saw one example when we used a regular expression
to find all .txt files in a directory. Chapters 7 and 20 also contain several examples of
how regular expressions can be used in your transformations.

Profiling and Exploring Results

When the definition of a profile is complete, the option Run profiling starts the pro-
cess. DataCleaner will display a status screen where you can also monitor the progress
of the profile process. When the profiler is finished, a results tab is added to the screen,
one for each table that contained profiled columns. Figure 6-23 shows the output of the
profile task from the preceding section.

Figure 6-23: Profiler results

 Chapter 6 ■ Data Extraction 153

As is clearly visible, there are two phone numbers that do not match the regular
expression, which enables us to show another nice DataCleaner feature: drilling down
to the details. Clicking on the green arrow next to the two found exceptions opens the
screen shown in Figure 6-24.

Figure 6-24: Profiler results

This isn’t the end, however. When you right-click, you’ll get two export options: one
for selected cells and one for the entire table. The latter option will also add the column
headers to the clipboard; the first one just copies the selected data. Selected cells don’t
have to be adjacent. By using the Ctrl key, you can, for instance, select only the address
ID and phone number and copy those columns to the clipboard. After that, you can
easily paste the data into a spreadsheet or other file for further exploration.

Validating and Comparing Data

Validation works in a similar fashion as the profiling task but adds some capabilities.
You can check for null values or do a value range check to find out whether entries in
a column fall between a lower and upper value bound. The most advanced feature is
the JavaScript evaluation, which lets you use any JavaScript expression for evaluating
data. The difference is the output: The validation task will display only the entries that
do not pass the tests with a count of the records. The DataCleaner roadmap includes
future plans to integrate the profile and validation tasks and offer a single integrated
interface for both tasks.

Data comparison enables you to compare data from different databases or schemas,
or compare data against a file. This task therefore can be used to check whether all
customers in the rental table also exist in the customer table and to perform similar
comparison tasks.

Using a Dictionary for Column Dependency Checks

DataCleaner does not provide an out-of-the-box solution to verify combinations of
columns or whether one dependent column contains an invalid entry based on the
information in another column. There is, however, a way to do these analyses by using a
dictionary combined with database views. A DataCleaner dictionary is a text file contain-
ing values that can be used to validate data in a database table. For example, you can
download the ISO country table, store the values in a text file, and use this text file as
a catalog to verify the entries in a country column. If you take this one step further, it’s
also possible to store multiple concatenated fields per row and create a view in the data-
base, which concatenates the columns to be validated in the same way. Now the view

154 Part II ■ ETL

can be profiled using the dictionary with the concatenated entries; each row that does
not correspond to the correct values in the text file will be recognized by DataCleaner.
As an alternative to using text files, it’s also possible to use a “real” database diction-
ary. This database dictionary needs to be added to the DataCleaner configuration file
as explained in the section “Adding Database Connections.”

Alternative Solutions

Very few open source alternatives exist for standalone or embedded data profiling. The
data modeling tool from SQLPower, which we introduce shortly, has some basic profil-
ing capabilities, and Talend offers a Data Profiler as well. If any of these tools work for
you, just use them. Another frequently used alternative for data profiling is creating
custom SQL scripts for data-profiling purposes. We would recommend this only if you
have very specialized requirements that are not provided out-of-the-box by DataCleaner.
Although it’s outside the scope of this book, it is possible to extend DataCleaner’s func-
tionality with your own customer profiling tasks, which gives you a faster, more reliable,
and more flexible solution than completely starting from scratch.

Text Profiling with Kettle

As stated before, Kettle doesn’t offer profiling capabilities similar to DataCleaner, with one
notable exception: text file profiling. If you profile a text file with DataCleaner by using
“Open file,” you’ll notice that all fields are of type Varchar. Another limitation is that
DataCleaner recognizes only commas, semicolons, and tabs as field delimiters, which
limits the value of the tool when working with text files. In this case, Kettle might be a
better alternative. When using the “Text file input” step, as shown earlier, the Get Fields
step does a pretty good job of recognizing the field types and lengths. It’s not a perfect solu-
tion, however; when a single field contains multiple separated integer values (for instance
21;33;56) or a time value in the form 21:34, Kettle sees this as an integer of length 2, not
a string of length 8 or 5. This is a known issue which should be resolved in Kettle 4.1.

CDC: Change Data Capture

The first step in an ETL process is the extraction of data from various source systems
and storing this data in staging tables. This seems like a trivial task and in the case of
initially loading a data warehouse it usually is, apart from challenges incurred from
data volumes and slow network connections. But after the initial load, you don’t want to
repeat the process of completely extracting all data again (which wouldn’t be of much use
anyway because you already have an almost complete set of data that only needs to be
refreshed to reflect the current status). All you’re interested in is what has changed since
the last data load, so you need to identify which records have been inserted, modified,
or even deleted. The process of identifying these changes and only retrieving records
that are different from what you already loaded in the data warehouse is called Change

Data Capture, or CDC.

 Chapter 6 ■ Data Extraction 155

NOTE Parts of this section were published earlier in Chapter 6 of Pentaho

Solutions.

Basically there are two main categories of CDC processes, intrusive and non-intrusive.
By intrusive, we mean that a CDC operation has a possible performance impact on
the system the data is retrieved from. It is fair to say that any operation that requires
executing SQL statements in one form or another is an intrusive technique. The bad
news is that three of the four ways to capture changed data are intrusive, leaving only
one non-intrusive option. The following sections offer descriptions of each solution
and identify their pros and cons.

Source Data–Based CDC

Source data-based CDC relies on the fact that there are attributes available in the source
system that enable the ETL process to make a selection of changed records. There are
two alternatives:

Direct read based on timestamps (date-time values): ■ At least one update time-
stamp is needed for this alternative but preferably two are created: an insert
timestamp (when was the record created) and an update timestamp (when was
the record last changed).

Using database sequences: ■ Most databases have some sort of auto-increment
option for numeric values in a table. When such a sequence number is used, it’s
easy to identify which records have been inserted since the last time you looked
at the table.

Both of these options require extra tables in the data warehouse to store the informa-
tion regarding the last time the data was loaded or the last retrieved sequence number.
A common practice is to create these parameter tables either in a separate schema or
in the staging area, but never in the central data warehouse and most certainly not in
one of the data marts. A timestamp or sequence-based solution is arguably the most
simple to implement and for this reason also one of the more common methods for
capturing change data. The penalty for this simplicity is the absence of a few essential
capabilities that can be found in more advanced options:

Distinction between inserts and updates: ■ Only when the source system contains
both an insert and an update timestamp can this difference be detected.

Deleted record detection: ■ This is not possible, unless the source system only
logically deletes a record, i.e., has an end or deleted date but is not physically
deleted from the table.

Multiple update detection: ■ When a record is updated multiple times during
the period between the previous and the current load date, these intermediate
updates get lost in the process.

Real-time capabilities: ■ Timestamp or sequence-based data extraction is always
a batch operation and therefore unsuitable for real-time data loads.

156 Part II ■ ETL

USING TIMESTAMPED CDC IN KETTLE: AN EXAMPLE

The sakila sample database used in Chapter 4 offers a good source for dem-

onstrating the use of timestamps to capture changed data because all tables

contain an update timestamp, and the Customer table even contains an insert

timestamp as well. For our purposes, the Customer table is best because it

can distinguish between inserts and updates. To use the timestamps, you

need to store the last load date somewhere in a Kettle property or a param-

eter table. For this simple example, you’ll just create a cdc_time table in the

sakila_dwh catalog that consists of two fields, a last_load timestamp and

a current_load timestamp. Initially, both the last_load and current_load

timestamps are set to a very early date-time value (the latter will be set to the

current time when we start loading).

First, create the table to hold the timestamps:

CREATE TABLE `cdc_time` (

 `last_load` datetime,

 `current_load` datetime)

Then set the default values:

insert into cdc_time values (‘1971-01-01 00:00:01’,’1971-01-01

00:00:01’)

The logic is as follows:

 1. When the load job starts, the value of the field current_load is set to

the actual time of the job start. To do this, use a Get System Info step

and create a field sysdate of type system date (fixed). Then, add

an Insert / Update step, create a hop between the Get System Info step

and the Insert / Update step. In the “Update fields” section, map the table

field current load to the stream field sysdate. Set Update to Y and

make sure the there’s a condition for the lookup section as well. Setting

current_load as the Table field and IS NOT NULL as the Comparator

will do the job.

 2. The query that retrieves data from the customer table needs to be

restricted by using the begin and end dates you just created. Logically this

would look like the following:

(create_date >= last_load AND create_date < current_load)

OR

(last_update >= last_load AND last_update < current_load).

In order for this code to use the values from the cdc_time table, you

need two table input steps: one to read the values from the cdc_time

table and one to select the customers. If you look at the restriction you’ll

notice that both last_load and current_load appear twice in the con-

dition. This means you need to retrieve them twice as well by using the

following query in the first input step:

SELECT

 last_load last1

 Chapter 6 ■ Data Extraction 157

USING TIMESTAMPED CDC IN KETTLE: AN EXAMPLE

, current_load cur1

, last_load last2

, current_load cur2

FROM cdc_time

In the next step, where the customers are selected, check the “Replace

variables in script?” box and select the previous input step in the

“Insert data from step” dropdown list (you need to create a hop first).

The SELECT statement can now be extended with the following WHERE

condition:

WHERE

(create_date >= ? AND create_date < ?)

OR

(last_update >= ? AND last_update < ?)

The question marks will be replaced sequentially by the values

returned from the first table input step, so the first question mark will get

the value of last1, the second one the value of cur1, and so on.

 3. A distinction between inserts and updates is easily made by checking

whether the create_date and last_update values are equal:

CASE

 WHEN create_date = last_update THEN ‘new’

 ELSE ‘changed’

END AS flagfield

 4. After the load is completed without errors, the value of the field

 current_load is copied to the field last_load. If an error occurs dur-

ing the load, the timestamps remain unchanged, enabling a reload with

the same timestamps for last and current load. This can easily be accom-

plished by using an “Execute SQL script” step with the following query:

update cdc_time set last_load = current_load

The reason for using two fields (especially the current_load field) is that

during a load new records can be inserted or altered. In order to avoid dirty

reads or deadlock situations, it’s best to set an upper limit for the create and

update timestamps.

Trigger-Based CDC

Database triggers can be used to fire actions when you use any data manipulation state-
ment such as INSERT, UPDATE, or DELETE. This means that triggers can also be used to
capture those changes and place these changed records in intermediate change tables in
the source systems to extract data from later, or to put the data directly into the staging
tables of the data warehouse environment. Because adding triggers to a database will
be prohibited in most cases (it requires modifications to the source database, which is
often not covered by service agreements or not permitted by database administrators)

158 Part II ■ ETL

and can severely slow down a transaction system, this solution, although functionally
appealing at first, is not implemented very often.

An alternative to using the triggers directly in the source system would be to set
up a replication solution where all changes to selected tables will be replicated to the
receiving tables at the data warehouse side. These replicated tables can then be extended
with the required triggers to support the CDC process. Although this solution seems
to involve a lot of overhead processing and requires extra storage space, it’s actually
quite efficient and non-intrusive since replication is based on reading changes from
the database log files. Replication is also a standard functionality of most database
management systems, including MySQL, PostgreSQL, and Ingres.

Trigger-based CDC is probably the most intrusive alternative described here but has
the advantage of detecting all data changes and enables near real time data loading. The
drawbacks are the need for a DBA (the source system is modified) and the database-
specific nature of the trigger statements.

Snapshot-Based CDC

When no timestamps are available and triggers or replication are not an option, the
last resort is to use snapshot tables, which can be compared for changes. A snapshot is
simply a full extract of a source table that is placed in the data warehouse staging area.
The next time data needs to be loaded, a second version (snapshot) of the same table
is placed next to the original one and the two versions compared for changes. Take,
for instance, a simple example of a table with two columns, ID and Color. Figure 6-25
shows two versions of this table, snapshot 1 and snapshot 2.

Snapshot_1 Snapshot_2

ID COLOR

1 Black

2 Green

3 Red

4 Blue

ID COLOR

1 Grey

2 Green

3 Blue

4 Yellow

Figure 6-25: Snapshot versions

There are several ways to extract the differences between those two versions. The first
is to use a full outer join on the key column ID and tag the result rows according to their
status (I for Insert, U for Update, D for Delete, and N for None) where the unchanged
rows are filtered in the outer query:

SELECT * FROM
(SELECT CASE
 WHEN t2.id IS NULL THEN ‘D’
 WHEN t1.id IS NULL THEN ‘I’

 Chapter 6 ■ Data Extraction 159

 WHEN t1.color <> t2.color THEN ‘U’
 ELSE ‘N’
 END AS flag
, CASE
 WHEN t2.id IS NULL THEN t1.id
 ELSE t2.id
 END AS id
, t2.color
FROM snapshot_1 t1
FULL OUTER JOIN snapshot_2 t2
ON t1.id = t2.id
) a
WHERE flag <> ‘N’

That is, of course, when the database supports full outer joins, which is not the case
with MySQL. If you need to build a similar construction with MySQL there are a few
options, such as the following:

SELECT ‘U’ AS flag, t2.id AS id, t2.color AS color

FROM snapshot_1 t1 INNER JOIN snapshot_2 t2 ON t1.id = t2.id

WHERE t1.color != t2.color

UNION ALL

SELECT ‘D’ AS flag, t1.id AS id, t1.color AS color

FROM snapshot_1 t1 LEFT JOIN snapshot_2 t2 ON t1.id = t2.id

WHERE t2.id is NULL

UNION ALL

SELECT ‘I’ AS flag, t2.id AS id, t2.color AS color

FROM snapshot_2 t2 LEFT JOIN snapshot_1 t1 ON t2.id = t1.id

WHERE t1.id IS NULL

In both cases the result set is the same, as shown in Figure 6-26.

Flag ID COLOR

U 1 Grey

D 3 NULL

I 5 Yellow

Figure 6-26: Snapshot compare result

Most ETL tools nowadays contain standard functionality to compare two tables
and flag the rows as I, U, and D accordingly, so you will most likely use these standard
functions instead of writing SQL. Kettle is no exception to this rule and contains the
“Merge rows” step. This step takes two sorted input sets and compares them on the
specified keys. The columns to be compared can be selected and an output flag field
name needs to be specified. To demonstrate this, let’s first extract the Customer table
from the Sakila database you created in Chapter 4, and then make a couple of changes

160 Part II ■ ETL

to the source table and create a snapshot-based CDC transformation using Kettle to
find the differences.

 1. The first step is to store a second version of the customer table, either in a sepa-
rate database (the sakila_dwh catalog from Chapter 4 might do just fine), or in
the Sakila database itself. In a real-life scenario, it’s highly unlikely that you’ll be
allowed to create additional tables in a source system and the data warehouse
is probably out as well, so a separate staging area like a sakila_stg database
would be best.

NOTE Don’t forget to enable Boolean support for the database connections

in this example; otherwise Kettle will create the field valid as a character

string with length 1. Boolean support is enabled by selecting the first option

in the Advanced tab of the Database Connection dialog box.

For this example, we used the sakila_dwh database you already created in
Chapter 4, where a customer_2 table is created and loaded with the original
customer data from Sakila.

 2. The next step is to make some alterations to the data, for instance change a last_
name, make a customer inactive, and insert an extra row. These alterations need
to be made in the source system, in this case the sakila database. To show that
Kettle is capable of detecting deletions as well, you can insert an extra row in the
staging table. This row won’t exist in the source system and thus a row deletion
is mimicked.

 3. Next you need to create the CDC transformation itself. Create two “Table input”
steps, one for sakila and one for sakila_dwh. Select all fields and make sure
to sort the data on the key field(s) in ascending order because the Merge Rows
step requires sorted input. After the two input steps are created, add a “Merge
rows (diff)” step and connect both inputs to this step. Open the Merge step and
select the reference and comparison origins, the name for the flag field (that will
contain the values unchanged, changed, new, and deleted) and the comparison
and match keys. Figure 6-27 shows what the step values should look like in this
case.

 4. You can now issue a Preview on the Merge Rows step to check whether the solu-
tion is working. Because all rows will be passed by this step, you’ll probably want
to filter out the unchanged rows by using a “Filter rows” step. With the condi-
tion flagfield = identical, you can send all unchanged rows to a dummy
output and only keep the new, changed, or deleted rows for further processing.
One way of doing this is to pass the data to a subsequent transformation in the
job by using a “Copy rows to result” step. Another way is to add a “Synchronize
after merge” step that automatically handles the inserts and updates based on
the flag field returned from the Merge Rows step. Figure 6-28 shows what the
Synchronize step looks like when used in this example.

 Chapter 6 ■ Data Extraction 161

Figure 6-27: Merge Rows settings

Figure 6-28: Kettle “Synchronize after merge” step

162 Part II ■ ETL

The completed transformation is displayed in Figure 6-29 and is also available from
the book’s companion site (sakila_custdiff.ktr).

Figure 6-29: Kettle snapshot CDC solution

The final proof that the solution works is shown in Figure 6-30, where a Preview is
executed for a CDC_Rows step (the name given to the “Copy rows to result” step).

Figure 6-30: CDC results Preview

As is shown in the preceding example, snapshot-based CDC can detect inserts,
updates, and deletes, which is an advantage over using timestamps, at the cost of extra
storage for the different snapshots. There can also be a severe performance issue when
the tables to be compared are extremely large. For this reason we added the SQL illus-
tration because for this kind of heavy lifting, the database engine is often better suited
than an engine-based ETL tool such as Kettle. Chapter 19 includes an example of CDC
detection for a Data Vault data model using Kettle.

Log-Based CDC

The most advanced and least intrusive form of change data capture is to use a log-based
solution. Every insert, update, and delete operation run in a database can be logged.
In cases using a MySQL database, the binary log has to be enabled explicitly in the
Administrator tool (Startup variables➪ Logfiles). From that moment on, all changes
can be read in near-real time from the database log and used for updating the data in
the data warehouse. The catch here is that this sounds simpler than it actually is. A
binary log file needs to be transformed first into an understandable form before the
entries can be read into a subsequent process.

 Chapter 6 ■ Data Extraction 163

The MySQL installation contains a special tool for this purpose, mysqlbinlog. This tool
can read the binary format and translate it into a somewhat human-readable format,
and can output the read results to a text file or directly into a database client (in case of
a restore operation). Mysqlbinlog has several other options, with the most important
one for our purposes being the fact that it can accept a start and/or end timestamp to
read only part of the log file. Each entry also has a sequence number that can be used as
an offset, so there are two ways to prevent duplicates or missing values when reading
from these files.

After the mysqlbinlog output is written to a text file, this file can be parsed and read,
for instance by a Kettle input step that reads the data and executes the statements on
the corresponding staging tables. For other databases there are similar solutions, and
some offer a complete CDC framework as part of their data warehouse solution.

The drawback of using a database-specific set of tools is obvious: it only works with a
single database. For cases where you need to use a log-based solution in a heterogeneous
environment, several commercial offerings such as Oracle GoldenGate and Attunity
Stream are available. A possible disadvantage of these offerings might be the price tag
attached to them. An interesting alternative, which is relatively new on the market,
is the open source Tungsten Replicator that offers advanced master-slave replication
options. Tungsten Replicator supports both statement- and row-based replication and
is thus a more advanced solution than can be accomplished with the standard binlog
reader. Future releases will also support Oracle and PostgreSQL databases, making it
a very compelling product. More information is available on the website at http://
www.continuent.com/community/tungsten-replicator.

Which CDC Alternative Should You Choose?

As you’ve seen in the previous sections, each of the described options for identifying and
selecting changed data has strengths and weaknesses. Some alternatives require adapta-
tions to the source database by a database administrator (DBA), some can support real-time
loading of data, and others support only a partial discovery of changes. Table 6-1 summa-
rizes these points to help you decide which option is most applicable in your situation.

Table 6-1: CDC Option Comparison

TIMESTAMP SNAPSHOT TRIGGERS LOG

Insert/update distinction? N Y Y Y

Multiple updates
detected?

N N Y Y

Deletes identified? N Y Y Y

Non intrusive? N N N Y

Real-time support? N N Y Y

DBA required? N N Y Y

DBMS independent? Y Y N N

164 Part II ■ ETL

Delivering Data

After getting changed data using one of the scenarios described, the data needs to be
stored somewhere for further processing. Kettle offers many ways to accomplish this;
one way was already used in the snapshot-based CDC example. The following list is a
selection of the most common options:

Use a table output step:■ The data can be stored in a separate staging table. The
advantage of this is that regular SQL operations can be used in subsequent steps
but at the cost of extra overhead and latency. Using a database table is not always
the fastest or most efficient solution.

Text file output:■ In many situations, this will be a preferred solution; data can be
written as fast as the disks can store it without the overhead incurred when using
a database, and the resulting file is portable to any other system as well.

XML output:■ Only a viable option if the data needs to be processed by an external
system that requires XML input; otherwise use one of the other solutions because
of the large overhead incurred when using an XML format.

Serialize to file:■ This type of output uses a special file format and must be used
in conjunction with the accompanying “De-serialize from file” step. It can offer
some speed advantages over regular flat files because Kettle doesn’t need to parse
the file again when it’s read, at the cost of being a purely proprietary format.

Copy rows to result:■ This will keep the data in memory to be pushed to a subse-
quent transformation that can read the data using a “Get rows from result” step.
Probably the fastest option available to push data from one transformation to the
next but limited by memory requirements for your data.

Summary

This chapter covered the extraction process from various source systems using Kettle.
The first section explained the four main options for retrieving source data:

File-based extraction using flat files and XML formatted files■

Database-based data extraction using parameterized “Table input” steps■

Web-based data extraction using Web service calls■

Streaming data extraction■

Special attention was given to extracting data from ERP and CRM systems, which
usually boils down to using a business data layer or API since accessing the database
directly is either prohibited or technically cumbersome. We showed how the new SAP
Input step can be used to retrieve data from the widely used SAP/R3 ERP system.

The next section covered data profiling, the important process of gaining an under-
standing of the structure and quality of the data that needs to be extracted. The section

 Chapter 6 ■ Data Extraction 165

introduced eObjects.org DataCleaner, an open source data-profiling tool that can be
used independently because the community edition of Kettle does not provide data-
profiling capabilities.

The last part of the chapter explained the different scenarios available for Change
Data Capture and showed how Kettle can be used for the following types of CDC:

Timestamp-based CDC■

Snapshot-based CDC■

Trigger-based CDC■

Log-based CDC■

167

C H A P T E R

7

Cleansing and Conforming

For many people, the core value of ETL is hidden behind the T, which denotes the
Transform capabilities. Many people are still not very comfortable with a single T for
all the work that takes place in this phase. Ralph Kimball has referred to ETL as ECCD,
short for Extract, Cleanse, Conform, and Deliver, and Matt Casters used the recursive
acronym Kettle as a name for the ETL tool where the double T stands for Transportation

and Transformation. In any case, this chapter addresses the four of the 34 subsystems
that cover cleansing and conforming data, or more specifically:

Subsystem 4: ■ Data-Cleansing

Subsystem 5: ■ Error Event Schema

Subsystem 6: ■ Audit Dimension Assembler

Subsystem 7: ■ Deduplication

The examples in this chapter are all based on the Sakila customer and address tables,
but here we have messed up the data a bit in order to make the cleansing steps actually
do something. We created duplicate records, misspelled some names, and added a few
extra rows with our own information. The script needed to make these modifications,
 sakilamods.sql, can be downloaded from the book’s companion site at www.wiley.com/
go/kettlesolutions, but you can, of course, make your own modifications as well. The
requirements for having the example transformations perform the designated task are
described for each example to make it easy to follow along.

A large part of this chapter is devoted to data validation because before you can
cleanse data, it must be clear which data must be cleansed and what conditions the
data must meet to be considered valid. This area is closely related to data profiling,

168 Part II ■ ETL

already covered in Chapter 6. Profiling is a first step to gain an understanding of the
quality and composition of the data. The results of the data-profiling initiative can then
be used to build data-cleansing and validation steps.

The importance of the topics covered in this chapter cannot be overstated; in 2003, The
Data Warehouse Institute (TDWI) estimated that data quality problems cost U.S. busi-
nesses $600 billion each year. Things have probably gotten even worse since then.

Data Cleansing

Cleansing data is one of the core reasons for using an ETL tool in the first place. On the
other hand, data cleansing is also a much debated function because it is questionable
whether the ETL process is the right place to cleanse your data, or at least whether the
data warehouse would be the right place to have cleansed data in. Before we move on
to what cleansing is all about, let’s briefly look at the main issue with data cleansing.

Cleansing data is a part of a much broader topic—data quality—which in turn is a part
of the encompassing subject of data governance. Arguably, data quality issues should be
resolved at the root, which are the transactional and reference data systems. If this data is
not clean in the source systems, cleaning it up before loading it into the data warehouse
would cause a disconnected state between the information in the source systems and
the data in the data warehouse. Data Vault advocates (see Chapter 19) take a different
stand in this discussion: Data should be loaded in the data warehouse “as is” and only be
cleansed (on request) when moved into a data mart. In this way, there’s always a factual
representation of how the data was at the time of loading and thus you have an historical
logbook of an organization’s data. The amount of work for an ETL developer is not reduced
by moving the cleansing process more downstream; there’s even a risk that there will be
more work because data marts are becoming disposable entities. Designing reusable data-
cleansing transformations is therefore an important part of the ETL design process.

Kettle offers a myriad of steps to help you with cleansing incoming data, whether it
is extracted from the data warehouse or directly from the source systems.

NOTE According to Data Quality guru Arkady Maydanchik there are five cat-

egories of data quality rules:

Attribute domain constraints: ■ Basic rules that restrict allowed values of

individual data attributes.

Relational integ ■ rity rules: Enforce identity and referential integrity of the

data and can usually be derived from relational data models.

Rules for historical data: ■ Include timeline constraints and value patterns

for time-dependent value stacks and event histories.

Rules for state-dependent objects: ■ Place constraint on the lifecycle of

objects described by so-called state-transition models.

General dependency rules: ■ Describe complex attribute relationships,

including constraints on redundant, derived, partially dependent, and

correlated attributes.

 Chapter 7 ■ Cleansing and Conforming 169

See Arkady Maydanchik, Data Quality Assessment, Technics Publications, LLC, 2007.
If we translate the five categories as defined by Maydanchik to the world of Kettle, the

first one is obviously the easiest to handle and will be covered in depth in the following
sections. Referential integrity rules can also easily be checked using the available lookup
steps, but identity integrity is a bit more complex than that. It means that each record
in the database points to a single, unique, real-world entity, and that no two records
point to the same entity such as a person or a product. We’ll look at how this rule can
be checked in the “Deduplicating Data” section of this chapter. Beyond the first two
basic categories it becomes more complex because there are no standard steps available
to accomplish these tasks. Still, it is entirely possible to handle those constraints as well
using Kettle. A state-dependent constraint for the sakila database, for instance, is that
there cannot be a return without a rental, and that each rental should (at some point in
time) have a corresponding return, or a payment for lost property. The allowed period
between rentals and returns is a related constraint that can easily be checked. When an
accumulating snapshot fact table is in place, this check will be pretty straightforward
because each date will usually be equal to or greater than the previous date. Think
about a shipment that cannot take place before an order is placed, and a delivery that
cannot be done prior to a shipment.

In general, enforcing or checking dependency rules in Kettle will require multiple
steps, as you’ll see when we cover address validation. An address consists of multiple
columns, where multiple validations are needed to check whether a specific address
exists in a city, whether the postal code matches the available options for city names,
and whether the city name exists in the list of allowable names for a state or country.

NOTE For more in-depth information about the different data quality

rules and how to assess data quality, we recommend the book Data Quality

Assessment, Technics Publications, LLC, 2007, by the already mentioned

Arkady Maydanchik. Another good resource for anything data quality–related

is the website www.dataqualitypro.com, which also contains a series of

articles that explain the data quality categories we introduced in this section.

Data-Cleansing Steps

There is not a single Data Cleanse step, but rather, there are many steps and other places
within a Kettle transformation where data can be cleansed. The data cleansing process
starts when extracting data: Many of the input steps contain basic facilities to read the
data in a specified format, especially when working with dates and numbers.

WARNING The “Table input” step lends itself perfectly to modified SQL to

clean up the data as much as possible before entering the rest of the process.

Be careful here, however, because this makes for very hard-to-maintain solu-

tions. It’s usually better to read the data “as is” and use Kettle steps to perform

the modifications.

170 Part II ■ ETL

There is another reason to avoid SQL modifications to the extracted data: It’s impos-
sible to audit data that has been pre-cleansed before it enters the Kettle transformation.
Most of the Kettle steps allow you to define an error stream or conditional processing
to redirect data that doesn’t satisfy certain requirements, as you will see in the “Error
Handling” section of this chapter.

The steps in the Transform folder offer many different options for cleansing data. A
powerful step and feature-rich example is the Calculator step, which you used in some
of the previous chapters. It’s nearly impossible to list all the available options, simply
because the list of calculations keeps growing at a steady pace. Some of the more useful
calculations for cleansing data are the following:

ISO8601 week and year numbers:■ Most countries outside the United States use
a different week numbering based on the ISO8601 standard. Not all databases
are capable of deriving the correct week and year number from a date so this is
a very helpful calculation.

Casing calculations:■ The First letter, UpperCase, and LowerCase calculations
allow for uniformity in string casing.

Return/remove digits:■ These can be used to split strings containing both charac-
ters and digits in their respective text and numeric parts. A nice example is the
fine-grained Dutch postal code, which consists of four digits and two characters
(for example, 1234 AB).

Another step in the list that deserves a special mention is the “Replace in string” step.
This seems like a very simple step to replace parts of a string with some other value, but
the option to use regular expressions here makes it an extremely powerful solution for
many cases. The standard Kettle examples contain a Replace in string transformation
that illustrates all the available options in this step. Other useful Transform steps are the
ones for splitting fields or fields to rows based on a separator value, a “String cut (sub-
string)” step, and the Value Mapper step. This last one is a simple step to replace certain
values of the input data with other, conformed values. For instance, the load_dim_staff
transformation in Chapter 4 uses a Value Mapper step to replace the source values Y and
N with Yes and No respectively.

With the steps described, you can probably tackle a fair amount of the data-cleansing
tasks that need to be performed. There will, however, always be the tough cases that
require more programming power. We cover these scripting steps later in this chapter.
There are also several related steps that can be used for data-cleansing purposes, such
as the special validation steps to verify a credit card number or e-mail address. We look
at those as well in the following sections.

One lookup step needs a special mention here, however, because it doesn’t return a
True/False decision based on some rule, but is able to use “fuzzy” matching algorithms.
It is the “Fuzzy match” step that is being covered in-depth in the “Deduplicating Data”
section. We mention it here because it contains a collection of string-matching algo-
rithms. Those algorithms are also available in the Calculator step;, the related sidebar
explains the purpose of each of the algorithms and the differences among them.

 Chapter 7 ■ Cleansing and Conforming 171

STRING MATCHING ALGORITHMS IN KETTLE

Kettle 4 contains two places where you can find similar algorithms: the
Calculator step and the “Fuzzy match” step. The list of available algorithms is
almost similar, but the way they work is different; the Calculator step can com-
pare two fields in the same row, but the “Fuzzy match” step can use a lookup
table to look at all the records. Before starting to use the steps and algorithms,
it’s probably a good idea to understand what they actually do. When you open
the “Fuzzy match” step and click on the Algorithm drop-down list, you’ll see a
long list of possible choices with exotic names such as Damerau-Levenshtein,
Jaro Winkler, and Double Metaphone. All these algorithms have one thing in
common: They are aimed at matching strings. The way they do that, however,
varies, which makes some algorithms more suited for, for example, deduplica-
tion efforts. The following list briefly explains the various options.

Levenshtein and Damerau-Levenshtein: ■ Calculates the distance between
two strings by looking at how many edit steps are needed to get from one
string to another. The former only looks at inserts, deletes, and replacements,
while the latter adds transposition as well. The score indicates the minimum
number of changes needed; for instance, the difference between CASTERS
and CASTRO is only 2. (Step 1: Delete the E; Step 2: Replace S with O.)

Needleman-Wunsch: ■ Also an algorithm used to calculate the similarity
of two sequences, and mainly used in bioinformatics. The algorithm cal-
culates a gap penalty; hence it will give a score of –2 for the CASTERS to
CASTRO example above.

Jaro and Jaro-Winkler ■ : Calculates a similarity index between two strings.
The result is a fraction between 0 (no similarity) and 1 (identical match).
When calculating the Levenshtein distance between CASTERS and POOH
you’ll get 7, while the Jaro and Jaro-Winkler distance will be 0 because
there is no similarity between the two strings. Levenshtein finds a distance
because you can always get from one to the other by replacing, inserting,
and deleting characters.

Pair letters similarity: ■ Only available in the “Fuzzy match” step, this
algorithm chops both strings in pairs and compares the sets of pairs. In
this case, CASTERS and CASTRO will be transformed into the following
two arrays with the following values: {CA, AS, ST, TE, ER, RS} and
{CA, AS, ST, TR, RO}. Now the similarity is calculated by dividing the
number of common pairs (multiplied by two) by the sum of the pairs from
both strings. In this example there are three common pairs (CA, AS, ST)
and eleven pairs in total, resulting in a similarity score of (2*3)/11 = 0.545
(which is, in fact, pretty good).

Metaphone, Double Metaphone, Soundex, and RefinedSoundEx: ■ These
algorithms all try to match strings based on how they would ”sound” and
are also called phonetic algorithms. The weakness of all these phonetic
algorithms is that they are based on the English language and won’t be of
much use in a French, Spanish, or Dutch setting.

Continued

172 Part II ■ ETL

STRING MATCHING ALGORITHMS IN KETTLE (continued)

The $64,000 question is, of course, which one to pick, and the answer must

be that it all depends on what problem you need to solve. For information

retrieval (for instance, retrieving all book titles on Amazon that include the

word Pentaho with a relevance score attached to them), a pair letter similarity

is very useful, but for the purpose of finding matching duplicates possibly con-

taining misspellings, Jaro-Winkler is an excellent choice. Caution is needed,

however; Jos van Dongen and Davidson have a higher Jaro-Winkler similar-

ity score than Jos van Dongen and Dongen, J van, but no human being

would pick the former over the latter as a possible duplicate candidate.

Using Reference Tables

In many cases, especially when correcting address information, you will need to access
external master or reference data. Data entry applications might already use this kind
of data, for instance to display a conformed country or state list. In other cases, it’s not
so straightforward. Suppose you have a customer complaints system that only has
a free form text field for entering the product information. In order to clean this up,
some intelligent text preprocessing is needed to match the entered product names to
the master tables, which contain the complete product reference data. The most sought
after external reference data is correct address information. If this data is available for
free, you’re lucky; typically a costly subscription is needed to get a monthly or quarterly
update from the various companies that maintain and sell this information.

TIP The site www.geonames.org contains a broad collection of web services

for country, city, and postal code lookup and verification. For the United States,

it even contains address-level information.

Conforming Data Using Lookup Tables

There are a couple of ways to work with reference data. In its most simple form, it’s a
matter of doing a lookup based on an incoming field and flagging the field as errone-
ous when no direct match is found. This has limited value as it will indicate only that
the data doesn’t conform to a reference value. In order to increase the success rate of
the lookup, it is better to first try to conform the input stream value as much as pos-
sible before the lookup is executed by using any of the data-cleansing steps described
earlier.

As an example, let’s look at city and postal code lookup. Almost every country uses
a postal code, which links to a region, city or, in case of the Netherlands, a specific part
of a street. Dutch postal codes are the most fine-grained in the world, which makes
it possible to uniquely identify an address by knowing the postal code and the house
number. Many times, however, people make mistakes when entering a postal code so in
order to avoid getting incorrect data only the digits from a postal code can be extracted

 Chapter 7 ■ Cleansing and Conforming 173

and used to look up the correct city. The following example shows how a combination of
calculation and lookup steps can help you determine whether a combination of postal
code and city is correct.

First, you need some input data to cleanse; in this example, you use a Data Grid step
and add some (almost) dummy data, as depicted in Figure 7-1.

Figure 7-1: Source data to cleanse

The first cleansing step is to get only the digits from the field PostalCode using a
Calculator step. The calculation used is, of course, “Return only digits from string A.”
The new field should get a meaningful name like PC4. Then you’ll need a reference
table. Because this is still a small example using dummy data, you can again use a Data
Grid step to mimic a real reference table. The data is displayed in Figure 7-2.

Figure 7-2: Reference data

To retrieve the city name from the lookup table using the four-digit PC4 field, you
can use a “Stream lookup” step. Note that in this case, each lookup will succeed, but in
real-life scenarios, it is very well possible that some of the codes cannot be found in the
reference table. In order to be able to handle those records later in the process, it is advis-
able to use an easily recognizable default value that is filled in when the lookup fails.
Figure 7-3 shows the completed Stream lookup step with the value ***unknown***
for the default field.

174 Part II ■ ETL

Figure 7-3: Stream lookup

The reason we’re using something with a prefix *** and suffix *** is twofold. First
of all, it makes a visual inspection of the data easier because the exceptions clearly stand
out. Second, none of the string-matching algorithms will find any similarity between
the source city value and the lookup value. This second reason allows you to further
process the data and look for typing errors or complete mistakes. To illustrate what we
mean by that, add a second Calculator step and use City and RefCity as Field A and Field
B, respectively. The new field can be named something like cityscore because you’ll be
using a Jaro-Winkler similarity match algorithm. When you now run a Preview on the
transformation you just created, it should output the results displayed in Figure 7-4.

Figure 7-4: Preview source and reference data

In the first record, you’ll notice a very high similarity score between the source and
reference city name, so someone probably made a data entry error. The second row is a
perfect match (score 1) and can be safely processed further as well. The third row, however,
causes a problem: The city names are very different, as shown by the low similarity score
(anything below 0.8 could be considered at least suspicious). The problem is that you cannot

 Chapter 7 ■ Cleansing and Conforming 175

tell from this data where the mistake was made: Is the postal code correctly entered but the
city name is wrong? Or did someone enter the correct city name but make a mistake when
entering the postal code? In order to verify this, a second, reversed validation is necessary.
By “reversed” we mean that the lookup to the reference table is now based on city, and the
returned postal code can be compared to the reference table. If it then turns out that the city
names match and the postal code is very similar (for example, 5556 in this example), it is
safe to conclude that someone made an error when typing in the postal code.

Of course many modern applications will automatically check whether a combination
of address, postal code, and city is correct when the data is entered. A surprisingly large
number of organizations, however, use these validations only for their internal applications,
while on the other hand, a customer-facing website allows any kind of data inconsistencies,
which makes it very hard to consolidate the data from these different sources.

Conforming Data Using Reference Tables

A special class of reference tables is the data conformation master. A well-known example
is the coding used for gender. Some systems will use the letters M, F, and U for Male,
Female, and Unknown; other systems will allow a NULL value for unknown gender;
another system might have the full values for Male and Female; and things like 0 and
1, or 0 (unknown), 1 (male), and 2 (female) occur as well. To complicate things further,
there are also applications that have a separate value for child (C) and even might use F
for Father and M for Mother. Variations and combinations are also possible, so this list
can go on and on. When the data from all these different systems must be consolidated,
a translation needs to be made from all these various encodings to one single coding
scheme. A single master table to support this is preferred over different lookup tables
per system because there will probably be other conversions needed as well, and a
single lookup table is easier to maintain.

Two basic requirements must be fulfilled:

Every possible value from the source system needs a translation.■

The translation must lead to a single set of values.■

Based on the gender example explained earlier, a master table could look like the
one displayed in Table 7-1. The fields ref_code and ref_name are the conformed return
values you want to obtain, src_sytem is the source system where the data is read from,
and src_code contains the possible values that can occur in the input stream.

Table 7-1: Gender Code Reference Table

ID REF_CODE REF_NAME SRC_SYSTEM SRC_CODE

1 M Male Sales 1

2 F Female Sales 2

3 M Male Web male

Continued

176 Part II ■ ETL

ID REF_CODE REF_NAME SRC_SYSTEM SRC_CODE

4 F Female Web female

5 M Male CRM F

6 F Female CRM M

7 U Unknown CRM C

Note that this is only an example and the data is displayed in a denormalized fash-
ion for easy reference. It does, however, adhere to the requirements because it leads to
only three values in the final destination system: M, F, and U. Now it is fairly easy to
translate incoming values from different source systems to a single value for the data
warehouse.

To show how this works, we created the preceding table in the same sakila_dwh
catalog we already used in previous chapters.

NOTE Because the sakila database doesn’t contain a code for gender, we used

one of the customer data files obtained from www.fakenamegenerator.com for

Chapter 6 as the source for the following examples.

Conforming data like this can be set up as a separate reusable transformation; the
only thing needed to make it generic is to have the source_system value passed as a
variable to the mapping that takes care of the lookup. There are a couple of ways to go
about this; you can first build the complete transformation including the gender lookup
step, take the lookup part out, and add the required mappings, or you can directly start
by building the reusable step first before building the outer transformation that will
use the mapping. Either way, there is one thing you’ll find out soon enough, and that is
that you can’t just use a regular database lookup step here if you chose to pass a vari-
able. The “Database lookup” step only allows filtering based on input row values, and
because the source system name is not in one of the columns, you first need to add this
to the input stream as well. With an “Add constant” step this isn’t much of a problem, but
adding this value as a constant to the transformation that calls the mapping somehow
this doesn’t feel right. Let’s have a look at what will happen then (see Figure 7-5).

We’ve added an extra value for every row that’s being transformed, just to be able
to set a filter condition. Besides being an inefficient solution to the problem, the lookup
table is also cached completely while only a small part of the table is needed. This is
not a big problem with the few rows in this example, but it could be an issue with more
voluminous lookup tables.

A better solution is to use a variable that can be used to filter the data, in combi-
nation with a table input step and a stream lookup. Figure 7-6 shows what the main
transformation looks like.

Table 7-1 (continued)

 Chapter 7 ■ Cleansing and Conforming 177

Figure 7-5: System name as constant

Figure 7-6: Passing a variable

First, a variable is defined, which you can give a value to in the Parameters tab of the
mapping step. In this example, the value Web is passed to the genderlookup transfor-
mation. Figure 7-7 in turn shows this reusable transformation that picks up the variable
in the “Table input” step.

178 Part II ■ ETL

Figure 7-7: Using the passed variable

The stream lookup in this transformation is pretty straightforward; just add the
src_code (input) = src_code (lookup table) condition and specify the return
field. Please note that a default value is mandatory here to be able to handle NULL and
unknown values. The completed “Stream lookup” step is displayed in Figure 7-8.

Figure 7-8: Generic “Stream lookup”

 Chapter 7 ■ Cleansing and Conforming 179

NOTE The source data can contain NULL values, but NULL isn’t a real value

in a database. A comparison like NULL = NULL will therefore always fail. This

is the reason why NULL is not listed as a separate value in the lookup table

and why a default value in the lookup steps is mandatory.

Data Validation

In many situations, data must adhere to certain rules. We’ve already covered working
with reference tables as an example of this, where the rule is, of course: “value must be
present in reference table.” This is an easy form of data validation because the possible
values that can occur are known beforehand. Most data validation rules are, however,
a bit more complex than that. Consider the following examples:

E-mail addresses must be in a valid format.■

Input values must be in upper/lowercase.■

Dates must be in the format ■ dd-mm-yyyy.

Phone numbers must comply with the format ■ xxxx-xxxx-xxxx.

Amounts cannot exceed the value ■ X.

Subscribers must be at least 18 years old.■

IBAN (International Bank Account Number) must be valid.■

This list can easily be extended with hundreds of other examples but the idea behind
data validation is probably clear by now: Check whether the data conforms to predefined
(business) rules and flag or reject any record that doesn’t meet these requirements. Note,
however, that these examples are all part of the domain attribute constraints category. The
workhorse in Kettle that’s capable of handling all these validations is the Data Validator
step. When this step is added to the canvas and opened for the first time, it is completely
empty, but as soon as the first validation rule is added by clicking the “New validation”
button, you might be overwhelmed by all the different options that are available. It’s
not that complicated, however; the different options are a result of being able to handle
various data types, so not all fields make sense in all cases. Before putting the Validator
step in action, let’s have a look at some of the key characteristics of this step.

Apply multiple constraints to a single column:■ Some columns might require
multiple checks; there is no restriction in the number of validations that can be
applied to the same column.

Validate data type:■ Especially valuable when text file inputs are used. Conversion
masks for dates and numbers make it easy to check for invalid entries.

Concatenate errors:■ Ability to group all found errors on a row into a single,
character-separated field.

Parameterize values:■ Almost all constraints can be parameterized allowing for
one central rule base, which can be maintained outside the ETL tool. Changes to
the rule base will then be automatically propagated to the validation steps.

180 Part II ■ ETL

Regular expression matching:■ Regexes enable very flexible and powerful match-
ing structures and allow for any pattern to be matched, not only the available
default options such as starts with or ends with.

Lookup values:■ Allowed values can also be read from another step; using mul-
tiple steps for multiple validations in a single validation step is also allowed.

The validator itself works much like a highly configurable filter, comparable to the Filter
Rows step. All the data that satisfies the various validation rules is sent to the main output
stream; all the data that doesn’t is reverted to the error stream. Unlike the “Filter rows”
step, a secondary output is not required. Nevertheless, we highly recommend using one
because only filtering out incorrect data without at least storing these rows somewhere
for later reference destroys valuable insights such as why exactly the validation failed or
how many rows were rejected.

Applying Validation Rules

To explain what the validation step can do, we’ve created a small sample set of data
using a Data Grid step, which is displayed in Figure 7-9.

Figure 7-9: Data to validate

This data has to comply with the following rules:

None of the fields may contain a NULL value.■

Dates cannot be before January 1, 2000.■

Names outside the official names list are not allowed.■

Items must be between 1 and 10.■

Price per item cannot exceed 1000.■

The last validation is a trick question actually because it requires a calculation, which
is one of the things that the Validator step cannot do directly. There is no option to add
on-the-fly calculations or derived fields and validate the outcome of these, so the only
way to accommodate for this is to prepare the data for validation prior to pushing it

 Chapter 7 ■ Cleansing and Conforming 181

into the validation. Figure 7-10 shows the transformation including the amount/items
calculation, the allowed product list, and the valid and rejected row output streams.

Figure 7-10: Data validation transform

You can now start working on the required validation rules. The first one (no NULL
values) already forces you to add a validation for every field in the input. As you do
this, you’ll notice that the “Null allowed?” checkbox in the Data section is checked by
default and needs to be unchecked to enforce the no NULL constraint. The second rule
could be added to the already existing validation for the date field, but this will limit
the error analysis options later. It is better to create separate validation options for every
data error that needs to be trapped in order to process the erroneous data correctly later.
After creating separate validations for trapping NULL values and the other validations,
the screen will now look like the one displayed in Figure 7-11.

Figure 7-11: Date rule data validation

182 Part II ■ ETL

Figure 7-11 shows a couple of noteworthy items. First, on the left side, all the created
validations are visible. The details of the selected validation rule are displayed on the
right.

WARNING For date validations, it’s important to specify not only the data

type, but also the conversion mask (the date format). If this format is not speci-

fied, the default system date format will be used to read the dates. If your system

date format is yyyy/mm/dd but the input date is of the format dd-MM-yyyy,

Kettle will throw an error.

The second constraint, stating that dates must be at least January 1, 2000, is now
correctly enforced. The third one looks pretty straightforward; just mark the “Read
allowed values from another step?” checkbox and select ProductList as the step with
Product as the field to read from. In order to have Kettle handle the ProductList as a data
reference, the hop between ProductList and the validation needs to be created using the
mouse over menu of the validation step. If you move your mouse over the Data Validator
step and click on the left (input) icon, and then move the mouse to the ProductList
step and click on that, a list is displayed with an optional reference data for
 validation <validation_name> entry for all the validations. This is where the
option for the validation prod_val must be selected. Kettle will now create a special
kind of hop that can be recognized by the circled “i” information symbol on the hop,
as you can see in Figure 7-10.

The fourth rule, items must be between 1 and 10, is an easy one, too: Enter 1 as mini-
mum and 10 as maximum value and you’re done. The last rule is a no-brainer as well and
only requires a maximum value of 1,000 to be entered. To check whether the validation
works, you can now run a preview on both the ValidRows and ErrorRows Dummy
steps, as shown in Figure 7-12.

Figure 7-12: Data validation results

Data validation can also be done on the metadata or property level, not on the data
itself. For instance, think about the date a file was created or modified, and a rule that
specifies that if there’s a file older than 10 days the transformation should abort. In
order to build such a transformation, let’s consider one of the hidden features of Kettle,
namely the “Get file names” step. This step does a lot more than just retrieve file names
for processing. If you place a “Get file names” step on the canvas, click on the right

 Chapter 7 ■ Cleansing and Conforming 183

mouse button, and select “Show output fields,” you’ll notice that all the file attributes
are displayed. One of those attributes is the lastmodifiedtime field, which can be
used to calculate the maximum age of all the files in a folder. How this is done exactly
is described in the “Scripting” section at the end of this chapter.

NOTE The lastmodifiedtime field only returns usable data if the underly-

ing file system supports tracking this time.

Validating Dependency Constraints

There are two forms of dependency constraints, very similar to the dependency profiles
you’d run as part of a data profiling effort. The first form is the dependency between
two or more columns of the same table, also known as intra-table dependencies. The
second form of dependencies occurs when one or more columns in a table have a depen-
dency on columns in other tables, also known as inter-table dependencies. We already
showed several examples of this because it is basically a lookup validation problem
and not very hard to do with the various steps that Kettle offers for this. Intra-table
dependencies are a bit trickier because they usually require extra preparation steps in
a transformation.

The deduplication section later in this chapter will show examples of address valida-
tion, which is actually a case where inter-table and intra-table dependencies coincide,
at least when external address reference tables are being used. Another challenging
example of intra-table dependencies is the one between name and gender; if the data
contains both first name and gender, it is potentially possible to validate the gender
based on the name, and vice versa. This can never be fool proof, however, because many
names can be used for both men and women.

Error Handling

The purpose of error handling is obvious: You want your ETL jobs and transformations
to gracefully handle any errors that may occur during processing. There are different
classes of errors, however:

Process errors:■ These occur whenever the process cannot continue because of
technical reasons. A file might not be available, a server could be switched off
(or crashes during a job), or a database password might have been changed
without informing the ETL team. And no, this last example isn’t fictitious,
unfortunately.

Data (validation) errors:■ Some of the data doesn’t pass validation steps. Depending
on the impact of the error, the transformation process could still complete, which
isn’t the case with a process error.

184 Part II ■ ETL

Filter errors:■ These are not actually errors, but a “Filter rows” step requires two
output steps: one for the rows that pass the filter, and one for the rows that don’t.
In many cases, it suffices to use a Dummy step for the latter category

Generic step errors:■ Most of the data transformation and validation steps avail-
able in Kettle allow you to define error handling to redirect any rows that cannot
be handled to a separate output step or to trigger another action such as sending
an e-mail to an operator.

The following sections will cover various examples of the described error classes.

Handling Process Errors

Process errors are, at first sight, the most severe of the error classes described in the
section introduction because they break the data transformation process entirely. This
doesn’t mean that there are no other errors that might turn out to be even more serious.
An ETL team’s worst nightmare is probably the unspotted error: a process that runs
flawlessly for several months and then it turns out that the data warehouse data is out
of sync with the source data. Early cross-validation of, for instance, record counts and
column totals can prevent this from happening; that’s why it’s so important to use
these techniques.

In Chapter 4, you used process error handling in the load_rentals job. Each trans-
formation in this job had an error hop pointing to a Mail step, but inside the transforma-
tions there’s nothing specifically that would cause a transformation failure that would
trigger the error. How does this work then? It’s actually rather simple. When a trans-
formation runs as designed and all the steps complete successfully, the transformation
returns an implicit “Success” signal. If anything goes wrong inside a transformation that
causes an error, an implicit “Failure” signal is returned. You’ll get this out-of-the-box
without any special settings or configuration; it’s the way Kettle has been designed to
work. Figure 7-15 shows an example of a job with multiple transformations where the
Success and Failure notifications are easily recognizable.

The execution of the job can also be followed in a visual way; successfully completed
parts of a job are identified with a green checkmark, running tasks have a blue dual-
arrow indicator, and failures are indicated with a red stop sign. Figure 7-13 shows what a
running job looks like, while Figure 7-14 displays the screen after an error has occurred.
Note that there are two locations where the visual indicators are displayed. The success/
fail indicators on the hops are always visible, while the indicators for a started job will
be placed on the top right corner of the steps that are executed.

Although the job shown in Figure 7-14 might look like a failed job, this isn’t actually
the case which might be somewhat surprising. The job itself completed successfully,
as is clearly visualized in the job metrics displayed in Figure 7-15.

Figure 7-13: A running job

 Chapter 7 ■ Cleansing and Conforming 185

Figure 7-14: A failed job

Figure 7-15: Failed job metrics

Only when the Mail Failure step fails does the job itself return a failed result. What
this tells you is that the last executed part of the job determines whether it succeeds
or fails. In this case, the Mail step is the last one and if that succeeds, the job returns
a successful status. If this weren’t the main job but one of the subprocesses, it would
look like everything was all right at first glance. To make it clear that this job failed,
it’s better to have it return an explicit error after sending the error mail message. The
“Abort job” utility does just that and can simply be added after the Mail Failure step
in the job, as shown in Figure 7-16.

Figure 7-16: Forcing a Failure return

186 Part II ■ ETL

The important thing to remember here is to use an unconditional hop from the Mail
Failure to the “Abort job” step because it’s always possible that the mail step itself fails.
In this particular case, you would still get the correct outcome of a failed job but that
doesn’t have to be the case in other circumstances.

Transformation Errors

Jobs execute their constituting parts in a sequential order so it’s easy to abort a job at a
specific location when an error occurs. That’s not the case with transformations because
all the steps are started simultaneously. Suppose you need a transformation to abort
when a certain condition in the data is not met—consider what this would look like.
Figure 7-17 shows a solution most novice Kettle users would create.

Figure 7-17: Forcing a transformation failure

If the source data volume of the transformation in Figure 7-17 is small enough or the
condition is met in one of the first rows, this would actually (almost) work because the
output file will be created as soon as the transformation starts. Given enough records
in the data source, however, chances are that a considerable number of records will
already have been written to the output file before the Abort step kicks in. In these cases,
where some condition must be met before the data can be processed, the transformation
shouldn’t write any data at all. The same applies to validations: if meeting all required
validations is mandatory, two transformations need to be created and combined in a
job, as shown in Figure 7-18.

Figure 7-18: Aborting a job

 Chapter 7 ■ Cleansing and Conforming 187

The job in Figure 7-18 will do two things: First the validation transformation (dis-
played in the right lower corner) is started, and only after it returns a success indicator
does the job continue. If the transformation fails, the job is aborted without data being
transformed at all. Similar checks could be created for the availability of a server, file,
database, table, or column using one of the Conditions steps in a job.

Handling Data (Validation) Errors

So far, we’ve only covered the use of the Data Validator step as an enhanced type of
filter, but it can do a lot more than that. This step can also tell you the exact reasons for
rejecting a certain row, enabling you to take appropriate action. First, let’s explain the
first two checkboxes of the Data Validator step (refer back to Figure 7-11):

Report all errors, not only the first:■ It is possible that there are multiple valida-
tions that fail for a record. If this box is checked, Kettle will perform all validations
and output all errors that were found.

Output one row, concatenate errors with separator:■ When this option is selected,
only one row is written to the error stream with all errors in a single field, much
like a group_concat function in MySQL would work. If the “Report all errors”
option is checked and this is not, every failed validation will result in a separate
error row.

The next two options to note are the “Error code” and “Error description” fields as
these values will determine, for each of the validation rules, how the error is reported.
If you need to process the data further after a failed validation, using a conformed set
of error codes will help in executing the right cleansing transforms.

Before error handling actually works, you need to enable it. Defining the error codes
and defining an error handling hop doesn’t do much, other than passing the error rows
to a separate step. In order to add the error codes and descriptions to these rows, you
need to right-click on the Data Validator step and select Define Error Handling. This
opens the “Step error handling settings” panel, as shown in Figure 7-19.

Figure 7-19: Define error handling

188 Part II ■ ETL

In this screen, you can instruct Kettle as to how errors should be handled. Some of the
entries here have a close relationship to the error settings in the Validate Data step:

Nr of errors fieldname:■ The name of the error row column that will store the num-
ber of errors in that particular row. If the option “Output one row” is unchecked,
this field will always contain 1.

Error descriptions fieldname:■ The name of the field that will contain the descrip-
tions as entered in the “Error description” field of the validation step.

Error fields fieldname:■ Displays the name of the field that caused the error.

Error codes fieldname:■ Displays the code that was entered in the “Error code”
field of the validation step.

Max nr errors allowed:■ If this value is filled in, the transformation will throw an
exception (failure code) when the number of errors exceeds this threshold.

Max % errors allowed:■ Similar to the previous entry but then with a relative
instead of an absolute value.

Min nr of rows to read before doing % evaluation:■ Holds off the % calculation
until a certain number of rows has been read. If this value is omitted and the max
% is set at 10, Kettle will stop the transformation if there’s an error in the first
nine rows.

TIP Here are a couple of tips for handling validation errors:

If you don’t explicitly specify an error code and description in the valida- ■

tions, Kettle will create one for you. Codes are in the form KV### where

is a number. Although a text description like During validation

of field ‘items’ we found that its value is null in row

<[13-05-2010], [Octopus], [null], [10.0], [null]> when

this is not allowed. is very descriptive, you might want to specify

your own descriptions for brevity and clarity.

It is tempting to use as many checks as possible in a single validation, ■

but it’s not always clear what caused the error if you have multiple

checks. A best practice here is to use multiple validations per field, for

instance one that checks for NULL values and one that checks whether

the values are within a certain range.

Armed with this knowledge, you can now start to create data cleansing flows to
handle the data that didn’t pass the validation. First, let’s look at the result of the valida-
tion so far. The results of the error output stream are displayed in Figure 7-20.

As you can see, there seems to be a lot wrong with this data. Look at the bottom two
rows: Both items and itemPrice (a derived value) have a NULL value and this is cor-
rectly listed in the error output. In order to get this result, the NULL validations were
added separately, while the “Null allowed” checkbox was checked for both existing value
validations. If you don’t follow this best practice and try to validate this data using just
a single validation you’ll get the results in Figure 7-21, which are a lot more confusing.

 Chapter 7 ■ Cleansing and Conforming 189

Figure 7-20: Validation errors

Figure 7-21: Confusing error descriptions

Figure 7-20 also illustrates why unique and brief error codes are such a good idea:
They make it very easy to split the data for further processing using a Switch / Case
step. One word of caution here: Because we created error rows for every possible error
condition, the error stream now contains duplicate entries. The following example
provides one possible method of correcting the date and items field and merging the
result back into the main output stream. For practical reasons we’ll ignore the other
errors for this row here.

A Switch / Case step can be added to the transformation to send the rows to differ-
ent steps according to their error code. As this step is never an end point, subsequent
steps must be created for handling the various codes. Remember that a Switch / Case
step can also have multiple entries send the rows to the same output step. The rows
with error codes for items and item price (ITM and PR, respectively) can therefore be
directed to the same step. Validating data and making corrections to it in the same
transformation like this are entirely possible, of course, as shown in the example in
Figure 7-22.

The transformation in Figure 7-22 shows how the output of a validation can be
directed to a Switch / Case step, which in turn redirects the rows to other steps based
on the error code of the row. After the corrections to the adate and items field have
been made, the rows are merged with the rows that were valid in the first place.

190 Part II ■ ETL

Figure 7-22: Validation and correction

One thing to be aware of is that a Switch / Case step only works based on a list of
fixed values or parts of a string when the Use string contains comparison option is
checked. In programming languages or SQL, a statement like CASE WHEN somevalue <
5000 THEN ‘Pass’ ELSE ‘Fail’ is fairly common, but the Kettle Switch / Case step
cannot be used in this way. If you want this step to handle a case statement like the one in
the previous sentence, you need to first translate this formula into the corresponding fixed
values and add them to the stream. To do this with numeric values, you use the “Number
ranges” step, which makes this a very straightforward task. Figure 7-23 shows an example
transform where the aforementioned case statement is translated into a Kettle solution.

Figure 7-23: Preparing case statements

 Chapter 7 ■ Cleansing and Conforming 191

Auditing Data and Process Quality

Auditing the quality of the data that is transformed regularly is, in fact, the third step
in a data quality improvement initiative. First there’s profiling, then there’s validation
and error handling, and when these results are stored in separate audit or log tables,
this information can then be used to report on and analyze. The final step, which we
won’t cover here, is the correction of the data that takes place based on the findings of
the validation and auditing activities. Figure 7-24 shows a Data Quality Lifecycle, which
makes it clear that this is a never-ending process.

Pro�le Validate

Correct Audit

Figure 7-24: Data quality lifecycle

There’s a second kind of auditing as well: the process itself. If you read Chapter 4,
“Cleaning and Conforming” in Ralph Kimball’s The Data Warehouse ETL Toolkit, there
are two cleaning deliverables defined: an error event table and an audit dimension. The
former is modeled as a star schema with a date dimension and a snowflaked “screen”
dimension. Translated into Kettle terminology, a “screen” is a transformation, and more
specifically, a data validation transformation. Creating an error event schema like this
using Kettle is relatively straightforward. We’ve already shown you how to validate
data and create error records for each failed validation. This data can be augmented
with system information about the current batch and transformation using the “Get
System Info” step, as shown in Figure 7-25.

Figure 7-25: Creating error event data

192 Part II ■ ETL

This will store the detailed error data in a separate table. As you’ll see in Chapter
14, Kettle provides extensive logging and auditing capabilities, with several options
for storing job, transformation, and step-level log-information. The key fields in these
logging tables are the same (unique) job and transformation batch IDs used in the
example in Figure 7-25. Together, these tables make for a very powerful tool to analyze
the quality of the processed data.

The second cleaning deliverable defined by Kimball is the audit dimension. The pur-
pose of this table is twofold:

Provide a fact audit trail:■ Where did the data come from? When was it loaded,
by which job/transformation and on which server?

Provide basic quality indicators and statistics about the data:■ How many records
were read, rejected and inserted, whether the fact row is complete (i.e., all dimen-
sion foreign keys reference a known entity, not an N/A or unknown record), and
whether the facts are within certain bounds.

The observant reader probably has figured out while reading the definition of an
audit dimension table that this comes very close to the already mentioned Kettle log
tables. In fact, most of the required data is already automatically inserted when logging
is enabled, so the only thing left to do is to add the batch_id (=audit key) to the
fact table load. The changes needed are displayed in Figure 7-26.

Figure 7-26: Adding batch ID columns

You might wonder why batch ID is listed twice here. This is because it’s an updatable
fact table and the original batch ID should not be overwritten. In order to accomplish
this, one version is updatable (the current batch ID, called batchid_cur) and the other
one is a static version (called batchid_ini in this case) that keeps the original batch ID
that caused the insert of the record. Adding the job and transformation batch IDs doesn’t
have to be limited to the fact records either; every dimension table can be extended in a
similar way. By doing this, all the records in the data warehouse can be linked to both
the log and the error event tables. The result is a very robust and auditable solution
where every piece of data can always be traced back to the process that created it.

Deduplicating Data

Deduplication is in many ways a challenging task. Many large customer tables contain
duplicate records; think for instance about CRM (Customer Relationship Management)

 Chapter 7 ■ Cleansing and Conforming 193

systems. Data in these applications is entered by call center agents who need to work
fast and don’t always have the time to check whether a calling customer is already in
the system. In case of doubt, they just create a new customer record and possibly mis-
spell name or address information. This causes problems when the CRM data is used
some time later to create mailing lists for marketing campaigns. As a result, many CRM
initiatives contain projects to clean up customer data to make sure every customer is
listed in a system only once. The problem, of course, is: How do you detect duplicate
records? And even more challenging: How do you detect duplicate records when you
know there are no shared keys (like postal codes), or the shared keys have the risk of
being misspelled as well? The disappointing answer to these questions is that there
is no 100 percent fool-proof method or piece of software that completely solves these
problems. However, by using “fuzzy” matching logic in Kettle, you can come a long
way in getting your customer data in order.

Handling Exact Duplicates

Kettle contains a very simple method to remove duplicate records which is implemented
in two similar steps: the “Unique rows” step, and its direct sibling the “Unique rows
(HashSet)” step. They both work in a similar way and are easy to use, but the former
requires a sorted input while the latter is able to track duplicates in memory. The steps
can recognize only exact duplicates and allow the restriction of the duplicate detection
to certain fields. You can put this step to good use, for example, when an organization
is preparing a direct mailing but only wants to send one mail package per address. The
input data would have to contain customer ID and address information and needs to
be sorted on address.

NOTE Example prerequisite: At least two customer records with the same

address ID.

The ReadSource step contains the following query:

SELECT customer_id, last_name, address_id

FROM customer

ORDER BY 3

The last_name field isn’t strictly necessary but gives a little more information about
the duplicate entries found. Figure 7-27 shows an example transformation where the
duplicate records are redirected to the error stream of the step.

Figure 7-27: Unique rows

194 Part II ■ ETL

The “Unique rows” step works in a pretty straightforward way, as shown in
Figure 7-28. The duplicate rows redirection option is selected in order to push the
duplicate rows to the error stream of the step, and the only comparison is on the field
address_id.

Figure 7-28: “Unique rows” step

The two dummy steps are for easy testing; when a preview is issued on the dummy
step with the name Duplicates, the duplicate rows will be displayed. For this example,
you get the output shown in Figure 7-29.

Figure 7-29: Unique rows preview

The Problem of Non-Exact Duplicates

As explained in the introduction to this section, most data quality problems arise in
customer and product data sets. For the discussion here and the examples later on we’ll
limit our scope to customer data because it is easy to understand. Let’s introduce some
typical examples of duplicate records based on names. Suppose the CRM system only
stores first and last name, e-mail address, city, and country, as displayed in Table 7-2.

Anyone who can read will immediately see that these two records probably point to
the same person, but what if there are 3, 30, or even 100 million records in the table? It’s
impossible to correct very large data sets by just browsing through the data.

 Chapter 7 ■ Cleansing and Conforming 195

Table 7-2: Duplicate Entries Example

ID FIRSTNAME LASTNAME E-MAIL CITY COUNTRY

3 Roland Bouman roland.bouman@
gmail.com

Leiden NL

433 Rolan Bowman rolan.bowman@
gmail.com

Leiden NL

The first thing needed is a check at the data entry point; things such as City, Postal
code, and Country don’t have to be typed in and most modern applications don’t allow
you to enter invalid address/postal code/city combinations. Whatever the checks are,
you’ll need some columns to contain accurate data; otherwise, there will be nothing
that links the records together. In Table 7-2, it’s the city and country that you know are
correct (or at least cannot be misspelled). If there is no way potential duplicates can be
tied together, deduplication is not possible at all.

The next thing needed to solve duplication errors is ample computing power. Finding
possible duplicate records means searching the complete table for every available record.
With 1 million records, that means a million searches for each of the million records
(1,000,000 * 1,000,000). When doing this multiple times for multiple fields, it gets worse.
This is one of the reasons why the specialized tools on the market that can do this very
efficiently are still very expensive. The other reason is the built-in “knowledge” of
these tools that enables them to match and correct customer and address information
automatically.

Finally, you need algorithms to identify potential duplicate entries in your data. Some
fields will contain exactly duplicated information, as in Table 7-2, and some fields will
contain misspelled or differently spelled entries. Using plain SQL to identify those
entries won’t cut it: Equality checks will fail, and using “like” operators won’t work
either because you’ll need to specify the search string in advance. The only way to find
possible duplicates is to use so-called fuzzy logic that is able to calculate a similarity
index for two strings, as we will show in the following sections.

Building Deduplication Transforms

Based on the information in the previous sections it shouldn’t be too hard to figure out
a deduplication approach. We’ll propose an approach consisting of four steps here, but
you are of course free to add more steps or augment the demo solution. The step that
will be doing most of the magic is the already mentioned “Fuzzy match” step. This
step works as follows:

 1. Read an input field from a stream.

 2. Perform a lookup on a field in a second stream using one of the match
algorithms.

 3. Return matches.

196 Part II ■ ETL

Figure 7-30 shows the available options on the main tab of the step. As you can see,
there is a main input step (ReadSource) of which the stream field src_lastname is used,
and a second “Table input” step that provides the lookup data. The available options in
the Settings part of the step properties depend on the chosen algorithm. If you select
one of the phonetic algorithms (Soundex, Metaphone, or their improved versions) none
of the options can be set, and the “Case sensitive” checkbox is only available for the
Levenshtein algorithms.

Figure 7-30: Fuzzy match basics

The other options can be used to fine-tune your matching, and also enable you to
retrieve one or more possible matches. The “Get closer value” setting is an important
one here as this will determine what data is returned and whether the result can be
used for deduplication. If the “Get closer value” box is not checked, you’ll notice that
the Values separator can be set. As a result, all matches that satisfy the Minimal and
Maximal value setting will be returned as a separated list. Figure 7-31 shows the result
of the preview of a fuzzy match on the last name column in the sakila database with
the settings as shown in Figure 7-30 and the “Get closer value” box unchecked.

Figure 7-31: Preview multiple match data

 Chapter 7 ■ Cleansing and Conforming 197

The name of the match column in the preview can be set on the Fields tab of the step.
These results are not very useful for further processing. The main problem is not the
number of values, but the lack of a link to the lookup table in the form of a key or other
reference. For deduplicating data, it’s not enough to have the possible matches—you
also need to know exactly which records provide those matches. Hence it is better to
check the “Get closer value” box. This will only return a single result (the one with the
highest similarity score), but at the same time enables you to retrieve additional column
values from the lookup table, as shown in Figure 7-32. The Match and Value field names
speak for themselves, and in the Fields section you can specify which additional fields
you want to read from the lookup stream.

Figure 7-32: “Fuzzy match” return fields

Based on the knowledge you’ve obtained so far, you can start building a deduplica-
tion transform using the “Fuzzy match” step. In order to get some results, you need to
modify some data. The simple example we’re going to build uses the last name field
to search for duplicate entries and the e-mail field as a “reference.” Therefore, we need
at least two records with the same e-mail address and last names that are somewhat
(or exactly) similar.

NOTE In this example, it would of course be a lot easier to simply count

e-mail addresses and filter duplicates, but that’s not the point here.

Let’s start by exploring the four-step process.

Step 1: Fuzzy Match

In this example, fuzzy matching is indeed the first step. In real-life scenarios, it’s prob-
ably preceded by some other steps to get the data as clean as possible using regular
expressions or one of the other techniques covered in this chapter. For instance, if a
source data file contains only a single name field, which contains the full person name,
a regular expression could be used to split the field into first name, middle initial, and
last name for U.S. names, and possibly other splits for names from other countries.

198 Part II ■ ETL

One of the authors of this book, for instance, has a name that’s quite common in the
Netherlands but is usually misspelled in the United States because it includes “van”
(with a lowercase v) which is mistakenly treated as a middle name.

The initial fuzzy match is the same one that you saw in Figure 7-30 and uses a table
input step that retrieves the following data:

SELECT customer_id AS src_custid

, last_name AS src_lastname

, email AS src_email

FROM customer

For matching the incoming data with reference data, a second table input step is
needed to ‘feed’ the “Fuzzy match” step. The following data is retrieved:

SELECT customer_id AS match_custid

, last_name AS match_lastname

FROM customer

The details of the “Fuzzy match” step are the same as the ones displayed in Fig-
ure 7-30.

Step 2: Select Suspects

Because we are using a lower boundary of 0.8 for the Jaro-Winkler algorithm, not all
records will get a possible match using the fuzzy lookup. These must be filtered out
before proceeding, which involves a very straightforward use of the “Filter rows” step
with the condition match_custid IS NOT NULL. All records that comply with this
condition are passed to the next step of the process; the other records are discarded

Step 3: Lookup Validation Value

In this example, you use e-mail addresses as an extra reference, but this could of course
be any other address field as well. What happens here is that the match_custid found
in the fuzzy lookup step is used to retrieve the e-mail address of the possible duplicate
record. As a result, you now have records that contain two customer IDs, two names,
and two e-mail addresses. Figure 7-33 shows the partial results.

Figure 7-33: Possible duplicates

 Chapter 7 ■ Cleansing and Conforming 199

Step 4: Filter Duplicates

Selecting the final duplicates is now pretty simple. You again use a “Filter rows” step
with the condition src_email = lkp_email to get your possible duplicate records,
which are displayed in Figure 7-34.

Figure 7-34: Possible duplicates

We refer to the records in Figure 7-34 as possible duplicates for a reason. Although
you can be pretty sure in this case that you’re talking about the same human being here
based on the information at hand, it is still entirely possible that you’re looking at a
married couple sharing one e-mail address. It can get much worse, too. For example, two
records pointing to the same person, both records with valid addresses where one is a
street address and the other is a post office box. Also consider the possibility that most
people have more than one e-mail address. The list of possibilities goes on and on.

Another problem with deduplication is the question of validity: Even if duplicates are
detected with different addresses or phone numbers, how can you tell which address or
phone number is correct? Not all source systems keep a detailed change log at the field
level, and even if they did, there’s still the possibility of human error because someone
must enter and update the information.

Merging information from two or more records into one should be handled with
care. First, there’s the issue of which data should overwrite the other. Second, addresses
should be treated as a single block. Merging the city name of one record into a second
one with an empty city column usually doesn’t make a lot of sense. With all these cau-
tions in mind, and a basic version of a deduplication transform described here, you
can start tackling those tricky deduplication efforts. As a reference, the completed
transformation is displayed in Figure 7-35.

Figure 7-35: Possible duplicates

200 Part II ■ ETL

Scripting

Most ETL developers have a love-hate relationship with scripting. You strive to develop
easy-to-maintain solutions where you don’t need to revert to custom coding, but as
a last resort, you can always solve even the most daunting problems with a script.
Historically, the Java Script step has been the “duct tape” of Kettle, where a lot of the
complex transformation work took place. Over the years, however, more and more
standard steps have been introduced to replace most of the functions that previously
needed a Java Script step. As a general rule of thumb, you should try to avoid using
scripting altogether, but there will always be some requirements that simply cannot be
met with one of the regular steps.

At the time of this writing, the Scripting transform category contains seven different
scripting steps and there is at least one other in the making.

Because there are very few use cases for the SQL script steps, let’s concentrate on the
other available steps: Formula, Modified Java Script Value, User Defined Java Expression,
User Defined Java Class, and Regex Evaluation. Before we cover each of them in more
depth, we’ll provide a brief overview of what they have to offer:

Formula:■ This isn’t a real scripting step but it does allow for more flexible for-
mulas than with the predefined calculations in the Calculator step. The formula
language is the same as the one used in OpenOffice, so if you’re familiar with
formula expressions in Calc you’ll feel right at home

Modified Java Script Value:■ This step offers the full breadth of JavaScript to be
used in a transformation. JavaScript enables you to read files, connect to data-
bases, output information to pop-up screens, and so on—it has many more capa-
bilities than you’ll generally need.

User Defined Java Expression:■ This step lets you use Java expression directly,
with the advantage that these are translated into compiled code when the trans-
formation is started. Of the available scripting steps, this is the highest perform-
ing one.

User Defined Java Class:■ Instead of just a single expression, this step lets you
define a complete class, which basically allows you to write a Kettle plugin as
a step. For an example of how to use this step, go to Matt Casters’ original blog
post at http://www.ibridge.be/?p=180

Regex evaluation:■ Designed to parse regular expressions ranging from short and
simple to very large and complex, and is also capable of creating new fields from
capture groups (parts of the regular expression).

The choice of which step to use for which purpose is always a tradeoff between ease of
use, speed of development, and speed of execution. An excellent overview of the advan-
tages of one step over the other is available in a blog post by one of the authors and
can be found online at http://rpbouman.blogspot.com/2009/11/pentaho-data-
integration-javascript.html.

 Chapter 7 ■ Cleansing and Conforming 201

Formula

The Formula step is the Calculator’s step direct sibling and the two of them can cover
most of the things that previously required JavaScript. Working with the Formula step
is especially useful when conditional logic must be applied to the data, or calculations
need to be made that are not available (yet) in the Calculator step. Date arithmetic is
a good example: the Calculator step lets you calculate the number of days between
two days, but not the number of months or years. With a Formula step this can be
done but there’s a catch: As soon as a date is in a different month, even if there’s only
one day between the first and second date, the datedif function will calculate this
as one month.

A formula in a Formula step is also different from a formula in the Calculator step in
another sense: It cannot work with the fields defined in it. In order to create a condition
based on a calculated field, two Formula steps are needed. Finally, the fields that need
to be referenced in a Formula step must be typed in manually; there is no drop-down
list to choose from, as there is in the Calculator step. As an example, look at the file
age calculation we promised earlier in the chapter. The first three steps get file names,
add the current date to the stream and select the file name, sysdate, and last modified
date. You can use any set of files to work with; this example uses the files with a .conf
extension in the /etc folder on a Linux system. First you create a Formula step that
creates the new field age_in_months; then add a second Formula step to determine
whether the file is too old. The transformation is displayed in Figure 7-36.

Figure 7-36: Determine file age using Formula steps

The first formula in this transformation is datedif([lastmodifiedtime];[today]
;”m”); the second one is if([age_in_months]>24;”Too Old”;”OK”). The output of
a transformation like this is displayed in Figure 7-37.

Figure 7-37: File age output

202 Part II ■ ETL

JavaScript

With all the powerful new transformations added to Kettle in version 4, the need for
JavaScript has declined considerably. Nevertheless, there are various use cases where
you need JavaScript. Chapter 10 contains an example where a loop is performed over
the data stream, something that cannot be done with another step. One other example
that we’ll provide here is based on the Rentals table in Sakila. This table contains a rental
and a return date, and we want to flag customers who returned films more than a week
after the rental date. The most obvious strategy would be to look at the Calculator or
Formula step for this, but neither of these is capable of calculating the number of weeks
between two dates. With a Java Script step, however, this is easy. Let’s start with an
input table with the following SQL:

SELECT rental_id

, customer_id

, rental_date

, return_date

FROM rental

After adding the Java Script step, you need to determine the number of weeks between
the rental date and return date using the dateDiff function. Adding something like
var age = dateDiff(rental_date,return_date,”w”); will do the trick.

NOTE Unlike SQL, JavaScript is case-sensitive so make sure to use the

correct casing for functions; dateDiff is something entirely different than

datediff.

This gives you the week number but not yet the Late flag for records that have a
“weeks” value of 1 or more. There are several approaches you could take now: Use
a Value mapper, a Formula, or add a little code to the JavaScript step. If you want to
use as little JavaScript as possible, go for the Value mapper. The reason is very simple:
While a Formula would work in this case, the conditional logic will get messy when the
solution needs to be refined further—for example, to distinguish between early returns
(< 1 week), late returns (> 1 week but < 2 weeks), and very late returns (> 2 weeks). In
this example, we’ve augmented the JavaScript code to calculate the requested output
directly, as shown in Figure 7-38.

As the JavaScript in Figure 7-38 shows, only the status field is added to the output
stream, while the age field is only used to determine the status.

User-Defined Java Expressions

The Java Expressions step looks very similar to the Formula step covered earlier, the
only difference being that instead of formulas, you’re able to use Java Expressions. The
Pentaho wiki has a good introduction at http://wiki.pentaho.com/display/EAI/
User+Defined+Java+Expression.

 Chapter 7 ■ Cleansing and Conforming 203

Figure 7-38: JavaScript for week calculation

One small example of using Java Expressions in a cleansing process is from the
Mozilla Corporation, which makes extensive use of Kettle for processing weblogs.
Because the amount of data transformed is already a stunning several gigabytes per
hour (and still growing), they want to squeeze every bit of performance possible out
of Kettle. Figure 7-39 shows one of their data-cleansing transformations in which three
Java Expression steps are used.

Figure 7-39: Java Expressions in data cleansing

The first Java Expression cleansing step uses url.replaceAll(“([^&])
(appID|appVersion)”, “$1&$2”) to replace all regex matches inside the first string
with the replacement string specified. The two “unescape” expressions use the Java.net
.URLDecoder.decode(<urlpart>) function to decode (part of) an encoded URL and
will, for instance, return Roland, Jos & Matt from the input Roland,+Jos+%26+Matt.
This transformation is available from the book’s website as a reference.

Regular Expressions

Throughout Kettle there are many steps where regular expressions, or regexes, can be used.
They are commonly used in the locations where wildcards can be used such as the “Text
file input” or “Get File Names” steps, or to search for a string using a “Replace in string”
step. JavaScript can also be used to evaluate regular expressions using the str2RegExp
function, but the real regex power is delivered by the Regex Evaluation step.

204 Part II ■ ETL

NOTE The original version of this step was only capable of returning a Boolean

indicating whether the regular expression matched the target field. Later, a

Pentaho community member enhanced the step to support capture groups for

creating new fields using values matched in the target field. This enhancement

was contributed back to the open source project with an extensive sample

transformation that ships with Kettle. This sample is the transformation Regex

Eval - parse NCSA access log records.ktr, which can be found in the

/samples/transformations directory under the main Kettle install direc-

tory. The Kettle wiki contains an extensive explanation of this step (http://

wiki. pentaho.com/display/EAI/Regex+Evaluation) and also has point-

ers to regex tutorials and reference sites to help you on your way with regular

expressions.

The extensive sample might be a bit overwhelming so let’s use a very simple example
here. The first thing you’ll need is input data. For this example, you’ll use the Sakila
address table and a Regex Evaluation step to split the street name and house number
into two separate fields. The “Input table” step gets the data from the Sakila database
using the following query:

SELECT address_id

, address

FROM address

Then the Regex Evaluation step will use address as the “Field to evaluate,” as shown
in Figure 7-40.

Figure 7-40: Regex Evaluation step

 Chapter 7 ■ Cleansing and Conforming 205

To enable the use of whitespace and comments, the corresponding option for this
has to be checked on the Content tab, and to be able to create fields for capture groups
the checkbox with that name has to be marked on the Settings tab. A capture group is
a part of the regular expression between parentheses so in this case (\d*) captures
the digits that make up the house number, and ([^\d]*) captures all non-numeric
characters from the string. Figure 7-41 shows the partial result of the step.

Figure 7-41: Regex Evaluation result

Summary

This chapter looked at the various tools and technologies available within Kettle to
validate, cleanse, and conform your data. We discussed various types of rules and con-
straints to which data needs to comply. More to the point, in the chapter you learned:

The various steps available for data cleansing and several use cases for them. ■

How the rich collection of string matching algorithms Kettle contains works, and ■

how they can be applied.

The use of reference tables for cleansing and conforming data. ■

How to apply the Data Validator step and what the options of validating data ■

can be used.

How to handle data, process and process errors using the error handling capa-■

bilities of Kettle.

How to use the Fuzzy Match step to deduplicate data.■

The various scripting options available and the way they can be applied. Examples ■

for the Formula, Java Script, Java Expressions and Regex Evaluation steps were
included.

207

C H A P T E R

8

Handling Dimension Tables

In this chapter, we take a closer look at how you can use Kettle to manage dimension
tables. In particular, we’ll look at those features in Kettle that are particularly useful to
transform and/or generate data to fit the format of typical dimension tables, as well as
the actual loading of the data into the tables. Before we discuss the details, let’s consider
which of the ETL subsystems discussed in Chapter 5 are involved in the management
of dimension tables:

Change Data Capture (subsystem 2):■ There are a few specific issues with regard
to change data capture when loading typical denormalized star schema dimen-
sion tables, so this is briefly discussed in this chapter.

Extraction (subsystem 3), Data Cleaning and Quality Screen Handler System ■

(subsystem 4), and Error Event Handler (subsystem 5): These three are generic
subsystems that apply to both dimension and fact tables. These subsystems were
covered in Chapters 6 and 7, and won’t be covered here in depth.

Audit Dimension Assembler (subsystem 6):■ Functionally, the audit dimension
is a special dimension that provides data about the ETL process itself, as opposed
to information that has a business context. Loading the audit dimension was
covered in Chapter 7.

Slowly Changing Dimension Processor (subsystem 9):■ In many cases, data
stored in dimension tables is not fixed and static: it typically changes over time,
albeit typically at a much slower pace than any of the fact tables. This chapter
describes in depth how to use Kettle to implement type 1, type 2, and type 3
slowly changing dimensions, and covers a few additional and complementary
techniques as well.

208 Part II ■ ETL

Surrogate Key Generator (subsystem 10):■ Loading dimension tables implies gen-
erating surrogate keys; this topic is discussed in detail in this chapter.

Hierarchy Dimension Builder (subsystem 11):■ Although it is not so easy to
pinpoint exactly which part of a transformation for loading a dimension con-
stitutes the hierarchy manager, dealing with hierarchies certainly has a lot to
do with loading dimension tables. Several aspects of dealing with hierarchies
are discussed in detail in this chapter, such as top-down level-wise loading of
snowflaked dimensions and implementing solutions to solve hierarchies of inde-
terminate depth (recursive hierarchies).

Special Dimension Builder (subsystem 12):■ This is not a really clear-cut sub-
system—rather it is a bucket of various types of dimensions. Some of these are
discussed in this chapter, such as generated dimensions and junk dimensions.

Dimension Manager System (subsystem 17):■ This is the actual subject of this
chapter.

Managing Keys

A big part of loading dimension tables is about managing keys. There are two types
of keys to take into account:

Business keys:■ These keys originate from the source system, and are used to
identify its business entities.

Dimension table surrogate keys:■ These keys identify rows in the dimension
tables of the data warehouse.

NOTE Arguably, there is another type of key, namely the foreign keys to

dimension tables. There may be some confusion about the term foreign key.

In particular, the term is often confused with a foreign key constraint.

In this chapter, the term foreign key is used to convey the idea that a table

contains a column that has the express purpose of storing the key values of

another table in order to relate the rows from the different tables. In this

sense, foreign key just means the column stores key values, but from a key of

another (foreign) table.

Foreign keys typically occur in the fact tables where they are used to relate

the fact table rows to the context of the facts described in the dimension tables.

These are discussed in Chapter 9, which is all about fact tables. But as you will

see later in this chapter in our discussion of snowflaked dimensions, foreign

keys to dimension tables also occur in dimension tables and bridge tables.

Here’s a list of common tasks related to managing keys when handling data ware-
house dimensions:

Matching business keys from the source system to the dimension tables to deter-■

mine whether to update or insert dimension rows

 Chapter 8 ■ Handling Dimension Tables 209

Generating a surrogate key value for new dimension rows■

Looking up surrogate keys when loading snowflaked dimension tables (as well ■

as fact tables)

Deriving smart keys from attribute data for generated dimensions such as date ■

and time dimensions

Kettle offers at least one and sometimes several transformation steps that can be
used to perform each of the listed tasks regarding key management. In this section,
we describe these key management tasks in general terms. Later in this chapter, we
present concrete, detailed examples of these tasks.

Managing Business Keys

Data warehouses are loaded with data coming from one or multiple source systems.
Understanding which pieces of data can be used to identify business entities is para-
mount, in both the source system and the data warehouse. Without a means of identi-
fication, you would be unable to keep records pertaining to different real-world objects
separate from one another, rendering the entire collection of data structureless, and
thereby useless.

Keys in the Source System

In the source systems, the pieces of information that identify the business entities are

keys. For any given table, a key is each column (or group of columns) such that logi-
cally, there cannot be more than one row in that table having a particular value for
that column (or a combination of values in case of a group of columns). Typically the
source system enforces keys at the database level by either a primary key or unique
constraint. This actively prevents any changes to the database that would result in a
situation where the table would store multiple rows having the same value(s) for the
column(s) of one particular key.

Keys in the Data Warehouse

In the data warehouse, business entities such as products, customers, and so on end up
in the dimension tables. These each have their own key, separate from any key coming
from the source system. Typically, keys of dimension tables are surrogate keys, consist-
ing of a single integer column for which the values do not bear any relationship with
the descriptive columns of the dimension table, and they are typically generated in the
course of the ETL process.

Business Keys

In order to properly load the dimension tables, there has to be some way to keep track
of how the rows in the dimension tables relate to the business entities coming from the
source system(s). This is achieved by storing the surrogate key of the dimension table

210 Part II ■ ETL

together with at least one of the keys from the source system. Typically, the primary
key from the source system is most convenient for this purpose.

In this context, the key coming from the source system is referred to as the business

key. Business keys can originate either from natural keys or surrogate keys present in the
source system, but in the data warehouse we simply refer to them as business keys.

NOTE A business key is typically not a key of the dimension table. One

of the main purposes of the data warehouse is to maintain a history of the

changes in the source systems, and the only way to truly do that is to allow for

storing duplicates in the business keys. A typical example is discussed later in

this chapter in our discussion of type 2 slowly changing dimensions. For rea-

sons of performance, it is usually still a good idea to index the business keys.

Storing Business Keys

The business keys are often stored directly in the dimension table. This is a very straight-
forward approach that allows for relatively simple ETL procedures. For example, to
check whether data changes coming from the source system should result in an update
of a existing dimension row or in an insert of an additional dimension row, a simple
and efficient check based on the business key is sufficient to see if a relevant dimension
row already exists. A similar search based on the business key can be done to obtain
the corresponding surrogate key of the dimension table.

Alternatively, the business-key/dimension-key mapping can be kept outside of the
dimension table and maintained in the staging area instead. In this case, the design
of the dimension tables may be cleaner, at the expense of more complicated ETL
procedures.

Looking Up Keys with Kettle

Kettle offers a number of steps that can be used for looking up data. These steps can be used
for looking up keys (typically, looking up a surrogate key based on the value of a business
key), or for looking up attribute data (which can be used to denormalize data).

In addition to pure lookup steps, there are several steps that are capable of inserting
or updating rows in a database, based on a matching key, as well as looking up data.
You’ll see plenty examples of looking up data by key in this and other chapters.

Generating Surrogate Keys

Data warehousing best practices dictate that dimension tables should, in principle, use an
automatically generated meaningless integer type key: a surrogate key. There are cases
where it makes sense to deviate from this rule, and some of these cases are discussed
later on in this chapter, but in this section, we focus on the genuine surrogate keys.

 Chapter 8 ■ Handling Dimension Tables 211

Kettle offers features to generate surrogate key values directly from within the trans-
formation, as well as functionality to work with key values that are generated at the
database level. In this section, we’ll take a look at the steps that offer these features.

The “Add sequence” Step

In Spoon, the “Add sequence” step resides beneath the Transform category. This step
is designed especially to generate incrementing sequences of integer keys. You first
encountered this step in the load_dim_date and load_dim_time transformations in
Chapter 4 (shown in Figure 4-4 and Figure 4-5 respectively).

The sequence step works by passing through rows from the incoming stream to the
outgoing stream, thereby adding an extra integer field containing generated integer
values. You can configure the step to draw values from two alternative sources:

A local counter maintained at runtime within the transformation.■

A database sequence. Databases like Oracle and PostgreSQL offer sequence ■

schema objects, allowing tables to draw unique values from a centrally managed
incrementing number generator.

In the remainder of this section, we describe in detail how to use the “Add sequence”
step to generate surrogate keys for dimension tables.

Using Internal Counters for the “Add sequence” Step

Figure 8-1 shows the configuration dialog of the “Add sequence” step that is set up
to generate values at runtime within the transformation from an internal counter
variable.

Figure 8-1: Configuring the “Add sequence” step to generate values within

the transformation

212 Part II ■ ETL

In the header of the dialog, the “Step name” field is used to give the step a unique
name within the transformation. The “Name of value” field is the name of the field that
will be added to the outgoing stream to convey the sequence of integer values.

The bottom section of the dialog is labeled “Use a transformation counter to generate
the sequence.” Within that section, the checkbox “Use a counter to calculate sequence?”
is selected, which disables the top section (“Use a database to generate the sequence”)
and specifies that the values are to be generated by a counter at runtime from within
the transformation.

The “Counter name” field is left blank in Figure 8-1. When you have multiple “Add
sequence” steps in one transformation, all such steps that specify the same name in this
field will draw values from one and the same internal counter variable, ensuring the
values drawn from these different steps are unique during one transformation run.

The “Start at value” field is used to specify the offset of the sequence of values. Here,
you can either specify an integer literal or a variable reference that evaluates to an inte-
ger literal. In Figure 8-1, this is set to 1 but later in this section we discuss an example
where we use a variable to initialize the offset of the sequence.

NOTE The value for the “Start at value” is not remembered across different

runs of the same transformation. The “Add sequence” step also does not pro-

vide a way to automatically load the offset value based on a database query.

So, there is no built-in way to have the sequence pick up where it left off the

last time the transformation was run. The sample transformations discussed

in the remainder of this section illustrate how to cope with this issue.

The “Increment by” field also takes either an integer literal or a variable that evalu-
ates to an integer literal. This is used to specify the interval between the generated
values. Normally you don’t need to modify the default value of 1, but allowing this to
be parameterized allows for some extra flexibility, which can be useful in some cases.

NOTE As an example of using the “Increment by” field, consider a case

where you need unique numbers to be drawn across multiple transformations,

1 through N. This can be achieved by giving each transformation its own “Add

sequence” step, each having its own offset 1 through N, and giving them all an

“Increment by” value of N.

The “Maximum value” field is used to specify the maximum value of the sequence.
If the internal counter exceeds this value, the sequence wraps around and starts again
at the value configured for the “Start at value” field.

Generating Surrogate Keys Based on a Counter

The test_sequence1.ktr sample transformation uses the “Add sequence” step exactly
as it is configured in Figure 8-1 to generate a surrogate key for a sample table called
test_sequence. Each time the transformation is run, it generates another 100 rows,
each getting its own sequential integer surrogate key. The transformation is shown in
Figure 8-2.

 Chapter 8 ■ Handling Dimension Tables 213

Figure 8-2: Generating surrogate key values using the “Add Sequence” step and internal

counters

NOTE You can download the test_sequence1.ktr transformation file

from this book’s website at www.wiley.com/go/kettlesolutions in the

folder for Chapter 8. To run it, be sure to check the database connection

properties to match your database. The transformation was built for a MySQL

database having the schema called test. It connects to the database with

username test, using the password test.

The transformation shown in Figure 8-2 works by first running the step “CREATE
TABLE test_sequence” in its initialization phase. This step is of the Execute SQL type,
and sets up a sample table called test_sequence, which represents the dimension
table, by running this SQL statement:

CREATE TABLE IF NOT EXISTS test_sequence (

 id INTEGER NOT NULL PRIMARY KEY

);

After the initialization phase, the transformation generates 100 empty rows using
the “Generate rows” step. These rows represent the data set that is to be loaded into the
test_sequence table. Then the “Add sequence” step, having a configuration exactly as
shown in Figure 8-1, adds a field called sequence_value to the stream, which contains
an incrementing series of integers.

The sequence_value field is, of course, a crucial element in generating values for
the surrogate key. Unfortunately, it cannot be used as-is because each time the transfor-
mation is run, it starts again at 1, and would thus generate duplicate keys immediately
after the initial run.

To overcome this problem, we add the maximum key value present in the target
table prior to running the transformation. To achieve this, we have a “Table output”
step labeled “MAX(id) FROM test_sequence,” which uses the following SQL statement
to retrieve a single row with one column, holding the maximum key value found in
the test_sequence table:

SELECT MAX(id)

FROM test_sequence

In order to add this value to the generated sequence values, the streams coming out
of the “MAX(id) FROM test_sequence” and “Add sequence” step must first be joined.

214 Part II ■ ETL

This is achieved by the “Join Rows (cartesian product)” step. You first encountered this
step when we discussed the load_dim_time.ktr transformation in Chapter 4 (shown
in Figure 4-5). In the test_sequence transformation, it computes a Cartesian product
just like in the load_time_dimension.ktr transformation, but because the “MAX(id)
FROM test_sequence” step always returns exactly one row, the step does not lead to a
duplication of records: it simply combines the sequence value along with the maximum
key value in a single record.

The next step in the test_sequence is labeled “MAX(id) + sequence_value,” which
is of the Calculator type. It is used to add the maximum value of the key coming from
the “MAX(id) FROM test_sequence” step to the sequence value generated by the “Add
sequence” step. This finally yields the value for the surrogate key column in the target
table. The configuration of the Calculator step from the test_sequence transforma-
tion is shown in Figure 8-3.

Figure 8-3: Using the Calculator step to actually compute the new key values

Figure 8-3 reveals another calculation to deal with the (rather exceptional) case in
which the target table is empty. In this case, the step “MAX(id) FROM test_sequence”
returns a NULL value, and the second calculation ensures that this value is replaced
with the numerical 0 (zero) in order to continue with the addition to generate the actual
surrogate key value.

The final step is a “Table output” step to load the test_sequence table, which rep-
resents the actual loading of the dimension table.

Dynamically Configuring the Sequence Offset

The test_sequence transformation shown in Figure 8-2enables you to work around
the problem of generating only new unique key values by taking the maximum value
of the existing keys prior to running the transformation and adding that maximum to
the newly generated sequence values.

Although this method works nicely in a sample transformation, real-world transfor-
mations run the risk of becoming cluttered because they involve too many steps that do
not directly contribute to the logic of the actual loading of the dimension table. Another
potential disadvantage is the fact that the Join Rows and “MAX(id) + sequence_value”
steps are executed for each row of the changed data set, slowing down the transforma-
tion as a whole.

 Chapter 8 ■ Handling Dimension Tables 215

There is an alternative to ensure the “Add sequence” step will generate only new
unique key values. Instead of calculating the key value again and again for each row,
it makes more sense to generate only the right key values in the first place. The only
thing that is required to achieve this is the correct initialization of the “Start at” field
of the configuration of the “Add sequence” step.

As it turns out, it is perfectly possible to dynamically configure the “Start at” prop-
erty of the “Add sequence” step. The process is not entirely straightforward, and it
does require some effort, but it has the advantage of resulting in a cleaner main trans-
formation, which is typically just a little bit faster, too. Figure 8-4 shows the job called
test_sequence2.kjb.

Figure 8-4: Dynamically configuring the offset of the “Add

sequence” step

The job shown in Figure 8-4 contains two transformation job entries, test_
sequence2-1.ktr and test_sequence2-2.ktr. These transformations are also
shown in Figure 8-4. The first transformation, test_sequence2-1.ktr, does the job
of setting up the test_sequence table and querying for the maximum value of the key.
It also contains a Calculator step to supply a default value instead of the maximum key
value in case the table is still empty, as discussed in the preceding section.

Transformation test_sequence2-1.ktr contains one step that you haven’t encoun-
tered yet: the Set Variables step. Steps of this type accept one row from the incoming
stream and expose the values of specified fields as environment variables, which are
accessible outside the transformation that sets the variables. The scope of variable acces-
sibility can be configured per variable. The configuration for the Set Variables step used
in transformation test_sequence2-1.ktr is shown in Figure 8-5.

In Figure 8-5, you can see that the id field of the incoming stream is exposed as a
variable called ID. The variable has root job scope. Variables with root job scope are
accessible inside the root job itself (which is the outermost job executed by Kettle) along
with all jobs and transformations that are directly or indirectly called from this job.

216 Part II ■ ETL

Figure 8-5: The configuration of the Set Variables step

The second transformation in the test_sequence2 job, test_sequence2-2.ktr,
does the actual loading of the table. Again you see the Generate Rows step for creat-
ing dummy rows, the “Add sequence” step to generate the surrogate key values, and
the “Table output” step to actually load the table. In this case, the configuration of the
“Add sequence” step is almost identical to the one shown in Figure 8-2, but in this case,
the “Start at value” field is set to ${ID}, which denotes a reference to the ID variable
that was set in the test_sequence2-1.ktr transformation by the “Set Variables”
step shown in Figure 8-4. The configuration of this “Add sequence” step is shown in
Figure 8-6.

Figure 8-6: Using a variable reference to parameterize the sequence of the “Add

sequence” step

 Chapter 8 ■ Handling Dimension Tables 217

Surrogate Keys Based on a Database Sequence

The “Add sequence” step can also be used to draw values from a database sequence.
To configure this, select the “Use DB to get sequence?” checkbox in the top section of
the “Add sequence” dialog.

To specify the database sequence itself, you need to select a valid connection, which
must connect to an RDBMS that supports database sequences. If the database sequence
does not reside in the default schema of the connection, you can specify the name of
the schema in the “Schema name” field, where you should also specify the name of the
database sequence.

That’s all there is to it. In contrast, with a sequence based on an internal counter, no
special measures have to be taken to initialize the offset of the sequence. The database
can be relied upon to keep track of the current value of the sequence.

Working with auto_increment or IDENTITY Columns

Some databases offer sequence support at the column level. Using DDL, one (or some-
times more) table columns are created using a special column attribute or data type
that causes the database to automatically supply a unique incrementing integer value
for the column whenever a new row is added to the table. The purpose of such a feature
is to simplify implementing surrogate keys.

For example, MySQL supports the auto_increment column attribute, which may be
applied to one column of an integer type, provided that column is the primary key (or
under certain circumstances, part of a composite primary key). Microsoft SQL Server
has a similar feature but implements this using a special IDENTITY data type.

On the one hand, these database features alleviate some of the burden of generating
surrogate keys in the transformation. On the other hand, they can also be a complicating
factor in case the remainder of the transformation needs access to the database- generated
value. This problem does not occur when using database sequences via the “Add sequence”
step. In that case, the act of drawing a value always has to occur before adding the row to
the table, so by definition the value is always available to the transformation.

The Kettle steps that are designed for adding rows to dimension tables come with
configuration options to add the automatically generated column value to the outgoing
stream. This is discussed in greater detail later in this chapter.

Keys for Slowly Changing Dimensions

The “Slowly Changing Dimensions” section in this chapter contains a detailed descrip-
tion of the “Dimension lookup / update” step. This step offers built-in functionality
to automatically generate surrogate key values for various types of slowly changing
dimensions. Although this is built-in functionality, it is still flexible enough to work
with database-generated surrogate keys drawn from either a database sequence or an
auto_increment or IDENTITY column.

If you’re designing a transformation to load type 1 or type 2 slowly changing dimen-
sions, we recommend using the “Dimension lookup / update” step. When using this
step, you do not need to add a separate “Add sequence” step to generate the values.

218 Part II ■ ETL

Loading Dimension Tables

In this section, we look at how you can use Kettle to load dimension tables based on
data stored in one or more operational source systems or a staging area. We look at two
different but typical scenarios:

Loading snowflaked dimension tables■

Loading denormalized star schema dimension tables■

Snowflaked Dimension Tables

In snowflake schemas, a single dimension is implemented as a series of related dimen-
sion tables. The dimension tables are typically in the third normal form (3NF) or Boyce-
Codd normal form (BCNF) and are thus said to be normalized. Figure 8-7 shows an
example dimensional model having one fact table and snowflaked date and product
dimensions.

brand hierarchy

dim_product_brand

brand_key: INTEGER(10) [PK]

brand_name: VARCHAR(10)

category hierarchy

dim_product_category

category_key: INTEGER(10) [PK]

category_name: VARCHAR(10)

product_key: INTEGER(10) [PK]

product_name: VARCHAR(10)
brand_key: INTEGER(10) [FK}
category_key: INTEGER(10) [FK]

dim_product

day_key: INTEGER(10) [PK]
product_key: INTEGER(10) [PFK]

amount: INTEGER(10)

act

brand hierarchy

Y-W-D hierarchy

dim_date_week

week_key: INTEGER(10) [PK]

year_key: INTEGER(10) [FK]
week_number: INTEGER(10)

Y-Q-M-D hierarchy

dim_date_month

month_key: INTEGER(10) [PK]

quarter_key: INTEGER(10) [FK]
month_number: INTEGER(10)

dim_date_quarter

quarter_key: INTEGER(10) [PK]

year_key: INTEGER(10) [FK]
quarter_number: INTEGER(10)

day_key: INTEGER(10) [PK]

month_key: INTEGER(10) [FK]
day_in_month: INTEGER(10)
week_key: INTEGER(10) [FK]
day_in_week: INTEGER(10)

dim_date_day

date dimension

dim_date_year

year_key: INTEGER(10) [PK]

year_number: INTEGER(10)

Figure 8-7: Snowflaked dimensions

 Chapter 8 ■ Handling Dimension Tables 219

Each dimension table in a snowflaked dimension represents a level in one of the
dimension’s hierarchies. The dimension tables are inter-related via one-to-many relation-
ships, where the table that implements the higher aggregation level is at the “one” side,
and the table that implements the nearest lower aggregation level is at the “many” side.
For example, in Figure 8-7, the date dimension has two hierarchies: Y-W-D (Year, Week,
Day) and Y-Q-M-D (Year, Quarter, Month, Day). The dim_date_year table implements
the Year level, which is the highest aggregation level in both hierarchies. This table has
a one-to-many relationship with both the dim_date_week and dim_date_quarter
tables, each of which implements the next lower aggregation level in the Y-W-D and
Y-Q-M-D hierarchies.

There’s always one dimension table within the dimension that represents the lowest
aggregation level: the primary dimension table. The primary dimension table is usually
related to the fact table, again via a one-to-many relationship. In Figure 8-7, the tables
dim_product and dim_date_day are the primary dimension tables for their respective
product and date dimensions.

Top-Down Level-Wise Loading

In a snowflaked dimension, loading dimension tables at any but the highest level implies
doing a lookup in the dimension table at the next higher level. The lookup is required to
obtain the key value, which needs to be stored in the dimension table at the lower level
to maintain the hierarchical relationship between the two consecutive levels.

Because of the dependency of lower-level dimension tables upon those at the higher
level, it makes the most sense to load hierarchies in a top-down fashion, first loading
all dimension tables at the highest level, then loading the dimension tables at the level
immediately below the highest level, then at the next lower level, and so on, finally
loading the primary dimension tables. We refer to this as top-down level-wise loading.

NOTE We already encountered another example where the table loading

order was controlled by lookup dependencies: In Chapter 4, we discussed

the load_rentals job, which used a series of transformation job entries to

sequentially load the dimension tables before loading the fact table.

A good way to manage top-down level-wise loading of snowflaked dimensions is to
build a single transformation to load each individual dimension table. At a minimum,
such a transformation should contain the logic to extract the changed data at the level
appropriate for the dimension table. In case the dimension table is not at the top level of its
hierarchy, one or more lookups have to be performed to fetch the keys from the dimension
table(s) at the nearest higher level.

Sakila Snowflake Example

To illustrate the process, we created the sakila_snowflake schema. This is another
dimensional model based on the sakila sample database schema introduced in Chapter 4.
The sakila_snowflake schema is identical to the sakila rental star schema, except for

220 Part II ■ ETL

the customer and store dimensions. The respective dimension tables dim_customer
and dim_store have been modified by replacing all columns related to address data
with a foreign key to the primary dimension table of a snowflaked location dimension.
A diagram of the (partial) sakila_snowflake schema is shown in Figure 8-8.

dim_store
store_key: INT UNSIGNED(8) [PK]
location_address_key: INTEGER(10) [FK]
store_last_update: TIME(10)
store_id: INT UNSIGNED(8)
store_manager_staf_id: INT UNSIGNED(8)
store_manager_irst_name: VARCHAR(45)
store_manager_lastname: VARCHAR(45)
store_version_number: SMALLINT UNSIGNED(5)
store_valid_from: DATE
store_valid_through: DATE

dim_customer
customer_key: INT UNSIGNED(8) [PK]
location_address_key: INTEGER(10) [FK]
customer_last_update: TIME(10)
customer_id: INT UNSIGNED(8)
customer_irst_name: VARCHAR(45)
customer_last_name: VARCHAR(45)
customer_email: VARCHAR(50)
customer_active: CHAR(3)
customer__created: DATE
store_version_number: SMALLINT UNSIGNED(5)
store_valid_from: DATE
store_valid_through: DATE

dim_location_country
location_country_key: INTEGER(10) [PK]
location_courntry_id: SMALLINT(10)
location_courntry_last_update: TIMESTAMP(10)
location_courntry_name: VARCHAR(50)

dim_location_city
location_city_key: INTEGER(10) [PK]
location_country_key: INTEGER(10) [FK]
location_city_name: VARCHAR(50)
location_city_id: SMALLINT(10)
location_city_last_update: TIMESTAMP(10)

dim_location_address
location_address_key: INTEGER(10) [PK]
location_city_key: INTEGER(10) [FK]
location_address_id: INTEGER(10)
location_address_last_update: TIMESTAMP(10)
location_address: VARCHAR(64)
location_address_postal_code: VARCHAR(10)

fact_rental
rental_id: INTEGER(10) [PK}
rental_last_update: TIMESTAMP(10)
customer_key: INT UNSIGNED(8) [FK]
staf_key: INT UNSIGNED(8)
ilm_key: INT UNSIGNED(8)
store_key: INT UNSIGNED(8) [FK]
rental_date_key: INTEGER(8)
return_time_key: INTEGER(8)
count_returns: INTEGER(10)
count_rentals: INT UNSIGNED(8)
rental_duration: INTEGER(10)

Figure 8-8: The (partial) sakila_snowflake schema

The snowflaked location dimension consists of three tables: dim_location_address,
dim_location_city, and dim_location_country. The dim_location_address
table is the primary dimension table, which represents the lowest level of the location
dimension.

NOTE The setup process for the sakila_snowflake example is similar to

that for setting up the rental star schema, described in Chapter 4. Download

the sakila_snowflake_schema.sql and create_sakila_snowflake_

accounts.sql files from this book’s website and run them.

To examine the load process, download the load_dim_location_% job and

transformation files.

 Chapter 8 ■ Handling Dimension Tables 221

In the sakila_snowflake example, the primary dimension table of the location
dimension is not related to the fact table, but to other dimension tables. Because the
location data has been pulled out of the existing store and customer dimension tables,
these become themselves snowflaked. In the Data Warehouse Toolkit, Second Edition by
Ralph Kimball and Margy Ross (Wiley, 2002), even Kimball deems this a valid case of
dimension normalization for a location dimension, and he refers to this construct as a
location outrigger (although he does not recommend further snowflaking of the location
dimension itself). Because the schema itself is still largely a star schema, this can also
be called a starflake.

Sample Transformation

By way of example, the load_dim_location_address.ktr transformation is shown
in Figure 8-9.

Figure 8-9: Loading an individual dimension

table of a snowflaked dimension

In this particular case, the transformation is designed to load the dim_location_
address table of the location dimension shown in Figure 8-8. The first two table input
steps of the transformation are responsible for capturing changed data in a similar way
as for the sample transformations described in Chapter 4: You first query the maximum
value of the last_update column from the dimension table and then use that value to
retrieve all rows from the source system that changed since that date.

After the changed data capture, the rows are then fed into the “Lookup dim_ location_
city” step to find the corresponding key of the dim_location_city table. We discuss
the configuration of this step in detail in the next subsection.

Finally, the address data plus the foreign key to the dim_location_city table
are loaded into the dim_location_address table using an Insert / Update step. We
discuss this step later in this chapter in greater detail in the section “Type 1 Slowly
Changing Dimensions.”

222 Part II ■ ETL

Database Lookup Configuration

In the load_dim_location_address.ktr transformation shown in Figure 8-9, a step
of the “Database lookup” type is used to find the value of the surrogate key used in the
data warehouse (location_city_key) that corresponds to the business key (city_id)
coming in from the source system.

As you will see later in this chapter, the “Database lookup” step can also be used
to retrieve attribute values from the source system, which is useful in preparing the
denormalized data required to load star schema dimension tables. In Chapter 9, you
also learn how this type of step is useful in obtaining the keys of the dimension tables
when loading fact tables.

The configuration of the “Lookup dim_location_city” step from the load_dim_
location_address transformation in Figure 8-9 is shown in Figure 8-10.

Figure 8-10: The configuration of the “Database Lookup” step

The elements of this dialog are discussed in detail in the remainder of this section.

Connection, Lookup Schema, and Lookup Table

The configuration shown in Figure 8-10 is pretty straightforward: Because you’re look-
ing up the surrogate key of the dim_location_city table in the sakila_snowflake
schema, the “Lookup table” and “Connection” fields are filled in correspondingly.

For the Connection field, you can pick an existing connection from the drop-down list.
You can also use the Edit button to review or modify the definition of the connection.

 Chapter 8 ■ Handling Dimension Tables 223

In this case, the “Lookup schema” field is left blank because the sakila_snowflake
schema is already the default schema of the connection, but you could use this field
to specify another schema if required. You can either type the name of the schema, or
use the Browse … button to pop up a dialog from which you can choose the appropri-
ate schema.

Unsurprisingly, the “Lookup table” field must be used to specify which table should
be used to perform the lookup. As with the “Table schema” field, you can either type
the name of the table, or use the Browse … button to open a dialog from which you
can pick the table.

Lookup Key

At the bottom of the dialog shown in Figure 8-10 are two grids. The upper grid is
labeled “The key(s) to lookup the value(s)” and is used to specify how the fields from
the incoming stream should be matched against columns of the lookup table. To that
end, each row in the grid defines a comparison operation between a field value (some-
times two field values) from the incoming record stream against a column value of the
lookup table.

The first column in the grid is “Table field.” Here, you can specify the names of
the columns from the lookup table. You can either type the column name or use the
drop-down control to pick a column from the list. Typically, the set of columns speci-
fied for “Table field” make up a key of the lookup table, so that each row from the
incoming stream matches at most one row. For example, the location_city_id col-
umn specified in the grid shown in Figure 8-10 constitutes the business key of the
dim_location_city_table.

The Field1 column in the grid is used to specify which fields from the incoming
stream should be used to look for a record in the lookup table. The Comparator column
specifies a comparison operator that determines exactly how the database column and
the stream field are to be matched. In the vast majority of cases, the database columns
and stream values are tested for equality using the = as comparator.

Sometimes, it’s useful to look up a record based on a value range. In this case, you
can use the BETWEEN comparator. When using this comparator, a stream field must be
filled in for both the Field1 as well as the Field2 columns in the grid to specify the lower
and higher bounds of the value range respectively.

To quickly fill the grid, you can press the Get Fields button at the bottom of the dia-
log. This populates the grid with an equality comparison for each field of the incoming
stream. Both the “Table field” and the Field1 columns will be filled with field names
coming from the stream. This means that when the column names are not identical to
the field names, you will need to manually adjust the “Table field” values.

Lookup Value

You can use the grid labeled “Values to return from the lookup table” to specify which
columns of the lookup table are to be retrieved. For each of these columns, a field is
added to the outgoing stream.

Use the Field column to specify the columns from the lookup table. You can either
type the column names or select them from the drop-down list, just as you can in the
grid that specifies the lookup key. The “New name” column in the grid can be used

224 Part II ■ ETL

to control the names of the fields that are added to the outgoing stream. If you don’t
specify a field name here, then the column names will be used. The Default column can
be used to specify a custom literal value that is to be returned if no matching row is
found in the lookup table. When specifying a Default, you should use the Type column
to specify the data type of the value.

To quickly populate the grid, use the Get Lookup Fields button. This will add a row
to the grid for each column in the lookup table. By deleting the entries you don’t need,
or alternatively, making a selection and pressing Ctrl+K (for keep) to retain only those
entries that you do need, you can save yourself a lot of time configuring “Database
lookup” steps.

Cache Configuration

The “Database lookup” step can be configured to cache any lookup results. When cach-
ing is enabled, Kettle will store records retrieved from the database in an in-memory
cache, and then try to use the cache to serve subsequent lookup requests. This can result
in an enormous increase in speed if the same lookup has to be performed repeatedly,
which is typically the case. If there is little chance the same key has to be looked up
repeatedly, enabling the cache will result in some slowdown incurred by the extra work
required to search the cache before searching the lookup table.

In Figure 8-10, the “Enable cache?” checkbox is checked to enable caching. The “Cache
size in rows” field may be used to specify the size of the cache as a number of rows. If
the cache contains the maximum specified number of entries, any subsequent lookup
request that is not in the cache will cause one of the older cached entries to be removed.
As the label indicates, you can specify that all lookups are to be cached by setting the
property to zero.

In Figure 8-10, the “Cache size in rows” field is disabled, indicating that the setting
is not used. This is because the “Load all data from table” checkbox is checked, which
forces upfront caching of all of the rows in the dim_location_city table. When “Load
all data from table” is not checked, caching occurs in an “as-you-go” fashion: an attempt
is made to retrieve a row from the cache, and if it’s not in the cache, an attempt is made
to retrieve it from the table. When that attempt is successful, the row is stored in the
cache, speeding up subsequent lookup requests by the same key.

When “Load all data from table” is checked, the entire lookup table is scanned only once
in the initialization phase of a transformation run, storing all rows in the cache. During
the run itself, all lookup requests are done directly against the cache, and no attempt is
ever made to do any lookups against the database table. In this case, no time is ever lost to
maintain the cache and issue any further database queries, so typically this option offers
the best performance. The only reason not to use this option is when the lookup table is
very large and it would cost too much in terms of memory to store the lookup table in
memory.

Lookup Failure

When using the “Database lookup” step, there is typically an assumption that the
lookup will always succeed—that is, that the lookup key is found in the table, and that
it matches exactly one row. This may not always be the case, however: The lookup table

 Chapter 8 ■ Handling Dimension Tables 225

may not contain any rows that match the lookup key, or there may be multiple rows
that match the lookup key.

Normally, if a row is not found in the lookup table, then all lookup fields will have
get the value of the Default column defined in the “Values to return from the lookup
table” grid, and NULL in case no default value is configured. In some cases, this may be
exactly what you want. In other cases, you can actively block those rows from flowing
through the step by checking the “Do not pass the row if the lookup fails” checkbox.

NOTE In most cases, NULL values due to a failed lookup will cause a prob-

lem sooner or later, typically resulting in failure of the entire transformation.

For example, the load_dim_location_address transformation shown in

Figure 8-9 would fail because the row would be rejected by the dim_location_

address table as the location_city_key column is declared to be NOT NULL.

Failure of the transformation may actually be a good thing: as we explained

before, our strategy of level-wise top-down loading should have ensured that

the dim_location_city table was already completely loaded before attempt-

ing to load the dim_location_address table so a failure of the lookup prob-

ably indicates some logic flaw in either the design of the application, or some

data integrity issue in either the source system or the target dimension tables.

Without any explicit configuration of the “Database lookup” step, Kettle will simply
pick the first of the available rows if the lookup key matches multiple rows. You can
influence which one of the rows is picked by explicitly specifying the order in which the
rows are returned. You can do this by filling in the “Order by” field. The value for this
field should constitute a valid SQL ORDER BY clause (but without the actual keywords
ORDER BY) for whatever database the connection definition points to.

In many cases, the fact that a key lookup returns multiple records indicates a logical
error. In this case, you should select the “Fail on multiple results” checkbox. This will
cause the step, and thereby the entire transformation, to fail as soon as a key matches
multiple rows.

Sample Job

After building the transformations, a job can be used to organize the transformations
sequentially, ensuring the top-down loading order of dimension tables from higher to
lower levels. An example is shown in Figure 8-11.

Figure 8-11: The load_dim_location.kjb job ensures top-down level-wise

loading of the snowflaked location dimension tables

The job shown in Figure 8-11 is quite straightforward. It simply ensures that the
transformations that load the location dimension tables are run sequentially by order
of the levels of the dimension.

226 Part II ■ ETL

Star Schema Dimension Tables

In star schemas, each dimension is typically implemented as a single dimension table.
(For an example of a star schema, see the rental star schema shown in Figure 4-2.) The
hierarchies in which the dimension is organized take the form of a collection of columns,
where each column in such a collection represents a distinct level of the hierarchy.

Denormalization

Typically, star schema dimension tables are quite wide, having many columns that are
typically, as Kimball puts it, “highly correlated.” This is just another way of saying that the
values in these columns are functionally dependent on one another. Because the columns
are dependent on one another (and thus, not only dependent on the key of the dimension
table), these dimension tables are not in the third or even second normal form (3NF and
2NF, respectively). Star schema dimension tables may even have multi-valued columns,
containing a list of values representing a multitude of entities in the source system, thus
violating even the first normal form (1NF). Regardless of the exact classification, star
schema tables are typically characterized as being “not normalized.”

In many cases, the data for the dimension tables originates from OLTP source systems
of which the underlying database is typically normalized up to the third or Boyce-
Codd normal form (BCNF). So, in order to load the star schema dimension tables, a
transformation for loading a dimension table has to extract data from multiple related
source tables, combine the records, thereby denormalizing the data, and then deliver
the data to the target dimension table.

Denormalizing to 1NF with the “Database lookup” Step

In the discussion on loading snowflaked dimensions earlier in this chapter, we described
in detail how the “Database lookup” step can be used to look up the surrogate key of
a dimension table, based on the business key of a table in the source system. But the
“Database lookup” step can be used equally well to denormalize data by combining
related rows from the source system, thus preparing the data for loading star schema
dimension tables. The “Database lookup” step simply looks up field values based on a
key, and does not care about whether you’re doing the lookup to fetch a single surrogate
key value or an entire record.

In Chapter 4, you witnessed several instances of how the “Database lookup” step type
was used in this way to load star schema tables. It was first discussed in the example of the
fetch_address subtransformation (see Figure 4-14), which featured a lookup-cascade to
retrieve address data from the address, city, and country tables in the sakila database,
providing a denormalized set of columns with address data for the dim_customer and
dim_store dimension tables in the rental star schema.

We won’t repeat the detailed discussion of the “Database lookup” step here, but for
completeness and comparison, it is a good idea to take some time to examine how the
“Database lookup” steps are used in various transformations discussed in Chapter 4
and compare them to the steps in the snowflaked example earlier in this chapter.

 Chapter 8 ■ Handling Dimension Tables 227

Change Data Capture

In the rental star schema discussed in Chapter 4 and shown in Figure 4-2, each dimen-
sion table is based directly on a table in the sakila sample database. For example, the
dim_store dimension table is based on the store table, the dim_customer dimension
table is based on the customer table, and so on. To load the dimension tables, change
data was captured for these tables in the sakila schema and then denormalized using
the “Database lookup” step until it could finally be loaded into the dimension table.

If you consider the way data changes are captured in the transformations described
in Chapter 4 and compare that with the process for the level-wise loading of the snow-
flaked location dimension, an important difference emerges. The transformations in
Chapter 4 only detect changes for those tables that fill the lowest level of each dimension,
and look up related rows from there to fetch the data that makes up the higher levels.
But what if any changes occur at the higher level? Those changes will not be picked up,
resulting in an inconsistency between the source and target system. There are a number
of solutions to ensure the changes are captured at all levels of the dimension.

If the dimension is not too large (they often aren’t), it may be acceptable not to bother
with any sophisticated method to capture the changes. Simply scanning all rows in
the table from the source system that corresponds to the lowest level of the dimension
and then doing a lookup cascade to obtain the denormalized resultset will automati-
cally pick up any changes in the tables that correspond with the higher levels of the
dimension.

If it is a requirement to load only the changes from the source system, loading star
schema dimensions can become tricky. If the requirement is in place to reduce the load
on the source system, there is a workaround that still allows for a fairly simple load-
ing process of the dimension table—by utilizing a staging area. In this scenario, you
would extract only the changes from the source system, as per requirement. You can
then store the changes in a normalized staging area that is part of the ETL system. The
staging area still allows you to do the brute force approach because the staging area is
not part of the source system, and can be burdened as much as necessary to load the
dimension tables.

NOTE It is still possible to load only the changes while avoiding a staging

area. However, the transformation to load the dimension tables will rapidly

increase in complexity. Loading a denormalized dimension with these strin-

gent requirements concerning change data capture is an advanced topic, and

is beyond the scope of this chapter. However, we should point out that Kettle

does in fact offer all the building blocks to do it, should it be necessary.

For example, loading a denormalized location dimension containing data

at the address, city, and country level presumes capturing changes at all those

levels, too, just as we discussed when loading the snowflaked location dimen-

sion. But for a denormalized dimension, you now have to work your way down

from the higher levels to see which rows at the lower levels these changes

correspond to. Once you have that set, you can use the previously described

lookup cascade to prepare the denormalized result set.

228 Part II ■ ETL

For example, the processes of “looking down” from the captured changes

at the higher levels to see which rows are affected at the lower levels can be

implemented using the “Database join” step, which you first encountered

in the load_dim_film transformation in Chapter 4 (see Figure 4-15 and

the sections on creating the flags for film categories and filling the dim_

film_actor_bridge table). This may prove to be quite expensive, however,

because it will result in many separate queries on the lower level as the rows

at the higher level flow through the step. It may be more efficient to spend

some time writing a more advanced SQL JOIN query in the “Table input” step

while capturing the data.

You already encountered yet another approach to fight the loading com-

plexity: By using a normalized or snowflaked dimension, the problem is

virtually absent. Another approach to the modeling problem is discussed in

Chapter 19, which explores the Data Vault architecture.

Slowly Changing Dimensions

In this section, we examine in detail how to implement various types of slowly changing
dimensions (SCDs) with Kettle. For each type of slowly changing dimension, we briefly
describe its characteristics and then examine which Kettle steps you could use to load it.

NOTE This book does not offer a shortcut to data warehousing theory. If

you want to know the purpose of slowly changing dimensions, or if you’re

not aware of the typical techniques that are used to implement them on the

database level, you should read up on the subject in a specialized data ware-

housing book such as The Data Warehouse Toolkit, Second Edition, by Ralph

Kimball and Margy Ross. Chapter 7 of Pentaho Solutions by Roland Bouman

and Jos van Dongen (Wiley 2009) also contains a basic explanation of the fea-

tures and purpose of different types of slowly changing dimensions.

Types of Slowly Changing Dimensions

Following Kimball, we distinguish three main types of slowly changing dimensions:
type 1, type 2, and type 3:

Type 1:■ Updates in the source system result in corresponding updates in the
target dimension.

Type 2:■ Updates in the source system result in inserts in the target dimension
by maintaining multiple timestamped versions of dimension rows. This allows
you to find whichever version of the dimension row was applicable at any given
point in time.

Type 3:■ Updates in the source system are stored in different columns in the
same row.

 Chapter 8 ■ Handling Dimension Tables 229

We presume the reader is already aware of these distinctions, their purpose, and
their applicability.

Type 1 Slowly Changing Dimensions

In a type 1 slowly changing dimension, the dimension data is loaded to always reflect
the current situation, overwriting the current record with the changed one. There are
a couple of Kettle steps that can be used for type 1 dimensions.

In the section “Type 2 Slowly Changing Dimensions,” which follows, we discuss
the “Dimension lookup / update” step, which can be used to load a variety of slowly
changing dimension types, including type 1. Later in this chapter, we discuss the
“Combination lookup / update” step in the “Junk Dimensions” section. The remain-
der of this section focuses on the Insert / Update step as an example of loading a type
1 slowly changing dimension.

The Insert / Update Step

The Insert / Update step resides beneath the Output category in the left pane tree view
in Spoon. As its name implies, this step either inserts or updates a row. Sometimes,
this is referred to as an upsert. You first encountered the Insert / Update step in the
load_dim_actor transformation in Chapter 4. Let’s take a closer look at the configura-
tion of the load_dim_actor transformation (see Figure 8-12).

Figure 8-12: The configuration of the Insert / Update step

230 Part II ■ ETL

If you compare Figure 8-12 with the configuration of the “Database lookup” step,
shown in Figure 8-10, you will see a number of similarities. Just like the “Database
lookup” step, Insert / Update matches fields from the incoming stream against a column
or collection of columns of a database table. These columns act as the lookup key. If a
row is found, another set of table columns is updated with the values of the fields from
the incoming stream. If the row is not found, it is added to the table.

NOTE Don’t use the Insert / Update step if all you really want to do is insert

new rows without being bothered with errors resulting from unique or pri-

mary key constraint violations. If that’s what you want to do, it is more explicit

and often faster to simply use a “Table output” step. You can define error

handling for the “Table output” step to catch any rows that are rejected by the

table. This approach is faster than using the Insert / Update step because it

doesn’t waste time attempting to look up the row first.

We will discuss the elements shown in the dialog in Figure 8-12 in the remainder
of this section.

Connection, Target Schema and Table, and Commit Size

In the top section of the dialog shown in Figure 8-12, you see a number of fields to config-
ure the database connection, table schema, and table name, as with the “Database lookup”
step. The only difference is that this step refers to “Target schema” and “Target table,”
whereas the “Database lookup” step refers to “Lookup schema” and “Lookup table.”

The “Commit size” field is used to specify the size of the commit batch. The size
is specified as the number of row operations (in this case, the number of UPDATE and
INSERT statements) that are to be performed before sending a COMMIT command to the
database. A higher value will result in fewer COMMIT commands (and larger batches
of changes), which is usually good for performance. However, the value cannot be too
large as a large pending uncommitted transaction may consume a lot of resources from
the database, which may negatively impact database performance.

It is impossible to provide generic advice on the ideal value for the commit size
because it is dependent on many factors, such as the type of the database, the amount
of available memory and, of course, the overall activity of the database at dimension
loading time. However, the default commit size of 100 is quite conservative, and will
usually lead to unsatisfactory performance. In many cases, it shouldn’t be a problem to
use a commit size of 1,000 or even 10,000. More info for tuning configuration options
such as the “Commit size” can be found in Chapter 15.

An additional checkbox labeled “Don’t perform any updates” is available in the top
section of the dialog. By default, it is not checked, allowing the step to do both updates
as well as inserts. If it is checked, no updates will be performed, only inserts.

Target Key

Just like the “Database lookup” step, the Insert / Update step needs a key—that is, a
way to match the field values from the incoming stream to the columns of the target
table. In this case, if the match is made, the key is used again in a WHERE clause to
perform an UPDATE.

 Chapter 8 ■ Handling Dimension Tables 231

In both the “Database lookup” step and the Insert / Update step, the key is defined
in a grid labeled “The key(s) to look up the value(s).” For the Insert / Update step, the
grid to specify the key is almost identical to the one that appeared in the “Database
lookup” step. The only difference is in the columns used to specify the fields from the
stream: instead of Field1 and Field2, the analogous columns are called Stream Field
and Stream Field2 in the Insert / Update step. You can use the Get Fields button at the
right of the grid to quickly populate it.

As you saw in the “Database lookup” example shown in Figure 8-10, this step uses
the business key to match the rows from the source system against the rows already
present in the dimension table. So in this case, the actor_id column of the dim_actor
dimension table is matched against the actor_id field that originates from the source
system.

Update Fields

The lower section of the configuration dialog shown in Figure 8-12 has a grid labeled
“Update fields.” This is where you specify which fields from the stream should be used
to perform the insert or update.

At the right side of the grid, there are two buttons. The “Get update fields” button
can be used to quickly populate the grid with fields from the incoming stream. The
“Edit mapping” button opens a simple wizard that can simplify the task of assigning
the stream fields to the table columns. The mapping dialog is shown in Figure 8-13.

Figure 8-13: The mapping dialog offers a simple wizard to specify from which fields

values should be assigned to the database columns.

The dialog has three lists: on the left, the “Source fields” list of field names from
the incoming stream; in the middle, the “Target fields” list of column names from the
target table; on the right, the Mappings list, which contains the field/column mapping,
indicating from which field the value will be assigned to the table column. Selecting
the “Auto target selection” checkbox causes automatic selection of a matching column
when selecting a field. Similarly, selecting a column name will automatically also select
a matching field if the “Auto source selection” checkbox is selected.

Once you select a field name and a column name, you can move that combination to the
Mappings grid by pressing the Add button. You can quickly populate the mapping grid

232 Part II ■ ETL

by pressing the Guess button. If the “Hide assigned source fields” and “Hide assigned
target fields” checkboxes are checked, then the field or column will be removed from its
respective grid after adding a combination that contains it to the Mapping grid. Pressing
the Delete button will remove the selected mappings and the field and column will
become available again in their grid.

Type 2 Slowly Changing Dimensions

The characteristic of a type 2 slowly changing dimension is that it tracks changes in a
dimension over time. Whereas a type 1 slowly changing dimension destructively over-
writes the old data when a change occurs, the type 2 slowly changing dimension preserves
its history and adds a new row to the dimension table to reflect the current situation. In
this manner, a type 2 slowly changing dimension maintains a collection of different ver-
sions of the dimension row, which are all tied together by the same business key.

In Chapter 4, you witnessed several instances of type 2 slowly changing dimen-
sions: dim_customer, dim_staff, and dim_store. In several of the transformations
discussed in Chapter 4, we used a Kettle step that is especially designed to work with
this type of dimension: the “Dimension lookup / update” step. We encountered this
step in the transformations load_dim_customer (see Figure 4-11), load_dim_staff
(see Figure 4-8), and load_dim_store (see Figure 4-13), where it was used to load
the dimension tables. We also used it in the load_fact_rental transformation (see
Figure 4-18) to look up the keys of these dimension tables. In this section, we describe
in detail how to use this step to load dimensions. In Chapter 9, we describe how to use
this step to look up dimension keys when loading fact tables.

The “Dimension lookup / update” Step

In Spoon, the “Dimension lookup / update” step type resides beneath the “Data ware-
house” category in the left pane tree view. The configuration dialog for this step type is
shown Figure 8-14. In this case, we used the configuration used in the load_dim_cus-
tomer transformation (see Figure 4-11).

The “Dimension lookup / update” step can operate in two distinct modes:

It can be used to add and/or update data in a dimension table. This functionality ■

may be used to maintain type 1 and 2 slowly changing dimensions. This mode
is referred to as the update mode.

It can be used as a lookup step to retrieve the surrogate key of a type 2 slowly ■

changing dimension. This functionality is especially useful when loading fact
tables, and is referred to as the lookup mode.

Because the “Dimension lookup / update” step unites these different functionalities, it
superficially resembles a hybrid of the Insert / Update and “Database lookup” steps, each
of which implements one of these different functionalities on its own. However, it is more
complicated than that. Whereas the Insert / Update and “Database lookup” steps perform
only and exactly the task implied by their name, the “Dimension lookup / update” step is
aware of the history-preserving characteristics of type 2 slowly changing dimensions. In

 Chapter 8 ■ Handling Dimension Tables 233

the update mode, this allows steps of this type to decide whether it is appropriate to add
to the history when loading the dimension table, and to automatically provide appropri-
ate values for those columns that do the history bookkeeping in the dimension table. In
the lookup mode, the step is capable of automatically selecting the correct version of the
dimension row based on date or datetime fields in the incoming stream without having
to explicitly implement the details of the logic to do this.

It is possible to build a transformation that provides the same functionality as the
“Dimension lookup / update” step based on other Kettle steps. However, this would be
quite an elaborate transformation, which would quickly become impractical because it
would have to be rebuilt for each type 2 slowly changing dimension table.

Figure 8-14: The configuration of the “Load dim_customer SCD” step of the load_dim_

customer transformation

Specifying the Mode of Operation

To specify the mode of operation, use the “Update the dimension” checkbox. When
this is checked, the step can be used to load a dimension table. Unchecking this option
enables the lookup functionality. In the remainder of this section, we primarily describe
the dimension maintenance features. Chapter 9 explores how to use the lookup func-
tionality when loading fact tables.

234 Part II ■ ETL

General Configuration

The “Dimension lookup / update” step has a number of configuration properties simi-
lar to the ones already described in our discussion of the “Database lookup” step (see
Figure 8-10) and Insert / Update (see Figure 8-12):

The Connection, “Target schema,” “Target table,” and “Commit size” properties ■

have similar meaning to those discussed for the Insert / Update step. Note that
the “Commit size” is only applicable in the lookup mode.

The “Enable the cache,” “Pre-load the cache,” and “Cache size in rows” properties ■

have the same meaning as the “Enable cache,” “Load all data from table,” and
“Cache size in rows” properties of the “Database lookup” step, respectively. The
“Pre-load the cache” option is only available in the lookup mode.

Keys Tab Page

The “Key fields (to lookup row in dimension)” on the Keys tab page is used to map the
business key of the dimension table to the stream. This resembles the “The key(s) to
lookup the value(s)” grids in the “Database lookup” and Insert / Update steps.

The “Dimension field” is used to specify which columns constitute the business key
in the dimension table. The “Stream field” is used to specify the fields from the incom-
ing stream to which these columns are to be matched. The fields are always compared
based on equality. For this reason, the grid does not supply a way to specify which
comparison operator should be used.

There is an important difference with the “Database lookup” and Insert / Update steps
in regard to the way the fields and columns are actually matched. The grid only defines
how to match the business key. But in a type 2 slowly changing dimension, the business
key does not identify a single row in the dimension table! Because type 2 slowly chang-
ing dimension tables keep track of history, there may be multiple rows for one particular
business key, each representing a version that was valid at some point in time.

There has to be some policy that determines how to pick just one row out of the col-
lection of rows for the same business key. We explain how this works in the subsection
“History Maintenance.”

Surrogate Key

The “Dimension lookup / update” step offers a number of properties pertaining to the
surrogate key of the dimension table. In the dialog shown in Figure 8-14, these can all
be found beneath the tabbed pages.

The “Technical key field” should be used to specify the name of the primary key
column of the dimension table. For example, in Figure 8-14, this is set to customer_key.
The “Creation of technical key” fieldset offers options to control the automatic genera-
tion of surrogate key values. These options apply only to the update mode because they
are used only when adding new dimension rows. You can choose one of the following
methods to generate surrogate key values:

Use table maximum + 1:■ As the name implies, this option will automatically
query the dimension table for the maximum value of the column specified in the
“Technical key field” property, add 1 to the value, and use the result as the initial
value of the surrogate key for newly added rows.

 Chapter 8 ■ Handling Dimension Tables 235

Use sequence:■ Here you can specify the name of a database sequence that should
be used to draw the values from. You can use this option if your database sup-
ports sequences. (See also the section on “Surrogate Keys Based on a Database
Sequence” earlier in this chapter.) The name entered here should be an existing
database sequence that resides in the default schema of the specified connection,
or otherwise, the schema specified in the “Target schema” property.

Use auto increment field:■ You can choose this option if your database sup-
ports auto_increment or IDENTITY columns and the column specified by the
“Technical key field” property is defined using that feature. (See also the section
“Surrogate Keys Based on a Database Sequence” earlier in this chapter.)

History Maintenance

The “Dimension lookup / update” step has a number of properties to configure how to
deal with the history maintained by type 2 slowly changing dimensions. These can all
be found in the bottom section of the dialog shown in Figure 8-14, below the properties
to define the surrogate key.

The “Version field” property can be used to specify the name of the column in the
dimension table that stores the version number of the row. The combination of the busi-
ness key and this version number can be used to uniquely identify a row in the dimension
table. In the update mode, the “Dimension lookup / update” step will automatically store
the appropriate version number whenever the step adds a new row to the dimension
table.

The Stream Datefield property can be used to specify the Date field from the incoming
stream that provides the chronological context for the change in dimension data. For
example, in Figure 8-14, this property is set to last_update. You might recall that in
the load_dim_customer transformation, this field originates from the last_update
column of the customer table. This column contains the timestamp value indicating
when the row was last changed in the source system.

NOTE Although the last_update column of the customer table seems like

a reasonable choice for the Stream Datefield, it is actually not entirely correct.

The reason is that the customer dimension is denormalized and thus contains

data from multiple tables. This was mentioned earlier in our discussion on

change data capture for star schema dimensions.

Although the customer table in the sakila database represents the lowest level

of the customer dimension, it is not the only table that contributes to the denor-

malized row in the dim_customer dimension table. So a change at a higher level,

say the customer’s address, will in fact count as a new version of the customer

dimension record. The chronological context for a change in the address table

should be taken from the last_update column of the address table.

So in order to obtain the correct chronological context for the entire denor-

malized row, you would need to take the values of all last_update columns

of all tables denormalized into the dim_customer dimension table, and then

select one of them. For example, it seems reasonable to pick the value of the

most recent of these last_update columns because you can be sure that the

resulting denormalized dimension table record existed for sure by that time.

236 Part II ■ ETL

In many real-world scenarios, source systems do not record when a record was last
changed. In these cases, the chronology must be stipulated. In this case, it makes most
sense to use the current timestamp. The rationale behind this is that as far as the data
warehouse is concerned, the actual change may have happened at any moment in the
past. The only thing you can be sure of is that, at the latest, the change took place before
the change was detected and loaded into the dimension. For these cases, you do not
need to specify a stream field: Not specifying a value for this property automatically
causes the system date to be used as chronological context for the dimension change.

Type 2 slowly changing dimensions should have a pair of columns that specify
the period in time to which the dimension record applies. The columns that store the
start and end of this period should be specified using the “Date range start field” and
“Table daterange end” properties. In Figure 8-14, these properties are set to customer_
valid_from and customer_valid_through, respectively. The date range is required
to pick the correct version of the dimension row for a particular business key. This is
how the matching process of the “Dimension lookup / update” step differs from that
implemented by the “Database lookup” and Insert / Update steps: The “Dimension
lookup / update” step compares against the business key, but also requires that the
value that is used as chronological context lies within the range specified by the “Date
range start field” and “Table daterange end” properties. (As we just mentioned, the
chronology can be specified explicitly by configuring the Stream Datefield property;
otherwise, the system date will be used.)

When a dimension row is first inserted for a particular business key, the range is ini-
tialized using a generated minimum and maximum date based on the values in the “Min.
year” and “Max. year” fields. By default, the values in these fields are 1900 and 2199, so
the first dimension row for any new business key will get 1900-01-01 and 2199-12-
31 for the columns specified by the “Date range start field” and “Table daterange end”
properties, respectively. The assumption is that this date range is wide enough to fit all
history of the dimension table.

If the dimension table already contains an existing dimension row for the busi-
ness key, its column values are compared with the fields from the incoming stream.
If a change is detected, the column specified by the “Table daterange end” property
is updated and set to the value of the field in the incoming stream configured in the
“Stream Datefield” property. In addition, a new row is inserted into the dimension
table to store the change. For the new row, the date range starts with the value “Stream
Datefield” field, and ends with the end of the range of the existing row. The final result
is that the existing row and the new row will have consecutive date ranges, making it
easy to track the chronology of the changes for each distinct business key.

It may be desirable to use another, more realistic value in the start of the date range
used for the first dimension record added for a particular business key. To control the
way the start of the range is recorded, check the “Use an alternative start date?” check-
box, and use the list box to the right to pick another sort of date. The list offers a number
of predefined date values, such as the start of the transformation, or the system date,
or the NULL value. It seems reasonable to start the date range based on whatever was
configured as “Stream Datefield” but unfortunately this is not a supported option. You
can, however, set the type to “A Column value” and specify a column of the dimension
table instead.

 Chapter 8 ■ Handling Dimension Tables 237

Lookup / Update Fields

In the Fields tab page, you can specify the mapping between the columns of the dimen-
sion table and the fields from the incoming stream. This is somewhat like the “Values
to return from the lookup table” and Update fields grids of the “Database lookup” and
Insert / Update steps, respectively. The Fields tab page of the “Load dim_customer
SCD” step shown in Figure 8-14 is shown in Figure 8-15.

Figure 8-15: The configuration of the Fields tab page of the “Load dim_customer SCD” step

In both the lookup and the update modes, the values of the columns specified the
“Dimension field” column will be retrieved from the dimension table.

The “Stream field to compare with” column is used to map the dimension table col-
umns to the fields from the incoming stream. The mapping is relevant in the update
mode because the values of these fields are then compared to the values retrieved from
the corresponding database columns.

If the values in the dimension table column and the stream field are not identical,
then the option specified in the “Type of dimension update” determines the behavior.
The nice thing about this is that this enables you to choose a change history policy on a
per-column basis, allowing you to manage hybrid slowly changing dimensions, having
some columns that conform to a type 1 slowly changing dimension while some columns
use a typical type 2 policy or yet another form of history management.

For typical type 2 slowly changing dimension, you should use the Insert option,
which inserts a new dimension row for each change.

Other Types of Slowly Changing Dimensions

Types 1 and 2 slowly changing dimensions discussed in the previous sections are by
far the most useful and abundant. But other slowly changing dimension types do exist.
In fact, in many cases a dimension is not purely type 1 or type 2. Instead, it may be
desirable to choose a particular policy depending on the attribute.

Type 3 Slowly Changing Dimensions

Kettle does not provide a specialized step to maintain type 3 slowly changing dimen-
sions. However, you can implement them yourself without too much trouble.

238 Part II ■ ETL

For example, if you’re only interested in the current and the immediately previous
situation, you can use a Database Lookup step to look up the value of what is now the
current value, and store that as previous value along with the new current value using
an Update step. If you want to add columns dynamically to maintain more than one
version of the past, you can write a job and use the “Columns exist in a table” to check
if you need to modify the table design, and a SQL scripting step to execute the required
DDL to add new columns.

Hybrid Slowly Changing Dimensions

It should be stressed that the policies for managing change do not have to act on a
dimension table as a whole. Because changes occur at the column level, you could apply
a different policy for any group of columns. Dimensions that employ multiple policies
for tracking changes are referred to as “hybrid” slowly changing dimensions.

When thinking about which policy to choose for a particular column, you may dis-
cover that it is not so much the column itself that determines which policy is appropriate;
rather, the cause of the change is what’s really interesting, and this is what should be
considered when choosing when to apply which policy.

For example, consider a customer’s birth date. There can be little argument as to what
it means when we detect a change in the customer’s birth date in the source system:
It can be interpreted only as a correction of a previously inaccurate value. But what
about a customer’s last name? A change in last name can occur to correct a spelling
error, but could also indicate that the customer got married and adopted the name of
the spouse.

The “Dimension lookup / update” step, which was described in detail in the “Type 2
Slowly Changing Dimensions” section supports a per-column mapping policy for han-
dling change. You can configure the policy by choosing one of the predefined policies
per dimension column / stream field mapping in the Fields tab page of the “Dimension
lookup / update” step. This is shown in Figure 8-15. The available options are:

Insert:■ This option implements a type 2 slowly changing dimension policy. If a
difference is detected for one or more mappings that have the Insert option, then
a row is added to the dimension table.

Update: ■ This option simply updates the matched row. It can be used to imple-
ment a Type 1 slowly changing dimension

Punch through:■ The punch through option also performs an update. But instead
of updating only the matched dimension row, it will update all versions of the
row in a Type 2 slowly changing dimension

Date of last insert or update (without stream field as source):■ Use this option to
let the step automatically maintain a date field that records the date of the insert
or update using the system date field as source.

Date of last insert (without stream field as source):■ Use this option to let the step
automatically maintain a date field that records the date of the last insert using
the system date field as source.

 Chapter 8 ■ Handling Dimension Tables 239

Date of last update (without stream field as source):■ Use this option to let the
step automatically maintain a date field that records the date of the last update
using the system date field as source.

Last version (without stream field as source):■ Use this option to let the step
automatically maintain a flag that indicates if the row is the last version.

More Dimensions

There are still more types of dimensions to consider. Some examples are discussed in
the subsections that follow.

Generated Dimensions

For certain types of dimensions, such as date and time dimensions, the data can be
generated in advance. Other examples of generated dimensions include typical mini-
dimensions such as a demography dimension.

Date and Time Dimensions

In Chapter 4, we described the load_dim_date.ktr (see Figure 4-4) and load_dim_
time.ktr (see Figure 4-5) transformations, which load the dim_date and dim_time
dimension tables in the sakila rental star schema. The construction of these dimensions
was already discussed in some detail there, and will not be repeated here.

You can find more details about generating the data for the localized date dimension
at http://rpbouman.blogspot.com/2007/04/kettle-tip-using-java-locales-
for-date.html.

Kettle also ships with a few example transformations for constructing a date dimen-
sion. To review these examples, look in the samples/transformations directory right
beneath the Kettle home directory for the following transformations:

General - Populate date dimension AU.ktr■

General - Populate date dimension.ktr■

Generated Mini-Dimensions

In many cases, data for mini-dimensions such as a demography dimension can be gen-
erated in advance. The typical pattern for a transformation like this resembles the one
used in the load_dim_time transformation shown in Figure 4-5 in Chapter 4.

The pattern is to set up multiple Generate Rows steps, one for each independent
type of data stored in the dimension table. By adding an “Add sequence” step, you
can then generate a number to uniquely identify the individual rows in a stream. For
example, see the Generate Hours and “Hours sequence” steps in the load_dim_time
transformation.

240 Part II ■ ETL

Often, the next step is to use the sequence value as input for some function that
generates descriptive labels based on the sequence value input. By function we mean
some step that generates meaningful output derived from the sequence number input.
Many steps can be used for this purpose, depending on what output data you need,
such as the Calculator, Number Range, “Value mapper,” and of course any flavor of
the scripting steps such as Formula, Modified Javascript Value, or User Defined Java
Expression. An example of this is the “Calculate hours12” step in the load_dim_time
transformation.

The next step is to make combinations of all the streams using a “Join rows (carte-
sian product)” step. The result is one stream that contains all combinations of the input
data. The only thing required now is the generation of a key. Depending on the nature
of the dimension table, you might feel that it is appropriate to generate a smart key.
This is what is done in the Calculate Time step of the load_dim_time transformation.
Alternatively, you can use an “Add sequence” step to supply a surrogate key, or leave
the generation of the key to an auto_increment or IDENTIY column in the database.
The final step is to store the generated data in the dimension table using a simple “Table
output” step.

NOTE For an example of generating a mini-dimension, take a look at the

dim_demography.ktr transformation described in Chapter 10 of Pentaho

Solutions. The transformation itself can be freely obtained from the down-

load area at that book’s website at http://www.wiley.com/WileyCDA/

WileyTitle/productCd-0470484322.html. Use the tabs to navigate to

the download area, and download the archive containing all materials for

Chapter 10. For your convenience, the transformation is shown in Figure 8-16.

Figure 8-16: Generating a demography mini-dimension

 Chapter 8 ■ Handling Dimension Tables 241

Junk Dimensions

Mini-dimensions are typically junk dimensions: they consist of many different and
unrelated attributes that can still be useful for analysis, but cannot (yet) be classified
with another dimension. Often, junk dimensions are pulled out of a monster dimension.
For example, a customer profile dimension may contain several demographic attributes
along with some attributes that describe payment or ordering behavior.

Whereas a mini-dimension like demography can often be generated, this may not
be possible or convenient in all cases. Either the total number of possible combinations
of the junk attributes may be inconveniently large, or the value space for one of the
attributes may not be known beforehand.

The “Combination lookup/update” step is an excellent choice to implement these
types of junk dimensions. In Spoon, the “Combination lookup/update” step resides
beneath the Data Warehouse category in the left pane of the tree view.

NOTE You encountered the “Combination lookup/update” step type in

Chapter 4 where it was used in the load_dim_film transformation (see

Figure 4-16) to load the dim_film dimension table. However, the dim_film

dimension table is not a junk dimension, which is why we don’t discuss that

particular example here.

When you open the configuration dialog of the “Combination lookup/update” step,
you will recognize many options that are also present in the “Database lookup,” Insert /
Update, and “Dimension lookup / update” steps:

Connection, table, and schema properties■

A grid for mapping the dimension table columns to fields from the incoming ■

stream

Options to specify the dimension surrogate key and control the behavior for ■

generating surrogate key values

The “Combination lookup/update” step can best be compared to the Insert / Update
step: It looks up rows according to the mapping of dimension table columns to stream
fields. If a row is found, it is updated; if no row is found, it is added. The surrogate key
column is added to the outgoing stream, so any surrogate key value that is generated
in the process can be used in the transformation downstream of the step.

The main difference between the “Combination lookup/update” and Insert / Update
steps is that the former does not distinguish between the key fields and the lookup
fields: Junk dimensions are characterized by having all kinds of combinations of unre-
lated attributes, and almost by definition, there is no real natural key for junk dimen-
sion tables. Rather, the natural key consists of the combination of all attributes. For this
reason, the lookup and update fields are merged into one: The “Combination lookup/
update” step is typically used to match all dimension columns (except its surrogate
key) to the fields in the stream.

242 Part II ■ ETL

Recursive Hierarchies

Some hierarchies are recursive by nature. For example, the relationship between an
employee and his boss or the departmental organization of a company is recursive: the
boss of the employee is itself also an employee, and a department is itself a component
of an organizational unit at a higher level. Typically, relationships like this are imple-
mented by adding a foreign key to the dimension table that refers to the primary key
of the dimension table itself (so-called adjacency list). The foreign key column can be
referred to as the parent key because it points to the row that is directly hierarchically
related. Similarly, we can refer to the original key of the table as child key.

ROLAP servers such as Mondrian can use a dimension design like this to drill down
from higher levels to the lower levels. However, they can do so only one level at a time:
After discovering the children of a particular level, each of these children may itself
have children, and another query is required to retrieve those. The problem with that
is that there is no convenient way to roll up a higher level and calculate an aggregate
of all descendant levels because all levels would have to be queried one by one, until
no more children are found.

There is a solution to this problem: You can define a so-called transitive closure table
or simply closure table. Figure 8-17 shows a simplified Entity-Relationship diagram with
an employee table with a recursive relationship along with its closure table.

dim_employee

employee_key: INTEGER(10) [PK]

boss_employee_key: INTEGER(10) [FK]

dim_employee_closure

boss_employee_key: INTEGER(10) [PFK]
employee_key: INTEGER(10) [PFK]

distance: INTEGER(10)

Figure 8-17: A table with a recursive

relationship and its closure table

The closure table has at least two columns that derive from the table with the recur-
sive relationship: one for the original key, and one for the self-referencing foreign key.
The closure table is filled by querying all descendants for any given row from the origi-
nal table, and storing the descendant keys along with the key of the original ancestor.
This allows the entire set of descendants to be retrieved based on one ancestor key and
then allows SQL queries to aggregate.

Kettle provides a Closure Generator step to populate these transitive closure tables.
This step type resides in the Transformation category in the left pane of the tree view.
The configuration of this step is shown in Figure 8-18.

 Chapter 8 ■ Handling Dimension Tables 243

Figure 8-18: The configuration of the Closure Generator step

The Closure Generator step operates only on the incoming stream and generates the
closure records to the outgoing stream. To configure it requires only that you specify
the field that acts as parent key and the field that acts as child key. The step will also
calculate the “distance” between the related rows. The distance is simply the number of
levels between the ancestor and descendant pair that is generated by the step. You can
specify the name for the field that will be used to store the distance in the “Distance
field name” property.

Summary

In this chapter, we discussed in detail how to use Kettle to manage data warehouse
dimension tables. The main points covered include:

How the Kimball’s theoretical framework of ETL subsystems ties into the act of ■

maintaining and loading dimension tables in practice

Business keys and surrogate keys, and what role they play in the data warehouse■

Generating values for surrogate keys with Kettle’s “Add sequence” step, and how ■

this relates to using database features such as sequence objects, and auto_incre-
ment or IDENTITY columns

Using Kettle’s “Database lookup” step for looking up keys and for loading denor-■

malized dimension tables

Using Kettle for level-wise top-down loading of snowflaked dimensions■

Loading denormalized dimension tables for star schemas, and the sometimes ■

complicated implications for proper change data capture

Different types of slowly changing dimensions, most notably Type 1 and Type 2■

Using Kettle’s Insert/Update step to load Type 1 slowly changing dimensions■

244 Part II ■ ETL

Using Kettle’s “Dimension lookup/update” step, both for loading Type 2 slowly ■

changing dimension tables as well as looking up the key in a Type 2 slowly chang-
ing dimension

Techniques for generating data for special dimensions like the data and time ■

dimension, and mini-dimensions

Using the “Combination lookup/update” step to load junk dimension tables■

Using the closure generator to generate a transitive closure table to flatten recur-■

sive hierarchies

245

C H A P T E R

9

Loading Fact Tables

Fact tables are the storage-hungry collections of data where the analysis details are
stored. In a typical data warehouse environment, it’s the fact tables that take up the
most space, which is measured in gigabytes, terabytes, and sometimes even petabytes.
In order to get this data from a source system into the data warehouse, you need a fast
loading mechanism, consisting of several components, the basics of which are covered
in this chapter. First we discuss bulk loaders, special Kettle plugins that allow you to
take advantage of the bulk-loading capabilities of the various types of databases.

NOTE Although the subject of this chapter is loading fact tables, the Kettle

bulk loading features can be used for other bulk load tasks as well, for

instance to load flat files in staging tables.

Before you can load the data into its final destination it needs to undergo other opera-
tions as well, such as looking up the correct dimension surrogate keys. We cover the
techniques available in Kettle for doing this in this chapter; in Chapter 19 we’ll show
another technique that’s purely based on using SQL.

In the final section of this chapter, we cover three different types of fact tables, as
identified by Ralph Kimball. We also introduce a fourth type of fact table, the state-

oriented fact table, as described by Dutch mathematician and data modeling guru
Dr. Harm van der Lek. The chapter ends with a short introduction in the use of aggre-
gate tables and how to load them using Kettle.

Before we start, let’s take a step back and look at where the topics in this chapter fit
in with respect to the 34 subsystems. This chapter actually completes the previous one

246 Part II ■ ETL

in covering the Data Delivery section of the subsystems. More specifically, the following
subsystems are covered here:

Fact table loader (subsystem 13) is used to generate the load for the various kinds ■

of fact tables.

The surrogate key pipeline (subsystem 14) is one of the key concepts in a dimen-■

sional data warehouse and will be covered in depth, including the various mecha-
nisms Kettle can apply for handling dimension key lookups.

Multi-valued dimension bridge table builder (subsystem 15) is used for building ■

so-called bridge tables. Chapter 4 contains an example of this type of table for
bridging films to actors.

Late arriving data handler (subsystem 16) covers loading late arriving dimension ■

and fact data. The latter needs some special consideration but don’t pose a big
problem because looking up the dimension key that was valid at the transaction
time of the fact is pretty straightforward. It’s the early-arriving facts (or late arriv-
ing dimension data) that cause the headaches. We’ll describe possible solutions
for these issues.

The aggregate builder (subsystem 19) is needed to precalculate summarized data ■

to speed up analysis performance. To date, none of the open source databases
offer an automated aggregate navigation mechanism as Oracle and other commer-
cial databases do with materialized views. Still, you can benefit from aggregate
tables because they can be used within a Mondrian schema or when you need to
develop standard reports that require high-level overviews and speedy perfor-
mance. The trick with aggregate tables is to have them automatically refreshed
when new facts are added. With Kettle this is actually pretty straightforward, as
we demonstrate at the end of this chapter.

Remember that loading facts is usually the final stage in an ETL process. First, data
is extracted and written to a staging file or table. Then all dimension tables need to be
updated, and finally the updated dimension information can be used to update the fact
tables. Although this is the preferred way of processing data, it’s not always possible
to do so. This could result in either dimension or fact data arriving “late,” and the late
arriving data handler subsystem should take care of that.

Loading in Bulk

Loading data into a database table using standard Data Manipulation Language (DML)
operations works fine if your data size is limited to a few thousand or even a few hun-
dred thousand rows.

When loading millions or even billions of rows, however, insert statements just don’t
cut it anymore. Why is that? Simple: All DML operations such as insert, update, and
delete are logged by the database management system. This means that in addition to
the operation to insert a row into a table, there’s a second operation that writes the fact
that the record is inserted into a database transaction log. This is not the only thing

 Chapter 9 ■ Loading Fact Tables 247

that slows down standard insert statements: All constraints on the table columns are
also checked as rows are inserted into the table. Both logging and constraint checking
can cause considerable delays when large datasets need to be loaded, so for optimal
performance the process of bulk loading was invented. Basically, there are two ways to
load data in bulk:

File-based:■ Data is available in a flat file and must be read from disk. Usually
the database requires a bulk loader definition (the control file) telling what fields
and delimiters are being used. There are two possible scenarios in which flat files
play a role. The first one is when the file is already available and can directly be
loaded into the database. The second scenario is that you want to bulk load data
that results from a transformation. In the latter case there are both advantages
and disadvantages to using a file based bulk loader. The major disadvantage,
of course, is that an intermediate file needs to be created, which is then read by
the bulk-loading process. This adds two extra I/O streams to the data process-
ing workflow, which increases the data volume threshold for choosing between
regular inserts and bulk loading. There are advantages as well: An intermediate
file adds an extra layer of reliability to a solution. If the bulk load fails, it’s fairly
easy to resolve possible issues and restart the load. And sometimes a ready-to
load-file is delivered by another system that cannot be accessed directly.

API-based:■ There is no intermediate file storage. The data is loaded directly into
the database from the ETL tool by using a bulk loader API or STDIN as the data
source. In theory, this is the easier and faster way of bulk loading because there’s
less disk I/O and no need for specifying and creating control files. Unfortunately,
Kettle currently doesn’t contain bulk loaders that can call, for example, the Oracle
or Microsoft SQL Server bulk load APIs.

Each database has its own way of handling bulk loading and the methods and
requirements vary wildly, from the simple LOAD DATA INFILE command used in
MySQL to the elaborate SQL*Loader specification of the Oracle database. Not every
database, however, has a bulk loader that can read directly from the input of another
program. To benefit from the direct path loading capabilities of Oracle’s SQL*Loader,
calls to the Oracle Call Interface (OCI) must be sent from the external program issuing
the bulk load.

STDIN and FIFO

Some databases, most notably PostgreSQL and MonetDB, allow for STDIN to be used
as the source for the bulk load. STDIN is shorthand for standard input and simply refers
to the data stream going into a program. When you type text using a keyboard, the
keystrokes are the STDIN for the word processor that receives this input. In a similar
way, the data output of a Kettle step can be used as the STDIN for the receiving bulk
loader process. For the transfer of the data, Kettle can use a FIFO.

FIFO is shorthand for first in, first out, to indicate that the order of the data going
in is the same as the one coming out. An alternative name for a FIFO is a named pipe.
To most people in the Linux and UNIX world, a pipe is a very familiar concept. Take

248 Part II ■ ETL

for instance the command ls -l | grep 06. This will direct the output of the ls
-l command (a detailed listing of all files) to the grep 06 command (showing only
the lines that contain the character combination 06) using a pipe (|). The data that’s
exchanged between the two commands only exists in memory for the duration of the
chained command and cannot be accessed by any other means. This changes when
you use a named pipe to exchange this data. A named pipe is a special type of file that
is also displayed by the ls command but actually exists only in memory. To create a
named pipe, use the mkfifo command, after which fifo can be used to direct output
to and read data from. As a simple example, open two terminal screens and type the
following commands in one terminal:

mkfifo mypipe
ls -l > mypipe

Then go to the second terminal and type

cat < mypipe

As you will discover, the command in the first terminal appears to do nothing until
the command in the second terminal is executed. This is the expected behavior because
both sides of the pipe need to be connected before the flow of data can start. If you run
the ls and cat commands again but in reverse order (first cat < mypipe on terminal
2 and then ls -l > mypipe on terminal 1), you’ll notice that it doesn’t matter which
end of the pipe is opened first.

The reason we explain this in such detail is the fact that named pipes are the default
mechanism for the MySQL Bulk Loader transformation step, and for the majority of
people starting with an open source database, MySQL is the default choice.

Kettle Bulk Loaders

As mentioned before, every database has its own way of offering bulk loading capa-
bilities. This means that for every database a different bulk loader component needs
to be created. Kettle offers bulk loader steps for the most common databases such as
Oracle, SQL Server, MySQL, and PostgreSQL, but also for more exotic products such
as Greenplum (experimental), MonetDB, and LucidDB. While we can’t cover each one
in detail in this chapter, we offer a quick summary of the main considerations to keep in
mind for each database and point you to other references to find more in-depth coverage
of the specific database loader functionality. You may notice that DB2 is missing so if
you’re a DB2 shop, you need to either create a CSV file first and load it using the DB2
load utility, or write your own plugin for it.

You might already have noticed that both the Job and the Transformation step collec-
tions contain bulk loaders. There’s a very good reason for this: All the file management
operations belong in a job as these are distinct operations executed sequentially. The
bulk loaders that are in the “Bulk loading” section of the Job design tab all require a
physical file to be present for the bulk load, whereas the bulk loader steps that can be
used in a transformation are capable of reading data directly from the stream. The next
subsections highlight some of these transformations.

 Chapter 9 ■ Loading Fact Tables 249

MySQL Bulk Loading

MySQL might be the most widely used database around but it’s probably not the best
solution for large data warehouses. Nevertheless, the bulk loader support within Kettle
is extensive. MySQL is also the only database for which bulk loading from the database
to a file is available, which is actually a bulk extracter instead of a loader. And there
are two options for bulk loading into MySQL: one as part of the job steps that’s using
files as input, and one as a transformation step. We’ve already explained the difference.
The job version expects a file to process; the transformation version can handle data
directly from a stream and load it into a MySQL table using a FIFO file. You can find
more information on the load facilities of MySQL at http://dev.mysql.com/doc/
refman/5.1/en/load-data.html.

LucidDB Bulk Loader

Previous versions of Kettle had a FIFO-based stream loader for LucidDB, but since Kettle
4.0 it has been replaced by a new version that can push data directly from Kettle into the
LucidDB column store. Since the complete documentation including examples is avail-
able on http://pub.eigenbase.org/wiki/LucidDbPDIStreamingLoader there’s
no need to repeat that information here. Three things are important to note, however:

The LucidDB bulk loader is smarter than most loaders; it allows for intelligent ■

updating via MERGE/UPDATE in addition to the traditional bulk INSERT.

LucidDB bodes well with all components in the Pentaho BI suite, not only with ■

Kettle. For instance, the integration with Mondrian is more than excellent.

As a column-based data warehouse database, it offers at least a 10-fold performance ■

increase over classic row-based databases such as MySQL or PostgreSQL.

For more information about LucidDB, please visit http://luciddb.org/.

Oracle Bulk Loader

The Oracle loader step is one of the more overwhelming components within Kettle
because of the enormous number of options that can be set and the number of file loca-
tions to enter. Oracle’s SQL*Loader (the utility that provides the loading capabilities) has
been around for several decades and is still one of the most widely used loading utilities
in existence. If you’ve never worked with SQL*Loader before, it’s best to start with the
Wiki entry at http://wiki.pentaho.com/display/EAI/Oracle+Bulk+Loader. For
more background information about SQL*Loader, you can go to the Oracle documenta-
tion at http://www.oracle.com/pls/db111/homepage and search for “SQL*Loader
Concepts.”

There are good and bad things about this loader. The bad is easy to see: There are
many options and it requires a lot of preparation and setup before you can start loading
data. The good news, however, is the fact that the tool is extremely robust and lets you
specify exactly how your data should be handled, including possible errors and dis-
carded records. Kettle also saves you the trouble of having to create a control file because
that’s being done on-the-fly based on the metadata of the incoming data stream.

250 Part II ■ ETL

PostgreSQL Bulk Loader

The PostgreSQL bulk loader is still an experimental step that lets you copy data from a
Kettle stream directly into the database using PostgreSQL’s standard COPY command.
The manual offers the following as the main command, with several other options
available for specifying a delimiter, escape character, and so on:

COPY tablename [(column [, ...])]

 FROM { ‘filename’ | STDIN }

As you can see, both filename and STDIN are available as input options, but
Kettle uses only the latter. The Wiki entry at http://wiki.pentaho.com/display/
EAI/PostgreSQL+Bulk+Loader is a good starting point for the explanation of the
PostgreSQL bulk loader, but beware that there are still many issues with this loader—
hence its “experimental” status.

NOTE In order for the PostgreSQL bulk loader to work, you’ll have to define

a trusted connection to your server. See the Pentaho Wiki entry at http://

wiki.pentaho.com/display/EAI/PostgreSQL+Bulk+Loader for detailed

instructions.

Table Output Step

This might be a surprising entry here, since the Table Output step is not a bulk loader
at all but uses the standard insert SQL calls to a database. As we explained in the
introduction of this section, loading several thousand or maybe even more rows using
a Table Output step might work perfectly. You can even increase the throughput for this
step by running several of them in parallel, as we show in Chapters 15 and 16. There
are a few compelling reasons for sticking with the Table Output step too. It is easy to
use, has good field mapping options compared to some of the bulk loaders, and it will
work with any database.

General Bulk Load Considerations

You should take a couple of things into account when using bulk loading, especially when
intermediate files are used. You should, of course, make sure that there is ample space in
the location specified for the files. And as stated before, the additional file I/O might be
costly, performance wise. Luckily, general advancements in memory and storage technol-
ogy and the constantly dropping price points can help you to overcome this potential
bottleneck. You can consider the following techniques if performance is an issue:

Use a fast array of SSD drives to write and read the files needed for bulk loading ■

operations.

Create a RAM disk if you have enough available memory.■

Use one of the parallelization and clustering techniques covered in Chapter 16.■

 Chapter 9 ■ Loading Fact Tables 251

As always, there’s a speed-versus-reliability tradeoff; data on a RAM disk isn’t stored
physically, and the fastest RAID option is raid 0, which is also the least secure RAID
alternative.

Another thing to be aware of is that, in general, there are two types of bulk loading,
Insert and Truncate. The Insert operation appends rows to an existing table, leaving all
other data unchanged, whereas the Truncate operation removes all existing data from
the table. These options also allow you to optimize your solution. A staging table should,
in general, be truncated before data is loaded, but you probably don’t want to truncate
and completely reload the data warehouse fact tables. For those, several strategies can
be used, especially when the tables are very large. These strategies, however, depend
on the type of fact table. Different fact table types are covered later in this chapter. We’ll
discuss the appropriate bulk loading strategy for each type there as well.

Dimension Lookups

One of the key operations to perform during a fact table load is the lookup of the correct
surrogate keys of dimension tables. In the previous chapter, we covered the genera-
tion of surrogate keys and explained why you need surrogate keys, especially when
preserving history (type 2 SCD) is important. Another reason for using single-column
integer keys is because they allow for very compact fact tables that take up considerably
less space than original key values from the source system. When storing hundreds of
millions of rows, each byte saved in a fact table row helps to cut down storage require-
ments and improve query speed.

Maintaining Referential Integrity

For a dimensional data warehouse, each foreign key in a fact table should correspond
to a primary key in the corresponding dimension table. In a regular transactional
database, this referential integrity is enforced by using foreign key constraints. These
constraints prevent the following, related problems from happening:

Deleting a dimension record, leaving all the related fact table records with an ■

unknown dimension key

Inserting a foreign key in the fact table for which there is no corresponding dimen-■

sion primary key

It is not always feasible to use foreign key constraints in a data warehouse, espe-
cially while loading large amounts of data. The database must check the constraints
for every inserted row, slowing down the overall load process. Not having foreign key
constraints isn’t a big problem, however: As you may recall, dimension records are
never deleted so a dimension key will always exist for a loaded fact record. And by
using a dimension key lookup to prepare the fact records for loading, the existence of
a foreign key is guaranteed as well. At least, that’s the theory, and for many people the
daily practice too.

252 Part II ■ ETL

There are other approaches with respect to foreign key constraints as well: an alterna-
tive to not using foreign keys is to enforce them, but only after the fact table has been
loaded. This means using an “Execute SQL script” step before the load starts to drop
all existing foreign key constraints, do the fact load, and after that execute a second
“Execute SQL script” step to create them again. When this last step fails you’ll imme-
diately know that there’s a referential integrity problem in your data warehouse, which
should cause a massive alarm.

As with many things in data warehousing and ETL, it’s hard to tell which approach
is best. In 99 percent of the cases, using a well designed surrogate key pipeline together
with proper CDC handling will work perfectly. Combined with the test techniques
presented in Chapter 11, you can guarantee a correct load of the data warehouse and
avoid the extra development and load time required for dropping and re-enabling the
foreign key constraints. Still, there can be very good reasons to use them. We already
mentioned one (detecting faulty loads), but query performance is another one; most
databases will use the foreign key constraints to optimize the query execution plan
and thus yield better response times.

The next section covers the techniques available for looking up the correct key
values.

The Surrogate Key Pipeline

The general principle for finding the correct dimension keys is fairly straightforward
and is often pictured as a pipeline, as you can see in the simple example in Figure 9-1
where three “Database lookup” steps are used. For reasons of simplicity and compat-
ibility we’ve used a “Table output” step instead of one of the bulk loaders.

Figure 9-1: The Surrogate Key Pipeline

Chapter 4 already contained a more elaborate example (load rentals) using the Sakila
example database where the correct dimensions keys were retrieved based on the rental
date. If you translate this lookup function into a more generic example in a kind of
pseudo SQL, you get the following:

SELECT dimkey
FROM dimtable
WHERE fact_businesskey = dimtable.businesskey
AND valid_from <= fact_date
AND valid_to > fact_date

What happens in the preceding example is that the dimension key that was valid
on the day the incoming transaction took place is retrieved. Because there are multiple
conditions that need to be evaluated, this is not the fastest way of retrieving dimension
keys. If there is a regular load process for the data warehouse and there haven’t been

 Chapter 9 ■ Loading Fact Tables 253

any delays in delivering both dimension and fact data, it is sufficient to retrieve the
latest version of the dimension keys.

Using In-Memory Lookups

The fastest way to retrieve information is from the computer’s RAM. So the fastest way
to find a surrogate key for a certain business key is to store all the dimension information
needed for the lookup in memory. This is achieved by selecting both Enable cache
and Load all data from table in the “Database lookup” step. Be careful, however,
because you can quickly run out of memory with large dimension tables, especially if
you chain all key lookups together in a single transformation. Also, make sure to limit
the columns selected to the ones that are actually needed for doing the lookup. It doesn’t
make sense to load an entire dimension table into memory when all you need are the
dimension and business key, and optionally the valid from and to dates.

TIP The maximum amount of memory available to Kettle is limited by the

-Xmx setting in the startup scripts (Spoon, Carte, Kitchen, and Pan), or if using

Kettle.exe on Windows in the Kettle ini file kettle.l4j.ini.

Stream Lookups

In most cases, the “Database lookup” step will work just fine. It doesn’t solve every
lookup problem, however. What if the lookup values are coming from an external
source, or aren’t stored in a database at all? That’s where the “Stream lookup” step can
help. This step doesn’t have all the options available in the “Database lookup” step and
only allows for basic key lookups based on a single lookup value. It does, however, allow
you to use any available step as input to get the lookup values from. For the typical
case where dimension and fact data arrive at the same time, using a table input step to
retrieve the latest version of the dimension records and using that as the input step for
the stream lookup is a very efficient way of doing lookups on large dimension tables.

The efficiency is established by the fact that only the actual records are available in the
lookup set, so if a customer dimension contains 3 million rows with all history preserved
but the current records are a third of that (which is not an uncommon assumption), only
1 million rows have to be searched in the lookup step using the stream lookup. Even
with the same number of rows, the “Stream lookup” step is a little faster, as Figures
9-2 and 9-3 will show. For this exercise, we used a TPC-H dataset of 1GB (see http://
www.tpc.org for details about the TPC-H benchmark database), which gives us some
data volume to play with. A 1GB database has 150,000 customer records, 1.5 million
orders and roughly 6 million lineitem rows. The customer dimension created from
this data is an almost 1 to 1 copy, except for an added customer_id column using the
Add Sequence step.

Figure 9-2 shows a stream lookup where the lookup data is pre-fetched using a “Table
input” step with the following query in it:

select customer_id, c_custkey from dim_customer where current_
flag = 1

254 Part II ■ ETL

Figure 9-2: Using a “Stream lookup” step

NOTE Note that the example in Figure 9-2 does use a “Table input” step as

the data source for the “Stream lookup” step, which might be confusing. It is,

however, just an example: any step that provides data can be used to feed the

data into a stream lookup.

The stream lookup itself is displayed in Figure 9-3. As you can see, it’s a fairly straight-
forward step where the input step for the lookup data is selected in the Lookup step
drop-down list.

Figure 9-3: Inside the “Stream lookup” step

 Chapter 9 ■ Loading Fact Tables 255

It’s also possible to use multiple keys, but only with an implicit “equals” operator.
In this case, the incoming customer key from the orders table (o_custkey) is com-
pared with the lookup field c_custkey from the dimension table. The field to retrieve
(again from the dimension table) is customer_id. Don’t forget to specify the type of
the field; the default is a hyphen (-), which causes errors within subsequent steps. The
three checkboxes at the bottom serve to tweak the way Kettle compresses and sorts
the data.

NOTE For an excellent explanation/discussion about the memory options

available in the “Stream lookup” step, go to http://forums.pentaho.org/

showthread.php?t=68058.

As a comparison, you can run the same transformation but then with a regular
“Database lookup” step; the results are displayed in Figure 9-4.

Figure 9-4: “Database lookup” step

If you look closely, you can see that the stream lookup is a little bit faster, even with
the same amount of data in the lookup set. Whether to use the “Stream lookup” in every
case is hard to tell; as you can see from the examples it always takes at least one extra
step, and there’s only a simple key comparison available for the lookup. In all cases
where more advanced lookup conditions are required, for instance when late-arriving
facts need to be handled, a database lookup step is required. The next section explains
how to handle late arriving data

Late-Arriving Data

Under normal circumstances, data is extracted from source systems at regular intervals
and processed with Kettle. As we explained in the chapter introduction, the standard
order is to first handle the dimensions, and then the fact tables. This order is impor-
tant because you need the surrogate keys in the fact tables, and these keys have to be
generated first (if necessary) using the dimension loading process. Now what happens
when the data delivery is out of sync and fact or dimension data arrives with a delay of
several days or even weeks? This can cause irregularities in the data warehouse; it’s one

256 Part II ■ ETL

thing to have customers without any orders (which could be true of course), but orders
shipped to an unknown customer makes reporting on this data quite hard. Still, there
are resolutions for these problems as we describe in the following sections.

Late-Arriving Facts

Facts arrive late when transaction data arrives at the ETL process long after the transac-
tion took place. During the delay, the related dimension data might have gotten new
versions so a simple lookup on the current dimension records might return false results.
The problem is easily resolved by using the valid_from and valid_to timestamps to
find the correct version of the record and the accompanying surrogate dimension key.
But easily doesn’t necessarily mean fast. Just look at Figure 9-5 where we added the date
conditions to the “Database lookup” step we used earlier. Now compare the process
counters with the values in Figure 9-4, and you’ll see a dramatic difference.

Figure 9-5: Late-arriving facts performance

The message here is that when late-arriving facts occur, it’s best to isolate these
records from regular loads because it might take a long time to process all records
using the valid_from and valid_to conditions, even when indexes are created for
these columns.

Late-Arriving Dimensions

The late arrival of dimension data is the reverse situation where the fact records have
been processed (or need to be processed), but the dimension records are not yet avail-
able. Unfortunately, this is a lot harder to solve than the late-arriving fact issue because
you need to be prepared for this to happen. The problem is that a key exists in the
incoming transaction (let’s assume it’s a new customer), but there’s no dimension record
yet. As a result, the dimension lookup will fail. A simple solution would be to add an
unknown record to the dimension table with an ID that’s reserved for these situations.
Usually the ID 0 is used, but some people prefer –999 or another special value. In

 Chapter 9 ■ Loading Fact Tables 257

the “Database lookup” step, this is achieved by adding a Default value, as shown in
Figure 9-6. This value gets assigned when no corresponding ID can be found based on
the lookup keys and criteria.

Figure 9-6: Default lookup return value

Now when a report is run, there is an unknown category in the data showing all
transactions with an unknown customer or unknown product.

Does this solve the problem? Well, not really. There’s no way of ever getting the
correct dimension key assigned to the fact row after assigning the unknown value. So
instead of talking about “unknown,” it’s better to speak of “not yet known,” which leads
to a better solution for this problem. First let’s explain the workflow and then show how
the solution works in Kettle:

 1. A fact row comes into the ETL process and one of the lookups fails. Let’s assume
it’s a missing customer with a source system customer key ABC123.

 2. Instead of assigning an unknown ID, send the row to a sub-process.

 3. The sub-process uses the unknown customer key ABC123 to create a new dimen-
sion record. All values in this record (name, address, and so on) are set to N/A
or unknown because the only information we have is the customer source sys-
tem key.

 4. Submit the failed fact rows to the original process again; the customer lookup
will now find the newly created dimension ID.

 5. As soon as the real customer information is available, the dimension is automati-
cally updated with the new information.

The last step of this process will probably create a new version of the customer record
with another dimension ID than the one that was used to load the fact record. This
means that this fact record still points to the dimension record with all columns set to
N/A or unknown It’s a business decision whether this situation should be maintained or
not. Keeping the original reference shows that something was wrong with the data at
the time of loading, but it would also make sense to do only an update of the dimension
record when the correct customer record is received by the dimension load process,
and not create a new version.

258 Part II ■ ETL

EXAMPLE: USING KETTLE TO HANDLE LATE-ARRIVING DIMENSION DATA

To illustrate the process using Kettle we’ve created a very simple example

consisting of a single customer dimension with only a few fields, and a single

fact table with customer_id, sale_date, and sale_amount as the only avail-

able columns. There are six customers, added by using a Data Grid step, as

shown in Figure 9-7.

Figure 9-7: Default lookup return value

Note that there are six customers in this table, which are all loaded into the

dim_customer table. Next we need to create a few sales records, of which one

will get a customer key not present in the dimension table. Figure 9-8 shows

the sales data; note that cust_key 7 does not exist in the dimension table yet.

Figure 9-8: Sample sales data

This data is read and passed to a “Database lookup” step to find the correct

customer_id values for the customer keys of the source records. The lookup

will find the customer IDs for the first four fact rows, but not the record for the

cust_key with value 7. In order to handle failed lookup data, we need to add

an error output step for the lookup step to catch all the fact rows that cannot

be processed. This data can be stored in a file, a database, or even in a tem-

porary space using the “Copy rows to result” step. In this example, we’ll use a

simple text file so the complete workflow looks like the one in Figure 9-9.

 Chapter 9 ■ Loading Fact Tables 259

EXAMPLE: USING KETTLE TO HANDLE LATE-ARRIVING DIMENSION DATA

Figure 9-9: Output error fact rows

Now that we’ve isolated the unknown customer keys, we can process them

separately and create new customer dimension records. This is a very straight-

forward process, which can consist of the steps displayed in Figure 9-10.

Figure 9-10: Add unknown customers

First the unknown records are read; a “Get System info” step is then added

to retrieve today’s date. Using an “Add constants” step, we can add the miss-

ing values to the stream, as shown in Figure 9-11.

Figure 9-11: Adding N/A values

Finally a “Dimension lookup / update” step takes care of generating the

new customer_id and adding the record to the customer dimension table.

(See the previous chapter for an elaborate explanation of the “Dimension

lookup / update” step.) Figure 9-12 shows the resulting records in the

 dimension table.

Continued

260 Part II ■ ETL

EXAMPLE: USING KETTLE TO HANDLE LATE-ARRIVING DIMENSION DATA

Figure 9-12: New customer added

The fi nal step is to process the rejected fact records again, which will now

be correctly loaded with the newly found customer_id.

Fact Table Handling

If you recall the ETL subsystems from Chapter 5, you already know that there are
three types of fact tables according to the Kimball Group. The fi rst one is the standard
transactional fact table where each row represents a fact such as a product sale, a ban-
ner click, or an e-mail coming in. Each of these events occurs at one point in time and
a single timestamp can be linked to the transaction. The nature of this data makes it
fairly easy to summarize it by some dimension hierarchy level such as year, product
group, or country. So far, all the examples in this book have been based on transactional
fact tables.

Periodic and Accumulating Snapshots

The second type of fact table is the periodic snapshot table, which is used to store the
status of certain information periodically. One of the reasons for using snapshots is that
storing each individual transaction in a fact table might be overkill. Think, for example,
of a large distribution warehouse where thousands of items are stored and constantly
moved. For reporting purposes, it wouldn’t make a lot of sense to store each individual
movement of each inventory item. On the other hand, a warehouse manager might be
interested in tracking total product inventory by day or by month, and this is exactly
where a transactional snapshot table is useful.

Good examples of periodic snapshot tables are inventory counts and bank account or
insurance policy status summaries. One thing to keep in mind with periodic snapshots
is that the measures in these tables are semi-additive. In a regular fact table, you can
sum sales amount by period, customer group, and product line. In a periodic snapshot
table, you cannot summarize on all dimensions, especially not on the time dimension.
Remember that a periodic snapshot shows a total by period. Calculating the sum of all
bank accounts for all periods is therefore meaningless; calculations that can be used
are minimum, maximum, or average totals, hence the word semi-additive. There is also
non-additive data, meaning that you cannot summarize the data over any dimension. A
good example for this is room temperature. The temperature in different rooms varies

 Chapter 9 ■ Loading Fact Tables 261

over time, and you can take a periodic snapshot of this measure, but summarizing the
temperature for all rooms is meaningless, just like summarizing the temperatures for
each hour.

WARNING A word of caution about periodic snapshots is in order here.

Suppose you need to store the daily account status for a large bank with mil-

lions of customers. This means that each day, a record is added to the snapshot

table for every customer the bank has, even though there hasn’t been a change

in the account status. These tables can therefore become extremely large.

The third type of fact table is the accumulating snapshot table, which is actually a
special case of a regular transactional fact table. The term “accumulating” denotes
the fact that this type of table gets updates over time, usually when steps in a process
have been completed. The term “snapshot” might be a bit misleading and shouldn’t be
confused with the periodic snapshot. Calling this type of table an accumulating fact

table would probably have made more sense, but the industry convention is snapshot,
so we’ll use that as well. What is actually meant here with the term “snapshot” is that
each record shows the stage of completion in a process. A record might therefore have
only an order date filled in, meaning that the status is currently “ordered.”

A good example is a typical sales process that consists of an order, picking, ship-
ping, invoicing, and payment step, each with its own date. In fact, the fact_rental
table introduced in Chapter 4 is an accumulating snapshot table with a rental date and
return date.

Introducing State-Oriented Fact Tables

When you look closely at the three types of fact tables covered previously and perhaps
are familiar with insurances or other data that change very infrequently, you’ll see that
something is missing. Let’s say I’ve insured my house and bought a fire policy for it.
There are a few relevant points in time to consider:

The creation of the policy■

Changes in yearly due amounts (typically these amounts increase over the years)■

Changes in the insured value■

Execution of the insurance (in case of the house burning down)■

Expiration of the policy■

Basically, these are the dates that something changes in our policy. It is quite usual
for these kinds of policies to not change at all for several years in a row. Yet the only
way to use this kind of data in a data warehouse environment is to create a periodic
snapshot to store the monthly or yearly status of every policy. This seems a bit of a
waste, and also doesn’t reflect the changes made in between the period ends when
the snapshots are taken. Think for instance of a policy that changes at the 20th of the
month but snapshots are taken on the 1st day of the next month; the fact that the change
was made on the 20th is lost. It would be better to store the state of the policy and only
change the data when an actual change in the source system takes place, much like

262 Part II ■ ETL

a transaction fact table. This is why we need a fourth type of fact table, called a state-

oriented fact table. The concept of state orientation was first recognized by Dutch data
warehouse specialist Dr. Harm van der Lek. The state-oriented fact table material and
examples here are reused with kind permission from Dr. van der Lek.

A state-oriented fact table is a table where each row represents the state of an object
during a span of time in which this state didn’t change. Changes in higher level objects
are to be considered changes in the low-level object at hand. State-oriented fact tables
might fit the bill if a combination of the following business requirements exist:

 1. There are low-level objects relevant to the business, which we need to analyze.

 2. The objects change in an unpredictable way.

 3. These changes have to be captured on a very detailed level, including changes in
parent objects.

Here’s a simple example: The lowest level objects are saving accounts. We already
have one slowly changing dimension of type 2, the customer dimension. In Table 9-1, you
see that a customer apparently moved from New York to Boston on July the 21, 2009.

 Table 9-1: A Slowly Changing Dimension

CUSTOMER
VERSION_KEY

CUSTOMER
CODE FROM DATE TO DATE CITY

5 CG067 1900-01-01 2009-07-21 New York

8 CG067 2009-07-21 9999-12-31 Boston

Table 9-2 shows an example of a state-oriented fact table referring to the customer
dimension (among others) and containing the semi-additive measure balance.

Table 9-2: A State-Oriented Fact Table

ACCOUNTNR FROM DATE TO DATE
CUSTOMER
VERSION_KEY BALANCE

3200354 1900-01-01 2009-07-10 5 $ 100

3200354 2009-07-10 2009-07-21 5 $ 200

3200354 2009-07-21 9999-12-31 8 $ 200

On July 10, 2009, the balance changed from $100 to $200, so a new state was inserted
(the second row). The move of the customer has to be reflected is this table as well so
we again add a new row pointing to the new version of the customer and repeating
the balance because that was not changed. This technique allows us now to retrieve the
total balance per city on a particular moment in time, for example at the end of July 2009.
It should be clear from this example that the balance of this CG067 customer should be
added to the Boston total because that was the valid state at that moment in time.

 Chapter 9 ■ Loading Fact Tables 263

The really neat thing about storing states in this way is that you can still define peri-
odic snapshots based on a state-oriented table. Because we have the complete history
available, a snapshot can be derived fairly easily. First we need to create an additional
table with all the points in time for which a snapshot is required. As an example, let’s
assume this is a monthly snapshot so we’ll store our periods in a Month table, as dis-
played in Table 9-3.

Table 9-3: Month Table

MONTHNR LASTDAY

200906 2009-06-30

200907 2009-07-31

We can now use this information to create the periodic snapshot, either as a view or (as
we’ll do later in the chapter) in a physical table using the following SQL statement:

SELECT Month.MonthNr

 , SOFactTable.AccountNr

 , SOFactTable.Customer_version_key

 , SOFactTable.Balance

FROM SOFactTable

 , Month

WHERE Month.LastDay >= SOFactTable.From_date

 AND Month.LastDay < SOFactTable.To_Date

The result of this query, based on the example data, is displayed in Table 9-4.

Table 9-4: Periodic Snapshot View

MONTHNR ACCOUNTNR
CUSTOMER
VERSION_KEY BALANCE

200906 3200354 5 $ 100

200907 3200354 8 $ 200

Loading Periodic Snapshots

There is nothing inherently complex about loading periodic snapshots, but there are
some issues involved with preparing and getting the data. First, a periodic snapshot is
like a photo taken at a specific point in time. If you translate this to the ETL and data
warehouse world, this means that you need to get the state of the data at an exact point
in time, and this point in time should be exactly the same for each period. In situations
where periodic snapshots are the rule instead of the exception, this is usually not a big

264 Part II ■ ETL

problem. For instance, in a banking environment, periodic closings are already a standard
procedure and the data won’t change between two closing periods. As a result, it doesn’t
matter if you load the data at exactly 00:00 hr of the last day of the month, or a couple of
hours or even days later.

Something else is in play here as well: The calculation of the monthly account bal-
ances can be an extremely complex process and is better left to the operational systems
that are designed to support this. Trying to reproduce these calculations in an ETL
process is a daunting task that will likely fail or at least cost a huge amount of time and
money. Yes, even with Kettle!

The loading of the periodic snapshot itself can be done by using a simple bulk load
using the append option because all you do is add an additional set of rows to an
existing table. The only thing to take care of is a snapshot period ID to include in the
fact rows.

Loading Accumulating Snapshots

Accumulating snapshot loading means using updates. For this reason, you might think
that bulk loading is out of the question. But is it? Not necessarily, as we’ll explain shortly.
Chapter 4 showed you how to use an Insert / Update step for loading an accumulating
fact table so we won’t cover that here. The problem with using inserts and updates is
that when the fact table gets huge, and there are many updates, processing the data
might take a very long time. There is a very elegant way to avoid having to do insert/
update statements on a large fact table, but it requires partitioning support in the data-
base. However, you can achieve something similar with two tables and a view to access
them as a single table.

Logically the solution looks like the diagram in Figure 9-13.

Read-only partition

Fact table

Active partition

Figure 9-13: Partitioned

Accumulated Snapshot Table

 Chapter 9 ■ Loading Fact Tables 265

This works as follows:

All the inserts and updates take place in the Active partition, which is relatively ■

small.

As soon as the accumulation is complete (all steps in the process have a final date ■

and all other fact columns have their final values inserted as well), the record is
deleted from the Active partition and moved to the Read-only part of the table.

The latter can be set up as a periodic batch process to clean the Active partition ■

from completed records. These records can then be appended to the read-only
partition using a bulk loader.

Another solution that completely eliminates the use of insert/update on the database
uses the same logical division of active and read-only records and works as follows:

Read all active records into a staging area and truncate/delete the Active partition.■

Retrieve new and changed fact records from the source system and merge these ■

with the records from the previous step.

Load the incomplete records into the Active partition and the completed records ■

in the Read only partition.

This second approach eliminates the need for a periodic cleaning process because
the records are already assigned to the correct partition by the load process. It also
eliminates the use of DML statements, which means that this approach can also be
used with a product like the community edition of InfoBright, which doesn’t allow for
DML operations at all.

NOTE Not all databases support truncating a partition; some require you to

delete and recreate the partition to delete all the data from it.

Loading State-Oriented Fact Tables

You might wonder whether a state-oriented fact table (SOF) is actually a real and dif-
ferent type of fact table because it has many similarities with both dimension and
periodic/accumulating snapshot tables. This might be the first impression, but there
are some notable differences:

A SOF table contains measures, and dimension tables don’t.■

A SOF table contains foreign keys to dimension tables so in a pure star schema ■

model, it has to be a fact table; otherwise it would be a snowflake.

The number of states in a SOF table is unknown beforehand; in an accumulating ■

snapshot, all states are hard-wired in the table.

There are some similarities as well: The measures are semi-additive (cannot be sum-
marized over time), just like in a periodic snapshot table. The records have a valid_from
and valid_to date, just like dimension tables. And, just like in a dimension table, a
current_flag could be added to indicate the current active record. Furthermore, the

266 Part II ■ ETL

technical design of the table could benefit from a surrogate key because this enables you
to avoid having to define a multi-column primary key. This leads us to the conclusion
that we have all the ingredients available to efficiently load SOF tables using Kettle! A
sample of the workflow needed is displayed in Figure 9-14.

Figure 9-14: Example SOF loading workflow

The only difference with other fact table workloads is that we use a “Dimension
lookup/update” step for the final SOF insert/update operation. And unfortunately,
there’s no way around this because there’s generally no way of telling that the “end
state” is reached. Exceptions are, of course, the already mentioned fire insurance policy,
which could expire or be terminated, or a bank account that’s closed. The larger part
of the data will, however, be apt to change because we’re dealing with long-running
contracts and infrequent changes to them.

Loading Aggregate Tables

Aggregate tables add an extra layer of complexity and overhead to an ETL solution and the
data warehouse but can offer big performance advantages. An aggregate table contains
summary data at a higher grouping level. When a query tool or OLAP engine is capable
of using these aggregate tables, it doesn’t have to go through all details of a fact table but
can retrieve the summarized data directly. Consider the following: the fact table in the
example data warehouse in Chapter 4, fact_rental, contains 16,044 records. The lowest
level of detail in this table is the individual movie in a rental, which means that when
an overview of the rentals per customer country per year is required, all 16,044 records
need to be scanned. Indexing can, of course, speed up this process. However, when an
aggregate table is added with only the number of rentals per year per customer country,
this table contains only 169 rows, which is an almost 100-fold decrease in number of
records to evaluate.

Basically there are three ways to load aggregate tables:

Extend the fact load transformation with extra steps to look up the required sum-■

mary fields customer_country and year4, and then use a “Memory Group by”
step to create the aggregate records and a “Table output” step or one of the bulk
loaders to write the data to the aggregate table.

Use a “Table input” step with the following SQL to retrieve the data and load it ■

directly in an aggregate table:

SELECT c.customer_country, d.year4,

 SUM(count_rentals) as count_rentals

FROM fact_rental f

INNER JOIN dim_customer c ON c.customer_key = f.customer_key

INNER JOIN dim_date d ON d.date_key = f.rental_date_key

GROUP BY c.customer_country, d.year4

 Chapter 9 ■ Loading Fact Tables 267

Use an “Execute SQL script” step with an extended version of the preceding ■

SQL. The first line of the script will then read something like insert into agg_
table(customer_country, year4, count_rentals (in case the table already
exists), or create table agg_table as (in case you want to create it on the fly,
but make sure to drop it first if it’s already there). The syntax of these statements will
of course depend on the SQL dialect of your database. The statements used here are
for MySQL. The advantage of using this approach is that the statement is completely
executed inside the database without the need to process it within Kettle.

Within a Pentaho solution, the most obvious use for aggregate tables is within a
Mondrian schema. It is beyond the scope of this book to elaborate on this, but our
book Pentaho Solutions explains how to use the Mondrian Aggregate Designer to create
aggregate tables and how to augment the Mondrian schema to use them.

Summary

This chapter covered the various load options and fact table variations using Kettle.
The first section covered the bulk-loading options available in Kettle and explained the
difference between file- and API-based bulk loading. In between those two options is
the use of named pipes. We illustrated this concept using a simple example with basic
Linux commands. The first part of the chapter also covered the bulk loaders for MySQL,
LucidDB, Oracle, and PostgreSQL.

One of the most important aspects of preparing fact data for loading is performing
the dimension lookups, also described as the surrogate key pipeline. We covered both
database and stream lookups, and provided an in-depth explanation of how to handle
late-arriving dimension and fact data.

The last part of the chapter explained the different types of fact tables and the issues
involved with loading and updating the data. The following well-known fact table
types were covered, including an explanation of how to load data for each of them
using Kettle:

Transactional fact tables■

Periodic snapshot tables■

Accumulating snapshot tables■

Next, we introduced a new type of fact table first described by Dr. Harm van der Lek,
the state-oriented fact table, and explained how Kettle supports this type of fact table out-
of-the-box. We concluded the chapter with a brief coverage of the different approaches
that are available to load aggregate tables.

What we didn’t cover in this chapter are all the performance options available in
Kettle to handle large data volumes and speed up the transformation and load process.
These options are covered in Part IV of this book where performance tuning, paral-
lelization, clustering, and partitioning are described in depth.

269

C H A P T E R

10

Working with OLAP Data

OLAP, or Online Analytical Processing, has a special position as subsystem 20 in the
34 ETL subsystems. Although handling OLAP data stores is only one of the 34 ETL
subsystems, the topic is so important that we have devoted this entire chapter to it.

The term OLAP was introduced in 1993 by database legend E. F. (Ted) Codd, who
came up with 12 rules for defining OLAP. The rules are nicely summarized at http://
www.olap.com/w/index.php/Codd’s_Paper.

The most important notion in Codd’s definition is the multi-dimensional nature of
OLAP data—the two terms, OLAP and multi-dimensional, are now used almost as
synonyms. It’s not that Codd invented OLAP, but he did give it a name, and since then
a multi-billion–dollar industry emerged around this concept. The first OLAP products
already existed when Codd came up with his rules, with Cognos Powerplay and Arbor
Essbase probably being the most familiar. These products still exist today, Powerplay as
part of the IBM-Cognos BI offering, and Essbase as part of the Oracle BI offering. The
biggest player in the OLAP market, however, started its life in Israel under the wings of
a small software company called Panorama. In 1996, the company sold its OLAP server
technology to Microsoft and the rest is history, as Microsoft Analysis Services is now
the OLAP solution with the biggest overall market share and the largest number of
production deployments. Microsoft did some other good things for the OLAP market
as well: it created the multi-dimensional query language called Multi Dimensional
eXpressions, or MDX for short. MDX is now the de-facto standard multi-dimensional
query language and a very powerful way to express analytical queries.

This chapter will give you enough background information on OLAP technology,
configuration, and challenges but it is not an introduction course in MDX. If you’re not

270 Part II ■ ETL

familiar with MDX you can still benefit from this chapter because we’ll be covering an
OLAP database that lets you read and write data without using MDX queries.

NOTE If you need a quick introduction in OLAP and MDX, you might want

to start with a look at Chapter 15 of our earlier book, Pentaho Solutions.

For in-depth coverage of the MDX query language, several books and online

resources are available, three of which we’d like to mention here:

The “MDX Essentials” series on ■ Database Journal, by William Pearson:

http://www.databasejournal.com/features/mssql/article.

php/10894_1495511_1/MDX-at-First-Glance-Introduction-to-

SQL-Server-MDX-Essentials.htm

MDX Solutions: With Microsoft SQL Server Analysis Services 2005 and ■

Hyperion Essbase, by G. Spofford, S. Harinath, C. Webb, D. Hai Huang,

and F. Civardi (Wiley, 2006).

Professional Microsoft SQL Server Analysis Services 2008 with MDX ■ ,

by S. Harinath, M. Carroll, S. Meenakshisundaram, R. Zare, and D. Lee

(Wrox, 2009).

OLAP Benefits and Challenges

What’s so special about OLAP? Remember that usually we’re dealing with data in rows
and columns, whether that data is in a flat file, an Excel sheet, or a database table. In
an OLAP cube, there is no such thing as a row or a column, only dimensions, hierarchies,
and cells. In order to read data from or write data to a cube, you need to know where the
data is located. This location is indicated by the intersection of the dimensions involved.
First, let’s take a look at a typical cube, such as the one on the left in Figure 10-1.

3-Dimensional Cube Time Dimension

Product

Tim
e

C
u

st
o

m
e

r

AZ
Levels Members

All

Year

Quarter

Month

Day

2008

. . . Q4 Q1 Q2 Q3 Q4 Q1 . . .

.

. . . 27

. . . Jun OctSepAugJul

28 29 30 31 1 . . .

. . .

2009

All Dates

2010
CA

IL

NY

WA

2010

2009

2008

2007

ThrillerDramaSportsSciFi

Figure 10-1: 3-dimensional cube and time dimension

 Chapter 10 ■ Working with OLAP Data 271

Figure 10-1 shows a typical example of an OLAP cube consisting of the dimensions
Time, Product, and Customer. The darker colored cell is the intersection of all days in
the year 2007, the product category “Thriller,” and all customers in the state of Illinois.
So if the value in this cell is called Revenue, we’d have the revenue for the Thriller cat-
egory for all customers from Illinois in the year 2007. This is a highly aggregated value,
however, as you can tell from the time dimension diagram on the right in Figure 10-1.
A year consists of quarters, quarters consist of months, and months consist of days.
This is called a hierarchy, and a dimension can contain multiple hierarchies, or ways
to roll up values. The same breakdown shown for the time dimension is probably
also available for customer (state ➪ city ➪ area ➪ customer) and product (category ➪
group ➪ product).

The value of using an OLAP cube for analysis is not necessarily delivered by this
multi-dimensionality per se, but if you add the notion of pre-aggregation to it, you’ll
get an idea of what’s happening. Revenue in an OLAP cube is not only available at the
lower levels in the cube cells (e.g. revenue for a specific customer and a specific day),
but is also pre-calculated at the higher levels as well. This means that an OLAP cube
is ideally suited for interactive, ad-hoc analysis of data. The real drivers for the success
of OLAP tools were the following:

Unprecedented analysis performance:■ The precalculated and aggregated sum-
mary cells provide immediate response times.

Ability to drill down or drill up:■ Move up and down through the hierarchies to
go to a more detailed or more grouped level.

Ability to slice and dice:■ Select other dimensions, select a specific value on-the-
fly, or switch row and column entries.

The fact that multi-dimensional models are intuitive:■ Most people easily grasp
the concept of analyzing data using dimensions with hierarchies, which is also
why the dimensional model for relational data warehouses became so popular.

These benefits, plus the very disruptive pricing model of Microsoft’s Analysis Services
OLAP server, pushed a broad adoption of OLAP tools and technologies. Several OLAP
servers also allow users to write back data or create different versions of specific slices,
(e.g., budget A, budget B), which makes these databases perfect for planning, budget-
ing, or forecasting.

So far so good; but what about integrating data from an OLAP cube? That’s where
the challenges of OLAP start. Unlike analysis tools, ETL tools aren’t designed to work
with multi-dimensional, hierarchically stored data. Instead, we need to transform the
data structure into something that’s row- and column-based in order to work with
it. We need a way to “flatten” the cube. Another challenge is getting the data at the
aggregation level needed. MDX lets you do all those things as we’ll show later, but just
getting the data out of the cube is probably only the start of the process. In most cases,
the data needs to be pivoted or unpivoted to conform the structure to other data sources
we’re processing. Last but not least, every OLAP data provider returns data in its own
specific way, so having solved a problem for Mondrian doesn’t necessarily mean that
you’ve solved the same problem for Microsoft Analysis Services as well.

272 Part II ■ ETL

OLAP Storage Types

In order to work with OLAP data stores, it’s important to know the different types of
OLAP storage that exist. Basically there are two distinct types and a third somewhere
in between the first two:

MOLAP:■ Multi-dimensional OLAP where all the data resides in the OLAP solu-
tion, both for storage and for analysis. Examples are Jedox PALO, IBM-Cognos
Powerplay or TM1, and (to a large extent) Microsoft Analysis Services.

ROLAP: ■ Relational OLAP where the data resides in the underlying relational
database and the OLAP engine serves only as a caching and MDX to SQL trans-
lation mechanism. Examples are Pentaho Mondrian and (also to a large extent)
Microstrategy.

HOLAP:■ Hybrid OLAP where the detail records reside in a relational database
and the summary information in the OLAP database. Examples are actually all of
the above-mentioned products. Mondrian has the ability to cache data in memory,
effectively acting like a HOLAP solution then. Other products such as Microsoft
Analysis Services let you decide what amount of data should be pre-aggregated
in the cube and what data can remain in the underlying detail database.

These differences in approach also have an effect on the available ETL options. For
MOLAP stores, you’ll have to use MDX queries, unless there is another way of getting
at the data. This is slightly different for ROLAP stores. Because the data for a ROLAP
solution is also available in a relational database, you could in theory extract the data
directly from there using SQL instead of using MDX statements fired against the OLAP
store. This isn’t always practical or achievable; ROLAP is a technology used for very
large data warehouses and accessing the data directly by circumventing the ROLAP
engine might cause severe performance issues. Furthermore, the database that acts as a
ROLAP foundation usually contains multiple predefined aggregate tables to help speed
up the OLAP performance. If the ETL developer is not aware of these aggregate tables,
the ETL process could place an undesirable heavy burden on the data warehouse. The
conclusion here must be that for extracting data from an OLAP cube, whether ROLAP,
MOLAP, or HOLAP, the safest and fastest way is to query the cube using MDX and not
try to get the data from a relational data store.

Writing data is a different story; not all OLAP engines allow for write back opera-
tions or are capable of handling something like an insert statement. For Mondrian,
this means that if there is new data, it must be inserted or updated in the underlying
database. After doing that, the cache must be rebuilt in order to actually see the new
data in an analysis front end.

Positioning OLAP

In most situations, an OLAP database will be used as a data mart; sometimes organiza-
tions use the OLAP solution as the corporate data warehouse but this is the exception,
not the rule. A typical layered architecture using OLAP technology is displayed in
Figure 10-2.

 Chapter 10 ■ Working with OLAP Data 273

ETL

ETL/SQL

Figure 10-2: Positioning OLAP

Figure 10-2 shows, from bottom to top:

Various data sources that are loaded and transformed using an ETL process■

The central data warehouse■

The OLAP solution (visualized as a single cube but usually there are more ■

than one)

Front-end tools for analyzing, visualizing, and modifying the data in the cube■

In the diagram, you’ll immediately spot the fact that there’s also a cube displayed as
one of the possible data sources. There’s nothing wrong with that; as we’ve mentioned
before, OLAP technology is an ideal solution for planning and budgeting. Many orga-
nizations rely on Excel for those purposes, but then lack the centralized management
and security options offered by OLAP tools such as Palo. So in these cases, the OLAP
cube serves two purposes: as a centrally managed datastore that can be used to enter
or manipulate information, and as a fast analysis database. Both roles are depicted in
Figure 10-2, including the different front ends needed to work with the cubes in these dif-
ferent roles. Products like Palo offer add-ins for Microsoft Excel and Open Office Calc to
enable users to work with the multi-dimensional database using a familiar front end.

Kettle OLAP Options

In addition to being able to access nearly every relational database on the planet, Kettle
can now also extract information from nearly every available OLAP database and even
write data to some of them. The following three options are available:

Mondrian Input step:■ Allows Kettle to retrieve data from a Mondrian cube using
MDX statements. There is no special connection needed because this step uses

274 Part II ■ ETL

the same connection as the Mondrian schema itself. In addition to the connec-
tion, the Mondrian schema is required to be able to tell Kettle how the cube is
structured.

OLAP Input step:■ A generic plugin that allows Kettle to communicate with all
XML/A compliant OLAP servers. Nearly all OLAP products support this stan-
dard, making this a very powerful option. The magical stick that enables this has
two components: XML/A and Olap4J. The latter is a generic open source library
developed to communicate to OLAP servers from a Java environment using MDX
statements. XML/A allows a client to communicate with an OLAP server over
HTTP using SOAP services and is not limited to reading data, but can be used to
write data or fire processing tasks as well.

Palo add-in:■ Perhaps the most versatile and easy-to-use option for working with
OLAP data. The add-in contains four steps to read or write data, update or refresh
dimension information, and create new dimensions in a cube.

The following sections cover these three options using the sample databases that
are installed with the different products. This means that there’s very little setup work
to follow along with the examples if you have a running installation of Mondrian,
Microsoft SQL Server Analysis Services, or Palo.

Working with Mondrian

Mondrian is the default OLAP (or actually, ROLAP) server in any open source BI
solution because Pentaho, Jaspersoft, and SpagoBI all base their analytic solution on
Mondrian. As a result, the chances that you’ll run into a Mondrian cube are increasing
every day. To date, however, Mondrian does not have writeback capabilities, so updat-
ing data in a Mondrian database is still a matter of updating the data warehouse itself
and refreshing the Mondrian cache. Getting data out of Mondrian is something else;
it’s extremely easy, as we’ll show here.

In order to run the following examples on your own computer, we assume you
have a Mondrian server up and running. The Foodmart sample database is used
because that is part of a sample Mondrian installation. If you don’t have Mondrian or
the Foodmart database set up but would like to do so, just follow the instructions at
http://mondrian.pentaho.org/documentation/installation.php. The first
step in a transformation using Mondrian data is, of course, the Mondrian Input step.
As you can see in the online documentation (http://wiki.pentaho.com/display/
EAI/Mondrian+Input), the step comes with an example query included. The example
query uses the Sales cube from the Foodmart schema and we’ll do the same here. There
are three essential elements for the Mondrian Input step to work:

The ■ Connection, which is a normal database connection to the relational database
that Mondrian uses to get its data from

The ■ Catalog location, which is the schema file created with the Schema
workbench

The ■ MDX Query to define the result set and retrieve the data

 Chapter 10 ■ Working with OLAP Data 275

Figure 10-3 shows the completed input step for this example.

Figure 10-3: Mondrian Input step

You can immediately view the resulting output by selecting the Preview option of
the step, which will show the output as displayed in Figure 10-4.

Figure 10-4: Mondrian output preview

You can probably see right away that this output is not really useful for reporting
purposes. The column names are the least of your problem here because a few other
things need further processing. You should:

Clean up all the brackets.■

Split the Year and Quarter fields.■

Extract the Store Type.■

276 Part II ■ ETL

As with many things in Kettle, you can accomplish this in several ways. One option,
shown in Figure 10-5, doesn’t require any coding and consists of a series of steps to
clean up the result set.

Figure 10-5: Completed Mondrian transformation

The first step is just to rename the columns in order to ease working with them down-
stream. The two “Split field” steps separate the values in a single field based on a split
character. New field names can then be defined for the results, as shown in Figure 10-6
where the Split Time step is displayed.

Figure 10-6: Split Time step

You split the Store field with the same step type. You can, of course, use other options
to get the same result. With a “Strings cut” step, you could take the fields and just get
a substring from the field values. This is, however, quite risky: It might work now, but
if someone decides to rename the All Store Types level to just All Types, you’re
in trouble. The Split Fields step is therefore a more robust solution here. The subse-
quent “Select values” step enables you to get rid of the superfluous columns, and the
two “Replace in string” steps take care of removing the two brackets from the field
value. For completeness, we added a “Filter rows” step because there is no revenue
information for the store type HeadQuarters. You can find the completed transforma-
tion in the Chapter 10 examples on the book’s companion site at www.wiley.com/go/
kettlesolutions.

Alternatively, you can solve everything in a single Java Script step. In addition to the
fact that you don’t really need to write code here, the JavaScript option would require
constructs such as var year = substr(time,indexOf(time,”.”)+2,4);, just to

 Chapter 10 ■ Working with OLAP Data 277

get the year value from the time string. Getting the Quarter value (Q1, Q2, etc.) from the
Time field needs a nested indexOf to find the second dot in the string, which makes
matters even worse. Besides, why should you? The results obtained using the regular
steps are displayed in Figure 10-7, and this is exactly the output we wanted.

Figure 10-7: Cleaned Mondrian output

For Mondrian, there is another option as well. As you may know, Mondrian is also
an XML/A-compliant server, meaning that you could access it with the OLAP Input
step, which is the subject of the next section.

Working with XML/A Servers

XML/A is short for XML for Analysis, and is an industry-standard protocol to com-
municate with OLAP servers over HTTP. It defines a SOAP web service that allows
clients to obtain metadata and to execute MDX (multi-dimensional expressions) queries.
XML is used as the data exchange format. The SOAP (Simple Object Access Protocol)
envelope still contains the actual query that is usually written in MDX (although the
standard also allows for DMX and SQL statements). You can find more information
about XML/A at www.xmla.org.

In order to work with XML/A servers, Kettle offers an OLAP Input step that uses
Olap4J under the hood. The OLAP Input step, however, takes care of all the XML/A
and Olap4J intricacies, so the only thing left to get the solution working is knowing how
to enter the correct connection string and formulate a working MDX query. This opens
up a world of opportunities because almost every OLAP analysis database, whether
open or closed source, is accessible using XML/A. Examples are SAP BW, Oracle-
Hyperion Essbase, IBM-Cognos TM/1, Mondrian, and Microsoft Analysis Services.

To use XML/A, you need the OLAP database enabled to accept requests over HTTP.
For most products this is not something that’s available out-of-the-box. The examples
in this section are based on Microsoft SQL Server 2008 Analysis Services (MSAS) and
the server used to access the OLAP database using XML/A needs some setup before it

278 Part II ■ ETL

can be used. It is beyond the scope of this book to explain in-depth how to configure
XML/A access to MSAS, but here are a few steps and tips:

For configuring HTTP access to SQL Server 2005 Analysis Services on Microsoft ■

Windows Server 2003, go to http://technet.microsoft.com/en-us/
library/cc917711.aspx.

For the 2008 versions of both Analysis Services and Windows Server, an updated ■

version is available on http://bloggingabout.net/blogs/mglaser/
archive/2008/08/15/configuring-http-access-to-sql-server-2008-

analysis-services-on-microsoft-windows-server-2008.aspx.

For SQL Server 2008 running on Windows 2003, just use the first option.■

You can test whether you can connect to the MSAS instance over HTTP simply by ■

typing the URL into the new application you just created. If you followed one of the
previous examples, try typing http://<server address>/olap/msmdpump.dll
where <server address> needs to be replaced by the actual name or IP address.
A response like XMLAnalysisError.0xc10e0002Parser: The syntax for
‘GET’ is incorrect means that the HTTP access is working.

One of the trickiest parts of implementing a solution like this is setting up the ■

correct access rights for the catalogs and cubes; a useful guide for this is available
at http://www.activeinterface.com/b2008_12_29.html.

If you just want to play around to check out how XML/A works in combination ■

with MSAS and you don’t require a secure setup, you can enable Anonymous
Access in the IIS security settings for the OLAP web application. Next, make sure
that you add a role to the MSAS Database you want to access and assign the proper
authorizations for the role. The role needs to have at least one (Windows) user
added to it; if you just want to be able to access the cube, add the user that is used
for the anonymous access to the role. Usually this will be the IUSR_<machine
name> account, where <machine name> needs to be replaced with your own
server name.

You can now try to access the OLAP server from Kettle. Start a new transformation
and select the OLAP Input step from the toolbox. Enter the XML/A URL you created for
the database; if you’ve used Anonymous Access, you can leave Username and Password
empty. The last item needed for accessing the correct database is the Catalog name. This
is the MSAS Database name as shown in SQL Server Management Studio, including
spaces. Then you need to decide which data is needed from the OLAP cube; we used
a fairly simple data set for this example with Year and Product Category on the rows,
and Sales Amount and Gross Profit on the columns. Figure 10-8 shows the complete
step to retrieve the data

It should now be possible to do a Preview of the result set, as shown in Figure 10-9.

WARNING At the time of this writing, the OLAP Input step automatically

triggers a process command forcing the cube to rebuild first before returning

results, which takes several minutes each time.

 Chapter 10 ■ Working with OLAP Data 279

Figure 10-8: OLAP Input step

Figure 10-9: XML/A query result set

If you run the same query directly in the Analysis Services query browser, you’ll
notice among other things that the periods haven’t been deduplicated, as shown in
Figure 10-10.

280 Part II ■ ETL

Figure 10-10: MSAS query result set

This would make further processing in Kettle a lot easier, so in order to use this data
you need a few extra steps of pre-processing. As you can see, the repeating values from
the cross join have been deleted from the result set. Because there is no standard step
available that takes care of this for you, you need to use an alternative resolution, which
is relatively simple to create. Before we begin the explanation, take a look at Figure 10-9
again and decide what you need to do to clean up the data for further processing:

Rename the fields to get more meaningful descriptions than ■ Column0 and
Column1.

Remove the brackets from the field names.■

Remove the $ sign.■

Replace the opening parentheses with a minus sign.■

Remove the closing parentheses.■

Fill out the empty year values.■

This looks like a complicated transformation but you actually need only two steps
to accomplish this. (We could have used only one, but this solution makes the code
easier to read and maintain.)

The first two bullet points are the easy ones: Just add a “Rename fields” step and
rename all the fields. The remainder of the list requires the following little bit of
JavaScript (part of the MSAS_Example.ktr sample file from the downloads for this
chapter):

var prevyear;

if (gross_profit != null) ¬

var gross_profit = gross_profit.replace(“($”,”-”).

replace(“$”, “”).replace(“)”, “”);

if (sales_amount != null) ¬

var sales_amount = sales_amount.replace(“($”,”-”).

replace(“$”, “”).replace(“)”, “”);

 Chapter 10 ■ Working with OLAP Data 281

if (year != null) var year = year.replace(“CY “,””);

if (year != null)

 {

 prevyear = year;

 }

else

 {

 year = prevyear;

 }

The code starts by providing a placeholder variable (prevyear) to store the previ-
ous year value. The next three lines replace parts of the field values using the string
.replace(search_string, replace_string) function. As you can see, you can add
multiple replace calls to a single field, making this a very flexible way of transforming
string values. The last part might need some more explanation.

The thing to remember here is that the JavaScript step works row by row. This means
that you can set a variable and as long as the condition to change it doesn’t change, the
value of the variable doesn’t need to change either. Be careful, however: In this case,
we knew what our input data looked like, and also knew that the first row contained
a value for year. Based on that knowledge of the incoming data and the sort order, we
can assign the value of the year field to the variable prevyear because the condition
year != null will be satisfied at the first row. When the second row is processed,
the condition year != null fails (the field is empty) so the else branch is executed.
Because the prevyear variable didn’t change and still holds the value 2001, this value is
assigned to the field year. The same occurs with the two following rows. Row number
5 again contains a year value, which is then assigned to the variable prevyear, and so
on until all rows have been processed. If you retrieve more columns from the OLAP
Input step, resulting in more fields with empty values, you can still use this approach
to fill out all the field values. Figure 10-11 shows the cleaned output, ready to be used
in the data warehouse.

Figure 10-11: MSAS cleaned results

282 Part II ■ ETL

Using XML/A and the OLAP Input step is probably the most flexible solution for
this example and also the one to standardize on. Almost every OLAP database can be
accessed this way, which means that you can use one standard way of transforming
result sets obtained from these servers. As always, standardization is a good thing
because it helps you build ETL solutions that are easier to maintain.

Working with Palo

Palo is the open source multi-dimensional in-memory database developed by German
software firm Jedox (www.jedox.com). (If you’re wondering about the origins of the
product’s name, just reverse the name and you’ll know.) We assume here that you have a
Palo server running; to get access to it from another machine, read the following tip. For
installation and configuration instructions, just visit the Jedox website and download
the open source version of Palo.

TIP To make the Palo server accessible from another machine, you’ll need

to add an http entry in the palo.ini file that’s accessible in the Palo Data

directory. The default is http “127.0.0.1” 7777, which means the server

listens for local connections only. You can change this entry in the machine’s

IP address or simply add another entry. If you use multiple entries, make sure

to use different port numbers. For instance, the palo.ini file on the server

we use has the following entries:

http “127.0.0.1” 7777

http “10.0.0.71” 7778

The samples in this chapter have been created using Palo version 3.1 and the accom-
panying Demo database that was released in April 2010. There are several options to
browse the Palo cubes. The default Palo for Excel installation for Windows contains the
Excel add-in that’s needed to work with Palo cubes. If you’re a Windows or Linux user
working with OpenOffice, you can use the PalOOCa add-in provided by Tensegrity
Software (http://www.jpalo.com/en/products/palo_open_office.html).
Figure 10-12 shows the Palo Modeler that’s part of the Open Office add-in.

In the figure, the Demo database with the Products dimension is opened, which
also shows that this dimension has a hierarchy with three levels: All Products, Product
Group, and Product. This information is needed later when working from Kettle because
there is no explore functionality for Palo cubes in Kettle.

 Chapter 10 ■ Working with OLAP Data 283

Figure 10-12: Palo Modeler with Demo database

Setting Up the Palo Connection

The first step is getting the Palo client connection software, which is developed by jPalo
(www.jpalo.com). The client is called Palo Java API and can be obtained by either going
to the download and filling in your e-mail address and getting a download link, or by
downloading the file directly from http://www.jpalo.com/en/products/start-
download.php?product=API&lang=en.

The jPalo software can also be obtained from SourceForge (http://sourceforge
.net/projects/jpalo/) but that repository usually contains a slightly older version.
And, of course, you can always download the latest source code version from trunk and
compile it yourself.

NOTE The term trunk refers to the last version of a product in development. For

more information see http://en.wikipedia.org/wiki/Trunk_(software).

After the download, unpack the .zip file and copy the jpalo.jar file from the lib
directory to the Kettle libext directory.

The Palo steps can now be used to connect to a Palo cube. The following steps are
available, two in the Input and two in the Output step folder:

Palo Cells Input■

Palo Dimension Input■

Palo Cells Output■

Palo Dimension Output■

284 Part II ■ ETL

Before moving on, it’s a good idea to check whether you can make a connection to
the Palo server. If no job or transformation is opened yet, just create a new one or open
one of the existing jobs/transformations. Open the View tab of Explorer and right-
click on Database connections to create a new one. You can either use the wizard (also
available from the Wizard menu options) or jump right to the Database Connection
screen. The host name, database name, port number, user name, and password need
to be filled in. If you used the default install on a local machine, the values for these
settings are as follows:

Host name: localhost

Database Name: Demo

Port Number: 7777

User Name: admin

Password: admin

When you click on Test, Kettle should display a message telling you that the connec-
tion succeeded. If not, check your connection, or your firewall settings if you’re running
the server on a different machine.

Palo Architecture

Before starting to read data from or write data to a Palo cube, you need a little back-
ground about the inner workings of the database. Although Palo is an in-memory OLAP
database, this doesn’t mean that there is no persistency layer available. The data is stored
on disk, just like with any other database. There is some similarity between Palo and
Mondrian in the sense that both need to read the data from disk into their memory cache
when they start up, but that’s about where the similarity ends. The Mondrian cache is
partial, whereas the Palo database is fully loaded into memory. The Palo data on disk
is stored in plain-text files, as shown in Figure 10-13. The figure shows a default Linux
install where the data is stored in a subdirectory of the Palo server (ps), and displays
the first part of the database definition file.

Figure 10-13: Palo Data files

 Chapter 10 ■ Working with OLAP Data 285

The fact that the database is just a plain folder with text files also means that making
backups or database copies is very simple. Stop the Palo server, compress or save the
directory, and move it to wherever you want to store it. If you want to move a database
to another Palo server, just stop the Palo service on the destination machine, place the
complete directory in the Data folder, and start the service again. The copied database
is then immediately available from the Modeler.

There are a few features that are specific to Palo and might help in understanding the
best way to use Kettle to read or write data. First, there are no predefined dimensions
or dimension types. Most OLAP servers make a distinction between a regular and a
time dimension, and also treat measures differently. Palo doesn’t make this distinc-
tion: Every dimension has the same options. Palo also has only two data types for an
element: String and Number (an element is the basic building block of the cubes and
forms the lowest detail level in a dimension). When retrieving data from a Palo cube
using Kettle, you’ll have to specify whether the content for the elements you’re reading
or writing are of type String or Number but be careful here: In Palo, you’ll see that, for
instance, the Month elements are of type Number, but when you specify Number as
the data type in the Palo Dimension input step in Kettle, you’ll get a conversion error.
Again, no dates, so creating a date hierarchy can be done in every imaginable way. If
you take a look at the date dimension, you’ll see that there is a separate Year and Month
dimension, but it could have been a single dimension as well. Using a separate Year and
Month dimension enables you to create crosstabs with Year on the X axis, and Month
on the Y axis, which you cannot do with a single time dimension.

A Palo database can also contain attributes. An attribute can be used to store an extra
piece of information for a certain element. The Demo database, for instance, contains
the attribute Price per Unit in the Product dimension. This means that for each prod-
uct, the price can be stored. To date, there is no way for Kettle to get to this informa-
tion directly. If you need to retrieve this information, you can use the Palo add-in
to paste the values in a spreadsheet and subsequently read the data using a Kettle
transformation.

The last feature to be aware of is Palo’s fine-grained authorization. Each user belongs
to a group, and each group can have one or more roles attached to it. Roles determine
what a user can do on the server (create other users, delete cubes, define rules, and so
on); groups are used to determine the access level for the data itself. If you can connect
to the database using the admin account, this won’t be a problem, but in a production
situation this is rarely the case so you need to be aware of possible limitations for the
account information you use for ETL access.

Reading Palo Data

The two input steps for Palo data in Kettle are Palo Cells Input and Palo Dimension
Input. The former will get you the detailed data at the lowest levels of the Palo cube (the
facts); the latter retrieves the corresponding dimension information, but only for one
dimension at a time. If you want to retrieve the complete cube and all the dimensions and
hierarchies, you’ll need to create a Dimension input step for each dimension in the cube,
plus a Cells input step to retrieve the cube content. Let’s start by retrieving the Product
information using a Palo Dimension Input step so we can show what it does.

286 Part II ■ ETL

Create a new transformation and drag a Palo Dimension Input step to the canvas.
Select the connection you created earlier and in the Dimension drop-down list, select
Products. Now you can retrieve the dimension level information using the Get Levels
option. This will create three rows showing the Level Names Level 0, Level 1, and
Level 2, with the corresponding level numbers. This is all the metadata Kettle can get
from the Palo database. The Field values are the names you want to give to the columns
in the Kettle transformation and need to be entered manually. The Type values need
to be selected using the drop-down list. There are only two options: Number and
String. Although these values correspond to the types found in the Palo cube, these are
actually the types that Kettle uses internally to cast the data to. In this case, the Palo
metadata lists all the product elements as type Number (see the gray “123” indicators in
Figure 10-12), but in Kettle, they need to be defined as String because the descriptions
contain alphanumeric data. Figure 10-14 shows the completed input step.

Figure 10-14: Palo Dimension Input configuration

Figure 10-15 displays the data preview, which is, in essence, a three-level dimension
table now, but without any additional keys and dates yet.

Figure 10-15: Palo Dimension Input preview

 Chapter 10 ■ Working with OLAP Data 287

Given the fact that the product_name column is the dimension key, the only data
that can change here is the content of the all_products or product_group columns
in order to be able to recognize the changes with a Dimension lookup step. To transform
this Palo Dimension Input step result into a relational product dimension, you could
add a surrogate key using an “Add sequence” step, and other fields such as date_from,
date_to, and is_current using an “Add constants” step.

The next task is loading the actual fact data from a Palo database. In order to do
this, you need to drag a “Palo Cells Input” step to the canvas and specify which cube
you want to extract data from. If you’re using the admin user account, the Cube drop-
down list will show all the system cubes as well, but we’re only interested in the first
one called Products. The next options in the screen need some explanation. As we
explained in the chapter introduction, a cube contains values at various intersection
points of dimension and dimension hierarchy levels. In Palo, the data is entered at
the lowest cell level and aggregated at run-time. There is no way to retrieve data at an
aggregated level using Kettle.

Ultimately, a numeric value will be available. In the case of the Sales cube in the Demo
database, these are the values stored at the intersection of the six dimensions at the low-
est detail level. These numeric values should be given a name because they don’t have
a specific name in Palo; that’s what the Measure Name field is for. The Measure Type
will be a Number, and with the Get Dimensions button you can retrieve the dimen-
sion information. You’ll notice that the Field names are automatically copied from the
Dimension names, but you can alter them if needed. As with the Dimension Input, you’ll
need to define the Dimension Type. String will always work, but if you’re sure all the
values in a dimension are numeric (such as Year in this case) you can use Number, too.
Figure 10-16 shows the filled out Input step with the preview results next to it.

Figure 10-16: Palo Cells Input definition and preview

As you can see from the figure, only the lowest level dimension entries are retrieved
(for instance, product Desktop L). In Figure 10-16, you can also see that this data cannot
be used easily for reporting as it is. The Measures column containing the values Units,

288 Part II ■ ETL

Turnover, and Cost of Sales needs to be pivoted first so that for each of these measures
a separate column is created. In Kettle terms, you need a “Row denormaliser” step,
which will do the magic for you. A Denormaliser requires a key field (the pivot field),
which in this case is Measures. The Group fields are all columns except the Amount
(that will be used as the Value field) and the Measures because that’s the key field. The
Target fields need to be defined manually and you can name them whatever you want.
The Value fieldname and Key value need to be typed in as well, so be careful to spell
the names exactly as they are returned by the Palo Cells Input step. In Figure 10-17, you
can see the completed Denormaliser step.

Figure 10-17: Palo data denormalised

Because all the data is already at the lowest level, you don’t need to use aggregation
here. To test whether this will get you the required results, you can do a preview for
which the output is shown in Figure 10-18.

Figure 10-18: Denormalised result set

 Chapter 10 ■ Working with OLAP Data 289

This data can now be further processed using dimension lookups and loaded into
a fact table. As explained before, Palo is an excellent tool for budgeting, planning, and
analysis. Using Kettle, you now have the ability to retrieve this data and load it into the
data warehouse where you can report on it in any way, using any tool you like.

Writing Palo Data

The two output steps to write data to a Palo database using Kettle are, not surprisingly,
the Palo Dimension Output step and the Palo Cell Output step. These steps are used not
only for inserting data to existing cubes, but the Dimension Output step can also be used
to create new dimensions, or add new elements to existing ones. The Cell Output step is
a bit more strict in the sense that the structure of the data should adhere to the existing
cube definition. What we’ll do here is first add a new product to the product dimension,
and then load data for this new product. You can’t just upload new data using the Cells
Output step, unless all the dimension values used already exist. This is why adding
new data is always a two-step approach: First insert the dimension data, then the cell
data. If you just want to update existing data, then this problem doesn’t exist.

WARNING Back up the Palo database before you start updating or loading

new data into it; trying to write measures to unknown dimension values could

corrupt your database.

To give you an idea of the possibilities of the Palo output steps, we’ll end this chapter
with a couple of examples. First we’ll update an existing cell in the database. We need
to know the correct values of the dimension elements so having Calc or Excel open
with the Palo add-in is very helpful. Then it’s simply a matter of creating a data source
containing the new values. In Figure 10-19, the input consists of a Data Grid step with
one row of data that will update the Budget Units value for the product Desktop L in
January 2002 in Germany. If you look at the demo database you’ll notice that the value
for this cell is 1135, and we’ll change it into 99 using the Palo Cells Output step.

Figure 10-19: Updating a Palo database

The proof that this actually works can be seen in Figure 10-20, which shows a screen-
shot with the output. The updated row is clearly visible.

290 Part II ■ ETL

Figure 10-20: Update results in Open Office Calc

TIP If new dimension entries don’t show up immediately in OO Calc, just

disconnect from and reconnect to the database.

The next example involves adding a new product category and a few products to the
database using a Palo Dimension Output step. Note that this step allows you to create
new dimensions, as well as clearing the dimension before you load it. Be careful with
this last option in an existing database because all the values that reference the dimen-
sion data will become obsolete. We can again use a Data Grid step to create the data and
feed this into the Palo step, as shown in Figure 10-21.

Figure 10-21: Adding a new Product category and Products

In Figure 10-21, you’re not only looking at the data feed in the grid, but also at the
resulting updated product dimension with the new product group and products. After
adding another value (2010) to the Year dimension, we can upload new budget values
for our new product line, as shown in Figure 10-22.

 Chapter 10 ■ Working with OLAP Data 291

Figure 10-22: Adding budget values for new products

Figure 10-22 shows both the Data Grid we used for the data input, including the data
added to the cube, and the results in Open Office Calc. As you have seen in this section,
working with Palo databases is very easy with the four steps available in Kettle. Palo
can be a great asset for your organization’s BI efforts.

Summary

This chapter covered everything related to working with multi-dimensional data, also
known as OLAP cubes. The first part of this chapter was a general introduction to the
benefits of using OLAP technology and how it fits in a business intelligence or data
warehouse solution. Next, we provided three sets of examples, illustrating how the
different OLAP steps in Kettle can be used. We covered the following products and
techniques:

Reading data from a Mondrian cube using the Mondrian Input step with MDX:■
The data retrieved was cleaned up for further processing with the additional steps
“Split fields,” Select Values, “Replace in string,” and “Filter rows.”

Reading data from a Microsoft SQL Server 2008 Analysis Services cube using ■

the OLAP Input step: The retrieved data was cleaned up for further processing
using a single JavaScript step that showed how to loop through a data set to
enter missing values.

Reading data from and updating data in a Palo database using the four avail-■

able Palo steps: We showed how to de-normalize data extracted from a Palo
cube using the “Row denormaliser” step, and showed how to update data in
an existing cube, extend a cube with new dimension information, and add new
detail data for the newly created dimension values.

As we’ve demonstrated in this chapter, Kettle is one of the very few available ETL
products that can work with nearly every OLAP database on the planet, including
Hyperion Essbase, SAP BW, Microsoft SQL Server Analysis Services, IBM-Cognos TM/1,
Mondrian, and Palo.

P a r t

III
Management and Deployment

In This Part

Chapter 11: ETL Development Lifecycle

Chapter 12: Scheduling and Monitoring

Chapter 13: Versioning and Migration

Chapter 14: Lineage and Auditing

295

C H A P T E R

11

ETL Development Lifecycle

In previous chapters, we introduced several parts of Kettle and showed how they fit into
the 34 ETL subsystems identified by Ralph Kimball. This chapter is broader in scope
in that we cover the total development lifecycle, not just individual pieces. Of course,
we dive into some specific topics in detail as well.

Developing ETL solutions is an important part of building and maintaining a data
warehouse and, as such, should be considered as part of a process, not an individual
project. A project has one or more pre-defined goals and deliverables, and has a clearly
defined start and end point. A process is an ongoing effort with periodically repeat-
ing activities to be performed. Creating ETL solutions is usually conducted as part
of a project; monitoring, maintaining, and adapting solutions is part of an ongoing
process. Adapting existing ETL jobs can, of course, be done in a more project-oriented
setting. This chapter focuses on the initial part of the lifecycle where a new solution is
being built. ETL solutions go through analysis, design, build, test, documentation, and
delivery stages, just like any other piece of software. The challenge, of course, is to go
through these phases as quickly as possible at the lowest possible cost and with prefer-
ably zero rework due to errors. As you will see in the subsequent sections, Pentaho’s
Agile BI tools are ideally suited to support this.

Solution Design

Any solution should be based on a design; jumping into coding without a plan is a
common mistake made by developers, not just ETL developers. Even if you just start

296 Part III ■ Management and Deployment

out by sketching the transformation steps needed on the back of an envelope, you’re
already improving the quality of the solution. At the other extreme, you could go totally
overboard by spending countless hours in specifying and designing solutions using
workflow design tools and whatnot. We think the proper way of doing this lies some-
where in the middle between these two extremes.

Best and Bad Practices

An ETL design effort can only be started when the initial data warehouse design is
done. Sometimes developers work their way toward a data warehouse from the source
systems using their ETL tools. In fact, as you can see in Figure 11-1, Kettle supports
such a way of working: whenever you augment a transformation that connects to a
destination table, one click on the SQL button (highlighted in the figure) will show the
change script to adapt the table to the new output specification.

Figure 11-1: Table output alter script

Although this is a great piece of functionality for prototyping, we strongly advise
you against using it for building production data warehouses. A good data warehouse
should be based on a solid and well thought-out design. That design should be based on
business requirements, not on what data is available in a source system. Since this is a
book about building ETL solutions using Kettle and not about data warehouse design,
we won’t go into the details of data warehouse design. An excellent book on this topic
is Mastering Data Warehouse Design by Claudia Imhoff et al. (Wiley, 2003); our previous
book, Pentaho Solutions (Wiley, 2009), can also serve as a starting point for your work
with data warehouse design.

Even if we won’t cover the actual design of the data warehouse and data marts, the
first best practice you should adhere to is take the time to create a proper design for
these essential parts of your business intelligence solution. Other best practices that
help improve the quality of your solution include:

 Chapter 11 ■ ETL Development Lifecycle 297

Peer/expert reviews: ■ During the project you should plan for regular peer/expert
review sessions to make sure that the solution will meet all criteria set out at the
beginning. At a minimum, you should go over the overall ETL design before
the actual implementation starts. A customer or manager might complain that
this will increase the total project cost, but actually it does the opposite by mini-
mizing the risk of rework and ensuring the best balance between development
effort and the quality of the final result.

Standardization: ■ Developing standards and templates at the beginning of a proj-
ect makes the effort of building the ETL solution a lot more predictable. Initially
it takes time to set up those standards, but that effort will pay off many times
over during the rest of the project lifecycle.

The next two subsections will cover two other best practices in more depth: data
mapping, and naming conventions (which is a part of the general standardization
best practice mentioned above). We conclude with a list of “bad practices” or common
pitfalls that you need to avoid.

Data Mapping

Assuming you already have the data warehouse design in place, the initial challenge
will be to find out where the data should come from. Chapter 6 covered the data profil-
ing and extraction work involved. But as soon as your sources and target are known,
the fun begins. How do you map the data from source to target? Which transformations
are needed and how do you split up the workload into logical and manageable chunks?
The latter is the subject of the next section; we’ll cover the data mapping part here.

First, you should try to find the source system meta documentation, or at least get
access to the metadata. If there are a lot of tables and columns involved, you don’t
want to enter them by hand. As a best practice, create a spreadsheet with all the target
columns on one side, grouped by the table they belong to. Then, define the source for
each of these columns. If fields need to be combined into a single target column, add
additional rows to the spreadsheet to accommodate this. Each column on both the
source and target side should also have the data type specified. Then you can use one
or more columns in the spreadsheet between the source and target fields to specify
the transformation. When no source column is available (for example, for a dimension
version number or surrogate key), specify the process, function, or Kettle step that will
deliver the correct value for the field.

TIP Almost any database system will let you extract the metadata for the

tables and columns. With Kettle, you can easily read this data and write it to

a spreadsheet—no typing required and no chance of forgetting anything. Just

add an Input Table step and an Excel Output step to a new transformation.

Add the required metadata extraction query to the Table Input step and write

the wanted columns to the spreadsheet. In the example in Figure 11-2, you can

see the query for the sakila_dwh tables and columns, and the resulting XLS

file with the metadata information opened in Open Office Calc.

298 Part III ■ Management and Deployment

Figure 11-2: Sakila_dwh metadata

Naming and Commentary Conventions

Many people fall into the trap of using too many naming conventions, while others
use none at all. Especially if your team consists of more than one person, or your work
needs to be transferrable to a third party, naming standards can greatly improve the
maintainability of the solution. Each object in Kettle can be given a specific name and,
when combined with the icons used for jobs, transformations, and steps, this makes
for easy and understandable solutions.

One important caveat is to avoid using the same names for jobs and transformations
in one solution. Using load_data as a job name where one of the transformations is
also called load_data is unnecessarily confusing. It’s not a bad idea to use the prefix
jb_ for all your jobs and tr_ for the transformations. Furthermore, using names for
the transformations based on the type of work they are performing or table they are
loading is a good convention as well. An extraction transformation for the customer
table will then be called something like tr_e_customer, or when the extraction and
staging takes place in a single transformation, it might be tr_stg_customer. Loading
the corresponding dimension table can then be performed with a transformation called
tr_dim_customer, and so forth. Some organizations also use the source system code
in the prefixes, so if you’re reading some customer data from an SAP system and some
from a Siebel CRM application, you’ll get a tr_stg_sap_customer transformation
and a tr_stg_crm_customer transformation.

With steps it’s a different story; they should at least get a meaningful name that
reflects what action the step is performing. Last but not least are the notes. Notes allow
you to add inline comments to your jobs and transformations, which is a great help to
anyone trying to understand your work. To further improve the transparency of your
solution, you should also use the description field of jobs, transformations, job entries,
and steps. In contrast to notes, these description fields are “bound” to the corresponding
object, so even if you copy and paste a step, the documentation gets copied as well.

 Chapter 11 ■ ETL Development Lifecycle 299

An excellent example of a well-documented transformation can be found in the
standard Kettle samples and is called GetXMLData - Different Options.ktr.

Within the transformations, the fields or column names are, of course, in use. As
a naming convention, you might consider using the t_ or tmp_ prefix for all fields in a
transformation that are only there for the purpose of the transformation but won’t be
loaded into the final output. Especially when working with large tables with many
fields, this practice makes it easier to distinguish between the temporary and the final
column names. You can also use Select Values steps to “clean up” the fields that won’t
be needed for subsequent steps.

Common Pitfalls

Other than avoiding the “just start coding” trap, there are a few other pitfalls or bad
practices to consider:

Not talking to end users:■ As an ETL developer, you might think that dealing
with end users is for the people involved with project management or developing
front-end tools. Nothing could be further from the truth! It’s the business user
who can tell you exactly if the data you’re delivering is correct or not, and who
can tell you what the meaning of the data in the source system actually is (which
might be different from what the manual or the metadata tells you). The “Agile
Development” section later in this chapter will show you how you can work
jointly with your end users to develop great solutions, fast.

Making assumptions based on other projects:■ Maybe your last project was for
a different client that had the expensive online backup tool and where there was
a 12-hour batch window to run ETL jobs. That doesn’t mean that this project will
be the same.

Ignoring changing requirements—■ In many cases people start building a solu-
tion based on open or unsettled requirements and don’t deal with changing
requirements during the project life-span. The recommendations in the “Agile
Development” section later in this chapter can help you avoid this pitfall.

Ignoring production requirements:■ It is quite common to build your ETL solu-
tion in a development environment using a limited set of data. Make sure you
have the ability to run your solution against a full production-size data set using
production hardware in an early stage of the project. Usually your production
environment will be more powerful, but we’ve seen situations where a process
ran within 30 minutes on a development system but took several hours on the
designated production machine.

Over-engineering the solution:■ Kettle will save you a lot of time compared to
other ETL tools, and there are always ways to make a solution even better than
it is. Don’t fall into this trap, however; when the jobs run within the designated
batch windows, do what they need to do, and handle errors correctly they’re
good enough. Maybe not perfect, but good enough will do in most cases. At some
point, the extra work stops adding value.

300 Part III ■ Management and Deployment

Skipping testing:■ If the job runs on your development environment, it can be
moved right into production, can’t it? Wrong. A technically error-free process
doesn’t mean that the outcomes are correct. More on this later in this chapter

Failing to back up your data:■ Lest we forget: make backups regularly! Although
it is rare, your repository can become corrupt and thus unusable.

ETL Flow Design

An ETL solution is actually a process, which also means it can be designed as one. The
process can be kicked off automatically at a designated interval, or can be waiting for
a system event such as the availability of a file or system. Then there are inputs for the
process: files, records and messages; and transformations that operate on these inputs.
Roughly speaking, it’s not that different from a business process such as the ones
you’ll find in a claims department or a car factory. Based on this similarity, you could
be tempted to work with the various business process diagramming tools out there to
design the ETL solution, but we have a better idea: Why not just use Kettle for this as
well? Consider the example in Figure 11-3.

Figure 11-3: Job design

Figure 11-3 shows a typical main job that kicks off other jobs or transformations.
This is a diagram that can be used to give a high-level overview of the ETL process
to a business user, and it takes only a couple of minutes to create. If that seems quick,
think about this: The job and the transformations shown don’t do anything yet. They
are basically just placeholders for the things to come, and serve as a good way to check
with a domain expert about whether you’re forgetting anything. Also don’t forget to
add items like the details put in the note—the plan to start the job each night at 2 a.m.
It could be that the backup of the source systems is still running at that time, or that
the required files won’t be available until 6 a.m. By showing and discussing the design
early in the development process, you’ll avoid unpleasant discussions later on.

Reusability and Maintainability

One of the most important principles of structured programming is dividing your code
into generic, reusable blocks. With Kettle, you can adhere to this same principle. The
available building blocks, jobs, and transformations already allow for easy division of
the steps in an ETL process. The capabilities to nest jobs in jobs and transformations

 Chapter 11 ■ ETL Development Lifecycle 301

in jobs, and to reuse transformations as sub-transformations via a mapping step offer
an endless list of possibilities. A good example of reusing functionality appeared in
Chapter 4, where the fetch_address transformation was used in both the dim_cus-
tomer and dim_store transformation via a mapping.

Reusability can also be accomplished by consistently using variables, especially for
repeating elements such as error e-mail addresses or database connections. Remember
that there are two ways of reusing elements within Kettle: copy/paste and real reuse.
Whenever you find yourself using copy/paste, consider whether you’d be better off by
placing the copied objects in a separate job, transformation, or mapping that can be
called from other parts of the process. Using the Mail job entry poses another challenge:
Many fields need to be filled in (sender, recipient, message, SMTP server, and so on)
so it’s tempting to just copy it to other locations after having done the data entry once.
You could indeed do this, but then only when you’ve used variables for all the fields.
When you use variables, it doesn’t matter how many copies are being made; the value
of the variables needs to be changed only once—unless, of course, someone decides to
alter the variable names. The basic question you’ll always have to ask yourself is this:
If I copy this step/transformation/job and I need to make a change, in how many spots
do I need to make this change? If the number in your answer is greater than 1, try to
think of a better solution.

Back to the Mail job entry mentioned earlier. Remember that there are two Mail
components in Kettle: one for jobs and one for transformations. Here we are discussing
the Mail job entry. When you want a single Mail job entry to send an e-mail in case an
error occurs during processing, create a new job called jb_ErrorMail or something
similar, with just a single Mail step in it. This jb_ErrorMail job can be used as many
times as you like, and whether a variable or anything else changes, the change needs
to be applied in only one place.

Another good example of reuse is using variables for all database connection infor-
mation. This enables you to migrate jobs and transformations from development to test
to acceptance to production without the need to change anything inside your transfor-
mations. We cover migration in depth in Chapter 13

Agile Development

The hype du jour in the BI world seems to be about “agile development.” We mentioned
this briefly in Chapter 1 and want to elaborate a bit more on the subject here. There’s a
very good reason for doing that, too: Pentaho in general, and specifically Kettle, is not
only positioned as an agile solution but also equipped with many features that support
an agile way of working. There are many agile development methodologies, with Scrum
and XP (Extreme Programming) probably the most well known. With Scrum, artifacts
(deliveries such as code blocks or transformations) are posted in a backlog, and each
development phase (or sprint) aims at clearing part of the backlog. Both the backlog
and the final product are subject to constant changes. This doesn’t mean that projects
will run endlessly (there are time and financial constraints as well), but does mean that
agile projects have a much more dynamic nature. These dynamics are reflected in the
Kettle ETL design tool, Spoon, as well.

302 Part III ■ Management and Deployment

Starting with Kettle 4, Spoon will be the cornerstone of the Pentaho BI suite for
developing BI solutions. Originally, Spoon was purely an ETL development tool. Now,
it also allows you to work with so-called perspectives, with the modeling and visual-
ization perspectives already available. These new additions to the Spoon IDE make it
possible to design a multidimensional model and visualize the data in the solution in
one easy-to-use workflow.

Spoon has adopted the perspective idea from Eclipse so that you can work on different
types of solutions, all from within the same familiar interface. The Community Edition
contains the Data Integration, Model, and Visualize perspectives, while the Enterprise
Edition adds a fourth perspective called Scheduling. The workflow for which the Agile
BI initiative offers the foundation is depicted in Figure 11-4, where you can see the three
activities: Design ETL, Build Model, and Visualize.

Analyze

Build ModelDesign ETL

Figure 11-4: Agile BI initiative

The data integration capabilities should be very familiar already, but modeling and
visualization are newly added capabilities to Kettle 4. With these related activities
combined in a single toolset, it becomes very easy to sit down with an end user and
interactively design the initial prototype for a data mart by showing the data as it will
look like to a user in the final solution. Be careful, though; everything we mentioned
earlier in this chapter about creating a proper design for your data warehouse, data
marts, and ETL solution still holds. The Agile BI tools are great for prototyping, not
(yet) for designing an enterprise data warehouse!

 Chapter 11 ■ ETL Development Lifecycle 303

NOTE At the time of this writing, the Model and Visualize steps in Kettle

were restricted to a single output table. The single output table might seem

like a limitation but for quick prototyping it’s not a real handicap.

EXAMPLE: WORKING WITH THE AGILE BI TOOLS IN KETTLE

In order to quickly analyze the data in your data warehouse or data mart from

Spoon, you’ll need two things:

A data set that can be put into a single output table ■

A multidimensional model built on top of this output table ■

At first it might seem awkward to put everything in a single table, but as

you’ll discover shortly, this doesn’t have to be a problem. In fact, it makes the

modeling very simple and straightforward. If the data is already available in

a star schema database, it’s very easy to create a flat model out of it that can

be used with the modeler available from the Modeling perspective. The data-

base used for this example is the same sakila_dwh database that was created

in Chapter 4. It contains a single star schema with movies, customers, stores,

staff, films, and a fact table with movie rental information. You need to do an

extra denormalization step to create a single view of the dimensions and facts

you want to analyze initially.

There’s even a name for such a flat data model: the One Attribute Set

Interface (OASI) model, as described by Dutch data warehouse expert Dr. Harm

van der Lek in his Dutch book Sterren en Dimensies (Stars and Dimensions),

ISBN 90-74562-07-8, only available online at http://array.nl/Boeken. An

OASI model contains all the non-key attributes available in a star schema. The

following query will serve as the denormalization step you need to create an

OASI model that you can use to build a multidimensional model:

SELECT

 c.customer_country AS customer_country,

 c.customer_city AS customer_city,

 d.year4 AS year4,

 d.month_number AS month_number,

 d.year_month_number AS year_month_number,

 f.film_title AS film_title,

 f.film_release_year AS film_release_year,

 f.film_in_category_action AS film_in_category_action,

 f.film_in_category_animation AS film_in_category_animation,

 f.film_in_category_comedy AS film_in_category_comedy,

 f.film_in_category_drama AS film_in_category_drama,

 f.film_in_category_family AS film_in_category_family,

 sum(r.count_rentals) AS rentals,

 sum(a.amount) AS rental_amount

FROM dim_film f

INNER JOIN fact_rental r ON f.film_key = r.film_key

INNER JOIN dim_customer c ON c.customer_key = r.customer_key

Continued

304 Part III ■ Management and Deployment

EXAMPLE: WORKING WITH THE AGILE BI TOOLS IN KETTLE (continued)

INNER JOIN dim_date d ON d.date_key = r.rental_date_key

INNER JOIN amounts a ON a.rental_id = r.rental_id

GROUP BY

 customer_country, customer_city,

 year4,

 month_number,

 year_month_number,

 film_title,

 film_release_year,

 film_in_category_action,

 film_in_category_animation,

 film_in_category_comedy,

 film_in_category_drama,

 film_in_category_family

Note that this is not the complete set of non-key attributes, but a subset

that will demonstrate the principles behind the Model/Visualize concepts.

Because the purpose of data analysis in this phase of a project is to get a

good grasp of what a user can expect, it doesn’t make a lot of sense to load

all the data in the target output table. A nice way to randomly select rows

from a large data set is to use the Reservoir Sampling step and set the number

of rows to be sampled at a fixed number. In this case, you’ll read 1,000 rows

into the target table, as displayed in Figure 11-5.

Figure 11-5: Reservoir Sampling

For the Modeler to work on the output table, it needs to be physically avail-

able in the database and loaded with the input data, so this transformation

needs to run before you can start the Modeler. When you right-click on the

output table, you’ll see the Model and Visualize options at the bottom of the

available option list. You can also click the Model button on the shortcut bar.

The Modeler screen that is displayed contains three panels; from left to right

you can see the available data items, the model itself, and the properties of

the selected model element. Figure 11-6 shows an example model created on

top of the data selected in the previous step.

 Chapter 11 ■ ETL Development Lifecycle 305

EXAMPLE: WORKING WITH THE AGILE BI TOOLS IN KETTLE

Figure 11-6: Example Analyzer model

Creating this model is pretty straightforward, and the modeler will auto-

matically apply some basic rules to generate names from the query results.

Figure 11-6 shows the data elements on the left, and as you will notice the

return columns from the query have either been used as is or, in case the

names contain underscores, the underscores have been replaced by spaces.

This is all done automatically without the need to create a separate metadata

model. There is one thing to be aware of, though; it’s a multidimensional

model. In Figure 11-6, you can see what this means for single attributes such

as “Film in category drama” or “Film in category comedy.” These attributes

must be put in a separate hierarchy because there is no dependency between

those fields. This is different for Year-Month or Country-City, which are real

hierarchies and can be defined as such. For an easy overview of the available

objects within their respective hierarchies, you can select View ➪ by Category,

as displayed in Figure 11-7. What you can also see in this figure is why this

tool is called Pentaho Analyzer: With a few clicks of the mouse you can filter

the top 10 countries based on revenue, and do an analysis on the comedy cat-

egory to see which countries score best in this category.

Continued

306 Part III ■ Management and Deployment

EXAMPLE: WORKING WITH THE AGILE BI TOOLS IN KETTLE (continued)

Figure 11-7: Example Analyzer report

A second option, which we won’t show here, is the Report Wizard, which

can be used to create a standard report. The magic behind the scenes is per-

formed by the metadata layer (the Model), which can also be published to the

Pentaho server and be used in the web portal.

It’s not so much the technical wizardry that can be accomplished using the Agile BI
toolset; it’s the communication with end users that adds the real value. Working in an
iterative way with immediate visualization options makes it possible to get answers
right away when you’re not sure what exactly is meant by things like “cost,” “price,”
or “date.” Being able to quickly replace “order date” with “delivery date” saves a lot of
frustration afterwards.

Testing and Debugging

Although testing and debugging are often considered two sides of the same coin, there
are some notable differences between the two. Debugging is an activity that follows
testing in case an unpredicted or unforeseen error occurs, so if the testing phase runs
smoothly, debugging isn’t even necessary. Historically there was a distinction between
black box testing where no knowledge of the internal working of the tested object was
presumed, and white box testing where this knowledge was required. Nowadays, the
terms functional or behavioral testing are more widely used for black box testing, although
behavioral testing does allow some prior knowledge of internals of the tested object.
Common terms for “white box testing” are structural or clear-box testing.

The problem with all these test methodologies is that they have been designed to test
software, and what’s more, software that has a user interface and predefined use cases.

 Chapter 11 ■ ETL Development Lifecycle 307

For an order entry system for instance, a functional test could be that each customer
record should have a phone number and, if not, the user should get a warning. The test
is then conducted by trying to save a customer record without a phone number. The
correct outcome should be that an error message is displayed and the record isn’t saved.
If that’s the case, the test succeeded. If not, it failed. How exactly the system verifies the
empty field and handles the exception is irrelevant.

An ETL process is different; it doesn’t have a user interface and it’s also not triggered
by a user but usually automatically scheduled. The functional test has therefore other
characteristics than when testing a typical software package. The structural test is also
different and even simpler: You’ll use the same tools for both developing and testing
the solution. As you’ll discover later, Spoon offers many ways for easy testing of your
ETL solution.

Test Activities

There are complete libraries available about software testing so we won’t go into too
much detail here, but we do want to explain some of the terms you might not be famil-
iar with.

We already mentioned functional/behavioral testing and structural/clear-box test-
ing. Static testing is about reviewing documentation, code inspection, and walkthroughs,
and is done without using the software. In the case of a Kettle solution, static testing can
be done by going over the different parts of the solution based on a design document
and checking whether the solution makes sense. Typically this is the kind of work a
senior developer does when parts of a solution have been built by a less experienced
ETL developer to get a general impression of the quality of the solution.

Dynamic testing involves actually using the software to find out whether it adheres
to the required functionality. The activities we’ll cover during the remainder of this
chapter are all part of dynamic testing.

Three other familiar terms in testing are unit tests, integration tests, and regression

tests. The names of these activities speak for themselves: with a unit test, an individual
component (a single transformation or job) is the object of inspection. An integration
test is performed on the completed solution, usually consisting of many jobs and trans-
formations. Regression testing is the activity where a change is made to one component
and aimed at proving that the total solution still works as expected after committing
the change.

The ultimate test is the UA, or User Acceptance test. UA testing might seem like a strange
activity for an ETL solution because end users won’t be working with the system directly.
They do, however, work with the data that is loaded into the data warehouse, and should
be involved in testing the completeness and reliability of the data. Usually it is the end
users who immediately spot an error made in a calculation, or notice missing data before
the ETL team does. Data warehouse UA testing also involves working with the complete
BI solution, including the front end reporting and analysis tools. Testing the data ware-
house this way is beyond the scope of this book so we’ll have to restrict ourselves to the
ETL testing itself.

308 Part III ■ Management and Deployment

When working with Kettle, unit testing should be part of the regular development
work. The next section highlights the types of tests that should be conducted and, as
you’ll see, Kettle performs some of these tests automatically.

ETL Testing

Organizing the test activities of ETL jobs and transformations is a challenging task,
if only for the single fact that the number of possible use cases is virtually unlimited.
Testing requirements will also differ based on the kind of environment the solution
is meant for. In organizations where Sarbanes-Oxley (SOX) compliance is mandatory
you need to have a fully auditable process. Article 302 of the Sarbanes-Oxley Act in
particular has consequences for the way your ETL process is designed and tested (see
http://en.wikipedia.org/wiki/Sarbanes-Oxley_Act for more information).
These harsh legal requirements could trigger you to mandate 100 percent true and tested
ETL solutions, but if you try to accomplish this you’ll find out soon that it’s impossible
to test every exception that might occur during data transformation. What can be done,
however, is to prove that under normal circumstances the system completely and cor-
rectly transforms a given set of input data. Note the terms normal circumstances and a

given set. By the latter we don’t mean any given set of input data!

Test Data Requirements

In order to test ETL processes, you need test data. This data should be as close to the
actual production data as possible, in both volume and content. It’s sometimes hard
to get to production-like data, and in some cases it’s not even permitted due to legal
constraints. Some factors to consider when preparing data for testing or getting access
to systems include:

Volume:■ The sheer volume of data might prohibit conduction unit tests early on
in the project. No matter what, at some point you do need to run a full integra-
tion/stress test using a full set of production data. For first stage unit tests, try to
get a reasonable size of test data, which is a true random subset of the produc-
tion data.

Privacy:■ Production data containing financial account details, medical records,
or other data containing sensitive private information is not usually available
for testing. Sometimes it is possible to obtain an obfuscated set from these sys-
tems, which is better than getting a limited and often incomplete data set from
the source systems test environment. In any case, make sure that the obfuscated
data contains the same data types and data lengths as the data you’ll ultimately
be transforming.

Relevance: ■ The data should represent the business cases you have to deal with in
your production environment. This means that if you need to generate test data
manually, you need to make sure it covers real scenarios that represent the data in
the production system as closely as possible.

 Chapter 11 ■ ETL Development Lifecycle 309

It can be hard to create and maintain a good set of test data but it’s an invaluable asset
to an ETL project. The problem with using “regular” sources of data is that it constantly
changes. Target data changes constantly, too, as a result of running development and test
jobs—not an ideal situation for testing purposes as you need a controlled and isolated
environment. Next to having test data at hand, it’s also important to have a separate test
environment. Reversing a database to a previous state after a failed or even successful
run is a tedious task and something you’d rather automate. There are several ways of
doing this: creating backups with different versions of the database is one option; and
there are several tools available for database testing that can be used for this purpose too.
One solution you might want to have a look at is DbUnit (http://www.dbunit.org), an
open source extension for the JUnit testing framework.

Testing for Completeness

One of the first tests to be conducted is the completeness of the data. You need to make
sure that all the data that goes into the process also comes out. There are a couple of
easy-to-use techniques for this:

Record counting:■ Count row totals for rows read, transformed, written, updated,
and rejected. This is a no-brainer when using Kettle because these values are
directly visible in the step metrics when running a transformation.

Hash totals:■ Calculate totals or hash totals for critical columns in both source and
destination system. Use this to determine whether the total sales amount in the
source system matches the total sales amount in the data warehouse.

Checksums:■ Kettle can calculate checksums based on one, some, or all columns
in a transformation. After processing the records, this value can be compared to
the checksum in the destination table records.

These numbers can be calculated on-the-fly and visually inspected, but a better way
is to have them written to a log table in a database. This enables easy reporting against
these tables and also provides a system of record of the ETL activities. We’ll use the
load_rentals transformation from Chapter 4 as an example. The transformation has
a couple of challenges when testing for data completeness:

Does the initial load work correctly and load all records from the source ■

database?

Does the CDC option work correctly, meaning that no records are skipped?■

Are all records read during the extraction loaded into the target table?■

In order to have these tests run automatically, you need to capture the record counts
in a logging table each time the transformation is run. We cover logging and auditing
in-depth in Chapter 14 but we cover some basics here to help you start testing.

 1. First, open the transformation load_fact_rentals and open the Transformation
properties screen with CTRL+T or Edit ➪ Settings. In the third tab of the screen,
Logging, you can define several logging options, but we’ll keep it simple and just
specify the transformation log.

310 Part III ■ Management and Deployment

 2. To write to a log table, you need a connection to a database. For this example, we
used the sakila_dwh connection. (In a real-life scenario, you might want to use a
separate schema or database for the logging tables.)

 3. If you enter a table name in the field “Log table name” and click the SQL button,
the log table create script will be generated, ready for execution. Before you do
this, make sure all the required log fields have been checked.

NOTE After checking additional log fields, make sure to alter the table with

the SQL option; otherwise, your job/transformation will fail.

 4. In the “Fields to log” section of the screen, the Step name column enables you to
specify for which step the calculations need to be stored in the log table. Figure 11-8
shows the completed screen. Because you are only interested in totals for the trans-
formation it suffices to look at the first and last steps in the transformation.

Figure 11-8: Transformation log settings

The first completeness tests can then verify the following test cases:

 1. All data from the source system is correctly loaded during an initial load.

 2. The CDC mechanism correctly identifies new records in the source system that
were inserted since the last data warehouse load.

 3. The CDC mechanism correctly identifies records in the source system that were
updated since the last data warehouse load.

 4. New records from the source system are correctly inserted in the fact table.

 5. Updated records lead to an update of the correct rows in the target table.

 Chapter 11 ■ ETL Development Lifecycle 311

Executing these tests is simple: For the first case, do an initial load on an empty
fact_rental table and compare the counts in the kettlelog table (you’ll of course
see them while running the transformation as well). The second test requires at least
one newly inserted record in the rentals table, while the third test requires at least one
update. Cases 4 and 5 are for testing the correct delivery of the inserts and updates to
the fact table.

Testing Data Transformations

As the data is read from various source systems and flows through the solution you’ve
built, data is transformed in one way or another. Regardless of the logic and processing
involved, there’s one thing that can (and should) always be tested: expected outcomes
given a certain input. Ideally you’ll have a (complete) list of different scenarios at hand
and a set of input and expected output values for each scenario. Try to avoid making
this a manual effort; even in a simple solution with one or two source systems there
are already many different possible cases.

The most commonly used tool for listing scenarios and input plus expected output
values is the omnipresent spreadsheet. Kettle has no problem reading data from XLS
files but for initial testing of newly developed transformations there’s an even better
way: use the Data Grid. The Data Grid allows you to easily specify and insert input
data and is a great way to quickly test whether, for instance, a date will be correctly
formatted by a transformation.

WARNING A Data Grid step is a very convenient way to check whether your

transformation behaves as expected, but it’s only a first step, usually performed

during development. For the actual test the normal input steps should be in

place.

Again you can use the load_rentals transformation because it offers many pos-
sible tests. For instance: What if a store ID is loaded that’s not available in the store
dimension? Is it specified how Kettle should handle this? A closer inspection of all
the lookup steps shows that they all have the option “Do not pass if the lookup fails”
selected. There’s also a calculation step that calculates the rental_duration. Does this
step generate the expected result? What happens when the rental return date is empty,
and what is the effect if the return date is before the rental date? All these scenarios
should have been taken care of already by adding data validation and error handling
routines, but these have to be tested, too.

Test Automation and Continuous Integration

Running tests should optimally be an automated task so that once the proper tests are
set up, the routines will run at a regular interval. This can be accomplished very eas-
ily by adding a schedule for the main job or jobs on the test environment. Whenever a
new or altered part of the ETL solution is added to these main jobs it will automatically
become part of the continuous integration test.

312 Part III ■ Management and Deployment

Upgrade Tests

Kettle is still being actively developed, meaning that every few months a new release
becomes available. New releases not only contain bug fixes and new features but
improvements and optimizations as well. For these reasons it’s a good idea to keep up
with the release schedule and upgrade your Kettle environment regularly. Of course
you cannot just upgrade your existing production environment and assume everything
will just keep working. There’s always a chance that a new version contains a bug that
wasn’t there before. In order to prevent breaking the production system by carelessly
performing an upgrade, you need to set up a separate test environment and test reposi-
tory for performing upgrade tests.

A separate repository is needed because new features and functionalities usually
require a repository upgrade. The repository upgrade is also an important part of the
upgrade test. The correct order to do this is the following:

 1. Create a new test repository using your current Kettle version.

 2. Export your current production repository and import it into the test repository
you just created.

 3. Install the new Kettle version.

 4. Upgrade the test repository using the new Kettle version.

When this process can be executed without problems you have your base upgrade
test environment ready. Now you can perform all other tests on using this environment
to find out whether an upgrade would cause problems. Note that you need to repeat
the installation and upgrade process again for each new Kettle release.

Debugging

Debugging is the process of finding and fixing errors in a software program. In Kettle,
debugging is in large part already enforced by the program itself. Many errors will
have been solved during the development process itself, simply because in order to have
Kettle run a complex job from start to finish means that all the connections are working,
data can be read, exceptions and errors during transformations are handled, and data
is delivered at the designated target. If one or more of these parts of the process fail,
Kettle will simply throw an error telling you where you made a mistake. This is, in fact,
already a form of implicit debugging and the resolutions are not always obvious. The
explicit form of debugging in Kettle is provided by the Preview and Debug options.

The Preview and Debug options allow you to set arbitrary breakpoints in a trans-
formation. Figure 11-9 shows the location of the two starting points for Preview and
Debug.

Figure 11-9: Preview and Debug buttons

 Chapter 11 ■ ETL Development Lifecycle 313

There’s a slight difference between the two, although they both open the same screen.
When you have opened the Transformation debug dialog, you’ll see all the steps listed on
the left of the screen; the active step (the one for which a Preview or Debug will be issued)
is selected or highlighted. The right side of the screen shows a large condition panel (similar
to the condition builder in the “Filter rows” step) and the two checkboxes in the upper right.
These checkboxes determine how the Debug dialog will behave when a Quick Launch is
selected. Selecting “Retrieve first rows (preview)” will cause Kettle to pause the transforma-
tion, showing the number of rows entered in the “Number of rows to retrieve” box. Selecting
to “Pause transformation on condition” will trigger Kettle to pause the transformation based
on the condition(s) entered. Selecting both will just do a preview.

The breakpoint also handles the “Number of rows to retrieve” option, but then in
reversed order. By setting a breakpoint and entering 10 as the number of rows, Kettle
will pause based on the condition but also display the ten rows that entered the step
prior to the one that triggered the condition. Figure 11-10 shows a debug screen with
ten rows to retrieve where the transformation is paused when customer_id 500 is
encountered.

Figure 11-10: Using breakpoints

In the figure, Circle 1 identifies the customer_id we used for the breakpoint condi-
tion. Circle 2 shows the available options to proceed with the transformation: Close, Stop,
or “Get more rows.” Circle 3 shows that the transformation had already transformed

314 Part III ■ Management and Deployment

several rows before the breakpoint condition was met. That means that some caution
is needed here: Even selecting Stop won’t roll back the transformation to the original
starting point because Kettle already might have loaded records into the target table.
The Close button will only close the debug screen and keep the transformation in a
paused condition. This is visualized by means of the green (=selectable) Pause and Stop
icons to the left of the Preview and Debug icons, as shown in Figure 11-11.

Figure 11-11: Paused transformation

Selecting Stop does indeed terminate the running transformation, but again, the rows
that have been already pushed through the process before the breakpoint condition
was met are now loaded into the target table or file. If this is not your intention, you
can keep Kettle from loading records immediately by adding a Blocking step before
the final destination step. In case of the fct_load_rentals transformation, a Blocking
Step can be placed directly before the Insert / Update step.

WARNING The remarks about the stopping issue do not refer only to

debugging but to any Preview. As soon as you select Preview, the entire trans-

formation is started in the background and rows are processed. If there is a sub-

sequent step in the transformation deleting records, the ultimate effect of this is

that data could get deleted even if you only do a preview of a previous step!

If you wonder whether Kettle supports row-by-row debugging: yes it does, although
it does so a bit differently than some other tools. Just start with a regular debug and
when a preview screen is shown, click “Get more rows.” This will cause the preview
screen to close, but when you click the Pause button in the transformation quick launch
bar, you’ll see that it’s opened again, but now with one additional row. You can repeat
this process for all other rows if needed.

Kettle 4 got many new features, but for debugging purposes the new drill-down
and sniffing features stand out. When you’re developing transformations and jobs, you
probably noticed the fact that you can drill into jobs, transformations in a job, and map-
pings in a transformation by right-clicking on an object and selecting Open job, Open
transformation, or Open mapping, respectively. This works not only during develop-
ment, but during execution as well. What’s more, you can also “sniff” the data during
execution by right-clicking on a step and selecting “Sniff test during execution.” From
there you can select to sniff the input, output, or error rows of a step. It is also possible
to open more than one sniffer simultaneously, as is shown in Figure 11-12. The simple
example in Figure 11-12 shows a transformation that generates rows and uses a Modified
Java Script Value step to concatenate the two string fields. Both the output rows of the
Generate Rows step and the input rows of the “Text file output” step are shown.

 Chapter 11 ■ ETL Development Lifecycle 315

Figure 11-12: Sniffing a running transformation

A live example of the sniffing option is also available on YouTube (http://www
. youtube.com/watch?v=imvpQ8FFo-A) where Matt Casters demonstrates this
feature.

Documenting the Solution

One of the most important and at the same time most ignored aspects of ETL devel-
opment (or any software development, really) is creating proper documentation.
Documentation is an essential deliverable of any IT solution, and ETL is no exception.
There are many purposes for documentation. Here are just a few benefits of good
documentation:

By recording the way the ETL design and its requirements are implemented, ■

documentation allows the solution to be validated.

If done right, documentation can help to train new developers more efficiently, ■

as they can simply read the documentation to help them understand the imple-
mentation of the ETL solution.

In the specific case of ETL, documentation could in principle be used to under-■

stand data lineage to facilitate audits.

316 Part III ■ Management and Deployment

Why Isn’t There Any Documentation?

Although the benefits of documentation may seem obvious, the reality is that in many
cases, documentation efforts are very poor or even completely absent. Despite the
advantages, actually producing and maintaining documentation is highly unpopular.
Developers don’t like to write it, they like maintaining it even less, and because there
are typically no short term benefits to having documentation, it’s usually the project
manager’s first victim when a software project starts lagging behind its planning. (That
is, if time was originally allotted at all for documentation!).

As a testament to its lack of popularity, there are a number of often-heard arguments
against documentation:

Because Kettle jobs and transformations are highly graphical by nature, some ETL ■

developers may argue that they are self-explanatory, and thus need no additional
documentation.

Some developers argue that documentation is actually a bad thing, as it tends to ■

become outdated as the solution develops over time, leaving outsiders with false
or incomplete information about the solution.

Another often-heard argument against documentation is that it’s not worth the ■

effort, because it won’t be read anyway.

These are classic excuses not to document anything at all, and you may hear them
from developers of any kind, be they C/C++ programmers, database developers or ETL
developers. These arguments are easily countered, however.

Myth 1: My Software Is Self-Explanatory

Typically, those who claim that some piece of software is self-explanatory are often the
ones who actually developed it. But what may seem self-explanatory to whomever built
and designed the solution may not be so clear-cut to others who have to maintain and
augment the solution in the future.

Also, a job or transformation (or any piece of software, really) can only be self-
explanatory to the extent that it is clear as to what it does. Although this is certainly a
desirable trait, and something you should strive for in your own design, this does not
explain why it is done this way. Ideally, documentation should not have to explain the
what so much as focus on the why.

Myth 2: Documentation Is Always Outdated

As for the argument that documentation quickly becomes outdated—this is certainly a
valid argument, but one can hardly blame the documentation itself. If the documenta-
tion gets outdated too fast, it just means that the act of documenting is not considered
part of the development process.

If developers and project managers treat documenting as a part of the development
process in its own right, and if the documentation is properly tested (just like the soft-
ware solution itself should be), there is no way it could become outdated. That said, it

 Chapter 11 ■ ETL Development Lifecycle 317

certainly helps if the development environment allows documentation to be supplied
as part of the development process to ensure that it is as easy as possible update the
documentation while you’re updating the actual software solution.

Myth 3: Who Reads Documentation Anyway?

Reading documentation is underrated, just like writing documentation, and often for
the same reasons. It is not considered part of the job, and therefore unnecessary. But to
be fair, one of the main reasons nobody reads documentation is because there literally
is nothing to read; it simply wasn’t produced in the first place. And if there actually is
documentation, it may have been written by someone who didn’t believe it was ever
going to be read anyway (with the predictable impact on documentation quality).

These factors all build up to a self-fulfilling prophecy: if there is documentation, it
wasn’t written very well, because whomever wrote it thought nobody was going to
read it anyway. Because the documentation is no good, it isn’t going to be read. And
so, because nobody reads it anyway, it is not going to get written at all the next time
around.

Kettle Documentation Features

It is always possible to document your ETL solution using some external tool like a
word processor a wiki website, or a set of static web pages. The advantage of these
documentation solutions is that they can be easily distributed, read on a computer
screen, or printed out to hard copies.

The disadvantage of maintaining the documentation text in an external solution is
that it increases the distance between the documentation and the ETL solution itself.
We just argued that ideally, the act of documenting should be part of the development
process. This should be taken quite literally; whenever the solution is changed for
maintenance, the change should ideally be recorded and added to the documenta-
tion immediately. This ensures the documentation will stay up to date, and will be as
accurate as possible.

Therefore, it should be as easy as possible to document your ETL solution. While this
is no guarantee that documentation will stay up to date, making it harder for develop-
ers to document things by forcing them to open an external application to record the
change will certainly not help.

Kettle offers a few features to embed human-readable information in jobs and trans-
formations. You can use these features to at least record the intent and design consider-
ations of your jobs and transformations. Currently, Kettle does not offer anything out of
the box to turn this information into proper documentation, but in the last subsection of
this chapter, we will demonstrate how you extract this information later on to generate
proper documentation.

The Kettle features that help you document your solution are:

Descriptive identifiers:■ Essentially there are no practical restrictions to choos-
ing identifiers for jobs, transformations, steps, job entries, fields, and so on. Of
course, identifiers must be unique within their scope; for example, within one

318 Part III ■ Management and Deployment

transformation all steps must have a distinct name, but other than that, pretty
much anything goes.

Notes: ■ Notes are little panels that can be placed anywhere on the canvas of a
job of transformation. They contain arbitrary text and can be used to highlight
some feature of the job or transformation. In Spoon, you can add a new note by
right-clicking on the canvas and then choosing the “New note” menu item in the
context menu. This will open a dialog where you can enter the text and set a few
properties such as font style and color.

Descriptive fields in the job and transformation settings:■ In Spoon, you can right-
click on the canvas and choose the “Job settings” or “Transformation settings”
item. This opens a dialog with a number of tabs. The Job or Transformation page
offers a number of properties can be used for documentation. The Description
and Extended Description fields are useful for entering a textual description of
the job or transformation. There is a Status field where you can mark the job or
transformation as either Draft or Production. The version field may be used to
enter a version number. The “Job properties” dialog is shown in Figure 11-13.

Parameters:■ Parameters can also be edited in the job or transformation settings
dialog on the Parameters tab. Parameters support a description field, which you
can use to record useful information about the parameter, such as its purpose,
the expected data type and format, and maybe some example values.

Figure 11-13: Using descriptive fields to document a job

 Chapter 11 ■ ETL Development Lifecycle 319

While these features are quite limited, they allow you at least to record essential
information about your jobs and transformations as you are developing them. Because
the descriptive data is stored inside the job or transformation, it is always available
when you’re developing or maintaining your ETL solution.

There are two important things that are not provided by these built-in Kettle fea-
tures. First, you need to have the discipline to actually use these features. Second,
merely recording descriptive data is a prerequisite for documentation, but it is not the
documentation itself. Iin the final subsection of this chapter, you will see how you can
extract the descriptive data you entered into your jobs and transformations to generate
the actual human-readable documentation.

Generating Documentation

Currently, Kettle does not offer any built-in functionality to generate documentation.
At the time of writing, Pentaho is developing an auto-documentation feature, but this
is slated to appear in a future version of the Kettle Enterprise Edition.

Fortunately, there is a community project started by Roland Bouman, one of the
authors of this book, that allows you to generate HTML documentation from a collection
of transformation and job files. The project is called kettle-cookbook, and is currently
hosted at Google code at http://code.google.com/p/kettle-cookbook.

The kettle-cookbook solution provides a couple of Kettle jobs and transformations
that scan a directory and its subdirectories for .ktr and .kjb files. The kjb and ktr
files store the definition of Kettle jobs and transformations in an XML format, and kettle-
cookbook applies an XSLT stylesheet to the files to generate HTML documents which
can be read using a standard web browser. Finally, kettle-cookbook generates a table
of contents that allows you to navigate through the jobs and transformations.

To generate documentation using kettle-cookbook, follow these directions:

Collect all jobs and transformation files you want to document and place them in a ■

directory. This is what is referred to as the input directory. A simple way to collect
jobs and transformation files in such a way that any dependencies between files
are preserved is to use Kettle’s export feature. You can find this feature in Main
menu ➪ Export ➪ Linked Resources to XML…. This feature does all the hard
work of tracking the dependencies, and then places all files it finds in a single
.zip archive. You can then unzip this archive to the input directory. The export
method also works for jobs and transformations stored in the repository.

Create an empty directory where the documention is to be generated. This is ■

referred to as the output directory.

Run the ■ document-all job. This is located in the pdi directory beneath the
kettle-cookbook main directory. This job takes on two parameters: INPUT_DIR
and OUTPUT_DIR, which have to be set to the location of the input directory and
output directory respectively.

When the document-all job is finished, the output directory will contain the gen-
erated HTML documentation. You can start reading it by opening the index.html

320 Part III ■ Management and Deployment

document in your web browser. The kettle-cookbook project website shows an example
of the generated output.

Summary

The previous part of this book was all about the basics of building ETL solutions. This
chapter was the opening for Part III, “Management and Deployment,” and provided
a broad overview of ETL solution development. We covered the following topics that
together form the foundation for a successful ETL project:

Solution design:■ You learned the best and some of the worst practices in design-
ing ETL solutions. We addressed the importance of proper data mapping and
naming conventions, and we listed several common pitfalls in ETL projects.
Finally, we covered flow design and reusability.

Agile development:■ You learned about the available tools and techniques within
Kettle to support Agile BI projects. A large part of this section was devoted to a
sample case of working with the Model and Visualize tools.

Testing and debugging:■ You discovered what testing in an ETL setting means
and the challenges involved. The last part of the “Testing and Debugging” sec-
tion showed you how the debug tools in Kettle can be used for inspecting data
in detail at each stage of a transformation.

Documentation:■ You learned about the benefits of documentation and about a
number of features that allow you to embed descriptive information inside your
jobs and transformations. Finally, you learned how to generate human-readable
HTML documentation from an ETL solution using kettle-cookbook.

321

C H A P T E R

12

Scheduling and Monitoring

In this chapter, we take a closer look at the tools and techniques to run Kettle jobs and
transformations in a production environment.

In virtually any realistic production environment, ETL and data integration tasks
are run repeatedly at a fixed interval in time to maintain a steady feed of data to a data
warehouse or application. The process of automating periodical execution of tasks is
referred to as scheduling. Programs that are used to define and manage scheduling
tasks are called schedulers. Scheduling and schedulers are the subject of the first part
of this chapter.

Scheduling is just one aspect of running ETL tasks in a production environment.
Additional measures must be taken to allow system administrators to quickly verify
and, if necessary, diagnose and repair the data integration process. For example, there
must be some form of notification to confirm whether automated execution has taken
place. In addition, data must be gathered to measure how well the processes are exe-
cuted. We refer to these activities as monitoring. We discuss different ways to monitor
Kettle job and transformation execution in the second part of this chapter.

Scheduling

In this chapter, we examine two different types of schedulers for scheduling Kettle
transformation jobs and transformations:

Operating system–level schedulers:■ Scheduling is not unique to ETL. It is such
a general requirement that operating systems provide standard schedulers, such

322 Part III ■ Management and Deployment

as cron on UNIX-like systems, and the Windows Task Scheduler on Microsoft
Windows. These schedulers are designed for scheduling arbitrary programs, and
can thus also be used for scheduling Kettle command-line programs for running
jobs and transformations.

The Quartz scheduler built into the Pentaho BI Server:■ Kettle is part of the
Pentaho BI stack, and many Kettle users are likely to also use or be familiar with
the Pentaho BI Server. The scheduler built into the Pentaho BI Server can be used
to run an action sequence for executing Kettle transformations and jobs.

Operating System–Level Scheduling

All major operating systems provide built-in features for scheduling tasks. The tasks
that can be scheduled by operating system–level schedulers take the form of a com-
mand line: a shell command to execute a particular program, along with any param-
eters to control the execution of that program. So in order for you to use an operating
system–level scheduler for scheduling Kettle jobs and transformations, we first need to
explain how you can run Kettle jobs and transformations using a command line. This
is described in detail in the following section.

Executing Kettle Jobs and Transformations
from the Command Line

Kettle jobs and transformations can be launched using the command-line tools Kitchen
and Pan, respectively. Pan and Kitchen are lightweight wrappers around the data inte-
gration engine. They do little more than interpret command-line parameters and invoke
the Kettle engine to launch a transformation or job.

Kitchen and Pan are started using shell scripts, which reside in the Kettle home direc-
tory. For Windows, the scripts are called Kitchen.bat and Pan.bat respectively. For
UNIX-based systems, the scripts are called kitchen.sh and pan.sh. As with all the
scripts that ship with Kettle, you need to change the working directory to the Kettle
home directory before you can execute these scripts.

You may find that you need to modify the Kitchen or Pan scripts. There may be
several reasons for this: perhaps you need to include extra classes in the Java classpath
because your transformation contains a plugin, a user-defined Java expression, or user-
defined Java class that requires it. Or maybe you’re experiencing out-of-memory errors
when running your job and you want to adjust the amount of memory available to the
Java Virtual Machine. Chapter 3 includes a section called “The Kettle Shell Scripts”
that explains the structure and content of the Kettle scripts. You may find that section
useful if you need to modify the Kitchen or Pan scripts.

NOTE Note that the scripts for UNIX-based operating systems are not exe-

cutable by default—they must be made executable using the chmod command.

 Chapter 12 ■ Scheduling and Monitoring 323

Command-Line Parameters

The Kitchen and Pan user interface consists of a number of command-line param-
eters. Running Kitchen and Pan without any parameters outputs a list of all available
parameters.

The syntax for specifying parameters is:

[/-] name [[:=] value]

Basically, the syntax consists of a forward slash (/) or dash (-) character, immedi-
ately followed by the parameter name. Most parameters accept a value. The parameter
value is specified directly after the parameter name by either a colon (:) or an equals
(=) character, followed by the actual value. The value may optionally be enclosed in
single (‘) or double (“) quote characters. This is mandatory in case the parameter value
itself contains white space characters.

NOTE Using the dash and equals characters to specify parameters can lead

to issues on Windows platforms. Stick to the forward slash and colon to avoid

problems.

Although jobs and transformations are functionally very different kinds of things,
there is virtually no difference in launching them from the command line. Therefore,
Kitchen and Pan share most of their command-line parameters. The generic command-
line parameters can be categorized as follows:

Specify a job or transformation.■

Control logging.■

Specify a repository.■

List available repositories and their contents.■

The common command-line parameters for both Pan and Kitchen are listed in
Table 12-1.

Table 12-1: Generic Command-Line Parameters for Kitchen and Pan

NAME VALUE PURPOSE

norep Don’t connect to a repository. Useful to
bypass automatic login.

rep Repository name Connect to repository with the specified
name.

user Repository user name Connect to repository with the specified
username.

pass Repository user
password

Connect to repository with the specified
password.

Continued

324 Part III ■ Management and Deployment

NAME VALUE PURPOSE

listrep Show a list of available repositories.

dir Path Specify the repository directory.

listdir List the available repository job/reposi-
tory directories.

file Filename Specify a job or transformation stored in
a file.

level Error | Nothing |
Basic | Detailed |
Debug | Rowlevel

Specify how much information should be
logged.

logfile Filename for logging Specify to which file you want to log.
By default, the tools log to the standard
output.

version Show the version, revision number, and
build date of the tool.

Although the parameter names are common to both Kitchen and Pan, the semantics
of the dir and listdir parameters are dependent upon the tool. For Kitchen, these
parameters refer to the repositories’ job directories, or to transformation directories in
the case of Pan.

Running Jobs with Kitchen

In addition to the generic command-line parameters, Kitchen supports a couple of
specific ones. These are shown in Table 12-2.

Table 12-2: Command-Line Parameters Specific to Kitchen

NAME VALUE PURPOSE

job Job name Specify the name of a job stored in the repository.

listjobs List the available jobs in the repository directory
specified by the dir parameter.

The following code provides a few examples of typical Kitchen command lines.

#

list all available parameters

#

kettle-home> ./kitchen.sh

#

run the job stored in

Table 12-1 (continued)

 Chapter 12 ■ Scheduling and Monitoring 325

/home/foo/daily_load.kjb

#

kettle-home> ./kitchen.sh \

 > /file:/home/foo/daily_load.kjb

#

run the daily_load job from the

repository named pdirepo

#

kettle-home> ./kitchen.sh /rep:pdirepo \

 > /user:admin \

 > /pass:admin \

 > /dir:/ /job:daily_load.kjb

Running Transformations with Pan

The Pan-specific command-line parameters are completely equivalent to the Kitchen-
specific ones. They are shown in Table 12-3.

Table 12-3: Command-Line Parameters Specific to Kitchen

NAME VALUE PURPOSE

trans Job name Specify the name of a job stored in the repository.

listtrans List the available jobs in the repository directory
specified by the dir parameter.

Using Custom Command-Line Parameters

When using command-line tools to execute jobs and transformations, you may find it
useful to use command-line parameters to convey configuration data. For the command-
line tools Kitchen and Pan you can use Java Virtual Machine properties to achieve the
effect of custom command-line parameters. The syntax for passing these “custom”
parameters is:

-D<name>=<value>

The following example illustrates how such a parameter might appear in a Kitchen
command line.

kettle-home> kitchen.sh /file: -Dlanguage=en

In transformations, you can use the Get System Info step to obtain the value of the
command-line parameters. You can find this step in the Input category. The Get System
Info step generates one output row containing one or more fields having a system-
generated value. The Get System Info step is configured by creating fields and picking
a particular type of system value from a predefined list, as shown in Figure 12-1.

326 Part III ■ Management and Deployment

Figure 12-1: Capturing command-line parameters with the Get

System Info step

Among the predefined system values, you’ll find “command line argument 1” up to
“command line argument 10”. Fields with one of these types automatically take on the
value of the corresponding D<name>=<value> command-line parameter.

UNIX-Based Systems: cron

The cron utility is a well-known job scheduler for UNIX-like systems. You shouldn’t
have to install anything to get it to work.

Actually scheduling tasks with cron is done by simply adding entries for cron jobs
to a special file called the crontab (for cron table). The crontab file is usually located
in /etc/contab, but there may be differences depending upon the UNIX flavor. In
many cases, a crontab utility program is available, which facilitates maintaining cron
entries.

The actual cron entries consist of the cron string, which denotes the actual schedule
and recurrence, followed by the operating system command that is to be executed. For
executing Kettle jobs or transformations, the command line is simply a command-line
invocation of kitchen (for Kettle jobs) or chef (for Kettle transformations), or a shell
script containing such a kitchen or chef invocation.

The cron string defines five fields of a date/time value, separated by white space.
From left to right, the date and time fields are:

minutes: 0–59■

hours: 0–23■

day of month: 1–31■

month: 1–12■

day of week: 0–6, where 0 denotes Sunday, 1 Monday, and so on■

 Chapter 12 ■ Scheduling and Monitoring 327

This is best illustrated with some examples:

0 1 ? * 5 run_kettle_weekly_invoices.sh

In the preceding example, the cron string reads from left to right 0: at zero minutes
and 1: at one o’clock a.m. The ? means regardless of the day of month, *: each month,
and 5 means Friday. In English, this reads “every Friday at 1:00 AM.”

NOTE For more options on using cron and crontab, refer to your operating

system documentation. man crontab is usually a good start. There are also many

online resources that offer good examples and explanations concerning cron.

Windows: The at utility and the Task Scheduler

Windows users can use the at utility or the Task Scheduler.
The at utility is available from the command line. Here’s a simple example that

illustrates how to schedule execution of a batch job to run each day at midnight:

at 00:00 /every:M,T,W,Th,F,S,Su “D:\pentaho\pdi\dauly_job.bat”

Instead of providing a long command directly at the at command line, it is usually
better to write a batch file (.bat file) and have at execute that. (This technique can,
of course, be applied also on UNIX-like systems where you would write a bash or sh
script.)

Windows also offers a graphical interface for scheduling. You can find the Windows
Task Scheduler in the Control Panel or in the Start menu by navigating to Start ➪
Programs ➪ Accessories ➪ System Tools ➪ Task Scheduler.

NOTE For more information on the at command or the Task Scheduler, go

to http://support.microsoft.com/ and search for “at command” or “Task

Scheduler.”

Using Pentaho’s Built-in Scheduler

If you are using the Pentaho Business Intelligence suite, you can use its built-in sched-
uler for scheduling Kettle transformations (but not jobs) as an alternative to operating
system–level scheduling.

NOTE A detailed discussion of the Pentaho BI Server and its development

tools is outside the scope of this book. For readers interested in installing,

configuring, and using the Pentaho BI Server (and the other components of

the Pentaho BI stack) we recommend the book Pentaho Solutions by Roland

Bouman and Jos van Dongen.

The Pentaho BI Server provides scheduling services through the Quartz Enterprise
Job Scheduler, which is part of the Open Symphony project. For more information on
Quartz and the Open Symphony project, visit the Open Symphony website at http://
www.opensymphony.com/quartz/.

328 Part III ■ Management and Deployment

Using Pentaho’s built-in scheduler for running Kettle jobs or transformations requires
two things:

An ■ action sequence, which is a container for one or more tasks (such as a Kettle job
or transformation) that can be executed by the BI server

A ■ schedule that determines when and how often some action sequence should be
executed by the Pentaho BI Server

In this context, the actual scheduling is done by attaching the action sequence to an
existing schedule so it will be automatically executed at the right moment(s) in time.

Creating an Action Sequence to Run Kettle
Jobs and Transformations

Before you can schedule Kettle transformations, they must first be made executable by
the Pentaho BI Server. This is done by creating an action sequence containing a process
action of the Pentaho Data Integration type. With this process action, you can
execute Kettle transformations from either a .ktr file or from the Kettle repository.

If you want to use a Kettle repository other than the default repository, you must edit
the settings.xml file located in the kettle folder that resides in the system Pentaho
solution. The contents of this file are as follows:

<kettle-repository>

 <!-- The values within <properties> are

 passed directly to the

 Kettle Pentaho components. -->

 <!-- This is the location of the

 Kettle repositories.xml file,

 leave empty if the default is used:

 $HOME/.kettle/repositories.xml -->

 <repositories.xml.file></repositories.xml.file>

 <repository.type>files</repository.type>

 <!-- The name of the repository to use -->

 <repository.name></repository.name>

 <!-- The name of the repository user -->

 <repository.userid>admin</repository.userid>

 <!-- The password -->

 <repository.password>admin</repository.password>

</kettle-repository>

To configure the repository to use, you’ll need to provide a value between the
<repository.name> and </repository.name> tags, and this must match the name of
a repository defined in the repositories.xml file, which was discussed in Chapter 3.

 Chapter 12 ■ Scheduling and Monitoring 329

If you like, you can use a non-default repositories.xml file by specifying its loca-
tion as a value for the repositories.xml.file tag. The values for repository
.userid and repository.password must be valid credentials for that repository, and
will be used when accessing its contents.

You can create and modify action sequences using the Pentaho Design Studio or the
action sequence plugin for Eclipse. You can download these tools from the Pentaho
project page on sourceforge.net, or from the Hudson server at ci.pentaho.com.
Again, a detailed discussion of these tools is outside the scope of this book, but you can
find more information on these subjects in Pentaho Solutions.

Kettle Transformations in Action Sequences

You can incorporate a Kettle transformation into an action sequence using a Pentaho
Data Integration process action. In Pentaho Design Studio, you can find this process
action beneath the Get Data From category.

The Pentaho Data Integration process action can accept input parameters from
the action sequence, and returns a result set to be used later on in the action sequence.
In addition to the result set, the action sequence can also receive diagnostic information,
such as the transformation log.

The Pentaho BI Server comes with a number of examples that illustrate this process
action. You can find these examples in the etl folder of the bi-developers solution.
The PDI_Inputs.xaction is most illustrative, and is shown in Figure 12-2.

Figure 12-2: The PDI_Inputs.xaction sample action sequence

330 Part III ■ Management and Deployment

The following list covers a few of the most important configuration options for the
Pentaho Data Integration process action.

To run a transformation stored in the Kettle repository, select the Use Kettle ■

Repository checkbox. Also, see the note on configuring the Kettle repository for
usage within the Pentaho BI Server at the start of this section. When this box is
selected, the action sequence editor will allow you to enter a directory name and
a transformation name to identify the transformation.

In the Transformation File text box, enter the name of the transformation. You can ■

use the Browse button to point to a .ktr file located somewhere on the machine
where the Pentaho server resides. In this case, the value for Transformation File
takes the form of a regular file:// URL. You can also use a transformation stored
in the Pentaho Solution Repository using the special prefix solution:. This is the
option shown in Figure 12-2, where SimpleTest.ktr is a transformation file that
resides in the same solution folder as the PDI_Inputs.xaction action sequence
itself.

In the Transformation Step text box, enter the name of the step inside your trans-■

formation that is to return the result set to the action sequence. Note that although
the transformation could yield multiple result sets, you can only receive one of
them in the action sequence.

You can use the Transformation Inputs list to feed parameters from the action ■

sequences into your transformation. These parameters can be read by the Kettle
Transformation using a System Info step configured to read command-line argu-
ments. You encountered this step earlier in this chapter (see Figure 12-1) when
we discussed passing command-line parameters to transformations.

The Kettle Logging Level list box lets you choose at what level Kettle should log ■

the execution of the transformation. Logging levels are explained in detail later
in this chapter.

In the bottom section of the action sequence editor, you can map diagnostics ■

such as the log and the number of returned rows to yet more action sequence
parameters.

Creating and Maintaining Schedules with
the Administration Console

You can create and maintain schedules using the Pentaho Administration Console.
This is included in the Pentaho BI Server.

To work with schedules, navigate your web browser to the Administration Console
web page. Enable the Administration page and click on the Scheduler tab. You can see
a list of all public and private schedules maintained by the Pentaho BI Server, as shown
in Figure 12-3.

By default, there is one schedule called PentahoSystemVersionCheck. This is a pri-
vate schedule that is used to periodically check if there is a newer version of Pentaho.

 Chapter 12 ■ Scheduling and Monitoring 331

Figure 12-3: The Scheduler tab in the Pentaho BI Server Administration Console

NOTE A public schedule ensures that all users can see the schedule and

enables them to use this schedule for subscriptions. A private schedule is

not available to end users, and is intended to schedule system maintenance

operations by the Pentaho BI Server administrator

On the Scheduler tab, click the first toolbar button to create a new schedule. The
Schedule Creator dialog, shown in Figure 12-4, appears.

Figure 12-4: The Schedule Creator dialog

332 Part III ■ Management and Deployment

The options in the Schedule Creator dialog are described in the following list:

To create a public schedule, select the Public Schedule checkbox.■

Use the Name field to enter a unique name for the schedule. Note that for public ■

schedules, this name will be presented to end users whenever they have to pick
a schedule. Use names that are both clear and concise.

Use the Group field to specify a name that describes what kind of schedule this ■

is. For example, you can create groups according to department (for example,
warehouse, human resources), location (Edmonton, Los Angeles), subject area
(Sales, Marketing), or timing (daily, weekly).

The toolbar on the Scheduler tab includes a list box that enables the administrator
to filter for all schedules belonging to the same group. This convenience feature
enables the administrator to quickly work with all schedules belonging to the
same group.

NOTE Even if you feel you don’t need to organize schedules into groups,

you are still required to enter one. The same goes for the Description field:

although it is entirely descriptive, it is still required.

The ■ Description field allows you to enter descriptive text. You should use this
field to briefly document the purpose of the schedule. Rather than summing
up any properties that have to do directly with the schedule itself (such as tim-
ing), this field should describe the kinds of reports that are run according to this
schedule and the audience for which the schedule is intended.

The Recurrence list box contains a number of options to specify how often the ■

schedule is triggered. You can choose from a broad range of intervals, all the way
from Seconds up to Yearly. There’s also a Run Once option to schedule one shot
actions. If the flexibility offered by these options is still not sufficient, you can
choose the Cron option to specify recurrence in the form of a cron string. The
syntax of these strings is similar to that of the standard cron strings. You can find
more information on cron expressions in Quartz at http://www.opensymphony
.com/quartz/wikidocs/CronTriggers Tutorial.html.

For all the available choices of the Recurrence option (except Cron), you can
specify a Start Time by choosing the appropriate value in the hour, minute, and
second list boxes.

For all Recurrence options except Run Once and Cron, you can specify how often
the schedule should be triggered. The appropriate widget to specify the value
appears onscreen as soon as you select an option in the Recurrence list box. For
example, for a Recurrence of seconds, minutes, hours, and days you can enter a
number to indicate how many seconds, minutes, and so on are between subse-
quent executions of the schedule.

The Weekly and Monthly recurrence options support more advanced possibili-
ties for specifying the interval. For example, the Monthly and Daily Recurrence

 Chapter 12 ■ Scheduling and Monitoring 333

options pop up a widget that allows you to define the schedule for each Monday
of every month, and the Weekly Recurrence option allows you to specify to which
weekdays the schedule applies.

Finally, you can specify a start date or a start and end date range. These dates
delimit the period of time in which the schedule recurs.

After specifying the schedule, press OK to save it and close the dialog.

Attaching an Action Sequence to a Schedule

To actually schedule the action sequence, you have to attach it to an existing schedule.
This is can be done in the Pentaho Administration Console or from the Pentaho User
Console:

In the Schedule Creator dialog shown in Figure 12-4, activate the Selected Files ■

tab. From there, browse the solution repository and select the action sequence
you want to schedule.

In the Pentaho User Console, right-click the action sequence you want to sched-■

ule. In the context menu, choose Properties and the Properties dialog will open.
In the Properties dialog, activate the Schedule tab. There, you can choose the
appropriate schedule.

Monitoring

Two principal monitoring activities are logging and e-mail notification, as detailed in
the following sections.

Logging

Kettle features a logging framework that is used to provide feedback during trans-
formation and job runs. Logging is useful for monitoring progress during job and
transformation execution, but is also useful for debugging purposes.

Logging is discussed in detail in Chapter 14. In this chapter, we discuss a few aspects
of logging that should help you understand how logging can help you to monitor your
Kettle jobs and transformations.

Inspecting the Log

In Spoon, the log can be inspected in the Logging tab in the execution pane below the
workspace. The Logging tab is shown in Figure 12-5.

334 Part III ■ Management and Deployment

Figure 12-5: Inspecting the log from within the Spoon program

The Logging tab consists mainly of a text area where the actual log lines are shown, and
also provides a few toolbar buttons to work with the log. Log lines that indicate an error
are colored in red. For a quick inspection of only those log lines that indicate an error, click
the toolbar button with the stop sign icon. This will pop up a dialog showing only those
lines from the log that contain the word ERROR. .Next to the stop sign icon is a button to
clear the log, and finally a button to pop up a dialog for setting some options regarding
logging. In this dialog you can set the logging level (discussed in the next subsection) and
whether to include a date/time at the start of each log line.

The log shown in the execution pane is mainly useful when developing transforma-
tions and jobs. It does not apply to scheduled jobs and transformations, because these
are launched using command-line tools (Kitchen and Pan), which simply do not have
a graphical user interface in which to display a log.

For Kitchen and Pan, you can use the logfile parameter to specify that the log
should be stored to a particular file. If you do not specify a logfile on the command
line, the log will be written to the standard output.

One thing to keep in mind is that Kitchen will only log information pertaining to
the root job. If you also want to store the log from the jobs and transformations that are
contained within the job, you have to configure that at the level of the individual job
entries that make up the outer job.

In Spoon, you can configure the logging behavior on the job entry level by right-
clicking the job entry and then choosing “Edit job entry.” This opens a dialog that
contains a tab called “Logging settings” where you can specify the location for the log
file for that particular job entry. This is shown in Figure 12-6.

Note that in Figure 12-6, we’re using variables to construct the name of the log file.
In this case, we create the file in the directory where the outer job resides using the
${Internal.Job.FileName.Directory} variable. For the actual file name, we use
the ${Internal.Step.Name} variable, and this will result in one separate log file per
job entry, each having the name of the job entry that created it.

Sometimes, it is more convenient to have one big log file for a job and its parts. To
achieve that, check the “Append logfile?” checkbox. This ensures the logs for all job
entries end up in the file you specified.

 Chapter 12 ■ Scheduling and Monitoring 335

Figure 12-6: Configuring the log file location per job entry

Logging Levels

Kettle supports a number of logging levels to control the verbosity of the log. By increas-
ing verbosity, the levels are:

Nothing:■ Don’t show any output.

Error:■ Show errors only.

Minimal:■ Use only minimal logging.

Basic:■ This is the default basic logging level.

Detailed:■ Give detailed logging output.

Debug:■ For debugging purposes, very detailed output.

Rowlevel:■ Logging at a row level, this can generate a lot of data.

As you can see, there are quite a number of logging levels. In practice, the most
useful ones are:

Error:■ Useful and appropriate in production environments for short-running jobs
and transformations.

Basic: ■ Useful and appropriate in production environments for transformations
and jobs that take some time to run. In addition to errors (which are also reported
by the Error level and higher levels), this level also logs some information on the
progress of the process, as some steps like the Text Input step use it to periodi-
cally log the number of rows read.

Rowlevel:■ This is the most detailed log level. This level is only suitable for devel-
opment and debugging purposes.

336 Part III ■ Management and Deployment

You should be aware that logging is not free: As the logging becomes more verbose,
performance decreases. So you can’t just select the most verbose level to be on the safe side;
you should consider in advance which level of logging is required for the task at hand.

For jobs as well as transformations, the log level can be controlled by choosing the
appropriate log level in a list box in the execution dialog. A screenshot of the execution
dialog with the log level list box is shown in Figure 12-7.

Figure 12-7: Controlling the log level in Spoon

For the command-line tools Pan and Kitchen, you can use the level command-line
parameter to set the desired logging level.

Writing Custom Messages to the Log

You can write directly to the log from within a transformation or job using the “Write
to log” transformation step or job entry respectively.

E-mail Notifications

A very simple method to get basic information about execution, completion, and errors
is to build e-mail notifications into your Kettle jobs using job entries of the Mail type.
You can find an example of basic usage of Mail job entries in the load_rentals.kjb
job discussed in Chapter 4 and shown in Figure 4-6.

This load_rentals job contains two job entries of the Mail type: Mail Success, which
is executed upon successful execution of the final load_fact_rental transformation,

 Chapter 12 ■ Scheduling and Monitoring 337

and Mail Failure, which is executed in case any of the transformations that make up
the job fails.

NOTE You may wonder why the job includes two distinct e-mail entries, and

not just one that is sent only in case of failure. The reason is very simple: If

no e-mail notification is sent in case of success, it would be unclear what it

means exactly when one does not receive any e-mail. It could be that the pro-

cess completed successfully, or it could mean the job failed, but no mail was

sent because the mail server was down, or there was a network error of some

kind that prevented mail from being sent. By ensuring the job will always send

mail, a missing e-mail automatically means something went wrong (perhaps

the job didn’t run at all, or perhaps the mail system is down).

You could perhaps get by with one Email job entry, but because the proper-

ties and content of the e-mails are very likely to differ depending on whether

the job failed or not, it is more convenient to configure a separate Email job

entry for each case.

Configuring the Mail Job Entry

Configuration of the Mail step is not particularly difficult, although the number of
configuration options may be a bit daunting at first. The configuration dialog contains
four tabs.

Addresses Tab

In the Addresses tab you must specify at least one valid e-mail address in the “Destination
address” property. Optionally, you can also configure CC and BCC addresses. In addi-
tion to the destination address, you must specify the “Sender name” and “Sender
address” properties. These data are required by the SMTP protocol. You can option-
ally specify a “Reply to” address and some additional contact data such as the name
and phone number of the contact person. For typical success/failure notifications, you
would send notifications to the IT support staff, and specify details of a member of the
data integration team as the sender. Figure 12-8 shows the Addresses tab page.

Server Tab

You must specify the details of the SMTP Server in the Server tab page, shown in
Figure 12-9.

You are required to provide at least the host name or IP address of your SMTP server.
Optionally, you can provide the port to use. By default, port 25 (default for SMTP) is
used. In most cases, SMTP servers require user authentication. To enable authentication,
select the “Use authentication?” checkbox and provide the user name and password in
the “Authentication user” and “Authentication password” properties, respectively. More
and more often, SMTP servers require secure authentication using a protocol such as
SSL (Secure Sockets Layer) or TLS (Transport Layer Security). You can specify secure
authentication by selecting the “Use secure authentication?” checkbox and choosing
the appropriate protocol in the “Secure connection type” list box. Note that network
communication for a secure authentication protocol generally employs another port.

338 Part III ■ Management and Deployment

For SSL, the default port is 465. Contact your local network or system administrator to
obtain this information.

Figure 12-8: The Addresses tab page in the configuration dialog of the Mail job entry

Figure 12-9: The Server tab page in the configuration dialog of the Mail job entry

 Chapter 12 ■ Scheduling and Monitoring 339

EMail Message Tab

You can specify the actual message content on the EMail Message tab page, shown in
Figure 12-10.

Figure 12-10: The EMail Message tab page in the configuration dialog of the Mail job

entry

The message subject and body are specified in the Subject and Comment properties
respectively. You can use text and freely include variable references for these properties.
By default, Kettle includes a brief status report of the transformation in the message
body, right after the content provided in the Comment property. To prevent this status
report from being included, select the “Only send comment in mail body” checkbox.
Optionally, you can check the “Use HTML in mail body” to send HTML-formatted
e-mail. Some e-mail clients use message priority headers. If you like, you can select
the “Manage priority” checkbox to enable this. When enabled, you can set the Priority
and Importance properties.

Attached Files Tab

In the Attached Files tab, you can control whether files should be attached to the e-mail
message and, if so, which ones. A screenshot of this tab is shown in Figure 12-11.

To enable attachments, check the checkbox labeled “Attach file(s) to message.” You
can then select one or more of the predefined items in the list labeled “Select file type.”
To select a particular type of file, simply click it. To select multiple file types, hold the Ctrl
key and click all items you want to include. Note that when choosing for Log file, you
need to configure logging for the individual job entries (as shown in Figure 12-6).

340 Part III ■ Management and Deployment

Figure 12-11: The Attached Files tab in the configuration dialog of the Mail job entry

Check the “Zip files to single archive?” checkbox to have Kettle store all files of the
selected types into a single archive. If you choose this option, you must provide a file-
name for the resulting zip file in the “Name of zip archive” field.

Summary

In this chapter, we focused on two important aspects when running ETL jobs and
transformations in a production environment, namely scheduling and monitoring. In
this chapter, you learned about:

Kitchen and Pan, the command-line interface for running Kettle jobs and ■

transformations

Operating system schedulers, such as ■ cron , at , and the Windows Task
Scheduler

Scheduling Kettle transformations and jobs using the Quartz scheduler built into ■

the Pentaho BI Server

Controlling log file and verbosity in Spoon, Kitchen, and Pan■

Using e-mail job entries to send notification■

Including the Kettle log into e-mail notifications■

341

C H A P T E R

13

Versioning and Migration

In earlier chapters we covered designing, building, and deploying ETL solutions and
showed how to use Kettle as a single user development tool. In reality, there are usually
multiple developers working on a project, which calls for means to manage the different
deliverables using a version control system. Another requirement in most projects is
a separation of the development, test, acceptance, and production environments. The
following ETL subsystems cover these requirements:

Subsystem 25:■ Version Control System

Subsystem 26:■ Version Migration System from development to test to
production

In this chapter, we discuss the various reasons behind the use of version control
systems, and take a close look at a few popular open source version control systems.
After that, we discuss what Kettle metadata actually is and in what formats it can be
expressed. Then we explain how you can do versioning and migration with Kettle
metadata.

Version Control Systems

When you are developing a data integration solution by yourself, or maybe with a small
team, it’s easy to keep track of what’s going on. It’s also fairly easy to find out what
changed and who did it. However, things change drastically when the stakes go up
and a data integration solution goes into production. Things change even more when

342 Part III ■ Management and Deployment

you are working with a larger team or with a team that is geographically distributed.
In those situations, you really want to keep your data integration services running
smooth and stable. For that to happen, it’s important to know when even a tiny change
is made to any part of the solution.

Whenever a system runs into a problem (and sooner or later all systems do), the
question is asked, “What did you change recently?” The answer is invariably “Nothing!
Honest!” Changes occur in a solution in all shapes and forms, and can lead to problems
in the system. It’s possible that this happens because people are malicious or incompe-
tent but you have to believe that this is the exception. Usually changes occur in response
to requests from peers, users, project management, or the IT infrastructure in general.
The answer to the question, however, is extremely important. If you know the answer,
you can fix the problem with great speed and efficiency. If you don’t know the origin
of the problem, you find yourself debugging an unknown situation.

To prevent such problems, you need a system that can automatically keep track of
all the changes in a project. In general, these systems are called version control systems
(VCS) or revision control systems. In the past, VCS software was only available to the data
integration development teams in large enterprises because the cost, thousands of dol-
lars per seat, usually excluded usage in other situations. However, VCS is another area
of software development where open source has made a big difference. Nowadays, you
can find many varieties of version control systems. In the sections that follow, we list a
few of the most popular systems. You can group them into two main types: file-based
version control systems and content management systems (CMS).

File-Based Version Control Systems

File-based version control systems operate on individual files that are organized in a
directory structure on a central server. You can access these files by checking out the
whole directory. Because files on the server are updated, you need to execute update
operations on your local file copies to get to the last versions. Individual files are updated
leading to a new revision number for each file.

Organization

It’s important to be able to label a whole project or directory structure and not just
individual files. Because of this, it’s common for a VCS to allow users to create branches
or tags of a main development directory tree. This observation leads to the typical tree-
style directory organization that you see in many projects:

trunk/■ : The main development tree of the project.

branches/■ : A branch is a set of files that belong to a single version of the
project.

tags/■ : A tag is a snapshot of the project files. It’s simply a label applied for
convenience.

If you look at the Kettle project source tree itself (http://source.pentaho.org/
svnkettleroot/Kettle/), you will notice that the files there are organized in exactly

 Chapter 13 ■ Versioning and Migration 343

the same way. At the time of this writing, trunk/ contains the recent development ver-
sion of Kettle (the first milestone version of 4.1.0) while branches/ contains all the stable
versions that were ever released as open source from version 2.2.2 all the way to 4.0.0. The
folders under tags/ are usually temporary snapshots for development tests or quality
assurance purposes.

Leading File-Based VCSs

The following list describes a few of the most popular open source file-based version
control systems:

CVS■ —One of the first open source version control systems to become popular was
the Concurrent Versions System, or CVS. CVS, licensed under the GNU Public
License (GPL), started as just a bunch of scripts almost 25 years ago. For a long
time, it was the default choice for projects that needed a version control system.
It allowed large groups of developers to work together efficiently.

The main drawbacks of CVS include the lack of atomicity, limited Unicode sup-
port, limited binary files support, and expensive branching and tagging opera-
tions. It is also not possible to rename any file without the loss of the full history.
In particular, the lack of atomicity could lead to a corrupted CVS repository on
occasion. The more users work on a repository, the higher the chance is that
something goes wrong and the higher the impact is of a corruption. Despite its
shortcomings, using CVS beats not using any versioning system at all. Because
it is known by many developers across the world it is still maintained and avail-
able on almost all operating systems. As such, CVS is still available as a choice
on popular free hosting platforms such as SourceForge.net.

Subversion■ —The shortcomings of CVS led to the development of a few new
versioning systems. One of the most popular is currently Apache Subversion,
(http://subversion.apache.org/). When the project started in 2000, the
main project aim was to create a mostly compatible version of CVS that does not
have the limitations of CVS. The developers achieved this for the most part, and
that has led to a fast rise in popularity. At the time of this writing, Subversion is
probably the most popular version control system with broad support of client
tools, people, and operating systems.

The main shortcomings of Subversion include a less than perfect implementa-
tion of the file rename operation. Like most file-based version control systems,
Subversion uses the name of a file to handle most of the basic VCS operations.
The Kettle project itself uses Subversion to handle the source code. Installing a
Subversion server is well-documented and straightforward, so we recommend
its use when you want to deploy your own VCS in your organization or for your
data integration project. At the time of this writing, there is no integrated support
for Subversion in the Kettle tools. However, because transformations and jobs
can be saved as XML files, you can simply check your changes into a Subversion
repository when you’re done editing them in Spoon.

344 Part III ■ Management and Deployment

NOTE When working with a Kettle file-based repository, saving as XML is

the default option. With a database repository, you need to export to XML

explicitly by selecting File ➪ Export ➪ To XML. Note that jobs get a .kjb

extension and transformations get a .ktr extension, not .xml.

Distributed version control systems■ —The last few years saw the appearance of a
number of new so-called distributed version control systems (DVCS). The main dif-
ference from client-server systems such as CVS or Apache Subversion is that with
DVCSs there can be many repositories. Usually tools are available for the project
lead developers to merge code from the various repositories. Open source projects
that implement a DVCS include Git, Mercurial, Bazaar, and Fossil. Examples
of large projects that use Git include the Linux Kernel and Android; Mercurial
is used by Mozilla and OpenOffice.org. Examples of projects that use Bazaar
are Ubuntu and MySQL. As you can see, this list includes projects with a large
developer group and codebase.

Content Management Systems

Content management systems (CMSs) were primarily designed for server-based systems.
Examples of these systems are Documentum, Sharepoint, Alfresco, Magnolia, Joomla,
and Drupal. While it’s certainly possible to download content from the server, the pri-
mary use is to allow people to work together. That usually includes workflow or business
process management functionality. A lot of Business Process Management (BPM) and
Workflow Management Systems (WMS) also have a CMS on board to manage the under-
lying content. Many CMSs make use of internal identifiers instead of filenames to operate.
This allows for renaming and even the reorganization of complete directory structures
without any problem. It’s usually also possible to add extra information to stored docu-
ments such as descriptions, icons, file type information, and so on. All this makes most
content management systems highly suitable for handling Kettle metadata.

Kettle Metadata

Before we dive into the available options for version control and migration when work-
ing with Kettle, it’s helpful to explain what Kettle metadata is and why it is so well
suited to use with the tools that’ll be discussed later.

As mentioned earlier in this book, Kettle was designed to execute jobs and transfor-
mations described by the ETL metadata using an engine. Let’s take a closer look at what
we mean by ETL metadata. Metadata is a very broad term that in general means descrip-

tive data or data about data. In the case of ETL metadata, we’re describing tasks that an
ETL tool needs to perform. Here are a few examples of things we describe in Kettle:

The detailed layout of an input file■

The username to connect to a relational database■

The URL of a web service■

 Chapter 13 ■ Versioning and Migration 345

The name of a relational table where we want to store data■

The operations needed to read, transform and write the data■

The flow of execution of the various operations■

As you can tell from the preceding list, all functionality you can perform is described
in the form of metadata. The transformation or job engines inside of Kettle will interpret
this ETL metadata at runtime and execute upon all the defined tasks.

ETL metadata can take many forms in Kettle. It usually starts to take shape when you
enter the required information in Spoon, the graphical user interface. At that point, the
metadata is graphical in nature, easy to interpret for ETL developers. The metadata is
also present inside the Kettle software in the form of information stored in the Kettle
Java API (see also Chapter 22). When you are done designing, your transformation or
job can then be saved as XML or in another form in a metadata repository.

Kettle XML Metadata

XML was chosen to be used as a form of Kettle metadata because it is an excellent
interface that supports Unicode. Because XML is, in general, not easily readable by
human beings, it is not good as a programming language. On the other hand, Kettle
XML files can be understood by those familiar with XML and the Kettle components
because they directly reflect the various options and elements that are present in the
user interface. Even so, manually editing an XML file is not something that people find
enjoyable because of the often cryptic nature of the format. The good news is that the
Spoon user interface is capable of defining 100 percent of the possible parts of the Kettle
ETL metadata, so it’s quite safe to leave Kettle XML generation in the realm of the soft-
ware. The structure of transformations and jobs is fairly simple. By default, Kettle uses
no attributes, only elements.

The two main metadata file types in a Kettle solution are Job files and Transformation
files. These are easily recognizable by their extensions which are .kjb and .ktr,
respectively. These are both XML files, meaning that they have a nested collection of
elements that make up the job or transformation. Since you’ll usually construct trans-
formations first and later build the jobs to stitch the process to execute them together,
we’ll first cover the transformation XML, followed by the job XML.

Transformation XML

An XML file always has a single root element at the highest level of the nested hierarchy.
The root element in a .ktr file is always called <transformation>. If it’s not, it’s not
a Kettle transformation. The next level of the XML file, right beneath the transforma-
tion element, contains the following subelements (opening and closing angle brackets
left off for clarity):

info■ : Contains the transformation details such as the name and the description.

trans-log-table■ : Contains the transformation log table settings.

perf-log-table■ : Contains the performance log table settings.

346 Part III ■ Management and Deployment

channel-log-table■ : Contains the channel log table settings.

step-log-table■ : Contains the step log table settings.

notepads■ : Contains all the notes that are shown in the user interface.

connection■ , slaveservers, clusterschema, partitionschema: Describes
(in order) database connections, the slave servers, the cluster schemas, and the
partition schemas. More than one element of each can be present, for instance a
transformation can contain multiple connections and slave servers.

order■ : Contains the metadata about how the hops connect the steps in a certain
order.

hop■ : contains the connections between the different steps. Hops are a sub-element
of order.

step■ : Contains step-specific metadata. More than one step element can be pres-
ent. While the other elements in the transformation XML are always the same, this
element is always going to have a different structure. That is because all steps are
different and because steps can be plugged into Kettle. However, for any given
step type (tag is type) the format is always the same.

step_error_handling■ : Contains the error sub-elements that specify the source
and target step for the error handling, and the other error attributes like maxi-
mum number of allowed errors.

Note that most of these elements are optional. For instance, if there is no transformation
log table defined, the element trans-log-table won’t be available in the .ktr file.

Job XML

The root element of the XML file that defines a Kettle job is always <job>. The struc-
ture of a job file is slightly different than the structure of a transformation, but many
sub-elements are very similar:

name■ , description: Unlike a transformation, a job file doesn’t contain an info
element but lists name and description as first level elements.

job-log-table■ : Contains the job log table settings.

channel-log-table■ : Contains the channel log table settings.

jobentry-log-table■ : Contains the step log table settings.

notepads■ : Contains all the notes that are shown in the user interface.

Connection■ and slaveservers: Describe the database connections and the
slave servers. More than one element can be present.

hops■ : Contains the metadata about how the job entry hops connect the job entry
copies in a certain order.

entries■ : Contains job entry–specific metadata. The entry elements listed
here are always going to have a different structure. That is again because all job
entries are different and can be plugged into Kettle. However for any given
job entry type (tag is type) the format is always the same.

 Chapter 13 ■ Versioning and Migration 347

For the average Kettle user, there are not a lot of reasons why you might want to look
at the Kettle XML, let alone modify something in the XML document. However, there
are a few situations where you might want to modify or generate the XML yourself. The
following sections provide a few examples that might give you some ideas.

Global Replace

Suppose you have a few hundred Kettle transformations and jobs stored in the form of
XML. The extensions of these files are .ktr and .kjb respectively. Changing a single
parameter in all these files by opening them up in Spoon is bound to be a highly repeti-
tive task. It will also be easy to overlook occurrences of the parameter, making the task
error prone. For example, suppose you found out after development that the production
system is using a different database schema. Unfortunately, this value was hardcoded
as dwh in all transformations. In that situation, you could write a shell script on UNIX,
Linux, OS X, or even on Windows (using Cygwin for example) that replaces all occur-
rences of the corresponding <schema> tag in all transformations:

Prevent loss of information : stop after an error!

#

set -e

Loop over all the transformation XML files:

#

for file in *.ktr

do

 # File names can contain spaces: quote them!

 #

 < “$file” \

 sed ‘s/<schema>dwh<\/schema>/<schema>${DWH_SCHEMA}<\/schema>/g’ \

 > TEMPFILE

 rm “$file”

 mv TEMPFILE “$file”

done

The preceding script (globalreplace.sh, available in the download files on
the book’s website), replaces all occurrences of <schema>dwh</schema> with
<schema>${DWH_SCHEMA}</schema>. The result of the execution of the script will be
that the schema will be configurable with a variable in all transformations. For someone
who knows a scripting language such as Shell (bash), awk, Perl, or Ruby, this can be a
simple and quick way to correct small problems in your Kettle metadata. The command
that does all the magic here is sed, short for stream editor. Sed is one of the most pow-
erful utilities for modifying text files in a .nix environment. An excellent introduction
and tutorial can be found on http://www.grymoire.com/Unix/Sed.html.

348 Part III ■ Management and Deployment

Kettle Repository Metadata

Since version 4 of Kettle, repository types can be plugins. As a direct result of that,
Kettle metadata can take any possible form. The Repository interface contains all
the required methods to serialize Kettle transformations and jobs as well as shared
objects like database connections and slave servers. To allow the ETL developers to
categorize their objects, Kettle repositories also contain directories. Let’s take a look at
the characteristics of the current repository type implementations.

The Kettle Database Repository Type

The Kettle database repository type serializes Kettle metadata to a relational database
schema. This schema uses tables to contain metadata related to the various components
in transformations and jobs. For example, there is a table called R_TRANSFORMATION that
contains the name, description, and extended description of a Kettle transformation.
The steps are stored in a table called R_STEP, and so on. Each table contains a unique
identifier that allows all objects to be linked together.

The database repository allows ETL users to work together. It does so by allowing a
relational database to be used as a central Kettle metadata source. The creation of the
repository is done by Kettle in Spoon and this process even supports upgrades. Select
Tools ➪ Repository ➪ Connect, to begin creating a repository, as shown in Figure 13-1.

Figure 13-1: Connecting to a repository

This will present the Repository Connection dialog, shown in Figure 13-2, which
you can also see when Spoon starts up.

Figure 13-2: Managing repositories

Clicking the + icon will display a list of available repository types that allows you to
define new repository connections. For this example, you want to define a Kettle data-
base repository so select that option. This brings up the dialog shown in Figure 13-3.

 Chapter 13 ■ Versioning and Migration 349

Figure 13-3: The Kettle database repository dialog

In this dialog, you can define the connection to the database schema that contains
the Kettle repository. You can create a new database repository on the selected database
connection. This will create all the required database tables and indexes to make the
repository work.

While the Kettle database repository does the job, it has a few drawbacks:

It can’t store multiple revisions of a transformation or job.■

It relies heavily on the database to properly lock and unlock tables to prevent ■

work getting lost.

There is no notion of team development, and you can’t lock transformations or ■

files for exclusive private use.

The security system is proprietary and simple.■

The Kettle File Repository Type

The Kettle file repository type simply uses the existing Kettle XML serialization to store
documents. It uses the Apache VFS driver (see Chapter 2) to access Kettle metadata.
That means you are not limited to a local disk. You can, in fact, also use .zip archives,
FTP, and HTTP locations.

Creating a file repository is easy; simply follow the instructions in the previous
section and select the Kettle File Repository type when asked. You can point your
file repository to an existing folder with Kettle transformations and jobs to see how it
works.

Because the serialization is to XML, this repository type contains the same drawbacks
as XML as well:

You don’t know if objects (transformations, jobs, databases, and so on) are ref-■

erenced in another job or transformation. This means you can’t safely delete or
rename anything.

There is no version history.■

Team work is hard, even if you use shared folders, because there is no locking ■

possibility at all.

There is no security layer except for the file system security of the operating ■

system.

350 Part III ■ Management and Deployment

The Kettle Enterprise Repository Type

When the Pentaho team went looking for a repository for its enterprise edition version of
Kettle (Pentaho Data Integration EE) they wanted to solve the various drawbacks present
in both XML serialization and the existing database repository. The drawbacks of the
popular file-based VCS also had to be taken into account. More specifically, the drawbacks
with respect to file renaming or file moving make it hard to organize your enterprise
metadata repository to your liking. It’s also harder to make a decent security layer on top
of a VCS.

To address those problems, Pentaho looked in the direction of a content management
system for use as an enterprise repository. Currently, the enterprise repository runs
on the Pentaho Data Integration Server, which includes an assortment of resources:
an Apache Tomcat server with a scheduler on board, a series of web services to act
as a Carte replacement, a security layer, and Apache Jackrabbit. Jackrabbit (http://
jackrabbit.apache.org/) is an open source CMS implementation for Java imple-
menting the Java Content Repository (JCR) specification. This functionality includes
version management, security, locking, referencing by ID, metadata, querying, renam-
ing, and reorganization of your documents. This functionality of Jackrabbit is exposed
on the data integration server by a set of web services that will allow Pentaho to easily
upgrade Jackrabbit itself and possibly add new functionalities in the future without
any required changes for the clients that talk to the Pentaho BI server. There are plans
to have the Pentaho BI server and other tools in the suite support the repository in the
near future. However, at the time of this writing, Kettle (Pentaho Data Integration EE)
is the only client for the enterprise repository.

Managing Repositories

As explained earlier, a Kettle repository stores all the metadata that makes up an ETL
solution. In most cases there will be more than one repository: one for development, one
for test, one for acceptance, and one for production. Usually each developer has his or
her own development repository, and a centralized repository is created to assemble the
complete solution. Since the Kettle repository plays such a central role during the project
lifecycle, you need to make regular backups using the tools for exporting repositories
described in the following sections. It’s also possible to import a complete repository,
which is helpful for migrating solutions from test to acceptance to production.

Exporting and Importing Repositories

The primary use of the export and import functionality, available under the Tools/
Repository Export menu in Spoon, is to back up a repository. This functionality works
by serializing the contents to an XML file. This means you get a single XML file with
the root element <repository> followed by a transformations section with multiple
transformations and a jobs section containing multiple job elements, representative of
the repository’s physical contents.

You can also use the “Export repository” job entry for this, as shown in Figure 13-4.

 Chapter 13 ■ Versioning and Migration 351

Figure 13-4: Exporting a repository in a job

With this job entry, you can automate the regular backup of your repository from within
Spoon yourself. It has the distinct advantage of being able to export individual folders.

Finally, you can also use the Pan utility to export a repository. For example, you can
use the following command:

sh pan.sh -rep=”Production” -user=”admin” -password=”admin”

 -exprep=”/tmp/export.xml”

Upgrading Your Repository

When there is more metadata that needs to be stored in a new version of Kettle, you
will need to upgrade your repository. The golden rule for doing this is the same for all
software upgrades: Make a backup first! Preferably you do this with both of the follow-
ing two methods:

Get a complete export of the repository to an XML file (see above).■

Back up the repository database itself. In the case of a Kettle Database Repository ■

and the Pentaho Enterprise Repository you should take a complete dump or
export of the relational database where the metadata is stored.

352 Part III ■ Management and Deployment

Once that is done, you can try to run the upgrade functionality of the Kettle database
repository dialog or follow the specific upgrade guide for the enterprise repository. The
alternative is to create a completely new repository and perform an import. This has
the advantage of leaving the existing repository untouched. See the “Upgrade Tests”
section of Chapter 11 for more details.

Version Migration System

One of the critical aspects of the lifecycle of a software project is migrating (all or parts of)
a solution from a developer machine to a test, acceptance and finally, production system.
And the first question that arises then is: how do you move transformations and jobs
from development to production? As you can probably tell by now, this depends on the
way you are persisting your Kettle metadata. In the sections that follow, we cover possible
ways to work with XML files and repositories for managing your project’s lifecycle.

Managing XML Files

As mentioned earlier in this chapter, your best bet for keeping track of your transfor-
mation and job files is to check them into your version control system (VCS) of choice.
That way, you can nicely do your development on one or more workstations with your
team. Put all your development work in the trunk/ folder as described earlier.

WARNING If you are doing heavy development with a lot of changes,

instruct your team to do frequent updates of the local copies to keep conflicts

to a minimum later. By conflict we mean that you are trying to check in a file

that was already updated earlier by someone else. Since overwriting changes

made by someone else is not something you want to do, it’s usually something

the VCS is going to complain about. These conflicts are unfortunately a direct

consequence of having multiple copies of the same file.

When it comes time to test your data integration solution, you can tag the trunk (copy
it to the tags/ folder). This tag can then be checked out on a test server. When you
are done fixing things and you are ready to do user acceptance, you tag it again and
check the tag out on the user acceptance server. Finally, when you are ready to go into
production you can branch the user-accepted solution and set it in production.

The scenario sketched here is pretty straightforward for moving solutions up the
chain. One of the main benefits of using a VCS, however, is the possibility to roll back
changes as well. When moving from acceptance to production, there’s always a risk
that some unforeseen incident happens. Having a previous stable version at hand will
save the day in such a case.

Managing Repositories

The easiest way to have development, testing, acceptance, and production environ-
ments in place when you are using the Kettle database repository is to create multiple
repositories, one for each environment.

 Chapter 13 ■ Versioning and Migration 353

WARNING Unless you use the Enterprise Edition, the Kettle database repos-

itory doesn’t have locking and versioning capabilities and is not suited for team

development. Each developer should use a separate repository.

There are several ways to advance changes from one repository to another. The first
is to simply do an export and an import. That is probably the quickest way to work
initially. The second method of passing changes is to open a transformation or job in
Spoon, disconnect from the current repository and open a connection to another. Then
you can save your file in that repository. If you’re working with multiple developers but
want to merge different parts of a solution into a single test repository, a good approach
would be to appoint one of the team members as the gatekeeper to do all the check ins
for the test repository.

Parameterizing Your Solution

The trick to keeping the work of advancing transformations and jobs to production to a
minimum is to parameterize your solution. This means that you have to be vigilant about
using variables and parameters for all things that are different in another environment
or could be different in the future. For example, watch out with database connections:
Always make sure to use variables for the values you enter in a database connection.
Try to avoid the temptation to quickly hardcode a hostname, a database, or a username
because before you know it a transformation with that connection in it is going to end
up on a test or production system and seriously foul up things. Also be careful with file
locations. It is tempting and convenient to use relative file paths such as ${Internal
.Transformation.Filename.Directory}. Keep in mind, however, that when you
are executing a transformation or job remotely or use a repository, this variable has no
meaning anymore. Make sure to create separate variables for all meaningful file loca-
tions that you might have.

Once your complete solution is using variables, simply define a separate set of values for
each environment and you’re done. You can use the kettle.properties file described
elsewhere in this book. You can also create your own file and set the variables in the first
job entry of the main jobs of your solution. There are other approaches you can use as
well, such as using a parameter table. Working with a separate database table can add
extra flexibility, such as having the option to use valid from and valid to dates for
your parameter values. A simple example of a parameter table is shown in Table 13-1.

Knowing how to pass the values from a database parameter table to a Kettle trans-
formation has another benefit as well. Organizations might already have another ETL
tool in place and are looking for a replacement. Many of the existing solutions already
have a parameter table because not all ETL tools have good support for environment
variables and parameters. In this case it might be useful to keep the existing tables and
parameters and reuse them in a Kettle solution.

354 Part III ■ Management and Deployment

Table 13-1: ETL Parameter Table

ID ENVIRONMENT
PRM_
NAME

PRM_
VALUE VALIDFROM VALIDTO

1 dev dbhost sagitta 01/01/1990 12/31/2999

2 tst dbhost virgo 01/01/1990 12/31/2999

3 acc dbhost scorpio 01/01/1990 12/31/2999

4 prd dbhost aquarius 01/01/1990 06/30/2010

5 prd dbhost capricorn 07/01/2010 12/31/2999

6 dev uname usr123 01/01/2009 12/31/2999

7 prd uname usr456 01/01/1990 12/31/2999

So how do you get these values into Kettle variables? That’s pretty straightforward,
actually. Take a look at the example in Table 13-1 again. The only environment variable
you need is environment. The value for environment, combined with the sysdate,
suffices to retrieve all parameters with their values for a particular environment. In fact
this is a very common scenario where so called key/value pairs are used.

NOTE Dealing with key/value pairs is covered in depth in Chapter 20.

For a production run, the Kettle environment variable gets the value prd and the
“Input table” step needed to retrieve the values uses the following SQL query:

SELECT prm_name

, prm_value

FROM kettle_param

WHERE environment = ‘${environment}’

AND validto >= sysdate()

This will return the two rows of data from the example parameter table that are
displayed in Table 13-2.

Table 13-2: Parameter Query Results

PRM_NAME PRM_VALUE

dbhost capricorn

uname usr456

Now you need to find a way to feed this information into the Set Environment
Variables step. This step can read the value from a field name delivered by a preceding
step and put in into a Kettle variable. The problem, however, is that the data must be
in the form displayed in Table 13-3.

 Chapter 13 ■ Versioning and Migration 355

Table 13-3: Required Environment Variables Data Structure

DBHOST UNAME

capricorn usr456

To accomplish this, you need one extra step: the “Row denormalizer.” This will let
you transform the data as displayed in Table 13-2 into the data as displayed in Table 13-3.
Figure 13-5 shows what the “Row denormalizer” settings should be in this case.

Figure 13-5: Row denormalizer step

As Figure 13-5 clearly shows there’s no Group field required to unpivot the data.
Figure 13-6 shows the completed transformation with the three steps needed to load
parameter values in a database table into Kettle variables.

Figure 13-6: Completed set variables transformation

The table_params transformation is also available from the book’s companion web-
site. Remember that if you want to use a solution like this, you need to keep it as a sepa-
rate transformation that needs to be executed prior to other jobs or transformations.

356 Part III ■ Management and Deployment

Summary

In this chapter we covered two important ETL subsystems: subsystem 25 about the
version control system, and subsystem 26 about the version migration system. The fol-
lowing topics were discussed:

What version control systems are and how to turn them to your advantage for ■

you own data integration projects

The Kettle metadata for jobs and transformations■

The different repository types that Kettle can work with■

How to set up and upgrade a Kettle repository■

The two methods of promoting solutions from development to test to acceptance ■

to production

How to parameterize a Kettle solution using properties files and parameter ■

tables

357

C H A P T E R

14

Lineage and Auditing

When you create complex data integration solutions with a lot of Kettle jobs and trans-
formations, you may find it challenging to keep track of the results. At the same time,
it is extremely important to keep an audit trail to identify and diagnose problems after
they occur. It’s important to know what exactly was executed, where errors occurred,
and how long it takes to execute a job. In this chapter, we show you how to perform all
these tasks and more on the topics of lineage, impact analysis, and auditing.

As you may recall from the ETL subsystem overview in Chapter 5, subsystem 29 cov-
ers the lineage and dependency analyzer. Lineage looks “backward” to the process and
transformation steps that created the result data set you are analyzing, whereas impact
analysis is executed from the start of the process. Roughly speaking, impact analysis is
done from the source, and lineage analysis is done from the target.

For both impact and lineage analysis you need metadata, and this chapter begins
by showing how you can use a transformation to read the Kettle metadata. This allows
you to automate the extraction of lineage information so you can make it part of your
nightly batches or even share this lineage information with third-party software.

Next, you’ll learn more about the various kinds of lineage information. You will see
where field level lineage information and database impact analysis can be obtained in
Spoon, and learn how to write a transformation to get the results of a database impact
analysis so you can make it part of your batch processes.

Finally, you’ll get information about Kettle logging and operational metadata, which
actually touches upon more than one ETL subsystem. The subsystems that are partly
covered are:

Subsystem 6, the audit dimension assembler

Subsystem 27, the workflow monitor

Subsystem 33, the compliance reporter

358 Part III ■ Management and Deployment

Batch-Level Lineage Extraction

Keeping track of all the data streams in an organization becomes more difficult as more
systems are added to the infrastructure. With the proliferation of applications backed
by relational databases, you automatically get an increase in data transfers taking place.
In part, data integration tools such as Kettle help solve this problem by making it easy
to track down sources and targets in the user interface. That being said, a data integra-
tion tool in a large organization is typically only responsible for a small part of the data
transfers. Because of this, it’s important that the data integration tool itself can report
to third-party systems that keep an inventory of all the data flows. If it can’t do that,
then it is part of the problem, not part of the solution.

To solve this challenge with Kettle on a transformation level, we offer a small example
that searches for all the Table Output steps in a set of transformations in a directory, and
then reports the name of the transformation and the step as well as the used database
and table name.

Figure 14-1 shows a transformation that does exactly that and some sample output
(the extract-transformation-metadata.ktr file is included in the download folder
for this chapter).

Figure 14-1: Extracting lineage information from a transformation

This transformation works by reading a list of transformation filenames from a
directory. You can use the wildcard .*ktr$ for this. Then you parse the content of
the transformation XML by looping over the /transformation/step elements. For
more information on the structure of transformation and job XML, see Chapter 13. The
information you need is stored in XML elements (nodes) and can be retrieved with the
following absolute and relative XPath expressions:

Transformation name:■ /transformation/info/name

Step name:■ ./name

 Chapter 14 ■ Lineage and Auditing 359

Step type:■ ./type

Database connection name: ■ ./connection

Name of the target database table: ■ ./table

All that is then left to do for the exercise is to filter out the TableOutput step type
and remove those fields you don’t want.

This simple exercise demonstrates that it’s actually quite easy to extract all sorts of
lineage information and impact analyses simply by looking at the Kettle metadata in
XML format.

NOTE If you are using repositories, note that there are several ways to

export repositories to XML. See Chapter 13 for more information on this topic.

The act of exposing the metadata in a generic fashion allows you to make it avail-
able for all sorts of purposes. For example, the extracted metadata can be stored in a
relational database for further analyses with other tools in the Pentaho suite such as
reporting and analyses. You could also monitor the quality of the ETL solution itself
simply by looking at the various metadata settings. For example, you can verify if a
transformation or job has the appropriate logging configuration, if descriptions are
available in the transformation, or if there are any notes available.

On a job level, it is also possible to extract interesting metadata. Here are a few
suggestions:

List all the source FTP systems by looking at the FTP job entries. This gives you ■

a list of all the systems where files are being retrieved from.

Take a look at the settings in the Mail job entries and see if any hardcoded settings ■

such as e-mail addresses are being used.

List all the jobs where files are being copied or deleted.■

All these challenges are answered in almost the same way as demonstrated in the
example extract-transformation-metadata.ktr. The only differences are that you
are reading job XML files and that the information is stored in different nodes.

Lineage

In the context of a transformation, lineage means that you want to learn where informa-
tion is coming from, in which steps it is being added or modified, or in which database
table it ends up. This section covers the various lineage features in Kettle.

Lineage Information

In a Kettle transformation, new fields are added to the input of a step in a way that
is designed to minimize the mapping effort. The rule of thumb is that if a field is not
changed or used, it doesn’t need to be specified in a step. This minimizes the maintenance

360 Part III ■ Management and Deployment

cost of adding or renaming fields. The row metadata architecture that the developers put
in place not only allows you to see which fields are entering a step and what the output
looks like, but it can also show you where a field was last modified or created.

Take a look back at Figure 14-1. Now open the transformation (extract-
transformation-metadata.ktr), right-click on the “Get data from XML” step and
select the “Show input fields” option. This will list all the fields that provide input for
this step. In this case, the output will list all sorts of information regarding the file
names that are retrieved. The Step origin column will in each case indicate the Get
File Names step as its source. When you select the “Show output fields” option from
the same menu you will get a number of extra fields that originate from the “Get data
from XML” step, as indicated in Figure 14-2.

NOTE You can mouse over a step and press the spacebar to see the output

fields for that step.

Figure 14-2: Retrieving the output fields of a step

 Chapter 14 ■ Lineage and Auditing 361

 Because no fields are being removed and no data is modified in the “TableOutput
only” step, the output fields are exactly the same as for the previous step. The file names
from the very first step are in fact passed along until they are explicitly removed by the
“Select values” step at the very end.

This simple principle of passing fields along makes it easy to change field names or
add steps at the front of the transformation with minimal impact to the other steps.
Obviously that does not mean that you don’t have to explain to Kettle how fields are
used. In the steps themselves, you still have to specify which fields to use as input if
this is required. For example, in the “Get data from XML” step you have to indicate that
you want to read file names from the filename field. In most steps, lists, drop-down
buttons, or helpers are available to make this process painless.

Impact Analysis Information

Sometimes it can be interesting to know all the places where a transformation is using
a database. For example, you might be wondering if the same database table is used in
two different steps in the same transformation. The database impact analysis offered
in Spoon on a transformation level lists all that and more. Figure 14-3 shows output of
the impact analysis of a transformation that loads data into a fact table.

Figure 14-3: Displaying database impact information

The information listed is extracted from the individual steps in a transformation.
Each step that uses a database connection can add rows of database impact information.
When possible, the steps will include information down to the field level.

If you want to make this information available outside of the context of the user
interface, you can do so because this functionality is implemented on an API level.

362 Part III ■ Management and Deployment

That opens up a lot of possibilities. To keep things simple, you can use a few lines of
JavaScript (see also the db-impact.ktr transformation in the download folder):

var transMeta = new Packages.org.pentaho.di.trans.

 TransMeta(filename);

var transname = transMeta.getName();

var impact = new Packages.java.util.ArrayList();

var error = “”;

try {

 transMeta.analyseImpact(impact, null);

} catch(e) {

 error = e.toString();

}

for (i=0;i<impact.size();i++) {

 var dbi = impact.get(i);

 var newRow = createRowCopy(

 getOutputRowMeta().size());

 var rowIndex = getInputRowMeta().size();

 newRow[rowIndex++] = transname;

 newRow[rowIndex++] = dbi.getStepName();

 newRow[rowIndex++] = dbi.getTypeDesc();

 newRow[rowIndex++] = dbi.getDatabaseName();

 newRow[rowIndex++] = dbi.getTable();

 newRow[rowIndex++] = “N”;

 newRow[rowIndex++] = error;

 putRow(newRow);

}

var ignore = “Y”;

This script loads the transformation metadata and uses the Kettle Java API to extract
all sorts of information such as the type of database impact and the names of the trans-
formation, step, database, and table. The script is even capable of handling any errors
that might occur when the impact is analyzed by the transformation.

The script then generates N rows for every file name it receives on input. To make that
happen, it uses the putRow() function that exposes the method with the same name of
the underlying step. You can find more information on putRow() in Chapter 23.

The information that is obtained can be put on a report or stored in a relational
database for further analysis. That would, for example, make it possible to list all the
transformations that make use of a certain database table in one way or another. That
information can then be used when changes are made to that table.

Figure 14-4 shows a few lines of output from the example.

 Chapter 14 ■ Lineage and Auditing 363

Figure 14-4: Externalizing database impact analysis

Logging and Operational Metadata

The Kettle developers have always put a lot of effort into making sure that the ETL
developers and operators get good logging capabilities. In this section, you can read
all about the Kettle logging architecture and how to configure it.

Logging Basics

Most components in Kettle can output logging information in the form of lines of text.
For example, when a step finishes, a line is generated to indicate this event:

2010/06/18 10:36:29 - Step name.0 -

 Finished processing (I=0, O=0, R=0, W=25, U=0, E=0)

You can recognize three main parts in the log lines:

The date and time■

The name of step followed by a period and the step copy number■

The logging text■

These parts are separated by a space, a dash and a space.■

When you execute a transformation or a job, you can choose the logging level at
which you want to run. Depending on the level you pick, more or fewer log lines will
be generated. Here are the available logging levels in Kettle:

Rowlevel:■ Prints all the available logging information in Kettle, including indi-
vidual rows in a number of more complex steps.

364 Part III ■ Management and Deployment

Debugging:■ Generates a lot of logging information as well, but not on the row
level.

Detailed:■ Allows the user to see a bit more compared to the basic logging level.
Examples of extra information generated include SQL queries and DDL in
general.

Basic:■ The default logging level; prints only those messages that reflect execution
on a step or job-entry level.

Minimal:■ Informs you of information on only a job or transformation level.

Error logging only:■ Shows the error message if there is an error; otherwise, noth-
ing is displayed.

Nothing at all:■ Does not generate any log lines at all, not even when there is an
error.

The logging level can be set in the job and transformation execution dialogs in Spoon. It
can also be specified on the command line when you use Pan or Kitchen, with the -level
option. Finally, you can also change the default logging level by going to the Execution
Results pane of the transformation or job you are editing in Spoon. From the Logging tab,
select the toolbar icon (the crossed wrench and screwdriver) to display the dialog shown
in Figure 14-5.

Figure 14-5: Setting the logging parameters

The interesting feature of this dialog is that you can specify the text to use as a filter.
If you do so, only those log lines that contain the specified text will be retained. You can
use this if you are looking for specific values in a detailed logging level. For example,
if you specify the name of a step, only the lines that contain the name of the step will
be included in the log.

Logging Architecture

Since version 4 of Kettle, all log lines are kept in a central buffer. This buffer does not
simply store the text of the log lines as described in the preceding section. These are
the pieces that are stored:

The date and time:■ This component allows the date-time to be colored blue in
the logging windows in Spoon.

 Chapter 14 ■ Lineage and Auditing 365

The logging level:■ This allows Spoon to show error lines in red in the logging
windows.

An incremental unique number:■ Kettle uses this for incremental updates of the
various logging windows or log retrieval during remote execution.

The logging text: ■ The actual textual information that is generated to help the
developer see what is going on.

A log channel ID:■ This is a randomly generated (quasi) unique string that identi-
fies the Kettle component where the log line originated.

Keeping logging lines in memory has traditionally been one of the most common
causes for running out of memory. When you execute a job or transformation with a high
logging level, a lot of text is generated. If you then ask Kettle to store this information
in a logging table somewhere, you are asking to keep all this in memory and you can
run out of memory as a result. At the same time, it is unlikely that any ETL developer
is going to look at hundreds of thousands of lines of debugging information. Usually
you are only interested in the last thousand rows before an error occurred. Because
of this, and also for the reasons described in Chapter 18 on the topic of real-time data
integration, you can limit the amount of rows kept in the central log buffer by using
the parameters described in the following sections.

Setting a Maximum Buffer Size

The first limit you can put in place is simply to set the number of rows kept in the log
buffer. You can do this in the Options dialog in Spoon. Use the option “Maximum nr
of lines in the logging windows”. Please note that it will affect logging in Spoon only!

Another option is to set the KETTLE_MAX_LOG_SIZE_IN_LINES environment vari-
able. You can simply include this variable in the kettle.properties file to activate
this feature. (See also the “Logging” section in Chapter 18 to read about the real-time
data integration implications.)

Finally, you can also specify this limitation in the Carte configuration file. For
 example, you can include the following lines in the slave configuration XML file to
limit the size of the central log buffer to 10,000 lines:

 <!-- Prevent out of memory by only keeping 10,000

 rows in the central log buffer

 -->

 <max_log_lines>10000</max_log_lines>

Setting a Maximum Log Line Age

A more intelligent way to solve the problem of running out of memory is to specify the
maximum age of a log line. Because you know the time when the logging record was
added to the buffer, you can calculate the age as well. Similar to setting the buffer size,
you can specify this parameter in the Spoon Options dialog under the option “Central

366 Part III ■ Management and Deployment

log line store timeout in minutes.” Again, remember that this option affects execution
in Spoon only.

The environment variable that will define this age for all Kettle tools is called KETTLE_
MAX_LOG_TIMEOUT_IN_MINUTES. To set this variable in the kettle.properties file,
from the Edit menu, select “Edit the kettle.properties file” in Spoon version 4 or later.

You can also add these lines to a Carte slave configuration XML file to limit the age
of a log line in the central buffer:

 <!-- Discard log lines if they are in the

 buffer for more than 2 days -->

 <max_log_timeout_minutes>2880</max_log_timeout_minutes>

Log Channels

Before Kettle version 4, all the logging text was simply written to the logging back end
(read about Apache Log4J at http://logging.apache.org/log4j). This caused all
sorts of interesting problems ranging from the mixture of logging text when you run
transformations or jobs in parallel on the same machine to excessive memory consump-
tion when individual components kept logging text in memory for storage in logging
tables (see below). Once the conversion to text was made, it was also not always simple
to filter out lines pertaining to a certain step or database.

To counter these problems, a single logging buffer was created in Kettle version 4,
as described in the earlier section “Logging Architecture.” When you now execute a
job or transformation, each component (job entry, step, transformation, and database
connection) creates a separate log channel with a unique ID that allows you to identify
where the logging line originated. Because Kettle also keeps track of the parent log
channel ID of the components, an execution hierarchy is kept internally. Because this
hierarchy is kept separately it is possible for Kettle to retrieve log lines pertaining to
each individual component as well as its children.

For example, suppose you execute a job in Spoon and a long-running transformation
is executing. You’ll see a small blue icon drawn over the active job entry. You can then
open the associated transformation by using the right-click menu and by selecting the
“Open transformation” option. Note that this works for sub-jobs as well. Doing this will
show the transformation (or job) as if you had started it separately, with all the metrics
and logging information available to you. You can then see that the logging informa-
tion shown comes only from the selected transformation, not from the parent job or
anything else. This is made possible by the central logging buffer and the hierarchical
logging channel architecture.

Log Text Capturing in a Job

Since version 4 of Kettle, you can find the logging text of a job entry in the result of its
execution. With a JavaScript job entry you can extract this log text. While the main goal
of this job entry is to simply evaluate a Boolean expression to true or false, you can also

 Chapter 14 ■ Lineage and Auditing 367

retrieve various aspects of the previous job entry result with it. The following script
defines a variable that will contain the logging text of the execution of the previous job
entry, for example a transformation or a job:

var logText = previous_result.getLogText();

parent_job.setVariable(“LOG_TEXT”, logText);

true;

Our example makes use of the predefined JavaScript object previous_result. You
can find a complete list of all the information you can extract from it in the “Result”
section of Chapter 22. The LOG_TEXT variable that is defined in the parent job can be
used in a subsequent transformation to write to a database table or an XML file. You
could also use it in a Mail job entry to send the log text to an e-mail recipient.

Logging Tables

Because it is not always convenient to start searching for problems in a bunch of log-
ging files on a remote server, the Kettle developers created the option to write logging
information to database tables. In the following sections we explain how you can write
all sorts of interesting information to the Kettle log tables from the viewpoint of a trans-
formation and a job. We want to emphasize that the use of log tables is recommended
and good practice that will allow you to easily track and debug problems.

Transformation Logging Tables

At the transformation level, there are four log tables that can be updated:

The transformation log table■

The step log table■

The performance log table■

The logging channels log table■

The default behavior of a transformation is to write to a configured logging table at
the end of a transformation. The exception is the transformation log table, where you
will also find a record being written at the start of the transformation. At that time,
Kettle also determines the batch ID number. This number is unique for each execution
of the transformation and can be used to group information in the transformation log-
ging tables together. In the executing transformation itself, you can use a Get System
Info step to retrieve this batch ID in case you want to correlate other information with
the logging tables.

If a logging table is configured, you can check the execution results in the Execution
History tab in the Execution Results pane, as shown in Figure 14-6. Use the icon imme-
diately to the left of the zoom percentage in the transformation toolbar to show the
results pane if it’s not visible.

368 Part III ■ Management and Deployment

Figure 14-6: The transformation execution history

The transformation log tables can be configured in the Transformation Settings dia-
log. This dialog is accessible from the Edit ➪ Settings menu in Spoon or when you
right-click on the background of a transformation and select Transformation settings.

Using the SQL button of that dialog, you can generate the SQL needed to make the
layout of the target logging tables correspond to the configured log tables. Note that
at the time of this writing, indexes are not generated. Read on for advice on which
indexes to add.

The Transformation Log Table

The transformation log table was created to allow the most important metrics of a
transformation to be written to a relational database table. Figure 14-7 shows all the
options that you can set for the transformation log table.

Figure 14-7: The transformation log table settings

 Chapter 14 ■ Lineage and Auditing 369

On the left side of the tab, you’ll see the various log tables that you can define for
the current transformation. Here is a description of the parameters that you can use
to configure it:

Log Connection:■ The database that contains the log table.

Log table schema:■ The schema that contains the log table.

Log table name:■ The name of the log table.

Logging interval (seconds):■ This optional parameter periodically writes informa-
tion to the logging table during the execution of the transformation. If you don’t
specify a value for this parameter, the log table will only be updated at the start
of the transformation and when it finishes.

Log record timeout (in days):■ This optional parameter will remove old log records
from the table after it has inserted a new value. It will use the log date field of
the table to do this.

Log size limit in lines:■ This will limit the size of the logging text for databases
that don’t support very large character fields.

You can also use variables KETTLE_TRANS_LOG_DB, KETTLE_TRANS_LOG_SCHEMA,
and KETTLE_TRANS_LOG_TABLE to configure this table for all jobs and transformations,
as described in Appendix C.

Below the parameters you can see all the fields that are logged. You can decide to
include only certain fields. This feature was created to allow the logging system of Kettle
version 4 to be backward-compatible with version 3. Keep in mind that, for consistency
if you enable or disable specific columns of a logging table you should also do this in
other transformations. Because of this maintenance overhead involved it’s probably
best to stick to the defaults in Kettle. It is also possible to rename each field in the table
even though you rarely have a reason to do this.

In the Step name column, you can specify a step for certain metrics like the number of
lines written. The goal is to identify steps in your transformation that are representative
for a certain metric. For example, suppose you are reading data from a text file in Step A
and write that data to a database table in Step B. In that case, you can specify Step A next
to the LINES_INPUT field, Step B next to the LINES_OUTPUT. That way, you get a good
idea of how many rows were processed by the transformation. If you do not specify any
steps, all values will simply be zero in the transformation logging table.

The Field description column describes the purpose of the fields to make sure
there is no confusion about the sometimes confusing names of the fields. For example,
the STARTDATE column does not contain the start date of the transformation. Rather,
it is the start of the date range that you can use for incremental data processing. For
more information on this topic, see Chapter 6 in the “Change Data Capture” section.
There you will get an overview of the various ways to incrementally capture changes
in a source system. Read on in this chapter to see how you can use the information in
the transformation log table instead of the cdc_time table suggested.

The STARTDATE-ENDDATE timeframe is a period of time that covers all the new
and updated records in a source system from the last time that the transformation ran

370 Part III ■ Management and Deployment

 correctly until the current time. These two values are calculated and logged at the start
of the transformation and they are also available in the Get System Info step.

If you expect the size of the log table to become rather big, you should create a few
indexes on the log table. This will speed up lookups that the transformation performs
in the log table when the transformation starts or when it performs updates to the log
record. The first index is to be created on the ID_BATCH column and the second one on
the ERRORS, STATUS, and TRANSNAME columns.

The Step Log Table

Because the step metrics in the transformation log table are very high level, it’s possible
you might have the occasional need to get hard data on the number of processed rows
on a step level. To configure the step logging table, revisit the Transformation properties
dialog and go to the Logging tab, shown in Figure 14-8.

Figure 14-8: The step logging table

With the exception that there is no interval logging option available for this log
table, the options are similar to the ones available for the transformation log table.
Alternatively, you can use variables KETTLE_STEP_LOG_DB, KETTLE_STEP_LOG_
SCHEMA, and KETTLE_STEP_LOG_TABLE to configure this table globally for all executed
transformations, as described in Appendix C.

 Chapter 14 ■ Lineage and Auditing 371

If you are interested in the logging text on a step level, you can choose to include
the LOG_FIELD column. Because this is only exceptionally the case, this column is not
included in the logging table by default.

The Performance Log Table

Chapter 15 discusses how enabling the step performance monitoring can help you visu-
alize the performance of individual steps. Performance monitoring works by allowing
you to periodically capture all the step metrics. This information is then displayed in
an updating chart while the transformation is running.

This information is interesting from an analysis standpoint. Performance problems
as described in Chapter 15 do not only occur during development when you run in
Spoon. It makes sense to allow you to analyze this data after the transformation finished
a batch run. This is why Kettle has the option to store the information in a log table.
Figure 14-9 shows all the options for the performance log table.

Figure 14-9: Configuring the performance log table

The parameters listed are the same as those described earlier in the transformation
log table. This table can also be configured globally for all transformations with the
KETTLE_TRANS_PERFORMANCE_LOG_DB, KETTLE_TRANS_PERFORMANCE_LOG_SCHEMA,
and KETTLE_TRANS_PERFORMANCE_LOG_TABLE variables as described in Appendix C.

372 Part III ■ Management and Deployment

The Logging Channels Log Table

As described earlier in this chapter, Kettle keeps track of the complete hierarchy of exe-
cuted components such as jobs, job entries, transformations, steps, and database queries
in the logging architecture. This information has use beyond the internal bookkeeping
of Kettle. Because of this, the logging channels log table came to life. Figure 14-10 shows
all the options that are available to configure the logging channels log table.

Figure 14-10: Configuring the logging channels log table

Again, the database connection, schema, and table specification are the same as with
the other logging tables. This log table can be configured in one go for all executed
transformations with the KETTLE_CHANNEL_LOG_DB, KETTLE_CHANNEL_LOG_SCHEMA,
and KETTLE_CHANNEL_LOG_TABLE variables, as described in Appendix C.

Here are a few examples of what you can do with this information:

List the transformations that were executed in a job.■

Check the exact revision of an executed transformation after it failed.■

Find out which transformations used a mapping since it was last changed (for ■

example, if someone made an error in a calculation in a mapping).

 Chapter 14 ■ Lineage and Auditing 373

Job Logging Tables

Because you don’t gather performance-monitoring data in a job, you can only configure
three log tables on that level:

The job log table■

The job entry step log table■

The logging channels log table■

Because the logging channels log table is identical to the one described for transfor-
mations, we will not cover it again.

To configure the job log tables, open the Job Properties dialog by right-clicking on
the background of a job and selecting “Job setting” from the menu.

The Job Log Table

As with transformations, a record is written into the job log table at the start of the job.
Kettle does this to indicate that processing of the job has started. By default, that record
is also updated when the job finishes.

NOTE Even though the transformation and job log tables are almost identi-

cal, you are advised to use separate tables because jobs and transformations

have separately calculated IDs.

The job ID that is calculated (column ID_JOB) is a unique number that reflects a
batch run of the job. Because it is present in all the job log tables, it can be used to link
those together. Note that Kettle does not expose the relationship between the job ID
and a transformation batch ID because this information is available in the logging
channel log table.

The line metrics found in the job log table are different from zero only when one or
more transformations are executed in a job. Even then you need to make sure that you
specified steps to take the metrics from as described.

You can use the KETTLE_JOB_LOG_DB, KETTLE_JOB_LOG_SCHEMA, and KETTLE_
JOB_LOG_TABLE variables to configure this table for all executed jobs, as described in
Appendix C.

Just as a precaution, you are advised to create two indexes on this log table as well
to speed up queries and updates. First create an index on the ID_JOB column. Then
create a second one on the ERRORS, STATUS, and JOBNAME columns.

The Job Entry Log Table

In the job entry log table, you will again find a lot of the parameters are the same as for
transformations. The main difference is that this table includes information regarding
the result of a job entry. For example, the Boolean result flag is included as well as an
indication of the amount of result rows and result files that were found.

374 Part III ■ Management and Deployment

To configure this log table centrally for all executed jobs, define the following vari-
ables as described in Appendix C: KETTLE_JOBENTRY_LOG_DB, KETTLE_JOBENTRY_
LOG_SCHEMA, and KETTLE_JOBENTRY_LOG_TABLE.

Summary

Finding out what goes on in complex Kettle jobs or transformations is not always easy.
This chapter showed you how to get better insights into problem solving and analysis
of the data flows in Kettle. More specifically you learned how to perform the follow-
ing tasks:

Extract high-level lineage information for batch-level usage.■

Work with the design time lineage information available in the Spoon user ■

interface.

Extract database impact information.■

Set up auditing in the form of logging tables for transformations and jobs.■

P a r t

IV
Performance and Scalability

In This Part

Chapter 15: Performance Tuning

Chapter 16: Parallelization, Clustering, and Partitioning

Chapter 17: Dynamic Clustering in the Cloud

Chapter 18: Real-Time Data Integration

377

C H A P T E R

15

Performance Tuning

This chapter provides an in-depth look at the art of performance tuning Kettle. We
primarily focus on tuning transformations and briefly look at what can go wrong with
the performance in a job.

For readers who are interested in the internals of the transformation engine, the first
part of this chapter offers many details with a number of examples. Once you have
learned how the transformation engine works, we focus on how to identify perfor-
mance bottlenecks. Then we offer advice on how to improve the performance of your
transformations and jobs.

NOTE Readers who are new to Kettle may prefer to skip this chapter

until they encounter a performance problem. At that point, you can simply

turn to this chapter to learn how to identify and solve the problems you’re

encountering.

Transformation Performance:
Finding the Weakest Link

Performance tuning of a transformation is conceptually quite simple. As in any other
network, you search for the weakest link. In the case of a transformation, you search

378 Part IV ■ Performance and Scalability

for the step that is causing the performance of the transformation to be sub-optimal. To
better understand why this is important, take a look at a simple example. The follow-
ing transformation reads customer data from one database and writes it into another,
as shown in Figure 15-1. The figure also shows the step performance metrics during
execution at the bottom.

Figure 15-1: Reading and writing customer data

Here is what happens in this example: The Customers step writes rows into a Row
Set buffer between the two steps. The “Load customers” step reads them from the
buffer. In this example, one of two things can happen to affect the overall speed of
the transformation:

The “Load customers” step is slow:■ This typically occurs because writing to a
database is slower than reading or because it needs to write over a slow network.
Because of this, the row buffer between the two steps will fill up. Once it has
reached its maximum capacity, it won’t accept any more rows from the Customers
step. This means that the Customers step will have to wait a bit until more room
is available. Consequently, the step is slowing down to match the speed of the
step “Load customers.”

The Customers step is slow:■ This may occur if the data is read over a slow net-
work or if the source database is slow. In that case, rows are not being written
very fast into the row buffer between the two steps. If the “Load customers” step
wants to read a row from the input buffer but can’t, it will simply wait until a
row is available. Again, as a consequence the two steps will proceed at the same
speed.

 Chapter 15 ■ Performance Tuning 379

The same principle that applies to these two steps applies to a transformation with
any number of steps; the slowest step affects the overall speed of the transformation.
Because of that, it’s important to figure out what the weakest link is before you can even
hope to improve the performance of your transformation.

Finding the weakest link or the slowest step in a transformation can be done in two
principal ways: simplifying or measuring. The following sections examine each of
these in turn.

Finding Bottlenecks by Simplifying

The first method that is commonly used is the simplification of the problem. Simply
put: remove steps from a transformation and see when your performance increase is
the largest. In the preceding example, you could try to run the transformation as shown
in Figure 15-2.

Figure 15-2 : Taking a step out of the equation

If you run this transformation, either of two things can happen:

If the performance increases, you know that the step “Load customers” is the ■

slower step of the transformation.

If the performance stays about the same, you know that the Customers step is ■

the slower.

Detecting a bottleneck using this technique is typically done by disabling hops
in the transformation. Only steps that are connected with at least one hop are being
included in the execution of a transformation. By disabling hops, you can exclude
parts of your transformation. That in turn allows you to focus on the performance of
individual steps.

Usually you can start to disable steps at the end of the transformation and then see
which step degrades the performance the most. Compared to the performance metrics
shown in Figure 15-1 performance increased 16-fold, indicating a slow “Load custom-
ers” step, as shown in Figure 15-3.

380 Part IV ■ Performance and Scalability

Figure 15-3: The execution results showing improved performance

Finding Bottlenecks by Measuring

Another way to figure out which step is holding back the performance of a transforma-
tion is to look at the buffer size during execution. If you execute the first example of
this chapter, you get the performance metrics shown in the bottom half of the screen
of Figure 15-1.

NOTE When your transformation runs on a remote system on a Carte instance

or on a Pentaho Data Integration server you can see the performance metrics

when you consult the Spoon slave monitor. You can do this by clicking right on a

defined slave server and by selecting Monitor from the pop-up menu.

The last column, labeled input/output, actually represents the total number of
rows in the input and output Row Set buffers relative to the step being monitored. In
our sample, the maximum buffer size is 10,000 and we have 9,821 rows in it. This means
that the buffer is at 98 percent of its capacity, which means that the Customers step is
fast enough to continuously fill up the buffer. Consequently, the “Load customers” step
is the slowest link in the network.

You can also see a difference in the performance between the two steps in the per-
formance metrics. This is caused by the buffer between the two steps. For a short while,
it allows the two steps to operate at a different speed. Once the buffer is full, the two
steps will operate at virtually the same speed.

If you wait a little bit longer, you see the metrics shown in Figure 15-4.

Figure 15-4: The step metrics 22 seconds into the execution of the transformation

 Chapter 15 ■ Performance Tuning 381

Despite the benefit of having these metrics, it can still be daunting to find a perfor-
mance problem in complex transformations, precisely because of the dynamic nature
of the performance metrics. In those situations, it can be useful to enable the step per-
formance monitoring feature of a transformation.

NOTE Step performance monitoring can be enabled on the Monitoring tab

of the “Transformation settings” dialog. It allows you to look at various per-

formance graphs per step. The metrics are gathered during execution of a

transformation.

Once you have the step performance metrics, you can take a look at the graph of a step
metric, as shown in Figure 15-5. The interesting metrics to look at are the number of rows
read or written by a step and the buffer sizes. In Figure 15-5, you can clearly see the fast start
of the Customers step followed by the slowdown to arrive at the speed of the second step.

Figure 15-5: The evolution of the speed of a step as a graph

Figure 15-6 shows the evolution of the buffer size during that period of time.
As you can see, the buffer fills up very quickly and stays almost filled until the

transformation is finished. This indicates a big speed difference. (The first step is 16
times faster, as mentioned previously.) If the speed difference is smaller, the number
of rows in the buffer will increase more slowly over time.

NOTE Make sure to use as few programs on your computer as possible dur-

ing performance measurements. Even though it is not always easy to see this,

mail and Twitter clients, virus checkers, spam filters, firewalls, and browsers

can consume considerable amounts of resources on your system.

To make sure you don’t have any uninvited processes skewing your mea-

surements, run the same transformation more than once to let the data aver-

age out. When you compare performance measurements, keep in mind that

you should compare values that originate from systems with the exact same

characteristics. Even small differences in the speed of processors, disks or

network can lead to completely different performance measurements.

382 Part IV ■ Performance and Scalability

Figure 15-6: The evolution of the output buffer size of a step

Copying Rows of Data

A special performance tuning case is reserved for situations where rows of data are
copied to multiple targets. In the sample shown in Figure 15-7, rows of data are copied
to a very fast “Dummy (do nothing)” step and to the “Load customers” step as well.

Figure 15-7: Copying rows of data to multiple target steps

Notice that the performance of the “Load customers” step is also slowing down the
“Dummy (do nothing)” step, despite the fact its input buffer is almost always empty.
The reason for this is that the Customers step will wait a bit whenever there is an output
buffer that is full.

 Chapter 15 ■ Performance Tuning 383

A rare but important performance tuning case is one where a step can stop execu-
tion and the transformation will completely stall. An example of this case is shown in
Figure 15-8.

Figure 15-8: A transformation that can stall

In this example an attempt is made to add the total customer sales per segment to
the individual customer records, perhaps to calculate a percentage of the sales per
segment per customer. The problem with this is that data from the Customers step is
being used to supply both the main data and the lookup data of the Stream Lookup
step. In this situation, the Stream Lookup step only reads input when all lookup data
is read. However, after a short while the Customers step is blocked because its output
buffer to the Stream Lookup step is full. That in turn blocks the output to the Dummy
step, and the whole transformation is in a so called deadlock state where two or more
steps wait for each other

You can obviously solve this problem by increasing the buffer size. However, because
you can never be sure of the maximum number of input rows, it’s usually better to
make sure that the circular reference goes away. You can do this either by splitting
up the transformation into two parts or as shown in Figure 15-9, by reading the same
source data twice.

You can also solve this problem by cutting your transformation up into two or more
transformations that write intermediate information to a temporary file or database
table.

Figure 15-9: Solving a dead-lock by reading data twice

384 Part IV ■ Performance and Scalability

Improving Transformation Performance

Once you know which steps are slowing down the transformation, you can try to do
something about it. The following sections describe various ways to make your trans-
formation run faster. First you will learn how to improve the performance of reading
and writing text files. Then you will see how you can get information in and out of a
database faster. Because the performance of the network has a big effect on databases,
we cover that topic as well. At the end of this section you will find various specific ways
in specific steps to improve performance.

Improving Performance in Reading Text Files

Every time you read data from a text file, a number of events happen that can cause a
performance bottleneck. There are a number of reasons why reading a text file might
be slower than you expected. To go deeper into those reasons, we’ll take a closer look
at what happens while reading.

First, a block of data is read from the disk on which the file resides. If you are read-
ing from a slow disk, the performance of the step that reads the file will also be slow.
However, the latency (or seek time) of the disk also plays its role. If you instruct a step
such as CSV Input to read in relatively small blocks, it’s going to take a tiny bit of time
to reposition the heads of the disk to read the next block.

After you read a block of data from the file, it is translated from a series of bytes into a
continuous series of characters. These characters form a block of text, also referred to as
a string. The encoding scheme used to process the bytes, and turn them into characters,
must match the original encoding of the file. Depending on the encoding of the file, a
different encoding scheme is used. This process is obviously quite important because
it is responsible for achieving the correct end result. However, parsing files in various
encodings can be quite costly in terms of CPU usage. For certain double-byte encod-
ing schemes like UTF-16, almost half of the CPU cycles are used to convert bytes into
characters during the execution of a step.

Once you have individual characters to deal with, you need to split the data up into
different fields. In particular, steps such as CSV File Input and Text File Input extract
lines of text by looking for carriage return and linefeed characters. Then the lines of text
are split up into fields. This is done either by searching for a separator or by counting
a certain number of characters if the file is using lines with a fixed width.

Finally, the fields that were extracted from the lines of text are optionally converted
into other data types such as Date, Number, BigNumber, or Boolean. Date and numeric
data conversion is especially costly in terms of burning CPU cycles. In the case of date
conversion, all sorts of information is taken into consideration, such as the format, leap
years, leap seconds, and time zones. For numeric data, the parsers take into account the
format, grouping, and decimal symbols as well as exponential notations.

All this logic comes at a price in the form of using up a lot of processing power. Thus,
it would not be very unusual to see a lot of CPU usage while reading a complex text file
with a lot of fields that need to be converted to data types other than String.

 Chapter 15 ■ Performance Tuning 385

In addition to those basic operations, a field might be trimmed or a default value
might be used when there was no original data.

Now that you know the common problems, take a look at a few simple techniques
to speed up the reading of your text files.

Using Lazy Conversion for Reading Text Files

At first glance it might look like there isn’t very much you can do about the CPU cost
incurred by data decoding and conversion. However, in certain cases it might be worth
it to enable the Lazy Conversion option in the CSV File Input or Fixed File Input steps.
When this option is used, all data conversion for the data being read will be postponed
as long as possible. This includes character decoding, data conversion, trimming, and
so on. The only tasks that the steps do initially is read the file in binary form (bytes)
and split it up into separate fields.

Obviously, if the fields of data are actually needed in other steps the data conversion
will still take place. When that occurs, it might actually slow things down. However,
you will get better performance using Lazy Conversion in a few specific cases:

If most fields are simply written to another text file in the same format.■

If the data needs to be sorted and the data doesn’t fit in memory. In that case, seri-■

alization to disk is faster because you postpone encoding and type conversions.

When you bulk load data into a database and when there is no data conversion ■

needed, lazy conversion can improve performance. That is because bulk-loading
utilities typically read text directly and the generation of this text is faster. This
is in contrast with the use of regular steps like Table Output in which the data
needs to be converted anyway.

For cases where only a few fields are used in a transformation, note that individual
fields can be converted to Normal storage with the aid of the Select Values step on the
Metadata tab.

Single-File Parallel Reading

Reading a text file in parallel is possible simply by enabling the “Running in parallel?”
option in the “CSV file input” or “Fixed file input” steps. This option will assign a part
of the file to each individual copy of a running step. The number of copies to execute of
any step is set by right-clicking on the step and selecting the “Change number of cop-
ies to start…” option. Another option is to run the steps on multiple slave servers in a
clustered run. See Chapter 16 for more information on how to run steps in a clustered
environment.

NOTE Because the parallel reading algorithm in “CSV file input” synchro-

nizes on carriage return or linefeed, it is only possible to read files in parallel

if they don’t have fields with carriage returns or linefeeds in them.

386 Part IV ■ Performance and Scalability

Note that this technique will quickly shift the bottleneck from processing power to
the read-capacity of the used disk. This is not helped by the fact that reading the same
file with multiple threads is going to incur a lot of extra overhead because the disk-heads
are going to be repositioning all the time. That being said, the amount of overhead
highly depends on the used disk subsystem and the amount of caching the operating
system uses.

Multi-File Parallel Reading

Because of the overhead incurred by reading the same file with multiple threads or
processes, it’s usually better to read a single file with a single step copy if you can. In
situations in which you have a lot of similar files, it’s therefore better to simply give
multiple reader steps different files, as shown in Figure 15-10.

Figure 15-10: Distributing files to multiple step copies

A round-robin system is used to distribute the rows with file names evenly over
the four “CSV file input” copies. Each copy will receive a different file name and will
process a group of files in parallel.

Configuring the NIO Block Size

The “NIO buffer size” parameter has an influence on the performance and can be set
in the “CSV file input” and “Text file input” steps. It determines the amount of data
read at once from a text file. It is not possible to give exact guidelines on how to set
this parameter. If you make the block size too big, it might take a relatively long time
to fetch the data. This could reduce the parallelism in the transformation. However, if
you have a really fast disk subsystem, a large buffer size might be speeding things up
instead. If you have a disk subsystem with a lot of caching or with a very low latency
(seek time), it might be faster to lower the buffer size. In general it will pay off to look
at the buffer size, see how much CPU capacity you have left, and try a few values to
see what works best.

Changing Disks and Reading Text Files

In those cases where a slow disk is at the root of a performance problem, it usually pays
to investigate whether it’s possible to change the location of a source file. Especially
when data is being extracted from remote databases, you can see text files end up on
temporary disks with less than optimal performance. In particular, slow disks that are
mounted over a network come to mind. While network-attached storage can be used

 Chapter 15 ■ Performance Tuning 387

without a problem for archival of input files, be careful when using them for high-
performance data reading.

Improving Performance in Writing Text Files

All the character encoding and data conversion performance issues that are valid for the
reading of text files are also valid for the writing of text files. In writing, the conversion
from a date or a numeric data type to text happens first. Then the conversion of the text
into the correct binary format of the text file in the correct encoding occurs. The same
methods that you can use to speed up the process of reading text files can be used to
speed up text file writing.

Using Lazy Conversion for Writing Text Files

For a transformation that involves reading and writing a text file back to another file,
the character encoding and data conversion cost is being paid twice. For such cases, the
Lazy Conversion option described earlier will help performance.

Parallel Files Writing

Writing to a single text file in parallel is not possible. For example, you can’t use multiple
step copies of the “Text file output” step to write to the same output file. If you try it,
the result is a blended file with lines and fields ending up in the wrong location. This
problem can only be countered with advanced locking algorithms that in turn again
reduce the degree of parallelism to a single thread.

However, the simple solution is to write to multiple output files. If needed, these files
can reside on multiple disks to provide further scaling options.

The easy way to do this is to use the “Include stepnr in filename?” option or to use
the internal variable ${Internal.Step.Unique.Number} in the filename. This last
option allows you to divert the writing load to a different disk by creating symbolic
links to the right disk location, for example /disk1, /disk2, and so on.

Note that internal variable ${Internal.Step.Unique.Number} also is valid when
used in clustering and that the total number of step copies is available in variable
${Internal.Step.Unique.Count}.

Changing Disks and Writing Text Files

The same advice that applies to reading a text file goes double for writing one because
writing is typically up to twice as slow as reading. If you can’t change the location
of the file and you see a significant slowdown due to a slow disk, consider compressing
the text file. This can reduce the size of the output file by a considerable amount; you
may use as little as one-tenth the space you would otherwise. Because of this the write
performance of the target disk becomes much less of a problem.

388 Part IV ■ Performance and Scalability

Improving Database Performance

In any typical data warehouse, you read and write from and to all sorts of relational
and non-relational databases. In most cases, you use a database driver to make this
possible. So again, there are abstraction layers involved in the reading and writing.
Let’s take a look at what’s going on.

If you specify a database connection in a step, you usually do so by specifying the
name of the database connection. This allows the step to find the details, the metadata, of
the connection. What typically happens then is that the connection is opened during the
initialization phase of the steps. If all steps are initialized correctly, they start to process
rows. It’s at this time that rows of data are read from or written to the database.

It’s important to note that, as a general rule, each step copy creates a separate con-
nection to the used database. This means that if you have ten step copies in your trans-
formation that use a database, you have ten connections to the database.

This behavior can be changed by enabling the “Make the transformation database
transactional” option. This will open a single connection per defined and used database.
It will also run in a single transaction. A commit will be executed at the successful end
of the transformation. A rollback will be performed in case there is an error anywhere
in the transformation.

Avoiding Dynamic SQL

Once the connection is established, as much of the work that can be done up front is done
up front. For most steps, this means the compilation of SQL statements on the databases,
also known as the preparation of statements. It is a time-consuming process because the
database needs to validate whether tables and columns exist, choose indexes, set join
conditions, and much more. You want to do this only once if the statements are going
to be the same for all rows that are processed.

The notable exceptions where the preparation of SQL doesn’t happen are the “Execute
SQL Script,” “Execute row SQL script,” and “Dynamic SQL row” steps. Therefore, these
steps will always cause the performance of your transformation to be lower compared to
single-purpose steps such as Table Output, Table Input, Database Lookup, and so on.

Handling Roundtrips

Once the statements are prepared, values are set on the parameters, usually based on
input parameters that correspond to values in the input rows. These parameter values
are transmitted to the database, the statement is executed on the database, and a result
is retrieved. This means that for most database operations, a roundtrip to the database is
made over the network.

Therefore, performance of most steps that use a database depends heavily on the
speed of the roundtrip, which is a combination of the speed of the network, the latency
of the network, and the performance of the database.

 Chapter 15 ■ Performance Tuning 389

Reducing Network Latency

It’s always useful to be aware of whether a database is running on the same machine,
on the local network, or in some remote location accessed over a VPN connection. The
difference in latency for these three cases will be noticeable because the network char-
acteristics play a big role in the performance.

You can get an idea of the latency of a network by using the ping command. Table 15-1
shows the effects on latency with a maximum throughput calculated under several dif-
ferent conditions.

Table 15-1: Network Condition Effects on Latency

DESCRIPTION LATENCY MAXIMUM THROUGHPUT

Same machine 0.035 ms 28,571 rows/second

Local network 0.800 ms 1,250 rows/second

Server in the same country 10.5 ms 95 rows/second

Server in a different country 150 ms 400 rows/minute

Over a satellite in a train 1500 ms 40 rows/minute

There is usually little you can do about the latency of the network itself. You thus
have to look at other possible solutions.

A first solution for high database latency is the reduction of the number of roundtrips
to the database. This is usually accomplished by loading lookup data in memory (a
single roundtrip for all rows) or by using caching (a single roundtrip per unique key you
look up). Most steps that perform lookups on a database have options to cache data, and
a Stream Lookup step is available to load any set of rows in memory. This step allows
you to look up rows very quickly. It is also possible to use the “Merge join” step to join
large data sets in a streaming fashion with very little memory consumption and good
performance. “Merge join” requires that the input data for the step be sorted. However,
databases can usually sort very quickly compared to a streaming engine (see the fol-
lowing paragraph), especially if the ORDER BY clause involves an indexes column.

A second solution against high latency is the execution of multiple step copies at the
same time. This is usually easy to do with a step. In theory, you can slash the average
latency in half and double the performance by doubling the number of step copies
you use. However, in practice we see increases in performance on the order of 30 to 50
percent because of limits ranging from the way that databases handle the connection
requests to saturations in the networking layers.

Finally, batching requests together usually makes a big difference in performance.
For example, the “Use batch updates for inserts” option in the “Table Output” step
reduces the number of roundtrips by sending the rows over in large batches. In certain
cases where you have a fast network and a high latency the use of multiple step copies

390 Part IV ■ Performance and Scalability

can dramatically increase the performance of your transformation. However, typically
you can gain between 20 and 40 percent in throughput.

Network Speed

Obviously it’s not just the latency of the network that’s important when looking at the
performance of a transformation. The network speed, also known as bandwidth, is criti-
cal, too. This is especially relevant when large amounts of data are being moved over the
network. For example, if you are loading data with the Table Output or Insert/Update
steps, a lot of information is going over the network to and from the database.

Again, there is usually little you can do about the network performance itself.
However, it might be worth trying to move the data as close to the database as possible
before loading. In that respect the saying “nothing beats the bandwidth of a truck full
of hard disks” comes to mind. In other words, it’s sometimes faster to avoid the use of
a slow network by unconventional means like by putting the data on an external hard
disk. You can then use overnight shipping to the other side of the world.

NOTE An extreme example of moving the data close to the database prior

to loading is bulk loading. This technique is often used by databases to load

large amounts of data directly from text files. Kettle has several bulk loaders

available that perform this task for you in a transparent way.

Handling Relational Databases

As explained earlier, the database itself obviously also plays a big role in the perfor-
mance of a step. Tuning a database is usually highly dependent on the underlying
technology. However, there are some general rules of thumb that can be applied to all
relational databases.

Commit Size

Depending on the underlying database, it might be a good idea to try to make the trans-
actions bigger in the steps that support it. For example, if you change the commit size
parameter in the Table Output step, the performance will change because the relational
database has to manage the transactions. Typically, you get better performance if you
increase the commit size. Too much of a good thing can turn bad so make sure not to
exaggerate. You’ll notice that there is usually no benefit in increasing the value beyond
ten to twenty thousand rows.

Indexes

It’s critical whenever lookups or join operations are being performed that appropriate
indexes are applied to the database tables. For example, Figure 15-11 shows the perfor-
mance graph of a “Dimension lookup / update” step when there is no index defined
on the natural keys to help the lookup of the dimension row.

 Chapter 15 ■ Performance Tuning 391

Figure 15-11: Performance degradation caused by a missing index

As you can see, despite the best efforts of the database to cache as much data as pos-
sible, the performance keeps going down because the database needs to perform what
is called a full table scan to determine the location of a row of data. If there are N rows,
it takes on average N/2 compares to find the row. Because rows are continually being
added to the table, the N/2 figure keeps growing, too. It doesn’t really matter if the rows
are being looked up in memory or not. Without an index, the number of compares keeps
growing. As a direct consequence, lookups get slower and slower. The lookup of a row
using an index is much less dependent on the number of rows that are being queried.
Figure 15-12 shows a performance graph of the same task with an appropriate index
defined on the natural keys of the table.

As you can see, performance is pretty much constant for the step after the creation
of the index.

Figure 15-12: The proper index ensures consistent performance

392 Part IV ■ Performance and Scalability

At the same time, you should be aware of the fact that adding an index to a database
table slows down any changes that occur to the table, including inserts, updates, and
deletes. The more indexes you add to a relational table, the slower these operations
become. For this reason, it is often beneficial to drop the index before making large
changes to a table such as initial loads or massive amounts of updates. The re-creation
of the indexes after the changes is bound to take up less time because all the rows can
be considered all at once making that operation more efficient.

Table Partitioning

Table partitioning is usually done by splitting up a large table into smaller parts using
a simple partitioning rule such as a range. For example, each table partition can contain
the data for a single day, month, or year. Another rule can be a simple hash key. For
example, a single partition can contain all the rows for customers who have the letter
A as the first character of their last name.

Whatever the partitioning logic used, it typically allows the database to quickly find
out to which partition a certain row belongs. Before the database even has to use an
index, it can eliminate most of the possible locations for a record. This in turn increases
the performance of lookups.

Another advantage that partitioning offers is that it can increase parallelism in the
loading and lookup of data. Some relational databases allow multiple partitions to be
loaded simultaneously, increasing the total throughput. This in turn increases overall
performance.

Constraints

The presence of constraints on a database table can considerably slow down updates to
a table. That is because for every insert, update, or delete the constraints are validated.
Because of this, it is often recommended that you disable constraints prior to loading
large amounts of data. In a multi-dimensional (analytical) data warehouse, it’s common
practice to deploy constraints only during development. That is because all foreign keys
are looked up in the ETL process anyway. It’s usually not sensible to have the database
enforce a rule that is already enforced by the ETL processes.

Triggers

Another source for considerable performance problems is the presence of one or more
triggers on a database table. Triggers are database procedures that are executed whenever
there is an insert, update, or a delete in a database table. Depending on the configu-
ration, triggers can considerably slow down large amounts of updates to a database
table. As a best practice, it’s recommended that you not have triggers on a table in a
data warehouse.

Sorting Data

Sorting large amounts of data can be an interesting performance problem because of the
streaming nature of a Kettle transformation. The main issue is that you can never know
what the maximum number of rows might be that need sorting. If you assume that all

 Chapter 15 ■ Performance Tuning 393

rows would always fit in memory for sorting, then sorting could be done reasonably
fast. Suppose you need to sort a million records and you have enough memory to sort
all these rows in memory. In that case, sorting will take only about 10 seconds.

However, in cases where you could store only half the number of rows in memory,
you would need to perform what is called an external sort. This means that the first half
a million rows are sorted in memory and placed in a temporary file on disk. Then the
next batch of rows is sorted and placed on disk. When all rows are sorted, the rows are
read back from disk one by one in order.

Obviously, the external sort will be slower than the sort in memory because of the
file serialization performance penalty. However, because the alternative is running out
of memory, an external sort is preferable to having no sorted data at all. That by itself
can be considered a considerable performance boost.

The first performance-tuning tip is to give the Kettle transformation engine a lot of
memory to work with. To do this, specify a large amount for the Sort size (rows in
memory) parameter in the “Sort rows” step dialog.

Also avoid having large numbers of small temporary files. Don’t set a sort size of
5,000 if you are expecting to sort 2 billion rows because that will produce 400,000 files.
The operating system will have a lot of trouble dealing with this. Because the external
sort algorithm reads from all files, performance will drop significantly because the
operating system will have trouble caching efficiently and this will result in large disk
latency penalties.

Sorting on the Database

It’s important to note that both the in-memory sort and the external sort need to read
and persist the complete input data set. This is in contrast with how a relational data-
base table works. Once data is stored in a relational database, only the sort keys need
to be considered, along with a reference to the location of the row of data. Because the
memory consumption is also smaller in this case, you can sort more rows in memory
without having to use an external sort algorithm. Even better, if an index exists on the
columns on which you want to perform a sort, the database doesn’t need to perform a
sort at all. It can simply traverse the index table in this case and return the rows in the
correct order with great ease.

For these reasons, whenever you need to have data sorted and if the data already
resides in a database table, it’s faster to have the database sort the data for you.

Note that it’s typically not faster to first load the data and then perform the sort on
the database. If you don’t have the data in a database, perform the sort in Kettle.

Sorting in Parallel

As described previously, the sorting exercise involves processing power and in most
cases also incurs disk I/O. Because of this, it can be interesting to sort a large number
of rows in parallel. This can be done by splitting the data set into parts in the ETL.
Consider the transformation shown in Figure 15-13.

394 Part IV ■ Performance and Scalability

Figure 15-13: Sorting rows in parallel

In this simple case, four copies of the “Sort rows” step are sorting the rows simul-
taneously. Rows that are read by the “CSV file input” step are simply distributed over
the four copies in a round-robin fashion. The output of the four copies consists of four
sorted data sets. To keep the data sorted during the merging of the four streams of data,
we use a Sorted Merge step that uses the same sort condition.

The same rules apply when we perform a sort in a clustered fashion, as in
Figure 15-14.

Figure 15-14: Clustered sorting of data

In this case, the rows of data are distributed over four different slave servers on four
different hosts. It’s easy to imagine that four times the processing power is available as
well as four times the disk I/O throughput needed to sort the complete data set. If the
overhead of passing the data back and forth over the network is smaller than the gain in
sort speed, we have a winner. In tests on big iron and cloud computing settings such as
Amazon EC2 we found that there is indeed a huge benefit to sorting data in parallel.

Reducing CPU Usage

The transformation engine streams data from one step to another in a multithreaded
fashion. The engine tries to avoid disk I/O at all costs unless it is absolutely needed.
While this is obviously a good choice, it does increase the likelihood of a transformation
becoming limited in performance by the power of the CPUs of the machine(s) it runs
on. This section examines a number of the causes for high CPU consumption.

Optimizing the Use of JavaScript

JavaScript (ECMAScript) is a popular way of solving complex problems in Kettle because
the language is popular and well known by a lot of developers. It’s also quite easy to
develop solutions with it. The drawback, however, is that it typically consumes a lot
of CPU power and doesn’t perform on par with most of the other steps. The reason for
this simply is that JavaScript is a scripting language. Even though the Script Values Step
has seen a lot of performance fixes over time and JavaScript itself has advanced a lot

 Chapter 15 ■ Performance Tuning 395

with just-in-time compilation, the performance problem still exists. So here are a few
tips when working with JavaScript steps in your transformation:

Turn off compatibility mode. ■ The compatibility mode was introduced to allow
easy migration from older versions of Kettle. The cost of having it enabled is
high because a compatibility layer must be maintained for every row that passes
through the JavaScript engine. For more information on how to migrate your
older Kettle 2.x scripts to the cleaner format introduced in Kettle version 3.0, see
http://wiki.pentaho.com/display/EAI/Migrating+JavaScript+from

+2.5.x+to+3.0.0.

Avoid JavaScript. ■ A lot of use cases that required the use of JavaScript in the
past are no longer needed. Most of these use cases have since led to the cre-
ation of special purpose steps that are easier to maintain and function at optimal
performance.

Data conversion. ■ Use the Select Values step. The Metadata tab allows you to
convert from one data type to another.

Create a copy of a field.■ Again, the Select Values step will do the trick nicely.
Alternatively, use the “Create a copy of field A” function in the Calculator step.

Get information from a previous row.■ You can use the Analytic Query to solve
this issue. This step allows you to get information from previous or next rows in
a stream. For more information about this step, see Chapter 10.

Split a single field to multiple rows.■ The “Split field to rows” step was specifi-
cally created to eliminate this complex use case.

Number range.■ Avoid slow maintenance and error-prone if-then constructs in
JavaScript and use the Number Range step.

Random values and GUID.■ The “Generate random value” step allows you to
create all sorts of random values at optimal speed. It also allows you to generate
Globally Unique identifiers (GUID).

Checksums.■ The “Add a checksum” step allows you to calculate all sorts of
checksums like CRC-32 on rows of data.

Write a step plugin.■ If you find you need to solve the same problem over and
over again in JavaScript it might be useful to write your own step plugin. This will
allow you to encapsulate the functionality with a nice user interface while at the
same time getting optimal performance. One drawback of this is that you need
Java experience. Another is that you need to set up a separate project outside of
Kettle. For more information on the development of plugins, see Chapter 23.

Use the User Defined Java Class step.■ This step allows you to write your own
step plugin in the form of Java code that is entered in the dialog of the step itself.
This code is compiled at run-time and executed at optimal performance. For more
information on this step, see Chapter 23.

Combine JavaScript steps.■ If you feel like you still have no other option but to use
the JavaScript step, make sure you try to avoid having several separate JavaScript
steps running when you can have a single one. There is a substantial overhead in
the exposure of field values as variables to the JavaScript context.

396 Part IV ■ Performance and Scalability

Variable creation.■ If you have variables in your JavaScript code that can be
declared once at the start of the transformation, make sure to put them in a
separate script and to mark that script as a “Startup script” by right-clicking on
the script name in the tab in the JavaScript step dialog. JavaScript object creation
is very easy to do but will also consume a lot of CPU cycles, so try to avoid allo-
cating a new object for every input row.

Add static values.■ You can use steps such as “Add constants” or “Get variables”
instead. These steps offer better performance and are easier to maintain.

Launching Multiple Copies of a Step

If you have a step that consumes a lot of CPU power, for example a Modified Java Script
Values or a Regex Evaluation step, you might consider running the step in multiple
copies. Because most computer systems are equipped with multiple CPU cores these
days, it makes sense to use them all. Launching a step in multiple copies will spread
the load over the available cores, thereby increasing performance. Using multiple step
copies for a slow step should be a last resort. The step itself needs to be optimized first.
Make sure to optimize your JavaScript code or your regular expressions because those
too can be a cause for performance problems.

A specific case of running in parallel is reserved for partitioning. In Kettle, each parti-
tion of a step is handled by a copy of that step. That means that you can drive rows with
identical keys to the same copy of a step. This in turn allows you to make workloads
run simultaneously that are otherwise not easy to parallelize, as with a Memory Group
By operation. Consider the example in Figure 15-15.

Figure 15-15: Partitioning a Memory Group By

step to spread the workload over multiple processors

In this example, we partitioned the data on the grouping key. That guarantees that the
result of the grouping is correct for each step copy. That same principle can be applied
to caching strategies. If you want to avoid each step copy having a complete copy of
the data cache, consider partitioning the data in such a way that the same rows always
end up on the same step copy. This in turn will guarantee cache hits and improve
performance even more.

 Chapter 15 ■ Performance Tuning 397

Selecting and Removing Values

The Select Values step allows you to conveniently select and remove fields. Doing so,
however, is usually an expensive operation with respect to the CPU usage. Both opera-
tions force the system to re-create every single input row. Then these new rows need
to be populated with the correct values in the correct order.

In older versions of Kettle, you were required to select the output values. Steps such
as Table Output didn’t support field selection so you had no other choice. In recent
versions of Kettle, you no longer need to do this.

The most common reason for selecting only certain fields is when you send rows from
multiple steps to the same target steps. In that case, there is an absolute requirement
that the layouts of the rows be all the same. When you encounter that situation, consider
that adding constant values to rows is faster than creating a whole new row layout.

There are a few cases where selecting as few fields as possible is beneficial to perfor-
mance and memory consumption. This includes all situations where you keep rows in
memory or write rows to disk, for example when you sort rows, cache data in a database
lookup step, or pass data from one slave server to another in a clustered execution.

Managing Thread Priorities

Since version 3, Kettle has included a “Manage thread priorities?” option in the
Transformation Settings dialog that allows you to enable or disable the management
of step threads. This option can be used to address a limitation in the implementation
of the Java Virtual Machine on which Kettle runs. This limitation causes excessive lock-
ing on row sets with very few rows in them or when the row sets are full. In both these
situations, the option will slow down the appropriate step to avoid the disadvantageous
locking situation.

If you are migrating transformations from an older version or you disabled this
option by accident, it makes sense to try to re-enable this option in recent versions. In
most, if not all, cases you will see a performance gain.

Adding Static Data to Rows of Data

In situations where you are producing a single row of data in multiple steps, it makes
sense not to perform these operations in the main stream of the transformation. Consider
the transformation shown in Figure 15-16.

In this transformation, the first three displayed steps retrieve two variables, concat-
enate them, and finally convert them into a Date value. For all the input values, this
date is going to be the same. Thus, it makes sense to calculate this information only
once. You can do this by using the “Join Rows (cartesian product)” step. For example,
consider the revised transformation shown in Figure 15-17.

Figure 15-16: Calculating a constant value many times

398 Part IV ■ Performance and Scalability

Figure 15-17: Calculating a constant value only once

In this case, it’s important to specify “Main step to read from” in the Join Rows step.
This will ensure that the single row coming from the “Select values” step is always kept
in memory and not the bulk of data passing through to the target. Once the Join Rows
step is configured, it will easily outperform the previous solution by a fair margin.

Limiting the Number of Step Copies

A transformation works by creating a single thread for every step. A thread is a concur-
rently running task. Since a computer essentially can only process instructions one at a
time, concurrency or multi-tasking is simulated by the processor of that computer. The
simulation works by switching from task to task and by only spending a tiny amount
of time on each task. The only exception to that rule is when threads run on different
processors and when no switching is needed.

The direct consequence of multi-tasking or parallel processing, the task switching,
causes a performance penalty because the processor needs to keep careful track of what
it is doing before it can switch to another task. It also needs to restore these settings
when it comes back to a task.

While the task switching overhead is small, it can add up if you are running a lot of
threads on a system. Since every step copy in an executing transformation represents
a separate thread, you will see performance degradation when you add a lot of steps.
Because the efficiency of task switching varies from one computer system to another,
it’s hard to come up with a specific rule. However, as a rule of thumb, make sure to keep
the number of steps lower than three or four times the number of processing cores in
your system when performance is important.

Avoiding Excessive Logging

It might make sense to run your transformation with a high logging level like Debug
when you are looking for a specific problem. However, keep in mind that when a lot of
logging text is generated, a lot of processing power and memory is consumed. Because
of this it is usually not advised to run your transformations and jobs at a logging level
that is higher than Detailed outside of Spoon. Before you run your nightly production
job with a high logging level, make sure that it doesn’t include any transformations that
could potentially log a lot of information and as a result possibly exceed the agreed batch
window. For more information on the topic of logging consult Chapter 14.

 Chapter 15 ■ Performance Tuning 399

Improving Job Performance

The bulk of the performance issues you will encounter are caused by transformations.
However, there are a few things to look out for while you write a job. In this section we
explain how you can improve the performance of loops in jobs and how you can speed
up short-lived transformations that connect to a database.

Loops in Jobs

A lot of beginning Kettle users who need a loop in a job create the loop in a simple and
straightforward way, as shown in Figure 15-18.

Figure 15-18: A simple but slow job loop

Typically, a single file is handled in each pass of the Job job entry. JavaScript or some
other job entry is then used to evaluate if there are more files to process and, if there
are, the job is continued.

If all you need to do is handle a few iterations, you will probably never get into
trouble. However, if you need to perform a large number of iterations you will notice
that the solution is slow. This performance problem is caused by the involvement of
two extra steps as well as the loading of the metadata for the job that performs the
actual work. All this extra work slows down the job. In addition to being slow, the job
also runs the risk of running out of heap space because of the back-tracking algorithm
used. See Chapter 2 for more information.

The better performing solution consists of a transformation that retrieves a list of files
to process. The transformation, executed in the “Get filename” job entry in Figure 15-19,
uses the “Copy rows to result” step to pass the list of files to the Job job entry.

Figure 15-19: The proper way to loop in a job

400 Part IV ■ Performance and Scalability

With this setup, all you need to do is enable the “Execute for every input row?” option
to make the Job job entry loop over the result rows. The advantage of this system is that
no extra heap space is being used so the performance is a lot better because only the Job
entry is being executed and because the Job metadata is loaded only once.

Database Connection Pools

In situations where small amounts of data need to be processed repeatedly in a job, for
example as shown earlier in a loop, you will notice that connecting and disconnecting
from a relational database can cause performance problems. Oracle and certain clustered
databases are particularly slow to connect to. If the amount of data processed is large and
it takes a while to process the data, then it might be fine to spend a few seconds to con-
nect to a database. However, if you have tens of thousands of small files that need to be
processed individually, the connection delay itself limits the performance of the job.

If you experience slow connection time, you might want to check the Enable Connection
Pooling option in the Database Connection dialog as shown in Figure 15-20.

Connection pooling makes use of the Apache DBCP project (http://commons
.apache.org/dbcp/). It essentially creates a pool of open database connection to
make sure that these don’t have to be closed and re-opened each time for every tiny
transformation or job that is executed.

Figure 15-20: Enabling database connection pooling

 Chapter 15 ■ Performance Tuning 401

Summary

In this chapter, you learned how the transformation engine works and how to detect
performance bottlenecks in your transformations by simplification and by reading
measurements.

You also learned how to improve the performance of your transformations on the
following topics:

Reading and writing text files■

Handling relational databases■

Reducing CPU usage with advice on how to tune your transformations■

Finally, you learned how to create proper loops in jobs to increase performance
and how to deal with slow connecting databases by turning on database connection
pooling.

403

C H A P T E R

16

Parallelization, Clustering,
and Partitioning

When you have a lot of data to process it’s important to be able to use all the computing
resources available to you. Whether you have a single personal computer or hundreds
of large servers at your disposal you want to make Kettle use all available resources to
get results in an acceptable timeframe.

In this chapter, we unravel the secrets behind making your transformations and
jobs scale up and out. Scaling up is using the most of a single server with multiple CPU
cores. Scaling out is using the resources of multiple machines and have them operate
in parallel. Both these approaches are part of ETL subsystem #31, the Parallelizing/
Pipelining System.

The first part of this chapter deals with the parallelism inside a transformation and
the various ways to make use of it to make it scale up. Then we explain how to make
your transformations scale out on a cluster of slave servers.

Finally we cover the finer points of Kettle partitioning and how it can help you paral-
lelize your work even further.

Multi-Threading

In Chapter 2, we explained that the basic building block of a transformation is the step.
We also explained that each step is executed in parallel. Now we’ll go a bit deeper
into this subject by explaining how the Kettle multi-threading capabilities allow you
to take full advantage of all the processing resources in your machine to scale up a
transformation.

404 Part IV ■ Performance and Scalability

By default, each step in a transformation is executed in parallel in a single separate
thread. You can, however, increase the number of threads, also known as copies, for
any single step. As explained in Chapter 15, this can increase the performance of your
transformation for those steps that are consuming a lot of CPU time.

Take a look at the simple example in Figure 16-1, where rows of data are processed
by a User Defined Java Class step.

Figure 16-1: A simple transformation

You can right-click on the User Defined Java Class step and select the menu option
“Change number of copies to start…” If you then specify 4, you will see that the graphi-
cal representation of the transformation looks like the example shown in Figure 16-2.

Figure 16-2: Running a step in multiple copies

The “4x” notation indicates that four copies will be started up at runtime.
Note that one copy of the description of the step is ever present or maintained by all

step copies. Terminology is important so here are the definitions you need to understand
the rest of this chapter:

Step:■ The definition or metadata that describes the work that needs to be done

Step copy:■ One parallel worker thread that executes the work defined in a step

In other words, a step is just the definition of a task, whereas a step copy represents
an actual executing task.

Row Distribution

In the example, you have one step copy that sends rows to four copies. So how are the
rows being distributed to the target step copies? By default, this is being done in a round-
robin fashion. That means that if there are N copies, the first copy gets the first row, the
second copy gets the second row, and the Nth copy receives the Nth row. Row N+1 goes to
the first copy again, and so on until there are no more rows to distribute.

There is another option for the rare case in which you want to send all rows to all
copies; you can enable the “Copy data to all steps” option in the step context menu. This
option sends the rows to several target steps, as for example when you write data to a
database table as well as to a text file. In this case, you’ll get the warning dialog shown
in Figure 16-3, asking which option you prefer.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 405

Figure 16-3: A warning dialog

Because you want to copy all the rows of data to both the database and the text file, you
select Copy. The resulting transformation will look like the example in Figure 16-4.

Figure 16-4: Copying data to multiple target steps

Because this is the exception and you usually want to process each row only once,
the examples in rest of this chapter use row distribution, not row copying.

Row Merging

Row merging occurs when several steps or step copies send rows to a single copy.
Figure 16-5 shows two examples of this.

From the standpoint of the “Text file output” and the “Add sequence” steps, rows
are not read one at a time from each source step copy. That could lead to serious per-
formance problems in situations where one step copy is sending few rows of data at a
slow pace and another copy is producing rows at a fast pace. Instead, rows of data are
being read in batches from the source step copies.

WARNING The order in which rows are being read from previous step cop-

ies is never guaranteed!

406 Part IV ■ Performance and Scalability

Figure 16-5: Merging rows of data

Row Redistribution

In row redistribution, you have X step copies that send rows to Y target step copies.
Consider the example in Figure 16-6.

Figure 16-6: Row redistribution

The same rule applies as before with the distribution of rows: in the example, each
of the three source step copies of User Defined Java Class distributes the rows over the
two target step copies. The result of this is equivalent to the transformation shown in
Figure 16-7.

The main advantage of the redistribution algorithm is that rows are equally distrib-
uted across the step copies. That prevents a situation in which certain step copies have
a lot of work and others have very little to do.

As you can see in Figure 16-7, there are X times Y row buffers being allocated between
the UDJC and the Formula step. In our example, there are six buffers (arrows) being
allocated for three source and two target steps. Keep this in mind if you are designing
transformations. In particular, if you have slow steps at the end of the transformations,
these buffers can fill up to their maximum “Row set size.” That in turn can increase the
memory consumption of your transformation. For example, take a look at the example
in Figure 16-8.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 407

Figure 16-7: Row redistribution expanded

Figure 16-8: Redistribution can allocate a lot of buffers

Here you have five source and four target step copies and 20 buffers are allocated.
That is despite the fact you only see a single arrow in the transformation! Because the
default maximum row set size is 10,000, the total number of rows that could be kept
in memory is 200,000.

Data Pipelining

Data pipelining is a special case of redistribution where the number of source and target
step copies is the same (X==Y). In this case, rows are never being redistributed over all
the step copies. Instead, the rows that are produced by source step copy 1 are being
sent to the target step copy with the same number. Figure 16-9 offers an example of
such a transformation.

408 Part IV ■ Performance and Scalability

Figure 16-9: Data pipelining

It is technically the equivalent of the transformation shown in Figure 16-10.

Figure 16-10: Data pipelining expanded

The process of distributing and merging rows has a small but measurable overhead.
It is often better to keep the number of copies of consecutive steps the same to prevent
this overhead.

The process of reducing the overhead of the data communication between the step
copies is also referred to as putting the data into swim-lanes.

Consequences of Multi-Threading

In the previous section you learned that a transformation is multi-threaded and that all
steps run in parallel. The topics that follow will show you the possible consequences
of this execution model and how to deal with those consequences.

Database Connections

The recommended approach to dealing with database connections in multi-threaded
software is to create a single connection per thread during the execution of a transfor-
mation. As such, each step copy opens its own separate database connection during
execution. Each database connection uses a separate transaction or set of transactions.

This has as a potential consequence that race conditions can and often will occur
in those situations where you are using the same database resource, such as a table or
view, in the same transformation.

A common situation where things go wrong is when you write data to a relational
database table and read it back in a subsequent step. Because the two steps run in

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 409

different connections with different transaction contexts, you can’t be sure that the data
being written in the first step will be visible to the other step doing the reading.

One common, straightforward solution to this challenge is to split up the transforma-
tion into two different transformations and keep data in a temporary table or file.

Another solution is to force all steps to use a single database connection with a single
transaction. This is possible with the help of the “Make the transformation database
transactional” option in the transformation settings dialog shown in Figure 16-11.

Figure 16-11: Making a transformation transactional

This option means that Kettle will use only a single connection per named database
and will refrain from performing a commit or rollback until the transformation has
finished. At that point, a commit will be performed if the transformation ran without
errors and a rollback if any errors occurred. Note that any error that is being handled
by step error handling will not cause a rollback.

The drawback of using this option is that it typically reduces the performance of
the transformation. There are numerous reasons for this, ranging from the fact that all
database communication now passes over a single synchronized connection to the fact
that there is often only a single server-side process handling the requests.

Order of Execution

Because all steps in a transformation are executed in parallel there is no order of execu-
tion in a transformation. However, there are still things in data integration that are
required to be executed in a certain order. In most situations, the answer to these
problems is the creation of a job that will execute tasks in a specific order.

There are also ways of forcing things to be executed in a certain order in a Kettle
transformation. A few tips follow.

The Execute SQL Step

If you need to execute SQL before everything else in the transformation, you can use
the Execute SQL step. In normal operational mode, this step will execute the specified

410 Part IV ■ Performance and Scalability

SQL during the initialization phase of the steps. That means it is executed before the
steps start to run.

You can also make the step operate during the execution of the steps by enabling the
“Execute for each row?” option, as shown in Figure 16-12.

Figure 16-12: Execute SQL statements dialog

The Blocking Step

Another common use case is that you want to perform an operation after all the rows
have passed a certain step. To do this, you can use the Blocking Step, as shown in
Figure 16-13.

Figure 16-13: The Blocking Step

The Blocking Step simply eats all rows in the default configuration. When all rows
have been eaten, it passes the last row to the next steps. This row will then trigger the
subsequent steps to perform an operation. In this way, you are certain that all the other
rows have been processed.

In the example shown in the figure, a SQL statement is performed after all the rows
have been populated in the database table.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 411

Parallel Execution in a Job

Job entries in a job execute one after the other. This is the default behavior because
you usually want to wait for the completion of one job entry before starting the other.
However, as mentioned in Chapter 2, it is possible to execute job entries in parallel in a
job. In the case of parallel execution of job entries, different threads are started for all
the job entries that are found after the job entry that executes in parallel.

For example, if you want to update multiple dimension tables in parallel you can do
so as shown in Figure 16-14.

Figure 16-14: Updating dimensions in parallel

Using Carte as a Slave Server

Slave servers are handy building blocks that allow you to execute transformations and
jobs on a remote server. Carte, a lightweight server process, allows for remote monitor-
ing and enables the transformation clustering capabilities described in the next section
of this chapter.

A slave server is the smallest building block of a cluster. It is a small HTTP server
that accepts command from remote clients. These commands control the deployment,
management, and monitoring of jobs and transformations on the slave server.

As described in Chapter 3, the Carte program is available to perform the function
of a slave server. Carte also allows you to perform remote execution of transformation
and jobs.

The easiest way to start a slave server is by specifying the hostname or IP address
to run on as well as the port the Web server should run on. For example, the following
command will start up a slave server on port 8181 on server1:

sh carte.sh server1 8181

The Configuration File

In earlier versions of Kettle, you specified configuration options on the command line.
Because the number of options has increased, the latest version of Kettle relies on an

412 Part IV ■ Performance and Scalability

XML format for the configuration of the slave server. If you have a configuration file,
you can also execute the slave server like this:

sh carte.sh slave-simple.xml

The configuration file in our example slave-simple.xml is a block of XML that
describes all the attributes of a slave server. Here is a simple example:

<slave_config>
 <!--
 - A simple slave server configuration
 -->

 <max_log_lines>0</max_log_lines>
 <max_log_timeout_minutes>0</max_log_timeout_minutes>
 <object_timeout_minutes>5</object_timeout_minutes>

 <slaveserver>
 <name>server1</name>
 <hostname>server1</hostname>
 <port>8181</port>
 </slaveserver>

</slave_config>

The <slaveserver> XML block describes the hostname and port that the slave
server should listen to and enables you to configure various aspects of the slave server.
In general, these options enable you to fine-tune the memory usage of a long-running
server process such as Carte:

max_log_lines■ : Set this option to configure the maximum number of log lines
that the slave server logging system should keep in memory at most. See also
Chapter 14 for more information about the logging system.

max_log_timeout_minutes■ : This parameter describes the maximum time in
minutes that a log line should be kept in memory. This is especially useful for
long-lived transformations and jobs to prevent the slave server from running out
of memory. For more information about this topic see Chapter 18.

object_timeout_minutes■ : By default, all transformations and jobs stay vis-
ible in the slave server status report indefinitely. This parameter allows you to
automatically clean out old jobs from the status lists.

Defining Slave Servers

To define a slave server in your transformation or job, simply go to the View section on
the left side of Spoon, right-click on the “Slave server” tree item and select New. You
can then fill in the details for the slave server, as in the example in Figure 16-15.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 413

Figure 16-15: Defining a slave server

Remote Execution

A transformation or a job can be executed remotely by specifying the slave server to
run on in the Spoon “Execute a transformation” dialog. When called from a job, it can
be executed remotely by execution in a Job or Transformation job entry by setting a
remote slave server value in the Job or Transformation job entry dialog.

Monitoring Slave Servers

A slave server can be monitored remotely in a few different ways:

Spoon:■ Right-click on a slave server in the View tree of Spoon and select the Monitor
option. This will present a monitoring interface in a separate tab in the Spoon user
interface that contains a list of all the transformations and jobs that are running on
the slave server.

A Web browser:■ Open a browser window and type in the address of the slave
server. In our example, that would be http://server1:8181/. The browser
will show you a basic but functional slave server menu that provides the ability
to control and monitor your slave server.

PDI Enterprise Console:■ Part of the Pentaho Data Integration Enterprise Edition,
the enterprise console is capable of monitoring and controlling slave servers.

Your custom application: ■ Each of the services exposed by a slave server gives
back data in the form of XML. These simple web services allow you to commu-
nicate with the slave server in a convenient and standard way. If you are using
the Kettle Java libraries, you can also take advantage of the fact that the parsing
of XML is already handled by Kettle Java classes.

414 Part IV ■ Performance and Scalability

Carte Security

Carte uses simple HTTP authentication by default. The usernames and passwords are
defined in the file pwd/kettle.pwd. The default username/password that Kettle ships
with is cluster.

The password in this file can be obfuscated with the Encr tool that ships with Kettle.
To generate a password for a Carte password file, use the option –carte, as in this
example:

sh encr.sh –carte Password4Carte

OBF:1ox61v8s1yf41v2p1pyr1lfe1vgt1vg11lc41pvv1v1p1yf21v9u1oyc

The returned string can then be placed in the password file after the username, using
a text editor of your choice:

someuser: OBF:1ox61v8s1yf41v2p1pyr1lfe1vgt1vg11lc41pvv1v1p1yf21v9u1oyc

The OBF: prefix tells Carte that the string is obfuscated. If you don’t want to obfuscate
the passwords in this file, you can simply specify the password in clear text like this:

someuser: Password4Carte

Note that the passwords can be obfuscated, not encrypted. The algorithms used make
it harder to read the passwords, but certainly not impossible. If a piece of software is
capable of reading the password, you must assume that someone else could do it, too.
For this reason, you should always put appropriate permissions on the password file.
If you prevent unauthorized access to the file, you reduce the risk of someone being
able to decipher the password in the first place.

It is also possible to use JAAS, short for the Java Authentication and Authorization
Service, to configure security of Carte. In that case, you have to define two system
properties (for example in the kettle.properties file):

loginmodulename■ : The name of the login module to use.

java.security.auth.login.config■ : This points to the JAAS configuration
file that needs to be used.

The name of the JAAS user realm is Kettle. The details of configuring JAAS are
beyond the scope of this book. More information can be found on the JAAS home page
at http://java.sun.com/products/jaas/.

Services

A slave server provides a bunch of services to the outside world. Table 16-1 lists the
defined services that are provided. The services live in the /kettle/ URI on the embed-
ded web server. In our example server, that would be http://server:8181/kettle/.
All services accept the xml=Y option to make it return XML that can be parsed by a Kettle
Java class. The class used, from package org.pentaho.di.www, is also mentioned in
Table 16-1.

T
a
b

le
 1

6
-1

:
S
la

ve
 S

e
rv

e
r

S
e
rv

ic
e
s

S
E

R
V

IC
E
 N

A
M

E
D

E
S

C
R

IP
T
IO

N
P

A
R

A
M

E
T
E

R
S

JA
V

A
 C

L
A

S
S

s
t
a
t
u
s

G
iv

e
s

b
a
ck

 a
 s

u
m

m
a
ry

 s
ta

tu
s

co
n

ta
in

in
g

a
ll

tr
a
n

sf
o

rm
a
ti

o
n

s
a
n

d
 j
o

b
s.

S
l
a
v
e
S
e
r
v
e
r
S
t
a
t
u
s

t
r
a
n
s
S
t
a
t
u
s

R
e
tr

ie
ve

s
th

e
 s

ta
tu

s
o

f
a

si
n

g
le

 t
ra

n
sf

o
rm

a
ti

o
n

a
n

d
 l
is

ts
 t

h
e
 s

ta
tu

s
o

f
st

e
p

s.
n
a
m
e

 (
n

a
m

e
 o

f
th

e
 t

ra
n

s-
fo

rm
a
ti

o
n

);
 f
r
o
m

l
i
n
e

(s

ta
rt

 l
o

g
g
in

g
lin

e
 f

o
r

in
cr

e
-

m
e
n

ta
l
lo

g
g
in

g
)

S
l
a
v
e
S
e
r
v
e
r
T
r
a
n
s
S
t
a
t
u
s

p
r
e
p
a
r
e
E
x
e
c
u
t
i
o
n

P
re

p
a
re

s
a

tr
a
n

sf
o

rm
a
ti

o
n
 f

o
r

e
xe

cu
ti

o
n

, p
e
r-

fo
rm

s
th

e
 i
n

it
ia

li
za

ti
o

n
 o

f
st

e
p

s.
n
a
m
e

 (
n

a
m

e
 o

f
th

e

tr
a
n

sf
o

rm
a
ti

o
n

)
W
e
b
R
e
s
u
l
t

s
t
a
r
t
E
x
e
c

S
ta

rt
s

th
e
 e

xe
cu

ti
o

n
 o

f
th

e
 s

te
p

s.
n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e

tr
a
n

sf
o

rm
a
ti

o
n

)
W
e
b
R
e
s
u
l
t

s
t
a
r
t
T
r
a
n
s

P
e
rf

o
rm

s
in

it
ia

li
za

ti
o

n
 a

n
d
 e

xe
cu

ti
o

n
 o

f
a

tr
a
n

sf
o

rm
a
ti

o
n
 i
n
 o

n
e
 g

o
. W

h
ile

 c
o

n
ve

n
ie

n
t

th
is

 i
s

n
o

t
u

se
d
 f

o
r

cl
u

st
e
re

d
 e

xe
cu

ti
o

n
 s

in
ce

in

it
ia

li
za

ti
o

n
 n

e
e
d

s
to

 b
e
 p

e
rf

o
rm

e
d
 s

im
u

lt
a
n

e
-

o
u

sl
y

a
cr

o
ss

 t
h

e
 c

lu
st

e
r.

n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e

tr
a
n

sf
o

rm
a
ti

o
n

)
W
e
b
R
e
s
u
l
t

p
a
u
s
e
T
r
a
n
s

P
a
u

se
s

o
r

re
su

m
e
s

a
tr

a
n

sf
o

rm
a
ti

o
n

.
n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e

tr
a
n

sf
o

rm
a
ti

o
n

)
W
e
b
R
e
s
u
l
t

s
t
o
p
T
r
a
n
s

Te
rm

in
a
te

s
th

e
 e

xe
cu

ti
o

n
 o

f
a

tr
a
n

sf
o

rm
a
ti

o
n

.
n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e

tr
a
n

sf
o

rm
a
ti

o
n

)
W
e
b
R
e
s
u
l
t

a
d
d
T
r
a
n
s

A
d

d
s

a
tr

a
n

sf
o

rm
a
ti

o
n
 t

o
 t

h
e
 s

la
ve

 s
e
rv

e
r.
 T

h
is

re

q
u

ir
e
s

th
e
 c

lie
n

t
to

 p
o

st
 t

h
e
 X

M
L

o
f
th

e
 t

ra
n

s-
fo

rm
a
ti

o
n
 t

o
 C

a
rt

e
.

T
r
a
n
s
C
o
n
f
i
g
u
r
a
t
i
o
n

W
e
b
R
e
s
u
l
t

a
l
l
o
c
a
t
e
S
o
c
k
e
t

A
llo

ca
te

s
a

se
rv

e
r

so
ck

e
t
o
n
 t

h
e
 s

la
ve

 s
e
rv

e
r.

P
le

as
e
 s

e
e
 t

h
e
 “

C
lu

st
e
ri

n
g

Tr
an

sf
o
rm

at
io

n
s”

 s
e
c-

ti
o
n
 la

te
r

in
 t

h
is

 c
h
ap

te
r

fo
r

m
o
re

 in
fo

rm
at

io
n

.

C
o
n
ti
n
u
e
d

S
E

R
V

IC
E
 N

A
M

E
D

E
S

C
R

IP
T
IO

N
P

A
R

A
M

E
T
E

R
S

JA
V

A
 C

L
A

S
S

s
n
i
f
f
S
t
e
p

R
e
tr

ie
ve

 t
h

e
 r

o
w

s
th

a
t

a
re

 p
a
ss

in
g

th
ro

u
g
h
 a

ru

n
n

in
g

tr
a
n

sf
o

rm
a
ti

o
n
 s

te
p
.

t
r
a
n
s
 (

n
am

e
o
f
th

e
tr

an
s-

fo
rm

at
io

n
);

 s
te

p
 (

n
am

e

o
f
th

e
st

e
p
);

 c
o
p
y
 (

co
p
y

n
u
m

b
e
r
o
f
th

e
st

e
p
);

 l
i
n
e
s

(n

u
m

b
e
r
o
f
lin

e
s

to
 r
e
tr

ie
ve

);

t
y
p
e
 (

in
p
u
t
o
r
o
u
tp

u
t
h
o
p

o
f
a

st
e
p
)

<
s
t
e
p
-
s
n
i
f
f
>

 X
M

L
co

n
ta

in
-

in
g

a
R
o
w
M
e
t
a

 o
b

je
ct

 a
s

w
e
ll

a
s

se
ri

a
li
ze

d
 r

o
w

 d
a
ta

.

s
t
a
r
t
J
o
b

S
ta

rt
 t

h
e
 e

xe
cu

ti
o

n
 o

f
a

jo
b
.

n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e
 j
o

b
)

W
e
b
R
e
s
u
l
t

s
t
o
p
J
o
b

Te
rm

in
a
te

s
th

e
 e

xe
cu

ti
o

n
 o

f
a

jo
b
.

n
a
m
e

 (
th

e
 n

a
m

e
 o

f
th

e
 j
o

b
)

W
e
b
R
e
s
u
l
t

a
d
d
J
o
b

A
d

d
s

a
jo

b
 t

o
 t

h
e
 s

la
ve

 s
e
rv

e
r.
 T

h
is

 r
e
q

u
ir

e
s

th
e

cl
ie

n
t

to
 p

o
st

 t
h

e
 X

M
L

o
f
th

e
 j
o

b
 t

o
 C

a
rt

e
.

J
o
b
C
o
n
f
i
g
u
r
a
t
i
o
n

W
e
b
R
e
s
u
l
t

j
o
b
S
t
a
t
u
s

R
e
tr

ie
ve

s
th

e
 s

ta
tu

s
o

f
a

si
n

g
le

 j
o

b
 a

n
d
 l
is

ts
 t

h
e

st
a
tu

s
o

f
jo

b
 e

n
tr

ie
s.

n
a
m
e

 (
n

a
m

e
 o

f
th

e
 j
o

b
);

f
r
o
m

 (
st

a
rt

 l
o

g
g
in

g
lin

e
 f

o
r

in
cr

e
m

e
n

ta
l
lo

g
g
in

g
)

S
l
a
v
e
S
e
r
v
e
r
J
o
b
S
t
a
t
u
s

r
e
g
i
s
t
e
r
S
l
a
v
e

R
e
g
is

te
rs

 a
 s

la
ve

 w
it

h
 a

 m
a
st

e
r

(s
e
e
 t

h
e

“C
lu

st
e
ri

n
g

Tr
a
n

sf
o

rm
a
ti

o
n

s”
 s

e
ct

io
n

).
 T

h
is

re

q
u

ir
e
s

th
e
 c

lie
n

t
to

 p
o

st
 t

h
e
 X

M
L

o
f
th

e
 s

la
ve

se

rv
e
r

to
 t

h
e
 s

la
ve

 s
e
rv

e
r.

S
l
a
v
e
S
e
r
v
e
r
D
e
t
e
c
t
i
o
n

W
e
b
R
e
s
u
l
t

 (
re

p
ly

)

g
e
t
S
l
a
v
e
s

G
iv

e
s

a
lis

t
b

a
ck

 o
f

a
ll

th
e
 s

la
ve

 s
e
rv

e
rs

 t
h

a
t

a
re

k
n

o
w

n
 t

o
 t

h
is

 M
a
st

e
r

sl
a
ve

 s
e
rv

e
r.

<
S
l
a
v
e
S
e
r
v
e
r
D
e
t
e
c
t
i
o
n
s
>

X
M

L
b

lo
ck

 c
o

n
ta

in
in

g
S
l
a
v
e
S
e
r
v
e
r
D
e
t
e
c
t
i
o
n

it

e
m

s

a
d
d
E
x
p
o
r
t

Th
is

 m
e
th

o
d
 a

llo
w

s
yo

u
 t
o
 t

ra
n
sp

o
rt

 a
n
 e

xp
o
rt

e
d

jo
b
 o

r
tr

an
sf

o
rm

at
io

n
 o

ve
r

to
 t
h
e

sl
av

e
se

rv
e
r

as

a
.z

ip
 a

rc
h
iv

e
. I

t
e
n
d
s

u
p
 in

 a
 t
e
m

p
o
ra

ry
 fi

le
. T

h
e

cl
ie

n
t
n
e
e
d
s

to
 p

o
st

 t
h
e

co
n
te

n
t
o
f
th

e
zi

p
 fi

le

to
 t
h
e

C
ar

te
 s

e
rv

e
r.

Th
is

 m
e
th

o
d
 a

lw
ay

s
re

tu
rn

s
X
M

L
b
e
ca

u
se

 it
 h

as
 n

o
 u

se
 in

 a
n
y

o
th

e
r

ca
p
ac

it
y.

W
e
b
R
e
s
u
l
t

 c
o

n
ta

in
in

g
th

e
 fi

le

U
R

L
o

f
th

e
 c

re
a
te

d
 t

e
m

p
o

ra
ry

fi
le

Ta
b

le
 1

6
-1

 (
co

n
ti
n

u
e
d

)

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 417

Clustering Transformations

Clustering is a technique that can be used to scale out transformations to make them
run on multiple servers at once, in parallel. It spreads the transformation workload
over different servers. In this section, we cover how you can configure and execute a
transformation to run across multiple machines.

A cluster schema consists of one master server that is being used as a controller for
the cluster, and a number of non-master slave servers. In short, we refer to the control-
ling Carte server as the master and the other Carte servers as slaves.

A cluster schema also contains metadata on how master and slaves pass data back
and forth. Data is passed between Carte servers over TCP/IP sockets. TCP/IP was
chosen as the data exchange protocol because passing through Web services would be
too slow and cause unnecessary overhead.

NOTE The concepts master and slave are only important when dealing with

cluster schemas. To make a slave server a master, simply check the “Is the

master?” check-box in the slave server dialog. You do not need to pass any

specific option to Carte.

Defining a Cluster Schema

Before you define a cluster schema, you need to define a number of slave servers. (See
the previous section in this chapter for instructions on defining a slave server.) Once
that is done, you can right-click on the “Kettle cluster schemas” tree item and select the
New option, as shown in Figure 16-16.

You can then specify all the details for your cluster schema. Make sure to select at
least one master to control the cluster and one or more slaves (see Figure 16-17).

Figure 16-16: Creating a new

cluster schema

418 Part IV ■ Performance and Scalability

Figure 16-17: The “Clustering schema” dialog

Here are the notable options:

Port:■ The lowest TCP/IP socket port number that will be used to transport data
from one slave to another. It is only a starting point. If your cluster transformation
requires 50 ports, it means that all ports between Port and Port+50 will be used.

Sockets buffer size:■ The buffer size used to smooth communications between
slave servers. Make sure that you don’t make this value too high because it can
cause undesirable oscillations in the data passing process.

Sockets flush interval (rows):■ This is the number of rows after which the trans-
formation engine will perform a flush on the data sockets to make sure the data
is forced to the remote slave server. The performance implications of setting this
parameter and the value to select are heavily dependent on the speed and latency
of the network between the slave servers.

Sockets data compressed?■ Determines if the data will be compressed as it is
passed between slave servers. While this is great for relatively slow networks
(10Mbps for example), setting this to “Yes” causes the clustered transformation to
slow down a fair amount because additional CPU time is being utilized for com-
pression and inflation of the data streams. As such, it’s usually best to disable this
option if you do not find that the performance of the network is a limitation.

Dynamic cluster:■ When enabled, this option will make Kettle look at the master
to determine the list of slaves for the cluster schema. For more information about
dynamic clusters, see Chapter 17.

Designing Clustered Transformations

To design a clustered transformation, start by building a regular transformation. To
transition to clustering, create a cluster schema as described previously and then select

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 419

the steps that you want to execute on slave servers. Right-click on the step to select the
cluster you want the step to execute on.

For example, you might want to read data from a large file that is stored on a shared
network drive, sort the data, and write the data back to another file. You want to read
and sort the data in parallel on your three slaves. Figure 16-18 illustrates how you
would start.

Figure 16-18: A regular transformation

The next step is to then select the steps you want to execute on the slaves, the “CSV
file input” and “Sort rows” steps. Select Clustering... from the step’s context menu. After
selecting the cluster schema this step is to run on, you end up with the transformation
shown in Figure 16-19.

Figure 16-19: A clustered transformation

When you execute this transformation, all steps that are defined to run clustered
(those with the Cx3 notation in Figure 16-19) will be run on the slaves. Those steps that
don’t have the cluster indication will run on the master.

NOTE In Figure 16-19 rows are sorted in parallel using three “Sort rows”

steps on three different slave servers. This results in the same number of

groups of sorted rows that are sent back to the master. Because Kettle reads

rows in blocks from previous steps you have to take action to keep the rows

in a sorted order. This task is performed by the Sorted Merge step that reads

rows one by one from all input steps and keeps them in a sorted order.

Without this step, the parallel sort would not lead to correct results.

A transformation is considered to be a clustered transformation if at least one step in
the transformation is assigned to run on a cluster. Clustered transformations can be
executed in a non-clustered method for testing and development using the Execution
dialog in Spoon.

NOTE It’s important to remember that only one cluster can be used in any

single transformation!

420 Part IV ■ Performance and Scalability

Execution and Monitoring

You have a couple of choices for running a clustered transformation. One option is to
run it in Spoon by selecting the “Execute clustered” option in the execution dialog (see
Figure 16-20).

Figure 16-20: Executing a clustered transformation from the “Execute a transformation”

dialog

For debugging purposes, you can use the following clustering options:

Post transformation:■ When selected, this will post the generated transformations
to the slaves and master.

Prepare execution:■ This option will run the initialization of the generated trans-
formations on the slaves and the master.

Start execution:■ When this option is enabled, the clustered transformation will
be started on the master and the slaves.

Show transformations:■ This option will open the master and slave transforma-
tions in Spoon so you can see what kind of transformations are generated. More
information on the slave and master transformations is provided in the following
section.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 421

Please note that the first three options must be enabled to completely execute a clus-
tered transformation. The fourth option does not require running the transformation
but simply enables you to see the generated transformations.

Another option to run a clustered transformation is to run it as part of a job with a
Transformation job entry. In that job entry, you can enable the “Run this transforma-
tion in a clustered mode?” option to make the transformation run on a cluster (see
Figure 16-21).

Figure 16-21: Execute clustered transformations with a job entry

Metadata Transformations

It is not sufficient to simply run the same transformation on the master and the slaves.
That would not typically lead to a correct implementation for your parallel data process-
ing requirements. The transformations that get executed on the master and the slaves are
generated after a translation process called metadata transformations. The ETL metadata
of the original transformation, the one you designed in Spoon, is chopped up in pieces,
reassembled, enriched with extra information and sent over to the target slave.

Following the metadata transformation, you have three types of transformations:

Original transformation: ■ A clustered transformation as designed in Spoon by
the user.

A slave transformation: ■ A transformation that was derived from the original
transformation to run on a particular slave. There will be one slave transforma-
tion for each slave in the cluster.

A master transformation: ■ A transformation that was derived from the original
transformation to run on the master.

422 Part IV ■ Performance and Scalability

In the case of the clustering example in Figure 16-19, three slave transformations
and one master transformation will be generated. Figure 16-22 shows what the master
transformation looks like in our example.

Figure 16-22: A master transformation

Figure 16-23 illustrates what the slave transformations look like.

Figure 16-23: A slave transformation

The light-gray numbered areas of the transformations indicate that those steps have
remote input or output connections called Remote Steps. In our example, there are three
slaves. Each slave sends data from the “Sort rows” to the Sorted Merge step. This means
that each of the three “Sort rows” steps has one remote output step and that the one
Sorted Merge step has three remote input steps. If you hover the mouse over the light-
gray rectangle, you will get more information on the remote steps and the port numbers
that got allocated, as shown in Figure 16-24.

Figure 16-24: Tooltip information showing remote steps

Rules

As you can imagine, there are a lot of possibilities to consider when doing these
metadata transformations. Let’s take a look at a few of the general rules that Kettle

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 423

uses during generation to ensure correct logical operations that match the original
transformation:

A step is copied to a slave transformation if it is configured to run clustered.■

A step is copied to a master transformation if it is not configured to run ■

clustered.

Remote output steps (sending data over TCP/IP sockets) are defined for steps ■

that send data to a clustered step.

Remote input steps (accepting data from TCP/IP sockets) are defined for steps ■

that accept data from a clustered step.

The following rules are more complicated because they deal with some of the more
complex aspects of clustering:

Running steps in multiple copies is supported. In such cases the remote input and ■

output steps will be distributed over the number of copies. It makes no sense to
launch more copies as these are remote steps.

In general, Kettle clustering requires you to keep transformations simple in nature ■

to make the generation of transformations more predictable.

When a step reads data from specific steps (info-steps), Socket Reader and Socket ■

Writer steps will be introduced to make the transformation work, as is the case
in the transformation shown in Figure 16-25.

Figure 16-26 illustrates what the resulting slave transformations look like. Figure 16-27
shows what the master transformation will look like.

Figure 16-25: Delivering data to a clustered step

Figure 16-26: A slave transformation with a reader

424 Part IV ■ Performance and Scalability

Figure 16-27: A master

distributing data to slaves

As a careful eye will notice, the “Table input” step is distributing the rows over the
different socket writers that pass the data to the slave servers. This is not really what
we intended to happen. Make sure to copy the data to the multiple copies running on
the remote slaves in these situations (see Figure 16-28).

Figure 16-28: Copying

data to the slaves

Again, it might be more prudent to simply read the data three times on the slaves,
as shown in Figure 16-29.

Figure 16-29: Acquiring data on

the slaves

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 425

Data Pipelining

Recall the observation made earlier in this chapter regarding data pipelining or data
in swim-lanes: the more data that is communicated between Carte servers, the slower
the transformation will get. Ideally, your data is structured in such a way that you can
parallelize everything from source to target. In that respect, it is easier to have 100 small
XML files to process compared to having a single large one because the data can be
read in parallel with the multiple files.

As a general rule, this is the key to getting good performance out of your clustered
transformations: Keep it simple, do as much as possible in swim-lanes on the same
slave, and reduce the amount of data passed between servers.

Partitioning

Partitioning is a very general term and in a broad sense simply means splitting up in
parts. In terms of data integration and databases, partitioning refers to splitting of data-
base tables or entire databases (sharding). Tables can be partitioned into table partitions
and entire databases can be partitioned into shards.

In addition, it is quite possible to have text or XML files partitioned, for example per
store or region. Because a data integration tool needs to support all sorts of technologies,
partitioning in Kettle was designed to be source- and target-agnostic in nature.

Defining a Partitioning Schema

Partitioning is baked into the core of the Kettle transformation engine. Whenever you
distribute rows over a number of target steps you are partitioning the data. The par-
titioning rule in this case is round robin. Because this rule is, in fact, not much better
than random distribution, it is not usually referred to as a partitioning method.

When we talk about partitioning in Kettle, we refer to the capability Kettle has
to direct rows of data to a certain step copy based on a partitioning rule. In Kettle, a
given set of partitions is called a partitioning schema. The rule itself is called the parti-

tioning method. A partitioning schema either can contain a list of named partitions or
can simply contain a number of partitions. The partitioning method is not part of the
partitioning schema.

Figure 16-30 offers a simple example where we define a partitioning schema with two
partitions, A and B.

426 Part IV ■ Performance and Scalability

Figure 16-30: The “Partitioning schema” dialog

Once the partitioning schema is defined, you can use it in a transformation by apply-
ing it to a step along with a partitioning method. When you select the Partitioning...
option from the step context menu, you are presented with a dialog to choose which
partitioning method to use (see Figure 16-31). The partitioning method can be one of
the following:

None:■ Does not use partitions. The standard “Distribute rows” or “Copy rows”
rule is applied.

Mirror to all partitions:■ A special case that we describe later in the “Database
Partitions” section.

Remainder of division:■ The standard partitioning method in Kettle. Kettle divides
the partitioning field as an integer (or a checksum if another data type) by the num-
ber of partitions. The remainder, or modulo, is used to determine which partition
the row will be sent to. For example if you have user identification number “73”
in a row and there are 3 partitions defined, then the row belongs to partition 1.
Number 30 belongs to partition 0 and 14 to partition 2.

Partition methods implemented by plugins:■ This option is not available from
the partitioning method dialog. Refer to Chapter 23 for a partitioning plugin
example and more information on how to write plugins.

You then need to specify the partitioning schema to use. In the example, you would
select AB, as shown in Figure 16-32.

At that point, a plugin-specific dialog will be displayed to allow you to specify the
arguments for the partitioning method. In our case, we need to specify the field to
partition on (see Figure 16-33).

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 427

Figure 16-31: Selecting the

partitioning method

Figure 16-32: Selecting a partitioning

schema

Figure 16-33: Specifying the

field to partition on

Objectives of Partitioning

The objective of using partitioning is to increase the parallelism in a transformation.
In many cases, this simply can’t be done because the problem is not parallelizable by
just distributing the load across multiple copies, or servers.

Take for example a Group By step; for simplicity, let’s use the Memory Group By
step. If you were to run multiple copies of this step with the standard transformation
row distribution, you would almost certainly not end up with correct results because
records belonging to a certain group could end up at any given step copy. The aggre-
gate totals would not be correct because the steps may not have seen all the rows that
are part of a group.

428 Part IV ■ Performance and Scalability

Let’s consider a simple example. You have a text file containing customer data
and you want to calculate the number of distinct ZIP codes per state in the file (see
Figure 16-34).

Figure 16-34: A partitioning sample

The file is read and the partitioning method is applied to the state field. Using this
partitioning method, you can ensure that you always send rows of data with the same
state to the same step copy. This in effect allows you to run the Memory Group By step
in multiple copies and produce correct results, something that would not be possible
otherwise.

Another reason to partition would be if you would like to run Database Lookup and
Dimension Lookup/Update steps in parallel. If you apply partitioning to these steps,
you would likely increase the positive cache hits. That is because you guarantee that a
row of data with the same key would wind up at the same step copy and increase the
likelihood that the value would already be in memory.

Implementing Partitioning

The implementation of partitioning in Kettle is simple: for each partition that is defined,
multiple step copies are started for steps with a partitioning method defined. That
means that if you define five partitions, you have five step copies to do the work. The
step prior to the partitioned step, in Figure 16-34 the “CSV file input” step, is the one
that is doing the re-partitioning. Re-partitioning is performed when data is not par-
titioned and needs to be sent to a partitioned step. It is also performed when data is
partitioned using one partition schema and is sent on a hop to a step that is using a
different partition schema.

Internal Variables

To facilitate data handling that is already in a partitioned format, Kettle defines a num-
ber of internal variables to help you:

${Internal.Step.Partition.ID}■ : This variable describes the ID or name of
the partition to which the step copy belongs. It can be used to read or write data
external to Kettle that is in a partitioned format.

${Internal.Step.Partition.Number}■ : This variable describes the partition
number from 0 to the number of partitions minus one.

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 429

For example, if you have data that is already partitioned in N text files (file-0 to fileN
with N being the number of partitions minus one), you could create a “CSV file input”
step that reads from filename file-${Internal. Step.Partition.Number}.csv.
Each step would read data only from the file that contains its partitioned data.

Database Partitions

Database partitions, or shards, can be defined in Kettle in the database connection
dialog. You can do so on the Clustering tab when configuring a database connection.
Kettle assumes that all database partitions are of the same database and connection
type (see Figure 16-35).

Figure 16-35: Defining database partitions

The goal of defining partitions is to read and write data pertaining to a certain
partition to a certain physical database. Once you define the database partitions in the
database connection, you create a partitioning schema based on this information. To
do this, you use the “Import partitions” button in the “Partitioning schema” dialog
(refer back to Figure 16-30).

Now you can apply the partitioning schema to any step that uses this partitioned
database connection. One step copy will be launched for each database partition and
it will connect to the physical databases defined as database partitions with the same
name as the one used to partition the step.

Figure 16-36 shows an example of a query that is being executed in parallel against
two different database partitions. The data is pipelined to the next two copies of the
step to calculate certain things.

430 Part IV ■ Performance and Scalability

Figure 16-36: Reading database partitions

The same principle applies to all database steps and can be used to maintain a num-
ber of databases in parallel. The “Mirror to all partitions” partitioning method was
designed specifically to allow you to write the same data to multiple database partitions
in parallel. This is useful to populate lookup tables that need to be replicated on multiple
database partitions without the need to define multiple connections.

Partitioning in a Clustered Transformation

In a situation in which many partitions are being defined, the number of step copies
can grow prohibitively large in a transformation. Solving this involves spreading the
partitions over a number of slaves in a clustered transformation.

During transformation execution, the available partitions are allocated equally
among the available slaves. If you have defined a partitioning schema with a static list
of partitions, those partitions will be divided over the number of slave transforma-
tions at run-time. The limitation in Kettle here is that the number of partitions has to
be equal to or larger than the number of slaves and is usually a multiple of the number
of slaves for even distribution (slaves × 2, slaves × 3). A simple way to solve this is to
specify the number of partitions you want to run per slave server dynamically without
preconfiguring a fixed set of partitions. This is possible as well, as shown previously
in Figure 16-30.

Keep in mind that if you use a partitioned step in a clustered transformation, the
data needs to be re-partitioned across the slaves. This can be cause for quite a bit of
data communication between slave servers. For example, if you have 10 slaves in a
cluster schema with 10 copies of step A and you partition the next step B to run with 3
partitions per slave, 10 × 30 data paths will need to be created, similar to the sample in
Figure 16-7. 10 × 30 – 30 = 270 of these data paths will consist of remote steps, causing
a lot of network traffic as well as CPU and memory consumption. Please consider this
effect when designing your clustered and partitioned transformations.

Summary

In this chapter, you took a look at multi-threading in transformations, clustering, and
partitioning. Here are some of the main points covered:

You learned how a transformation executes steps in parallel and how rows are ■

distributed when steps are executed with multiple step copies. We described

 Chapter 16 ■ Parallelization, Clustering, and Partitioning 431

how data is distributed and merged back together, and we covered a few typical
problems that can arise from this.

We showed you how a slave server can be deployed to execute, manage, and ■

monitor transformations and jobs on remote servers.

You took an in-depth look at how multiple slave servers can be leveraged to ■

form a cluster and how transformations can be made to utilize the resources of
these slave servers.

Finally, you learned how Kettle partitioning can help you parallelize steps that ■

operate on groups of data and how partitioning can improve cache hits. You
also saw how this can be applied to text file and database partitioning by using
partition variables and partitioned database schemas.

433

C H A P T E R

17

Dynamic Clustering in the Cloud

This chapter continues where Chapter 16 left off and explains how clusters don’t have
to consist of a fixed number of slaves but rather can be dynamic in nature. Once you’ve
learned all about dynamic clustering, we introduce you to a dynamic set of resources called
cloud computing. We then move on to a practical implementation of one cloud computing
service: the Amazon Elastic Compute Cloud (EC2). We finish off the chapter by explaining
how you can configure your own set of servers on Amazon EC2 for use as a cluster.

Dynamic Clustering

While at most organizations it is still standard practice for most ETL developers to have
only one or two servers to work with, it’s becoming more common to have a whole set
of machines available as a set of general compute resources. This section describes
how Kettle clustering can enable you to take advantage of a dynamic pool of computer
resources.

Even before terms such as cloud computing and virtual machines became popular,
initiatives like SETI@Home were already utilizing computer resources dynamically.
SETI@Home was one of the very first popular distributed dynamic clusters; people all
over the world contributed processing power to help the Search for Extra Terrestrial
Intelligence. The SETI@Home cluster is dynamic in configuration because the number
of participating nodes is constantly changing. In fact, SETI@Home is implemented as
a screensaver so it’s impossible to say up-front how many machines participate in the
cluster at any given time.

434 Part IV ■ Performance and Scalability

With the advent of cloud computing and virtual machines, computing resources
have become available at very low cost. As such, it makes sense to have support for
dynamically changing cluster configurations in Kettle.

In a dynamic Kettle cluster schema you will define only a master. Slaves are not
registered in the cluster schema as described in the previous chapter. Rather, the slaves
are configured to register themselves with the master server. This way the master
knows about the configuration of the cluster at all times. The master will also check
the availability of slaves and will remove them from the cluster configuration if they
are not available.

Creating a dynamic cluster schema is much like creating a normal cluster schema
(see the section “Defining a Cluster Schema” in Chapter 16). You can make a cluster
schema dynamic simply by checking the “Dynamic cluster” option in the “Clustering
Schema dialog,” as shown in Figure 17-1.

Figure 17-1: Creating a dynamic cluster schema

Setting Up a Dynamic Cluster

To set up a dynamic cluster, start by launching a single instance of Carte that you will
use as the master. Ideally, the master should be run on a system that is known in the
network. Typically, a machine with a fixed IP address or hostname is used. Because
slaves need to be able to contact this server, it is important that the location of the master
is known before any slaves are started.

By way of example, a minimal configuration file for the master is available in your Kettle
4.x distribution in the pwd/ folder. The file is called carte-config-master-8080.xml
and its content is shown following:

<slave_config>

 <slaveserver>

 Chapter 17 ■ Dynamic Clustering in the Cloud 435

 <name>master1</name>

 <hostname>localhost</hostname>

 <port>8080</port>

 <master>Y</master>

 </slaveserver>

</slave_config>

This configuration can be supplemented with additional logging parameters, as
described in the previous chapter. From the viewpoint of Carte, this is a slave server
like any other and you start it up as one. Execute the following command on a new
UNIX terminal in the Kettle distribution folder:

sh carte.sh pwd/carte-config-master-8080.xml

This is the command on a Windows system:

 Carte.bat pwd/carte-config-master-8080.xml

The difference in dynamic clustering is specified in the slaves, not the master. Take
a look at how you can make a slave register with your master. First, you must specify
in the slave configuration file that the slave needs to report to the master, how it should
connect to it, and what the username and password are:

<slave_config>

 <masters>

 <slaveserver>

 <name>master1</name>

 <hostname>localhost</hostname>

 <port>8080</port>

 <username>cluster</username>

 <password>cluster</password>

 <master>Y</master>

 </slaveserver>

 </masters>

 <report_to_masters>Y</report_to_masters>

 <slaveserver>

 <name>slave1-8081</name>

 <hostname>localhost</hostname>

 <port>8081</port>

 <username>cluster</username>

 <password>cluster</password>

 <master>N</master>

 </slaveserver>

</slave_config>

In the <masters> section of the configuration file, you can specify one or more Carte
servers to which the slave needs to report. While multiple slave servers are allowed,
failover and load balancing are not yet supported in version 4.0 of Kettle. Note that you

436 Part IV ■ Performance and Scalability

need to specify the username and password of both the master and the slave server. That
is because the slave server needs to register with the master and the master needs to
be able to see if the slave is still functional.

Finally, the <report_to_masters> option specifies that the slave should report to
the master. Because this configuration file is also available in your Kettle download,
you can start it up right away:

Sh carte.sh sh carte.sh pwd/carte-config-8081.xml

This time around, you will not only see the regular web server messages on the
console, but also the following log entry:

Registered this slave server to master slave server [master1] on address

[localhost:8080]

At the same time, you can now open the following web page in a web browser:
http://carteserverhostname:8080/kettle/getSlaves/. After logging in, your
browser will show you the result of the request in XML:

<SlaveServerDetections>

 <SlaveServerDetection>

 <slaveserver>

 <name>Dynamic slave [localhost:8081]</name>

 <hostname>localhost</hostname>

 <port>8081</port>

 <webAppName/>

 <username>cluster</username>

 <password>Encrypted 2be98afc86aa7f2e4cb1aa265cd86aac8</password>

 <proxy_hostname/>

 <proxy_port/>

 <non_proxy_hosts/>

 <master>N</master>

 </slaveserver>

 <active>Y</active>

 <last_active_date>2010/03/02 22:22:47.156</last_active_date>

 <last_inactive_date/>

 </SlaveServerDetection>

</SlaveServerDetections>

With the getSlaves request, you can get a list of all the active and inactive slaves
for a master at any time.

Using the Dynamic Cluster

Once you have started a number of slaves that are registered to a master and you have
created a dynamic cluster schema with the master in it, you can design your trans-
formation to use it. Because Kettle doesn’t know at design time how many slaves are
involved, the step is annotated with CxN with N instead of the number of slave servers,
as shown in Figure 17-2.

 Chapter 17 ■ Dynamic Clustering in the Cloud 437

Figure 17-2: Steps to be executed by a dynamic cluster are marked as CxN

It is only at run-time that the list of slaves is retrieved and used. If new slaves are
added during the execution of the transformation, they are not added dynamically to
the running transformation. If slaves are turned off during the execution of the trans-
formation, the slave transformation stops and the complete transformation will fail.

Cloud Computing

In the last couple of years, we’ve seen the introduction of a number of cloud computing
services on the Internet. It all started with the experimental launch of Salesforce.com in
1999. Salesforce.com was one of the first companies to offer enterprise grade applications
in the form of a website. Because of its success, many other companies followed suit.
The resulting web applications have been labeled Software as a Service or SaaS.

A few years later, in 2002, Amazon felt that it could make more money out of its
vast array of computing hardware and started its Amazon Web Services. Initially, it
offered a number of web services to provide storage (S3), computation (EC2), and even
a Mechanical Turk (https:// www.mturk.com/). It was, however, the launch of the
Elastic Computing Cloud (EC2) initiative in 2006 that really helped create a new market,
also called Infrastructure as a Service (IaaS). This made it possible to run and manage
your own servers via a web service at a very low hourly rate.

Before EC2 and comparable services, you had all sorts of grid-based services, usu-
ally from very large companies like Oracle, Sun and IBM, that promised computing
resources at a low hourly rate as well. The main difference between these grid comput-
ing platforms and cloud computing is that cloud computing uses virtualized resources
to deliver computing power whereas grid computing uses actual machines.

The advantages to cloud computing are very important: A virtual server can be man-
aged very tightly and the software you can run on it is without limits. Once you run a
machine with a cloud provider like Amazon EC2, you use it exclusively and you can do
whatever you want with it. Then you can create an image out of it and launch 20 copies
to do more of the same. Because it can all be managed remotely, it can be scripted and
managed automatically. The combination of these advantages, together with the low
pricing (starting at USD $0.085 per hour) quickly made Amazon EC2 a very popular
choice to run all kinds of services.

The fact that you can create more virtual machine instances based on an image on
the fly is what allows the creation of dynamic clusters. It is also a challenge, because
it means software must be created in such a way that it can take advantage of these
instances without knowing typical identifying characteristics such as IP address in
advance. This is what necessitates the concept of dynamic clustering: the ability to define
a cluster without knowing in advance which machines will take part in it.

438 Part IV ■ Performance and Scalability

EC2

EC2 is an array of real, physical servers offered to you by Amazon in the form of vir-
tual machines (VM). The management of these virtual machines is performed by the
users. The responsibility of Amazon is to keep the VM running, and the responsibility
of the user of EC2 is to use the VM. Management is done using a set of web services
that includes not only EC2 but also infrastructure services such as the Simple Storage
Service (S3) and the Elastic Block Service (EBS), and middleware such as SimpleDB
and the Relational Database Service (RDS). You can find information about these web
services at http://aws.amazon.com/.

Getting Started with EC2

To get started with EC2, you first need to set up an account with Amazon AWS. Go to
http://aws.amazon.com/ to register and be sure to sign up for the EC2 service.

Next you need to set up the EC2 command-line tools. The examples that follow use a
Linux operating system. Note that the commands described here are all written in Java
and work on Linux, UNIX, and Mac OS X as well as Windows operating systems. For
more information on how to install the command-line tools, refer to the following site:

http://docs.amazonwebservices.com/AmazonEC2/gsg/2006-06-26/setting-up-

your-tools.html

Costs

Because real hardware is being used to run the virtual machines, you must pay to use it.
(For pricing information, see http://aws.amazon.com/ec2/#pricing.) At the time
of this writing, a small server instance costs $0.085 per hour while on the other end of
the spectrum, a Quadruple Extra Large High Memory instance costs $2.40 per hour.

WARNING Note that while these prices are very low and quite suitable

to use for demo purposes as part of this book, the monthly and yearly costs

are not negligible. Thus, it’s important to shut down or terminate your virtual

machine instances when they have served their purpose. Also note that usage

is measured per hour with a minimum of one hour. That means that even if you

only started an instance for 5 minutes, you will still be charged for a full hour.

Not only do computing resources cost money, but if you store bundles or large
amounts of data on Amazon’s S3 you will have to pay between $0.055 and $0.15 per
GB depending on the storage usage (see http://aws.amazon.com/s3/#pricing).
An Amazon EBS volume costs $0.10 per GB per month of provisioned storage.

Finally, data transferred from an EC2 instance to the Internet (outbound volume)
costs between $0.15 per GB and $0.08 per GB depending on the total traffic volume.
Data transferred to an EC2 instance is charged at $0.10 per GB.

 Chapter 17 ■ Dynamic Clustering in the Cloud 439

Customizing an AMI

AMI is short for Amazon Machine Image. This image contains all the software that a
virtual machine needs to run. It can contain a wide range of operating systems in both
32- and 64-bit variations. So the first task for this example is to select an operating sys-
tem for the virtual machine. This example uses Ubuntu Server Edition—specifically,
the official Ubuntu AMI for version 9.10 (Karmic Koala). Ubuntu has an excellent
tutorial on how to get started with EC2 at https://help.ubuntu.com/community/
EC2StartersGuide.

In this example, you are running a small instance (32-bit) in the Amazon data center
in northern Virginia. The AMI number to use for this is ami-bb709dd2, but a newer ver-
sion of an Ubuntu AMI should work too. You can find a list of all AMIs that are directly
available at the website http://developer.amazonwebservices.com/ connect/
kbcategory.jspa?categoryID=171. If you browse by Operating System, you can
find other operating systems.

Before you start this image, make sure that you can access the machine remotely
once it is started. To achieve this, you will need to generate a new key pair. This key
pair will give you secure shell (ssh) access to the instance once it is launched. Run the
following commands to generate a new key pair:

ec2-add-keypair pentaho-keypair > pentaho-keypair.pem

chmod 600 pentaho-keypair.pem

Now start the Ubuntu server instance:

ec2-run-instances ami-bb709dd2 –k pentaho-keypair

To monitor the state of the machine while it’s booting, execute the following
command:

ec2-describe-instances

After a few minutes, you will see a line similar to the following:

INSTANCE i-e7855a8c ami-bb709dd2

ec2-72-44-56-194.compute-1.amazonaws.com ip-10-245-30-146.ec2.internal

running pentaho-keypair 0 m1.small 2010-03-08T12:21:25+0000

us-east-1d aki-5f15f636 ari-d5709dbc

The running state indicates that the machine is up and running and ready to accept
input. Now you can use secure shell to log in to the instance. You’ll need to use the
generated key pair to authenticate:

ssh –i pentaho-keypair.pem ubuntu@ec2-72-44-56-194.compute-1.amazonaws.com

Now that you are on the remote machine, you can customize it to your liking. First,
add a few software repositories:

sudo vi /etc/apt/sources.list

440 Part IV ■ Performance and Scalability

Add the following lines to the file:

deb http://us.archive.ubuntu.com/ubuntu/ karmic multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ karmic multiverse

deb http://us.archive.ubuntu.com/ubuntu/ karmic-updates multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ karmic-updates multiverse

Now perform the following command to update the software inventory:

sudo apt-get update

You need to install the following additional software on this host:

Java:■ Use the Sun JRE version 6 to run Carte.

Unzip:■ To unpack a PDI software bundle.

ec2-ami-tools:■ For AMI bundling purposes later on.

The following command will install these packages:

sudo apt-get install sun-java6-jre unzip ec2-ami-tools

Once that is done, you can download a recent version of Pentaho Data Integration 4.0
or later. For the community edition, you can find the location of the download archive
at the Pentaho project page on sourceforge.net. If you’re a Pentaho Data Integration
Enterprise Edition customer, you can obtain the location via the customer support
portal.

wget http://sourceforge.net/projects/pentaho/files/Data

 Integration/4.0.0-stable/pdi-ce-4.0.0-stable.zip/download

It is also possible to secure copy the file onto the box using scp:

scp –i pentaho-keypair.pem pdi-ce-version.zip ubuntu@server

...amazonaws.com:/home/ubuntu

Then unpack the Kettle software as usual:

mkdir pdi

cd pdi

unzip ../pdi-ce-4.x.x.zip

This will give you access to the complete Kettle software package on the EC2
instance.

NOTE If you are using Kettle plugins, make sure to add them in the appro-

priate subdirectory of the plugins directory beneath the Kettle home direc-

tory. Adding them here for the master will make sure that they are picked up

on all slaves later on.

 Chapter 17 ■ Dynamic Clustering in the Cloud 441

Next, make sure that the instance is used as a Carte instance. Because you want to
pass in a different Carte configuration file for the master and the slaves, you will pass
in an XML data file with the –f option of the ec2-run-instances command. The
maximum size of this data file is 16KB, but that’s plenty for this example.

On the instance itself, you can retrieve the data file using a web service call:

wget http://169.254.169.254/1.0/user-data -O /tmp/carte.xml

This command needs to be run as part of the boot sequence of the instance. That
means that you need to create a boot file called /etc/init.d/carte containing the
following lines:

#!/bin/sh

su ubuntu -c “/home/ubuntu/runCarte.sh”

This executes a shell script to run Carte at boot time. It doesn’t execute this script
as root but as the stock ubuntu user. The script that gets executed, /home/ubuntu/
runCarte.sh, contains the following content:

#!/bin/sh

LOGFILE=/tmp/carte.log

exec 2> $LOGFILE

cd /home/ubuntu/pdi

Get the user data : a carte configuration file

#

wget http://169.254.169.254/1.0/user-data -O /tmp/carte.xml >> $LOGFILE

Now start carte...

#

sh carte.sh /tmp/carte.xml >> $LOGFILE

This script will log to file /tmp/carte.log. In case anything goes wrong, you can
always ssh into the instance and look at the log to see what happened. If required, you
can change the script to your liking.

Finally, make sure that the system launches the Carte service at startup:

sudo chmod +x /etc/init.d/carte

sudo chmod +x /home/ubuntu/runCarte.sh

sudo update-rc.d carte defaults

The first two commands make the script executable while the third adds the appro-
priate configuration to the Ubuntu server to start the Carte service at boot time.

442 Part IV ■ Performance and Scalability

Packaging a New AMI

Now that the stock Ubuntu Server AMI is modified to your liking, it’s time to create an
image of your own for further re-use. This process is called bundling and is done with the
ec2-bundle-vol command. For detailed information on the bundling process, please
consult the Amazon EC2 documentation at http://docs.amazonwebservices.com/
AmazonEC2/gsg/2006-06-26/.

First you need to secure copy your private key and certificate over to the EC2 instance.
You do this using the secure copy or scp command:

scp –I pentaho-keypair.pem ~/.ec2/*.pem

ubuntu@ubuntu@ec2-72-44-56-194.compute-1.amazonaws.com:/tmp/

You can then bundle up your own image:

sudo bash

ec2-bundle-vol –d /mnt/ -k /tmp/ -k /tmp/pk-your-pkfilename.pem

–u your-accountnr -s 1536 –-cert /tmp/cert-your-cert-file.pem

Then upload this AMI to Amazon S3 for further re-use:

ec2-upload-bundle -b kettle-book -m /mnt/image.manifest.xml

-a your-access-key -s your-secret-key

Finally, register it on our local machine (not the EC2 host):

ec2-register kettle-book/image.manifest.xml

IMAGE ami-bbfb14d2

The AMI number you get is the one you can use to launch your Carte servers.

Terminating an AMI

You no longer need the instance you customized so you can terminate it now. To ter-
minate an instance, simply run the following command (replace your-instance-nr
with the name and number of your instance):

ec2-terminate-instances i-your-instance-nr

The instance number can be obtained with the ec2-describe-instances
command.

Running a Master

To run a master, you first create an XML file to use as a parameter for your master
instance. This is the same slave configuration file as described previously. Store it in a
file called carte-master.xml:

<slave_config>

 Chapter 17 ■ Dynamic Clustering in the Cloud 443

 <max_log_lines>10000</max_log_lines>

 <max_log_timeout_minutes>600</max_log_timeout_minutes>

 <object_timeout_minutes>60</object_timeout_minutes>

 <slaveserver>

 <name>Master</name>

 <network_interface>eth0</network_interface>

 <port>8080</port>

 <username>cluster</username>

 <password>cluster</password>

 <master>Y</master>

 </slaveserver>

</slave_config>

As you can see, you don’t specify a hostname for the Carte web server to listen to.
Instead, it looks at the IP address of the specified network interface and uses that. On
an Ubuntu server on EC2, eth0 happens to be the internal network interface.

Now you can run a single instance of your new AMI and pass this as a parameter:

ec2-run-instance ami-bbfb14d2 –f carte-master.xml –k pentaho-keypair

Again, you can monitor the boot process by running ec2-describe-instances.
After a few minutes you will notice that the instance has started.

To test if all went well, open a web browser to the EC2 instance on port 8080:

http://ec2-ip-address-etc.amazon.com:8080/

Please note that you need to authorize (analogous to opening a port in a firewall) this
port to protect it from being accessed from the outside world with the ec2-authorize
command:

ec2-authorize default -p 8080

Running the Slaves

Now that you have the master running, you can simply start up any number of slaves
to report to it. The slave configuration file carte-slave.xml looks like this:

<slave_config>

 <max_log_lines>10000</max_log_lines>

 <max_log_timeout_minutes>600</max_log_timeout_minutes>

 <object_timeout_minutes>60</object_timeout_minutes>

 <masters>

 <slaveserver>

 <name>master1</name>

444 Part IV ■ Performance and Scalability

 <hostname>internal-ip-address-of-the-master</hostname>

 <port>8080</port>

 <username>cluster</username>

 <password>cluster</password>

 <master>Y</master>

 </slaveserver>

 </masters>

 <slaveserver>

 <name>Master</name>

 <network_interface>eth0</network_interface>

 <port>8080</port>

 <username>cluster</username>

 <password>cluster</password>

 <master>Y</master>

 </slaveserver>

</slave_config>

The internal IP address of the master is the only thing you’ll need to configure.
You can obtain it by looking at the result of the ec2-describe-instances command.
The address starting with ip- and ending with .ec2.internal is the one you want. The
IP address is the part in between. So if you have an internal server name of ip-10-
245-203-207.ec2.internal, the internal IP address is 10.245.203.207. This is what
we put in the carte-slave.xml file.

Now you’re ready to start a number of slaves. In this example you’ll start three:

ec2-run-instance ami-bbfb14d2 –f carte-slave.xml –k pentaho-keypair –n 3

The option -n 3 specifies that you want to start three instances of your AMI. After a
few minutes, you can browse to your master again using the getSlaves service this time:

http://ec2...amazon.com:8080/kettle/getSlaves

You’ll notice the slaves appear in the list one by one. Note that not all EC2 nodes
start up at equal speed.

Using the EC2 Cluster

If you look in the slave server detection list using the /kettle/getSlaves service,
you’ll notice that all the slaves registered using their internal IP address. It’s best to use
the internal IP address of EC2 because traffic on the internal backbone network is not
charged for and is in general a lot faster. This can make a huge difference, not only in
performance but also in cost savings. However, this does present a unique problem. If
the client starting the clustered transformation can’t reach the slave servers, how can
you post, run, and monitor anything on it? To tackle this problem and others like it,
Kettle contains what is called a resource exporter. This feature is capable of exporting
all the resources that a certain job or transformation uses to a .zip file. As such, to

 Chapter 17 ■ Dynamic Clustering in the Cloud 445

run the clustered transformation on EC2 you need to execute the transformation from
within a job. You can then use the resource exporter to pass a .zip file containing the
job as well as the clustered transformation over to the master server—the master will
distribute the relevant pieces to the slaves since all are reachable from the master. When
the clustered transformation is executed on the master, the slaves are visible and the
execution will proceed as planned.

Figure 17-3 illustrates how you can enable the resource exporter from within the
“Execute a job” dialog in Spoon.

Figure 17-3: Passing a job export to a slave

You can enable the same option in the Job job entry, as shown in Figure 17-4.

Figure 17-4: Pass the export of a job to a slave.

Monitoring

Even though the slaves report to the master over the internal EC2 backbone network,
you can still reach them on the Internet. Simply browse to their public IP address on
the specified port (8080 for example) to see how they are doing.

The transformations that are executed as part of a dynamic cluster are renamed with
the term Dynamic Slave in the new name as well as the slave server URL to which they
belong. If you set up the transformation to perform logging, keep this in mind as you
will be able to extract valuable information from the logging tables.

446 Part IV ■ Performance and Scalability

If you enter the details of one of the slaves in a slave server definition in Spoon, you
should have a representative view of the cluster as a whole. In that case, make sure to
try out remote row sniffing. This is shown in Figure 17-5. It’s a good way to see what’s
going on in the various steps on the other server.

For additional information on row sniffing and real-time monitoring, see Chapter 18.

Figure 17-5: Remote step row sniffing

The Lightweight Principle and Persistence Options

In the previous chapter and in this one, we covered a lot of ground with respect to Kettle
clusters. However, we didn’t cover the persistence options for a slave server. The reason
for that is simple: There aren’t any! A slave server is designed to be a lightweight piece
of software that is totally controlled and monitored from the outside world. It doesn’t
store transformations or jobs locally. If you want to reference transformations from jobs,
or sub-transformations from transformations in a clustered run, you need to make sure
that the required objects are available on the master and slaves.

When a slave server is terminated, all the execution results are gone. This sort of
behavior was specifically designed for use in grid and cloud environments where you
typically start the Carte slave server or a complete node when data integration work
needs to be done. When the work is completed, the slave server (or the complete server

 Chapter 17 ■ Dynamic Clustering in the Cloud 447

in the case of IaaS) is shut down. This is typical because every hour of usage is paid for
and because the typical grid- or cloud-based workload is occasional in nature.

Like Carte, an EC2 server doesn’t persist anything. Governed by the same light-
weight principle as a Carte instance, an EC2 instance only keeps information on local
disks until it is shut down or terminated. The only thing that is persisted is the data
that is captured in the AMI. Fortunately, Amazon has made available the Elastic Block

Service (EBS). You can create a file system on the EBS that can be shared by the master
and slaves alike. Information on the EBS is indeed persisted separately from the EC2
instances and will be kept around until the EBS volume is specifically destroyed. If you
want to share data to all slave servers or read large files in parallel, this is currently
the best option to use.

There is no doubt in the case of both a Carte server and an EC2 instance that not
having a persistence option can pose a few problems here and there. However, the up
side is that if you configure things correctly, you can always tear down clusters and
complete sets of servers without consequences. At the first sign of trouble, you can
simply decide to pull the plug and restart.

Summary

In this chapter, we dug a little bit deeper into the realm of clustering to show you how
Kettle clusters can be configured automatically and dynamically. In this chapter you
learned:

How cloud computing is bringing vast computing resources to your doorstep ■

at very low prices

How to customize your own Kettle slave server AMI on Amazon EC2■

How to run your clustered transformations on EC2■

449

C H A P T E R

18

Real-Time Data Integration

In this chapter, we offer a closer look at how real-time data integration can be performed
with Kettle. You’ll start by exploring the main challenges and requirements to figure
out when it will be useful for you to deploy this type of data integration.

After that, we explain why the transformation engine is a good match for stream-
ing real-time BI solutions, and discuss the main pitfalls and considerations you need
to keep in mind.

As an example, we include the full code for a (near) real-time Twitter client that con-
tinuously updates a database table for further consumption by a dashboard. Finally, we
cover third-party software such as database log readers and we provide guidelines on
how to implement your own Java Message Service (JMS) solutions in Kettle.

Introduction to Real-Time ETL

In a typical data integration setting, jobs and transformations are run at specific times.
For example, it’s quite typical to have nightly, weekly, or monthly batch runs in place.
The term batch run comes from the fact that a whole batch of data or group of work
is executed in sequence in one go. It is also referred to as batch processing. Usually the
batch is scheduled to run at a time when computing resources are readily available. For
example, most data warehouses are updated with batch processing during the night
when there are few users on the operational systems.

Usually it’s sufficient to have nightly jobs in place to satisfy your requirements. In
fact, the vast majority of all Kettle jobs and transformations are nightly batch jobs.

450 Part IV ■ Performance and Scalability

However, there are exceptions for those types of jobs that need to get source data in the
hands of users quicker. When you make the interval between batches smaller, usually
between a minute and an hour, the jobs are referred to as micro-batches or small periodic

batches. If you make the interval between batches even smaller, you can speak of near

real-time data integration.
Finally, when you need to see changes in your source system reflected in your busi-

ness intelligence solution as fast as possible or near instantaneously you need to use
real-time, continuous, or streaming data integration. The total delay for information to
travel from source to target is then typically measured in seconds and sometimes mil-
liseconds. Examples of real-time data integration include alerting systems that report
on the state of industrial processes. When the pressure in a tank reaches critical values,
the operators need to know this as fast as possible and preferably not a few minutes
later. In such cases, the read-out values from a pressure valve need to be sent to the
person who is monitoring the values using a real-time data integration process. The
pressure values can be represented with a simple dial readout or progress chart called
a real-time business intelligence solution.

Real-Time Challenges

Using real-time data poses a variety of challenges. Most commonly, the challenges of
real-time processing involve working with the data itself; typical examples include
comparing data, performing lookups, calculating averages and sums, and performing
fraud detection and all sorts of pattern matching. Executed in batches, these operations
can be time consuming. In real-time scenarios, you face an extra challenge to make
them perform optimally.

In addition to these actual data challenges, whenever you bridge any data gap
between a source and a target system, you have to deal with both the sourcing and the
delivery of the data. As such, challenges for real-time, near real-time, or continuous
data integration can arise in either the sourcing or the delivery.

For the sourcing of the data, it’s obviously very important to get your hands on data
as soon as possible after data has changed or an event of significance has occurred. You
need to know immediately if new data arrives, or if data has been updated or deleted
so you can propagate these changes to the target system. Chapter 6 covers the vari-
ous options for retrieving these changes. The following list shows a few of the typical
options that are available for change data capturing (CDC):

Read timestamps to determine changed records in a source system.■

Compare snapshots of the data.■

Deploy database triggers to figure out changes in a source database.■

Tap directly into the transactional logging information of a relational database ■

to figure out what changes are occurring.

Obviously, you want to pick a method of extraction that is both non-intrusive and
low-latency. Usually this means that you want to deal with the internals of a rela-
tional database and use one of the last two options in our list. The first two are more

 Chapter 18 ■ Real-Time Data Integration 451

 passive methods, and tend to create a heavier load on the source systems in addition
to increasing the latency for detecting changes.

As you can imagine, the changes you receive from either a set of database triggers or
the transaction log of a relational database are very low level. For example, you might
get informed of an update to a certain column in a certain table using for a subset of
rows. At that moment, you need to convert that change to a change in the target system.
This requires rather complex operations at times because you have only the change of
a record, not the complete record.

In the end, what it comes down to is this: The lower the level you get with a data-
base, the higher the complexity. At times, you might even have to re-create some of the
application logic to determine the meaning of a certain change and how to handle it
in the system. It is also important to remember that there are no standards whatsoever
as far as handling the output of the change log of a relational database is concerned.
Most relational databases have their own system for this sort of log data change processing
available in place as part of their product. The methods and output are usually highly
proprietary and closed in nature. As such, another main challenge is the high cost of
log-reading software.

Combine the expensive software needed to read a transaction log with the high level
of customization you need to go through to translate and process the changes, and you
end up with a lengthy and costly process just to read the data from the source systems
you are interested in.

For the output side of the equation, you need systems that are capable of handling the
never-ending flow of changes data. For example, OLAP becomes much more complex
if you can’t trust the caches you built up to speed up querying. Incremental aggrega-
tion can become very complex as well. Real-time charting and trending can also pose
problems because you need to feed the changes from the source system directly into
the chart.

Requirements

As you can infer from the challenges, the implementation of real-time data integration
systems can be prohibitively time consuming and expensive, so it’s important to take
a look at what the requirements are before the start of the actual implementation.

A very important requirement that drives many implementations of real-time busi-
ness intelligence systems is the need to get information changes in the hands of end
users as quickly as possible so that they can take appropriate action. To continue with
the tank pressure example, when the end user is an operator in a chemical plant, a
computer might report on the pressure in a certain tank. We want to display the current
pressure in the tank and not the pressure of the night before. We also want to have the
operator perform an action in case the pressure exceeds a certain threshold.

If we take this example apart we end up with three main components in the real-
time system:

A change in a source system is being captured with a certain delay, represented ■

as S (the refresh rate of the pressure sensor).

452 Part IV ■ Performance and Scalability

The changes are presented to the end user after another delay, represented as P ■

(refresh rate of the meter).

An action (release of pressure in the tank) is taken after a certain delay, repre-■

sented as A, if required. A is as such the time spent between reading the value
of the meter and the action taken.

From this simple requirements analysis you can see that it would make little sense
to implement a real-time data integration system where changes are captured (S) and
presented (P) in real-time, but where action is only taken after a long delay (A). For a
successful outcome, a real-time system must be equipped to act quickly based on the
real-time data. The most extreme case would be a real-time alerting system where
there is no operator (human or machine) in place to take appropriate action. The whole
expenditure of time and effort to put the real-time data integration system in place
would be a waste; the tank would have exploded!

Because of the high costs associated with real-time data integration and business
intelligence, many organizations are settling on the notion of implementing right-time

business intelligence solutions. In those setups, information is delivered when it is
needed, not when it becomes available. The right-time strategy forces an organization
to focus on the delivery time requirements of information and away from a costly
real-time setup.

Transformation Streaming

As explained in Chapter 2, a Kettle transformation involves streaming data from step to
step. This is implemented with the help of buffers (hops) between the steps that have a
maximum capacity, which in turn forces rows of data through the steps in a streaming
fashion. Not only does it stream data through the steps, but it allows the steps to run
in parallel to improve performance on machines with multiple CPU cores.

In a batch transformation, a fixed number of rows are read, say from a database table.
The rows are read one at a time and handed over to the next step. That step hands it
over to the next step until all rows are processed. When all steps finish processing, the
transformation is considered finished as well. While that is the typical case, there is
nothing in the architecture of a transformation that prevents a transformation from
running non-stop for weeks, months, or even years on end. For example, consider
a source system that continuously generates data but only has small buffer. In that
situation you either read out the data or lose it forever. Because of this drawback the
transformation that reads out the data from the source system optimally always keeps
running indefinitely.

A transformation has three phases:

The ■ initialization when memory is allocated, files opened, database connections
made, and so on

The ■ execution of all the steps processing rows

The ■ cleanup when memory is cleaned up, files closed, connections severed, and
so on

 Chapter 18 ■ Real-Time Data Integration 453

This three-phased approach is typical for most, if not all, ETL tools on the market.
For long-running real-time transformations, you need to consider issues such as time-
outs, memory consumptions and logging:

Time-outs:■ Many databases have connection time-outs in place. As such, if you
have a transformation running for weeks on end with calm periods over the week-
end where no rows of data are being updated, you risk time-out situations. Make
sure to plan for this situation up-front by modifying the appropriate settings in
both the client database connection in Kettle and the server. See Chapter 2 for
more information on how to set database options.

Memory Consumption:■ There are only a few situations in which you can con-
sume memory indefinitely during the execution of a transformation. One such
situation is data caching, which helps speed up steps such as “Database lookup,”
“Dimension lookup / update,” and others by preventing roundtrips to the data-
base table. In situations where you keep receiving new rows indefinitely, make
sure to at least set a maximum cache size or confirm that the cache memory usage
is going to remain flat. Pay attention also to data structures you allocate in any
scripts that you write. Make sure you don’t accidentally use a construct that will
continue to consume memory. This is usually a Java map in a User Defined Java
Class step or an associative array in JavaScript.

Another situation in which extra memory is consumed is when it is done explic-
itly. The “Sort rows” step, for example, needs to consider all input rows before
the data can be sorted. In a real-time data integration situation you will always
continue to receive more rows. Because of this you cannot use the sort step, as
you would run out of memory eventually. If you try to use a continuous stream
of rows as lookup for a “Stream lookup” step, you would also run out of memory
eventually, because that step too will continue to read rows until it has a complete
set of data to look up with. Because of the all-consuming nature of these steps,
they can only be used in real-time data integration if they do not feed on a never
ending stream of data.

Logging:■ In previous versions of Kettle, it was standard practice to write a log
record into a database table when a transformation (or job) started. Kettle then
performed an update of the row when the task was finished. When a transforma-
tion is never-ending, this is not going to be very useful because you will never
be able to see the actual logging data appear in the log table. To address this, the
interval logging feature, shown in Figure 18-1, was added to Kettle in version 4.0.
Interval logging will periodically update the aforementioned log record, allowing
you to keep track of what a long-running transformation is doing by looking at
the log table, by using the history view in Spoon, or by using Pentaho Enterprise
Console.

Another change in Kettle 4.0 is a limitation on the number of log lines that are
being written. This helps to reduce the memory consumption and improves the
readability of the log field in the log table. However, that alone is not enough.
Beginning with version 4, Kettle uses a central log buffer for all transformations
and jobs that run on the same Java Virtual Machine. This could be a Carte, Spoon,

454 Part IV ■ Performance and Scalability

Pan, or Kitchen instance, but it might be the Pentaho BI server as well. In all
those cases, you can set the following environment variable (for example, in the
kettle.properties file in your KETTLE_HOME directory):

KETTLE_MAX_LOG_SIZE_IN_LINES■ : The maximum number of lines that the
logging system back-end will keep in memory at any given time.

KETTLE_MAX_LOG_TIMEOUT_IN_MINUTES■ : The maximum age of any log line
(in minutes) before it is discarded.

Setting both options will ensure that you won’t run out of memory because of exces-
sive logging, even if this is done by another transformation or job that runs on the
same server. Because of the memory consumption of the logging back-end, it is
essential that you set these parameters for long-running transformations (or jobs).

Figure 18-1: Interval logging option

A Practical Example of Transformation Streaming

In this trendy example, we want to list all the recent messages from Twitter on the front
page of a business intelligence dashboard. Doing so will alert the users to chatter that
concerns the company in question. For simplicity, we want the dashboard to retrieve
this data from a local database table, so the data in that local database table always
needs to be up-to-date.

The first thing we need is a new step that allows us to search messages on Twitter.
Fortunately, a number of Twitter Java libraries can be found on the Internet. One of the
libraries called jtwitter (http://www.winterwell.com/software/jtwitter.php)
is very small (160kb) and carries an LGPL license so it can be shipped with Kettle to
accommodate this example.

This example can be found in the samples/transformations folder of your Pentaho
Data Integration distribution and is called User Defined Java Class - Real-time
search on Twitter.ktr.

Figure 18-2 shows what the sample transformation looks like after we added a step
to update the messages in a database table.

 Chapter 18 ■ Real-Time Data Integration 455

Figure 18-2: Continuously storing tweets

in a database

The following example shows how the code is conceived in the User Defined Java
Class step called “Get Twitter Search results.”

import winterwell.jtwitter.*;

private Twitter twitter;

private long lastId;

public boolean processRow(StepMetaInterface smi, StepDataInterface sdi)

 throws KettleException

{

 java.util.List timeLine = twitter.search(getParameter(“SEARCH”));

 logBasic(“Received “+timeLine.size()+” tweets!”);

 // First see if we need to look at any of the status reports

 // Determine the maximum ID and compare it to last times’ status ID

 //

 long maxId=-1L;

 for (int i=0;i<timeLine.size();i++) {

 Twitter.Status status = (Twitter.Status)timeLine.get(i);

 if (maxId<status.getId()) {

 maxId=status.getId();

 }

 }

 // Do we have anything to do with this batch of statuses?

 //

 if (maxId>lastId) {

 // Process all the status reports...

 //

 for (int i=0;i<timeLine.size();i++) {

 Twitter.Status status = (Twitter.Status)timeLine.get(i);

 // If the id is recent, process it

 //

 if (status.getId()>lastId) {

 // New things to report...

 //

456 Part IV ■ Performance and Scalability

 Object[] rowData = RowDataUtil.allocateRowData

 (data.outputRowMeta.size());

 int index = 0;

 rowData[index++] = status.createdAt;

 rowData[index++] = Long.valueOf(status.getId());

 rowData[index++] = status.inReplyToStatusId;

 rowData[index++] = status.getText();

 rowData[index++] = status.getUser().toString();

 rowData[index++] = Boolean.valueOf(status.isFavorite());

 putRow(data.outputRowMeta, rowData);

 }

 }

 } else {

 // Wait for 30 seconds before retrying

 //

 int delay = Integer.parseInt(getParameter(“DELAY”));

 for (int s=0;s<1000 && !isStopped();s++) {

 try {

 Thread.sleep(delay);

 } catch(Exception e) {

 // Ignore

 }

 }

 }

 lastId=maxId;

 // Never end, keep running indefinitely, always return true

 //

 return true;

}

public boolean init(StepMetaInterface stepMetaInterface,

 StepDataInterface stepDataInterface) {

 if (super.init(stepMetaInterface, stepDataInterface)) {

 twitter = new Twitter(getParameter(“USER”),

 getParameter(“PASSWD”));

 lastId=-1;

 return true;

 }

 return false;

}

As you can read in the code, this step will only finish when it is forced to do so by a
user. This is because the processRows() method always returns true, which simply
means “continue to run this step and continue to call this method.” Note that the Twitter

 Chapter 18 ■ Real-Time Data Integration 457

client we use here is simplistic and doesn’t do a lot of optimization, for example, by
keeping HTTP connections open for performance reasons. However, for this sample
and for most use cases it will do just fine. A delay after each search can be specified in
the step by using a parameter, as shown in Figure 18-3.

Figure 18-3: Delay parameter

Earlier in this chapter, we defined this delay to be the sourcing delay. If we use a very
low number, we will continuously query the Twitter Web service for updates to our
query. If a new message is found, the database table will be updated shortly after that
message is received. If, in our example, the dashboard is automatically refreshed every
60 seconds the presentation delay is 60 seconds. If you add up the sourcing delay and
the presentation delay, you have the total delay after which a user can take action.

NOTE We can’t recommend continuously querying the Web service because

it would put an unnecessarily high load on the free Twitter services. Make

sure to use a delay value of at least sixty seconds while testing the Twitter

example shown.

Debugging

While a real-time transformation is running, you need new ways of examining the data.
A preview operation would work, but you would only be able to see the first rows. If
you want to see after a few days what rows are passing through a transformation you
need different tools. To accommodate this, Kettle version 4 sports two ways of viewing
rows as they pass through steps, called row sniffing. The first method is available in
Spoon when you right-click a running step. From the context menu you can select the
“Sniff test during execution” option. You can then further select to view the input or
output of the step. Once these choices have been made, you are presented with a Preview
Rows dialog where rows will be added while they pass in the step.

This way of viewing rows is also available when you execute a transformation on a
remote slave (Carte) server. From the Slave Browser tab in Spoon, you can access the
Sniff Test button, as shown in Figure 18-4 to see the rows that pass in a selected step:

458 Part IV ■ Performance and Scalability

Figure 18-4: Sniff rows on a slave server

Third-Party Software and Real-Time Integration

As mentioned earlier, if you want to get your hands on certain real-time informa-
tion streams, you need specialized third-party software. For example, if you want to
be informed of changes in an Oracle database, you could purchase software such as
LogMiner or Oracle Streams. In fact, a lot of relational databases have all sorts of trans-
action log–reading software tailored for various real-time purposes. While a full list is
beyond the scope of this chapter, we can group these tools into two main categories:

Software that allows you to pick up the changes:■ This software exposes the changes
over standard or non-standard interfaces like SQL. One example is SQLStream
(http://www.sqlstream.com), co-founded by Julian Hyde, lead architect of
Pentaho Analysis (Mondrian). In this case, you can connect to SQLStream via
JDBC and execute a SQL statement in a Table Input step against one of the real-
time data streams. This SQL query will never end and will continue to run until
either the transformation or the SQLStream server is stopped. Conversely, you
can use a Table Output step to write data to the SQLStream server and the data
will be picked up by the server as a continuous stream of data.

Software that will pass the data over to the third-party tool (Kettle in our case):■
In this case, the log reading tool will repeatedly call the transformation every time
there is new data. Based on the actual payload you will need to take appropri-
ate action in the transformation. The following section, “Java Message Service,”
presents an example of this kind of software.

Because these tools are usually tailored for a specific database, you will need a
separate transaction log reading tool for every database vendor you encounter in your
enterprise.

 Chapter 18 ■ Real-Time Data Integration 459

Java Message Service

One popular example of real-time technology that is often used in data integration and
application integration is Java Message Service, or JMS. JMS is a messaging standard
that allows Java application components to pass messages around. These messages are
passed in a distributed and asynchronous fashion. JMS is usually deployed on a Java 2
Enterprise Edition (J2EE) server to facilitate its continuous operation as a service.

JMS is a complete API that allows a wide range of possibilities for sending and receiv-
ing messages and supports various operational models. The publish and subscribe model
is probably the most interesting because it allows multiple consumers to be registered
for the same topic. The model also supports durable subscriptions that are capable of
retaining unread messages even when a subscriber is momentarily not connected.

The publish and subscribe model includes two main scenarios: producing messages
and consuming them. Producing messages means that Kettle will be sending messages to
another service, while consuming messages means that Kettle will be receiving messages
from another service.

In the following JMS Java code examples we first explain how you can define a
JMS connection and create sessions, and then show how to consume and produce
messages.

For those less familiar with Java, note that the Pentaho Data Integration Enterprise
Edition (PDI EE) version 4.0 has both a consumer (JMS Input) and a producer (JMS
Output) step available and does not require Java expertise.

Creating a JMS Connection and Session

The first thing you need to do is to create the connection, a session object, and a mes-
sages queue. This is usually dependent on the JMS implementation you are using. For
example, the Apache ActiveMQ library allows you to do this:

ConnectionFactory connFactory = new ActiveMQConnectionFactory(url);

Connection connection = connFactory.createConnection(username, password);

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Destination destination = session.createQueue(queueName);

For other libraries, it’s usually only the ConnectionFactory that changes. For
example, with OpenMQ you will use the following very similar code; the differences
are indicated in bold.

ConnectionFactory connFactory = new com.sun.messaging.

 QueueConnectionFactory(url);

Connection connection = connFactory.createConnection(username, password);

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Destination destination = session.createQueue(queueName);

With appropriate exception handling, you can place this code straight into the init()
method of the User Defined Java class example shown earlier.

460 Part IV ■ Performance and Scalability

Consuming Messages

To consume a message, you need to create a message consumer object like this:

MessageConsumer consumer = session.createConsumer(queueName);

Again you can add this code to the init() method of your plugin or User Defined Java
Class step. Once that is done, you want to start reading messages from the queueName
queue. This is done using the following line of code:

Message message = consumer.receive();

You can put this method at the start of the processRows() method in the earlier
sample. This gives you a message object to work with. If the method returns null, you
know that the queue is closed and you have no choice but to abort; return false in
that case. In all other cases, as in the Twitter example, return true. Once you have the
message, you can treat it as simple text or as XML (two popular formats). You can pass
the message along to the next steps or parse it on the spot in your code. That choice is
entirely up to you. Suffice it to say that at this point the hard part is over.

Producing Messages

To produce a message, you need to modify the consumer code only slightly:

MessageProducer producer = session.createProducer(destination);

Then you can create a text or XML message by creating a string messageContent
that contains the correct text :

TextMessage message = session.createTextMessage();

message.setText(messageContent);

Note that you can also set a series of key-value pairs on the message this way:

message.setStringProperty(keyString, valueString);

To send the message to the consumers, you can use the following line of code:

producer.send(message);

Closing Shop

If the transformation or the message queue is stopped for some reason, you need to
properly close and stop all the message consumers and producers that you used in
your plugin as well as the session and connection. This is done in the dispose block
of your plugin:

public void dispose(StepMetaInterface smi, StepDataInterface sdi) {

 Chapter 18 ■ Real-Time Data Integration 461

 try {

 messageProducer.close();

 session.close();

 connection.stop();

 connection.close();

 } catch (JMSException e) {

 logError(“Unable to close JMS objects”, e);

 }

 super.dispose(smi, sdi);

 }

While some Java knowledge is involved in the creation of JMS steps in PDI, it is far
from an insurmountable task to create consumer and producer steps for various pur-
poses. Anyone familiar with JMS code should be able to integrate their code into Kettle
in either a plugin or with the User Defined Java Class step.

Summary

This chapter offered a look at real-time data integration and explained the challenges
and requirements for real-time ETL. The chapter discussed:

How a transformation is ideally suited for handling streams of data, and the ■

attention points with respect to database time-outs, memory consumption, and
logging

A practical example in the form of a step that continuously reads Twitter ■

messages

How to debug a long-running transformation■

Integration possibilities with third-party real-time integration software■

How to send and receive messages using Java Message Services■

P a r t

V
Advanced Topics

In This Part

Chapter 19: Data Vault Management

Chapter 20: Handling Complex Data Formats

Chapter 21: Web Services

Chapter 22: Kettle Integration

Chapter 23: Extending Kettle

465

C H A P T E R

19

Data Vault Management

This chapter was written by Kasper de Graaf of DIKW-Academy, a well-known

expert in the field of Data Vault modeling.

Data warehousing started somewhere in the 1990s when Bill Inmon and Ralph Kimball
started publishing their data warehousing ideas. Both approaches can be used to create
an environment that supports analysis and reporting. However, Inmon and Kimball
have some differences of opinion, sometimes referred to as “The Big Debate.”

Before we dive into the differences, let us start with the similarities. Inmon and
Kimball do not disagree about the usage of data marts. A data mart is a database that is
aimed at end user usage. It is usually modeled using star schemas (Chapter 4 contains
an example of a star schema—The Rental Star Schema) and optimized for analysis and
reporting.

The biggest difference between the two architectures is about the need for an enter-
prise data warehouse (EDW). Inmon says you need one, Kimball says you don’t. An
EDW is basically a large database that contains integrated, historical data from several
other databases. The EDW is not used for querying by end users. It is used solely for
complete, transparent, and auditable storage of all data that is considered relevant for
reporting. In the vision of Bill Inmon, an EDW sits between the source databases and
the data marts and thus acts as the single source for the data marts.

NOTE For a more elaborate explanation about data warehousing please see

Chapter 6 of the book Pentaho Solutions, Wiley, 2009.

The chapter begins with an introduction to Data Vault modeling, followed by an
example implementation using the sakila database.

466 Part V ■ Advanced Topics

Introduction to Data Vault Modeling

Data Vault (DV) modeling is a methodology specifically designed for the enterprise
data warehouse. It was developed by Dan Linstedt (http://www.danlinstedt.com)
in the late 90s. During the last couple of years, Data Vault modeling has gained a lot of
attention and an increasing number of followers in the BI community.

Dan Linstedt defines a Data Vault as follows:

The Data Vault is a detail oriented, historical tracking and uniquely linked set of normalized

tables that support one or more functional areas of business. It is a hybrid approach encom-

passing the best of breed between 3rd normal form (3NF) and star schema. The design is

flexible, scalable, consistent and adaptable to the needs of the enterprise. It is a data model

that is architected specifically to meet the needs of today’s enterprise data warehouses.

http://www.danlinstedt.com/about

From this definition, you can conclude that the Data Vault is both a data modeling
methodology and an approach or architecture to enterprise data warehousing. Data
Vault modeling is based on three basic building blocks: hubs, links, and satellites. The
modeling methodology defines the components a Data Vault is made of and also defines
how these components interact with one another. The Data Vault approach consists of
good practices one should follow when building an enterprise data warehouse. It states,
for example, that business rules should be implemented downstream. This means that
the Data Vault stores the data that come from the source systems as is, without any
interpretation, filtering, cleansing, or conforming. Even when the data from the different
sources are contradictory (as with different addresses for the same customer), the Data
Vault will not apply a business rule such as “always use the address info from source
system A.” It will simply store both versions of the truth; the interpretation of the data is
postponed to a later stage in the architecture (the data marts).

This chapter discusses the Data Vault modeling methodology. The Data Vault archi-
tecture is beyond the scope of this book.

Do You Need a Data Vault?

Although we cannot answer the question of whether you need a Data Vault solution,
we can try to help you choose. We think the decision comes down to the following
question: Do you need (or can you benefit from) an enterprise data warehouse? In the
next paragraphs, we try to explain some of the advantages of having an enterprise data
warehouse and why adding an additional component and a large amount of code to
your environment might be a good idea.

An enterprise data warehouse enables a clear separation of responsibilities: The
data warehouse is responsible for storing all the data, including history, as source
independent as possible and without making any changes (application of business
rules or quality improvement) to the data. This gives you a solid foundation to build
your reporting environment. The sole responsibility of the reporting environment is

 Chapter 19 ■ Data Vault Management 467

to present the data to the end user in a form suitable to assist in decision-making. This
means that the data is subjected to today’s set of business rules, cleansing routines, and
interpretations. Thus, the data marts or star schemas in this layer interpret the facts that
are stored in the warehouse and create today’s truth.

Because the enterprise data warehouse contains all data without interpretation and
with a complete history trace, it renders the reporting environment disposable and
therefore allows the truth to be redefined (because of new insights or a changed set of
business rules for instance).

Last but not least, we want to mention the traceability of data. Traceability means that
every single piece of data can be traced back to the source(s). This implies that every
report can be explained to the business, and every interpretation can be explained,
argued, and undone if needed.

Data Vault Building Blocks

The following sections describe the role of the major constructs of Data Vault modeling:
hubs, links, and satellites, and discusses the interactions among them. It outlines some
of the general characteristics and processes of Data Vault modeling.

Hubs

A hub is a table that contains business keys for an identifiable entity in your organiza-
tion. Examples of potential hubs are customer, employee, order, product, building,
resource, and vacation.

One highly important aspect of Data Vault modeling is the aforementioned business
key. A business key uniquely identifies a single instance of an entity to the organization.
This means that given a business key for a certain entity, everybody in your organiza-
tion knows which one is meant. Think of it as the key to your house; it will open the
door to your house, only your house, and nothing but your house. An important aspect
of a business key is that it has business meaning and is used in everyday operation,
for example, a customer number, an order number, or a product code. In other words,
business keys are chosen from a business perspective (meaning), not from a technical
perspective (like technical IDs and primary keys).

The hub tables (each separate entity gets its own hub table) thus house the unique
list of business keys for each entity in an organization. Except for some metadata, the
business key is all that a hub contains. One of the essential aspects of Data Vault model-
ing that is particularly appealing is that hub tables are source independent. When the
same business key is used in more than one system, it is recorded only once. All other
Data Vault building blocks are connected to this one business key. This automatically
implies that the data is integrated across the enterprise.

Each hub contains the fields listed in Table 19-1 (all required, no other attributes
allowed).

468 Part V ■ Advanced Topics

Table 19-1: Hub Attributes

ATTRIBUTE DESCRIPTION

Primary key Surrogate key, system generated, for internal use

Business key Uniquely identifiable business element, used in the
source systems, known to the business

Load DTS The timestamp the data is first loaded in the EDW, sys-
tem generated

Record source Defines the origin of the data (for example, source sys-
tem or table)

Table 19-2 shows an example hub table, hub_customer.

Table 19-2: Example hub_customer

ID BUSINESSKEY LOAD_DTS RECORD_SOURCE

1 cst_24125670 12/17/2009-03:05:04 sales.cust

2 cst_24125894 12/17/2009-03:05:04 sales.cust

3 cst_67904567 12/17/2009-03:00:00 mkt.customer

4 cst_67904568 12/17/2009-03:00:00 mkt.customer

Note that the sample data in this table apparently resided in two different source
systems: sales and mkt. The attribute Record_Source defines that the customers
cst_24125670 and cst_24125894 were first encountered in the source system sales,
and the customers cst_67904567 and cst_67904568 were first encountered in the
source system mkt. It is possible that these customers reside in the other system as
well; since only unique business keys are loaded into the hub we cannot tell this from
the example.

Links

A second Data Vault construct is the link structure. A link is the intersection of business
keys (hubs). This means that a link indicates that two (or more!) hubs have a relation-
ship. A link is based on an identifiable business relationship; this is usually a foreign
key, a business event, or a transaction between business keys.

Each link contains the fields listed in Table 19-3 (all required, no other attributes
allowed). Table 19-4 shows an example link table.

 Chapter 19 ■ Data Vault Management 469

Table 19-3: Link Attributes

ATTRIBUTE DESCRIPTION

Primary key Surrogate key, system generated, for internal use

Hub Surrogate Keys
{1..n}

The surrogate keys (foreign keys) of the hubs whose
relationship is defined by this link table

Load DTS The timestamp the data is first loaded in the EDW, sys-
tem generated

Record source Defines the origin of the data (for example, source sys-
tem or table)

Table 19-4: Example Link Table lnk_customer_store

ID
HUB_
CUSTOMER_ID

HUB_
STORE_ID LOAD_DTS

RECORD_
SOURCE

1 1 1 12/17/2009-03:05:04 sales.cust

2 2 1 12/17/2009-03:05:04 sales.cust

3 3 2 12/17/2009-03:00:00 sales.cust

4 4 3 12/17/2009-03:00:00 sales.cust

Unlike a data model in third normal form, a Data Vault model completely ignores
the cardinality of relations (1:N; N:M; . . .). Every relationship in a Data Vault model is
stored as if the cardinality were N:M (many-to-many). This gives the model the most
flexibility; no matter what the data looks like in the different sources it can always be
stored in the Data Vault.

The composite of the hub surrogate keys forms an alternate key, which is sometimes
referred to as the business key of the link table, though technically this is not 100 per-
cent correct.

Satellites

So far we have covered hubs and links. The hubs correspond to the different entities
that exist in an organization: customers, stores, products, employees, orders, and so on.
The links add the dynamics, the transactions, and the relationships within the data.
With hubs and links, we created a skeleton model; all we need to do now is add the
“flesh” to it in the form of satellites.

Data Vault uses satellite tables to store the attributes of hubs and links, including
all historical changes. A satellite table always has one (and only one) foreign key that
refers to the single hub or link it belongs to.

Each satellite contains the fields listed in Table 19-5 (all required, no other attributes
allowed). Table 19-6 shows an example satellite table.

470 Part V ■ Advanced Topics

Table 19-5: Satellite Attributes

ATTRIBUTE DESCRIPTION

Primary key Surrogate key, system generated, for internal use

Foreign Key The foreign key of the hub or link the satellite row
describes

Load DTS The timestamp the data is loaded in the EDW, system
generated

Load End DTS The timestamp the data is no longer valid because it
was changed

Record source Defines the origin of the data (for example, source sys-
tem, table)

Attributes {1..N} The attributes themselves

NOTE The Data Vault standard states that the primary key of a satellite

should consist of the foreign key to the hub or the link table together with the

field Load DTS. Although that is correct, we added a surrogate primary key.

This diversion from the standard is based on technical reasons. A SQL UPDATE

statement is easier (and probably faster) when a single surrogate primary key

is present. However, the creation of a unique index on the foreign key and the

Load_DTS is advisable.

The data in Table 19-6 contains two attributes from a customer: City and Birthdate.
If one of these changes in the source system (sales.cust), a new row is inserted in the
satellite table and the old row is end-dated. The rows with ID 4 and 56 both describe
the same customer with cust_id 41 for a different period in time.

Table 19-6: Example Satellite Table sat_customer

ID

HUB_
CUST_
ID LOAD_DTS

LOAD
END DTS

RECORD_
SOURCE CITY BIRTHDATE

1 14 12/17/2009-
03:05:04

NULL sales.cust Paris 05/09/2006

2 26 12/17/2009-
03:05:04

NULL sales.cust New York 06/24/1998

3 37 12/18/2009-
03:00:00

NULL sales.cust London 07/20/1963

4 41 12/18/2009-
03:00:00

02/30/2010-
03:00:00

sales.cust Amsterdam 04/03/1941

... … … … … … …

56 41 02/30/2010-
03:00:00

NULL sales.cust Utrecht 04/03/1941

 Chapter 19 ■ Data Vault Management 471

Any hub or link can have more than one satellite; in fact, this is recommended. Imagine
two source systems contain customer data: sales and marketing. The same business
key is present in both systems (if you’re lucky). It is good practice to create at least two
satellites, one for each source system. Other reasons (besides source system) for splitting
up satellites are rate of change (slowly and rapidly changing attributes) or type of data.

Note that a satellite table, like a link table, does not contain a real business key, but
the alternate key, consisting of the composite of the Foreign Key and Load DTS, is often
referred to as such.

NOTE A pure DV model will use NULL for the Load End DTS, as displayed

in Table 19-6, but this might not be an optimal solution for querying the

model. Sometimes a value such as 12/31/2999 or another future date is used

instead. Purists might argue that this is in fact a lie; if the date is unknown,

it shouldn’t have a value at all. When building DV solutions that need to be

portable and adhere to the standard, stick to NULL. Otherwise, be pragmatic

but consistent. In all cases, you should always have any default values used

signed off by the end users.

Data Vault Characteristics

The following list is not meant to be a complete and/or formal specification of the Data
Vault standard. It is used to show some of the unique qualities of a Data Vault model
and to increase the general knowledge and understanding of both the architecture and
the modeling technique.

A well designed Data Vault model has the following characteristics:

Temporal storage of all relevant data, even data that is of “low” quality; you do ■

not want disruptions during the ETL process.

As few dependencies as possible.■

As source-independent as possible.■

Designed for change.■

Agile to changes in the source tables■

Extensible without changing current model (incremental approach)■

ETL jobs are completely (and always) restartable.■

Full traceability of data.■

Building a Data Vault

The general steps for building a Data Vault are as follows:

 1. Model the hubs, strongly focused on business keys.

472 Part V ■ Advanced Topics

 2. Model the links; look for transactions and relationships (hint: foreign keys). Hubs
and links together should give you a good understanding of the way the organi-
zation operates today.

 3. Model the satellites; provide the context. This completes the Data Vault.

NOTE There can be a fourth step, “Model the Point-In-Time tables.” Point-

In-Time (PIT) tables are redundant helper tables, based on satellites that

can be created to make querying the Data Vault easier. We will skip this step

because PIT tables are beyond the scope of this book.

Transforming Sakila to the Data Vault Model

In Chapter 4, the sakila database was directly transformed to a dimensional model. In
this chapter, the model is first transformed to a data vault and then to the same star
schema as in Chapter 4.

Sakila Hubs

For this example, the following entities will be converted to hubs: actor, category,
customer, film, staff, and store. These are the easy ones; some others are less
obvious. The inventory, payment, and rental tables might also be links (because of
their transactional nature). However, when we convert these tables to links, we will end
up with link tables that link to other link tables, so called link-to-link tables. The
architecture does not recommend using such tables, so we’ll make them hubs also.

The final interesting set of tables to consider when looking for hubs is the geographi-
cal collection: address, city, and country, and the language table. The developers of
Sakila decided to model these tables as separate entities. For your purposes, these will
be reference data. For your business (DVD rentals) these tables currently do not qualify
as hub entities (which means the data will end up in satellite tables as we move on).

The final list of hubs is presented in Table 19-7.

NOTE The selection of hubs, links, and satellites is not as definitive as you

might think. If you decide after a while that, for instance, address, city, and

country should be hubs, just convert them. You may find a Data Vault model to

be surprisingly forgiving.

Table 19-7: Sakila Hubs

ENTITY BUSINESS KEY

hub_actor actor_id

hub_category category_name

 Chapter 19 ■ Data Vault Management 473

ENTITY BUSINESS KEY

hub_customer customer_id

hub_film film_id

hub_inventory inventory_id

hub_payment payment_id

hub_rental rental_id

hub_staff staff_id

hub_store store_id

Sakila Links

After the selection of hub tables, it is time to focus on the links. This means you have
to look for transactions and relationships. Foreign keys in the source model(s) can be
very helpful with this step.

The transactional tables are pretty easy to locate: payment and rental. These are
the transactions that keep Sakila in business, after all. So even though payment and
rental were selected as hubs in the previous section, they must be links as well, given
their transactional nature.

The other link tables are relationships. A customer usually visits only one store (prob-
ably the one closest to his or her home). This is modeled in sakila with a foreign key in
the customer table, store_id. This is a typical link that shows the difference between a
Data Vault model and a normalized data model. The source data model (sakila) defines
the cardinality of this relationship as one-to-many (a customer can have one and only
one store). Data Vault models define every relationship as many-to-many, therefore a
separate table is required: link_customer_store.

The complete list of link tables can be found in Table 19-8.

Table 19-8: Sakila Links

LINK HUBS THAT ARE LINKED

link_film_actor hub_film, hub_actor

link_film_category hub_film, hub_category

link_customer_store hub_customer, hub_store

link_inventory hub_inventory, hub_film, hub_store

link_payment hub_payment, hub_customer, hub_staff

link_payment_rental hub_payment, hub_rental

link_rental hub_customer, hub_inventory, hub_staff

link_staff_worksin_store hub_staff, hub_store

link_store_manager hub_staff, hub_store

474 Part V ■ Advanced Topics

NOTE In the sakila database, the store table contains a foreign key to

the staff table (manager_staff_id), which defines the store manager. The

staff table also contains a foreign key to the store table (store_id), which

probably defines in which store a member of the staff works. These foreign

keys are each converted to a link table between hub_staff and hub_store;

they’re both converted to a many-to-many relationship and therefore look

very much alike.

Sakila Satellites

The hubs and links together form the data skeleton, which is shown in Figure 19-1.
The satellite tables complete the Data Vault model and provide the attributes of both

hubs and link tables. Every attribute in the source tables that is used in the Data Vault
model should eventually be housed in the Data Vault structure.

The definition of the satellite tables is fairly straightforward, so take a look at
Table 19-9 for the list of satellite tables.

Table 19-9: Sakila Satellites

SATELLITE DESCRIBES

sat_actor hub_actor

sat_film hub_film

sat_customer hub_customer

sat_payment hub_payment

sat_rental hub_rental

sat_staff hub_staff

sat_store hub_store

NOTE When selecting the hub tables, we chose to create separate hubs for

rental, payment, and inventory. This is why all our satellites link to hub tables.

One might question whether these hubs are really necessary. A rental, for

example, is a transaction, which can be modeled using just a link table (link_

rental). There is no real business key. The most important reason to add the

hub_rental table as well is to prevent link-to-link relationships. A link-to-link

is allowed in Data Vault modeling but it is not recommended, mainly because

of issues when querying the Data Vault.

Figure 19-2 shows the complete Data Vault for Sakila.

NOTE For your convenience, the diagram is available as a Power*Architect

file (Sakila-data-vault.architect) on the book’s companion website at

www.wiley.com/go/kettlesolutions.

h
u

b
_

a
ct

o
r

h
u

b
_

a
ct

o
r_

id
: I

N
T

E
G

E
R

 [
P

K
]

a
ct

o
r_

id
: I

N
T

E
G

E
R

 [
A

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

h
u

b
_

st
o

re

h
u

b
_

st
o

re
_

id
: I

N
T

E
G

E
R

 [
P

K
]

st
o

re
_

id
: I

N
T

E
G

E
R

 [A
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

lin
k_

in
v

e
n

to
ry

lin
k_

in
v

e
n

to
ry

_
id

: I
N

T
E

G
E

R
 [

P
K

]

h
u

b
_

in
v

e
n

to
ry

_
id

: I
N

T
E

G
E

R
 [

F
K

]
h

u
b

_
�

lm
_

id
: I

N
T

E
G

E
R

 [
F

K
]

h
u

b
_

st
o

re
_

id
: I

N
T

E
G

E
R

 [
F

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

lin
k_

cu
st

o
m

e
r_

st
o

re

lin
k_

cu
st

o
m

e
r_

id
: I

N
T

E
G

E
R

 [
P

K
]

h
u

b
_

cu
st

o
m

e
r_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

st
o

re
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

lin
k_

p
a

y
m

e
n

t

lin
k_

p
a

y
m

e
n

t_
id

: I
N

T
E

G
E

R
 [

P
K

]

h
u

b
_

p
a

y
m

e
n

t_
id

: I
N

T
E

G
E

R
 [

FA
K

]
h

u
b

_
cu

st
o

m
e

r_
id

: I
N

T
E

G
E

R
 [

FA
K

]
h

u
b

_
st

a
�

_
id

: I
N

T
E

G
E

R
 [

FA
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

lin
k_

st
a

�
_

w
o

rk
si

n
_

st
o

re

lin
k_

st
a

�
_

w
o

rk
si

n
_

id
: I

N
T

E
G

E
R

 [
P

K
]

h
u

b
_

st
a

�
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

st
o

re
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

lin
k_

st
o

re
_

m
a

n
a

g
e

r

lin
k_

st
o

re
_

m
a

n
a

g
e

r_
id

: I
N

T
E

G
E

R
 [

P
K

]

h
u

b
_

st
a

�
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

st
o

re
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

lin
k_

re
n

ta
l

lin
k_

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
P

K
]

h
u

b
_

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

cu
st

o
m

e
r_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

st
a

�
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

in
v

e
n

to
ry

_
id

: I
N

T
E

G
E

R
 [

FA
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

h
u

b
_

in
v

e
n

to
ry

h
u

b
_

in
v

e
n

to
ry

_
id

: I
N

T
E

G
E

R
 [

P
K

]

in
v

e
n

to
ry

_
id

: I
N

T
E

G
E

R
 [

A
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

h
u

b
_

cu
st

o
m

e
r

h
u

b
_

cu
st

o
m

e
r_

id
: I

N
T

E
G

E
R

 [
P

K
]

cu
st

o
m

e
r_

id
: I

N
T

E
G

E
R

 [
A

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

h
u

b
_

st
a

�

h
u

b
_

st
a

�
_

id
: I

N
T

E
G

E
R

 [
P

K
]

st
a

�
_

id
: I

N
T

E
G

E
R

 [
A

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

h
u

b
_

p
a

ym
e

n
t

h
u

b
_

p
a

ym
e

n
t_

id
: I

N
T

E
G

E
R

 [
P

K
]

p
a

y
m

e
n

t_
id

: I
N

T
E

G
E

R
 [

A
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

h
u

b
_

�
lm

h
u

b
_

�
lm

_
id

: I
N

T
E

G
E

R
 [

P
K

]

�
lm

_
id

: I
N

T
E

G
E

R
 [

A
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

lin
k_

�
lm

_
a

ct
o

r

lin
k_

�
lm

_
a

ct
o

r_
id

: I
N

T
E

G
E

R
 [

P
K

]

h
u

b
_

�
lm

_
id

: I
N

T
E

G
E

R
 [

FA
K

]
h

u
b

_
a

ct
o

r_
id

: I
N

T
E

G
E

R
 [

FA
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

lin
k_

�
lm

_
ca

te
g

o
ry

lin
k_

�
lm

_
ca

te
g

o
ry

_
id

: I
N

T
E

G
E

R
 [

P
K

]

h
u

b
_

ca
te

g
o

ry
_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

�
lm

_
id

: I
N

T
E

G
E

R
 [

FA
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

h
u

b
_

ca
te

g
o

ry

h
u

b
_

ca
te

g
o

ry
_

id
: I

N
T

E
G

E
R

 [
P

K
]

ca
te

g
o

ry
_

n
a

m
e

: V
A

R
C

H
A

R
(2

5
)

[A
K

]
lo

a
d

_
d

ts
: T

IM
E

S
TA

M
P

re
co

rd
_

so
u

rc
e

: V
A

R
C

H
A

R
(1

0
0

)

h
u

b
_

re
n

ta
l

h
u

b
_

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
P

K
]

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
A

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

lin
k_

p
a

ym
e

n
t_

re
n

ta
l

lin
k_

p
a

ym
e

n
t_

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
P

K
]

h
u

b
_

re
n

ta
l_

id
: I

N
T

E
G

E
R

 [
FA

K
]

h
u

b
_

p
a

ym
e

n
t_

id
: I

N
T

E
G

E
R

 [
FA

K
]

lo
a

d
_

d
ts

: T
IM

E
S

TA
M

P
re

co
rd

_
so

u
rc

e
: V

A
R

C
H

A
R

(1
0

0
)

Fi
g
u

re
 1

9
-1

:
Th

e
 S

ak
ila

 d
at

a
sk

e
le

to
n

sa
t_

ac
to

r
sa

t_
ac

to
r_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

ac
to

r_
id

: I
N

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

[A
K]

lo
ad

_e
nd

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)
ir

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

la
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

hu
b_

ac
to

r
hu

b_
ac

to
r_

id
: I

N
TE

G
ER

 [P
K]

ac
to

r_
id

: I
N

TE
G

ER
 [A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

hu
b_

st
or

e
hu

b_
st

or
e_

id
: I

N
TE

G
ER

 [P
K]

st
or

e_
id

: I
N

TE
G

ER
 [A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

lin
k_

in
ve

nt
or

y
lin

k_
in

ve
nt

or
y_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

in
ve

nt
or

y_
id

: I
N

TE
G

ER
 [F

A
K]

hu
b_

il
m

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
st

or
e_

id
: I

N
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

lin
k_

cu
st

om
er

_s
to

re
lin

k_
cu

st
om

er
_i

d:
 IN

TE
G

ER
 [P

K]
hu

b_
cu

st
om

er
_i

d:
 IN

TE
G

ER
 [F

A
K]

hu
b_

st
or

e_
id

: I
N

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

lin
k_

pa
ym

en
t

lin
k_

pa
ym

en
t_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

pa
ym

en
t_

id
: I

N
TE

G
ER

 [F
A

K]
hu

b_
cu

st
om

er
_i

d:
 IN

TE
G

ER
 [F

A
K]

hu
b_

st
af

_i
d:

 IN
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

lin
k_

st
af

_w
or

ks
in

_s
to

re
lin

k_
st

af
_w

or
ks

in
_i

d:
 IN

TE
G

ER
 [P

K]
hu

b_
st

af
_i

d:
 IN

TE
G

ER
 [F

A
K]

hu
b_

st
or

e_
id

: I
N

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

lin
k_

st
or

e_
m

an
ag

er
lin

k_
st

or
e_

m
an

ag
er

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

st
af

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
st

or
e_

id
: I

N
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

lin
k_

re
nt

al
lin

k_
re

nt
al

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

re
nt

al
_i

d:
 IN

TE
G

ER
 [F

A
K]

hu
b_

cu
st

om
er

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
st

af
_i

d:
 IN

TE
G

ER
 [F

K]
hu

b_
in

ve
nt

or
y_

id
: I

N
TE

G
ER

 [F
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

hu
b_

in
ve

nt
or

y
hu

b_
in

ve
nt

or
y_

id
: I

N
TE

G
ER

 [P
K]

in
ve

nt
or

y_
id

: I
N

TE
G

ER
 [A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

hu
b_

cu
st

om
er

hu
b_

cu
st

om
er

_i
d:

 IN
TE

G
ER

 [P
K]

cu
st

om
er

_i
d:

 IN
TE

G
ER

 [A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

hu
b_

st
af

hu
b_

st
af

_i
d:

 IN
TE

G
ER

 [P
K]

st
af

_i
d:

 IN
TE

G
ER

 [A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

sa
t_

pa
ym

en
t

sa
t_

pa
ym

en
t_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

pa
ym

en
t_

id
: I

N
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
[A

K]
lo

ad
_e

nd
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

am
ou

nt
: D

EC
IM

A
L

(5
, 2

)
pa

ym
en

t_
da

te
: T

IM
ES

TA
M

P
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

hu
b_

pa
ym

en
t

hu
b_

pa
ym

en
t_

id
: I

N
TE

G
ER

 [P
K]

pa
ym

en
t_

id
: I

N
TE

G
ER

 [A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

hu
b_

il
m

hu
b_

il
m

_i
d:

 IN
TE

G
ER

 [P
K]

il
m

_i
d:

 IN
TE

G
ER

 [A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

lin
k_

il
m

_a
ct

or
lin

k_
il

m
_a

ct
or

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

il
m

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
ac

to
r_

id
: I

N
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

lin
k_

il
m

_c
at

eg
or

y
lin

k_
il

m
_c

at
eg

or
y_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

ca
te

go
ry

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
il

m
_i

d:
 IN

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

sa
t_

il
m

sa
t_

il
m

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

il
m

_i
d:

 IN
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
[A

K]
lo

ad
_e

nd
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

tit
le

: V
A

RC
H

A
R(

25
5)

de
sc

rip
tio

n:
 L

O
N

G
VA

RC
H

A
R(

65
53

5)
re

le
as

e_
ye

ar
: I

N
TE

G
ER

re
nt

al
_d

ur
at

io
n:

 IN
TE

G
ER

re
nt

al
_r

at
e:

 D
EC

IM
A

L(
5,

 2
)

le
ng

th
: I

N
TE

G
ER

re
pl

ac
em

en
t_

co
st

: D
EC

IM
A

L(
5,

2)
ra

tin
g:

 V
A

RC
H

A
R(

10
)

sp
ec

ia
l_

fe
at

ur
es

: V
A

RC
H

A
R(

10
0)

la
ng

ua
ge

: V
A

RC
H

A
R(

20
)

or
ig

in
al

_l
an

gu
ag

e:
 V

A
RC

H
A

R(
20

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

sa
t_

st
or

e
sa

t_
st

or
e_

id
: I

N
TE

G
ER

 [P
K]

hu
b_

st
or

e_
id

: I
N

TE
G

ER
 [F

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
lo

ad
_e

nd
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

ad
dr

es
s:

VA
RC

H
A

R(
50

)
ad

dr
es

s2
: V

A
RC

H
A

R(
50

)
di

st
ric

t:
VA

RC
H

A
R(

50
)

po
st

al
_c

od
e:

 V
A

RC
H

A
R(

10
)

ci
ty

: V
A

RC
H

A
R(

50
)

co
un

tr
y:

 V
A

RC
H

A
R(

50
)

ph
on

e:
 V

A
RC

H
A

R(
20

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P

sa
t_

cu
st

om
er

sa
t_

cu
st

om
er

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

cu
st

om
er

_i
d:

 IN
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
[A

K]
lo

ad
_e

nd
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

ir
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
la

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

em
ai

l:
VA

RC
H

A
R(

50
)

ac
tiv

e:
 V

A
RC

H
A

R(
1)

ad
dr

es
s:

VA
RC

H
A

R(
50

)
ad

dr
es

s2
: V

A
RC

H
A

R(
50

)
di

st
ric

t:
VA

RC
H

A
R(

20
)

po
st

al
_c

od
e:

 V
A

RC
H

A
R(

10
)

ci
ty

: V
A

RC
H

A
R(

50
)

co
un

tr
y:

 V
A

RC
H

A
R(

50
)

ph
on

e:
 V

A
RC

H
A

R(
20

)
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P
cr

ea
te

_d
at

e:
 T

IM
ES

TA
M

P

sa
t_

st
af

sa
t_

st
af

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

st
af

_i
d:

 IN
TE

G
ER

 [F
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
[A

K]
lo

ad
_e

nd
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

ir
st

_n
am

e:
 V

A
RC

H
A

R(
45

)
la

st
_n

am
e:

 V
A

RC
H

A
R(

45
)

pi
ct

ur
e:

 L
O

N
G

VA
RB

IN
A

RY
(6

55
35

)
em

ai
l:

VA
RC

H
A

R(
50

)
ac

tiv
e:

 V
A

RC
H

A
R(

1)
us

er
na

m
e:

 V
A

RC
H

A
R(

16
)

pa
ss

w
or

d:
 V

A
RC

H
A

R(
40

)
ad

dr
es

s:
VA

RC
H

A
R(

50
)

ad
dr

es
s2

: V
A

RC
H

A
R(

50
)

di
st

ric
t:

VA
RC

H
A

R(
20

)
po

st
al

_c
od

e:
 V

A
RC

H
A

R(
10

)
ci

ty
: V

A
RC

H
A

R(
50

)
co

un
tr

y:
 V

A
RC

H
A

R(
50

)
ph

on
e:

 V
A

RC
H

A
R(

20
)

la
st

_u
pd

at
e:

 T
IM

ES
TA

M
P

hu
b_

ca
te

go
ry

hu
b_

ca
te

go
ry

_i
d:

 IN
TE

G
ER

 [P
K]

ca
te

go
ry

_n
am

e:
 V

A
RC

H
A

R(
25

) [
A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

hu
b_

re
nt

al
hu

b_
re

nt
al

_i
d:

 IN
TE

G
ER

 [P
K]

re
nt

al
_i

d:
 IN

TE
G

ER
 [A

K]
lo

ad
_d

ts
: T

IM
ES

TA
M

P
re

co
rd

_s
ou

rc
e:

 V
A

RC
H

A
R(

10
0)

sa
t_

re
nt

al
sa

t_
re

nt
al

_i
d:

 IN
TE

G
ER

 [P
K]

hu
b_

re
nt

al
_i

d:
 IN

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

[A
K]

lo
ad

_e
nd

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)
re

nt
al

_d
at

e:
 T

IM
ES

TA
M

P
re

tu
rn

_d
at

e
TI

M
ES

TA
M

P
la

st
_u

pd
at

e:
 T

IM
ES

TA
M

P
lin

k_
pa

ym
en

t_
re

nt
al

lin
k_

pa
ym

en
t_

re
nt

al
_i

d:
 IN

TE
G

ER
 [P

K]
hu

b_
re

nt
al

_i
d:

 IN
TE

G
ER

 [F
A

K]
hu

b_
pa

ym
en

t_
id

: I
N

TE
G

ER
 [F

A
K]

lo
ad

_d
ts

: T
IM

ES
TA

M
P

re
co

rd
_s

ou
rc

e:
 V

A
RC

H
A

R(
10

0)

Fi
g
u

re
 1

9
-2

:
Th

e
 c

o
m

p
le

te
 S

ak
ila

 d
at

a
va

u
lt

 Chapter 19 ■ Data Vault Management 477

Loading the Data Vault: A Sample ETL Solution

We are about to dive into the details of our sample ETL solution, and you are encouraged
to follow along and examine its nuts and bolts directly—“live” so to speak on your own
computer, running your own copy of Kettle. So before we actually look at the individual
transformations and jobs of the sample ETL solution, it is a good idea to first obtain the
files that make up the sample solution, and verify that you can open them.

Installing the Sakila Data Vault

You can download the SQL script files for the Sakila Data Vault from the book’s com-
panion website. As with the Sakila sample database, the script file is archived and
available as a .zip and a .tar.gz archive.

So, the installation procedure for the Data Vault schema is the same as for the original
Sakila sample database: Simply unpack the archive and use the SOURCE command in the
MySQL command-line utility to execute the script. Unlike the Sakila sample database,
we do not provide the data in a script; we want you to load the data in the Data Vault
using the ETL packages. The script is named Sakila_data_vault_schema.sql.

Setting Up the ETL Solution

You can obtain all these files from this book’s website in the folder for Chapter 19. All
files are available in .zip and .tar.gz archives called ch19_ktr_and_kjb_files.
Simply download the archive, and extract it to some location on your hard disk.

Creating a Database Account

The transformations for the ETL solution use two specific database accounts to access
the sakila and Data Vault schema: a sakila account, which is used to read from the
sakila sample database (which you probably already created in Chapter 4), and a sak-
ila_dv account (sakila_data_vault exceeds the maximum length for a user name in
MySQL), which is used to read from and write to the Data Vault schema. To create the
account, use the mysql command-line client to log into MySQL as a user with SUPER
privileges, such as the built-in root account. Then, enter the following commands:

CREATE USER sakila_dv IDENTIFIED BY ‘sakila_dv’;

GRANT ALL PRIVILEGES ON sakila_data_vault.* TO sakila_dv;

For your convenience, these commands are also available as a SQL script file, named
create_sakila_dv_account.sql, which is included in the ch19_ktr_and_kjb_
files archive along with the Kettle transformation and job files.

478 Part V ■ Advanced Topics

The Sample ETL Data Vault Solution

Now that we have described the database schemas, we can examine how a Data Vault
model can be loaded from a source system. Please keep in mind that this is a very simple
example with just a single source system.

NOTE In a real world implementation you would definitely use a staging

area. For reasons of brevity and clarity we’ve decided to leave this out in the

following examples.

One of the nice aspects of Data Vault modeling is the repeatability of the design
and load processes. Because of the rather strict modeling rules, every hub has similar
attributes. The same can be said about links and satellites. This means that loading
routines will be very similar as well and that automatic generation of loading process
or even modeling the Data Vault might be worth exploring.

Because of these similarities we will describe only three transformation files: a sam-
ple hub, a sample link, and a sample satellite.

Sample Hub: hub_actor

The transformation file for loading the hub_actor table is called hub_actor.ktr. The
transformation is shown in Figure 19-3.

Figure 19-3: The hub_actor transformation

 Chapter 19 ■ Data Vault Management 479

The transformation hub_actor is responsible for inserting all actor entities (busi-
ness keys) from the actor table in sakila.actor that are not yet present in the Data
Vault table hub_actor.

The following list provides a brief description of the steps shown in Figure 19-3:

input source:■ The “input source” step executes the following SQL code against
the Sakila source database:

SELECT actor_id AS id

, ‘sakila-db.actor’ AS record_source

FROMactor

ORDER BY 1

Basically it selects every actor_id (business key) from Sakila. For your conve-
nience, it also defines the record source as sakila-db.actor. The ORDER BY
clause sorts the data by the first field, actor_id.

input vault:■ The “input vault” step selects the actor_ids from your target
schema, the Data Vault, using the following SQL statement:

SELECT actor_id AS id_existing

FROM hub_actor

ORDER BY 1

Again, this results in a sorted list of actor_ids, similar to the one from the pre-
vious step.

Merge Join:■ The Merge Join step that follows performs a LEFT OUTER JOIN on the
two sets of actor_ids. The result is a list that might look like the following:

id record source id_existing

1 sakila-db.actor 1

2 sakila-db.actor 2

3 sakila-db.actor 3

4 sakila-db.actor 4

5 sakila-db.actor NULL

6 sakila-db.actor NULL

This list tells you that your source system, sakila, contains six actor_ids and
that the Data Vault table hub.actor contains only actor_ids 1–4. Apparently
actor_ids 5 and 6 have been inserted since the last time the Data Vault was
loaded and hence need to be added in this load.

NOTE You probably noticed the two icons with the letter i in blue circles

on the hops between the “input source,” “input vault,” and Merge Join steps.

These are warnings that the Merge Join step expects the incoming streams

to be sorted. This can be achieved with the Sort Rows step. In our case, we

let the database perform this task (using the ORDER BY clauses in the SQL

queries).

480 Part V ■ Advanced Topics

id exists?:■ The next step is a Switch / Case type step. All rows with a NULL
value in the id_existing column are sent to the “Remove unused fields” step;
the other rows are sent to the “Dummy (do nothing)” step where they will be
ignored.

Remove unused fields:■ This step strips the data stream from the fields that are
no longer needed, leaving you with two fields: actor_id (previous id) and
record_source.

Dummy (do nothing):■ This step does exactly what you would expect based on
its name.

insert new ids:■ This final step is a “Table output” type step and inserts the remain-
ing rows into the Data Vault table hub_actor.

NOTE In addition to actor_id and record_source, the table hub_actor

contains two additional fields: hub_actor_id and load_dts. These fields

are automatically filled by the database. Hub_actor_id is of type auto_

increment, and load_dts has a default value of CURRENT_TIMESTAMP, which

ensures that the field always contains the timestamp of insertion into the

Data Vault.

If your database is running and you set up the Sakila_data_vault schema and
corresponding user account, you should be able to simply run the transformation and
load the hub_actor table. The transformation should complete in a matter of seconds
on any modern laptop or desktop computer.

Sample Link: link_customer_store

The transformation file for loading the link_customer_store table is called link_
customer_store.ktr. The transformation is shown in Figure 19-4.

The transformation link_customer_store is responsible for inserting all relation-
ships between the customer and store entities from the customer table in sakila
.actor that are not yet present in the Data Vault link_customer_store table. This
relationship describes the store a customer is registered for.

A brief description of the steps shown in Figure 19-4 follows:

input:■ The “input” step executes the following SQL code against the sakila source
database:

SELECT customer_id

, store_id

, ‘sakila-db.customer’ AS record_source

FROM customer

ORDER BY 1, 2

Basically it selects every combination of customer_id and store_id (business
keys) from sakila.customer.

 Chapter 19 ■ Data Vault Management 481

Figure 19-4: The link_customer_store transformation

input vault:■ Similar to the “input vault” step from the sample hub transforma-
tion, another list is created from the Data Vault, containing the same information.
Because we have to join on the business keys in the next step, we need to join the
table link_customer_store with hub_customer and hub_store:

SELECT customer_id AS customer_id_vault

, store_id AS store_id_vault

FROM hub_customer

INNER JOIN link_customer_store

USING (hub_customer_id)

INNER JOIN hub_store

USING (hub_store_id)

ORDER BY 1, 2

The columns customer_id and store_id are renamed in the query (_vault is
added to the name) to distinguish them from the columns of the “input” step.

Merge Join:■ Again, similar to the hub example, the Merge Join step that follows
performs a LEFT OUTER JOIN on the two sets of business keys.

id exists?:■ The “‘id exists?” step filters the rows that are new and redirects the
other rows to the dummy step.

Lookup hub_customer_id / Lookup hub_store_id:■ At this point in the transfor-
mation, you have created a list of new customer_ids and store_ids that need
to be inserted in your link table. However, a link table does not contain business
keys, only surrogate keys from hubs or links.

482 Part V ■ Advanced Topics

The “Lookup hub_customer_id” step looks up the business key (customer_id) in
the hub and converts it to the corresponding surrogate key (hub_customer_id).
Naturally, the next step, “Lookup hub_store_id,” performs a similar action for
store_id.

Remove unused fields:■ This step leaves you with the fields you need for insertion:
hub_customer_id, hub_store_id, and record_source.

insert new ids:■ Finally, the data is inserted in the table link_customer_store.

If your database is running and you set up the sakila_data_vault schema and
corresponding user account, you may have tried to run the transformation, only to find
out that it failed on execution. This is because it needs at least the tables hub_customer
and hub_store to contain all their data.

For your convenience we added a job to load all hub tables, named load hubs.kjb.
You can find the jobs load links.kjb and load satellites.kjb as well. Figure 19-5
shows the job to load all hubs.

As you can see in Figure 19-5, all hub tables can be loaded in parallel. There is abso-
lutely no relationship between hubs (and there shouldn’t be one, hence the rule that
hubs may not contain foreign keys).

Figure 19-5: Load all hubs in parallel

After loading the hubs, you can start the link_customer_store transformation. This
transformation should complete in a matter of seconds on any modern laptop or desktop
computer.

 Chapter 19 ■ Data Vault Management 483

Sample Satellite: sat_actor

The transformation file for loading the sat_actor table is called sat_actor.ktr. The
transformation is shown in Figure 19-6.

Figure 19-6: The sat_actor transformation

The transformation sat_actor is responsible for capturing all actor attributes and

the historical changes from the actor table in sakila.actor that are not yet present in
the Data Vault table sat_actor.

A brief description of the (relevant) steps shown in Figure 19-6 follows:

input source:■ The “input source” step executes the following SQL code against
the Sakila source database:

SELECT actor_id

, IFNULL(first_name, ‘’) AS first_name

, IFNULL(last_name, ‘’) AS last_name

, IFNULL(last_update, ‘’) AS last_update

, ‘sakila-db.actor’ AS record_source

, NOW() AS load_end_dts

FROM actor

ORDER BY 1

484 Part V ■ Advanced Topics

The SQL code selects the attributes from the source database that need to be
inserted in the satellite table. In the next step, you create a Cyclic Redundancy
Check (CRC) from these attributes to detect possible changes. CRC functions usu-
ally do not like NULL values; therefore, we used the ISNULL function from MySQL.
Every common database management system contains a similar function.

The load_end_dts field is used later in this transformation. Right now it stores
the current datetime-stamp using the MySQL function NOW().

input vault:■ Again, similar to the sample hub and the sample link, a similar list
is built based on the data in the Data Vault, ready for joining in the Merge Join
step.

SELECT actor_id

, sat_actor_id

, hub_actor_id

, IFNULL(sa.first_name, ‘’) AS first_name_vault

, IFNULL(sa.last_name, ‘’) AS last_name_vault

, IFNULL(last_update, ‘’) AS last_update_vault

FROM sat_actor sa

INNER JOIN hub_actor

USING (hub_actor_id)

WHERE load_end_DTS IS NULL

ORDER BY 1

Because you need the business key (actor_id), you have to join the hub_actor
table in this query.

The WHERE statement ensures that you’re selecting only the latest version of the
satellite data. The historical attributes are not relevant for this situation.

NOTE When you use a CRC technique (or similar method—Kettle also sup-

ports ADLER 32, MD5, and SHA-1) to detect changes, make sure that you

use exactly the same functions (such as ISNULL()) on both sides of the

calculation.

add crc_src and add crc_vault:■ The two steps “add crc_src” and “add crc_vault”
each add an additional field to the stream. These are calculated fields, based on
a standardized calculation that is guaranteed to generate the same result when
the same data is fed to the algorithm.

In this case, you feed three fields to the CRC32 calculations: first_name,
last_name, and last_update. All NULL values are replaced with empty string
values.

As long as the data in the source system has not changed, the CRC calculations
will generate the same results. When the data in the source system is changed,
you will detect this change because the results of the calculations will no longer
be the same.

 Chapter 19 ■ Data Vault Management 485

NOTE Theoretically, CRC calculations with a different input can generate the

same output. So while there is a very small chance that a change in the source

system remains undetected, we decided to take this chance. To completely

avoid this chance, you have to do a field-by-field comparison which will slow

down the process considerably.

Merge Join:■ Again, similar to the hub example, the Merge Join step that follows
performs a LEFT OUTER JOIN on the two sets of business keys.

new or existing record:■ The next step determines whether you are dealing with
a new or an existing record. When sat_actor_id contains the value NULL, it
must be a new record; otherwise it is existing. New records are sent to “Lookup
hub_actor_id” while existing records follow “Filter rows.”

Lookup hub_actor_id:■ Similar to the earlier link example, you have to convert a
business key (actor_id) to the corresponding surrogate key (hub_actor_id).
This is what happens in the step “Lookup hub_actor_id” before the row gets
stripped of unnecessary fields in the Select Fields step.

Insert new sat row:■ A new row is inserted using the following fields: first_
name, last_name, hub_actor_id, record_source, and last_update.

There is another path you need to examine, however: The “Filter rows” step is
the start for every existing row.

Filter rows:■ The “Filter rows” step compares the two CRC32 calculations you
added a couple of steps earlier. When these fields are the same, the row has not
been altered and can be ignored. When the two stream fields are different, you
need to do two things:

End-date the current satellite row.■

Insert a new satellite row (that will be current from now on).■

This is exactly what the next two steps will do.

Update:■ The Update step sets the field load_end_date in the satellite table to
the value of the stream field load_end_date (which is calculated in the step
“Input vault”).

Insert updated sat row:■ Finally, a new satellite row is inserted, based on the
stream fields first_name, last_name, hub_actor_id, record_source and
last_update.

Loading the Data Vault Tables

Now that we have described the three different transformations for the Data Vault
model, it’s time to load the actual tables. For this purpose, we added three Kettle jobs
that load the hubs, the links, and the satellites: Load Hubs.kjb, Load Links.kjb, and
Load Satellites.kjb. Refer back to Figure 19-5 to see Load Hubs.kjb.

486 Part V ■ Advanced Topics

The jobs need to be executed in this order: hubs ➪ links ➪ satellites. However, note
that all hubs can be loaded in parallel, all links can be loaded in parallel, and all satel-
lites can be loaded in parallel.

Updating a Data Mart from a Data Vault

By now you realize that a Data Vault model is very well equipped for integrating,
storing, and safeguarding your valuable data. However, it is less suitable for intensive
querying or reporting.

This is why a data warehousing architecture that uses Data Vault modeling for the
enterprise data warehouse usually contains a data mart layer where one or more star
schemas exist for end-user access to the data. In this section, we show you how you can
populate a star schema based on a Data Vault enterprise data warehouse.

We will use the exact same star schema that was first introduced in Chapter 4. For a
brief explanation and installation instructions please see the section “The Rental Star
Schema” in Chapter 4.

The Sample ETL Solution

This sample ETL solution is very similar to the one described in Chapter 4 (some of the
code is even identical). However, we wanted to provide you with a complete solution
that enables you to gain some experience with Data Vault models and their behavior.
The next subsections describe the transformations we created to load the star schema
from the Data Vault. Most of the transformations are described individually, except for
dim_staff and dim_store because of their resemblance to dim_customer.

NOTE Dim_date and dim_time are static dimensions that are initially

loaded and do not need to be reloaded or refreshed periodically. The trans-

formation files for loading dim_date and dim_time are called dim_date.ktr

and dim_time.ktr and are identical to the transformations used in Chapter 4.

They are added to this chapter for your convenience only and will not be dis-

cussed in detail here.

The dim_actor Transformation

The dim_actor table is populated by the transformation dim_actor.ktr and is dis-
played in Figure 19-7.

Because dim_actor does not use slowly changing dimension logic (only the most
recent attributes of actors are stored in the star schema; history is ignored), the trans-
formation that loads the dim_actor table is very straightforward.

 Chapter 19 ■ Data Vault Management 487

Figure 19-7: The dim_actor transformation

A “Table input” type step is followed by a step that inserts new records and updates
existing records where appropriate.

The steps from the dim_actor transformation are:

Input Data Vault:■ In this step, the following SQL query loads the relevant data
from the Data Vault:

SELECT sa.last_update AS actor_last_update

, ha.actor_id AS actor_id

, sa.first_name AS actor_first_name

, sa.last_name AS actor_last_name

FROM sat_actor sa

INNER JOIN hub_actor ha

USING (hub_actor_id)

WHERE sa.load_end_dts IS NULL

Basically this step reads the attributes from sat_actor. The table hub_actor is
joined because you need the attribute actor_id. Because you are currently not
interested in the history of actors, the statement WHERE sa.load_end_dts IS
NULL ensures that you receive only the most recent attributes.

NOTE Although right now, you may not be interested in the historical attri-

butes of actors, this may very well change in the future. If this happens, you

can rely on the Data Vault model as it still contains a full history trace of

actors.

Insert / Update:■ Thanks to the functionality of the Insert / Update step, this
transformation is easy. There is no need to track changes yourself.

The properties of the Insert / Update step are shown in Figure 19-8. The correct
record is matched using actor_id and the attributes will be updated if they are
changed.

488 Part V ■ Advanced Topics

Figure 19-8: The Insert / Update step

The dim_customer Transformation

The dim_customer transformation looks rather complex (see Figure 19-9) compared
to dim_actor. When you look back to Chapter 4, it is also more complex than the
load_dim_customer transformation that is discussed there.

The reason for this complexity lies in the type 2 slowly changing dimension logic.
As discussed before, the Data Vault model contains full history; this means that it can
contain numerous versions of the same customer and that your SQL query can result
in multiple versions of the same customer. These versions need to be stored in the
type 2 slowly changing dimension table dim_customer accordingly. The component
“Dimension lookup/update” currently does not support this behavior and therefore
cannot be used. This means you have to do it yourself.

The transformation consists of two streams (one for the Data Vault data and one
with existing data in the star schema). The two streams are joined together to detect
new customers and changed customers. New customers are simply inserted; changed
customers need to be updated (field customer_valid_through).

 Chapter 19 ■ Data Vault Management 489

Figure 19-9: The dim_customer transformation

The steps from the dim_customer transformation are:

input data vault:■ The first step fires the following SQL query to the Data Vault:

SELECT

 DATE(sc.load_dts) AS customer_valid_from_tmp

, IFNULL(DATE(sc.load_end_dts),

 DATE(‘2199/12/31’)) AS customer_valid_through

, sc.last_update AS customer_last_update

, DATE(sc.create_date) AS customer_created

, hc.customer_id AS customer_id

, sc.first_name AS customer_first_name

, sc.last_name AS customer_last_name

, sc.email AS customer_email

, sc.active AS customer_active

, sc.address AS customer_address

, sc.district AS customer_district

490 Part V ■ Advanced Topics

, sc.postal_code AS customer_postal_code

, sc.phone AS customer_phone_number

, sc.city AS customer_city

, sc.country AS customer_country

FROM

 sat_customer sc

INNER JOIN

 hub_customer hc

USING

 (hub_customer_id)

ORDER BY

 hc.customer_id, sc.load_dts

This is not a very complex query. It selects the relevant fields from sat_cus-
tomer, joined with hub_customer because you need the customer_id. The
two fields, customer_valid_from and customer_valid_through, are based
on the Data Vault fields load_dts and load_end_dts, but this needs some
additional attention.

The Data Vault does not know when the first version of a customer started its
validity. It is fair to say that is was probably created before it was loaded in the
Data Vault, so you need to trust the source system and use the field create_date
from Sakila. If this field is not available (which is the case for dim_store and
dim_staff) you will use the value 1970/01/01.

In Chapter 4, the convention is introduced to set the customer_valid_through
to 2199/12/31 when a customer is still valid. You will use the same convention;
the preceding IFNULL statement implements this convention.

input Star:■ The next step, “input star,” executes the following SQL query:

SELECT customer_key

, customer_id AS star_customer_id

, customer_valid_from AS star_customer_valid_from

FROM dim_customer

ORDER BY customer_id, customer_valid_from

It simply selects the existing customers in dim_customer and needs no further
explanation.

calc version_number:■ Before the two streams are joined, the Data Vault stream
uses a very smart step known as “Add fields changing sequence.” This step gen-
erates a sequence that resets whenever a certain field changes (see Figure 19-10).
This is exactly what you need to create a version number for customers. When the
stream is sorted by customer_id and load_dts, the version number increases
until customer_id changes, which renders the version number back to 1.

 Chapter 19 ■ Data Vault Management 491

Figure 19-10: Calculate the version number

The transformation continues with a Merge Join step that joins the two streams.
Based on the customer_key field, you can determine whether a row is new or
not. Existing rows may need to be updated.

Newer version available?:■ When a customer changes (for example, a new
address), a new row is added to the satellite table. This means that a new row
will be added to the dim_customer table in the star schema. However, the cur-
rent row needs to be updated (the field customer_valid_through). The step
“Newer version available?” detects this. The next step, Update, changes the value
of customer_valid_through.

Version 1.0?:■ As discussed previously, the first version of a customer needs a
different value for the field customer_valid_from. It must be set to the value
of create_date instead of load_dts. The step “Version 1.0?” uses the stream
field customer_version_number to redirect the row to the correct calculation.
Figure 19-11 shows the details of this step.

Figure 19-11: customer_version_number

492 Part V ■ Advanced Topics

The dim_film Transformation

The transformation for dim_film would have been very easy, similar to dim_actor if
the designers hadn’t created the sets of [film_has_...] and [field_in_category_...]
fields. The set [film_has_...] is a flattened version of the field special_features
and the set [field_in_category_...] is based on the many-to-many relationship
between film and category. Figure 19-12 shows the transformation.

Figure 19-12: The dim_film transformation

Although the transformation dim_film looks rather complex we will not discuss
it here. The transformation is very similar to load_dim_film, which is described in
Chapter 4.

The dim_film_actor_bridge Transformation

The relationship between film and actor is many-to-many (one actor can play in many
films and in one film many actors can play). Each rental (the granularity of the fact table)
captures the rental of a single film. This means that the dimension table dim_actor
cannot be related to the fact table fact_rental.

Because you want to be able to report about films and actors, a bridge table is cre-
ated. This bridge table models the many-to-many relationship between dim_film and
dim_actor.

 Chapter 19 ■ Data Vault Management 493

The transformation load_dim_film, as described in Chapter 4, contains the logic to
load dim_film_actor_bridge. In this chapter, you make this a separate transforma-
tion, as shown in Figure 19-13.

Figure 19-13: The dim_film_actor_bridge transformation

The transformation starts with an “Input table” type step, which loads the key values
from dim_film. The next step is a Database Join type step that selects the actor_ids
for each film_id.

The resulting stream is split into two separate streams. The left stream uses a “Database
lookup” type step to match actor_id to its surrogate key actor_key. The stream on
the right uses a “Group by” type step to count the number of actor per film. This num-
ber is required to calculate the weighting factor in the following step. Finally, the two
streams come together again in the step “Lookup actor weighting factor” and the table
dim_film_actor_bridge is updated.

The fact_rental Transformation

The final transformation that we will describe in this chapter loads the fact table fact_
rental. The transformation is called fact_rental.ktr. Again, this transformation
is very similar to the corresponding load_fact_rentals transformation described
in Chapter 4, except for the first two table input steps, which are described following.
The transformation is displayed in Figure 19-14.

494 Part V ■ Advanced Topics

Figure 19-14: The fact_rental transformation

Fact_rental starts with two “Table input” type steps that capture changed data.
The first step selects the latest value for the field rental_last_update and the second
step, “Get New Rentals to load,” selects the required data from the Data Vault using
the following SQL query:

SELECT hr.rental_id

, sr.rental_date

, sr.last_update

, sr.return_date

, hc.customer_id

, hs.staff_id

, hstore.store_id

, hf.film_id

FROM link_rental lr

INNER JOIN hub_rental hr

USING (hub_rental_id)

INNER JOIN sat_rental sr

USING (hub_rental_id)

INNER JOIN hub_inventory hi

USING (hub_inventory_id)

INNER JOIN hub_customer hc

USING (hub_customer_id)

INNER JOIN hub_staff hs

USING (hub_staff_id)

INNER JOIN link_inventory li

USING (hub_inventory_id)

INNER JOIN hub_store hstore

 Chapter 19 ■ Data Vault Management 495

USING (hub_store_id)

INNER JOIN hub_film hf

USING (hub_film_id)

WHERE sr.last_update > ?

Although this looks complex, it really is not. The data you need to insert into fact_
rental consists of data from several tables in the Data Vault. You need data about the
rental, the customer, the store, the staff, and the film. This query shows the essence of a
Data Vault model; every distinct piece of data gets assigned its own table, thus creating
optimal flexibility when data is added or changed. This query simply joins the tables
that contain the required data.

Loading the Star Schema Tables

To load the star schema tables, we added two Kettle jobs, one that loads the date and
time dimension, Load date time.kjb, and one that loads the dimensions and fact
tables, Load dimensions facts.kjb.

The job that populates the dim_date and dim_time tables needs to be executed only
once; it is not really part of the ETL solution.

Summary

In this chapter, we introduced the concept of Data Vault modeling as a technique to
build an enterprise data warehouse. The Data Vault has many advantages over other
data modeling techniques, with the following as the most notable ones:

Auditability/traceability:■ Every change to the data in the source system is cap-
tured without alteration, making a DV well suited for environments where com-
pliance is an issue.

Repeatability/simplicity:■ The DV model has only a limited set of entity types
(hubs, links, satellites), with easy, repeatable structures, making a DV very suit-
able for automatic generation of models and ETL code.

Adaptability:■ Changes in the structure of the source systems can easily be added
to the DV without having to change the existing tables.

As an example, we created a Data Vault database based on sakila, the same sample
database used throughout the book. The steps and transformations needed to load
the Data Vault from the source system and the data marts from the Data Vault were
explained in detail. This chapter also showed that Kettle is a general-purpose ETL tool
that can be used in any data warehouse scenario.

497

C H A P T E R

20

Handling Complex Data Formats

In typical data warehousing scenarios, the ETL process extracts data from operational
systems to load it into the data warehouse. In most cases, both the operational system
and the data warehouse use an RDBMS to store the data. For the ETL process, this means
that the data is at least available in a comprehensible relational format.

As should be clear from Chapters 6 through 9, a relational format does not suddenly
mean that the transformations required to get the data from source to target database
are trivial or even simple. But at least data is clearly separated from metadata, and
there is no question with regard to fundamental relationships between the individual
pieces of data: Rows tie attribute values together in a uniform format, and foreign keys
establish relationships between rows in a clear and unambiguous manner.

Perhaps a more important feature is that the consistent use of relational data simpli-
fies transformations. No matter how drastically data is transformed, input and output
still share the fundamental characteristics of a table, and can still be seen as a collection
of rows that are segmented into columns.

So what if the source data is not in a tabular format? In Chapter 21, you will read
about XML and JSON, which are non-tabular because they allow arbitrary nesting of
data structures. But still, although non-tabular, these data formats have a clear gram-
mar and thus a clear separation of data and metadata.

In this chapter, we take a look at some non-relational or even non-tabular data formats
that, in contrast to XML and JSON, do not comply to a clear grammar.

498 Part V ■ Advanced Topics

Non-Relational and Non-Tabular Data Formats

We are not always so lucky as to have relational data at our disposal. While the fol-
lowing is not an exhaustive list of data formats, we identify a number of categories of
non-tabular data:

Structured non-tabular data formats:■ Here, the data is highly structured, and
there is a relatively small set of metacharacters and rules that define the formal
characteristics of the data format. XML and JSON are formats that match this
category. These formats are discussed in detail in Chapter 21.

Non-relational but tabular:■ In this case, the data consists of a collection of rows, and
each row is clearly segmented in fields. However, the table may still contain multi-
valued attributes and/or repeating groups. In this case, the data is not relational.

Semi-structured or unstructured data formats:■ In these cases, it may not be clear
what the rules are that control the shape and form of the data, or the set of rules
may be very complex and hard to formulate.

Key/value pairs:■ Often, data is line-oriented: one record is kept on one line of text,
which is then segmented into fields. But sometimes, records appear as a sequence
of lines, where each line contains a key and a value part.

In the remainder of this chapter, we show examples of the last three of these data
formats and briefly highlight which Kettle features you can use to handle them. We also
discuss some sample transformations to explain these Kettle features in detail.

Non-Relational Tabular Formats

Tabular data is non-relational when it contains either or both:

Multi-valued attributes■

Repeating groups■

If the source data contains either or both of these structures, then it will usually be
desirable to use the ETL process to restructure the data to a regular relational format.
This does not mean that the data must be stored in a relational format in the data ware-
house. But at the least, one would want to transform the data to a relational format to
do efficient cleansing and conforming.

Handling Multi-Valued Attributes

A multi-valued attribute is an attribute that may have a collection of values rather than a
single scalar value. You encountered an example of a multi-valued attribute in Chapter 4:
The special_features column of the film table of the Sakila sample database has the
MySQL-specific SET data type (see Figure 4-1). Columns with this data type contain values
that appear as a comma-separated list of string values, which is called a set.

 Chapter 20 ■ Handling Complex Data Formats 499

Using the Split Field to Rows Step

In the load_dim_film transformation shown in Figure 4-16, we used a “Split field
to rows” step to split the list into individual rows, each having a single value for the
attribute. In the load_dim_film transformation, the “Split field to rows” step is labeled
“Normalize special features.” Chapter 4 does not discuss a separate transformation to
illustrate this step so we discuss it in detail here. Figure 20-1 shows the configuration
of that particular step.

Figure 20-1: The “Split field to rows” step

The top section of the dialog in Figure 20-1 is used to define a number of properties
that are essential for transforming the multi-valued field to a list of rows.

In the “Field to split” property, you can use the drop-down list to pick the field from
the incoming stream that contains the multi-valued attribute. In this case, it is the field
that originates from the film.special_features column. In the definition of the
film table, the field is declared as:

special_features SET(‘Trailers’,’Commentaries’,

 ‘Deleted Scenes’,’Behind the Scenes’)

This definition will allow the field to contain a comma-separated list composed from
any combination of any of the values named in the comma-separated list within the
parentheses following the SET keyword.

The Delimiter field is used to specify a string that separates the individual values in
the multi-valued field. Because values for MySQL SET columns are comma-separated
lists, we specify a comma (,) here. This causes the step to generate a new row for
each distinct value in the comma-separated list. For example, the film titled ACADEMY
DINOSAUR, which has ‘Deleted Scenes,Behind the Scenes’ as special features
will yield two output rows because the comma separates two distinct values.

Once the multi-valued attribute is split, it becomes a normalized scalar attribute. The
values for this attribute are added to the output stream in a new field, and you can use
the “New field name” property to specify the name of the new field.

The “Additional fields” section of the dialog shown in Figure 20-1 can be used to
add row numbering to the newly generated rows. To generate row numbers, select

500 Part V ■ Advanced Topics

the “Include rownum in output?” checkbox. You can specify the name for the row
number field in the “Rownum fieldname” property. Finally, you can select the “Reset
Rownum at each input row?” checkbox to restart numbering from 1 for each row in
the incoming stream.

Handling Repeating Groups

A repeating group occurs whenever a particular type of column (or group of columns)
occurs multiple times in a table. For example, the film table in the sakila database has
two columns that refer to the language table: language_id and original_lan-
guage_id, and this may be construed as a repeating group.

NOTE Although the sakila example where the film table has two foreign

keys to the language table can be explained as a repeating group, many

information analysts will be reluctant to do so. The mere fact that in both

cases, the column serves to identify a language is not enough to deem it a

repeating group of language because the two references to the language table

each have their own well-defined semantics. So although this particular exam-

ple is far from perfect, we stick with it because it’s the only one that’s readily

available in the sakila database.

Using the Row Normaliser Step

With Kettle, you can normalize repeating groups of columns in tables using the Row
Normaliser step. You can find this step beneath the Transform folder in the left side
pane tree view. The sakila-normalize-repeating-groups transformation provides
an illustration of the Row Normaliser step. The transformation and the configuration
dialog of the Row Normaliser step are shown in Figure 20-2.

Figure 20-2: Using the Row Normaliser step to

normalize repeating groups

 Chapter 20 ■ Handling Complex Data Formats 501

For each repeating group, a distinct value is entered in the Type column. In this case,
the group occurs twice, and so there are two distinct values for Type. For all columns
in a group defined by a distinct Type value, a row is entered in the grid. In this case,
the repeating group consists of just one column. The Type values are added to a new
field in the outgoing stream, and the “Type field” property is used to specify the name
for the field that receives the Type values.

For each incoming row, the Row Normaliser step generates just as many rows as there
are distinct values in the Type column of the grid. The generated rows have a new field
for the Type value, but the repeating instances of the columns in the repeating group
are removed, leaving only one instance of the columns in the repeating group.

Semi- and Unstructured Data

In many cases, the data is available in files that are much less rigorously structured.
Whereas humans are often capable of identifying interesting bits of data and under-
standing how the pieces of data are related, automated data extraction requires the
definition of a pattern that describes the format of the data. Identifying and defining
such a pattern is a prerequisite to data extraction: Without it, you have no way of auto-
mating the process.

Regular expressions are an old and proven method to deal with searching and match-
ing text patterns. Regular expressions are widely supported in many languages, includ-
ing Perl, JavaScript, and Java.

NOTE A detailed discussion of regular expressions is outside the scope of

this book. However, there are many good books and online tutorials on regular

expressions, and you shouldn’t have much trouble learning more about them.

See, for example, the Wikipedia article at http://en.wikipedia.org/wiki/

Regular_expression or the site http://www.regular-expressions.info/.

As it turns out, you can identify a pattern and write a regular expression for it in
most cases, although it may be hard, and sometimes very hard, to do so. It may even
be possible that developing a catch-all pattern is not worth the cost. In these cases, you
can only aim for a “good enough” solution, and have to accept that you are currently
not capable of accessing all the data you would like.

In any case, you should always put something in place to register any data that does
not match your regular expression, and inspect the unmatched data regularly in order
to improve your regular expression. Sometimes you may find it easier to develop a
separate processing path to handle these cases.

NOTE As an example of a good-enough solution, consider e-mail addresses.

An extensive discussion of the considerations and trade-offs for this particu-

lar problem is included in the regular-expressions info site at http://www

.regular-expressions.info/email.html. Defining a regular expression

502 Part V ■ Advanced Topics

that matches the large majority (99 percent) of the valid e-mail addresses

and that correctly detects most invalid e-mail addresses is a simple task and

can be done in just 40 characters:

^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$

The actual syntax for e-mail address is defined in RFC 2822, at http://

tools.ietf.org/html/rfc2822#section-3.4.1. The regular expression

pattern that corresponds to this specification is quite convoluted, and is 426

characters long, more than 10 times the length of the naïve approach.

For an example of seemingly unstructured data, consider the following snippet from
the movies.list file provided by the Internet movie database, which hosts a large col-
lection of information about movies and television series at http://www.imdb.com/:

#1 (2005) 2005

#1 Fan: A Darkomentary (2005) (V) 2005

$100,000 Pyramid DVD Game, The (2006) (VG) 2006

$50,000 Challenge, The (1989) (TV) 1989 (unreleased)

‘Columbia’ Winning the Cup (1901/I) 1901

‘Columbia’ Winning the Cup (1901/II) 1901

1 Second Film, The (2008) {{SUSPENDED}} 2008

21 Days (1940) 1940 (shot 1937)

Andrey Rublyov (1966) 1966 (shot 1964-1965)

“#1 College Sports Show, The” (2004) 2004-????

“#1 Single” (2006) {Cats and Dogs (#1.4)} ????

“$1,000,000 Chance of a Lifetime” (1986) 1986-1987

“$10,000 Pyramid, The” (1973) 1973-1988,1991-1992

“$10,000 Pyramid, The” (1973) {(1973-03-26)} 1973

“10 Years Younger” (2004/I) 2004

“10 Years Younger” (2004/I) {(#2.8)} 2005

You can download this and many other lists as a gzipped archive from one of the FTP
servers listed at the imdb website at http://www.imdb.com/interfaces#plain.

Although there definitely is a pattern in the film list, it is not straightforward. At the
very least, it is not regular enough to expect anything else from the standard text file
input steps than reading individual lines. You can’t use these steps for parsing indi-
vidual fields. Even if you could, the construction of the initial field is so complex, that
you would still need another pass to parse it. To give you an idea of the complexity,
here are a few facts that are known about the format:

Each line represents one “movie,” which may be a cinematic film, TV movie, TV ■

series, video release, mini series, or videogame.

The line starts with a complex key that identifies the movie within the file.■

The key is followed by a variable number of tabs, an optional parentheses-enclosed ■

code indicating the movie type (TV for TV film, V for video release, VG for video
game, mini for mini-series), another sequence of one or more tab characters, and

 Chapter 20 ■ Handling Complex Data Formats 503

the four-digit release year. Optionally, the release year is followed by yet another
collection of tabs and a parenthesized bit of extra information, such as (shot
1937) to indicate it was filmed in a particular year, (unreleased) to indicate
the work was never officially released.

If there is no explicit type indicator, the item is either a cinematic movie or a TV ■

series. TV series titles are enclosed in double quotes but cinematic movie titles
are not.

Kettle Regular Expression Example

In order to extract data from the IMDB movies list, we prepared the imdb-movies
transformation. You can download this transformation from this book’s website in the
download folder for Chapter 20. To run the transformation, you need to download
the movies.list.gz file from one of the IMDB FTP sites and place it in the same
directory as the imdb-movies.ktr transformation file. The transformation works
directly on the gzipped archive, so you shouldn’t uncompress it. The transformation
is shown in Figure 20-3.

Figure 20-3: Loading data from the IMDB movies

list using regular expressions

The top stream of the transformation is the focus for this example. The remainder of
the transformation is mostly about determining the type of the movie. In the final step
of the transformation, the entries are written to the text file imdb-movies-output.txt.
By then, the information hidden in the movie keys is nicely separated into all kinds of

504 Part V ■ Advanced Topics

fields, such as the title of the entry, type, any part or episode number (for series), and
so on. For example, the entry with the key

“10 Years Younger” (2004/I) {(#2.8)}

is processed to a record such as:

line_number: 566296

year: 2004

part: I

secondary_title: (#2.8)

real_type: Series

title: 10 Years Younger

Note that the preceding snippet is just an enumeration of some of the extracted fields
and their values. The actual imdb-movies-output.txt file uses a separated values
format having each record on one line, and has far more fields than the ones shown.

Configuring the Regex Evaluation Step

In Kettle, you can use the Regex Evaluation step for working with Java regular expres-
sions. This step resides beneath the Scripting category in the left side pane tree view.

For the syntax supported by the Kettle Regex Evaluation step, see the API docu-
mentation of the Pattern class in the java.util.regex package. You can find the
relevant documentation at http://java.sun.com/j2se/1.5.0/docs/api/java/
util/regex/Pattern.html.

The configuration dialog for the Regex Evaluation step contains two tab pages and
a field grid for the output fields. We describe each of them in this subsection.

Settings Tag Page

In the top of Figure 20-4, you can see the Settings tab page in the configuration dialog
of the Regex Evaluation step from the imdb-movies transformation.

In the “Regular expression” text area shown in the middle of Figure 20-4, you must
enter the regular expression pattern. This pattern will be matched against the entire
field value; it will not search for an occurrence of the pattern inside the field value. The
regular expression text may contain Kettle variable references, and if you rely on those,
you need to select the “Use variable substitution” checkbox to allow Kettle to replace
them with their value.

For the imdb-movies transformation, the regular expression is quite complex, which
is why it is spread over multiple lines. Almost each line is commented using a single line
comment initiated by the hash sign (#). Multiple lines, white space, and comments are
entirely optional and do not influence how the text will be matched, but it is advisable
to use comments anyway for complex regular expressions like this.

 Chapter 20 ■ Handling Complex Data Formats 505

Figure 20-4: The Settings tab page and Fields grid of the Regex Evaluation step

In the Regex Evaluation step of the imdb-movies transformation, some comments
explain what kind of text it is supposed to match; others have only an integer to identify
the capturing group. This is invaluable for keeping track of capturing groups that are
spread out over many lines.

For those readers who are not familiar with regular expressions or with the regular
expression comments, let’s consider this snippet from the top part of the regular expres-
sion shown in Figure 20-4.

(#2

 (“([^”]+)”) #3,4: series title

| ([^”\t][^\t]*) #5 movie title

) #/2

On the first line of the snippet, the opening parenthesis starts a capturing group.
Capturing groups are the mechanism used by Kettle to extract data from a matched
pattern and transfer it to a field. The snippet begins at the second capturing group in

506 Part V ■ Advanced Topics

the entire expression, so that’s why the comment reads #2. The final line of the snippet
closes the capturing group #2, which is why we use the comment #/2.

On the next line is a pattern that is supposed to match a series title. We explained that
series titles are enclosed in double quotes, and this is what the pattern attempts to match:
a double quote followed by [^”]+, which denotes one or more characters that are not a
double quote, again followed by a double quote. The pattern to match inside the quotes
constitutes a new capturing group, which is why the comments mention #3,4.

On the next line is a pipe |, which denotes an alternative pattern. The alternative
pattern is again a capturing group (#5), which tries to first match [^”\t]. This expres-
sion matches any character that is not (hence the initial ^ inside the square brackets)
a double quote or a horizontal tab character (which is denoted with a so-called escape
sequence, \t). After the initial character, [^\t] matches any character that is not a
tab. The rationale for this pattern is that a movie title cannot start with a double quote
(because it would be a series title in that case) or a tab (because the movie key is sepa-
rated by a variable number of tabs from whatever more data appears on the line).

In the “Step settings” fieldset, you must specify the field from the incoming stream
that will be matched against the regular expression in the “Field to evaluate” property.
The Regex Evaluation step will always return the result of matching the value of that
field against the regular expression in a new field in the outgoing stream. This field is
a Boolean and its value indicates whether the value of the “Field to evaluate” matches
the entire regular expression. The name for the result field can be configured in the
“Result Fieldname” property.

We just mentioned that Kettle can transfer the pieces of text matched by the captur-
ing groups in fields of the output stream. To enable this behavior, you must check the
“Create fields for capture groups” checkbox.

Fields Grid

The Fields grid is shown in the bottom half of Figure 20-4. If the “Create fields for cap-
ture groups” checkbox is checked, you must enter a field definition for each capturing
group defined in the regular expression.

Content Tab Page

The Content tab page is shown in Figure 20-5.

Figure 20-5: The Content tab page of the “Regex evaluation” step

 Chapter 20 ■ Handling Complex Data Formats 507

On the Content tab, you can check or uncheck a number of flags that influence the
behavior of the matching process. The options are listed here:

Ignore differences in Unicode encodings:■ Select this option when you are match-
ing ASCII text and you want to optimize performance. Typically, you should not
select this option unless you have a very good reason to.

 Enables case-insensitive matching:■ By default, selecting this option enables
case-insensitive matching for ASCII text. To enable case-insensitive matching
also for Unicode text, be sure to also select the “Enable Unicode-aware case fold-
ing” option.

Permit whitespace and comments in pattern:■ Use this option if you want to
spread out the regular expression over multiple lines and document it with com-
ments. In this mode, the whitespace character is not considered part of the regular
expression, so to match whitespace, you must use an escape like \s or \x20 to
encode whitespace characters. If the option is disabled, then whitespace characters
in the regular expression are considered literal, and denote a required match with
a whitespace character in the text. Because it can be tedious and cause errors if
you switch this option on or off afterward, you better decide in advance if you
need it, and then stick by your choice.

Enable dotall mode:■ Typically, the dot character denotes a match with any char-
acter except the line terminator. If this option is checked, the dot matches any
character, including the line terminator.

Enable multiline mode:■ Typically, the anchors ^ and $ match the start and end
of input respectively. If this option is checked, the ^ anchor also matches each
line start, and the $ also matches each line end.

Enable Unicode-aware case folding:■ See the previously described “Enable case-
insensitive matching” option.

Enable Unix lines mode:■ Typically, both the control-return/linefeed sequence
(\x13 followed by \x10) and the linefeed character are recognized as line ter-
minators. If this option is enabled, only the \x10 character counts as linefeed,
which influences the matching behavior of the dot (.), caret (^), and dollar sign
($) meta characters.

By default, all these options are disabled.

Verifying the Match

The Regex Evaluation step always passes on the input rows to the output, regardless of
whether the regular expression matches the input. Typically you should check whether
it, in fact, matches your input.

In the imdb-movies transformation, the check is performed by the Filter Rows step
labeled “Match?” which appears immediately after the Regex Evaluation step. This
step simply checks the value of the field that conveys the result of the Regex Evaluation
step. The name of this field is configured by the “Result Fieldname” property in the

508 Part V ■ Advanced Topics

Settings tab page of the configuration dialog of the Regex Evaluation step shown in
Figure 20-4.

If the match is true, the row flows to the remainder of the transformation, but oth-
erwise, it is led to the “Text output” step labeled “excluded,” where it is logged in a file
called imdb-movies.excluded.txt. In a production environment, these files should
be monitored at least on a daily basis, and a decision should be taken as to what to do
with this data. A possible outcome is that you discover that the regular expression
isn’t quite good enough yet and needs some extra logic to accommodate the hitherto
excluded records.

Key/Value Pairs

You can find many examples of key/value structured data on the Internet. For example,
an online product catalog may offer a page with detailed information per product, and
these pages may enumerate all relevant properties of the product, such as size, color,
and price in a list.

For an example of data that uses key/value pairs, see the following code:
LASERDISC LIST

==============

--

OT:

LN: 3

LB: Philips

CN: 21317

LT: Stephen King’s Nightmare Collection

PC: USA

CF: 16

CA: Movie

GR: Horror

LA: German

SU: -

RD: 1992

ST: Available

PR: DM 69.00

VS: PAL

CO: Color

SE: Digital

AL: -

AR: -

MF: Film

SZ: 12

SI: 2

DF: CLV

 Chapter 20 ■ Handling Complex Data Formats 509

CC: -

QP: -

--

OT: “Absolutely Fabulous” (1992)

... more data here...

The listing is a snippet taken from the laserdisc.list file provided by the Internet
movie database. (See the earlier movies.list example for instructions to obtain this
file.)

The laserdisc list is a list of records, each describing a particular DVD or Blu-ray
edition of a movie, documentary, television series, and the like. Records are separated
from one another by a separator line consisting of dashes:

--

The record separator is followed by a variable number of lines, each consisting of
two segments:

A code consisting of two capital letters, indicating some property that applies to ■

this particular laserdisc. This is the key.

A text that describes the property for the relevant laserdisc record. This is the ■

value.

In the laserdisc example, the key and value segments are separated by a colon, imme-
diately followed by a space character. In addition to the key/value pairs, the laser disc
records may also contain empty lines, which can be ignored.

Kettle Key/Value Pairs Example

To illustrate how to deal with key/value pairs in Kettle, we created the imdb-laserdisc
transformation. You can download this transformation from the book’s website in the
download folder for Chapter 20. The transformation reads the gzipped laserdisc list
file from the IMDB archives, and transforms the key/value pairs to proper columns.
So, in order to run it, you must also download the laserdisc.list.gz file from one
of the IMDB FTP sites and place it in the same directory as the imdb-laserdisc.ktr
transformation file. The transformation is shown in Figure 20-6.

The following sections walk you through the main steps of this transformation.

Text File Input

The imdb-laserdisc transformation initially uses the same strategy as the imdb-movies
example. The content of the list is simply read on a line-by-line basis, and the “Text input”
step does not attempt to divide the file into fields. Instead, it outputs the entire line in a
single field called line_text.

510 Part V ■ Advanced Topics

Figure 20-6: Processing key/value pairs from IMDB’s laserdisc list

The step also adds an extra line_number field to the output stream. As the name
suggests, this field contains the line number, which we use later on in the transfor-
mation as a key to tie all lines belonging to one laserdisc record together. To add a
line number to the output stream of the “Text input” step, configure it and select the
“Rownum in output” checkbox and specify the name for the field in the “Rownum
fieldname” property. Both of these options are located on the Content tab page in the
configuration dialog.

Regex Evaluation

Then, the lines are fed into a Regex Evaluation step labeled “Split key from value.” The
snippet that follows shows a fragment of the regular expression:

^

 (-+) # 1: record header

| (# 2: key/value pair

 (# 3: key

 LN # <LaserDisc Number>

 | LB # <Label>

... many, many more lines of regex pattern code here...

 | AQ # <Audio Quality>

) # /3

 Chapter 20 ■ Handling Complex Data Formats 511

 :\x20?

 (.+)? #4: value

) #/2

$

At the top level, the regular expression matches either the record header (capturing
group #1—a line of dashes, which is stored in a field called header), or it matches a
key/value pair (capturing group #2). The key/value pair itself is divided in a key (cap-
turing group #3, which is stored in a field called key) and a value (capturing group #4,
stored in the field value). After this initial regular expression matching, we again use
a “Filter rows” step to confirm the match.

Grouping Lines into Records

The next step of interest is the “Modified Java Script Value” step labeled “Mark Attribute
rows with Id of header row.” The JavaScript code for this step is shown in Figure 20-7.

Figure 20-7: The “Mark Attribute rows with Id of header row” step

The JavaScript snippet detects whether the current row is a header row or a key/
value row. It does this with a simple if statement that checks the value of the header
field of the current row from the incoming stream. For the “Modified Java Script Value”
step, the fields of the current row are automatically available as variables, so we can
simply write:

if (header) {

 ...

}

512 Part V ■ Advanced Topics

If it is a header row, the header field will contain a string of dashes, as per the pat-
tern for capturing group #1 in our “Regex evaluation” step. When used as a condition
for an if statement, JavaScript will treat the non-empty string as true, and the code
between the curly braces will be executed. If this is a key/value row and not a header
row, the header field will be null, which is not considered true, and the code between
the curly braces will be skipped.

So if we have a header row, the code between the curly braces is executed:

 laserdisc_id = row[1];

The row variable on the right side of the assignment operator is automatically avail-
able and represents the current row from the incoming stream as an array of field
values. The set of square braces in the code is the JavaScript syntax for array access so
the expression row[1] actually gets the field value at index 1. Because the fields are
numbered starting at 0, row[1] refers to the second field of the current row, which is
the line_number field added by the “Text input” step.

In the Fields grid in Figure 20-7, you can see how the laserdisc_id variable is added
as a field to the outgoing stream. If you run the transformation in preview mode to
see the data coming out of the “Modified JavaScript Value” step, you can see how the
laserdisc_id field changes value at each header, giving all the subsequent key/value
rows that belong to one record the same value. As you will see in the remainder of this
section, this is essential for making proper columns out of the key/value rows.

Denormaliser: Turning Rows into Columns

The step labeled “Make one row of multiple attribute rows” is of the “Row denorma-
liser” type. You can find this beneath the Transform category in the left side pane tree
view. This step does the actual job of turning the rows with key/value pairs to proper
columns. The configuration for the step is shown in Figure 20-8.

The “Row denormaliser” step groups the rows from the incoming stream according
to the fields listed in the grid labeled “The fields that make up the grouping” at the
top of the configuration dialog. This is where we use the laserdisc_id field that we
created with the “Modified JavaScript Value” step. By grouping, all the rows from the
incoming stream having the same value for the laserdisc_id field end up in one row
that is emitted to the outgoing stream.

NOTE The “Row denormaliser” step groups only consecutive rows from the

incoming stream that have the same value in the laserdisc_id field. In the

case of the imdb-laserdisc transformation, the key/value rows that belong

to the same record are consecutive, which guarantees the grouping works out.

If the rows that need to be grouped are not consecutive, you have to explicitly

sort the rows, for example by using a “Sort rows” step.

 Chapter 20 ■ Handling Complex Data Formats 513

Figure 20-8: The “Row denormaliser” step

The “Target fields” grid in the lower half of the dialog shown in Figure 20-8 defines
the fields that are to be added to the outgoing stream. The name for the field is specified
in the “Target fieldname” column of the “Target fields” grid. To fill these fields for the
outgoing rows, Kettle uses the following procedure:

For each row in the group of rows defined by the grouping fields, Kettle takes the ■

value of the key field. The key field is configured by choosing a field name for the
property labeled “The key field” in the top of the configuration dialog.

Kettle finds a row in the “Target fields” grid for which the value in the “Key ■

value” grid column equals the value of the key field from the incoming stream.

Once the row in the grid is determined, Kettle gets the field name from its ■

“Value fieldname” column. This fieldname is used to get a value from the
incoming row.

The value is stored in a field of the outgoing stream using the name set in the ■

“Target fieldname” column.

Summary

In this chapter, we looked at some examples of data that does not fit a relational format,
and how to work with such data in Kettle. The chapter covered:

A categorization of several types of non-relational data: non-relational tabular ■

data is tabular data but with multi-valued attributes and/or repeating groups;

514 Part V ■ Advanced Topics

semi-structured and unstructured formats that adhere to complex patterns; and
key/value pairs

Using the Split Field to Rows step to normalize multi-valued attributes■

Using the Row Normaliser step to normalize repeating groups■

Using the Regex Evaluation step to match data against a regular expression pat-■

tern and to extract subpatterns of interest using capturing groups

How to keep key/value pairs of the same record together■

Using the Row Denormaliser step to collapse a collection of key/value pairs into ■

a tabular row

515

C H A P T E R

21

Web Services

In Chapter 6, we discussed a number of Kettle features for Web-based extraction. In this
chapter, we take a closer look at the Kettle features for working with websites and web
services, and how to deal with the typical data formats they use to exchange data.

Before we dive into the details, we first need to explain how web services fit in the
context of ETL and data integration, and discuss which concepts and techniques are
involved. We also provide an overview of a few data formats that are commonly used
to exchange data over the Web. In the remainder of this chapter, we illustrate a few
typical scenarios for using Kettle with web services.

Web Pages and Web Services

The majority of what we typically refer to as “The Web” consists of web pages. Web
pages are essentially documents, primarily intended for a human audience, that can be
retrieved using Hypertext Transfer Protocol (HTTP) and are typically coded in HTML.
Via a web browser application, users are connected to a server that is part of a network
(the Internet), allowing them to retrieve web pages from different computers in the net-
work (sites). The web pages themselves are human-readable documents that are coded
in some form of hypertext, which simply means it contains conveniently navigable links
to access other, related web pages.

HTTP defines how a request from a client (such as a web browser) is transferred over
the Internet to finally reach a host that is able to send a response containing a resource.
Despite its name, HTTP is not confined to the transfer of hypertext. As long as data

516 Part V ■ Advanced Topics

is properly encoded, HTTP can carry any kind of data. One might think of resources
carried over HTTP as static documents or files. This needn’t be the case, and often isn’t:
data can be dynamically generated in response to the HTTP request.

Similarly, Uniform Resource Locators (URLs) are used an addressing scheme to
identify particular resources, as well as their location on the Internet. Although URLs
can be thought of as addresses of static resources, their format is flexible enough to
carry information in their own right. As such, they can be used to send a command
to a computer over a network to perform a certain task (rather than just retrieving a
particular resource). In these cases, the resource returned typically indicates status
information about the execution of the command.

Web services differ from web pages in that they deliver a resource that is intended for
machine processing: They deliver data that is not necessarily suitable for direct consump-
tion by humans. Instead, web services are used as a mechanism to support data exchange
between applications. Thus, a web service resembles an application programming inter-
face (API). For examples of such web services, take a look at the Netflix web services at
http://developer.netflix.com/docs, or the web services listed at http://www
.webservicex.net/WS/wscatlist.aspx. Another very comprehensive overview that
lists many web services can be found at http://www.programmableweb.com/.

Web services typically do not use HTML, but a format that is better suited for data
exchange, such as XML or JSON. We will discuss the popular data formats for the Web
in more detail later in this chapter.

Kettle Web Features

Kettle offers a number of features that enable you to work with the Web. We briefly
discuss these features in the remainder of this section. We describe some of them in
detail later on in this chapter as we discuss a few concrete examples.

General HTTP Steps

Kettle offers two general-purpose HTTP steps: “HTTP client” and HTTP Post. Both of
these steps reside beneath the Lookup category in the left pane tree view. Both these
steps perform an HTTP request and add the retrieved resource in a field of the outgoing
stream. Both steps can either specify a URL directly, or accept one from the incoming
stream, and for both steps, you can map the fields from the incoming stream to query
parameters that are added to the URL.

The difference between these steps is that the “HTTP client” step performs an HTTP
GET request, whereas the HTTP Post step performs an HTTP POST request. The HTTP
Post step also allows you to control the message body that is being sent with the request.
For example, in addition to sending field values along in the query part of the URL, you
can also send them in the message body with the HTTP Post step, or send an entire file
as the message body.

You will see the details of these steps later in this chapter in various examples.

 Chapter 21 ■ Web Services 517

Simple Object Access Protocol

Kettle offers support for Simple Object Access Protocol (SOAP) web services through
the “Web services lookup” step. Like the general HTTP steps, this step also resides
in the Lookup category in the left pane tree view. This step is used to invoke SOAP-
based web services.

The “Web services lookup” step can use the WDSL document exposed by a SOAP
service to discover which operations are supported by the service, and it uses that
information to facilitate the mapping of fields from the incoming stream to parameters,
and fields from the outgoing stream to the return value.

We discuss the “Web services lookup” step in more detail later in this chapter in a
dedicated SOAP example.

Really Simple Syndication

Kettle offers support for Really Simple Syndication (RSS) input as well as RSS output.
RSS is increasingly used to deliver periodically updated data streams. It is very popular
for news and blogs, but is also used for publishing stock quotes and currency rates. RSS
is discussed in a later section of this chapter.

Apache Virtual File System Integration

Kettle offers integration with the Apache Virtual File System (VFS). This allows you
to use URLs in almost any place where you would typically enter a file name. This
includes the file name property you enter for the various input steps, but also the name
of a transformation file in a Transformation job entry or job file in a Job job entry. In
Spoon, you can also open a job or transformation from a URL (main menu ➪ File ➪
Open from URL) or save to VFS (main menu ➪ File ➪ Save As (VFS)).

Because URLs contain a scheme part that identifies the protocol to use, this feature
allows you to work not only with local files and resources available on the Web via
HTTP, but also with files on a remote FTP server, files stored inside a .tar, .jar, .zip,
or .gzip archive, and more.

NOTE For more information on Apache VFS, see http://commons.apache

.org/vfs/. For specific information on the supported file formats and the

syntax for corresponding URIs, see http://commons.apache.org/vfs/

filesystems.html.

Data Formats

Although the HTTP protocol requires data encoding, it does not impose any particular
type or format for any data transferred by it. However, some formats are certainly more
popular than others. The formats we focus on in particular are XML, HTML, and JSON.

518 Part V ■ Advanced Topics

XML

XML is by far the most ubiquitous data format used by web services, both over the
Internet and as exchange format for applications. We assume the reader is already
familiar with XML and related technologies such as XPath and XML Schema.

NOTE For a good resource on XML, try Beginning XML by David Hunter et

al., Wrox Press, 2007.

Kettle offers a number of steps and job entries for working with XML data in general.
We demonstrate a few of these in the sample transformations later in this section, but
for the benefit of those readers who are not yet familiar with XML and related technolo-
gies, we provide a quick tour that will give you an idea of the level of XML support
offered by Kettle.

NOTE In addition to features for working with XML in general, Kettle also

has a number of features for working with specific XML applications, such as

RSS (Really Simple Syndication) and SOAP (Simple Object Access Protocol).

Kettle Steps for Working with XML

Kettle supports the following generic transformation steps for working with XML:

The “Get data from XML” step resides beneath the Input category in the left side ■

pane tree view. This step can read XML from a resource such as a file, a URL, or
from a field in the incoming stream. Using XPath expressions, it extracts collec-
tions of elements and attributes from XML documents, and then turns them into
fields and records, which are then pushed into the outgoing record stream. We
discuss this step in more detail later in this chapter when we show a transforma-
tion for extracting data from XML.

The XML Output step resides beneath the Output category in the left side pane ■

tree view. It accepts an incoming record stream, and turns it into one or more
XML documents, which are then stored as a file.

The Add XML step resides beneath the Transform category and can be used to ■

generate XML fragments from the incoming record stream. Typically, this is used
to build complex XML documents with multiple levels of nested XML element
structures. This step is discussed in detail in the transformation for generating
XML documents later in this chapter.

The XSL Transformation step also resides beneath the Transform category. This ■

step applies an XSLT stylesheet on XML documents conveyed by the incoming
stream, adding the transformation result to a field in the outgoing stream. A

 Chapter 21 ■ Web Services 519

detailed description of this step, as well as the XSLT language, is outside the scope
of this book. Basically, XSLT is a very powerful method for processing XML data,
which can be used both for extraction as well as for generating complex XML
documents. It should certainly be considered to meet any requirements that are
not easily achieved with Kettle’s other XML features.

The XML Join step resides beneath the Joins category. This step has the ability to ■

merge an XML document with a stream of XML fragments, and can thus be used
to generate complex, nested XML structures. This step is described in detail in the
example transformation for generating XML data later in this chapter.

The XSD Validator” step resides beneath the Validation category. This step can be ■

used to check the validity of an XML document against an XML Schema document.
XML Schema is a popular way for defining data types and structures in XML docu-
ments. It is often used for defining input and output requirements of web service
protocols. Although a discussion of the XML Schema language itself is beyond the
scope of this book, we describe this step in more detail later in this chapter when
we discuss the sample transformation to extract data from XML documents.

NOTE In addition to the transformation steps described in the preceding

list, there are a couple of deprecated XML input steps: the Streaming XML

Input step and the XML Input step, which are currently both located in the

deprecated folder in the left side pane tree view. These steps are likely to be

removed from a future Kettle version, and should not be used when building

new transformations.

Kettle Job Entries for XML

Kettle also offers a number of job entries for working with XML: these all reside beneath
the XML category:

The “Check if XML file is well formed” job entry can be used to bulk-check a ■

folder to see if XML files are well-formed.

The DTD Validator step can be used to validate an XML document against a ■

document type definition (DTD)

The XSD Validator step is used for validation against an XML schema, and is the ■

job-entry analogue of the transformation step with the same name. We describe
this step in more detail later in this chapter when we present a sample transfor-
mation to generate XML documents.

The XSL Transformation job entry is analogous to the transformation step of the ■

same name.

520 Part V ■ Advanced Topics

ECMASCRIPT FOR XML SUPPORT

In addition to the specialized steps and job entries for working with XML, Kettle’s

Modified Java Script Value step offers an extension to the plain JavaScript lan-

guage called ECMAScript for XML, more commonly referred to as E4X.

The E4X standard is maintained by the ECMA and can be downloaded

from http://www.ecma-international.org/publications/standards/

Ecma-357.htm.

HTML

HTML is an acronym for Hypertext Markup Language. Like XML, HTML has its roots
in SGML and, as such, it uses the same basic syntax constructs as XML: elements, attri-
butes, and text. However, the similarities stop there.

Whereas XML is a general-purpose data exchange format, HTML was designed with
the express purpose of creating documents that can be rendered with a web browser
and read by a human audience. For that purpose, HTML defines a limited, fixed set of
elements and attributes that serve either to structure text documents (using items such
as headings, paragraphs, and sections) or style text content (by specifying characteristics
such as font and colors).

Even though HTML was not designed for general data exchange, a lot of interesting
data is available in HTML format. Although more and more organizations are offering
proper web services to make some of their data accessible, many still don’t or have no
intention of doing so. In those cases, scraping pages from the website may be the only
option.

Unfortunately, Kettle does not provide any specific features for extracting data from
HTML. However, you can use Kettle to download web pages and use tools such as
JavaScript, Formulas, and Java user-defined expressions and classes, to extract data
using general string manipulation features.

JavaScript Object Notation

JavaScript Object Notation (JSON, pronounced Jason) is an emerging standard for data
exchange that is increasingly favored over XML for communicating with web services.
The JSON format was originally specified by Douglas Crockford in http://www.ietf
.org/rfc/rfc4627.txt. Alternatively, see http://www.json.org/ for a more acces-
sible formulation of the format.

A detailed comparison between XML and JSON and their respective benefits and dis-
advantages is outside the scope of this book. However, a useful distinction can be made
by characterizing XML as a document language and JSON as an object-serialization
format. Although both are easily machine-readable, JSON is more easily mapped to
data type systems of popular programming languages.

 Chapter 21 ■ Web Services 521

Syntax

Syntactically, JSON is a proper subset of the JavaScript language. This means that JSON
data structures can be accessed and traversed natively from within JavaScript. The fol-
lowing is an example JSON representation of a collection of books:

[

 {

 “title”: “Pentaho Solutions”,

 “publisher”: “Wiley”

 “isbn”: “978-0-470-48432-6”,

 “price”: “50.00 USD”,

 “pages”: 658,

 “inPrint”: true,

 “authors”: [

 {

 “firstName”: “Roland”,

 “lastName”: “Bouman”

 },

 {

 “firstName”: “Jos”,

 “lastName”: “van Dongen”

 }

]

 },

 {

 “title”: “Pentaho Kettle Solutions”,

 “publisher”: “Wiley”

 “isbn”: “978-0-470-63517-9”,

 “price”: “50.00 USD”,

 “pages”: 744,

 “inPrint”: false,

 “authors”: [

 {

 “firstName”: “Matt”,

 “lastName”: “Casters”

 },

 {

 “firstName”: “Roland”,

 “lastName”: “Bouman”

 },

 {

 “firstName”: “Jos”,

 “lastName”: “van Dongen”

 }

]

 }

]

522 Part V ■ Advanced Topics

The example illustrates the key features of JSON:

The outermost structure is an ■ array of multiple books. Arrays are denoted using
a matching pair of square brackets:[and]. Array entries are separated using a
comma.

Books are denoted as ■ object literals. Object literals are denoted using a matching
pair of curly braces: { and }.

Object members■ (properties) appear between the curly braces of object literals. A
member is denoted as a key/value pair, which are separated from one another
by a colon. Multiple key/value pairs are separated from one another using a
comma.

In an object member, the key appears before the colon and must be enclosed in ■

double quotes. The value appears after the colon.

The member value can be any valid JSON value. There are only five types of ■

JSON values: string, number, object, array, or Boolean.

A string literal is denoted between double quotes. In the example listing, the ■

value of the title member of the first book is the literal string value Pentaho
Solutions.

A number can be denoted as a simple integer or floating point number, or using ■

exponent notation. In the example listing, the pages member of the second book
is the integer number 744.

A Boolean value has one of the literals ■ true or false as a value. In the example
listing, the inPrint member of the book objects has a Boolean type.

NOTE Despite its ties with the JavaScript programming language, JSON

enjoys a wide uptake in other programming environments as well, and free/

open source JSON implementations are available for many languages, includ-

ing C/C++, C#.NET, Java, and many more. You can find links to JSON libraries

for many programming languages on the json.org site.

It is often claimed that JSON is much simpler than XML. If the size of the specifica-
tion is any indication, this is certainly true. Whereas the XML syntax is defined in 89
grammar rules, JSON is defined in only 15. The essence of JSON can be summarized
in just 6 grammar rules. The remaining 9 rules have to do with the lexical definition of
strings (3 rules) and numbers (6 rules).

JSON, Kettle, and ETL/DI

Currently, Kettle does not offer any features for consuming or generating JSON.
However, because JSON is JavaScript, you can at least use Kettle’s Modified Java Script
Value step to access JSON data programmatically. We discuss this method in detail in
the “JSON Example” section later in this chapter, where we extracts data from the free-
base database. Another possibility to work with JSON is to write a plugin yourself.

 Chapter 21 ■ Web Services 523

Apart from the initial method for extracting and accessing data, transformations for
working with JSON face many of the problems encountered when working with XML.
Both formats are often used for marshalling objects, and a good deal of the transfor-
mation logic has to do with disentangling the nested data structures that are used to
represent these objects and the relationships between them.

XML Examples

In this section, we take a closer look at Kettle features that enable you to work with
XML. It is impossible to provide a generic example because XML is an extremely flexible
format and can be used to express a large variety of high-level data structures. However,
at a lower level, XML consists of just a few fundamental constructs, and all higher level
structures are built in one way or another based on these fundamental types.

For this section, we will focus on one particular XML document containing video
and actor data. In one example, we describe how to extract data from this XML docu-
ment, and store it in the sakila sample database introduced in Chapter 4. In addition,
we describe a transformation that works the other way around, which exports data
from the sakila sample database to an XML document.

Example XML Document

The videos.xml document is provided as a free sample with Stylus Studio, an XML
development environment. You can download the file from http://www.stylusstudio
.com/examples/videos.xml. In addition to the XML document itself, there’s also
an XML Schema file that describes the structure of the XML document. This can be
downloaded from http://www.stylusstudio.com/examples/videos.xsd.

XML Document Structure

The following snippet illustrates the structure of the videos.xml document:

<?xml version=”1.0” encoding=”UTF-8”?>

<result>

 <actors>

 <actor id=”00000015”>Anderson, Jeff</actor>

 ...more actor elements here...

 <actor id=”916503210”>Sharif, Omar</actor>

 </actors>

 <videos>

 <video id=”id1235AA0”>

 <title>The Fugitive</title>

 <genre>action</genre>

 <rating>PG-13</rating>

 <summary>...text..</summary>

524 Part V ■ Advanced Topics

 <details>...more detailed text...</details>

 <year>1997</year>

 <director>Andrew Davis</director>

 <studio>Warner</studio>

 <user_rating>4</user_rating>

 <runtime>110</runtime>

 <actorRef>00000003</actorRef>

 <actorRef>00000006</actorRef>

 <vhs>13.99</vhs>

 <vhs_stock>206</vhs_stock>

 <dvd>14.99</dvd>

 <dvd_stock>125</dvd_stock>

 <beta>1.03</beta>

 <beta_stock>12</beta_stock>

 <LaserDisk>12.00</LaserDisk>

 <LaserDisk_stock>10</LaserDisk_stock>

 </video>

 ...more video elements here...

 <video>

 ...

 </video>

 </videos>

</result>

The <result> document element contains an <actors> and a <videos> element
containing a collection of <actor> and <video> elements, respectively.

The <actor> elements have an id attribute that uniquely identifies actor elements
throughout the document and contain a piece of text consisting of the actor’s last name,
followed by a comma and then the actor’s first name.

Each <video> element contains a collection of elements that describe some property
or characteristic of the containing <video> element, such as <title>, <genre>, and
<rating>.

A <video> element also contains one or more <actorRef> elements, each of which
contains the value of the id attribute of one of the <actor> elements, thereby conveying
the fact that the corresponding actor appears in that particular video.

Mapping to the Sakila Sample Database

For this example, we assume a fairly straightforward mapping between the database
tables and the elements in the videos.xml file:

The ■ <actors> element corresponds to the actor table, and each <actor> ele-
ment corresponds to a row in the actor table.

The ■ <videos> element corresponds to the film table, and each <video> element
corresponds to a row in the film table.

 Chapter 21 ■ Web Services 525

The ■ <genre> element inside a <video> element corresponds to a row in the
film_category table.

An ■ <actorRef> element inside a <video> element corresponds to a row in the
film_actor table.

The mapping between the XML structure and the sakila database is illustrated in
Figure 21-1.

<?xml version=”1.0”?>
<result>

 <actors>
 <actor id=”0001”>Anderson, Jeff</actor>
 ...many more <actor>...</actor>'s...
 </actors>

 <videos>
 <video id=”id1235AA0”>
 <title>The Fugitive</title>
 <genre>action</genre>
 <rating>PG-13</rating>
 <summary>Tommy Lee and ...etc.</sumary>
 <year>1997</year>
 <actorRef>0001</actorRef>
 <actorRef>0005</actorRef>
 ...more <actorRef>...</actorRef>'s...
 <dvd>14.99</dvd>
 <dvd_stock>125</dvd_stock>
 </video>
 ...many more <video>...</video>'s...
 </videos>

</result>

actor category

film_category

film

film_actor

Figure 21-1: The mapping between the videos.xml file and the sakila sample database

Extracting Data from XML

To load the data from the videos.xml file and store it in the sakila sample database,
we prepared the import_xml_into_db transformation. The transformation is shown
in Figure 21-2.

NOTE The transformation file import_xml_into_db.ktr is available on the

book’s website (www.wiley.com/go/kettlesolutions) in the folder for this

chapter. Successfully running the transformation assumes an existing setup of

the sakila sample database and sakila user account. You can find instructions

for this setup in Chapter 4.

526 Part V ■ Advanced Topics

The transformation also relies on a local copy of the videos.xsd XML

Schema, and this is expected to be in the same directory as the transformation.

You can download this file from the Stylus Studio website mentioned earlier.

Finally, the transformation will attempt to download the videos.xml XML

documents from the Stylus studio website, so a working connection to the

Internet is required.

Figure 21-2: The import_xml_into_db transformation

Overall Design: The import_xml_into_db Transformation

Before we dig into the gritty details of the import_xml_into_db transformation, it
is useful to consider the high-level data flow. At the top of Figure 21-2, you can see the
notes that explain what is going on in the steps immediately beneath the notes.

The first step to execute will be the “Execute SQL script” step labeled Reset. In
Figure 21-2, this step is located at the top-left corner. This step runs in the initialization
phase and does not take part in the actual transformation. Its purpose is to remove any
data added to the Sakila database on top of the standard data set. This is just a precau-
tion to start with a clean slate before adding new data with this transformation.

After the initialization phase, the transformation proper starts to run by generating
a row with the Generate Rows step labeled Generate Row with URLs, which appears at
the top-left side of the transformation shown in Figure 21-2. The generated row defines
a constant string field that specifies the URL to retrieve the videos.xml file from the
Stylus Studio website.

This generated row is first fed into the “HTTP client” step labeled “GET videos.xml”
to actually retrieve the videos.xml file. The content of the videos.xml file is then

 Chapter 21 ■ Web Services 527

added to stream in its own field. Configuration of the “HTTP client” step is discussed
in detail later in this chapter.

After downloading the XML document, it is validated against an XML schema by
the “Validate against videos.xsd” step to ensure it meets the expectations of the trans-
formation. This validation step is the first real XML-related step, and is covered later
in this chapter.

After validation, the data is extracted with three “Get data from XML” steps run-
ning in parallel. The configuration of this type of step is discussed in detail later in this
chapter, but for now, let’s focus only on the data flow. The data in the XML document
will lead to inserts into all tables shown in Figure 21-2. The transformation needs to
maintain data integrity, and therefore it must load the tables in the right order: rows in
the film_category and film_actor tables reference the rows in the category, film,
and actor tables, so we must ensure the referenced rows are present before loading
the referencing rows.

An additional complication is that the sakila database uses surrogate keys, which
are automatically generated in the database. The XML document also uses surrogate
keys to identify videos and actors that are used to establish the relationship between
videos and actors via the actorRef elements that appear inside the video elements.
You can treat the key from the XML document as a business key (see Chapter 8 for a
definition of the concept of a business key).

In Chapter 8, we mentioned that in data warehouses, business keys can be stored
in dimension tables to allow a database lookup of the dimension table’s surrogate key
based on the business key. However, the sakila database was not designed to be loaded
from XML documents like this, and does not have columns for storing the business
keys from the XML document. This means that you cannot simply first load the film,
actor, and category tables in their entirety before loading the film_actor and
film_category tables. If you do that, you have no way of looking up the surrogate
keys of the referenced tables when loading the referencing tables.

To correctly handle these issues, the transformation uses “Combination lookup /
update” steps for loading the actor, category, and film tables. In addition to adding
the rows to the appropriate tables, these steps also add the database-generated keys
to the stream. Because the video elements contain a single genre element, film and
category are loaded in the same flow, and this means the stream right after these steps
already contains both a film_id and a category_id, which can then be added to the
film_category table using a simple “Table output” step. (This is in the top flow in
the import_xml_into_db transformation.)

For film_actor, the situation is less straightforward. (This is the middle flow of
the transformation.) The film_actor table is loaded from the extracted actorRef
elements, and the extract contains the business keys of the videos and its actors. The
corresponding surrogate keys for the film_id and actor_id keys in the database are
looked up from the film stream (top flow) and actor stream (bottom flow) using two
“Stream lookup” steps, after which the film_actor table is loaded using a simple
“Table output” step.

528 Part V ■ Advanced Topics

Using the XSD Validator Step

If you have access to the XML Schema definition, it is usually a good idea to use it to
check XML documents before extracting data. The risk of omitting validation is that the
remainder of the transformation could extract bits and pieces of data from it, and even
process that data, store it in a database, and so on, only to find out later on that the XML
document actually didn’t have the expected structure and/or content. If you have access
to the XML Schema, you have the fortunate opportunity to build your transformation
with exact prior knowledge of what to expect from the XML document, and in this case
a simple check for validity allows you to prevent a lot of potential problems up front.

In Kettle transformations, XML Schema validation is done using the XSD Validator
step (labeled “Validate against videos.xsd” in Figure 21-3).

NOTE You can also use XSD validation in Kettle jobs using a similar step—

there is no generic way to determine which one is more appropriate.

The XSD Validator step resides beneath the Validation folder in the left side pane
tree view. The configuration for the “Validate against videos.xsd” step is shown in
Figure 21-3.

Figure 21-3: Validating the videos.xml document against the videos.xsd XML Schema

 Chapter 21 ■ Web Services 529

The configuration dialog contains three sections, which we discuss in the paragraphs
that follow.

XML Source

The first section, “XML source,” is used to specify the properties of the XML document
that is to be validated. The XML document is specified through a field in the incoming
stream, which can be specified by choosing the appropriate field with the “XML field”
combo box. If the “XML source is a file” checkbox is checked, the value of the specified
field will be interpreted as a VFS file name.

In Figure 21-3, the checkbox is unchecked because the text that makes up the XML
document is present as a string, which was added to the stream by the “Get videos
.xml” step.

Output Fields

In the second section, Output Fields, you can control features of the validation result.
The result of validating the XML document is always added as a field to the outgoing
stream, and you can use the Result Fieldname property to specify the name of that field.
By default, the field is called result and has a Boolean data type, which will take on
one of the Boolean truth values (in Kettle, Y and N) to indicate whether the XML docu-
ment is valid or invalid, respectively.

If you like, you can return the validation result as a custom string value. In this case,
you should check the Output String Field checkbox and provide a custom string value
in the “Value when XML is valid” and “Value when XML is invalid” properties.

In addition to the field for the result, you can also obtain any messages describing
the validation result. (This is especially useful when validation fails because it allows
you to troubleshoot the problem with the XML document.) Check the “Add validation
msg in output” checkbox if you want to obtain the messages and use the “Validate msg
field” property to specify the name of the field that should be added to the outgoing
stream to convey the validation messages.

XML Schema Definition

The final section, XML Schema Definition, is used to specify the document that con-
tains the XML Schema definition to validate against. Use the XSD Source combo box
to specify the origin of the XML Schema. You can choose either one of the following
options:

Is a file, let me specify filename:■ This option means that the XML Schema is
contained in a file specified by the XSD Filename property.

Is a file, filename is defined in a field:■ This allows you to specify the file name
through the value of a field in the incoming stream. If you use this option, you
should pick the field using the “XSD Filename field” combo box.

Is defined inside XML:■ In this case, the XSD Validator step expects that the docu-
ment element of the XML document itself has an xsi:schemaLocation attribute
that contains the URI for the XML Schema definition document.

530 Part V ■ Advanced Topics

In Figure 21-3, we used the first option, and used a reference to the built-in
${Internal.Transformation.Filename.Directory} variable to point to the
 videos.xsd file located in the same directory as the transformation file.

NOTE Although it would have been possible to dynamically retrieve the

videos.xsd file from the Stylus Studio website, just like the videos.xml

document, that would not be such a good idea.

We used the schema as a guideline to construct our transformation. If, for

some reason, someone decided to change the XML schema (and the videos

.xml document), then the validation could still check out positive, even

though the contents of the videos.xml document could be entirely different

from what our transformation expects.

If you’re going to use XML Schema validation, be sure to use it in such a

way that validation actually fails if the XML document has different contents

from what you expect.

Error Handling

The XSD Validator step supports error handling. In Figure 21-2, you can see that any
errors that occur when validating the document are logged to the “validation.error”
step, which is of the “Text output file” type and located beneath the XSD Validator step.
Error handling would take effect if there is a problem in validating the document—for
example, the XML Schema definition itself could be malformed.

Don’t confuse error handling with failure to validate the XML document. It is not an
error if the document cannot be validated because it contains content or data structures
that are not compatible with the XML Schema definition. Rather, the validation proce-
dure is successful; it’s just that the result is negative because the document is invalid.
We discuss this situation in the next subsection.

Checking the Validation Result

Whenever you use the XSD Validator step, it is essential to check its result. The XSD
Validator step passes on both valid and invalid documents in its outgoing stream, along
with the validation result, and, if you configured the step to do so, any validation mes-
sages. It is up to the ETL designer to act upon the validation result and do something
meaningful with it.

In the import_xml_into_db transformation, the validation result is checked using
the “Filter rows” step labeled “Is valid?” This step simply checks the value of the
result field added by the “Validate against videos.xsd” step, passing on those rows
for which the result is true, and storing the invalid rows to file using the “Text output”
step labeled “XML invalid.”

Using the “Get Data from XML” Step

After validating the incoming XML document, you can finally start with the actual data
extraction. In Kettle this is done using the “Get data from XML” step, which resides

 Chapter 21 ■ Web Services 531

beneath the Input category in the left side pane tree view. The import_xml_into_db
transformation contains three steps of the “Get data from XML” type:

/result/videos/video■ : This extracts the actual elements that represent a video
from the XML document, and each of these will eventually end up as a row in
the film table in the Sakila database.

/result/videos/video/actorRef■ : Each video element contains a variable
number of actorRef elements indicating which actors play a part in that par-
ticular movie. These will eventually be stored in the film_actor table.

/result/actors/actor■ : This extracts the actor elements, which will result in
rows for the actor table.

These steps all get handed the same XML document retrieved by the “HTTP client”
step, reading it in parallel. We could discuss any one of these instances of the “Get data
from XML” step, but both for simplicity and completeness (as will become apparent
later on in this section) we settle for the middle one labeled /result/videos/video/
actorRef.

The configuration dialog for the “Get data from XML” step has three tabs. We will
discuss these in detail in the remainder of this section.

The File Tab

In the File tab (see Figure 21-4), you can define the source of your XML document.

Figure 21-4: The File tab of the “Get data from XML” step

The source of the XML document can be specified either using a field in the incom-
ing stream or using the standard file and directory interface similar to that used by
the various file input steps. To use a field, check the “XML source is defined in a field”

532 Part V ■ Advanced Topics

checkbox in the top of the “XML source from field” fieldset located in the top half of
the File tab of the configuration dialog. Clear the checkbox to specify one or more
directories and regular expressions for finding file names in the lower half of the con-
figuration dialog.

NOTE When developing your transformation, it is usually a good idea to

clear the “XML source is defined in a field” checkbox and use the file and

directory interface to work with a local copy of a representative instance of

the XML documents you plan to work with. Using a file greatly simplifies con-

figuring other properties of this step, because in this case, Kettle can always

locate the XML document, parse it, and offer suggestions for XPath selectors.

When a field is specified as source, the contents of the field are known only at

runtime when the transformation is being executed, not at design time when

you’re configuring the step.

You can always switch back and forth between using a field and a file.

If the “XML source is defined in a field?” checkbox is checked in order to use a
field, you must specify the field name using the “get XML source from a field” combo
box, which is the last item in the “XML source from field” fieldset. Finally, you need to
specify how Kettle should interpret the contents of the field:

Checking the “XML source is a filename?” checkbox specifies that the value of the ■

field specified by the “get XML source from a field” property is a file name.

Checking the “Read source as Url” checkbox specifies that the value of the field ■

specified by the “get XML source from a field” property is a URL rather than a
filename.

If neither the “XML source is a filename” nor the “Read source as Url” checkbox ■

is checked, Kettle expects the field to contain the XML document as text.

In the import_xml_into_db transformation, we used the last option because this
allows us to perform only a single HTTP request (which is slow) to retrieve the XML
document, passing it on to be read in parallel by the three “Get data from XML” steps.
Any of the other configuration options for the XML source would have required another
HTTP request.

The Content Tab

In the Content tab, you can specify how to extract rows from the XML document. The
Content tab of the /result/videos/video/actorRef step from the import_xml_into_db
transformation is shown in Figure 21-5.

The most important property on this tab is Loop XPath. Here, you can specify an
XPath expression. This XPath expression will be applied to the XML document and
evaluates to a node set, which is typically a collection of XML elements. The “Get data
from XML” step will loop over the nodes in this set, and generate one row in the outgo-
ing stream for each iteration. For this step, the Loop XPath property is configured to be
/result/videos/video/actorRef[text()].

 Chapter 21 ■ Web Services 533

Figure 21-5: The Content tab of the “Get data from XML” step

If you specified a file as source in the File tab, you can use the “Get XPath nodes” but-
ton to help fill in the Look XPath property. This will scan the XML document and gener-
ate a list of XPath expressions for all levels of element node sets (see Figure 21-6).

Other options on the Content tab include:

The Encoding list box:■ Can be used to explicitly set the character encoding used
for the XML document. This option is useful in case the XML document does not
specify its own encoding. Typically, XML documents start with an XML declara-
tion that specifies the encoding. For example:

<?xml version=”1.0” encoding=”UTF-8”?>

Namespace aware?:■ Check this if the document uses namespaces.

Ignore comments?:■ Typically, XML comments count as nodes. If you want to
ignore comments, check this option.

Validate XML?:■ Check this if you want this step to use DTD validation prior to
extracting data.

Use tokens:■ This option applies to settings configured on the Fields tab, and we
discuss it in the next subsection.

534 Part V ■ Advanced Topics

Figure 21-6: The picklist invoked

by the Get XPath Nodes button

Ignore empty file:■ Check this if you do not consider it an error if the file specified
as XML source is empty.

Do not raise an error if no files:■ Check this if you’re using files as source and it
is not an error if no files were found.

Limit:■ Use this to limit the number of rows that are to be generated. The default
is zero, which means one row should be generated for each node in the node set
retrieved by the Loop XPath expression.

Prune Path to handle large files: ■ Typically, the XML document is read in one
go, and the Look XPath expression is applied to the entire document. But if the
XML document is very large, the resulting node set may be too large to fit into
memory. In these cases, you can specify an XPath expression for this property
that allows Kettle to apply the Loop XPath expression to chunks of the XML
document. This property does not support the full XPath syntax: You can only
specify element names separated by slashes. Predicates and namespaces are not
allowed. In addition, the Prune Path must select chunks that are at the same or a
higher level as the node set defined by the Look XPath expression.

Include filename in result and Filename fieldname:■ If using a file as source for
the XML document, you can check the checkbox to include the filename as a field
in the outgoing stream and specify the name of the new field.

 Chapter 21 ■ Web Services 535

Rownum in output and Rownum fieldname:■ Check the checkbox in case you
want to add a field that contains a sequence number for the generated rows, and
specify the name of the new field.

Add to result filename:■ If using files as source, then the files will be added to
the list of file results, which allows you to process these files in the parent job
(if any).

The Fields Tab

The Fields tab (see Figure 21-7) is used to specify how Kettle should extract fields from the
node set retrieved by the Loop XPath expression that you specified in the Content tab.

Figure 21-7: The Fields tab of the “Get data from XML” step

As you can see in Figure 21-7, fields are also defined using the XPath syntax. In the Name
column of the grid, you specify the name of the field that is to be added to the outgoing
stream. In the XPath column, you specify where the field gets its value from using an XPath
expression. This XPath expression is executed relative to the current node from the node
set retrieved by the Loop XPath expression.

For regular evaluation of the XPath expression, the Element column should be set to
Node (as shown in Figure 21-7). You can set the Element column to Attribute instead,
in which case the expression in the XPath column is evaluated differently to match only
attributes. For instance, the second line in the grid shown in Figure 21-7 uses the XPath
expression ../@id, which means: get the value of the id attribute of the parent node
of the current node. The same result could have been achieved by setting the Element
column to Attribute, and writing ../id instead. Note that this would be evaluated
as regular XPath; it would mean: get the value of the id element beneath the parent
node of the current node, which is something entirely different.

In Figure 21-7, the actor_id field gets its value from the text contents of the actorRef
elements. The video_id element uses the expression ../@id to look up from the current
actorRef element to the video element that contains the current actorRef element,
from which it extracts the value of the id attribute.

The outgoing stream now has two fields containing the values that are used inter-
nally in the XML document to identify the video and actor elements. These are used

536 Part V ■ Advanced Topics

downstream in the transformation to look up the corresponding database key values
so they can be used to add new rows to the film_actor table.

Using Tokens

The XPath expressions in the Fields tab support a non-standard extension called tokens.
Tokens are a way to bind values of fields to the XPath expression in order to parameter-
ize it. This is best explained with an example.

Let’s continue with our /result/videos/video/actorRef step from the import_xml_
into_db transformation, and suppose that in addition to the actor_id and video_id, you
would also like to retrieve the name of the actor. Once you extract the text contents of the
actorRef element, you have the value of the id attribute of the actor element, so it would
seem that you should be able to select the element to extract the name. Or could you?

Provided you have a specific value for the actor’s id, you can certainly write an XPath
expression that does the job. For example, if the actor id equals 1234, then something
like /result/actors/actor[@id = 1234]/text() does the job. But the problem is
that you don’t have literally 1234. Instead, all you have is the field actor_id, which
gets its value from the text() expression that is evaluated in context of the current
actorRef element.

You can’t just substitute the 1234 in the previous expression with text() and expect
it to work. The expression /result/actors/actor[@id = text()]/text() simply
means: Get the text content inside the actor nodes for which the value of the id attribute
equals the value of its text content. It doesn’t work because the expression text() would
be evaluated in the context of the actor element, not in the context of the actorRef
element from which you extracted the value for the actor_id field. What you need is
some mechanism to plug in the value of the actor_id field itself. This is exactly what
tokens are meant for.

To use the actor_id field in the XPath expression for looking up the author’s name,
you have to write the expression like this: /result/actors/actor[@id = @_actor_
id-]/text(). The expression @_actor_id- is the token, and it consists of an at sign
(@), followed by an underscore (_), followed by the field name actor_id, and then
followed by a dash (-). In addition, the “Use tokens” checkbox on the Content tab must
be checked to use a token like this.

There are a number of limitations to using tokens:

The field upon which the token is based (■ actor_id in the example) must appear
before the field that uses it as token.

In Kettle versions prior to 4.0, you can use only one token in a field. This limita-■

tion was lifted for Kettle 4.0.

Token syntax is available only for XPath expressions in the Fields tab—not in the ■

XPath expression in the Content tab.

NOTE The transformation file export_xml_from_db.ktr is available on the

book’s website in the folder for this chapter. Successfully running the trans-

formation assumes an existing setup of the sakila sample database and sakila

user account. You can find instructions for this setup in Chapter 4.

 Chapter 21 ■ Web Services 537

Generating XML Documents

To export data from the sakila database into a format like that of the videos.xml file
discussed earlier, we prepared the transformation export_xml_from_db shown in
Figure 21-8.

Figure 21-8: Generating XML

The transformation uses multiple instances of two particular types of Kettle steps
that are especially designed for generating XML: the “Add XML” step and the “XML
join” step. Before you look into the details of configuring these steps, let’s first consider
the main data flow of the export_xml_from_db transformation.

Overall Design: The export_xml_from_db Transformation

The best way to understand the export_xml_from_db transformation is to focus on
the bottom stream in Figure 21-8. This is the main stream of the transformation that is
responsible for XML document construction.

The bottom stream starts with a Generate Rows step, which generates one row having
three empty string fields called actors, videos, and video_template. This row is
sent to the step labeled “Document template XML,” which is of the Add XML type. We
discuss the exact configuration and operation of this step later in this chapter, but for
now it is enough to know that this step adds a new string field to the stream containing
an empty but complete XML document:

<?xml version=”1.0” encoding=”UTF-8”?>

<result>

 <video_template/>

 <actors/>

 <videos/>

</result>

538 Part V ■ Advanced Topics

If you compare this listing to the one of the videos.xml provided in the beginning
of this section, you will notice that this document already has the correct top-level
structure; it is missing only the contents of the video_template, actors, and videos
elements. The export_xml_from_db transformation actually does nothing to fill in the
video_template element. Even in the original videos.xml file, this is an essentially
static element that is not particularly interesting. Instead, we will focus on generating
the XML content of the actors and videos elements.

All but the bottom streams of the transformation start with a “Table output” step,
resulting in parallel extraction of data from the Sakila database. You will notice all
tables mentioned in the mapping shown previously in Figure 21-1 are present, and in
addition, an extra step to extract the stock count of each film.

For real-world transformations, one might not find it particularly desirable to have
too many of these extractions going on in parallel, but we’ll gloss over this detail for
this particular sample. For now, it is enough to mention that the parallel extraction is
of no consequence for XML document construction: Although the actual XML genera-

tion may occur in a parallel fashion, XML document construction is always a serialized
operation because there is only one document at all times.

The streams coming from the “Table output” steps labeled film_category and “inventory
(stock count)” are merged into the stream coming from the film table via some denormal-
izing operations such as look up (see the steps “Lookup stock count” and “Lookup genre”)
and aggregation (see the step “Group by film_id, concat categories”). The result is a stream
that still has the granularity of the original film stream, but with additional fields from
detail tables, which are then flattened to become attributes of individual films.

The original streams originating from the “Table output” steps eventually result
in three main data streams, which are then led into the Add XML steps labeled Actor
XML, Video XML, and “actorRef XML.” This takes care of the actual XML generation,
and results in a collection of the appropriate XML fragments. These streams are then
led down to the bottom stream to participate in document construction. This is achieved
using several “XML join” steps.

We discuss the configuration and operation of the “XML join” step in detail later
in this chapter, but for now it is enough to note that this step merges the collection of
generated fragments into the XML document coming in from the main stream. So, after
the Join Actor XML step, the actors element from the skeleton document will be filled
in and contain actor elements, and after the Join Video XML step, video elements will
be added into the document’s videos element. The final XML join step, “Join actorRef
XML,” concludes document construction by merging actorRef XML elements into
their respective video element.

The last step of the transformation simply writes the resulting XML document to
file using an ordinary File Output step. The result is one XML document containing
all film-related data from the Sakila database.

Generating XML with the Add XML Step

The Add XML step is used for the actual generation of XML elements. It resides beneath
the Transform category in the left side pane tree view. For each row in the incoming
stream, the Add XML step emits one row to the outgoing stream, adding a new string

 Chapter 21 ■ Web Services 539

field that contains an XML element. Through the configuration dialog, you can control
the name of the generated element, its attributes, and its content. The configuration
dialog has two tabs: Content and Fields.

The Content Tab

In Figure 21-9, you can see the Content tab of the “Video XML” step from the export_
xml_from_db transformation shown in Figure 21-8.

Figure 21-9: The Content tab of the Video XML step

The name “content page” is somewhat confusing, as you use it to control the proper-
ties of the generated XML element, not its contents.

You can use the Output Value property to configure the name for the field that con-
tains the element. The “Root XML element” is where you specify the element name.
Note that currently, the element name is a string constant—you cannot specify a field
to set the element name dynamically. You can use the Encoding list box to choose a
character encoding (default is UTF-8).

The “Omit XML declaration” checkbox can be checked to generate only the XML
for the element. This is typically what you need for generating pieces of XML that are
later merged into a document. For the outermost top-level element, you typically want
to clear the checkbox to generate an XML document with the XML declaration. For
example, in the export_xml_from_db transformation, this checkbox is unchecked in
all steps of the Add XML type, except for Document Template XML, because this step
generates the document element.

The “Omit null values from XML result” checkbox can be used to control the rep-
resentation of NULL data. It is a bit confusing in the context of this tab because it exerts
control over the content of the generated element, not the generated element itself.
Therefore, this option is explained in more detail in the following section.

The Fields Tab

You can configure the Fields tab to control how the fields from the incoming stream
are used to create the content and/or attributes of the generated elements. The Fields
tab for the Video XML step is shown in Figure 21-10.

540 Part V ■ Advanced Topics

Figure 21-10: The Fields tab of the Video XML step

Each row entered into the grid represents a field from the incoming stream that will
be used to generate XML. Use the “Element name” property to specify which fields
you want to use. There are four different ways for the fields from the incoming stream
to contribute to the generated XML:

Generate child elements of the “Root XML element” using the field value as ■

text content. You can use the “Element name” property to control the name of the
generated elements. For example, in Figure 21-10, the description field is listed
twice and will generate a child element called summary and another child ele-
ment called details. If you omit the “Element name,” then the field name will
be used as element name. For example, the title, genre, and rating fields all
end up as child elements with the name equal to the field name.

Generate attributes of the “Root XML element” using the field value as the ■

attribute value. For this setting, you must set the Attribute property to Y, and
the Attribute Parent Name must be left blank. In this case, the “Element name”
property will be used as the attribute name. If no “Element name” is speci-
fied, the “Field name” will be used as attribute name instead. For example, in
Figure 21-10, the film_id field is used to generate an id attribute of the “Root
XML element.”

Use the field value as text content of the “Root XML element.”■ As far as the
configuration is concerned, this is almost like the first option, except that you
must use whatever name you specified as “Root XML element” for the “Element
name” property in the field grid. Although the configuration change is small,
the difference in effect is quite large: No child element is generated, and the
value of the field is dumped as text inside the root element instead. To see an
example of this configuration, take a look at the “actorRef XML” step. This lists
only the actor_id field in the Fields tab, using actorRef as “Element name.”
The identifier actorRef is also used as the “Root XML element” in the content
page, resulting in generation of elements such as <actorRef>1234</actorRef>,
where 1234 is the value of the actor_id field.

 Chapter 21 ■ Web Services 541

Generate attributes of the child elements of the “Root XML element.”■
Configuring this option is almost like the second option (generating attributes
of the “Root XML element”). The only difference is that in this case, you should
enter the name of the element that is to receive the attribute in the “Attribute
Parent name” property in the grid.

If the field has a NULL value, the default behavior is to generate an empty element or
attribute value. You can also choose to omit such elements and attributes by checking
the “Omit null values from XML result” checkbox on the Content tab.

The following is an example of an XML fragment generated by the Add Video XML
step for one particular input row:

<video id=”2”>

 <title>ACE GOLDFINGER</title>

 <genre>Horror</genre>

 <rating>G</rating>

 <summary>

 An Astounding Epistle of a Database Administrator

 And a Explorer who must Find a Car in Ancient China

 </summary>

 <details>

 An Astounding Epistle of a Database Administrator

 And a Explorer who must Find a Car in Ancient China

 </details>

 <year>2006</year>

 <dvd>12.99</dvd>

 <dvd_stock>3</dvd_stock>

 <actorRef>19</actorRef>

 <actorRef>85</actorRef>

 <actorRef>90</actorRef>

 <actorRef>160</actorRef>

</video>

Using the XML Join Step

Although the Add XML step can be used to generate XML elements with element
content, the level of nesting is limited to only one level. Another limitation is that you
can only generate a fixed set of child elements, which must be known in advance. The
XML Join step provides an answer to these limitations.

The XML Join step can be used to merge a collection of XML elements in a stream
(the source) into another single XML fragment (the target). So although this step in
fact joins two streams of XML in the sense of uniting two distinct things, one should
not compare this to a database join operation. The best way to explain this is to look
at an example.

Let’s consider the Join Actor XML step from the export_xml_from_db transforma-
tion. The configuration for this step is shown in Figure 21-11.

542 Part V ■ Advanced Topics

Figure 21-11: The configuration of the Join Actor XML step

Target

 In this case, the target is the empty template document, which enters the Join Actor XML
step via the Document Template XML step in the bottom flow of the transformation.
The target is configured by setting the “Target XML step” property to the name of the
step from where the target stream originates, and the “Target XML field” is the field in
the outgoing stream of that step that contains the XML fragment that will receive the
XML elements from the source step.

Source

The source is the Actor XML step, which delivers a collection of actor XML elements
(namely, one for each row in the incoming stream of the Actor XML step). This is con-
figured by setting the “Source XML step.” The “Source XML field” has to be set to the
field in the source step’s outgoing stream that contains the XML fragments that are to
be merged into the target.

Join Condition

In the “Join condition properties” fieldset, you can control where in the target XML frag-
ment the source is to be inserted. This is done by specifying an XPath expression in the
“XPath statement” property. In Figure 21-11, the XPath expression is /result/actors,
which means that the actor elements coming in from the source stream are to end up as
content of the actors element beneath the result element in the target fragment.

 Chapter 21 ■ Web Services 543

Result Stream

In the “Result stream properties” fieldset, you can set the name of the field in the out-
going stream that is to contain the resulting target fragment. In addition, you can set
things such as the Encoding, whether or not to omit the XML declaration, and how to
handle NULL values. These properties are similar to the properties of the same name
we discussed for the Add XML step.

Here’s an example of what the target document looks like after the “Join actor XML”
step:

<?xml version=”1.0” encoding=”UTF-8”?>

<result>

 <video_template/>

 <actors>

 <actor id=”1”>Guiness, Penelope</actor>

 ...many more actor elements...

 <actor id=”884”>Sharif, Omar</actor>

 </actors>

 <videos/>

</result>

Complex Join Conditions

For both the Join Actor XML and Join Video XML steps, the task of merging the source
stream with the target document is quite simple: The XML elements coming in from the
source stream are simply dumped in a single container element. For the “Join actorRef
XML,” it’s not so simple.

The task of the “Join actorRef XML” step is to merge the actorRef elements coming
in from the “Add actorRef XML” step into the target document. As we mentioned several
times before, actorRef elements are child elements of the video elements to indicate
which actors appear in which video. So the difference as compared to the other XML
Join steps is that, in this case, there are multiple video elements in the target that are to
receive actorRef elements, and we must be sure to add a particular actorRef element
only to those video elements if the respective actor does, in fact, appear in that video.
In other words, we need some way to correlate the source and target elements.

You can correlate source and target elements by using a so-called complex join condi-

tion. The “Join actorRef XML” step uses such a condition (see Figure 21-12).
To enable complex join conditions, the “Complex join?” checkbox has to be checked.

The XPath expression used for the “Join actorRef XML” step uses a predicate with a ?
placeholder to seek out a specific video target element. In addition, the “Join comparison
field” is set to the name of the film_id field from the source stream. For each row in the
source stream, the placeholder is bound to the value of the “Join comparison field,” and
the XPath expression is evaluated to find the appropriate target element. This way, the
actorRef elements are merged one at a time into whatever video element is indicated
by the value of the film_id field in the source stream. Like the tokens supported by
the “Get data from XML step,” the ? placeholder is not standard XPath.

544 Part V ■ Advanced Topics

Figure 21-12: Correlating source and target elements using complex

joins in the “Join actorRef XML” step

SOAP Examples

In this section, we take a closer look at using the “Web services lookup” step to call
SOAP-based web services.

Using the “Web services lookup” Step

The step within Kettle that does all the SOAP magic is “Web services lookup.” This step
resides beneath the Lookup category in the left side pane tree view.

Unlike the “HTTP client” step, the “Web services lookup” step doesn’t have to be
kick-started by feeding it a row with the Generate Rows step (or any other step that
can output at least one row to the next step). The “Web services lookup” step uses the
Web Services Description Language (WSDL) to retrieve web services. See http://
en.wikipedia.org/wiki/Web_Services_Description_Language for more infor-
mation on WSDL.

Configuring the “Web services lookup” Step

Kettle ships with one working example of the “Web services lookup” step. This sample
resides in the samples/transformations directory beneath the Kettle installation

 Chapter 21 ■ Web Services 545

directory and is called “Web services lookup - convert degrees Celsius to Fahrenheit.”
We will now discuss the configuration options of the “Web services lookup” step using
this sample.

The Web Services Tab

The configuration dialog of the “Web services lookup” step always has one tab labeled
“Web Services” (see Figure 21-13).

Figure 21-13: The Web Services configuration dialog

The most important item in this tab is the URL. Here, you must enter the URL
that returns the WDSL document that describes this web service. If the web service
requires authentication, you also need to enter your credentials in the Http Login and
Http Password fields in the “Http Authentication” fieldset in the middle section of the
configuration dialog. If you do not have direct access to the Internet and use a proxy
instead, you should enter appropriate values in the Proxy Host and Proxy Port proper-
ties in the “Proxy to use” section at the bottom of the configuration dialog.

After entering the URL, press the Load button. This will perform a request for a
WDSL description, and automatically populate the Operation combo box. In our exam-
ple, the box will contain four entries: CelciusToFahrenheit, FahrenheitToCelcius,
WindChillInCelcius, and WindChillInFahrenheit. These are the methods imple-
mented by this web service, and you must choose which one you want to use.

After choosing a value or the operation, Kettle creates two more tabs: one tab to
specify the parameters for the web service, and one tab page to control how to process
the result returned by the web service.

The “in” Tab

The “in” tab is automatically added after you choose an operation that requires input
parameters. It features a grid for entering the input parameters for the specified

546 Part V ■ Advanced Topics

operation of the web service. The “in” page of the temperature conversion example
transformation is shown in Figure 21-14.

Figure 21-14: The “in” tab

The WS Name and WS Type columns of the grid are automatically populated with
parameter names and types respectively after pressing the Load button. You still need
to map the fields from the incoming stream to these parameters in the Name column.

The Result Tab

The results tab can be used to map the result of the web service call to the output
stream. The configuration for the temperature conversion example is shown in
Figure 21-15.

Figure 21-15: The results tab

Initially, the grid in the result tab is empty, but you can use the Fields button to
populate it. You can use the Name column to map the fields from the response to the
output stream.

Accessing SOAP Services Directly

WSDL leaves room for different implementations and dialects, of which only a part
is supported by Kettle at the time of this writing. If the “Web services lookup” step
doesn’t work as expected, returns an empty set, or returns an error message, you can

 Chapter 21 ■ Web Services 547

check the “Return the complete reply from the service as a String” checkbox to receive
the raw XML response from the service, and parse that using a “Get data from XML”
step. Alternatively, you can try to access the service using an “HTTP client” or HTTP
Post step and parse the response using a “Get data from XML” step.

A common use case for web services is to retrieve master data such as county codes
and names. There are many publicly available web services that let you retrieve this
data. One example is the collection of country info web services available at http://
www.oorsprong.org/websamples.countryinfo/CountryInfoService.wso. The
website lists a large collection of different operations that can be called, including
ListOfCountryNamesByName, which we’ll use in the following example.

TIP An excellent way to test and play with web services outside Kettle is to

use the open source tool soapUI. You can find it at http://www.soapui.org.

The challenge with using web services in Kettle is that you need to find out what the
output looks like in order to parse the resulting XML correctly. This is where a tool like
soapUI might come in handy. It’s also possible to use the preview options in Kettle for
this. Just create a new transformation and add a Generate Rows step with the complete
URL, as shown in Figure 21-16.

Figure 21-16: Generate Rows with URL

Then, add an “HTTP client” step to call the web service, get the data from this URL,
and pass it on as an XML file, as shown in Figure 21-17.

Figure 21-17: Call web service

548 Part V ■ Advanced Topics

NOTE The “HTTP client” step issues an HTTP GET request. Some SOAP web

services may not be designed to respond to GET requests and require a POST

request instead. In those cases, try using the HTTP Post step instead of the

“HTTP client” step. The HTTP Post step also resides beneath the Lookup cat-

egory in the left side bar tree view.

In order to enter the correct values in the next “Get data from XML” step, you first
need to find out what the actual result string looks like. You can do this by issuing a pre-
view on the “HTTP client” step. Figure 21-18 shows that the result is a single XML row
with the root element name ArrayOftCountryCodeAndName and repeating element
tCountryCodeAndName. The elements themselves are called sISOCode and sName.

Figure 21-18: Examine preview data

This is all the information you need to correctly parse the XML. First you mark the
first checkbox in the “Get data from XML” step (“XML source is defined in a field?”) and
specify CountryXML as the source field. Then, in the Content tab of the step, the value of
Loop XPath is set to the value ArrayOftCountryCodeAndName/tCountryCode AndName.
The final step is to list the XPath values of the elements we want to retrieve and the output
column names we want to use for them, as shown in Figure 21-19.

Figure 21-19: Get XML data

The final step in this example is “Select values” from the Transform category, which
gets rid of the XML data, passing on only the ISO code and country names as stream

 Chapter 21 ■ Web Services 549

fields. The preview of this step, as displayed in Figure 21-20, shows that we’ve accom-
plished our goal of getting a list with country codes and names.

Figure 21-20: Country code and name preview

JSON Example

We already mentioned that Kettle does not have any special features for dealing with
JSON but that you can use the Modified Java Script Value step to evaluate the JSON to
a JavaScript data structure. What we didn’t discuss yet is how to access the data within a
JavaScript data structure and turn that data into rows and fields for the outgoing
stream.

We will discuss in detail how to do this using an example to extract data from the
Freebase open database project. In order to understand this example, it is necessary to
provide a little background information about the Freebase project, its web services,
and the way these web services work with JSON.

The Freebase Project

We will base our example on data and services offered by the Freebase project. The
Freebase project is a large database containing information on all kinds of topics.

Freebase is sponsored by a company called Metaweb, which owns the (proprietary)
database software on which freebase runs. The Freebase data, however, is accessible
to everybody through a Creative Commons license.

NOTE For more information about freebase, read the Freebase FAQ at:

http://wiki.freebase.com/wiki/FAQ.

For more information about Metaweb, see the Metaweb FAQ at http://

www.metaweb.com/faq.

Freebase Versus Wikipedia

Freebase resembles Wikipedia in that it is an open and collaboratively collected and
maintained encyclopedia. What distinguishes it from Wikipedia is that its data is quite

550 Part V ■ Advanced Topics

rigorously structured in entities and relationships and that these entities and relation-
ships can be accessed and manipulated through a query language that is available
through web services. Whereas Wikipedia is intended primarily as a human-readable
knowledge base application, Freebase is essentially a knowledge base infrastructure,
allowing developers to build all kinds of applications, including but not limited to
Wikipedia-like encyclopedia applications.

To source its data, Freebase uses an open collaboration model with a moderation
system similar to that of Wikipedia. In addition, many topics contained in Freebase are
directly sourced from Wikipedia itself.

Freebase Web Services

The principal means to access and manipulate data in Freebase is to use web services. The
web services offered by Freebase fall into the category of REST APIs. Although libraries
are available for various programming languages, the API exposed by these libraries
simply wraps around the web services, hiding the details of doing a HTTP request,
receiving the response, and processing the resource.

NOTE For an overview of the web services offered by Freebase, see

http://www.freebase.com/docs/web_services.

Freebase offers a number of web services for a number of operations, including
authentication, reading and writing data, search and more. All services operate through
HTTP GET and POST requests, and use JSON exclusively as a data format, both for
specifying parameters in the request as well as encoding the data in the response.

To make it easy to integrate freebase into modern web applications, all web services
support a callback parameter. Specifying the callback parameter causes the JSON
response to be returned as an argument to a JavaScript function call, where the callback
parameter specifies the name of the function. This technique is known as JSONP and is
used predominantly in web browser applications to get an automatic notification once the
service request returns a response. When evaluating the response as JavaScript, the call-
back function is called and passed the actual JSON response so it can be processed.

The Freebase Read Service

For our example, we will focus on the Freebase read web service, which is used to
retrieve data from freebase. The read web service can be called with an HTTP GET or
POST request using the following URL: http://api.freebase.com/api/service/
mqlread. You can enter this URL directly in the browser address window, and you will
receive the following response:

{

 “code”: “/api/status/error”,

 “messages”: [

 {

 “code”: “/api/status/error/input/invalid”,

 Chapter 21 ■ Web Services 551

 “info”: {

 “value”: null

 },

 “message”: “one of query=, or queries= must be provided”

 }

],

 “status”: “400 Bad Request”,

 “transaction_id”:

 “cache;cache01.p01.sjc1:8101;2010-04-06T17:36:16Z;0050”

}

The response is a human-readable (well sort of, anyway) JSON object, and most
people will recognize that the service is trying to explain that the request is not con-
sidered valid. This is because the read service requires a query that specifies exactly
which data you want to retrieve.

The Metaweb Query Language

Freebase queries must be specified in the Metaweb Query Language (MQL) and passed
to the service via a parameter called query. So the URL would become:

http://api.freebase.com/api/service/mqlread?query=...mql query here...

The MQL query itself is a small piece of JSON that provides a kind of query by
example to describe what kind of data you want to retrieve. A detailed explanation of
MQL is outside the scope of this book, but we can illustrate its essence with a simple
query example. The following snippet is a valid MQL query to retrieve all film direc-
tors stored in freebase:

[{

 “type”: “/film/director”,

 “name”: null

}]

As you can see, the query is a JSON array containing one object literal with two
members, type and name. This object acts like an example or template for the object
instances that you want to find.

To execute this query, you need to wrap it inside another JSON structure called a
query envelope and append it to the freebase service URL like this:

http://api.freebase.com/api/service/mqlread?query=

{“query”:[{“type”:”/film/director”,”name”:null}]}

In the snippet, the envelope and MQL query appear on a separate line. In reality,
this should be entered as a single line. When you execute this in the browser, the result
looks like this:

{

 “code”: “/api/status/ok”,

 “result”: [

552 Part V ■ Advanced Topics

 {

 “name”: “Blake Edwards”,

 “type”: “/film/director”

 },

 ...many more directors go here...

 {

 “name”: “Andrew Stanton”,

 “type”: “/film/director”

 }

],

 “status”: “200 OK”,

 “transaction_id”:

 “cache;cache03.p01.sjc1:8101;2010-04-06T18:51:11Z;0023”

}

NOTE By default, Freebase limits the number of returned results to 100

items for reasons of performance and scalability. It is possible to retrieve

more results by issuing multiple requests. More information on this topic can

be found in the section about retrieving large resultsets in the MQL Reference

Guide at http://www.freebase.com/docs/mql/ch04.html#cursors.

As you can see, the response is also a JSON object, which is called the result envelope.
The result envelope contains a few properties such as code, status, and transac-
tion_id, which convey information about executing the query. You already encoun-
tered these properties when you first invoked the service.

Just as the MQL query was wrapped in the query envelope as the query member, the
actual query result is contained in a result member of the result envelope. If you compare
this result with the original MQL query, you should notice that the JSON structure of
the query is mirrored in the result: Both the MQL query and its result have the form of a
JavaScript array, and the result array entries have the same properties as the single object
entry contained in the array specified by the query. This is shown in Figure 21-21.

MQL result envelope

MQL query envelope

{
 "query":[
 {
 "type":"/film/director",
 "name":null
 }
]
}

{
 "code":"/api/status/ok"
 "result":[
 {
 "type":"/film/director",
 "name":"Blake Edwards"
 },

 ...more results here...

 {
 "type":"/film/director",
 "name":"Andrew Stanton"
 }
],
 "status":"200 OK",
 "transaction_id":"........."
}

Figure 21-21: The MQL query and result envelopes

 Chapter 21 ■ Web Services 553

In the query, the type property denotes which kinds of entities to retrieve, and as
such it is analogous to the FROM clause in an SQL query. This property is repeated as-is
in the result entries. The query specified a null for the name property, and in MQL this
means that the values for the name property should be filled in in the query result. This
can be thought of as an expression in the SELECT list of an SQL query.

NOTE Although it is possible to some extent to point out analogies between

MQL and SQL queries, it’s important to realize that Freebase is not a relational

database. The analogies are very superficial and serve only to give you a quick

idea how to get things done with MQL.

Now that we mentioned a few analogies to the SQL language, you might wonder what
MQL construct is analogous to the SQL WHERE clause. MQL does not offer condition-
based filtering in the same way as SQL, but instead supports a kind of querying by
example. To find instances having a particular property, you simply specify that prop-
erty in the query. Executing the query then automatically filters for only those objects
that resemble the example provided by the query while filling in the blanks (that is,
the properties with null values).

The MQL basics we just discussed should be just enough to ensure that you can fol-
low the actual Kettle example.

NOTE There is much more to the MQL query language than the simple con-

structs we just discussed: MQL is a full-fledged database query language with

features resembling joins and subqueries, comparison operators, aggregation,

built-in history, and much more.

For more information, visit the Freebase developer zone, in particular the

MQL reference guide at http://www.freebase.com/docs/mql. The developer

zone also features useful applications for working with Freebase and MQL, such

as the schema explorer, which is useful for discovering what types of entities

are stored in freebase, which properties they have, and which relationships

they have with other entities: http://schemas.freebaseapps.com/. For writ-

ing MQL queries, we highly recommend the MQL query editor (http://www

. freebase.com/app/queryeditor/), which offers a much more user-friendly

interface to writing MQL queries than the browser address bar.

Extracting Freebase Data with Kettle

The transformation we prepared extracts films stored in the Freebase database and is
simply called freebase-films.ktr. It can be obtained from the download area of this
book’s website, in the folder for Chapter 21. Figure 21-22 shows what the transforma-
tion looks like.

554 Part V ■ Advanced Topics

Figure 21-22: The freebase-films transformation

Generate Rows

The transformation works by first generating one row with the Generate Rows step.
The configuration for the step is shown in Figure 21-23.

Figure 21-23: Generate Rows

This row contains a few constant string fields:

url■ : The URL of the freebase read service:

http://api.freebase.com/api/service/mqlread

mql■ : The MQL query envelope with a query to retrieve the freebase films, along
with any genres:

{“query”:[{“type”:”/film/film”,”name”:null,”genre”:[]}]}

name■ and genre: Both are empty but will be filled later on in the transformation
after we have processed the result envelope.

 Chapter 21 ■ Web Services 555

Issuing a Freebase Read Request

The generated row is fed into the “HTTP client” step labeled “Freebase read service.” The
configuration for this step is shown in Figure 21-24.

Figure 21-24: Invoke the Freebase read service

The “HTTP client” step is configured to accept the URL from the url field from
the incoming stream. The resource will be placed in the result field of the outgoing
stream. To pass the MQL query to the Freebase read web service, the parameters grid
maps the mql field from the incoming stream to a query parameter. This will result in
responses like the following:

{

 “code”: “/api/status/ok”,

 “result”: [

 {

 “genre”: [

 “Black comedy”,

 “Thriller”,

 “Psychological thriller”

],

 “name”: “.45”,

 “type”: “/film/film”

 },

...many more films and genres...

 {

 “genre”: [

 “Disaster”,

 “Thriller”,

 “Drama”,

 “Natural disaster”

],

 “name”: “10.5”,

 “type”: “/film/film”

556 Part V ■ Advanced Topics

 }

],

 “status”: “200 OK”,

 “transaction_id”:

 “cache;cache04.p01.sjc1:8101;2010-04-06T22:23:15Z;0017”

}

Processing the Freebase Result Envelope

The response is then processed using a Modified Java Script Value step labeled “Parse
JSON.” This step does not have any particular configuration, except for the script itself.
The JavaScript code is as follows:

var o, r, i;

//Turn response envelope text into a JavaScript

//object and assign it to the local variable o.

eval(“o = “ + result);

//look through the array entries of the result

for (i=0, rows = o.result; i < rows.length; i++){

 //Get current result row

 r = rows[i];

 //Use putRow() method of the builtin _step_

 //object to push a row to the output stream

 step.putRow(

 rowMeta, //use builtin row metadata

 [

 null, //field: url

 null, //field: mql

 r.name, //field: name

 r.genre.join(“,”), //field: genre

 null //field: result

]

);

}

First, the script uses a call to the JavaScript built-in function eval(). This function
takes its string argument and attempts to dynamically evaluate the text as JavaScript.
The expression passed into the eval() function effectively assigns the JSON response
contained as text in the result field of the incoming stream to the local variable o. So
after executing the eval() function, you can access the result envelope as a JavaScript
object through the o variable.

 Chapter 21 ■ Web Services 557

The second part of the script initializes a loop to iterate over the outermost array
stored in the result member of the result envelope. Each entry in this array corre-
sponds to one film retrieved from the Freebase read service.

Inside the loop, the putRow() method of the built-in _step_ object is used to gener-
ate new rows for the outgoing stream. This _step_ object is actually the instance of
the Modified Java Script Value step itself, exposed as a JavaScript object. The putRow()
method of this object maps to the underlying Java method that actually emits rows to
the output stream.

The putRow() method takes two arguments: rowMeta, which describes the layout
(metadata) of the generated row, and an array that contains the actual field values for the
outgoing row. The rowMeta object is built-in, just like the _step_ object, and automati-
cally reflects the layout of the incoming rows. To save the hassle of changing the row
layout, we added fields for the film name and genre instead up front in the Generate
Rows step, which is why we had to define two empty fields there.

NOTE Always make sure the row metadata matches the metadata of the val-

ues that you assign to the row; otherwise the script won’t work, or may lead

to unexpected results.

As you can see, the new row sets all fields that were filled in the incoming stream
to null. The only fields that are assigned a value are name and genre field. The value
for the name field is taken immediately from the name property of the current entry of
the query result.

For the genre field, things are slightly more complicated because the corresponding
genre property in the query result can be an array of genre values. For this reason, the
script uses the JavaScript built-in join() method of the array object. This method simply
serializes the array to string by concatenating its entries, separating them with a comma.
So in the outgoing stream, the genre field will contain a comma-separated list of genre
values, which can be further processed downstream. This can, for example, be done
using a “Split field to rows” step. This step is discussed in more detail in Chapter 20, in
the section on multi-valued attributes.

Filtering Out the Original Row

Apart from outputting the rows you generate by calling the putRow() method, the
Modified Java Script Value step also emits the original row coming in from the input
stream. Because this row does not contain any data from the query result, it is useless
to you, and you have to discard it. This is done using a simple Filter Rows step.

It is easy to spot the original row: Because the JavaScript code fills the name and genre
fields, which you know are empty upstream of the Modified Java Script Value step,
you can simply check if the name field IS NOT NULL. If it’s not, then you’re apparently
dealing with a row having a film name, so you have to retain that. If, on the other hand,
the name field is NULL, then this must be the original row, which is then discarded by
leading it to the Dummy step.

558 Part V ■ Advanced Topics

Storing to File

The final step in the transformation is storing the data to file. Here’s an example of the
output:

mql;name;genres;result

;.45;Black comedy,Thriller,Psychological thriller;

...many more rows...

;13 Ghosts;Horror;

;10.5;Disaster,Thriller,Drama,Natural disaster;

As you can see, our transformation got rid of the nested JSON completely, transform-
ing the data neatly into columns.

RSS

RSS stands for Really Simple Syndication and refers to a collection of XML-based data
formats designed to exchange information about updates in some information source. It is
in widespread use in blogs and news websites to allow visitors to subscribe to updates to
the site—a usage commonly referred to as a feed (or XML-feed, RSS-feed or webfeed).

RSS Structure

RSS is a relatively simple XML vocabulary consisting of two fundamental elements:
channel, and items. We discuss both in the remainder of this section.

Channel

At the top level, an RSS document is an rss element, with a mandatory version attri-
bute that specifies the version of RSS that the document conforms to. In the following
document, the version attribute is 2.0.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<rss version = “2.0”>

...

</rss>

The rss element has a single channel element, which contains information about
the source that provides the feed and its contents. The channel represents the metdata
of the feed.:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<rss version = “2.0”>

 <channel>

 <title>Press Releases</title>

 <link>

 http://www.pentaho.com/news/index.php?tab=news

 Chapter 21 ■ Web Services 559

 </link>

 <description>

 The latest Pentaho News

 and Press Releases from

 Pentaho.com.

 </description>

 </channel>

</rss>

The following elements are required for channel:

title■ : The name of the channel

link■ : The URL of the website corresponding to the channel

description■ : A phrase describing the channel

A channel can have optional elements (for example the language the channel is
written in, copyright notice for content in channel, and so on) and some optional
 sub-elements.

Item

A channel may contain many item elements. Each item element represents a particular
update or change to the site and typically contains a description element that serves
as a summary of the update, and a link element that contains a URL pointing to the
actual changed part of the site. For example, in the RSS feed of a news site, the items
typically represent new articles, the description would provide a summary or first
paragraph of the article, and the link would point to the actual article itself. All ele-
ments of an item element are optional; however, a title or description element
should be present.

An item can have the following elements:

title■ : The title of the item

description■ : The item synopsis

link■ : The URL of the item

pubDate■ : Indicates when the item was published

comments■ : The URL of a page for comments relating to the item

guid■ (Globally Unique Identifier): A string that uniquely identifies the item

The following document is an example of channel with two items:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<rss version = “2.0”>

 <channel>

 <title>Press Releases</title>

 <link>

 http://www.pentaho.com/news/index.php?tab=news

 </link>

560 Part V ■ Advanced Topics

 <description>

 The latest Pentaho News

 and Press Releases from

 Pentaho.com.

 </description>

 <item>

 <title>

 Pentaho Releases Analyzer as First

 Deliverable in Agile BI Initiative

 </title>

 <link>

 http://www.pentaho.com/news/releases/20091104.php

 </link>

 <pubDate>Wed, 04 Nov 2009 9:00:00 EST</pubDate>

 </item>

 <item>

 <title>

 Pentaho Announces Strategic

 Technology Acquisition

 </title>

 <link>

 http://www.pentaho.com/news/releases/20091005.php

 </link>

 <pubDate>Mon, 05 Oct 2009 9:00:00 EST</pubDate>

 </item>

 </channel>

</rss>

You can extend feeds with geographic information. At this time, Pentaho Data
Integration only supports points (longitude and latitude) on basic geometries (GeoRSS-
Simple) and GeoRSS GML, which supports a great range of features. The following
illustrates a Simple geographic item:

<georss:point>45.256 -71.92</georss:point>

And here’s a GML item:

<georss:where>

 <gml:Point>

 <gml:pos>45.256 -71.92</gml:pos>

 </gml:Point>

</georss:where>

RSS Support in Kettle

Now that you know how RSS works, let’s see how Kettle deals with syndication. Kettle
can both read and write RSS feeds using the RSS Input and RSS Output steps. We
examine these steps in more detail in the following sections.

 Chapter 21 ■ Web Services 561

RSS Input

The RSS Input step is available in the Input category from the left side pane tree view. It
allows you to extract data from most RSS and Atom syndication formats, including:

RSS 0.90 ■

RSS 0.91 Netscape ■

RSS 0.91 Userland ■

RSS 0.92 ■

RSS 0.93 ■

RSS 0.94 ■

RSS 1.0 ■

RSS 2.0 ■

Atom 0.3 ■

Atom 1.0 ■

Here we present this step through an example that consists of reading all articles
from Pentaho.com published since the first of January 2010. First, you need to specify
the URL from which you read feeds in a URL list as shown in Figure 21-25.

Figure 21-25: General tab of RSS Input

As you can see, the General tab specifies the URL list that you can enter in a static way
or dynamically by using an environment variable or the field of an incoming stream
(check “URL is defined in a field” and select the field in the “URL Field” box). Once
you have the source URL, you can specify on the Content tab that you need only feeds
published since the first of January 2010. This is shown in Figure 21-26.

562 Part V ■ Advanced Topics

Figure 21-26: Content tab of RSS Input

The content tab has the following options:

Read articles from :■ Enter the date from which you will retrieve articles. You must
enter the date with the following format: yyyy-MM-dd HH:mm:ss.

Max number of articles:■ Limit the number of articles to the top N (0 means
extract all articles).

Include url in output:■ If you have specified the URL in a static way, you can add
it in the outgoing stream by checking this option. A field (string) named for the
value you entered in “URL fieldname” will be added to outgoing stream.

Include rownum in output:■ This option, available in many input steps, will add a
field that contains a row number (first row will have number 1, etc.) in the outgoing
stream. Simply select this value and enter a name for the field in the “Rownum
fieldname” box.

The final step is to get the fields. On the Fields tab, shown in Figure 21-27, use the
“Get fields” button to return all available fields. Simply remove and/or rename outgo-
ing fields at your convenience.

You can check feeds using the “Preview rows” button on the General tab. As you
can see, it is very easy to retrieve feeds from RSS thanks to Kettle, and you can then
process your data using other steps.

RSS Output

The RSS Output step is the functional complement of the RSS Input step: it takes data
from an input stream and writes it in RSS format to a file. These files can then be served
through a web server to implement a feed for a website or web application. The RSS
Output step lets you output a standard RSS feed (with elements explained previously),
but you can also configure it to deliver a customized RSS feed.

 Chapter 21 ■ Web Services 563

Figure 21-27: Select fields

The following example demonstrates a standard RSS feed with one item. The output
RSS feed of this example is shown following:

<?xml version=”1.0” encoding=”UTF-8”?>

<rss version=”2.0”>

 <channel>

 <title>My Channel</title>

 <link>http://www.mychannel.com</link>

 <description>Example of RSS feed</description>

 <item>

 <title>Test item</title>

 <link>http://www.mychannel.com/feed0</link>

 <description>An item in the channel</description>

 <guid>http://www.mychannel.com/feed0</guid>

 </item>

 </channel>

</rss>

The transformation that generates this output is shown in Figure 21-28.

Figure 21-28: Transformation demonstrating RSS output

564 Part V ■ Advanced Topics

Source Data

For this example, you use two “Generate rows” steps:

 1. For the child elements of the channel element (channelTitle, channel-
Description, and channelLink), simply drop a “Generate rows” step to the
workbench and enter the values as shown in Figure 21-29.

Figure 21-29: RSS Output source channel

 2. For the child elements of the item element, (itemTitle, itemDescription, and
itemLink), enter the values shown in Figure 21-30.

Figure 21-30: RSS Output source item

 3. Next, link these two steps with a “Cartesian join” step.

Now that you have your source data, the next sections walk you through creating a
standard feed and a custom feed.

 Chapter 21 ■ Web Services 565

Standard Feed

A standard feed has predefined mandatory or optional elements in both channel and
item, as mentioned earlier. To produce standard feed, make sure that “Create custom
RSS” is unchecked as in Figure 21-31, and remove the channel and item elements from
incoming fields.

Figure 21-31: RSS Output Channel tab

The Channel tab (shown in Figure 21-31) is dedicated to channel items; mandatory
fields are marked by an asterisk (*), all others fields are optional and PDI will not
complain if you leave them blank. At the bottom of the page, you can set the character
encoding and specify the RSS version. Typically, you should use UTF-8 here (which is
also the default encoding for XML in general).

One you have mapped the channel elements with incoming fields, you need now
to do the same work for items. There is no mandatory item element, as you can see in
Figure 21-32. Set only those elements that you need and leave all others blank.

566 Part V ■ Advanced Topics

Figure 21-32: RSS Output Item tab

The final step is to configure the output file that will contain the feed. The Output
File tab is shown in Figure 21-33.

Figure 21-33: RSS Output File tab

 Chapter 21 ■ Web Services 567

The top section of the tab offers the following settings:

Filename:■ Specify the full filename that will contain the feed. Use the “Browse…”
button if necessary.

Create Parent folder:■ Select this option if you need to create a parent folder at
run time; otherwise, if you select an output filename with a nonexistent parent
folder, PDI will fail.

Filename defined in a field:■ You can send a filename dynamically. PDI will read
the value from the “Filename field.”

Filename field:■ Name of the field that contains filename (see previous bullet).
The value will be extracted in the first received row.

Extension:■ Output filename extension that will be added to filename.

Include stepnr in filename:■ Adds copy number of the step to filename (the copy
number that begins with 0, …).

Include date in filename:■ Adds date to filename.

Include time in filename:■ Adds time to filename.

Show filename(s):■ Click this button to see what the filename looks like after set-
ting all the previous settings.

The lower section, Result Filename, includes one option:

Add File to result:■ Add filename to result filenames.

That’s it for a standard feed. The sample transformation RSSOutputStandard.ktr
will create a file containing the feed.

Custom Feed

You saw that in a standard feed, the channel, and item elements tags are prefixed. This
is not the case for a custom feed. In fact, you can define any element tag that you need
by checking the “Create custom RSS” box on the Channel tab. After checking this, the
standard fields for channel and item you just configured are not used and are in fact
disabled in the configuration dialog. To control the output of a custom feed, you need
to activate the custom output tab. There, you’ll find two grids: one for the channel and
one for the items. In the grids, you can define element names and assign the field from
the incoming stream that is to provide the content for these elements.

Summary

In this chapter, we took a closer look at the Kettle features that allow you to work with
the Web and web services. We covered a lot of ground:

A review of Kettle features for web access, such as general HTTP steps, SOAP, ■

RSS and Apache virtual file system.

568 Part V ■ Advanced Topics

Data formats that are widely in use on the Web, such as XML, HTML, and ■

JSON.

A detailed example for importing XML data into a database, demonstrating the ■

use of the XSD Validator step to validate an XML document against an XML
Schema, and the “Get data from XML” step to extract data from an XML docu-
ment using XPath syntax.

A detailed example for exporting data from a database to an XML format, demon-■

strating the Add XML step for generating simple XML structures such as elements
and attributes and the XML Join step for generating nested XML elements.

How to access SOAP web services using the “Web services lookup” step.■

How to digest SOAP web services directly using either an “HTTP client” or an ■

HTTP Post step, and then parsing the XML result.

A detailed example for extracting data from Freebase using the JSON-based MQL ■

language, and how to use the Modified Java Script Value step to extract data
form a JSON result.

An example that shows how to extract data from a RSS web feed.■

How to generate a standard RSS feed from source data.■

569

C H A P T E R

22

Kettle Integration

Kettle contains a rich set of data integration functionality that is exposed in a set of data
integration tools. However, you can also use Kettle as a library in your own software
and solutions. The re-use of other software is typical for open source software. It allows
you to stop re-inventing the same wheel time and again. In this chapter we explain the
license that makes this possible. Then we introduce you to the finer points of integrat-
ing Kettle in your own Java software. We start at a high level with a few examples from
Kettle usage in the rest of the Pentaho software stack. For each example, we explain
how you can perform a similar integration with the Kettle Java API. We also explain how
you can parameterize and customize the Spoon user interface. We finish off with a few
words about forking.

The Kettle API

In this section, we take a look at what makes Kettle popular as an API. We explore the
consequences of the LGPL license that comes with the Kettle software and provide a
number of examples of the Kettle API.

The LGPL License

When the development team agreed to make Kettle an open source product, they
decided to use the Lesser GNU Public License, or LGPL, (http://www.gnu.org/
licenses/old-licenses/lgpl-2.1.html). This license fell somewhat out of the

570 Part V ■ Advanced Topics

good graces of the GNU and Free Software Foundation (FSF) folks for the same reason
that it was selected in the first place: The LGPL license allows you to link proprietary
(closed source) code without the need to open source that code. While the LGPL license
requires you to make changes to the Kettle source code public if you redistribute these
changes, it does not require you to release code that simply uses the Kettle libraries.
This is in contrast to the GPL license. Software that carries this license can be used or
embedded, too. However, said software needs to release that source code to remain
compliant with the license.

As you can imagine, the capability to not only re-use the rich Kettle API but also to
be able to sell or distribute your new software is valuable to software vendors specifi-
cally and corporations in general. It is because of this that we can say that the LGPL is
a business-friendly license.

The LGPL also offers another advantage for Kettle. Kettle has had the ability to inte-
grate plugins since version 2.0. The LGPL license makes this particularly interesting
because the source code of a plugin does not have to be released. It allows any corpora-
tion to extend Kettle for its own needs with minimal effort. For more information on this
topic, see Chapter 23. Over the years, many step and job-entry plugins have been created
at corporations all over the world (see http://wiki.pentaho.com/display/EAI/
List+of+Available+Pentaho+Data+Integration+Plug-Ins). For some of these,
it was absolutely not possible or it made no sense to release the source code. However,
over the years a number of plugins have been released as source code and some of them
even made it into the main Kettle source tree as standard steps and job entries. That
makes LGPL a dependable and popular choice for the Kettle project.

The Kettle Java API

In this part of the chapter we explain how you can obtain and build Kettle from source
code. We also detail how you can compile the Java documentation. Finally, we explain
what’s in the four kettle libraries and list the libraries you need to include in the class
path of your Java software.

Source Code

If you want access the source code, you can either download it from Sourceforge.net at
http://sourceforge.net/projects/pentaho/ or get it directly from the Subversion
source code repository. The Kettle source code repository is open to everyone in read-
only mode at http://source.pentaho.org/svnkettleroot/Kettle.

The stable and patch releases are located under the branches/ subfolder while the
latest new developments are provided under the trunk/ folder. As such, if you want
to get the source code for the very latest (possibly unstable!) source code base, you can
do a Subversion checkout of the trunk folder with the following command(note that
the UNIX command-line svn command needs to be installed for this to run. Users
of a Windows compatible operating system can install Tortoise SVN. See http://
tortoisesvn.tigris.org/ for more information.):

svn co http://source.pentaho.org/svnkettleroot/Kettle/trunk/

 Chapter 22 ■ Kettle Integration 571

Building Kettle

Once you have the source code extracted, you can build Kettle from source. You do this
with the Apache Ant build tool (http://ant.apache.org/). To build a distribution of
Kettle in the distrib/ subfolder, simply type ant on the command line in the directory
that contains the Kettle source code.

Building javadoc

If you want to browse the Java documentation of the source code, you can invoke the
following command:

ant javadoc

This will generate the javadoc in the docs/api folder, which will allow you to see the
comments written to document the various classes and methods in the Kettle codebase.
You can use an Internet browser to start reading the file docs/api/index.html.

Libraries and the Class Path

Pentaho Data Integration (Kettle) is not just a collection of data integration and busi-
ness intelligence tools; it can also be used as a Java API. The API is split up into four
main parts:

Core:■ This contains the core classes for Kettle, stored in .jar file kettle-core
.jar.

Database:■ Containing the database-related classes of Kettle, stored in .jar file
kettle-db.jar.

Engine:■ The Kettle runtime classes from kettle-engine.jar.

GUI:■ All classes related to graphical user interfaces such as Spoon and that depend
on Eclipse SWT classes are stored in .jar file kettle-ui-swt.jar.

For the samples that follow, you need to put the first three .jar files in your class
path along with the .jar files you find in the libext/ folder of your Kettle distribution.
You might not need all of them but in general it’s better to be safe than sorry because
you usually have no idea up-front what sort of transformation you’ll be executing.

Executing Existing Transformations and Jobs

The following section explains how you can run your existing Kettle transformations
and jobs with the Java API.

572 Part V ■ Advanced Topics

Executing a Transformation

Examples of software that executes a Kettle transformation are, for obvious reasons,
mainly found in the Pentaho software stack. For example, Spoon, Pan, Carte, the
Pentaho BI server, and the Pentaho Data Integration server all are capable of executing
a transformation. Executing a transformation with the aforementioned tools is easy.
However, it is also fairly easy to do this with the Kettle 4.0 Java API. The following code,
ExecuteTrans.java, demonstrates this in only a few lines.

package example.ch22;

import org.pentaho.di.core.KettleEnvironment;

import org.pentaho.di.trans.Trans;

import org.pentaho.di.trans.TransMeta;

public class ExecuteTrans {

 public static void main(String[] args) throws Exception {

 String filename = args[0];

 KettleEnvironment.init();

 TransMeta transMeta = new TransMeta(filename);

 Trans trans = new Trans(transMeta);

 trans.prepareExecution(null);

 trans.startThreads();

 trans.waitUntilFinished();

 if (trans.getErrors()!=0) {

 System.out.println(“Error encountered!”);

 }

 }

}

As you can see, the listing is quite small and easy to understand. Let’s start with
this line:

KettleEnvironment.init();

This line of code initializes the complete Kettle environment. It loads all the plugins
it can find, initializes the logging environment, sets up and reads the variables system,
and even creates a Kettle home directory if it’s not already present. If anything goes
seriously wrong in there, an exception will be thrown for your convenience.

The following line creates a new TransMeta (transformation metadata) object by
reading it from a file:

 TransMeta transMeta = new TransMeta(filename);

It is also possible to read this metadata from a repository, which is easy to do with the
Repository.loadTransformation() method. Getting your hands on a Repository
interface is a bit more complex. You need to have the name (ID) of the repository to

 Chapter 22 ■ Kettle Integration 573

reference. Then you have to connect to the repository with a username and password.
The metadata for the repository is stored in a repositories.xml file. This can be
read by the RepositoriesMeta.readData() method. That allows you to look up the
RepositoryMeta object that describes the repository. The Repository interface is then
obtained by asking the PluginRegistry to load it for you:

RepositoriesMeta repositoriesMeta = new RepositoriesMeta();

repositoriesMeta.readData();

RepositoryMeta repositoryMeta = findRepository(repositoryName);

PluginRegistry registry = PluginRegistry.getInstance();

Repository repository = registry.loadClass(

RepositoryPluginType.class,

repositoryMeta,

Repository.class

);

repository.connect(username, password);

Once you have loaded the transformation metadata, you can execute it as follows:

 Trans trans = new Trans(transMeta);

 trans.prepareExecution(null);

 trans.startThreads();

 trans.waitUntilFinished();

This block creates a new transformation engine object, prepares (initializes) the
execution, and starts the transformation threads. Finally, because the whole transfor-
mation runs multi-threaded, it waits until all processing has completed.

Last but not least, you see if there were errors during the execution:

 if (trans.getErrors()!=0) {

 System.out.println(“Error encountered!”);

 }

Any errors encountered during the execution of the transformation are printed to
the console.

Executing a Job

As with transformations, examples of software that executes a Kettle job are also mainly
found in the Pentaho software stack. Spoon, Kitchen, Carte, the Pentaho BI server, and
the Pentaho Data Integration server are all capable of executing a job. The execution
of a job is similar to the execution of a transformation, as shown in the following code
(ExecuteJob.java):

package example.ch22;

import org.pentaho.di.core.KettleEnvironment;

import org.pentaho.di.job.Job;

import org.pentaho.di.job.JobMeta;

574 Part V ■ Advanced Topics

public class ExecuteJob {

 public static void main(String[] args) throws Exception {

 String filename = args[0];

 KettleEnvironment.init();

 JobMeta jobMeta = new JobMeta(filename, null);

 Job job = new Job(null, jobMeta);

 job.start();

 job.waitUntilFinished();

 if (job.getErrors()!=0) {

 System.out.println(“Error encountered!”);

 }

 }

}

As you can see, loading the job metadata from a file is very similar to what you saw
in the previous example. The only difference is that you pass a null repository reference
to the JobMeta constructor (because there isn’t one one in our example).

Embedding Kettle

The Pentaho software stack is a collection of over a hundred small to large components.
Many components are small core libraries while others are complete software collec-
tions, like the BI Server, hundreds of mega-bytes in size. The reason Pentaho has core
libraries is to maximize code re-use to minimize development efforts. Kettle is some-
where in the middle of the pack: it uses Pentaho core libraries but is used itself in other
components. As a result, integrating Kettle for various purposes has become easier over
time. In the following sections we’ll show you usage examples and the source code to
demonstrate how you can perform the same integration yourself.

Pentaho Reporting

Pentaho Reporting has the capability to obtain data directly from any step in a transfor-
mation. It can do this because it embeds the Kettle libraries. Pentaho Report Designer
(PRD) allows you to create a new data source under the Data menu of the type Pentaho
Data Integration. That in turn presents a dialog where you can select the transformation
to execute and the step to read from. Figure 22-1 shows the Pentaho Report Designer.

NOTE Because Kettle and Pentaho Reporting are usually on different

release schedules and because software changes over time, make sure that

you use the appropriate version of Pentaho Reporting to read data from a

transformation. Use version 3.5 of Pentaho Reporting to access transforma-

tions created with Pentaho Data Integration (PDI) 3.2 and version 3.6 (or

later) to access transformations created with PDI 4.0.

 Chapter 22 ■ Kettle Integration 575

Figure 22-1: Pentaho Reporting using Kettle

Reading information from a step in a transformation is quite easy to do. Now that
you know how to execute a transformation, we can extend our example that executes
a transformation by reading the data that is produced by a certain step, as shown in
the following code (ReadFromStep.java):

package example.ch22;

import java.util.ArrayList;

import java.util.List;

import org.pentaho.di.core.KettleEnvironment;

import org.pentaho.di.core.RowMetaAndData;

import org.pentaho.di.core.exception.KettleStepException;

import org.pentaho.di.core.row.RowMetaInterface;

import org.pentaho.di.trans.Trans;

import org.pentaho.di.trans.TransMeta;

import org.pentaho.di.trans.step.RowAdapter;

import org.pentaho.di.trans.step.RowListener;

import org.pentaho.di.trans.step.StepInterface;

public class ReadFromStep {

 public static void main(String[] args) throws Exception {

 String filename = args[0];

 String stepname = args[1];

 KettleEnvironment.init();

576 Part V ■ Advanced Topics

 TransMeta transMeta = new TransMeta(filename);

 Trans trans = new Trans(transMeta);

 trans.prepareExecution(null);

 final List<RowMetaAndData> rows = new ArrayList<RowMetaAndData>();

 RowListener rowListener = new RowAdapter() {

 public void rowWrittenEvent(RowMetaInterface rowMeta, Object[] row)

throws KettleStepException {

 rows.add(new RowMetaAndData(rowMeta, row));

 }

 };

 StepInterface stepInterface = trans.findRunThread(stepname);

 stepInterface.addRowListener(rowListener);

 trans.startThreads();

 trans.waitUntilFinished();

 if (trans.getErrors()!=0) {

 System.out.println(“Error”);

 } else {

 System.out.println(“We read “+rows.size()+” rows from step “+

 stepname);

 }

 }

}

The only thing that changed from the ExecuteTrans.java example is that you
now attach a RowListener object to a step copy. For this example, you assume
that there is only one copy. If you want to obtain data from a specific copy, use the
getRunThread(stepname, copy) method.

When you attach a RowListener, you get notified when a row is read or written,
or when a row is written to an error handling step. This notification happens in sync
with the execution of the transformation. This allows you to handle the records in
a streaming fashion, as is the case in the transformation engine. In the sample, we
simply add all the output rows to a java list for processing after the transformation
finishes executing.

Putting Data into a Transformation

So now that you’ve learned how to read data from a step in a streaming fashion using
the RowListener interface, the next task is to put data into a transformation. That is
obviously possible, too.

Passing Data with a Result Object

You can use the “Copy rows to result” and the “Get rows from result” steps to pass data
from one transformation to the next in a job. You do this with a simple in-memory buffer
and it doesn’t stream data at all. This means that using a Result object is not suited for

 Chapter 22 ■ Kettle Integration 577

large amounts of data. In this case, you can simply code the “Copy rows to result” step using
the Java API. In this example, you change the previous example to include the following
three lines of code as well as a method to create a list of rows (see PassDataToTransfer
.java in the download files):

. . .

 Result result = new Result();

 result.setRows(createRows());

 transMeta.setPreviousResult(result);

. . .

 private static List<RowMetaAndData> createRows() {

 List<RowMetaAndData> list = new ArrayList<RowMetaAndData>();

 RowMetaAndData one = new RowMetaAndData();

 one.addValue(“string”, ValueMetaInterface.TYPE_STRING,

 “A sample String”);

 one.addValue(“date”, ValueMetaInterface.TYPE_DATE, new Date());

 one.addValue(“number”, ValueMetaInterface.TYPE_NUMBER,

 Double.valueOf(123.456));

 one.addValue(“integer”, ValueMetaInterface.TYPE_INTEGER,

 Long.valueOf(123456L));

 one.addValue(“big_number”, ValueMetaInterface.TYPE_BIGNUMBER,

 new BigDecimal(“1234593943942.39430243953243239434”));

 one.addValue(“boolean”, ValueMetaInterface.TYPE_BOOLEAN,

 Boolean.TRUE);

 one.addValue(“binary”, ValueMetaInterface.TYPE_BINARY,

 new byte[] { 0x44, 0x50, 0x49, });

 list.add(one);

 return list;

 }

As you can see, you simply pass a list of rows to a Result object and set that as the
result of a previous transformation on the TransMeta object. The sample shows you a
value example for every data type that is used in Kettle. For more information on Kettle
rows and values, see Chapter 23.

All you need to do now is include a “Get rows from result” step in your transforma-
tion to pass the data when the transformation is executed.

Passing Data in a Streaming Fashion

If you have a lot of data to pass and you want to keep memory requirements as low as
possible, you would want to stream the data into a transformation. That is possible,
too, using the Injector step. This step is simply a placeholder for data that will arrive
at runtime. To pass data to this step you add a RowProducer to the Trans class object.
Consider the example transformation shown in Figure 22-2.

578 Part V ■ Advanced Topics

Figure 22-2: Using the Injector step

In this transformation, you don’t read from any particular data source or write to
any target. The transformation receives information from an outside source through
the Injector step, performs some complex regular expression evaluation, and executes a
JavaScript program to then return it to use over the Dummy step, as we demonstrated in
the previous example. The following code (InjectDataIntoTransformation.java)
shows how you would pass your rows of data to the Injector step:

package example.ch22;

import java.math.BigDecimal;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

import org.pentaho.di.core.KettleEnvironment;

import org.pentaho.di.core.Result;

import org.pentaho.di.core.RowMetaAndData;

import org.pentaho.di.core.exception.KettleStepException;

import org.pentaho.di.core.row.RowMetaInterface;

import org.pentaho.di.core.row.ValueMetaInterface;

import org.pentaho.di.trans.RowProducer;

import org.pentaho.di.trans.Trans;

import org.pentaho.di.trans.TransMeta;

import org.pentaho.di.trans.step.RowAdapter;

import org.pentaho.di.trans.step.RowListener;

import org.pentaho.di.trans.step.StepInterface;

public class InjectDataIntoTransformation {

 public static void main(String[] args) throws Exception {

 String filename = args[0];

 KettleEnvironment.init();

 TransMeta transMeta = new TransMeta(filename);

 Result result = new Result();

 result.setRows(createRows());

 transMeta.setPreviousResult(result);

 Trans trans = new Trans(transMeta);

 trans.prepareExecution(null);

 final List<RowMetaAndData> rows = new ArrayList<RowMetaAndData>();

 Chapter 22 ■ Kettle Integration 579

 RowListener rowListener = new RowAdapter() {

 public void rowWrittenEvent(RowMetaInterface rowMeta, Object[] row

) throws KettleStepException {

 rows.add(new RowMetaAndData(rowMeta, row));

 }

 };

 StepInterface stepInterface = trans.findRunThread(“Dummy”);

 stepInterface.addRowListener(rowListener);

 RowProducer rowProducer = trans.addRowProducer(“Injector”, 0);

 trans.startThreads();

 for (RowMetaAndData row : createRows()) {

 rowProducer.putRow(row.getRowMeta(), row.getData());

 }

 rowProducer.finished();

 trans.waitUntilFinished();

 if (trans.getErrors()!=0) {

 System.out.println(“Error”);

 } else {

 System.out.println(“We got back “+rows.size()+” rows”);

 }

 }

 private static List<RowMetaAndData> createRows() {

 //see the previous example

 }

}

It’s important to let the transformation create a RowProducer for you before the
threads are started. Once the threads are started, the Injector step will not start to run
until you pass rows into it with the putRow() method. Please note that this method
will pause execution of a step when the associated RowSet buffer is full. The buffer size
defaults to 10,000 rows. (See Chapter 15 for more information.) A step will momentarily
pause execution naturally when there is a lot of data to process and when the rows are
injected faster than they can be processed. When you are done, you simply call the
finished() method to indicate that no more data is to be expected from the Injector
step. Then you simply have to wait until the other steps have completed.

Setting Parameters and Variables

One way to pass information to a transformation or a job is parameterization. This can
be done in a transformation in the form of variables or parameters.

Setting a variable is easy with the Java API; simply set the variable on the transMeta
object before you create the trans object:

transMeta.setVariable(“VARIABLE_NAME”, “value”);

580 Part V ■ Advanced Topics

Setting a parameter value of a transformation happens in a similar fashion:

transMeta.setParameterValue(“PARAMETER_NAME”, “value”);

Please note that this method will throw an exception if the parameter name is not
known. To obtain a list of all the defined parameters in a transformation, you can use
the transMeta.listParameters() method. To find out what the default value is for
a parameter, you can use the transMeta.getParameterDefault() method.

The exact same methods for setting variables and handling parameters are available
for the JobMeta class as well.

Dynamic Transformations

Spoon itself creates a transformation on-the-fly whenever you hit a Preview button in
one of the step dialogs. That transformation consists of the step being previewed and
a Dummy step. It is executed and the results are displayed in a dialog. This temporary
transformation is never shown afterward. You already know how to execute the trans-
formation. Creating it dynamically is not that hard either. Let’s start with a simple use
case. You know the name and layout of a CSV file and you simply want Kettle to read
it. The separator is always a comma and the enclosure is a double quote character. Then
you catch the output from a subsequent Dummy step. Figure 22-3 shows the transfor-
mation you create dynamically using the Kettle API.

Figure 22-3: A dynamically generated preview transformation

The name and the layout of the CSV file is the dynamic part of the problem. This
information comes from somewhere else. Usually this so-called metadata is stored
in another format or entered by the user in a third-party application. We will not
focus on this aspect of the problem because it’s different every time. Instead, we’ll just
allow this information to be passed into the CsvFileReader class that follows (see
CsvFileReader.java in the Chapter 22 download files):

public class CsvFileReader {

 private static String STEP_READ_A_FILE = “Read a file”;

 private static String STEP_DUMMY = “Dummy”;

 private String filename;

 private TextFileInputField[] inputFields;

 private List<RowMetaAndData> rows;

 public CsvFileReader(String filename,

 TextFileInputField[] inputFields) {

 Chapter 22 ■ Kettle Integration 581

 this.filename = filename;

 this.inputFields = inputFields;

 }

 public void read() throws Exception {

 KettleEnvironment.init();

 // Create a new transformation...

 //

 TransMeta transMeta = new TransMeta();

 transMeta.setName(“sample04”);

 // Create the step to read the file

 //

 CsvInputMeta inputMeta = new CsvInputMeta();

 inputMeta.setDefault(); // comma separated, “ enclosed with header.

 inputMeta.setFilename(filename);

 inputMeta.setInputFields(intFields);

 StepMeta inputStep = new StepMeta(STEP_READ_A_FILE, inputMeta);

 inputStep.setLocation(50, 50);

 inputStep.setDraw(true);

 transMeta.addStep(inputStep);

 // Create the dummy place-holder step

 //

 DummyTransMeta dummyMeta = new DummyTransMeta();

 StepMeta dummyStep = new StepMeta(STEP_DUMMY, dummyMeta);

 dummyStep.setLocation(150, 50);

 dummyStep.setDraw(true);

 transMeta.addStep(dummyStep);

 // Create a hop between the 2 steps

 //

 TransHopMeta hop = new TransHopMeta(inputStep, dummyStep);

 transMeta.addTransHop(hop);

 // Now we can execute the transformation

 //

 Trans trans = new Trans(transMeta);

 trans.prepareExecution(null);

 rows = new ArrayList<RowMetaAndData>();

 RowListener rowListener = new RowAdapter() {

 public void rowWrittenEvent(RowMetaInterface rowMeta,

 Object[] row

) throws KettleStepException {

 rows.add(new RowMetaAndData(rowMeta, row));

 }

 };

582 Part V ■ Advanced Topics

 StepInterface stepInterface = trans.findRunThread(STEP_DUMMY);

 stepInterface.addRowListener(rowListener);

 trans.startThreads();

 trans.waitUntilFinished();

 if (trans.getErrors()!=0) {

 System.out.println(“Error”);

 } else {

 System.out.println(“We read “+rows.size()+” rows from step “

 +STEP_DUMMY);

 }

 }

 public List<RowMetaAndData> getRows() {

 return rows;

 }

As you can see in the preceding code, you’re no longer loading a transformation from
a file or from a repository; you’re creating it from scratch. The TransMeta class allows
you to add all sorts of metadata-like steps, hops, and database connections to it. The
resolution of that metadata happens at runtime so you don’t have to worry about that.
In the example, we’re adding two steps and a hop:

 TransMeta transMeta = new TransMeta();

 . . .

 transMeta.addStep(inputStep);

 . . .

 transMeta.addStep(dummyStep);

 . . .

 transMeta.addTransHop(hop);

This is equivalent to dragging the two steps on the canvas and then creating a hop
between them.

Here is a block of code that uses the CsvFileReader class:

 TextFileInputField id = new TextFileInputField(“id”, -1, 8);

 id.setTrimType(ValueMetaInterface.TRIM_TYPE_BOTH);

 id.setFormat(“#”);

 id.setType(ValueMetaInterface.TYPE_INTEGER);

 TextFileInputField firstname = new TextFileInputField(“firstname”,

 -1, 50);

 firstname.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField name = new TextFileInputField(“name”, -1, 50);

 name.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField zip = new TextFileInputField(“zip”, -1, 15);

 zip.setTrimType(ValueMetaInterface.TRIM_TYPE_LEFT);

 Chapter 22 ■ Kettle Integration 583

 zip.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField city = new TextFileInputField(“city”, -1, 50);

 city.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField birthdate = new TextFileInputField(“birthdate”,

 -1, -1);

 birthdate.setFormat(“yyyy/MM/dd”);

 birthdate.setType(ValueMetaInterface.TYPE_DATE);

 TextFileInputField street = new TextFileInputField(“street”, -1,

 50);

 street.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField housenr = new TextFileInputField(“housenr”, -1,

 15);

 housenr.setTrimType(ValueMetaInterface.TRIM_TYPE_LEFT);

 housenr.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField statecode = new TextFileInputField(“statecode”,

 -1, 2);

 statecode.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField state = new TextFileInputField(“state”, -1, 50);

 state.setType(ValueMetaInterface.TYPE_STRING);

 TextFileInputField[] inputFields = new TextFileInputField[] {

 id, firstname, name, zip, city, birthdate, street, housenr,

 statecode, state,

 };

 String filename = “samples/transformations/files/customers-100.txt”;

 CsvFileReader reader = new CsvFileReader(filename, inputFields);

 reader.read();

Dynamic Template

By setting the user interface location and the drawn attribute you make sure that the
transformation you generated is also perfectly valid and editable in Spoon after stor-
ing it in a file. The XML representation of any object in the Kettle API can be easily
obtained simply by calling the getXML() method. It’s thus easy to save the transforma-
tion metadata to a file:

 String xml = XMLHandler.getXMLHeader() + transMeta.getXML();

 DataOutputStream dos = new DataOutputStream(

 KettleVFS.getOutputStream(“csv-reader.ktr”, false)

);

 dos.write(xml.getBytes(Const.XML_ENCODING));

 dos.close();

584 Part V ■ Advanced Topics

Suppose you have hundreds of different types of files to read and you need to create a
transformation for each type with a “CSV file input” step, a Table Output step, and a few
error-handling steps. It would be perfectly valid to create a program that does this if you
already have the metadata somewhere. The CsvFileReader class then becomes a dynamic
template for your work. In a matter of seconds, you can then generate hundreds of trans-
formations all with exactly the right properties and tuned the way you want them.

As in most (if not all) ETL tools, the output of a step needs to be known in advance and
predictable. As such, in the traditional sense, the only option you have is to create a few
hundred transformations in Spoon and manually configure all steps in each one. That
problem can be solved by using a dynamic template, as shown in the CsvFileReader
example. Because you can already execute these transformations on-the-fly, it’s totally
up to you whether or not you should store them on disk for integration into your exist-
ing ETL framework. By wrapping up the dynamic generation and execution in a step
or job entry plugin, it can even be a combination of both. For more information on that
topic, see Chapter 23. The settings in such a plugin would allow you to configure the
details of the transformation generation itself.

Dynamic Jobs

One example of jobs that get created on-the-fly is the “Copy tables” wizard in Spoon.
That wizard allows you to generate a job that copies a selection of database tables from
one database to another. The resulting job contains an “Execute SQL script” job entry for
every selected table as well as a Transformation job entry to populate the target table.

Because the question about dynamically generating and executing SQL comes back
regularly on the Kettle forum, the following code (DynamicJob.java) will take a trans-
formation filename as a parameter to generate a job that will execute the SQL required
to execute the transformation. Because zero, one, or more databases can be involved,
you can have zero, one, or more SQL Script job entries in the resulting job.

package example.ch22;

import java.util.HashSet;

import java.util.List;

import org.pentaho.di.core.ObjectLocationSpecificationMethod;

import org.pentaho.di.core.SQLStatement;

import org.pentaho.di.core.database.DatabaseMeta;

import org.pentaho.di.job.JobHopMeta;

import org.pentaho.di.job.JobMeta;

import org.pentaho.di.job.entries.sql.JobEntrySQL;

import org.pentaho.di.job.entries.trans.JobEntryTrans;

import org.pentaho.di.job.entry.JobEntryCopy;

import org.pentaho.di.trans.TransMeta;

public class DynamicJob {

 public static JobMeta generateJobMeta(String transFilename

) throws Exception {

 JobMeta jobMeta = new JobMeta();

 Chapter 22 ■ Kettle Integration 585

 jobMeta.setName(“sample05”);

 int x = 50;

 int y = 50;

 // Add the start entry...

 //

 JobEntryCopy startCopy = JobMeta.createStartEntry();

 startCopy.setLocation(x, y);

 startCopy.setDrawn();

 jobMeta.addJobEntry(startCopy);

 JobEntryCopy lastCopy = startCopy;

 // Determine the SQL and databases needed to

 // execute the transformation

 //

 TransMeta transMeta = new TransMeta(transFilename);

 HashSet<DatabaseMeta> databases = new HashSet<DatabaseMeta>();

 List<SQLStatement> sqlStatements = transMeta.getSQLStatements();

 for (SQLStatement stat : sqlStatements) {

 databases.add(stat.getDatabase());

 }

 // Add “Execute SQL script” for every used database...

 //

 for (DatabaseMeta databaseMeta : databases) {

 JobEntrySQL jobEntrySql = new JobEntrySQL();

 jobEntrySql.setDatabase(databaseMeta);

 String sql = “”;

 for (SQLStatement sqlStatement : sqlStatements) {

 if (sqlStatement.getDatabase().equals(databaseMeta)) {

 if (!sqlStatement.hasError() && sqlStatement.hasSQL())

 {

 sql += sqlStatement.getSQL();

 }

 }

 }

 jobEntrySql.setSQL(sql);

 JobEntryCopy sqlCopy = new JobEntryCopy(jobEntrySql);

 sqlCopy.setName(“SQL for “+databaseMeta.getName());

 x+=100;

 sqlCopy.setLocation(x, y);

 sqlCopy.setDrawn();

 jobMeta.addJobEntry(sqlCopy);

 JobHopMeta sqlHop = new JobHopMeta(lastCopy, sqlCopy);

 jobMeta.addJobHop(sqlHop);

 lastCopy = sqlCopy;

586 Part V ■ Advanced Topics

 }

 // Now execute the transformation as well...

 //

 JobEntryTrans jobEntryTrans = new JobEntryTrans();

 jobEntryTrans.setSpecificationMethod(

 ObjectLocationSpecificationMethod.FILENAME);

 jobEntryTrans.setFileName(transFilename);

 JobEntryCopy transCopy = new JobEntryCopy(jobEntryTrans);

 transCopy.setName(“Execute “+transFilename);

 x+=100;

 transCopy.setLocation(x, y);

 transCopy.setDrawn();

 jobMeta.addJobEntry(transCopy);

 JobHopMeta transHop = new JobHopMeta(lastCopy, transCopy);

 jobMeta.addJobHop(transHop);

 lastCopy = transCopy;

 return jobMeta;

 }

}

As you can see from the TransMeta.getSQLStatements() method, it is quite easy
to have a transformation generate all the SQL statements it needs to function properly.
Note that this is only the case if the transformation itself is not too dynamic. If you, for
example, define a table name in a Table Output step with a variable that is dynamically
defined, it is not possible to know what SQL needs to be generated.

The JobMeta object that is the result of the generateJobMeta() method shown
here can be executed or saved to disk as described earlier. Again, it’s up to you to save
this metadata to an XML file (or a repository), to execute this right away, or to make
this part of a step or job entry plugin.

Executing Dynamic ETL in Kettle

Of course, it’s also possible to execute the code you just saw in a User Defined Java Class
or Modified Java Script Value step. For this example, you simply extend the DynamicJob
example with one method:

 public static Result executeTransformation(String transFilename

) throws Exception {

 JobMeta jobMeta = generateJobMeta(transFilename);

 Job job = new Job(null, jobMeta);

 job.start();

 job.waitUntilFinished();

 return job.getResult();

 }

 Chapter 22 ■ Kettle Integration 587

This method will execute the specified transformation. Now all you need to do is put
the class in a .jar file (see the jar command in the Java Development Kit) and put the
.jar file somewhere in the libext/ folder of your Kettle distribution. This makes
the class available to Kettle.

Next you can use a bit of JavaScript to execute a list of transformations (.ktr files).
You can obtain the list of files from a Get File Names step. If you bring these filenames
to a Modified Java Script Value step, the script is then simply:

var result = Packages.example.ch22.DynamicJob

 .executeTransformation(filename);

var errors = result.getNrErrors();

With a single line of JavaScript, the specified transformation is dynamically executed
in a job after all the required SQL is executed.

Result

In the previous example, a Result class is returned and this object contains not only
the number of errors but also a lot of other useful information you might want to use
to pass data between transformations or jobs. Table 22-1 shows the various types of
information you can retrieve from a Result object. The method to use is listed alongside
with the data type and description of the information returned.

Table 22-1: The Result Object

METHOD DATA TYPE DESCRIPTION

getResult boolean Contains true if the object
(transformation or job) was
executed successfully, false
if there was some error.

getExitStatus int Exit status of the Shell Script
job entry.

getEntryNr int The entry number is increased
every time a job entry is exe-
cuted in a job.

getNrErrors long The number of errors.

getNrLinesInput long The number of rows read from
a file or database.a

getNrLinesOutput long The number of rows written to
a file or database.a

getNrLinesRead long The number of rows read from
previous steps.a

Continued

588 Part V ■ Advanced Topics

METHOD DATA TYPE DESCRIPTION

getNrLinesUpdated long The number of rows updated
in a file or database.a

getNrLinesWritten long The number of rows written to
next step.a

getNrLinesDeleted long The number of deleted rows.a

getNrLinesRejected long The number of rows rejected
and passed to another step via
error handling.a

getRows List
<RowMetaAndData>

The result rows.

isStopped boolean Flag to indicate if the execu-
tion was manually stopped or
not.

getResultFilesList List
<ResultFile>

The list of all the files used in
the executed object(s).

getNrFilesRetrieved int The number of files retrieved
from FTP, SFTP, and so on.

getLogText String The log text of the execution
of the executed object and its
children.

getLogChannelId String The ID of the log channel of
the executed object. You can
use this to look up information
on the execution lineage in
the Log Channel log table.

 http://wiki.pentaho.com/display/EAI/Evaluating+conditions+in+The

+JavaScript+job+entry

a. You need to select a step in the Logging tab of the Transformation Settings dialog to make this

metric work properly. You need to select which step is representative for each metric.

Replacing Metadata

On occasion, you might find yourself in a situation in which you would like to load an
existing transformation or job only to replace a database or step at runtime. While a lot of
parameterization is possible through the clever use of variables and named parameters
(as you’ve already seen), you might need to insert completely new objects.

The use case discussed here is the replacement of a database connection in an existing
transformation. You want to do this because you’ll not only change the hostname and
database name in the connection, but also the database type itself. This database type

Table 22-1 (continued)

 Chapter 22 ■ Kettle Integration 589

can’t be specified using a variable or parameter. In the example, the database connection
in the transformation is called DB and is used in various steps.

The first step is to create a new DatabaseMeta object for the sample. Please remem-
ber that this task is quite similar for steps, job entries, slave servers, partition schemas,
and cluster schemas:

DatabaseMeta databaseMeta = new DatabaseMeta(

“DB”, “MySQL”, “JDBC”, “localhost”,

“test”, “3306”, “user”, “password”

);

Direct Changes with the API

To replace the database connection called DB in the transformation or job, use the
addOrReplaceDatabase() method:

transMeta.addOrReplaceDatabase(databaseMeta);

 This method will make sure that the existing database connection is modified because
references to this object are being held by various steps in the transformation.

Using a Shared Objects File

The shared objects file contains databases, steps, and other objects that are considered
reusable by the user. You can make an object reusable simply by right-clicking it in the
left-hand tree in Spoon and selecting Share. The object in question will then end up in
the shared object file of the loaded transformation or job. By default this is $KETTLE_
HOME/.kettle/shared.xml

The objects in the shared file will take precedence over any object with the same name
that is defined in your transformation or job. As such, you can use a shared objects file
to dynamically modify the settings of your database connection so you need to first
generate the shared objects file:

 SharedObjects sharedObjects = new SharedObjects();

 sharedObjects.storeObject(databaseMeta);

 sharedObjects.setFilename(“/tmp/shared.xml”);

 sharedObjects.saveToFile();

Now you need to make TransMeta load the shared objects when the transformation
is executed:

 transMeta.setSharedObjectsFile(“/tmp/shared.xml”);

 transMeta.readSharedObjects();

If you need to set a default shared objects file location for a complete job, you can also
do this by setting a system variable called KETTLE_SHARED_OBJECTS:

System.setProperty(Const.KETTLE_SHARED_OBJECTS, “/tmp/shared.xml”);

590 Part V ■ Advanced Topics

In order for this to work, you need to make sure you don’t have any other shared
object file location specified in your transformation or job.

OEM Versions and Forks

In this section you will learn how to customize Kettle and the Spoon user interface to
make them look and behave exactly like you want. We will also explain what forking
Kettle entails, which forks exist, and what the consequences are.

Creating an OEM Version of PDI

Kettle has made the extension of functionality easy with all sorts of plugin systems and
parameterizations. However, it might be interesting for a company or organization to
create a rebranded or OEM version for the purpose of being deployed as part of a larger
suite. As long as you don’t change anything in the original Kettle source code, it’s totally
fine according to the LGPL license to create such versions. This is why we have made it
easy for people to change the look and feel of Kettle, and Spoon in particular.

Most of the Kettle code base supports internationalization, also known as i18n (i-18

characters-n). Each piece of text in the Spoon user interface, for example, is translated
in a number of different languages. Each piece of text is stored separately in set of text
files, each with a different unique key. For example, the name of the Spoon application
is stored in key Spoon.Application.Name in this file:

src-ui/org/pentaho/di/ui/spoon/messages/messages_en_US.properties

It would be possible to change the name of Spoon in that file for the English translation.
However, that would, in effect, create a fork of Kettle because the source code is changed.
This was not deemed sufficient for OEM purposes because it would require OEM cus-
tomers of Pentaho to maintain their own code base of Kettle. Thus, the Look and Feel
(LAF) manager was created, which allows you to define i18n keys, images, and property
files, separate from the main Kettle source tree. You do this by creating an alternative
properties file such as this one:

com/example/book/ui/spoon/messages/messages_en_US.properties

In that file, you can then put all the Spoon keys you want to change—for example,
the name:

Spoon.Application.Name=Data Integration Designer

You then put the file together with the complete path in a .jar file with the follow-
ing command:

jar -cvf customizations.jar com/

 Chapter 22 ■ Kettle Integration 591

The file customizations.jar is then placed somewhere in the libext/ folder to
put it in the Kettle class path. Now all you need to do is explain to Kettle where to find
these customizations. You do this by setting the LAFpackage property in the ui/laf
.properties file. In this case, we set it as follows:

LAFpackage=com.example.book

If you then start Spoon, you’ll notice that the title of the tool changed and that the
term “Spoon” is replaced in various places.

The ui/laf.properties file also contains the paths to many properties that will
allow you to change many aspects of the way Spoon looks and behaves. These include,
for example, the icons used and the name of the Kettle home directory.

Forking Kettle

For customized versions of Kettle or OEM versions, nothing is actually changed in the
Kettle source code. For most people and organizations the offered customization and
parameterization options are more than sufficient. However, you might encounter a
scenario where extensive changes need to be made to the standard functionality of
Kettle. In that case you make be tempted to create a fork.

According to the terms of the LGPL as described earlier, a fork is a legal copy of the
Kettle source code base to start independent development on. It becomes a distinct
piece of software. While most companies, groups or organizations usually try to avoid
the overhead of maintaining a complete fork of a code base as large as Kettle’s, it does
happen.

Perhaps the most well-known active fork is GeoKettle. GeoKettle is an open source
project of the Spatialytics.org community (http://www.spatialytics.com/). The
founders of that project, Dr. Thierry Badard and Luc Vaillencourt, have a long his-
tory in geospatial software development. The GeoKettle project adds GIS (Graphical
Information Systems) capabilities to Kettle such as the capability to read from Oracle
Spatial, PostGIS (http://postgis.refractions.net/), and MySQL with ESRI shape
files. The project also added spatial reference systems management and coordinate
transformations. Because it was not possible to add these features through the standard
plug-in system, the developers forked the Kettle codebase. GeoKettle is also LGPL-
licensed. Traditionally, it keeps up with the release schedule of mainstream Kettle
with only a few weeks delay and in general keeps the software compatible with Kettle.
Because the needs for spatial data warehousing are very specific, this can be considered
a friendly and non-competing fork.

There have been a few isolated occasions in the past where an individual or company
felt the need to fork Kettle. On some occasions, the source code was released alongside
the binaries; on other occasions, this was not the case. A lot of companies use a forked,
self-maintained version of Pentaho Data Integration in-house. This is perfectly fine
according to the LGPL license. However, it’s important to know that if you do come
across a forked version of Kettle you have the right to ask for the source code.

It’s also important to know that it takes considerable effort to maintain a successful
fork of Pentaho Data Integration given the size of the development and translation

592 Part V ■ Advanced Topics

teams. Thousands of changes, large and small, are performed every year and keeping
up with that pace is no easy task. That is why most of the known forks have become
stale or extinct. We suspect that because of this, the ones that are still around at this time
are little more than rebranded versions of the mainstream Kettle distribution, possibly
with a few extra plugins. Because these are unknown, unsupported forks of Kettle, it’s
impossible to say which changes or which patches were installed or not.

Summary

This chapter explained the various ways you can integrate Kettle in your own Java
software. We did this with a few easy to understand examples. Here are the most
important things that you learned:

The basics of the LGPL license and how LGPL applies to source code develop-■

ment with the Kettle API

How to obtain and compile the Kettle codebase■

How to execute transformations and jobs with the Java API, including more ■

advanced features like extraction of data from a step and injection of data into
a transformation

How to create your own OEM version of Kettle■

About GeoKettle and the other forks of Kettle■

593

C H A P T E R

23

Extending Kettle

The final chapter of this book will teach you how to get more out of your ETL solu-
tion and extend Kettle by developing your own plugins. None of the 34 ETL subsys-
tems covers this, as it doesn’t directly belong to the ETL solution. However, any plugin
you develop will belong to one of the subsystems covered in this book, whether it
is an extraction component for a proprietary data source or a plugin that generates
documentation

As you must know by now, Kettle contains a rich set of building blocks like steps
and job entries to help you solve complex problems. However, even with all the avail-
able functionality at your fingertips, at times you may find yourself in a situation that
requires you to extend Kettle. Usually such extension is required to integrate Kettle
with third-party or newly emerging technology.

We start by looking at the plugin architecture, the various types of plugins, and
what makes it possible for Kettle to load plugins. Next, you learn how to set up your
own development environment before we explain how you can develop new steps,
job entries, partitioning methods, and so on. You get detailed explanations about the
important classes and methods that are required in the various plugin types.

Plugin Architecture Overview

We start with an overview of the plugin capabilities of Kettle. You will learn what kind
of plugins can be created and how they are loaded at run-time.

594 Part V ■ Advanced Topics

If you had to name the defining characteristics common and essential to all software
projects and products that are categorized as open source and/or free software, regard-
less of license, programming language, or application domain, then these characteristics
have to be:

The unrestricted availability of its source code■

The right to modify that source code to build an alternative version of the execut-■

able program

The right to distribute the software or its source code, or a modified version■

You could argue over what all this means exactly and you can browse the mailing
lists and user forums of popular open source products to discover that many people
do, in fact, argue about this and many other things. However, in practice it means the
following:

The program’s source code can be freely downloaded from the Internet. Usually ■

this means you can obtain the code free of charge. However, a nominal fee may
be charged to account for any expenses resulting from making the source code
available.

The code can be edited using a common text editor or integrated development envi-■

ronment. You are not required to buy any specific tools to change the source code.

Assuming proper knowledge and skills, the modified source can be used to con-■

struct a working version of the program, and both modified source and/or any
programs built from the (modified or original) source code may be passed on to
other people.

As described in Chapter 22, all open source and free software, including Kettle, is
extensible by default. As per Kettle’s LGPL license, everybody can obtain the Kettle source
code and change it to their liking to build another working version of the Kettle program
and distribute it. This was described in Chapter 22 as forking.

However, in addition to the de facto extensibility common to all open source and
free software projects, Kettle features a plugin architecture. This eliminates most needs
to fork the project. It allows extensibility by design; it makes it possible to write essen-
tially isolated pieces of software called plugins. Those can be loaded dynamically into
an otherwise unmodified version of Kettle.

Plugin Types

The following Kettle plugin types affect run-time behavior:

Transformation step plugins:■ Implement steps that can be used to process rows
flowing through a Kettle transformation.

Job entry plugins:■ Implement a task that can be executed as part of a Kettle job.

Partitioning method plugins:■ Allow you to specify your own partitioning rules
with the input of field values.

 Chapter 23 ■ Extending Kettle 595

Database type plugins:■ Database type plugins implement a database connection
type.

Repository type plugins:■ A repository type plugin allows you to handle Kettle
metadata persisted in alternate locations or in alternate formats.

NOTE In addition to these types, it is also possible to inject user interface

elements into the Spoon application in the form of Spoon plugins. However,

those are not covered in this book.

Architecture

From a functional viewpoint, there is no difference between an internal Kettle object
and a plugin. In other words, there is nothing more you can do with an internal step
or job entry because the API is the same for both. The only difference is the way that
these objects are loaded at run-time.

Since version 4, Kettle has used a common plugin system called the Plug-in Registry
that is responsible for the loading of both internal classes and plugins from various
locations. There are two things that uniquely identify a plugin:

The plugin type:■ Represented by interface PluginTypeInterface. Examples
include StepPluginType, JobEntryPluginType, PartitionerPluginType,
and RepositoryPluginType.

The IDs of the plugin:■ This is an array of strings that uniquely identifies a plugin.
Because an old plugin can be replaced by a new plugin, a plugin can have multiple
IDs. In most cases, however, a plugin has a single ID string. Examples include
TableInput for the Table Input step and MYSQL for the MySQL database type.

When the Kettle environment is initialized, the Plug-in Registry first loads all the
internal objects. It reads these from XML files that are located in the Kettle .jar files:

kettle-steps.xml■ : The internal transformation steps

kettle-job-entries.xml■ : The internal job entries

kettle-partition-plugins.xml■ : The internal partitioning types

kettle-database-types.xml■ : The internal database types

kettle-database-types.xml■ : The internal database types

kettle-repositories.xml■ : The internal repository types

Once the Plug-in Registry loads the internal objects, it goes on to search for possible
plugins. It does this by scanning the .jar files that are present in the various subfold-
ers of the plugins/ directory. It will look for specific Kettle annotations to determine
whether or not a class is a plugin. Specific details about the loading process are covered
later in this chapter.

An important consequence of plugins being loaded after internal objects and the
use of IDs is that you can replace internal functionality with plugins. For example, if
you create and deploy a Step plugin with ID TableInput, then you’ll be replacing the

596 Part V ■ Advanced Topics

standard Table Input step. This can be interesting since it allows you to extend standard
functionality with a plugin. Extending in turn is easy since you can use Java sub-classing
to only enhance those parts that you want.

Prerequisites

In this section, we take a quick look at all the things you need to start developing a
Kettle plugin.

Kettle API Documentation

Each plugin implements an application programming interface (API) that is specific for
its plugin type. The API comprises a collection of Java interfaces that must be imple-
mented and a number of base classes providing a basic implementation of these inter-
faces from which you can derive your own classes. In addition, the methods of these
interfaces and classes exchange data with the Kettle program proper via a number of
helper classes that appear in method parameter lists and/or return types.

The classes and interfaces that make up the plugin API are documented using javadoc
source code documentation. The compiled, human-readable javadoc documentation
is a great resource when writing plugins. It can be derived from the Kettle source as
described in the previous chapter or at http://javadoc.pentaho.com/kettle.

Libraries

Besides the basic set of required libraries that was described in the previous chapter, you
also need a few libraries from the Eclipse SWT (Standard Widget Toolkit) project. Because
users need to interact with the plugins you create, you will need to develop a user inter-
face for them, and thus you also require these third-party libraries. These are:

commands.jar■

common.jar■

jface.jar■

runtime.jar■

swt.jar■

You can find these libraries in the libswt/ subdirectory of the Kettle home directory.
Note that there is a specific swt.jar file for each different target operating system; for
each target platform, you will find a respective subdirectory in the libswt/ directory
(such as linux, osx, and win32). While developing, you’ll need the swt.jar file that
corresponds to your development platform.

Integrated Development Environment

Programming tasks are greatly simplified by using an integrated development envi-
ronment (IDE). They help you organize source code into projects, navigate to related

 Chapter 23 ■ Extending Kettle 597

source code, offer wizards for generating code, and allow you to run and debug, all
from within the same environment. There are many different IDEs, but for this chapter
we assume the usage of the popular Eclipse project. Eclipse is an open source IDE that
is especially suitable for Java development.

You can download a copy of Eclipse at http://www.eclipse.org/downloads/.
The Eclipse download site offers a number of different versions, optimized for particular
programming languages. For Kettle plugin development, we recommend that you use
the download labeled Eclipse IDE for Java Developers.

If you follow the instructions on the Eclipse download page, you will end up down-
loading a 90–100MB zip file. Installation is just a matter of copying it to the desired
location and unzipping it.

Linux users may also be able to install Eclipse using their package management
system. Please refer to the documentation of your Linux distribution to find out how
to install Eclipse. If you don’t succeed with a pre-packaged Eclipse for your distro,
you can always try to download Eclipse from the eclipse downloads site and install it
manually.

Eclipse Project Setup

After creation of a new project in Eclipse, we recommend that you create a package
under the default source folder (usually src/). To create a new package simply right-
click on the source folder and select New ➪ Package. For example, the package could
be org.kettlesolutions.plugin, as in Figure 23-1.

Figure 23-1: Creating a new Java package

598 Part V ■ Advanced Topics

Then you can create sub-packages that reflect the type and name of the plugin—for
example: org.kettlesolutions.plugin.step.helloworld.

To make the setup of your project quick and easy, create folders libext/ and lib-
swt/ in your project’s root directory. Copy the four kettle libraries from the lib/ folder
in your Kettle distribution into the libext/ project folder. Also copy the required
libraries from the distribution’s libswt/ folder. Take only the swt.jar file that cor-
responds with your system. You can then configure the project’s build path to include
all libraries under the libext/ folder and the needed libraries from the libswt/ folder.
Figure 23-2 shows the configured setup.

Figure 23-2: Selecting the .jar files for the project

Once that is done, you can start to develop your plugins. Please note that looking
up classes and interfaces is easy in Eclipse with the Ctrl+Shift+T keyboard shortcut (or
use menu Navigate ➪ Open Type).

Examples

Please remember that Kettle is open source and that essentially all existing predefined
steps, job entries, partitioning, repositories, and types can serve as examples. That is
because there is structurally no difference between an internal Kettle object (such as
a step) and a plugin. The only recognizable difference is the way that they are loaded.
Internal objects are loaded from the Kettle .jar files, whereas external plugins are
loaded from the plugins/ folder.

 Chapter 23 ■ Extending Kettle 599

You can find the source code for all the steps in the Kettle codebase in the org
.pentaho.di.trans.steps package. The Kettle job entries can be found in the
org.pentaho.di.job.entries package.

Transformation Step Plugins

A transformation step plugin is made up of at least four Java classes that implement
four interfaces:

StepMetaInterface■ : This interface describes the step to the outside world and
handles serialization.

StepInterface■ : This interface handles the actual execution of the functionality
described in the metadata.

StepDataInterface■ : A convenient interface that gives you a place to store tem-
porary data, file handles, and so on.

StepDialogInterface■ : The interface that allows you to edit the metadata using
a dialog in the Spoon user interface.

In this section, we cover the basics in these interfaces. For each, we’ll show you the
corresponding class of a simple “Hello World” example. This example will add the string
“Hello, world!” in a field with a user-defined name to any input it receives. To finish,
we’ll explain how you can deploy your newly created step plugin.

StepMetaInterface

Interface org.pentaho.di.trans.step.StepMetaInterface has the responsibility
to take care of all tasks that are related to the metadata of a step. Those responsibilities
include the following tasks (shown with the associated methods):

Serialize and de-serialize metadata to XML or a repository■

getXML()■ and loadXML()

saveRep()■ and readRep()

Describe the output fields to the outside world■

getFields()■

Verify the metadata for correctness■

check()■

Calculate the required SQL to make a step work correctly■

getSQLStatements()■

Set default values on the steps metadata■

setDefault()■

Perform a database impact analysis■

analyseImpact()■

600 Part V ■ Advanced Topics

Describe any possible input or output streams■

getStepIOMeta()■

searchInfoAndTargetSteps()■

handleStreamSelection()■

getOptionalStreams()■

resetStepIoMeta()■

Export metadata resources■

exportResources()■

getResourceDependencies()■

Describe used libraries■

getUsedLibraries()■

Describe used database connections■

getUsedDatabaseConnections()■

Describe required fields to make this step function properly (usually targeting ■

a database table)

getRequiredFields()■

Express capabilities to the user interface and transformation engine:■

supportsErrorHandling()■

excludeFromRowLayoutVerification()■

excludeFromCopyDistributeVerification()■

There are also methods that describe how the four interfaces in the step are glued
together, such as the following:

String getDialogClassName()■ : Describes the name of the dialog class that
implements the StepDialogInterface. If this method returns null, the dialog
class is automatically determined based on the name and package of the class
implementing the StepMetaInterface. More information about the step dialog
class can be found later in this chapter.

StepInterface getStep()■ : Creates a new class that implements the
StepInterface class.

StepDataInterface getStepData()■ : Creates a new class that implements the
StepDataInterface class.

Let’s now take a look at what the “Hello World” sample step looks like with
respect to the metadata interface (this Java code can also be found in download file
HelloworldStepMeta.java):

package org.kettlesolutions.plugin.step.helloworld;

… /* imports removed for brevity */

 Chapter 23 ■ Extending Kettle 601

@Step(

 id=”Helloworld”,

 name=”name”,

 description=”description”,

 categoryDescription=”categoryDescription”,

 image=”org/kettlesolutions/plugin/step/helloworld/HelloWorld.png”,

 i18nPackageName=”org.kettlesolutions.plugin.step.helloworld”

)

The @Step annotation indicates to the Plug-in Registry loading code that this class
needs to be considered as a step plugin. The annotation allows you to specify an ID for
the step, an icon, a localized name, description, and Spoon step category. The values
of the last three are determined by looking up the specified key (name, description,
categoryDescription) in an accompanying properties file called a message bundle.
The i18nPackageName option describes the location of the internationalization (i18n)
bundle. In the example, the bundle is located in the org/kettlesolutions/plugin/
step/helloworld/messages folder. For the en_US (English, United States) locale, the
file would be called messages_en_US.properties. In our example, the values in that
properties file would include the following items:

name=Hello world

description=A very simple step that adds “Hello world” to the incoming

 stream

categoryDescription=Plugin samples

Note that by specifying a non-standard category, one that is not yet used by the inter-
nal steps, you are creating a separate category that will show up at the top of the list in
the Spoon step category listing.

Finally, the image tag of the annotation specifies the icon for the plugin. You can
use a non-interlaced PNG file of 32 pixels wide by 32 pixels high. Transparency can be
used in the icon file.

As the following code line shows, this class implements the StepMetaInterface.
All the defaults are conveniently implemented for you in the BaseStepMeta base class.
Subclassing this class will allow you to focus on those methods that you want to imple-
ment and ignore all others. For example SQL generation is not relevant for this step.

public class HelloworldStepMeta extends BaseStepMeta

 implements StepMetaInterface {

The PKG variable marks the location of the messages package in which the interna-
tionalization (i18n) bundles are located. The BaseMessages.getString() occurrences
that you’ll notice in the code examples in the rest of this chapter look up translations
in those bundles depending on the locale that is currently selected by the user. Also
see the $KETTLE_HOME/.kettle/.languageChoice file for the actual language set-
ting on your system or use the options dialog in Spoon. The PKG variable is typically
located at the top of the class for use with the Translator developer GUI tool, which

602 Part V ■ Advanced Topics

allows translators to enter i18n strings for their locale. That is the reason why you’ll see
this construct come back in a lot of classes of the Kettle source code base.

private static Class<?> PKG = HelloworldStep.class; //for i18n

The field fieldName simply keeps track of the single parameter that the user can
define: the name of the field that will contain the “Hello, world!” string.

 private String fieldName;

 /**

 * @return the fieldName

 */

 public String getFieldName() {

 return fieldName;

 }

 /**

 * @param fieldName the fieldName to set

 */

 public void setFieldName(String fieldName) {

 this.fieldName = fieldName;

 }

Next you verify that the user indeed specified the name of a field to use. Any needed
remarks are added to the remarks list. (Note that it is common practice to give feedback
on all the things that are verified and not just the things that go wrong. That way, the
user has a better view of what was verified and what was ignored.)

 /**

 * checks parameters, adds result to List<CheckResultInterface>

 * used in Action > Verify transformation

 */

 public void check(List<CheckResultInterface> remarks,

 TransMeta transMeta, StepMeta stepMeta,

 RowMetaInterface prev, String input[], String output[],

 RowMetaInterface info) {

 if (Const.isEmpty(fieldName)) {

 CheckResultInterface error = new CheckResult(

 CheckResult.TYPE_RESULT_ERROR,

 BaseMessages.getString(PKG,”HelloworldMeta.CHECK_ERR_NO_FIELD”),

 stepMeta

);

 remarks.add(error);

 } else {

 CheckResultInterface ok = new CheckResult(

 CheckResult.TYPE_RESULT_OK,

 BaseMessages.getString(PKG, “HelloworldMeta.CHECK_OK_FIELD”),

 stepMeta

 Chapter 23 ■ Extending Kettle 603

);

 remarks.add(ok);

 }

 }

As described previously, the getStep(), getStepData(), and getDialogClass-
Name() methods simply provide the bridge to the other three interface classes of the
step:

 /**

 * creates a new instance of the step (factory)

 */

 public StepInterface getStep(StepMeta stepMeta,

 StepDataInterface stepDataInterface,

 int copyNr, TransMeta transMeta, Trans trans) {

 return new HelloworldStep(stepMeta, stepDataInterface,

 copyNr, transMeta, trans);

 }

 /**

 * creates new instance of the step data (factory)

 */

 public StepDataInterface getStepData() {

 return new HelloworldStepData();

 }

 public String getDialogClassName() {

 return HelloworldStepDialog.class.getName();

 }

The next four methods, loadXML(), getXML(), readRep(), and saveRep() simply
allow the step to serialize the metadata as XML or as a set of attributes in a Kettle reposi-
tory. It’s perfectly fine to use whatever XML serialization technology, such as XStream
(http://xstream.codehaus.org/), makes things easier for you.

public enum Tag {

 field_name,

 };

 /**

 * deserialize from xml

 * databases = list of available connections

 * counters = list of sequence steps

 */

 public void loadXML(Node stepDomNode, List<DatabaseMeta> databases,

 Map<String, Counter> sequenceCounters

) throws KettleXMLException {

 fieldName = XMLHandler.getTagValue(stepDomNode, Tag.field_name.name());

 }

604 Part V ■ Advanced Topics

 public String getXML() throws KettleException {

 StringBuilder xml = new StringBuilder();

 xml.append(XMLHandler.addTagValue(Tag.field_name.name(), fieldName));

 return xml.toString();

 }

 /**

 * De-serialize from repository (see loadXML)

 */

 public void readRep(Repository repository, ObjectId stepIdInRepository,

 List<DatabaseMeta> databases,

 Map<String, Counter> sequenceCounters

) throws KettleException {

 fieldName = repository.getStepAttributeString(

 stepIdInRepository,

 Tag.field_name.name()

);

 }

 /**

 * serialize to repository

 */

 public void saveRep(Repository repository, ObjectId idOfTransformation,

 ObjectId idOfStep) throws KettleException {

 repository.saveStepAttribute(idOfTransformation, idOfStep,

 Tag.field_name.name(), fieldName);

 }

The setDefault() method simply sets default values on the various step parameters:

 /**

 * initiailize parameters to default

 */

 public void setDefault() {

 fieldName = “helloField”;

 }

The getFields() method is very important because it describes exactly what each
output row of the step is going to look like. It needs to modify the inputRowMeta object
to make it match the desired output. This description of the output row is also used
to explain to Spoon and subsequent steps what values are to be expected from this
step. In the most common scenario, you’ll be adding ValueMetaInterface objects to
the output RowMetaInterface. In general, it’s important to add as much information
about these values as possible, including type, length and precision, format mask, and
so on. The more metadata you add, the more accurate things such as SQL generation
will be in the user interface.

 public void getFields(RowMetaInterface inputRowMeta, String name,

 RowMetaInterface[] info, StepMeta nextStep,

 Chapter 23 ■ Extending Kettle 605

 VariableSpace space) throws KettleStepException {

 String realFieldName = fieldName;

 ValueMetaInterface field =

 new ValueMeta(realFieldName, ValueMetaInterface.TYPE_STRING);

 field.setOrigin(name);

 inputRowMeta.addValueMeta(field);

 }

}

Value Metadata

Value metadata describes a single field value in a row of data that is handled by a step in
a transformation. This description takes the form of the ValueMetaInterface interface.
This interface can explain to you what the name is of a value, what data type it has, what
the length and precision is, and so on. The following example creates a date value:

ValueMetaInterface dateMeta = new ValueMeta(

 “birthdate”,

 ValueMetaInterface.TYPE_DATE

);

dateMeta.setConversionMask(“yyyy/MM/dd”);

The interface is also capable of data conversion to another value metadata
description. In fact, we recommend that all your data conversion be done using the
ValueMetaInterface interface. For example, if you have a birth date and you want
to convert it to a string using the format specified in the dateValue object from the
example, you can use the following code:

// java.util.Date birthDate

String birthDateString = dateMeta.getString(birthDate);

The ValueMeta class will take care of the conversion. As such, the safest thing you
can do is not make any decisions yourself about the type of data you’re getting from
previous steps because data conversion will take place if needed through the value
metadata interface.

One specific example of the use of the ValueMetaInterface interface is the con-
sideration if a value is null or not. In a previous step, you received an object and a
ValueMetaInterface that describes this object. While it is inviting to simply check
whether or not the object is null, it would likely be wrong in a lot of cases. For example:

The object is a String that has ten spaces in it, and the value metadata requires ■

the trimming of the string.

The value metadata describes the object as being lazily loaded from a text file. ■

As such, the object consists of a byte array (raw data) that first needs to be con-
verted to a character sequence and then to the appropriate data type before it
can be evaluated. More information on the details behind lazy loading and lazy
conversion can be found in Chapter 15.

606 Part V ■ Advanced Topics

To check for null, you should use the following expression:

boolean n = valueMeta.isNull(valueData);

Important: Make sure that the data you pass into the ValueMetaInterface cor-
responds to the data type described in the metadata. Table 23-1 lists metadata types
and their corresponding Java data types.

Table 23-1: Java Primitives to Correspond with Metadata Types

VALUE META TYPE JAVA CLASS

ValueMetaInterface.TYPE_STRING java.lang.String

ValueMetaInterface.TYPE_DATE java.util.Date

ValueMetaInterface.TYPE_BOOLEAN java.lang.Boolean

ValueMetaInterface.TYPE_NUMBER java.lang.Double

ValueMetaInterface.TYPE_INTEGER java.lang.Long

ValueMetaInterface.TYPE_BIGNUMBER java.math.BigDecimal

ValueMetaInterface.TYPE_BINARY byte[]

Row Metadata

Row metadata describing not just a value but complete rows of values are represented
by the interface RowMetaInterface. In essence, a RowMetaInterface class simply
contains a list of ValueMetaInterface classes. It contains a series of methods that
allow you to manipulate the row metadata, look up values, check for existence of values,
replace value metadata entries, and so on.

The only rule is that the name of a value needs to be unique in a row. Contrary to
what was the case in version 2 of Kettle, this rule is enforced in versions 3 and 4. When
you add a value with the same name twice to a row, the second occurrence will be
automatically renamed. The name will have the text _2 appended to it. Adding it once
more will add _3 to the name of the value, and so on.

Because we’re usually working with rows of data in steps, it’s more convenient to not
deal with individual values. You can use a number of methods such as getNumber()
and getString() to reach values directly in a row. If the sales figure is stored as the
fourth value in a row in a step, you could, for example, write the following expression
to obtain it:

Double sales = getInputRowMeta().getNumber(rowData, 3);

Obtaining a value by index is always the fastest way of getting values from rows.
You can use the indexOfValue() method to look up the index of a field value in a row.
This method scans the list of values one by one and is not very fast. Because of this, we
recommend that you only do the lookup once for all rows that you need to process in

 Chapter 23 ■ Extending Kettle 607

your step plugin. As described earlier in the step plugin section, you can handle this in
the “first” block right after you received the first row from a previous step.

StepDataInterface

The class that implements org.pentaho.di.trans.step.StepDataInterface takes
care of maintaining the execution status of the step. You can also use this class to store
your temporary objects. Typically, you store the output row metadata in it as a public
member as well as any open database connections, input or output streams, and so on.

StepDialogInterface

The class that implements org.pentaho.di.trans.step.StepDialogInterface
makes it possible for users to enter the metadata (parameters) of a step with a graphical
user interface. The form of the user interface element is a dialog. The dialog is presented
when the user edits a step in Spoon. The interface is not that complex because it contains
only the open() method and setRepository() for convenience.

Eclipse SWT

Because the Eclipse SWT was selected to develop UIs within Kettle, you have to use
that to program your dialogs. SWT provides an abstraction layer around the native
operating system toolkits for the various Windows, OS X, Linux, and UNIX variants.
It’s because of this that SWT applications usually have a look that blends in nicely with
the rest of the operating system.

To get started with SWT programming, we recommend that you take a look around
the SWT home page at http://www.eclipse.org/swt/ to get acquainted. Here
are a few interesting pages to give you a good idea of what can be done with SWT
programming:

The SWT widgets page, ■ http://www.eclipse.org/swt/widgets/, gives a
nice overview of all the available widgets you can use.

The SWT snippets page, ■ http://www.eclipse.org/swt/snippets/, provides
common samples with Java code.

The best source for information, however, is the source code of the more than 150
internal step dialogs in the Kettle source code.

Form Layout

If you take a look at dialog classes in Kettle, note that they usually contain a lot of ver-
bose code. This is to ensure that all the dialogs present themselves as nicely as possible
and render correctly on all possible operating systems with all possible screen and font
sizes. It’s because of this that most of the code you’ll find will have to do with the layout
and position of the widgets in the dialogs.

608 Part V ■ Advanced Topics

The layout system you’ll encounter most often in the Kettle codebase is the FormLayout
system. FormLayout works by allowing the programmer to specify relative positions of
widgets and work with percentages and offsets. Take a look at a simple example (you
can also find this Java code in download file HelloworldStepDialog.java):

Label label =new Label(shell, SWT.RIGHT);

label.setText(“Hello”);

props.setLook(wlStepname);

FormData fdLabel=new FormData();

fdLabel.left = new FormAttachment(0, 0);

fdLabel.right= new FormAttachment(50, -10);

fdLabel.top = new FormAttachment(0, 25);

label.setLayoutData(fdLabel);

This is code you’ll see often so we’ll explain it in detail. The first line creates a new
Label widget inside of a shell (dialog). The alignment of the text on the widget is
right:

Label label =new Label(shell, SWT.RIGHT);

Next we put the string “Hello” in the label:

label.setText(“Hello”);

The next line puts the user-selected background color and font on the widget:

props.setLook(wlStepname);

The next few lines position the left side of the label at the far left of the dialog and
the right side of the label at 10 pixels to the left of the middle of the dialog (50%). The
top of the label is at positioned 25 pixels below the top of the shell.

FormData fdLabel=new FormData();

fdLabel.left = new FormAttachment(0, 0);

fdLabel.right= new FormAttachment(50, -10);

fdLabel.top = new FormAttachment(0, 25);

label.setLayoutData(fdLabel);

Instead of providing a percentage as the first argument in the FormAttachment
constructor, you can also specify another widget (called a control in SWT). This will
allow you to specify the location of one widget relative to another.

If you don’t specify the bottom of the widget, SWT will pick the natural height of the
widget, depending on the selected font. That in turn means that if you want to place a
Text widget right below the label with a 10 pixel gap, you can do it like this:

fdLabel2.top = new FormAttachment(label, 10);

In short: don’t panic; while good user interface code is usually long and verbose, it
tends to be rather simplistic in nature.

 Chapter 23 ■ Extending Kettle 609

Kettle UI Elements

Beyond the standard SWT widgets, you can also use one of the specific Kettle widgets
that were created to make the life of the ETL developer a bit easier. Here is a short
overview of the possibilities:

TableView■ : This convenient data grid widget has support for sorting, selecting,
keyboard shortcuts, and undo/redo, and has a right-click menu on top of it.

TextVar■ : This textbox supports variables and is decorated with the $ symbol in
the upper-right corner. The user can enter variables with Ctrl+Spacebar. If these
keys are used inside the textbox you’ll be able to pick a variable from a pop-up
window. This variable will then be inserted at the cursor location. Other than
that, it’s compatible with the standard Text widget.

ComboVar■ : A standard combo box with support for variables.

ConditionEditor■ : A widget to enter conditions as found in the Filter Rows
step.

There is also a series of additional dialogs at your disposal to help you with various
tasks:

EnterListDialog■ : Allows you to select one or more items from a list of strings.
It shows the list on the left and the selected items on the right. Buttons will then
allow you to move items in or out of the selection.

EnterNumberDialog■ : Allows the user to enter a number.

EnterPasswordDialog■ : Asks the user for a password.

EnterSelectionDialog■ : Selects items in a list by highlighting them.

EnterMappingDialog■ : Enters the mapping between two sets of strings.

PreviewRowsDialog■ : Previews a list of rows in a dialog.

SQLEditor■ : Shows a simple SQL editor that allows you to enter queries and DLL.

ErrorDialog■ : The constructor displays an exception with a message and can
list the stack trace details.

Hello World Example Dialog

Now that you’ve had a general look at SWT and how it handles the layout of a dialog,
it’s time to take a closer look at a practical example. The following Java code can also
be found in download file HelloworldStepDialog.java.

The first part of the code merely makes the metadata class available to the rest of the
dialog class and initializes the base step dialog:

public class HelloworldStepDialog extends BaseStepDialog implements

 StepDialogInterface {

 private static Class<?> PKG = HelloworldStepMeta.class;

610 Part V ■ Advanced Topics

 private HelloworldStepMeta input;

 private TextVar wFieldname;

 public HelloworldStepDialog(Shell parent, Object baseStepMeta,

 TransMeta transMeta, String stepname) {

 super(parent, (BaseStepMeta)baseStepMeta, transMeta, stepname);

 input = (HelloworldStepMeta)baseStepMeta;

 }

The next open() method is where all the widgets for the dialog are created and
assembled. SWT uses the listener design pattern a lot. You can add all kinds of listeners
to widgets to see if the content has changed or if the user performed an action. In this
situation, you want to know if the user changed anything in one of the widgets so that
you can mark the step and transformation as changed and in need of saving.

 public String open() {

 Shell parent = getParent();

 Display display = parent.getDisplay();

 shell = new Shell(parent, SWT.DIALOG_TRIM | SWT.RESIZE | SWT.MIN |

 SWT.MAX);

 props.setLook(shell);

 setShellImage(shell, input);

 ModifyListener lsMod = new ModifyListener()

 {

 public void modifyText(ModifyEvent e)

 {

 input.setChanged();

 }

 };

 changed = input.hasChanged();

The next part of the code indicates that you want to position the widgets in the dialog
shell with the form layout method:

 FormLayout formLayout = new FormLayout ();

 formLayout.marginWidth = Const.FORM_MARGIN;

 formLayout.marginHeight = Const.FORM_MARGIN;

 shell.setLayout(formLayout);

The right side of all the labels is available as a user-defined percentage: props
.getMiddlePct(). The margin between widgets was made a constant and is 4 pixels
at the time of this writing.

 shell.setText(

 BaseMessages.getString(PKG,”HelloworldDialog.Shell.Title”));

 Chapter 23 ■ Extending Kettle 611

 int middle = props.getMiddlePct();

 int margin = Const.MARGIN;

The next block of code simply adds a label and a text input field on one line at the
top of the dialog shell:

 // Stepname line

 wlStepname=new Label(shell, SWT.RIGHT);

 wlStepname.setText(

 BaseMessages.getString(PKG, “HelloworldDialog.Stepname.Label”));

 props.setLook(wlStepname);

 fdlStepname=new FormData();

 fdlStepname.left = new FormAttachment(0, 0);

 fdlStepname.right= new FormAttachment(middle, -margin);

 fdlStepname.top = new FormAttachment(0, margin);

 wlStepname.setLayoutData(fdlStepname);

 wStepname=new Text(shell, SWT.SINGLE | SWT.LEFT | SWT.BORDER);

 wStepname.setText(stepname);

 props.setLook(wStepname);

 wStepname.addModifyListener(lsMod);

 fdStepname=new FormData();

 fdStepname.left = new FormAttachment(middle, 0);

 fdStepname.top = new FormAttachment(0, margin);

 fdStepname.right= new FormAttachment(100, 0);

 wStepname.setLayoutData(fdStepname);

 Control lastControl = wStepname;

 Next you add the widgets that will allow you to enter a name for the output field
of the “Hello World” step:

 // Fieldname line

 Label wlFieldname = new Label(shell, SWT.RIGHT);

 wlFieldname.setText(

 BaseMessages.getString(PKG, “HelloworldDialog.Fieldname.Label”));

 props.setLook(wlFieldname);

 FormData fdlFieldname = new FormData();

 fdlFieldname.left = new FormAttachment(0, 0);

 fdlFieldname.right= new FormAttachment(middle, -margin);

 fdlFieldname.top = new FormAttachment(lastControl, margin);

 wlFieldname.setLayoutData(fdlFieldname);

 wFieldname =

 new TextVar(transMeta, shell, SWT.SINGLE | SWT.LEFT | SWT.BORDER);

 props.setLook(wFieldname);

 wFieldname.addModifyListener(lsMod);

 FormData fdFieldname = new FormData();

 fdFieldname.left = new FormAttachment(middle, 0);

 fdFieldname.top = new FormAttachment(lastControl, margin);

 fdFieldname.right= new FormAttachment(100, 0);

 wFieldname.setLayoutData(fdFieldname);

 lastControl = wFieldname;

612 Part V ■ Advanced Topics

Next, you create two push buttons for OK and Cancel, add listeners to them, and
position them at the bottom of the dialog after the last input field:

 // Some buttons

 wOK=new Button(shell, SWT.PUSH);

 wOK.setText(BaseMessages.getString(PKG, “System.Button.OK”));

 wCancel=new Button(shell, SWT.PUSH);

 wCancel.setText(

 BaseMessages.getString(PKG, “System.Button.Cancel”));

 setButtonPositions(

 new Button[] { wOK, wCancel }, margin, lastControl);

 // Add listeners

 lsCancel = new Listener() { public void handleEvent(Event e) {

 cancel(); } };

 lsOK = new Listener() { public void handleEvent(Event e) {

 ok(); } };

 wCancel.addListener(SWT.Selection, lsCancel);

 wOK.addListener (SWT.Selection, lsOK);

The next lines of code make sure that special cases are handled. First you make sure
that the dialog is closed affirmatively when the user presses Enter in one of the text
input fields. Then you make sure to cancel the dialog input when the shell is closed
without using either the Cancel or OK buttons:

 lsDef=new SelectionAdapter() {

 public void widgetDefaultSelected(SelectionEvent e) { ok(); }};

 wStepname.addSelectionListener(lsDef);

 wFieldname.addSelectionListener(lsDef);

 // Detect X or ALT-F4 or something that kills this window...

 shell.addShellListener(new ShellAdapter() {

 public void shellClosed(ShellEvent e) {

 cancel();

 } });

You copy the data from the input metadata to the widgets in the dialog:

 // Populate the data of the controls

 //

 getData();

The size and position of the dialog are automatically determined based on the natural
size of the dialog (minimum), the previous location and size of the dialog (where the
user left it), and the size of the display(s):

 Chapter 23 ■ Extending Kettle 613

 // Set the shell size, based upon previous time...

 setSize();

 input.setChanged(changed);

 shell.open();

 while (!shell.isDisposed())

 {

 if (!display.readAndDispatch()) display.sleep();

 }

 return stepname;

 }

When you put data into the widgets, make sure to never put null values in them
because they don’t support it. The static method Const.NVL() will help you to take
care of that situation:

 /**

 * Copy information from the meta-data input to the dialog fields.

 */

 public void getData()

 {

 wFieldname.setText(Const.NVL(input.getFieldName(), “”));

 wStepname.selectAll();

 }

 Finally, when the user selects OK, you copy the information from the dialog back
into the input metadata class:

 private void cancel()

 {

 stepname=null;

 input.setChanged(changed);

 dispose();

 }

 private void ok()

 {

 if (Const.isEmpty(wStepname.getText())) return;

 stepname = wStepname.getText(); // return value

 input.setFieldName(wFieldname.getText());

 dispose();

 }

}

614 Part V ■ Advanced Topics

StepInterface

The class that implements the interface org.pentaho.di.trans.step.StepInterface
is responsible for processing rows of data in any shape or form while using the param-
eters of metadata described in the associated StepMetaInterface described previ-
ously. It will read data from zero, one, or more input steps and pass data to zero, one,
or more output steps. A number of the methods that are described in the interface are
used by the transformation engine to do housekeeping. However, there are only a few
methods you would likely override from the BaseStep class where all methods are
implemented:

init()■ : To initialize a step, you can use an init() method. The result of the
initialization is a Boolean true or false. If everything you wanted to do during
the initialization went okay, you return true, otherwise false. If you don’t have
anything to initialize, you can opt not to override this method.

dispose()■ : If there are things that need to be cleaned up, you can do it in the
dispose() method. For example, in this method you can close database connec-
tions and files, clear out memory buffers, and so on. This method will always be
called at the end of the transformation. If you don’t have anything to dispose of,
you can opt not to override this method.

processRow()■ : This method is where the actual work is taking place. The trans-
formation engine will call this method repeatedly. As long as the method returns
true it will continue to be called in a loop.

Here is how the Hello World step uses the StepInterface (you can also find this
Java code in the download file HelloworldStep.java):

package org.kettlesolutions.plugin.step.helloworld;

… /* imports removed for brevity */

public class HelloworldStep extends BaseStep implements StepInterface {

As explained earlier, you use the BaseStep class to allow you to focus on the impor-
tant methods. It contains a lot of useful methods that can be used inside of the step.

The constructor usually simply passes its argument to the BaseStep class. Arguments
will be handled appropriately in that constructor. Because of this you can conveniently
use objects like transMeta in all steps.

 public HelloworldStep(StepMeta stepMeta,

 StepDataInterface stepDataInterface,

 int copyNr, TransMeta transMeta, Trans trans) {

 super(stepMeta, stepDataInterface, copyNr, transMeta, trans);

 }

The getRow() method tries to obtain a row from a previous input step. If there are
no more rows to receive, the method will return null. If the previous steps can’t keep

 Chapter 23 ■ Extending Kettle 615

up, the method will block until a row is made available. This will effectively throttle
down this step to match the speed of the other steps in the transformation. See Chapter
15 for more information on this subject.

 public boolean processRow(StepMetaInterface smi, StepDataInterface sdi

) throws KettleException {

 HelloworldStepMeta meta = (HelloworldStepMeta) smi;

 HelloworldStepData data = (HelloworldStepData) sdi;

 Object[] row = getRow();

 if (row==null) {

 setOutputDone();

 return false;

 }

 if (first) {

 first=false;

 data.outputRowMeta = getInputRowMeta().clone();

 meta.getFields(data.outputRowMeta,

 getStepname(), null, null, this);

 }

 String value = “Hello, world!”;

 Object[] outputRow = RowDataUtil.addValueData(row,

 getInputRowMeta().size(), value);

 putRow(data.outputRowMeta, outputRow);

 return true;

 }

}

For performance reasons, the getRow() call does not give you the row metadata,
only the data associated with the output of the previous step. That metadata is available
using the getInputRowMeta() method but only after the first row has been received
from the getRow() method.

The setOutputDone() call takes care of informing any of the following steps that there
is no more output to be expected from this step. That, in turn, will allow the getRow()
method of the next steps to return null for the call when the buffer between the steps
is empty. By returning false, the transformation knows not to call the processRow()
method of your step again.

Object[] row = getRow();

if (row==null) {

setOutputDone();

 return false;

}

616 Part V ■ Advanced Topics

The method that passes rows to the next steps is called putRow(). You need to pass
the RowMetaInterface of the output along with the data to describe it in this method.
If you remember from the previous section, you already have a method that calculates
the output row metadata:

data.outputRowMeta = getInputRowMeta().clone();

meta.getFields(data.outputRowMeta, getStepname(), null, null, this);

Note that you make a copy with clone() of the input row metadata to make sure
that you are absolutely not influencing any data structure in a previous step as that
could lead to incorrect results during execution. The calculation of the output row
metadata is something that needs to happen once and only once because the layout of
all the output rows needs to be the same. Calculations that only need to happen once
are usually placed in a “first” block. A member called first is conveniently set to true
before execution in the BaseStep class so you can use that.

The last part of the code adds a string value to the input row and passes it back to
the next steps:

String value = “Hello, world!”;

Object[] outputRow = RowDataUtil.addValueData(row,

 getInputRowMeta().size(), value);

putRow(data.outputRowMeta, outputRow);

For pure performance, rows of data are simple Java arrays. For your convenience,
you can use the static methods from the RowDataUtil class to manipulate the values
in them. Note that there is usually excess space in the rows that are passed to pre-
vent copying of data. Again this is done for performance reasons. If you use the static
RowDataUtil methods, you will have no problems with that at all.

Reading Rows from Specific Steps

If you have a need to read data from specific (info) steps—for example, the Stream
Lookup step—you can use the getRowFrom() method in a step:

RowSet rowSet = findInputRowSet(Source Step Name);

Object[] rowData=getRowFrom(rowSet);

The row metadata from those rows is available in the rowSet object:

RowMetaInterface rowMeta = rowSet.getRowMeta();

Writing Rows to Specific Steps

If you want to write data to specific (target) steps, as in the Filter Rows step, you can do
this with the putRowTo() method:

RowSet rowSet = findOutputRowSet(Target Step Name);

 Chapter 23 ■ Extending Kettle 617

...

putRowTo(outputRowMeta, rowData, rowSet);

Obviously, it’s most efficient to obtain a handle on the input or output RowSet objects
just once.

Writing Rows to Error Handling

If you want to allow your step to support error handling, and if your metadata class
returns true for the supportsErrorHandling() method, you can write rows to the
error handling channel. The following is a simple example of how to do that with
the putError() method:

Object[] rowData = getRow();

...

try {

 ...

 putRow(...);

} catch(Exception e) {

 if (getStepMeta().isDoingErrorHandling()) {

 putError(getInputRowMeta(), rowData, 1, e.getMessage(),

 errorMessage, errorFieldname, errorCode);

 } else {

 throw(e);

 }

}

As shown in the example, you can pass an error count, field, message, and code to
the step that will handle the errors of this step. Everything else regarding the error
handling is handled automatically.

Identifying a Step Copy

Because a step can be executed in multiple copies, it can be useful to identify which
step copy you’re using. Here are a few interesting methods you can use:

getCopy()■ : Returns the copy number of the step. Copy numbers uniquely iden-
tify a particular step copy within the collection of copies of a step, and are in the
range 0...N where N is equal to getStepMeta().getCopies() - 1

getUniqueStepNrAcrossSlaves()■ : The step copy number in a clustered execu-
tion (also works for local execution)

getUniqueStepCountAcrossSlaves()■ : The total number of step copies run-
ning on a cluster

These methods can then be used to divide the work among the various step copies.
For an example of this, see the source code for the “CSV file input” or “Fixed file input”
steps. Both have the option to read text files in parallel by dividing the work among the
step copies locally or across a cluster.

618 Part V ■ Advanced Topics

Result Feedback

To signal in the user interface or in the logging how many rows were processed, there
are two metrics that are automatically incremented with the use of the getRow() and
putRow() methods: the number of rows read and written, respectively. The following
are a few methods to influence the metrics of a step:

incrementLinesRead()■ : Increase the number of lines read from previous
steps.

incrementLinesWritten()■ : Increase the number of lines written to subsequent
steps.

incrementLinesInput()■ : Increase the number of lines read from files, data-
bases, network, and so on.

incrementLinesOutput()■ : Increase the number of lines written to files, data-
bases, network, and so on.

incrementLinesUpdated()■ : Increase the number of lines updated.

incrementLinesSkipped()■ : Increase the number of lines skipped.

incrementLinesRejected()■ : Increase the number of lines rejected.

These metrics are used to see how much work a step has done. They are visible in
the transformation metrics panel in Spoon and can be logged to a database logging
table as well. See Chapter 14 for more information on this topic.

It is also possible to keep track of the files that have been used by this step. You can
use the method addResultFile() for that purpose. The list of result files can then be
used by other transformations and job entries in a job. For example, take a look at this
code from the “CSV file input” step:

ResultFile resultFile = new ResultFile(

 ResultFile.FILE_TYPE_GENERAL,

 fileObject,

 getTransMeta().getName(),

 getStepName()

);

resultFile.setComment(“File was read by a Csv input step”);

addResultFile(resultFile);

Variable Substitution

When you have an input field that supports variable substitution (see Chapter 2 for
more information), you can obtain the actual value of a variable at run-time with the
environmentSubstitute() method. This method is available in all objects in Kettle
that implement the VariableSpace interface. Those objects include steps, job entries,
transformations, jobs, databases, and so on. For example, if you would like to support
the use of variables to specify the name of your output field in the “Hello World”

 Chapter 23 ■ Extending Kettle 619

example, you could change your example like this in the getFields() method of the
StepMetaInterface class:

String realFieldName = space.environmentSubstitute(fieldName);

Because a step itself is a VariableSpace object, you can simply do the variable
substitution method directly like this:

String value = environmentSubstitute(meta.getStringWithVariables());

Apache VFS

The goal of all steps in Kettle that deal with files in some form or another is to use the
Apache VFS system. Apache VFS, as described in Chapter 2 in more detail, allows you to
read data from not just files, as is the case with the java.io.File object, but from a lot
of different locations, including web and FTP servers, .zip archives, and many more.

Apache VFS introduces the FileObject class that provides the abstraction layer for
you. Kettle in turn creates a series of static methods in the KettleVFS class to make
it easy for you to get your hands on FileObject classes for your file names. Take a
look at an example:

FileObject fileObject = KettleVFS.getFileObject(

 “zip:http://www.example.com/archive.zip!file.txt”

);

It’s important that you use the KettleVFS wrapper as much as possible because
it contains fixes and workarounds for certain issues in the Apache VFS layer. It also
contains enhancements for the SFTP protocol, as explained in Appendix C.

Step Plugin Deployment

To deploy your step plugin, you have to compile the four Java classes and any other
classes it depends on. Then you should place the compiled classes in a .jar file. You
can use your IDE to do that for you (see the export functionality in Eclipse, for example),
or you can manually write an Apache Ant build file to do it automatically.

The .jar file itself should be placed in the plugins/steps directory in your binary
Kettle distribution. If you like, you can use a subdirectory. It is also possible to add all
dependent files in a lib/ folder where the plugin .jar file is located. There is no need
to place them all in the common Kettle class path (the libext/ directory) as these extra
libraries will be picked up automatically by Kettle. You can place multiple step plugins
in a single .jar file.

If you want to debug your plugin in your IDE, you can set the name of your meta-
data class in variable KETTLE_PLUGIN_CLASSES (a comma-separated list). For more
information on this topic, consult the Pentaho wiki at http://wiki.pentaho.com/
display/EAI/How+to+debug+a+Kettle+4+plugin.

620 Part V ■ Advanced Topics

The User-Defined Java Class Step

The User Defined Java Class step, UDJC for short, is a new step in version 4 of Kettle.
It allows you to place the Java code program as a step plugin inside of the UDJC dia-
log. The code you enter will then be compiled and executed at run-time. This has the
flexibility and power of a scripting language while maintaining the optimal speed of
native Java code execution.

If you’ve read the previous section of the chapter regarding the development of step
plugins, writing a UDJC is easy. The init(), dispose(), and processRow() methods
covered can be used in exactly the same fashion in a UDJC. In fact, almost everything
you’ve learned about writing a plugin can be applied. The main differences are the lack
of metadata class and the lack of a fancy dialog to enter metadata.

Passing Metadata

Without any method of parameterization, the Java code written in a UDJC step would be
inflexible and hard to maintain. That is why you can enter parameters tags and values
in the Parameters tab at the bottom of the dialog. You can obtain the value for a tag in
your UDJC class like this:

String value = getParameter(“TAG”);

Accessing Input and Fields

The UDJC includes a convenient get() method to make it easy to access input and
output fields. Take a look at the following example that reads a String value from a
row of data:

String name = get(Fields.In, “last_name”).getString(rowData);

The same is possible for setting values in output fields that were specified in the
Fields section at the bottom of the dialog:

get(Fields.Out, “book_name”).setValue(r, “Kettle Solutions”);

Snippets

The UDJC dialog contains a Code Snippets section in the tree on the left. You can double-
click on the snippets to insert them into your code. They are basic examples showing
you the various things you can do with a step.

Example

The following code performs the same function as the four classes described earlier:
it simply adds a single field that contains the string “Hello, World!”You can also find

 Chapter 23 ■ Extending Kettle 621

this code as part of the transformation UDJC sample.ktr in the download package for this
chapter.

int outputRowSize;

public boolean processRow(StepMetaInterface smi, StepDataInterface sdi

) throws KettleException

{

 Object[] r = getRow();

 if (r == null) {

 setOutputDone();

 return false;

 }

 if (first) {

 first = false;

 outputRowSize = data.outputRowMeta.size();

 }

 r = createOutputRow(r, outputRowSize);

 get(Fields.Out, “hello”).setValue(r, “Hello, World!”);

 // Send the row on to the next step.

 putRow(data.outputRowMeta, r);

 return true;

}

As you can see, the code looks similar to the code you wrote in the StepInterface
class of the “Hello World” step plugin shown previously. There is only one output field,
called “hello”, specified in the Fields tab at the bottom of the UDJC step. Compared
to a dialog designed for a specific set of parameters, editing the metadata is obviously
less fancy inside the Java code or in the UDJC dialog in general. However, compared to
writing a plugin, it takes a lot less code and time to get a solution in place.

Job Entry Plugins

Writing a job entry plugin is very similar to writing a step plugin. The main difference
is that you only have to implement two interfaces instead of four:

JobEntryInterface■ : This will take care of the metadata and execution of the
job entry.

JobEntryDialogInterface■ : Almost exactly like the step dialog in the way that
it allows you to edit the metadata of the job entry.

Steps run in parallel and job entries run in sequence so there is no separation between
the metadata and the execution classes in a job entry. This simplifies things a bit.

622 Part V ■ Advanced Topics

JobEntryInterface

The class that implements the org.pentaho.di.job.entry.JobEntryInterface
interface needs to implement one important method to get the job done:

execute()■ : This executes the job entry and returns the Result object. (See Chapter
22 for more information on the Result object.)

Quite a few other methods were covered earlier in the step plugin development sec-
tion. They work in exactly the same way for the JobEntryInterface:

getXML()■ and loadXML() to serialize to XML

saveRep()■ and readRep() to serialize to a repository

getSQLStatements()■ to generate SQL

getUsedDatabaseConnections()■ to see which connections are used by the
job entry

check()■ to validate the metadata

getResourceDependencies()■ to list dependencies

exportResources()■ to allow linked resources (jobs and transformations, for
example) to be exported

getDialogClassName()■ to know which dialog to use to edit the metadata

In addition, two other methods are occasionally used:

boolean evaluates()■ : Determines whether or not this step is capable of mak-
ing an evaluation. Except for the rare exception (such as the Start job entry), this
should always return true.

boolean isUnconditional()■ : Explains to the system whether or not the job
entry can allow unconditional continuation after execution. Except for the rare
exception, this should also return true.

Let’s take a look a simple “Hello World” job entry. This job entry allows the user to
specify a Boolean value: true or false. If the user specifies true, then the job will
continue to follow the green (success) job entry hop; if not, the red hop. It mimics the
success or failure of a job entry.

The @JobEntry annotation works exactly like the @Step annotation described previ-
ously. It allows the plugin registry to recognize this class as a job entry plugin (you can
find this code also in download file HelloworldJobEntry.java):

package org.kettlesolutions.plugin.jobentry.helloworld;

... /* imports removed for brevity */

@JobEntry(

 id=”Helloworld”,

 name=”HelloworldJobEntry.name”,

 description=”HelloworldJobEntry.description”,

 Chapter 23 ■ Extending Kettle 623

 categoryDescription=”HelloworldJobEntry.category”,

 i18nPackageName=”org.ketttlesolutions.plugin.jobentry.helloworld”,

 image=”org/kettlesolutions/plugin/step/helloworld/HelloWorld.png”

)

 For your convenience you can subclass the JobEntryBase class to allow you to
implement only those methods you actually need:

public class HelloworldJobEntry extends JobEntryBase

 implements JobEntryInterface {

 Again, much like the step plugin, the class contains the actual metadata (parameters)
and you have getters and setters to handle those:

 private boolean success;

 /**

 * @return the success

 */

 public boolean isSuccess() {

 return success;

 }

 /**

 * @param success : the success flag to set

 */

 public void setSuccess(boolean success) {

 this.success = success;

 }

The result of any type of execution is always going to be a Result object. This Result
object is passed to the next job entry:

 public Result execute(Result prevResult, int nr)

 throws KettleException {

 prevResult.setResult(success);

 return prevResult;

 }

The only thing to keep in mind in the execute() method is to always make sure to
use the same Result object. Make sure to modify it as shown in the example instead
of creating a new one.

 public enum Tag {

 success,

 };

 public void loadXML(Node entrynode, List<DatabaseMeta> databases,

 List<SlaveServer> slaveServers, Repository rep

) throws KettleXMLException {

 super.loadXML(entrynode, databases, slaveServers);

624 Part V ■ Advanced Topics

 success = “Y”.equalsIgnoreCase(

 XMLHandler.getTagValue(entrynode, Tag.success.name()));

 }

 public String getXML() {

 StringBuilder xml = new StringBuilder();

 xml.append(super.getXML());

 xml.append(XMLHandler.addTagValue(Tag.success.name(), success));

 return xml.toString();

 }

 public void loadRep(Repository rep, ObjectId idJobentry,

 List<DatabaseMeta> databases, List<SlaveServer> slaveServers

) throws KettleException {

 success =

 rep.getJobEntryAttributeBoolean(idJobentry, Tag.success.name());

 }

 public void saveRep(Repository rep, ObjectId idJob)

 throws KettleException {

 rep.saveJobEntryAttribute(idJob, getObjectId(),

 Tag.success.name(), success);

 }

}

JobEntryDialogInterface

The JobEntryDialog interface is identical in many ways to the StepDialogInterface
we extensively described in the step plugin section. As such, we’ll only add here that you
need to implement the org.pentaho.di.job.entry.JobEntryDialogInterface
interface.

The only difference from the earlier interface is that the user edits a JobEntryInterface
class and not a StepMetaInterface class. You can extend the JobEntryDialog class to
get a good starting point for your job entry dialogs. As usual, don’t forget to look at the
many samples in the Kettle source code for ideas on how to construct your dialogs.

Deploying or debugging a job entry plugin happens in the exact same way as you
saw with the step plugins. The only difference is that you should place the .jar file
containing the plugins in the plugins/jobentries directory. All the other instruc-
tions are identical to those provided for the earlier dialog interface.

Partitioning Method Plugins

As described in Chapter 16, a partitioning method determines the partition to which a
row of data belongs based on a set of rules. With a partition plugin, you can write your
own set of rules for the grouping of rows.

 Chapter 23 ■ Extending Kettle 625

To implement a partitioning method, you need to implement two interfaces:
Partitioner and StepDialogInterface. (The latter is used for historical reasons
and because the dialog interfaces usually contain only the open() method).

The only difference between this dialog and those covered earlier is that it will
pass in the class that implemented the Partitioner interface instead of step or job
entry metadata. Everything else about the dialog is the same as with the previous
plugin types. For this reason, we won’t cover the dialog here. For an example, look at
file HourPartitionerDialog.java in the download package of this chapter or the
ModPartitionerDialog class in the Kettle source code.

Partitioner

In addition to the usual four methods to serialize the metadata as XML or in a repository
and getDialogClassName(), there is another main method that you need to imple-
ment to get a partitioning method to work: getPartition(). In the following code
sample, you calculate the partition based on the last two digits before the extension of a
file name. These digits represent the hour of the data for which the data in the file was
generated. For example, if the file is called data-17.txt, it contains data from 5 to 6 p.m
(the 18th hour in a 24 hour day). The getPartition() method should return partition
17 for this file. Since partition numbers start at zero this is the 18th partition.

The metadata of the partitioning method is the specification of the field name that
contains the file name. This method initializes the number of available partitions in
variable nrPartitions if this is not already done. This method comes from class
BasePartioner which you subclass. You can find the next code samples in file
HourPartitioner.java in the download package of this chapter.

 public int getPartition(RowMetaInterface rowMeta, Object[] row

) throws KettleException {

 init(rowMeta);

For performance reasons you cache the location of the field to partition on, in this
case this field will contain the file name. If a field with the specified name can’t be found
you throw an exception with an appropriate error message.

 if (partitionColumnIndex < 0) {

 partitionColumnIndex = rowMeta.indexOfValue(fieldName);

 if (partitionColumnIndex < 0) {

 throw new KettleStepException(

 BaseMessages.getString(PKG,

 “HourPartitioner.Exception.PartitioningFieldNotFound”,

 fieldName,

 rowMeta.toString()));

 }

 }

626 Part V ■ Advanced Topics

 Next you obtain the file name itself. Because data can never be trusted, you check
that the input is indeed a String value. If this is not the case, you terminate the trans-
formation by throwing an exception with a message that describes the problem:

 ValueMetaInterface valueMeta =

 rowMeta.getValueMeta(partitionColumnIndex);

 Object valueData = row[partitionColumnIndex];

 if (!valueMeta.isString()) {

 throw new KettleException(BaseMessages.getString(PKG,

 “HourPartitioner.Exception.NotAFilename”,

 valueMeta.getName()));

 }

The last lines are responsible for the actual calculation of the partition number. It’s
important to return a number that is between 0 and the number of partitions minus
one. To make sure that this is the case, it’s convenient to use the modulo (remainder of
division) calculation:

 String filename = valueMeta.getString(valueData);

 String hourString =

 filename.substring(filename.length()-6, filename.length()-4);

 int value = Integer.parseInt(hourString);

 int targetLocation = (int) (value % nrPartitions);

 return targetLocation;

 }

Again, because of the presence of the uniform plugin registry, deploying a partitioning
method is similar to what you’ve seen with the other plugins. For historical reasons, you
have to deploy the .jar file in the same directory as the step plugins: plugins/steps.

Repository Type Plugins

Over the course of the last decade, new software configuration management (SCM) and
content management systems (CMSs) have become available to a wide audience in the form
of low-cost and open source software. Examples of popular open source SCM software
titles include Concurrent Versioning System (CVS), Subversion, and Git. In the area of CMS,
we can list systems such as JCR (Java Content Repository), CMIS (Content Management
Interoperability Services) or even the new Google Wave protocol. Because all the listed
systems would be suitable for storage and retrieval of Kettle metadata, the Kettle develop-
ment team deemed it appropriate to create an abstraction layer that will allow you to create
your own implementation of a repository on any of these SCM or CMS systems.

Repository is the name of the main interface to implement for this plugin type. It
covers everything ranging from serialization of transformations to the specification of
security providers. With such a wide range of topics to cover, this plugin type goes far
beyond the interest range of most ETL developers. However, if you are interested in

 Chapter 23 ■ Extending Kettle 627

writing a repository type plugin for Kettle, there are again samples to look at. First take
a look at the Kettle Database Repository (see also the KettleDatabaseRepository
class). That repository can serialize Kettle metadata to a relational database schema.
Then you can look at the File repository (see also the KettleFileRepository class).
It provides a repository interface layer around an Apache VFS file location such as a
folder on disk or a zip file. Because of the simplicity of the File Repository we advise
you to take this code as a starting point for your studies on the subject.

Because the repository type plugin system is in use for the Pentaho Enterprise
Repository, you know that the capabilities of these types of plugins include advanced
version management, file locking, and security. However, considerable effort is likely
needed to implement all these features.

To implement advanced functionality such as file locking without this being explic-
itly present in the Repository interface, Pentaho allows the registration of services
that can extend the standard capabilities. For more information, see this page on the
Pentaho wiki: http://wiki.pentaho.com/display/EAI/Registering+Service
s+to+the+Repository+in+Kettle.

Finally, repository type plugins can be deployed to the plugins/repositories
folder and will be recognized when they are annotated with the @RepositoryPlugin
annotation.

Database Type Plugins

Relational and column store databases are in a constant state of flux. New contenders
to the crown and new versions are appearing all the time, making the maintenance
of the database abstraction layer not an easy task. The goal of that layer is to make it
easy and convenient for the ETL developer to get connected to a database with as little
hassle as possible. In the past, this has worked well for Kettle in the sense that it’s easy
get access to 99 percent of the most common databases. However for the odd case, the
buggy drivers, and the brand new versions, it is convenient to have a way of tweaking
existing functionality. That is what the database type plugin system allows you to do.

The main interface that describes a database type is org.pentaho.di.core
. database.DatabaseInterface. This interface contains a wide range of methods
that describe the behavior of the database. It is possible for a database type plugin to
define or override any behavior that might be interesting to you. As an example, let’s
create a new driver for the MySQL 5.1 JDBC driver. As explained at the beginning of
this chapter, it is possible to replace the existing MySQL driver simply by using the
same existing “MYSQL” database type ID. In the example, we’re creating another entry
in the list of available databases in the database dialog. (You can also find this code in
the MySQL51DatabaseMeta.java file in the download package of this chapter.)

package org.kettlesolutions.plugin.database.mysql51db

import org.pentaho.di.core.database.DatabaseInterface;

import org.pentaho.di.core.database.MySQLDatabaseMeta;

import org.pentaho.di.core.plugins.DatabaseMetaPlugin;

@DatabaseMetaPlugin(

628 Part V ■ Advanced Topics

 type=”MYSQL51”,

 typeDescription=”MySQL 5.1”

)

The 5.1 driver uses a different JDBC driver class by default and you also want it to
support transactions:

public class MySQL51DatabaseMeta extends MySQLDatabaseMeta

 implements DatabaseInterface {

 public String getDriverClass() {

 return “com.mysql.jdbc.Driver”;

 }

 public boolean supportsTransactions() {

 return true;

 }

}

To make this simple database type plugin work, you simply have to put it in a
.jar file and deploy it in the plugins/databases directory in your binary Kettle
distribution.

The user interface aspect of the database type plugin system is not completed at the
time of this writing. Because the database dialog is a core (or commons) project and uses
XUL, you will have to specify a value for the method getXulOverlayFile() in the
database interface. In this example we would return mysql. Combined with the access
method, this would result in the file mysql_native.xul being read. The Kettle devel-
opers expect that the specification of a plugin-defined XUL overlay file will be possible
soon. For the time being, it is possible to hard-code the various interface values or to
read them from a file somewhere (defined perhaps by an environment variable).

Summary

In this chapter, you learned the basics of writing a plugin for Kettle. You took a look at
the plugin architecture and the setup of your development environment. Specifically, the
chapter discussed:

Implementing the four core interfaces that make up a step plugin■

Handling advanced step plugin problems like sending rows to specific steps and ■

variable substitution

Writing code for the User Defined Java Class step■

The basics of SWT user interface development■

Creating a job entry plugin■

Designing a custom partitioning method■

Building a repository type plugin■

Creating your own database type as a plugin■

629

A P P E N D I X

A

The Kettle Ecosystem

By now you have probably discovered that developing ETL solutions using Kettle is not
only easy but also a lot of fun. To make it even easier and more fun than it already is,
you probably want to get in touch with other Kettle fans. In some circumstances you
might also run into something that doesn’t work as expected and you need to find out
if it’s just you that’s having this problem or if it’s an already known problem. Finally,
you want to keep up-to-date on the latest developments, try out new features or even
contribute to the Kettle community. This appendix is meant to introduce you to all the
sites and tools that make up the Kettle ecosystem.

Kettle Development and Versions

The code base of the Kettle project is under heavy development and changes almost
daily. Bugs are fixed, new features are added, and optimizations are being implemented
constantly. As a consequence, five versions are available for use, each in its own stage
of the product lifecycle. The following list explains the various options for obtaining
the software and their maturity, from the GA (General Availability) to Trunk (source
code you need to build and compile yourself):

GA (General Availability) version:■ The most stable version of Kettle and prob-
ably the one you will be using in a production environment. In fact, we don’t
recommend any other version than GA for use in production, period. The GA ver-
sion has undergone heavy unit and integration testing and is used by thousands

630 Appendix A ■ The Kettle Ecosystem

of people all over the world. If you go to the Pentaho Community download site
and select Latest Stable Builds, the URL http://wiki.pentaho.com/display/
COM/Latest+Stable+Builds is opened. You might notice that this overview
doesn’t always contain the latest versions of the product, so in order to get the
actual latest GA version, it’s better to go to the Pentaho SourceForge files directly,
which are located at http://sourceforge.net/projects/pentaho/files.

RC (Release Candidate):■ Prior to becoming GA, several Release Candidates will
be published for download. RCs serve several purposes: First, they enable organi-
zations to perform upgrade tests and make sure that existing functionality won’t
break. Second, they allow ETL developers to find out which new features are
available. Finally, they allow Pentaho to get early feedback from customers on
new features and any possible remaining issues. RC versions are code complete,
meaning that there won’t be a feature difference between a release candidate
and the final GA release. RC versions can also be obtained from the previously
mentioned SourceForge site.

Milestone:■ During the development of a new release, several milestone releases
are created, each adding more new features to the final product. The Pentaho
developers have embraced the Scrum development methodology, which works
from an issue backlog, where an “issue” can refer to a new feature, a product
improvement, or a bug. This issue backlog is divided into so-called sprints and
each finalized sprint results in a milestone. Sometimes these milestones are avail-
able for download as a kind of snapshot, but sometimes not. Milestone releases
can be found on the wiki page http://wiki.pentaho.com/display/COM/
Latest+Milestones and are usually kept for download on the CI site (see next
bullet point) for some time as well.

CI (Continuous Integration):■ Pentaho uses Hudson, a tool that is used for con-
tinuously building and testing software projects. The Pentaho CI environment
can be accessed at http://ci.pentaho.com where you can find the latest builds
of all Pentaho projects, including Kettle. The CI site contains the binary versions
of the different Pentaho projects, but there are no installers so you need to know
how to install and deploy the software yourself. In the case of Kettle, this is
very straightforward; just download the latest zip file (the one with the version
and build number in the file name, not the pdi-ce-TRUNK-SNAPSHOT.zip file),
unpack it in a directory, open a terminal screen, and issue either spoon.sh (Linux)
or spoon.bat (Windows). On a Mac, just click the Data Integration 64-bit.app
symbol.

Trunk version:■ If you’re a developer and would like to contribute to Kettle, or
would like to work with the source code directly, you can get the code from
the trunk directory of Subversion, the version management system used by
Pentaho. The Kettle code can be accessed from http://source.pentaho.org/
svnkettleroot; the web page http://community.pentaho.com/getthecode
offers more general information about accessing and working with the source
code of the various Pentaho projects.

 Appendix A ■ The Kettle Ecosystem 631

The Pentaho Community Wiki

Probably the first choice of documentation for anyone starting out in the Pentaho world
is the Community Wiki, which you can access at http://wiki.pentaho.com. The wiki
is divided into separate sections, so each project has a separate set of pages where you
can find documentation, frequently asked questions, screenshots, and recorded demos.
Although it seems like this is the documentation nirvana where you can find everything
you need, you’ll soon find out that reality is a bit less shiny. Many links point to almost
empty pages or describe older versions of the products, and in the case of Kettle, some
of the steps are not documented (yet) at all. Remember that the content of the wiki is
entirely created and maintained by the Pentaho Community. That is, by the way, also
the good news: As soon as you register and sign in, you can start adding or updating
content and helping others become more productive using Kettle.

Using the Forums

Unlike the wiki, which is of a more static nature, the Pentaho forums can be used to
interact with other Kettle fans, and are a gold mine for getting help or looking for a
solution to your specific problem. The Pentaho forum is a public website that can be
found at http://forums.pentaho.org and is open to anyone. There’s only one golden
rule to remember, however, not only for this forum but for any open source community:
You’re never on your own, but you need to give to get. A bit of patience and politeness
don’t hurt either.

The forums can be used to search for existing posts with a subject you’re interested
in, you can post new threads or reply to existing ones, and many announcements about
the Pentaho community can also be found on the forums first. If you don’t register and
sign in, you can still use the forum to search for solutions, but if you want to post a new
thread or reply to someone else’s, you need to be signed in.

At your first visit to the aforementioned site, you’ll immediately notice that Kettle
is one of the more popular topics on the forums. The Kettle forum alone now contains
over 40,000 messages, so it’s likely your question was asked before by someone else.
So before jumping in and posting a new thread, make sure that there isn’t an existing
thread with a similar question or discussion. In fact, there are some other ground rules
as well, and Matt Casters, chief architect of Kettle, was kind enough to list them in the
first post you should read. It’s aptly called “Read me first” and can be found at http://
forums.pentaho.org/showthread.php?t=71633.

A good way to keep track of what’s going on in the forums is to subscribe to the
RSS feed using a news reader like http://reader.google.com or any other one you
prefer. Subscribing to the feed is easy. Just go to the main Kettle forum page and click
the RSS button right below the New Thread button. The screenshot in Figure A-1 shows
exactly where it is located.

Alternatively, you can add the feed URL directly to your reader of choice. The URL
is http://forums.pentaho.org/external.php?type=RSS&forumids=135.

632 Appendix A ■ The Kettle Ecosystem

Figure A-1: Forum feed subscription

Jira

Jira is a product of the Australian company Atlassian (http://www.atlassian.com)
and is arguably the most widely used issue tracking and project management tool in
the world. Major companies such as Oracle, Cisco, and Boeing use the Atlassian tools,
and even Microsoft is on their customer list. Jira is therefore not a Pentaho product, but
a product used by Pentaho. It has become so well known in the community, however,
that is has become a name of its own. So when someone says to “look it up in Jira” or
asks you whether you have “posted it in Jira,” what they actually mean is the Pentaho
issue tracking site that can be found at http://jira.pentaho.org.

At first glance, it might seem that Jira is a bug tracker, and although this might be
correct for many of the entries to be found on the site, it’s not the complete story. Jira is
actually the environment where you can find the Pentaho roadmaps and the planning
and work in progress for the upcoming releases—and yes, bugs are posted there as
well. Unlike proprietary software products, you can actually see what’s going on with
your favorite tool, who got assigned the open issues, and when you can expect them
to be solved. Figure A-2 shows an example of the Pentaho Data Integration Task board,
which shows 51 open issues on the left, 3 closed issues on the right, and no issues cur-
rently in progress.

Figure A-2: Jira Task Board

 Appendix A ■ The Kettle Ecosystem 633

##pentaho

This somewhat cryptic title is the name of the unofficial Pentaho channel on IRC
(Internet Relay Chat). IRC is one of the oldest communication channels on the Internet
and has been around for over 20 years now. This predates the WWW and HTML era,
so communication on an IRC channel is still text-based, although you can use URLs
nowadays. IRC is a client/server type of application, so you need a client to connect to
the various servers that are available worldwide. Each server hosts one or more chan-
nels you can join, and most channels have a single hash sign (#) before their name.
Trying to find a #pentaho channel won’t result in anything because the channel uses
two hash tags: it’s ##pentaho, and can be found on Freenode.net, one of the available
open IRC servers on the Internet.

NOTE A common rule on IRC is that channels having a name starting with

a single hash tag (#) are general chat channels, whereas the double hash tag

(##) indicates help channels.

Getting on the channel is very straightforward: just download one of the available
chat clients, connect to the Freenode server, and join the ##pentaho channel. Two of
the more popular clients are XChat (http://xchat.org) for Linux and Windows, and
mIRC (http://www.mirc.com) for Windows only. If you’re a Mac user, you might
want to take a look at XChat Aqua (http://xchataqua.sourceforge.net) or Babbel
(http://www.babbelirc.com). All of these clients work in a similar way; once you
connect to the channel(s) of your choice, you can simply type in what you want to say
or ask in the text box, which is usually at the bottom of the screen. Figure A-3 shows a
screenshot of XChat connected to the ##pentaho channel.

Figure A-3: Chatting with the community

634 Appendix A ■ The Kettle Ecosystem

As you can tell from just looking at Figure A-3, there’s not much to learn here. You’ll
see that there are 29 users connected (this was on a Sunday), and there’s an announce-
ment about the upcoming community meeting at the top. If you engage in a private
chat, the name of the user you’re chatting with is displayed in the channel list on the
left as well.

Usually you’ll find anywhere between 25 and 40 people on the channel. Many of the
Pentaho developers are active on IRC, and Doug Moran, Pentaho’s community manager,
is also a regular visitor. If you look at the text in the screenshot displayed in Figure A-1,
you’ll notice multiple people interacting and trying to tackle a problem, and usually
(we must stress that again: usually) people are very helpful.

WARNING Don’t expect the IRC channel to be a free support channel where

all your questions are answered immediately by a group of highly skilled Pentaho

experts. In many cases, you’ll be directed to either the forums or to Jira … or it

may take hours before someone notices your question (if at all).

In the screenshot, you’ll also notice the names of the users on the channel. Most
people use an alias, not a real name. Most of these users can be found on the Pentaho
forum as well, and if you hang around long enough in the community you’ll eventu-
ally find out who’s who.

635

A P P E N D I X

B

Kettle Enterprise
Edition Features

As you probably know already, Pentaho offers two versions of Kettle, an open source
Community Edition (CE) and an Enterprise Edition (EE) that contains proprietary pieces
of software. On the Pentaho website you can learn about the differences between CE
and EE in general (http://www.pentaho.com/products/enterprise/enterprise_
comparison.php), and as you can see from the site there’s a lot to be gained from tak-
ing an Enterprise subscription.

NOTE One thing to keep in mind about the Enterprise Edition is that you sign

up for a yearly subscription, which is different than a software license. Most

software licenses include the right to use the software for an infinite amount

of time, and even if you stop paying for support, you can still keep using the

software. A subscription works differently. Each year the subscription needs

to be renewed and a new license key with an expiration date set at the current

date plus one year will be issued. This means that when you decide to termi-

nate the subscription, the software will stop working as soon as the license

key expires. However, with Kettle there could be a smooth downgrade path

from the Enterprise to the Community Edition; as long as you don’t use any of

the EE-only steps (see following), all jobs and transformations built using the

Enterprise Edition will run unchanged on the Community Edition as well.

Until version 4 of Kettle, there weren’t any significant differences in functionality
between Kettle CE and Kettle EE. The only difference was the extended Enterprise
Console, which let you schedule and monitor jobs. This has changed considerably with

636 Appendix B ■ Kettle Enterprise Edition Features

the arrival of version 4. Kettle CE version 4 is still a very powerful ETL tool with many
features that can only be found in very expensive proprietary tools, but it lacks the fol-
lowing components that are only available via an EE subscription:

Installer:■ Although installation of Kettle CE is a very straightforward process,
the EE further eases this effort by packaging the solution in an easy-to-use
installer.

Agile BI:■ Kettle EE contains the plugin for Agile BI development (see also Chap-
ter 11) in the installation files. CE users need to download, unpack, and deploy
this component separately.

Integrated Scheduling:■ Kettle EE contains a built-in scheduling tool, eliminating the
need to use either the Enterprise Console or some third-party tool for this task.

Data Integration Server:■ Kettle EE comes with a dedicated data integration server
that can be managed independently from other Pentaho components. This also
makes Kettle EE easier to deploy and manage in a corporate environment.

Management Console:■ The Pentaho Enterprise Console can be used as a dedi-
cated management console for Pentaho Data Integration.

Enterprise Repository:■ Arguably the biggest differentiator between the CE and
EE versions is the new repository that works closely with the new data integra-
tion server. This repository enables features that were never available in Kettle
before, and are mostly targeted at supporting multi-developer teams:

Versioning:■ Enables storing multiple versions of a job or transformation and
the ability to roll back to previous versions.

Locking:■ Prevents developers from overwriting someone else’s work by allow-
ing check-out/check-in of components.

Security:■ Supports fine-grained authorization schemes for users, roles, and
permissions. By default, the data integration repository security integrates
with Pentaho security, but can also leverage existing authentication and autho-
rization providers such as LDAP and Active Directory.

Additional steps:■ There are extra transformation steps and job entries added to
the Enterprise Edition. Examples are the Google Analytics Input step, Google
Docs Input step, JMS step, and many more.

As you can read on the edition comparison site, an Enterprise Edition subscription
comes with toll-free telephone and e-mail support, including unlimited support cases.
Even if you don’t want to buy an EE subscription, you can probably still get paid sup-
port; the Kettle Community Edition is one of the products for which paid developer
support was available at the time of this writing.

637

A P P E N D I X

C

Built-in Variables and
Properties Reference

This appendix starts with a description of all the internal variables that are set automati-
cally by Kettle. That is followed by a list of all the variables that you can set to influence
the way that Kettle operates at run-time. Next, we discuss how you can define variables
to help secure FTP authentication using VFS. Finally, we mention a few noteworthy
variables from the Java Runtime Environment.

For more information on how to use variables, see Chapter 2.

Internal Variables

Table C-1 shows all the variables that are defined at run-time by the Kettle transforma-
tion or job engine.

Table C-1: Internal Variables

VARIABLE DESCRIPTION

Internal.Kettle.Version This contains the version string of
Kettle, for example, 4.0.0.

Internal.Kettle.Build.Version This contains the subversion revi-
sion of the Kettle source of the build
you’re using.

Continued

638 Appendix C ■ Built-in Variables and Properties Reference

VARIABLE DESCRIPTION

Internal.Kettle.Build.Date The build date.

Internal.Job.Filename.Directory If you are running a job from a file
(.kjb), this variable will contain the
folder in which that file is located.
This variable allows you to specify
other jobs, transformations, and
files in a relative fashion.

Internal.Job.Filename.Name If you are running a job from a file
(.kjb), this variable will contain the
name of that file.

Internal.Job.Name The name of the currently executing
parent job.

Internal.Job.Repository.Directory If you are running a job from a
repository, this variable will contain
the path to the repository directory
from which the job was loaded.

Internal.Transformation.Filename
.Directory

If you are running a transformation
from a file (.ktr), this variable will
contain the folder in which that file
is located. This variable allows you
to specify mappings and files in a
relative fashion.

Internal.Transformation.Filename
.Name

If you are running a transformation
from a file (.ktr), this variable will
contain the name of the file.

Internal.Transformation.Name The name of the currently executing
transformation.

Internal.Transformation
.Repository.Directory

If you are running a transformation
from a repository, this variable will
contain the path to the repository
directory from which the transfor-
mation was loaded.

Internal.Step.Partition.ID If a step is configured to run as par-
titioned, multiple copies will be exe-
cuted, one for each partition. This
variable will contain the partition ID
to which that step copy belongs.

Table C-1 (continued)

 Appendix C ■ Built-in Variables and Properties Reference 639

VARIABLE DESCRIPTION

Internal.Step.Partition.Number If a step is configured to run as
partitioned, multiple copies will
be executed, one for each parti-
tion. This variable will contain the
partition number to which that step
copy belongs in the range between
zero and the number of partitions
minus one.

Internal.Slave.Transformation
.Number

If a transformation is running as
clustered on a slave server (not the
master), this variable will contain
the slave number. This value will
be in the range between 0 and the
number of slaves minus one.

Internal.Slave.Server.Name If a transformation is running as
clustered on a slave server (not the
master), this variable will contain
the name of the slave server on
which it runs.

Internal.Cluster.Size If a transformation runs as clus-
tered, this variable will contain the
number of slaves in the cluster.

Internal.Step.Unique.Number This variable contains the unique
number of step copies for a given
step in a transformation. This also
works when the step is executed
with clustering and/or partition-
ing. This value will be in the range
between zero and the number of
step copies minus one.

Internal.Cluster.Master If a transformation runs as clus-
tered, this variable will contain Y if
it is running on the master and N
if it is running on a slave.

Internal.Step.Unique.Count The number of unique step copies
that are executed. This also works
when the step is executed with
clustering and/or partitioning.

Internal.Step.Name The name of the executing step.

Internal.Step.CopyNr The copy number in the local
transformation (does not take into
account clustering).

640 Appendix C ■ Built-in Variables and Properties Reference

Kettle Variables

Table C-2 provides a list of variables that can be set to configure various Kettle-specific
options.

Table C-2: Kettle Variables

VARIABLE DESCRIPTION

KETTLE_SHARED_OBJECTS The location of the shared object file for
transformations and jobs. The default
shared objects file is called shared.xml,
located in the Kettle home directory. Setting
this variable overwrites this default.

KETTLE_EMPTY_STRING_
DIFFERS_FROM_NULL

If this setting is set to Y, an empty string and
null are different. Otherwise, they are not
(the default).

KETTLE_MAX_LOG_SIZE_IN_LINES The maximum number of log lines that are
kept internally by Kettle. Set to 0 to keep all
rows (the default).

KETTLE_MAX_LOG_TIMEOUT_IN_
MINUTES

The maximum age (in minutes) of a log line
while being kept internally by Kettle. Set to
0 to keep all rows indefinitely (the default).

KETTLE_STEP_PERFORMANCE_
SNAPSHOT_LIMIT

The maximum number of step performance
snapshots to keep in memory. Set to 0 to
keep all snapshots indefinitely (the default).

KETTLE_PLUGIN_CLASSES A comma-delimited list of classes to scan
for plug-in annotations. See http://
wiki.pentaho.com/display/EAI/
How+to+debug+a+Kettle+4+plugin for
more information.

KETTLE_LOG_SIZE_LIMIT The log size limit for all transformations and
jobs that don’t have the log size limit
in lines property set in their respective
log table properties.

There are also a number of variables, listed in Table C-3, that allow you to automati-
cally configure the various logging tables for all jobs and transformations. For the vari-
ables in that table, you have to replace ... with one of the following values:

TRANS■ : For the transformation log table

TRANS_PERFORMANCE■ : For the performance log table

STEP■ : For the step log table

JOB■ : For the job log table

 Appendix C ■ Built-in Variables and Properties Reference 641

JOBENTRY■ : For the job entry log table

CHANNEL■ : For the channel log table

For more information on log tables, see Chapter 14.

Table C-3: Kettle Log Table Variables

VARIABLE DESCRIPTION

KETTLE_..._LOG_DB Specifies the name of the database connection to
use for the logging table.

KETTLE_..._LOG_SCHEMA Indicates the schema to use for the logging table.

KETTLE_..._LOG_TABLE Specifies the name of the logging table itself.

Variables for Configuring VFS

As explained in Chapter 2, it is possible to use URIs to specify various locations of
files in Kettle. The underlying technology, Apache VFS, supports many different file
systems such as file://, zip://, ftp://, http://, and so on. The standard way
to authenticate all file systems is to place username@password before the hostname.
For example:

ftp://john:pwd4john@example.com/pub/customer/file.txt

For most file systems this works fine. However, in the case of secure FTP (sftp://)
you may be required to specify additional information such as the location of a private
key file. This is also supported through the system of variables. If you want to configure
these options, you have to follow these variable naming conventions:

The variable must start with ■ vfs.

The file system scheme comes next in the variable name: ■ sftp.

The parameter you want to set is next: ■

StrictHostKeyChecking■ : If no, the certificate of any remote host will be
accepted. If yes, the remote host must exist in the known hosts file (~/.ssh/
known_hosts).

authkeypassphrase■ : An optional passphrase that may be required to use
the identity key.

identity■ : The fully qualified path to the private key used for SFTP
authentication.

Finally, the variable name is followed by the host name or IP address for which ■

the variable is created.

642 Appendix C ■ Built-in Variables and Properties Reference

Here are a few examples:

vfs.sftp.StrictHostKeyChecking.sftp.myhost.net■

vfs.sftp.authkeyparaphrase.sftp.example.com■

vfs.sftp.identity.192.168.1.5■

NOTE Refer to http://wiki.pentaho.com/display/COM/

Configuring+Kettle+VFS for further information on configuring Kettle VFS.

Noteworthy JRE Variables

For a complete listing of variables that are set by the Java Runtime Environment,
please see the documentation of the getProperties() method of the System
class at http://java.sun.com/j2se/1.5.0/docs/api/java/lang/System
.html#getProperties(). Table C-4 shows a few notable variables that might be of
use in your transformations and jobs.

Table C-4: Noteworthy JRE Variables

VARIABLE DESCRIPTION

java.version The version of the Java Runtime Environment.

java.io.tmpdir The default temporary file directory path. This is the default
for all temporary files and the Spoon logging file.

os.name The name of the operating system.

os.arch The architecture of the operating system.

os.version The version of the operating system.

user.name The user’s account name.

user.home The user’s home directory.

user.dir The current working directory.

643

SYMBOLS
: (colon)

object members, 522
parameters, 322

, (comma)
arrays, 522
row metadata, 28

. (dot)
row metadata, 28
UNIX metacharacter, 507

* (asterisk), RSS Output step, 565
@ (at symbol), tokens, 536
^ (caret sign), UNIX metacharacter, 507
{} (curly brackets)

object literals, 522
object members, 522

- (dash)
parameters, 322
tokens, 536

$ (dollar sign), UNIX metacharacter, 507
$[] (dollar sign/square brackets), variable

hexadecimal values, 45
= (equals sign), parameters, 322
(hash mark), chat channels, 633
%% (percent sign-double), variable names, 45
| (pipe sign), FIFO, 247–248
? (question mark), XPath, 543
“ (quotes-double)

object members, 522
parameters, 322
string literals, 522

‘ (quotes-single)

parameters, 322
row metadata, 28

/ (slash), parameters, 322
[] (square brackets), arrays, 522
_ (underscore), tokens, 536

A
Abort job utility, 185–186
Abort step, 186
acc, 354
Access

Database Connection, 38, 93
file extraction, 134
Find Duplicate Query Wizard, 117

accumulating snapshot fact table, 260–261
fact table loader, 121
loading, 264–265
partitioning, 264–265

action sequence
schedule, 333
transformations, 328–330

ActiveMQ, 459
Add a mini-dimension, SCD, 119
Add constant step, 178

JavaScript, 396
add crc_src, 484
add crc_vault, 484
Add File to result, RSS Output step, 567
Add new column, SCD, 119
Add sequence step

internal counters, 211–213
rows, 405

Index

644 Index ■ A–B

Spoon, 211–217
surrogate keys, 211–217

Add to result filename, Get data from XML
step, 535

Add validation msg in output, XSD Validator
step, 529

Add XML step, 518, 540
export_xml_from_db, 538
streams, 538
XML, 538–541

addExport, 416
Additional fields, Split field to rows step, 499
Additional steps, Enterprise Edition, 636
addJob, 416
Addresses tab, Mail, 337
addResultFile(), StepInterface, 618
addTrans, 415
ADempiere, 15
adjacency list, 242
ADLER 32, 484
Administration Console, 330–333
aggregate builder, ETL, 123
aggregate tables, 266–267
Aggregation Designer, Mondrian, 123, 267
Agile BI, 12–14, 302

Enterprise Edition, 636
agile development

BI, 12–14
ETL, 301–306
Spoon, 301–302

Agile Manifesto, 12–13
allocateSocket, 415
Amazon, EC2, 125, 427–447
Amazon Machine Image (AMI), 439–442

master, 442–443
slaves, 443–444
Ubuntu, 442

AMI. See Amazon Machine Image
analyseImpact(), StepMetaInterface,

599
Ant build tool, Apache, 571
Apache

ActiveMQ, 459
Ant build tool, 571
DBCP, 400
Log4J, 366
Subversion, 343, 570
VFS, 42, 349, 517, 619

variables, 641–642
API. See application programming interface
application programming interface (API),

569–571
documentation, 596

Java, 570–574
jobs, 573–574
parameters, 579–580
transformations, 572–573
variables, 579–580

web services, 516
Arbor Essbase, 269
architecture

DWH, 8
logging, 364–367
plugins, 593–599
transformations, 452

archive files, 60–61
arrays, JSON, 522
Aschauer, Bernd, 140
ASCII, 15, 18

staging area, 8
at, 327
atlassian.com, 632
Attached Files tab, Mail, 339–340
attribute domain constraints, data quality,

168
attributes

HTML, 520
hubs, 468
multi-valued, 498–500
Palo, 285
Root XML element, 541
rows, 497
SQL, 484

Attributes , satellites, 470
Attunity Stream, Oracle, 163
audit dimension, 117, 192
auditing. See also logging

data quality, 191–192
ETL, 22

authentication, Carte, 67
authkeypassphrase, 641
authorization, Palo, 285
auto_increment, 217

B
babbelirc.com, 633
backtracking, 32–33
Backup System, 124
Badard, Thierry, 591
balanced hierarchy, 120
BAPI. See Business Application

Programming Interface
BasePartitioner, 625
BaseStep, 614
.bat, 58

 Index ■ B–C 645

batch processing, 449
batch run, 449
batch_id (=audit key), 192
batch-level lineage extraction, 358–359
BCNF. See Boyce-Codd normal form
Beginning XML (Hunter), 518
behavioral testing, 306
BI. See business intelligence
The Big Debate, 465
BigNumber, 28
Binary, 28
BIReady, 6
black box testing, 21
Blocking Step, multi-threading, 410
Boolean, 28

Database Connection, 38
flags, 94
job entries, 366
JSON, 522
String, 30
valid, 160

boolean isUnconditional(),
JobEntryInterface, 622

bottlenecks, transformations, 379–382
Bouman, Roland, 228, 319, 327
Boyce-Codd normal form (BCNF), 218, 226
BPM. See Business Process Management
branches/, 342
bridge tables, 121–122
browsers, web, 413
buffers

logging, 364, 365–366
performance, 380
RowSet, 579
transformations, 406–407

Build Model, Spoon, 302
built-in variables and properties, 637–642
Bulk Loader, MySQL, 248, 249
bulk loading

database, 390
fact tables, 246–251
LucidDB, 249
PostgresSQL, 250
Table output step, 250

bundling, 442
messages, 601

Bus Architecture, SCD, 118–119
Business Application Programming

Interface (BAPI), 140
business intelligence (BI), 2

Agile BI, 12–14, 302, 636
ETL, 12

Pentaho BI, 322, 327–333
real-time, 450

Business key, 468
business keys, 209–210

dimension tables, 210, 527
DV, 467
DWH, 209
looking up, 210
natural keys, 210
Sakila, 527
storing, 210
surrogate keys, 210
XML, 527

Business Objects, SQL, 9
Business Process Management (BPM), 344

C
caching, data, 453
Calculate Dimension Attributes,

transformations, 85–86
calculations

casing, 170
Validator step, 180–181

Calculator step, 108–109, 170, 171
Formula step, 201
keys, 214

callback, 550
canvas

jobs, 56
Spoon, 318
transformations, 56

capture groups, regular expressions, 200, 205
Carlton, 6
Carte, 41, 55, 57

authentication, 67
clustering, 57
dynamic clustering, 434
master, 441
slave servers, 411–416, 435
TCP/IP, 57, 417

carte-config-master-8080.xml, 434–435
Cartesian join step, RSS Ouput step, 564
Cartesian product, 87
Caserta, Joe, 113
case-sensitivity, 507
casing, calculations, 170
Casters, Matt, 167, 315
cat, 248
Catalog location, Mondrian Input step, 274
catalogs, Database Connection, 39
CDC. See Change Data Capture
Central storage, 41

646 Index ■ C

Change Data Capture (CDC), 16
data extraction, 450–451
database triggers, 157–158
dimension table keys, 80–81
ETL, 115, 154–163
logging, 162–163
MySQL, 162–163
real-time data integration, 450–451
relational databases, 450
RFCs, 146
Sakila, 108
snapshots, 146, 158–162
source data, 155–157
star schema, 227–228
timestamps, 155–157, 163, 450
triggers, 450

Change number of copies to start, User
Defined Java Class step, 404

CHANNEL, 641
channel, RSS, 558–559
Channel tab, RSS Output step, 565
channel-log-table, 346
channels

log table, 372
logging, 366

chat channels, 633
check()
JobEntryInterface, 622
StepMetaInterface, 599

Check if XML file is well formed, job entries,
519

checksums, 309
JavaScript, 395
partitioning, 426

child key, 242
chmod, UNIX, 322
CI. See Continuous Integration
classpath, 70–71
cleansing. See data cleansing
clear-box testing, 306
clone(), StepInterface, 616
Closure Generator step, 242–243
closure table, 242
cloud computing, 433–447
cluster, kettle.pwd, 67
clustering, 18–20. See also dynamic clustering

Carte, 57
data pipelining, 425
database, 40
schema, 417–418
sorting, 394
TCP/IP, 423

transformations, 417–425
partitioning, 430

CMSs. See content management systems
Codd, E.F. (Ted), 269
Cognos, Powerplay, 269
column profiling, 17, 146
Combination lookup / update step, 99
import_xml_into_db.ktr, 527
Insert / Update step, 241
junk dimensions, 241
Spoon, 241

ComboVar, 609
Comma Separated Values (CSV), 47–50, 128

dynamic transformations, 580–583
sets, 498

command-line
jobs, 322–326
parameters, 323–324, 325–326
transformations, 322–326

commands.jar, 596
commentary, ETL, 298–299
comments, item, 559
commit size, Table output step, 390
common.jar, 596
Community Edition, 635–636
Community Wiki, 631
compatibility mode, JavaScript, 395
complex join condition, XML Join step, 543
Compliance Reporter, ETL, 125
concatenation

denormalization, 100–101
Validator step, 179

Concurrent Versions System (CVS), 343
ConditionEditor, 609
configuration, 63–72

slave servers, 411–412
conformation. See data conformation
connect by prior, Oracle, 20
Connection, Mondrian Input step, 274
Connection Name, Database Connection, 38,

92–93
connection pools, 400
Connection Type, Database Connection, 38,

92–93
constraints

dependency, data validation, 183
domain attribute constraints category, 179
performance, 392

content management systems (CMSs), 344,
626

Content tab
Add XML step, 539

 Index ■ C–D 647

Get data from XML step, 532–535
Regex Evaluation step, 506–507
RSS Input step, 561–562

Continuous Integration (CI), 13, 450, 630
testing, 311

control files, 247
COPY, PostgresSQL, 250
Copy rows to result step, 162

CDC, 164
job entries, 399
transformations, 576–577

Copy Table, 9
Copy Tables, 9
Copy tables wizard, Spoon, 584
Core, Java API, 571
Counter name field, Step sequence step, 212
CPU performance, 394–398
CRC. See Cyclic Redundancy Check
Create custom RSS, RSS Output step, 565, 567
Create new rows, SCD, 119
Create Parent folder, RSS Output step, 567
CRM. See Customer Relationship

Management
Crockford, Douglas, 520
cron, UNIX, 326–327
crontab, UNIX, 326–327
CSV. See Comma Separated Values
CSV File Input step, 384–385

dynamic templates, 584
partitioning, 428
rows, 394
StepInterface, 617

CsvFileReader, 584
CsvFileReader.java, 580–583
cubes, 123

dimensions, 270–271
OLAP, 270–271
XML/A, 278

current_flag, 265
CURRENT_TIMESTAMP, 480
Customer Relationship Management (CRM),

14–15, 138–146
deduplication, 192–199

customizations.jar, 591
CVS. See Concurrent Versions System
Cyclic Redundancy Check (CRC)

Filter rows step, 485
Merge Join step, 485
NULL, 484
Update step, 485

D
Damerau-Levenshtein algorithm, 171
data

acquisition challenges, 14–16
caching, 453
delivery, 118
federation, 10–11
governance, 168
late-arriving, 255–260

dimensions, 256–260
ETL, 122
facts, 256

migration, 9
paths, 25
SAP, 140–145
semi-structured, 501–508
sorting, performance, 392–394
static, 397–398
streams, 577
synchronization, 9
traceability, 467
transformations, 576–580
unstructured, 501–508

Data Cleaning and Quality Screen Handler
System, ETL, 116–117

Data Cleanse step, 169
data cleansing

data governance, 168
data quality, 168
data validation, 179–183
ETL, 168–183
reference tables, 172–179
regular expressions, 203–205
source data, 173

data conformation
ETL, 118
lookup tables, 172–175
reference tables, 175–179

data conversion
JavaScript, 395
transformations, 29–30

data extraction, 127–165
Access files, 134
CDC, 450–451
database, 134–136
ETL, 114–116
Excel files, 134
Freebase, 553–558
HTML, 520
HTTP client, 137–138
input steps, 128
lineage, 358–359

648 Index ■ D

metadata, 359
parallelism, 538
real-time, 138
SOAP, 138
Spoon, 128
streams, 138
text files, 128–132

Web, 137
Web, 137–138
XBase files, 134
XML, 525–536
XML files, 133

data formats
HTTP, 517
non-relational, 498
non-tabular, 498
web services, 517–523
XML, 518–520

Data Grid step, 135, 173
SAP Input step, 142
Table input step, 132
testing, 311

data integration, 8, 569–592
challenges, 11–17
continuous, 450
ETL, 123
import_xml_into_db.ktr, 527
near real-time, 450
real-time, 449–461
Spoon, 302
streaming, 450
streams, 450

Data Integration Server, Enterprise Edition, 636
data lineage, 21, 357–363

data extraction, 358–359
impact analysis, 361–363

Data Manipulation Language (DML), 246
data mapping, 297–298

fields, 25
Sakila, 524–525
XML, 524–525

data mart
DV, 486–495

data pipelining
clustering, 425
multi-threading, 407–408

Data Profiler, Talend, 154
data profiling, 16–17, 127–128, 146–154

metadata, 17
Data Profiling System, 115
data quality

auditing, 191–192
categories, 168–169

challenges, 16–17
data cleansing, 168

Data Quality Assessment (Maydanchik), 169
Data Quality Lifecycle, 191
data types, Validator step, 179
data validation

data cleansing, 179–183
DataCleaner, 148, 153
dates, 182
deduplication, 183
dependency constraints, 183
error handling, 187–190
metadata, 182
NULL, 17, 180–181
rules, 180–183
Unknown, 17
XML Schema, 530
XSD Validator step, 530

Data Validator step, 179, 182, 187–188
Data Vault (DV), 9, 168, 465–495

business keys, 467
data mart, 486–495
database accounts, 477
dependency, 471
ETL, 477
extensibility, 471
hubs, 467–468
links, 468–469
NULL, 471
Sakila, 472–486
satellites, 469–471
tables, 485–486
3NF, 469
timestamps, 480
traceability, 471

data virtualization, EII, 10–11
data warehouse (DWH), 2

architecture, 8
business keys, 209
EDW, 465
jobs, 31
response time, 4
surrogate keys, 210

The Data Warehouse ETL Toolkit (Kimball and
Caserta), 113, 191

Data Warehouse Lifecycle Toolkit (Kimball), 11,
113–114

Data Warehouse Toolkit (Kimball and Ross),
221, 228

Database, Java API, 571
database

accounts, 82
DV, 477

 Index ■ D 649

bulk loading, 390
CDC, 155
clustering, 40
connection pools, 400
connections, multi-threading, 408–409
extraction, 134–136
metadata, 588–590
OLTP, 75
partitioning, 40, 429–430
performance, 388–392
plugins, 627–628
repositories, 348–349
Sakila, 73–110
sequence, 211

surrogate keys, 217
sharding, 40
shared objects, 589
sorting, 393
time-outs, 453
triggers, CDC, 157–158

Database Connection, 37–41
DataCleaner, 150–151
Enable Connection Pooling, 400
Sakila, 90–95
transformations, 37, 90–95

Database join, 105
Database lookup step, 99, 103, 105, 178

data caching, 453
denormalization, 226
Enable cache, 253
failure, 224–225
late-arriving data, 257–258
Load all date from table, 253
source systems, 222
Stream lookup step, 253, 255
surrogate key pipeline, 252

Database Name, Database Connection, 38
Database repository, 41
DatabaseMeta, 589
DataCleaner

data validation, 153
Database Connection, 150–151
dependency, 153–154
dictionary, 153–154
eobjects.org, 147–154
JavaScript, 153
regular expressions, 151–152
Run profiling, 152

data-integration, 61
date

data validation, 182
dimensions, 239

Date, 28
Integer, conversion, 30
String, conversion, 29

Date mask matcher, DataCleaner, 149
Date of last insert (without stream field as

source), Dimension lookup / update step,
238

Date of last insert or update (without stream
field as source), Dimension lookup /
update step, 238

Date of last update (without stream field as
source), Dimension lookup / update step,
239

datetime-stamp, 484
DBCP, Apache, 400
dbhost, 354
deadlock, 383
Debian, 59
Debug option, 312–315
debugging

ETL, 21, 312–315
jobs, 56
logging, 364
real-time transformation streaming,

457–478
rows, 314
transformations, 56

decision support systems (DSS), 2
deduplication, 104

CRM, 192–199
data validation, 183
ETL, 117–118
exact duplicates, 193–194
non-exact duplicates, 194–195
transformations, 195–199

delays, parameters, 457
DELETE, 157
deleted records, CDC, 155
delimited text files, 128
DeMarco, Tom, 12
denormalization, 99

concatenation, 100–101
Database lookup step, 226
Palo, 288
star schema, 226

Denormalize Special Features, 104
dependency, 125

constraints, data validation, 183
data quality, 168
DataCleaner, 153–154
dimension tables, 219
DV, 471
profiling, 146

650 Index ■ D–E

description, metadata, 37
Description, 332
description, 346
channel, 559
item, 559

descriptive fields, 318
design

building blocks, 25–42
flexibility, 19
principles, 23–25

Design ETL, Spoon, 302
dev, 354
dictionary, DataCleaner, 153–154
Dictionary matcher, DataCleaner, 149
dimension(s)

cubes, 270–271
hierarchies, 270
junk, 120, 241
late-arriving data, 256–260
mini-dimensions, 120, 239–240
Palo, 285
special dimension builder, 120
static, 84–87
user maintained, 120

Dimension lookup / update step, 99, 238
data caching, 453
history, 235–236
indexes, 390–391
Keys tab page, 234
late-arriving data, 259
SCD, 232–237
SOF, 266
surrogate keys, 234–235

dimension manager system, ETL, 122
dimension tables

business keys, 210, 527
dependency, 219
ETL, 207–244
fact tables, 251–260
keys, 109, 208–217

CDC, 80–81
loading, 218–228
natural keys, 99
OLTP, 226
rental star schema, 79–80
rows, 90
SCD, 118
snowflakes, 97, 218–225
star schema, 226–228
static, 84–87
surrogate keys, 209, 251–260
surrogate primary keys, 80

dimension(s)static dimensions, special
dimension builder, 120

dir, 324
directory, metadata, 36
dispose(), StepInterface, 614
distrib/, 571
distributed version control systems (DVCS),

344
DML. See Data Manipulation Language
Do Not Proceed, 90
Do not raise an error if no files, Get data

from XML step, 534
docs/api, 571
Document template XML step
export_xml_from_db, 537
XML Join step, 542

document type definition (DTD), 519
document-all, 319
documentation, API, 596
domain attribute constraints category, 179
dotall mode, 507
Double Metaphone algorithm, 171
DQGuru, 118
drill-down, 314
driver, jdbc.properties, 65
DSS. See decision support systems
DTD. See document type definition
DTD Validator step

job entries, 519
XML, 133

DV. See Data Vault
DVCS. See distributed version control

systems
DVD rental business, 73–110
DWH. See data warehouse
dynamic clustering

Carte, 434
cloud computing, 433–447
master, 434
schema, 434

dynamic ETL, 586–587
dynamic jobs, 584–586
Dynamic Slave, 445
dynamic templates, 583–584
dynamic testing, 307
dynamic transformations

CSV, 580–583
Spoon, 580–583

DynamicJob.java, 584

E
E4X. See ECMAScript for XML
EBS. See Elastic Block Service

 Index ■ E 651

E-Business Suite, Oracle, 18
EC2. See Elastic Computing Cloud
ec2-ami-tools, 440
ec2-bundle-vol, 442
ec2-describe-instances, 444
ECCD. See Extract, Cleanse, Conform, and

Deliver
Eclipse, 302, 597–598, 607
ECMAScript, 394–396
ECMAScript for XML (E4X), 520
ecosystem, 629–634
Edit button, Database lookup step, 222
Edit mapping button, Insert / Update step,

231–232
EDW. See enterprise data warehouse
Elastic Block Service (EBS), 438
Elastic Computing Cloud (EC2), Amazon,

125, 427–447
elements

HTML, 520
user interface, 609

Elements name, Add XML step, 540
ELT. See extract, load, and transform
e-mail

HTML, 339
notifications, 336–340

Email Message tab, Mail, 339
embedding, 574–590

libraries, 574
Enable cache, Database lookup step, 253
Enable Connection Pooling, Database

Connection, 400
Encoding list box, Get data from XML step,

533
Encr.bat, 58
encr.sh, 58
Engine, Java API, 571
EnterListDialog, 609
EnterMappingDialog, 609
EnterNumberDialog, 609
EnterPasswordDialog, 609
enterprise data warehouse (EDW), 465
Enterprise Edition, 124, 302, 635–636
Enterprise Information Integration (EII)

data virtualization, 10–11
LucidDB, 10

Enterprise Repository, Enterprise Edition,
636

Enterprise Resource Planning (ERP), 127,
138–146

metadata, 14, 139
plugins, 140

EnterSelectionDialog, 609
entries, 346
environment, 354
environmentSubstitute(),

StepInterface, 618–619
eobjects.org, DataCleaner, 147–154
ERP. See Enterprise Resource Planning
Error code, Data Validator step, 187
Error description, Data Validator step, 187,

188
Error fields, Data Validator step, 188
error handling

data acquisition, 15
data validation, 187–190
dynamic templates, 584
ETL, 117, 183–190
process errors, 184–187
StepInterface, 617
transformations errors, 186–187
XSD Validator step, 530

error messages, logging, 364
ErrorDialog, 609
/etc/init.d/carte, 441
ETI, 6
ETL. See extract, transform, and load
ETLT. See extract, transform, load, transform
eval(), JavaScript, 556
Excel

file extraction, 134
OLAP, 273

Excel Output step, 297
excludeFromCopyDistribute

Verification(), StepMetaInterface,
600

excludeFromRowLayoutVerification(),
StepMetaInterface, 600

ExecTrans.java, 576
execute(), JobEntryInterface, 622
Execute a transformation, Spoon, 413
Execute SQL script job, Spoon Copy tables

wizard, 584
Execute SQL script step

aggregate tables, 267
foreign keys, 252
import_xml_into_db.ktr, 526

Execute SQL step, multi-threading, 409–410
ExecuteJob.java, 573–574
ExecuteTrans.java, 572
export

metadata, StepMetaInterface, 600
repositories, 350–351
resource exporter, 444

652 Index ■ E

exportResources()
JobEntryInterface, 622
StepMetaInterface, 600

export_xml_from_db, 537–538
expressions, Java, 70–71
extended description, metadata, 37
extensibility, 593–628. See also plugins

DV, 471
ETL, 19–20

eXtensible Markup Language (XML)
Add XML step, 538–541
business keys, 527
data extraction, 525–536
data format, 518–520
data mapping, 524–525
document construction, 538
document structure, 523–524
documents, generating, 537–544
ETL metadata, 24
examples, 523–544
file extraction, 133
job entries, 519–520
jobs, metadata, 346–347
JSON, 520
metadata, 345–347
repositories, 344
Sakila, 523–544
slave servers, 413
surrogate keys, 527
transformations, metadata, 345–346
VCS, 352
Version Migration System, 352
web services, 518–520

eXtensible Stylesheet Language (XSL), 133
Extension, RSS Output step, 567
external sort, 393
Extract, Cleanse, Conform, and Deliver

(ECCD), 167
extract, load, and transform (ELT), 9
extract, transform, and load (ETL)

aggregate builder, 123
agile development, 301–306
audit dimension assembler, 117
auditing, 22
Backup System, 124
best practices, 296–300
BI, 12
building blocks, 7–8
CDC, 115, 154–163
commentary, 298–299
Compliance Reporter, 125
connectivity, 17–18

Data Cleaning and Quality Screen Handler
System, 116–117

data cleansing, 168–183
data conformer, 118
data delivery, 118
data integration manager, 123
data migration, 9
data paths, 25
Data Profiling System, 115
data synchronization, 9
debugging, 21, 312–315
deduplication, 117–118
definition, 5
design flexibility, 19
development lifecycle, 295–320
dimension manager system, 122
dimension tables, 207–244
DV, 477
dynamic, 586–587
error handling, 117, 183–190
evolution, 5–6
extensibility, 19–20
extraction, 114–116
Extraction System, 115–116
fact table, loader, 121
fact table, provider system, 122
flow design, 300
hierarchy dimension builder, 119–120
impact analysis, 125
Job Scheduler, 124
jobs, 12, 30–36
late-arriving data handler, 122
Lineage and Dependency

Analyzer, 125
logging, 22
maintainability, 300–301
metadata, 21, 344–350
metadata, graphical user interface, 24
metadata, XML, 24
Metadata Repository Manager, 125
MOLAP, 123
monitoring, 333–340
multi-valued dimension bridge table

builder, 121–122
names, 24, 298–299
Parallelizing/Pipelining System, 125
platform independence, 18
Problem Escalation System, 125
RDBMS, 497
Recovery and Restart System, 124
reuse, 19, 300–301
Sakila, 73–110, 81–84

 Index ■ E–F 653

scalability, 18–19
SCD, 118–119
scheduling, 321–333
scripts, 5, 200–205
Security System, 125
solution documentation, 315–320
Sort System, 124–125
special dimension builder, 120
Spoon, 81–84
subsystems, 113–126
surrogate key creation system, 119
testing, 21, 306–312
tools, 6
tools, requirements, 17–22
transformations, 12, 25–30
transformations, challenges, 20
transparency, 24
Version Control System, 124
Version Migration System, 124
Workflow Monitor, 124

extraction. See data extraction
Extraction System, 115–116
Extreme Programming (XP), 301

F
fact tables

accumulating snapshot fact table, 260–261
fact table loader, 121
loading, 264–265
partitioning, 264–265

bulk loading, 246–251
dimension tables, 251–260
Insert / Update step, 109
loader, 121
loading, 245–267
periodic snapshot fact tables, 260–261

fact table loader, 121
loading, 263–264

provider system, 122
rental star schema, 79
snapshots, 260–261
SOF, 261–263

loading, 265–266
transaction grain fact tables, 121

facts, late-arriving data, 256
failure hops, 90
Fetch Customer Address, 96–98
Field description, transformation log

tables, 369
Field Splitter step, 145
Field to split, Split field to rows step, 499

fields
JavaScript, 395
maps, 25
rows, 27
Select values step, 397
text files, 384

Fields grid, Regex Evaluation step, 506
Fields tab, 237

Add XML step, 539–541
Get data from XML step, 535–536

The fields that make up the grouping,
Denormalize Special Features, 104

FIFO. See first in, first out
file, 324
File locking, 42
File Output step, export_xml_from_db, 538
File repository, 41
File tab

Get date from XML step, 531–532
RSS Ouput step, 566–567

file-based version control systems, 342–344
filename, metadata, 36
filename, PostgresSQL, 250
Filename defined in a field, RSS Output step,

567
Filename field, RSS Output step, 567
FileObject, 619
Filter rows step, 198, 199

CRC, 485
UI, 609

Filter step, 108
Find Duplicate Query Wizard, Access, 117
first in, first out (FIFO), 247–248
Fixed File Input step, 385
StepInterface, 617

fixed width text files, 129
flags, Boolean, 94
floating point numbers, 28

JSON, 522
“follow when result is false” job hop, 32
“follow when result is true” job hop, 31–32
Force all to lower case, Database Connection,

38
Force all to upper case, Database

Connection, 39
Foreign key, satellites, 470
foreign keys

Execute SQL script step, 252
parent key, 242
referential integrity, 251–252
Sakila, 105
SOF, 265
tables, 77, 208

654 Index ■ F–G

forks, 591–592
FormLayout, 607–608
Formula step, Calculator step, 201
forums, 631–632
Free Software Foundation (FSF), 570
Freebase, 549–558

data extraction, 553–558
MQL, 551–553
performance, 552
read service, 550–551
scalability, 552
web services, 550
Wikipedia, 549–550

FSF. See Free Software Foundation
full table scan, 391
Function Browser, SAP, 141
functional testing, 21, 306
fuzzy logic, 195
Fuzzy match step, 170, 171, 195–198

G
GA. See General Availability
gap penalty, 171
gender, coding for, 175–176
GENERAL, job entry results, 34
General Availability (GA), 629–630
Generate Row with URLs, Generate Rows

step, 526
Generate Rows step, 314

Add sequence step, 213
export_xml_from_db, 537
Freebase, 554
import_xml_into_db.ktr, 526
RSS Ouput step, 564
SAP Input step, 142
SOAP, 547

generateJobMeta(), 586
GeoKettle, 591
GeoNames, 137, 172
GET, SOAP, 548
get(), User Defined Java Class step, 620
Get closer value, 196–197
Get data from XML step, 361, 518, 530–536
import_xml_into_db.ktr, 527
SOAP, 548

Get Fields button, 129
Insert / Update step, 231

Get File names step, 203
Get Lookup Fields button, Database lookup

step, 223
Get rows from result step, 576–577
Get System Info step, 191

command-line parameters, 325–326

late-arriving data, 259
transformation log tables, 367, 370

Get update fields, Insert / Update step,
231–232

Get variables step, JavaScript, 396
Get XPath nodes, Get data from XML step,

522
getCopy(), 617
getDialogClassName(), 622
getEntryNr, 587
getExitStatus, 587
getFields()
StepInterface, 619
StepMetaInterface, 599, 604

getInputRowMeta(), 615
getLogChannelId, 588
getNrErrors, 587
getNrFilesRetrieved, 588
getNrLinesDeleted, 588
getNrLinesInput, 587
getNrLinesOutput, 587
getNrLinesRead, 587
getNrLinesRejected, 588
getNrLinesUpdated, 588
getNrLinesWritten, 588
getOptionalStreams(), 600
getPartition(), 625
getRequiredFields(), 600
getResourceDependencies()
JobEntryInterface, 622
StepMetaInterface, 600

getResult, 587
getResultFilesList, 588
getRow(), 614–615, 618
getRowFrom(), 616
getRows, 588
getRunThread(stepname, copy), 576
getSlaves, 416
getSQLStatements()
JobEntryInterface, 622
StepMetaInterface, 599

getStepIOMeta(), 600
getUniqueStepCountAcrossSlaves,

StepInterface, 617
getUniqueStepNrAcrossSlaves(), 617
getUsedDatabaseConnections(), 622
getusedLibraries(), 600
getXML(), 583
JobEntryInterface, 622
StepMetaInterface, 599

GetXMLData - Different Options.ktr,
299

getXulOverlayFile(), 628

 Index ■ G–I 655

GIS. See Graphical Information Systems
Globally Unique identifiers (GUID),

JavaScript, 395
globalreplace.sh, 347
GNOME, launchers, 62–63
GNU Public License (GPL), 343
GoldenGate, Oracle, 163
good-enough solutions, regular expressions,

501–502
Goodman, Nicholas, 19
Google Wave, 626
GPL. See GNU Public License
Graphical Information Systems (GIS), 591
graphical user interface (GUI), 24

Java API, 571
grid-based services, 437
Guess button, Insert / Update step, 232
GUI. See graphical user interface
GUID. See Globally Unique identifiers
guid, item, 559
.gzip, 517

H
handleStreamSelection(),

StepMetaInterface, 600
hard disks, 386–387
heaps, maximum size, 71
HellowworldStepDialog.java, 609–613
hierarchy

dimension builder, 119–120
dimensions, 270
flattener, 20
ragged, 120
recursion, 120, 242–243
variables, 120

Hillyer, Mike, 74
history

data quality, 168
Dimension lookup / update step, 235–236
transformation log tables, 367–368

HOLAP. See Hybrid OLAP
/home/ubuntu/runCarte.sh, 441
hop, 346
hops, 7

failure, 90
jobs, 31–32
loops, 27
rows, 26, 27
success, 90
transformations, 25, 26–27
unconditional, 88

hops, 346

Host Name, Database Connection, 38
HTML

attributes, 520
data extraction, 520
elements, 520
e-mail, 339
JavaScript, 520
web pages, 520
web services, 520

HTTP. See Hypertext Transfer Protocol
Http Authentication, Web services lookup

step, 545
HTTP client step, 516

extraction, 137–138
Freebase, 555
import_xml_into_db.ktr, 526–527
SOAP, 547–548

HTTP GET, 548
Freebase, 550

HTTP Post step, 516, 548
Hub Surrogate Keys(), 469
hubs

attributes, 468
DV, 467–468
Sakila, 472–473
surrogate keys, 469
tables, 467

Hudson, 60
Hunter, David, 518
Hybrid, SCD, 119
Hybrid OLAP (HOLAP), 272
Hyde, Julian, 458
Hypertext Transfer Protocol (HTTP), 515–517

data formats, 517
XML/A, 277, 278

I
IaaS. See Infrastructure as a Service
../id, XPath, 535
../@id, XPath, 535
IDE. See integrated development

environment
identifiers, 317
IDENTITY, 217
identity, 641
id_existing, 480
Ignore comments?, Get data from XML step,

533
Ignore empty file, Get data from XML step,

534
il8n, 590
image, 601

656 Index ■ I

Imhoff, Claudia, 296
impact analysis, 22

date lineage, 361–363
ETL, 125
StepMetaInterface, 599

import, repositories, 350–351
Import partitions button, Partitioning

schema, 429
import_xml_into_db, Get data from XML

step, 532
import_xml_into_db.ktr, 525–527

Execute SQL script step, 526
“in” tab, Web services lookup step, 545–546
Include date in filename, RSS Output step, 567
Include filename in result and Filename

fieldname, Get data from XML step, 534
Include rownum in output, RSS Input step,

561–562
Include rownum in output?, Split field to

rows step, 500
Include stepnr in filename, RSS Output step,

567
Include time in filename, RSS Output step, 567
Include url in ouput, RSS Input step, 561–562
incoming hops, 26
Increment by field, Step sequence step, 212
incrementLinesInput(), 618
incrementLinesOutput(), 618
incrementLinesRead(), 618
incrementLinesRejected(), 618
incrementLinesSkipped(), 618
incrementLinesUpdated(), 618
incrementLinesWritten(), 618
indexes

performance, 390–392
tables, 392

IndexOfValue(), 606–607
InfiniDB, 123
info, 345
InfoBright, 123
Informatica, 9
Infrastructure as a Service (IaaS), 437
init()
StepInterface, 614
User Defined Java Class step, 459

InjectDataIntoTransformation.java,
578–579

Injector step, 578
Inmon, Bill, 465
Input source step, 479

SQL, 483
Input step

extraction, 128

Mondrian, 274–275
OLAP, 274, 278–279, 281
process, 278

Input Table step, 297
Input vault step, 479
input_id, 101
input/output, 380
$, 67
inputRowMeta, StepMetaInterface, 604
Insert, Dimension lookup / update step, 238
INSERT, 157
Insert, bulk loading, 251
Insert / Update step, 101–102

accumulating snapshot fact tables, 264
CDC, 155, 163
Combination lookup / update step, 241
fact table, 109
keys, 230–231
SCD, 229–230
Update fields, 231–232

installation, 58–63
rental star schema, 81
Sakila database, 77

Installer, Enterprise Edition, 636
Integer, 27
Date, conversion, 30

integrated development environment (IDE)
plugins, 596–597
Spoon, 55–57

Integrated Scheduling, Enterprise Edition,
636

integration. See also data integration
testing, 307

internal counters, Add sequence step,
211–213

internal variables, 428–429
Internal.Cluster.Master, 639
Internal.Cluster.Size, 639
${Internal.Job.Filename.Directory},

96–97
Internal.Job.Filename.Directory, 638
Internal.Job.Name, 638
Internal.Job.Repository.Directory,

638
Internal.Kettle.Build.Date, 638
Internal.Kettle.Build.Version, 637
Internal.Kettle.Version, 637
Internal.Slave.Server.Name, 639
Internal.Slave.Transformation.

Number, 639
Internal.Step.CopyNr, 639
Internal.Step.Name, 639
$(Internal.Step.Partition.ID), 429

 Index ■ I–J 657

Internal.Step.Partition.ID, 638
$(Internal.Step.Partition.Number),

429
Internal.Step.Partition.Number, 639
Internal.Step.Unique.Count, 639
Internal.Step.Unique.Number, 639
${Internal.Transformation.Filename.

Directory}, 96–97
$(Internal.Transformation.Filename.

Directory), 530
Internal.Transformation.Filename.

Directory, 638
Internal.Transformation.Name, 638
Internal.Transformation.Repository.

Directory, 638
internationalization, 590
Internet Relay Chat (IRC), 633
inter-table dependencies, 183
interval logging, 453
intra-table dependencies, 183
intrusive CDC, 16, 155
IRC. See Internet Relay Chat
Is a file

filename is defined in a field, XSD
Validator step, 529–530

let me specify filename, XSD Validator
step, 529–530

Is defined inside XML, XSD Validator step,
529–530

ISNULL, 484
ISO8601, 170
isStopped, Result, 588
item, RSS, 559–560
Item tab, RSS Ouput step, 565–566

J
J2EE. See Java 2 Enterprise Edition
JAAS. See Java Authentication and

Authorization Service
Jackrabbit, 350
jar, 587
.jar, 70, 517
libext/, 587

Jaro and Jaro-Winkler algorithm, 171
Jaro-Winkler algorithm, 198
Java

AMI, 440
API, 570–574

jobs, 573–574
parameters, 579–580
transformations, 572–573
variables, 579–580

expressions, 70–71
installation, 58–59
user-defined expressions and classes, 520

Java 2 Enterprise Edition (J2EE), 459
Java Authentication and Authorization

Service (JAAS), 414
Java Content Repository (JCR), 350, 626
Java Development Kit (JDK), 58
jar, 587

Java Message Service (JMS), 449, 459–461
Java Naming and Directory Interface (JNDI),

64–65, 93
Java Runtime Environment (JRE), 58

variables, 642
Java Virtual Machine (JVM), 19, 58

logging, 453
rows, 397
variables, 43

java.io.tmpdir, 642
JavaScript, 20, 202

DataCleaner, 153
eval(), 556
HTML, 520
job entries, 35–36

logging, 366
Mondrian, 276–277
performance, 394–396
variables, 43
XML/A, 281

JavaScript Object Notation (JSON)
example, 549–558
Modified Java Script Value step, 522
plugins, 522
syntax, 521–522
transformations, 523
web services, 520–523
XML, 520

java.security.auth.login.config,
kettle.properties, 414

java.version, 642
JCR. See Java Content Repository
JDBC

Database Connection, 93
drivers, 72
MySQL, 127

jdbc.properties, 64–65
kettle.properties, 67

JD/Edwards, 18, 139
JDK. See Java Development Kit
jedox.com, 282
jface.jar, 596
Jira, 632
JMS. See Java Message Service

658 Index ■ J–K

JNDI. See Java Naming and Directory
Interface

JOB, 640
job, 324
job(s), 7

canvas, 56
command line, 322–326
Database Connection, 37
debugging, 56
DWH, 31
dynamic, 584–586
ETL, 12, 30–36
hops, 31–32
Java API, 573–574
Kitchen, 57
log tables, 373–374
loops, 399–400
metadata, 36–37, 574
Pan, 57
parallelism, 33–34, 411
performance, 399–400
Run button, 83–84
shared objects, 69
slaves, 445
Spoon, 82
variables, 89
XML, metadata, 346–347

job entries, 31
backtracking, 32–33
Boolean, 366
Copy rows to result step, 399
flow of execution, 90
JavaScript, 35–36

logging, 366
log table, 373–374
Mail, 90, 301, 337–340
plugins, 570, 621–624
results, 34–36
serial execution, 90
START, 88
transformations, 88
XML, 519–520

Job Scheduler, ETL, 124
JOBENTRY, 641
@JobEntry, 622
JobEntryDialogInterface, 622–624
JobEntryInterface, 622–624
jobentry-log-table, 346
job-log-table, 346
JobMeta, 574, 586
jobStatus, 416
Join comparison field, XML Join step, 543

Join condition properties, XML Join step, 542
join profile, 146
Join Rows step, 214

Main step to read from, 398
jpalo.com, 283
JRE. See Java Runtime Environment
JSON. See JavaScript Object Notation
JSONP, 550
jtwitter, 454
junk dimensions, 241

special dimension builder, 120
JVM. See Java Virtual Machine

K
Kalido, 6
.kettle, repositories.xml, 68
Kettle Logging Level, 330
KettleDatabaseRepository, 627
kettle-database-types.xml, 595
KETTLE_EMPTY_STRING_DIFFERS_FROM_

NULL, 640
NULL, 28

Kettle.exe, 55
/kettle/getSlaves, 444
KETTLE_HOME, 64
$KETTLE_HOME/.kettle/.

languageChoice, 601
$KETTLE_HOME/.kettle/shared.xml, 589
kettle-job-entries.xml, 595
KETTLE_..._LOG_DB, 641
KETTLE_..._LOG_SCHEMA, 641
KETTLE_LOG_SIZE_LIMIT, 640
KETTLE_..._LOG_TABLE, 641
KETTLE_MAX_LOG_SIZE_IN_LINES, 365, 454,

640
KETTLE_MAX_LOG_TIMEOUT_IN_MINUTES,

454, 640
kettle-partition-plugins.xml, 595
KETTLE_PASSWORD, 67
KETTLE_PLUGIN_CLASSES, 619, 640
kettle.properties, 58, 66–67, 414

logging, 365
variables, 43

kettle.pwd, 58, 67
kettle-repositories.xml, 595
KETTLE_REPOSITORY, 67
KETTLE_SHARED_OBJECTS, 589, 640
KETTLE_STEP_PERFORMANCE_SNAPSHOT_

LIMIT, 640
kettle-steps.xml, 595
KETTLE_USER, 67
KETTLEVFS, 619

 Index ■ K–L 659

The key field, Denormalize Special Features,
104

keys. See also specific key types
Calculator step, 214
dimension table, CDC, 80–81
dimension tables, 109, 208–217
Insert / Update step, 230–231
JSON, 522
SCD, 217
source systems, 209

Keys tab page, Dimension lookup / update
step, 234

key/value pairs, 508–513
object members, 522
Regex Evaluation step, 510–511
text files, 509–510

Kimball, Ralph, 11, 113, 167, 191, 221, 228, 295,
465

Kitchen, 41, 44, 54, 322–326
jobs, 57
level, 336
logfile, 334
logging, 364
transformations, 57

Kitchen.bat, 57
kitchen.sh, 57
.ktr, 345

L
LAF. See Look and Feel
LAFpackage, 591
Last version (without stream field as source),

Dimension lookup / update step, 239
lastmodifiedtime, 183
last_update, 80
late-arriving data, 255–260

dimensions, 256–260
ETL, 122
facts, 256

launchers, GNOME, 62–63
Lazy Conversion, 385, 387
lazy loading, 605
Lesser GNU Public License (LGPL), 569–570

forks, 591
level, 324

Kitchen, 336
Pan, 336

Levenshtein algorithm, 171
LGPL. See Lesser GNU Public License
libext, 70
libext/, 591, 598
.jar, 587

libraries
embedding, 574
plugins, 596
sapjco3.jar, 141
StepMetaInterface, 600

libswt/, 598
lightweight principle, 446–447
Limit, Get data from XML step, 534
Lindstedt, Dan, 9
lineage. See data lineage
Lineage and Dependency Analyzer, 125
link
channel, 559
item, 559

links
DV, 468–469
Sakila, 473–474

link-to-link, 472, 474
Linstedt, Dan, 466
listdir, 324
listjobs, 324
listrep, 324
listtrans, 325
.lnk, 62
Load all date from table, 253
Load DTS, 468, 469, 470
Load End DTS, 470
load_data, 298
loading. See also bulk loading

lazy, 605
loadXML(), 599, 603
location outriggers, 97
Locking, Enterprise Edition, 636
logging, 333–336, 363–374

architecture, 364–367
avoiding, 398
buffers, 364, 365–366
CDC, 162–163
channels, 366
debugging, 364
error messages, 364
ETL, 22
interval, 453
JavaScript job entries, 366
JVM, 453
kettle.properties, 365
Kitchen, 364
levels, 335–336
memory, 365
Pan, 364
parameters, 364
rows, 363

660 Index ■ L–M

Spoon, 57, 333–334, 364, 365
transformations, 453–454
variables, 367

log data change processing, 451
log tables, 367–374

channels, 372
job, 373–374
job entries, 373–374
performance, 371
step log tables, 370–371
transformation, 367–370

Log4J, Apache, 366
logfile, 324, 334
loginmodulename, 414
Look and Feel (LAF), 590
lookup cascade, 100
Lookup Language, 103
lookup mode, 232
Lookup Original Language, 103
Lookup schema field, Database lookup step,

222–223
lookup tables, 172–175
lookup values, Validator step, 180
Loop Xpath, Get data from XML step,

532–533, 535
loops

Freebase, 557
hops, 27
jobs, 399–400

ls, 248
LucidDB, 10, 123

bulk loading, 249
EII, 10
SQL, 10
wrappers, 10

M
Mail, 301, 336–340

Addresses tab, 337
Attached Files tab, 339–340
Email Message tab, 339
job entries, 90, 301, 337–340
Server tab, 337–338

Mail Failure step, 90, 185–186, 336–337
Mail Success step, 90, 336–337
Main step to read from, Join Rows step, 398
maintainability, ETL, 300–301
Make transformation database transactional,

Database Connection, 40
man crontab, 327
Manage thread priorities?, Transformation

Settings, 397

Management Console, Enterprise Edition,
636

Manufacturing Requirements Planning
(MRP), 138

mapping. See data mapping
Mark Attribute rows with id of header row,

Modified Java Script Value step, 511
master, 417

AMI, 442–443
Carte, 441
dynamic clustering, 434
transformations, 421–422

<master>, 435
Mastering Data Warehouse (Imhoff), 296
Max % errors allowed, Data Validator step,

188
Max nr errors allowed, Data Validator step,

188
Max number of articles, RSS Input step,

561–562
MAX(id) FROM test_sequence, 213–214
maximum heap size, 71
Maximum nr of lines in logging windows,

Spoon, 365
max_log_lines, 412
max_log_timeout_minutes, 412
Maydanchik, Arkady, 168–169
MD5, 484
MDA. See Model Driven Architecture
MDX. See Multi Dimensional eXpressions
measures

Palo, 289
performance, 380–382
SOF, 265

Mechanical Turk, 437
memory

logging, 365
lookups, 253
performance, 393
Sort rows step, 453
Stream lookup step, 453
streams, 577
transformations, 452, 453

Merge join step, 479
CRC, 485

Merge Rows step, 160–161
MERGE/UPDATE, 249
message bundles, 601
metadata

data extraction, 359
data profiling, 17
data validation, 182
database, 588–590

 Index ■ M–N 661

description, 37
directory, 36
ERP, 14, 139
ETL, 21, 344–350

graphical user interface, 24
XML, 24

export, StepMetaInterface, 600
extended description, 37
filename, 36
jobs, 36–37, 574
names, 36
replacing, 588–590
repositories, 348–350
rows, 557, 606–607

steps, 28
spreadsheets, 297
StepMetaInterface, 599
transformations, 36–37, 421–425, 572–573
User Defined Java Class step, 620
values, 605–606
XML, 345–347

jobs, 346–347
transformations, 345–346

Metadata Repository Manager, 125
Metaphone algorithm, 171
Metaweb Query Language (MQL), 551–553
methods

partitioning, 425
plugins, partitioning, 624–626

micro-batches, 450
Microsoft SQL Server 2008 Analysis Services

(MSAS), 271, 277–280
Milestone, 630
Min nr of rows to read before doing %

evaluation, Data Validator step, 188
mini-dimensions, 239–240

special dimension builder, 120
mirc.com, 633
Model, Spoon, 302–303
Model Driven Architecture (MDA), 6
Modified Java Script Value step, 314
DynamicJob, 586
Freebase, 556–557
JSON, 522, 549
Mark Attribute rows with id of header row,

511
MOLAP. See Multi-dimensional OLAP
Mondrian, 242

Aggregation Designer, 123, 267
Input step, 274–275
JavaScript, 276–277
OLAP, 271, 273–277
Split Time step, 276

Split-field step, 276
Strings cut step, 276

MonetDB, 123
monitoring, ETL, 333–340
Monitoring tab, Transformations settings,

381
MQL. See Metaweb Query Language
MRP. See Manufacturing Requirements

Planning
MSAS. See Microsoft SQL Server 2008

Analysis Services
Multi Dimensional eXpressions (MDX),

269–270
Query, Mondrian Input step, 274

Multi-dimensional OLAP (MOLAP), 123,
269, 272

multiline mode, 507
multi-paths, backtracking, 32–33
multiple updates, CDC, 155
multi-threading, 403–411

Blocking Step, 410
data pipelining, 407–408
database connections, 408–409
Execute SQL step, 409–410
order of execution, 409–410
row distribution, 404–407
row merging, 405–406

multi-valued attributes, 498–500
multi-valued dimension bridge table builder,

ETL, 121–122
-Mxx, 60
MySQL, 73–74

Bulk Loader, 248, 249
CDC, 162–163
JDBC, 127
NOW(), 484
RDBMS, 77, 134
SET, 103, 498
SUPER, 82

mysqlbinlog, 163
mysql_native.xul, 628

N
name, 346
names

ETL, 24, 298–299
job entry results, 34
metadata, 36
parameters, 44
pipes, 248

Namespace aware?, Get data from XML step,
533

662 Index ■ N–O

natural keys
business keys, 210
dimension tables, 99
junk dimensions, 241

near real-time data integration, 450
Needleman-Wunsch algorithm, 171
network latency, 369–370
network speed, 390
New validation button, 179
NIO buffer size, 386
non-intrusive CDC, 16, 155
non-relational data formats, 498
non-relational tabular formats, 498–501
non-tabular data formats, 498
norep, 323
normalization, 218
Normalize Special Features, 104
notepads, 346
notes, 318

transformations, 25
NOW(), 484
Nr of errors fieldname, Data Validator step,

188
NULL

Add XML step, 539, 541
CRC, 484
data profiling, 146
data validation, 17, 180–181
Database lookup step, 225
DV, 471
KETTLE_EMPTY_STRING_DIFFERS_FROM_

NULL, 28
source data, 179
String, 28

Number, 27
Palo, 285
String, 29–30

Number analysis, DataCleaner, 149
numbers, JSON, 522

O
OASI. See One Attribute Set interface
OBF, 414
obfuscated passwords, 67–68, 414
object literals, JSON, 522
object members, JSON, 522
object_timeout_minutes, 412
OCI. See Oracle Call Interface
ODBC, 93
ODS. See operational data store
OEM version, PDI, 590–591
OLAP. See online analytical processing

OLTP. See OnLine Transaction Processing
Omit null values from XML result, Add

XML step, 539
Omit XML, Add XML step, 539
One Attribute Set interface (OASI), 303
online analytical processing (OLAP), 123

aggregate tables, 266
cubes, 270–271
Input step, 274, 278–279, 281
process, 278

Mondrian, 271, 273–277
multidimensional, 269
Palo, 282–291
positioning, 272–273
storage types, 272
XML/A, 277–282

OnLine Transaction Processing (OLTP), 2,
269–291

database, 75
dimension tables, 226

Open Office Calc, 297
OLAP, 273

Open Symphony, 327
OpenERP, 15
operating systems, scheduling, 322
operational data store (ODS), 4, 10
Oracle

Attunity Stream, 163
connect by prior, 20
E-Business Suite, 18
GoldenGate, 163
RDBMS, 134
Spatial, 591
SQL*Loader, 247, 249
Warehouse Builder, 6

ETLT, 9
Oracle Call Interface (OCI), 247
order, 346
ORDER BY, 225, 389, 479
org.pentaho.di.core.database

.DatabaseInterface, 627
org.pentaho.di.trans.step

.StepInterface, 614
original transformations, 421
os.arch, 642
os.name, 642
os.version, 642
OUPUT_DIR, 319
Out of Memory, 71
outgoing hops, 26
output directory, 319
Output Fields, XSD Validator step, 529

 Index ■ O–P 663

Output one row, concatenate errors with
separator, Data Validator step, 187

Output String Field, XSD Validator step, 529
Output Value, Add XML step, 539
Overwrite, SCD, 119

P
PAD. See Pentaho Aggregation Designer
pagila, 74
Pair letters similarity algorithm, 171
Palo, 123, 273, 274, 282–291
Palo Cell Output step, 289–291
Palo Cells Input step, 285–289
Palo Dimension Input step, 285–289
Palo Dimension Output step, 289–291
Pan, 41, 44, 54, 322–326

jobs, 57
level, 336
logfile, 334
logging, 364
transformations, 57

Pan.bat, 57
pan.sh, 57
parallelism, 18–19

data extraction, 538
jobs, 33–34, 411
performance, 385–386
sorting, 393–394
text files, 385–386, 387
transformations, 27, 404

Parallelizing/Pipelining System, ETL, 125
parameters, 318

command-line, 323–324, 325–326
delays, 457
Java API, 579–580
logging, 364
named, 44
queries, 135–136
SQL, 99
transformation log tables, 369
transformations, 579–580
Validator step, 179
Version Migration System, 353–355

Parameters tab, 44
parent key, foreign keys, 242
Partitioner, 625–626
partitioning, 18–19, 425–430

accumulating snapshot fact tables, 264–265
checksums, 426
clustered transformations, 430
CSV File Input step, 428
database, 40, 429–430

methods, 425
plugins, 624–626

plugins, 426
methods, 624–626

round robin, 425
schema, 425–427
tables, performance, 392

Partitioning schema, Import partitions
button, 429

pass, 323
password, jdbc.properties, 65
passwords, 58

obfuscated, 67–68, 414
UI, 609

Pattern finder, DataCleaner, 149
patterns, 501
pauseTrans, 415
PDI. See Pentaho Data Integration
Pearson, William, 270
peer/expert reviews, 297
##pentaho, 633–634
Pentaho Aggregation Designer (PAD), 123
Pentaho BI, Quartz scheduler, 322, 327–333
Pentaho Data Integration (PDI), 60, 328–330

AMI, 440
DataCleaner, 148
enterprise repository, 350
Java API, 571
OEM version, 590–591
slave servers, 413

Pentaho Report Designer (PRD), 574–575
Pentaho repository, 41
Pentaho Solutions (Bouman and van Dongen),

228, 327
PentahoSystemVersionCheck, 330–331
Peoplesoft, 15
perf-log-table, 345
performance

buffers, 380
constraints, 392
CPU, 394–398
data sorting, 392–394
database, 388–392
Freebase, 552
hard disks, 386–387
indexes, 390–392
JavaScript, 394–396
jobs, 399–400
log table, 371
measures, 380–382
memory, 393
parallelism, 385–386
relational databases, 390

664 Index ■ P–R

rows, 382–383
SQL, 388
table partitioning, 392
text files, 384–387
transformations, 377–398
triggers, 392
tuning, 377–401

periodic snapshot fact tables, 260–261
fact table loader, 121
loading, 263–264

perspective, Spoon, 302
pipes, named, 248
PIT. See Point-In-Time
pivot fields, Palo, 288
platform independence, ETL, 18
Plug-in Registry, 595

@Step, 601
plugins, 20

architecture, 593–599
database, 627–628
ERP, 140
IDE, 596–597
JavaScript, 395
job entries, 570, 621–624
@JobEntry, 622
JSON, 522
LGPL, 570
libraries, 596
methods, partitioning, 624–626
partitioning, 426
repositories, 626–627
steps, 570, 619
transformation step, 599–619
types of, 594–595

plugins, 440
plugins/, 595
plugins/steps, 619
Point-In-Time (PIT), 472
Port Number, Database Connection, 38
POST

Freebase, 550
SOAP, 548

PostGIS, 591
PostgresSQL, 74

bulk loading, 250
Power*Architect, 79
Powerplay, Cognos, 269
PRD. See Pentaho Report Designer
prd, 354
preparation of statements, 388
prepareExecution, 415
Preview option, 312–315
PreviewRowsDialog, 609

Primary key, 468, 469, 470
primary keys

satellites, 470
source system, 210
surrogate primary keys

dimension tables, 80
tables, 77
UPDATE, 470

Prism, 6
privacy, 308
private schedule, 331
Problem Escalation System, 125
process, 295

error handling, 184–187
process, OLAP Input step, 278
processRow(), 614, 615
processRows(), 456, 460
profiling

column profiling, 17, 146
data profiling, 16–17, 127–128, 146–154

metadata, 17
dependency profiling, 146
join profile, 146

properties
built-in, 637–642
JSON, 522

Proxy Host, Web services lookup step, 545
Proxy Port, Web services lookup step, 545
Prune Path to handle large files, Get data

from XML step, 534
pubDate, item, 559
public schedules, 331
Punch through, Dimension lookup / update

step, 238
putError(), 617
putRow(), 362, 557, 579, 616, 618
putRowTo(), 616
pwd/, 434

Q
Quartz scheduler, Pentaho BI, 322, 327–333
queries

aggregate tables, 266
parameters, 135–136
SQL, SELECT, 553

Query, MDX, Mondrian Input step, 274
Quote all in database, Database Connection, 38

R
ragged hierarchy, 120
RC. See Release Candidate
-RCxx, 60

 Index ■ R 665

RDBMS. See Relational Database
Management System

RDS. See Relational Database Service
Read articles from, RSS Input step, 561–562
read service, Freebase, 550–551
Read source as Url, Get data from XML

step, 532
readRep(), StepMetaInterface, 599, 603
Really Simple Syndication (RSS), 18, 558–567
channel, 558–559
item, 559–560
transformations, 563
web services, 517

real-time business intelligence, 450
real-time data integration, 449–461

CDC, 450–451
source system, 451
transformation streaming, 452–461

real-time extraction, 138
CDC, 155, 163

real-time transformation streaming,
debugging, 457–478

Record source, 468, 469
satellites, 470

Recovery and Restart System, ETL, 124
Recurrence, 332
recursion, hierarchies, 120, 242–243
reference tables

data cleansing, 172–179
data conformation, 175–179

Referencing, 42
referential integrity, 42

data quality, 168
foreign keys, 251–252

RefinedSoundEx algorithm, 171
Regex Evaluation step, 204, 504–508

key/value pairs, 510–511
Regex matcher, DataCleaner, 149
registerSlave, 416
regression tests, 307
regular expressions, 503–508

capture groups, 200, 205
data cleansing, 203–205
DataCleaner, 151–152
good-enough solutions, 501–502
Validator step, 180

Relational Database Management System
(RDBMS), 134

ETL, 497
MySQL, 77

Relational Database Service (RDS), 438
relational databases, 39, 127

CDC, 450

performance, 390
transformations, 497

Relational OLAP (ROLAP), 242, 272, 274
Release Candidate (RC), 60, 630
remote execution, slave servers, 413
Remote Function Calls (RFCs), 140, 146
Remote Steps, 422
Rename fields step, XML/A, 280
rental star schema

dimension tables, 79–80
fact table, 79
installation, 81
Sakila, 78–81

rep, 323
repeating groups, 500–501
Replace in string step, 170, 203
Report all errors, not only the first, Data

Validator step, 187
<report_to_masters>, 436
repositories, 41–42

database, 348–349
export, 350–351
files, 349
import, 350–351
managing, 350–352
metadata, 348–350
plugins, 626–627
upgrade, 351–352
Version Migration System, 352–353
XML, 344

RepositoriesMeta.readData(), 573
repositories.xml, 68, 573
Repository, 626–627
Repository.loadTransformation(), 572
RepositoryMeta, 573
resetStepIOMeta(), StepMetaInterface,

600
resource exporter, 444
response time, DWH, 4
Result, 576–577, 587–588
Result Fieldname, XSD Validator step, 529
Result stream properties, XML Join step, 543
results tab, Web services lookup step, 546
Return/remove digits, data cleansing, 170
reuse

ETL, 19, 300–301
shared objects, 589

Revision management, 42
RFC_READ_TABLE, 143–144
RFCs. See Remote Function Calls
ROLAP. See Relational OLAP
root, 82

666 Index ■ R–S

Root XML element, Add XML step, 539,
540–541

Ross, Margy, 221, 228
round robin, 386

partitioning, 425
sorting, 394

roundtrips, 388
row(s)

Add sequence step, 405
attributes, 497
CSV File Input step, 394
debugging, 314
dimension tables, 90
fields, 27
hops, 26, 27
JavaScript, 395
job entry results, 34
JVM, 397
logging, 363
metadata, 557, 606–607

steps, 28
multi-threading, 404–407
performance, 382–383
Sort rows step, 419
static data, 397–398
Table input step, 424
Text File Output step, 405
UI, 609
User Defined Java Class step, 404

Row denormaliser step, 511–512
Palo, 288

Row normaliser step, 500–501
RowDataUtil, 616
RowListener, 576
RowMetaInterface, 604, 606–607
Rownum fieldname, Split field to rows step,

500
Rownum in output and Rownum fieldname,

Get data from XML step, 535
RowProducer, 577, 579
RowSet, 579, 617
RSS. See Really Simple Syndication
rss, 558–559
RSS Input step, 561–562
RSS Output step, 562–567
R_STEP, 348
R_TRANSFORMATION, 348
Run button, 83–84
Run profiling, 152
running, 439
runtime.jar, 596

S
SaaS. See Software as a Service
Sakila

business keys, 527
CDC, 108
data mapping, 524–525
database, 73–110

installation, 77
subject areas, 75–76

Database Connection, 90–95
DV, 472–486
ETL, 73–110, 81–84
foreign keys, 105
hubs, 472–473
links, 473–474
rental star schema, 78–81
satellites, 474
snowflakes, 219–221
Spoon, 81–84
surrogate keys, 527
XML, 523–544

SalesForce.com input step, 140
SalesForce.com output steps, 140
SAP

data, 140–145
Function Browser, 141

SAP Input step, 140
Data Grid step, 142
Generate Rows step, 142
sapjco3.jar, 141

SAP Java Connector library (sapjco3.jar),
SAP Input step, 141

sapjco3.jar. See SAP Java Connector
library

SAP/R3, 14, 18, 141
Sarbanes-Oxley Act, 308
satellites

DV, 469–471
primary keys, 470
Sakila, 474
WHERE, 484

saveRep()
JobEntryInterface, 622
StepMetaInterface, 599, 603

scalability
ETL, 18–19
Freebase, 552

SCD. See Slowly Changing Dimension
Schedule Creator, 331–332
Scheduling, Spoon, 302
scheduling

action sequence, 333

 Index ■ S 667

ETL, 321–333
operating systems, 322

schema. See also XML Schema
clustering, 417–418
Database Connection, 39
DataCleaner, 148
dynamic clustering, 434
partitioning, 425–427

Schema name field, Add sequence step, 217
SCM. See software configuration

management
screens, 191
Script Values step, 394–395
scripts, 20. See also JavaScript

ETL, 5, 200–205
startup, 70

Scrum, 13, 301
searchInfoAndTargetSteps(),

StepMetaInterface, 600
Secure Sockets Layer (SSL), 337
Security, Enterprise Edition, 636
Security repository, 42
Security System, 125
sed, 347
SELECT, 553
Select values step, 94, 100, 397
semi-additive, 260

SOF, 265
semi-structured data, 501–508
Separate history table, SCD, 119
sequence_value, 213
serial execution, job entries, 90
Serialize to file step, CDC, 164
Server tab, Mail, 337–338
services. See also web services

grid-based, 437
slave servers, 414–416

SET, 499
MySQL, 103, 498

Set Environment Variables step, 354–355
Set Variables step, 216
setDefault(), 599, 604
SETI@Home, 433
setOuputDone(), 615
sets, CSV, 498
Settings tab page, Regex Evaluation step,

504–506
.sh, 58
SHA-1, 484
shadow copies, 31
sharding, database, 40
shared objects, 68–69

database, 589

jobs, 69
Spoon, 69
transformations, 69

shared.xml, 68–69
shortcuts, Spoon, 62
shrunken or rolled dimensions, special

dimension builder, 120
Simple Object Access Protocol (SOAP)

accessing services directly, 546–549
examples, 544–549
extraction, 138
OLAP, 274
WDSL, 517
web services, 517
Web services lookup step, 544–546
XML/A, 277

slave(s)
AMI, 443–444
jobs, 445
transformations, 421–422

Slave Browser tab, Spoon, 457
slave servers

Carte, 411–416, 435
configuration, 411–412
PDI, 413
remote execution, 413
services, 414–416
Sort rows step, 419
Spoon, 413
Table input step, 424
XML, 413

slices, 271
Slowly Changing Dimension (SCD), 20,

228–239
Bus Architecture, 118–119
Dimension lookup / update step, 232–237
dimension tables, 118
Dimensional Data Warehouse, 118–119
ETL, 118–119
hybrid, 238–239
Insert / Update step, 229–230
keys, 217
type 1, 229–232
type 2, 232–237
type 3, 237–238

Small and Medium Business (SMB), 139
small periodic batches, 450
smart keys, 80, 108
SMB. See Small and Medium Business
SMTP, 337
snapshots

CDC, 146, 158–162
fact tables, 121, 260–261, 263–264

668 Index ■ S

Sniff test during execution, Spoon, 457–478
sniffing, 314–315
sniffStep, 416
snippets, User Defined Java Class step, 620
snowflakes

dimension tables, 97, 218–225
Sakila, 219–221

SOAP. See Simple Object Access Protocol
soapUI.org, 547
SOF. See state-oriented fact tables
Software as a Service (SaaS), 437
software configuration management (SCM),

626
sorting

clustering, 394
data, performance, 392–394
database, 393
parallelism, 393–394
round robin, 394

Sort rows step, 479
memory, 453
rows, 419
slave servers, 419
Sort size (rows in memory), 393

Sort size (rows in memory), 393
Sort System, 124–125
Sorted Merge step, 419
Soundex algorithm, 171
source code

Java API, 570
plugins, 594

source data
CDC, 155–157
data cleansing, 173
NULL, 179
PRD, 574
RSS Ouput step, 564
tabular format, 497

source system
Database lookup step, 222
keys, 209
primary keys, 210
real-time data integration, 451

Source XML field, XML Join step, 542
sourceforge.net, 59–60, 570
source_system, 178
Spatial, Oracle, 591
special dimension builder

dimensions, 120
ETL, 120

special_features, 103–104
Split field to rows step, 104, 499–500
Split Time step, Mondrian, 276

Split-field step, Mondrian, 276
Spoon, 41, 54

Add sequence step, 211–217
agile development, 301–302
canvas, 318
Combination lookup / update step, 241
Copy tables wizard, 584
dynamic transformations, 580–583
ETL, 81–84
Execute a transformation, 413
extraction, 128
IDE, 55–57
jobs, 82
logging, 57, 333–334, 364, 365
perspective, 302
Sakila, 81–84
shared objects, 69
shortcuts, 62
Slave Browser tab, 457
slave servers, 413
Sniff test during execution, 457–478
transformations, 57, 82
variables, 44

Spoon.bat, 55, 62
.spoonrc, 64
spoon.sh, 55
spreadsheets

data acquisition, 15
metadata, 297
testing, 311

SQL
attributes, 484
Business Objects, 9
dynamic jobs, 584
ELT, 9
Informatica, 9
Input source step, 483
LucidDB, 10
ORDER BY, 225, 479
parameters, 99
performance, 388
query, SELECT, 553
StepMetaInterface, 599
streams, 99
WHERE, 553

SQL Server
RDBMS, 134
XML/A, 278

SQL statements to execute after connecting,
Database Connection, 39

SQLEditor, 609
SQL*Loader, Oracle, 247, 249
SQLPower, 118, 154

 Index ■ S 669

SQLStream, 458
src/, 597
SSL. See Secure Sockets Layer
-stable, 60
staging area, 8

ODS, 10
standard input (STDIN), 247–248, 250
Standard measures, DataCleaner, 149
standardization, 297
star schema, 78–81. See also rental star

schema
CDC, 227–228
denormalization, 226
dimension tables, 226–228
tables, 495

START, job entries, 88
Start at value field, Step sequence step, 212,

216
STARTDATE, 369
STARTDATE-ENDDATE, 369–370
startExec, 415
startJob, 416
startTrans, 415
startup scripts, 70
state-dependent objects, data quality, 168
state-oriented fact tables (SOF), 261–263

loading, 265–266
static data, rows, 397–398
static dimensions

special dimension builder, 120
tables, 84–87

static testing, 307
static values, JavaScript, 396
status, 415
STDIN. See standard input
STEP, 640
step, 346
@Step, Plug-in Registry, 601
step, 557
Step name, transformation log tables, 369
Step name field, Step sequence step, 212
StepDataInterface getStepData(), 600
StepDialogInterface, 607–613
step_error_handling, 346
StepInterface, 614–619
StepInterface getStep(), 600
step-log-table, 346
stepMetaInterface, 599–607
StepMetaInterface check, 599
steps, 7. See also specific steps

outgoing hops, 26
plugins, 570, 619
row metadata, 28

shared objects, 589
transformations, 26
VPLs, 47–49

stopJob, 416
stopTrans, 415
stream(s), 83

Add XML step, 538
data, 577
data integration, 450
editor, 347
extraction, 138
memory, 577
SQL, 99
StepMetaInterface, 600
Table output step, 538
transformations, 452–461, 577
Web services lookup step, 517
XML Join step, 541

Stream Datefield, Dimension lookup /
update step, 235–236

Stream lookup step, 173, 178, 253–255, 383
import_xml_into_db.ktr, 527
memory, 453

StrictHostKeyChecking, 641
String, 27
Boolean, 30
Date, 29
NULL, 28
Number, 29–30
Palo, 285

string(s), 384
JSON, 522
UI, 609

String analysis, DataCleaner, 149
String getDialogClassName(),

StepMetaInterface, 600
string literals, JSON, 522
Strings cut step, Mondrian, 276
structural testing, 21
Stylus Studio, 523
subscription, 635
subsystems, ETL, 113–126
subtansformation interface, 101
Subversion, Apache, 343, 570
success hops, 90
SugarCRM, 15
SUPER, 82
supportsErrorHandling(), 600
surrogate key(s), 118

Add sequence step, 211–217
business keys, 210
creation system, 119
database sequence, 217

670 Index ■ S–T

Dimension lookup / update step, 234–235
dimension tables, 209, 251–260
DWH, 210
generating, 210–217
hubs, 469
import_xml_into_db.ktr, 527
pipeline, 121, 252–255
Sakila, 527
SOF, 266
XML, 527

surrogate primary keys
dimension tables, 80
tables, 77
UPDATE, 470

Switch/Case step, 189–190
SWT, Eclipse, 607
swt.jar, 596
synchronization, data, 9
Synchronize after merge step, 160–161
sysdate, 354

T
tab-delimited files, 128
table(s). See also specific table types

DataCleaner, 148
DV, 485–486
foreign keys, 77, 208
hubs, 467
indexes, 392
link-to-link, 472, 474
logging, 367–374

channels log tables, 372
job entries log table, 373–374
job log table, 373–374
performance log tables, 371
step log tables, 370–371
transformation log tables, 367–370

partitioning, performance, 392
star schema, 495
static dimensions, 84–87
surrogate primary keys, 77

Table daterange end, Dimension lookup /
update step, 236

Table input step, 103, 596
aggregate tables, 266
CDC, 160
Data Grid step, 132
rows, 424
slave servers, 424
Stream lookup step, 254

Table output step, 216, 397
bulk loading, 250

CDC, 164
commit size, 390
data lineage, 358
dynamic templates, 584
export_xml_from_db, 538
import_xml_into_db.ktr, 527
streams, 538
Use batch updates for inserts, 389

TableInput, 595
table_params, 355
TableView, 609
tabular format

non-relational, 498–501
source data, 497

tags/, 342, 352
Talend, 6

Data Profiler, 154
.tar, 517
Target fields

Denormalize Special Features, 105
Insert / Update step, 230

Target XML field, XML Join step, 542
.tar.gz, 60
Task Scheduler, 327
TCP/IP

Carte, 57, 417
clustering, 423

templates, dynamic, 583–584
testing

automation, 311
CI, 311
Data Grid step, 311
dynamic, 307
ETL, 21, 306–312
integration, 307
spreadsheets, 311
static, 307
transformations, 311
upgrade, 312

test_sequence.ktr, 212–213, 215
text file(s)

extraction, 128–132
Web, 137

fields, 384
key/value pairs, 509–510
parallelism, 385–386, 387
performance, 384–387
reading, 384–387
writing, 387

Text file input step, 203, 384
Text file output step

CDC, 164
rows, 405

 Index ■ T 671

TextVar, 609
third normal form (3NF), 218

DV, 469
threads, 397. See also multi-threading
RowProducer, 579

3NF. See third normal form
time analysis, DataCleaner, 149
time dimensions, 239
time-outs, databases, 453
TIMESTAMP, 80
timestamps

CDC, 155–157, 163, 450
DV, 480

title, 559
TLS. See Transport Layer Security
/tmp/carte.log, 441
tokens, Get data from XML step, 536
tools, 41

ETL, 6
requirements, 17–22

top-down level-wise loading, 219
Tortoise SVN, 570
TPC-H, 253
traceability

of data, 467
DV, 471

TRANS, 640
Trans, 577
trans, 325
transaction grain fact tables, 121
<transformation>, 345
transformation(s), 7

action sequence, 328–330
architecture, 452
bottlenecks, 379–382
buffers, 406–407
Calculate Dimension Attributes, 85–86
canvas, 56
clustering, 417–425

partitioning, 430
command line, 322–326
data, 576–580
data conversion, 29–30
Database Connection, 37, 90–95
debugging, 56
deduplication, 195–199
dynamic

CSV, 580–583
Spoon, 580–583

error handling, 186–187
ETL, 12, 25–30

challenges, 20
Get data from XML step, 532

hops, 25, 26–27
Java

API, 572–573
expressions, 70–71

job entries, 88
JSON, 523
Kitchen, 57
logging, 453–454
master, 421–422
memory, 452, 453
metadata, 36–37, 421–425, 572–573
notes, 25
Pan, 57
parallelism, 27, 404
parameters, 579–580
performance, 377–398
phases, 452
relational databases, 497
RSS, 563
Run button, 83–84
shared objects, 69
slave, 421–422
Spoon, 57, 82
steps, 26
streams, 452–461, 577
testing, 311
variables, 89, 579–580
VPLs, 46
XML, metadata, 345–346

Transformation File, 330
Transformation Inputs, 330
transformation log tables, 367–370

Get System Info step, 367
history, 367–368
parameters, 369

Transformation Settings, Manage thread
priorities?, 397

Transformation Step, 330
transformation step plugins, 599–619
Transformations Settings, 368

Monitoring tab, 381
transitive closure table, 242
trans-log-table, 345
TransMeta, 572, 577
TransMeta.getSQLStatements(), 566
transparency, ETL, 24
TRANS_PERFORMANCE, 640
Transport Layer Security (TLS), 337
transStatus, 415
triggers

CDC, 163, 450
database, 157–158

performance, 392

672 Index ■ T–V

Truncate, bulk loading, 251
trunk/, 342
Trunk version, 630
trunks, 283
tst, 354
Tungsten Replicator, 163
Twitter, 454–457
type, 65
TYPE_BIGNUMBER, 606
TYPE_BINARY, 606
TYPE_BOOLEAN, 606
TYPE_DATE, 606
TYPE_INTEGER, 606
TYPE_NUMBER, 606
TYPE_STRING, 606

U
UA. See User Acceptance test
Ubuntu, 439

AMI, 442
UI. See user interface
ui/laf.properties, 591
uname, 354
unbalanced hierarchy, 120
unconditional hops, 88
unconditional job hop, 31
UniCode, 15, 507
Uniform Resource Locators (URLs), 516

Web services lookup step, 545
Unique rows step, 193–194
unit tests, 307
UNIX, 12, 507
chmod, 322
cron, 326–327
crontab, 326–327
Kitchen, 57
Pan, 57
running programs, 62

Unknown, 17
unstructured data, 501–508
Unzip, AMI, 440
UPDATE, 157, 230

surrogate primary keys, 470
Update fields, Insert / Update step, 231–232
update mode, 232
Update step

CRC, 485
Dimension lookup / update step, 238

upgrade
repositories, 351–352
testing, 312

url, jdbc.properties, 65

URLs. See Uniform Resource Locators
Use batch updates for inserts, Table output

step, 389
Use Kettle Repository, 330
Use tokens, Get data from XML step, 533, 535
user, 323
jdbc.properties, 65

User Acceptance test (UA), 307
User Console, 333
User Defined Java Class step, 620–624

Change number of copies to start, 404
DyanicJob, 586
get(), 620
init(), 459
JavaScript, 395
metadata, 620
rows, 404
snippets, 620
variables, 43

User Defined Java Expressions step, 70–71,
202–205

data cleansing, 202–203
user interface, 24. See also graphical user

interface
elements, 609
StepMetaInterface, 600

user maintained dimensions, 120
User Name and Password, Database

Connection, 38
user-defined expressions and classes, Java,

520
user.dir, 642
user.home, 642
user.name, 642
UTF-8, 129

Add XML step, 539
RSS Ouput step, 565

V
Vaillencourt, Luc, 591
valid, 160
Validate msg field, XSD Validator step, 529
Validate XML?, Get data from XML step, 533
validation. See data validation
Validator step, 179–180
valid_from, 265
valid_to, 265
value(s)

JSON, 522
metadata, 605–606
static, 396

Value distribution, DataCleaner, 149

 Index ■ V–W 673

Value mapper step, 94, 99, 170
Value when XML is invalid, XSD Validator

step, 529
Value when XML is valid, XSD Validator

step, 529
ValueMetaInterface, 605–606
van der Lek, Harm, 303
van Dongen, Jos, 228, 327
VARCHAR, 29
variables, 43

Apache VFS, 641–642
built-in, 637–642
hierarchy, 120
internal, 428–429
Java API, 579–580
JavaScript, 396
jobs, 89
JRE, 642
kettle.properties, 66
logging, 367
Spoon, 44
StepInterface, 618–619
transformations, 89, 579–580
using, 44–45

VariableSpace, 618–619
VCS. See Version Control System
version, 324
Version Control System (VCS), 341–344

ETL, 124
XML, 352

Version field, Dimension lookup / update
step, 235

Version Migration System, 352–355
ETL, 124
parameters, 353–355
repositories, 352–353
XML, 352

Versioning, Enterprise Edition, 636
VFS. See Virtual File System
Virtual File System (VFS), 41, 42

Apache, 42, 349, 517, 619
variables, 641–642

virtual machines (VM), 438
visual programming languages (VPLs),

45–51
steps, 47–49
transformations, 46

Visualize, Spoon, 302–303
VM. See virtual machines
VPLs. See visual programming languages

W
Warehouse Builder, 6, 9
warnings, 405
waterfall model, 12
Wavemaker, 120
WDSL, SOAP, 517
web

browsers, slave servers, 413
extraction, 137–138
pages

HTML, 520
web services, 515–517

text files extraction, 137
web services, 515–568

Apache VFS, 517
API, 516
data formats, 517–523
Freebase, 550
HTML, 520
JSON, 520–523
RSS, 517
SOAP, 517
web pages, 515–517
XML, 518–520

Web Services Description Language
(WSDL), 544

Web services lookup step, 517
SOAP, 544–546
streams, 517

Web services tab, Web services lookup step,
545

wget, 60
WHERE, 230

satellites, 484
SQL, 553

white box testing, 306
whitespace, 507
widgets, 607–608
wiki, 631
Wikipedia, 549–550
Windows, 61–62
Wintner, Robert, 140
WMS. See Workflow Management Systems
Workflow Management Systems (WMS), 344
Workflow Monitor, 124
wrappers, LucidDB, 10
write back, 271
WSDL. See Web Services Description

Language

674 Index ■ X–Z

X
XBase, 134
XChat, 633
xchataqua.soureforge.net, 633
XML. See eXtensible Markup Language
XML Join step, 519, 541–544

streams, 541
XML output step, 518

CDC, 164
XML Schema, 518, 528

data validation, 530
XSD Validator step, 519

XML Schema Definition, XSD Validator step,
529–530

XML source, XSD Validator step, 529
XML source from field, Get data from XML

step, 532
XML source is a filename?, Get data from

XML step, 532
XML source is defined in field, Get data

from XML step, 532
XML source is defined in field?, Get data

from XML step, 548
XML/A

JavaScript, 281
MSAS, 279–280
OLAP, 277–282
Rename fields step, 280

xml=Y, 414
-Xmx, memory, 253
XP. See Extreme Programming
XPath, 518, 532

Get data from XML step, 535
XSD Filename, XSD Validator step, 529–530
XSD Source, XSD Validator step, 529–530
XSD Validator step, 519, 528–530

data validation, 530
error handling, 530
job entries, 519
XML, 133

xsi:schemaLocation, 529
XSL. See eXtensible Stylesheet Language
XSL Transformation job entry, 519
XSL Transformation step, 518–519
XSL Transformations (XSLT), 133
XSLT. See XSL Transformations
xstream.codehaus.org, 603
XUL, 628

Y
Yourdon, Ed, 12
YouTube, 315

Z
.zip, 60, 517

	Pentaho Kettle Solutions
	About the Authors
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Part I: Getting Started
	Chapter 1: ETL Primer
	OLTP versus Data Warehousing
	What Is ETL?
	The Evolution of ETL Solutions
	ETL Building Blocks

	ETL, ELT, and EII
	ELT
	EII: Virtual Data Integration

	Data Integration Challenges
	Methodology: Agile BI
	ETL Design
	Data Acquisition
	Beware of Spreadsheets
	Design for Failure
	Change Data Capture

	Data Quality
	Data Profiling
	Data Validation

	ETL Tool Requirements
	Connectivity
	Platform Independence
	Scalability
	Design Flexibility
	Reuse
	Extensibility
	Data Transformations
	Testing and Debugging
	Lineage and Impact Analysis
	Logging and Auditing

	Summary
	Chapter 2

	Chapter 1
	Chapter 2: Kettle Concepts
	Design Principles
	The Building Blocks of Kettle Design
	Transformations
	Steps
	Transformation Hops
	Parallelism
	Rows of Data
	Data Conversion

	Jobs
	Job Entries
	Job Hops
	Multiple Paths and Backtracking
	Parallel Execution
	Job Entry Results

	Transformation or Job Metadata
	Database Connections
	Special Options
	The Power of the Relational Database
	Connections and Transactions
	Database Clustering

	Tools and Utilities
	Repositories
	Virtual File Systems

	Parameters and Variables
	Defining Variables
	Named Parameters
	Using Variables

	Visual Programming
	Getting Started
	Creating New Steps
	Putting It All Together

	Summary
	Chapter 3

	Chapter 3: Installation and Configuration
	Kettle Software Overview
	Integrated Development Environment: Spoon
	Command-Line Launchers: Kitchen and Pan
	Job Server: Carte
	Encr.bat and encr.sh

	Installation
	Java Environment
	Installing Java Manually
	Using Your Linux Package Management System

	Installing Kettle
	 Versions and Releases
	Archive Names and Formats
	Downloading and Uncompressing
	Running Kettle Programs
	Creating a Shortcut Icon or Launcher for Spoon

	Configuration
	Configuration Files and the .kettle Directory
	The Kettle Shell Scripts
	General Structure of the Startup Scripts
	Adding an Entry to the Classpath
	Changing the Maximum Heap Size

	Managing JDBC Drivers

	Summary
	Chapter 4

	Chapter 4: An Example ETL Solution—Sakila
	Sakila
	The Sakila Sample Database
	DVD Rental Business Process
	Sakila Database Schema Diagram
	Sakila Database Subject Areas
	General Design Considerations
	Installing the Sakila Sample Database

	The Rental Star Schema
	Rental Star Schema Diagram
	Rental Fact Table
	Dimension Tables
	Keys and Change Data Capture
	Installing the Rental Star Schema

	Prerequisites and Some Basic Spoon Skills
	Setting Up the ETL Solution
	Creating Database Accounts

	Working with Spoon
	Opening Transformation and Job Files
	Opening the Step’s Configuration Dialog
	Examining Streams
	Running Jobs and Transformations

	The Sample ETL Solution
	Static, Generated Dimensions
	Loading the dim_date Dimension Table
	Loading the dim_time Dimension Table

	Recurring Load
	The load_rentals Job
	The load_dim_staff Transformation
	Database Connections
	The load_dim_customer Transformation
	The load_dim_store Transformation
	The fetch_address Subtransformation
	The load_dim_actor Transformation
	The load_dim_film Transformation
	The load_fact_rental Transformation

	Summary

	Part II: ETL
	Chapter 5: ETL Subsystems
	Introduction to the 34 Subsystems
	Extraction
	Subsystems 1–3: Data Profiling, Change Data Capture, and Extraction

	Cleaning and Conforming Data
	Subsystem 4: Data Cleaning and Quality Screen Handler System
	Subsystem 5: Error Event Handler
	Subsystem 6: Audit Dimension Assembler
	Subsystem 7: Deduplication System
	Subsystem 8: Data Conformer

	Data Delivery
	Subsystem 9: Slowly Changing Dimension Processor
	Subsystem 10: Surrogate Key Creation System
	Subsystem 11: Hierarchy Dimension Builder
	Subsystem 12: Special Dimension Builder
	Subsystem 13: Fact Table Loader
	Subsystem 14: Surrogate Key Pipeline
	Subsystem 15: Multi-Valued Dimension Bridge Table Builder
	Subsystem 16: Late-Arriving Data Handler
	Subsystem 17: Dimension Manager System
	Subsystem 18: Fact Table Provider System
	Subsystem 19: Aggregate Builder
	Subsystem 20: Multidimensional (OLAP) Cube Builder
	Subsystem 21: Data Integration Manager

	Managing the ETL Environment

	Summary
	Chapter 6

	Chapter 6: Data Extraction
	Kettle Data Extraction Overview
	File-Based Extraction
	Working with Text Files
	Working with XML files
	Special File Types

	Database-Based Extraction
	Web-Based Extraction
	Text-Based Web Extraction
	HTTP Client
	Using SOAP

	Stream-Based and Real-Time Extraction

	Working with ERP and CRM Systems
	ERP Challenges
	Kettle ERP Plugins
	Working with SAP Data
	ERP and CDC Issues

	Data Profiling
	Using eobjects.org DataCleaner
	Adding Profile Tasks
	Adding Database Connections
	Doing an Initial Profile
	Working with Regular Expressions
	Profiling and Exploring Results
	Validating and Comparing Data
	Using a Dictionary for Column Dependency Checks
	Alternative Solutions
	Text Profiling with Kettle

	CDC: Change Data Capture
	Source Data-Based CDC
	Trigger-Based CDC
	Snapshot-Based CDC
	Log-Based CDC
	Which CDC Alternative Should You Choose?

	Delivering Data
	Summary
	Chapter 7

	Chapter 7: Cleansing and Conforming
	Data Cleansing
	Data-Cleansing Steps
	Using Reference Tables
	Conforming Data Using Lookup Tables
	Conforming Data Using Reference Tables

	Data Validation
	Applying Validation Rules
	Validating Dependency Constraints

	Error Handling
	Handling Process Errors
	Transformation Errors

	Handling Data (Validation) Errors

	Auditing Data and Process Quality
	Deduplicating Data
	Handling Exact Duplicates
	The Problem of Non-Exact Duplicates
	Building Deduplication Transforms
	Step 1: Fuzzy Match
	Step 2: Select Suspects
	Step 3: Lookup Validation Value
	Step 4: Filter Duplicates

	Scripting
	Formula
	JavaScript
	User-Defined Java Expressions
	Regular Expressions

	Summary
	Chapter 8

	Chapter 8: Handling Dimension Tables
	Managing Keys
	Managing Business Keys
	Keys in the Source System
	Keys in the Data Warehouse
	Business Keys
	Storing Business Keys
	Looking Up Keys with Kettle

	Generating Surrogate Keys
	The “Add sequence” Step
	Working with auto_increment or IDENTITY Columns
	Keys for Slowly Changing Dimensions

	Loading Dimension Tables
	Snowflaked Dimension Tables
	Top-Down Level-Wise Loading
	Sakila Snowflake Example
	Sample Transformation
	Database Lookup Configuration
	Sample Job

	Star Schema Dimension Tables
	Denormalization
	Denormalizing to 1NF with the “Database lookup” Step
	Change Data Capture

	Slowly Changing Dimensions
	Types of Slowly Changing Dimensions
	Type 1 Slowly Changing Dimensions
	The Insert / Update Step

	Type 2 Slowly Changing Dimensions
	The “Dimension lookup / update” Step

	Other Types of Slowly Changing Dimensions
	Type 3 Slowly Changing Dimensions
	Hybrid Slowly Changing Dimensions

	More Dimensions
	Generated Dimensions
	Date and Time Dimensions
	Generated Mini-Dimensions

	Junk Dimensions
	Recursive Hierarchies

	Summary
	Chapter 9

	Chapter 9: Loading Fact Tables
	Loading in Bulk
	STDIN and FIFO
	Kettle Bulk Loaders
	MySQL Bulk Loading
	LucidDB Bulk Loader
	Oracle Bulk Loader
	PostgreSQL Bulk Loader
	Table Output Step

	General Bulk Load Considerations

	Dimension Lookups
	Maintaining Referential Integrity
	The Surrogate Key Pipeline
	Using In-Memory Lookups
	Stream Lookups

	Late-Arriving Data
	Late-Arriving Facts
	Late-Arriving Dimensions

	Fact Table Handling
	Periodic and Accumulating Snapshots
	Introducing State-Oriented Fact Tables
	Loading Periodic Snapshots
	Loading Accumulating Snapshots
	Loading State-Oriented Fact Tables
	Loading Aggregate Tables

	Summary
	Chapter 10

	Chapter 10: Working with OLAP Data
	OLAP Benefits and Challenges
	OLAP Storage Types
	Positioning OLAP
	Kettle OLAP Options

	Working with Mondrian
	Working with XML/A Servers
	Working with Palo
	Setting Up the Palo Kettle Plugin
	Palo Architecture
	Reading Palo Data
	Writing Palo Data

	Summary

	Part III: Management and Deployment
	Chapter 11: ETL Development Lifecycle
	Solution Design
	Best and Bad Practices
	Data Mapping
	Naming and Commentary Conventions
	Common Pitfalls

	ETL Flow Design
	Reusability and Maintainability

	Agile Development
	Testing and Debugging
	Test Activities
	ETL Testing
	Test Data Requirements
	Testing for Completeness
	Testing Data Transformations
	Test Automation and Continuous Integration
	Upgrade Tests

	Debugging

	Documenting the Solution
	Why Isn’t There Any Documentation?
	Myth 1: My Software Is Self-Explanatory
	Myth 2: Documentation Is Always Outdated
	Myth 3: Who Reads Documentation Anyway?

	Kettle Documentation Features
	Generating Documentation

	Summary
	Chapter 12

	Chapter 12: Scheduling and Monitoring
	Scheduling
	Operating System–Level Scheduling
	Executing Kettle Jobs and Transformations from the Command Line
	UNIX-Based Systems: cron
	Windows: The at utility and the Task Scheduler

	Using Pentaho’s Built-in Scheduler
	Creating an Action Sequence to Run Kettle Jobs and Transformations
	Kettle Transformations in Action Sequences
	Creating and Maintaining Schedules with the Administration Console
	Attaching an Action Sequence to a Schedule

	Monitoring
	Logging
	Inspecting the Log
	Logging Levels
	Writing Custom Messages to the Log

	E‑mail Notifications
	Configuring the Mail Job Entry

	Summary
	Chapter 13

	Chapter 13: Versioning and Migration
	Version Control Systems
	File-Based Version Control Systems
	Organization
	Leading File-Based VCSs

	Content Management Systems

	Kettle Metadata
	Kettle XML Metadata
	Transformation XML
	Job XML
	Global Replace

	Kettle Repository Metadata
	The Kettle Database Repository Type
	The Kettle File Repository Type
	The Kettle Enterprise Repository Type

	Managing Repositories
	Exporting and Importing Repositories
	Upgrading Your Repository

	Version Migration System
	Managing XML Files
	Managing Repositories
	Parameterizing Your Solution

	Summary
	Chapter 14

	Chapter 14: Lineage and Auditing
	Batch-Level Lineage Extraction
	Lineage
	Lineage Information
	Impact Analysis Information

	Logging and Operational Metadata
	Logging Basics
	Logging Architecture
	Setting a Maximum Buffer Size
	Setting a Maximum Log Line Age
	Log Channels
	Log Text Capturing in a Job

	Logging Tables
	Transformation Logging Tables
	Job Logging Tables

	Summary

	Part IV: Performance and Scalability
	Chapter 15: Performance Tuning
	Transformation Performance: Finding the Weakest Link
	Finding Bottlenecks by Simplifying
	Finding Bottlenecks by Measuring
	Copying Rows of Data

	Improving Transformation Performance
	Improving Performance in Reading Text Files
	Using Lazy Conversion for Reading Text Files
	Single-File Parallel Reading
	Multi-File Parallel Reading
	Configuring the NIO Block Size
	Changing Disks and Reading Text Files

	Improving Performance in Writing Text Files
	Using Lazy Conversion for Writing Text Files
	Parallel Files Writing
	Changing Disks and Writing Text Files

	Improving Database Performance
	Avoiding Dynamic SQL
	Handling Roundtrips
	Handling Relational Databases

	Sorting Data
	Sorting on the Database
	Sorting in Parallel

	Reducing CPU Usage
	Optimizing the Use of JavaScript
	Launching Multiple Copies of a Step
	Selecting and Removing Values
	Managing Thread Priorities
	Adding Static Data to Rows of Data
	Limiting the Number of Step Copies
	Avoiding Excessive Logging

	Improving Job Performance
	Loops in Jobs
	Database Connection Pools

	Summary
	Chapter 16

	Chapter 16: Parallelization, Clustering, and Partitioning
	Chapter 17

	Chapter 17: Dynamic Clustering in the Cloud
	Dynamic Clustering
	Setting up a Dynamic Cluster
	Using the Dynamic Cluster

	Cloud Computing
	EC2
	Getting Started with EC2
	Costs
	Customizing an AMI
	Packaging a New AMI
	Terminating an AMI
	Running a Master
	Running the Slaves
	Using the EC2 Cluster
	Monitoring
	The Lightweight Principle and Persistence Options

	Summary
	Chapter 18

	Chapter 18: Real-Time Data Integration
	Introduction to Real-Time ETL
	Real-Time Challenges
	Requirements

	Transformation Streaming
	A Practical Example of Transformation Streaming
	Debugging
	Third-Party Software and Real-Time Integration
	Java Message Service
	Creating a JMS Connection and Session
	Consuming Messages
	Producing Messages
	Closing Shop

	Summary

	Part V: Advanced Topics
	Chapter 19: Data Vault Management
	Introduction to Data Vault Modeling
	Do You Need a Data Vault?
	Data Vault Building Blocks
	Hubs
	Links
	Satellites
	Data Vault Characteristics
	Building a Data Vault

	Transforming Sakila to the DV Model
	Sakila Hubs
	Sakila Links
	Sakila Satellites

	Loading the Data Vault: A Sample ETL Solution
	Installing the Sakila Data Vault
	Setting Up the ETL Solution
	Creating a Database Account
	The Sample ETL Data Vault Solution
	Sample Hub: hub_actor
	Sample Link: link_customer_store
	Sample Satellite: sat_actor

	Loading the Data Vault Tables

	Updating a Data Mart from a Data Vault
	The Sample ETL Solution
	The dim_actor Transformation
	The dim_customer Transformation
	The dim_film Transformation
	The dim_film_actor_bridge Transformation
	The fact_rental Transformation
	Loading the Star Schema Tables

	Summary
	Chapter 20

	Chapter 20: Handling Complex Data Formats
	Non-Relational and Non-Tabular Data Formats
	Non-Relational Tabular Formats
	Handling Multi-Valued Attributes
	Using the Split Field to Rows Step

	Handling Repeating Groups
	Using the Row Normaliser Step

	Semi- and Unstructured Data
	Kettle Regular Expression Example
	Configuring the Regex Evaluation Step
	Verifying the Match

	Key/Value Pairs
	Kettle Key/Value Pairs Example
	Text File Input
	Regex Evaluation
	Grouping Lines into Records
	Denormaliser: Turning Rows into Columns

	Summary
	Chapter 21

	Chapter 21: Web Services
	Web Pages and Web Services
	Kettle Web Features
	General HTTP Steps
	Simple Object Access Protocol
	Really Simple Syndication
	Apache Virtual File System Integration

	Data Formats
	XML
	Kettle Steps for Working with XML
	Kettle Job Entries for XML

	HTML
	JavaScript Object Notation
	Syntax
	JSON, Kettle, and ETL/DI

	XML Examples
	Example XML Document
	XML Document Structure
	Mapping to the Sakila Sample Database

	Extracting Data from XML
	Overall Design: The import_xml_into_db Transformation
	Using the XSD Validator Step
	Using the “Get Data from XML” Step

	Generating XML Documents
	Overall Design: The export_xml_from_db Transformation
	Generating XML with the Add XML Step
	Using the XML Join Step

	SOAP Examples
	Using the “Web services lookup” Step
	Configuring the “Web services lookup” Step

	Accessing SOAP Services Directly

	JSON Example
	The Freebase Project
	Freebase Versus Wikipedia
	Freebase Web Services
	The Freebase Read Service
	The Metaweb Query Language

	Extracting Freebase Data with Kettle
	Generate Rows
	Issuing a Freebase Read Request
	Processing the Freebase Result Envelope
	Filtering Out the Original Row
	Storing to File

	RSS
	RSS Structure
	Channel
	Item

	RSS Support in Kettle
	RSS Input
	RSS Output

	Summary
	Chapter 22

	Chapter 22: Kettle Integration
	The Kettle API
	The LGPL License
	The Kettle Java API
	Source Code
	Building Kettle
	Building javadoc
	Libraries and the Class Path

	Executing Existing Transformations and Jobs
	Executing a Transformation
	Executing a Job

	Embedding Kettle
	Pentaho Reporting
	Putting Data into a Transformation
	Dynamic Transformations
	Dynamic Template
	Dynamic Jobs
	Executing Dynamic ETL in Kettle
	Result
	Replacing Metadata
	Direct Changes with the API
	Using a Shared Objects File

	OEM Versions and Forks
	Creating an OEM Version of PDI
	Forking Kettle

	Summary
	Chapter 23

	Chapter 23: Extending Kettle
	Plugin Architecture Overview
	Plugin Types
	Architecture
	Prerequisites
	Kettle API Documentation
	Libraries
	Integrated Development Environment
	Eclipse Project Setup
	Examples

	Transformation Step Plugins
	StepMetaInterface
	Value Metadata
	Row Metadata

	StepDataInterface
	StepDialogInterface
	Eclipse SWT
	Form Layout
	Kettle UI Elements
	Hello World Example Dialog

	StepInterface
	Reading Rows from Specific Steps
	Writing Rows to Specific Steps
	Writing Rows to Error Handling
	Identifying a Step Copy
	Result Feedback
	Variable Substitution
	Apache VFS
	Step Plugin Deployment

	The User-Defined Java Class Step
	Passing Metadata
	Accessing Input and Fields
	Snippets
	Example

	Job Entry Plugins
	JobEntryInterface
	JobEntryDialogInterface

	Partitioning Method Plugins
	Partitioner

	Repository Type Plugins
	Database Type Plugins
	Summary
	Appendix A

	Appendix A: The Kettle Ecosystem
	Kettle Development and Versions
	The Pentaho Community Wiki
	Using the Forums
	Jira
	##pentaho
	Appendix B

	Appendix B: Kettle Enterprise Edition Features
	Appendix C

	Appendix C: Built-in Variables and Properties Reference
	Internal Variables
	Kettle Variables
	Variables for Configuring VFS
	Noteworthy JRE Variables

	Index

