
www.allitebooks.com

http://www.allitebooks.org

Oracle JDeveloper

11gR2 Cookbook

Over 85 simple but incredibly effective recipes for using

Oracle JDeveloper 11gR2 to build ADF applications

Nick Haralabidis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle JDeveloper 11gR2 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies

and products mentioned in this book by the appropriate use of capitals. However, Packt

Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1170112

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-476-7

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Nick Haralabidis

Reviewers

Edwin Biemond

Spyros Doulgeridis

Frank Nimphius

Acquisition Editor

Stephanie Moss

Lead Technical Editor

Meeta Rajani

Technical Editors

Sonali Tharwani

Vishal D'souza

Copy Editor

Laxmi Subramanian

Project Coordinator

Leena Purkait

Proofreader

Dan McMahon

Indexers

Hemangini Bari

Monica Ajmera Mehta

Tejal Daruwale

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Oracle has a long and successful history of building enterprise application development

tools, including some that have outlived their competition. As a former Oracle Forms Product

Manager and current Oracle JDeveloper and Oracle Application Development Framework

(ADF) Product Manager, this part of the Oracle history has been mine for the last 15 years,

and I'm very grateful that there's currently no end in sight!

Building enterprise applications based on Java EE standards is a well-accepted and

understood concept for building Rich Internet Applications (RIA) and service-oriented user

interfaces. While Java language skills are standard knowledge for college graduates, broader

topics, such as service-enablement, persistence, application security, customization,

portalization, and so on are not always so well understood. Adding to this, the "framework-of-

the-day" problem—in which framework solutions quickly wax and wane in popularity—makes

it dificult for enterprises to adopt software. What most enterprise businesses require is the
beneit of standards, but with an end-to-end framework that provides a stable and consistent
interface, which can abstract away future technology shifts.

Proven by Oracle Fusion Applications and customer success, Oracle ADF fulills that need:
a rapid application development environment that reduces the skills required for building

modern rich enterprise applications to a single learning curve.

Technically, Oracle ADF is an end-to-end Java EE framework for building rich enterprise web

and mobile applications based on Java EE services and SOA. Oracle ADF integrates existing

Java frameworks into a single architecture and a fully integrated declarative development

environment that shields developers from low-level API programming.

Besides being used by Oracle Fusion Applications and Oracle customers, Oracle ADF is at the

heart of Oracle Middleware and is the technology of choice for building Fusion Middleware

(FMW) products, such as Enterprise Manager, WebCenter, UCM, BPM, BI, and so on, showing

Oracle's commitment to ADF.

Technology alone, however, is no guarantee for success. Community acceptance and

contribution is also an important backbone and measurement of software frameworks and

products, including Oracle ADF.

www.allitebooks.com

http://www.allitebooks.org

Oracle ADF is supported by a very active and growing community of bloggers, forum posters,

and speakers, as well as book and article authors. The Oracle JDeveloper 11gR2 Cookbook

you hold in your hands is another example of the ongoing contribution from the ADF

community by author Nick Haralabidis.

The book is a practical guide to learning Oracle ADF, providing code solutions, and technical

explanations to common Oracle ADF questions and developer challenges. Being one of

the technical reviewers for this book and having written other titles as an author myself, I

appreciate the time, effort, and dedication Nick Haralabidis has put into writing this book, as

well as the Oracle ADF expertise and practices he shares with you, the reader. This book is

not a beginner's guide, but a useful reference for all developers starting enterprise application

development with Oracle ADF.

Frank Nimphius

Senior Principal Product Manager, Oracle Application Development Tools

www.allitebooks.com

http://www.allitebooks.org

About the Author

Nick Haralabidis has over 20 years experience in the Information Technology industry

and a multifaceted career in positions such as Senior IT Consultant, Senior Software

Engineer, and Project Manager for a number of U.S. and Greek corporations (Compuware,

Chemical Abstracts Service, NewsBank, CheckFree, Intrasoft International, Unisystems,

MedNet International, and others). His many years of experience have exposed him to a wide

range of technologies, such as Java, J2EE, C++, C, Tuxedo, and a number of other database

technologies.

For the last four years, Nick is actively involved in large implementations of next generation

enterprise applications utilizing Oracle's JDeveloper, Application Development Framework

(ADF), and SOA technologies.

He holds a B.S. in Computer Engineering and a M.S. in Computer Science from the University

of Bridgeport.

When he is not pursuing ADF professionally, he writes on his blogs JDeveloper Frequently

Asked Questions (http://jdeveloperfaq.blogspot.com) and ADF Code Bits

(http://adfcodebits.blogspot.com). He is active at the Oracle Technology Network

(OTN) JDeveloper and ADF forum where he both learns and helps.

To Aphrodite, Konstantina and Margaritta, my true inspirations.

To the Packt team and especially to Stephanie Moss for her trust,

encouragement, and direction.

To the book reviewers, Frank Nimphius, Edwin Biemond, and Spyros

Doulgeridis for their time, expertise, and invaluable insight.

www.allitebooks.com

http://jdeveloperfaq.blogspot.com
http://adfcodebits.blogspot.com
http://www.allitebooks.org

About the Reviewers

Edwin Biemond is an Oracle ACE and Solution Architect at Amis, specializing in messaging

with Oracle SOA Suite and Oracle Service Bus. He is an expert in ADF development, WebLogic

Administration, high availability, and security. His Oracle career began in 1997, where he

was developing an ERP, CRM system with Oracle tools. Since 2001, Edwin has changed his

focus to integration, security, and Java development. Edwin was awarded with Java Developer

of the year 2009 by Oracle Magazine, won the EMEA Oracle Partner Community Award in

2010, and contributed some content to the Oracle SOA Handbook of Luces Jellema. He is

an international speaker at Oracle OpenWorld & ODTUG and has a popular blog called Java/

Oracle SOA blog at http://biemond.blogspot.com.

Spyros Doulgeridis holds two M.Sc. degrees, one in Telecommunication from Brunel

University in the U.K. and one in Software Engineering from N.T.U.A. in Greece. With proven

experience using major Java frameworks in JEE applications, he has been working with

Oracle technologies, and especially ADF 11g, since 2008 in a major Form to ADF migration

project—one of Oracle's Success Stories. During this project, he had many roles including

ADF developer, designer of Forms to ADF migration, ADF/Java reviewer, and was responsible

for the application's build process and deployment on Weblogic Server. He likes to share his

experiences by blogging on adfhowto.blogspot.com.

I would like to thank Packt Publishing and especially Mrs. Stephanie Moss

for giving me the opportunity to work on this book. Also, I would like to thank

the author for this interesting journey into Oracle ADF through his helpful

and practical recipes. Finally and above all, I would like to thank all of those

close to me, who missed me while working on this book.

www.allitebooks.com

http://biemond.blogspot.com/
http://www.allitebooks.org

Frank Nimphius is a Senior Principal Product Manager in the Oracle Application

Development Tools group at Oracle Corporation, where he specializes in Oracle JDeveloper

and the Oracle Application Development Framework (ADF).

As a speaker, Frank represents the Oracle ADF and Oracle JDeveloper development

team at user conferences world-wide. Frank owns the ADF Code Corner website

(http://www.oracle.com/technetwork/developer-tools/adf/learnmore/
index-101235.html), and the "OTN Forum Harvest" blog (http://blogs.oracle.com/
jdevotnharvest/).

As an author, Frank frequently writes for Oracle Magazine and co-authored the "Oracle Fusion

Developer Guide" book published in 2009 by McGraw Hill.

www.allitebooks.com

http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html
http://blogs.oracle.com/jdevotnharvest/
http://blogs.oracle.com/jdevotnharvest/
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub iles
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up

for a range of free newsletters and receive exclusive discounts and offers on Packt books

and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.

Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on Twitter,

or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1

Chapter 1: Prerequisites to Success: ADF Project Setup and Foundations 7
Introduction 8

Installation of JDeveloper on Linux 8

Breaking up the application in multiple workspaces 12

Setting up BC base classes 18

Setting up logging 22

Using a custom exception class 27

Using ADFUtils/JSFUtils 32

Using page templates 35

Using a generic backing bean actions framework 42

Chapter 2: Dealing with Basics: Entity Objects 47
Introduction 47

Using a custom property to populate a sequence attribute 48

Overriding doDML() to populate an attribute with a gapless sequence 51

Creating and applying property sets 54

Using getPostedAttribute() to determine the posted attribute's value 58

Overriding remove() to delete associated children entities 60

Overriding remove() to delete a parent entity in an association 63

Using a method validator based on a view object accessor 66

Using Groovy expressions to resolve validation error message tokens 70

Using doDML() to enforce a detail record for a new master record 73

Chapter 3: A Different Point of View: View Object Techniques 75
Introduction 75

Iterating a view object using a secondary rowset iterator 76

Setting default values for view row attributes 81

Controlling the updatability of view object attributes programmatically 84

ii

Table of Contents

Setting the Queryable property of a view object attribute programmatically 86

Using a transient attribute to indicate a new view object row 88

Conditionally inserting new rows at the end of the rowset 90

Using indAndSetCurrentRowByKey() to set the view object currency 92
Restoring the current row after a transaction rollback 95

Dynamically changing the WHERE clause of the view object query 99

Removing a row from a rowset without deleting it from the database 101

Chapter 4: Important Contributors: List of Values, Bind Variables,

View Criteria 105
Introduction 106

Setting up multiple LOVs using a switcher attribute 106

Setting up cascading LOVs 110

Creating static LOVs 116

Overriding bindParametersForCollection() to set a view object bind variable 118

Creating view criteria programmatically 122

Clearing the values of bind variables associated with the view criteria 126

Searching case insensitively using view criteria 128

Chapter 5: Putting them all together: Application Modules 131
Introduction 131

Creating and using generic extension interfaces 132

Exposing a custom method as a web service 135

Accessing a service interface method from another application module 139

A passivation/activation framework for custom session-speciic data 143
Displaying application module pool statistics 151

Using a shared application module for static lookup data 156

Using a custom database transaction 159

Chapter 6: Go with the Flow: Task Flows 163
Introduction 163

Using an application module function to initialize a page 164

Using a task low initializer to initialize a task low 170
Calling a task low as a URL programmatically 176
Retrieving the task low deinition programmatically using
MetadataService 182

Creating a train 186

Chapter 7: Face Value: ADF Faces, JSF Pages, and User Interface

Components 193
Introduction 194

Using an af:query component to construct a search page 194

iii

Table of Contents

Using an af:pop-up component to edit a table row 198

Using an af:tree component 205

Using an af:selectManyShuttle component 210

Using an af:carousel component 215

Using an af:poll component to periodically refresh a table 219

Using page templates for pop-up reuse 222

Exporting data to a client ile 228

Chapter 8: Backing not Baking: Bean Recipes 233
Introduction 234

Determining whether the current transaction has pending changes 234

Using a custom af:table selection listener 236

Using a custom af:query listener to allow execution of a custom

application module operation 239

Using a custom af:query operation listener to clear both the

query criteria and results 243

Using a session scope bean to preserve session-wide information 248

Using an af:popup during long running tasks 252

Using an af:popup to handle pending changes 255

Using an af:iterator to add pagination support to a collection 259

Chapter 9: Handling Security, Session Timeouts, Exceptions,

and Errors 265
Introduction 266

Enabling ADF security 266

Using a custom login page 272

Accessing the application's security information 275

Using OPSS to retrieve the authenticated user's proile from the
identity store 279

Detecting and handling session timeouts 285

Using a custom error handler to customize how exceptions are

reported to the ViewController 288

Customizing the error message details 291

Overriding attribute validation exceptions 295

Chapter 10: Deploying ADF Applications 299
Introduction 299

Coniguring and using the Standalone WebLogic Server 300
Deploying on the Standalone WebLogic Server 306

Using ojdeploy to automate the build process 311

Using Hudson as a continuous integration framework 316

iv

Table of Contents

Chapter 11: Refactoring, Debugging, Proiling, and Testing 323
Introduction 323

Synchronizing business components with database changes 324

Refactoring ADF components 327

Coniguring and using remote debugging 329
Logging Groovy expressions 333

Dynamically coniguring logging in WebLogic Server 335
Performing log analysis 337

Using CPU proiler for an application running on a standalone
WebLogic server 339

Coniguring and using JUnit for unit testing 343

Chapter 12: Optimizing, Fine-tuning, and Monitoring 347
Introduction 347

Using Update Batching for entity objects 348

Limiting the rows fetched by a view object 350

Limiting large view object query result sets 352

Limiting large view object query result sets by using required view criteria 356

Using a work manager for processing of long running tasks 358

Monitoring the application using JRockit Mission Control 369

Chapter 13: Miscellaneous Recipes
This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/

4767EN_Chapter 13_Miscellaneous Recipes.pdf

Index 373

Preface
This book contains a wealth of resources covering Oracle's JDeveloper 11g release and the

Application Development Framework (ADF) and how these technologies can be used for the

design, construction, testing, and optimizing of Fusion web applications. Being vast and

complex technologies, an attempt has been made to cover a wide range of topics related

speciically to Fusion web applications development with ADF, utilizing the complete ADF
stack. These topics are presented in the form of recipes, many of them derived from the

author's working experience covering real world use cases. The topics include, but are not

limited to, foundational recipes related to laying out the project groundwork, recipes related to

the ADF business components, recipes related to ViewController, recipes related to security,

optimization and so on.

In the maze of information related to Fusion web applications development with ADF, it is the

author's hope that aspiring ADF developers will ind in this book some of the information they
are looking for. So lift up your sleeves, put on your ADF chef's hat, pick up a recipe or two, and

let's start cooking!

What this book covers
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations, covers a number

of recipes related to foundational concepts of Fusion web application development with ADF.

By applying and expanding these recipes during the early architectural and design phases as

needed, subsequent application development takes on a form, a structure, and the necessary

uniformity. Many if not most of the recipes in the following chapters rely on these recipes.

Chapter 2, Dealing with Basics: Entity Objects, starts our journey into the world of ADF

business components. First stop: entity objects. The recipes in this chapter deal with some

of the most common framework functionality that is overridden in real world applications to

provide customized business functionality.

Preface

2

Chapter 3, A Different Point of View: View Objects Techniques, covers a number of recipes

related to view objects. This chapter explains how to control attribute updatability, how to set

attribute default values, how to iterate view object row sets, and many more.

Chapter 4, Important Contributors: List of Values, Bind Variables, View Criteria, covers

additional topics related to view objects. These topics include recipes related to list of values

(LOVs), bind variables and view criteria. The reader will learn, among other things, how to

setup multiple LOVs using a switcher attribute, cascading and static LOVs, and how to create

view criteria programmatically.

Chapter 5, Putting them all together: Application Modules, includes a number of recipes

related to application modules. You will learn, among others, how to create and use generic

extension interfaces, expose a custom application module method as a web service and

access a service interface from another application module. Additional recipes cover topics

such as a passivation/activation framework, using shared application modules for static

lookup data and custom database transactions.

Chapter 6, Go with the low: Task Flows, delves into the world of ADF task lows. Among others,
you will learn how to use an application module function as a method call to initialize a page,

how to use a task low initializer, how to retrieve the task low deinition programmatically and
how to create a train.

Chapter 7, Face Value: ADF Faces, JSPX Pages and Components, includes recipes detailing

the use of a variety of ADF Faces components, such as the query component, the popup

window component, the tree component, the select many shuttle component, the carousel

component, and others.

Chapter 8, Backing not Baking: Bean Recipes, introduces topics related to backing beans. A

number of topics are covered including the use of custom table selection listeners, custom

query and query operation listeners, session beans to preserve session-wide information,

popup windows to handle long running tasks.

Chapter 9, Handling Security, Session Timeouts, Exceptions and Errors, covers topics

related to handling security, session timeouts, exceptions and errors for an ADF Fusion web

application. The recipes in this chapter will show the reader how to enable ADF security, how

to use a custom login page, how to access the application's security information, how to

detect and handle session timeouts, and how to use a custom error handler.

Chapter 10, Deploying ADF Applications, includes recipes related to the deployment of ADF

Fusion web applications. These recipes include the coniguration and use of the standalone
WebLogic server, the deployment of applications on the standalone WebLogic server, the use

of the ojdeploy tool and the use of Hudson as a continuous integration framework.

Preface

3

Chapter 11, Refactoring, Debugging, Proiling, Testing, deals with topics related to refactoring,

debugging, proiling, and testing ADF Fusion web applications. The recipes in this chapter
cover topics such as the synchronization of business components to changes in the database,

refactoring of ADF components, coniguring and using remote debugging, coniguring logging
in the WebLogic server, CPU proiling and the coniguration, and usage of JUnit for unit testing.

Chapter 12, Optimizing, Fine-tuning and Monitoring, covers topics related to optimizing, ine-
tuning, and monitoring ADF Fusion web applications. The recipes in this chapter demonstrate

how to limit the rows fetched by view objects, how to limit large view object queries, how to

use work managers for processing long-running tasks and how to monitor your application

using the JRockit Mission Control.

Chapter 13, Miscellaneous Recipes, the additional content recipes cover topics related among

others to using JasperReports, uploading images to the server, and handling and customizing

database-related errors. This chapter is not present in the book but is available as a free

download from the following link: http://www.packtpub.com/sites/default/files/
downloads/4767EN_Chapter 13_Miscellaneous Recipes.pdf.

What you need for this book
The recipes in this book utilize the latest release of JDeveloper at the time of writing, namely

JDeveloper 11g R2 11.1.2.1.0. This release of JDeveloper comes bundled with the necessary

ADF libraries and a standalone installation of the WebLogic server. Ensure that the WebLogic

server is installed as part of the JDeveloper installation.

In addition, you will need a database connection to Oracle's HR schema. This schema is

provided along with the Oracle XE database.

A number of recipes cover topics that will require you to download and install the following

additional software: Hudson continuous integration, JRockit Mission Control, Jasper Reports,

and iReport.

Who this book is for
This book is targeted to intermediate or advanced developers, designers and architects

already utilizing JDeveloper, the ADF framework, and Oracle's Fusion technologies. Developers

utilizing the complete ADF stack for building ADF Fusion web applications will beneit most
from the book. The book uses ADF business components as its model layer technology, ADF

binding, ADF task lows and the ADF model for its controller layer technologies, and ADF Faces
as its view layer technology.

The introductory concepts in the irst chapter, along with the chapters related to handling
exceptions, session timeouts, optimizing, and ine tuning may appeal more to application
designers and architects.

Preface

4

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "In addition to the session-timeout coniguration
setting in web.xml, you can conigure a session timeout warning interval by deining the
context parameter"

A block of code is set as follows:

public class SessionTimeoutFilter implements Filter {

 private FilterConfig filterConfig = null;

 public SessionTimeoutFilter() {

 super();

}

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

new ExportEmployeesWork(getEmployees().createRowSetIterator(null))

Any command-line input or output is written as follows:

$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Using the Property Inspector

change the URL Invoke property to url-invoke-allowed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—

what you liked or may have disliked. Reader feedback is important for us to develop titles that

you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

mention the book title through the subject of your message.

Preface

5

If there is a topic that you have expertise in and you are interested in either writing or

contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to

get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you ind a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers

from frustration and help us improve subsequent versions of this book. If you ind any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,

clicking on the errata submission form link, and entering the details of your errata. Once your

errata are veriied, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protection of our copyright and licenses very seriously. If you come across any

illegal copies of our works, in any form, on the Internet, please provide us with the location

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.allitebooks.org

1
Prerequisites to

Success: ADF

Project Setup and
Foundations

In this chapter, we will cover:

 f Installation of JDeveloper on Linux

 f Breaking up the application in multiple workspaces

 f Setting up BC base classes

 f Setting up logging

 f Using a custom exception class

 f Using ADFUtils/JSFUtils

 f Using page templates

 f Using a generic backing bean actions framework

Prerequisites to Success: ADF Project Setup and Foundations

8

Introduction
JDeveloper and ADF (Application Development Framework) are amazing technologies. What

makes them even more incredible is their sheer complexity and the amount of knowledge and

effort that lies covered underneath the declarative, almost magical frontend. What amazes

me is that once you scratch the surface, you never stop realizing how much you really don't

know. Given this complexity, it becomes obvious that certain development guidelines and

practices must be established and followed early in the architectural and design phases of an

ADF project.

This chapter presents a number of recipes that are geared towards establishing some of

these development practices. In particular, you will see content that serves as a starting

point in making your own application modular when using the underlying technologies. You

will also learn the importance of extending the Business Components framework (ADF-BC)

base classes early in the development cycle. We will talk about the importance of laying out

other application foundational components, such as logging and exceptions, again early in

the development process, and continue with addressing reusability and consistency at the

ViewController layer.

The chapter starts with a recipe about installing and coniguring JDeveloper on Linux.
So, let's get started and don't forget, have fun as you go along. If you get in trouble at any

point, take a look at the accompanying source code and feel free to contact me anytime at

nharalabidis@gmail.com.

Installation of JDeveloper on Linux
Installation of JDeveloper is, in general, a straightforward task. So, "why have a recipe for

this?" you might ask. Did you notice the title? It says "on Linux". You will be amazed at the

number of questions asked about this topic on a regular basis on the JDeveloper and ADF

OTN Forum. Besides, in this recipe, we will also talk about coniguration options and the usage
of 64-bit JDK along with JDeveloper.

Getting ready
You will need a Linux installation of JDeveloper to use this recipe. For the 64-bit coniguration,
you will need a 64-bit Linux distribution and a 64-bit version of the Java SDK. We will install

the latest version of JDeveloper, which is version 11.1.2.1.0 at the time of this writing.

Chapter 1

9

How to do it...

1. Download JDeveloper from the Oracle JDeveloper Software download page:
http://www.oracle.com/technetwork/developer-tools/jdev/
downloads/index.html.

2. Accept the license agreement, select Linux Install, and click on Download File to

begin with the download.

3. Once the ile is downloaded, open a console window and start the installation, by
typing the following commands:

$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

4. On the Choose Middleware Home Directory page, select Create a new Middleware

Home and enter the Middleware home directory.

5. On the Choose Install Type page, select Complete to ensure that JDeveloper, ADF

and WebLogic Server are installed.

6. Once you conirm your selections, proceed with the installation.

7. Upon a successful installation, you will see the Installation Complete page. Uncheck

the Run Quickstart checkbox and click Done.

Prerequisites to Success: ADF Project Setup and Foundations

10

8. To start JDeveloper, go to the /jdeveloper/jdev/bin directory under the

Middleware home directory you speciied during the installation and type
the following:

$./jdev

9. To make things easier, create an application launcher on your Linux desktop for the

speciic path indicated in the previous step.

How it works...

As noted earlier, installing JDeveloper on Linux is a straightforward task. You simply have to

download the binary executable archive and run it. Ensure that you give execute permissions

to the installation archive ile and run it as noted. If you are having trouble seeing the
Welcome page in graphical mode, ensure that the $DISPLAY environment variable is set

correctly. The important thing to know here is the name of the ile to execute in order to start
JDeveloper. As mentioned, it is called jdev and it is located in the /jdeveloper/jdev/bin

directory under the Middleware home directory.

There's more...

Now that you have successfully installed JDeveloper, let's spend some time coniguring it for
optimal performance. Coniguration parameters are added to any of the jdev.conf or ide.
conf iles located in the /jdeveloper/jdev/bin and /jdeveloper/ide/bin directories

respectively, under the Middleware home directory.

The following is a list of the important tuning coniguration parameters with some

recommendations for their values:

Parameter Description

AddVMOption -Xmx This parameter is deined in the ide.conf ile and indicates
the maximum limit that you will allow the JVM heap size to grow

to. In plain words, it is the maximum memory that JDeveloper will

consume on your system. When setting this parameter, consider

the available memory on your system, the memory needed

by the OS, the memory needed by other applications running

concurrently with JDeveloper, and so on. On a machine used

exclusively for development with JDeveloper, as a general rule of

thumb consider setting it to around 50 percent of the available

memory.

Chapter 1

11

Parameter Description

AddVMOption -Xms This parameter is also deined in the ide.conf and indicates

the initial JVM heap size. This is the amount that will be allocated

initially by JDeveloper and it can grow up to the amount speciied
by the previous -Xmx parameter. When setting this parameter,

consider whether you want to give JDeveloper a larger amount

in order to minimize frequent adjustments to the JVM heap.

Setting this parameter to the same value as the one indicated

by the -Xmx parameter will supply a ixed amount of memory to
JDeveloper.

AddVMOption

-XX:MaxPermSize

This parameter indicates the size of the JVM permanent

generation used to store class deinitions and associated
metadata. Increase this value if needed in order to avoid java.
lang.OutOfMemoryError: PermGen space errors. A

256MB setting should sufice.
AddVMOption -DVFS_

ENABLE

Set it to true in jdev.conf if your JDeveloper projects consist

of a large number of iles, especially if you will be enabling a
version control system from within JDeveloper.

Coniguring JDeveloper with a 64-bit JDK
The JDeveloper installation is bundled by default with a 32-bit version of the Java JDK, which

is installed along with JDeveloper. On a 64-bit system, consider running JDeveloper with a 64-

bit version of the JDK. First download and install the 64-bit JDK. Then conigure JDeveloper
via the SetJavaHome coniguration parameter in the jdev.conf. This parameter should be

changed to point to the location of the 64-bit JDK. Note that the 64-bit JDK is supported by

JDeveloper versions 11.1.1.4.0 and higher.

Coniguring the JDeveloper user directory
This is the directory used by JDeveloper to identify a default location where iles will be
stored. JDeveloper also uses this location to create the integrated WebLogic domain and to

deploy your web applications when running them or debugging them inside JDeveloper. It is

conigured via the SetUserHomeVariable parameter in the jdev.conf ile. It can be set
to a speciic directory or to an environment variable usually named JDEV_USER_DIR. Note

that when JDeveloper is started with the –singleuser command-line argument, the user

directory is created inside the /jdeveloper directory under the Middleware home directory.

Prerequisites to Success: ADF Project Setup and Foundations

12

Before starting your development in JDeveloper, consider setting the XML ile
encoding for the XML iles that you will be creating in JDeveloper. These iles
among others include, the JSF pages, the business component metadata

iles, application coniguration iles, and so on. You set the encoding via the
Tools | Preferences… menu. Select the Environment node on the left of

the Preferences dialog and the encoding from the Encoding drop-down. The

recommended setting is UTF-8 to support multi-lingual applications.

The minimum recommended open ile descriptors limit for JDeveloper on
a Linux system is 4096. Use the command ulimit –n to determine the

open ile descriptors limit for your installation and change it if needed in
the limits.conf ile located in /etc/security/ directory.

Breaking up the application in multiple
workspaces

When dealing with large enterprise scale applications, the organization and structure of the

overall application in terms of JDeveloper workspaces, projects, and libraries is essential.

Organizing and packaging ADF application artifacts, such as business components, task lows,
templates, Java code, and so on, into libraries will promote and ensure modularity, and the

reuse of these artifacts throughout the application. In this recipe, we will create an application

that comprises reusable components. We will construct reusable libraries for shared

components, business domain speciic components, and a main application for consuming
these components.

How to do it…

1. To create the SharedComponents library, start by selecting New Application… in

the Application Navigator. This will start the application creation wizard.

2. In the New Gallery dialog, click on the Applications node (under the General

category) and select Fusion Web Application (ADF) from the list of Items.

Chapter 1

13

3. In the Name your application page, enter the Application Name, Directory and the

Application Package Preix.

4. In the Name your project page, enter the business component's Project Name and

Directory. For this recipe, we have called it SharedBC.

5. In the Conigure Java settings page for the business components project, accept the

defaults for Default Package, Java Source Path, and Output Directory.

6. Similarly, in the Name your project page for the ViewController project, enter

the Project Name and Directory. For this recipe, we have called the project

SharedViewController. Ensuring that you enter a unique package structure for

both projects is the best guarantee for avoiding naming conlicts when these projects
are deployed as ADF Library JARs.

7. Accept the defaults in the Conigure Java settings and click Finish to proceed with

the creation of the workspace.

Prerequisites to Success: ADF Project Setup and Foundations

14

8. Now, in the Application Navigator, you should see the two projects comprising the

SharedComponents workspace, one for the business components and another for

the ViewController.

9. You will be using this workspace to add reusable business and ViewController

components. For now, we will package the workspace into an ADF library JAR, without

any components in it yet. In order to do this, you will need to irst setup the project
dependencies. Double-click on the SharedViewController project to bring up the

Project Properties dialog and select Dependencies.

10. Click on Edit Dependencies (the small pen icon) to bring up the Edit

Dependencies dialog and then click on the Build Output checkbox under the

business components project.

11. Click OK to close the dialog and return to the Project Properties dialog.

Chapter 1

15

12. The next step is to set up the deployment proile. While at the ViewController Project

Properties dialog, click on the Deployment node.

13. Since we will not be deploying this application as a WAR, select the default WAR

deployment proile generated automatically by JDeveloper and delete it.

14. Then, click New… to create a new deployment proile.

15. On the Create Deployment Proile dialog, select ADF Library JAR File for the Proile
Type and enter the name of the deployment proile. For this recipe, we have called
the deployment proile SharedComponents. Click OK to proceed with its creation.

16. In the Edit ADF Library JAR Deployment Proile Properties dialog that is opened,

select JAR Options and specify a location where you will be placing all the reusable

JAR libraries. For this recipe, we will place all reusable libraries in a directory called

ReUsableJARs.

17. When done, completely exit from the Project Properties dialog, saving your changes

by clicking OK.

18. The last step involves the creation of the ADF Library JAR. You do this by

right-clicking on the ViewController project in the Application Navigator

selecting Deploy and then the name of the deployment proile name
(SharedComponents in this case).

19. Select Deploy to ADF Library JAR ile in the Deployment Action page and click

Finish to initiate the deployment process. The deployment progress will begin. Its

status is shown in the Deployment tab of the Log window.

20. To create the HRDepartments components library, similarly create a new Fusion web

application for the HRDepartment components. Follow the previous steps to setup

the project dependencies. No database connection to the HR schema is needed at

this stage.

www.allitebooks.com

http://www.allitebooks.org

Prerequisites to Success: ADF Project Setup and Foundations

16

21. Create the deployment proile and deploy the ADF Library JAR. We will not be placing
any components yet in this library.

22. To create the HREmployees components library, repeat the previous steps once

more in order to create another ADF Library JAR for the HR Employee related

reusable components.

23. Now create another Fusion web application, which will be used as the main

application. This application will consume any of the components that reside in the

ADF Library JARs created in the previous steps.

24. This can easily be done via the Resource Palette by creating a ile system connection
to the directory where we saved the reusable ADF Library JARs, that is, the directory

called ReUsableJARs. If the Resource Palette is not visible, select View | Resource

Palette to show it. In the Resource Palette, click on the New icon and select New

Connection | File System….

25. In the Create File System Connection dialog that is displayed, enter the name of the

connection and the directory where you have deployed the reusable components in

the previous steps.

26. Click OK to continue. You should be able to see the new File System Connection in

the Resource Palette.

Chapter 1

17

27. To consume reusable components, irst select the appropriate project on the
Application Navigator, then right-click on the ADF Library JAR on the Resource

Palette and select Add to Project….

28. On the Conirm Add ADF Library dialog, click on the Add Library button to proceed.

29. Alternatively, expand the ADF Library JAR and drag-and-drop the reusable component

onto its appropriate place in the workspace.

How it works…

When you deploy a project as an ADF Library JAR, all ADF reusable components and

code are packaged in it and they become available to other consuming applications and

libraries. Reusable components include business components, database connections, data

controls, task lows, task low templates, page templates, declarative components, and of
course Java code. By setting up the dependencies among the business components and

ViewController projects in the way that we have—that is, including the build output of the

business components project during the deployment of the ViewController project—you will

be producing a single ADF Library JAR ile with all the components from all the projects in
the workspace. When you add an ADF Library JAR to your project, the library is added to the

project's class path. The consuming project can then use any of the components in library.

The same happens when you drag-and-drop a reusable component into your project.

There's more…

For this recipe, we packaged both of the business components and ViewController projects

in the same ADF Library JAR. If this strategy is not working for you, you have other options,

such as adjusting the dependencies among the two and packaging each project in a separate

ADF Library JAR. In this case, you will need an additional deployment proile and a separate
deployment for the business components project.

Adding the ADF Library JAR manually
You can add an ADF Library JAR into your project manually using the Project Properties

dialog. Select the Libraries and Classpath node and click on the Add Library… button. This

will display the Add Library dialog. On it, click the New… button to display the Create Library

dialog. Enter a name for the library, select Project for the library location, and click on the

Deployed by Default check button. Finally, click on the Add Entry… button to locate the ADF

Library JAR. The Deployed by Default checkbox when checked indicates that the library

will be copied to the application's destination archive during deployment of the consuming

application. If you leave it unchecked, then the library will not be copied and it must be

located in some other way (for example, deployed separately as a shared library on the

application server).

Prerequisites to Success: ADF Project Setup and Foundations

18

Deining the application module granularity
One related topic that also needs to be addressed in the early architectural stages of the

ADF project is the granularity for the application modules, that is, how the data model will be

divided into application modules. As a general rule of thumb, each application module should

satisfy a particular use case. Related use cases and, therefore, application modules can then

be packaged into the same reusable ADF Library JAR. In general, avoid creating monolithic

application modules that satisfy multiple use cases each.

Entity objects, list of values (LOVs), validation queries
Entity objects, list of values (LOVs) and validation queries should be deined only once for
each business components project. To avoid duplication of entity objects, LOVs and validation

queries among multiple business components projects, consider deining them only once in a
separate business components project.

Structuring of the overall ADF application in reusable components should

be well thought and incorporated in the early design and architectural

phases of the project.

As your application grows, it is important to watch out for and eliminate

circular dependencies among the reusable components that you develop.

When they occur, this could indicate a law in your design. Use available
dependency analyzer tools, such as Dependency Finder (available from

http://depfind.sourceforge.net) during the development

process, to detect and eliminate any circular dependencies that may occur.

Setting up BC base classes
One of the irst things to consider when developing large-scale enterprise applications with
ADF-BC is to allow for the ability to extend the framework's base classes early on in the

development process. It is imperative that you do this before creating any of your business

objects, even though you have no practical use of the extended framework classes at that

moment. This will guarantee that all of your business objects are correctly derived from your

framework classes. In this recipe, you will expand on the previous recipe and add business

components framework extension classes to the SharedComponents workspace.

Getting ready
You will be adding the business components framework extension classes to the

SharedComponents workspace. See the previous recipe for information on how to

create one.

Chapter 1

19

How to do it…

1. To create framework extension classes for the commonly used business components,

start with the creation of an extension class for the entity objects. Open the

SharedComponents workspace in JDeveloper and right-click on the SharedBC

business components project.

2. From the context menu, select New… to bring up the New Gallery dialog. Select Class

from the Java category (under the General category) and click OK.

3. On the Create Java Class dialog that is displayed, enter the name of the custom

entity object class, the package where it will be created, and for Extends enter the

base framework class, which in this case is oracle.jbo.server.EntityImpl.

Prerequisites to Success: ADF Project Setup and Foundations

20

4. Now, repeat the same steps to create framework extension classes for the

following components:

Business Component Framework Class Extended

Entity Deinition oracle.jbo.server.EntityDefImpl

View Object oracle.jbo.server.ViewObjectImpl

View Row oracle.jbo.server.ViewRowImpl

Application Module oracle.jbo.server.ApplicationModuleImpl

Database Transaction Factory oracle.jbo.server.
DatabaseTransactionFactory

Database Transaction oracle.jbo.server.DBTransactionImpl2

5. Once you are done, your project should look similar to the following:

Chapter 1

21

6. The next step is to conigure JDeveloper so that all new business components that
you create from this point forward will be inherited from the framework extension

classes you've just deined. Open the Preferences dialog from the Tools menu,

expand the ADF Business Components node, and select Base Classes.

7. Then enter the framework extension classes that you created previously, each one in

its corresponding category.

How it works…

Deining and globally coniguring business components framework extension classes via the
ADF Business Components Base Classes settings on the Preferences dialog causes all

subsequent business components for all projects to be inherited from these classes. This is

true for both XML-only components and for components with custom Java implementation

classes. For XML-only components observe that the ComponentClass attribute in the

object's XML deinition ile points to your framework extension class.

Prerequisites to Success: ADF Project Setup and Foundations

22

There's more…

You can conigure your business components framework extension classes at two additional
levels: the project level and the individual component level.

 f Coniguration at the project level is done via the Project Properties Base Classes

selection under the ADF Business Components node. These coniguration changes
will affect only the components created for the speciic project.

 f Coniguration at the component level is done via the component's Java Options

dialog, in the component's deinition Java page, by clicking on the Classes Extend…

button and overriding the default settings. The changes will only affect the

speciic component.

Do not attempt to directly change or remove the extends Java keyword

in your component's implementation class. This would only be half

the change, because the component's XML deinition will still point to
the original class. Instead, use the Classes Extend… button on the

component's Java Options dialog.

Finally, note that the default package structure for all business components can also be

speciied in the ADF Business Components | Packages page of the Preferences dialog.

See also

 f Creating and using generic extension interfaces, Chapter 5, Putting them all together:

Application Modules

 f Breaking up the application in multiple workspaces, in this chapter

Setting up logging
Logging is one of those areas that is often neglected during the initial phases of application

design. There are a number of logging framework choices to use in your application, such

as log4j by Apache. In this recipe, we will demonstrate the usage of the ADFLogger and

Oracle Diagnostics Logging (ODL). The main advantage of using ODL when compared to other

logging frameworks is its tight integration with WebLogic and JDeveloper. In WebLogic, the

logs produced conform to and integrate with the diagnostics logging facility. Diagnostic logs

include, in addition to the message logged, additional information such as the session and

user that produced the log entry at run-time. This is essential when analyzing the application

logs. In JDeveloper, the log coniguration and analysis is integrated via the Oracle Diagnostics

Logging Coniguration and Oracle Diagnostics Log Analyzer respectively.

Chapter 1

23

Getting ready
We will be adding logging to the application module framework extension class that we

developed in the previous recipe.

How to do it…

1. ODL logs can be generated programmatically from within your code by using the

ADFLogger class. Instantiate an ADFLogger via the static createADFLogger()

method and use its log() method. Go ahead and add logging support to the

application module framework extension class we developed in the previous recipe,

as shown in the following code snippet:

import oracle.adf.share.logging.ADFLogger;

public class ExtApplicationModuleImpl extends
 ApplicationModuleImpl {

 // create an ADFLogger

 private static final ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtApplicationModuleImpl.class);

 public ExtApplicationModuleImpl() {

 super();

 // log a trace

 LOGGER.log(ADFLogger.TRACE,
 "ExtApplicationModuleImpl was constructed");

 }

}

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

2. The next step involves the coniguration of the logger in the logging.xml ile. The
ile is located in the config\fmwconfig\servers directory under the WebLogic

domain for the server you are coniguring. For the integrated WebLogic server,
this ile is located in the %JDEV_USER_DIR%\system11.1.2.1.38.60.81\
DefaultDomain\config\fmwconfig\servers\DefaultServer directory. The

exact location can vary slightly depending on the version of JDeveloper that you use.

http://www.packtpub.com
http://www.packtpub.com/support

Prerequisites to Success: ADF Project Setup and Foundations

24

Open the ile in JDeveloper and create a custom logger called com.packt by clicking

on the Add Persistent Logger icon, as shown in the following screenshot:

3. This will display the Add Persistent Logger dialog to add your logger. Enter com.
packt for the Logger Name and choose FINEST for the Logger Level.

Chapter 1

25

4. Repeat this step and add another logger named com if one does not already exist for

it. The inal result should look similar to the following screenshot:

5. One more step that is required to complete the coniguration is to use the -Djbo.
debugoutput=adflogger and -Djbo.adflogger.level=FINEST options

when starting the JVM. You can do this in JDeveloper by double-clicking on the main

application's ViewController project to bring up the Project Properties dialog and

selecting the Run/Debug/Proile node.

6. Then select the appropriate Run Coniguration on the right and click on the

Edit… button.

7. On the Edit Run Coniguration dialog that is displayed, enter these Java options in

the Java Options.

How it works…

In this example, we have declared a static ADFLogger and associated it with the class

ExtApplicationModuleImpl by passing ExtApplicationModuleImpl.class as a

parameter during its construction. We have declared the ADFLogger as static so we don't

have to worry about passivating it. We then use its log() method to do our logging. The

log() method accepts a java.util.logging.Level parameter indicating the log level

of the message and it can be any of the following values: ADFLogger.INTERNAL_ERROR,

ADFLogger.ERROR, ADFLogger.WARNING, ADFLogger.NOTIFICATION, or ADFLogger.
TRACE.

ADFLogger leverages the Java Logging API to provide logging functionality. Because standard

Java logging is used, it can be conigured through the logging.xml coniguration ile. This
ile is located under the WebLogic domain directory config\fmwconfig\servers for the

speciic server that you are coniguring. The ile is opened and a logger is added.

www.allitebooks.com

http://www.allitebooks.org

Prerequisites to Success: ADF Project Setup and Foundations

26

Logging is controlled at the package level; we have added a logger for the com.packt

package but we can ine-tune it for the additional levels: com.packt.jdeveloper, com.
packt.jdeveloper.cookbook, com.packt.jdeveloper.cookbook.shared,

and so on. The class name that we passed as an argument to the ADFLogger during its

instantiation—that is, ExtApplicationModuleImpl.class—represents a logger that is

deined in the logging coniguration ile. The logger that is added is a persistent logger, which
means that it will remain permanently in the logging.xml coniguration ile. Transient
loggers are also available; these persist only for the duration of the user session.

Each logger conigured in the logging.xml is associated with a log handler. There are a

number of handlers deined in the logging.xml namely a console-handler to handle

logging to the console, an odl_handler to handle logging for ODL and others.

There's more…

You can also use the ADFLogger methods severe(),

warning(), info(), config(), fine(), finer(), and

finest() to do your logging.

When you conigure logging, ensure that you make the changes
to the appropriate logging.xml ile for the WebLogic server
you are coniguring.

See also

 f Breaking up the application in multiple workspaces, in this chapter

 f Coniguring diagnostics logging, Chapter 11, Refactoring, Debugging,

Proiling, Testing

 f Dynamically conigure ADF trace logs on WebLogic, Chapter 11, Refactoring,

Debugging, Proiling, Testing

Chapter 1

27

Using a custom exception class
In this recipe, we will go over the steps necessary to set up a custom application exception

class derived from the JboException base exception class. Some Reasons why you might

want to do this include:

 f Customize the exception error message

 f Use error codes to locate the error messages in the resource bundle

 f Use a single resource bundle per locale for the error messages and their parameters

Getting ready
We will add the custom application exception class to the SharedComponents workspace we

created in the Breaking up the application in multiple workspaces recipe in this chapter.

How to do it…

1. Start by opening the SharedComponents workspace.

2. Create a new class called ExtJboException by right-clicking on the business

components project and selecting New….

3. Then select Java under the General category and Java Class from list of Items on

the right.

4. Click OK to display the Create Java Class dialog. Enter ExtJboException for the

Name, com.packt.jdeveloper.cookbook.shared.bc.exceptions for the

Package and oracle.jbo.JboException for the Extends.

5. Click OK to proceed with the creation of the custom exception class.

6. The next step is to add two additional constructors, to allow for the instantiation of

the custom application exception using a standard error message code with optional

error message parameters. The additional constructors look similar to the following

code sample:

public ExtJboException(final String errorCode,
 final Object[] errorParameters) {

 super(ResourceBundle.class, errorCode, errorParameters);

}

public ExtJboException(final String errorCode) {

 super(ResourceBundle.class, errorCode, null);

}

Prerequisites to Success: ADF Project Setup and Foundations

28

7. Now, click on the Override Methods… icon on the top of the editor window and

override the getMessage() method, as shown in the following screenshot:

8. Enter the following code for the getMessage() method:

public String getMessage() {

 // default message

 String errorMessage = "";

 try {

 // get access to the error messages bundle

 final ResourceBundle messagesBundle = ResourceBundle.getBundle
 (ERRORS_BUNDLE, Locale.getDefault());

 // construct the error message

 errorMessage =this.getErrorCode() + " - " + messages
 Bundle.getString(MESSAGE_PREFIX + this.getErrorCode());

 // get access to the error message parameters bundle

 final ResourceBundle parametersBundle = ResourceBundle
 .getBundle(PARAMETERS_BUNDLE, Locale.getDefault());

 // loop for all parameters

 for (int i = 0; i < this.getErrorParameters().length; i++) {

 // get parameter value

 final String parameterValue =

Chapter 1

29

 parametersBundle.getString(PARAMETER_PREFIX +

 (String)this.getErrorParameters()[i]);

 // replace parameter placeholder in the error message string

 errorMessage = errorMessage.replaceAll
 ("\\{" + (i + 1) + "}", parameterValue);

 }

 } catch (Exception e) {

 // log the exception

 LOGGER.warning(e);

 }

 return errorMessage;

}

9. Make sure that you also add the following constants:

private static final String ERRORS_BUNDLE = "com.packt.jdeveloper.
 cookbook.shared.bc.exceptions.messages.ErrorMessages";

private static final String PARAMETERS_BUNDLE = "com.packt.
 jdeveloper.cookbook.shared.bc.exceptions.messages.ErrorParams";

private static final String MESSAGE_PREFIX = "message.";

private static final String PARAMETER_PREFIX = "parameter.";

private static final ADFLogger LOGGER =ADFLogger
 .createADFLogger(ExtJboException.class);

10. For testing purposes add the following main() method:

// for testing purposes; remove or comment if not needed

 public static void main(String[] args) {

 // throw a custom exception with error code "00001" and two
 parameters

 throw new ExtJboException("00001",

 new String[] { "FirstParameter", "SecondParameter" });

}

How it works…

We have created a custom exception at the ADF-BC level by overriding the JboException

class. In order to use application-speciic error codes, we have introduced two new
constructors. Both of them accept the error code as a parameter. One of them also accepts

the message error parameters.

public ExtJboException(final String errorCode,
 final Object[] errorParameters) {

 super(ResourceBundle.class, errorCode, errorParameters);

}

Prerequisites to Success: ADF Project Setup and Foundations

30

In our constructor, we call the base class' constructor and pass the message error code and

parameters to it.

Then we override the getMessage() method in order to construct the exception message.

In getMessage(), we irst get access to the error messages resource bundle by calling
ResourceBundle.getBundle() as shown in the following code snippet:

final ResourceBundle messagesBundle = ResourceBundle.getBundle(ERRORS_
BUNDLE, Locale.getDefault());

This method accepts the name of the resource bundle and the locale. For the name of the

resource bundle, we pass the constant ERRORS_BUNDLE, which we deine as com.packt.
jdeveloper.cookbook.shared.bc.exceptions.messages.ErrorMessages. This

is the ErrorMessages.properties ile in the com/packt/jdeveloper/cookbook/
shared/bc/exceptions/messages directory where we have added all of our messages.

For the locale, we use the default locale by calling Locale.getDefault().

Then we proceed by loading the error message from the bundle:

errorMessage = this.getErrorCode() + " - " + messagesBundle.
getString(MESSAGE_PREFIX + this.getErrorCode());

An error message deinition in the messages resource bundle looks similar to the following:

message.00001=This is an error message that accepts two parameters.
The first parameter is '{1}'. The second parameter is '{2}'.

As you can see, we have added the string preix message. to the actual error message code.

How you form the error message identiiers in the resource bundle is up to you. You could, for
example, use a module identiier for each message and change the code in getMessage()

appropriately. Also, we have used braces, that is, {1}, {2} as placeholders for the actual

message parameter values. Based on all these, we constructed the message identiier
by adding the message preix to the message error code as: MESSAGE_PREFIX + this.
getErrorCode() and called getString() on the messagesBundle to load it.

Then we proceed with iterating the message parameters. In a similar fashion, we call

getString() on the parameters bundle to load the parameter values.

The parameter deinitions in the parameters resource bundle look similar to the following:

parameter.FirstParameter=Hello

parameter.SecondParameter=World

So we add the preix parameter to the actual parameter identiier before loading it from
the bundle.

Chapter 1

31

The last step is to replace the parameter placeholders in the error message with the actual

parameter values. We do this by calling replaceAll() on the raw error message, as shown

in the following code snippet:

errorMessage = errorMessage.replaceAll("\\{" + (i + 1) + "}",
parameterValue);

For testing purposes, we have added a main() method to test our custom exception. You will

similarly throw the exception in your business components code, as follows:

throw new ExtJboException("00001", // message code
 new String[] { "FirstParameter", "SecondParameter" }
 // message parameters);

There's more…

You can combine the error message and the error message parameters bundles into a single

resource bundle, if you want, and change the getMessage() method as needed to load both

from the same resource bundle.

Bundled Exceptions
By default, exceptions are bundled at the transaction level for ADF-BC-based web applications.

This means that all exceptions thrown during attribute and entity validations are saved and

reported once the validation process is complete. In other words, the validation will not stop

on the irst error, rather it will continue until the validation process completes and then report
all exceptions in a single error message. Bundled validation exceptions are implemented

by wrapping exceptions as details of a new parent exception that contains them. For

instance, if multiple attributes in a single entity object fail attribute validation, these multiple

ValidationException objects are wrapped in a RowValException. This wrapping

exception contains the row key of the row that has failed validation. At transaction commit

time, if multiple rows do not successfully pass the validation performed during commit, then

all of the RowValException objects will get wrapped in an enclosing TxnValException

object. Then you can use the getDetails() method of the JboException base exception

class to recursively process the bundled exceptions contained inside it.

Exception bundling can be conigured at the transaction level by calling
setBundledExceptionMode() on the oracle.jbo.Transaction. This method

accepts a Boolean value indicating that bundled transactions will be used or not, respectively.

Prerequisites to Success: ADF Project Setup and Foundations

32

Note that in the Using a generic backing bean actions framework recipe

in this chapter, we refactored the code in getMessage() to a reusable

BundleUtils.loadMessage() method. Consequently, we changed the

ExtJboException getMessage() in that recipe to the following:

public String getMessage() {

 return BundleUtils.loadMessage(this.getErrorCode(),
 this.getErrorParameters());

}

See also

 f Handling security, session timeouts, exceptions and errors, Chapter 9, Handling

Security, Session Timeouts, Exceptions and Errors

 f Breaking up the application in multiple workspaces, in this chapter

Using ADFUtils/JSFUtils
In this recipe, we will talk about how to incorporate and use the ADFUtils and JSFUtils

utility classes in your ADF application. These are utility classes used at the ViewController

level that encapsulate a number of lower level ADF and JSF calls into higher level methods.

Integrating these classes in your ADF application early in the development process, and

subsequently using them, will be of great help to you as a developer and contribute to the

overall project's clarity and consistency. The ADFUtils and JSFUtils utility classes, at the

time of writing, are not part of any oficial JDeveloper release. You will have to locate them,
conigure them, and expand them as needed in your project.

Getting ready
We will be adding the ADFUtils and JSFUtils classes to the SharedComponents

ViewController project that we developed in the Breaking up the application in multiple

workspaces recipe in this chapter.

How to do it…

1. To get the latest version of these classes, download and extract the latest version

of the Fusion Order Demo application in your PC. This sample application can be

found currently in the Fusion Order Demo (FOD) - Sample ADF Application page at

the following address: http://www.oracle.com/technetwork/developer-
tools/jdev/index-095536.html.

http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html
http://www.oracle.com/technetwork/developer-tools/jdev/index-095536.html

Chapter 1

33

2. The latest version of the Fusion Order Demo application is 11.1.2.1 R2 at the time

of this writing and is bundled in a zipped ile. So go ahead download and extract the
Fusion Order Demo application in your PC.

3. You should be able to locate the ADFUtils and JSFUtils classes in the location

where you have extracted the Fusion Order Demo application. If multiple versions of

the same class are found, compare them and use the ones that are most up-to-date.

For this recipe, we have included in the source code the ADFUtils and JSFUtils

found in the SupplierModule\ViewController\src\oracle\fodemo\
supplier\view\utils directory.

4. Copy these classes to a speciic location in your shared ViewController components
project. For this recipe, we have copied them into the SharedComponents\
SharedViewController\src\com\packt\jdeveloper\cookbook\shared\
view\util directory.

5. Once copied, open both iles with JDeveloper and change their package to relect
their new location, in this case to com.packt.jdeveloper.cookbook.shared.
view.util.

How it works…

The public interfaces of both ADFUtils and JSFUtils deine static methods, so you can

call them directly without any class instantiations. The following are some of the methods that

are commonly used.

Locating an iterator binding
To locate an iterator in the bindings, use the ADFUtils.findIterator() method. The

method accepts the bound iterator's identiier and returns an oracle.adf.model.
binding.DCIteratorBinding. The following is an example:

DCIteratorBinding it = ADFUtils.findIterator("IteratorID");

Locating an operation binding
To locate an operation in the bindings, use the ADFUtils.findOperation() method.

This method accepts the bound operation's identiier and returns an oracle.binding.
OperationBinding.

OperationBinding oper = ADFUtils.findOperation("OperationID");

Prerequisites to Success: ADF Project Setup and Foundations

34

Locating an attribute binding
Use ADFUtils.findControlBinding() to retrieve an attribute from the bindings.

This method accepts the bound attribute's identiier and returns an oracle.binding.
AttributeBinding.

AttributeBinding attrib =
 ADFUtils.findControlBinding("AttributeId");

Getting and setting an attribute binding value
To get or set a bound attribute's value, use the ADFUtils.getBoundAttributeValue()

and ADFUtils.setBoundAttributeValue() methods respectively. Both of

these methods accept the identiier of the attribute binding as an argument. The
getBoundAttributeValue() method returns the bound attribute's data value as a java.
lang.Object. The setBoundAttributeValue() method accepts a java.lang.Object

and uses it to set the bound attribute's value.

// get some bound attribute data

String someData =
 (String)ADFUtils.getBoundAttributeValue("AttributeId");

// set some bound attribute data

ADFUtils.setBoundAttributeValue("AttributeId", someData);

Getting the binding container
You can get the oracle.adf.model.binding.DCBindingContainer binding container

by calling the ADFUtils.getDCBindingContainer() method.

DCBindingContainer bindings = ADFUtils.getDCBindingContainer();

Adding Faces messages
Use the JSFUtils.addFacesInformationMessage() and JSFUtils.
addFacesErrorMessage() methods to display Faces information and error messages

respectively. These methods accept the message to display as a String argument.

JSFUtils.addFacesInformationMessage("Information message");

JSFUtils.addFacesErrorMessage ("Error message");

Finding a component in the root view
To locate a UI component in the root view based on the component's identiier, use the
JSFUtils.findComponentInRoot() method. This method returns a javax.faces.
component.UIComponent matching the speciied component identiier.

UIComponent component = JSFUtils.findComponentInRoot("ComponentID");

Chapter 1

35

Getting and setting managed bean values
Use the JSFUtils.getManagedBeanValue() and JSFUtils.setManagedBeanValue()

methods to get and set a managed bean value respectively. These methods both accept

the managed bean name. The JSFUtils.getManagedBeanValue() method returns the

managed bean value as a java.lang.Object. The JSFUtils.setManagedBeanValue()

method accepts a java.lang.Object and uses it to set the managed bean value.

Object filePath = JSFUtils.getManagedBeanValue
 ("bindings.FilePath.inputValue");

JSFUtils.setManagedBeanValue("bindings.FilePath.inputValue", null);

Using page templates
In this recipe, we will go over the steps required to create a JSF page template that you can use

to create JSF pages throughout your application. It is very likely that for a large enterprise-scale

application you will need to construct and use a number of different templates, each serving a

speciic purpose. Using templates to construct the actual application JSF pages will ensure that
pages throughout the application are consistent, and provide a familiar look and feel to the end

user. You can follow the steps presented in this recipe to construct your page templates and

adapt them as needed to it your own requirements.

Getting ready
We will be adding the JSF template to the SharedComponents ViewController project that we

developed in the Breaking up the application in multiple workspaces recipe in this chapter.

How to do it…

1. Start by right-clicking on the ViewController project in the SharedComponents

workspace and selecting New….

2. On the New Gallery dialog select JSF/Facelets from the list of Categories and ADF

Page Template from the Items on the right.

3. Click OK to proceed. This will display the Create ADF Page Template dialog.

4. Enter the name of the template on the Page Template Name. Note that as you

change the template name, the template File Name also changes to relect the
template name. For this recipe, we will simply call the template TemplateDef1.

5. Now, click on the Browse… button and select the directory where the template will

be stored.

6. On the Choose Directory dialog navigate to the public_html/WEB-INF

directory and click on the Create new subdirectory icon to create a new directory

called templates.

www.allitebooks.com

http://www.allitebooks.org

Prerequisites to Success: ADF Project Setup and Foundations

36

7. For the Document Type, select JSP XML.

8. We will not be using any of the pre-deined templates, so uncheck the Use a Quick

Start Layout checkbox.

9. Also, since we will not be associating any data bindings to the template, uncheck the

Create Associated ADFm Page Deinition checkbox.

10. Next, you will be adding the template facets. You do this by selecting the Facet

Deinitions tab and clicking on the New icon button. Enter the following facets:

Facet Description

mainContent This facet will be used for the page's main content.

menuBar This facet will be used to deine a menu at the top of the page.
topBar This facet will be used to deine a toolbar under the page's menu.
popupContent This facet will be used to deine the page's pop-ups.

11. Now click OK to proceed with the creation of the ADF page template.

Chapter 1

37

12. Once the template is created, it is opened in the JDeveloper editor. If you followed the

previous steps, the template should look similar to the following code snippet:

<af:pageTemplateDef var="attrs">

 <af:xmlContent>

 <component xmlns
 ="http://xmlns.oracle.com/adf/faces/rich/component">

 <display-name>TemplateDef1</display-name>

 <facet>

 <description>The page's main content</description>

 <facet-name>mainContent</facet-name>

 </facet>

 <facet>

 <description>The page's menu</description>

 <facet-name>menuBar</facet-name>

 </facet>

 <facet>

 <description>The page's top toolbar</description>

 <facet-name>topBar</facet-name>

 </facet>

 <facet>

 <description>The page's popups</description>

 <facet-name>popupContent</facet-name>

 </facet>

 </component>

 </af:xmlContent>

</af:pageTemplateDef>

As you can see, at this point, the template contains only its deinition in an
af:xmlContent tag with no layout information whatsoever. We will proceed by

adding the template's layout content.

13. From the Layout components in the Component Palette, grab a Form component

and drop it into the template.

14. From the Layout container, grab a Panel Stretch Layout and drop it into the Form

component. Remove the top, bottom, start, and end facets.

15. From the Layout container, grab a Panel Splitter component and drop it on

the center facet of the Panel Stretch Layout. Using the Property Inspector

change the Panel Splitter Orientation to vertical. Also adjust the

SplitterPosition to around 100.

16. Add your application logo by dragging and dropping an Image component from the

General Controls onto the first facet of the Panel Splitter. For this recipe,

we have created a public_html\images directory and we copied a logo.jpg

logo image there. We then speciied /images/logo.jpg as image Source for the

Image component.

Prerequisites to Success: ADF Project Setup and Foundations

38

17. Let's proceed by adding the main page's layout content. Drop a Decorative Box

from the Layout components onto the second facet of the Panel Splitter. We will

not be using the top facet of Decorative Box, so remove it.

18. OK, we are almost there! Drag a Panel Stretch Layout from the Layout

components and drop it onto the center facet of the Decorative Box. Remove the

start and end facets, since we will not be using them.

19. Drag a Facet Ref component from the Layout components and drop it onto the

center facet of the Panel Stretch Layout. On the Insert Facet dialog, select the

mainContent facet that you added during the template creation.

20. Finally, add the following code to the Panel Stretch Layout topBar facet:

<f:facet name="top">

 <af:panelGroupLayout id="pt_pgl5" layout="vertical">

 <af:facetRef facetName="popupContent"/>

 <af:menuBar id="pt_mb1">

 <af:facetRef facetName="menuBar"/>

 </af:menuBar>

 <af:panelGroupLayout id="pt_pgl2" layout="horizontal">

 <af:toolbar id="pt_t2">

 <af:facetRef facetName="topBar"/>

 </af:toolbar>

 </af:panelGroupLayout>

 </af:panelGroupLayout>

</f:facet>

How it works…

When the template is created, there is no layout information in it, so we have to add it

ourselves. We do this by using a variety of layout components to arrange the contained UI.

Also, notice the usage of the af:facetRef component. It is being used to reference a

template facet in the speciic place within the layout content. The facet is then available to you
when you create a JSF page from the template. This will become obvious when we generate a

JSF page from the template. Note that each Facet can only be added once to the template.

Chapter 1

39

So, how do you use the JSF page template? Since we have created the template in a

SharedComponents project, we will irst need to deploy the project to an ADF Library JAR.

Then we will be able to use it from other consuming projects. This was explained in the Breaking

up the application in multiple workspaces recipe, earlier in this chapter. When you do so, the

template will be visible to all consuming projects, as shown in the following screenshot:

Once the ADF Library JAR containing the template is added to the consuming project, you can

see and select the template when you create a new JSF page in the Create JSF Page dialog.

The template introduced in this recipe is shown in the following screenshot:

Prerequisites to Success: ADF Project Setup and Foundations

40

The XML source code that is generated for a JSF page created from this template will look

similar to the following code snippet:

<f:view>

 <af:document id="d1" title="Test">

 <af:pageTemplate viewId="/WEB-INF/templates/TemplateDef1.jspx"
 id="pt1">

 <f:facet name="mainContent"/>

 <f:facet name="menuBar"/>

 <f:facet name="topBar"/>

 <f:facet name="bottomBar"/>

 <f:facet name="popupContent"/>

 </af:pageTemplate>

 </af:document>

</f:view>

You can see in the listing that the page references the template via the af:pageTemplate

tag. The template facets that you have deined are available so you can enter the page-
speciic UI content. After adding an af:menuBar to the menuBar facet and some

af:commandToolbarButton components to the topBar facet, the JSF page could look

similar to the following code:

<f:view>

 <af:document id="d1" title="Test">

 <af:pageTemplate viewId="/WEB-INF/templates/TemplateDef1.jspx"
 id="pt1">

 <f:facet name="mainContent"/>

 <f:facet name="menuBar">

 <af:menuBar id="mb1">

 <af:menu text="File" id="m1">

 <af:commandMenuItem text="Save" id="cmi1"
 icon="/images/filesave.png"/>

 <af:commandMenuItem text="Action" id="cmi2"
 icon="/images/action.png"/>

 <af:commandMenuItem text="Mail" id="cmi3"
 icon="/images/envelope.png"/>

 <af:commandMenuItem text="Print" id="cmi4"
 icon="/images/print.png"/>

 </af:menu>

 </af:menuBar>

 </f:facet>

 <f:facet name="topBar">

 <af:group id="g1">

 <af:commandToolbarButton id="ctb1" shortDesc="Save"
 icon="/images/filesave.png"/>

Chapter 1

41

 <af:commandToolbarButton id="ctb2" shortDesc="Action"
 icon="/images/action.png"/>

 <af:commandToolbarButton id="ctb3" shortDesc="Mail"
 icon="/images/envelope.png"/>

 <af:commandToolbarButton id="ctb4" shortDesc="Print"
 icon="/images/print.png"/>

 </af:group>

 </f:facet>

 <f:facet name="popupContent"/>

 </af:pageTemplate>

 </af:document>

</f:view>

Running the page in JDeveloper will produce the following:

Prerequisites to Success: ADF Project Setup and Foundations

42

There's more…

Although adding a Form component to a template is not recommended practice, this is not a

problem for the template created in this recipe, since we will not be using it for the creation of

page fragments. Using a template that contains a Form component to create page fragments

will result in a problem when a consuming page already contains a Form component itself.

The template developed in this recipe will not be used for page fragments. It was developed

speciically to be used along with the generic backing bean actions framework explained in
the Using a generic backing bean actions framework recipe in this chapter.

Using a generic backing bean actions
framework

In this recipe we will create a base backing bean class that we will use to encapsulate

common functionality for common JSF page actions, such as committing and rolling back

data, creating new records, deleting records and so on. Creating and using such a generic

backing bean actions framework will guarantee that you provide consistent functionality

throughout the application and encapsulate common functionality at a base class level.

This class is not intended to be used as a utility class. Any new helper methods that were

developed to demonstrate the recipe were added to the ADFUtils utility class discussed

earlier in this chapter.

Getting ready
We will be adding the generic backing bean actions framework to the SharedComponents

ViewController project that we developed in the Breaking up the application in multiple

workspaces recipe in this chapter.

How to do it…

1. Right-click on the shared ViewController project and select New….

2. On the New Gallery dialog, select Java under the General category and Java Class

from the list of items on the right.

3. On the Create Java Class dialog, enter CommonActions for the class name

 and com.packt.jdeveloper.cookbook.shared.view.actions for the

class package.

4. Let's go ahead and add methods to provide consistent commit functionality:

public void commit(ActionEvent actionEvent) {
 if (ADFUtils.hasChanges()) {
 // allow derived beans to handle before commit actions
 onBeforeCommit(actionEvent);

Chapter 1

43

 // allow derived beans to handle commit actions
 onCommit(actionEvent);
 // allow derived beans to handle after commit actions
 onAfterCommit(actionEvent);
 } else {
 // display "No changes to commit" message
 JSFUtils.addFacesInformationMessage(BundleUtils.
 loadMessage("00002"));
 }
}
protected void onBeforeCommit(ActionEvent actionEvent) {
}
/**
protected void onCommit(ActionEvent actionEvent) {
 // execute commit
 ADFUtils.execOperation(Operations.COMMIT);
}
protected void onAfterCommit(ActionEvent actionEvent) {
 // display "Changes were committed successfully" message
 JSFUtils.addFacesInformationMessage(BundleUtils.
 loadMessage("00003"));
}

5. We have also added similar methods for consistent rollback behaviour. To provide

uniform record creation/insertion functionality, let's add these methods:

public void create(ActionEvent actionEvent) {
 if (hasChanges()) {
 onCreatePendingChanges(actionEvent);
 } else {
 onContinueCreate(actionEvent);
 }
}
protected void onBeforeCreate(ActionEvent actionEvent) {
 // commit before creating a new record
 ADFUtils.execOperation(Operations.COMMIT);
}
public void onCreate(ActionEvent actionEvent) {
 execOperation(Operations.INSERT);
}
protected void onAfterCreate(ActionEvent actionEvent) {
}
public void onCreatePendingChanges(ActionEvent actionEvent) {
 ADFUtils.showPopup("CreatePendingChanges");
}
public void onContinueCreate(ActionEvent actionEvent) {
 onBeforeCreate(actionEvent);
 onCreate(actionEvent);
 onAfterCreate(actionEvent);
}

Prerequisites to Success: ADF Project Setup and Foundations

44

6. Similar methods were added for consistent record deletion behaviour. In this case, we

have added functionality to show a delete conirmation pop-up.

How it works…

To provide consistent functionality at the JSF page actions level, we have implemented the

commit(), rollback(), create(), and remove() methods. Derived backing beans

should handle these actions by simply delegating to this base class via calls to super.
commit(), super.rollback(), and so on. The base class commit() implementation

irst calls the helper ADFUtils.hasChanges() to determine whether there are transaction

changes. If there are, then the onBeforeCommit() is called to allow derived backing beans

to perform any pre-commit processing. Commit processing continues by calling onCommit().

Again, derived backing beans can override this method to provide specialized commit

processing. The base class implementation of onCommit() calls the helper ADFUtils.
execOperation() to execute the Operations.COMMIT bound operation. The commit

processing inishes by calling the onAfterCommit(). Derived backing beans can override

this method to perform post-commit processing. The default base class implementation

displays a Changes were committed successfully message on the screen.

The generic functionality for a new record creation is implemented in the create() method.

Derived backing beans should delegate to this method for default record creation processing

by calling super.create(). In create(), we irst check to see if we have any changes to
the existing transaction. If we do, we will inform the user by displaying a message dialog. We

do this in the onCreatePendingChanges() method. The default implementation of this

method displays the CreatePendingChanges conirmation pop-up. The derived backing
bean can override this method to handle this event in a different manner. If the user chooses

to go ahead with the record creation, the onContinueCreate() is called. This method calls

onBeforeCreate() to handle precreate functionality. The default implementation commits

the current record by calling ADFUtils.execOperation(Operations.COMMIT). Record

creation continues with calling onCreate(). The default implementation of this method

creates and inserts the new record by calling ADFUtils.execOperation(Operations.
INSERT). Finally, onAfterCreate() is called to handle any creation post processing.

The generic rollback and record deletion functionality is similar. For the default delete

processing, a pop-up is displayed asking the user to conirm whether the record should be
deleted or not. The record is deleted only after the user's conirmation.

There's more…

Note that this framework uses a number of pop-ups in order to conirm certain user choices.
Rather than adding these pop-ups to all JSF pages, these pop-ups are added once to your

JSF page template, providing reusable pop-ups for all of your JSF pages. In order to support

this generic functionality, additional plumbing code will need to be added to the actions

framework. We will talk at length about it in the Using page templates for pop-up reuse recipe

in Chapter 7, Face Value: ADF Faces, JSPX Pages and Components.

Chapter 1

45

See also

 f Using page templates for pop-up reuse, Chapter 7, Face Value: ADF Faces, JSPX

Pages and Components

 f Breaking up the application in multiple workspaces, in this chapter

www.allitebooks.com

http://www.allitebooks.org

2
Dealing with Basics:

Entity Objects

In this chapter, we will cover:

 f Using a custom property to populate a sequence attribute

 f Overriding doDML() to populate an attribute with a gapless sequence

 f Creating and applying property sets

 f Using getPostedAttribute() to determine the posted attribute's value

 f Overriding remove() to delete associated child entities

 f Overriding remove() to delete a parent entity in an association

 f Using a method validator based on a view object accessor

 f Using Groovy expressions to resolve validation error message tokens

 f Using doDML() to enforce a detail record for a new master record

Introduction
Entity objects are the basic building blocks in the chain of business components. They

represent a single row of data and they encapsulate the business model, data, rules, and

persistence behavior. Usually, they map to database objects, most commonly to database

tables, and views. Entity object deinitions are stored in XML metadata iles. These iles are
maintained automatically by JDeveloper and the ADF framework, and they should not be

edited by hand. The default entity object implementation is provided by the ADF framework

class oracle.jbo.server.EnityImpl. For large-scale projects you should create your

own custom entity framework class, as demonstrated in the Setting up BC base classes recipe

in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Dealing with Basics: Entity Objects

48

Likewise, it is not uncommon in large-scale projects to provide custom implementations for

the entity object methods doDML(), create(), and remove(). The recipes in this chapter

demonstrate, among other things, some of the custom functionality that can be implemented

in these methods. Furthermore, other topics such as generic programming using custom

properties and property sets, custom validators, entity associations, populating sequence

attributes, and more, are covered throughout the chapter.

Using a custom property to populate a
sequence attribute

In this recipe, we will go over a generic programming technique that you can use to assign

database sequence values to speciic entity object attributes. Generic functionality is achieved

by using custom properties. Custom properties allow you to deine custom metadata that can
be accessed by the ADF business components at runtime.

Getting ready
We will add this generic functionality to the custom entity framework class. This class was

created back in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success:

ADF Project Setup and Foundations. The custom framework classes in this case reside in the

SharedComponets workspace. This workspace was created in the recipe Breaking up the

application in multiple workspaces, Chapter1, Pre-requisites to Success: ADF Project Setup

and Foundations. You will need to create a database connection to the HR schema, if you

are planning to run the recipe's test case. You can do this either by creating the database

connection in the Resource Palette and dragging-and-dropping it to Application Resources |

Connections, or by creating it directly in Application Resources | Connections.

How to do it...

1. Start by opening the SharedComponets workspace in JDeveloper. If needed, follow

the steps in the referenced recipe to create it.

2. Locate the custom entity framework class in the SharedBC project and open it in

the editor.

3. Click on the Override Methods… icon on the toolbar (the green left arrow) to bring up

the Override Methods dialog.

4. From the list of methods that are presented, select the create() method and click OK.

JDeveloper will insert a create() method in to the body of your custom entity class.

Chapter 2

49

5. Add the following code to the create() method immediately after the call to

super.create():

// iterate all entity attributes

for (AttributeDef atrbDef :
 this.getEntityDef().getAttributeDefs()) {

 // check for a custom property called CREATESEQ_PROPERTY

 String sequenceName =
 (String)atrbDef.getProperty(CREATESEQ_PROPERTY);

 if (sequenceName != null) {

 // create the sequence based on the custom property sequence
 name

 SequenceImpl sequence = new SequenceImpl(sequenceName,
 this.getDBTransaction());

 // populate the attribute with the next sequence number

 this.populateAttributeAsChanged(atrbDef.getIndex(),
 sequence.getSequenceNumber());

 }

}

How it works...

In the previous code, we have overridden the create() method for the custom entity

framework class. This method is called by the ADF framework each time a new entity

object is constructed. We call super.create() to allow the framework processing,

and then we retrieve the entity's attribute deinitions by calling getEntityDef().
getAttributeDefs(). We then iterate over them, calling getProperty() for each

attribute deinition. getProperty() accepts the name of a custom property deined for
the speciic attribute. In our case, the custom property is called CreateSequence and it is

indicated by the constant deinition CREATESEQ_PROPERTY, representing the name of the

database sequence used to assign values to the particular attribute. Next, we instantiate

a SequenceImpl object using the database sequence name retrieved from the custom

property. Note that this does not create the database sequence, rather an oracle.jbo.
server.SequenceImpl object representing a database sequence.

Finally, the attribute is populated with the value returned from the sequence—via the

getSequenceNumber() call—by calling populateAttributeAsChanged(). This

method will populate the attribute without marking the entity as changed. By calling

populateAttributeAsChanged(), we will avoid any programmatic or declarative

validations on the attribute while marking the attribute as changed, so that its value is posted

during the entity object DML. Since all of the entity objects are derived from the custom entity

framework class, all object creations will go through this create() implementation.

Dealing with Basics: Entity Objects

50

There's more...

So how do you use this technique to populate your sequence attributes? First you must

deploy the SharedComponets workspace into an ADF Library JAR and add the library to

the project where it will be used. Then, you must add the CreateSequence custom property

to the speciic attributes of your entity objects that need to be populated by a database
sequence. To add a custom property to an entity object attribute, select the speciic attribute
in the entity Attributes tab and click on the arrow next to the Add Custom Property icon

(the green plus sign) in the Custom Properties tab. From the context menu, select

Non-translatable Property.

Click on the Property ield and enter CreateSequence. For the Value enter the database

sequence name that will be used to assign values to the speciic attribute. For the Employee

entity object example mentioned earlier, we will use the EMPLOYEES_SEQ database

sequence to assign values to the EmployeeId attribute.

Note that for testing purposes, we have created in the HREmployees

workspace an Employee entity object and added the CreateSequence

custom property to its EmployeeId attribute. To test the recipe, you can

run the EmployeeAppModule application module.

Chapter 2

51

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding doDML() to populate an attribute with a gapless sequence, in this chapter

 f Creating and applying property sets, in this chapter

Overriding doDML() to populate an attribute
with a gapless sequence

In this recipe, we will go over a generic programming technique that you can use to assign

gapless database sequence values to entity object attributes. A gapless sequence will

produce values with no gaps in between them. The difference between this technique and

the one presented in the Using a custom property to populate a sequence attribute recipe, is

that the sequence values are assigned during the transaction commit cycle instead of during

component creation.

Getting ready
We will add this generic functionality to the custom entity framework class that we created

in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations. The custom framework classes in this case reside in the

SharedComponets workspace. You will need access to the HR database schema to run the

recipe's test case.

How to do it...

1. Start by opening the SharedComponets workspace in JDeveloper. If needed, follow

the steps in the referenced recipe to create it.

2. Locate the custom entity framework class in the SharedBC project and open it in

the editor.

3. Click on the Override Methods… icon on the toolbar (the green left arrow) to bring up

the Override Methods dialog.

4. From the list of methods that are presented, select the doDML() method and click

OK. JDeveloper will go ahead and insert a doDML() method into the body of your

custom entity class.

Dealing with Basics: Entity Objects

52

5. Add the following code to the doDML() before the call to super.doDML():

// check for insert operation

if (DML_INSERT == operation) {

 // iterate all entity attributes

 for (AttributeDef atrbDef :this.getEntityDef().
 getAttributeDefs()) {

 // check for a custom property called COMMITSEQ_PROPERTY

 String sequenceName=(String)atrbDef.getProperty
 (COMMITSEQ_PROPERTY);

 if (sequenceName != null) {

 // create the sequence based on the custom property sequence
 name

 SequenceImpl sequence = new SequenceImpl(sequenceName,
 this.getDBTransaction());

 // populate the attribute with the next sequence number

 this.populateAttributeAsChanged(atrbDef.getIndex(),

 sequence.getSequenceNumber());

 }

 }

}

How it works...

If you examine the code presented in this recipe, you will see that it looks similar to the

code presented in the Using a custom property to populate a sequence attribute recipe in

this chapter. The difference is that this code executes during the transaction commit phase.

During this phase, the ADF framework calls the entity's doDML() method. In our overridden

doDML(), we irst check for a DML_INSERT operation lag. This would be the case when

inserting a new record into the database. We then iterate the entity's attribute deinitions
looking for a custom property identiied by the constant COMMITSEQ_PROPERTY. Based on

the property's value, we create a sequence object and get the next sequence value by calling

getSequenceNumber(). Finally, we assign the sequence value to the speciic attribute by
calling populateAttributeAsChanged(). Assigning a sequence value during the commit

phase does not allow the user to intervene. This will produce gapless sequence values. Of

course to guarantee that there are no inal gaps in the sequence values, deletion should not
be allowed. That is, if rows are deleted, gaps in the sequence values will appear. Gaps will also

appear in case of validation failures, if you do not subsequently rollback the transaction. Since

all of the entity objects are derived from the custom entity framework class, all object commits

will go through this doDML() implementation.

To use this technique, irst you will need to re-deploy the shared components project. Then
add the CommitSequence custom property as needed to the speciic attributes of your entity
objects. We explained how to do this in the Using a custom property to populate a sequence

attribute recipe.

Chapter 2

53

There's more...

doDML() is called by the ADF framework during a transaction commit operation. It is called

for every entity object in the transaction's pending changes list. This is true even when entity

Update Batching optimization is used. For an entity-based view object, this means that it will

be called for every row in the row set that is in the pending changes list. The method accepts

an operation lag; DML_INSERT, DML_UPDATE, or DML_DELETE to indicate an insert, update,

or delete operation on the speciic entity.

Data is posted to the database once super.doDML() is called, so any exceptions thrown

before calling super.doDML() will result in no posted data. Once the data is posted to the

database, queries or stored procedures that rely upon the posted data should be coded

in the overridden application module's beforeCommit() method. This method is also

available at the entity object level, where it is called by the framework for each entity in the

transaction's pending changes list. Note that the framework calls beforeCommit()for each

entity object in the transaction pending changes list prior to calling the application module

beforeCommit().

For additional information on doDML(), consult the sections Methods You Typically Override

in Your Custom EntityImpl Subclass and Transaction "Post" Processing (Record Cache) in the

Fusion Developer's Guide for Oracle Application Development Framework,which can be found

at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

Note that for testing purposes, we have created a Department

entity object in the HRDepartments workspace and added

the CommitSequence custom property to its DepartmentId

attribute. The value of the CommitSequence property was set

to DEPARTMENTS_SEQ, the database sequence that is used to

assign values to the DepartmentId attribute. To test the recipe,

run the DepartmentAppModule application module on the

ADF Model Tester.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Using a custom property to populate a sequence attribute, in this chapter

 f Creating and applying property sets, in this chapter

Dealing with Basics: Entity Objects

54

Creating and applying property sets
In the Using a custom property to populate a sequence attribute and Overriding doDML() to

populate an attribute with a gapless sequence recipes of this chapter, we introduced custom

properties for generic ADF business component programming. In this recipe, we will present

a technique to organize your custom properties in reusable property sets. By organizing

application-wide properties in a property set and exporting them as part of an ADF Library

JAR, you can then reference them from any other ADF-BC project. This in turn will allow you to

centralize the custom properties used throughout your ADF application in a single property set.

getting ready
We will create a property set in the SharedComponets workspace. I suggest that you go

over the Using a custom property to populate a sequence attribute and Overriding doDML()

to populate an attribute with a gapless sequence recipes in this chapter before continuing

with this recipe. To run the recipe's test cases, you will need access to the HR schema in

the database.

How to do it...

1. Start by opening the SharedComponets workspace. If needed, follow the steps in

the referenced recipe to create it.

2. Right-click on the SharedBC project and select New….

3. On the New Gallery dialog select ADF Business Components under the Business

Tier node and Property Set from the Items on the right.

4. Click OK to proceed. This will open the Create Property Set dialog.

5. Enter the property set name and package in the appropriate ields. For this recipe, we
will call it SharedProperties and use the com.packt.jdeveloper.cookbook.
shared.bc.properties package. Click OK to continue.

Chapter 2

55

6. JDeveloper will create and open the SharedProperties property set.

7. To add a custom property to the property set, click on the Add Custom Property

button (the green plus sign icon).

8. Go ahead and add two non-translatable properties

called CommitSequenceDepartmentDepartmentId and

CreateSequenceEmployeeEmployeeId. Set their values to DEPARTMENTS_SEQ

and EMPLOYEES_SEQ respectively. Your property set should look similar to the

following screenshot:

9. Next you need to change the create() method in the custom entity framework class

so that the custom property is now similar to the following block of code:

// construct the custom property name from the entity name and
attribute

String propertyName = CREATESEQ_PROPERTY +
 getEntityDef().getName() + atrbDef.getName();

// check for a custom property called CREATESEQ_PROPERTY

String sequenceName =(String)atrbDef.getProperty(propertyName);

www.allitebooks.com

http://www.allitebooks.org

Dealing with Basics: Entity Objects

56

10. Similarly change the doDML() method in the custom entity framework class so that

the custom property is also constructed, as shown in the following block of code:

// construct the custom property name from the entity name and
 attribute

String propertyName = COMMITSEQ_PROPERTY +
 getEntityDef().getName() + atrbDef.getName();

// check for a custom property called COMMITSEQ_PROPERTY

String sequenceName =(String)atrbDef.getProperty(propertyName);

11. Redeploy the SharedComponets workspace into an ADF Library JAR.

12. Open the HREmployees workspace and double-click on the HREmployeesBC

business components project to bring up the Project Properties dialog.

13. Select Imports under the ADF Business Components node and click on the Import…

button on the right.

14. On the Import Business Components XML File dialog browse for the shared

components ADF Library JAR ile in the ReUsableJARs directory. Select it and

click Open.

15. You should see the imported SharedBC project under the Imported Business

Component Projects along with the imported packages and package contents. Click

OK to continue with importing the business components.

Chapter 2

57

16. Double-click on the Employee entity object and go to the Attributes tab.

17. Click on the Details tab, and from the Property Set choice list select the imported

property set.

18. Repeat steps 12-17 for the HRDepartments workspace and apply the property set

to the DepartmentId attribute of the Department entity object.

How it works...

Property sets are a way to gather all of your custom properties together into logical collections.

Instead of applying each custom property separately to a business components object or to

any of its attributes, custom properties deined in these collections can be applied at once
on them. Property sets can be applied to entity objects and their attributes, view objects and

their attributes, and application modules. You access custom properties programmatically

as indicated earlier, by calling AttributeDef.getProperty() for properties applied

to attributes, EntityDefImpl.getProperty() for properties applied to entity objects,

ViewDefImpl.getProperty() for properties applied to view objects, and so on.

How you organize your custom properties into property sets is up to you. In this recipe, for

example, we use a single property set called SharedProperties, which we deine in
the shared components ADF library. In this way, we kept all custom properties used by the

application in a single container. For this to work, we had to devise a way to differentiate

among them. The algorithm that we used was to combine the property name with the

business components object name and the attribute name that the property applies

to. So we have properties called CommitSequenceDepartmentDepartmentId and

CreateSequenceEmployeeEmployeeId.

Finally, we import the property set from the SharedComponets workspace into the

relevant business components projects using the Import Business Components facility of the

business components Project Properties dialog.

There's more...

To test the recipe, you can run the EmployeeAppModule and DepartmentAppModule

application modules in the HREmployees and HRDepartments workspaces respectively.

Dealing with Basics: Entity Objects

58

Note that you can override any of the properties deined in a property set by
explicitly adding the same property to the business component object or to

any of its attributes.

Also note that property sets can be applied onto entity objects, view objects,

and application modules by clicking on the Edit property set selection

button (the pen icon) on the business component object deinition General

tab. On the same tab, you can add custom properties to the business

component object by clicking on the Add Custom Property button (the

green plus sign icon).

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Using a custom property to populate a sequence attribute, in this chapter

 f Overriding doDML() to populate an attribute with a gapless sequence, in this chapter

Using getPostedAttribute() to determine the
posted attribute's value

There are times when you need to get the original database value of an entity object

atttribute, such as when you want to compare the attribute's current value to the

original database value. In this recipe, we will illustrate how to do this by utilizing the

getPostedAttribute() method.

Getting ready
We will be working on the SharedComponets workspace. We will add a helper method to the

custom entity framework class.

How to do it...

1. Start by opening the SharedComponets workspace. If needed, follow the steps in

the referenced recipe to create it.

2. Locate the custom entity framework class and open it into the source editor.

Chapter 2

59

3. Add the following code to the custom entity framework class:

/**

* Check if attribute's value differs from its posted value

* @param attrIdx the attribute index

* @return

*/

public boolean isAttrValueChanged(int attrIdx) {

 // get the attribute's posted value

 Object postedValue = getPostedAttribute(attrIdx);

 // get the attribute's current value

 Object newValue = getAttributeInternal(attrIdx);

 // return true if attribute value differs from its posted value

 return isAttributeChanged(attrIdx) &&
 ((postedValue == null && newValue != null) ||
 (postedValue != null && newValue == null) ||
 (postedValue != null && newValue != null &&
 !newValue.equals(postedValue)));

}

How it works...

We added a helper method called isAttrValueChanged() to the our custom entity

framework class. This method accepts the attribute's index. The attribute index is generated

and maintained by JDeveloper itself. The method irst calls getPostedAttribute()

specifying the attribute index to retrieve the attribute value that was posted to the database.

This is the attribute's database value. Then it calls getAttributeInternal() using

the same attribute index to determine the current attribute value. The two values are then

compared. The method isAttributeChanged() returns true if the attribute value was

changed in the current transaction.

The following is an example of calling isAttrValueChanged() from an entity

implementation class to determine whether the current value of the employee's last

name differs from the value that was posted to the database:

super.isAttrValueChanged(this.LASTNAME);

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Dealing with Basics: Entity Objects

60

Overriding remove() to delete associated
children entities

When deleting a parent entity, there are times you will want to delete all of the child entity

rows in an entity assocation relation. In this recipe, we will see how to accomplish this task.

Getting ready
You will need access to the HR database schema.

How to do it...

1. Start by creating a new Fusion Web Application (ADF) workspace called

HRComponents.

2. Create a Database Connection for the HR schema in the Application Resource

section of the Application Navigator.

3. Use the Business Components from Tables selection on the New Gallery dialog to

create business components objects for the DEPARTMENTS and EMPLOYEES tables.

The components in the Application Navigator should look similar to the following:

Chapter 2

61

4. Double-click on the EmpDeptFkAssoc association on the Application Navigator to

open the association deinition, then click on the Relationship tab.

5. Click on the Edit accessors button (the pen icon) in the Accessors section to bring

up the Association Properties dialog.

6. Change the Accessor Name in the Destination Accessor section to

DepartmentEmployees and click OK to continue.

7. Double-click on the Department entity object in the Application Navigator to open its

deinition and go to the Java tab.

8. Click on the Edit Java Options button (the pen icon on the top right of the tab) to

bring up the Select Java Options dialog.

9. On the Select Java Options dialog, select Generate Entity Object Class.

10. Ensure that both the Accessors and Remove Method checkboxes are selected. Click

OK to continue.

11. Repeat steps 7-10 to create a Java implementation class for the Employee entity

object. You do not have to click on the Remove Method checkbox in this case.

12. Open the DepartmentImpl Java implementation class for the Department entity

object in the JDeveloper Java editor and locate the remove() method.

Dealing with Basics: Entity Objects

62

13. Add the following code before the call to super.remove():

// get the department employeess accessor

RowIterator departmentEmployees = this.getDepartmentEmployees();

// iterate over all department employees

while (departmentEmployees.hasNext()) {

 // get the department employee

 EmployeeImpl departmentEmployee =
 (EmployeeImpl)departmentEmployees.next();

 // remove employee

 departmentEmployee.remove();

}

How it works...

During the creation of the Department and Employee entity objects, JDeveloper

automatically creates the entity associations based on the foreign key constraints that

exist among the DEPARTMENTS and EMPLOYEES database tables. The speciic association
that relates a department to its employees was automatically created and it was called

EmpDeptFkAssoc.

Jdeveloper exposes the association to both the source and destination entity objects

via accessors. In step 6, we changed the accessor name to make it more meaningful.

We called the the association accessor that returns the department employees

DepartmentEmployees. Using Java, this accessor is available in the DepartmentImpl

class by calling getDepartmentEmployees(). This method returns an oracle.jbo.
RowIterator object that can be iterated over.

Now, let's take a closer look at the code added to the remove() method. This method is

called by the ADF framework each time we delete a record. In it, irst we access the current
department's employees by calling getDepartmentEmployees(). Then we iterate over the

department employees, by calling hasNext() on the employees RowIterator. Then for

each employee, we get the Employee entity object by calling next(), and call remove() on

it to delete it. The call to super.remove() inally deletes the Department entity itself. The

net result is to delete all employees associated with the speciic department before deleting
the department itself.

There's more...

A speciic type of association called composition association can be enabled in those cases

where an object composition behavior is observed, that is, where the child entity cannot exist

on its own without the associated "parent" entity. In these cases, there are special provisions

by the ADF framework and JDeveloper itself to ine-tune the delete behavior of child entities
when the parent entity is removed. These options are available in the association editor

Relationship tab, under the Behavior section.

Chapter 2

63

Once you indicate a Composition Association for the association, two options are presented

relating to cascading deletion:

 f Optimize for Database Cascade Delete: This option prevents the framework from

issuing a DELETE DML statement for each composed entity object destination row.

You do this if ON DELETE CASCADE is implemented in the database.

 f Implement Cascade Delete: This option implements the cascade delete in the

middle layer, that is if the source composing entity object contains any composed

children, its deletion is prevented.

This recipe shows how to remove children entity objects for which composition association

is not enabled. This may be the case when a requirement exists to allow in some cases

composed children entities to exist without associated composing parent entities. For

example, when a new employee is not yet assigned to a particular department.

Overriding remove() to delete a parent entity
in an association

In this recipe, we will present a technique that you can use in cases that you want to delete

the parent entity in an association when the last child entity is deleted. An example of such a

case would be to delete a department when the last department employee is deleted.

Getting ready
You will need access to the HR schema in your database.

Dealing with Basics: Entity Objects

64

How to do it...

1. Start by creating a new Fusion Web Application (ADF) workspace called

HRComponents.

2. Create a database connection for the HR schema in the Application Resource

section of the Application Navigator.

3. Use the Business Components from Tables selection on the New Gallery

dialog to create Business Components objects for the DEPARTMENTS and

EMPLOYEES tables.

4. Double-click on the EmpDeptFkAssoc association on the Application Navigator to

bring up the Association editor, then click on the Relationship tab.

5. Click on the Edit accessors button (the pen icon) in the Accessors section to bring

up the Association Properties dialog.

6. Change the Accessor Name in the Source Accessor section to

EmployeeDepartment and click OK to continue.

7. Generate custom Java implementation classes for both the Employee and

Department entity objects.

8. Open the EmployeeImpl custom Java implementation class for the Employee

entity object and locate the remove() method.

9. Replace the call to super.remove() with the following code:

// get the associated department

DepartmentImpl department = this.getEmployeeDepartment();

// get number of employees in the department

int numberOfEmployees =
 department.getDepartmentEmployees().getRowCount();

// check whether last employee in the department

if (numberOfEmployees == 1) {

 // delete the last employee

 super.remove();

 // delete the department as well

 department.remove();

}

else {

 // just delete the employee

 super.remove();

}

Chapter 2

65

How it works...

If you followed the Overriding remove() to delete associated children entities recipe in this

chapter, then steps 1 through 8 should look familiar. These are the basic steps to create

the HRComponents workspace, along with the business components associated with the

EMPLOYEES and DEPARTMENTS tables in the HR schema. These steps also create custom

Java implementation classes for the Employee and Department entity objects and setup

the EmpDeptFkAssoc association.

The code in remove() irst gets the Department entity row by calling the accessor

getEmployeeDepartment() method. Remember, this was the name of accessor—

EmployeeDepartment—that we setup in step 6. getEmployeeDepartment() returns

the custom DepartmentImpl that we setup in step 7. In order to determine the number

of employees in the associated Department, we irst get the Employee RowIterator

by calling getDepartmentEmployees() on it, and then getRowCount() on the

RowIterator. All that is done in the following statement:

int numberOfEmployees =
department.getDepartmentEmployees().getRowCount();

Remember that we setup the name of the DepartmentEmployees accessor in step 6.

Next, we checked for the number of employees in the associated department, and if there

was only one employee—the one we are about to delete—we irst deleted it by calling super.
remove(). Then we deleted the department itself by calling department.remove(). If

more than one employee was found for the speciic department, we just delete the employee
by calling super.remove(). This was done in the else part of the if statement.

There's more...

Note the implications of using getRowCount() versus getEstimatedRowCount() in

your code when dealing with large result sets: getRowCount() will perform a database

count query each time it is called to return the exact number of rows in the view object. On the

other hand, getEstimatedRowCount() executes a database count query only once to fetch

the view object row count to the middle layer. Then, it fetches the row count from the middle

layer. The row count in the middle layer is adjusted as view object rows are added or deleted.

This may not produce an accurate row count when multiple user sessions are manipulating

the same view object at the same time. For more information on this topic, consult the section

How to Count the Number of Rows in a Row Set in the Fusion Developer's Guide for Oracle

Application Development Framework.

See also

 f Overriding remove() to delete associated children entities, in this chapter

Dealing with Basics: Entity Objects

66

Using a method validator based on a view
object accessor

In this recipe, we will show how to validate an entity object against a view accessor using a

custom entity method validator. The use case that we will cover—based on the HR schema—

will not allow the user to enter more than a speciied number of employees per department.

Getting ready
We will be using the HRComponents workspace that we created in the previous recipes in

this chapter so that we don't repeat these steps again. You will need access to the HR

database schema.

How to do it…

1. Right-click on the com.packt.jdeveloper.cookbook.hr.components.
model.view package of the HRComponentsBC business components project of the

HRComponents workspace, and select New View Object….

2. Use the Create View Object wizard to create a SQL query view object called

EmployeeCount based on the following query:

SELECT COUNT(*) AS EMPLOYEE_COUNT FROM EMPLOYEES WHERE DEPARTMENT_
ID = :DepartmentId

3. While on the Create View Object wizard, also do the following:

 � Create a Bind Variable called DepartmentId of type Number

 � On the Attribute Settings page, ensure that you select Key Attribute for the

EmployeeCount attribute

 � On the Java page make sure that both the Generate View Row Class and

Include accessors checkboxes are checked

 � Do not add the view object to an application module

4. Now, double-click on the Employee entity object to open its deinition and go to the
View Accessors page.

5. Click on the Create new view accessors button (the green plus sign icon) to bring up

the View Accessors dialog.

6. On the View Accessors dialog locate the EmployeeCount view object and click the

Add instance button—the blue right arrow button. Click OK to dismiss the dialog.

Chapter 2

67

7. On the entity object deinition Business Rules tab, select the Employee entity and

click on the Create new validator button (the green plus sign icon).

8. On the Add Validation Rule dialog, select Method for the Rule Type and enter

validateDepartmentEmployeeCount for the Method Name.

9. Click on the Failure Handling tab and in the Message Text enter the message

Department has reached maximum employee limit. Click OK.

10. Open the EmployeeImpl custom implementation Java class, locate the

validateDepartmentEmployeeCount() method and add the following code to it

before the return true statement:

// get the EmployeeCount view accessor

RowSet employeeCount = this.getEmployeeCount();

// setup the DepartmentId bind variable

employeeCount.setNamedWhereClauseParam("DepartmentId",
 this.getDepartmentId());

// run the View Object query

employeeCount.executeQuery();

// check results

if (employeeCount.hasNext()) {

 // get the EmployeeCount row

Dealing with Basics: Entity Objects

68

 EmployeeCountRowImpl employeeCountRow =
 (EmployeeCountRowImpl)employeeCount.next();

 // get the deparment employee count

 Number departmentEmployees =
 employeeCountRow.getEmployeeCount();

 if (departmentEmployees.compareTo(MAX_DEPARTMENT_EMPLOYEES)>0) {

 return false;

 }

}

How it works...

We have created a separate query-based view object called EmployeeCount for validation

purposes. If you look closely at the EmployeeCount query, you will see that it determines the

number of employees in a department. Which department is determined by the bind variable

DepartmentId used in the WHERE clause of the query.

We then add the EmployeeCount view object as a view accessor to the Employee object.

We call the accessor instance EmployeeCount as well. Once you have generated a custom

Java implementation class for the Employee entity object, the EmployeeCount view

accessor is available by calling getEmployeeCount().

We proceed by adding a method validator to the entity object. We call the method to use for

the validator validateDepartmentEmployeeCount. JDeveloper created this method for

us in the entity custom implementation Java class.

The code that we add to the validateDepartmentEmployeeCount() method irst gets
the EmployeeCount accessor, and calls setNamedWhereClauseParam() on it to set the

value of the DepartmentId bind variable to the value of the department identiier from the
current Employee. This value is accessible via the getDepartmentId() method. We then

execute the EmployeeCount view object query by calling its executeQuery() method.

We check for the results of the query by calling hasNext() on the view object. If the query

yields results, we get the next result row by calling next(). We have casted the oracle.
job.Row returned by next() to an EmployeeCountRowImpl so we can directly call its

getEmployeeCount() accessor. This returns the number of employees for the speciic
department. We then compare it to a predeined maximum number of employees per
department identiied by the constant MAX_DEPARTMENT_EMPLOYEES.

The method validator returns a false to indicate that the validation will fail. Otherwise it

returns true.

Observe what happens when you run the application module with the ADF Model Tester. When

you try to add a new employee to a department that has more than a predeined number of
employees (identiied by the constant MAX_DEPARTMENT_EMPLOYEES), a validation message

is raised. This is the message that we deined for our method validator.

Chapter 2

69

There's more...

Note that in the previous code we called setNamedWhereClauseParam() on the

EmployeeCount view object to set the value of the DepartmentId bind variable to the

current employee's department ID. This could have been done declaratively as well using the

Edit View Accessor dialog, which is available on the View Accessors page of the Employee

entity deinition page by clicking on the Edit selected View Accessor button (the pen icon).

On the Edit View Accessor dialog, locate the DepartmentId bind variable in the Bind

Parameter Values section, and on the Value ield enter DepartmentId. This will set the

value of the DepartmentId bind variable to the value of the DepartmentId attribute of the

Employee entity object.

Dealing with Basics: Entity Objects

70

See also

 f Overriding remove() to delete associated children entities, in this chapter

Using Groovy expressions to resolve
validation error message tokens

In this recipe, we will expand on the Using a custom validator based on a View Object

accessor recipe to demonstrate how to use validation message parameter values based

on Groovy expressions. Moreover, we will show how to retrieve the parameter values from a

speciic parameter bundle.

Groovy is a dynamic language that runs inside the Java Virtual Machine. In the context of the

ADF Business Components framework, it can be used to provide declarative expressions that

are interpreted at runtime. Groovy expressions can be used in validation rules, validation

messages, and parameters, attribute initializations, bind variable initializations, and more.

Getting ready
This recipe builds on the Using a custom validator based on a View Object accessor recipe.

It also relies on the recipes Breaking up the application in multiple workspaces and Setting

up BC base classes presented in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

How to do it...

1. In the Application Navigator double-click on the Employee entity object deinition
and go to its Business Rules tab.

2. Double-click on the validateDepartmentEmpoyeeCount Method Validator to bring

up the Edit Validation Rule dialog and go to the Failure Handling tab.

3. Change the Error Message to Department has reached maximum employee limit

of {1}.

4. For the Message Token 1 Expression in the Token Message Expressions section,

enter the following expression:

source.getBundleParameter('DepartmentEmployeeLimit')

Chapter 2

71

5. Now, open the SharedComponets workspace and locate the entity framework

extension class ExtEntityImpl. Add the following getBundleParameter()

method to it:

public String getBundleParameter(String parameterKey) {

 // use BundleUtils to load the parameter

 return BundleUtils.loadParameter(parameterKey);

}

6. Locate the BundleUtils helper class in the com.packt.jdeveloper.
cookbook.shared.bc.exceptions.messages package and add the following

loadParameter() method:

public static String loadParameter(final String parameterKey) {

 // get access to the error message parameters bundle

 final ResourceBundle parametersBundle =

 ResourceBundle.getBundle(PARAMETERS_BUNDLE,
 Locale.getDefault());

 // get and return the the parameter value

 return parametersBundle.getString(PARAMETER_PREFIX +
 parameterKey);

}

Dealing with Basics: Entity Objects

72

7. Finally, locate the ErrorParams.properties property ile and add the following
text to it:

parameter.DepartmentEmployeeLimit=2

How it works...

For this recipe, irst we added a parameter to the method validator message. The parameter is
indicated by adding parameter placeholders to the message using braces {}. The parameter

name is indicated by the value within the braces. In our case, we deined a parameter called
1 by entering {1}. We then had to supply the parameter value. Instead of hardcoding the

parameter value, we used the following Groovy expression:

source.getBundleParameter('DepartmentEmployeeLimit').

The source preix allows us to reference an entity object method from the validator. In this

case, the method is called getBundleParameter(). This method accepts a parameter key

which is used to load the actual parameter value from the parameters bundle. In this case, we

have used the DepartmentEmployeeLimit parameter key.

Then we implemented the getBundleParameter() method. We implemented this method

in the base entity custom framework class so that it is available to all entity objects. If you look

at the code in getBundleParameter(), you will see that it loads and returns the parameter

value using the helper BundleUtils.loadParameter().

We introduced the helper class BundleUtils while we worked on the

Using a generic backing bean actions framework recipe in Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

The BundleUtils.loadParameter() method pre-pends the parameter with the

preix parameter.

Finally, we deined the parameter.DepartmentEmployeeLimit parameter in the

ErrorParams.properties parameters bundle. For further information on this bundle,

refer to the Using a custom exception class recipe in Chapter 1, Pre-requisites to Success:

ADF Project Setup and Foundations. When the validation is raised at runtime, the message

parameter placeholder {1}, which was originally deined in the message, will be substituted
with the actual parameter value (in this case, the number 2).

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Chapter 2

73

 f Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

 f Using a generic backing bean actions framework, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using doDML() to enforce a detail record for
a new master record

In this recipe, we will consider a simple technique that we can use to enforce having detailed

records when inserting a new master record in an entity association relationship. The use

case demonstrates how to enforce creating at least one employee at the time when a new

department is created.

Getting ready
We will use the HR database schema and the HRComponents workspace that we have

created in previous recipes in this chapter.

How to do it...

1. Open the DepartmentImpl custom entity implementation class and override the

doDML() method using the Override Methods dialog.

2. Add the following code to the doDML() method before the call to super.doDML():

// check for insert

if (DML_INSERT == operation) {

 // get the department employees accessor

 RowIterator departmentEmployees = this.getDepartmentEmployees();

 // check for any employees

 if (!departmentEmployees.hasNext()) {

 // avoid inserting the department if there are no employees
 for it

 throw new ExtJboException("00006");

 }

}

Dealing with Basics: Entity Objects

74

How it works...

In the overridden doDML(), we only check for insert operations. This is indicated by

comparing the DML operation lag which is passed as a parameter to doDML() to the

DML_INSERT lag. Then we get the department employees from the DepartmentEmployees

accessor by calling getDepartmentEmployees(). The DepartmentEmployees accessor

was set up during the creation of the HRComponents workspace earlier in this chapter. We

check whether the RowIterator returned has any rows by calling hasNext() on it. If this

is not the case, that is, there are no employees associated with the speciic department
that we are about to insert, we alert the user by throwing an ExtJboException exception.

The ExtJboException exception is part of the SharedComponets workspace and it was

developed in the Using a custom exception class recipe back in Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

When testing the application module with the ADF Model Tester, we get the following error

message when we try to insert a new department without any associated employees:

Note that in case that an exception is thrown during DML, which

could result in partial data being posted to the database.

See also

 f Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations

3
A Different Point of
View: View Object

Techniques

In this chapter, we will cover:

 f Iterating a view object using a secondary rowset iterator

 f Setting default values for view row attributes

 f Controlling the updatability of view object attributes programmatically

 f Setting the Queryable property of a view object attribute programmatically

 f Using a transient attribute to indicate a new view object row

 f Conditionally inserting new rows at the end of a rowset

 f Using indAndSetCurrentRowByKey() to set the view object currency

 f Restoring the current row after a transaction rollback

 f Dynamically changing the WHERE clause of the view object query

 f Removing a row from a rowset without deleting it from the database

Introduction
View objects are an essential part of the ADF business components. They work in conjunction

with entity objects, making entity-based view objects, to support querying the database,

retrieving data from the database, and building rowsets of data. The underlying entities

enable an updatable data model that supports the addition, deletion, and modiication of
data. They also support the enforcement of business rules and the permanent storage of the

data to the database.

A Different Point of View: View Object Techniques

76

In cases where an updatable data model is not required, the framework supports a

read-only view object, one that is not based on entity objects but on a SQL query supplied by the

developer. Read-only view objects should be used in cases where UNION and GROUP BY clauses

appear in the view object queries. In other cases, even though an updatable data model is not

required, the recommended practice is to base the view objects on entity objects and allow the

JDeveloper framework-supporting wizards to build the SQL query automatically instead.

This chapter presents several techniques covering a wide area of expertise related to

view objects.

Iterating a view object using a secondary
rowset iterator

There are times when you need to iterate through a view object rowset programmatically. In

this recipe, we will see how to do this using a secondary rowset iterator. We will iterate over

the Employees rowset and increase the employee's commission by a certain percentage for

each employee that belongs to the Sales department.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Open the Employees view object deinition and go to the Java page.

2. Click on the Edit java options button (the pen icon) to open the Select Java

Options dialog.

3. Click on the Generate View Object Class and Generate View Row Class checkboxes.

Ensure that the Include accessors checkbox is also selected.

4. Click OK to proceed with the creation of the custom implementation classes.

Chapter 3

77

5. Add the following helper method to EmployeesImpl.java. If the import dialog is

shown for the Number class, make sure that you choose the oracle.jbo.domain.
Number class.

public void adjustCommission(Number commissionPctAdjustment) {

 // check for valid commission adjustment

 if (commissionPctAdjustment != null) {

 // create an employee secondary rowset iterator

 rowsetIterator employees = this.createrowsetIterator(null);

 // reset the iterator

 employees.reset();

 // iterate the employees

 while (employees.hasNext()) {

 // get the employee

 EmployeesRowImpl employee =
 (EmployeesRowImpl)employees.next();

 // check for employee belonging to the sales department

 if (employee.getDepartmentId() != null &&
 SALES_DEPARTMENT_ID ==
 employee.getDepartmentId().intValue()) {

 // calculate adjusted commission

 Number commissionPct = employee.getCommissionPct();

 Number adjustedCommissionPct = commissionPct != null) ?
 commissionPct.add(commissionPctAdjustment) :
 commissionPctAdjustment;

 // set the employee's new commission

 employee.setCommissionPct(adjustedCommissionPct);

 }

 }

 // done with the rowset iterator

 employees.closerowsetIterator();

 }

}

6. On the Employees Java page click on the Edit view object client interface button

(the pen icon).

A Different Point of View: View Object Techniques

78

7. On the Edit Client Interface dialog, shuttle the adjustCommission() method to

the Selected list and click OK.

8. Open the HRComponentsAppModule application module deinition and go to the
Java page.

9. Click on the Edit java options button.

10. On the Select Java Options dialog, click on the Generate Application Module Class

checkbox. Then click OK to close the dialog.

11. Open the HrComponentsAppModuleImpl class and add the following method:

public void adjustCommission(Number commissionPctAdjustment) {

 // execute the Employees view object query to create
 a rowset

 this.getEmployees().executeQuery();

 // adjust the employees commission

 this.getEmployees().adjustCommission(commissionPctAdjustment);

}

Chapter 3

79

12. Return to the application module deinition Java page, then use the Edit application

module client interface button to add the adjustCommission() method to the

application module's client interface.

How it works...

We created a view object custom Java implementation class for the Employees view object and

add a method called adjustCommission(). The method is then exposed to the view object's

client interface so that it can be accessible and called using the Employees interface.

The adjustCommission() method adjusts the commission for all employees belonging to

the Sales department. The method accepts the commission adjustment percentage as an

argument. We call the createrowsetIterator() method to create a secondary iterator,

which we then use to iterate over the Employees rowset. This is the recommended practice

to perform programmatic iteration over a rowset. The reason is that the view object instance

that is being iterated may be bound to UI components and that iterating it directly will interfere

with the UI. In this case, you will see the current row changing by itself.

We then call the reset() method to initialize the rowset iterator. This places the iterator in

the slot before the irst row in the rowset. We iterate the rowset by checking whether a next
row exists. This is done by calling hasNext() on the iterator. If a next row exists, we retrieve it

by calling next(), which returns an oracle.jbo.Row. We cast the default Row object that

is returned to an EmployeesRowImpl, so we can use the custom setter and getter methods

to manipulate the Employee row.

For testing purposes, we create a custom application module implementation class

and add a method called adjustCommission() to it. We expose this method to the

application module client interface so that we can call it from the ADF Model Tester. Note

that methods can also be added to the view object client interface. Then these methods

are shown under the view object collection in the Data Control panel and can be bound to

the JSF page simply by dropping them on the page. Inside the adjustCommission(), we

execute the Employees view object query by calling executeQuery() on it. We get the

Employees view object instance via the getEmployees() getter method. Finally, we call

the adjustCommission() method that we implemented in EmployeesImpl to adjust the

employees' commission.

A Different Point of View: View Object Techniques

80

There's more...

In order to be able to iterate a view object rowset using a secondary iterator, the view object

access mode in the General | Tuning section must set to Scrollable. Any other access

mode setting will result in a JBO-25083: Cannot create a secondary iterator on row set {0}

because the access mode is forward-only or range-paging error when attempting to create a

secondary iterator. To iterate view objects conigured with range paging, use the range paging
view object API methods. Speciically, call getEstimatedRangePageCount() to determine

the number of pages and for each page call scrollToRangePage(). Then determine

the range page size by calling getRangeSize() and iterate through the page calling

getRowAtRangeIndex().

Chapter 3

81

Pitfalls when iterating over large rowsets
Before iterating a view object rowset, consider that iterating the rowset may result in

fetching a large number of records from the database to the middle layer. In this case, other

alternatives should be considered, such as running the iteration asynchronously on a separate

Work Manager, for instance (see recipe Using a Work Manager for processing of long running
tasks in Chapter 12, Optimizing, Fine-tuning and Monitoring). In certain cases, such as when

iterating in order to compute a total amount, consider using any of the following techniques.

These methods are far more optimized in determining the total amount for an attribute than

iterating the view object using Java code.

 f Groovy expressions such as object.getRowSet().sum('SomeAttribute')

 f Analytic functions, such as COUNT(args) OVER ([PARTITION BY <…>] …), in the

view object's SQL query

For instance, consider the following view object query that calculates the department's total

salaries using an analytic function. This would have been much more costly if it had to be

done programmatically by iterating the underlying view objects.

SELECT DISTINCT DEPARTMENTS.DEPARTMENT_NAME,

SUM (EMPLOYEES.SALARY) OVER (PARTITION BY EMPLOYEES.DEPARTMENT_ID)

AS DEPARTMT_SALARIES

FROM EMPLOYEES

INNER JOIN DEPARTMENTS

ON DEPARTMENTS.DEPARTMENT_ID = EMPLOYEES.DEPARTMENT_ID

ORDER BY DEPARTMENTS.DEPARTMENT_NAME

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting default values for view row
attributes

In this recipe, we will see how to set default values for view object attributes. There are a

number of places where you can do this, namely:

 f In the overridden create() method of the view object row implementation class

 f Declaratively using a Groovy expression

 f In the attribute getter method

For example, for a newly created employee, we will set the employee's hire date to the

current date.

A Different Point of View: View Object Techniques

82

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Create a view row Java implementation class for the Employees view object.

2. Open the EmployeesRowImpl.java custom view row Java implementation class

and override the create() method using the Override Methods… button (the green

left arrow on the editor toolbar).

3. To set the default employee's hire date to today's date, add the following code to

create() immediately after the call to super.create():

// set the default hire date to today

this.setHireDate((Date)Date.getCurrentDate());

4. Open the Employees view object deinition and go to the Attributes page.

5. Select the attribute that you want to initialize, HireDate in this case.

6. Select the Details tab.

7. In the Default Value section, select Expression and enter the following Groovy

expression: adf.currentDate

Chapter 3

83

8. Locate the view object attribute getter in the view object row implementation class. In

this example, this is the getHireDate() method in EmployeesRowImpl.java.

9. Replace the existing code in getHireDate() with the following:

// get the HireDate attribute value

Date hireDate = (Date)getAttributeInternal(HIREDATE);

// check for null and return today's date if needed

return (hireDate == null) ? (Date)Date.getCurrentDate() :
 hireDate;

How it works...

This recipe presents three different techniques to set default values to view object attributes.

The irst technique (steps 1-3) overrides the view row create() method. This method is

called by the ADF Business Components framework when a view object row is being created.

In the previous code sample, we irst call the parent ViewRowImpl create() to allow

the framework processing. Then we initialize the attribute by calling its setter method—

setHireDate() in this case—supplying Date.getCurrentDate() for the attribute value.

The second technique (steps 4-7) initializes the view object attribute declaratively using a

Groovy expression. The Groovy expression used to initialize the HireDate attribute is adf.
currentDate. Note that we change the attribute's Value Type ield to Expression, so that it

can be interpreted as an expression instead of a literal value. This expression when evaluated

at runtime by the framework retrieves the current date.

Finally, the last technique (steps 8-9) uses the attribute getter—getHireDate() for this

example—to return a default value. Using this technique, we don't actually set the attribute

value; instead we return a default value, which can be subsequently applied to the attribute.

Also notice that this is done only if the attribute does not already have a value (the check

for null).

There's more...

A common use case related to this topic is setting an attribute's value based on the value

of another related attribute. Consider, for instance, the use case where the employee's

commission should be set to a certain default value if the employee is part of the Sales

department. Also, consider the case where the employee's commission should be cleared if

the employee is not part of the sales department. In addition to accomplishing this task with

Groovy as stated earlier, it can also be implemented in the employee's DepartmentId setter,

that is, in the setDepartmentId() method as follows:

public void setDepartmentId(Number value) {

 // set the department identifier

 setAttributeInternal(DEPARTMENTID, value);

 // set employee's commission based on employee's department

A Different Point of View: View Object Techniques

84

 try {

 // check for Sales department

 if (value != null && SALES_DEPARTMENT_ID == value.intValue()) {

 // if the commission has not been set yet

 if (this.getCommissionPct() == null) {

 // set commission to default

 this.setCommissionPct(new Number(DEFAULT_COMMISSION));

 }

 } else {

 // clear commission for non Sales department

 this.setCommissionPct(null);

 }

 } catch (SQLException e) {

 // log the exception

 LOGGER.severe(e);

 }

}

Specifying default values at the entity object level
Note that default values can be supplied at the entity object level as well. In this case, all view

objects based on the particular entity object will inherit the speciic behavior. You can provide
variations for this behavior by implementing the techniques outlined in this recipe for speciic
view objects. To ensure consistent behavior throughout the application, it is recommended

that you specify attribute defaults at the entity object level.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Controlling the updatability of view object
attributes programmatically

In ADF, there are a number of ways to control whether a view object attribute can be updated

or not. It can be done declaratively in the Attributes tab via the Updatable combo, or on the

frontend ViewController layer by setting the disabled or readOnly attributes of the JSF

page component. Programmatically, it can be done either on a backing bean, or if you are

utilizing ADF business components, on a custom view object row implementation class. This

recipe demonstrates the latter case. For our example, we will disable updating any of the

Department attributes speciically for departments that have more than a speciied number
of employees.

Chapter 3

85

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Create view row implementation classes for the Department and Employee view

objects. Ensure that in both cases you have selected Include accessors on the Java

Options dialog.

2. Open the DepartmentsRowImpl class in the Java editor.

3. Use the Override Methods… button to override the isAttributeUpdateable()

method.

4. Replace the call to super.isAttributeUpdateable(i) with the following code:

 // get the number of employees for the specific department

 int departmentEmployeeCount = this.getEmployees() != null
 ? this.getEmployees().getRowCount() : 0;

 // set all attributes to non-updatable if the department

 // has more than a specified number of employees

 return (departmentEmployeeCount > 5)? false :
 super.isAttributeUpdateable(i);

How it works...

The isAttributeUpdateable() method is called by the framework in order to determine

whether a speciic attribute is updateable or not. The framework supplies the attribute in
question to the isAttributeUpdateable() method as an attribute index parameter.

Inside the method, we add the necessary code to conditionally enable or disable the speciic
attribute. We do this by returning a Boolean indicator: a true return value indicates that the

attribute can be updated.

There's more...

Because the isAttributeUpdateable() method could potentially be called several times

for each of the view object attributes (when bound to page components for instance), avoid

writing code in it that will hinder the performance of the application. For instance, avoid

calling database procedures or executing expensive queries in it.

A Different Point of View: View Object Techniques

86

Controlling attribute updatability at the entity object level
Note that we can conditionally control attribute updatability at the entity object level as well,

by overriding the isAttributeUpdateable() method of EntityImpl. In this case, all

view objects based on the particular entity object will exhibit the same attribute updatability

behavior. You can provide different behavior for speciic view objects in this case by overriding
isAttributeUpdateable() for those objects. To ensure consistent behavior throughout

the application, it is recommended that you control attribute updatability defaults at the entity

object level.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting the Queryable property of a view
object attribute programmatically

The Queryable property, when set for a view object attribute, indicates that the speciic
attribute can appear on the view object's WHERE clause. This has the effect of making the

attribute available in all search forms and allows the user to search for it. In an af:query

ADF Faces component, for instance, a queryable attribute will appear in the list of ields
shown when you click on the Add Fields button in the Advanced search mode. Declaratively

you can control whether an attribute is queryable or not by checking or un-checking the

Queryable checkbox in the view object Attributes | Details tab. But how do you accomplish

this task programmatically and for speciic conditions?

This recipe will show how to determine the Queryable status of an attribute and change it if

needed based on a particular condition.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...

1. Open the ExtViewObjectImpl view object custom framework class in the

Java editor.

Chapter 3

87

2. Add the following method to it:

protected void setQueriable(int attribute, boolean condition) {

 // get the attribute definition

 AttributeDef def = getAttributeDef(attribute);

 // set/unset only if needed

 if (def != null && def.isQueriable() != condition) {

 // set/unset queriable

 ViewAttributeDefImpl attributeDef = ViewAttributeDefImpl)def;

 attributeDef.setQueriable(condition);

 }

}

How it works...

We have added the setQueriable() method to the ExtViewObjectImpl view object

custom framework class. This makes the method available to all view objects. The method

accepts the speciic attribute index (attribute) and a Boolean indicator whether to set or

unset the Queryable lag (condition) for the speciic attribute.

In setQueriable(), we irst call getAttributeDef() to retrieve the oracle.jbo.
AttributeDef attribute deinition. Then we call isQueriable() on the attribute deinition
to retrieve the Queryable condition. If the attribute's current Queryable condition differs

from the one we have passed to setQueriable(), we call setQueriable() on the

attribute deinition to set the new value.

Here is an example of calling setQueriable() from an application module method based

on some attribute values:

public void prepare(boolean someCondition) {

 // make the EmployeeId queryable based on some condition

 this.getEmployees().setQueriable(EmployeesRowImpl.EMPLOYEEID,

 someCondition);

}

There's more...

Note that you can control the Queryable attribute at the entity object level as well. In

this case, all view objects based on the speciic entity object will inherit this behavior. This
behavior can be overridden declaratively or programmatically for the view object, as long as

the new value is more restrictive than the inherited value.

A Different Point of View: View Object Techniques

88

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Using a transient attribute to indicate a new
view object row

For entity-based view objects, there is a simple technique you can use to determine whether a

particular row has a new status. The status of a row is new when the row is irst created. The
row remains in the new state until it is successfully committed to the database. It then goes to

an unmodiied state. Knowledge of the status of the row can be used to set up enable/disable

conditions on the frontend user interface.

In this recipe, we will see how to utilize a transient view object attribute to indicate the new

status of the view object row.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Open the Departments view object deinition.

2. Go to the Attributes tab and click on the Create new attribute button (the green plus

sign icon).

3. Select New Attribute… from the context menu.

Chapter 3

89

4. On the New View Object Attribute dialog, enter IsNewRow and click OK.

5. By default the new attribute is of type String, so change it to a Boolean using the

Type choice list in the Details tab.

6. If you don't already have a custom view row implementation class created, use the

Java tab to create one. In any case, make sure that you have selected the Include

accessors checkbox.

7. Open the DepartmentsRowImpl.java view row implementation class and locate

the getIsNewRow() method.

8. Replace the code inside the getIsNewRow() method with the following:

// return true if the row status is New

return Row.STATUS_NEW == this.getDepartment().getEntityState();

How it works...

First we create a new transient attribute called IsNewRow. This attribute will be used to

indicate whether the status of the view object row is new or not. A transient attribute is

one that does not correspond to a database table column; it can be used as placeholder

for intermediate data. Then we generate a custom view row implementation class. On the

transient attribute getter, getIsNewRow() in this case, we get access to the entity object. For

this recipe, the Department entity is returned by calling the getDepartment() getter. We

get the entity object state by calling getEntityState() on the Department entity object

and compare it to the constant Row.STATUS_NEW.

Once the IsNewRow attribute is bound to a JSF page, it can be used in Expression Language

(EL) expressions. For instance, the following EL expression indicates a certain disabled

condition based on the row status not being New:

disabled="#{bindings.IsNewRow.inputValue ne true}"

There's more...

The following table summarizes all the available entity object states:

Entity Object State Description Transition to this State

New Indicates a new entity object. An

entity object in this state is in the

transaction pending changes list

(see Initialized state).

When a new entity object is irst
created.

When setAttribute() is called

on an Initialized entity object.

Initialized Indicates that a new entity object

is initialized and thus it is removed

from the transaction's pending

changes list.

When setNewRowState() is

explicitly called on a New entity

object.

A Different Point of View: View Object Techniques

90

Entity Object State Description Transition to this State

Unmodiied Indicates an unmodiied entity
object.

When the entity object is retrieved

from the database.

After successfully committing a

New or Modiied entity object.
Modiied Indicates the state of a modiied

entity object.

When setattribute() is called

on an Unmodiied entity object.
Deleted Indicates a deleted entity object. When remove() is called on

an Unmodiied or Modiied entity
object.

Dead Indicates a dead entity object. When remove() is called on a

New or Initialized entity object.

After successfully committing a

Deleted entity object.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Conditionally inserting new rows at the end
of the rowset

When you insert a new row into a rowset, by default the new row is inserted at the current slot

within that rowset. There are times, however, that you want to override this default behavior

for the application that you are developing.

In this recipe, we will see how to conditionally insert new rows at the end of the rowset

by implementing generic programming functionality at the base view object framework

implementation class.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 3

91

How to do it...

1. Open the ExtViewObjectImpl.java custom view object framework class in the

Java editor.

2. Override the insertRow() method.

3. Replace the call to super.insertRow() in the generated insertRow() method

with the following code:

// check for overriden behavior based on custom property

if ("true".equalsIgnoreCase((String)this.getProperty(
 NEW_ROW_AT_END))) {

 // get the last row in the rowset

 Row lastRow = this.last();

 if (lastRow != null) {

 // get index of last row

 int lastRowIdx = this.getRangeIndexOf(lastRow);

 // insert row after the last row

 this.insertRowAtRangeIndex(lastRowIdx + 1, row);

 // set inserted row as the current row

 this.setCurrentRow(row);

 } else {

 super.insertRow(row);

 }

} else {

 // default behavior: insert at current rowset slot

 super.insertRow(row);

}

How it works...

We have overridden the ADF Business Components framework insertRow() method in

order to implement custom row insertion behavior. Moreover, we conditionally override the

default framework behavior based on the existence of the custom property NewRowAtEnd

identiied by the constant NEW_ROW_AT_END. So, if this custom property is deined for
speciic view objects, we determine the index of the last row in the rowset by calling
getRangeIndexOf() and then call insertRowAtRangeIndex() to insert the new row at

the speciic last row index. Finally, we set the rowset currency to the row just inserted.

If the NewRowAtEnd custom property is not deined in the view object, then the row is
inserted by default at the current slot in the rowset.

A Different Point of View: View Object Techniques

92

There's more...

To add a custom property to a view object, use the drop-down menu next to the Add Custom

Property button (the green plus sign icon) and select Non-translatable Property. The Add

Custom Property button is located in the Attributes | Custom Properties tab.

In addition, note that if you have conigured range paging access mode for the view object,

calling last() will produce a JBO-25084: Cannot call last() on row set {0} because the

access mode uses range-paging error. In this case, call getEstimatedRangePageCount()

to determine the number of pages and setRangeStart() to set the range to the last

page instead.

Inserting new rows at the beginning of the rowset
The use case presented in this recipe can be easily adapted to insert a row at the beginning

of the rowset. In this case, you will need to call this.first() to get the irst row. The
functionality of getting the row index and inserting the row at the speciied index should work
as is.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Using indAndSetCurrentRowByKey() to set
the view object currency

You can set the currency on a view object by calling its findAndSetCurrentRowByKey()

method. The method accepts two arguments: a Key object that is used to locate the row

in the view object, and an integer indicating the range position of the row (for view objects

conigured with range paging access mode).

Chapter 3

93

This recipe demonstrates how to set the view object row currency by implementing a helper

method called refreshView(). In it we irst save the view object currency, re-query the
view object and inally restore its currency to the original row before the re-query. This has the
effect of refreshing the view object while keeping the current row.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...

1. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor.

2. Override the create() method.

3. Add the following code after the call to super.create():

// allow read-only view objects to use findByKey() methods

this.setManageRowsByKey(true);

4. While at the ExtViewObjectImpl.java add the following refreshView() method:

public void refreshView() {
 Key curRowKey = null;
 int rangePosOfCurRow = -1;
 int rangeStart = -1;
 // get and save the current row
 Row currentRow = getCurrentRow();
 // do this only if we have a current row
 if (currentRow != null) {
 // get the row information
 curRowKey = currentRow.getKey();
 rangePosOfCurRow = getRangeIndexOf(currentRow);
 rangeStart = getRangeStart();
 }
 // execute the view object query
 executeQuery();
 // if we have a current row, restore it
 if (currentRow != null) {
 setRangeStart(rangeStart);
 findAndSetCurrentRowByKey(curRowKey, rangePosOfCurRow);
 }
}

A Different Point of View: View Object Techniques

94

How it works...

First we override the create() method in the view object framework extension class. We do

this so we can call the setManageRowsByKey() method. This method will allow us to use

framework ind methods utilizing key objects on read-only view objects as well. By default this
is not the case for read-only view objects.

Then we implement the refreshView() method. We made refreshView() public so

that it could be called explicitly for all view objects. Once bound to a page deinition as an
operation binding, refreshView() can be called from the UI. You can, for instance, include

a refresh button on your UI page, which when pressed refreshes the data presented in a table.

In it, we irst determine the current row in the rowset by calling getCurrentRow(). This

method returns an oracle.jbo.Row object indicating the current row, or null if there is

no current row in the rowset. If there is a current row, we get all the necessary information in

order to be able to restore it after we re-query the view object. This information includes the

current row's key (getKey()), the index of the current row in range (getRangeIndexOf()),

and the row's range (getRangeStart()).

Once the current row information is saved, we re-execute the view object's query by calling

executeQuery().

Finally, we restore the current row by setting the range and the row within the range by calling

setRangeStart() and findAndSetCurrentRowByKey() respectively.

There's more...

The methods getRangeIndexOf(), getRangeStart(), and setRangeStart() used in

this recipe indicate that range paging optimization is utilized.

Range paging optimization
Range paging is an optimization technique that can be utilized by view objects returning

large result sets. The effect of using it is to limit the result set to a speciic number of rows,
as determined by the range size option setting. So instead of retrieving hundreds or even

thousands of rows over the network and caching them in the middle layer memory, only the

ranges of rows utilized are retrieved.

The methods used in this recipe to retrieve the row

information will work regardless of whether we use

range paging or not.

For more information on this recipe consult Steve Muench's original post Refreshing a

View Object's Query, Keeping Current Row and Page in the URL address: http://radio-
weblogs.com/0118231/2004/11/22.html.

Chapter 3

95

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Restoring the current row after a transaction rollback, Chapter 2, Dealing with

Basics: Entity Objects

Restoring the current row after a
transaction rollback

On a transaction rollback, the default behavior of the ADF framework is to set the current row

to the irst row in the rowset. This is certainly not the behavior you expect to see when you

rollback while editing a record.

This recipe shows how to accomplish the task of restoring the current row after a

transaction rollback.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtApplicationModuleImpl and ExtViewObjectImpl custom framework classes

that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

How to do it…

1. Open the ExtApplicationModuleImpl.java application module framework

extension class into the Java editor.

2. Click on the Override Methods… button (the green left arrow button) and choose to

override the prepareSession(Session) method.

3. Add the following code after the call to super.prepareSession():

// do not clear the cache after a rollback

getDBTransaction().setClearCacheOnRollback(false);

4. Open the ExtViewObjectImpl.java view object framework extension class into

the Java editor.

A Different Point of View: View Object Techniques

96

5. Override the create() method.

6. Add the following code after the call to super.create():

// allow read-only view objects to use findByKey() methods

this.setManageRowsByKey(true);

7. Override the beforeRollback() method.

8. Add the following code before the call to super.beforeRollback():

// check for query execution

if (isExecuted()) {

 // get the current row

 ViewRowImpl currentRow = (ViewRowImpl)getCurrentRow();

 if (currentRow != null) {

 // save the current row's key

 currentRowKeyBeforeRollback = currentRow.getKey();

 // save range start

 rangeStartBeforeRollback = getRangeStart();

 // get index of current row in range

 rangePosOfCurrentRowBeforeRollback =
 getRangeIndexOf(currentRow);

 }

}

9. Override the afterRollback() method and add the following code after the call to

super.afterRollback():

// check for current row key to restore

if (currentRowKeyBeforeRollback != null) {

 // execute view object's query

 executeQuery();

 // set start range

 setRangeStart(rangeStartBeforeRollback);

 // set current row in range

 findAndSetCurrentRowByKey(currentRowKeyBeforeRollback,
 rangePosOfCurrentRowBeforeRollback);

}

// reset

currentRowKeyBeforeRollback = null;

Chapter 3

97

How it works...

We override the application module prepareSesssion() method so we can call

setClearCacheOnRollback() on the Transaction object. prepareSession() is

called by the ADF Business Components framework the irst time that an application module
is accessed. The call to setClearCacheOnRollback() in prepareSession() tells the

framework whether the entity cache will be cleared when a rollback operation occurs. Since

the framework by default clears the cache, we call setClearCacheOnRollback() with

a false argument to prevent this from happening. We need to avoid clearing the cache

because we will be getting information about the current row during the rollback operation.

Whether to clear the entity cache on transaction rollback or not is a decision that needs to

be taken at the early design stages, as this would affect the overall behavior of your ADF

application. For the speciic technique in this recipe to work, that is, to be able to maintain
the current row after a transaction rollback, the entity cache must not be cleared after a

transaction rollback operation. If this happens, fresh entity rows for the speciic entity type will
be retrieved from the database, which prevents this recipe from working properly.

Next, we override the create() method in the view object framework extension class. We

do this so we can call the setManageRowsByKey() method. This method will allow us to

use framework ind methods utilizing key objects on read-only view objects, which is not the
default behavior.

Then we override the beforeRollback() and afterRollback() methods in the

view object framework extension class. As their names indicate, they are called by the

framework before and after the actual rollback operation. Let's take a look at the code in

beforeRollback() irst. In it, we irst get the current row by calling getCurrentRow().

Then, for the current row we determine the row's key, range, and position of the current row

within the range. This will work whether range paging is used for the view object or not. Range

paging should be enabled for optimization purposes for view objects that may return large

rowsets. We save these values into corresponding member variables. We will be using them in

afterRollback() to restore the current row after the rollback operation.

Notice that we do all that after checking whether the view object

query has been executed (isExecuted()). We do this because

beforeRollback() may be called multiple times by the

framework, and we need to ensure that we retrieve the current row

information only if the view object's rowset has been updated, which

is the case after the query has been executed.

A Different Point of View: View Object Techniques

98

In afterRollback() we use the information obtained about the current row in

beforeRollback() to restore the rowset currency to it. We do this by irst executing the
view object query, the call to executeQuery(), and then calling setRangeStart() and

findAndSetCurrentRowByKey() to restore the range page and the row within the range to

the values obtained for the current row earlier. We do all that only if we have a current row key

to restore to – the check for currentRowKeyBeforeRollback not being null.

There's more...

Note that for this technique to work properly on the frontend ViewController, you

will need to call setExecuteOnRollback() on the oracle.adf.model.binding.
DCBindingContainer object before executing the Rollback operation binding. By

calling setExecuteOnRollback() on the binding container, we prevent the view objects

associated with the page's bindings being executed after the rollback operation. This means

that in order to call setExecuteOnRollback() you can't just execute the rollback action

binding directly. Rather, you will have to associate the Rollback button with a backing bean

action method, similar to the one shown in the following instance:

public void rollback() {

 // get the binding container

 DCBindingContainer bindings = ADFUtils.getDCBindingContainer();

 // prevent view objects from executing after rollback

 bindings.setExecuteOnRollback(false);

 // execute rollback operation

 ADFUtils.findOperation("Rollback").execute();

}

Such a method could be added to the CommonActions generic backing bean actions

framework class introduced in the recipe Using a generic backing bean actions framework in

Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations. By doing so, we will

make it available to all managed beans derived from the CommonActions base class.

For testing purposes, a ViewController project page called

recipe3_8.jspx has been provided that demonstrates this

technique. To run it, just right-click on the recipe3_8.jspx page and

select Run from the context menu.

For more information on this technique, consult Steve Muench's original post Example of

Restoring Current Row On Rollback (example number 68) on the URL address: http://
radio-weblogs.com/0118231/2006/06/15.html.

Chapter 3

99

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Using indAndSetCurrentRowByKey() to set the view object currency, Chapter 2,

Dealing with Basics: Entity Objects.

 f Overriding prepareSession() to do session-speciic initializations, Chapter 5, Putting

them all together: Application Modules

Dynamically changing the WHERE clause of
the view object query

During the execution of the view object's query, the ADF Business Components framework

calls a series of methods to accomplish its task. You can intervene during this process by

overriding any of the methods called by the framework, in order to change the query about to

be executed by the view object. You can also explicitly call methods in the public view object

interface to accomplish this task prior to the view object's query execution. Depending on

what exactly you need to change in the view object's query, the framework allows you to do

the following:

 f Change the query's SELECT clause by overriding buildSelectClause() or calling

setSelectClause()

 f Change the query's FROM clause by overriding buildFromClause() or calling

setFromClause()

 f Change the query's WHERE clause via buildWhereClause() , setWhereClause(),

addWhereClause(), setWhereClauseParams(), and other methods

 f Change the query's ORDER BY clause via the buildOrderByClause(),

setOrderByClause(), and addOrderByClause() methods

Even the complete query can be changed by overriding the buildQuery() method or directly

calling setQuery(). Moreover, adding named view criteria will alter the view object query.

This recipe shows how to override buildWhereClause() to alter the view object's WHERE

clause. The use case implemented in this recipe is to limit the result set of the Employee

view object by a pre-deined number of rows indicated by a custom property.

A Different Point of View: View Object Techniques

100

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it...

1. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor.

2. Override the buildWhereClause() method.

3. Replace the code inside the buildWhereClause() with the following:

// framework processing

boolean appended = super.buildWhereClause(sqlBuffer,noUserParams);

// check for a row count limit

String rowCountLimit = (String)this.getProperty(ROW_COUNT_LIMIT);

// if a row count limit exists, limit the query

if (rowCountLimit != null) {

 // check to see if a WHERE clause was appended;

 // if not, we will append it

 if (!appended) {

 // append WHERE clause

 sqlBuffer.append(" WHERE ");

 // indicate that a where clause was added

 appended = true;

 }

 // a WHERE clause was appended by the framework;

 // just amend it

 else {

 sqlBuffer.append(" AND ");

 }

 // add ROWNUM limit based on the pre-defined

 // custom property

 sqlBuffer.append("(ROWNUM <= " + rowCountLimit + ")");

}

// a true/false indicator whether a WHERE clause was appended

// is returned to the framework

return appended;

Chapter 3

101

How it works...

We override buildWhereClause() in order to alter the the WHERE clause of the view

object's query. Speciically, we limit the result set produced by the view object's query. We
do this only if the custom property called RowCountLimit (indicated by the constant ROW_
COUNT_LIMIT) is deined by a view object. The value of the RowCountLimit indicates the

number of rows that the view object's result set should be limited to.

First we call super.buildWhereClause() to allow the framework processing. This call

will return a Boolean indicator of whether a WHERE clause was appended to the query,

indicated by the Boolean appended local variable. Then we check for the existence of the

RowCountLimit custom property. If it is deined by the speciic view object, we alter or we
add to the WHERE clause depending on whether one was added or not by the framework. We

make sure that we set the appended lag to true if we actually have appended the WHERE

clause. Finally, the appended lag is returned back to the framework.

There's more...

The use case implemented in this recipe shows one of the possible ways of limiting the view

object result set. You can explore additional techniques in Chapter 12, Optimizing, Fine-tuning

and Monitoring.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Removing a row from a rowset without
deleting it from the database

There are times when you want to remove a row from the view object's query collection

(the query result set) without actually removing it from the database. The query collection,

oracle.jbo.server.QueryCollection, gets populated each time the view object is

executed—when the view object's associated query is run—and represents the query result.

While the Row.remove() method will remove a row from the query collection, it will also

remove the underlying entity object for an entity-based view object, and post a deletion to the

database. If your programming task requires the row to be removed from the query collection

itself, that is, removing a table row in the UI without actually posting a delete to the database,

use the Row method removeFromCollection() instead.

A Different Point of View: View Object Techniques

102

Note, however, that each time the view object query is re-executed the

row will show up, since it is not actually deleted from the database.

This recipe will demonstrate how to use removeFromCollection() by implementing a

helper method in the application module to remove rows from the Employees collection.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Open the HrComponentsAppModuleImpl.java application module custom

implementation class in the Java editor.

2. Add the following removeEmployeeFromCollection() method to it:

public void removeEmployeeFromCollection() {

 // get the current employee

 EmployeesRowImpl employee =
 (EmployeesRowImpl)(this.getEmployees().getCurrentRow());

 // remove employee from collection

 if (employee != null) {

 employee.removeFromCollection();

 }

}

3. Expose the removeEmployeeFromCollection() method to the application

module's client interface using the Edit application module client interface button

(the pen icon) in the Client Interface section of the application module's Java page.

How it works...

We implemented removeEmployeeFromCollection() and exposed it to the application

module's client interface. By doing so, we will be able to call this method using the Oracle

ADF Model Tester for testing purposes.

Chapter 3

103

First, we get the current employee by calling getCurrentRow() on the Employees

view object instance. We retrieve the Employees view object instance by calling the

getEmployees() getter method. Then we call removeFromCollection() on the current

employee view row to remove it from the Employees view object rowset. This has the effect

of removing the employee from the rowset without removing the employee from the database.

A subsequent re-query of the Employees view object will retrieve those Employee rows that

were removed earlier.

There's more...

Note that there is a quick and easy way to remove all rows from the view object's rowset by

calling the view object executeEmptyrowset() method. This method re-executes the view

object's query ensuring that the query will return no rows; however, it achieves this in an

eficient programmatic way without actually sending the query to the database for execution.
Calling executeEmptyrowset() marks the query's isExecuted lag to true, which means

that it will not be re-executed upon referencing a view object attribute.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

4
Important

Contributors: List
of Values, Bind
Variables, View

Criteria

In this chapter, we will cover:

 f Setting up multiple LOVs using a switcher attribute

 f Setting up cascading LOVs

 f Creating static LOVs

 f Overriding bindParametersForCollection() to set a view object bind variable

 f Creating view criteria programmatically

 f Clearing the values of bind variables associated with the view criteria

 f Searching case-insensitively using view criteria

Important Contributors: List of Values, Bind Variables, View Criteria

106

Introduction
List of values (LOV), bind variables and view criteria are essential elements related to view

objects. They allow further reinements to the view object's query (bind variables and view
criteria) and make the development of the frontend user interface easier when dealing with

list controls (LOVs) and query-by-example (view criteria) components.

Many of the user interface aspects that deal with list controls and query-by-example

components can be pre-deined in a set of default values via the UI Hints sections and pages

in JDeveloper, thus providing a standard UI behavior. By using LOVs, for instance, we can pre-

deine a number of attributes for UI list components, such as the default UI list component,
the attributes to be displayed, whether "No Selection" items will be included in the list, and

others. These defaults can be overridden as needed for speciic LOVs.

Bind variables and view criteria, usable in conjunction or separately, allow you to dynamically

alter the view object query based on certain conditions. Furthermore, using bind variables as

placeholders in the query allows the database to effectively reuse the same parsed query for

multiple executions, without the need to re-parse it.

In this chapter, we will examine how these components are supported, both programmatically

and declaratively, by the ADF-BC framework and by JDeveloper.

Setting up multiple LOVs using a switcher
attribute

Enabling LOVs for view object attributes greatly simpliies the effort involved in utilizing
list controls in the frontend user interface. LOV-enabling a view object attribute is a

straightforward task, done declaratively in JDeveloper. Moreover, the ADF-BC framework

allows you to deine multiple LOVs for the same attribute. In this case, in order to differentiate
among the LOVs, a separate attribute called a LOV switcher is used. The differentiation is

usually done based on some data value. The advantage of using this technique is that you can

deine a single LOV component in your UI page and then vary its contents based on a certain
condition, such as the value of the switcher attribute.

This recipe shows how to enable multiple LOVs for a view object attribute and how to use an

LOV switcher to switch among the LOVs. For example, depending on the employee's job we will

associate a different LOV to an Employees view object transient attribute.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

Chapter 4

107

How to do it...

1. Create a new read-only view object called DepartmentsLov by right-clicking on a

package of the HRComponents business components project in the Application

Navigator and selecting New View Object….

2. Base the view object on the following SQL query:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM DEPARTMENTS

In addition, set the DepartmentId attribute as the a Key attribute. Do not add the

DepartmentsLov view object to the application module.

3. Repeat the previous steps to create another read-only view object called JobsLov

based on this SQL query:

SELECT JOB_ID, JOB_TITLE FROM JOBS

4. In this case, set the JobId attribute as the key attribute.

5. Create yet another read-only view object called CountriesLov based on the

following SQL query:

SELECT COUNTRY_ID, COUNTRY_NAME FROM COUNTRIES

Deine CountryId as the key attribute.

6. Now, open the Employees view object deinition and go to the Attributes tab. Create a

new attribute called LovAttrib by selecting New Attribute… from the context menu.

7. In the Details tab, change the attribute Updatable value to Always.

8. Switch to the List of Values tab and click on the Add list of values button (the green

plus sign icon).

9. On the Create List of Values dialog, enter LOV_Departments for the List of

Values Name.

10. Click on the Create new view accessor button (the green plus sign icon next to

the List Data Source) to create a new List Data Source. This will bring up the View

Accessors dialog.

11. On the View Accessors dialog, locate the DepartmentsLov, shuttle it to the View

Accessors list on the right and click OK.

Important Contributors: List of Values, Bind Variables, View Criteria

108

12. Select the DepartmentName for the List Attribute. In the List Return Values

section, the DepartmentName view accessor attribute should be associated with the

LovAttrib. Click OK when done.

13. Repeat the previous steps to add another LOV, called LOV_Jobs. Add the JobsLov

as a view accessor, as you did in the previous steps, and select it as the List Data

Source. Use the JobTitle attribute as the List Attribute.

14. Add one more LOV called LOV_Countries by repeating the previous steps. Add

CountriesLov as a view accessor and select it as the List Data Source. For the

List Attribute, use the CountryName attribute.

15. While at the List of Values tab, click on the Create new attribute button (the green

plus sign icon) next to the List of Values Switcher ield to create a switcher attribute.
Call the attribute LovSwitcher. Now, the List of Values tab should look similar to

the following:

16. Select the LovSwitcher attribute and go to the Details tab. Click on the Expression

radio button in the Default Value section, and then on the Edit value button (the pen

icon). Enter the following expression:

if(JobId == 'SA_REP'){
 return 'LOV_Countries'
} else if(JobId == 'ST_CLERK'){
 return 'LOV_Jobs'
} else if(JobId == 'ST_MAN'){
 return 'LOV_Departments'
} else {
 return null;
}

17. Optionally click on the UI Hints tab and change the Display Hint from Display to Hide.

Chapter 4

109

How it works...

In steps 1 through 4 we created three read-only view objects, one for each LOV. We did not

add any of these read-only view objects to the application module's data model as they are

used internally by the business service. We then created a new transient attribute, called

LovAttrib, for the Employees view object (step 5). This is the attribute that we will use

to add the three LOVs. We added the LOVs by switching to the List of Values tab. In steps

6 through 13, we added the appropriate view objects as accessors to the Employees view

object and associated the accessors with the LOV List Data Source. This indicates the

view accessor that provides the list data at runtime. In each case, we also speciied a view
accessor attribute as the list attribute. This is the view accessor attribute that supplies the

data value to the LovAttrib attribute. You can specify additional view accessor attributes

to supply data for other Employees view object attributes in the List Return Values section

of the Create/Edit List of Values dialog. In step 14, we created a new transient attribute,

called LovSwitcher, to act as the LOV switcher. In step 15, we supplied the default value

to the LOV switcher LovSwitcher attribute in the form of a Groovy expression. In the Groovy

expression, we examine the value of the JobId attribute and based on its value we assign

(by returning the LOV name) the appropriate LOV to the LovSwitcher attribute. Since the

LovSwicher attribute is used as an LOV switcher, the result is that the appropriate LOV is

associated with the LovAttrib attribute. Finally, note that in step 16 you can optionally

set the Display Hint to Hide for the LovAttrib attribute. This will ensure that the speciic
attribute is not visible in the presentation layer UI.

There's more...

For entity-based view objects, you can LOV-enable an attribute using a list data source that is

based on an entity object view accessor. This way a single entity-based view accessor is used

for all view objects based on the entity object, and is applied to each instance of the LOV.

Note, however, that while this will work ine on create and edit forms, it will not work for search
forms. In this case, the LOV must be based on a view accessor deined at the view object
level. For a use case where two LOVs are deined on an attribute—one based on an entity
object accessor and another on a view object accessor—you can use a switcher attribute that

differentiates among the two LOVs based on the following expression:

adf.isCriteriaRow ? "LOV_ViewObject_accessor" :
"LOV_EntityObject_accessor"

For more information on this consult the section How to Specify Multiple LOVs for an

LOV-Enabled View Object Attribute in the Fusion Developer's Guide for Oracle Application

Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16182/toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Important Contributors: List of Values, Bind Variables, View Criteria

110

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Setting up cascading LOVs
Cascading LOVs refer to two or more LOVs where the possible values of one LOV depend on

speciic attribute values deined in another LOV. These controlling attributes are used in order
to ilter the result set produced by the controlled LOVs. The iltering is usually accomplished
by adding named view criteria, based on bind variables, to the controlled LOV list data

source (the view accessor). This allows you to ilter the view object result set by adding query
conditions that augment the view object query WHERE clause. Furthermore, the iltering can
be done by directly modifying the controlled LOV view accessor query, adding the controlling

attributes as bind variable placeholders in its query. This technique comes handy when you

want to set up interrelated LOV components in your UI pages, where the contents of one LOV

are iltered based on the value selected in the other LOV.

For this recipe, we will create two LOVs, one for the DEPARTMENTS table and another for

the EMPLOYEES table, so that when a department is selected only the employees of that

particular department are shown.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection

to the HR schema. You will also need an additional table added to the HR schema called

CASCADING_LOVS. You can create it by running the following SQL command:

CREATE TABLE CASCADING_LOVS (EMPLOYEE_ID NUMBER(6), DEPARTMENT_ID
NUMBER(4));

How to do it...

1. Create a new entity object based on the CASCADING_LOVS table.

2. Since the CASCADING_LOVS table does not deine a primary key, the Create Entity

Object wizard will ask you if you want to create an attribute with a primary key

property based on the ROWID. Select OK.

Chapter 4

111

3. Create a view object based on the CascadingLovs entity object.

4. Create a read-only view object called DepartmentsLov based on the

following query:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM DEPARTMENTS

5. Create another read-only view object called EmployeesLov based on the

following query:

SELECT DEPARTMENT_ID, EMPLOYEE_ID, FIRST_NAME, LAST_NAME

 FROM EMPLOYEES

6. In the Query section, use the Create new bind variable button (the green plus

sign icon) to add a bind variable to EmployeesLov. Call the bind variable

inDepartmentId of Type Number and ensure that the Required checkbox

is unchecked.

Important Contributors: List of Values, Bind Variables, View Criteria

112

7. While in the Query section, click on the Create new view criteria button (the green

plus sign icon) to add view criteria to the EmployeesLov view object. Click the

Add Item button and select DepartmentId for the Attribute. For the Operator

select Equals and for the Operand select Bind Variable. Ensure that you select

the inDepartmentId bind variable that you created in the previous step from the

Parameter combo. Make sure the Ignore Null Values checkbox is unchecked and

that the Validation selection is Optional.

8. Back to the CascadingLovs view object, go to the Attributes section and select the

DepartmentId attribute.

9. Click on the List of Values tab and then on the Add list of values button (the green

plus sign icon).

10. On the Create List of Values dialog, click on the Create new view accessor

button (the green plus sign icon) next to the List Data Source combo and add the

DepartmentsLov view accessor.

11. Select DepartmentId for the List Attribute.

12. While on the Create List of Values dialog, click on the UI Hints tab and in the Display

Attributes section shuttle the DepartmentName attribute from the Available list to

the Selected list. Click OK.

Chapter 4

113

13. Repeat steps 8 through 12 to add an LOV for the EmployeeId attribute. Use the

EmployeesLov as the list data source and EmployeeId as the list attribute. For the

display attributes in the UI Hints tab, use the FirstName and LastName attributes.

14. In the CascadingLovs view object, go to the View Accessors section select the

EmployeesLov view accessor (do not click on the View Deinition link). Then click

on the Edit selected View Accessor button (the pen icon).

15. In the Edit View Accessor dialog, select the View Object section and shuttle the

EmployeesLovCriteria from the Available list to the Selected list. Also, for

the inDepartmentId parameter in the Bind Parameter Values section, enter

DepartmentId in the Value ield and click OK.

16. Double-click on the HrComponentsAppModule application module in the

Application Navigator to open the application module deinition.

17. Go to the Data Model section, select the CascadingLovs view object and shuttle it

from the Available View Objects list to the Data Model.

Important Contributors: List of Values, Bind Variables, View Criteria

114

How it works...

To demonstrate this recipe, we created a new table in the HR schema called CASCADING_
LOVS. This table has two columns an EMPLOYEE_ID and a DEPARTMENT_ID. The table

does not have a primary key constraint, so we will be able to freely add records to it. In a real

world development project, a proper database design would require that all of your database

tables have a primary key deined. Based on this table, we created an entity object called
CascadingLovs (step 1). Since we did not indicate a primary key for the CASCADING_LOVS

table, the framework asked us to indicate a primary key attribute (step 2). We did so by

creating a key attribute called RowID based on the row's ROWID. Then we proceeded to create

a view object called CascadingLovs based on the CascadingLovs entity object (step 3).

In order to setup LOVs for the DepartmentId and EmployeeId attributes, we had to create

the LOV accessor view objects, namely the DepartmentsLov and the EmployeesLov view

objects (steps 4 and 5). We also added named view criteria to the EmployeesLov (steps 6

and 7) based on the inDepartmentId bind variable. This way we will be able to control the

result set produced by the EmployeesLov based on the department ID value. In step 7 when

we created the view criteria, we saw that JDeveloper suggested a default name in the Criteria

Name ield. This is the name that is used to programmatically access the view criteria in your
Java code. The name of the view criteria can be changed; however, we have chosen to use the

default EmployeesLovCriteria provided by JDeveloper.

In steps 8 through 13, we proceeded by LOV-enabling the DepartmentId and EmployeeId

attributes.

The important glue work was done in steps 14 and 15. In these steps, we edited the

EmployeesLov view accessor and declaratively applied the EmployeesLovCriteria on

the accessor. We also provided a value for the inDepartmentId bind variable using the

expression DepartmentId, which indicates the value of the DepartmentId attribute at

runtime. This is the CascadingLovs department identiier attribute that is updated by the
controlling DepartmentsLov LOV. By doing so, we have set the controlling variable's value,

the inDepartmentId bind variable, using the value provided by the DepartmentsLov data

source, that is, the DepartmentId.

Finally, in steps 16 and 17, we added the CascadingLovs view object to the application

module's data model, so that we may be able to test it using the ADF Model Tester.

While running the ADF Model Tester, notice how the employees list is controlled by the

selected department.

Chapter 4

115

There's more...

For the cascading LOVs to work properly on the frontend Fusion web application user

interface, you need to make sure that the autoSubmit property is set to true for the

controlling LOV UI component. This will ensure that, upon selection, the controlling attribute's

value is submitted to the server. The UI component's autoSubmit property can also be set

to a default value by setting the attribute's Auto Submit property at the business component

level. This can be done in the view object's Attributes | UI Hints tab.

Also, note the behavior of the controlled LOV based on the view criteria Ignore Null Values

setting. When this checkbox is selected, null values for the criteria item will be ignored

and the result set will not be iltered yielding all possible employee rows. In this case, the
EmployeesLov view object's WHERE clause is amended by adding OR (:inDepartmentId

is null) to the query. If the Ignore Null Values checkbox is not selected, then null values for

the criteria item are not ignored, yielding no employees rows.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Important Contributors: List of Values, Bind Variables, View Criteria

116

Creating static LOVs
A static LOV is produced by basing its list data source view accessor on a static view object,

that is, a view object that uses a static list as its data source. A static list is a list of constant

data that you either enter manually or import from a text ile using JDeveloper. A static list
could also be produced by basing the view object on a query that generates static data.

The advantage of using a static LOV is that you can display static read-only data in your

application's user interface without having to create a database table for it. In all cases, the

amount of static data presented to the user should be small.

In this recipe, we will create a static view object called ColorLov and use it as an LOV list

data source to LOV-enable a transient attribute of the Employees view object.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it...

1. Create a new view object using the Create View Object wizard.

2. In the Name page, enter ColorsLov for the name of the view object and select

Static list for the Data Source.

3. In the Attributes page, click on the New… button. Create an attribute called ColorDesc.

4. In the Attribute Settings page, select Key Attribute for the ColorDesc attribute.

5. In the Static List page, use the Add Row button (the green plus sign icon) to add the

following data: Black, Blue, Green, Red, White, and Yellow.

6. Click Finish to complete the creation of the ColorsLov view object.

7. Add a new transient attribute to the Employees view object called FavoriteColor.

8. In the Attributes | Details tab for the FavoriteColor attribute, ensure that the

Updatable property is set to Always.

9. Click on the List of Values tab and add an LOV called LOV_FavoriteColor. For the

LOV List Data Source, use the Create new view accessor button (the green plus sign

icon) and select the ColorsLov static view object.

10. For the LOV List Attribute, select the ColorDesc attribute.

Chapter 4

117

How it works...

In steps 1 through 6, we went through the process of creating a view object, called

ColorsLov, which uses a static list as its data source. We have indicated that the view object

has one attribute called ColorDesc (step 3) and we have indicated that attribute as a key

attribute (step 4). Notice in step 5 how the Create View Object wizard allows you to manually

enter the static data. In the same Static List page, the wizard allows you to import data from

a ile in a comma-separated-values (CSV) format.

In order to test the static LOV, we added a transient variable called FavoriteColor to the

Employees view object (step 7-8) and we LOV-enabled the attribute using the ColorsLov as

the list data source view accessor (steps 9-10).

When we test the application module with the ADF Model Tester, the FavoriteColor attribute

is indeed populated by the static values we have entered for the ColorsLov view object.

There's more...

Notice that the static data that is entered for the static view object is saved on a resource

bundle. This allows you to localize the data as needed.

Also note that in some cases where localization of static data is not needed, a read-only view

object that is based on a query producing static data can simulate a static view object. For

instance, consider the read-only view object that is based on the following query:

SELECT 'Black' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Blue' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Green' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Red' AS COLOR_DESC FROM DUAL
UNION
SELECT 'White' AS COLOR_DESC FROM DUAL
UNION
SELECT 'Yellow' AS COLOR_DESC FROM DUAL;

It can be used as a list data source for the FavoriteColor LOV producing the same results.

Important Contributors: List of Values, Bind Variables, View Criteria

118

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Overriding bindParametersForCollection() to
set a view object bind variable

There are times when you need to programmatically set the value of a bind variable used in

the view object query. One way to accomplish this task is by overriding the view object method

bindParametersForCollection() and explicitly specifying the value for the particular

bind variable. This technique comes handy when the bind variable values cannot be speciied
in a declarative way, or the bind variable value source changes dynamically at runtime.

This recipe will show how to provide a default value for a bind variable used in the view object

query if a value has not already been speciied for it.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. Additional functionality will be added to

the ExtViewObjectImpl and ExtApplicationModuleImpl custom framework classes

that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

This recipe is also using the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity

Objects. The HRComponents workspace requires a database connection to the HR schema.

Moreover, we will modify the EmployeeCount view object, which was introduced in the

Using a method validator based on a view accessor recipe in Chapter 2, Dealing with Basics:

Entity Objects.

How to do it...

1. Open the shared components workspace.

2. Open the ExtViewObjectImpl view object framework extension class and add the

following method to it:

protected void setBindVariableValue(Object[] bindVariables,
 String name, Object value) {

 // iterate all bind variables

Chapter 4

119

 for (Object bindVariable : bindVariables) {

 // check for the specific bind variable name

 if (((Object[])bindVariable)[0].toString().equals(name)) {

 // set the bind variable's new value

 ((Object[])bindVariable)[1] = value;

 return;

 }

 }

}

2. Open the ExtApplicationModuleImpl application module framework extension

class and add the following method to it:

public Object getCustomData(String key) {

 // base class returns no custom data

 return null;

}

3. Deploy the shared components workspace into an ADF Library JAR.

4. Open the HRComponents workspace.

5. Open the HrComponentsAppModuleImpl custom application module

implementation class and override the getCustomData() method. In it, replace the

return super.getCustomData() with the following:

return DEFAULT_DEPARTMENT_ID_KEY.equals(key)
 ? DEFAULT_DEPARTMENT_ID : null;

6. Open the EmployeeCount view object, go to the Java page and create a custom

view object class.

7. Open the EmployeeCountImpl custom view object implementation class and

override the bindParametersForCollection() method. Add the following code

to it before the call to super.bindParametersForCollection():

// if bind variable value has not been provided,
// provide a default setting
if (this.getDepartmentId() == null) {
 // get default department id
 Number departmentId = ((Number)((ExtApplicationModuleImpl)
 this.getApplicationModule()).getCustomData(
 DEFAULT_DEPARTMENT_ID_KEY));
 // set bind variable right on the query to
 // default variable
 super.setBindVariableValue(object, "DepartmentId",
 departmentId.toString());
 // set bind variable on view object as well,
 //to be available for this time forward
 this.setDepartmentId(departmentId);
}

Important Contributors: List of Values, Bind Variables, View Criteria

120

8. Finally, add the EmployeeCount view object to the HrComponentsAppModule

application module data model.

How it works...

In the recipe Using a method validator based on a view accessor in Chapter 2, Dealing with

Basics: Entity Objects, we created a view object called EmployeeCount, which we used in

order to get the employee count for speciic departments. The view object was based on the
following query:

SELECT COUNT(*) AS EMPLOYEE_COUNT

FROM EMPLOYEES

WHERE DEPARTMENT_ID = :DepartmentId

The EmployeeCount view object was added as a view accessor to the employee entity

object and it was used in a method validator. In that method validator, a value was

supplied programmatically for the DepartmentId bind variable prior to executing the

EmployeeCount query.

In this recipe, we have used the same EmployeeCount view object to demonstrate

how to supply a default value for the DepartmentId bind variable. We did this by

creating a custom view object implementation class (step 7) and then by overriding its

bindParametersForCollection() method (step 8). This method is called by the

ADF-BC framework to allow you to set values for the view object query's bind variables.

When the framework calls bindParametersForCollection(), it supplies among

the other parameters an Object[], which contains the query's bind variables (the

bindVariables parameter). We set a default value of the DepartmentId bind variable by

calling super.setBindVariableValue(). This is the helper method that we added to the

view object framework extension class in step 2. In the setBindVariableValue() method

we iterate over the query's bind variables until we ind the one we are looking for and once we
ind it, we set its new value.

Note that in bindParametersForCollection() we have called

getApplicationModule() to get the application module for this EmployeeCount

view object instance (having added the EmployeeCount view object to the

HrComponentsAppModule data model in step 9). This method returns an oracle.jbo.
ApplicationModule interface, which we cast to an ExtApplicationModuleImpl. As

a recommended practice, you should not be accessing speciic application modules from
within your view objects. In this case, we relaxed the rule a bit by casting the oracle.
jbo.ApplicationModule interface returned by the getApplicationModule()

method to our application module framework extension class. We have then called

getCustomData(), which we overrode in step 6, to get the default DepartmentId value. It

is this default value (stored in variable departmentId) that we supply when calling super.
setBindVariableValue().

Chapter 4

121

There's more...

Although the executeQueryForCollection() method of ViewObjectImpl method can

be used to set the view object's query bind variable values, do not use this method because

the framework will never invoke it when getEstimatedRowCount() is called to identify the

result set's row count. If you do, getEstimatedRowCount() will not produce the correct row

count as you are altering the query by supplying values to the query's bind variables.

Also, note that with the 11.1.1.5.0 (PS4) release, a new ViewObjectImpl method

called prepareRowSetForQuery() was introduced that can be used to set the query's

bind parameter values. The following code illustrates how to use it to set a value for the

DepartmentId bind variable in this recipe:

public void prepareRowSetForQuery(ViewRowSetImpl vrsImpl) {

 // get default departmentId value as before

 Number departmentId =
 vrsImpl.ensureVariableManager().setVariableValue(
 "DepartmentId", departmentId);
 super.prepareRowSetForQuery(vrsImpl);
}

Both bindParametersForCollection() and prepareRowSetForQuery() are valid

choices for setting the view object's query bind variable values. If for some reason both of

them are overridden, note that the framework will irst call prepareRowSetForQuery() and

then bindParametersForCollection().

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Using a method validator based on a view accessor, Chapter 2, Dealing with Basics:

Entity Objects

Important Contributors: List of Values, Bind Variables, View Criteria

122

Creating view criteria programmatically
View criteria augment the view object's WHERE clause by appending additional query

conditions to it. They work in conjunction with the af:query ADF Faces UI component to

provide query-by-example support to the frontend user interface. View criteria can be created

declaratively in JDeveloper in the Query section of the view object deinition by clicking on
the Create new view criteria button (the green plus sign icon) in the View Criteria section.

Programmatically, the ADF-BC API supports the manipulation of view criteria among others via

the ViewCriteria, ViewCriteriaRow, and ViewCriteriaItem classes, and through

a number of methods implemented in the ViewObjectImpl class. This technique comes

handy when the view criteria cannot be speciied during the design stage. One example might
be the creation of a custom query-by-example page for your application, in which case the

view criteria must be created programmatically at runtime.

In this recipe, we will see how to create view criteria programmatically. The use case will be

to dynamically amend the Employees view object query by adding it to the view criteria. The

values that we will use for the view criteria items will be obtained from the result set of yet

another view object.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

For testing purposes, we will be using the HRComponents workspace, which was created in

the Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing

with Basics: Entity Objects. The HRComponents workspace requires a database connection

to the HR schema.

How to do it...

1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor and add the following searchUsingAdditionalCriteria() method:

public void searchUsingAdditionalCriteria(
 ViewObject providerViewObject,
 String[] attribNames) {

 // create the criteria

 ViewCriteria vc = this.createViewCriteria();

 // set the view criteria name
 vc.setName("searchUsingAdditionalCriteria");

Chapter 4

123

 // AND with previous criteria

 vc.setConjunction(ViewCriteriaComponent.VC_CONJ_AND);

 // get criteria item data from the provider

 // view object

 RowSetIterator it =
 providerViewObject.createRowSetIterator(null);

 it.reset();

 while (it.hasNext()) {

 Row providerRow = it.next();

 // add a criteria item for each attribute

 for (String attribName : attribNames) {

 try {

 // create the criteria item

 ViewCriteriaRow vcRow = vc.createViewCriteriaRow();

 // set the criteria item value

 vcRow.setAttribute(attribName,
 providerRow.getAttribute(attribName));

 // add criteria item to the view criteria

 vc.insertRow(vcRow);

 } catch (JboException e) {

 LOGGER.severe(e);

 }

 }

 }

 // done with iterating provider view object

 it.closeRowSetIterator();

 // apply the criteria to this view object

 this.applyViewCriteria(vc);

 // execute the view object's query

 this.executeQuery();

}

3. For logging purposes, add an ADFLogger to the same class as shown in the

following code:

private static ADFLogger LOGGER = ADFLogger.createADFLogger(
 ExtViewObjectImpl.class);

4. Deploy the shared components projects into an ADF Library JAR.

Important Contributors: List of Values, Bind Variables, View Criteria

124

5. For testing purposes, open the HRComponents workspace and add the

following searchEmployeesUsingAdditionalCriteria() method to the

HrComponentsAppModuleImpl custom application module implementation class:

public void searchEmployeesUsingAdditionalCriteria() {

 // invoke searchUsingAdditionalCriteria() to create

 // result set based on View criteria item

 // data obtained from another view object's rowset

 this.getEmployees()
 .searchUsingAdditionalCriteria(this.getCascadingLovs(),
 new String[] { "EmployeeId" });

}

How it works...

In step 1, we created a method called searchUsingAdditionalCriteria() in the shared

components workspace ExtViewObjectImpl view object framework extension class, to

allow view objects to alter their queries by dynamically creating and applying view criteria. The

data for the view criteria items are provided by another view object. The method accepts the

view object that will provide the view criteria item data values (providerViewObject) and

an array of attribute names (attribNames) that is used to create the view criteria items, and

also retrieve the data from the provider view object. The following lines show how this method

is called from the searchEmployeesUsingAdditionalCriteria() method that we

added to the application module implementation class in step 5:

((ExtViewObjectImpl)this.getEmployees())
 .searchUsingAdditionalCriteria(this.getCascadingLovs(),
 new String[] { "EmployeeId" });

As you can see, we have used the view object returned by this.getCascadingLovs() in

order to obtain the view criteria item values. A single criteria item based on the employee ID

was also used.

In the searchUsingAdditionalCriteria(), we irst called createViewCriteria()

to create view criteria for the view object. This returns an oracle.jbo.ViewCriteria

object representing the view criteria. This object can be used subsequently to add

criteria items onto it. Then we called setConjunction() on the view criteria to set the

conjunction operator (OR, AND, UNION, NOT). The conjunction operator is used to combine

multiple criteria when nested view criteria are used by the view object. This could be

the case if the view object has deined additional view criteria. We have used an AND
conjunction in this example (the ViewCriteriaComponent.VC_CONJ_AND constant),

although this can easily be changed by passing the conjunction as another parameter to

searchUsingAdditionalCriteria().

Chapter 4

125

In order to retrieve the view criteria item data, we iterated the provider view object, and for

each row of data we called createViewCriteriaRow() on the view criteria to create the

criteria row. This method returns an oracle.jbo.ViewCriteriaRow object representing

a criteria row. We added the view criteria row data by calling setAttribute() on the

newly created criteria row, and we added the criteria row to the view criteria by calling

insertRow() on the view criteria, passing the criteria row as an argument.

Once all criteria items have been setup, we call applyViewCriteria() on the view object,

specifying the newly created view criteria. Then we call executeQuery() to execute the

view object's query based on the applied view criteria. The result set produced matches the

applied criteria.

There's more...

Note what happens when the framework executes the view object query after applying the

view criteria programmatically. Adding two criteria rows, for example, will append the following

to the query's WHERE clause:

(((Employee.EMPLOYEE_ID = :vc_temp_1)) OR ((Employee.EMPLOYEE_ID
= :vc_temp_2)))

As you can see, the framework amends the query using temporary bind variables (vc_
temp_1, vc_temp_2, and so on) for each criteria row.

Also note the following:

 f Calling applyViewCriteria() on the view object erases any previously applied

criteria. In order to preserve these, the framework provides another version of

applyViewCriteria() that accepts an extra bAppend Boolean parameter. Based

on the value of bAppend, the newly applied criteria can be appended to the existing

criteria, if any. Moreover, to apply multiple criteria at once, the framework provides the

setApplyViewCriteriaNames() method. This method accepts a java.lang.
String array of the criteria names to apply, and by default ANDs the criteria applied.

 f The way the setAttribute() method of ViewCriteriaRow was used in

this recipe sets up an equality operation for the criterion, that is, EmployeeId

= someValue. In order to specify a different operation for the criterion item,

you must specify the operation as part of the setAttribute() method call.

For example, vcRow.setAttribute("EmployeeId","< 150"), vcRow.
setAttribute("EmployeeId","IN (100,200,201)") and so on.

Important Contributors: List of Values, Bind Variables, View Criteria

126

 f Finally, note that you can setup the view criteria item via the setOperator() and

setValue() methods supplied by the ViewCriteriaItem class. You will need

to call ensureCriteriaItem() on the criteria row in order to get access to a

ViewCriteriaItem. The following is an example:

// get the criteria item from the criteria row

ViewCriteriaItem criteriaItem =
 vcRow.ensureCriteriaItem("EmployeeId");

// set the criteria item operator

criteriaItem.setOperator("<");

// set the criteria item value

criteriaItem.getValues().get(0).setValue(new Integer(150));

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Clearing the values of bind variables
associated with the view criteria

This recipe shows you how to clear the values associated with bind variables used as

operands in view criteria items for a speciic view object. It implements a method called
clearCriteriaVariableValues() in the view object framework extension class, which

becomes available for all view objects to call. Bind variables are associated as operands for

criteria items during the process of creating the view object's view criteria in the Create View

Criteria dialog. Also, as we have seen in the Creating view criteria programmatically recipe,

bind variables are generated automatically by the framework when programmatically creating

view criteria. You can use this technique when you want to clear the search criteria on a

search form based on some user action. A use case might be, for instance, that you want to

immediately clear the search criteria after the search button is pressed.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 4

127

How to do it...

1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor and add the following clearCriteriaValues() method:

public void clearCriteriaVariableValues(
 String[] criteriaNames) {

 // iterate all view criteria names

 for (String criteriaName : criteriaNames) {

 // get the view criteria

 ViewCriteria vc = this.getViewCriteria(criteriaName);

 if (vc != null) {

 VariableValueManager vvm = vc.ensureVariableManager();

 Variable[] variables = vvm.getVariables();

 for (Variable var: variables) {

 vvm.setVariableValue(var, null);

 }

 }

 }

}

How it works...

The clearCriteriaVariableValues() is added to the ExtViewObjectImpl view

object framework extension class, thus making it available for all view objects to call it. The

method accepts a java.lang.String array of view criteria names (criteriaNames)

and iterates over them, getting the associated view criteria for each of them. It then calls

ensureVariableManager() on the view criteria to retrieve the bind variables manager, an

oracle.jbo.VariableValueManager interface, which is implemented by the framework

to manage named variables.

The bind variables are retrieved by calling getVariables() on the variable manager. This

method returns an array of objects implementing the oracle.jbo.Variable interface,

the actual bind variables. Finally, we iterate over the bind variables used by the view criteria,

setting their values to null by calling setVariableValue() for each one of them.

Important Contributors: List of Values, Bind Variables, View Criteria

128

There's more...

Note that the technique used in the recipe does not remove the view criteria associated with

the view object, it simply resets the values of the bind variables associated with the view

criteria. In order to completely remove the view criteria associated with a particular view

object, call the ViewObjectImpl method removeViewCriteria(). This method irst
unapplies the speciic view criteria and then completely removes them from the view object.
If you want to unapply the view criteria without removing them from the view object, use

the removeApplyViewCriteriaName() method. Furthermore, you can also clear all the

view object view criteria in effect by calling applyViewCriteria() on the view object and

specifying null for the view criteria name. Finally, to clear any view criteria in effect, you can

also delete all the view criteria rows from it using the remove() method. Any of the above

calls will alter the view criteria for the lifetime of the speciic view object instance until the next
time any of these calls are invoked again.

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

Searching case insensitively using view
criteria

This recipe shows you a technique that you can use to handle case-insensitive (or

case sensitive for that matter) searching for strings, when using view criteria for a view

object. The framework provides various methods, such as setUpperColumns() and

isUpperColumns(), for instance, at various view criteria levels (ViewCriteria,

ViewCriteriaRow and ViewCriteriaItem) that can be used to construct generic helper

methods to handle case searching. This technique can be used to allow case-insensitive

or case-sensitive searches in your application based on some controlling user interface

component or some application coniguration option. For instance, a custom search form
can be constructed with a checkbox component indicating whether the search will be case

sensitive or not.

Getting ready
You will need to have access to the shared components workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. The functionality will be added to the

ExtViewObjectImpl custom framework class that was developed in the Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 4

129

How to do it...

1. Open the shared components workspace.

2. Open the ExtViewObjectImpl.java view object framework extension class in the

Java editor and add the following setViewCriteriaCaseInsensitive() method:

public void setViewCriteriaCaseInsensitive(
 boolean bCaseInsensitive) {

 // get all View Criteria managed by this view object

 ViewCriteria[] vcList = getAllViewCriterias();

 if (vcList != null) {

 // iterate over all view criteria

 for (ViewCriteria vc : vcList) {

 // set case-insensitive or case-sensitive as

 // indicated by the bCaseInsensitive parameter

 if (vc.isUpperColumns() != bCaseInsensitive)

 vc.setUpperColumns(bCaseInsensitive);

 }

 }

}

How it works...

We have added the setViewCriteriaCaseInsensitive() method in the

ExtViewObjectImpl view object framework extension class to allow all view objects to call

it in order to enable or disable case-insensitive search based on view criteria managed by the

speciic view object. The boolean parameter bCaseInsensitive indicates whether case-

insensitive search is to be enabled for the view criteria.

The method gets access to all view criteria managed by the speciic view object by
calling getAllViewCriterias(). This framework method returns an oracle.jbo.
ViewCriteria array containing all view criteria (both applied and unapplied) that are

managed by the view object. It then iterates over them, checking in each iteration whether the

current case-insensitive setting, obtained by calling isUpperColumns(), differs from the

desired setting indicated by bCaseInsensitive. If this is the case, case-insensitivity is set

(or reset) by calling setUpperColumns() for the speciic view criteria.

When you enable case-insensitive search for the view criteria, the framework—when it adjusts

the view object a query, based on the view criteria—calls the UPPER() database function in

the WHERE clause for those criteria items where case-insensitive search has been enabled.

This behavior can be seen when you declaratively deine view criteria using the Create View

Criteria dialog. Notice how the View Object Where Clause is altered as you check and

uncheck the Ignore Case checkbox. This behavior is achieved programmatically as explained

in this recipe by calling setUpperColumns().

Important Contributors: List of Values, Bind Variables, View Criteria

130

There's more...

As mentioned earlier, the framework allows you to control case-insensitive search at various

levels. In this recipe, we have seen how to affect case searching for the view criteria as a

whole, by utilizing the setUpperColumns() method deined for the ViewCriteria object.

Individual criteria rows and items can be set separately by calling setUpperColumns() for

speciic ViewCriteriaRow and ViewCriteriaItem objects respectively.

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

5
Putting them all

together: Application
Modules

In this chapter, we will cover:

 f Creating and using generic extension interfaces

 f Exposing a custom method as a web service

 f Accessing a service interface method from another application module

 f A passivation/activation framework for custom session-speciic data

 f Displaying application module pool statistics

 f Using a shared application module for static lookup data

 f Using a custom database transaction

Introduction
An application module in the ADF Business Components framework represents a basic

transactional unit that implements speciic business use cases. It encompasses a data model
comprising a hierarchy of view objects and optionally other application module instances,

along with a number of custom methods that together implement a speciic business use
case. It allows the creation of bindings at the ViewController project layer, through the

corresponding application model data control and the ADF model layer (ADFm). Moreover, it

allows for the creation of custom functionality that can be exposed through its client interface

and subsequently bound as method bindings. Method bindings declaratively bind user

interface components to back-end data and services providing data access.

Putting them all together: Application Modules

132

Custom application module methods can easily be exposed as web services through the

application module service interface. Moreover, application modules and their conigured view
object instances can be exposed as service data object (SDO) components for consumption in

a SOA infrastructure.

Creating and using generic extension
interfaces

Back in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations in

the Setting up BC base classes recipe, we introduced a number of framework extension

classes for various business components. We did this so that we could provide common

implementation functionality for all derived business components throughout the application.

In this recipe, we will go over how to expose parts of that common functionality as a generic

extension interface. By doing so, this generic interface becomes available to all derived

business components, which in turn can expose it to their own client interface and make it

available to the ViewController layer through the bindings layer.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. Additional functionality will be added to the

ExtApplicationModuleImpl custom framework class that was developed in the Setting

up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity

Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the shared components workspace in JDeveloper.

2. Create an interface called ExtApplicationModule as follows:

public interface ExtApplicationModule {

 // return some user authority level, based on

 // the user's name

 public int getUserAuthorityLevel();

}

Chapter 5

133

3. Locate and open the custom application module framework extension

class ExtApplicationModuleImpl. Modify it so that it implements the

ExtApplicationModule interface.

4. Then, add the following method to it:

public int getUserAuthorityLevel() {

 // return some user authority level, based on the user's name

 return ("anonymous".equalsIgnoreCase(this.
getUserPrincipalName()))?
 AUTHORITY_LEVEL_MINIMAL : AUTHORITY_LEVEL_NORMAL;

}

5. Rebuild the SharedComponents workspace and deploy it as an ADF Library JAR.

6. Now, open the HRComponents workspace.

7. Locate and open the HrComponentsAppModule application module deinition.

8. Go to the Java section and click on the Edit application module client interface

button (the pen icon in the Client Interface section).

9. On the Edit Client Interface dialog, shuttle the getUserAuthorityLevel() interface

from the Available to the Selected list.

Putting them all together: Application Modules

134

How it works…

In steps 1 and 2, we have opened the SharedComponents workspace and created an

interface called HrComponentsAppModule. This interface contains a single method called

getUserAuthorityLevel().

Then, we updated the application module framework extension class

HrComponentsAppModuleImpl so that it implements the HrComponentsAppModule

interface (step 3). We also implemented the method getUserAuthorityLevel() required

by the interface (step 4). For the sake of this recipe, this method returns a user authority level

based on the authenticated user's name. We retrieve the authenticated user's name by calling

getUserPrincipal().getName() on the SecurityContext, which we retrieve from the

current ADF context (ADFContext.getCurrent().getSecurityContext()). If security

is not enabled for the ADF application, the user's name defaults to anonymous. In this

example, we return AUTHORITY_LEVEL_MINIMAL for anonymous users, and for all others

we return AUTHORITY_LEVEL_NORMAL. We rebuilt and redeployed the SharedComponents

workspace in step 5.

In steps 6 through 9, we opened the HRComponents workspace and added the

getUserAuthorityLevel() method to the HrComponentsAppModuleImpl client

interface. By doing this, we exposed the getUserAuthorityLevel() generic extension

interface to a derived application module, while keeping its implementation in the base

framework extension class ExtApplicationModuleImpl.

There's more…

Note that the steps followed in this recipe to expose an application module framework

extension class method to a derived class' client interface can be followed for other business

components framework extension classes as well.

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Chapter 5

135

Exposing a custom method as a web service
Service-enabling an application module allows you, among others, to expose custom

application module methods as web services. This is one way for service consumers to

consume the service-enabled application module. The other possibilities are accessing

the application module by another application module, and accessing it through a Service

Component Architecture (SCA) composite. Service-enabling an application module allows

access to the same application module both through web service clients and interactive

web user interfaces. In this recipe, we will go over the steps involved in service-enabling an

application module by exposing a custom application module method to its service interface.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

Furthermore, for this recipe, we will expose the adjustCommission() application module

method that was developed back in Chapter 3, A Different Point of View: View Objects

Techniques for the Iterating a view object using a secondary rowset iterator recipe as a

web service.

How to do it…

1. Open the HRComponents project in JDeveloper.

2. Double-click on the HRComponentsAppModule application module in the

Application Navigator to open its deinition.

3. Go to the Service Interface section and click on the Enable support for Service

Interface button (the green plus sign icon in the Service Interface section). This will

start the Create Service Interface wizard.

4. In the Service Interface page, accept the defaults and click Next.

Putting them all together: Application Modules

136

5. In the Service Custom Methods page, locate the adjustCommission() method

and shuttle it from the Available list to the Selected list. Click on Finish.

6. Observe that the adjustCommission() method is shown in the Service Interface

Custom Methods section of the application module's Service Interface. The service

interface iles were generated in the serviceinterface package under the

application module and are shown in the Application Navigator.

7. Double-click on the weblogic-ejb-jar.xml ile under the META-INF package in

the Application Navigator to open it.

Chapter 5

137

8. In the Beans section, select the com.packt.jdeveloper.
cookbook.hr.components.model.application.common.
HrComponentsAppModuleService Bean bean and click on the Performance

tab. For the Transaction timeout ield, enter 120.

How it works…

In steps 1 through 6, we have exposed the adjustCommission() custom application

module method to the application module's service interface. This is a custom method that

adjusts all the Sales department employees' commissions by the percentage speciied. As
a result of exposing the adjustCommission() method to the application module service

interface, JDeveloper generates the following iles:

 f HrComponentsAppModuleService.java: Deines the service interface

 f HrComponentsAppModuleServiceImpl.java: The service implementation class

 f HrComponentsAppModuleService.xsd: The service schema ile describing the
input and output parameters of the service

 f HrComponentsAppModuleService.wsdl: The Web Service Deinition Language
(WSDL) ile, describing the web service

 f ejb-jar.xml: The EJB deployment descriptor. It is located in the src/META-INF

directory

 f weblogic-ejb-jar.xml: The WebLogic-speciic EJB deployment descriptor,
located in the src/META-INF directory

Putting them all together: Application Modules

138

In steps 7 and 8, we adjust the service Java Transaction API (JTA) transaction timeout to 120

seconds (the default is 30 seconds). This will avoid any exceptions related to transaction

timeouts when invoking the service. This is an optional step added speciically for this recipe,
as the process of adjusting the commission for all sales employees might take longer than the

default 30 seconds, causing the transaction to time out.

To test the service using the JDeveloper integrated WebLogic application server, right-click

on the HrComponentsAppModuleServiceImpl.java service implementation ile in the
Application Navigator and select Run or Debug from the context menu. This will build and

deploy the HrComponentsAppModuleService web service into the integrated WebLogic

server. Once the deployment process is completed successfully, you can click on the service

URL in the Log window to test the service. This will open a test window in JDeveloper and also

enable the HTTP Analyzer. Otherwise, copy the target service URL from the Log window and

paste it into your browser's address ield. This will bring up the service's endpoint page.

On this page, select the adjustCommission method from the Operation drop down, specify

the commissionPctAdjustment parameter amount and click on the Invoke button to execute

the web service. Observe how the employees' commissions are adjusted in the EMPLOYEES

table in the HR schema.

Chapter 5

139

There's more…

For more information on service-enabling application modules consult chapter Integrating

Service-Enabled Application Modules in the Fusion Developer's Guide for Oracle Application

Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16182/toc.htm.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Iterating a view object using a secondary rowset iterator, Chapter 3, A Different Point

of View: View Objects Techniques

Accessing a service interface method from
another application module

In the recipe Exposing a custom method as a web service in this chapter, we went

through the steps required to service-enable an application module and expose a custom

application module method as a web service. We will continue in this recipe by explaining

how to invoke the custom application module method, exposed as a web service, from

another application module.

Getting ready
This recipe will call the adjustCommission() custom application module method that was

exposed as a web service in the Exposing a custom method as a web service recipe in this

chapter. It requires that the web service is deployed in WebLogic and that it is accessible.

The recipe also requires that both the SharedComponents workspace and the

HRComponents workspace are deployed as ADF Library JARs and that are added to the

workspace used by this speciic recipe. Additionally, a database connection to the HR schema

is required.

How to do it…

1. Ensure that you have built and deployed both the SharedComponents and

HRComponents workspaces as ADF Library JARs.

2. Create a File System connection in the Resource Palette to the directory path

where the SharedComponents.jar and HRComponents.jar ADF Library JARs

are located. In the book source code, they are located in the chapter5/recipe3/
ReUsableJARs directory.

Putting them all together: Application Modules

140

3. Create a new Fusion Web Application (ADF) called HRComponentsCaller using

the Create Fusion Web Application (ADF) wizard.

4. Create a new application module called HRComponentsCallerAppModule using

the Create Application Module wizard. In the Java page, check on the Generate

Application Module Class checkbox to generate a custom application module

implementation class. JDeveloper will ask you for a database connection during this

step, so make sure that a new database connection to the HR schema is created.

5. Expand the File System | ReUsableJARs connection in the Resource Palette and

add both the SharedComponents and HRComponents libraries to the project.

You do this by right-clicking on the jar ile and selecting Add to Project… from the

context menu.

6. Bring up the business components Project Properties dialog and go to the Libraries

and Classpath section. Click on the Add Library… button and add the BC4J Service

Client and JAX-WS Client extensions.

7. Double-click on the HRComponentsCallerAppModuleImpl.java custom

application module implementation ile in the Application Navigator to open it

in the Java editor.

8. Add the following method to it:

public void adjustCommission(

 BigDecimal commissionPctAdjustment) {

 // get the service proxy

 HrComponentsAppModuleService service =
 (HrComponentsAppModuleService)ServiceFactory
 .getServiceProxy(
 HrComponentsAppModuleService.NAME);

 // call the adjustCommission() service

 service.adjustCommission(commissionPctAdjustment);

}

9. Expose adjustCommission() to the HRComponentsCallerAppModule

client interface.

10. Finally, in order to be able to test the HRComponentsCallerAppModule application

module with the ADF Model Tester, locate the connections.xml ile in the
Application Resources section of the Application Navigator under the Descriptors |

ADF META-INF node, and add the following coniguration to it:

<Reference
 name="{/com/packt/jdeveloper/cookbook/hr/components/model/
 application/common/}HrComponentsAppModuleService"
 className="oracle.jbo.client.svc.Service" xmlns="">
<Factory
 className="oracle.jbo.client.svc.ServiceFactory"/>
<RefAddresses>
<StringRefAddr addrType="serviceInterfaceName">

Chapter 5

141

<Contents>com.packt.jdeveloper.cookbook.hr.components.model.
application.common.serviceinterface.HrComponentsAppModuleService
</Contents>

</StringRefAddr>

<StringRefAddr addrType="serviceEndpointProvider">

<Contents>ADFBC</Contents>

</StringRefAddr>

<StringRefAddr addrType="jndiName">

<Contents>HrComponentsAppModuleServiceBean#com.packt.jdeveloper.
 cookbook.hr.components.model.application.common.
 serviceinterface.HrComponentsAppModuleService</Contents>

</StringRefAddr>

<StringRefAddr addrType="serviceSchemaName">

<Contents>HrComponentsAppModuleService.xsd</Contents>

</StringRefAddr>

<StringRefAddr addrType="serviceSchemaLocation">

<Contents>com/packt/jdeveloper/cookbook/hr/components/model/
application/common/serviceinterface/</Contents>

</StringRefAddr>

<StringRefAddr addrType="jndiFactoryInitial">

<Contents>weblogic.jndi.WLInitialContextFactory</Contents>

</StringRefAddr>

<StringRefAddr addrType="jndiProviderURL">

<Contents>t3://localhost:7101</Contents>

</StringRefAddr>

</RefAddresses>

</Reference>

How it works…

In steps 1 and 2, we have made sure that both the SharedComponents and HRComponents

ADF Library JARs are deployed and that a ile system connection was created, in order that
both of these libraries get added to a newly created project (in step 5). Then, in steps 3 and

4, we create a new Fusion web application based on ADF, and an application module called

HRComponentsCallerAppModule. It is from this application module that we intend to call

the adjustCommission() custom application module method, exposed as a web service by

the HrComponentsAppModule service-enabled application module in the HRComponents

library JAR. For this reason, in step 4, we have generated a custom application module

implementation class. We proceed by adding the necessary libraries to the new project in

steps 5 and 6. Speciically, the following libraries were added: SharedComponents.jar,

HRComponents.jar, BC4J Service Client, and JAX-WS Client.

Putting them all together: Application Modules

142

In steps 7 through 9, we create a custom application module method called

adjustCommission(), in which we write the necessary glue code to call our web service. In

it, we irst retrieve the web service proxy, as a HrComponentsAppModuleService interface,

by calling ServiceFactory.getServiceProxy() and specifying the name of the web

service, which is indicated by the constant HrComponentsAppModuleService.NAME in the

service interface. Then we call the web service through the retrieved interface.

In the last step, we have provided the necessary coniguration in the connections.xml

so that we will be able to call the web service from an RMI client (the ADF Model Tester).

This ile is used by the web service client to locate the web service. For the most part, the
<Reference> information that was added to it was generated automatically by JDeveloper

in the Exposing a custom method as a Web service recipe, so it was copied from there. The

extra coniguration information that had to be added is the necessary JNDI context properties
jndiFactoryInitial and jndiProviderURL that are needed to resolve the web service

on the deployed server. You should change these appropriately for your deployment. Note that

these parameters are the same as the initial context parameters used to lookup the service

when running in a managed environment.

To test calling the web service, ensure that you have irst deployed it and that it is running. You
can then use the ADF Model Tester, select the adjustCommission method and execute it.

There's more…

For additional information related to such topics as securing the ADF web service, enabling

support for binary attachments, deploying to WebLogic, and more, refer to the Integrating

Service-Enabled Application Modules section in the Fusion Developer's Guide for Oracle

Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Exposing a custom method as a web service, Chapter 5, Putting them all together:

Application Modules

Chapter 5

143

A passivation/activation framework for
custom session-speciic data

In order to improve performance and preserve a stateful notion while utilizing a stateless

protocol (that is, HTTP) the ADF Business Components framework implements the concept

of application module pooling. This is a technique of maintaining a limited number of

application modules, the exact number speciied by coniguration, in a pool, which are
preserved across multiple user requests for the same HTTP session. If an application module

instance for a session already exists in the application module pool, it gets reused. When all

available application modules in the pool have been associated with speciic sessions, an
application module already linked with a particular session must be freed. This requires that

the data associated with the application module is saved.

The process of saving the information associated with the speciic application module is
called passivation. The information is stored in a passivation store, usually a database, in

XML format. The opposite process of restoring the state of the application module from the

passivation store is called activation. Custom data is associated with speciic application
modules, and therefore with speciic user sessions, by using a Hashtable obtained from

an oracle.jbo.Session object. The Hashtable is obtained by calling getSession().
getUserData() from the application module implementation class.

If you are using such custom data as part of some algorithm in your application and you expect

the custom data to persist from one user request to another, passivation (and subsequent

activation) support for these custom data must be implemented programmatically. You can

add custom passivation and activation logic to your application module implementation

class by overriding the ApplicationModuleImpl methods passivateState() and

activateState() respectively. The passivateState() method creates the necessary XML

elements for the application module's custom data that must be passivated. Conversely, the

activateState() method detects the speciic XML elements that identify the custom data in
the passivated XML document and restores them back into the session custom data.

This recipe will show you how to do this, and at the same time build a mini framework to avoid

duplication of the basic passivation/activation code that you must write for all the application

modules in your project.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. Additional functionality will be added to the

ExtApplicationModuleImpl custom framework class that was developed in the Setting

up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

Putting them all together: Application Modules

144

This recipe is also using the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity

Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the SharedComponents workspace in JDeveloper and load the

ExtApplicationModuleImpl application module framework extension class in

the Java editor.

2. Add the following methods to the ExtApplicationModuleImpl application module

framework extension class:

protected String[] onStartPassivation() {

 // default implementation: no passivation ids

 // are defined

 return new String[] { };

}

protected String onPassivate(String passivationId) {

 // default implementation: passivates nothing

 return null;

}

protected void onEndPassivation() {

 // default implementation: does nothing

}

protected String[] onStartActivation() {

 // default implementation: no activation ids
 // are defined

 return new String[] { };

}

protected void onActivate(String activationId,
 String activationData) {

 // default implementation: activates nothing

}

protected void onEndActivation() {

 // default implementation: does nothing

}

3. Override the void passivateState(Document, Element) method. Add the

following code after the call to super.passivateState():

// begin custom data passivation: returns a

// list of the custom data passivation identifiers

String[] passivationIds = onStartPassivation();

// process all passivation identifiers

for (String passivationId : passivationIds) {

// check for valid identifier

Chapter 5

145

 if (passivationId != null &&
 passivationId.trim().length() > 0) {

 // passivate custom data: returns
 // the passivation data

 String passivationValue =

 onPassivate(passivationId);

 // check for valid passivation data

 if (passivationValue != null &&
 passivationValue.length() > 0) {

 // create a new text node in the

 // passivation XML

 Node node =
 document.createElement(passivationId);

 Node cNode =
 document.createTextNode(passivationValue);

 node.appendChild(cNode);

 // add the passivation node to the
 // parent element

 element.appendChild(node);

 }

 }

}

// inform end of custom data passivation

onEndPassivation();

4. Override the activateState(Element element) method. Add the following code

after the call to super.activateState():

// check for element to activate

if (element != null) {

 // begin custom data activation: returns a

 // list of the custom data activation identifiers

 String[] activationIds = onStartActivation();

 // process all activation identifiers

 for (String activationId : activationIds) {

 // check for valid identifier

 if (activationId != null &&
 activationId.trim().length() > 0) {

 // get nodes from XML for the specific

 // activation identifier

 NodeList nl =
 element.getElementsByTagName(activationId);

 // if it was found in the activation data

 if (nl != null) {

 // activate each node

Putting them all together: Application Modules

146

 for (int n = 0, length =
 nl.getLength(); n < length; n++) {

 Node child =
 nl.item(n).getFirstChild();

 if (child != null) {

 // do the actual custom data

 // activation

 onActivate(activationId,
 child.getNodeValue().toString());

 break;

 }

 }

 }

 }

 }

 // inform end of custom data activation

 onEndActivation();

}

5. Rebuild and redeploy the SharedComponents ADF Library JAR.

6. Open the HRComponents workspace and load the HrComponentsAppModuleImpl

and HrComponentsAppModule application module custom implementation classes

into the Java editor.

7. Add the following getActivationPassivationIds() helper method. Also, ensure

that you deine a constant called CUSTOM_DATA_PASSIVATION_ID indicating the

custom data passivation identiier.
private static final String CUSTOM_DATA_PASSIVATION_ID =
 "customDataPassivationId";

private String[] getActivationPassivationIds() {

 // return the passivation/activation identifiers

 return new String[] { CUSTOM_DATA_PASSIVATION_ID };

}

8. Override the onStartPassivation(), onPassivate(),

onStartActivation(), and onActivate() methods. Provide the following

implementation for them:

protected String[] onStartPassivation() {

 // return the passivation identifiers

 return getActivationPassivationIds();

}

protected String onPassivate(String passivationId) {

 String passivationData = null;

 // passivate this application module's

 // custom data only

Chapter 5

147

 if (CUSTOM_DATA_PASSIVATION_ID.equals(

 passivationId)) {

 // return the custom data from the Application

 // Module session user data

 passivationData = (String)getSession()
 .getUserData().get(CUSTOM_DATA_PASSIVATION_ID);

 }

 return passivationData;

}

protected String[] onStartActivation() {

 // return the activation identifiers

 return getActivationPassivationIds();

}

protected void onActivate(String activationId,

 String activationData) {

 // activate this application module's custom data only

 if (CUSTOM_DATA_PASSIVATION_ID.equals(activationId)) {

 // add custom data to the Application

 // Module's session

 getSession().getUserData().put(
 CUSTOM_DATA_PASSIVATION_ID, activationData);

 }

}

9. Finally, for testing purposes, override the prepareSession() method and add the

following code after the call to super.prepareSession():

// add some custom data to the Application
// Module session

getSession().getUserData()
 .put(CUSTOM_DATA_PASSIVATION_ID,
 "Some custom data");

How it works…

In the irst two steps, we have laid out a basic passivation/activation framework by adding a
number of methods to the ExtApplicationModuleImpl application module framework

extension class dealing speciically with this process. Speciically, these methods are:

 f onStartPassivation(): The framework calls this method to indicate that a

passivation process is about to start. Derived application modules that need to

passivate custom data will override this method and return a java.lang.String

array of passivation identiiers, indicating custom data that needs to be passivated.

Putting them all together: Application Modules

148

 f onPassivate(): The framework calls this method to indicate that some speciic
custom data, identiied by the passivationId parameter, needs to be passivated.

Derived application modules will override this method to passivate the speciic
custom data. It returns the passivated data as a java.lang.String.

 f onEndPassivation(): This method is called by the framework to indicate that the

passivation process is complete. Derived application modules could override this

method to perform post-passivation actions.

 f onStartActivation(): This method is called by the framework to indicate that

an activation process is about to begin. Derived application modules in need of

activating custom data, should override this method and return a list of activation

identiiers.

 f onActivate(): This method is called by the framework when some custom data—

that is, the parameter activationData—needs to be activated. The custom data is

identiied by a unique identiier indicated by the parameter activationId. Derived

application modules should override this method and restore the custom data being

activated into the application module's user data Hashtable.

 f onEndActivation(): This method indicates the end of the activation process. It

can be overriden by derived application modules to do some post-activation actions.

These methods do nothing at the base class level. It is when they

are overridden by derived application modules (see step 8) that

they come to life.

In step 3, we have overridden the ADF Business Components framework method

passivateState() and hooked up our own passivation/activation framework to it. ADF

calls this method to indicate that a passivation is taking place. In it, after calling super.
passivateState() to allow for the ADF processing, we irst call onStartPassivation().

If a derived application module has overridden this method, it should return a list of

passivation identiiers. These identiiers should uniquely identify the application module
custom data that needs to be passivated at the application module level. We then iterate

over the passivation identiiers, calling onPassivate() each time to retrieve the passivation

data. We create a new XML node for the passivation identiier, we add the passivation data to
it and append it to the parent XML node that is passed as a parameter by the ADF framework

(the element parameter) to passivateState(). When all passivation identiiers have been
processed, onEndPassivation() is called.

Chapter 5

149

Step 4 is somewhat similar and does the activation. In this case, we have overridden the

ADF activateState() method, which is called by the framework to indicate that the

activation process is taking place. In it, we irst call super.activateState() to allow for

framework processing and then call onStartActivation() to get a list of the activation

identiiers. We iterate over the activation identiiers, looking for each identiier in the
activated XML data for the application module element. This is done by calling element.
getElementsByTagName(). This method could possibly return multiple nodes, so for each

we call onActivate() to activate the speciic custom data. When we call onActivate(),

we pass the activation identiier and the activation data to it as arguments. It is then the
responsibility of the derived application module to handle the speciics of the activation.
Finally, when all activation identiiers have been processed, we call onEndActivation() to

indicate that the activation process has ended.

After we have added these changes to the ExtApplicationModuleImpl application

module framework extension class, we make sure that the SharedComponents ADF Library

JAR was redeployed (in step 5).

In steps 6 through 8, we have added passivation/activation support for custom

data to the HrComponentsAppModule application module in the HRComponents

workspace. This is done by overriding the onStartPassivation(), onPassivate(),

onStartActivation(), and onActivate() methods (in step 8). The list of passivation

and activation identiiers comes from the getActivationPassivationIds() method

that we added in step 7. For this recipe, only a single custom data, identiied by the constant
CUSTOM_DATA_PASSIVATION_ID, is passivated. Custom data is saved at the user

data Hashtable in the oracle.jbo.Session associated with the speciic application
module. It is retrieved by calling getSession().getUserData().get(CUSTOM_DATA_
PASSIVATION_ID) in the onPassivate() method. Similarly, it is set in onActivate()

by calling getSession().getUserData().put(CUSTOM_DATA_PASSIVATION_ID and

activationData().

In this case, the activation data is passed as an argument (the

activationData parameter) to the onActivate() by

the activateState() implemented in application module

framework extension class, as in step 4.

Finally, note the code in step 9. In the overridden prepareSession(), we have initialized

the custom data by calling getSession().getUserData().put(CUSTOM_DATA_
PASSIVATION_ID, "Some custom data").

Putting them all together: Application Modules

150

To test the custom data passivation/activation framework, run the application module

with the ADF Model Tester. The ADF Model Tester provides support for passivation and

activation via the Save Transaction State and Restore Transaction State menu items

under the File menu. Observe the generated passivation XML data in the JDeveloper Log

window when File | Save Transaction State is chosen. In particular, observe that the

<customDataPassivationId>Some custom data</customDataPassivationId>

node is added to the <AM> node of the passivated XML document. This is the session data

added in step 9 for testing purposes to demonstrate this passivation/activation framework.

There's more…

Note that the activateState() method is called by the ADF Business Components

framework after the view objects instances associated with the application module have been

activated by the framework. If you need to activate custom data that would be subsequently

accessed by your view objects, then you will need to enhance the custom data passivation/

activation framework by overriding prepareForActivation() and provide the activation

logic there instead.

Also, note that the ADF Business Components framework provides similar

passivateState() and activateState() methods at the view object level for

passivating and activating view object custom data. In this case, custom data is stored in the

user data Hashtable of the oracle.jbo.Session associated with the speciic application
module that contains the particular view object in its data model.

Finally, observe the following points:

 f This framework does not cover the passivation/activation of view object custom data.

If needed, you will need to expand this framework to support this extra requirement.

 f It is important that during the development process you test your application modules

for being activation-safe. This is done by disabling the application module pooling in

the application module coniguration. For more information on this topic, consult the

Testing to Ensure Your Application Module is Activation-Safe section in the Fusion

Developer's Guide for Oracle Application Development Framework.

Chapter 5

151

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Displaying application module pool
statistics

In the A passivation/activation framework for custom session-speciic data recipe in this

chapter, we touched upon how application module pools are used by the ADF Business

Components framework. In this recipe, we will introduce the oracle.jbo.common.
ampool.PoolMgr application module pool manager and oracle.jbo.common.ampool.
ApplicationPool application module pool classes, and explore how they can be utilized to

collect statistical pool information. This may come in handy when debugging.

The use case that will be implemented by the recipe is to collect application module statistics

and make them available in a generic view object, that can then be used by all application

modules to gather and present statistical information to the frontend user interface.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. Additional functionality will be added to the

ExtApplicationModuleImpl custom framework class that was developed in the Setting

up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity

Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the SharedComponents workspace in JDeveloper.

2. Create a new view object called ApplicationModulePoolStatistics using the

following SQL query as its data source:

SELECT NULL AS POOL_NAME, NULL AS APPLICATION_MODULE_CLASS, NULL
AS AVAILABLE_INSTANCE_COUNT, NULL AS INIT_POOL_SIZE, NULL AS
INSTANCE_COUNT, NULL AS MAX_POOL_SIZE, NULL AS

Putting them all together: Application Modules

152

NUM_OF_STATE_ACTIVATIONS, NULL AS NUM_OF_STATE_PASSIVATIONS,
NULL AS NUM_OF_INSTANCES_REUSED, NULL AS REF_INSTANCES_RECYCLED,
NULL AS UNREF_INSTANCES_RECYCLED, NULL AS
REFERENCED_APPLICATION_MODULES, NULL AS NUM_OF_SESSIONS, NULL AS
AVG_NUM_OF_SESSIONS_REF_STATE FROM DUAL

3. With the exception of the PoolName and ApplicationModuleClass attributes,

which should be String data types, all other attributes should be Number types.

4. Designate the PoolName and ApplicationModuleClass attributes as

key attributes.

5. In the Java section, create a custom view row class and ensure that the Include

accessors checkbox is also checked.

6. Open the ExtApplicationModuleImpl application module custom framework

class in the Java editor and add the following two methods to it:

public ExtViewObjectImpl

 getApplicationModulePoolStatistics() {

 return (ExtViewObjectImpl)findViewObject(

 "ApplicationModulePoolStatistics");

}

public void getAMPoolStatistics() {

 // get the pool manager

 PoolMgr poolMgr = PoolMgr.getInstance();

 // get the pools managed

 Enumeration keys = poolMgr.getResourcePoolKeys();

 // iterate over pools

 while (keys != null && keys.hasMoreElements()) {

 // get pool name

 String poolname = (String)keys.nextElement();

 // get the pool

 ApplicationPool pool =
 (ApplicationPool)poolMgr.getResourcePool(poolname);

 // get the pool statistics

 Statistics statistics = pool.getStatistics();

 // get and populate pool statistics view object

 ExtViewObjectImpl amPoolStatistics =

 getApplicationModulePoolStatistics();

 if (amPoolStatistics != null) {

 // empty the statistics

 amPoolStatistics.executeEmptyRowSet();

 // create and fill a new statistics row

 ApplicationModulePoolStatisticsRowImpl poolInfo
 (ApplicationModulePoolStatisticsRowImpl)

 amPoolStatistics.createRow();

 poolInfo.setPoolName(pool.getName());

Chapter 5

153

 poolInfo.setApplicationModuleClass(

 pool.getApplicationModuleClass());

 poolInfo.setAvailableInstanceCount(new

 Number(pool.getAvailableInstanceCount()));

 poolInfo.setInitPoolSize(new
 Number(pool.getInitPoolSize()));

 poolInfo.setInstanceCount(new
 Number(pool.getInstanceCount()));

 poolInfo.setMaxPoolSize(new
 Number(pool.getMaxPoolSize()));

 poolInfo.setNumOfStateActivations(new

 Number(statistics.mNumOfStateActivations));

 poolInfo.setNumOfStatePassivations(new
 Number(statistics.mNumOfStatePassivations));

 poolInfo.setNumOfInstancesReused(new
 Number(statistics.mNumOfInstancesReused));

 poolInfo.setRefInstancesRecycled(new
 Number(statistics.mNumOfReferencedInstancesRecycled));

 poolInfo.setUnrefInstancesRecycled(new

 Number(statistics.mNumOfUnreferencedInstancesRecycled));

 poolInfo.setReferencedApplicationModules(new
 Number(statistics.mReferencedApplicationModules));

 poolInfo.setNumOfSessions(new

 Number(statistics.mNumOfSessions));

 poolInfo.setAvgNumOfSessionsRefState(new

 Number(statistics.mAvgNumOfSessionsReferencingState));

 // add the statistics

 amPoolStatistics.insertRow(poolInfo);

 }

 }

}

7. Open the ExtApplicationModule application module custom framework interface

and add the following code to it:

public void getAMPoolStatistics();

8. Redeploy the SharedComponents ADF Library JAR.

9. Now, open the HRComponents workspace and in the Resource Palette

create a ile system connection for the ReUsableJARs directory where the

SharedComponents.jar is deployed. Add the SharedComponents.jar to the

HRComponentsBC business components project.

10. Double-click on the HrComponentsAppModule application module in the

Application Navigator to open its deinition.

Putting them all together: Application Modules

154

11. Go to the Data Model section and locate the ApplicationModulePoolStatistics view

object in the Available View Objects list. Shuttle it to the Data Model list.

12. Finally, go to the Java section, locate and add the getAMPoolStatistics()

method to the HRComponents application module client interface.

How it works…

In steps 1 through 5, we created ApplicationModulePoolStatistics, a read-only view

object, which we used to collect the application module pool statistics. By adding this view

object to the SharedComponents workspace, it becomes available to all other projects in all

workspaces throughout the ADF application that import the SharedComponents ADF Library

JAR. In step 6, we have added the necessary functionality to collect the application module

statistics and populate the ApplicationModulePoolStatistics view object. This is

done in the getAMPoolStatistics() method. This gets an instance of the oracle.
jbo.common.ampool.PoolMgr application module pool manager, via the call to the static

getInstance(), along with an Enumeration of the application module pools managed by

the pool manager by calling getResourcePoolKeys() on the pool manager. We iterate over

all the pools managed by the manager and retrieve each pool using getResourcePool()

on the pool manager. Then for each pool we call getStatistics() to get the pool statistics.

We create a new ApplicationModulePoolStatistics view object row and populate it

with the statistics information.

In step 7, we have added the getAMPoolStatistics() to the ExtApplicationModule

application module framework extension interface, so that it becomes available to all

application modules throughout the application.

In steps 8 and 9, we redeploy the SharedComponents library and created a ile system
connection in the Resource Palette. We use this ile system connection to add the shared
components SharedComponents.jar ADF Library JAR to the HRComponents business

components project.

Chapter 5

155

In steps 10 and 11, we add the ApplicationModulePoolStatistics view object

to the HrComponentsAppModule application module data model. Notice how the

ApplicationModulePoolStatistics view object is listed in the available view objects

list, although it is implemented in the SharedComponents workspace.

Finally, in step 12, we add getAMPoolStatistics() to the HrComponentsAppModule

application module client interface. By doing so, we will be able to call it using the ADF

Model Tester.

To test the recipe, run the HrComponentsAppModule application module with the ADF

Model Tester. In the ADF Model Tester double-click on the HrComponentsAppModule

application module to open it, select the getAMPoolStatistics method from the Method

combo, and click on the Execute button. Then open the ApplicationModulePoolStatistics

view object to see the results.

Now you can bind both the getAMPoolStatistics method and the

ApplicationModulePoolStatistics view object to any of your ViewController

projects in your ADF application, and present a visual of this statistical information for

debugging purposes.

There's more…

Note that the oracle.jbo.common.ampool.ApplicationPool interface provides a

method called dumpPoolStatistics() to dump all pool statistics to a PrintWriter

object. You can use this method to quickly print the application module pool statistics to the

JDeveloper Log window, as shown in following code:

PrintWriter out = new PrintWriter(System.out, true);

pool.dumpPoolStatistics(new PrintWriter(out));

out.flush();

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Creating and using generic extension interfaces, Chapter 5, Putting them all together:

Application Modules

Putting them all together: Application Modules

156

Using a shared application module for static
lookup data

Shared application modules allow you to share static read-only data models across multiple

user sessions. They are the ideal place to collect all the static read-only view accessors used

throughout your ADF application for validation purposes or as data sources for your list of

values (LOVs). This is because a single shared application module is constructed and used

throughout the ADF application for all user sessions, thus minimizing the system resources

used by it. In this case, a single database connection is used. In addition, by collecting all

of your static read-only view objects in a shared application module, you avoid possible

duplication and redeinition of read-only view objects throughout your ADF application.

Internally, the ADF Business Components framework manages a pool of query collections for

each view object as it is accessed by multiple sessions by utilizing a query collection pool,

something comparable to application module pools used for session-speciic application
modules. The framework offers a number of coniguration options to allow for better
management of this pool. Moreover, as multiple threads will access the data, the framework

partitions the iterator space by supporting multiple iterators for the same rowset, preventing

race conditions among iterators on different sessions.

In this recipe, we will deine a shared application module called HrSharedAppModule, and

we will migrate to it all of the static read-only view objects deined for the HrComponents

project. Furthermore, we will update all the view objects that currently reference these static

read-only view objects, so that they are now referencing the view objects in the shared

application module.

Getting ready
This recipe was developed using the HRComponents workspace, which was created in the

Overriding remove() to delete associated children entities recipe in Chapter 2, Dealing with

Basics: Entity Objects. The HRComponents workspace requires a database connection to the

HR schema.

How to do it…

1. Right-click on the com.packt.jdeveloper.cookbook.hr.components.model.
application package on the Application Navigator and select New Application

Module….

2. Follow the steps in the Create Application Module wizard to create an application

module called HrSharedComponentsAppModule.

Chapter 5

157

3. In the Data Model page, expand the com.packt.jdeveloper.cookbook.
hr.components.model.view.lov package and shuttle all of the view objects

currently under this package from the Available View Objects list to the Data Model

list. Click on Finish when done.

4. Now, double-click on the HRComponentsBC in the Application Navigator to bring up

the Project Properties dialog.

5. Locate the Application Module Instances page by selecting ADF Business

Components | Application Module Instances in the selection tree.

6. Click on the Application tab and shuttle the HrSharedComponentsAppModule

application module from the Available Application Modules list to the Application

Module Instances list. Click OK to dismiss the Project Properties dialog.

Putting them all together: Application Modules

158

7. For each view object that was added to the HrSharedComponentsAppModule

shared application module, locate (through Find Usages) where it is used as

a view accessor, and change its usage so that it is referenced from inside the

HrSharedComponentsAppModule shared application module. The following

screenshot shows the view accessors that were added to the Employees view object.

8. Also for each view accessor used as a data source for an LOV, ensure that you are

now using the view accessor included in HrSharedComponentsAppModule.

How it works...

In steps 1 through 6, we have deined a new application module called
HrSharedComponentsAppModule and added all static read-only view objects developed

so far—throughout the HRComponents business components project—in its data model. We

have indicated that HrSharedComponentsAppModule will be a shared application module

through the Application Module Instances page in the Project Properties, when we indicate

that HrSharedComponentsAppModule will be an instance at application-level rather than

an instance at session-level (in steps 4 through 6). By deining an application module at
application-level, we allow all user sessions to access the same view instances contained in

the application module data model.

In steps 7 and 8, we have identiied all read-only view objects used as view accessors
throughout the HRComponents business components project and updated

each one at a time, so that the view object instance residing within the shared

HrSharedComponentsAppModule application module is used. We have also ensured that

for each LOV, we redeined its data source by using the updated view accessor.

Chapter 5

159

There's more...

Ideally, the shared application module should contain a static read-only data model. If you

expect that the data returned by any of the view objects might be updated, ensure that it

will always return the latest data from the database by setting the view object Auto Refresh

property to true in the Tuning section of the Property Inspector. This property is accessible

while in the General section of the view object deinition.

The auto-refresh feature relies on the database change notiication feature, so ensure that
the data source database user has database notiication privileges. This can be achieved by
issuing the following grant command for the database connection user:

grant change notification to <ds_user_name>

For more information on shared application modules, consult the Sharing Application

Module View Instances chapter in the Fusion Developer's Guide for Oracle Application

Development Framework which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16181/toc.htm.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a custom database transaction
In the Setting up BC base classes recipe in Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations, we introduced a number of custom framework extension

classes for most of the ADF business components. Among these are classes that can be

used to extend the global ADF framework transaction implementation, in particular the

ExtDatabaseTransactionFactory and ExtDBTransactionImpl2 classes. In this

recipe, we will cover how to use these classes, so that we can implement our own custom

transaction implementation. The use case for this recipe will be to provide logging support for

all transaction commit and rollback operations.

Putting them all together: Application Modules

160

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. Additional functionality will be added to the

ExtDatabaseTransactionFactory and ExtDBTransactionImpl2 custom framework

classes that were developed in the Setting up BC base classes recipe in Chapter 1, Pre-

requisites to Success: ADF Project Setup and Foundations.

This recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics: Entity

Objects. The HRComponents workspace requires a database connection to the HR schema.

How to do it...

1. Open the SharedComponents workspace and open the

ExtDatabaseTransactionFactory.java ile in the Java editor.

2. Override the DatabaseTransactionFactory create() method and replace the

return super.create() method with the following code:

// return custom transaction framework
// extension implementation

return new ExtDBTransactionImpl2();

3. Load the ExtDBTransactionImpl2.java ile in the Java editor, add
an ADFLogger to it and override the commit() and rollback()

DBTransactionImpl2 methods. The code should look similar to the following:

// create an ADFLogger

private static final ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtDBTransactionImpl2.class);

public void commit() {

 // log a trace

 LOGGER.info("Commit was called on the transaction");

 super.commit();

}

public void rollback() {

 // log a trace

 LOGGER.info("Rollback was called on the transaction");

 super.rollback();

}

4. Rebuild and redeploy the SharedComponents workspace into an ADF Library JAR.

5. Open the HRComponents workspace and open the HrComponentsAppModule

application module deinition by double-clicking on it in the Application Navigator.

Chapter 5

161

6. Go to the Conigurations section.

7. Select the HrComponentsAppModuleLocal coniguration and click the Edit selected

coniguration object button (the pen icon).

8. In the Edit Coniguration dialog, click on the Properties tab and locate the

TransactionFactory property. For the property value, enter the custom transaction

framework extension class com.packt.jdeveloper.cookbook.shared.
bc.extensions.ExtDatabaseTransactionFactory.

How it works...

In steps 1 and 2, we have overridden the DatabaseTransactionFactory

create() method for the custom transaction factory framework class

ExtDatabaseTransactionFactory that we created in the recipe Setting up BC base

classes recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Now it will return our custom transaction implementation class ExtDBTransactionImpl2.

This informs the ADF Business Components framework that a custom oracle.jbo.
server.DBTransaction implementation will be used. Then, in step 3, we provide custom

implementations for our ExtDBTransactionImpl2 transaction commit and rollback

operations. In this case, we have provided a global transaction logging facility for all commit

and roll back operations throughout the ADF application for application modules utilizing

our custom DBTransaction implementation. We then rebuild and redeploy the shared

components workspace (step 4).

In steps 5 through 8, we have explicitly indicated in the HrComponentsAppModule

local coniguration, the one used to conigure session-speciic application
modules, that a custom transaction factory will be used. We did this by setting the

TransactionFactory coniguration property to our custom transaction factory
implementation class com.packt.jdeveloper.cookbook.shared.bc.extensions.
ExtDatabaseTransactionFactory.

Putting them all together: Application Modules

162

There's more...

In order to change application module coniguration parameters for all application modules
throughout your ADF application, adopt the practice of using Java system-deined properties via
the -D switch at JVM startup. In this case, ensure that no speciic coniguration parameters are
deined for individual application modules, unless needed, as they would override the values
speciied globally with the -D Java switch. You can determine the speciic parameter names that
you must specify with the D switch, from the Property ield in the Edit Coniguration dialog. For

example, for this recipe you will specify DTransactionFactory="com.packt.jdeveloper.
cookbook.shared.bc.extensions.ExtDatabaseTransactionFactory" at

JVM startup, to indicate that the custom transaction factory will be used. For WebLogic,

these startup parameters can be speciied via the JAVA_OPTIONS environment variable

or in any of the WebLogic startup scripts (setDomainEnv.*, startWebLogic.*,

startManagedWebLogic.*). These scripts can be found in the bin directory under the

WebLogic domain directory. Furthermore, the WebLogic server Java startup parameters can be

speciied using the administrator console in the server Coniguration | Server Start tab.

See also

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

6
Go with the Flow:

Task Flows

In this chapter, we will cover:

 f Using an application module function to initialize a page

 f Using a task low initializer to initialize a task low

 f Calling a task low as a URL programmatically

 f Retrieving the task low deinition programmatically using MetadataService

 f Creating a train

Introduction
Task lows are used for designing the ADF Fusion web application's control low. They were
introduced with the advent of the JDeveloper 11g R1 release as an alternative to standard

JSF navigation lows. As such, they allow for the decomposition of monolithic application
navigation lows (as in the case of JSF navigation lows) into modular, transaction, and memory
scope aware controller low components. The ADF Fusion web application is now composed of
numerous task lows, called bounded task lows, usually residing in various ADF Library JARs,
calling each other in order to construct the application's overall navigation low.

In the traditional JSF navigation low, navigation occurs between pages. Task lows introduce
navigation between activities. A task low activity is not necessarily a visual page component
(view activity) as in the case of JSF navigation lows. It can be a call to Java code (method call
activity), the invocation of another task low (task low call activity), a control low decision
(router activity), or something else. This approach provides a high degree of lexibility,
modularity, and reusability when designing the application's control low.

Go with the Flow: Task Flows

164

Using an application module function to
initialize a page

A common use case when developing an ADF Fusion web application is to perform some sort

of initialization before a particular page of the application is shown. Such an initialization

could be: the creation of a new view object row, which will in effect place the view object

in insert mode; the execution of a view object query, which could populate a table on the

page; the execution of a database stored procedure; or something similar. This can easily be

accomplished by utilizing a method call activity.

In this recipe, we will demonstrate the usage of the method call task low activity by
implementing the familiar use case of placing a web page in insert mode. Before the page is

presented, a custom application module method (implemented in another workspace) will be

called to place the view object in insert mode.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you

proceed with this recipe. For this, we have used the MainApplication workspace that was

developed in the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-

requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics:

Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the HRComponents workspace in JDeveloper.

2. Load the HrComponentsAppModuleImpl custom application module

implementation class into the Java editor and add the following prepare()

method to it:

public void prepare() {

 // get the Employees view object instance

 EmployeesImpl employees = this.getEmployees();

 // remove all rows from rowset

 employees.executeEmptyRowSet();

 // create a new employee row

Chapter 6

165

 Row employee = employees.createRow();

 // add the new employee to the rowset

 employees.insertRow(employee);

}

3. Open the HrComponentsAppModule application module deinition and go to the
Java section. Click on the Edit application module client interface button (the pen

icon) and shuttle the prepare() method from the Available methods list to the

Selected list.

4. Rebuild and redeploy the HRComponents workspace into an ADF Library JAR.

5. Now, open the MainApplication workspace and using the Resource Palette

create a new File System connection to the ReUsableJARs directory where the

HRComponents.jar ADF Library JAR is placed. Select the ViewController project

in the Application Navigator and then right-click on the HRComponents.jar ADF

Library JAR in the Resource Palette. From the context menu, select Add to Project....

6. Right-click on the ViewController project in the Application Navigator and select

New…. Select ADF Task Flow from the Web Tier | JSF/Facelets category.

7. In the Create Task Flow dialog, enter methodInitializer.xml for the task

low name and ensure that you have selected the Create as Bounded Task Flow

checkbox. Also, make sure that the Create with Page Fragments checkbox is not

selected. Then click OK.

Go with the Flow: Task Flows

166

8. The methodInitializer task low should open automatically in Diagram mode.

If not, double-click on it in the Application Navigator to open it. Click anywhere

in the task low and in the Property Inspector change the URL Invoke property to

url-invoke-allowed.

9. Expand the Data Controls section in the Application Navigator; locate and expand

the HrComponentsAppModuleDataControl data control. Find the prepare()

method and drag-and-drop it onto the methodInitializer task low. JDeveloper
will create a method call activity called prepare.

10. Drag-and-drop a View activity from the Component Palette onto the

methodInitializer task low.

11. Using the Component Palette, create a Control Flow Case from the prepare method

call activity to the view activity.

12. Ensure that the prepare method call activity is marked as the default task low activity
by clicking on the Mark Default Activity button in the toolbar. The task low should
look similar to the following screenshot:

13. Double-click on the view activity to bring up the Create JSF Page dialog. In it, select

JSP XML for the Document Type. For the Page Layout, you may select any of the

Quick Start Layout options. Click OK. The page should open automatically in Design

mode. If not, double-click on it in the Application Navigator to open it.

Chapter 6

167

14. Expand the Data Controls section in the Application Navigator and locate the

Employees view object under the HrComponentsAppModuleDataControl.

Drag-and-drop the Employees view object onto the page.

15. From the Create context menu, select Form | ADF Form…. This will present the Edit

Form Fields dialog. Click OK to accept the defaults and proceed with the creation of

the ADF form.

How it works…

In steps 1 through 4, we have added a method called prepare() to the

HrComponentsAppModule application module residing in the HRComponents workspace. In

this method, we retrieved the Employees view object instance by calling the getEmployees()

method, and called executeEmptyRowSet() on the view object to empty its rowset. We then

created an employee row by calling createRow() on the Employees view object, and added

the new row to the Employees view object rowset by calling insertRow() and passing the

newly created employee row as an argument to it. This will, in effect, place the Employees view

object in insert mode. We exposed the prepare() method to the application module client

interface (in step 3), so that we will be able to call this method via the bindings layer using a

task low method call activity. Then (in step 4), we rebuild and redeployed the HRComponents

workspace to an ADF Library JAR. This will allow us to import the ADF components implemented

in the ADF Library JAR to other projects throughout the ADF application.

In order to be able to reuse the components deined and implemented in the HRComponents

ADF Library JAR, we created a ile system connection using the Resource Palette in

JDeveloper and added the library to our main project (in step 5).

In steps 6 through 8, we created a bounded task low called methodInitializer and

ensured (in step 8) that its URL Invoke property was set to url-invoke-allowed.

We needed to do this because the method call activity that is added in step 9 to call the

prepare() method in the HrComponentsAppModule application module is indicated

as the default task low activity (in step 12). In this case, leaving the default setting of
calculated for the URL Invoke property will produce an HTTP 403 Forbidden error. This is

a security precaution to disallow URL-invoking a task low that does not have a view activity
as its default activity. In our case, as we have indicated a method call activity as the default

activity, we need to ensure that the URL Invoke property is set to url-invoke-allowed.

Go with the Flow: Task Flows

168

In step 9, we dragged-and-dropped the prepare() method, under the

HrComponentsAppModuleDataControl data control (in the Data Controls section

of the Application Navigator), onto the task low. This creates the method call activity
and the necessary bindings to bind the method call activity to the prepare() method

in the HrComponentsAppModule application module. By default, the page deinition is
placed in the pageDefs package under the default package deined for the ViewController
project (com.packt.jdeveloper.cookbook.hr.main.view in this case). Note that

the HrComponentsAppModuleDataControl data control becomes available once the

HRComponents ADF Library JAR is added to the project.

In steps 10 and 11, we placed a view activity onto the task low and added a control low case
(called prepare by default) to allow the transition from the prepare() method call activity

to the view activity.

The deinition of the task low is completed by ensuring that the prepare() method call

activity is marked as the default task low activity (step 12). This indicates that it will be the
irst activity to be executed in the task low.

Finally, in steps 13 through 15, we create a JSF page for the task low view activity and add
an ADF form to it for the Employees view object. We did this by dragging-and-dropping the

Employees view object from the HrComponentsAppModuleDataControl data control onto

the JSPX page.

To test the recipe, right-click on the methodInitializer task low in the Application

Navigator and select Run or Debug from the context menu. This will build, deploy, and run the

workspace into the integrated WebLogic application server. As you can see, the prepare()

method call activity is called prior to transitioning to the view activity. The effect of calling the

prepare() method is to place the Employees view object in insert mode.

Chapter 6

169

There's more…

Using a task low method call activity is one of the possible ways to perform an initialization
before displaying a page. Another approach, explained in more detail in the Using a task

low initializer for task low initialization recipe in this chapter, is to use a task low initializer.
The difference between the two is that the task low initializer is called once during the
instantiation of the task low, while multiple method call activities may be placed anywhere
in the task low. Also, consider the deinition of an invokeAction in the page deinition to
perform page-speciic initialization. As best practice, consider using either a method call task
low activity or a task low initializer as they are highly abstracted and loosely coupled. Using
an invokeAction on the other hand would be more appropriate if you want the initialization

method to be executed for multiple phases of the page's lifecycle.

Go with the Flow: Task Flows

170

Furthermore, note that the prepare() method we use for initializing the page, does

not accept any parameters and it returns nothing. If your initialization method requires

parameters to be speciied, they can be speciied either in the Parameters section of

the Edit Action Binding dialog (for a data control bound method) or otherwise, using the

Parameters section in the method call Property Inspector. In either case, the parameter

values are usually communicated via the pageFlowScope. Finally, based on the return type

of your initialization method, you could set the value of the toString() outcome in the

Outcome section of the Property Inspector and allow further processing of the return value,

using a router activity for instance. When returning void, the outcome must be ixed and
toString() cannot be used (must be set to false).

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Using a task low initializer to initialize a task low, in this chapter

Using a task low initializer to initialize a
task low

In the Using an application module function to initialize a page recipe in this chapter, we

demonstrated how to use a method residing in the application module to perform page

initialization, by bounding the method as a method call activity in the task low. This recipe
shows a different way to accomplish the same task by using a task low initializer method
instead. Unlike the method call activity, which once bound to the task low may be called
multiple times in the task low, the initializer method is called only once during the task
low initialization.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you

proceed with this recipe. For this, we have used the MainApplication workspace that was

developed in the Breaking up the application in multiple workspaces recipe in Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 6

171

The recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities recipe in Chapter 2, Dealing with Basics:

Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the HRComponents workspace in JDeveloper.

2. Load the HrComponentsAppModuleImpl custom application module

implementation class into the Java editor and add the following method to it:

public void prepare() {

 // get the Employees view object instance

 EmployeesImpl employees = this.getEmployees();

 // remove all rows from rowset

 employees.executeEmptyRowSet();

 // create a new employee row

 Row employee = employees.createRow();

 // add the new employee to the rowset

 employees.insertRow(employee);

}

3. Open the HrComponentsAppModule application module deinition and go to the
Java section. Click on the Edit application module client interface button (the pen

icon) and shuttle the prepare() method from the Available methods list to the

Selected list.

4. Rebuild and redeploy the HRComponents workspace into an ADF Library JAR.

5. Now, open the MainApplication workspace and using the Resource Palette

create a new File System connection to ReUsableJARs directory where the

HRComponents.jar ADF Library JAR is placed. Select the ViewController project

in the Application Navigator and then right-click on the HRComponents.jar ADF

Library JAR in the Resource Palette. From the context menu, select Add to Project....

6. Right-click on the ViewController project in the Application Navigator and select

New…. Select ADF Task Flow from the Web Tier | JSF/Facelets category.

7. In the Create Task Flow dialog, enter taskflowInitializer.xml for the task

low File Name and ensure that you have selected the Create as Bounded Task Flow

checkbox. Also make sure that the Create with Page Fragments checkbox is not

selected. Then click OK.

Go with the Flow: Task Flows

172

8. The taskflowInitializer task low should open automatically in Diagram mode.

If not, double-click on it in the Application Navigator to open it. Click anywhere in

the task low, then in the Property Inspector change the URL Invoke property to url-

invoke-allowed.

9. Go to the task low Overview | Managed Beans section and add a managed bean

called InitializerBean. Enter com.packt.jdeveloper.cookbook.hr.main.
view.beans.Initializer for the managed bean Class and select pageFlow for

the bean Scope.

10. While at the Managed Beans section, select Generate Class from the Property

Menu next to the Managed Bean Class in the Property Inspector.

Chapter 6

173

11. Locate the Initializer.java bean in the Application Navigator and open it in

the Java editor. Add the following initialize method to it:

public void initialize() {

 // get the application module

 HrComponentsAppModule hrComponentsAppModule =
 (HrComponentsAppModule)ADFUtils
 .getApplicationModuleForDataControl(
 "HrComponentsAppModuleDataControl");

 if (hrComponentsAppModule != null) {

 // call the initializer method

 hrComponentsAppModule.prepare();

 }

}

12. Return to the task low, diagram and add a task low initializer by clicking on the
Property Menu next to the Initializer property in the Property Inspector and

selecting Method Expression Builder….

Go with the Flow: Task Flows

174

In the Expression Builder dialog that opens, locate and select the initialize method

of the InitilizerBean under the ADF Managed Beans node. The click OK to dismiss

the dialog. The initializer expression #{pageFlowScope.InitializerBean.
initialize} should be relected in the Initializer property of the task low in the
Property Inspector.

13. Drag-and-drop a View activity from the Component Palette onto the

taskflowInitializer task low.

14. Double-click on the view activity to bring up the Create JSF Page dialog. In it, select

JSP XML for the Document Type. For the Page Layout, you may select any of the

Quick Start Layout options. Click OK. The page should open automatically in Design

mode. If not, double-click on it in the Application Navigator to open it.

15. Expand the Data Controls section in the Application Navigator and locate the

Employees view object under the HrComponentsAppModuleDataControl.

Drag-and-drop the Employees view object onto the page.

16. From the Create context menu, select Form | ADF Form…. This will present the Edit

Form Fields dialog. Click OK to accept the defaults and proceed with the creation of

the ADF form.

Chapter 6

175

How it works…

Steps 1 through 8 have been thoroughly explained in the Using an application module function

to initialize a page recipe in this chapter, so we won't get into the speciic details here.

In steps 9 and 10, we deined a managed bean called InitializerBean and generated

a Java class for it. We used pageFlow for the bean's memory scope. This ensures that the

InitializerBean bean persists throughout the task low's execution.

In step 11, we added an initialize() method to the InitializerBean bean. This is the

method indicated as the task low initializer in steps 12 and 13. Inside the initialize()

method, we get hold of the HrComponentsAppModule by utilizing the ADFUtils.
getApplicationModuleForDataControl() helper method. We introduced the

ADFUtils helper class back in Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations in the Using ADFUtils/JSFUtils recipe. We have packaged the ADFUtils helper

class inside the SharedComponents ADF Library JAR (SharedComponents.jar), which

is imported into the project in step 5. The getApplicationModuleForDataControl()

method returns an oracle.jbo.ApplicationModule interface, which we then cast to

our speciic HrComponentsAppModule custom application module interface. Through the

HrComponentsAppModule interface, we call the prepare() method to do the necessary

initializations. We explained the logic in prepare() in the Using an application module

function to initialize a page recipe in this chapter.

In steps 12 and 13, we declaratively setup the task low initializer property using the
Expression Language expression #{pageFlowScope.InitializerBean.initialize}.

This expression indicates that the initialize() method of the InitializerBean is

called during the instantiation of the task low.

Finally, in steps 14 through 17, we deined a view activity and the corresponding JSF page.
Again, we explained these steps in more detail in the Using an application module function to

initialize a page recipe in this chapter.

To test the recipe, right-click on the taskFlowInitializer task low in the Application

Navigator and select Run from the context menu. This will build, deploy and run the

workspace into the integrated WebLogic application server. The page displayed in the browser

will be presented in insert mode, as the task low initializer method calls the application
module prepare() method to set the Employees view object in insert mode.

Go with the Flow: Task Flows

176

There's more…

Both this technique and the one presented in the Using an application module function to

initialize a page recipe in this chapter may be used to run task low initialization code. However,
note one difference pertaining to their handling of the Web browser's back button. While

the task low initializer approach calls the initializer method upon reentry via the browser's
back button, no task low initialization code is called when reentering the task low via the
browser's back button in the method call activity approach. However, this behaviour seems

to be inconsistent among browsers, depending on how they handle page caching. For more

information about this, refer to section About Creating Complex Task Flows in the Fusion

Developer's Guide for Oracle Application Framework which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Using an application module function to initialize a page, in this chapter

Calling a task low as a URL
programmatically

A task low that is indicated as URL invokable (by setting its visibility attribute url-
invoke-allowed to true) may be accessed directly by constructing and invoking its URL.

This allows you to dynamically invoke task lows from within your Java code depending on
some condition that is satisied at runtime. Programmatically, this can be done using the
oracle.adf.controller.ControllerContext.getTaskFlowURL() method and

specifying the task low identiier and parameters.

For this recipe, to demonstrate calling a task low via its URL, we will create a task low
that is URL invokable and call it from a JSF page programmatically. The task low accepts
a parameter and based on the parameter's value, determines whether to call any of the

methodInitializer or taskflowInitializer task lows. These task lows were
developed in the Using an application module function to initialize a page and Using a task

low initializer to initialize a task low recipes respectively in this chapter.

Chapter 6

177

Getting ready
You need to have access to the methodInitializer and taskflowInitializer task

lows that were developed in the Using an application module function to initialize a page

and Using a task low initializer to initialize a task low recipes in this chapter. Also, note the

additional prerequisites stated for those recipes, that is, the usage of the HRComponents and

MainApplication workspaces and the database connection to the HR schema.

How to do it…

1. Start by creating a new task low called programmaticallyInvokeTaskFlow.

Ensure that you create it as a bounded task low, and that it is not created with
page fragments.

2. In the Visibility section in the task low Property Inspector, make sure that the URL

Invoke attribute is set to url-invoke-allowed.

3. While in the task low Property Inspector, in the Parameters section add a

parameter called taskFlowToCall of type java.lang.String. For the parameter

Value enter #{pageFlowScope.taskFlowToCall}.

4. From the Component Palette, drop a Router activity on the task low.

5. Locate the methodInitializer and taskflowInitializer task lows in the
Application Navigator and drop them on the task low.

6. Using the Component Palette, create control low cases from the router
activity to methodInitializer and taskflowInitializer task

low calls. Call these control low cases callMethodInitializer and

callTaskFlowInitializer respectively.

Go with the Flow: Task Flows

178

7. Next select the router activity, and in the Property Inspector set its Default

Outcome property to callMethodInitializer. Also, add the following expression

#{pageFlowScope.taskFlowToCall eq 'calTaskFlowInitializer'}

in the Cases section and callTaskFlowInitializer as the expression's

Outcome value. The router's properties in the Property Inspector should look similar

to the following screenshot:

8. The complete programmaticallyInvokeTaskFlow task low should look similar
to the following screenshot:

9. Now, locate the adfc-config.xml unbounded task low in the Application

Navigator and double-click on it to open it. Go to the Overview | Managed Beans

section and add a TaskFlowURLCallerBean managed bean. Specify com.packt.
jdeveloper.cookbook.hr.main.view.beans.TaskFlowURLCaller for the

bean Class and leave the default request for the bean's Scope.

Chapter 6

179

10. Create the managed bean by selecting Generate Class from the Property Menu in

the Property Inspector, next to the Managed Bean Class attribute.

11. Locate the TaskFlowURLCallerBean bean in the Application Navigator and

double-click on it to open it in the Java editor. Add the following methods to it:

public String getProgrammaticallyInvokeTaskFlow() {

 // setup task flow parameters

 Map<String, Object> parameters =
 new java.util.HashMap<String, Object>();

 parameters.put("taskFlowToCall", "calTaskFlowInitializer");

 // construct and return the task flow's URL

 return getTaskFlowURL("/WEB-
 INF/programmaticallyInvokeTaskFlow.xml
 #programmaticallyInvokeTaskFlow", parameters);

}

private String getTaskFlowURL(String taskFlowSpecs, Map<String,
Object> parameters) {

 // create a TaskFlowId from the task flow specification

 TaskFlowId tfid = TaskFlowId.parse(taskFlowSpecs);

 // construct the task flow URL

 String taskFlowURL =
 ControllerContext.getInstance().getTaskFlowURL(
 false, tfid, parameters);

 // remove the application context path from the URL

 FacesContext fc = FacesContext.getCurrentInstance();

 String taskFlowContextPath =
 fc.getExternalContext().getRequestContextPath();

 return taskFlowURL.replaceFirst(taskFlowContextPath, "");

}

12. Finally, create a JSPX page called taskFlowURLCaller.jspx and drop a Link (Go)

component on it from the Component Palette. Specify the link's text, destination,

and targetFrame properties as follows:

<af:goLink text="Call programmaticallyInvokeTaskFlow as a URL"
 id="gl1"

destination="#{TaskFlowURLCallerBean.
 programmaticallyInvokeTaskFlow}"

targetFrame="_blank"/>

Go with the Flow: Task Flows

180

How it works…

In steps 1 through 3, we created a task low called programmaticallyInvokeTaskFlow

and set its visibility to url-invoke-allowed. This allows us to call the task low via
a URL. If we don't do this, a security exception will be thrown when trying to access the

task low via a URL. This was discussed in greater detail in recipe Using an application

module function to initialize a page in this chapter. We also added (in step 3), a single

task low parameter called taskFlowToCall to indicate which task low to call once our
programmaticallyInvokeTaskFlow is executed. We stored the value of this parameter to

a pageFlow scope variable called taskFlowToCall. This parameter is accessible via the EL

expression #{pageFlowScope.taskFlowToCall}. We will see in step 7 how this pageFlow

scope variable is accessed to determine the subsequent task low to call.

In steps 4 through 8, we completed the task low deinition by adding a router activity
and two task low call activities, one for each of the callMethodInitializer and

callTaskFlowInitializer task lows. Note, in step 5, how we just dropped the
callMethodInitializer and callTaskFlowInitializer task lows from the
Application Navigator, to create the task low calls. Also, observe in step 6, how we have
created the control low cases to connect the router activity with each of the task low call
activities. Finally, note how in step 7, we conigured the router activity outcomes based on
the value of the input task low parameter taskFlowToCall. Speciically, we checked
the parameter's value using the EL expression #{pageFlowScope.taskFlowToCall
eq 'calTaskFlowInitializer'}. In this case, the router's outcome was set to

callTaskFlowInitializer, which calls the taskflowInitializer task low. In any
other case, we conigured the default router outcome to be callMethodInitializer,

which calls the methodInitializer task low.

In steps 9 through 11, we conigured a globally accessible managed bean called
TaskFlowURLCallerBean, by adding it to the application's unbounded task low
adfc-config.xml. We generated the bean class in step 10 and 11, where we added the

necessary code to be able to call our programmaticallyInvokeTaskFlow task low
programmatically. The speciic details about this code follow.

We introduced two methods in the TaskFlowURLCallerBean. One called

getProgrammaticallyInvokeTaskFlow(), which will be called from a page component

to return the task low's URL (see step 12) and another one called getTaskFlowURL(), a

helper method to do the actual work of determining and returning the task low's URL. We call
getTaskFlowURL() indicating the task low speciication and its parameters.

Chapter 6

181

Observe in getProgrammaticallyInvokeTaskFlow(), how we specify the parameter

value and the task low speciications. In getTaskFlowURL(), we obtain an oracle.
adf.controller.TaskFlowId from the task low identiier, and then call the oracle.
adf.controller.ControllerContext.getTaskFlowURL() method to retrieve the

task low URL. Once the URL is returned, we strip the application's context path from it
before returning it. This is something that we need to do before calling the task low via a
URL because the application context path should not be part of the task low URL when
invoking the task low. The inal format of the task low URL returned by getTaskFlowURL()

looks something similar to /faces/adf.task-flow?adf.tfDoc=/WEB-INF/
programmaticallyInvokeTaskFlow.xml&adf.tfId=programmaticallyInvokeTas
kFlow&taskFlowToCall=calTask FlowInitializer.

The inal part of the implementation is done in step 12. In this step, we created a new JSF page,
called taskFlowURLCaller.jspx, and added an af:golink ADF Faces UI component to

it. We use the go link to programmatically call our programmaticallyInvokeTaskFlow

task low, via the URL returned by the getProgrammaticallyInvokeTaskFlow()

method deined in the TaskFlowURLCallerBean. We do this by setting the

destination attribute of the af:golink component to #{TaskFlowURLCallerBean.
programmaticallyInvokeTaskFlow}. We also indicate _blank for the go link

targetFrame attribute, so that the called task low opens in a new browser frame.

To test the recipe, right-click on the taskFlowURLCaller.jspx page in the Application

Navigator and select Run or Debug from the context menu.

There's more…

When calling a task low programmatically via its URL, always use the ADF Controller API
indicated in this recipe to obtain the task low's URL. Do not hardcode the task low's URL in
your application or in database tables, as the speciications of the task low URL in the ADF
framework (the task low URL format) may change in the future.

See also

 f Using an application module function to initialize a page, in this chapter

 f Using a task low initializer to initialize a task low, in this chapter

Go with the Flow: Task Flows

182

Retrieving the task low deinition
programmatically using MetadataService

Task low deinition in JDeveloper is done through the declarative support provided by the
IDE. This includes deining the task low activities and their relevant control low cases by
dragging-and-dropping task low components from the Component Palette to the Diagram

tab and adjusting their properties through the Property Inspector, deining managed beans
in the Overview tab, and so on. JDeveloper saves the task low deinition metadata in an XML
document, which is accessible in JDeveloper anytime you click on the Source tab. The task

low deinition metadata is available programmatically at runtime through the oracle.adf.
controller.metadata.MetadataService object by calling getTaskFlowDefinition().

This API is public since the release of JDeveloper version 11.1.2.

In this recipe, we will show how to get the task low deinition metadata by implementing
the following use case. For each task low in our ADF application, this will provide a generic
technique for logging the task low input parameters upon task low entry and the task low
return values upon task low exit.

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations. New functionality will be added to the

ViewController project that is part of the SharedComponents workspace.

Moreover, this recipe enhances the taskflowInitializer task low developed in the
Using a task low initializer to initialize a task low recipe in this chapter. Note the additional

prerequisites stated for those recipes, that is, the usage of the HRComponents and

MainApplication workspaces and the database connection to the HR schema.

How to do it…

1. Open the SharedComponents workspace and create a new Java class called

TaskFlowBaseBean. Add the following methods to it:

public void initialize() {

 // get task flow parameters

 Map<String, TaskFlowInputParameter> taskFlowParameters =
 getTaskFlowParameters();

 // log parameters

 logParameters(taskFlowParameters);

}

public void finalize() {

 // get task flow return values

Chapter 6

183

 Map<String, NamedParameter> taskFlowReturnValues =
 getReturnValues();

 // log return values
 logParameters(taskFlowReturnValues);

}

protected TaskFlowId getTaskFlowId() {

 // get task flow context from the current view port
 TaskFlowContext taskFlowContext =
 ControllerContext.getInstance().getCurrentViewPort()
 .getTaskFlowContext();

 // return the task flow id

 return taskFlowContext.getTaskFlowId();

}

protected TaskFlowDefinition getTaskFlowDefinition() {

 // use MetadataService to return the task flow

 // definition based on the task flow id

 return MetadataService.getInstance()

 .getTaskFlowDefinition(getTaskFlowId());

}

protected Map<String, TaskFlowInputParameter>
 getTaskFlowParameters() {

 // get task flow definition

 TaskFlowDefinition taskFlowDefinition =
 getTaskFlowDefinition();

 // return the task flow input parameters

 return taskFlowDefinition.getInputParameters();

}

protected Map<String, NamedParameter> getReturnValues() {

 // get task flow definition

 TaskFlowDefinition taskFlowDefinition =
 getTaskFlowDefinition();

 // return the task flow return values
 return taskFlowDefinition.getReturnValues();

}

public void logParameters(Map taskFlowParameters) {

 // implement parameter logging here

}

2. Rebuild and redeploy the SharedComponents ADF Library JAR.

3. Open the MainApplication workspace and add the SharedComponents ADF

Library JAR—deployed in the previous step—to its ViewController project.

4. Load the InitializerBean managed bean implementation class com.packt.
jdeveloper.cookbook.hr.main.view.beans.Initializer into the Java

editor, and change it so that it extends the TaskFlowBaseBean class:

public class Initializer extends TaskFlowBaseBean

Go with the Flow: Task Flows

184

5. Also, update its initialize() method by adding a call to super.initialize()

and add the following finalize() method:

public void finalize() {

 // allow base class processing
 super.finalize();

}

6. Finally, add a inalizer to the taskflowInitializer task low using the following
EL expression:

#{pageFlowScope.InitializerBean.finalize}

How it works…

In step 1, we create a class called TaskFlowBaseBean that we can use throughout our

ADF application as the base class from which beans providing task low initializer and
inalizer methods can be derived (as we did in step 3 in this recipe). This class consists
of initializer and inalizer methods that retrieve and log the task low input parameters
and return values respectively. These methods are implemented by initialize() and

finalize() and they are publicly accessible, which means that they can be directly used

from within JDeveloper when deining task low initializers and/or inalizers. This is useful
if you don't want to provide any speciic implementations of the task low initializer and/or
inalizer method. The initialize() method calls the helper getTaskFlowParameters()

to retrieve the input task low parameters and then calls logParameters() to log

these parameters. Similarly, finalize() calls getReturnValues() to retrieve the

returned values and logParameters() to log them. The getTaskFlowParameters()

and getReturnValues() helper methods rely on getting the task low deinition
oracle.adf.controller.metadata.model.TaskFlowDefinition object and

calling getInputParameters() and getReturnValues() on it, respectively. The

task low deinition is returned by the helper getTaskFlowDefinition(), which

retrieves it by calling the oracle.adf.controller.metadata.MetadataService

method getTaskFlowDefinition(). This method accepts an oracle.adf.
controller.TaskFlowId, indicating the task low identiier for which we are inquiring
the task low deinition. We retrieve the current task low identiier by calling the helper
getTaskFlowId(), which retrieves the current task low from the task low context obtained
from the current view port, as shown in the following lines of code:

// get task flow context from the current view port

TaskFlowContext taskFlowContext =
 ControllerContext.getInstance()
 .getCurrentViewPort().getTaskFlowContext();

// return the task flow id

return taskFlowContext.getTaskFlowId();

Chapter 6

185

In step 2, we re-deployed the SharedComponents workspace as an ADF Library JAR. Then,

in step 3, we added it to the MainApplication ViewController project. One way to do this is

through the Resource Palette.

To demonstrate the usage of the TaskFlowBaseBean class, we have updated the

InitializerBean managed bean class Initializer that was developed in an earlier

recipe, so that TaskFlowBaseBean class is derived from it (in step 4). Then (in step 5), we

updated the Initializer class initialize() method to call TaskFlowBaseBean's

initialize() to do the base class processing, that is, to log any input parameters.

In steps 5 and 6, to complete the recipe, we added a task low inalizer, which simply calls the
base class' super.finalize() to log the returned task low parameters.

There's more…

The implementation of logParameters(), not included in the book's source, is left

as an exercise. This method should basically iterate over the task low parameters and
for each one obtain its value expression by calling the oracle.adf.controller.
metadata.model.Parameter.getValueExpression() method. The parameter's value

expression can be evaluated by calling the javax.faces.application.Application.
evaluateExpressionGet() method.

Also, note that task low metadata is loaded from ADF Controller metadata resources
using the following search rules. Firstly, resources named META-INF/adfc-config.xml

in the classpath are loaded and then the existence of the web application coniguration
resource named /WEB-INF/adfc-config.xml is checked and loaded if it exists. Once

these resources are loaded, they may reference other metadata objects that reside in other

resources. These ADF Controller metadata resources are used to construct a model for the

unbounded task low. Metadata for bounded task lows is loaded on demand.

For a complete reference to all the methods available by the MetaDataService and

TaskFlowDefinition classes, consult the Oracle Fusion Middleware Documentation

Library 11g Release 2 Java API Reference for Oracle ADF Controller. It can be found at the

URL http://download.oracle.com/docs/cd/E16162_01/apirefs.1112/e17480/
toc.htm.

Furthermore, consult the article Programmatically capturing task low parameters by Chris

Muir where he describes the topic in greater detail. It can be found at the URL http://
one-size-doesnt-fit-all.blogspot.com/2010/10/jdev-programmatically-
capturing-task.html.

Go with the Flow: Task Flows

186

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Using a task low initializer to initialize a task low, in this chapter

Creating a train
Wizard-like user interfaces can be created in ADF using task lows created as trains and ADF
Faces user interface components, such as the af:train (Train) and af:trainButtonBar

(Train Button Bar) components. Using such an interface, you are presented with individual

steps, called train stops, in a multi-step process, each step being a task low activity or a
combination of activities. Options exist that allow for the coniguration of the train stops,
controlling the sequential execution of the train stops, whether a train stop can be skipped,

and others. Furthermore, a train stop can incorporate other task low activities, such as
method calls. Other task lows themselves can be added as train stops in the train (as task
low call activities).

In this recipe, we will go over the creation of a train consisting of view, method call, and task

low call activities.

Getting ready
You will need a skeleton Fusion Web Application (ADF) workspace created before you

proceed with this recipe. For this, we have used the MainApplication workspace that was

developed in the Breaking up the application in multiple workspaces recipe in Chapter 1, Pre-

requisites to Success: ADF Project Setup and Foundations.

To demonstrate a method call activity as part of the train stop, the recipe uses the

HRComponents workspace, which was created in the Overriding remove() to delete

associated children entities recipe in Chapter 2, Dealing with Basics: Entity Objects. Moreover,

to demonstrate a task low call as a train stop, the recipe uses the taskflowInitializer

task low created in the Using a task low initializer to initialize task low recipe in this chapter.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Create a bounded task low called trainTaskFlow. Ensure that the Create Train

checkbox in the Create Task Flow dialog is selected. We will not be using page

fragments, so ensure that the Create with Page Fragments checkbox is

not selected.

Chapter 6

187

2. From the Component Palette drop four view activities on the task low. Call the view
activities trainStop1, trainStop2, trainStop3, and trainStop4.

3. Expand the Data Controls node in the Application Navigator and the

HrComponentsAppModuleDataControl. Locate and drop the prepare()

method on the task low.

4. Create a Control Flow Case from the prepare() method call to the trainStop3

view activity.

5. Drop a Wildcard Control Flow Rule from the Component Palette to the task low and
create a Control Flow Case called callPrepareBeforeStop3 from the Wildcard

Control to the prepare() method call.

6. Select the trainStop3 view activity and in the Property Inspector enter

callPrepareBeforeStop3 for its Outcome attribute.

7. Locate the taskflowInitializer task low in the Application Navigator and

double-click on it to open it. From the Component Palette, drop two Task Flow

Return components to it, called previousStop and nextStop.

8. From the Component Palette add two Control Flow Cases and connect them

from the taskFlowInitializerView view activity to the previousStop

and nextStop task low return activities. Call them previous and next

respectively. The modiied taskflowInitializer task low should look similar
to the following screenshot:

Go with the Flow: Task Flows

188

9. Return to the trainTaskFlow task low. In the Application Navigator, locate the

taskflowInitializer task low and drop it in the trainTaskFlow task low.

10. Right-click on the trainStop4 view activity and select Train | Move Backward from

the context menu.

11. Create two Control Flow Cases called previousStop and nextStop from

the taskflowInitializer task low call activity to the trainStop3 and

trainStop4 view activities. This complete taskflowInitializer task low
should look similar to the following screenshot:

12. Now, double-click on each of the trainStop1, trainStop2, trainStop3, and

trainStop4 view activities in the taskflowInitializer task low to create the
JSF pages. In the Create JSF page dialog, select JSP XML for the Document Type.

13. For each of the pages created, select a Train component from the ADF Faces

Component Palette and drop them on the pages. On the Bind train dialog that is

displayed, accept the default binding and click OK.

Chapter 6

189

Each page should look similar to the following one:

14. Finally, modify the taskFlowInitializerView.jspx JSF page by adding two

extra buttons called Previous and Next. Using the Property Inspector, set their

Action attributes to previous and next respectively. To ensure that validation will not

be raised on the page, ensure that for both buttons the Immediate attribute is set

to true. The taskFlowInitializerView.jspx page should look similar to the

following screenshot:

Go with the Flow: Task Flows

190

How it works…

In step 1, we created a bounded task low called trainTaskFlow. We indicated that the

task low will implement a train by ensuring that the Create Train checkbox in the Create

Task Flow dialog was selected. Then, in step 2, we droped four view activities to the task low,
called train stops in train terminology, each one being part of the train. Notice how JDeveloper

connects these train stops with a dotted line indicating that they are part of the train.

In steps 3 through 6, we combined a method call activity, called prepare, with the

trainStop3 view activity in a single train stop. The way we did this was by wiring the

prepare() method call activity via a control low rule to the trainStop3 view activity

(step 4). The prepare() method call activity is wired to a wildcard control low rule called
callPrepareBeforeStop3 (in step 5). In order to ensure that the prepare() method

call activity and the trainStop3 view activity are combined in a single train step, we have

set the outcome of the trainStop3 train stop to callPrepareBeforeStop3 (step 6).

This ensures that at runtime the prepare() method call activity is executed before the

trainStop3 view activity together in a single train stop.

In steps 7 and 8, we have modiied the taskflowInitializer task low, which was
originally developed in the Using a task low initializer to initialize task low recipe in this

chapter, so that it can be used as part of the train. In particular, we added two task low
return activities, one for navigating backwards on the train and another one for navigating

forward. We wired the task low return activities to the existing taskFlowInitializerView

view activity. Based on the speciic outcomes (previous or next) originating from the

taskFlowInitializerView view activity (see step 14), navigation on the train can be

accomplished.

Once these changes were made to the taskflowInitializer task low, we are able to
complete the trainTaskFlow train, by irst adding it to the train as a task low call activity
(in step 9) and then wiring it to the train by adding the relevant control low cases (step 11). In
step 10, we just adjusted the task low call train stop position in the train.

The rest of the recipe steps (12 through 14) deal with the creation and modiication of the JSF
pages related to the view activities participating in the train task low. In steps 12 and 13, we
created the JSF pages corresponding to the four view activity train stops. In each page, we

added an af:train ADF Faces component to allow for the navigation over the train. Finally,

in step 14, we made the necessary changes to the existing taskFlowInitializerView.
jspx page to be able to hook it to the train. Speciically, we added two buttons, called
Previous and Next, and we set their actions appropriately (to previous and next

respectively), to allow for the taskflowInitializer task low to return to the calling
trainTaskFlow task low (see step 8).

To run the train, right-click on the trainTaskFlow task low in the Application Navigator

and select Run or Debug.

Chapter 6

191

There's more…

Each train stop can be dynamically conigured at runtime using EL expressions to allow for a
number of options. These options are available in the Property Inspector for each train stop

selected in the train task low during development. They are briely explained as follows:

 f Outcome: Used in order to combine multiple activities preceding the view or task

low call activity in a single train stop. This was demonstrated in step 6 where we
combined a method call activity with a view activity in a single train stop.

 f Sequential: When set to false, the train stop can be selected even though a

previous train stop has not been visited yet.

 f Skip: When set to true, the train stop will be skipped. At runtime a skipped train

stop will be shown as disabled and you will not be able to select it.

 f Ignore: When set to true, the train stop will not be shown.

By dynamically setting these attributes at runtime, you can effectively create multiple trains

out of a single train deinition.

For more information about train task lows, check out the section Using Train Components in

Bounded Task Flows in the Fusion Developer's Guide for Oracle Application Framework which can

be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Using a task low initializer to initialize task low, in this chapter

7
Face Value: ADF

Faces, JSF Pages,
and User Interface

Components

In this chapter, we will cover:

 f Using an af:query component to construct a search page

 f Using an af:pop-up component to edit a table row

 f Using an af:tree component

 f Using an af:selectManyShuttle component

 f Using an af:carousel component

 f Using an af:poll component to periodically refresh a table

 f Using page templates for pop-up reuse

 f Exporting data to a client ile

Face Value: ADF Faces, JSF Pages, and User Interface Components

194

Introduction
ADF Faces Rich Client Framework (ADF RC) contains a plethora (more than 150) of

AJAX-enabled JSF components that can be used in your JSF pages to realize Rich Internet

Applications (RIA). ADF RC hides the complexities of using JavaScript, and declarative partial

page rendering allows you to develop complex pages using a declarative process. Moreover,

these components integrate with the ADF Model layer (ADFm) to support data bindings and

model-driven capabilities, provide support for page templates, and reusable page regions. In

JDeveloper, ADF Faces components are made available through the Component Palette. For

each component, the available attributes can be manipulated via the Property Inspector.

Using an af:query component to construct a
search page

The af:query (or query search form) ADF Faces user interface component allows for the

creation of search forms in your ADF Fusion web application. It is a model-driven component,

which means that it relies on the model deinition of named view criteria. This implies that
changes made to the view criteria are automatically relected by the af:query component

without any additional work. This fact, along with the JDeveloper's declarative support for

displaying query results in a table (or tree table) component, makes constructing a search

form a straightforward task.

In this recipe, we will cover the creation of a query search form and the display of search

results in a table component.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. We will be using the MainApplication workspace that was

developed in the Breaking up the application in multiple workspace, Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

Chapter 7

195

How to do it…

1. Open the HRComponents workspace and locate the Employees view object in the

Application Navigator. Double-click on it to open its deinition.

2. Go to the Query section and add two bind variables of type String, named

varFirstName and varLastName. Ensure that the Required checkbox in the Bind

Variable dialog is unchecked for both these variables. Also, in the Control Hints tab

of the Bind Variable dialog, ensure that the Display Hint is set to Hide.

3. While in the Query section, add named view criteria for the FirstName and

LastName attributes using the bind variables varFirstName and varLastName

respectively. For both criteria items, ensure that the Ignore Case and Ignore Null

Values checkboxes are checked and that the Validation is set to Optional.

4. Rebuild and redeploy the HRComponents workspace as an ADF Library JAR.

5. Open the MainApplication workspace and ensure that the HRComponents and

SharedComponents ADF Library JARs are added to the ViewController project.

6. Create a bounded task low called queryTaskFlow and add a view activity called

queryView. Ensure that the task low is not created with page fragments.

7. Double-click on the queryView activity in the task low to bring up the Create JSF

Page dialog. Proceed with creating a JSP XML page called queryView.jspx using

any one of the pre-deined layouts.

8. In the Application Navigator, expand the Data Controls section and locate the

EmployeesCriteria view criteria under the HrComponentsAppModuleDataControl

| Employees | Named Criteria node. Drag-and-drop the EmployeesCriteria view

criteria onto the page.

Face Value: ADF Faces, JSF Pages, and User Interface Components

196

9. From the Create context menu, select Query | ADF Query Panel with Table….

10. JDeveloper will bring up the Edit Table Columns dialog. Click OK to accept the default

settings for now. When previewing the page in the browser, you should see something

similar to the following screenshot:

11. In the Structure window, locate and select the af:table component. Then, in

the Table Property Inspector, click on the Edit Component Deinition button

(the pen icon). In the Edit Table Components dialog, adjust the table deinition by
removing any columns indicating row selection and enabling sorting or iltering.
Adjust the table's width by specifying the width in pixels in the Style section of the

Table Property Inspector.

Chapter 7

197

How it works…

In steps 1 through 3, we have updated the Employees view object, which is part of the

HRComponents workspace, by adding named view criteria to it. Based on the earlier

mentioned criteria, we subsequently (in steps 8 and 9) associate an af:query component to

create the search page. The view criteria comprises two criteria items, one for the employee's

irst name and another for their last name. We have based the criteria items on corresponding
bind variables created in step 2. Note the view criteria item settings that are used in step 3.

For both name criteria the search is case-insensitive; null values are ignored, which means

that the search will yield results when no data is speciied; and that both are optional. Also
note that we have based both of the criteria items on the Starts with operation and that the

AND conjunction is used for the criteria items.

In steps 4 and 5, we redeployed the HRComponents workspace to an ADF Library JAR,

which we then add to the MainApplication ViewController project. The HRComponents

library has dependencies to the SharedComponents workspace, so we make sure that the

SharedComponents ADF Library JAR is also added to the project.

In step 6, we created a bounded task low called queryTaskFlow and added a single view

activity. Then (in step 7), we created a JSF page for the view activity.

To add search capability to the page, we have located the view criteria added earlier to

the Employees view object. We have done this by expanding the Named Criteria node

under the Employees view object node of the HrComponentsAppModuleDataControl

data control. This data control is added to the list of available data controls once we add

the HRComponents ADF Library JAR to our workspace in step 5. JDeveloper supports the

creation of databound search pages declaratively by presenting a context menu of choices

when dropping view criteria onto the page, as in step 9. From the context menu that is

presented, we had chosen ADF Query Panel with Table…, which created a query panel with

an associated results table. If you take a look at the page's source, you will see a code snippet

similar to the following:

<af:panelGroupLayout layout="vertical" ...
 <af:panelHeader ...
 <af:query value="#{bindings.EmployeesCriteriaQuery.
 queryDescriptor}"
 queryListener="#{bindings.EmployeesCriteriaQuery.processQuery}"
 queryOperationListener="#{bindings.EmployeesCriteriaQuery
 .processQueryOperation}"
 resultComponentId="::resId1" ...
 </af:panelHeader>
 <af:table id="resId1" value="#{bindings.Employees.collectionModel}"
 var="row"
 <af:column ...
 </af:table>
</af:panelGroupLayout>

Face Value: ADF Faces, JSF Pages, and User Interface Components

198

As you can see, JDeveloper wraps the af:query and af:table components in an

af:panelGroupLayout, arranged vertically. Also, note that this simple drag-and-drop of

the view criteria onto the page in the background creates the corresponding search region

and iterator executables, along with the tree binding used by the af:table component and

the necessary glue code to associate the search region executable and tree binding to the

iterator. It also associates the af:query component with the table component that will be

used to display the search results. This is done by specifying the table component's identiier
(resId1 in the previous sample code) in the af:query resultComponentId attribute.

Finally, notice in steps 10 and 11 some of the possibilities that are available in JDeveloper

to declaratively manipulate the table, either through the Edit Table Columns dialog or the

Property Inspector.

There's more…

In addition to the af:query component, ADF Faces supports the creation of model-driven

search pages using the af:quickQuery (Quick Query) component. You can create a search

page using an af:quickQuery by dragging the All Queriable Attributes item under the

view object Named Criteria node in the Data Controls window and dropping it on the page

and selecting any of the Quick Query options in the Create context menu. The All Queriable

Attributes node represents the implicit view object criteria that are created for each

Queryable view object attribute.

For information about creating databound search pages, refer to the Creating ADF Databound

Search Forms chapter in the Fusion Developer's Guide for Oracle Application Framework,

which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/
toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using an af:pop-up component to edit a
table row

An af:popup component can be used in conjunction with an af:dialog to display and edit

data within a page on a separate pop-up dialog. The pop-up is added to the corresponding

JSF page, and can be raised either declaratively using an af:showPopupBehavior or

programmatically by adding dynamic JavaScript code to the page.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 7

199

In this recipe, we will expand the functionality introduced in the previous recipe, to allow for

the editing of a table row. The use case that we will demonstrate is to raise an edit form inside

a pop-up dialog by double-clicking on the table row. The changes made to the data inside the

dialog are carried over to the table.

Getting ready
This recipe relies on having completed the Using an af:query component to construct a search

page recipe in this chapter.

How to do it…

1. Open the MainApplication workspace. Locate the queryTaskFlow in the

Application Navigator and double-click on it to open it.

2. Go to the task low Overview | Managed Beans section and add a managed bean

called QueryBean. Specify a class for the managed bean, then use the Generate

Class selection in the Property Menu—located next to the Managed Bean Class

property in the Property Inspector to create the managed bean class.

3. Double-click on the managed bean Java class in the Application Navigator to open it

in the Java editor. Add the following method to it:

public void onEmployeeEdit(ClientEvent clientEvent) {

 FacesContext facesContext = FacesContext.getCurrentInstance();

 ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);

 service.addScript(facesContext,
 "AdfPage.PAGE. findComponentByAbsoluteId(

 'editEmployee').show();");

}

4. Locate the queryView.jspx JSF page in the Application Navigator and double-

click on it to open it.

5. Locate and select the af:table component in the Structure window. Right-click on it

and select Insert Inside af:table | ADF Faces | Client Listener.

Face Value: ADF Faces, JSF Pages, and User Interface Components

200

6. In the Insert Client Listener dialog, enter onEmployeeEdit for the Method and

select dblClick for the Type.

7. Right-click on the af:table component in the Structure window and this time select

Insert Inside af:table | ADF Faces | Server Listener. For the Type ield in the Insert

Server Listener dialog type onEmployeeEdit.

8. Use the Property Inspector to set the af:serverListener Method property to the

onEmployeeEdit method of the QueryBean.

Chapter 7

201

9. Right-click on the af:document in the Structure window and select Insert

Inside af:document | ADF Faces…. Then select Resource from the Insert ADF

Faces Item dialog.

10. In the Insert Resource dialog, specify javascript for the Type and click OK.

11. Locate the af:resource in the queryView page and add the following JavaScript

code to it:

function onEmployeeEdit(event){

 var table = event.getSource();

 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);

 event.cancel();

}

12. Locate a Popup component in the Component Palette and drop it on the page,

inside the af:form tag.

13. Right-click on the af:popup component in the Structure window and select Insert

Inside af:popup | Dialog from the context menu.

14. Locate the Employees collection under HrComponentsAppModuleDataControl

in the Data Controls window and drop it on the af:dialog component in the page.

From the Create menu, select Form | ADF Form…. Adjust the ields you want to
display in the Edit Form Fields dialog and click OK.

15. Using the Property Inspector for the af:popup component, change the Id property

to editEmployee and the ContentDelivery to lazyUncached.

16. Finally, adjust the results table PartialTriggers by adding the af:dialog identiier
to it.

Face Value: ADF Faces, JSF Pages, and User Interface Components

202

How it works…

In steps 1 and 2, we have updated the queryTaskFlow task low deinition, which was
introduced in the Using an af:query component to construct a search page recipe in this

chapter, by adding a managed bean deinition and generating the bean class. In step 3,
we have added a method to the managed bean called onEmployeeEdit(). This method

is used as an event listener for the af:serverListener that is added to the af:table

component in step 8. It is used to programmatically show the editEmployee af:popup.

The editEmployee pop-up is added to the page in step 13. The pop-up is shown

programmatically by infusing the page with dynamic JavaScript code using the addScript()

method implemented by the ExtendedRenderKitService interface. The JavaScript code

that is added is speciied as an argument to the addScript() method. In this case the code

is as follows:

AdfPage.PAGE.findComponentByAbsoluteId('editEmployee').show();

This piece of JavaScript code locates the editEmployee component in the page and

displays it.

The pop-up is invoked by double-clicking on a table row. In order to accomplish this behavior, a

combination of an af:clientListener and an af:serverListener tag is used. We add

these components in steps 6 and 7 respectively.

When we added the af:clientListener tag in step 6, we indicated that a JavaScript

method called onEmployeeEdit() will be executed when we double-click on a table row.

This JavaScript method is added directly to the page in steps 9 through 12. The JavaScript

onEmployeeEdit() method is shown as follows:.

function onEmployeeEdit(event){

 var table = event.getSource();

 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);

 event.cancel();

}

The method retrieves the table component from the event and queues a custom event to the

table component called onEmployeeEdit. This indicates the af:serverListener that

was added in step 7.

Chapter 7

203

Back in step 7, when we added the af:serverListener to the af:table, we identiied
the serverListener of type onEmployeeEdit and indicated that the backing bean

QueryBeanonEmployeeEdit method will be executed upon its activation. This is the

method implemented in step 3 that programmatically raises the pop-up.

We mentioned earlier that the JavaScript code for the af:clientListener

onEmployeeEdit method was added in steps 9 through 11. JavaScript is added directly on

the page by adding an af:resource component of type javascript to the af:document.

The actual page code looks similar to the following:

<af:document ...

 <af:resource type="javascript">

 function onEmployeeEdit(event){

 var table = event.getSource();

 AdfCustomEvent.queue(table, "onEmployeeEdit",{}, true);

 event.cancel();

 }

 </af:resource>

</af:document>

The pop-up is added to the page in steps 12 through 14 using a combination of the

af:popup and af:dialog components. In step 14, we dropped the Employees collection

from the Data Controls right on the af:dialog as an editable form. Since the collection is

bound to the page's table, we will be editing the same data.

Finally, note the adjustments that we have made to the pop-up and table components in

steps 15 and 16. First we changed the pop-up identiier to editEmployee. This is necessary

since we specify pop-up in step 3 by name: AdfPage.PAGE. findComponentByAbsolut
eId('editEmployee').show(). Then we set the pop-up's contentDelivery attribute

to lazyUncached. This attribute indicates how the pop-up content is delivered to the client.

The lazyUncached content delivery setting is used because the data delivered to the pop-up

component from the server will change as we double-click in different rows on the table. The

PartialTriggers settings indicate how the related page components are refreshed. In this

case, we want changes made to the data in the pop-up, to be mirrored in the table. We can

accomplish this by adding the dialog's identiier to the table's list of partial triggers.

Face Value: ADF Faces, JSF Pages, and User Interface Components

204

To run the recipe, right-click on the queryTaskFLow in the Application Navigator and select

Run or Debug. When the page is displayed, click Search to perform a search. Double-click on

a row in the results table to show the Edit Employee dialog. Any changes you make are saved

by clicking OK on the Edit Employee dialog. If you click Cancel, the changes are dismissed.

The table is updated to match the adjusted data.

There's more…

Note that the page does not implement a commit or rollback functionality, so changes done to

the table's data are not committed to the database. To rollback the changes for now, just refresh

the browser; this will re-fetch the data from the database and re-populate the results table.

Also, note the functionality of the Search and Reset buttons. The Search button populates the

results table by searching the database, while at the same time preserving any changed records

in the entity cache. This means that your changes still show in the table after a new search. The

behavior of the Reset button does not refresh by default in the results table. We will cover how

to accomplish this in the recipe Using a custom af:query operation listener to clear both the

query criteria and results in Chapter 8, Backing not Baking: Bean Recipes.

Chapter 7

205

Moreover, note that this recipe shows how to launch a pop-up component programmatically

using the ExtendedRenderKitService class by infusing dynamic JavaScript code into

the page. It is this infused JavaScript code that actually shows the pop-up. Another approach

to programmatically launching a pop-up is to bind the af:popup component to a backing

bean as an oracle.adf.view.rich.component.rich.RichPopup object, then use

its show() method to display the pop-up. For more information about this technique, take a

look at the section Programmatically invoking a Pop-up in the Web User Interface Developer's
Guide for Oracle Application Development Framework which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also

 f Using an af:query component to construct a search page, in this chapter

Using an af:tree component
The ADF Faces Tree component (af:tree) can be used to display model-driven master-detail

data relationships in a hierarchical manner. In this case, the parent node of the tree indicates

the master object, while the child nodes of the tree are the detail objects.

In this recipe, we will demonstrate the usage of the af:tree component to implement

the following use case: Using the HR schema, we will create a JSF page that presents a

hierarchical list of the departments and their employees in a tree. As you navigate the tree,

the detailed department or employee information will be displayed in an editable form. The

recipe makes use of a custom selection listener to determine the type of the tree node

(department or employee) being clicked. Based on the type of node, it then displays the

department or the employee information.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that

was developed in Breaking up the application in multiple workspaces recipe, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

206

How to do it…

1. Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2. Using the Create JSF Page wizard, create a JSP XML page called treeView.jspx.

Use any of the predeined quick start layouts.

3. Expand the Data Controls section in the Application Navigator and locate the

Departments collection under the HrComponentsAppModuleDataControl data

control. Drag-and-drop it on the treeView.jspx page.

4. From the Create menu, select Tree | ADF Tree….

5. In the Tree Level Rules section of the Edit Tree Binding dialog, click on the Add Rule

button (the green plus sign icon) and add the Employees collection. Also adjust

the attributes in the Display Attributes list so that the DepartmentName is listed

for the Departments rule and the LastName and FirstName are listed for the

Employees rule. Click OK to proceed.

6. Right-click on the af:tree component in the Structure window and select Surround

With…. From the Surround With dialog, select the Panel Group Layout and click

OK. Using the Properties Inspector, set the Valign and Layout attributes to top and

horizontal respectively.

7. In the Data Controls section, locate the Departments and Employees collections

under the HrComponentsAppModuleDataControl data control and drop them

inside the panelGroupLayout. In both cases, select Form | ADF Form… from the

Create menu.

8. For each of the af:panelFormLayout components created previously for the

Departments and Employees collections, set their Visible property to false and

bind them to a backing bean called TreeBean. If needed, create the TreeBean

backing bean as well.

9. Surround both of the af:panelFormLayout components created

previously for the Departments and Employees collections with the same

af:panelGroupLayout. Using the Property Inspector, set the Layout attribute

of the new af:panelGroupLayout to vertical. Also, ensure that you specify the

tree's identiier in the PartialTriggers attribute of the af:panelGroupLayout. Your

components in the Structure window should look similar to the following screenshot:

Chapter 7

207

10. With af:tree selected in the Structure window, click on the Edit Component

Deinition button (the pen icon) in the Property Inspector to open the Edit Tree

Binding dialog. With the Employees rule selected in the Tree Level Rules, expand

the Target Data Source section at the bottom of the dialog. Use the EL Picker button

and select the EmployeesIterator under the ADF Bindings | bindings node. The

EL Expression ${bindings.EmployeesIterator} should be added, as shown in

the following screenshot:

11. While at the af:tree Property Inspector, change the SelectionListener to a newly

created selection listener in the TreeBean backing bean.

Face Value: ADF Faces, JSF Pages, and User Interface Components

208

12. Locate the TreeBean.java in the Application Navigator and double-click on it to

open it in the Java editor. Add the following code to the onTreeNodeSelection()

selection listener:

// invoke default selection listener via bindings

invokeMethodExpression(
 "#{bindings.Departments.treeModel.makeCurrent}",
 Object.class, new Class[] { SelectionEvent.class},
 new Object[] { selectionEvent});

// get the tree component from the event

RichTree richTree = (RichTree)selectionEvent.getSource();

// make the selected row current

RowKeySet rowKeySet = richTree.getSelectedRowKeys();

Object key = rowKeySet.iterator().next();

richTree.setRowKey(key);

// get the tree node selected

JUCtrlHierNodeBinding currentNode =
 (JUCtrlHierNodeBinding)richTree.getRowData();

// show or hide the department and employee information

// panels depending the type of node selected

this.departmentInfoPanel.setVisible(
 currentNode.getCurrentRow() instanceof DepartmentsRowImpl);

this.employeeInfoPanel.setVisible(
 currentNode.getCurrentRow() instanceof EmployeesRowImpl);

13. Add the following invokeMethodExpression() helper method to the

TreeBean.java:

private Object invokeMethodExpression(String expression,
 Class returnType, Class[] argTypes, Object[] args) {

 FacesContext fc = FacesContext.getCurrentInstance();

 ELContext elContext = fc.getELContext();

 ExpressionFactory elFactory =
 fc.getApplication().getExpressionFactory();

 MethodExpression methodExpression =
 elFactory.createMethodExpression(elContext,
 expression, returnType, argTypes);

 return methodExpression.invoke(elContext, args);

}

Chapter 7

209

How it works…

Since we will be using business components from the HRComponents workspace, in

step 1 we have ensured that the HRComponents ADF Library JAR is added to the

workspace's ViewController project. This can be done either through the Resource Palette

or using the Project Properties | Libraries and Classpath dialog. The HRComponents

library has dependencies to the SharedComponents workspace, so we make sure that the

SharedComponents ADF Library JAR is also added to the project. Then, we proceed with the

creation of the JSF page (step 2).

In steps 3 through 5, we added the Tree component to the page. The tree is comprised of two

nodes or level rules: the parent node represents the departments, and is set up by dragging

and dropping the Departments collection of the HrComponentsAppModuleDataControl

data control onto the page as an ADF Tree component. The child nodes represent the

department employees and are set up in step 5 by adding a rule for the Employees collection.

The rules control the display order of the tree. The tree binding populates the component

starting at the top of the tree level rules list and continues until it reaches the last rule.

In steps 6 through 9, we dropped the Departments and Employees collections on the page

as editable forms (af:panelFormLayout components) and rearranged the page in such a

way that the tree will be displayed on the left-hand side of the page, while the department or

employee information will be displayed on the right-hand side. We also bound the department

and employee af:panelFormLayout components in a backing (in step 8), so that we will be

able to dynamically show and hide them depending on the currently selected node (see step

12). For this to work, we also need to do a couple more things:

 f Set the af:panelGroupLayout component's (used to vertically group

the department and employee af:panelFormLayout components)

partialTriggers attribute to the tree's identiier (in step 9)

 f Setup the tree's target data source for the Employees rule, so that the Employees

iterator is updated based on the selected node in the tree hierarchy (in step 10)

Finally, in steps 11 through 13, we created a custom selection listener for the tree component,

so that we are able to dynamically show and hide the department and employee forms

depending on the tree node type that is selected. The custom selection listener is implemented

by the backing bean method called onTreeNodeSelection(). If we look closer at this

method, we will see that irst we invoke the default tree selection listener with the expression
#{bindings.Departments.treeModel.makeCurrent}. In order to do this, we use

a helper method called invokeMethodExpression(). Then, we obtain the currently

selected node from the tree by calling getRowData() on the oracle.adf.view.rich.
component.rich.data.RichTree component (obtained earlier from the selection

event). Finally, we dynamically change the visible property of the department and employee

af:panelFormLayout components, depending on the type of the selected node. We do this

by calling setVisible() on the bound department and employee af:panelFormLayout

components.

Face Value: ADF Faces, JSF Pages, and User Interface Components

210

There's more…

Note that when adding an af:tree component to the page, a single iterator binding is added

to the page deinition for populating the root nodes of the tree. The accessors speciied in
the tree level rules, which return the detailed data for each child node, are indicated by the

nodeDefinition XML nodes of the tree binding in the page deinition.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using an af:selectManyShuttle component
The af:selectManyShuttle ADF Faces component is a databound model-driven component

that can be used to select multiple items from a given list. Using a set of pre-deined buttons,
you move the selected items from an available items list to a selected items list. Upon

completion of the selection process, you can programmatically retrieve and process the

selected items.

In this recipe, we will go over the steps to declaratively create an af:selectManyShuttle

component in a pop-up dialog and programmatically retrieve the selected items.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that

was developed in the Breaking up the application in multiple workspaces, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in the Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

Chapter 7

211

How to do it…

1. Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2. Using the Create JSF Page wizard, create a JSP XML page called

selectManyShuttleView.jspx. Use any of the predeined quick start layouts.

3. Using the Component Palette, add a Popup component (af:popup) to the page.

Also add a Dialog component (af:dialog) inside the pop-up.

4. Expand the Data Controls section in the Application Navigator and locate the

Employees collection under the HrComponentsAppModuleDataControl

data control. Drag-and-drop it on the selectManyShuttleView.jspx page

inside the dialog.

5. From the Create menu, select Multiple Selection | ADF Select Many Shuttle….

6. In the Edit List Binding dialog, use the Select Multiple… selection from the

Multi Select Display Attribute dropdown and select the LastName and

FirstName attributes.

Face Value: ADF Faces, JSF Pages, and User Interface Components

212

7. Select af:popup in the Structure window. Using the Property Menu next to the

PopupFetchListener attribute in the Property Inspector, select Edit… to add a

pop-up fetch listener. When presented with the Edit Property: PopupFetchListener

dialog, create a new managed bean called SelectManyShuttleBean and a

method called onEmployeesShuttleInit. While in the Property Inspector, also

change the ContentDelivery attribute to lazyUncached.

8. Open the SelectManyShuttleBean bean in the Java editor and add the following

code to the onEmployeesShuttleInit() method:

JUCtrlListBinding employeesList =
 (JUCtrlListBinding)ADFUtils.findCtrlBinding("Employees");

employeesList.clearSelectedIndices();

9. Select af:dialog in the Structure window. Using the Property Menu

next to the DialogListener attribute in the Property Inspector, select

Edit… and add a dialog listener. In the Edit Property: DialogListener

dialog, use the SelectManyShuttleBean and add a new method called

onSelectManyShuttleDialogListener.

10. Add the following code to the onSelectManyShuttleDialogListener() method

of the SelectManyShuttleBean managed bean:

if (DialogEvent.Outcome.ok.equals(dialogEvent.getOutcome())) {

 JUCtrlListBinding employeesList =
 (JUCtrlListBinding)ADFUtils.findCtrlBinding("Employees");

 Object[] employeeIds = employeesList.getSelectedValues();

 for (Object employeeId : employeeIds) {

 // handle selection

 }

}

11. Finally, add a Button component (af:commandButton) to the page and a

Show Popup Behavior component (af:showPopupBehavior) in it. For the

Show Pop-up Behavior component setup its PopupId attribute to point to the

pop-up created previously.

Chapter 7

213

How it works…

Since we will be importing business components from the HRComponents workspace, in

step 1 we ensured that the corresponding ADF Library JAR was added to our ViewController

project. This can be done either through the Project Properties | Libraries and Classpath

dialog or via the Resource Palette. The HRComponents library has dependencies to the

SharedComponents workspace, so we make sure that the SharedComponents ADF Library

JAR is also added to the project.

In steps 2 and 3, we have created a new JSF page called selectManyShuttleView.jspx

and added a pop-up to it with a dialog component in it. We will display this pop-up via the

command button added in step 11.

In steps 4 through 6, we declaratively added a model-driven af:selectManyShuttle

component. We did this by dragging and dropping the Employees collection available under

the HrComponentsAppModuleDataControl data control in the Data Controls section of

the Application Navigator. This was added to the list of the available data controls in step 1

when the HRComponents ADF Library JAR was added to our project. Note in step 6 how we

have modiied the Employees collection attributes that will be displayed by the ADF Select

Many Shuttle. In this case, we have indicated that the employee's last name and irst name
will be displayed. In the same step, we have left the Multi Select Base Attribute to the default

EmployeeId, indicating the attribute that will receive the updates. The effect of adding the

Select Many Shuttle is to also add a list binding called Employees to the page bindings, as

shown in the following code snippet:

<bindings>

 <list IterBinding="EmployeesIterator"
 ListOperMode="multiSelect"ListIter="EmployeesIterator"
 id="Employees" SelectItemValueMode="ListObject">

 <AttrNames>

 <Item Value="EmployeeId"/>

 </AttrNames>

 <ListDisplayAttrNames>

 <Item Value="LastName"/>

 <Item Value="FirstName"/>

 </ListDisplayAttrNames>

 </list>

</bindings>

Face Value: ADF Faces, JSF Pages, and User Interface Components

214

In steps 7 and 8, we have devised a way to initialize the shuttle's selections before the

pop-up is shown. We have done this by adding a PopupFetchListener to the pop-up. A

PopupFetchListener indicates a method that is executed when a pop-up fetch event

is invoked during content delivery. For the listener method to be executed, the pop-up

content delivery must be set to lazyUnchached or lazy. We set the pop-up content

delivery to lazyUnchached in step 7. The PopupFetchListener method was called

onEmployeesShuttleInit(). In it, we retrieve the Employees list binding by utilizing the

ADFUtils.findCtrlBinding() helper method. We introduced the ADFUtils helper class

in the Using ADFUtils/JSFUtils recipe in Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations. Once the list binding is retrieved as a JUCtrlListBinding object,

we call clearSelectedIndices() on it to clear the selections. This will ensure that the

selected list is empty once the pop-up is displayed.

To handle the list selections, we added a DialogListener to the dialog in steps 9 and

10. A DialogListener is a method that can be used to handle the outcome of a dialog

event. In it, we irst checked to see whether the OK button was clicked by checking for a

DialogEvent.Outcome.ok outcome. If this is the case, we retrieve the list binding and call

getSelectedValues() on it to retrieve a java.lang.Object array of the selections. In

our case, since we have indicated in step 6 that the EmployeeId attribute will be used as the

base attribute, this is an array of the selected employee identiiers. Once we have the list of
selected employees (as employee identiiers), we can process it as needed.

Note in step 11 that we have added a command button with an embedded

af:showPopupBehavior in order to show the pop-up.

To test the page, right-click on it in the Application Navigator and select Run or Debug

from the context menu. Clicking on the command button will display the pop-up with a

shuttle component displaying a list of available employees to select from, as shown in the

following screenshot:

Chapter 7

215

There's more…

Note that ADF Faces provides an additional shuttle component named

af:selectOrderShuttle that includes additional buttons to allow for the reordering

of the selected items.

For more information about the ADF Faces Select Many Shuttle component, take a look at the

section Using Shuttle Components in the Web User Interface Developer's Guide for Oracle
Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using an af:carousel component
The ADF Faces Carousel component (af:carousel) is a model-driven databound user

interface control that you can use on your pages as an alternate way to display collections of

data. As the name suggests, the data is displayed in a revolving "carousel". The component

comes with predeined controls that allow you to scroll through the carousel items. Moreover,
images and textual descriptions can be associated and displayed for each carousel item.

In this recipe, we will demonstrate the usage of the af:carousel component by

declaratively setting up a carousel to browse through the employees associated with

each department.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

216

How to do it…

1. Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2. Using the Create JSF Page wizard, create a JSP XML page called carouselView.
jspx. Use any of the predeined quick start layouts.

3. Expand the Data Controls section in the Application Navigator and locate the

Departments collection under the HrComponentsAppModuleDataControl data

control. Drag-and-drop it on the carouselView.jspx page. From the Create menu,

select Table | ADF Read-only Table….

4. In the Edit Table Columns dialog, select the table columns and indicate Single Row

for the Row Selection.

5. Drag-and-drop the DepartmentEmployees collection under the Departments

collection on the carouselView.jspx page under the departments table. From the

Create menu, select Carousel.

6. With the af:carousel selected in the Structure window, add a partial trigger to the

departments table using the Property Menu next to the PartialTriggers attribute.

Select Edit… from the property menu and in the Edit Property: PartialTriggers dialog

add the table item to the selected items. Click OK to save your changes.

7. Expand the af:carousel component in the Structure window and locate the

af:carouselItem underneath it. With the af:carouselItem selected in the

Structure window, add the following to the Text attribute:

#{item.LastName} #{item.FirstName}, #{item.JobId}

8. Using the Component Palette, locate an Image component and drag-and-drop it on

the af:carouselItem. In the Insert Image dialog, specify /images/#{item.
JobId}.png for the image Source and #{item.LastName} #{item.
FirstName}, #{item.JobId} for the image ShortDesc.

Chapter 7

217

9. Under the ViewController/public_html directory create an images directory

and add images for each employee job description. Ensure that the image ilename
conforms to the following naming standard: #{item.JobId}.png, where #{item.
JobId} is the employee's job description. The employee's job descriptions are

deined in HR JOBS and are identiied by the JOB_ID column.

How it works…

Since we will be importing business components from the HRComponents workspace, in

step 1, we ensured that the corresponding ADF Library JAR is added to our ViewController

project. This can be done either through the Project Properties | Libraries and Classpath

dialog or via the Resource Palette. The HRComponents library has dependencies to the

SharedComponents workspace, so we make sure that the SharedComponents ADF Library

JAR is also added to the project.

In step 2, we have created a JSF page that we will use to demonstrate the af:carousel

component. In the top part of the page, we added a table bound to the Departments

collection. In the bottom part of the page, we added the af:carousel component bound

to the DepartmentEmployees collection. As you select a department in the table, the

corresponding department employees can be browsed using the carousel.

The Departments table was added in steps 3 and 4. The carousel was added in step 5. We

simply expanded the HrComponentsAppModuleDataControl data control in the Data

Controls section of the Application Navigator and dropped the collections on the page,

making the applicable selections from the menus each time. JDeveloper proceeded by adding

the components to the page and creating the necessary bindings in the page deinition ile. If
you take a closer look at the page's source, you will see that the af:carousel component is

created, with an associated child af:carouselItem component inside a nodeStamp facet

in it. The page source looks similar to the following code:

<af:carousel currentItemKey="#{bindings
 .DepartmentEmployees.treeModel.rootCurrencyRowKey}"

 value="#{bindings.DepartmentEmployees.treeModel}" var="item" ...

 <f:facet name="nodeStamp">

 <af:carouselItem ...

 <af:image ...

 </af:carouselItem>

 </f:facet>

</af:carousel>

Face Value: ADF Faces, JSF Pages, and User Interface Components

218

The carousel value is set to the treeModel for the DepartmentEmployees tree binding.

This binding is created when the DepartmentEmployees collection is dropped on the page

as a carousel. The tree binding is used to iterate over DepartmentEmployeesIterator,

which is also created when the DepartmentEmployees collection is dropped on the page.

The iterator result set is wrapped in a treeModel object, which allows each item in the result

set to be accessed within the carousel using the var attribute. The current data in the result

set is then accessed by the af:carouselItem using the item variable indicated by the

carousel var attribute.

In order to synchronize the department selection in the table with the department employees

in the carousel, the necessary partial trigger was added in step 6.

In step 7, we have set the af:carouselItem Text attribute to the #{item.LastName}

#{item.FirstName}, #{item.JobId} expression. This will display the employee's name

and job description underneath each carousel item. Remember that the item variable

indicates the current data object in the result set.

Finally, in steps 8 and 9, we have added an image component (af:image) to the carousel

item to further enhance the look of the carousel. The image source ilename is dynamically
determined using the expression /images/#{item.JobId}.png. This will use a different

image depending on the value of the employee's job identiier. In step 9, we added the images
for each employee job identiier.

To see the carousel in action, right-click on carouselView.jspx in the Application

Navigator and select Run or Debug. Navigate through the Departments table using the

carousel component through the department's employees.

Chapter 7

219

There's more…

For this recipe, the employee images were explicitly speciied as ilenames, each one
indicating a speciic employee job using the expression /images/#{item.JobId}.png.

In a more realistic scenario, images for each collection item would be stored in the database

in a BLOB column associated with the collection item (the employee in this example). To

retrieve the image content from the database BLOB column, you will need to write a servlet

and indicate your choice by passing a parameter to the servlet. For instance, this could

be indicated in the af:image source attribute as /yourservlet?imageId=#{item.
EmployeeId}. In this case, the image is identiied using the employee identiier. A sample
demonstrating the image servlet can be found in the FOD sample.

For more information about the ADF Faces Carousel component, take a look at the section

Using the ADF Faces Carousel Component in the Fusion Developer's Guide for Oracle

Application Development Framework which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using an af:poll component to periodically
refresh a table

The ADF Faces Poll component (af:poll) can be used to deliver poll events to the server

as a means to periodically update page components. Poll events are delivered to a poll

listener—a managed bean method—by referencing the method using the pollListener

attribute. These poll events are delivered to the poll listener based on the value speciied by
the interval attribute. The poll interval is indicated in milliseconds; polling can be disabled

by setting the interval to a negative value. An af:poll can also be referenced from the

partialTriggers property of a component to partially refresh the component. In this case,

a pollListener is not needed.

In this recipe, we will implement polling in order to periodically refresh an employees table in

the page. By periodically refreshing the table, it will relect any database changes done to the
corresponding EMPLOYEES schema table in the database.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Face Value: ADF Faces, JSF Pages, and User Interface Components

220

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Ensure that the HRComponents and the SharedComponents ADF Library JARs are

added to the ViewController project of your workspace.

2. Using the Create JSF Page wizard, create a JSP XML page called pollView.jspx.

Use any of the predeined quick start layouts.

3. Expand the Data Controls section in the Application Navigator and locate the

Employees collection under the HrComponentsAppModuleDataControl data

control. Drag-and-drop it on the pollView.jspx page. Then, from the Create menu,

select Table | ADF Read-only Table….

4. In the Edit Table Columns dialog, select the table columns and choose Single Row

for the Row Selection.

5. Switch to the Page Data Binding Deinition by clicking on the Bindings tab at the

bottom of the page editor.

6. Click on the Create control binding button (the green plus sign icon) in the Bindings

section and select Action from the Generic Bindings category.

Chapter 7

221

7. In the Creation Action Binding dialog, select the Employees collection under

the HrComponentsAppModuleDataControl and then select Execute for

the Operation.

8. With the Execute action selected in the Structure window, change the Id property

from Execute to RefreshEmployees using the Property Inspector.

9. Return to the page Design or Source editor. Using the Component Palette, drag a

Poll component from the Operations section and drop it on the page.

10. With the af:poll component selected in the Structure window, change the

Interval property to 3000 and add a poll listener using the Property Menu next

to the PollListener property in the Property Inspector. If needed, create a new

managed bean.

11. Open the managed bean Java class in the Java editor and add the following code to

the poll listener:

ADFUtils.findOperation("RefreshEmployees").execute();

12. Finally, add a partial trigger to the af:table component using the Property Menu

next to the PartialTriggers property in the Property Inspector. In the Edit Property:

PartialTriggers dialog, select the poll component in the Available list and add it to

the Selected list.

How it works…

In step 1, we have added the HRComponents ADF Library JAR to our application's

ViewController project. We have done this since we will be using the business components

included in this library. The ADF Library JAR can be added to our project either via the

Resource Palette or through the ViewController's Project Properties | Libraries and

Classpath. The HRComponents library has dependencies to the SharedComponents

workspace, so we make sure that the SharedComponents ADF Library JAR is also added to

the project.

Then, in step 2, we created a JSF page called pollView.jspx that we used to

demonstrate the af:poll component by periodically refreshing a table of employees.

So, in steps 3 and 4, we dropped the Employees collection—available through the

HrComponentsAppModuleDataControl data control—as a read-only table on the page.

In steps 5 through 8, we created an action binding called RefreshEmployees. The

RefreshEmployees action binding will invoke the Execute operation on the Employees

collection, which will query the underlying Employees view object. So, by executing the

RefreshEmployees action binding, we will be able to update the employees table, which is

bound to the same Employees collection.

Face Value: ADF Faces, JSF Pages, and User Interface Components

222

To accomplish a periodic update of the employees table, we dropped an af:poll component

on the page (step 9) and adjusted the time interval in which a poll event will be dispatched

(in step 10). This time interval is indicated by the Interval poll property in milliseconds,

so we set it to 3 seconds (3000 milliseconds).

Then, in steps 10 and 11, we declared a poll listener using the PollListener property

of the af:poll component. This is the method that will receive the poll event each time

the poll is ired. In the process, we had to create a new managed bean (step 10). In the
poll listener, we use the ADFUtils findOperation() helper method to retrieve the

RefreshEmployees action binding from the bindings container. The ADFUtils helper

class was introduced in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations. The findOperation() helper method returns an oracle.
binding.OperationBinding object, on which we call execute() to execute it. As stated

earlier, this will have the effect of querying the Employees collection underlying view object,

which in effect refreshes the table.

Finally, in step 12, we had to indicate in the employees table's partial triggers the ID of the poll

component. This will cause a partial page rendering for the af:table component triggered

from the af:poll component each time the poll listener is executed.

To test the recipe, right-click on the pollView.jspx page in the Application Navigator and

select Run or Debug from the context menu. Notice how the employees table is refreshed

every 3 seconds, relecting any modiications done to the Employees table.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using page templates for pop-up reuse
Back in Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations in the Using

a generic backing bean actions framework recipe, we introduced a generic backing bean

actions framework, called CommonActions, to handle common JSF page actions. In this

recipe, we will enhance this generic actions framework by demonstrating how to add pop-up

dialogs to a page template deinition, that can then be reused by pages based on the template
using this framework. The speciic use case that we will implement in this recipe is to add a
delete conirmation pop-up to the page template. This will provide a uniform delete behavior

for all application pages based on this template.

Chapter 7

223

Getting ready
You will need to have access to the SharedComponents workspace that was developed in

Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations. The functionality will be added to both the CommonActions

generic backing bean framework and the TemplateDef1 page template deinition that were
created in the Using a generic backing bean actions framework and

Using page templates recipes in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

For testing purposes, you will need to create a skeleton Fusion Web Application (ADF)

workspace. For this, we will use the MainApplication workspace that was developed in

Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the SharedComponents workspace and locate the TemplateDef1 page

template deinition using the Application Navigator. It can be found under the WEB-
INF/templates package. Double-click on it so you can open it.

2. Using the Component Palette, drop a Popup component to the top facet. Modify the

af:popup component's id property to DeleteConfirmation.

3. Drop a Dialog component inside the af:popup added in the previous step. Using the

Property Inspector, update the dialog's Title to Conirm Deletion. Also change the

Type property to cancel.

4. Drop an Output Text component from the Component Palette to the dialog. Change

its Value property to Continue with deleting this record?

5. Using the Component Palette, drop a Button component to the dialog's buttonBar

facet. Change the af:commandButton text property to Continue.

6. Using the Property Inspector, add the following ActionListener to the

af:commandButton: #{CommonActionsBean.onContinueDelete}. The pop-

up source should look similar to the following:

<af:popup id="DeleteConfirmation">

 <af:dialog id="pt_d1" title="Confirm Deletion" type="cancel">

 <af:outputText value="Continue with deleting this record?"
 id="pt_ot1"/>

Face Value: ADF Faces, JSF Pages, and User Interface Components

224

 <f:facet name="buttonBar">

 <af:commandButton text="Continue"id="continueDeleteButton"
 actionListener="#{CommonActionsBean.onContinueDelete}"/>

 </f:facet>

 </af:dialog>

</af:popup>

7. Locate the ADFUTils helper class and open it in the Java editor. Add the following

code to the showPopup() method:

FacesContext facesContext = FacesContext.getCurrentInstance();

ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);

service.addScript(facesContext,
 "AdfPage.PAGE.findComponentByAbsoluteId ('generic:"
 + popupId + "').show();");

8. Redeploy the SharedComponents workspace into an ADF Library JAR.

9. Open the MainApplication workspace or create a new Fusion Web Application

(ADF) workspace. Ensure that you add both the SharedComponents and

HRComponents ADF Library JARs to the ViewController project.

10. Open the adfc-config unbounded task low, go to Overview | Managed Beans

and add a managed bean called CommonActionsBean. For the managed bean

class, use the CommonActions class in the com.packt.jdeveloper.cookbook.
shared.view.actions package imported from the SharedComponents ADF

Library JAR.

11. Create a new JSPX page called templatePopup.jspx based on the

TemplateDef1 page template deinition.

12. With the af:pageTemplate selected in the Structure window, change the template

Id in the Property Inspector to generic.

13. Now, expand the HrComponentsAppModuleDataControl data control in the Data

Controls section of the Application Navigator and drop the Employees collection

on the mainContent facet of the page as an ADF Read-only Form. In the Edit Form

Fields dialog, ensure that you select the Include Navigation Controls checkbox.

14. Using the Component Palette, drop a Button component to the form next to the Last

button. With the button selected in the Structure window, change its Text property to

Delete. Also set the ActionListener property to #{CommonActionsBean.delete}.

Chapter 7

225

How it works…

In steps 1 through 6, we have expanded the TemplateDef1 page template deinition by
adding a pop-up called DeleteConfirmation. We can raise this pop-up prior to deleting

a record consistently for all of the application pages that are based on the TemplateDef1

template. Notice that the name of the pop-up should match the name used in the

CommonActions.onConfirmDelete() method to display the pop-up. This method looks

similar to the following:

public void onConfirmDelete(final ActionEvent actionEvent) {

 ADFUtils.showPopup("DeleteConfirmation");

}

The necessary code to display the pop-up is added in the ADFUtils.showPopup() method

in step 7. The ADFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter

1, Pre-requisites to Success: ADF Project Setup and Foundations. The following is the

ADFUtils.showPopup() method:

public static void showPopup(String popupId) {

 FacesContext facesContext =FacesContext.getCurrentInstance();

 ExtendedRenderKitService service =
 Service.getRenderKitService(facesContext,
 ExtendedRenderKitService.class);

 service.addScript(facesContext,"AdfPage.PAGE.
 findComponent('generic:"+ popupId + "').show();");

}

The code in ADFUtils.showPopup() has been explained in the Using an af:pop-up

component to edit a table row recipe in this chapter. One important thing to notice is how the

template ID (generic) is prepended to the pop-up ID.

The onConfirmDelete() method is called by the generic delete action listener

CommonActions.delete(). The following is the code for the CommonActions.delete()

method:

public void delete(final ActionEvent actionEvent) {

 onConfirmDelete(actionEvent);

}

Face Value: ADF Faces, JSF Pages, and User Interface Components

226

Notice how in step 5 we have added a Continue button to the delete conirmation pop-up and
in step 6 we explicitly specify the CommonActions.onContinueDelete() method as the

continue button's action listener. The code for this method is shown as follows:

public void onContinueDelete(final ActionEvent actionEvent) {
 CommonActions actions = getCommonActions();
 actions.onBeforeDelete(actionEvent);
 actions.onDelete(actionEvent);
 actions.onAfterDelete(actionEvent);
}

First we call getCommonActions() to determine if the CommonActions bean

has been subclassed and then we call the appropriate action framework methods

onBeforeDelete(), onDelete() and onAfterDelete(). The following is the code of the

getCommonActions() method:

private CommonActions getCommonActions() {
 CommonActions actions =
 (CommonActions)JSFUtils.getExpressionObjectReference("#{"
 + getManagedBeanName() + "}");
 if (actions == null) {
 actions = this;
 }
 return actions;
}

The subclassed CommonActions managed bean name is determined by calling

getManagedBeanName(). If a subclassed managed bean is not found, then the generic

CommonActions bean is used; otherwise, the subclassed managed bean class is loaded

using the JSFUtils.getExpressionObjectReference() helper method, which

resolves the expression based on the bean name and instantiates it. The code for the

getManagedBeanName() method is shown as follows:

private String getManagedBeanName() {
 return getPageId().replace("/", "").replace(".jspx", "");
}

As you can see, the subclassed managed bean name is determined by calling the helper

getPageId(), which is shown as follows:

public String getPageId() {
 ControllerContext ctx = ControllerContext.getInstance();
 return ctx.getCurrentViewPort().getViewId().substring(
 ctx.getCurrentViewPort().getViewId().lastIndexOf("/")); }

The getPageId() determines the subclassed CommonActions managed bean name from

the associated page. The fact that the subclassed managed bean name must match the page

name, makes it a requirement for the CommonActions framework.

Chapter 7

227

We continue in step 8 by redeploying the SharedComponents workspace to an

ADF Library JAR.

To test the generic template pop-up, in step 9, we created a Fusion Web Application (ADF)

workspace and added the SharedComponents and HRComponents ADF Library JARs to its

ViewController project.

In step 10, we added a managed bean, called CommonActionsBean, to our application

based on the CommonActions class implemented in the SharedComponents workspace.

In steps 11 through 14, we created a page called templatePopup.jspx based on

the TemplateDef1 template and drop the Employees collection imported from the

HRComponents workspace, as a read-only form. Notice in step 12 how we ensured that the

af:pageTemplate component's identiier value is set to the same identiier value as in the
template deinition, that is, generic. This is important for the code in step 7 that loads the

pop-up to function properly.

Finally, notice in step 14, how we set the delete button action listener to

#{CommonActionsBean.delete}. This will allow for generic processing of the delete action.

To test the recipe, right-click on the templatePopup.jspx page in the Application

Navigator and select Run or Debug from the context menu. When you click on the Delete

button, the Conirm Deletion pop-up deined in the page template will be displayed and the
CommonActions framework will be used to handle the delete action.

Face Value: ADF Faces, JSF Pages, and User Interface Components

228

There's more…

For this recipe, we conigured the delete button action processing so that it can be provided
by the generic CommonActions delete() method. Assuming that you wanted to provide

specialized handling of the delete action, you can do the following:

 f Create a new managed bean with the same name as the page, that is,

templatePopup

 f Create the managed bean class and ensure that it extends the CommonActions

class

 f Provide specialized delete action functionality by overriding the following methods:

delete(), onBeforeDelete(), onDelete(), onAfterDelete() and

onConfirmDelete()

 f Set the delete command button action listener to: #{templatePopup.delete}

See also

 f Using a generic backing bean actions framework, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Exporting data to a client ile
You can export data from the server and download it to a ile in the client by using the ADF
Faces File Download Action Listener component, available in the Operations section of

the Component Palette. Simply specify the default export ilename and a managed bean
method to handle the download. To actually export the data from the model using business

components, you will have to iterate through the relevant view object and generate the

exported string buffer.

In this recipe, we will use the File Download Action Listener component

(af:fileDownloadActionListener) to demonstrate how to export all employees to a

client ile. The employees will be saved in the ile in a comma-separated-values (CSV) format.

Chapter 7

229

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the HRComponents workspace and locate the HrComponentsAppModule

application module. Open the custom application module Java implementation ile
HrComponentsAppModuleImpl.java in the Java editor.

2. Add the following exportEmployees() method to it:

public String exportEmployees() {

 EmployeesImpl employees = this.getEmployees();

 employees.executeQuery();

 StringBuilder employeeStringBuilder = new StringBuilder();

 RowSetIterator iterator =

 employees.createRowSetIterator(null);

 iterator.reset();

 while (iterator.hasNext()) {

 EmployeesRowImpl employee = (EmployeesRowImpl)iterator.next();

 employeeStringBuilder.append(employee.getLastName()
 + " " + employee.getFirstName());

 if (iterator.hasNext()) {

 employeeStringBuilder.append(",");

 }

 }

 iterator.closeRowSetIterator();

 return employeeStringBuilder.toString();

}

3. Double-click the HrComponentsAppModule application module in the Application

Module and go to the Java section. Add the exportEmployees() method to the

application module's client interface by clicking on the Edit application module

client interface button (the pen icon).

Face Value: ADF Faces, JSF Pages, and User Interface Components

230

4. Redeploy the HRComponents workspace as an ADF Library JAR.

5. Open the MainApplication workspace and add the HRComponents and the

SharedComponents ADF Library JARs to its ViewController project.

6. Create a new JSPX page, called exportEmployees.jspx, using one of the quick

start layouts.

7. Expand the HrComponentsAppModuleDataControl in the Data Controls

section of the Application Navigator and locate the exportEmployees() method.

Drop the exportEmployees() method on the page selecting ADF Button from the

Create menu.

8. Right-click on the af:commandButton in the Structure window and select Surround

With… from the context menu. In the Surround With dialog, select Toolbar.

9. With the af:commandButton selected in the Structure window, change the Text

property to Export Employees and reset the ActionListener and Disabled properties

to default (remove their expressions).

10. Switch to the Bindings tab and add a binding using the Create control

binding button (the green plus sign icon). In the Insert Item dialog, select

methodAction and click OK. In the Create Action Binding dialog, select the

HrComponentsAppModuleDataControl in the Data Collection list and

exportEmployees() for the Operation.

Chapter 7

231

11. Return to the page Design or Source. Right-click on the af:commandButton in the

Structure window and select Insert Inside af:commandButton ADF Faces… from

the context menu. In the Insert ADF Faces Item dialog, select File Download Action

Listener and click OK.

12. With the af:fileDownloadActionListener selected in the Structure window,

set the Filename property to employees.csv in the Property Inspector. For the

Method property, expand on the Property Menu and select Edit…. In the Edit

Property: Menu dialog, create a new managed bean called ExportEmployeesBean

and a new method called exportEmployees. Click OK to dismiss the Edit Property:

Menu dialog.

13. Now, open the managed bean and add the following code to the

exportEmployees() method:

String employeesCSV = (String)ADFUtils.findOperation
 ("exportEmployees").execute();

try {

 OutputStreamWriter writer =
 new OutputStreamWriter(outputStream, "UTF-8");

 writer.write(employeesCSV);

 writer.close();

 outputStream.close();

} catch (IOException e) {

 // log the error

}

How it works…

In steps 1 through 4 we have updated the HRComponents ADF Library JAR by adding a

method called exportEmployees() to the HrComponentsAppModule application module.

In this method, we iterate over the Employees view object, and for each row we add the

employee's last and irst name to a string. We separate each employee name with a comma to
create a string with all of the employee names in a comma-separated-values (CSV) format. In

step 3, we have added the exportEmployees() method to the application module's client

interface to make it available to the ViewController layer. Then, in step 4, we redeploy the

HRComponents workspace into an ADF Library JAR.

Steps 5 through 13 cover working on the MainApplication workspace. You could

instead create your own Fusion Web Application (ADF) workspace and apply them to that

workspace instead. First, in step 5, we add the HRComponents ADF Library JAR to the

ViewController project of the MainApplication workspace. You can do this either through

the Resource Palette or through the Project Properties | Libraries and Classpath settings.

The HRComponents library has dependencies to the SharedComponents workspace, so we

make sure that the SharedComponents ADF Library JAR is also added to the project.

Face Value: ADF Faces, JSF Pages, and User Interface Components

232

In step 6, we created a JSF page using one of the predeined quick start layouts. Then, in
steps 7 through 10, we added a command button to the page with the underlying bindings.

In step 7, note how we initially dropped the exportEmployees() method from the Data

Controls window to the page as a button. We did this so that we can initialize the underlying

page bindings. However, note how in step 10, we had to re-bind the exportEmployees()

method as a methodAction. This is because in step 9 we removed the expressions

from the ActionListener and Disabled properties, which as a result removed the

exportEmployees() methodAction binding. Deining and using this methodAction

binding will allow us to execute the exportEmployees() application module method that

returns the employees in a CSV string buffer.

In steps 10 through 13, we added the File Download Action Listener component to

the command button. Note in step 12, how we indicated a listener method, called

exportEmployees(), that will be executed to perform the download action. The actual

code for the listener was added in step 13. This code uses the ADFUtils helper class to

programmatically execute the exportEmployees methodAction binding that we added in

step 10. Executing the exportEmployees methodAction binding will result in returning the

employees in a CSV formatted string. Then, using the OutputStream passed to the download

action listener automatically by the ADF framework, we can write it to the stream. We

introduced the ADFUtils helper class in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

To test the recipe, right-click on the exportEmployees.jspx page in the Application

Navigator and select Run or Debug from the context menu. Observe what happens when

you click on the Export Employees button. A Save As dialog is displayed asking you for the

name of the ile to save the employee CSV data. The default ilename in this dialog is the
ilename indicated in the Filename property of the af:fileDownloadActionListener

component, that is, employees.csv.

There's more…

For more information on the af:fileDownloadActionListener component, consult the

section How to Use a Command Component to Download Files in the Web User Interface
Developer's Guide for Oracle Application Development Framework which can be found at

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

8
Backing not Baking:

Bean Recipes

In this chapter, we will cover:

 f Determining whether the current transaction has pending changes

 f Using a custom af:table selection listener

 f Using a custom af:query listener to allow execution of a custom application module

operation

 f Using a custom af:query operation listener to clear both the query criteria and results

 f Using a session scope bean to preserve session-wide information

 f Using an af:popup during long-running tasks

 f Using an af:popup to handle pending changes

 f Using an af:iterator to add pagination support to a collection

Backing not Baking: Bean Recipes

234

Introduction
Backing (also referred to as managed) beans are Java beans referenced by JSF pages in an

ADF Fusion web application through Expression Language (EL). They are usually dedicated to

providing speciic functionality to the corresponding page. They are part of the ViewController
layer in the Model-View-Controller architecture. Depending on their persistence in memory

throughout the lifetime of the application, managed beans are categorized based on their

scope: from request (minimal persistence in memory for the speciic user request only)
to application (maximum persistence in memory for the duration of the application).

They can also exist in any of the session, view, pageFlow, and backingBean scopes.

Managed bean deinitions can be added to any of the following ADF Fusion web application
coniguration iles:

 f faces-config.xml: The JSF coniguration ile. It is searched irst by the ADF
framework for managed bean deinitions. All scopes can be deined, except for view,

backingBean, and pageFlow scopes, which are ADF-specifc.

 f adfc-config.xml: The unbounded task low deinition ile. Managed beans of any
scope may be deined in this ile. It is searched after the faces-config.xml JSF

coniguration ile.

 f Specific task flow definition file: In this ile, the managed bean
deinitions are accessed only by the speciic task low.

Additionally, if you are using Facelets, you can register a backing bean using annotations.

Determining whether the current
transaction has pending changes

This recipe shows you how to determine whether there are unsaved changes to the current

transaction. This may come in handy when, for instance, you want to raise a warning pop-

up message each time you attempt to leave the current page. This is demonstrated in the

recipe Using an af:popup to handle pending changes in this chapter. Furthermore, by adding

this functionality in a generic way to your application, making it part of the CommonActions

framework for example, you can provide a standard application-wide approach for dealing with

pending uncommitted transaction changes. The CommonActions framework was introduced

in the Using a generic backing bean actions framework, Chapter 1, Pre-requisites to Success:

ADF Project Setup and Foundations.

Getting ready
The functionality implemented in this recipe will be added to the ADFUtils helper class

introduced in Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations. This class is part of the SharedComponents workspace.

Chapter 8

235

How to do it…

1. Open the SharedComponents workspace and locate the ADFUtils.java class in

the Application Navigator.

2. Double-click on the ADFUtils.java to open it in the Java editor and add the

following code to it:

public static boolean isBCTransactionDirty() {

 // get application module and check for dirty

 // transaction

 ApplicationModule am =
 ADFUtils.getDCBindingContainer().getDataControl()
 .getApplicationModule();

 return am.getTransaction().isDirty();

}

public static boolean isControllerTransactionDirty() {

 // get data control and check for dirty transaction

 BindingContext bc = BindingContext.getCurrent();

 String currentDataControlFrame =
 bc.getCurrentDataControlFrame();

 return bc.findDataControlFrame(
 currentDataControlFrame).isTransactionDirty();

}

3. Locate the hasChanges() method in the ADFUtils helper class. Add the following

code to it:

// check for dirty transaction in both the model

// and the controller

return isBCTransactionDirty() ||
 isControllerTransactionDirty();

How it works…

In steps 1 and 2, we added two helper methods to the ADFUtils helper class, namely,

isBCTransactionDirty() and isControllerTransactionDirty().

The isBCTransactionDirty() method determines whether there are uncommitted

transaction changes at the ADF-BC layer. This is done by irst retrieving the application module
from the data control DCDataControl class and then calling getTransaction() to get its

oracle.jbo.Transaction transaction object. We call isDirty() on the Transaction

object to determine if any application module data has been modiied but not yet committed.

Backing not Baking: Bean Recipes

236

The isControllerTransactionDirty() method, on the other hand, checks

for uncommitted changes at the controller layer. This is done by irst calling
getCurrentDataControlFrame() on the binding context to return the name of the

current data control frame, and then calling findDataControlFrame() on the binding

context to retrieve the oracle.adf.model.DataControlFrame object with the given

name. Finally, we call isTransactionDirty() on the data control frame to determine

whether unsaved data modiications exist within the current task low context.

When checking for unsaved changes, we need to ensure that both the ADF-BC and the

controller layers are checked. This is done by the hasChanges() method, which calls both

isBCTransactionDirty() and isControllerTransactionDirty() and returns true

if unsaved changes exist in any of the two layers.

There's more…

Note that for transient attributes used at the ADF-BC layer, isDirty() will return true

only for entity object modiied transient attributes. This is not the case for view object
modiied transient attributes, and isDirty() in this case returns false. In contrast,

calling isTransactionDirty() at the ADFm layer will return true if any attributes have

been modiied.

See also

 f Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

 f Using an af:popup to handle pending changes, in this chapter.

Using a custom af:table selection listener
The selectionListener attribute of the ADF Table (af:table) component synchronizes

the currently selected table row with the underlying ADF table binding iterator. By default,

upon dropping a collection to a JSF page as an ADF table, JDeveloper sets the value of the

selectionListener attribute of the corresponding af:table component to an expression

similar to #{bindings.SomeCollection.collectionModel.makeCurrent}. This

expression indicates that the makeCurrent method of the collection's model is called in

order to synchronize the table selection with the table iterator binding.

In this recipe, we will cover how to implement your own custom table selection listener. This

will come in handy if your application requires any additional processing before or after a table

selection is made.

Chapter 8

237

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

Moreover, this recipe enhances the JSFUtils helper class introduced in Using ADFUtils/

JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations, which is

part of the SharedComponents workspace.

How to do it…

1. Open the SharedComponents workspace and locate the JSFUtils helper class in

the Application Navigator. Double-click on it to open it in the Java editor.

2. Add the following method to it, ensuring that you redeploy the SharedComponents

workspace to an ADF Library JAR afterwards.

public static Object invokeMethodExpression(String expr,
 Class returnType, Class argType, Object argument) {

 FacesContext fc = FacesContext.getCurrentInstance();

 ELContext elctx = fc.getELContext();

 ExpressionFactory elFactory =
 fc.getApplication().getExpressionFactory();

 MethodExpression methodExpr =
 elFactory.createMethodExpression(elctx,
 expr, returnType, new Class[] { argType });

 return methodExpr.invoke(elctx, new Object[] { argument });

}

3. Now, open the MainApplication workspace and add the SharedComponents

and the HRComponents ADF Library JARs to the ViewController project.

4. Create a JSP XML page based on any of the quick start layouts and drop the

Employees collection, under the HrComponentsAppModuleDataControl in the

Data Controls section of the Application Navigator, to the page.

Backing not Baking: Bean Recipes

238

5. With the af:table component selected in the Structure window, use the

SelectionListener property menu Edit… in the Property Inspector and add a

new selection listener, called selectionListener. Create a new managed bean

when asked.

6. Open the managed bean and add the following code to the custom selection listener

created previously:

// invoke makeCurrent via method expression
 JSFUtils.invokeMethodExpression(

"#{bindings.Employees.collectionModel.makeCurrent}",
 Object.class, SelectionEvent.class, selectionEvent);

// get selected data
RichTable table = (RichTable)selectionEvent.getSource();

JUCtrlHierNodeBinding selectedRowData =
 (JUCtrlHierNodeBinding)table.getSelectedRowData();

// process selected data

String[] attrbNames = selectedRowData.getAttributeNames();

for (String attrbName : attrbNames) {

 Object attrbValue =
 selectedRowData.getAttribute(attrbName);

 System.out.println("attrbName: " + attrbName +
 ", attrbValue: " + attrbValue);

How it works…

In steps 1 and 2, we updated the JSFUtils helper class by adding a method called

invokeMethodExpression() used to invoke a JSF method expression. We also ensured

that the SharedComponents workspace, where the JSFUtils helper class is deined,
was redeployed into an ADF Library JAR. Then, in step 3, we added the newly deployed

SharedComponents ADF Library JAR into the ViewController project of our application. We

also added the HRComponents ADF Library JAR to the ViewController project, as we will be

using the Employees collection in the steps that follow. You can add the ADF Library JARs

either through the Resource Palette or through the ViewController Project Properties |

Libraries and Classpath dialog settings.

In steps 4 and 5, we created a JSF page and dropped the Employees collection in it as

an ADF Table (af:table) component. The Employees collection can be found in the

HrComponentsAppModule application module which resides in the HRComponents ADF

Library JAR. Then in step 6, we added a custom table SelectionListener by deining
a method called selectionListener() in a managed bean. The code in the custom

selection listener irst invokes the default selection listener, by invoking the JSF method
expression #{bindings.Employees.collectionModel.makeCurrent} using the

helper method invokeMethodExpression() that we added in step 2.

Chapter 8

239

The custom selection listener also demonstrates how to get the selected row data by

irst retrieving the ADF Table component as an oracle.adf.view.rich.component.
rich.data.RichTable object. We call getSource() on the selection event and then

call getSelectedRowData() on it. The call to getSelectedRowData() returns the

ADF table binding as an oracle.jbo.uicli.binding.JUCtrlHierNodeBinding

object, which can be used to subsequently retrieve the row data. This is done by calling

getAttributeNames(), for instance, to retrieve the attribute names or by calling

getAttribute() to retrieve the data value for a speciic attribute. Once this information is
known for the current table selection, additional business logic can be added to implement

the speciic application requirements.

There's more…

To do the analogous task with Java code, without invoking the default selection listener

makeCurrent, involves getting the current row key from the node binding and setting the

table DCIteratorBinding iterator binding (by calling setCurrentRowWithKey() on the

iterator binding) to that key. For more information about this approach, take a look at Frank

Nimphius' ADF Corner article How-to build a generic Selection Listener for ADF bound ADF

Faces Table. It can be found currently in the following address: http://www.oracle.com/
technetwork/developer-tools/adf/learnmore/23-generic-table-selection-
listener-169162.pdf.

See also

 f Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a custom af:query listener to allow
execution of a custom application module
operation

The queryListener attribute of the ADF Faces Query (af:query) component indicates

a method that is invoked to execute the query. By default, the framework executes the

processQuery() method referenced by the searchRegion binding associated with

the af:query component. This is indicated by the following expression: #{bindings.
SomeQuery.processQuery}. By creating a custom query listener method, you can provide

a custom implementation each time a search is performed by the af:query component.

Backing not Baking: Bean Recipes

240

In this recipe, we will demonstrate how to create a custom query listener. Our custom query

listener will programmatically execute the query by invoking the default expression as

indicated previously. Moreover, after the query execution, it will display a message with the

number of rows returned by the speciic query.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that

was developed in the Breaking up the application in multiple workspaces, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also uses the SharedComponents and HRComponents workspaces, which were

created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated

children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the MainApplication workspace and ensure that both the

SharedComponents and the HRComponents workspaces are added to the

ViewController project.

2. Create a JSP XML page called queryListener.jspx using one of the quick

start layouts.

3. Locate the EmployeesCriteria named criteria under the

HrComponentsAppModuleDataControl | Employees collection in the Data Controls

section of the Application Navigator, and drop it on the page. Select Query | ADF

Query Panel with Table… from the Create menu when asked.

4. With the af:query component selected in the Structure window, select Edit… from

the Property Menu next to the QueryListener and create a new custom query listener

method called queryListener. Create a new managed bean as well.

5. Open the managed bean that implements the custom query listener and add the

following code it:

// handle the presence of certain query criterion data

List criteria =
 queryEvent.getDescriptor()
 .getConjunctionCriterion().getCriterionList();

for (int i = 0; i < criteria.size(); i++) {

 AttributeCriterion criterion =
 (AttributeCriterion)criteria.get(i);

Chapter 8

241

 // do some special processing when a particular

 // criterion was used

 if ("SomeCriterionName".equals(
 criterion.getAttribute().getName()) &&
 criterion.getValues().get(0) != null) {

 // do something, for instance a rollback

 ADFUtils.findOperation("Rollback").execute();

 break;

 }

}

// invoke default processQuery query listener

JSFUtils.invokeMethodExpression(
 "#{bindings.EmployeesCriteriaQuery.processQuery}",
 Object.class, QueryEvent.class, queryEvent);

// display an information message indicating the

// number of rows found

long rowsFound = ADFUtils.findIterator("EmployeesIterator")
 .getEstimatedRowCount();

FacesContext.getCurrentInstance().addMessage("",
 new FacesMessage(FacesMessage.SEVERITY_INFO,
 "Total Rows Found: " + rowsFound + "", null));

How it works…

In step 1, we added both the SharedComponents and HRComponents ADF Library JARs to

the ViewController project of our application. This can be done either through the Resource

Palette or via the Project Properties | Libraries and Classpath dialog settings.

In steps 2 and 3, we created a JSF page and dropped the EmployeesCriteria named

criteria, deined in the Employees view object, as an ADF Query Panel with Table to the

page. The Employees view object is part of the HrComponentsAppModule, that in turn

is part of the HRComponents workspace imported as an ADF Library JAR in step 1. Once

this JAR is imported to our project, the HrComponentsAppModule application module

is available in the Data Controls section of the Application Navigator. Dropping the

EmployeesCriteria named criteria on the page automatically creates the af:query and

af:table components on the page, along with the underlying binding objects in the page

deinition ile.

In steps 4 and 5, we created a custom query listener to be executed by the af:query

component when performing the search. We did this declaratively through the Property

Inspector that also allows us to create and conigure a new managed bean, if needed. We
simply called our custom query listener queryListener and added the necessary code to

perform the search in step 4.

Backing not Baking: Bean Recipes

242

The code in the custom query listener queryListener() starts by demonstrating how

to access the underlying af:query component's criteria. In the code, we iterate over the

criteria looking for a speciic criterion called SomeCriterionName. Once we ind the speciic
criterion, we check whether a value is supplied for it and if so, we perform some action

speciic to our business domain. The criteria are obtained by calling getCriterionList()

on the oracle.adf.view.rich.model.ConjunctionCriterion object, which

is obtained by calling getConjunctionCriterion() on the oracle.adf.view.
rich.model.QueryDescriptor. The QueryDescriptor is obtained from the event

QueryEvent passed by the ADF framework to the query listener. The getCriterionList()

method returns a java.util.List of AttributeCriterion, which we iterate

over to check for the presence of the speciic SomeCriterionName criterion. The

AttributeCriterion indicates a query criterion. We can then call its getValues()

method to retrieve the values supplied for the speciic criterion.

To actually perform the search, we invoke the default processQuery method supplied by the

framework via the expression #{bindings.EmployeesCriteriaQuery.processQuery}.

This is done using the JSFUtils helper class method invokeMethodExpression().

The JSFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter

1, Pre-requisites to Success: ADF Project Setup and Foundations. We added the

invokeMethodExpression() method to the JSFUtils class in the Using a custom

af:table selection listener recipe in this chapter.

Finally, we retrieved the rows obtained after performing the search by calling

getEstimatedRowCount() on the Employees iterator and displayed a message indicating

the number of records yielded by the search.

There's more…

The ConjunctionCriterion object represents the collection of the search ields for a
QueryDescriptor object. It contains one or more oracle.adf.view.rich.model.
Criterion objects, and possibly other ConjunctionCriterion objects, combined using a

conjunction operator.

For more information regarding the af:query UI artifacts and the associated af:query

model class operations and properties, consult the section Creating the Query Data Model

in the Web User Interface Developer's Guide for Oracle Application Development Framework,

which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16181/
toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Chapter 8

243

See also

 f Using ADFUtils/JSFUtils, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a custom af:query operation listener
to clear both the query criteria and results

In the Using a custom af:query listener to allow execution of a custom application module

operation recipe in this chapter, we demonstrated how to create your own custom query

listener in order to handle the af:query component's search functionality yourself. In

this recipe, we will show how to provide a custom reset operation functionality for the

af:query component.

The default reset functionality implemented by the ADF framework resets the af:query

component by clearing the criteria values, but does not clear the results of the associated

af:table component that the framework creates when we drop some named criteria

on the page. This reset functionality is indicated by the queryOperationListener

attribute of the af:query component, and it is implemented by default by the framework

processQueryOperation() method referenced by the searchRegion binding associated

with the af:query component. It is indicated by the following expression: #{bindings.
SomeQuery.processQueryOperation}. The processQueryOperation() method

is used to handle all of the af:query component's operations such as RESET, CREATE,

UPDATE, DELETE, MODE_CHANGE, and so on. These operations are deined by the ADF
framework in the inner Operation class of the oracle.adf.view.rich.event.
QueryOperationEvent class.

In this recipe, we will implement a custom queryOperationListener that will reset both

the af:query and the af:table components used in conjunction in the same page to

provide search functionality.

Backing not Baking: Bean Recipes

244

Getting ready
This recipe relies on having completed the Using a custom af:query listener to allow execution

of a custom application module operation recipe in this chapter.

The recipe also uses the SharedComponents and HRComponents workspaces, which were

created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated

children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the SharedComponents workspace and locate the

ExtApplicationModuleImpl.java custom application module extension class.

Add the following resetCriteria() method to it:

public void resetCriteriaValues(ViewCriteria vc) {

 // reset automatic execution

 vc.setProperty(ViewCriteriaHints.CRITERIA_AUTO_EXECUTE,
 false);

 // reset view criteria variables

 VariableValueManager vvm = vc.ensureVariableManager();

 Variable[] variables = vvm.getVariables();

 for (Variable variable : variables) {

 vvm.setVariableValue(variable, null);

 }

 // reset view criteria

 vc.resetCriteria();

 vc.saveState();

}

2. Redeploy the SharedComponents workspace to an ADF Library JAR.

3. Open the HRComponents workspace and locate the

HrComponentsAppModuleImpl.java application module implementation class.

Add the following resetEmployees() method to it:

public void resetEmployees() {

 EmployeesImpl employees = this.getEmployees();

 ViewCriteria vc = employees.getViewCriteria(

 "EmployeesCriteria");

 // reset view criteria

 super.resetCriteriaValues(vc);

Chapter 8

245

 employees.removeViewCriteria("EmployeesCriteria");

 employees.applyViewCriteria(vc);

 // reset Employees view object

 employees.executeEmptyRowSet();

}

4. Add the resetEmployees() method to the application module client interface and

redeploy the HRComponents workspace to an ADF Library JAR.

5. Open the MainApplication workspace. Double-click on the queryListener.
jspx page in the Application Navigator to open the page in the page editor.

6. Click on the Bindings tab. Add a methodAction binding

for the resetEmployees() operation under the

HrComponentsAppModuleDataControl data control.

7. With the af:query component selected in the Structure window, select Edit…

from the Property Menu next to the QueryOperationListener property in the

Property Inspector.

8. In the Edit Property: QueryOperationListener dialog, select the QueryListenerBean

and create a new method called queryOperationListener.

9. Open the QueryListenerBean.java in the Java editor and add the following code

to the queryOperationListener() method:

// handle RESET operation only

if (QueryOperationEvent.Operation.RESET.name()

 .equalsIgnoreCase(queryOperationEvent.getOperation()

 .name())) {

 // execute custom reset

 ADFUtils.findOperation("resetEmployees").execute();

} else {

 // default framework handling for all other

 // af:query operations

 JSFUtils.invokeMethodExpression(
 "#{bindings.EmployeesCriteriaQuery.processQueryOperation}",
 Object.class, QueryOperationEvent.class,
 queryOperationEvent);

}

10. Finally, ensure that a partial trigger is added to the af:table component for

the af:query component. You can do this using the Property Menu next to the

PartialTriggers property in the af:table Property Inspector.

Backing not Baking: Bean Recipes

246

How it works…

In step 1, we added the resetCriteriaValues() method to the

ExtApplicationModuleImpl custom application module extension class. This method

becomes available to all derived application module classes, and is used to reset the

speciic named criteria values. The method accepts the ViewCriteria to reset, and

iterates over the criteria variables obtained from the criteria VariableValueManager

by calling getVariables(). For each variable, we call setVariableValue() on

the VariableValueManager specifying the variable and a null value. We also call

resetCriteria() to restore the criteria to the latest saved state, and saveState() to

save the current state. We proceed to step 2 with redeploying the SharedComponents

workspace to an ADF Library JAR.

In step 3, we added a method called resetEmployees() to the HrComponentsAppModule

application module implementation class, which is used to reset the EmployeesCriteria

named criteria deined for the Employees view object. In this method, we obtain the

criteria by calling getViewCriteria() on the Employees view object and then call

the resetCriteriaValues() method implemented in step 1 to reset the criteria

variables. Then, we reapply the criteria to the Employees view object by irst calling
removeViewCriteria() and subsequently calling applyViewCriteria(). We also call

executeEmptyRowSet() to empty the Employees view object result set. This will, in effect

reset the af:table component on the page to display no records. In step 4, we added the

resetEmployees() to the application module client interface, so that it can be bound to

and invoked by the ViewController layer. We also redeployed the HRComponents workspace to

an ADF Library JAR.

In steps 5 and 6, we added a method action binding for the resetEmployees() method

implemented in step 3. We will call this method to reset the criteria and the Employees view

object rowset in step 9 from a custom query operation listener.

In steps 7 and 8, we deined a custom query operation listener, called
queryOperationListener() for the af:query component deined in the
queryListener.jspx page. This page was created in the Using a custom af:query listener

to allow execution of a custom application module operation recipe in this chapter.

In step 9, we wrote the necessary Java code to implement the custom query operation

listener. First, we checked for the speciic operation to ensure that we are dealing with a reset
operation. We did this by retrieving the query operation from the QueryOperationEvent

by calling getOperation() on it, and comparing it to the QueryOperationEvent.
Operation.RESET operation. For a reset operation, we proceeded with executing the

resetEmployees operation binding. Calling resetEmployees will reset both the

af:query and af:table components. For all other af:query operations, we executed

the default framework processQueryOperation() method by invoking the expression

#{bindings.EmployeesCriteriaQuery.processQueryOperation}. This is done by

calling the JSFUtils helper class invokeMethodExpression() method.

Chapter 8

247

To ensure that the table will be visually updated by the custom reset operation, we added a

partial trigger to the af:table component by indicating the af:query component identiier
in its partialTriggers property.

There's more…

If you are writing a generic query operation listener and the presence of the reset operation

binding cannot be guaranteed, use the QueryModel.reset() method to reset the

af:query component only. The reset() method in this case is called for all system saved

searches as it is shown in the code snippet:

try {

 // execute custom reset

 OperationBinding op = ADFUtils.findOperation("reset");

 op.execute();

} catch (RuntimeException e) {

 // just reset the af:query component only

 QueryModel queryModel = ((RichQuery)queryOperationEvent
 .getSource()).getModel();

 for (int i = 0; i < queryModel.getSystemQueries().size();
 i++) {

 queryModel.reset(
 queryModel.getSystemQueries().get(i));

 }

}

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Using a custom af:query listener to allow execution of a custom application module

operation recipe in this chapter

Backing not Baking: Bean Recipes

248

Using a session scope bean to preserve
session-wide information

Information stored in the DBMS can be preserved for the duration of the user session by

utilizing ADF business components to retrieve it, and a session scope managed bean to

preserve it throughout the user session. Using this technique allows us to access session-wide

information from any page in our application, without the need to create speciic bindings for it
in each page.

This recipe demonstrates how to access and preserve session-wide information by

implementing the following use case. For each employee authenticated to access the

application, its speciic information will be maintained by a session-scoped managed bean.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the SharedComponents and HRComponents workspaces, which were

created in Breaking up the application in multiple workspaces Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations and in Overriding remove() to delete associated

children entities, Chapter 2, Dealing with Basics: Entity Objects respectively.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

The recipe assumes that ADF security has been enabled for the application and speciic
users matching the employee's last name have been added to the jazn-data.xml ile. For

information on how to enable ADF security take a look at Enabling ADF security, Chapter 9,

Handling Security, Session Timeouts, Exceptions, and Errors.

How to do it…

1. Open the HRComponents workspace. Create a view object called UserInfo based

on the Employees entity object.

2. Update the UserInfo view object query by adding the following WHERE clause to its

query: Employee.LAST_NAME = :inEmployeeName.

3. Add a bind variable called inEmployeeName. Ensure that the Value Type is set to

Expression and use the following Groovy expression in the Value ield to initialize it:
adf.context.securityContext.userName.

Chapter 8

249

4. Ensure that you create both view object and view row Java classes.

5. Create an application module called UserInfoAppModule and add the UserInfo

view object to its data model.

6. Generate an application module implementation class, and add the following

methods to it. Also add these methods to the application module client interface.

public String getFirstName() {

 String firstName = null;

 UserInfoImpl usersInfo = (UserInfoImpl)getUserInfo();

 try {

 usersInfo.executeQuery();

 UserInfoRowImpl userInfo =
 (UserInfoRowImpl)usersInfo.first();

 if (userInfo != null) {

 firstName = userInfo.getFirstName ();

 }

 } catch (SQLStmtException sqlStmtException) {

 // handle exception

 }

 return firstName;

}

public String getLastName() {

 String lastName = null;

 UserInfoImpl usersInfo = (UserInfoImpl)getUserInfo();

 try {

 usersInfo.executeQuery();

 UserInfoRowImpl userInfo =
 (UserInfoRowImpl)usersInfo.first();

 if (userInfo != null) {

 lastName = userInfo.getLastName();

 }

 } catch (SQLStmtException sqlStmtException) {

 // handle exception

 }

 return lastName;

}

7. Redeploy the HRComponents workspace to an ADF Library JAR.

8. Open the MainApplication workspace and add both the HRComponents and the

SharedComponents ADF Library JARs to the ViewController project.

9. Create a managed bean called SessionInfoBean. Make sure that the managed

bean's scope is set to session. Also generate the managed bean class.

Backing not Baking: Bean Recipes

250

10. Open the SessionInfoBean.java class in the Java editor, and add the following

code to it:

private String firstName;

private String lastName;

public SessionInfoBean() {

}

public String getFirstName() {

 if (firstName == null) {

 UserInfoAppModule userInfoAppModule =
 (UserInfoAppModule)ADFUtils
 .getApplicationModuleForDataControl(
 "UserInfoAppModuleDataControl");

 firstName = userInfoAppModule.getFirstName();

 }

 return firstName;

}

public String getLastName() {

 if (lastName == null) {

 UserInfoAppModule userInfoAppModule =
 (UserInfoAppModule)ADFUtils
 .getApplicationModuleForDataControl
 ("UserInfoAppModuleDataControl");

 lastName = userInfoAppModule.getLastName();

 }

 return lastName;

}

How it works…

In steps 1 through 4, we created a new view object called UserInfo based on the

Employees entity object. Assuming that each employee will be authenticated to access

our application using the employee's last name, we will use the information available in

the EMPLOYEES database table to provide information speciic to the employee currently
authenticated. In order to retrieve information speciic to the authenticated employee, we
updated the UserInfo view object query by adding a WHERE clause to retrieve the speciic
employee based on a bind variable (in step 2). In step 3, we created the bind variable and

used the Groovy expression adf.context.securityContext.userName to initialize it.

This expression retrieves the authenticated user's name from the SecurityContext and

uses it to query the speciic employee.

Chapter 8

251

In steps 5 and 6, we created an application module called UserInfoAppModule, and added

the UserInfo view object to its data model and methods to retrieve the authenticated user's

information. For this recipe, we added the methods getFirstName() and getLastName()

to retrieve the user's irst and last name respectively. These methods execute the UserInfo

view object and retrieve the irst row from the result set. In each case, the speciic information
is received by calling the corresponding UserInfo view row implementation class getter,

that is, getFirstName() and getLastName(). Other methods can be added to retrieve

additional user information based on your speciic business requirements. In step 5, we also
exposed these methods to the application module client interface, so that the methods can

be bound and invoked from the ViewController layer.

In step 7, we redeployed the HRComponents workspace to an ADF Library JAR. Then, in step

8, we added the HRComponents along with the dependent SharedComponents ADF Library

JARs to the MainApplication's ViewController project.

Finally, in steps 9 and 10, we added a session-scoped managed bean, called

SessionInfoBean, to the MainApplication ViewController project and implemented

methods getFirstName() and getLastName() to retrieve the authenticated user's

information. These methods call the corresponding getFirstName() and getLastName()

implemented by the UserInfoAppModule application module in step 6. We got a reference

to the UserInfoAppModule application module in the SessionInfoBean constructor by

calling the ADFUtils helper class getApplicationModuleForDataControl() method.

The ADFUtils helper class was introduced in Using ADFUtils/JSFUtils, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

Now, we can use the following expressions on any page of our application to display the

authenticated user's information:

Authenticated user's information Expression

First Name #{SessionInfoBean.firstName}

Last Name #{SessionInfoBean.lastName}

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Handling

Security, Session Timeouts, Exceptions and Errors

Backing not Baking: Bean Recipes

252

Using an af:popup during long running tasks
For long-running tasks in your application, a pop-up message window can be raised to alert the

users that the speciic task may take a while. This can be accomplished using a combination of
ADF Faces components (af:popup and af:dialog) and some JavaScript code.

In this recipe, we will initiate a long-running task in a managed bean, and raise a pop-up for

the duration of the task to alert us to the fact that this operation may take awhile. We will hide

the pop-up once the task completes.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

How to do it…

1. Open the MainApplication workspace and create a new JSPX page called

longRunningTask.jspx based on any of the quick start layouts.

2. Drop a Button (af:commandButton) component from the Component Palette to

the page. You may need to surround the button with an af:toolbar component.

Using the Property Inspector, change the button's Text property to Long Running

Task and set its PartialSubmit property to true.

3. Create an action listener for the button by selecting Edit… from the Property Menu

next to the ActionListener property in the Property Inspector. Create a new managed

bean called LongRunningTaskBean and a new method called longRunningTask.

4. Edit the LongRunningTaskBean Java class and add the following code to the

longRunningTask() method:

try {

 // wait for 5 seconds

 Thread.currentThread().sleep(5000);

 } catch (InterruptedException e) {

}

5. Return to the longRunningTask.jspx page editor. Right-click on the

af:commandButton in the Structure window and select Insert Inside

af:commandButton | ADF Faces…. From the Insert ADF Faces Item dialog, select

Client Listener. In the Insert Client Listener dialog, enter longRunningTask for

the Method ield and select action for the Type ield.

Chapter 8

253

6. Add an af:resource to the af:document tag. Make sure that the af:resource

type attribute is set to javascript and add the following JavaScript code inside it:

function longRunningTask(evt) {

 var popup = AdfPage.PAGE.findComponentByAbsoluteId(
 'longRunningPopup');

 if (popup != null) {

 AdfPage.PAGE.addBusyStateListener(popup,

 busyStateListener);

 evt.preventUserInput();

 }

}

function busyStateListener(evt) {

 var popup = AdfPage.PAGE.findComponentByAbsoluteId(
 'longRunningPopup');

 if (popup != null) {

 if (evt.isBusy()) {

 popup.show();

 }

 else if (popup.isPopupVisible()) {

 popup.hide();

 AdfPage.PAGE.removeBusyStateListener(popup,
 busyStateListener);

 }

 }

}

7. Finally, add a Popup (af:popup) ADF Faces component to the page with an

embedded Dialog (af:dialog) component in it. Ensure that the pop-up identiier
is set to longRunningPopup and that its ContentDelivery attribute is set to

immediate. Also add an af:outputText component to the dialog with some text

indicating a long running process. Your pop-up should look similar to the following:

<af:popup childCreation="deferred" autoCancel="disabled"
 id="longRunningPopup" contentDelivery="immediate">

<af:dialog id="d2" closeIconVisible="false" type="none"
 title="Information">

<af:outputText value="Long operation in progress... Please
 wait..." id="ot1"/>

</af:dialog>

</af:popup>

Backing not Baking: Bean Recipes

254

How it works…

In steps 1 and 2, we created a JSF page called longRunningTask.jspx and added a

button component to it. When pressed, the button will initiate a long-running task through

an action listener. The action listener is added to the button in steps 3 and 4. It is deined
to a method called longRunningTask() in a managed bean. The implementation of

longRunningTask() simply waits for 5 seconds (step 4). We have also ensured (in step 2)

that the button component's partialSubmit property is set to true. This will enable us to

call the clientListener method that is added in steps 5 and 6.

In steps 5 and 6, we deined a clientListener for the button component. The client

listener is implemented by the longRunningTask() JavaScript method, added to the

page in step 6. The longRunningTask() JavaScript method adds a busy state listener

for the pop-up component (the pop-up itself is added to the page in step 7) by calling

addBusyStateListener() and prevents any user input by calling preventUserInput()

on the JavaScript event. The busy state listener is implemented by the JavaScript method

busyStateListener(). In it, we hide the pop-up and remove the busy state listener once

the event completes.

Finally, in step 7, we added the longRunningPopup pop-up to the page. The pop-up is raised

by the busyStateListener() as long as the event is busy (for 5 seconds). We made sure

that the pop-up's contentDelivery attribute was set to immediate to deliver the pop-up

content immediately once the page is loaded.

To test the recipe, right-click on the longRunningTask.jspx page in the Application

Navigator and select Run or Debug from the context menu. When you click on the button, the

pop-up is raised for the duration of the long-running task (the action listener in the managed

bean). The pop-up is hidden once the long-running task completes.

Chapter 8

255

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using an af:popup to handle pending
changes

In the recipe Determining whether the current transaction has pending changes in this

chapter, we showed how to establish whether there are uncommitted pending changes to the

current transaction. In this recipe, we will use the functionality implemented in that recipe to

provide a generic way to handle any pending uncommitted transaction changes. Speciically,
we will update the CommonActions framework introduced in Using a generic backing bean

actions framework, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations

to raise a pop-up message window asking you whether you want to commit the changes.

We will add the pop-up window to the TemplateDef1 page template deinition that we
created in Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

Getting ready
We will modify the TemplateDef1 page template deinition and the CommonActions actions

framework. Both reside in the Sharedcomponents workspace, which is deployed as an ADF

Library JAR and it was introduced in Breaking up the application in multiple workspaces,

Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Furthermore, we will utilize the HRComponents workspace, also deployed as an ADF Library

JAR. This workspace was introduced in Overriding remove() to delete associated children

entities, Chapter 2, Dealing with Basics: Entity Objects.

Finally, you will need to create a skeleton Fusion Web Application (ADF) workspace before

you proceed with the recipe. For this, you can use the MainApplication workspace

introduced in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

Backing not Baking: Bean Recipes

256

How to do it…

1. Open the SharedComponents workspace, locate the TemplateDef1 page template

deinition and open it in the page editor.

2. Add a Popup (af:popup) component to the page. Set the pop-up identiier to
CreatePendingChanges. Add an embedded Dialog (af:dialog) component to

the pop-up and set its Title attribute to Conirm Pending Changes.

3. Add an Output Text (af:outputText) component to the dialog and set its

Value attribute to Pending changes exist. Do you want to save changes?

Also add a Button (af:commandButton) component to the dialog and set its

ActionListener property to #{CommonActionsBean.onContinueCreate}.

The CreatePendingChanges dialog deinition should look similar to the following:
<af:popup id="CreatePendingChanges">

<af:dialog id="pt_d2" title="Confirm Pending Changes"
 type="cancel">

<af:outputText value=
 "Pending changes exist. Do you want to save changes?"
 id="pt_ot2"/>

<f:facet name="buttonBar">

<af:commandButton id=
 "continuePendingChangesButton" text="Continue"
 binding=
 "#{CommonActionsBean.onContinueCreate}"/>

</f:facet>

</af:dialog>

</af:popup>

4. Open the CommonActions Java class in the Java editor and add the following

methods to it:

public void create(final ActionEvent actionEvent) {

 if (ADFUtils.hasChanges()) {

 onCreatePendingChanges(actionEvent);

 } else {

 onContinueCreate(actionEvent);

 }

}

public void onCreatePendingChanges(
 final ActionEvent actionEvent) {

 ADFUtils.showPopup("CreatePendingChanges");

}

public void onContinueCreate(final ActionEvent actionEvent) {

 CommonActions actions = getCommonActions();

 actions.onBeforeCreate(actionEvent);

 actions.onCreate(actionEvent);

Chapter 8

257

 actions.onAfterCreate(actionEvent);

}

protected void onBeforeCreate(final ActionEvent actionEvent) {

 // commit before creating a new record

 ADFUtils.execOperation(Operations.COMMIT);

}

public void onCreate(final ActionEvent actionEvent) {

 ADFUtils.execOperation(Operations.INSERT);

}

protected void onAfterCreate(final ActionEvent actionEvent) {

}

5. Redeploy the SharedComponents workspace into an ADF Library JAR.

6. Open the main workspace application and ensure that both the SharedComponents

and the HRComponents ADF Library JARs are added to the ViewController project.

7. Create a JSPX page called pendingChanges.jspx based on the TemplatedDef1

template. Ensure that the af:pageTemplate component identiier in the page is set
to generic.

8. Expand the Data Controls section of the Application Navigator and drop the

Employees collection under the HrComponentsAppModuleDataControl to the

page as an ADF Form.

9. Expand the Operations node under the Employees collection and drop a

CreateInsert operation as an ADF Button to the page. Change the CreateInsert

button's ActionListener property to the CommonActions framework create()

method. The ActionListener expression should be #{CommonActionsBean.
create}.

10. Switch to the page bindings and add an action binding for the

HrComponentsAppModuleDataControl Commit operation.

How it works…

In steps 1 through 3, we added an af:popup component called CreatePendingChanges

to the TemplateDef1 page template deinition. This is the popup that will be raised by the
CommonActions framework if there are any unsaved transaction changes when we attempt

to create a new record. This is done by the CommonActions onCreatePendingChanges()

method (see step 4). Note that in step 3, we added a Continue button, which when

pressed, saves the uncommitted changes. This is done through the button's action listener

implemented by the onContinueCreate() method in the CommonActions framework (see

step 4). If we press Cancel, the uncommitted changes are not saved (are still pending) and

the creation of the new row is never initiated.

Backing not Baking: Bean Recipes

258

In step 4, we updated the CommonActions framework by adding the methods to handle the

creation of a new row. Speciically, the following methods were added:

 f create(): This method calls the ADFUtils helper class method hasChanges()

to determine whether there are uncommitted transaction changes. If it inds
any, it calls onCreatePendingChanges() to handle them. Otherwise, it calls

onContinueCreate() to continue with the row creation action.

 f onCreatePendingChanges(): The default implementation displays the

CreatePendingChanges pop-up.

 f onContinueCreate(): Called either directly from create()—if there are no

pending changes—or from the CreatePendingChanges pop-up upon pressing

the Continue button. Implements the actual row creation by calling the methods

onBeforeCreate(), onCreate(), and onAfterCreate().

 f onBeforeCreate(): Called to handle any actions prior to the creation of the new

row. The default implementation invokes the Commit action binding.

 f onCreate(): Called to handle the creation of the new row. The default

implementation invokes the CreateInsert action binding.

 f onAfterCreate(): Called to handle any post creation actions. The default

implementation does nothing.

In step 5, we redeploy the SharedComponents workspace to an ADF Library JAR. Then, in

step 6, we add it along with the HRComponents ADF Library JAR to the MainApplication's

ViewController workspace.

In step 6, we created a JSPX page called pendingChanges.jspx based on the

TemplatedDef1 template. We made sure that the template identiier was set to generic,

the same as the identiier of the af:pageTemplateDef component in the TemplatedDef1

template deinition. This is necessary because the code in the ADFUtils.showPopup()

helper method, which is used to raise a pop-up, prepends the pop-up identiier with the
template identiier.

In step 8, we created an ADF Form by dropping the Employees collection to the page. The

Employees collection is part of the HrComponentsAppModuleDataControl data control,

which is available once the HRComponents ADF Library JAR is added to the project.

Then, in step 9, we dropped the CreateInsert operation, available under the Employees

collection, as an ADF Button to the page. Furthermore, we changed its actionListener

property to the CommonActions create() method. This will handle the creation of the new

row in a generic way and it will raise the pending changes pop-up, if there are any unsaved

transaction changes.

Finally, in step 10, we added an action binding for the Commit operation. This is invoked

by the CommonActions onBeforeCreate() method to commit any transaction

pending changes.

Chapter 8

259

The functionality to raise a pop-up message window indicating that there

are pending unsaved transaction changes and committing the changes—

as it is implemented in this recipe—applies speciically to the new row
creation action. Similar functionality will need to be added for the other

actions in your application, for instance, navigating to the next, previous,

irst, and last row in a collection.

See also

 f Determining whether the current transaction has pending changes, in this chapter.

 f Using page templates, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

 f Using a generic backing bean actions framework, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using an af:iterator to add pagination
support to a collection

A collection in an ADF Fusion web application, when dropped from the Data Controls window

to a JSF page as an ADF Table, may be iterated through using the af:table ADF Faces

component. Alternatively, when dropped as an ADF Form, it may be iterated a row at a time

using the accompanying form buttons which can optionally be created by JDeveloper.

In this recipe, we will show how to add pagination support to a collection by utilizing the

iterator (af:iterator) ADF Faces component along with the necessary scrolling support

provided by a managed bean.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

Backing not Baking: Bean Recipes

260

How to do it…

1. Open the main workspace application. Ensure that the HRComponents ADF Library

JAR is added to its ViewController project.

2. Create a new JSP XML page called collectionPagination.jspx based on a

quick start layout.

3. Expand the Data Controls window, locate the Employees collection under

the HrComponentsAppModuleDataControl and drop it on the page as an

ADF Read-only Table.

4. Switch to the page bindings editor, and with the EmployeesIterator iterator

selected in the Executables list, change its RangeSize property to the desired page

size. We will use 3 for this recipe.

5. Using the Component Palette, locate an Iterator component and drop it to the page.

Using the Property Inspector, update the af:iterator component Value, Var,

and Rows properties as shown in the following code fragment:

<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"/>

6. Using the Property Inspector, bind the af:iterator component to a newly created

managed bean, called CollectionPaginationBean. Now the af:iterator

deinition should look similar to the following:
<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"
 binding="#{CollectionPaginationBean.employeesIterator}"/>

7. Move the af:table column contents (the af:outputText components) inside the

af:iterator component. Remove the af:table component when done.

8. Surround the af:iterator with a Panel Box (af:panelBox) component. Drop

a Toolbar component inside the panel box's toolbar facet. Add four buttons to the

toolbar called First, Previous, Next, and Last.

9. For each of the buttons, add the action listeners and the disabled conditions shown

in the following code fragment:

<af:panelBox
 text="Page # #{CollectionPaginationBean.pageNumber}"
 id="pb2">

<f:facet name="toolbar">

<af:toolbar id="t1">

<af:commandButton text="First" id="cb1"
 actionListener="#{CollectionPaginationBean.onFirst}"
 disabled="#{CollectionPaginationBean.previousRowAvailable
 eq false}"/>

Chapter 8

261

<af:commandButton text="Previous" id="cb2"
 actionListener="#{CollectionPaginationBean.onPrevious}"
 disabled="#{CollectionPaginationBean.previousRowAvailable
 eq false}"/>

<af:commandButton text="Next" id="cb3"
 actionListener="#{CollectionPaginationBean.onNext}"
 disabled="#{CollectionPaginationBean.nextRowAvailable
 eq false}"/>

<af:commandButton text="Last" id="cb4"
 actionListener="#{CollectionPaginationBean.onLast}"
 disabled="#{CollectionPaginationBean.nextRowAvailable
 eq false}"/>

</af:toolbar>

</f:facet>

<af:iterator id="i1"
 value="#{bindings.Employees.collectionModel}" var="row"
 rows="#{bindings.Employees.rangeSize}"
 binding="#{CollectionPaginationBean.employeesIterator}">

10. Open the CollectionPaginationBean managed bean in the Java editor and add

the following code to it:

public void onFirst(ActionEvent actionEvent) {

 this.employeesIterator.setFirst(0);

}

public void onPrevious(ActionEvent actionEvent) {

 this.employeesIterator.setFirst(
 this.employeesIterator.getFirst() - PAGE_SIZE);

}

public void onNext(ActionEvent actionEvent) {

 this.employeesIterator.setFirst(
 this.employeesIterator.getFirst() + PAGE_SIZE);

}

public void onLast(ActionEvent actionEvent) {

 this.employeesIterator.setFirst(
 employeesIterator.getRowCount() -
 employeesIterator.getRowCount() % PAGE_SIZE);

}

public boolean isPreviousRowAvailable() {

 return this.employeesIterator.getFirst() != 0;

}

public boolean isNextRowAvailable() {

 return (employeesIterator.getRowCount() >=
 employeesIterator.getFirst() + PAGE_SIZE);

}

public int getPageNumber() {

 return (this.employeesIterator.getFirst()/PAGE_SIZE) + 1;

}

Backing not Baking: Bean Recipes

262

How it works…

In step 1, we ensure that the HRComponents ADF Library JAR is added to the ViewController

project of the MainApplication workspace. We will be using this library in order to access

the Employees collection available through the HrComponentsAppModule. The library can

be added to the project either through the Resource Palette or via the Project Properties |

Libraries and Classpath options.

We created a new JSF page called collectionPagination.jspx in step 2, and in step

3, dropped the Employees collection on the page as an ADF Read-only Table component

(af:table). When we did this JDeveloper created the underlying iterator and tree bindings.

Then, in step 4, we switched to the page bindings and change the EmployeesIterator

range size to our desired value. Note that this page size is indicated in the managed bean

created in step 6 by the constant deinition PAGE_SIZE and set to 3 for this recipe.

In steps 5 through 7, we setup an iterator (af:iterator) component. First, we dropped

the iterator component on the page from the Component Palette and then we updated

its value property (in step 5) to indicate the CollectionModel of the Employees tree

binding, created earlier when we dropped the Employees collection to the page as a table.

In addition, in step 5, we updated its rows and var attributes so that we will be able to copy

over the table column contents to the af:iterator component. We did this in step 7. In step

6, we also bound the af:iterator component to a newly created managed bean called

CollectionPaginationBean as a UIXIterator variable called employeesIterator.

In steps 8 and 9, we added a navigation toolbar to the page along with buttons for scrolling

through the Employees collection namely buttons First, Previous, Next, and Last. For

each button, we added the appropriate action listener and disabled the condition methods

implemented by the CollectionPaginationBean managed bean (implemented in step

10). For the complete page source code, refer to the book's relevant source code.

Finally, in step 10, we implemented the action listener and disabled the condition methods for

the navigation buttons. These methods are explained as follows:

 f onFirst(): Action listener for the First button. Uses the bound iterator's

setFirst() method with an argument of 0 (the index of the irst row) to set the
iterator to the beginning of the collection.

 f onPrevious(): Action listener for the Previous button. Sets the irst row to the
current value decreased by the page size. This will scroll the collection to the

previous page.

 f onNext(): Action listener for the Next button. Sets the irst row to the current value
increased by the page size. This will scroll the collection to the next page.

 f onLast(): Action listener for the Last button. Sets the irst row to the irst row of the
last page. We call the getRowCount() iterator method to determine the iterator's

row count and subtract the last page's rows from it. This will scroll the collection to

the irst row of the last page.

Chapter 8

263

 f isPreviousRowAvailable(): Disable condition for the First and Previous buttons.

Returns true if the iterator's row index is not the irst one.

 f isNextRowAvailable(): Disable condition for the Last and Next buttons. Returns

true if there are available rows beyond the current page.

 f getPageNumber(): It is used in the page to display the current page number.

To test the recipe, right-click on the collectionPagination.jspx in the Application

Navigator and select Run or Debug from the context menu.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

9
Handling Security,
Session Timeouts,

Exceptions,
and Errors

In this chapter, we will cover:

 f Enabling ADF security

 f Using a custom login page

 f Accessing the application's security information

 f Using OPSS to retrieve the authenticated user's proile from the identity store

 f Detecting and handling session timeouts

 f Using a custom error handler to customize how exceptions are reported to the

ViewController

 f Customizing the error message details

 f Overriding attribute validation exceptions

Handling Security, Session Timeouts, Exceptions, and Errors

266

Introduction
The ADF security framework provides authentication and authorization services for the

ADF Fusion web application. To a certain degree, this security framework is supported in

JDeveloper through a number of wizards and overview editors (available via the Application

| Secure menu options) that allow interactive declarative coniguration of certain parts of the
application's security coniguration. The security overview editors simplify the work needed to
secure the application by authorizing ADF resources in a declarative manner. This resource

authorization is achieved at the task low, page deinition and business components (entity
objects and their attributes) levels. Authorization deined for task lows protects not only the
task low's entry point but all the pages included in the task low as view activities.

Coniguring the application's session timeout can be done through a number of options in the
application's deployment descriptor ile web.xml.

Customization of error and exception handling for an ADF Fusion web application can be

achieved by overriding certain framework classes and by creating your own exception classes.

Enabling ADF security
Enabling security for an ADF Fusion web application involves enabling both user

authentication and authorization. Authentication refers to enabling users to access your

application using a credentials validation login facility. On the other hand, authorization refers

to controlling access to the application resources by deining and coniguring security policies
on ADF application resources, such as task lows, page deinitions, and business components
(entity objects and their attributes). ADF security is enabled for the Fusion web application

through the use of the Conigure ADF Security wizard available under the Application |

Secure menu option. Moreover, JDeveloper provides additional declarative support through

the jazn-data.xml security coniguration overview editor, and through declarative security
support at the business components level using the entity object overview editor (General and

Attributes tabs).

In this recipe, we will go over the process of enabling security for an ADF Fusion web

application by creating and coniguring the necessary artifacts, such as login, error and
welcome pages, redirection, user and role creation, and coniguration using the Conigure
ADF Security wizard.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

Chapter 9

267

How to do it…

1. Open the MainApplication workspace. From the Application menu select Secure

| Conigure ADF Security… to start the Conigure ADF Security wizard.

2. In the Enable ADF Security page, select ADF Authentication and Authorization and

click Next.

3. In the Select authentication type page, select the appropriate ViewController project

from the Web Project combo box. Select Form-Based Authentication and click on

the Generate Default Pages checkbox. Click Next to proceed.

4. In the Enable automatic policy grants page, select Grant to All Objects. Click Next

to proceed.

5. In the Specify authenticated welcome page, click on the Redirect Upon Successful

Authentication checkbox and specify your main application page. You can click on

the Generate Default checkbox to generate a default welcome.jspx page. Click

Next to proceed. In the Summary page, review your selections and click Finish to

complete the security coniguration wizard.

Handling Security, Session Timeouts, Exceptions, and Errors

268

6. Select Users from the Application | Secure menu to open the jazn-data.xml

security coniguration overview editor. With the Users tab selected, create a user

called user1 and assign to it the test-all role. Use user1234 for the password.

7. Locate the web.xml deployment descriptor in the Web Content | WEB-INF folder in

the Application Navigator and double-click on it to open it. Click on the Source tab.

Change the success_url parameter value for the adfAuthentication servlet to

/faces/welcome.jspx.

8. Add the following welcome ile list to the web.xml deployment descriptor:

<welcome-file-list>

 <welcome-file>/faces/welcome.jspx</welcome-file>

</welcome-file-list>

9. Open the welcome.jspx page in the page editor and add a Button

(af:commandButton) component. Change the button's text property to Logout.

Using the property menu add an Action to a method called logout deined in a
newly created managed bean called AuthenticationBean.

10. Open the AuthenticationBean managed bean in the Java editor and add the

following code to the logout() method:

// create a dispatcher and forward to the login.html page

final String LOGOUT_URL =
 "/adfAuthentication?logout=true&end_url=login.html";

FacesContext ctx = FacesContext.getCurrentInstance();

HttpServletRequest request =
 (HttpServletRequest)ctx.getExternalContext().getRequest();

Chapter 9

269

HttpServletResponse response =
 (HttpServletResponse)ctx.getExternalContext()

getResponse();

RequestDispatcher dispatcher =
 request.getRequestDispatcher(LOGOUT_URL);

try {

 dispatcher.forward(request, response);

} catch (Exception e) {

// log exception

}

ctx.responseComplete();

return null;

How it works…

To enable ADF security for our ADF Fusion web application, we have used the Conigure ADF
Security wizard, available in JDeveloper through the Application | Secure | Conigure ADF
Security… menu selection. Using the wizard will allow us to enable security in a declarative

manner as it will create all related security artifacts, including a login page, an error page,

redirection upon a successful authentication to a speciic page (welcome.jspx in our case),

a test-all application role assigned to all application task lows and securable pages, and
coniguration of the adfAuthentication servlet in web.xml. We started the ADF security

coniguration wizard in step 1.

In step 2, we choose to enable both ADF authentication and authorization. This option

enables the ADF authentication servlet adfAuthentication to enforce access to the

application through conigured login and logout pages. The adfAuthentication servlet is

added to web.xml deployment descriptor.

This also adds a security constraint for the adfAuthentication resource, a security role

called valid-users to allow all users to access the adfAuthentication resource, and a

ilter mapping to web.xml.

The valid-users role is mapped in the weblogic.xml coniguration ile to an implicit
group called users deined in WebLogic. WebLogic conigures all authenticated users to be
members of the users group. The following code snippet from weblogic.xml shows this

role mapping:

<security-role-assignment>

 <role-name>valid-users</role-name>

 <principal-name>users</principal-name>

</security-role-assignment>

This step also conigures authorization for the application, which is enforced through
authorization checks on application resources based on conigured application roles assigned
to them and to authenticated users.

Handling Security, Session Timeouts, Exceptions, and Errors

270

In step 3, we select the authentication type. In this case, we choose form-based

authentication and let the wizard create default login and error pages. You could create

your own login page using ADF Faces components and handle the authorization process

yourself, as it is demonstrated in Using a custom login page in this chapter. The generated

login page deines a form with the standard j_security_check action, which accepts the

username and password as input and passes them to the j_SecurityCheck method within

the container's security model. The wizard updates the web.xml ile to indicate form-based
authentication and identify the login and error pages as shown in the following code snippet:

<login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.html</form-login-page>

 <form-error-page>/error.html</form-error-page>

 </form-login-config>

</login-config>

In step 4, by selecting Enable automatic policy grants, we allow the wizard to create a test-
all application role and assign it to all application resources. This will allow us to create

users with full access to the application resources once we assign the test-all role to

them. At a later phase of the application development process, you should remove this role.

Also, note that the test-all role is granted to anonymous users as well.

In step 5, we create a default welcome page that we will be redirected to upon a successful

authentication. This option added the success_url initialization parameter to the

adfAuthentication servlet. We have prepended the welcome.jspx page with /faces/

(see step 7) since we will be adding ADF Faces components to it in step 9. Step 5 completes

the security wizard. For a complete list of the iles that are updated by the security wizard and
their changes, consult the table Files Updated for ADF Authentication and Authorization in

section What Happens When You Enable ADF Security of the Fusion Developer's Guide for

Oracle Application Development Framework, which can be found at http://docs.oracle.
com/cd/E24382_01/web.1112/e16182/toc.htm.

In step 6, we create a user called user1. We will use this user to test the recipe. We map the

test-all application role to the user to allow access to all of the application resources.

We add a welcome-file-list coniguration to the web.xml ile indicating our /faces/
welcome.jspx welcome page in step 8, so that we will be successfully redirected to the

welcome page upon successful authentication. This will allow us to test the recipe by running

the login.html page.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 9

271

In step 9, we added a Button component to the welcome page to perform the application

log out. Log out is done by deining an action called logout implemented by an

AuthenticationBean managed bean. The logout action was implemented by the

logout() method in step 10. The method creates a RequestDispatcher for the logout

URL and calls its forward() method to redirect the request. The logout URL passes a

logout parameter to the adfAuthentication servlet with the value true to indicate a

logout action. It also speciies an end_url parameter to the adfAuthentication servlet

with the login.html URL. This in effect logs us out of the application and redirects us back

to the login.html page.

To test the recipe, right-click on the login.html page and go through the authorization

process. You can log in using the user1/user1234 credentials. Upon successful

authorization, you will be forwarded to the welcome.jspx page. Click on the Logout button

to log out from the application.

There's more…

Note that the Conigure ADF Security wizard does not enable authorization for pages that
are not associated with databound components, that is, they neither have associated page

deinition bindings and they are not associated with a speciic task low. In such cases, these
pages appear in the Resource Grants section of the jazn-data.xml overview editor as

unsecurable pages. The welcome page, welcome.jspx page in this recipe, is one such

case. You can still enforce authorization checking in these cases by creating an empty page

deinition ile for the page. This is done by right-clicking on the page and selecting Go to Page

Deinition from the context menu. In the Conirm Create New Page Deinition dialog click on

the Yes button to proceed with the creation of the page deinition ile.

For more information about enabling and coniguring ADF security, consult chapter Enabling

ADF Security in a Fusion Web Application in the Fusion Developer's Guide for Oracle

Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Using a custom login page, Chapter 9, Handling Security, Session Timeouts,

Exceptions and Errors

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

272

Using a custom login page
In the recipe Enabling ADF security in this chapter, we've seen how to enable ADF security

for an ADF Fusion web application using the Conigure ADF Security wizard (available in

JDeveloper through the Application | Secure menu). In one of the steps, the wizard allows

for the creation of a default login page that handles the user authorization process. For the

speciic step in that recipe, we have chosen to create a default login page.

In this recipe, we will create a custom login page utilizing ADF Faces components. Moreover,

we will handle the user authentication ourselves using custom login authentication code

implemented by the AuthenticationBean managed bean. This managed bean was

introduced in the Enabling ADF security recipe in this chapter.

Getting ready
You need to complete the Enabling ADF security recipe in this chapter before you start

working on this recipe. The Enabling ADF security recipe requires a skeleton Fusion Web

Application (ADF) workspace. For this purpose, we will use the MainApplication

workspace that was developed in Breaking up the application in multiple workspaces,

Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

How to do it…

1. Open the MainApplication workspace in JDeveloper. Locate and open the

AuthenticationBean managed bean in the Java editor. Add the following code

to it:

private String username;

private String password;

public void setUsername(String username) {

 this.username = username.toLowerCase();

}

public String getUsername() {

 return this.username;

}

public void setPassword(String password) {

 this.password = password;

}

public String getPassword() {

 return this.password;

}

public String login() {

 final String WELCOME_URL =
 "/adfAuthentication?success_url=/faces/welcome.jspx";

Chapter 9

273

 FacesContext ctx = FacesContext.getCurrentInstance();

 HttpServletRequest request =
 (HttpServletRequest)ctx.getExternalContext().getRequest();

 if (authenticate(request)) {

 HttpServletResponse response =
 (HttpServletResponse)ctx.getExternalContext().getResponse();

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(WELCOME_URL);

 try {

 dispatcher.forward(request, response);

 } catch (Exception e) {

 reportLoginError(e.getMessage());

 }

 ctx.responseComplete();

 }

 return null;

}

private boolean authenticate(HttpServletRequest request) {

 String password = getPassword() == null ? "" : getPassword();

 CallbackHandler handler = new URLCallbackHandler(
 getUsername(), password.getBytes());

 boolean authenticated = false;

 try {

 Subject subject = Authentication.login(handler);

 ServletAuthentication.runAs(subject, request);

 ServletAuthentication.generateNewSessionID(request);

 authenticated = true;

 } catch (FailedLoginException failedLoginException) {

 reportLoginError("Wrong credentials specified.");

 } catch (LoginException loginException) {

 reportLoginError(loginException.getMessage());

 }

 return authenticated;

}

private void reportLoginError(String errorMessage) {

 FacesMessage fm = new FacesMessage(

 FacesMessage.SEVERITY_ERROR, null, errorMessage);

 FacesContext ctx = FacesContext.getCurrentInstance();

 ctx.addMessage(null, fm);

}

2. Create a page called login.jspx based on a quick start layout.

Handling Security, Session Timeouts, Exceptions, and Errors

274

3. Using the Component Palette, drop two Input Text (af:inputText) components

on the page, one for the username and another for the password. Set the Secret

property of the password input text to true. In addition, set the value attribute of

the username and password input text components (you can use the Expression

Builder dialog to do this) to the expressions #{AuthenticationBean.username}

and #{AuthenticationBean.username} respectively.

4. Drop a Button (af:commandButton) component on the login page and change

its text property to Login. Moreover, set the button's action property to the

expression #{AuthenticationBean.login}.

5. Open the web.xml deployment descriptor located in the Web Content | WEB-INF

folder in the Application Navigator and switch to the Security tab. Change the Login

Page to /faces/login.jspx.

6. Finally, change the LOGOUT_URL constant deinition in the logout() method of the

AuthenticationBean managed bean to /adfAuthentication?logout=true&
end_url=/faces/login.jspx.

How it works…

In step 1, we added a login() method to the AuthenticationBean managed bean

(introduced in the Enabling ADF security recipe in this chapter to handle the logout

functionality), to handle the user authentication process. The login() method is set to the

action property of the Login button added to the login page in step 4. To authenticate the

user, we call the authenticate() helper method from the login() method. The code

in authenticate() retrieves the username and password values supplied by the user

and calls the static Authentication.login() to create a javax.security.auth.
Subject. It subsequently uses the Subject when calling ServletAuthentication.
runAs() to authenticate the request. The authentication process completes by calling

ServletAuthentication.generateNewSessionID() to generate a new session

identiier. Once the user is authenticated, the request is forwarded to the welcome page. This
is done by calling forward() on a RequestDispatcher object and specifying the welcome

page URL. The welcome page URL is speciied using the parameter success_url to the

adfAuthentication servlet. It is identiied by the constant deinition WELCOME_URL, which

is deined as: /adfAuthentication?success_url=/faces/welcome.jspx.

Furthermore, we have added setters and getters for the username and password. These

are speciied as value attributes to the corresponding username and password input text

components that are added to the login page in step 3.

In steps 2 through 4, we created the custom login page. We added two input text ields that
we will use to specify the login credentials (username and password), and a Login button,

which when pressed will initiate the authentication process. The username and password

input text value attributes are bound to the username and password attributes of the

AuthenticationBean managed bean respectively. Moreover, the Login button action

property is set to the login() method of the AuthenticationBean managed bean.

Chapter 9

275

In step 5, we updated the login page coniguration in web.xml to point to the custom login

page. Note how we prepended the login page URL with /faces/ to allow processing of the

page by the faces servlet, since it contains ADF Faces components.

Finally, we updated the LOGOUT_URL constant used by the logout() method in the

AuthenticationBean managed bean, so that we are redirected to our custom login

page instead.

To test the recipe, right-click on the login.jspx page and go through the authorization

process. You can use the user1/user1234 credentials. Upon successful authorization, you

should be forwarded to the welcome.jspx page.

There's more…

Note that the way we have explained programmatic authentication in this recipe is proprietary

to the WebLogic Server. The recipe will have to be adapted using similar APIs offered by other

application servers.

For more information about creating a custom login page, consult section Creating a

Login Page in the Fusion Developer's Guide for Oracle Application Development Framework,

which can be found at http://docs.oracle.com/cd/E24382_01/web.1112/e16182/
toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions

and Errors

Accessing the application's security
information

You can access the application's security information at the ViewController layer either through

Java code in a managed bean or through Expression Language (EL) in your JSF pages by

utilizing the methods available via the oracle.adf.share.security.SecurityContext

bean. These methods will allow you to determine whether authorization and/or authentication

are enabled in your application, the roles assigned to the authenticated user, whether the

user is assigned a speciic role, and so on. At the ADF-BC level, security information can be
accessed through the methods available in the oracle.jbo.Session.

In this recipe, we will see how to access the application's security information from a managed

bean, a JSF page and at the ADF-BC level.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

276

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this purpose, we will use the MainApplication workspace

that was developed in Breaking up the application in multiple workspaces Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations. The recipe assumes that

you have enabled ADF security by completing recipes Enabling ADF security and Using a

custom login page in this chapter.

The recipe also uses the HRComponents workspace, which was created in Overriding

remove() to delete associated children entities. Chapter 2, Dealing with Basics: Entity Objects.

Both the HRComponents and MainApplication workspaces require database connections

to the HR schema.

How to do it…

1. Open the HRComponents workspace and locate the Employees custom row

implementation Java class EmployeesRowImpl.java in the Application Navigator.

Double-click on it to open it in the Java editor.

2. Override the isAttributeUpdateable() method and add the following code to it:

// allow employee changes only if the user has the

// 'AllowEmployeeChanges' role

return ADFContext.getCurrent().getSecurityContext().isUserInRole(
 "AllowEmployeeChanges")

 ? super.isAttributeUpdateable(i) : false;

3. Redeploy the HRComponents workspace to an ADF Library JAR.

4. Open the MainApplication workspace. Add the HRComponents ADF Library JAR

to the ViewController project.

5. Create a JSPX page called applicationSecurity.jspx and drop the Employees

collection (available under the HrComponentsAppModuleDataControl data

control in the Data Controls window) as an ADF Form on it.

6. Add a Button (af:commandButton) component to the page. Using the Property

Inspector, change the button's Disabled property to #{securityContext.userIn
Role['AllowEmployeeChanges'] eq false}.

7. Add an action listener to the button component by deining a new
managed bean called ApplicationSecurityBean and a method called

onApplicationSecurity.

Chapter 9

277

8. Open the ApplicationSecurityBean managed bean and add the following code

to the onApplicationSecurity() method:

// check for user having the 'AllowEmployeeChanges' role

if (ADFContext.getCurrent().getSecurityContext()
 .isUserInRole("AllowEmployeeChanges")) {

 FacesContext context =
 FacesContext.getCurrentInstance();

 context.addMessage(null,new FacesMessage
 (FacesMessage.SEVERITY_INFO, "User is allowed to
 edit the employee data.", null));

}

9. Select Application Roles from the Application | Secure menu. Create a new

application role called AllowEmployeeChanges. Click on the Add User or Role

button (the green plus sign icon) in the Mappings section, then Add User to map the

user1 user to the AllowEmployeeChanges role.

10. Select Resource Grants from the Application | Secure menu. Select Web Page

for the Resource Type and locate the applicationSecurity page. Click on the Add

Grantee button (the green plus sign icon) in the Granted To section, then select Add

Application Role from the menu. Add the AllowEmployeeChanges role ensuring

that the view action in the Actions section is selected.

How it works…

In steps 1 through 3, we have updated the HRComponents ADF Library JAR in order to

demonstrate how to access the application security information at the business components

level. Speciically, we have overridden the ViewRowImpl isAttributeUpdateable()

method for the custom EmployeesRowImpl row implementation class, in order to control

the Employees view object attributes that can be updated based on a speciic role assigned
to the currently authorized user. We did this by calling isUserInRole() on the oracle.
jbo.Session and specifying the speciic role, AllowEmployeeChanges in this case.

We obtained the Session object from the application module by calling getSession().

The effect of adding this piece of code is that if the authorized user does not have the

AllowEmployeeChanges role, none of the Employees attributes will be updatable. The

HRComponents workspace is deployed to an ADF Library JAR in step 3.

Handling Security, Session Timeouts, Exceptions, and Errors

278

In steps 4 through 6, we created a page called applicationSecurity.jspx for the

main application and dropped in it the Employees collection as an ADF Form (step 5). The

Employees collection is available under the HrComponentsAppModuleDataControl

data control in the Data Controls window once we add the HRComponents ADF Library

JAR to the ViewController project of the application (which we did in step 4). In step 6, we

added an af:commandButton component to the page and set its Disabled property to

the EL expression #{securityContext.userInRole['AllowEmployeeChanges'] eq

false}. This expression uses the SecurityContext bean to check whether the currently

authorized user has the AllowEmployeeChanges role assigned to it. If the user does not

have the role assigned, the button will appear on the page disabled.

In steps 7 and 8, we added an action listener to the button, specifying the

onApplicationSecurity method on a newly created bean. We have added code to

the onApplicationSecurity() action listener to call the SecurityContext bean

isUserInRole() method to determine whether the current user has been assigned the

AllowEmployeeChanges role. For the purpose of this recipe, we display a message if the

user is authorized to edit the employee data.

Finally, in steps 9 and 10, we added an application role called AllowEmployeeChanges and

mapped it to the user1 user. We also enabled view access to the applicationSecurity.
jspx page by adding the AllowEmployeeChanges role to it.

Observe what happens when you run the main application: if you run the

applicationSecurity.jspx page by right-clicking on it in the Application Navigator,

the employee information and the button in the page are disabled. This is because we

have not gone through the user authorization process and the current anonymous user

does not have the AllowEmployeeChanges role. This is not the case if you access the

applicationSecurity.jspx page after a successful authorization. For this purpose, we

have updated the welcome.jspx page, the page that we are redirected to upon a successful

log in, and added a link to the applicationSecurity.jspx page. Observe in this case

that both the employee ields and the button in the page are enabled.

There's more…

Some of the other commonly used SecurityContext methods and/or expressions are

listed in the following table:

Method/Expression Description

#{secrityContext.taskflowViewa
ble['SomeTaskFlow']}

Returns true if the user has access to the

speciic SomeTaskFlow task low.
#{secrityContext.
regionViewable['SomePageDef']}

Returns true if the user has access to the

speciic SomePageDef page deinition ile
associated with a page.

#{secrityContext.userName} Returns the authenticated user's username.

Chapter 9

279

Method/Expression Description

#{secrityContext.
authenticated}

Returns true if the user has been authenticated.

#{securityContext.
userInAllRoles['roleList']}

Returns true if the user has all roles in the

comma-separated roleList assigned.

For a comprehensive list of the SecurityContext EL expressions take a look at the section

Using Expression Language (EL) with ADF Security in the Fusion Developer's Guide for Oracle

Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16182/toc.htm.

Note that you can access the SecurityContext bean at the business components

layer using the adf.context.securityContext Groovy expression. For instance, to

get the username of the currently authorized user, use the expression adf.context.
securityContext.userName.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions

and Errors

 f Using a custom login page, Chapter 9, Handling Security, Session Timeouts,

Exceptions and Errors

Using OPSS to retrieve the authenticated
user's proile from the identity store

Oracle Platform Security Services (OPSS) is a comprehensive standards-based security

framework and the underlying security-providing platform for Oracle Fusion Middleware. It

provides an abstract layer through the use of an Application Programming Interface (API)

for accessing security provider and identity management details. It is through the use of the

OPSS API that generic access is achieved to vendor-speciic security providers.

In this recipe, we will introduce the OPSS framework by implementing the following use case:

using the HR schema, for an authenticated employee-user, we will update the employee

information in the EMPLOYEES table with information from the user's proile obtained from
the identity store. For an authenticated employee-user who is not already in the EMPLOYEES

table, we will create a new row in it.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

280

Getting ready
This recipe adds a security utility helper class to the SharedComponents workspace. This

workspace was introduced in Breaking up the application in multiple workspaces, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations. It also updates the UserInfo

application module introduced in Using a session scope bean to preserve session-wide

information, Chapter 8, Backing not Baking: Bean Recipes. The UserInfo application

module resides in the HRComponents workspace, which was also created in Breaking up the

application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this purpose, we will use the MainApplication workspace

that was developed in Breaking up the application in multiple workspaces, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

The recipe also requires that ADF security is enabled for the main application (see additional

recipes Enabling ADF security and Using a custom login page in this chapter) and the

presence of a main application page (we will use the welcome.jspx page developed for the

Enabling ADF security recipe).

Finally, you need a connection to the HR schema.

How to do it…

1. Open the SharedComponents workspace and add the following SecurityUtils

helper class to it:

public class SecurityUtils {

 private static ADFLogger LOGGER =
 ADFLogger.createADFLogger(SecurityUtils.class);

 public static UserProfile getUserIdentityStoreProfile(
 String username) {

 UserProfile userProfile = null;

 try {

 // get the identity store

 IdentityStore idStore = getIdentityStore();

 // create a search filter based on the

 // specific username

 SimpleSearchFilter filter =
 idStore.getSimpleSearchFilter(UserProfile.NAME,
 SimpleSearchFilter.TYPE_EQUAL, username);

 SearchParameters sp = new SearchParameters(filter,
 SearchParameters.SEARCH_USERS_ONLY);

 // search identity store

 SearchResponse response = idStore.search(sp);

Chapter 9

281

 // check for search results

 if (response.hasNext()) {

 User user = (User)response.next();

 if (user != null) {

 // retrieve the user profile

 userProfile = user.getUserProfile();

 }

 }

 } catch (Exception e) {

 LOGGER.severe(e);

 }

 // return the user profile

 return userProfile;

 }

 private static IdentityStore getIdentityStore()
 throws JpsException {

 // get the JPS context

 JpsContext jpsCtx = JpsContextFactory.getContextFactory()
 .getContext();

 // return the identity store

 IdentityStoreService service =
 jpsCtx.getServiceInstance(IdentityStoreService.class);

 return service.getIdmStore();

 }

}

2. Redeploy the SharedComponents workspace to an ADF Library JAR.

3. Open the HRComponents workspace and add the SharedComponents ADF Library

JAR to the HRComponentsBC business components project.

4. Locate the UserInfoAppModuleImpl.java custom application module

implementation class in the Application Navigator. Double-click on it to open it in the

Java editor. Add the following methods to it:

public void synchronizeEmployee() {

 try {

 // get information for currently logged-in user

 // from identity store

 UserProfile userProfile = SecurityUtils

 .getUserIdentityStoreProfile(getUserPrincipalName());

 if (userProfile != null) {

 // get EMPLOYEES row from currently logged-in user

 UserInfoImpl employees = (UserInfoImpl)getUserInfo();

 employees.executeQuery();

 UserInfoRowImpl employee =
 (UserInfoRowImpl)employees.first();

Handling Security, Session Timeouts, Exceptions, and Errors

282

 // if user is not in EMPLOYEES table, add it

 if (employee == null) {

 addEmployee(employees, userProfile);

 } else { // user in EMPLOYEES table

 String email = userProfile.getBusinessEmail();

 if (email != null &&
 !email.equals(employee.getEmail())) {

 employee.setEmail(email);

 }

 }

 // commit transaction

 this.getDBTransaction().commit();

 // requery users to fetch any calculated attributes

 employees.executeQuery();

 }

 } catch (Exception e) {

 // log exception

 }

}

private void addEmployee(UserInfoImpl employees,
 UserProfile userProfile) throws IMException {

 // create employee row

 UserInfoRowImpl employee =
 (UserInfoRowImpl)employees.createRow();

 // set required employee row data from

 // identity store profile

 employee.setLastName(getUserPrincipalName());

 employee.setEmail(userProfile.getBusinessEmail()== null ?
 "n/a" : userProfile.getBusinessEmail());

 employee.setHireDate(new Date(
 new Timestamp(System.currentTimeMillis())));

 employee.setJobId("IT_PROG");

 employee.setDepartmentId(new Number(60));

 // add employee row

 employees.insertRow(employee);

}

5. Add the synchronizeEmployee() method to the UserInfoAppModule

application module client interface and redeploy the HRComponents workspace to

an ADF Library JAR.

6. Open the MainApplication workspace and add the HRComponents ADF Library

JAR to the ViewController project.

7. Create a bounded task low called syncEmployeesTaskFlow. Using the Property

Inspector change the URL Invoke property to url-invoke-allowed.

Chapter 9

283

8. Expand the UserInfoAppModuleDataControl in the Data Controls window and

drop the synchronizeEmployee() method to the syncEmployeesTaskFlow

task low.

9. Create a managed bean called SyncEmployeesBean, and add the following

methods to it:

public String getProgrammaticallyInvokeTaskFlow() {

 // setup task flow parameters

 Map<String, Object> parameters =
 new java.util.HashMap<String, Object>();

 // construct and return the task flow's URL

 return getTaskFlowURL("/WEB-INF/taskflows/chapter9/
syncEmployeesTaskFlow.xml#syncEmployeesTaskFlow", parameters);

}

private String getTaskFlowURL(String taskFlowSpecs,
 Map<String, Object> parameters) {

 // create a TaskFlowId from the task flow specification

 TaskFlowId tfid = TaskFlowId.parse(taskFlowSpecs);

 // construct the task flow URL

 String taskFlowURL =
 ControllerContext.getInstance().getTaskFlowURL(
 false, tfid, parameters);

 // remove the application context path from the URL

 FacesContext fc = FacesContext.getCurrentInstance();

 String taskFlowContextPath =
 fc.getExternalContext().getRequestContextPath();

 return taskFlowURL.replaceFirst(taskFlowContextPath, "");

}

10. Open the welcome.jspx page. Using the Component Palette, drop a Link (Go)

(af:goLink) component to the page and set the link's Destination property to

#{SyncEmployeesBean.programmaticallyInvokeTaskFlow}.

How it works…

In steps 1 and 2 we have added a helper class called SecurityUtils to the

SharedComponents workspace. We will use this class to retrieve the user's

proile from the identity store. For this purpose, we have implemented the method
getUserIdentityStoreProfile(). To search for the speciic username in the identity
store, it calls the IdentityStore search() method. The username speciied for the
search is passed as an argument to the getUserIdentityStoreProfile(). The search

yields an oracle.security.idm.SearchResponse, which is then iterated to retrieve an

oracle.security.idm.User identity. We retrieve the user's identity store proile by calling
getUserProfile() on the User object.

In step 2, we have redeployed the SharedComponents workspace to an ADF Library JAR.

Handling Security, Session Timeouts, Exceptions, and Errors

284

In steps 3 through 5, we have made the necessary changes to the UserInfoAppModule

application module to allow for the synchronization of employee-users. We have assumed

that each employee in the EMPLOYEES HR schema table is also a user of the application.

In step 3, we have added the SharedComponents ADF Library JAR to the HRComponents

business components project so that we can make use of the SecurityUtils helper class.

Then, in step 4, we implemented a method called synchronizeEmployee(), to allow for

the synchronization of the EMPLOYEES table. This method is also exposed to the application

module's client interface (in step 5), so that it can be invoked from the ViewController layer as

an operation binding.

The synchronization of the EMPLOYEES table is based on the following logic: if the currently

authorized user is not in the EMPLOYEES table, it is added. Information from the user's

identity store proile is used to populate the EMPLOYEES table ields. If the user is already in
the EMPLOYEES table, the user's information in the EMPLOYEES table is updated with the

information from the user's identity store proile. The currently authorized user is searched in
the database using the UserInfo view object. If the user is not found in the database, we

call addEmployee() to add it. Otherwise, the user's information in the database is updated.

Note that the query used by the UserInfo view object uses a WHERE clause that is based

on the currently authorized user. This is done in a declarative manner by specifying the

Groovy expression adf.context.securityContext.userName for the binding variable

inEmployeeName used by the UserInfo view object query.

In steps 6 through 8, we have created a task low called syncEmployeesTaskFlow

and dropped in it the synchronizeEmployee() method as a method

call activity. The synchronizeEmployee() method is available under the

UserInfoAppModuleDataControl in the Data Controls window once the HRComponents

ADF Library JAR is added to the project (this is done in step 6). Observe how in step 7 we set

the task low URL Invoke property to url-invoke-allowed. This will allow us to invoke the

syncEmployeesTaskFlow task low using its URL.

Steps 9 and 10 are added only so that we can test the recipe. For more information about

the code in the getProgrammaticallyInvokeTaskFlow() and getTaskFlowURL()

methods, take a look at Calling a task low as a URL programmatically, Chapter 6, Go with the

low: Task Flows.

To test the recipe, right-click on the login.jspx page and go through the authorization

process. You can use the user1/user1234 credentials. Upon a successful authorization, you

will be forwarded to the welcome.jspx page. Click on the syncEmployeesTaskFlow.xml

link. Observe that for new employee-users, the user information is added to the EMPLOYEES

HR table. For existing employee-users, the user information is updated in the table.

Chapter 9

285

There's more…

One of the hurdles in getting the OPSS framework to work for your speciic application security
environment involves the proper coniguration of the Identity Store Service. Coniguration is
done through the jps-config.xml ile located in the config/fmwconfig folder under the

domain directory in WebLogic. For example, in order to conigure OPSS when multiple LDAP
authenticators are used in WebLogic, you will need to set up the virtualize property in

WebLogic. For a comprehensive reference on OPSS coniguration, consult section Coniguring
the Identity Store Service in the Fusion Middleware Application Security Guide, which can be

found at http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Calling a task low as a URL programmatically, Chapter 6, Go with the low:
Task Flows

 f Using a session scope bean to preserve session-wide information, Chapter 8,

Backing not Baking: Bean Recipes

 f Enabling ADF security, Chapter 9, Handling Security, Session Timeouts, Exceptions

and Errors

 f Using a custom login page, Chapter 9, Handling Security, Session Timeouts,

Exceptions and Errors

Detecting and handling session timeouts
Each time a client request is sent to the server a predeined, application-wide, conigurable
session timeout value is written to the page to determine when a session timeout should

occur. A page is considered eligible to timeout if there is no keyboard, mouse or any other

programmatic activity on the page. Moreover, an additional application coniguration option
exists to warn the user sometime prior to the session expiration that a timeout is imminent.

In this recipe, we will see how to gracefully handle a session timeout by redirecting the

application to a speciic page, the login page in this case, once a session timeout is detected.

Getting ready
You will need to create a skeleton Fusion Web Application (ADF) workspace before you

proceed with this recipe. For this purpose, we will use the MainApplication workspace

that was developed in Breaking up the application in multiple workspaces, Chapter 1,

Pre-requisites to Success: ADF Project Setup and Foundations.

http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16181/toc.htm

Handling Security, Session Timeouts, Exceptions, and Errors

286

How to do it…

1. Open the MainApplication workspace in JDeveloper. Add the following

SessionTimeoutFilter ilter to the ViewController project:

public class SessionTimeoutFilter implements Filter {

 private FilterConfig filterConfig = null;

 public SessionTimeoutFilter() {

 super();

 }

 @Override

 public void init(FilterConfig filterConfig) {

 this.filterConfig = filterConfig;

 }

 @Override

 public void destroy() {

 filterConfig = null;

 }

 @Override

 public void doFilter(ServletRequest servletRequest,

 ServletResponse servletResponse, FilterChain filterChain)

 throws IOException, ServletException {

 // get requested session

 String requestedSession =
 ((HttpServletRequest)servletRequest)
 .getRequestedSessionId();

 // get current session

 String currentSession =
 ((HttpServletRequest)servletRequest).getSession().getId();

 // check for invalid session

 if (currentSession.equalsIgnoreCase(requestedSession)

 == false && requestedSession != null) {

 // the session has expired or renewed

 // redirect request to the page defined by the

 // SessionTimeoutRedirect parameter

 ((HttpServletResponse)servletResponse)
 .sendRedirect(((HttpServletRequest)
 servletRequest).getContextPath()
 + ((HttpServletRequest)servletRequest)
 .getServletPath()

 + "/" + filterConfig.getInitParameter(

 "SessionTimeoutRedirect"));

 } else {

 // current session is still valid

Chapter 9

287

 filterChain.doFilter(servletRequest, servletResponse);

 }

 }

}

2. Open the web.xml deployment descriptor and add the following filter and

filter-mapping deinitions to it. Make sure that you add these deinitions at the
end of any other filter and filter-mapping deinitions.
<filter>

 <filter-name>SessionTimeoutFilter</filter-name>

 <filter-class>com.packt.jdeveloper.cookbook.
 hr.main.view.filters.SessionTimeoutFilter</filter-class>

 <init-param>

 <param-name>SessionTimeoutRedirect</param-name>

 <param-value>/faces/login.jspx</param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>SessionTimeoutFilter</filter-name>

 <servlet-name>Faces Servlet</servlet-name>

</filter-mapping>

3. For testing purposes add the following session-timeout coniguration to web.xml:

<session-config>

 <session-timeout>4</session-timeout>

</session-config>

How it works…

In step 1, we have added a ilter called SessionTimeoutFilter. In it, we obtain from the

request both the session identiier of the current request and the identiier of the current
session. We compare the session identiiers, and if they differ we redirect the user to the
page identiied by the SessionTimeoutRedirect ilter initialization parameter. A difference
in the session identiiers indicates that a session timeout has occurred. We have set the
SessionTimeoutRedirect ilter parameter to the login.jspx page in step 2. Also in

step 2, we have added the SessionTimeoutFilter ilter deinition to the web.xml

deployment descriptor.

Finally, for testing purposes only, we have set the application-wide session timeout to 4

minutes in step 3.

Handling Security, Session Timeouts, Exceptions, and Errors

288

There's more…

In addition to the session-timeout coniguration setting in web.xml, you can conigure
a session timeout warning interval by deining the context parameter oracle.adf.view.
rich.sessionHandling.WARNING_BEFORE_TIMEOUT. This parameter is set to a number

of seconds before the actual session timeout would occur and raises a warning dialog

indicating that the session is about to expire. You then have the opportunity to extend the

session by performing some activity on the page. Note that if its value is set to less than 120

seconds, this feature might be disabled under certain conditions.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Using a custom error handler to customize
how exceptions are reported to the
ViewController

You can alter the way error messages are reported to the ADF Controller by implementing

a custom error handler class that extends the oracle.adf.model.binding.
DCErrorHandlerImpl class. The custom error handler class can then provide custom

implementations for the following methods:

 f reportException(): This method is called by the ADF framework to report an

exception. You can override this method to handle how each exception type is

reported.

 f getDisplayMessage(): Returns the exception error message. You can override

this method in order to change the error message.

 f getDetailedDisplayMessage(): Returns the exception error message details.

You can override this method in order to change the error message details.

This recipe shows you how to extend the DCErrorHandlerImpl error handling class so

that you can provide custom handling and reporting of the application exceptions to the

ViewController layer.

Getting ready
We will add the custom error handler to the SharedComponents workspace. This workspace

was created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations.

Chapter 9

289

For testing purposes, you will need to create a skeleton Fusion Web Application (ADF)

workspace. For this purpose, we will use the MainApplication workspace that was

developed in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations.

How to do it…

1. Open the SharedComponents workspace and add the following

CustomDCErrorHandlerImpl class to its ViewController project:

public class CustomDCErrorHandlerImpl
 extends DCErrorHandlerImpl {

 public CustomDCErrorHandlerImpl() {

 super(true);

 }

 public void reportException(DCBindingContainer
 dCBindingContainer,Exception exception) {

 // report JboExceptions as errors

 if (exception instanceof ExtJboException
 || exception instanceof JboException) {

 FacesContext.getCurrentInstance().addMessage(
 null,new FacesMessage(FacesMessage.SEVERITY_ERROR,
 exception.getMessage(), null));

 } else { // report all others as information

 FacesContext.getCurrentInstance().addMessage(

 null,new FacesMessage(
 FacesMessage.SEVERITY_INFO,
 exception.getMessage(), null));

 }

 }

}

2. Redeploy the SharedComponents workspace to an ADF Library JAR.

3. Open the MainApplication workspace and add the SharedComponents ADF

Library JAR to its ViewController project.

4. Open the DataBindings.cpx Data Binding Registry ile and select the
root Databindings node in the Structure window. Using the Property

Menu next to the ErrorHandlerClass in the Property Inspector, specify the

CustomDCErrorHandlerImpl class implemented previously.

Handling Security, Session Timeouts, Exceptions, and Errors

290

How it works…

We have created a custom error handler called CustomDCErrorHandlerImpl in

steps 1 and 2 as part of the SharedComponents workspace. The class extends the

default error handling implementation provided by the oracle.adf.model.binding.
DCErrorHandlerImpl class. We only need to override the reportException() method

at this time to provide custom handling for the application-generated exceptions. For the

purposes of this recipe, we are looking for ExtJboException and JboException types

of exceptions, that is, exceptions generated by the business components layer, and we are

displaying them as error Faces messages at the ViewController layer. ExtJboException

is a custom application exception that was implemented in Using a custom exception

class, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations. All other

exceptions are shown as informational messages to the user. We make sure that the

SharedComponents workspace is redeployed as an ADF Library JAR and that is added to the

main workspace ViewController project in step 3.

One last thing that we need to do is set the ErrorHandlerClass property of the

Databindings node in the DataBindings.cpx bindings registry ile to our custom
CustomDCErrorHandlerImpl class. We do this in step 4.

There's more…

In this recipe, we customized the way the application exceptions are handled and reported to

the ViewController layer by providing a custom implementation of the reportException()

method. To customize the way the actual error message is formatted take a look at the

Customizing the error message details recipe in this chapter.

For more information about custom error handling in your application, consult the Customizing

Error Handling section of the Fusion Developer's Guide for Oracle Application Development

Framework, which can be found at http://docs.oracle.com/cd/E24382_01/
web.1112/e16182/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Customizing the error message details, Chapter 9, Handling Security, Session

Timeouts, Exceptions and Errors

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 9

291

Customizing the error message details
In the recipe Using a custom error handler to customize how exceptions are reported to the

ViewController in this chapter, we've seen how to create a custom DCErrorHandlerImpl

class and override its reportException() method in order to provide custom handling

of the application's exceptions. In this recipe, we will go over the process of overriding the

DCErrorHandlerImpl class getDisplayMessage() method, so that we can provide

custom handling of speciic application error messages. In particular, we will see how to
reformat error messages generated by exceptions thrown from the database business

logic code, using functionality provided by the ADF resource bundles. More speciically, we
will assume that our application's database business logic source code throws exceptions

using a user-deined database error number, with the actual resource error number and
parameters bundled within the exception message. An example of the error message thrown

by the database layer is: ORA-20200: APPL-00007: Some Error $1parameter1$1

$2parameter2$2. In this case, the business exception generated by the database is

identiied by the user-deined error number -20200. The actual error message is bundled

within the message details and it is identiied by the error number 00007. The error message

parameters are delimited by the parameter placeholders $1 and $2.

Getting ready
You will need to complete Using a custom error handler to customize how exceptions are

reported to the ViewController recipe in this chapter before delving into this recipe.

How to do it…

1. Open the SharedComponents workspace and locate the

CustomDCErrorHandlerImpl class. Open the class in the Java editor and override

the getDisplayMessage() method.

2. Add the following code to the getDisplayMessage() method:

// get the error message from the framework

String errorMessageRaw =
 super.getDisplayMessage(bindingContext,exception);

// handle messages generated by the database business logic

return handleDatabaseApplicationError(errorMessageRaw);

3. Add the following helper methods to the CustomDCErrorHandlerImpl class:

private String handleDatabaseApplicationError(
 String errorMessageRaw) {

 // the error code for application-specific messages

 // generated by the database application-specific

 // business code

 final String APPLICATION_ERROR_CODE = "20200";

Handling Security, Session Timeouts, Exceptions, and Errors

292

 // the application error messages bundle

 final ResourceBundle errorMessagesBundle =
 ResourceBundle.getBundle("com.packt.jdeveloper.cookbook.
 shared.bc.exceptions.messages.ErrorMessages");

 // check for null/empty error message

 if (errorMessageRaw == null||"".equals(errorMessageRaw)) {

 return errorMessageRaw;

 }

 // check for database error message

 if (errorMessageRaw.indexOf("ORA-") == -1) {

 return errorMessageRaw;

 }

 // check for end of database error code indicator

 int endIndex = errorMessageRaw.indexOf(":");

 if (endIndex == -1) {

 return errorMessageRaw;

 }

 // get the database error code

 String dbmsErrorMessageCode =
 errorMessageRaw.substring(4, endIndex);

 String errorMessageCode = "";

 if (APPLICATION_ERROR_CODE.equals(dbmsErrorMessageCode)) {

 int start = errorMessageRaw.indexOf("-", endIndex)+1;

 int end = errorMessageRaw.indexOf(":", start);

 errorMessageCode = errorMessageRaw.substring(
 start, end);

 } else {

 // not application-related error message

 return errorMessageRaw;

 }

 // get the application error message from the

 // application resource bundle using the specific

 // application error code

 String errorMessage = null;

 try {

 errorMessage = errorMessagesBundle.getString(
 "message." + errorMessageCode);

 } catch (MissingResourceException mre) {

 // application error code not found in the bundle,

 // use original message

 return errorMessageRaw;

 }

 // get the error message parameters

 ArrayList parameters =
 getErrorMessageParameters(errorMessageRaw);

Chapter 9

293

 if (parameters != null && parameters.size() > 0) {

 // replace the message parameter placeholders with the

 // actual parameter values

 int counter = 1;

 for (Object parameter : parameters) {

 // parameter placeholders appear in the message

 // as {1}, {2}, and so on

 errorMessage = errorMessage.replace("{" +
 counter + "}", parameter.toString());

 counter++;

 }

 }

 // return the formated application error message

 return errorMessage;

}

private ArrayList getErrorMessageParameters(
 String errorMessageRaw) {

 // the parameter indicator in the database

 // application-specific error

 final String PARAMETER_INDICATOR = "$";

 ArrayList parameters = new ArrayList();

 // get parameters from the error message

 for (int i = 1; i <= 10; i++) {

 int start = errorMessageRaw.indexOf(PARAMETER_INDICATOR + i)

 + 2;

 int end = errorMessageRaw.indexOf(PARAMETER_INDICATOR
 + i, start);

 if (end == -1) {

 parameters.add(i - 1, "");

 } else {

 parameters.add(i - 1,errorMessageRaw.substring(start, end));

 }

 }

 // return the parameters

 return parameters;

}

4. Redeploy the SharedComponents workspace into an ADF Library JAR.

Handling Security, Session Timeouts, Exceptions, and Errors

294

How it works…

In steps 1 and 2, we have updated the CustomDCErrorHandlerImpl custom

error handler class by overriding the getDisplayMessage() method. The

CustomDCErrorHandlerImpl custom error handler class was added to the

SharedComponents workspace in the recipe Using a custom error handler to customize

how exceptions are reported to the ViewController in this chapter. By overriding the

getDisplayMessage() method, we will get a chance to reformat the error message

displayed by the application before it is displayed. In our case, we will reformat any messages

related to exceptions thrown from the database business logic code. This is done by the

helper method handleDatabaseApplicationError() added in step 3. This method

checks for errors originating from database exceptions by looking for the "ORA-" substring in

the error message. If this is found, the database business error message number is extracted.

This is a user-deined application-speciic error message number used in the database
business logic code to throw application business logic exceptions. PL/SQL error numbers

in the range of -20000 to -20999 are reserved for user-deined errors. For this recipe, it is
deined by the constant APPLICATION_ERROR_CODE and it is equal to 20200 (we parse the

error number after the -).

If this is indeed a business logic error message, the actual resource error number is bundled

within it and it is extracted; the actual error number is saved in the errorMessageCode

variable. We use this error number to look up the actual error message string in

the application resource bundle, which is initialized by the call ResourceBundle.
getBundle(). We have used the ErrorMessages.properties bundle, introduced in

Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations, to store the application error messages. Resources in this bundle are identiied
by error numbers prepended with the "message." string, for instance, message.00007. So,

we called getString() on the resource bundle to locate the actual error message after

we prepended the error code with "message.". This functionality is also implemented by the

BundleUtils helper class introduced in Using a generic backing bean actions framework,

Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

We retrieve the parameter values bundled in the database error message by calling the

getErrorMessageParameters() helper method. This method identiies any parameters
bundled in the raw database error message by looking for the parameter placeholder

identiiers $1, $2, and so on. The parameters are added to an ArrayList, which is iterated

when replacing the parameter placeholder identiiers {1}, {2}, and so on, in the actual

message string.

This is an example error message thrown by the database business logic code: ORA-20200:

APPL-00007: Some Error $1parameter1$1 $2parameter2$2. The error message

deined in the resource bundle for error number 00007 is message.00007=Message

generated by the database business code. Parameters: {1}, {2}. When we go

through our custom getDisplayMessage() method, the actual message displayed by the

application would be: Message generated by the database business code. Parameters:

parameter1, parameter2.

Chapter 9

295

The inal step redeploys the SharedComponents workspace to an ADF Library JAR, so that it

can be reused by other application workspaces.

See also

 f Using a custom exception class, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

 f Using a custom error handler to customize how exceptions are reported to the

ViewController, Chapter 9, Handling Security, Session Timeouts, Exceptions and Errors

Overriding attribute validation exceptions
At the ADF-BC layer, built-in validators are stored in the XML metadata deinition ile with
no ability to customize the exception message and/or centralize the application error

messages in a single application-wide message bundle ile. To overcome this you can extend
the oracle.jbo.ValidationException and oracle.jbo.AttrValException

classes. Then in your custom entity object implementation class you can override the

validateEntity() and setAttributeInternal() methods to throw these custom

exceptions instead. Even better, if you have gone through the process of creating framework

extension classes (see Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations), this functionality can be added to the base entity object

framework extension class and thereby used in a generic way throughout the application.

In this recipe, we will extend the oracle.jbo.AttrValException class in

order to provide a custom attribute validation exception. We will then override the

setAttributeInternal() method in the entity object framework extension class

to throw the custom attribute validation exception.

Getting ready
We will add the custom attribute validation exception to the SharedComponents

workspace. The SharedComponents workspace was created in Breaking up the application

in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations. Moreover, we will update the entity object framework extension class, which

resides in the SharedComponents workspace. The entity object framework extension class

was created in Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations.

Handling Security, Session Timeouts, Exceptions, and Errors

296

How to do it…

1. Open the SharedComponents workspace in JDeveloper and add the following

ExtAttrValException class to the SharedBC project:

public class ExtAttrValException extends AttrValException {

 public ExtAttrValException(String errorCode,
 Object[] errorParameters) {

 super(ResourceBundle.class, errorCode,
 errorParameters);

 }

 public ExtAttrValException(final String errorCode) {

 super(ResourceBundle.class, errorCode, null);

 }

 public String getMessage() {

 return BundleUtils.loadMessage(this.getErrorCode(),

 this.getErrorParameters());

 }

}

2. Open the ExtEntityImpl entity object framework extension class in the Java editor

and override the setAttributeInternal() method.

3. Add the following code to the setAttributeInternal() method:

try {

 super.setAttributeInternal(attrib, value);

} catch (AttrValException e) {

 // throw custom attribute validation exception

 throw new ExtAttrValException(e.getErrorCode(),
 e.getErrorParameters());

}

4. Redeploy the SharedComponents workspace to an ADF Library JAR.

How it works…

In step 1, we have extended the AttrValException framework attribute validation

exception by providing our custom implementation class called ExtAttrValException. This

overrides the getMessage() method, which uses the helper class BundleUtils to load

the error message from the application-wide message bundle ile. Using the speciic exception
error code, the BundleUtils helper class was created in Using a generic backing bean

actions framework, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations.

Chapter 9

297

In order to utilize the custom attribute validation exception in our application, we

have overridden the setAttributeInternal() method of the ExtEntityImpl

entity object framework extension class to throw ExtAttrValException instead of

AttrValException. This was done in steps 2 and 3. The setAttributeInternal()

method validates and sets the attribute value for the attribute identiied by the attrib index.

Finally, in step 4, we redeploy the SharedComponents workspace to an ADF Library JAR.

There's more…

You can follow similar steps to customize the validation exceptions of your application's entity

objects. In this case, you will need to extend the oracle.jbo.ValidationException

class. Then you will need to override the validateEntity() method of the entity object

framework extension class to throw your custom validation exception.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Setting up BC base classes, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations

10
Deploying ADF

Applications

In this chapter, we will cover:

 f Coniguring and using the Standalone WebLogic Server

 f Deploying on the Standalone WebLogic Server

 f Using ojdeploy to automate the build process

 f Using Hudson as a continuous integration framework

Introduction
The development and testing of ADF Fusion web applications in JDeveloper does not require

any special deployment work by you, the developer. JDeveloper does a pretty good job setting

up and coniguring a WebLogic domain, namely the Integrated WebLogic Server, that is
subsequently used to transparently deploy applications. This transparent deployment process

takes place each time you choose to run or debug an application in JDeveloper.

To further test ADF Fusion web applications, using an environment that more closely

resembles the actual production environment, you ought to consider coniguring the
Standalone WebLogic Server. This involves the creation of a WebLogic domain conigured as
closely as possible to the actual production environment (server instances, clusters, security

realm coniguration, services coniguration, and so on) and deploying your ADF Fusion web
application to it periodically.

Deploying ADF Applications

300

There are a number of techniques used to deploy applications to the Standalone WebLogic

Server. For instance, to deploy in a continuous integration production or testing environment,

a script technique needs to be considered. On the other hand, for local development and

testing purposes, deploying from JDeveloper will sufice.

Coniguring and using the Standalone
WebLogic Server

JDeveloper Studio Edition ships along with the WebLogic application server included.

WebLogic Server is an essential part of the ADF Fusion web application development process,

as it allows for the deployment, running, debugging, and testing of your application. It is

installed on the development machine during the installation of JDeveloper.

When you choose to run or debug a Fusion web application from within the JDeveloper

IDE, WebLogic is started and the application is deployed and run automatically on it. This

coniguration is called "Integrated WebLogic Server" as it is tightly integrated with the

JDeveloper IDE. The very irst time an ADF Fusion web application is run (or debugged)
in JDeveloper, the necessary integrated WebLogic Server coniguration takes place
automatically. The coniguration process creates the WebLogic domain and a server instance
to deploy the application onto.

In addition to the Integrated WebLogic Server, the WebLogic coniguration software allows
for the creation and coniguration of a "standalone" WebLogic domain. This domain that you
conigure separately according to your speciic coniguration requirements is known as the
Standalone WebLogic Server. This is started independently of JDeveloper, and you deploy your

applications on it using a separate deployment process. The Standalone WebLogic Server

offers, among others, the following advantages: control over the speciic coniguration of the
WebLogic domain; control over the deployment process; freeing up resources in JDeveloper

when debugging and testing; freeing up resources on the development machine (when the

WebLogic Server runs on another machine); and the ability to remotely debug the application.

In this recipe, we will go over the steps involved in coniguring the Standalone WebLogic
Server that we can use subsequently to deploy our ADF Fusion web application.

Getting ready
You will need WebLogic installed on your development environment. WebLogic is installed

during the installation of JDeveloper Studio Edition based on your installation choices. For

information on installing JDeveloper on a Linux distribution, take a look at the Installation

of JDeveloper on Linux recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations.

Chapter 10

301

How to do it…

1. Start the Fusion Middleware Coniguration Wizard. You do this by running the config

script located in the common/bin directory under the WebLogic installation directory.

In the Welcome page, select Create a new WebLogic domain and click Next.

2. In the Select Domain Source page, select Oracle JRF – 11.1.1.0 [oracle_common]

and click Next.

3. In the Specify Domain Name and Location page, enter the Domain name and the

Domain location and click Next. You may keep the default values.

4. In the Conigure Administrator User Name and Password page, enter the domain

administrator Name and User password. Conirm the password and click Next.

5. In the Conigure Server Start Mode and JDK page, select Development Mode for the

WebLogic Domain Startup Mode and the Sun SDK from the list of Available JDKs.

Click Next to continue.

6. In the Select Optional Coniguration page, click on the Administration Server,

Managed Servers, Clusters and Machines, and Deployments and Services

checkboxes. Click Next to continue.

7. In the Conigure the Administration Server page, enter the Name, Listen address,
and Listen port of the administration server. You may keep the default values. Then

click on the Next button.

Deploying ADF Applications

302

8. In the Conigure Managed Servers page, click on the Add button and specify the

Name, Listen address, and Listen port of the managed server. You may choose the

default values. Click Next to continue.

9. In the Conigure Clusters page, click Next.

10. In the Conigure Machines page, click on the Add button and specify the machine

Name, Node manager listen address, and Node manager listen port. You may keep

the default values. Click Next to continue.

11. In the Assign Servers to Machines page, shuttle the managed server from the

Server list to the speciic machine in the Machine list and click Next.

12. In the Target Deployments to Clusters or Servers page, make sure that all libraries

are targeted to both administration and managed servers. You can do this by

selecting the managed server in the Target list and selecting the Library node in the

Deployments list. Click Next to continue.

Chapter 10

303

13. In the Target Services to Clusters or Servers page, make sure that all services are

targeted to both the administration and managed server. You can do this by selecting

the managed server in the Target list and clicking on the high level service nodes in

the Service list. Click Next to continue.

14. In the Coniguration Summary page, verify the domain coniguration in the Domain

Summary and Details sections. Click on the Create button to proceed with the

creation of the domain.

15. Once the domain is created successfully, click on the Done button in the Creating

Domain page to dismiss the coniguration wizard.

How it works…

In Steps 1 through 15, we go through the process of creating and coniguring a new WebLogic
domain. A domain in WebLogic is the basic administrative unit, and it consists of associated

resources such as one or more WebLogic server instances, machines, clusters, services,

applications, libraries, and others. Creation and coniguration of a new WebLogic domain is
achieved using the Fusion Middleware Coniguration Wizard utility. The coniguration utility
can be started by running the config script located in the common/bin directory under the

WebLogic installation directory. WebLogic is installed in the wlserver_xx.x directory under

the Middleware home directory, where xx.x is the WebLogic Server version. Note that for a

Windows installation of JDeveloper, a shortcut is created for the coniguration utility, called
Coniguration Wizard, under the Oracle Fusion Middleware 11.1.2.x.x | WebLogic Server

11gR1 | Tools group in the Start menu.

In step 1 of the domain coniguration wizard, we have chosen to create a new domain. You
can also choose to extend an existing domain by adding additional extension sources to the

domain and/or reconiguring the domain structure (servers, clusters, machines, and so on).

In step 2, we have selected the Oracle JRF – 11.1.1.0 domain source. This will install the

necessary libraries to the domain in order to support the deployment and execution of ADF

Fusion web applications.

We proceed in step 3 to specify the domain name and location. By default, domains are

created in the user_projects/domains directory under the Middleware home directory.

Choosing this default location is acceptable for development purposes. For production

installations, you should choose a top level directory independent of the speciic WebLogic
Server installation.

In step 4, we have speciied the domain's administrator username and password. These
credentials are necessary to access the domain for administrative purposes either using

the console application or through any other administration utilities (WLST, weblogic.
Deployer, and so on).

Deploying ADF Applications

304

In step 5, we conigured the server startup mode to be in development mode. This mode
enables the WebLogic auto-deployment feature, which allows for the automatic deployments of

applications that reside in the autodeploy domain directory. This will be ine for this recipe.
In a production environment coniguration, production mode should be selected along with the
JRockit JDK. For a comprehensive list of differences between the development and production

startup modes, take a look at the Differences Between Development and Production Mode

table in the Creating Domains Using the Coniguration Wizard documentation. This document

is available through the Oracle WebLogic Server Documentation Library currently at http://
docs.oracle.com/cd/E14571_01/wls.htm.

In step 6, we indicated which components we will be providing additional coniguration for.
In this case, we conigured the administration server, a managed server and its machine,
and the deployments and services. For each component, an additional wizard page will be

presented to further conigure the speciic component.

In steps 7 through 11, we created and conigured the domain's server instances. The
administration server is used to manage the domain, and its creation is required. The

managed server will be used to deploy ADF applications. In both cases, we speciied
the server's name, listen address, and listen port. Managed servers are assigned to

WebLogic machines (this is done in step 11). This identiies a physical unit of hardware
that is associated with a WebLogic Server instance. They are used in conjunction with the

WebLogic node manager to start and shutdown remote servers. Furthermore, WebLogic

uses a conigured machine in order to delegate tasks, such as HTTP session replication, in a
clustered coniguration. A machine was created and conigured in step 10.

In steps 12 and 13, we have made available all installed product libraries and services, to the

managed server instance. This will allow us to deploy and run ADF Fusion web applications on

the managed server.

After reviewing the coniguration in step 14, we create the domain in step 15.

There's more…

Once the domain creation completes successfully, it can be started by separately starting

the administration and managed server instances. To start the administration server, run the

startWebLogic script located in the domain bin directory. When you do so, observe in the

console window that the server is started successfully, as shown in the following screenshot:

Chapter 10

305

The managed server can be started by running the startManagedWebLogic script, also

located in the domain bin directory. Run the startManagedWebLogic script by specifying

the name of the managed server instance and the URL of the administration server, for

instance, startManagedWebLogic.cmd ManagedServer1 http://localhost:7001.

In this case, it has been assumed that the managed server name is ManagedServer1 and

that the administration server runs locally and listens to port 7001.

Note that each time you start the managed server instance, you will be asked to enter the

domain administrator username and password. To avoid having to specify these credentials

each time, create a ile called boot.properties and add the following information to it:

username=<adminusername>

password=<adminpassword>

Replace <adminusername> and <adminpassword> with the administrator username

and password respectively, and place the boot.properties ile in the servers/
ManagedServer1/security directory under the domain directory. Note that the

ManagedServer1 directory under the domain servers directory will not exist until you

start the managed server at least once. You may also need to create the security directory

yourself. Observe that the administrator username and password speciied in the boot.
properties ile will be encrypted after starting the WebLogic Server.

To start the WebLogic administration console, browse the following address:

http://localhost:7001/console. Use the administrator credentials speciied
during domain creation to log in.

To avoid having to redeploy the console application each time the domain is restarted,

uncheck the Enable on-demand deployment of internal applications checkbox in the

Coniguration | General tab and click Save.

http://localhost:7001
http://localhost:7001/console
http://localhost:7001/console

Deploying ADF Applications

306

For more information on the Fusion Middleware Coniguration Wizard, consult the Creating

Domains Using the Coniguration Wizard documentation.

See also

 f Installation of JDeveloper on Linux, Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations

Deploying on the Standalone WebLogic
Server

Once you have created and conigured a WebLogic domain, ADF Fusion web applications can
be deployed onto it. During development, deployment can take place from the JDeveloper IDE.

The process involves the creation of an Application Server connection in the Resource Palette

and the creation of deployment proiles for the ViewController project and the application
workspace. The application can then be deployed onto the standalone WebLogic domain

using the Application | Deploy menu.

In this recipe, we will go through the process of manually deploying a Fusion web application

to a WebLogic domain using the JDeveloper IDE.

Getting ready
You need to complete the Coniguring and using the Standalone WebLogic Server
recipe in this chapter before delving in this recipe. Furthermore, a skeleton Fusion Web

Application (ADF) workspace is required for this recipe. For this purpose, we will use the

MainApplication workspace that was developed in the Breaking up the application in

multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations. The MainApplication workspace requires a connection to the HR schema.

How to do it…

1. Open the MainApplication workspace. Double-click on the ViewController project

in the Application Navigator to open the Project Properties dialog.

2. Click on Deployment and then click on the New… button to create a new

deployment proile.

3. On the Create Deployment Proile dialog, select WAR File for the Proile Type and

enter the name of the Deployment Proile Name.

4. On the Edit WAR Deployment Proile Properties dialog in the General section, enter

the name and location of the WAR File and specify the Java EE Web Context Root.

When done, click OK to dismiss all dialogs.

Chapter 10

307

5. Select Application Properties… from the Application menu. On the Application

Properties dialog, select Deployment and click on the New… button to create a new

application deployment proile.

6. On the Create Deployment Proile dialog, select EAR File for the Proile Type and

enter the Deployment Proile Name.

7. On the Edit EAR Deployment Proile Properties dialog, select the General section.

Enter the name and location of the EAR ile and specify the Application name.

8. Select Application Assembly and ensure that the Java EE Modules to be included

in the EAR are selected. In this case, include both the Model and ViewController

projects. When done, dismiss all dialogs by clicking OK.

9. Select View | Resource Palette to display the Resource Palette window. In the

Resource Palette, expand the IDE Connections node. Right-click on the Application

Server node and select New Application Server Connection….

10. In the Name and Type page of the Create Application Server Connection wizard,

enter the Connection Name. Select WebLogic 10.3 for the Connection Type and

click Next.

11. In the Authentication page, enter the WebLogic administrator credentials and

click Next.

12. In the Coniguration page, enter the WebLogic domain coniguration and click Next.

13. In the Test page, click on the Test Connection button and ensure that Status is

successful for all tests. Make sure that the WebLogic administration server instance

is started before commencing with the tests. Click on the Finish button to complete

the deinition of the connection.

Deploying ADF Applications

308

14. From the Application menu, select Deploy and then the deployment proile name.

15. In the Deployment Action page of the Deploy wizard, select Deploy to Application

Server and click Next.

16. In the Select Server page, select the application server connection created earlier

from the list of Application Servers. You can leave the Overwrite modules of the

same name checkbox selected. Click Next to continue.

17. In the Weblogic Options page, click on the Deploy to selected instances radio

button, and select the managed server instance to deploy onto, from the list of

WebLogic Server instances. Click Next to continue.

18. In the Summary page, verify the Deployment Summary and click Finish to proceed

with the deployment. Observe in the Deployment Log window that the application is

deployed successfully.

Chapter 10

309

How it works…

In steps 1 through 4, we have deined a deployment proile for the ViewController project of
the Mainapplication workspace. This project will be deployed as a Web Archive (WAR) ile.
In step 4, we have set the location and name of the WAR ile that will be generated during
deployment and speciied the application context root. The context root is combined with the
servlet mapping deined in web.xml to form the complete application URL. It is the base

address for the application and all its associated resources.

In steps 5 through 8, we have deined the application's Enterprise Archive (EAR) deployment
proile. Observe how in step 7, we specify the name and location of the EAR ile along with
the application name. This is the name of the Java EE application as it will appear in the

Deployments table in WebLogic. Moreover, note that in step 8, we specify the EE modules

to be included in the EAR. In this case, we have included both the Model and ViewController

projects. Failure to include both of these projects will result in a failed deployment.

In steps 9 through 13, we have created a new application server connection. We use the

Resource Palette facility and the Create Application Server Connection wizard to go through

the steps required to deine a connection for a standalone WebLogic domain. Ensure that the
WebLogic domain has been started before going through this process.

With the deployment proiles in place, and with the connection to the standalone WebLogic
Server properly conigured and successfully tested, we use the Application | Deploy menu to

deploy the application. This is done in steps 14 through 18. The available application server

connections were presented in step 16 based on the application server connections deined in
JDeveloper. In step 17, we choose to deploy the application to the managed server instance.

There's more…

You can check the application deployment status using the WebLogic administrator

console. To do this, go to the Summary of Deployments available by selecting Deployments

from the Domain Structure tree. The following screenshot shows our test application's

deployment status:

Deploying ADF Applications

310

Observe that the Health status of the application is OK. Also, note that the HR data source

is bundled in the deployed application. Whether the data source is bundled in the enterprise

archive (EAR) produced by the deployment process, or not, is conigured in the Application

Properties dialog in JDeveloper. In the Deployment | WebLogic page, check or uncheck the

Auto Generate and Synchronize WebLogic JDBC Descriptors During Deployment option to

include or exclude the data source in the EAR ile.

Note that this recipe presents a method to deploy applications directly to a WebLogic domain

using JDeveloper. This technique is typically used to deploy the application to a test environment

during the development process, as it allows testing of features such as OPSS security

coniguration, LDAP coniguration, and so on, that are not otherwise available when running the
application directly in JDeveloper. An alternative technique involves deploying the application

to an EAR ile, which can be deployed in turn by a separate process using a variety of other
tools. The EAR ile can be produced using JDeveloper or with tools such as ojdeploy (see recipe

Using ojdeploy to automate the build process in this chapter). In production environments,

continuous integration tools such as Hudson (see recipe Using Hudson as a continuous

integration framework in this chapter), can be combined with ojdeploy, ant, and WLST scripts to

automatically deploy the application to its application server. For more information on deploying

ADF applications, take a look at the section Deploying the Application in the Fusion Developer's

Guide for Oracle Application Development Framework, which can be found at http://docs.
oracle.com/cd/E24382_01/web.1112/e16182/toc.htm.

http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm
http://docs.oracle.com/cd/E24382_01/web.1112/e16182/toc.htm

Chapter 10

311

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Coniguring and using the Standalone WebLogic Server, in this chapter

Using ojdeploy to automate the build
process

ojdeploy is a command-line utility that can be used to automate the build and deployment

process of ADF Fusion web applications. It is part of the JDeveloper installation package,

and is installed alongside JDeveloper in the jdeveloper/jdev/bin directory (under the

Middleware home directory). The utility can be run directly from the command line or it can be

called from an ant script.

In this recipe, we demonstrate how to use ojdeploy to build an ADF Fusion web application

comprised of three different workspaces. The inal output of the build process is the
application's Enterprise Archive ile (EAR) ile, which can be deployed to the Application
Server using one of several possible techniques outlined in the Deploying on the Standalone

WebLogic Server recipe in this chapter.

Getting ready
You need to have access to the SharedComponents, HRComponents and

MainApplication workspaces. These workspaces were created in the Breaking up the

application in multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF Project

Setup and Foundations. You also need to complete the recipe Deploying on the Standalone

WebLogic Server in this chapter, to ensure that you have created the necessary deployment

proiles for the MainApplication workspace. Finally, ensure that the jdeveloper/jdev/
bin directory (under the Middleware home directory) is added to the PATH environment

variable before running ojdeploy.

How to do it…

1. Using a text editor create the following ojdeploy build ile ojbuild.xml as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<ojdeploy-build basedir=".">

<!-- shared components workspace -->

<!-- This will build the SharedComponents.jar ADF Library JAR in
the ReUsableJARs directory -->

<deploy>

Deploying ADF Applications

312

<parameter name="workspace"
 value="${application.root}
 \SharedComponents\SharedComponents.jws"/>

<parameter name="project" value="SharedViewController"/>

<parameter name="profile" value="SharedComponents"/>

</deploy>

<!-- HRComponents workspace -->

<!-- This will build the HRComponents.jar ADF Library JAR in the
 ReUsableJARs directory -->

<deploy>

<parameter name="workspace"
 value="${application.root}\HRComponents\HRComponents.jws"/>

<parameter name="project" value="HRComponentsViewController"/>

<parameter name="profile" value="HRComponents"/>

</deploy>

<!-- main application workspace -->

<!-- This will build both of the MainApplication.war and
 MainApplication.ear archives in the
 MainApplication\MainApplicationViewController\deploy and
 MainApplication\deploydirectories respectively -->

<deploy>

<parameter name="workspace"
 value="${application.root}
 \MainApplication\MainApplication.jws"/>

<parameter name="profile" value="MainApplication"/>

</deploy>

</ojdeploy-build>

2. Open a command shell and start the ojdeploy process by running the following

command. Change <application_root_directory> to the appropriate directory

under which your workspaces are located, as follows:

ojdeploy -buildfile ojbuild.xml -define
 application.root=<application_root_directory>

How it works…

In step 1, we have created an ojdeploy build ile called ojbuild.xml. This is an XML

ile that comprises ojdeploy-build nodes along with embedded deploy nodes. Each

deploy node deines a deployment process for the speciic workspace, the project within
the workspace, and the named deployment proile deined for the project. This information is
speciied by the workspace, project, and profile parameters respectively. If you do not

specify a project name, then the workspace deployment proile is used, as in the case of the
MainApplication workspace deploy coniguration.

Chapter 10

313

In step 2, we have initiated the deployment process by running ojdeploy with the –buildfile

command-line argument. This parameter is used to specify the ojdeploy build ile deined
in step 1. Moreover, observe the usage of the –define argument to deine a value for the
macro application.root. This macro is used in the ojbuild.xml build ile to reference
the root application directory under which all application workspaces are located.

The result of running the ojdeploy deployment process for this recipe is the creation

of the SharedComponents.jar and HRComponents.jar ADF Library JARs in the

ReUsableJARs directory, the MainApplication.war archive in the MainApplication\
MainApplicationViewController\deploy directory and the MainApplication.ear

archive in the MainApplication\deploy directory.

There's more…

Note that the ojdeploy process performs a full business components validation. This involves

the validation of all referenced business components throughout the ADF-BC projects involved

in the build process. The validation process cross-references the component metadata XML

iles with the corresponding custom Java implementation classes.

For additional help on ojdeploy command-line arguments, built-in macros, and usage

examples, run ojdeploy –help in the command line. A sample output is as listed:

Oracle JDeveloper Deploy 11.1.2.1.0.6081

Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights
reserved.

Usage:

ojdeploy -profile <name> -workspace <jws> [-project <name>] [
 <options>]

ojdeploy -buildfile <ojbuild.xml> [<options>]

ojdeploy -buildfileschema

Arguments:

Name Description

profile The name of the proile to be deployed
workspace Full path to the JDeveloper Workspace ile(.jws)

project Name of the JDeveloper Project within the .jws where the Proile can
be found. If omitted, the Proile is assumed to be in the workspace

buildfile Full path to a build ile for batch deploy
buildfileschema Print XML Schema for the build ile

Deploying ADF Applications

314

Options:

Name Description

basedir Interpret path for workspace relative to a base directory

outputfile Substitute for the output ile speciied in the proile
nocompile Skip compilation of Project or Workspace

nodependents Do not deploy dependent proiles
clean Clean output directories before compiling

nodatasources Not include datasources from IDE

forcerewrite Rewrite output ile even if it is identical to existing ile
updatewebxmlejbrefs Update EJB references in web.xml

define Deine variables as comma separated name-value pairs
statuslogfile Full path to an output ile for status summary - no macros

allowed

failonwarning Stop deployment on warnings

timeout Time in seconds allowed for each deployment task

stdout Redirect stdout to ile
stderr Redirect stderr to ile
ojserver Run deployment using ojserver

address Listen address for ojserver

Built-in macros:

Name Description

workspace.
name

name of the workspace (without the .jws extension)

workspace.dir directory of the workspace.jws ile
project.name name of the project (without the .jpr extension)

project.dir directory of the project.jpr ile
profile.name name of the profile being deployed

deploy.dir default deploy directory for the profile

base.dir current ojdeploy directory unless overridden by the -basedir parameter

or by the "basedir" attribute in the build script

Note: project.name and project.dir are only

available when project-level proile is being deployed.

Chapter 10

315

Examples:

Deploy a Project-level profile

ojdeploy -profile webapp1 -workspace
 /usr/jdoe/Application1/Application1.jws -project Project1

ojdeploy -profile webapp1 -workspace Application1/Application1.jws -
 basedir /usr/jdoe -project Project1

Deploy a Workspace-level profile

ojdeploy -profile earprofile1 -workspace
 /usr/jdoe/Application1/Application1.jws

Deploy all Profiles from all Projects of a Workspace

ojdeploy -workspace /usr/jdoe/Application1/Application1.jws -project
 * -profile *

Build in batch mode from a ojbuild file

ojdeploy -buildfile /usr/jdoe/ojbuild.xml

Build using ojbuild file, pass into, or override default variables in,

the build file.

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
 myhome=/usr/jdoe,mytmp=/tmp

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -basedir /usr/jdoe

Build using ojbuild file, set or override parameters in the default

section

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -nocompile

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -outputfile
 '${workspace.dir}/${profile.name}.jar'

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define mydir=/tmp -
 outputfile '${mydir}/${workspace.name}-${profile.name}'

More examples:

ojdeploy -workspace
 Application1/Application1.jws,Application2/Application2.jws -
 basedir /home/jdoe -profile app*

ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
 outdir=/tmp,rel=11.1.1

-outputfile
 '${outdir}/built/${workspace.name}/${rel}/${profile.name}.jar'

ojdeploy -workspace Application1/Application1.jws -basedir /home/jdoe
 -nocompile

-outputfile '${base.dir}/${workspace.name}-${profile.name}'

ojdeploy -workspace /usr/jdoe/Application1.jws -project * -profile
 * -stdout /home/jdoe/stdout/${project.name}.log

Deploying ADF Applications

316

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Deploying on the Standalone WebLogic Server, in this chapter

Using Hudson as a continuous integration
framework

Hudson is an open source continuous integration server that can be used to execute and

monitor the execution of repeated jobs, such as building a software project. In the context

of developing ADF Fusion web applications, Hudson can be used to build an ADF application

directly from the version control sources and to deploy the built enterprise archive onto the

application server. This is done automatically and continuously based on how Hudson is

conigured for each job.

In this recipe, we will go through the steps of deining a Hudson job that will build and deploy
a sample ADF Fusion web application. We will check out the latest version of the application

from the version control (Subversion) repository, build the application using ojdeploy, and

inally deploy the application on the Standalone WebLogic Server using the weblogic.Deployer
deployment tool.

Getting ready
For the sample ADF Fusion web application, we will use the SharedComponents,

HRComponents, and MainApplication workspaces that were created in the Breaking up

the application in multiple workspaces recipe in Chapter 1, Pre-requisites to Success: ADF

Project Setup and Foundations. It is assumed that the application components reside in a

Subversion repository. In addition, we will utilize the ojdeploy build ile developed in the Using

ojdeploy to automate the build process recipe in this chapter.

How to do it…

1. Download the latest version of Hudson. At the time of this writing, Hudson can be

downloaded from http://hudson-ci.org/.

2. Install Hudson according to the documentation instructions. For the purpose of this

recipe, we will run Hudson directly by executing java -jar hudson-x.x.x.war

from the command line. hudson-x.x.x.war is the speciic version of Hudson that
was downloaded.

3. Access the Hudson dashboard using your browser. If you are running Hudson locally

as stated previously, the URL would be http://localhost:8080.

Chapter 10

317

4. Create a new job by clicking on the New Job link in the main page.

5. Provide the Job Name and select Build a free-style software project. Click OK

to proceed.

6. In the job coniguration page, select Discard Old Builds.

7. In the Source Code Management section, select Subversion and provide the

Repository URL.

8. In the Build Triggers section, select Build periodically and enter 10 minutes for

the Schedule value. Use the following cron syntax 10 * * * *.

9. In the Build section, click on the Add build step button. Select Execute Windows

batch command (Execute shell if Hudson is running on Linux) and enter build.cmd

in the Command ield.

10. Click on the Save button to save the job deinition.

Deploying ADF Applications

318

11. With the job selected, click on the Conigure link. In the Source Code Management

section, click on the Update credentials link under the Subversion Repository URL.

12. In the Subversion Authorization screen, select User name/password authentication

and enter the Subversion credentials.

13. From the main dashboard page, click on Manage Hudson | Conigure System. In

the Global properties section, click on Environment variables and then the Add

button. Create new environment variables OJDEPLOY_PATH, WLS_DOMAIN_HOME,

WLS_ADMIN_URL, WLS_ADMIN_USERNAME, WLS_ADMIN_PASSWORD, WLS_
APPLICATION_NAME, and WLS_TARGETS and set their values appropriately.

Chapter 10

319

14. Create the build.cmd script ile at the application root folder with the the following

code as its contents. Ensure that the build.cmd ile is added to Subversion.
REM Build application using ojdeploy
"%OJDEPLOY_PATH%\ojdeploy" -buildfile ojbuild.xml -define
 application.root="%WORKSPACE%" REM Deploy EAR
call "%WLS_DOMAIN_HOME%\bin\setDomainEnv.cmd" %*
java weblogic.Deployer -adminurl %WLS_ADMIN_URL% -username
 %WLS_ADMIN_USERNAME% -password %WLS_ADMIN_PASSWORD% -name
 %WLS_APPLICATION_NAME% -undeploy
java weblogic.Deployer -adminurl %WLS_ADMIN_URL% -username
 %WLS_ADMIN_USERNAME% -password %WLS_ADMIN_PASSWORD% -name
 %WLS_APPLICATION_NAME% -deploy -upload
 "%WORKSPACE%\MainApplication\deploy\
 %WLS_APPLICATION_NAME%.ear" -
 targets "%WLS_TARGETS%"

How it works…

In steps 1 through 3, we have downloaded Hudson from the Hudson website and started it

using the java –jar hudson-x.x.x.war command. This is not the recommended way to

run Hudson in a production environment, but it will do for this recipe. It is recommended that

the Hudson Web Archive (WAR) ile is deployed onto one of the supported Web containers, as
outlined in the Hudson installation documentation currently available in the Hudson wiki page

http://wiki.hudson-ci.org/display/HUDSON/Installing+Hudson. Once started,

Hudson can be accessed through a Web browser using the IP address or hostname of the

server it is running on. We have executed it locally using the default startup coniguration, so
in this case, it is accessible through http://localhost:8080. The main Hudson page is

called the Hudson Dashboard.

Steps 4 through 10 detail the deinition of a Hudson job that will be used to build an ADF Fusion
web application. The job uses ojdeploy to build the application Enterprise Archive (EAR) ile and
weblogic.Deployer to deploy the EAR ile to the Standalone WebLogic Server. Both ojdeploy and
weblogic.Deployer are accessed via an operating system script ile. As we will be running Hudson
on a Windows operating system, a cmd script ile is used.

A Hudson job is deined by clicking on the New Job link in the Hudson Dashboard. This

eventually takes you to the job deinition page, a page with a rather long list of coniguration
parameters. However, the basic coniguration parameters needed to get a simple job up and
running are outlined in steps 6 through 10. First you need to specify the name of the Hudson

job and select its type. Note that the job name also becomes part of the workspace directory,

the directory used by Hudson to check out and stage the build, so be careful if you specify

a job name with spaces in it. In this case, ensure that you access the workspace directory

(when referenced) within double quotes, as in "%WORKSPACE%". The Hudson workspace is

accessible via the system-deined environment variable WORKSPACE.

Deploying ADF Applications

320

In step 5, we have also chosen a free-style software project job type, which is a

general job type.

In step 6, we have indicated what to do with previous builds. The option Discard Old Builds

will allow you to deine how many days to keep your builds and the maximum number of builds
to keep.

In step 7, we speciied the source control management system that we are using and entered
the source control repository information. For this recipe, we are using Subversion as our

source control management system. The credentials for accessing Subversion are speciied at
a later stage (see steps 11 and 12).

In step 8, we speciied the job triggers. These are the possible ways that you can trigger the
execution of the job. You can deine multiple triggers. We have indicated that this job will run
every 10 minutes. Observe that we have speciied the time value using cron syntax. The cron
syntax time value consists of 5 ields separated with white space: MINUTE HOUR DOM MONTH

DOW, where DOM is the day of the month and DOW is the day of the week. For further details

and examples on the cron time value syntax, see the Hudson online help.

We have concluded the deinition of the job by indicating in step 9 the execution of a Windows
batch command. As indicated earlier, this is ine for the purposes of this recipe since we are
running Hudson on a Windows operating system. You will adapt this step depending on your

speciic coniguration. The Windows batch ile that we will execute is called build.cmd and is

implemented in step 14. We saved the job deinition in step 10.

In steps 11 through 13, we provide additional coniguration information. Note the deinition
of the environment variables in step 13. We will be using these environment variables in the

build.cmd script.

The build.cmd script ile is implemented in step 14. We have used ojdeploy and the

ojbuild.xml build ile that we created in recipe Using ojdeploy to automate the build

process in this chapter. Note that the application.root parameter has been set to the

job workspace directory. Hudson will check out the application from Subversion into this

directory. The script ile shows how to deploy the resulted EAR ile to a Standalone WebLogic
Server target. This is done using the weblogic.Deployer tool, a Java-based command-line tool

that allows for the deployment (and undeployment) of applications to and from WebLogic.

To ensure the proper coniguration of the WebLogic domain environment, we have run
the setDomainEnv.cmd script prior to the deployment process. Also, note that we have

chosen to undeploy the application before its deployment. Finally, observe the usage of the

environment variables deined in step 13.

Chapter 10

321

There's more…

To manually start the job, return to the Hudson Dashboard and click on the Schedule a build

icon (the icon with the green arrow to the right).

You can monitor the job status using the Console Output page. The status of the job is

indicated at the bottom of the Console Output.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Using ojdeploy to automate the build process, in this chapter

11
Refactoring,

Debugging, Proiling,
and Testing

In this chapter, we will cover:

 f Synchronizing business components with database changes

 f Refactoring ADF components

 f Coniguring and using remote debugging

 f Logging Groovy expressions

 f Dynamically coniguring logging in WebLogic Server

 f Performing log analysis

 f Using CPU proiler for an application running on a Standalone WebLogic Server

 f Coniguring and using JUnit for unit testing

Introduction
Refactoring support in JDeveloper allows you to modify the structure of an ADF Fusion web

application without altering the overall behavior of the application. Each time you refactor

an application component, JDeveloper transparently transforms the application structure

by taking care of any references to the component. Refactoring at the ADF Fusion web

application level allows renaming, modifying, and deleting application components. More

options exist when refactoring Java code.

Refactoring, Debugging, Proiling, and Testing

324

JDeveloper includes a comprehensive list of debugging features to allow you to debug ADF

Fusion web applications deployed and running both locally on the Integrated WebLogic Server

and remotely on the Standalone WebLogic Server. Similarly, proiling support in JDeveloper
allows you to gather CPU and memory proiling statistics for applications deployed and running
both locally and remotely.

You test your ADF Fusion web application by debugging it and proiling it in the JDeveloper IDE.
When it comes to unit testing, JUnit can be integrated in JDeveloper through the installation

of separate JDeveloper JUnit extensions. Once installed, these extensions make available

a number of wizards in JDeveloper that make adding JUnit unit tests to ADF Fusion web

applications quite easy.

Synchronizing business components with
database changes

During the development process of an ADF Fusion web application, as the database schema

evolves, there will be a need to synchronize the corresponding business components used

in order to relect these changes in the database schema. The process of synchronizing
the business components is inherently supported in JDeveloper via the Synchronize with

Database feature. Other capabilities also exist, such as making an attribute transient for

a database table column that has been removed, and adding new entity attributes to view

objects via the Add Attribute from Entity feature.

In this recipe, we will demonstrate a business components synchronization scenario that

involves the addition, deletion, and modiication of database table columns.

Getting ready
Before engaging in this recipe, you need to create a sample table in your database schema

called SYNCHRONIZATION. We will use this table to demonstrate the business objects

synchronization features. Use the following SQL code to accomplish this:

CREATE TABLE SYNCHRONIZATION (DELETED_COLUMN VARCHAR2(30),
 MODIFIED_COLUMN VARCHAR2(30));

How to do it…

1. Create a Fusion Web Application (ADF) workspace. Using the New Entity Object…

wizard, create an entity object for the SYNCHRONIZATION table. Also, generate a

default view object called SynchronizationView.

Chapter 11

325

2. Use the following SQL to modify the SYNCHRONIZATION table in the database:

ALTER TABLE SYNCHRONIZATION MODIFY(MODIFIED_COLUMN VARCHAR2(20
 BYTE));

ALTER TABLE SYNCHRONIZATION ADD (NEW_COLUMN VARCHAR2(30));

ALTER TABLE SYNCHRONIZATION DROP

 COLUMN DELETED_COLUMN;

3. Right-click on the Synchronization entity object in the Application Navigator and

select Synchronize with Database….

4. In the Synchronize with Database dialog, click on the Synchronize All button and

click OK on the veriication dialog.

5. Open the Synchronize entity object in the Overview editor and click on the

Attributes tab. Select the DeletedColumn attribute and click on the Delete

selected attribute(s) button (the red X icon).

Refactoring, Debugging, Proiling, and Testing

326

6. In the Delete Attribute dialog, click on the View Usages button. Repeat step 5, this

time clicking on the Ignore button.

7. Double-click on the SynchronizationView view object in the Application

Navigator and click on the Attributes tab in the Overview editor. Select the

DeletedColumn attribute and click on the Delete selected attribute(s) button (the

red X icon).

8. Select Add Attribute from Entity… by clicking on the green plus sign on top of the

attributes list.

9. In the Attributes dialog, select the NewColumn attribute in the Available tree and

shuttle it to the Selected list.

How it works…

To demonstrate the business components database synchronization feature in JDeveloper,

we have created an entity object based on the SYNCHRONIZATION table. Then we altered

the table by adding, removing, and modifying table columns. The synchronization feature is

accessible by right-clicking on the entity object in the Application Navigator and selecting

Synchronize with Database…. Only entity objects are synchronized automatically. You will

have to manually synchronize all other related business component objects, including any

bindings that were made for the affected attributes and any references to these bindings

and attributes in pages and in Java code (managed beans, business components custom

implementation classes).

Observe in step 5 that the removal of a table column does not automatically remove the

corresponding entity object attribute, but makes the attribute transient instead. As the

attribute referring to a deleted column may be referenced by entity-based view objects, you

will have to delete the corresponding view object attribute manually. We did this in step 7.

Furthermore, observe that any new entity object attributes that were generated for the newly

added table columns are not automatically added to the view object. You will have to do this

manually. We do did this in steps 8 and 9.

Chapter 11

327

There's more…

Note that adding new columns to a table does not affect the behaviour of the application, if

the corresponding entity object is not synchronized. However, to use the new columns in your

application, synchronization is required.

Refactoring ADF components
JDeveloper offers extensive support for refactoring ADF Fusion web application components,

available through the Refactor main menu selections or via context menus for selected

ADF components. The refactoring of ADF application components in most cases includes

renaming, moving, and deleting these components. Refactoring of ADF components is

supported throughout the Model-View-Controller architecture of the application including

business components and their attributes, task lows, bindings, JSF iles, and managed beans.
Refactoring transparently takes care of updating any references to the refactored object,

without affecting the overall functionality of the application.

In this recipe, we will demonstrate the refactoring facilities in JDeveloper by refactoring

business components, business components attributes, task lows, JSF pages, associated
page deinition iles and their bindings, and managed beans.

Getting ready
This recipe requires that you already have a Fusion Web Application (ADF) workspace that

comprises business components, task lows, JSF pages, associated page deinition iles, and
managed beans. For this purpose, we will use the MainApplication and HRComponents

workspaces. These workspaces were developed in Breaking up the application in multiple

workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations and

in Overriding remove() to delete associated children entities, Chapter 2, Dealing with Basics:

Entity Objects respectively.

How to do it…

1. To refactor a business component, right-click on it in the Application Navigator,

select Refactor from the context menu and a refactoring option (Rename… or

Move…). To delete a business component, select Delete from the context menu.

Alternatively, select Rename…, Move…, or Delete from the Refactor main menu.

2. To refactor a business component attribute, double-click on the business component

in the Application Navigator to open the Overview editor and select the Attributes

tab. Right-click on the attribute to refactor and select any of the Rename…, Delete, or

Change Type… option.

Refactoring, Debugging, Proiling, and Testing

328

3. To refactor a task low, right-click on it in the Application Navigator and select any of

the Rename…, Move…, Delete under the Refactor selection in the context menu.

4. To refactor a JSF page, right-click on the page in the Application Navigator and select

any of the refactoring options available under the Refactor menu.

5. To refactor a page deinition ile, select any of the refactoring options under the
Refactor main menu.

6. To refactor a page deinition binding object, open the page data binding deinition
Overview editor and right-click on the binding object to refactor in the Bindings or

Executables lists. Use the options available under the Refactor menu.

7. To refactor a managed bean, right-click on the managed bean in the Application

Navigator and select any of the refactoring options available under the Refactor menu.

8. To refactor a plain ile, select the ile in the Application Navigator and use any of the

available refactor options under the Refactor main menu.

How it works…

In steps 1 through 8, we have shown how to refactor almost any ADF Fusion web application

component. In most cases, the refactoring options are available in both the main menu

and context menu Refactor selections. In certain cases, such as when refactoring a page

deinition ilename, the refactoring options are available only in the main menu Refactor

selection. In other cases, as in the case of refactoring managed beans, additional options

exist. Finally, observe what happens when you try to delete a component that is referenced by

another component. A Conirm Delete dialog is displayed giving you the ability to discover the

component's usages. The Find Usages feature is also separately available and can be used to

determine the component's references prior to refactoring it.

There's more…

To refactor (rename) a deployment proile deined for a project, open the project
coniguration ile (.jpr) in a text editor and locate the oracle.jdeveloper.deploy.
dt.DeploymentProfiles node. Rename the proile identiied by the profileName

value. Similarly, you can rename a deployment proile deined for the workspace. Open
the workspace coniguration ile (.jws) and locate the oracle.jdeveloper.deploy.
dt.DeploymentProfiles node. Rename the proile identiied by the ProfileName value.

Alternatively, you can create a new deployment proile.

For information on how to manually refactor (move) the ADF business components project

coniguration ile (.jpx), refer to the Moving the ADF Business Components Project

Coniguration File (.jpx) section in the Fusion Developer's Guide for Oracle Application

Development Framework, which can be found at http://docs.oracle.com/cd/
E24382_01/web.1112/e16181/toc.htm.

Chapter 11

329

For information on how to refactor the data bindings registry ile DataBindings.cpx, refer

to section Refactoring the DataBindings.cpx File in the Fusion Developer's Guide for Oracle

Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

Finally, to rename a workspace project, you can use the File | Rename menu.

For a comprehensive reference to refactoring ADF components in JDeveloper, refer to the

chapter Refactoring a Fusion Web Application in the Fusion Developer's Guide for Oracle

Application Development Framework, which can be found at http://docs.oracle.com/
cd/E24382_01/web.1112/e16181/toc.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Coniguring and using remote debugging
Remote debugging allows you to debug an ADF Fusion web application deployed and running

remotely on a Standalone WebLogic Server directly from JDeveloper. Once both the remote

WebLogic Server and the ADF project(s) in JDeveloper are conigured to support it, a remote
debugging session can be started in JDeveloper through the Debug menu selection. The

session does not differ from a local debugging session for an application running on the

Integrated WebLogic Server, but offers a number of advantages when compared to it. Some

of these advantages are the ability to easily break inside any of the application's ADF Library

JARs, the separation of the development process from the debugging of the application,

freeing resources in JDeveloper, and using a Standalone WebLogic Server that closely

matches the production environment coniguration. When WebLogic is running on a separate
machine, also consider the resources that are saved in the developer's machine.

In this recipe, we will see how to conigure a managed WebLogic Server instance and
JDeveloper to support remote debugging. We will also see how to initiate a remote debugging

session in JDeveloper.

Refactoring, Debugging, Proiling, and Testing

330

Getting ready
You will need a Standalone WebLogic Server, conigured and started as explained in
Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying ADF

Applications. You will also need an ADF Fusion web application deployed to the Standalone

WebLogic Server. For this, you can consult Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

How to do it…

1. Open the startManagedWebLogic script in a text editor located in the bin

directory under the domain directory. Add the following deinitions to it before calling
the startWebLogic script:

@REM Configuring and using remote debugging

if "%SERVER_NAME%"=="ManagedServer1" (

 set debugFlag=true

 set DEBUG_PORT=4001

)

2. While in the startManagedWebLogic script, remove the nodebug argument when

calling the startWebLogic script.

3. Restart the WebLogic domain and log in to the WebLogic administrator console. Go

to the Summary of Servers page by clicking Environment | Servers in the Domain

Structure tree.

4. Click on the ManagedServer1 managed server instance and then on the

Protocols | General tabs. Click on the Enable Tunneling checkbox and then on

the Save button. Log out from the WebLogic administrator console and restart the

WebLogic domain.

5. In JDeveloper, double-click on the project that you want to conigure for remote
debugging to open the Project Properties dialog. In the Project Properties dialog,

select Run/Debug/Proile.

6. Click on the Edit… button to edit the Default run coniguration. Alternatively, you can
create a new run coniguration speciically for remote debugging. In the Edit Run

Coniguration dialog, Launch Settings page to ensure that the Remote Debugging

checkbox is selected.

Chapter 11

331

7. While at the Edit Run Coniguration dialog, select Tool Settings | Debugger |

Remote. Ensure that the Protocol is set to Attach to JPDA and enter the information

for the Host, Port, and Timeout ields. Make sure that you enter the debug port
speciied in step 1, that is, 4001 for this recipe.

Refactoring, Debugging, Proiling, and Testing

332

8. Dismiss the Edit Run Coniguration and Project Settings dialogs by clicking OK to

save the coniguration changes.

9. To start a remote debugging session, right-click on the speciic project that was
conigured in the Application Navigator and select Debug. Verify the connection

settings in the Attach to JPDA Debuggee dialog and click OK.

10. Observe in the Debugging Log that the connection to the remote WebLogic Server

was successful. Set the necessary breakpoints in your code and start the application

in the web browser.

How it works…

In steps 1 through 4, we conigured the WebLogic managed server instance that we want to
enable for remote debugging. This was done by editing the startManagedWebLogic script

and setting the debugFlag environment variable to true. This is the script that we use to

start a managed WebLogic server instance. By setting the debugFlag to true, the managed

server will start to support remote debugging. This is actually done in the setDomainEnv

script where the JAVA_DEBUG environment variable is set. Following are the debug

coniguration parameters speciied in setDomainEnv:

set JAVA_DEBUG=-Xdebug -Xnoagent -
 Xrunjdwp:transport=dt_socket,address=%DEBUG_PORT%,server=y,
 suspend=n -Djava.compiler=NONE

The remote connection debug port is speciied with the DEBUG_PORT environment

variable, which was also set in step 1. The changes in step 1 were speciied for the
Windows operating system.

Note in step 1 how we check for the speciic ManagedServer1 managed server instance

in order to set the remote debugging coniguration parameters. Following this strategy, you
will be able to enable remote debugging only for the speciic server instances that you are
interested. This will also allow you to specify different remote debugging ports for each

managed server. Also, note in step 2 that we had to remove the nodebug argument when

calling the startWebLogic script from within the startManagedWebLogic script.

Chapter 11

333

In step 3, we restarted the WebLogic domain with the new coniguration. Then, using the
administration console, we enabled HTTP tunnelling for the ManagedServer1 instance (step

4). This will enable WebLogic to simulate a T3 protocol connection using an HTTP connection

and allow remote debugging to commence via a stateful connection between JDeveloper and

WebLogic.

In steps 5 through 8, we conigure the speciic ADF project to allow for remote debugging.
This coniguration is done by coniguring a project Run Coniguration. A Run Coniguration is

available in the Project Properties dialog. Part of the coniguration is to specify the host and
remote connection port (4001) used in step 1.

To start a remote debugging session, ensure that the WebLogic domain is up and running.

Right-click on the project conigured for remote debugging in the Application Navigator and

select Debug. Debugging is done as usual.

There's more…

To break inside an ADF Library JAR that is part of the application, you will need to enable

remote debugging for the speciic ADF Library JAR project as it is outlined in steps 5 through
8. In this case, if a remote debugging session is currently in progress, you need to irst detach
from it by clicking on the Terminate debug button and selecting Detach in the Terminate

Debuggee Process dialog.

See also

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

 f Deploying on the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Logging Groovy expressions
Groovy is a Java-like scripting language that is integrated in the context of ADF business

components, and is used in a declarative manner in expressions ranging from attribute

and bind variable initializations to entity object validation rules and error messages. It runs

in the same JVM as the application, is interpreted at runtime and is stored as metadata in

the corresponding business component deinitions. JDeveloper does not currently offer a
debugging facility for Groovy expressions. In this recipe, we will implement a Groovy helper

class that will allow us to log and debug Groovy expressions throughout the application.

Refactoring, Debugging, Proiling, and Testing

334

Getting ready
We will add the Groovy logger class to the SharedComponents workspace. This workspace

was created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations.

How to do it…

1. Open the SharedComponents workspace and create a new Java class called

GroovyLogger for the business components project.

2. Open the GroovyLogger Java class in the Java editor and add the following code

to it:

private static ADFLogger LOGGER =
 ADFLogger.createADFLogger(GroovyLogger.class);

public GroovyLogger() {

 super();

}

public static <T> T log(String groovyExpression, T data) {

 LOGGER.info("GroovyLogger ==> Expression: " +
 groovyExpression + ", Data: " + data);

 return data;

}

3. Redeploy the shared components workspace to an ADF Library JAR.

How it works…

We have added a GroovyLogger class to the SharedComponents workspace to allow

for the logging and debugging of Groovy expression. The class implements a log()

method, which accepts the Groovy expression to log, along with the expression data. It uses

an ADFLogger to log the Groovy expression. The expression data is then returned to be used

by the ADF framework.

Following is an example of how the GroovyLogger helper class can be used in your ADF

business components Groovy expressions:

com.packt.jdeveloper.cookbook.shared.bc.logging.GroovyLogger

.log("adf.context.securityContext.userName",
 adf.context.securityContext.userName)

To debug your Groovy expressions, use the GroovyLogger class in your expressions as

shown in the previous example and set a breakpoint anywhere in the log() method. Then

inspect or watch the Groovy expressions using the available debug tools in JDeveloper.

Chapter 11

335

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

Dynamically coniguring logging in WebLogic
Server

In the recipe Setting up logging in Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations, we introduced the Oracle Diagnostics Logging (ODL) framework and how it could

be utilized in an ADF Fusion web application through the ADFLogger class. In this recipe,

we will demonstrate how to dynamically conigure the ODL log level for a WebLogic Server
instance at runtime. Speciically, we will conigure the oracle.jbo business components

logger for the ManagedServer1 WebLogic Server instance to use the NOTIFICATION log

level. ManagedServer1 was created in Coniguring and using the Standalone WebLogic
Server, Chapter 10, Deploying ADF Applications. Dynamic log coniguration is done via the
WLST WebLogic administration utility. This program allows for the execution of custom scripts

written in jython (an implementation of Python written in Java) to conigure ODL.

Getting ready
You will need a Standalone WebLogic Server domain conigured and started. This was
explained in Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications.

How to do it…

1. With the WebLogic Standalone Server started, run the WLST program located in the

oracle_common/common/bin directory under the Middleware home. You do this

by typing wlst in the shell command line.

2. Connect to the WebLogic administration server instance by issuing the following

WLST command:

connect('weblogic','weblogic1','t3://localhost:7001')

3. Change the log level of the oracle.jbo logger to NOTIFICATION by issuing the

following WLST command:

setLogLevel(target="ManagedServer1", logger="oracle.jbo",
 level="NOTIFICATION")

Refactoring, Debugging, Proiling, and Testing

336

4. Verify that the oracle.jbo logger's log level was changed successfully by entering

the following command:

getLogLevel(target="ManagedServer1",logger='oracle.jbo')

5. Exit from WLST by typing exit().

How it works…

In step 1, we started the WLST WebLogic script tool located in the Oracle home directory. This

is the directory oracle_common/common/bin under the Middleware home. It is important

that you run WLST in the speciic directory because it supports custom commands to manage
WebLogic logging.

In step 2, we connected to the WebLogic administration server instance using the connect()

command. To do so, we have speciied the administrator's authentication credentials and the
administration server instance URL using the T3 protocol.

We changed the log level of the oracle.jbo logger to NOTIFICATION in step 3. The oracle.
jbo logger is deined in the logging.xml logging coniguration ile located in the config/
fmwconfig/servers/ManagedServer1 directory under the domain directory, and it is

utilized by the ADF Business Components framework. The log level was changed by issuing the

command setLogLevel() and specifying the target server instance, the logger, and the new

log level. The log level can be speciied either as an ODL or as a Java log level. Valid Java levels
are any of the following: SEVERE, WARNING, INFO, CONFIG, FINE, FINER, or FINEST. On the

other hand valid ODL levels include a message type followed by a colon and a message level.

The valid ODL message types are: INCIDENT_ERROR, ERROR, WARNING, NOTIFICATION, and

TRACE. The message level is represented by an integer value that qualiies the message type.
Possible values are from 1 (highest severity) through 32 (lowest severity).

To verify that the log level has been successfully changed, we issued the command

getLogLevel()(in step 4) specifying the WebLogic Server instance target and the logger.

We exited from WLST by typing exit() in step 5.

There's more…

WLST includes additional commands for dynamically coniguring logging in WebLogic, which
allow you to conigure log handlers and to list loggers and log handlers. For a comprehensive
reference of the custom logging commands supported by WLST, refer to the Logging Custom

WLST Commands chapter in the WebLogic Scripting Tool Command Reference document.

This document is part of the WebLogic Server Documentation Library available online

currently at the address http://docs.oracle.com/cd/E14571_01/wls.htm.

Chapter 11

337

See also

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Performing log analysis
A possibly lesser known feature of JDeveloper is its ability to perform ODL log analysis, known as

the Oracle Diagnostic Log Analyzer. This feature allows you to open a diagnostics log ile (or use
the log ile currently in the Log window in JDeveloper) and do a limited yet useful log analysis.

For the Standalone WebLogic Server, diagnostics log iles are produced by applications running
on the speciic WebLogic Server instance. The log iles are produced and saved by WebLogic in a
directory conigured by the WebLogic administrator. This directory defaults to the logs directory

under the servers directory for the speciic server instance; that is, for a server instance called
ManagedServer1 they can be found in servers/ManagedServer1/logs. The servers

directory is located under the speciic domain directory.

In this recipe, we will see how to analyze a diagnostics log produced when running an ADF

Fusion web application on a Standalone WebLogic Server. Alternatively, you can run the

application in JDeveloper and analyze the log produced in the Log window.

Getting ready
You will need a Standalone WebLogic Server domain conigured and started. You will also
need your Fusion web application deployed to the Standalone WebLogic Server. For more

information on these topics, refer to Coniguring and using the Standalone WebLogic Server
and Deploying on the Standalone WebLogic Server, Chapter 10, Deploying ADF Applications.

How to do it…

1. Run the application deployed on the Standalone WebLogic Server, so that a

diagnostics log ile is generated. Alternatively, if you already have a diagnostics log ile
to analyze, you can ignore this step.

2. In JDeveloper, select Tools | Oracle Diagnostic Log Analyzer from the main menu.

3. Click on the Browse Log Files button (the search icon) to locate the diagnostics ile
and open it.

Refactoring, Debugging, Proiling, and Testing

338

4. Click on the By Log Message tab and specify the search criteria in the Search

section. Press the Search button to commence with the search.

5. In the Results table, click on a value inside the Related column for a log entry of

interest and select Related By Request from the context menu.

How it works…

Steps 1 through 5 give the details of the process of analyzing a diagnostics log ile using the
Oracle Diagnostics Log Analyzer feature in JDeveloper. The Oracle Diagnostics Analyzer is

accessible via the Tools | Oracle Diagnostic Log Analyzer menu selection. Once started,

you will need to load the speciic diagnostics log ile to analyze. We have done this in step 3.
You can search the diagnostics log entries using either the By ADF Request or the By Log

Message tab and specifying the search criteria. The By ADF Request tab will display only the

log entries related to ADF requests made when a page is submitted. On the other hand the By

Log Message tab will search all log entries in the log ile by their log level. Moreover, the search
criteria in both tabs allow you to search for diagnostic log entries based on their Log Time and

based on the message content (Message Id, User, Application, Module, and so on).

The results of the search are displayed in the Results table. The results data are sortable

by clicking on the column headers. To display all related log entries, click inside the Related

column for a log entry of interest and select any of the choices available in the context menu.

These choices are:

Chapter 11

339

Related By Results

Time Filter diagnostic log entries to view all log entries leading up to the speciic
entry. You can reine the time before the entry using the dropdown.

Request Filter diagnostic log entries to view all log entries for the same web

request.

ADF Request Switches to the By ADF Request tab to display the diagnostic log entries

in a hierarchical arrangement to show their execution dependencies.

See also

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

 f Deploying on the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Using CPU proiler for an application running
on a standalone WebLogic server

Proiling allows you to connect to a Standalone WebLogic Server instance and gather proiling
statistics for your application. Proiling statistics can be subsequently used to identify and
correct performance issues. JDeveloper supports both a CPU and a memory proiler. The
CPU proiler gathers statistics related to CPU usage by the application. The memory proiler
identiies how the application utilizes memory and can be used to diagnose memory leaks.

In this recipe, we will demonstrate how to use the CPU proiler to proile an ADF Fusion
web application deployed to a Standalone WebLogic managed server instance running

on the local machine.

Getting ready
You will need a Standalone WebLogic Server conigured and started as explained in
Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying ADF

Applications. You will also need an ADF Fusion web application deployed to the Standalone

WebLogic Server. For this, you can consult Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

Refactoring, Debugging, Proiling, and Testing

340

How to do it…

1. In JDeveloper, double-click on the project that you want to proile in the Application

Navigator to bring up its Project Properties dialog.

2. Select Run/Debug/Proile and click on the Edit… button to edit the Default

Run Coniguration.

3. In the Tool Settings | Proiler page, enter com.packt.jdeveloper.cookbook.*

in the Start Filter. Click OK a couple of times to dismiss the Project Settings dialog,

saving the changes.

4. Select Run | Attach to | CPU Proilee from the main menu. On the Attach to CPU

Proilee dialog, select the WebLogic proiler agent process and click OK. The proiler
agent process is started along with the Standalone WebLogic Server.

Chapter 11

341

5. Once attached to the proiler agent, the Proiling <project_name> tab is displayed,

where <project_name> is the name of project you are proiling. Click on the Begin

Use Case button (the irst icon in the toolbar) to initiate a new proiling use case.

6. To generate proiler statistics, run the application in the web browser. To terminate
the proiling session, click on the Terminate Proiling button (the red box icon) in the

main toolbar.

How it works…

Steps 1 through 3 demonstrate how to conigure a project for proiling. Observe in step 3, how
we have indicated the speciic package ilter based on which we would like to ilter the proiler
results. Proiler data will be collected only for those stack levels whose class name satisies
the Stack Filter entry. Multiple ilters can be entered, separated with spaces. You can also
click on the Advanced button in the Proiler page to select the classes you want to proile.

Steps 4 through 6 show how to start a proiling session and how to create a new use case to
collect proiling statistics. Observe in step 4, our choice for connecting to the proiler agent.
As we are running the Standalone WebLogic Server locally, we have chosen the proiler agent
from the Attach to Local Process list.

Refactoring, Debugging, Proiling, and Testing

342

There's more…

To proile an ADF Fusion web application running on a WebLogic Server on a remote
machine, the proiler agent must also be started on the remote machine as part of the
WebLogic start-up coniguration. To determine the proiler agent start-up coniguration
parameters, select Tool Settings | Proiler | Remote in the Edit Run Coniguration dialog

and then the Remote Process Parameters tab. Adjust the remote process port as needed in

the Default Settings tab.

See also

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

 f Deploying on the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Chapter 11

343

Coniguring and using JUnit for unit testing
JUnit is a unit testing framework for Java code. Unit testing refers to programmatically

testing individual pieces of code and it is actually part of the software development and

construction process. In JDeveloper, JUnit is supported via the BC4J JUnit Integration and

JUnit Integration extensions available through the Oficial Oracle Extensions and Updates

update center. The BC4J JUnit Integration extension makes available wizards for constructing

JUnit unit test cases, suites, and ixtures speciically for business components projects. On the
other hand, the JUnit Integration extension includes wizards to help you setup generic JUnit

artifacts. Upon installation, these extensions make available the Unit Tests category under

the General category in the New Gallery dialog.

A unit test class is a class that contains unit test methods. Unit test classes are grouped in a

test suite that runs all of the test cases together when executed. A unit test ixture is a special
class used to conigure the unit tests.

In this recipe, we will implement a JUnit test suite that will test the functionality of an

application module and the view objects that are part of its data model.

Getting ready
You will need access to the HRComponents workspace created in Overriding remove() to

delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

How to do it…

1. In JDeveloper, select Help | Check for Updates… from the main menu. This will start

the Check for Updates wizard.

2. In the Source page, select Oficial Oracle Extensions and Updates and click Next.

3. In the Updates page, select the BC4J JUnit Integration and JUnit Integration

extensions and click Next.

4. Accept the JUnit license agreement and click Next. This will initiate the download

of the JUnit extensions. Once the download is complete, in the Summary page,

click on the Finish button. On the Conirm Exit dialog, click on the Yes button to

restart JDeveloper.

5. Open the HRComponents workspace and create a project by selecting Custom

Project from the General | Projects category in the New Gallery dialog.

6. In the Name your project page of the Create Custom Project wizard, enter

HRComponentsUnitTests for the Project Name and click on the Finish button.

7. Right-click on the HRComponentsUnitTests project in the Application Navigator

and select New…. From the General | Unit Tests category, select ADF Business

Components Test Suite and click OK.

Refactoring, Debugging, Proiling, and Testing

344

8. In the Conigure Tests page of the JUnit ADF Business Components Test

Suite Wizard, make sure that the appropriate Business Components

Project, Application Module, and Coniguration are selected. For this recipe,

we will select HRComponentsBC.jpr, HrComponentsAppModule, and

HrComponentsAppModuleLocal respectively. Then click Next.

9. In the Summary page, review the JUnit classes that will be generated and click Finish

to proceed.

10. Edit the HrComponentsAppModuleAMTest class and add the following code to the

setup() method:

// get the application module from the JUnit test fixture

HrComponentsAppModuleAMFixture fixture =
 HrComponentsAppModuleAMFixture.getInstance();

_amImpl = (HrComponentsAppModule)fixture
 .getApplicationModule();

11. Add the following code to the testExportEmployees() method:

String employees = _amImpl.exportEmployees();

12. To run the unit tests, right-click on the AllHrComponentsAppModuleTests.java

ile in the Application Navigator and select Run. Observe the status of the unit tests

in the JUnit Test Runner Log window.

Chapter 11

345

How it works…

In steps 1 through 4, we downloaded the JUnit JDeveloper extensions using the Check for

Updates… facility. As stated earlier, there are two separate extensions for JUnit one being

speciic to ADF business components projects.

In steps 5 and 6, we created a custom project to house the JUnit unit tests. Then (in steps

7 through 9), we created a JUnit business components test suite using the ADF Business

Components Test Suite Wizard. We have indicated the HRComponentsBC business

components project, and selected the HrComponentsAppModule application module and

its HrComponentsAppModuleLocal coniguration. Upon completion, the wizard creates the
JUnit test suite, a test ixture class for the application module and unit test case classes for
the application module and all view object instances in the application module data model.

The unit tests that are included in the test suite are indicated by the @Suite.SuiteClasses

annotation in the test suite, as shown in the following code snippet:

@Suite.SuiteClasses({ EmployeeCountVOTest.class,
 ApplicationModulePoolStatisticsVOTest.class,
 CascadingLovsVOTest.class,
 DepartmentEmployeesVOTest.class,
 EmployeesManagedVOTest.class,
 DepartmentsManagedVOTest.class, DepartmentsVOTest.class,
 EmployeesVOTest.class,
 HrComponentsAppModuleAMTest.class })

Furthermore, observe the code in the constructor of the

HrComponentsAppModuleAMFixture ixture class. It uses the oracle.jbo.
client.Configuration createRootApplicationModule() method to create the

HrComponentsAppModule application module based on the coniguration indicated
in step 8. The HrComponentsAppModule application module is then available via the

getApplicationModule() getter method.

The JUnit test cases created by the wizard are empty in most cases. In step 11, we have

added test code to the testExportEmployees() application module test case to

actually call the exportEmployees() HrComponentsAppModule application module

method. To do this, we used the application module class variable _amImpl. This

variable was initialized with a reference to the HrComponentsAppModule by calling the

HrComponentsAppModuleAMFixture getApplicationModule() method in step 10.

Refactoring, Debugging, Proiling, and Testing

346

Finally, we run the AllHrComponentsAppModuleTests.java ile in the Application

Navigator in step 11 to execute the JUnit test suite.

There's more…

Note the @Test annotation to indicate a test method in the test case class. You can add

additional test methods to the unit test class by simply preceding them with this annotation.

Also, observe the @Before and @After annotations on methods setup() and teardown()

to indicate methods that are executing before and after the unit test case.

To include additional test cases to the test suite, implement the JUnit test case class and add

it to the @Suite.SuiteClasses annotation in the test suite class.

JUnit unit test suites can be integrated with ant and be part of a continuous integration

framework that runs your unit tests each time a new build of your application is being made.

For a continuous integration example using Hudson, take a look at Using Hudson as a

continuous integration framework, Chapter 10, Deploying ADF Applications.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

12
Optimizing,

Fine-tuning, and
Monitoring

In this chapter, we will cover:

 f Using Update Batching for entity objects

 f Limiting the rows fetched by a view object

 f Limiting large view object query result sets

 f Limiting large view object query result sets by using required view criteria

 f Using a Work Manager for processing of long running tasks

 f Monitoring the application using JRockit Mission Control

Introduction
The ADF framework offers a number of optimization and tuning settings related to entity

objects, view objects, and application modules. Many of these settings are accessible in

JDeveloper in the General tab Tuning section of the corresponding Overview editor. Others

are programmatic techniques that optimize the performance of the application, such as

limiting the result set produced by a view object query, or providing query optimizer hints for

the underlying view object query. Yet more are implemented by utilizing facilities offered by

the application server, such as the use of work managers in the WebLogic Server.

Optimizing, Fine-tuning, and Monitoring

348

When it comes to monitoring, proiling, and stress testing an ADF Fusion web application,
in addition to the tools offered by JDeveloper (that is, the CPU and Memory Proiler) other
external tools can be useful. Such tools include the JRockit Mission Control, Enterprise

Manager Fusion Middleware Control, and Apache JMeter.

Using Update Batching for entity objects
When multiple entity objects of the same type are modiied, the number of DML (INSERT,

UPDATE, and DELETE) statements that are issued against the database corresponds to one

for each entity object that was modiied. This can be optimized by using entity object update
batching optimization. When update batching is used, the DML statements are grouped per

DML statement type (INSERT, UPDATE, and DELETE) and bulk-posted based on a conigured
threshold value. This threshold value indicates the number of entity objects of the same type

that would have to be modiied before update batching can be triggered.

In this recipe, we will see how to enable update batching for an entity object.

Getting ready
We will enable update batching for the Department entity object. This entity object is

part of the HRComponents workspace, which was created in Overriding remove() to delete

associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the HRComponents workspace. In the Application Navigator expand the

HRComponentsBC components project and locate the Department entity object.

Double-click on it to open the Overview editor.

2. In the General tab, expand the Tuning section and check the Use Update Batching

checkbox.

Chapter 12

349

3. Enter 1 for the When Number of Entities to Modify Exceeds.

4. Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…

We have enabled update batching for the Department entity object by opening the entity

object Overview editor and clicking on the Use Update Batching checkbox in the Tuning

section of the General tab. We have also indicated the update batching threshold by entering

a number in the When Number of Entities to Modify Exceeds. This threshold indicates

the number of Department entity objects that would have to be modiied in order for
update batching to be triggered by the ADF framework. If the threshold is satisied, then the
framework will use a cursor to bulk-post the DML operations (one post per DML operation

type). Otherwise, separate DML statements will be posted for each modiied entity object.

There's more…

Using update batching will not affect the number of times an overridden doDML() will be

called by the framework. This method will be called consistently for each modiied entity
object, regardless of whether the entity object uses update batching or not.

Furthermore, note that update batching cannot be used for entity objects that fall in any of the

following categories (in these cases, update batching is disabled in JDeveloper).

 f An entity object that deines attributes that are refreshed on inserts and/or updates
(Refresh on Insert, Refresh on Update properties).

 f An entity object that deines BLOB attributes.

 f An entity object that deines a ROWID-type attribute as a primary key. This attribute is
also refreshed on inserts.

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Optimizing, Fine-tuning, and Monitoring

350

Limiting the rows fetched by a view object
The ADF Business Components framework allows you to declaratively and/or programmatically

set an upper limit for the number of rows that can fetched from the database layer by a view

object. Declaratively, this can be accomplished through the view object Tuning section in the

General page of the view object Overview editor. You can do this by selecting Only up to row

number in the Retrieve from the Database section and providing a row count.

This can also be accomplished programmatically by calling a view object's setMaxFetchSize()

method and specifying an upper row limit.

To globally set an upper limit for the number of rows that can be fetched by all view objects

in an ADF Fusion web application, the global coniguration setting rowLimit in the adf-
config.xml coniguration ile can be used instead. Then, by overriding the framework
getRowLimit() method, you can adjust this upper limit for individual view objects as

needed. When an attempt is made to fetch rows beyond this upper limit, the framework will

generate an oracle.jbo.RowLimitExceededWarning exception. This exception can then

be caught by your custom DCErrorHandlerImpl implementation and presented as a Faces

warning message box (see Using a custom error handler to customize how exceptions are

reported to the ViewController, Chapter 9, Handling Security, Session Timeouts, Exceptions

and Errors).

In this recipe, we will see how to globally limit the number of rows fetched by all view objects

and how to override this global setting for speciic view objects.

Getting ready
We will set an upper limit for the number of rows fetched by all view objects used in the

MainApplication workspace. This workspace was created in Breaking up the application

in multiple workspaces Chapter 1, Pre-requisites to Success: ADF Project Setup and

Foundations. We will also update the Employees view object to override this upper limit. This

view object is part of the HRComponents workspace developed in Overriding remove() to

delete associated children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

Chapter 12

351

How to do it…

1. Open the MainApplication workspace and locate the adf-config.xml ile. The
ile is located in the Application Resources section of the Application Navigator

under the Descriptors | ADF META-INF node. Double-click on the ile to open it.

2. In the Overview page, click on the Business Components tab.

3. Click on the Row Fetch Limit checkbox and specify 1000 for the upper rows

fetched limit.

4. Now, open the HRComponents workspace and edit the EmployeesImpl.java view

object custom implementation class.

5. Override the getRowLimit() method and replace the call to super.
getRowLimit() with the following:

// return -1 to indicate no row fetch limit for the

// Employees View object

return -1;

6. Redeploy the HRComponents workspace to an ADF Library JAR.

Optimizing, Fine-tuning, and Monitoring

352

How it works…

In steps 1 through 3, we have used the overview editor for the adf-config.xml ADF

application coniguration ile to specify a global threshold value for the number of rows fetched
by all view objects. For this recipe, we have indicated that up to 1000 rows can be fetched

by all view objects throughout the application. Then, in steps 4 and 5, we have overridden

the getRowLimit() method of the Employees view object to set a different fetch limit

speciically for the Employees view object. In this case, by returning -1 we have indicated that

there would be no fetch limit and that all rows should be fetched for this speciic view object.

There's more…

Note that the maximum fetch limit of a view object is speciied by -1, which indicates that
all rows can be fetched from the database. This does not mean that all rows will be fetched

by the view object at once, but that if you iterate over the view object result set, you will

eventually fetch all of them. As stated earlier, when a fetched row limit is set, an attempt

to iterate over the view object result set past this limit will produce an oracle.jbo.
RowLimitExceededWarning exception.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Limiting large view object query result sets
In the recipe Limiting the rows fetched by a view object in this chapter, we have seen how to limit

the number of rows that can be fetched from the database by a view object. While this technique

limits the number of rows fetched from the database to the middle layer, it will not limit the

view object query that runs in the database. In this case, a query that produces a result set in

the thousands of records will still be executed, which would be detrimental to the application's

performance. This recipe takes a different approach - actually limiting the view object query to a

predeined row count deined by the speciic view object using a custom property.

Chapter 12

353

Getting ready
The recipe uses the SharedComponents and HRComponents workspaces. These workspaces

were created in Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites

to Success: ADF Project Setup and Foundations and Overriding remove() to delete associated

children entities, Chapter 2, Dealing with Basics: Entity Objects recipes respectively.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the SharedComponents workspace. Locate and open the

ExtViewObjectImpl.java view object framework extension class in the Java

editor. Add the following helper methods to it. Also ensure that you add a constant

deinition for QUERY_LIMIT to "QueryLimit".

private boolean hasQueryLimit() {

 // return true if the View object query has a limit

 return this.getProperty(QUERY_LIMIT) != null;

}

private long getQueryLimit() {

 long queryLimit = -1;

 // check for query limit

 if (hasQueryLimit()) {

 // retrieve the query limit

 queryLimit = new Long((String)this.getProperty(QUERY_LIMIT));

 }

 // return the query limit

 return queryLimit;

}

2. Override the buildQuery(int, boolean) method. Replace the call to return

super.buildQuery(i, b) generated by JDeveloper with the following code:

// get the View object query from the framework

String qryString = super.buildQuery(i, b);

// check for query limit

if (hasQueryLimit()) {

 // limit the View object query based on the

 // query limit defined

 String qryStringLimited = "SELECT * FROM (" + qryString
 + ") WHERE ROWNUM <= " + getQueryLimit();
 qryString = qryStringLimited;

}

return qryString;

Optimizing, Fine-tuning, and Monitoring

354

3. Redeploy the SharedComponents workspace to an ADF Library JAR.

4. Open the HRComponents workspace. Locate and open the Employees view object

in the Overview editor.

5. In the Custom Properties section of the General tab, add a custom property called

QueryLimit. Set its Value to the number of rows that view object query will be

limited to.

6. Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…

In step 1, we have added two helper methods called hasQueryLimit() and

getQueryLimit() which respectively determine the presence and retrieve the value of a

view object custom property called QueryLimit. The QueryLimit custom property, when

added to a view object, speciies a maximum number of rows threshold that the speciic query
is allowed to produce.

In step 2, we have overridden the view object buildQuery() method in order to check for

the deinition of the QueryLimit custom property by the view object and, if this is indeed the

case, to construct a wrapper query that will limit the rows returned by the original view object

query. The ADF Business Components framework calls the buildQuery() method when it

needs to construct the view object query prior to its execution. The view object query is limited

by adding a WHERE clause for a ROWNUM upto the value speciied by the QueryLimit custom

property. Note that these methods were added to the ExtViewObjectImpl framework

extension class, part of the SharedComponents workspace, making this functionality

generic and available to all view objects throughout the ADF application. We redeployed the

SharedComponents workspace to ensure that this functionality is part of the ADF Library JAR.

In steps 4 through 6, we have updated the Employees view object, part of the

HRComponents workspace, by adding to it the QueryLimit custom property and setting its

value to the number of rows that the query is limited to.

There's more…

You can present a message informing the user that the query results for a particular search

were limited, by adding this additional functionality to the application:

1. Add the following code to the ExtViewObjectImpl view object framework

extension class:

private void setQueryLimitApplied(Boolean queryLimitApplied) {

 this.queryLimitApplied = queryLimitApplied;

}

private Boolean isQueryLimitApplied() {

 return this.queryLimitApplied;

}

Chapter 12

355

public String queryLimitedResultsMessage() {

 String limitedResultsError = null;

 // check for query limit having been applied

 if (isQueryLimitApplied()) {

 // return a message indicating that the

 // query was limited

 limitedResultsError =
 BundleUtils.loadMessage("00008", new String[] {

 String.valueOf(this.getQueryLimit()) });

 }

 return limitedResultsError;

}

2. While editing the ExtViewObjectImpl framework extension class, override the

executeQueryForCollection() method and add the following code after the

super.executeQueryForCollection() line generated by JDeveloper:

// set the queryLimitApplied indicator appropriately

if (hasQueryLimit()
 && this.getEstimatedRowCount() > getQueryLimit()) {

 this.queryLimitApplied = true;

} else {

 this.queryLimitApplied = false;

}

3. Add the queryLimitedResultsMessage() method to the client interface for the

speciic view object that its query is limited (Employees in this example).

4. Create a method binding for the queryLimitedResultsMessage method for the

speciic JSF page where the query is used.

5. Add to a managed bean with the necessary code to programmatically invoke the

method binding, as shown in the following sample code:

public String getQueryLimitedResultsMessage() {

 return (String)ADFUtils.findOperation(
 "queryLimitedResultsMessage").execute();

}

6. Use an af:outputText on the JSF to display the message, as shown in the

following sample code:

<af:outputText id="ot1" value="#{SomeManagedBean.
 queryLimitedResultsMessage}"

 partialTriggers="qry1" visible="#{bindings.
 EmployeesIterator.currentRow != null}"/>

Optimizing, Fine-tuning, and Monitoring

356

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Limiting large view object query result sets
by using required view criteria

In the recipe Limiting large view object query result sets in this chapter, we presented a

programmatic technique to limit the result set produced by a view object query. A simpler way

to accomplish this in a declarative manner is to add named view criteria to the view object

ensuring that some of the criteria items are required. This will force the user at runtime to

enter values for those required criteria, thus limiting the size of the query result set.

In this recipe, we will add named view criteria to a view object and make the criteria

items required.

Getting ready
We will add named view criteria to the Employees view object. It is part of the

HRComponents workspace, which was created in Overriding remove() to delete associated

children entities, Chapter 2, Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

How to do it…

1. Open the HRComponents workspace and locate the Employees view object.

2. Open the Employees Overview editor and go to the Query tab.

3. Click on the Create new view criteria button (the green plus sign icon) in the View

Criteria section.

Chapter 12

357

4. In the Create View Criteria dialog, add criteria items by clicking on the Add Item

button. To ensure that a speciic criteria item is required, select Required from the

Validation drop-down list.

5. Redeploy the HRComponents workspace to an ADF Library JAR.

How it works…

Steps 1 through 4 show you how to add named view criteria to the Employees view object

with required criteria items. View criteria are added to the view object by navigating to the

Query tab of the view object Overview editor and clicking on the Create new view criteria

button. You add criteria items to the view criteria by clicking on the Add Item button in the

Create View Criteria dialog. To make a criteria item required for the query to be executed,

ensure that you set the criterion Validation to Required.

At runtime, required criteria will appear with an asterisk (*) in front of them. If you attempt to

execute the query without specifying values for any of the required criteria, a validation error

message will be shown. To proceed with the query execution, you will need to provide values

for all required criteria.

There's more…

The Selectively Required option for the view criteria item Validation indicates that the

speciic criteria item will be required only as long as no other values have been supplied for
any of the other criteria items. In this case, a validation exception will be raised indicating that

the criterion is required. If a value has been supplied for any of the other criteria items, then

specifying a value for the speciic criterion is not required.

Optimizing, Fine-tuning, and Monitoring

358

See also

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

Using a work manager for processing of
long running tasks

Work managers allow for the concurrent execution of multiple threads within the WebLogic

Server. They provide an alternative to the java.lang.Thread API (this API should not be

utilized by Java EE applications) for running a work, that is an isolated piece of Java code,

concurrently (or serially) as separate WebLogic-managed threads.

Work managers in the WebLogic Server fall in three categories: default, global and

application-speciic work managers. The default work manager is used for applications that
do not specify a work manager. This may be suficient for most applications. Global work
managers are WebLogic Server domain-speciic and are deined explicitly in WebLogic.
Applications utilizing the same global work manager create their own instance of the work

manager to handle the threads associated with each application. Application-speciic work
managers are deined for speciic applications only, making them available for use by the
speciic applications only.

Programmatically, work managers are supported through the interfaces deined in the work
manager API. The API is deined in the commonj.work package in the weblogic.jar library.

In this recipe, we will deine a global work manager in WebLogic and implement a wrapper
framework around the work manager API. Then we will demonstrate how to utilize the wrapper

framework to run part of an ADF Fusion web application on the global work manager.

Getting ready
You will need access to the SharedComponents, HRComponents and MainApplication

workspaces before delving into this recipe. These workspaces were created in Breaking up the

application in multiple workspaces, Chapter 1, Pre-requisites to Success: ADF Project Setup

and Foundations and Overriding remove() to delete associated children entities, Chapter 2,

Dealing with Basics: Entity Objects.

The HRComponents workspace requires a database connection to the HR schema.

You will also need access to a conigured standalone WebLogic server domain and your
application deployed on it. For information on these topics, take a look at Coniguring and
using the Standalone WebLogic Server and Deploying on the Standalone WebLogic Server,
Chapter 10, Deploying ADF Applications.

Chapter 12

359

How to do it…

1. Open the SharedComponents workspace. Add the following ExtWorkManager,

ExtWork and ExtWorkListener classes to the SharedBC business components

project. When done, redeploy the workspace to an ADF Library JAR.

public class ExtWorkManager {

 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWorkManager.class);

 private static final String DEFAULT_MANAGER_NAME =
 "MyWorkManager";

 private String managerName = DEFAULT_MANAGER_NAME;

 private WorkManager workManager;

 private WorkListener workListener;

 private List<ExtWork> works = new ArrayList<ExtWork>();

 List<WorkItem> workList = new ArrayList<WorkItem>();

 // run the Work Manager serially by default

 private long waitType = WorkManager.INDEFINITE;

 public ExtWorkManager() {

 }

 public ExtWorkManager(String managerName) {

 // check for valid name; used default name otherwise

 if (managerName == null || !"".equals(managerName)) {

 this.managerName = DEFAULT_MANAGER_NAME;

 }

 }

 public void addWork(ExtWork work) {

 works.add(work);

 }

 public void run() {

 LOGGER.info("WorkManager.run()");

 try {

 // get the Work Manager from the context

 InitialContext ctx = new InitialContext();

 workManager = (WorkManager)ctx.lookup("java:comp/env/"
 + managerName);

 // create a listener

 if (workListener == null) {

 workListener = new ExtWorkListener(this);

 }

 // schedule work items in a work list

 workList = new ArrayList<WorkItem>();

 for (ExtWork work : works) {

 WorkItem workItem = workManager.schedule(work,
 workListener);

Optimizing, Fine-tuning, and Monitoring

360

 workList.add(workItem);

 }

 // run the Work Manager work list

 workManager.waitForAll(workList, waitType);

 } catch (Exception e) {

 LOGGER.severe(e);

 throw new ExtJboException(e);

 }

}

public List<ExtWork> getResult() {

 List<ExtWork> resultList = new ArrayList<ExtWork>();

 try {

 // iterate all work items and add their results

 // to the results list

 for (WorkItem workItem : workList) {

 resultList.add((ExtWork)workItem.getResult());

 }

} catch (Exception e) {

 throw new ExtJboException(e);

}

// return the results list

return resultList;

}

// see book's source code for complete listing

}

public abstract class ExtWork implements Work {

 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWork.class);

 // parameters list

 protected List<Object> parameters =
 new ArrayList<Object>();

 public ExtWork(Object... parameters) {

 super();

 // add parameters to the parameter list

 for (Object parameter : parameters) {

 this.parameters.add(parameter);

 }

 }

 public abstract Object getResult();

 // see book's source code for complete listing

}

public class ExtWorkListener implements WorkListener {

 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExtWorkListener.class);

Chapter 12

361

 private ExtWorkManager manager;

 public ExtWorkListener(ExtWorkManager manager) {

 super();

 this.manager = manager;

 }

 public void workAccepted(WorkEvent workEvent) {

 LOGGER.info("Work accepted for work manager '" +
 manager.getManagerName() + "' at " + getTime());

 }

 private String getTime() {

 Calendar cal = Calendar.getInstance();

 SimpleDateFormat sdf =
 new SimpleDateFormat("HH:mm:ss");

 return sdf.format(cal.getTime());

 }

 // see book's source code for complete listing

}

2. Open the HRComponents workspace and add the following ExportEmployeesWork

class to it:

public class ExportEmployeesWork extends ExtWork {

 private final static ADFLogger LOGGER =
 ADFLogger.createADFLogger(ExportEmployeesWork.class);

 private StringBuilder employeeStringBuilder;

 public ExportEmployeesWork() {

 super();

 }

 public ExportEmployeesWork(Object... parameters) {

 super(parameters);

 }

 @Override

 public Object getResult() {

 // return the employees CSV string buffer

 return employeeStringBuilder;

 }

 @Override

 public void run() {

 LOGGER.info("ExportEmployeesWork.run()");

 // the Employees rowset iterator was passed as a

 // parameter when we created this work

 RowSetIterator iterator = (RowSetIterator)parameters.get(0);

 // get additional parameters as needed

 // Object param1 = parameters.get(1);

 // build the employees CSV string buffer

 employeeStringBuilder = new StringBuilder();

Optimizing, Fine-tuning, and Monitoring

362

 iterator.reset();

 while (iterator.hasNext()) {

 EmployeesRowImpl employee =
 (EmployeesRowImpl)iterator.next();

 employeeStringBuilder.append(

 employee.getLastName() + " "
 + employee.getFirstName());

 if (iterator.hasNext()) {

 employeeStringBuilder.append(",");

 }

 }

 // done with the rowset iterator

 iterator.closeRowSetIterator();

 }

}

3. Add the following exportEmployeesOnWorkManager() method to the

HrComponentsAppModuleImpl custom implementation class.

public String exportEmployeesOnWorkManager() {

 // create a Work Manager

 ExtWorkManager mngr = new ExtWorkManager("MyWorkManager");

 // add the export employees work to the Work Manager

 mngr.addWork(new ExportEmployeesWork(
 getEmployees().createRowSetIterator(null)));

 // run the Work Manager

 mngr.run();

 // get the result from the Work Manager

 List<ExtWork> works = mngr.getResult();

 StringBuilder employeeStringBuilder = new StringBuilder();

 for (ExtWork work : works) {

 ExportEmployeesWork exportWork = (ExportEmployeesWork)work;

 employeeStringBuilder.append(exportWork.getResult());

 }

 // return the employees CSV string buffer

 return employeeStringBuilder.toString();

}

4. Ensure that the exportEmployeesOnWorkManager() method is added to the

HrComponentsAppModule application module client interface. Then, redeploy the

HRComponents workspace to an ADF Library JAR.

Chapter 12

363

5. Open the main application workspace. Create a new JSPX page called

exportEmployeesUsingWorkManager.jspx and add the following code to it:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
xmlns:f="http://java.sun.com/jsf/core"
 xmlns:af="http://xmlns.oracle.com/adf/faces/rich">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <f:view>
 <af:document title="exportEmployees
 UsingWorkManager.jspx" id="d1">
 <af:messages id="m1"/>
 <af:form id="f1">
 <af:panelStretchLayout id="psl1">
 <f:facet name="top"/>
 <f:facet name="center">
 <af:toolbar id="t1">
 <af:commandButton text="Export Employees" id="cb1">
 <af:fileDownloadActionListener filename=
 "employees.csv"method="#{ExportEmployees
 UsingWorkManagerBean.exportEmployees}"/>
 </af:commandButton>
 </af:toolbar>
 </f:facet>
 <f:facet name="bottom"/>
 </af:panelStretchLayout>
 </af:form>
 </af:document>
 </f:view>
</jsp:root>

6. Create a page deinition ile for the exportEmployeesUsingWorkManager.
jspx page and add a method action binding for the

exportEmployeesOnWorkManager() method. It is available under the

HrComponentsAppModuleDataControl data control.

7. Create a managed bean called ExportEmployeesUsingWorkManagerBean and

add the following exportEmployees() method to it:

public void exportEmployees(FacesContext facesContext,
 OutputStream outputStream) {
 // get the employees CSV data
 String employeesCSV = (String)ADFUtils.findOperation(
 "exportEmployeesOnWorkManager").execute();
 try {
 // write the data to the output stream
 OutputStreamWriter writer = new
 OutputStreamWriter(outputStream, "UTF-8");
 writer.write(employeesCSV);
 writer.close();
 outputStream.close();

Optimizing, Fine-tuning, and Monitoring

364

 } catch (IOException e) {
 // log exception
 }
}

8. Open the web.xml deployment descriptor in the Source editor and add the following

resource reference to it:

<resource-ref>
 <res-ref-name>MyWorkManager</res-ref-name>
 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

9. Ensure that the standalone WebLogic server domain is started,

then log in into the administration console using the following URL:

http://serverHost:serverPort/console, where serverHost is the

hostname or IP of the WebLogic Server machine and serverPort is the

administration server's port.

10. Select Environment | Work Managers from the Domain Structure tree.

11. In the Summary of Work Managers page, click on the New button under the Global

Work Managers, Request Classes and Constraints table.

12. In the Select Work Manager Deinition type page, select Work Manager and

click Next.

Chapter 12

365

13. In the Work Manager Properties page, enter MyWorkManager for the work manager

Name and click Next.

14. In the Select deployment targets page, select your managed server instance from

the list of Available targets and click Finish. The work manager should now be

visible in the Global Work Managers, Request Classes and Constraints table in the

Summary of Work Managers page.

15. Click on MyWorkManager in the Global Work Managers, Request Classes and

Constraints table in the Summary of Work Managers page. In the Settings for

MyWorkManager page, select Ignore Stuck Threads and click on the Save button.

16. Restart the standalone WebLogic server domain and deploy to it the main application.

How it works…

To ease the task of dealing with work managers, we have introduced the following three

classes (in step 1):

 f ExtWorkManager: A wrapper around the functionality provided by the commonj.
work work manager API. The following methods implemented by this class make it

easy to get going with using work managers in our application:

 � ExtWorkManager(String managerName): Constructs a work manager

identiied by its name

 � addWork(ExtWork work): Adds ExtWork works to the work manager

 � run(): Executes the work manager

 � getResult(): Returns the work manager result(s)

 f ExtWork: An abstract class built on top of the commonj.work.Work interface. It

accepts generic parameters during construction, which it stores in the parameters

class variable. Concrete classes must implement its run() and getResult()

methods. Class ExportEmployeesWork in step 2 is an example of a concrete

implementation of this class.

 f ExtWorkListener: Implements the commonj.work.WorkListener interface.

Optimizing, Fine-tuning, and Monitoring

366

In this recipe, we have identiied the functionality of exporting data from a database table,
which was originally implemented in Exporting data to a ile, Chapter 7, Face Value: ADF

Faces, JSPX Pages and Components, that can run on the work manager. It is implemented

by the method exportEmployees() in the HrComponentsAppModuleImpl custom

application module implementation class, part of the HRComponents workspace. Steps 2

and 3 illustrate how it is done:

 f Create a class that extends the ExtWork class. This class identiies a piece
of code that can run on a work manager. In our case, this was done with the

ExportEmployeesWork class in step 2. The actual code that will be executed is

then implemented by the run() method of the class.

 f Create an ExtWorkManager class and call its addWork() method to add speciic
pieces of "work" to be executed by it. These are classes that extend ExtWork.

In our case, this was done in step 3 when we called addWork() specifying

ExportEmployeesWork as the speciic ExtWork class:

mngr.addWork(new ExportEmployeesWork(getEmployees().
 createRowSetIterator(null)));

 f Call the ExtWorkManager class run() method to commence with the execution of

the works added to the work manager.

Observe the constructor of the ExtWork derived classes. It accepts a variable number of

parameters that are stored in the parameters class variable. For instance, in our example,

the ExportEmployeesWork was constructed specifying the Employees RowSetIterator,

as shown in the following line of code:

new ExportEmployeesWork(getEmployees().createRowSetIterator(null))

These parameters can then be accessed as shown in the ExportEmployeesWork run()

method, as follows:

RowSetIterator iterator = (RowSetIterator)parameters.get(0);

To retrieve the results produced by the work manager, you iterate over the ExtWork works and

you call getResult() for each one. The works managed by the work manager are retrieved by

calling getResult() on it. This is implemented in step 3 and is shown as follows:

List<ExtWork> works = mngr.getResult();

StringBuilder employeeStringBuilder = new StringBuilder();

for (ExtWork work : works) {

 ExportEmployeesWork exportWork = ExportEmployeesWork)work;

 employeeStringBuilder.append(exportWork.getResult());

}

Chapter 12

367

As you can see in step 2, the ExportEmployeesWork getResult() method returns the

CSV string buffer employeeStringBuilder that was built in the run() method when

iterating over the Employees view object:

public Object getResult() {

 // return the employees CSV string buffer

 return employeeStringBuilder;

}

Work manager export functionality is added in a separate HrComponentsAppModule

method called exportEmployeesOnWorkManager which is then added to the application

module's client interface and once bound, (step 6) it is invoked from a backing bean (step 7).

Steps 8 through 15 show how to create, conigure, and reference a work manager. In step
8, we reference the work manager in our application by adding a resource reference to it in

the web.xml deployment descriptor. The work manager that we will be creating in steps 9

through 15 is called MyWorkManager. We use this reference to get hold of the work manager

via JNDI lookup in our code. This is done in the ExtWorkManager run() method in step 1 as

shown in the following code snippet:

InitialContext ctx = new InitialContext();

workManager = (WorkManager)ctx.lookup
("java:comp/env/" + managerName);

In this case, managerName is speciied during the construction of the ExtWorkManager.

This can be seen in step 3 when the work manager is constructed:

ExtWorkManager mngr = new ExtWorkManager("MyWorkManager");

Steps 9 through 15 detail the steps of creating and coniguring a global work manager in
WebLogic Server. Observe how in step 15 we have enabled the Ignore Stuck Threads setting.

This will enable us to run long-running works on the work manager without getting an indication

of a stuck thread by WebLogic. A WebLogic thread that executes for more than a speciied-
preconigured amount of time is considered by WebLogic to be "stuck". If the number of the
stuck threads in an application grow, the application might crash.

Finally, observe how the work manager is started in the ExtWorkManager run() method

in step 1. The list of works added to the work manager (by calling its addWork() method) is

iterated and each work is scheduled for execution by calling its schedule() method.

workList = new ArrayList<WorkItem>();

for (ExtWork work : works) {

 WorkItem workItem =
 workManager.schedule(work, workListener);

 workList.add(workItem);

}

Optimizing, Fine-tuning, and Monitoring

368

The schedule() method returns a commonj.work.WorkItem, which is added to a java.
util.List. We use this list to commence the execution of the work manager by calling its

waitForAll() method:

workManager.waitForAll(workList, waitType);

One important thing to notice here is the waitType argument passed to the waitForAll()

method. It can take either of the following two values:

 f WorkManager.INDEFINITE: Calling code pauses, waiting until the execution of all

works scheduled on the work manager completes.

 f WorkManager.IMMEDIATE: Return is passed immediately to the calling code

running the works scheduled on the work manager concurrently.

Furthermore, observe that the WorkItem list is iterated in the getResult() method to

retrieve the result for each WorkItem, as shown in the following code snippet:

for (WorkItem workItem : workList) {

 resultList.add((ExtWork)workItem.getResult());

}

There's more…

For more information on work managers, consult sections Description of the Work
Manager API and Work Manager Example in the Timer and Work Manager API (CommonJ)
Programmer's Guide for Oracle WebLogic Server documentation manual. This can be found in

the WebLogic Server Documentation Library currently at http://docs.oracle.com/cd/
E14571_01/wls.htm.

See also

 f Breaking up the application in multiple workspaces, Chapter 1, Pre-requisites to

Success: ADF Project Setup and Foundations

 f Overriding remove() to delete associated children entities, Chapter 2, Dealing with

Basics: Entity Objects

 f Exporting data to a ile, Chapter 7, Face Value: ADF Faces, JSPX Pages

and Components

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

 f Deploying on the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

Chapter 12

369

Monitoring the application using JRockit
Mission Control

JRockit Mission Control is a suite of tools that can be used to monitor, proile, and manage
applications deployed on the WebLogic Server running on the JRockit JVM. Moreover, the

JRockit Mission Control tools allow you to record and replay sessions, perform garbage

collection on demand, and eliminate memory leaks.

In this recipe, we will go over the installation of JRockit Mission Control Client and the steps

necessary to conigure the WebLogic Server to run it. Then we will look into a monitor session
of a standalone WebLogic server instance.

Getting ready
You will need a standalone WebLogic server domain conigured and your ADF application
deployed on it. For information about these topics, take a look at Coniguring and using the
Standalone WebLogic Server and Deploying on the Standalone WebLogic Server, Chapter 10,

Deploying ADF Applications.

How to do it…

1. Download the appropriate JRockit version for your client operating system by

going to the Oracle JRockit Downloads page. This page is currently accessible via

the following URL: http://www.oracle.com/technetwork/middleware/
jrockit/downloads/index.html.

2. Start the installation by executing the ile downloaded. Make sure that during the
installation, you choose to install the JRockit JRE as well.

3. Once the installation completes, ensure that you can run the JRockit Mission Control

Client by running the jrmc program in the target installation directory.

4. Edit the setDomainEnv script in the WebLogic Server domain bin directory and

ensure that the JAVA_VENDOR variable is set to Oracle. Also, verify that the BEA_
JAVA_HOME is set correctly to JRockit JDK home directory on the WebLogic server

machine. Finally, update the JAVA_OPTIONS environment variable to:

set JAVA_OPTIONS=%JAVA_OPTIONS% %MNGMNT_CONCOLE_OPTIONS%

5. Edit the startManagedWebLogic script (in the same directory) and add the

following lines:

if "%SERVER_NAME%"=="ManagedServer1" (set MNGMNT_CONCOLE_OPTIONS=-
 Xmanagement:ssl=false, authenticate=false -
 Dcom.sun.management.jmxremote.port=7092)

Optimizing, Fine-tuning, and Monitoring

370

6. Restart the WebLogic Server domain and ensure that when starting the server

instance conigured for the management console, the JMX connectors are started.

7. Start the JRockit Mission Control as indicated earlier. Right-click anywhere in the JVM

Browser and select New Connection.

8. In the New Connection dialog, specify the standalone WebLogic server Host name

or IP and the management connection Port. Enter a Connection name and click

on the Test connection button to test the connection. Once successful, click on the

Finish button.

9. The connection should appear under the Connectors node in the JVM Browser

tree. Now, right-click on the connection and select Start Console. The JRockit

management console Overview tab will be displayed, monitoring the WebLogic

standalone managed server instance.

Chapter 12

371

How it works…

Steps 1 through 3 go through the process of downloading and installing JRockit Mission

Control. The installation process is straightforward; simply run the downloaded executable

ile and follow the installation wizard. As noted in step 2, ensure that the JRockit JRE is
also installed.

Steps 4 through 6 demonstrate how to start a WebLogic managed server instance with

management console options enabled. This will allow us to connect to it using the JRockit

Mission Control Client (steps 7 through 9). First we need to ensure that the WebLogic Server

is started with the JRockit JVM. This can be done by specifying Oracle for the JAVA_VENDOR

environment variable in the setDomainEnv script (see step 4). You will also need to specify

the location of the JRockit JDK path on the WebLogic Server machine using the BEA_JAVA_
HOME environment variable (also in step 4).

Optimizing, Fine-tuning, and Monitoring

372

In the same script ile, we have also updated the JAVA_OPTIONS environment variable to

include additional options related to the management console. These options are deined using
a new environment variable called MNGMNT_CONCOLE_OPTIONS (step 4). Then, in step 5, we

have deined the management console options speciically for our managed server instance (it is
called ManagedServer1 for this recipe). We have used the -Xmanagement:ssl=false,aut
henticate=false JVM argument to indicate that no authentication (and no SSL connection)

will be required for the management console. This will allow us in step 8, when we deine the
JVM connection, to specify that no authentication credentials are required to access the JVM.

We have also indicated the management connection port (it was set to 7092 for this recipe). In

step 6, we restarted the WebLogic Server with the new management connection options.

In steps 7 through 9, we started the JRockit Mission Control Client and created a

connection to the WebLogic managed server instance conigured earlier (in step 8). In step
9, we started the management console to monitor the JRockit JVM instance conigured. By
default, the management console Overview tab includes a Dashboard with predeined Java
Heap and JVM CPU dials, and monitors for the Processor (machine and JVM CPU usage) and

Memory (used machine and Java heap memory). Additional JVM run-time metrics can be

added to the management console by clicking on the Add Dial (the green plus sign icon) and

the Add… buttons.

There's more…

In addition to the management console, the JRockit Mission Control Client includes the light
recorder and memory leak detector tools. These tools are available by right-clicking in the JVM

Browser and selecting Start Flight Recording… and Start Memleak from the context menu

respectively. For more information on these tools, consult the JRockit JDK Tools Guide and JRockit

Flight Recorder Run Time Guide. These documents can be found in the JRockit Documentation

Library currently at http://docs.oracle.com/cd/E15289_01/index.htm.

See also

 f Coniguring and using the Standalone WebLogic Server, Chapter 10, Deploying

ADF Applications

 f Deploying on the Standalone WebLogic Server, Chapter 10, Deploying ADF Applications

Index
Symbols

64-bit JDK
JDeveloper, coniguring with 11

@Suite.SuiteClasses annotation 345

@Test annotation 346

A

activateState(Element element) method 145

activateState() method 143, 149, 150

activation 143

activation framework

for custom session-speciic data 143-150
addBusyStateListener() 254

addEmployee() 284

addOrderByClause() 99

addScript() method 202

AddVMOption -DVFS_ENABLE parameter 11

AddVMOption -Xms parameter 11

AddVMOption -Xmx parameter 10

AddVMOption -XX

MaxPermSize parameter 11

addWhereClause() 99

addWork() method 366

ADF 8

ADF Applications

deploying 299

ADF Applications deployment

about 299

build process, automating using ojdeploy

311-313

Hudson, using as continuous integration

framework 316-320

Standalone WebLogic Server, coniguring 300

Standalone WebLogic Server, deploying 306-

309

Standalone WebLogic Server, using 300-304

adfAuthentication servlet 268, 269

ADF-BC 8

ADF-BC framework 106

ADF Business Components 48, 70, 75

adfc-conig.xml 234
ADF components

refactoring 327, 328

ADF Faces Rich Client Framework. See ADF

RC

ADF framework

about 47, 49

optimization 347

ADF Fusion Web Application

testing 324

ADF Fusion web application coniguration
iles

adfc-conig.xml 234
faces-conig.xml 234
Speciic Task Flow deinition ile 234

ADF Library JAR

about 15, 18, 39, 50, 56

adding, manually to project 17

ADFLogger class 23, 335

ADFm 194

ADF Model layer. See ADFm

ADF Model Tester 79

ADF RC 194

ADF security

enabling 266-271

ADFUtils class

adding, to SharedComponents ViewController

project 32, 33

374

ADFUtils indOperation() helper method 222
ADFUtils.

getApplicationModuleForDataControl()

helper method 175

ADFUtils helper class 224, 234, 235, 251

ADFUtils.showPopup() helper method 225,

258

adjustCommission() application module

method 135

adjustCommission() custom application

module method 139, 141

adjustCommission() method 78, 79, 136,

137, 142

af:carousel component

about 215

using 215-218

af:iterator

using, for adding pagination support 259-262

af:outputText component 253

af:panelFormLayout components 206

af:panelGroupLayout components 206

af:poll component

about 219

using, for refreshing table 219-222

af:popup

using, during long running tasks 252-254

using, for handling pending changes 255-258

af:pop-up component

about 198

used, for editing table row 198-201

working 202, 203

af:query component

about 194

used, for constructing search page 194-196

working 197, 198

af:resource type attribute 253

af:selectManyShuttle component 210

using 210-214

afterRollback() method 96, 97

af:tree component

about 205

using 205-209

AllowEmployeeChanges role 277

analytic functions 81

ant 310, 346

Apache 22

application

breaking up, in multiple workspaces 12-17

monitoring, JRockit Mission Control used

369-372

Application Development Framework. See

ADF

application module

function, used for initializing page 164-170

pool statistics, displaying 151-155

service interface method, accessing from

139-142

shared application module, using for static

lookup data 156-158

ApplicationModuleClass attribute 152

application module granularity

deining 18
ApplicationModulePoolStatistics View object

154, 155

Application Navigator 12

ApplicationSecurityBean 276

application security information

accessing 275-278

applicationSecurity.jspx 276, 278

applyViewCriteria() 125, 246

associated children entities

deleting, remove() method used 60-62

attribute

sequencing, with gapless sequence 51, 52

attribute binding

locating 34

attribute binding value

getting 34

setting 34

AttributeCriterion 242

Attribute from Entity feature 324

attribute validation exceptions

overriding 295, 296

AttrValException 297

authenticate() method 274

Authentication.login() 274

autodeploy domain directory 304

autoSubmit property 115

375

B

backing beans 84, 234

backingBean scope 234

bAppend Boolean parameter 125

BC4J JUnit Integration extension 343

BC base classes

setting up 19-21

BEA_JAVA_HOME environment variable 371

beforeCommit() method 53

beforeRollback() method 96, 97

binding container

getting 34

bindParametersForCollection()

about 121

overriding, for setting up view object bind

variable 118, 120

bindParametersForCollection() method 118-

120

bind variables

about 66, 106

values associated with view criteria, clearing

126, 127

bind variables values, associated with view

criteria

clearing 126-128

build.cmd script ile 319, 320
buildile command-line 313
buildFromClause() 99

buildOrderByClause() 99

buildQuery(int, boolean) method 353

buildQuery() method 99, 354

buildSelectClause() 99

buildWhereClause()

about 99

overriding 100

built-in macros, ojdeploy. See ojdeploy, built-

in macros

bundled exceptions 31

BundleUtils class 296

BundleUtils helper class 296

business component

refactoring 327

synchronizing, with database changes 324-

326

business component attribute

refactoring 327

Business Component Browser 53

business components framework extension

classes

adding, to SharedComponents project 19-21

coniguring 22
coniguring, at component level 22
coniguring, at project level 22

busyStateListener() method 254

buttonBar facet 223

C

cascading LOVs

about 110

setting up 110-114

CascadingLovs entity object 111

CASCADING_LOVS table 110

CascadingLovs view object 112

case-insensitive

handling, view criteria used 128, 129

case-insensitively

searching, view criteria used 128, 129

circular dependencies

eliminating 18

clearSelectedIndices() 214

client ile
data, exporting to 228-232

clientListener method 254

CollectionPaginationBean 260

collectionPagination.jspx 260

ColorDesc attribute 116, 117

commit() method 44

COMMITSEQ_PROPERTY constant 52

CommitSequenceDepartmentDepartmentId

property 57

CommitSequence property 52

CommonActions 222

CommonActions base class 98

CommonActions bean 224, 226

CommonActions create() method 258

CommonActions delete() method 228

CommonActions.delete() method 225

CommonActions framework

create() method 258

376

onAfterCreate() method 258

onBeforeCreate() method 258

onContinueCreate() method 258

onCreate() method 258

onCreatePendingChanges() method 258

CommonActions onBeforeCreate() method

258

CommonActions.onConirmDelete() method
225

CommonActions.onContinueDelete() method

226

component

locating, in root view 34

composition association

about 62

options 63

conig script 303
ConjunctionCriterion object 242

connect() command 336

contentDelivery attribute 203, 212, 253

CPU proiler
about 339

using, for application running on Standalone

WebLogic Server 339-342

createADFLogger() method 23

create() method 44, 48, 49, 55, 82, 257, 258

createrowsetIterator() method 79

CREATESEQ_PROPERTY constant 49

CreateSequenceEmployeeEmployeeId

property 57

CreateSequence property 50

createViewCriteria() method 124

current row

restoring, after transaction rollback 95-98

custom af:query listener

about 239

using, for allowing custom application module

operation execution 239-242

custom af:query operation listener

using, for clearing queries 243-247

custom af:table selection listener

about 236

using 236-239

custom database transaction

using 159-161

CustomDCErrorHandlerImpl class 289, 291

CustomDCErrorHandlerImpl custom error

handler class 294

custom error handler

using, for customizing exceptions 288, 289

custom exception class

about 27

adding, to SharedComponents project 27-31

custom login page

using 272-274

custom method

exposing, as web service 135-138

custom properties 48

custom property

adding, to view object 92

used, for populating sequence attribute 48,

49

custom session-speciic data
activation framework for 143-150

passivation framework for 143-150

D

data

exporting, to client ile 228-232
database changes

business components, synchronizing with

324-326

Database Connection

creating 60

DatabaseTransactionFactory create() method

160, 161

DBTransactionImpl2 method 160

DCDataControl class 235

DCErrorHandlerImpl class 291

DCErrorHandlerImpl error handling class 288

DCIteratorBinding iterator 239

debugFlag environment variable 332

debugging 333

DEBUG_PORT environment variable 332

default values, view row attributes

setting 81-83

specifying, at entity object level 84

DeleteConirmation 223
DeletedColumn attribute 325

Department attributes 84

DepartmentEmployeesIterator 218

377

DepartmentEmployees tree binding 218

DepartmentId attribute 107

DepartmentId bind variable 120, 121

DepartmentId setter 83

DepartmentId value 120

DepartmentName view accessor attribute

108

DepartmentsLov 107

DepartmentsLov data source 114

DepartmentsLov view object 107, 111

DepartmentsRowImpl class 85

Dependency Finder 18

Deployment proile
about 15

refactoring 328

detail record for, new master record

doDML() method, used for enforcing 73, 74

DialogListener 214

DML_DELETE lag 53
DML_INSERT lag 52, 53, 74
DML_UPDATE lag 53
doDML() method

about 48, 51, 53, 73

overriding, for populating attribute with

gapless sequence 51, 52

used, for enforcing detail record for new

master record 73, 74

E

editEmployee component 202

editEmployee pop-up 202

ejb-jar.xml 137

EmpDeptFkAssoc association 65

EmployeeCount view object 120

EmployeeId attribute 113, 214

Employees collection 238

EmployeesCriteria 241

Employees entity object 248

EmployeesImpl.java 77

EmployeesImpl.java view object 351

Employees interface 79

EmployeesLov view object 112

EmployeesRowImpl 79, 277

Employees rowset 79

Employees RowSetIterator 366

Employees view object 79, 117, 352

end_url parameter 271

Entity Association relation 60

entity-based view objects 75

EntityImpl isAttributeUpdateable() method 86

entity object 18, 47, 66

entity object attributes 48

entity object states

dead 90

deleted 90

initialized 89

modiied 90
new 89

unmodiied 90
entity object view accessor 109

ErrorHandlerClass property 290

errorMessageCode variable 294

error message details

customizing 291-294

exceptions

customizing, custom error handler used 288-

290

executeEmptyRowSet() 246

executeEmptyrowset() method 103

executeQueryForCollection() method 355

executeQuery() method 68, 79, 94, 98, 125

exportEmployees() method 229, 363, 366

exportEmployeesOnWorkManager() method

362, 363, 367

exportEmployeesUsingWorkManager.jspx

363

ExportEmployeesWork class 361

ExportEmployeesWork run() method 366

Expression Language (EL) expressions 89

ExtApplicationModule application module

framework extension interface 154

ExtApplicationModuleImpl application module

152

ExtApplicationModuleImpl custom framework

class 143

ExtApplicationModule interface 133

ExtAttrValException class 296

ExtendedRenderKitService class 205
ExtendedRenderKitService interface 202
ExtEntityImpl entity object framework 296

378

ExtJboException exception 74, 290

ExtViewObjectImpl framework extension class

354

ExtViewObjectImpl view object 86, 118

ExtWork class 359, 365

ExtWorkListener class 365

ExtWorkManager class 359, 365

ExtWorkManager run() method 367

F

faces-conig.xml 234
Faces messages

adding 34

FavoriteColor attribute 116, 117

inalize() method 184
indAndSetCurrentRowByKey()

about 94, 98

using, for setting view object currency 92-94

indDataControlFrame() 236
indOperation() helper method 222
forward() method 271, 274

Fusion Order Demo application 33

Fusion Web Application (ADF) 60, 140

Fusion Web Application (ADF) workspace

194, 215

Fusion Web Application user interface 115

G

gapless sequence

attribute, sequencing with 51, 52

generic backing bean actions framework

about 42

adding, to SharedComponents ViewController

project 42-44

generic extension interfaces

creating 132-134

using 132-134

getActivationPassivationIds() helper method

146

getAllViewCriterias() 129

getApplicationModule() 120

getApplicationModuleForDataControl()

method 251

getApplicationModule() getter method 345

getApplicationModule() method 120

getAttribute() 239

getAttributeDef() 87

getAttributeInternal() method 59

getAttributeNames() 239

getBundleParameter() method 72

getCommonActions() method 226

getConjunctionCriterion() 242

getCriterionList() method 242

getCurrentDataControlFrame() 236

getCurrentRow() 94, 97, 103

getCustomData() method 119, 120

getDepartmentEmployees() method 62, 74

getDepartmentId() method 68

getDetailedDisplayMessage() method 288

getDetails() method 31

getDisplayMessage() method 288, 291, 294

getEmployeeDepartment() method 65

getEmployees() getter method 79

getEmployees() method 167

getErrorMessageParameters() helper method

294

getEstimatedRangePageCount() 80, 92

getEstimatedRowCount() method 65, 121,

242

getFirstName() method 251

getHireDate() method 83

getIsNewRow() method 89

getLastName() method 251

getManagedBeanName() method 226

getManagedBeanValue() method 35

getMessage() method 28, 30

getOperation() 246

getPageId() 226

getPageNumber() method 263

getPostedAttribute() method

about 58, 59

used, for determining posted attribute’s value

58, 59

getProgrammaticallyInvokeTaskFlow() 284

getProperty() method 49

getQueryLimit() method 354

getRangeIndexOf() method 91, 94

379

getRangeSize() 80

getRangeStart() method 94

getResult() method 365-368

getReturnValues() helper method 184

getRowAtRangeIndex() 80

getRowCount() method 65

getRowData() 209

getRowLimit() method 350, 351

getSelectedRowData() 239

getSelectedValues() 214

getSequenceNumber() method 49, 52

getSession() 277

getSource() 239

getTaskFlowParameters() helper method 184

getTaskFlowURL() method 284

getTransaction() 235

getUserAuthorityLevel() generic extension

interface 134

getUserAuthorityLevel() method 134

getUserIdentityStoreProile() method 283
getValues() method 242

getVariables() 246

getViewCriteria() 246

Groovy 70, 333

Groovy expressions

about 70, 81, 109

debugging 333

logging 333

used, for resolving validation error message

tokens 70-72

working 334

Groovy helper class

implementing 333

GroovyLogger class 334

GroovyLogger Java class 334

H

handleDatabaseApplicationError() method

294

hasChanges() method 235, 236, 258

hasNext() method 68, 74, 79

hasQueryLimit() method 354

HireDate attribute 83

HRComponents ADF Library JAR 238

HrComponentsAppModule 134, 241

HrComponentsAppModuleAMTest class 344

HrComponentsAppModule application module

165, 167

HrComponentsAppModuleDataControl data

control 197, 209, 213

HrComponentsAppModuleImpl class 78

HrComponentsAppModuleImpl client

interface 134

HrComponentsAppModuleImpl custom

application module 164, 171

HrComponentsAppModuleServiceImpl.java

137

HrComponentsAppModuleService interface

142

HrComponentsAppModuleService.java 137

HrComponentsAppModuleService.wsdl 137

HrComponentsAppModuleService.xsd 137

HRComponentsCallerAppModule application

module 140

HRComponentsCallerAppModule client

interface 140

HRComponentsUnitTests 343

HRComponents workspace 76, 85, 132, 164,

165, 167, 205

HR schema 82

Hudson

about 310, 316, 346

download link 316

installing 316

using, as continuous integration framework

316-320

Hudson job 319

Hudson wiki page

URL 319

hudson-x.x.x.war 316

I

IdentityStore search() method 283

if statement 65

Implement Cascade Delete option 63

inDepartmentId bind variable 114

inEmployeeName variable 284

initialize() method 175, 184

InitializerBean 175

insertRowAtRangeIndex() 91

380

insertRow() method 91, 125

Integrated WebLogic Server 300, 324

interval attribute 219

Interval poll property 222

invokeMethodExpression() helper method

208, 209

invokeMethodExpression() method 242

isAttributeChanged() method 59

isAttributeUpdateable() method 85, 276,

isAttrValueChanged() method 59

isBCTransactionDirty() method 235

isControllerTransactionDirty() method 235

isDirty() 235

IsNewRow attribute 89

isNextRowAvailable() method 263

isPreviousRowAvailable() method 263

isQueriable() 87

isUpperColumns() 128

isUserInRole() method 277, 278

iterator binding

locating 33

J

JAVA_DEBUG environment variable 332

java -jar hudson-x.x.x.war command 319

java.lang.Object array 214

Java Logging API 25

JAVA_OPTIONS environment variable 372

java.util.List 368

jazn-data.xml ile 248, 266
JDeveloper

about 8, 47, 62, 106, 323

coniguring, with 64-bit JDK 11
installing, on Linux 9, 10

tuning coniguration parameters 10, 11
URL, for downloading 9

user directory, coniguring 11, 12
JDeveloper user directory

coniguring 11, 12
JobId attribute 109

JobsLov 107

jps-conig.xml ile 285
JRockit Mission Control

about 369

used, for monitoring application 369, 370

working 371, 372

j_SecurityCheck method 270

JSF page

refactoring 328

JSF page component 84

JSF template

adding, to SharedComponents ViewController

project 35-42

JSFUtils class

adding, to SharedComponents ViewController

project 32, 33

JSFUtils.getExpressionObjectReference()

helper method 226

JSFUtils helper class 237

JUCtrlListBinding object 214

JUnit

about 343

coniguring, for unit testing 343
JUnit Integration extension 343

JUnit test suite

implementing 343, 344

working 345

L

large view object query result sets

limiting 352-355

limiting, view criteria used 356, 357

lazyUnchached 214

Linux

JDeveloper, installing on 9, 10

List Attribute 109

List Data Source 109

List of values. See LOVs

loadParameter() method 71

log4j 22

log analysis

performing 337, 338

logging

about 22

setting up 23-26

login.jspx page 273, 287

login() method 274

log() method 23, 25, 334

logout() method 271, 274, 275

381

LOGOUT_URL constant 275

LongRunningTaskBean Java class 252

longRunningTask.jspx 252, 254

longRunningTask() method 252, 254

long running tasks

af:popup, using 252, 254

processing, Work Manager used 358-365

LovAttrib attribute 108, 109

LOV_Countries 108

LOV_FavoriteColor 116

LOV_Jobs 108

LOVs

about 18, 106, 156

cascading LOVs, setting up 110-114

multiple LOVs, setting up using switcher

attribute 106-108

static LOVs, creating 116, 117

LovSwitcher attribute 108, 109

LOV view accessor query 110

M

MainApplication workspace 205

main() method 31

makeCurrent method 236

managed bean

refactoring 328

Managed Bean values

getting 35

setting 35

managed WebLogic Server instance

coniguring 329
managerName 367

MAX_DEPARTMENT_EMPLOYEES constant

68

MetadataService

used, for removing task low deinition
programmatically 182-185

method call activity 164

methodInitializer task low 166
method validator

used, based on view object accessor 66-68

Middleware home directory 9

multiple LOVs

enabling 106

setting up, switcher attribute used 106-109

working 109

multiple workspaces

application, breaking up in 12-17

MyWorkManager 367

N

NewRowAtEnd 91

New status 88

next() method 68, 79

nodebug argument 330, 332

nodeDeinition XML nodes 210
Non-translatable Property 50

NOTIFICATION log level 335

O

ODL 22

ODL log analysis

performing 337

ojbuild.xml 311

ojdeploy

about 310

using, for automating build process 311, 312

ojdeploy build ile 312
ojdeploy-build nodes 312

ojdeploy, built-in macros

base.dir 314

deploy.dir 314

proile.name 314
project.dir 314

project.name 314

workspace.dir 314

workspace.name 314

ojdeploy command-line arguments

buildile 313
buildileschema 313
proile 313
project 313

workspace 313

ojdeploy options

address 314

basedir 314

clean 314

deine 314
failonwarning 314

382

forcerewrite 314

nocompile 314

nodatasources 314

nodependents 314

ojserver 314

outputile 314
statuslogile 314
stderr 314

stdout 314

timeout 314

updatewebxmlejbrefs 314

ojdeploy process 313

onActivate() method 146, 148

onAfterCommit() method 44

onAfterCreate() method 44, 258

onAfterDelete() method 226

onApplicationSecurity() method 276, 278

onBeforeCreate() method 44, 258

onBeforeDelete() method 226

onCommit() method 44

onConirmDelete() method 225
onContinueCreate() method 257, 258

onCreate() method 258

onCreatePendingChanges() method 44, 257,

258

onDelete() method 226

onEmployeeEdit() method 202

onEmployeesShuttleInit method 212

onEndActivation() method 148, 149

onEndPassivation() method 148

onFirst() method 262

onLast() method 262

onNext() method 262

onPassivate() method 146, 148

onPrevious() method 262

onSelectManyShuttleDialogListener() method

212

onStartActivation() method 146, 148

onStartPassivation() method 146, 147

onTreeNodeSelection() method 209

onTreeNodeSelection() selection listener 208

operation binding

locating 33

Operation class 243

operation lag 74

OPSS

using, for retrieving user proile 279-284
Optimize for Database Cascade Delete option

63

oracle.adf.controller.ControllerContext.

getTaskFlowURL() method 176, 181

oracle.adf.controller.metadata.

MetadataService object 182

oracle.adf.model.binding.DCErrorHandlerImpl

class 288

Oracle ADF Model Tester 102

oracle.adf.share.security.SecurityContext

bean 275

Oracle Diagnostic Log Analyzer 22, 337

Oracle Diagnostics Logging. See ODL

Oracle Diagnostics Logging Coniguration 22
oracle.jbo.AttributeDef attribute 87

oracle.jbo.AttrValException class 295

oracle.jbo.domain.Number class 77

oracle.jbo logger 336

oracle.jbo.Row object 94

oracle.jbo.server.EnityImpl class 47

oracle.jbo.Session object 143

oracle.jbo.Transaction transaction object 235

oracle.jbo.ValidationException class 295,

297

Oracle Platform Security Services. See OPSS

Override Methods dialog 48

Override Methods icon 48

P

page deinition binding object
refactoring 328

page deinition ile
refactoring 328

pageFlow 234

page templates

about 35

using, for pop-up reuse 222-227

parameters class variable 366

parent entity, in association

deleting, remove() method used 63, 65

partialSubmit property 254

partialTriggers property 219, 247

383

passivateState(Document, Element) method

144

passivateState() method 143

passivation 143

passivation framework

for custom session-speciic data 143-150
passivation store 143

pending changes

determining, in current transation 234-236

handling, af:popup used 255-258

plain ile
refactoring 328

pollListener attribute 219

pollView.jspx page 221, 222

populateAttributeAsChanged() method 49, 52

pop-up

reusing, page templates used 222-224

PopupFetchListener attribute 212, 214

posted attribute’s value

determining, getPostedAttribute() method

used 58, 59

prepare() method 164, 167, 168, 170

prepare() method call activity 166, 168, 190

prepareRowSetForQuery() 121

prepareSession() method 97, 147

prepareSession(Session) method 95

preventUserInput() 254

PrintWriter object 155

processQuery() method 239, 242

processQueryOperation() method 243, 246

proile parameter 312
project parameter 312

property sets

about 54

applying 54-57

creating 54-57

Q

query

clearing, custom af:query operation listener

used 243-247

Queryable lag 87
Queryable property, view object attributes

setting 86, 87

Queryable status

determining 86

QueryDescriptor object 242

QueryLimit 354

queryLimitedResultsMessage() method 355

queryListener attribute 239, 240

QueryListenerBean.java 245

queryListener.jspx page 240, 246

QueryModel.reset() method 247

QueryOperationEvent 246

queryOperationListener attribute 243

queryOperationListener() method 245, 246

queryView.jspx 195

R

Range Paging access mode

coniguring, for view object 92
Range Paging optimization 94

Range Size option setting 94

read-only view object 76

refactoring support 323

RefreshEmployees 221

refreshView() method 93, 94

remote debugging

coniguring 329-332
using 329

working 332

remote debugging session

starting 333

removeEmployeeFromCollection() method

102

removeFromCollection() 101, 103

remove() method 44, 48

overriding, for deleting associated children

entities 60-62

overriding, for deleting parent entity in

association 63, 65

removeViewCriteria() 246

reportException() method 288-291

RequestDispatcher object 274

resetCriteria() method 244

resetCriteriaValues() method 246

resetEmployees() method 244, 246

reset() method 79, 247

384

ResourceBundle.getBundle() 294

Resource Palette 213

Retrieve from the Database section 350

RIA 194

Rich Internet Applications. See RIA

rollback() method 44

root view

component, locating 34

RowCountLimit 101

Row.remove() method 101

rows

inserting, at beginning of rowset 92

inserting, at the end of rowset 90, 91

removing, from rowset without deleting from

database 101, 102

rowset 95

rowsets, iterating

drawbacks 81

rows, fetched by view object

limiting, 350, 351

RowValException objects 31

run() method 365, 366

S

saveState() 246

schedule() method 368

Scrollable 80

scrollToRangePage() 80

searchEmployeesUsingAdditionalCriteria()

method 124

search page

constructing, af:query component used 194-

196

searchRegion 243

searchUsingAdditionalCriteria() method 122,

124

secondary rowset iterator

used, for iterating view object 76-80

SecurityContext methods

#{secrityContext.authenticated} 279

#{secrityContext.

regionViewable[‘SomePageDef’]} 278

#{secrityContext.tasklowViewable[‘SomeTask
Flow’]} 278

#{secrityContext.userName} 278

#{securityContext.userInAllRoles[‘roleList’]}

279

security, for ADF Fusion Web Application

enabling 266-269

security information

accessing 275-279

SecurityUtils helper class 280, 284

selectionListener() 205, 238

selectionListener attribute 236

Selectively Required option 357

SelectManyShuttleBean 212

selectManyShuttleView.jspx 211, 213

sequence attribute

populating, custom property used 48, 49

SequenceImpl object 49

service data object (SDO) component 132

service interface method

accessing, from another application module

139-142

ServletAuthentication.

generateNewSessionID() 274

ServletAuthentication.runAs() 274

SessionInfoBean 249

SessionInfoBean.java class 250

session scope bean

using, for preserving session-wide information

248, 250

SessionTimeoutFilter ilter 286, 287
SessionTimeoutRedirect ilter 287
session timeouts

detecting 285, 287

handling 285, 287

session-wide information

preserving, session scope bean used 248-

251

setApplyViewCriteriaNames() method 125

setAttribute() 125

setAttributeInternal() method 295-297

setBindVariableValue() method 120

setBundledExceptionMode() method 31

setClearCacheOnRollback() 97

setConjunction() 124

setCurrentRowWithKey() 239
setDepartmentId() method 83

385

setDomainEnv script 332, 369, 371

setExecuteOnRollback() 98

setFromClause() 99

setHireDate() 83

setLogLevel() command 336

setManagedBeanValue() method 35

setManageRowsByKey() method 94, 97
setMaxFetchSize() method 350

setNamedWhereClauseParam() method 68,

69

setOrderByClause() 99

setQueriable() 87

setQuery() 99

setRangeStart() method 92, 94, 98

setup() method 344

setUpperColumns() 128, 129

setVariableValue() 246

setViewCriteriaCaseInsensitive() method 129

setVisible() 209

setWhereClause() 99

setWhereClauseParams() 99

sharedcomponents ADF Library JAR 209

SharedComponents library

creating 12, 13

SharedComponents project

business components framework extension

classes, adding to 19-21

custom application exception class, adding to

27-31

SharedComponents ViewController project

ADFUtils class, adding 32, 33

generic backing bean actions framework,

adding to 42, 44

JSF template, adding to 35-42

JSFUtils class, adding 32, 33

SharedComponents workspace 234

SharedProperties 57

showPopup() method 224

SomeCriterionName 242

source preix 72
speciic Task Flow deinition ile 234
SQL query 76

Standalone WebLogic Server

coniguring 300-303
deploying 306-309

using 300, 304, 305

startManagedWebLogic script 305, 330,

332, 369

startWebLogic script 304, 330

static LOVs

creating 116, 117

success_url parameter value 268

super.buildWhereClause() 101

super.create() 96

super.getRowLimit() 351

super.insertRow() 91

Switcher 106

SyncEmployeesBean 283

syncEmployeesTaskFlow 282

syncEmployeesTaskFlow task low 284
SYNCHRONIZATION 324

SynchronizationView 324

synchronizeEmployee() method 282, 284

Synchronize entity object 325

Synchronize with Database feature 324

T

table

refreshing, af:poll component used 219-222

table row

editing, af:pop-up component used 198

task low
calling, as URL programmatically 176-180

deinition removing programmatically,
MetadataService used 182-185

initializing, task low Initializer used 170-175
refactoring 328

TaskFlowBaseBean class 184

task low Initializer
used, for initializing task low 170-175

tasklowInitializer task low 172
task lows 163
TemplateDef1 page template 225

templatePopup.jspx 224, 227

test-all 270

testExportEmployees() method 344

train

creating 186-191

transaction commit operation 53

TransactionFactory property 161

386

Transaction object 235

transaction rollback 95

transient attribute

using, for indicating new view object row 88,

89

transient view object attribute

utilizing 88, 89

TreeBean 206

treeModel object 218

treeView.jspx 206

U

UI Hints sections 106

unit test class 343

Unmodiied state 88
updatability, view object attribute

controlling 84, 85

controlling, at entity object level 86

Update Batching

disabling 349

enabling, for entity objects 348, 349

update batching optimization 53

url-invoke-allowed 284

UserInfo 248, 250

UserInfo application module 280

UserInfoAppModule 249, 251

UserInfoAppModule application module 251

UserInfo view object 249, 284

UserInfo view object query 248

user proile
retrieving from identity store, OPSS used 279-

284

user_projects directory 303

V

validateDepartmentEmployeeCount() method

67, 68

validateEntity() method 295, 297

validation error message tokens

resolving, Groovy expressions used 70-72

ValidationException objects 31

validation queries 18

valid-users 269

var attribute 218

varFirstName 195

VariableValueManager 246

varLastName 195

View Accessor 66

ViewController layer 8, 84

ViewController project 13, 221

view criteria

about 106

adding 356

creating 122-125

ViewCriteria class 122

ViewCriteriaItem class 122, 126

ViewCriteriaRow class 122

ViewCriteriaRow setAttribute() method 125

view object accessor

method validator, using 66-68

view object attributes

Queryable property, setting 86, 87

updatability, controlling 84, 85

view object currency

setting, indAndSetCurrentRowByKey() used
92, 94

ViewObjectImpl class 122

ViewObjectImpl method 121

view object query

changing 99, 101

FROM clause, changing 99

ORDER BY clause, changing 99

SELECT clause, changing 99

WHERE clause, changing 99

view objects

about 75

entity-based view objects 75

iterating, secondary rowset iterator used 76-

80

read-only view object 76

view row attributes

default values, setting 81-83

ViewRowImplcreate() 83

ViewRowImpl isAttributeUpdateable() method

277

virtualize property 285

W

waitForAll() method 368

WebLogic 22

387

WebLogic administration console

starting 305

weblogic.Deployer 319

weblogic-ejb-jar.xml 137

WebLogic machine 304

WebLogic Node Manager 304

WebLogic Standalone Server domain

coniguring 335
logging in 335

working 336

weblogic.xml 269

web service

custom method, exposing as 135-138

web.xml 269

welcome.jspx page 270, 283

WHERE clause, view object query

changing 99

WLST 310

WLST, weblogic.Deployer 303

Work Manager

about 81, 358

using, for processing long running tasks 358-

365

working 365, 366

WorkManager.IMMEDIATE 368

WorkManager.INDEFINITE 368

workspace parameter 312

X

XML metadata iles 47
xtWorkListener class 359

Thank you for buying
Oracle JDeveloper 11gR2 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL

Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution-based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,

cutting-edge books for communities of developers, administrators, and newbies alike.

For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order

to continue its focus on specialization. This book is part of the Packt Enterprise brand, home

to books published on enterprise software – software created by major vendors, including (but

not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer

information relevant to a range of users of this software, including administrators, developers,

architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be

sent to author@packtpub.com. If your book idea is still at an early stage and you would like to

discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing

experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

Oracle Database 11g –

Underground Advice for
Database Administrators
ISBN: 978-1-84968-000-4 Paperback: 348 pages

A real-world DBA survival guide for Oracle 11g database

implementations

1. A comprehensive handbook aimed at reducing

the day-to-day struggle of Oracle 11g Database

newcomers

2. Real-world relections from an experienced DBA—
what novice DBAs should really know

3. Implement Oracle's Maximum Availability

Architecture with expert guidance

4. Extensive information on providing high availability

for Grid Control

EJB 3.0 Database Persistence
with Oracle Fusion
Middleware 11g
ISBN: 978-1-849681-56-8 Paperback: 448 pages

A complete guide to building EJB 3.0 database

persistence applications with Oracle Fusion

Middleware 11g

1. Integrate EJB 3.0 database persistence with

Oracle Fusion Middleware tools: WebLogic Server,

JDeveloper, and Enterprise Pack for Eclipse

2. Automatically create EJB 3.0 entity beans from

database tables

3. Learn to wrap entity beans with session beans

and create EJB 3.0 relationships

Please check www.PacktPub.com for information on our titles

Oracle Fusion Middleware
Patterns
ISBN: 978-1-847198-32-7 Paperback: 224 pages

10 unique architecture patterns enabled by Oracle

Fusion Middleware

1. First-hand technical solutions utilizing the

complete and integrated Oracle Fusion

Middleware Suite in hardcopy and ebook formats

2. From-the-trenches experience of leading IT

Professionals

3. Learn about application integration and how to

combine the integrated tools of the Oracle Fusion

Middleware Suite - and do away with thousands of

lines of code

Oracle 10g/11g Data and
Database Management
Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the

eficiency, management, and performance of your daily
database tasks

1. Optimize time-consuming tasks eficiently using
the Oracle database utilities

2. Perform data loads on the ly and replace the
functionality of the old export and import utilities

using Data Pump or SQL*Loader

3. Boost database defenses with Oracle Wallet

Manager and Security

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Prerequisites to Success: ADF Project Setup and Foundations
	Introduction
	Installation of JDeveloper on Linux
	Breaking up the application in multiple workspaces
	Setting up BC base classes
	Setting up logging
	Using a custom exception class
	Using ADFUtils/JSFUtils
	Using page templates
	Using a generic backing bean actions framework

	Chapter 2:
Dealing with Basics: Entity Objects
	Introduction
	Using a custom property to populate a sequence attribute
	Overriding doDML() to populate an attribute with a gapless sequence
	Creating and applying property sets
	Using getPostedAttribute() to determine the posted attribute's value
	Overriding remove() to delete associated children entities
	Overriding remove() to delete a parent entity in an association
	Using a method validator based on a view object accessor
	Using Groovy expressions to resolve validation error message tokens
	Using doDML() to enforce a detail record for a new master record

	Chapter 3:
A Different Point of View: View Object Techniques
	Introduction
	Iterating a view object using a secondary rowset iterator
	Setting default values for view row attributes
	Controlling the updatability of view object attributes programmatically
	Setting the Queryable property of a view object attribute programmatically
	Using a transient attribute to indicate a new view object row
	Conditionally inserting new rows at the end of the rowset
	Using findAndSetCurrentRowByKey() to set the view object currency
	Restoring the current row after a transaction rollback
	Dynamically changing the WHERE clause of the view object query
	Removing a row from a rowset without deleting it from the database

	Chapter 4:
Important Contributors: List of Values, Bind Variables, View Criteria
	Introduction
	Setting up multiple LOVs using a switcher attribute
	Setting up cascading LOVs
	Creating static LOVs
	Overriding bindParametersForCollection() to set a view object bind variable
	Creating view criteria programmatically
	Clearing the values of bind variables associated with the view criteria
	Searching case insensitively using view criteria

	Chapter 5:
Putting them all together: Application Modules
	Introduction
	Creating and using generic extension interfaces
	Exposing a custom method as a web service
	Accessing a service interface method from another application module
	A passivation/activation framework for custom session-specific data
	Displaying application module pool statistics

	Using a shared application module for static lookup data
	Using a custom database transaction

	Chapter 6:
Go with the Flow: Task Flows
	Introduction
	Using an application module function to initialize a page
	Using a task flow initializer to initialize a task flow
	Calling a task flow as a URL programmatically
	Retrieving the task flow definition programmatically using MetadataService
	Creating a train

	Chapter 7:
Face Value: ADF Faces, JSF Pages, and User Interface Components
	Introduction
	Using an af:query component to construct a search page
	Using an af:pop-up component to edit a table row
	Using an af:tree component
	Using an af:selectManyShuttle component
	Using an af:carousel component
	Using an af:poll component to periodically refresh a table
	Using page templates for pop-up reuse
	Exporting data to a client file

	Chapter 8:
Backing not Baking: Bean Recipes
	Introduction
	Determining whether the current transaction has pending changes
	Using a custom af:table selection listener
	Using a custom af:query listener to allow execution of a custom application module operation
	Using a custom af:query operation listener to clear both the query criteria and results
	Using a session scope bean to preserve session-wide information
	Using an af:popup during long running tasks
	Using an af:popup to handle pending changes
	Using an af:iterator to add pagination support to a collection

	Chapter 9: Handling Security, Session Timeouts, Exceptions,
and Errors
	Introduction
	Enabling ADF security
	Using a custom login page
	Accessing the application's security information
	Using OPSS to retrieve the authenticated user's profile from the identity store
	Detecting and handling session timeouts
	Using a custom error handler to customize how exceptions are reported to the ViewController
	Customizing the error message details
	Overriding attribute validation exceptions

	Chapter 10:
Deploying ADF Applications
	Introduction
	Configuring and using the Standalone WebLogic Server
	Deploying on the Standalone WebLogic Server
	Using ojdeploy to automate the build process
	Using Hudson as a continuous integration framework

	Chapter 11:
Refactoring, Debugging, Profiling, and Testing
	Introduction
	Synchronizing business components with database changes
	Refactoring ADF components
	Configuring and using remote debugging
	Logging Groovy expressions
	Dynamically configuring logging in WebLogic Server
	Performing log analysis
	Using CPU profiler for an application running on a standalone WebLogic server
	Configuring and using JUnit for unit testing

	Chapter 12:
Optimizing,
Fine-tuning, and Monitoring
	Introduction
	Using Update Batching for entity objects
	Limiting the rows fetched by a view object
	Limiting large view object query result sets
	Limiting large view object query result sets by using required view criteria
	Using a work manager for processing of long running tasks
	Monitoring the application using JRockit Mission Control

	Index

