
www.allitebooks.com

http:///
http://www.allitebooks.org

Oracle Application Express 4.0

with Ext JS

Deliver rich, desktop-styled Oracle APEX applications

using the powerful Ext JS JavaScript library

Mark Lancaster

N

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Oracle Application Express 4.0 with Ext JS

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1180311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849681-06-3

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

www.allitebooks.com

http:///
http://www.allitebooks.org

Credits

Author

Mark Lancaster

Reviewer

Vincent Stanislaus

Acquisition Editor

Amey Kanse

Development Editors

Reshma Sundaresan

Roger D'souza

Technical Editors

Gaurav Datar

Azharuddin Sheikh

Indexer

Monica Ajmera Mehta

Editorial Team Leader

Vinodhan Nair

Project Team Leader

Lata Basantani

Project Coordinator

Leena Purkait

Proofreader

Clyde Jenkins

Graphics

Geetanjali Sawant

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Mark Lancaster has been delivering business solutions using Oracle tools and
technology since 1995. He switched to using Oracle APEX in 2007 after using
MOD_PLSQL for years - "APEX is much better".

He has had the good fortune of consulting for a wide variety of organizations
in industries, including commercial ishery management, mineral resources,
superannuation regulation, property asset management, distance education, casinos,
and debt collection.

Mark is an Oracle ACE, having been actively involved in the Oracle community
for many years on national and state committees, as well as writing articles and
presenting at conferences.

He is the AUSOUG QLD Branch President, and maintains a blog at
http://oracleinsights.blogspot.com.

One of the really nice things about working with Oracle APEX is
the sense of community you gain through the forums with people
scattered all over the globe.

I've had the good fortune to have met face to face with several
members of the APEX development team and APEX enthusiasts
after communicating with them via forums and e-mails. It's really
surprising how much personality comes through in the written word.

One of the strengths of APEX is how accessible the APEX
development team is to the development community. They really are
interested in your feedback and making the APEX better. It's a real
buzz when one of your suggestions is incorporated into the product.

Finally, I'd like to thank my beautiful wife Jackie for giving me the
time and support to write this book. Oh, and for continuing to put
up with me for over twenty years now. You rock my world.

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Reviewer

Vincent Stanislaus has been working in the IT industry for over 12 years, with
half of this time spent in the Finance Industry (especially around the Global Wealth
Management area) as Technical Team Leader/Senior Application Development
Analyst involved in several high-proile projects.

In the last couple of years, he has been focusing on enforcing standards within the
development team and is involved extensively in reviewing code to ensure that they
conform to technology standards.

Early on in his career, he focused on various projects involving government
organizations and universities, focusing on developing/enhancing their
management systems.

He currently resides in Melbourne, Australia with his wife Robina and his two
children, Jonathan and Marilyn.

www.allitebooks.com

http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Setting up an Oracle APEX and Ext JS Environment 11

Setting up for success 12
Installing Oracle APEX 13
Downloading Ext JS 14
Which web server to use? 16

Storing your web assets 16

Customizing application builder iles 17
Oracle HTTP Server 17

Loading Ext JS onto the Oracle HTTP Server 19

Embedded PL/SQL Gateway 20
Loading Ext JS onto the Embedded PL/SQL Gateway 21

Oracle APEX listener 23
Loading Ext JS for the Oracle APEX listener 24

Overviewing the production setup 25
Using Ext JS in a hosted APEX environment 27
Installing a source code repository 27
Automating the build process 30

Coniguring and using APEXExport 30
More ideas for automating the build process 35

Setting up a local web server 36
Summary 37

Chapter 2: Getting Acquainted with Ext 39

Building a sandbox 39
Cross-browser DOM manipulation with Ext.Element 44

Heavyweight versus lyweight 46

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[ii]

Sizing and positioning 47
CSS classes and styling 48

DOM traversal 50
Selecting multiple elements 52
DOM manipulation 54

Deining event handlers 58
Using event delegation to reduce memory consumption 61

One-off events 62

Parameter passing using object notation 63
Old-school parameters 63
Using object notation 63
Basic syntax 64

Use namespacing to avoid collisions 65
Ext.namespace 67

Ext.BLANK_IMAGE_URL 67
Summary 68

Chapter 3: Building a Ext JS Theme into APEX 69
Theme basics 69

Separation of concerns 70
Standard themes 71

Creating a theme 72
Building a Viewport Page template 73

Starting with a standalone template 74
Loading the page template into APEX 80

Issue when input items are outside the form 85
Ensuring that input items always remain with the form 88

Summary 92

Chapter 4: Ext Themed Regions, Labels, and Lists 95
Region templates 96

Report Region 96

Form Region 98

Additional region templates 101

Label templates 101
Optional label 102

QuickTips for error messages 103
Optional label with help 105
Mandatory label 106

Mandatory label with help 107
Hidden label 107

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iii]

List templates 108
Vertical unordered list without bullets 109

Vertical unordered list with bullets 112

Building an Ext JS tree template using lists 113
APEX 4.0 tree template 115
Prior APEX versions tree template 119

Highlighting the current node 121

Customizing individual nodes 124

Summary 125

Chapter 5: Ext Themed Buttons, Popups, Calendars, and Reports 127
Button templates 128

Sliding doors meet CSS sprites 128
APEX sliding door CSS sprite button template 132

Building a hideous Ext.Button 134
Converting our buttons 138

Popup List of Values template 146
Breadcrumb templates 149

Beneits of using breadcrumbs 150
When not to use breadcrumbs 150
Basic horizontal breadcrumb template 150

Report templates 152
It's a classic 153

A better sorting indicator 158
CSS for the standard report 159

Calendar templates 159
Removing unused templates quickly 164

Publishing your theme 166
Summary 167

Chapter 6: Adding Ext Layout Elements 169

Speed dating with a Date Picker 170
Converting Classic Dates to the Ext.DatePicker 171

Resizable text areas 174
Auto-sizing text areas 176
Auto-completing text ields 177

Adding auto-complete to select lists 179
Building tab panels using subregions 185

Building the tab panel template 187
Coniguring the tab panel template 192

Toolbars and menus 194
Attaching the toolbar to the center panel 198

Summary 199

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Working with Plug-ins and Dynamic Actions 201

A home for your plug-ins and dynamic actions 202
Building a better Number Field 202

Creating a plug-in item 203
Deining the plug-in Callback functions 207
Creating a page item based on the Number Field plug-in 214

Render functionality for the Number Field plug-in 215
Validation functionality for the Number Field plug-in 219

Summary 221

Chapter 8: Data Stores, AJAX-enabled Plug-ins,
and Dynamic Actions 223

Storing data on the browser client 224
Using Data Stores with large datasets 228

Building a ComboBox plug-in 232
Deining the ComboBox plug-in 233
Deining the ComboBox plug-in callback functions 234
Rendering functionality for the ComboBox plug-in 235
AJAX functionality for the ComboBox plug-in 242

Using the Ext.XTemplate to provide enhanced formatting 245
Validation functionality for the ComboBox plug-in 251

Mixing ComboBoxes with Dynamic Actions 252
Integrating plugins with the Dynamic Action framework 253
Deining custom events for the ComboBox 259

Summary 261

Chapter 9: Getting Interactive with GridPanels 263

Components making up a GridPanel 264
Deining the Data Store 265
Coniguring the Column Model 267
Deining the GridView 268
Deining the Selection Model 268
Built-in features 270

Getting the GridPanel into APEX 272
Testing the concepts irst 273

Converting APEX-generated table into a GridPanel 273
GridPanel pagination using APEX Partial Page Refreshes 277

GridPanel as a region plug-in 279
Plug-in deinition 280
Plug-in package 282

Render functionality for the GridPanel plug-in 282
Minor pagination issue 290

http:///

Table of Contents

[v]

AJAX functionality for the GridPanel plug-in 291

Building a custom DataReader 294

Creating a custom TableGrid component 295
Making the TableGrid Stateful 299

Using the TableGrid 302
TableGrid template 302
Convert Classic Reports to TableGrids 303

Summary 305

Chapter 10: IFrame Tabs, Panels, and Popup Windows 307
Embedding pages using iFrame panels 308

Reusable iFrameComponent 309
Resizable iFrame panel 309
Pre-conigured components using the factory pattern 312
IFrame panel factory pattern 314

IFrame panel plug-in 318
Plug-in package 320
Render functionality for the iFrame panel plug-in 320

Modal popup windows 322
Modal iFramed window 323
Popup window component 325
Ext.apex.PopupWindow example 327

Link Column settings 328
Create Button settings 330
Closing the PopupWindow 332
Cancel Button functionality 333
Apply Changes functionality 334

Creating a tabbed document interface 337
Examining the HTML page 338
Examining the JavaScript 340
Adding the tabbed document interface to APEX 344

Summary 345

Chapter 11: Performance Tuning Your JavaScript 347

Best practices for JavaScript and CSS 348
HTTP compression 348
Externalize JavaScript and CSS 350
Combining JavaScript and CSS iles 351
Minifying JavaScript and CSS iles 352
Ordering CSS and JavaScript iles 353

JSBuilder2 installation and usage 353
Installation 353
JSBuilder2 usage 355

http:///

Table of Contents

[vi]

JSB2 ile format 356
Eliminating unused Ext JS library components 359

Removing duplicate functionality 360
Removing unused components 360

Minimizing Application JavaScript 363
Summary 366

Index 367

http:///

Preface
Oracle Application Express (APEX) is a rapid web application development tool
integrated directly into the Oracle database. APEX is a completely web-based
application featuring many ready to use components, allowing developers to build
and deploy professional web applications rapidly. Using SQL and PL/SQL as
the development language it provides a number of advanced features out of the
box, including several authentication mechanisms such as Lightweight Directory
Access Protocol (LDAP), Data Access Descriptors (DAD), Single Sign-On (SSO),
authorization services, built-in session state management, and logging functionality.

Modern websites are moving towards Rich Internet Applications (RIA), where web
applications have many characteristics of desktop applications. This has led to the
growing popularity in JavaScript libraries to provide that rich interactivity and ease
the burden of providing support for multiple web browsers.

There are several excellent JavaScript libraries which provide functionality to
retrieve, traverse, and manipulate the Document Object Model (DOM) using
cross-browser compatible code. They also provide cross-browser event handling and
Asynchronous JavaScript and XML (AJAX) functionality, for request and response
objects to exchange data between the browser and server, avoiding full page reloads.

The story is very different when you examine the User Interface (UI) and User
Experience (UX) enhancements currently offered by JavaScript libraries. Major
libraries such as jQuery, Prototype, and MooTools choose to limit the UI and UX
functionality offered. Developers are forced to integrate oficially sanctioned UI
extension libraries with limited sets of UI components, such as jQuery UI,
Prototypes Scripty2, and MooTools.More.js extension, or integrate third-party
unsupported widgets.

The notable exceptions here are the Yahoo! User Interface library (YUI) and Ext JS.

http:///

Preface

[2]

YUI provides a large collection of UI widgets in version 2, including buttons, tabs,
trees, menus, sliders, charting, dialogs, rich text editors, and more. YUI released
YUI 3 in September 2009, completely rebuilding the library from the ground up. In
2011, some of the major widgets have been migrated to YUI 3, with many more still
to be migrated. YUI widgets have basic CSS styling only, requiring you to modify the
CSS to achieve a professional inish. While YUI is a mature library, its UI components
and documentation feel uninished.

Ext JS also provides the UI widgets including tabs, charts, windows, trees, desktop
styled toolbars, menus, rich text editors, calendars, layout managers, ComboBoxes,
and many more. All the Ext JS widgets are styled to a very high standard, giving a
professional interface out of the box. They are designed to be customizable, and at
the same time, allow you to re-theme them to suit your own requirements.

The Ext JS widgets are built using an advanced JavaScript application development
framework, with components constructed using object-oriented design principles.
This allows you to modify the existing components easily, or combine and extend
them to develop custom components.

Documentation of the Ext JS API is well organized, with clear descriptions of
coniguration options, properties, methods, and events for each of the components
and classes making up the library. Support services include an extensive library of
examples, showing individual and combined samples, very active public forums,
and premium support forums.

Combining APEX with the very professional Ext JS UI components allows
developers to build amazing web applications rapidly using the latest Rich Internet
Application functionality.

What this book covers
Chapter 1, Setting up an Oracle APEX and Ext JS Environment, takes you through
the process of setting up a productive development environment for both Oracle
Application Express (APEX) and Ext JS options for setting up a local installation,
where you have direct access to the database. Web servers are covered, including
the Oracle HTTP Server, the Embedded PL/SQL Gateway, and the Oracle APEX
Listener. Setting up on a hosted environment, where you only have web browser
access, is also covered.

Automating your build processes is a great way to improve productivity. We set
up a source code repository, integrating an automated backup and commit
process as the irst step to aid your development. A number of other automation
opportunities are also discussed. By the end of the chapter, you will be fully set up
and ready to code.

http:///

Preface

[3]

Chapter 2, Getting Acquainted with Ext, introduces the Ext JS API, spending time
familiarizing you with some of the functionality Ext JS provides for manipulating the
Document Object Model (DOM). Topics covered include how to build a standalone
testing page, cross-browser element manipulation using the Ext.Element class,
DOM traversal using the Ext.DomQuery class, and deining event handlers to add
interactivity to your web pages.

Many of the examples are run using the Mozilla Firefox browser with the Firebug
Plug-in. Firebug provides fantastic debugging tools for inspecting and editing the
HTML, DOM, JavaScript, and CSS components that make up a web page. It also
includes a JavaScript console, allowing you to inspect JavaScript errors and execute
JavaScript code. This chapter shows you how to make use of the Firebug
command-line console for quick prototyping and testing.

Chapter 3, Building a Ext JS Theme into APEX, provides a background on APEX themes
and how to create a theme from scratch. A page template is developed based on the
Ext.Viewport component, starting with a standalone prototype, before integrating it
into an APEX page template.

Applying JavaScript DOM manipulation to page elements can result in input items
appearing outside the form element, with some very nasty side effects. This chapter
demonstrates the issue and shows the consequences, before providing a solution to
ensure that this never happens to you.

Chapter 4, Ext Themed Regions, Labels, and Lists, develops templates for regions, labels,
and lists using Ext JS components. Static region templates based on Ext.Panel are
created, and then collapsible versions are added with a few lines of JavaScript to the
templates. Inline error messages for labels can cause issues with page layout, so you
are shown how Ext.QuickTips can be used to neatly solve the problem. Simple list
templates are developed before a more complex example implementing a TreePanel
is developed, showing how templates can also be used to produce JavaScript code
and JSON objects, and not just HTML.

Chapter 5, Ext Themed Buttons, Popups, Calendars, and Reports, develops templates for
the remaining template types: Buttons, popup list of values, breadcrumbs, calendars,
and reports. The Ext JS Grid component is one of the most advanced and widely
used components in the library. For the report template, you will learn how to "fake
it", using the built-in functionality of an APEX Classic report and combining it with
some CSS, so it looks like a read-only Ext JS Grid with AJAX paging.

Once the template types are completed, you are shown how to remove unused
templates quickly using the APEXExportSplitter Java class, before publishing
the theme.

http:///

Preface

[4]

Chapter 6, Adding Ext Layout Elements, offers a number of "low-hanging fruit"
solutions, providing you with functionality that can signiicantly and broadly
improve parts of your application with minimal implementation effort.

Some of the solutions improve existing HTML components, such as automatically
replacing the APEX Classic DatePicker with the advanced Ext.DatePicker
component, a solution to make all text areas resizable, or better still, auto-sizing so that
text areas automatically grow as you type. Select lists are automatically transformed
to combo boxes allowing lists to ilter data progressively as more keys are typed.
Completely new functionality using Ext JS components includes a tab panel template
using APEX 4.0 nested sub regions, along with a toolbar and menu template.

Chapter 7, Working with Plug-ins and Dynamic Actions, introduces Plug-ins
and Dynamic Actions, two of the most exciting new features in APEX 4.0 for
developers. For the irst time, you have the ability to add custom "widgets" easily
and directly into APEX that can be used declaratively in the same way as native
APEX components. Plug-ins and Dynamic Actions are supported with back-end
integration, allowing developers to make use of APEX provided PL/SQL APIs to
simplify component development.

APEX 4.0 introduced the Number Field as a new item type, allowing you to
conigure number range checks by optionally specifying minimum and maximum
value attributes. This chapter provides a gentle introduction to the Plug-ins and
Dynamic Actions, building a better Number Field than the native APEX item type.

Chapter 8, Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions, continues working
with Plug-ins, creating a complex ComboBox Plug-in, dealing with more advanced
Plug-in concepts, including AJAX processing and interacting with Dynamic Actions.

ComboBoxes use data stores, providing the Ext JS framework with the ability to
store data on the client browser, acting much as an in-memory database. This makes
the process of integrating AJAX functionality into Plug-ins far simpler, because
AJAX processes are focused on just passing data between the client browser and the
database. The Ext components already contain the client-side functionality to update
the display.

For the ComboBox, you are taken through the process of modifying the Ext JS
components to work within the Dynamic Actions framework.

Chapter 9, Getting Interactive with GridPanels, integrates the Ext JS GridPanel, one
of the most powerful and widely used components in Ext JS, into APEX. Taking the
approach of extending existing functionality in APEX, the GridPanel is integrated as
a Plug-in for classic reports.

http:///

Preface

[5]

The GridPanel Plug-in includes column management features including sorting,
resizing, drag-and-drop column reordering, and show/hide columns. APEX
functionality is combined to make the GridPanel stateful, saving user settings back
into APEX preferences.

Chapter 10, IFrame Tabs, Panels, and Popup Windows, shows you how iFrames can
completely transform the way your APEX applications work. This chapter looks at
using iFrames in three different ways: Embedding other pages within a page using
iFramed Panels, making modal popup windows, and creating a tabbed document
interface, allowing users to easily switch backward and forward between pages
without opening multiple browser tabs.

Chapter 11, Performance Tuning your JavaScript, rounds out the book by looking at
performance tuning your JavaScript. Topics look at ways of keeping JavaScript
lightweight, using recommendations from Yahoo! and Google add-ons for Firebug.

Reducing ile size at the source is also covered, learning how to use JSBuilder2 to build
a customized lighter version of the Ext Library with unused components removed.
JSBuilder2 is also used to combine and minify custom application JavaScript.

What you need for this book
At the absolute minimum, this book requires basic skills in Oracle Application
Express, access to an Oracle Application Express development environment through
a web browser, and the Ext JS library.

Oracle Application Express and Ext JS library are both directly accessible on
the Internet:

•	 Oracle provides an online Application Express evaluation instance, where
you can request a workspace

•	 Sencha provides free CDN hosting (cache delivery network) for the
Ext JS framework

Productivity wise, a better approach is to set yourself up properly with a local
environment. Typically this will be a development database and web server, set up by
your company's database administrators, but could just as easily be Oracle Database
Express Edition (XE), a free edition of the database running on your computer.

Running a local web server on your computer will greatly assist with JavaScript
development, saving time by editing the ile directly on the web server, rather than
the save-deploy-test cycle. It also reduces friction in a team environment, when that
little change you make breaks every page in the application. You can happily work
in isolation until you are ready to deploy to a wider audience.

http:///

Preface

[6]

Having good editing and debugging tools makes any developer more productive.
Long gone are the days where Oracle database development was done using
SQL*Plus and Notepad (or vi). Most developers will already have their favorite
editor, either one of the excellent free tools SQL Developer or JDeveloper provided
by Oracle, or an equivalent commercial product.

Similarly, you can do web development using any plain text editor to edit
your HTML, CSS, and JavaScript. A more powerful open source environment is
Aptana Studio.

Aptana Studio is a complete web development environment that combines
powerful authoring tools for HTML, CSS, and JavaScript. It provides JavaScript
code completion for all the popular JavaScript libraries including Ext JS, and even
provides code completion for your own JavaScript libraries.

Mozilla Firefox and Firebug are an absolute must have for working on your live
application. Firebug allows you to edit, debug, and monitor CSS, HTML, and
JavaScript live in any web page.

Many of the examples in this book depend entirely on Firebug, either issuing
commands from the console, inspecting HTML, and CSS, or inspecting and
debugging AJAX requests from the browser to the server.

You'll also need other tools such as image editors, version control, and FTP tools, but
they are less essential at the beginning.

Who this book is for
This book is intended for application developers who are building web applications
using the Oracle Application Express development environment.

In combination with Ext JS, a cross-browser JavaScript library for building rich
internet applications, you will learn how to create an innovative, visually appealing
web user interface with most of the characteristics of the desktop applications.

The majority of Oracle Application Express developers come from a database
development background, so they already have the necessary database skills,
but are less familiar with web development HTML, CSS, and JavaScript syntax.

You may already be an experienced Application Express developer, looking to take
your applications to the next level, to go beyond the "out of the box" functionality.

If so, this book is for you.

http:///

Preface

[7]

Conventions
In this book, you will ind a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In the earlier custom build I've kept the
pkg-grid-editor.js package for editable grids"

A block of code is set as follows:

function createMyPanel(config) {

 return new Ext.Panel(Ext.apply({

 // Pre-configured config options go here

 width: 300,

 height: 300,

 plugins: [new Ext.ux.MyPluginClass()]

 }, config));

};

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 listeners: {

 render: function(p){

 new Ext.Resizable(p.getEl(), {

 handles: 'all',

 pinned: true,

 transparent: true,

 resizeElement: function(){

 var box = this.proxy.getBox();

 p.updateBox(box);

 if (p.layout) {

 p.doLayout();

 }

 if (Ext.isIE) {

 this.syncHandleHeight();

 }

 return box;

 }

 });

 }

 }

www.allitebooks.com

http:///
http://www.allitebooks.org

Preface

[8]

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "It also includes a
Create button which opens the same DML form page to insert new records."

Warnings or important notes appear in a box like this.

"A good reference discussing creating custom components by extending, over-
riding or using factory patterns can be found at: http://www.sencha.com/learn/
Tutorial:Creating_new_UI_controls"

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the iles e-mailed directly to you.

http://www.sencha.com/learn/Tutorial:Creating_new_UI_controls
http://www.sencha.com/learn/Tutorial:Creating_new_UI_controls
http://www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http:///

Preface

[9]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are veriied, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http:///

http:///

Setting up an Oracle APEX

and Ext JS Environment
In this chapter, we will go through the process of setting up a productive
development environment for both Oracle Application Express (APEX) and Ext JS.

APEX applications are accessed by a web browser via an HTTP Server, which may
use the Oracle APEX Listener, Oracle HTTP Server with the mod_plsql plug-in, or
the Embedded PL/SQL Gateway to act as the web server.

Each of the web server options has advantages and disadvantages. We will examine
the relevant merits of each option separately, before showing how to conigure them
to support development with Ext JS.

Setting up a development environment is more than just installing the relevant
software. It's also about managing versioning and dependencies of your code, and
coniguration iles and other project assets. Automating your backup and build
processes ensures that you are able to deliver your software in a repeatable and
consistent manner. Regular software releases should be a straightforward activity
and not a major issue.

Making good choices setting up your development environment at the beginning of
a project can be enormously beneicial for the entire lifecycle of the project. Getting it
wrong can be equally as bad!

This chapter covers:

•	 APEX installation considerations

•	 Brief overview of the Ext JS SDK

•	 Merits of each of the web tier options: Oracle APEX Listener, Oracle HTTP
Server with the mod_plsql plug-in, and the Embedded PL/SQL Gateway

http:///

Setting up an Oracle APEX and Ext JS Environment

[12]

•	 Loading the Ext JS SDK on each of the web tier options, and also onto hosted
environments where you don't have direct access to the web server

•	 Setting up a Subversion source code repository for project assets
•	 Automating backup and build processes to simplify application deployments

and reduce errors

By the end of the chapter, you will be fully set up and ready to code.

Setting up for success
One of the reasons for the outstanding success of Oracle APEX is that you can build
applications really quickly. Within a couple of hours, you can have a development
database set up, and using the built-in themes, you've started building an application.

This can be really dangerous for us as developers. At the beginning of a project,
particularly when you're using a new or unfamiliar technology, there is a pressure
to prove yourself—either as an individual starting a new role or as a team proving a
technology to management.

Experienced programmers recognize this; the challenge is convincing everyone
involved on what the ultimate goals of the project are, and not just take a short-term,
short-sighted approach.

While not a dedicated practitioner of the methodology, some of the principles behind
the Agile Manifesto (http://agilemanifesto.org/principles.html) are a great
reminder of on what we should be focusing.

The ultimate goal of any project is to write valuable software, and by valuable I mean
software that is going to be used and is useful. There is no point writing software
unless it delivers real business outcomes—either tangibly in increasing business
revenue, streamlining business processes, or less directly by reducing time spent on
non-productive activities.

Working software is the primary measure of progress. The more time that we,
as developers, can spend on regularly delivering valuable software in short time
periods, the more successful our project is.

Regularly deploying working software implies that we need an eficient build
process. This is the art of maximizing the amount of work not done! By taking a
little extra time at the beginning to set up our development environment properly, it
should be largely self sustaining and require almost no ongoing maintenance.

http://agilemanifesto.org/principles.html
http:///

Chapter 1

[13]

Installing Oracle APEX
Oracle APEX 4.0 requires a minimum database edition of 10.2.0.3, or Oracle XE,
which, despite reporting as being 10.2.0.1, includes additional features that didn't
make it into the supported versions of the database.

This book won't be going into the details on how to install
Oracle APEX into the database, as that is very well covered by
the documentation provided with the product and available
online at http://download.oracle.com/docs/cd/
E17556_01/doc/install.40/e15513/toc.htm.

Oracle APEX now comes pre-installed on all editions of Oracle database 11.1
upwards, and is also pre-installed in Oracle XE—the free edition of the database.
In both cases, you will need to upgrade your Oracle APEX installation to Oracle
APEX 4.0—the version covered in this book. Go to Oracle Application Express on the
Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/
developer-tools/apex/index.html, and download the latest production version
of Oracle APEX.

Regardless of whether you're installing or upgrading Oracle APEX, there is one
important decision you need to consider before you proceed. By default, Oracle
APEX is installed into the SYSAUX tablespace.

You have the option when installing or upgrading to
specify an alternative tablespace.

The SYSAUX tablespace is installed as an auxiliary tablespace to the SYSTEM
tablespace when the database is created. It holds a number of database components
that you may or may not use, depending on the nature of your applications, such as
Oracle Text, Oracle Spatial, and Oracle interMedia.

It also contains components such as Enterprise Manager and Automatic Workload
Repository which, depending on several factors, such as number of active sessions,
data retention period, and snapshot intervals, can require signiicant storage volumes
and contain highly volatile data, leading to disk I/O contention.

By installing Oracle APEX into its own tablespace, database administrators (DBAs)
are able to manage it in isolation from other database components, allowing more
lexibility in performing database operations. For example, you can reduce I/O
contention by storing the underlying data iles of the APEX tablespace on different
disk drives to the SYSAUX tablespace.

http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/toc.htm
http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/toc.htm
http://www.oracle.com/technetwork/developer-tools/apex/index.html
http://www.oracle.com/technetwork/developer-tools/apex/index.html
http:///

Setting up an Oracle APEX and Ext JS Environment

[14]

Similarly, taking the individual Oracle APEX tablespace ofline to perform a
data recovery operation allows other applications to remain online, providing
better overall availability. Or in another scenario, take advantage of transportable
tablespaces to copy your Oracle APEX environment to another database quickly.

Downloading Ext JS
The Ext JS SDK (software development toolkit) can be downloaded as a single
zipped ile from the Sencha website at http://www.sencha.com/products/extjs/
download. This book is based on version 3.3.1, the latest release at the time of
writing. As the Ext framework is now quite mature, you should be safe to use later
releases of version 3 with this book, should they be available.

Ext JS is released under both open source and commercial licenses to suit both
implementations and provides support to developers through community support
forums, as well as subscription-based support and maintenance.

The download of the Ext JS SDK is nearly 15MB, and once extracted, is roughly
105MB. The reason for the large size becomes apparent once we start examining the
extracted iles.

http:///

Chapter 1

[15]

The screenshot shows the contents of the top directory within the Ext JS SDK zip ile.
It comprises everything you need to work with Ext JS, including documentation,
resources, and examples.

Let's briely go through the directories shown in the screenshot.

File/folder Description

adapter Contains the ext-base.js ile used to provide browser-independent
base-level DOM and AJAX functions for use by the main Ext JS
library. It also contains adapter iles that allow you to work with other
JavaScript libraries, including jQuery, Dojo, and YUI.

docs Documentation for the library.

examples Individual component and combination examples. This is a veritable
treasure trove of information and working solutions to be integrated
into Oracle APEX.

pkgs Assembled subsets of the JavaScript library, designed to assist building
customized versions of Ext JS.

resources Images, CSS iles, and Flash objects used by Ext JS.
src JavaScript source code for Ext JS.

test Test cases used by Sencha for automated testing harness.

ext.jsb2 Control ile used to merge JavaScript iles from src into pkgs iles,
and also ext-all.js and ext-all-debug.js. Merged iles
have the comments stripped and code miniied. Merged iles with
the -debug sufix are a non-compressed version, preferred during
development so that debugging is easier.

ext-all.js Full Ext JS library, excluding the adapter, compressed and miniied.

The uncompressed version without comments, ext-all-debug.js,
is useful for debugging during development. The uncompressed with
comments version is ext-all-debug-w-comments.js.

*other Other iles not described: index.html, gpl-3.0.txt, INCLUDE_
ORDER.txt, license.txt, and so on.

As you can see from the relative sizes of the folders, the Ext JS SDK has placed an
emphasis on documentation and examples. This greatly assists in learning to use the
library and is a real credit to the Ext JS developers.

The ext-all.js ile and the adapter and resources folders are the only iles you
need to deploy to your production web server. While saying this, my preference is to
deploy the entire SDK. That way all the documentation and examples are on hand.

http:///

Setting up an Oracle APEX and Ext JS Environment

[16]

Many of the examples need to be run from a web server and
cannot be run directly from your computer. This is also true of the
documentation. So if you're wondering why you just see a spinning
image when you open the documentation ile locally, now you know.

Which web server to use?
Oracle APEX is accessed through a browser via a HTTP server, which may be the
Oracle HTTP Server (OHS) with the mod_plsql plug-in, the Embedded PL/SQL
gateway (EPG), or most recently the Oracle APEX Listener certiied against Oracle
WebLogic Server, OC4J, and Oracle Glassish Server. The APEX Listener can be
installed on any modern J2EE Server, such as Tomcat.

The APEX 4.0 Installation Guide covering each of the web server
options is available at http://download.oracle.com/docs/
cd/E17556_01/doc/install.40/e15513/toc.htm.

Here, I'm assuming you're working in a team environment, and we're setting up a
dedicated development web server, only accessible within the intranet.

I'll go through the relevant merits of each option separately, before showing how to
conigure them to support development with Ext JS. Once again, rather than repeat
the standard installation documentation provided by Oracle, I will simply assume
that you have made your choice and installed your preferred web server into your
development environment together with Oracle APEX.

Storing your web assets
The virtual path the web server uses to point to the images directory distributed
with the Application Builder in Oracle APEX defaults to the alias /i/.

Regardless of which web server you use, it's a good idea to keep your web assets in
a different location from where Oracle stores them. Later sections in this chapter for
each of the web server options will cover storing assets in a different location and
coniguring the web server to reference your assets with the alias /ux/, which stands
for user extensions.

Storing your web assets in a different location makes life a whole lot easier when it
comes to upgrading Oracle APEX again. All you have to do is follow the upgrade
notes, secure in the knowledge that you are not going to delete any of your
application iles accidentally.

http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/toc.htm
http://download.oracle.com/docs/cd/E17556_01/doc/install.40/e15513/toc.htm
http:///

Chapter 1

[17]

It allows your server administrator to secure the Oracle APEX directories, preventing
anyone from making changes to the standard Application Builder coniguration.
Similarly, your application directory can be accessed only by the necessary people.

Customizing application builder iles
If you ever have the need to modify some of the CSS rules or JavaScript provided by
Oracle, here is one way to do it. By copying the Oracle APEX directories from the /i/
location to your /ux/ location, you can customize the standard Application Builder
iles without impacting anyone else.

To use your customized version, you need to update the application preferences
image preix to point to your alias, as shown in the following screenshot. To edit
application properties, log into Oracle Application Express, and then select the
appropriate application from the Application Builder. Click the Edit Application
Properties button, top right on the Application Deinition page.

Oracle HTTP Server
The Oracle HTTP Server (OHS) is the most mature of the three web server options
available, and is the typical choice for Oracle APEX production and development
environments today. OHS is based on the proven Apache web server, with the
Apache code base dependant on which version of the database you are using. Oracle
HTTP Server, distributed with Oracle Database 11g, uses the Apache 2.2 code base;
on the other hand, Oracle Application Server 10g is based on Apache 1.3 or Apache
2.0 for the standalone version.

www.allitebooks.com

http:///
http://www.allitebooks.org

Setting up an Oracle APEX and Ext JS Environment

[18]

Apart from the proven reliability and broad support available for the Apache web
server software, the other main advantage cited for using OHS is the ability to
separate the application server tier from the database tier, allowing the web server to
be installed on a different server from the database.

For production environments, where factors such as security,
performance, and load balancing have a much higher priority,
the ability to separate the application server tier from the
database tier is an important consideration.

However, as we are looking at a development environment, the restricted-use license
for OHS will probably be a deciding factor. Included with the Oracle Database 10g
and 11g releases is a restricted use licence for OHS for all editions except Oracle XE,
which allows OHS to be used, provided it is on the same server as the database.
Running OHS on another server requires the other server to be licensed to use OHS
either through a database licence or an Oracle Application Server licence.

One of the most confusing aspects of OHS is which version to install, as Oracle has
released over 10 different versions of OHS, (see My Oracle Support Note 260449.1 for
the complete list).

Do not blindly install the version supplied with the
database. You should carefully decide the version
you'd like to install.

My Oracle Support Note 400010.1 - Steps to Maintain Oracle Database 10.2 Companion CD
Home (for Oracle HTTP Server) states:

Something to think about...

The Oracle HTTP Server delivered with the Oracle Database 10.2 Companion
CD is provided to initially get HTMLDB installed and running. However, it's
an older version with limited functionality and support. Both the Oracle HTTP
Server and HTMLDB from this CD would need to be upgraded at this time. The
Companion CD also installs a mix of 10.2 and 10.1 products which is more dificult
to maintain. Consider using a newer installation of the Oracle HTTP Server, and
then conigure APEX (formerly HTML-DB) accordingly.

http:///

Chapter 1

[19]

The message here is Oracle doesn't recommend you to install the version that comes
with the database. If you're going to install the standalone version of OHS, take the
extra step of downloading the version that comes packaged with the Application
Server. This is because the main versions of OHS are built for the Application Server
releases. OHS can be downloaded from http://www.oracle.com/technetwork/
middleware/ias/index-091236.html.

Loading Ext JS onto the Oracle HTTP Server
Depending on the version of the Oracle HTTP Server you are running, the location
for the Application Builder images directory is held in either the httpd.conf,
marvel.conf or dads.conf iles. Search for the text alias /i/.

For example:

Alias /i/ "ORACLE_HTTPSERVER_HOME/Apache/images/"

Alias /ux/ "ORACLE_HTTPSERVER_HOME/Apache/ux/"

Here, ORACLE_HTTPSERVER_HOME is the location where the HTTP Server is installed.

Edit the ile, adding another Alias /ux/ as shown in the preceding snippet,
pointing to the location where you will upload the Ext JS iles. Having done this,
upload the Ext JS iles onto the web server at the location you speciied. Remember,
you can either deploy all the iles in the Ext SDK, or just the minimal set comprising
the ext-all.js ile and the adapter and resources folders.

You will need to stop and restart the Oracle HTTP Server before your changes are
detected, which is done using the opmnctl executable.

For Unix and Linux, execute the following:

ORACLE_HTTPSERVER_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_

Server

ORACLE_HTTPSERVER_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_

Server

For Windows, execute the following:

ORACLE_HTTPSERVER_HOME\opmn\bin\opmnctl stopproc ias-component=HTTP_

Server

ORACLE_HTTPSERVER_HOME\opmn\bin\opmnctl startproc ias-component=HTTP_

Server

http://www.oracle.com/technetwork/middleware/ias/index-091236.html
http://www.oracle.com/technetwork/middleware/ias/index-091236.html
http:///

Setting up an Oracle APEX and Ext JS Environment

[20]

To verify that the Ext JS library is now accessible on the web server, just check that
you can successfully fetch one of the iles. Substituting the appropriate host and port
values, use your browser to verify you can now see the Ext JS asset:

http://host:port/ux/ext-3.3.1/resources/images/default/tree/drop-yes.

gif should show a tick, as seen in the following screenshot:

If you decide to do the full Ext JS SDK install, now is a good time to bookmark the
documentation and samples:

•	 http://host:port/ux/ext-3.3.1/docs/index.html

•	 http://host:port/ux/ext-3.3.1/examples/index.html

Embedded PL/SQL Gateway
The Embedded PL/SQL Gateway (EPG) runs within the database as part of the
XML DB HTTP Protocol listener and provides equivalent core features to the Oracle
HTTP Server (OHS). The EPG works only in Oracle XE, and Oracle Database 11g and
greater. If you are going to use Oracle APEX on 10g editions of the database, you will
need to use the OHS or APEX Listener, as the EPG is not supported for any version
below 11g.

Because the EPG runs entirely within the 11g database, and it comes pre-installed
(but not pre-conigured), it is simple to maintain. As it is not possible to separate
the XML DB HTTP listener from the database, Oracle recommends not using it for
internet-based applications, due to the potential security risk when exposing the
database server directly to the Internet.

A number of other limitations exist for EPG when compared with Oracle HTTP
Server, including features such as dynamic HTML caching, system monitoring, and
logging in the Common Log Format.

The EPG is an appropriate solution for setting up APEX quickly for a proof of
concept approach, development environments, or for low-volume intranet-based
applications. EPG is an easy and convenient setup, but this comes at the price
of lexibility and performance. It should not be considered for serious
production environments.

http:///

Chapter 1

[21]

Loading Ext JS onto the Embedded PL/SQL
Gateway
Before loading Ext JS, the EPG needs to be conigured and enabled. To check this
step has been done, attempt to log into APEX as the admin user from a browser
using http://machine.domain:port/apex and substituting the appropriate
values for machine, domain, and port (default is 8080). If this is unsuccessful,
review the database installation documentation on Application Express post-install
coniguration steps before proceeding.

When using the EPG, the Application Builder images referenced by the alias /i/ are
stored in the database within the Oracle XML DB repository. You can access these
images using either WebDAV or FTP. I've found FTP to be more reliable, especially
when doing bulk ile transfers, hence the instructions will be for FTP.

If you're interested in accessing the XML DB repository
using WebDAV, Dietmar Aust provides instructions in
his blog at http://daust.blogspot.com/2006/03/
where-are-images-of-application.html.

The irst thing to do is check whether FTP has been enabled, which is done using the
following SQL code:

SQL> select dbms_xdb.getftpport from dual;

GETFTPPORT

 0

If the FTP port is set to 0, FTP is currently disabled.

To enable it, connect to SQL*PLUS as XDB or SYSTEM, or any account with DBA or
XDBADMIN privileges, and issue the following commands:

SQL> exec dbms_xdb.setftpport('2100'); -- 1

PL/SQL procedure successfully completed.

SQL> alter system register; -- 2

System altered.

SQL> select dbms_xdb.getftpport from dual; -- 3

GETFTPPORT

 2100

http://machine.domain:port/apex
http://machine.domain:port/apex
http://daust.blogspot.com/2006/03/where-are-images-of-application.html
http://daust.blogspot.com/2006/03/where-are-images-of-application.html
http://daust.blogspot.com/2006/03/where-are-images-of-application.html
http:///

Setting up an Oracle APEX and Ext JS Environment

[22]

•	 Statement 1 sets the FTP port to 2100.

•	 Statement 2 forces the database to reregister with the listener immediately.

•	 Statement 3 veriies the port has been changed successfully.

You should now be able to log in via FTP. For the time being, it's easier to log in as
SYSTEM. There are many FTP tools available, so it's just a matter of choosing one
based on personal preference. In my case, I'm using the free FileZilla client, available
from http://filezilla-project.org/, in both Windows and Linux versions.

If you're using XE, you should see something similar to what's shown in the
following screenshot:

Create a new folder named /ux/ in the XML DB repository, and then upload the
Ext JS iles into this folder. Remember, you can either deploy all the iles in the
Ext SDK, or just the minimal set comprising the ext-all.js ile and adapter
and resources folders.

http:///

Chapter 1

[23]

To verify the Ext JS library is now accessible on the web server, check whether you
can successfully fetch one of the iles. Substituting the appropriate host and port
values, use your browser to verify you can now see the Ext JS assets:

http://host:port/ux/ext-3.3.1/resources/images/default/tree/drop-yes.

gif should show a tick, as seen in the following screenshot:

If you decided to do the full Ext SDK install, now is a good time to bookmark the
documentation and samples:

•	 http://host:port/ux/ext-3.3.1/docs/index.html

•	 http://host:port/ux/ext-3.3.1/examples/index.html

Oracle APEX listener
The Oracle APEX listener is a Java-based replacement for the OHS mod_plsql plugin
for all Oracle APEX releases. It provides a number of advantages over mod_plsql,
including ile system caching, native Excel uploads, generating PDF documents
using Apache FOP (Formatting Objects Processor), and improved ile uploading to
support multiple ile uploads for the irst time. The APEX listener has been designed
to be extensible, allowing developers to customize pre-and post-processing of form
submissions, ile uploads, among other things. The APEX listener is another key
feature certain to increase adoption of the technology.

The APEX Listener is a Java servlet, capable of running on just about any application
server that follows the Java Enterprise Edition (JEE) standard. Oracle provides
instructions for deployment to Oracle WebLogic, OC4J, and Oracle Glassish.

The Oracle APEX listener and installation guide is
available at http://www.oracle.com/technetwork/
developer-tools/apex-listener/index.html.

Opening up the choice to a variety of web servers allows us to take advantage of
features such as HTTP compression, which is not installed on the Oracle HTTP
Server. (It can be conigured, but is not supported by Oracle.)

http:///

Setting up an Oracle APEX and Ext JS Environment

[24]

HTTP compression makes better use of network bandwidth by compressing data
on the server before sending it to the client. This allows content to be sent over the
network in a more compact form and can result in a dramatic reduction in download
time, reducing latency in your application and an improved user experience.

Given the enhanced functionality it offers over mod_plsql, the Oracle APEX listener
will eventually become the preferred listener for Oracle APEX. However, in the short
term, most production systems will continue to use Oracle HTTP Server with mod_
plsql, until the new listener has been proven by early adopter sites.

Loading Ext JS for the Oracle APEX listener
Once you have installed your choice of web server, the Oracle APEX Listener, and
uploaded the APEX images using the Oracle Installation Guide, you can load Ext JS.

The process for loading Ext JS is similar for each of the referenced web server options
(Oracle WebLogic, and OC4J, and Oracle Glassish). The instructions here are for
Oracle Glassish.

You can deploy directly to a physical directory on the web server:

1. Create a folder named ux in GLASSFISH_DIRECTORY/domains/DOMAIN_NAME/
docroot.

2. Copy the Ext JS iles to GLASSFISH_DIRECTORY/domains/DOMAIN_NAME/
docroot/ux.

Or to a virtual directory on the web server:

1. Copy the Ext JS iles to the web server, for example C:\playpen\web\ux.

2. In the GlassFish Admin Console, expand Coniguration | Virtual Servers.
Select server, then scroll to the bottom of the page and click the Add Property
button. Enter alternatedocroot_1 in the Name ield, and from=/ux/*
dir=C:/playpen/web/ in the Value ield, as shown in the next screenshot.
This will map the URL http://hostname:port/ux/ to the physical directory
C:/playpen/web/ux/.

http://hostname:port/ux/
http://hostname:port/ux/
http:///

Chapter 1

[25]

Remember that you can either deploy all the iles in the Ext SDK, or just the minimal
set comprising the ext-all.js ile and the adapter and resources folders. When
adding a virtual directory alias, you may need to restart the web server before the
alias is recognized.

To verify that the Ext JS library is now accessible on the web server, just check that
you can successfully fetch one of the iles. Substituting the appropriate host and port
values, use your browser to verify you can now see the Ext JS assets:

http://host:port/ux/ext-3.3.1/resources/images/default/tree/drop-yes.

gif should show a tick, as seen in the preceding screenshot.

Overviewing the production setup
Consider the architecture diagram in the next screenshot:

http:///

Setting up an Oracle APEX and Ext JS Environment

[26]

The diagram is a well-known and generally accepted Internet-Firewall-DMZ-
Firewall-Intranet architecture and shows the following zones:

•	 External internet, outside the DMZ irewall
•	 External web server tier acting as a reverse proxy between the DMZ irewall

and the Intranet irewall
•	 Corporate intranet behind the Intranet irewall

If your Oracle APEX instance is going to be used only for Intranet applications,
we need to consider only the corporate intranet component on the right-hand
side of the diagram. This is the basic coniguration documented earlier for the
Oracle HTTP server.

For Internet-accessible applications, security becomes a much more important factor.
Various high-proile hacking attacks have proven that web security is one of the most
critical issues facing any business that conducts its operations online. Compared to
intranet-only applications, internet-accessible applications have far larger numbers
of potential hackers.

Firewalls are conigured to allow only speciic types of access (HTTP/HTTPS). In
DMZ architectures, irewalls are used to restrict the low of network data so that
all inbound trafic from the internet and outbound trafic from the intranet must
be processed by web servers acting as proxy servers in the DMZ zone. By using a
reverse proxy server, such as Oracle Web Cache or HTTP Server in tandem with
internal and external irewalls, you can greatly reduce the risk of exposing your
backend data resources.

So what exactly does a reverse proxy do? When a client sends a request to your
website, the request goes to the proxy server. The proxy forwards the client's request
through a speciic path in the intranet irewall to the content web server. The content
web server processes the request, passing the result back through the path to the
proxy. The proxy server sends the information to the client, rewriting any URLs as
though it was the actual content server.

Reverse proxies can be additionally conigured to perform extra tasks such as
compressing iles to optimize network trafic, or facilitating secure transmission
of information utilizing Secure Socket Layers (SSL), to provide an encrypted
connection between the proxy server and the client.

http:///

Chapter 1

[27]

Using Ext JS in a hosted APEX
environment
Oracle APEX is designed to support hosted development, where the only access
you have to your workspace is via a browser. The Application Builder and SQL
Workshop contain all the necessary functionality to build an application from scratch
without any other tools.

Typically in a hosted environment such as http://apex.oracle.com, you don't
have access to the web server to upload the Ext JS iles. In this situation, you can take
advantage of Ext partnering with CacheFly, a global content network, to provide free
CDN hosting for the Ext JS framework.

A Content Delivery Network (CDN) is a collection of web servers distributed
across multiple locations to deliver content more eficiently to users. The server
selected for delivering content to a speciic user is typically based on a measure of
network proximity.

For example, the server with the fewest network hops or the server with the
quickest response time is chosen; that is, using a CDN to deliver static content, such
as Ext JavaScript, CSS, and images will result in your pages getting downloaded
signiicantly faster.

In the hosted environment, you don't load the Ext iles onto the server, instead
simply reference the Ext content in your Oracle APEX page templates from the
CacheFly site. The following code will be added to Oracle APEX page templates:

<link rel="stylesheet" type="text/css" href="http://extjs.cachefly.

net/ext-3.3.1/resources/css/ext-all.css" />

<script type="text/javascript" src="http://extjs.cachefly.net/ext-

3.3.1/adapter/ext/ext-base.js"></script>

<script type="text/javascript" src="http://extjs.cachefly.net/ext-

3.3.1/ext-all.js"></script>

We will look at page templates and how to integrate Ext JS content in greater detail
in Chapter 3, Building an Ext Theme into APEX.

Installing a source code repository
One of the very irst tasks you should do in any software project, even before you
write a single line of code, is to install a source code repository. This is where the
development team keeps all of its code in a centralized location, using version
control software to track and manage changes to iles over time.

www.allitebooks.com

http:///
http://www.allitebooks.org

Setting up an Oracle APEX and Ext JS Environment

[28]

Version control systems are appealing to developers because they back up source
code and keep track of changes. So when a new code version introduces a bug, it's
easy to compare with earlier versions using text differencing tools to highlight what's
changed and identify the problem.

Managers like version control systems because it helps prevent loss of data, and
provides tagging capabilities for releases making it very easy to check a production
version for error correction without disrupting the current development version.

I'll be discussing Subversion (http://subversion.apache.org/) in this book, so
if you're already using another version control system, the same principles apply,
although the solution might be a little different.

Subversion (SVN) has rapidly become the de facto standard free/open source
version control system today. Binary versions of SVN are available for all major
operation systems. Installation of the SVN server is very much dependent on the
operating system, so refer to the installation instructions for your operating system.

VisualSVN Server (http://visualsvn.com/server/) is an excellent free solution
for the Windows systems, and with a one-click installation, you really can't get an
any simpler setup. There are a number of third-party clients available; TortoiseSVN
is a popular choice on Windows, as it is integrated directly into Windows Explorer.

For batch programming, you will need to use a SVN command-line client, such as
CollabNets' version (http://www.open.collab.net/downloads/subversion/).
Subversion's integrations into various IDEs are also common, including JDeveloper,
SQL Developer, TOAD, and Apanta.

http:///

Chapter 1

[29]

The previous screenshot shows the VisualSVN Server, containing a single repository
named apex-solutions, with two projects named jquery and playpen respectively.
The playpen project is used for this book, and contains a standard recommended
layout: the trunk directory to hold the "main line" of development, a branches
directory to contain branch copies, and a tags directory to contain tag copies.

The question of what to store in SVN is also partly answered in the screenshot we
just saw. The short and simple answer is "everything to do with the project". You
can use the example of a new developer starting on the project as a litmus test.
Given a virgin machine, they should be able to do a single checkout, and be able to
do a full build of the system. You may make exceptions for things that are large, or
complicated to install and stable, for example, the database and IDE tools, such as
JDeveloper or SQL Developer.

Here is a basic list of some of the types of iles you would typically want to store in
your code repository for an Oracle APEX application:

•	 Database object scripts: Everything you use to deine your application
in the database. This includes a current Oracle Initialization Parameter
(init.ora) ile, scripts to create your users, tables, views, packages,
procedures, functions, and so on. If your application isn't too large,
you could also include database schema exports to ensure you include
absolutely everything.

•	 APEX application and related iles: You can export and import your
application deinitions, including workspace users, application, CSS, images,
iles, themes, and user interface defaults stored in Oracle APEX. These
exports provide a complete snapshot of your APEX application, allowing you
to deploy it to another environment, or restore your application to an earlier
state. The export iles also allow you to recover individual components.

•	 Web server assets: Your Ext JS iles, application JavaScript, CSS, images, and
so on, and all coniguration iles for your web server.

•	 Documentation: Project management documentation, as well as the user
help and administration documentation.

•	 Utilities and command scripts: This is a catch-all for scripts that don't it into
any of the previous categories. Examples include scripts used to export and
import the application, to stop and start processes, FTP iles to web servers,
deploying the application to other environments, and so on.

http:///

Setting up an Oracle APEX and Ext JS Environment

[30]

Automating the build process
Version control systems commonly provide command line interfaces, providing
you the opportunity to automate source control tasks you regularly perform using
batch iles.

One of the tasks you'll want to do on a regular basis is to back up and check in your
APEX application into Subversion.

Oracle has provided a Java utility named APEXExport that allows you to export
Oracle APEX applications from the command line, without requiring a manual
export via the web interface. We'll go through how to set up your Subversion
repository to support a fully automated backup process.

Once again, I will provide instructions for a Windows environment, but because
APEXExport is a Java utility, minor adaptations to the instructions will allow you to
run it in a Linux/Unix environment.

Coniguring and using APEXExport
In the root of the Oracle APEX installation iles, you will ind a utilities folder
containing a readme.txt ile. The ile provides detailed instructions on how to set up
and use the APEXExport utility.

Pre-requites for the utility include installation of the Java Development Kit (JDK) of
version 1.5 or greater, and the inclusion of classes12.jar in the CLASSPATH.

I wrote earlier that we should store "everything to do with the project" in our SVN
repository, so that with a single checkout we could do a full build of the system.
Also raised was the possibility of exceptions to this rule for things that are large,
or complicated to install and stable, for example, the database and IDE tools such
as JDeveloper.

Let's make an exception by assuming the JDK is already installed on your
computer— either as a standalone installation, or as part of an IDE for example in
SQL Developer or JDeveloper. If you didn't want to make this exception, add SQL
Developer (which includes the JDK) into your SVN repository.

The classes12.jar ile is the Oracle JDBC library for Oracle database 10g, found
in the %ORACLE_HOME%\jdbc\lib directory. For Oracle database 11g, the equivalent
ile is ojdbc5.jar for Java 5 or ojdbc6.jar for Java 6. Generally for Oracle database
11g, you should use ojdbc6.jar.

http:///

Chapter 1

[31]

Because developers may have very different setups on their computers, even within
a small team, the easiest way to manage the location of the JDBC library is by using
the Oracle Instant Client. The Instant Client allows you to run your applications
without the standard Oracle client, and includes additional libraries for SQL*Plus.

Instant Client comes in two versions—Basic and Basic Lite. Both versions are suitable
for Oracle APEX: Basic Lite is a smaller version of the Basic, with only English error
messages and supporting only speciic character sets, including AL32UTF8, used by
Oracle APEX. Installation is simply extracting the Instant Client iles into a directory.
Download a copy of Instant Client for your database version and operating system from
http://www.oracle.com/technology/tech/oci/instantclient/index.html.

Also download the SQL*Plus Instant Client, which is installed by extracting it into
the same directory as the Instant Client.

Before we go any further, let's take a look at the intended layout of the
SVN repository.

http:///

Setting up an Oracle APEX and Ext JS Environment

[32]

The preceding screenshot shows the layout of my SVN repository. You can see
that within the trunk folder of the apex-solutions/playpen project, I've created
a series of folders to partition my application logically. The bin folder holds my
batch scripts, including the backup_apex.bat script, detailed shortly. Also, note the
oracle folder, which contains Oracle Instant Client software for database releases
10.2 and 11.1. And inally, the utilities folder to which I've copied the APEXExport.
class and APEXExportSplitter.class from the Oracle APEX installation.

Let's look at the code for backup_apex.bat:

@echo off

setlocal

REM Set BASE to parent directory of this scripts location.

set HOME=%CD%

cd /d %~dp0

cd ..

set BASE=%CD%

cd /d %HOME%

The setlocal command ensures any environment changes are localized to the batch
script. Setting the HOME variable allows the script to return to the execution start
directory.

Next, navigate to the script location using the convoluted expression cd /d %~dp0,
and in turn to its parent directory to set our BASE variable to be the "root" folder of
our repository. For example, my repository path to the backup_apex.bat script is
C:\playpen\bin\backup_apex.bat, so my BASE variable becomes C:\playpen.
Your repository path could be a completely different, but provided your script
inishes with \bin\backup_apex.bat, the BASE variable will be set correctly.

Knowing the path to our BASE folder is an important
step, as we now have our bearings to reference our
java libraries and navigate to other folders.

REM --

REM Database 11g specific

REM --

set CLASSPATH=%CLASSPATH%;%BASE%\oracle\instantclient_11_1\ojdbc6.jar

set CLASSPATH=%CLASSPATH%;%BASE%\oracle\utilities

REM --

REM Database 10g specific

REM --

REM set CLASSPATH=%CLASSPATH%;%BASE%\oracle\instantclient_10_2\

classes12.jar

REM set CLASSPATH=%CLASSPATH%;%BASE%\oracle\utilities

http:///

Chapter 1

[33]

Next, we set the CLASS_PATH to our JDBC drivers and export utilities. I'm using the
Oracle JDBC library for Oracle database 11g, with the equivalent Oracle 10g version
commented out.

cd /d %BASE%\database\apex

REM Make sure our local copy is up to date

if not ("%SVN_HOME%") == () "%SVN_HOME%"\svn update

We change folders, as the APEXExport utility exports iles into the current
working directory.

Before running the export, we update our repository, refreshing the current
directory and subdirectories using the command-line version of SVN. In this case,
I'm referencing an externally deined environment variable SVN_HOME to identify the
home directory of the SVN command line client. SVN_HOME is usually deined as a
Windows environment variable when the SVN command line client is installed.

Using conditional logic, allows this step to be skipped if the variable has not been set
for your computer.

java oracle.apex.APEXExport -db mark-pc:1521:XE -user playpen

-password playpen -workspaceid 1038420889063720 -skipExportDate

APEXExport allows you to either export an individual application, a workspace,
or the entire Oracle APEX instance. The utility is run through Java using a JDBC
connection to the database; for complete syntax details refer to the readme.txt ile
included in the utilities folder.

In this batch script here, I am exporting a workspace. To ind out the workspace ID
for your environment, you can run the following query in SQL Workshop within
Oracle APEX:

select v('WORKSPACE_ID') from dual

Exporting a workspace will create a separate script for each application in your
workspace. So for application 150, a ile named f150.sql will be created.

REM Check if SVN_HOME has been set

if ("%SVN_HOME%") == () goto :no_svn_home

"%SVN_HOME%"\svn add *.sql --force

"%SVN_HOME%"\svn commit -m "Automated backup and check in."

goto exit

:no_svn_home

http:///

Setting up an Oracle APEX and Ext JS Environment

[34]

echo ERROR

echo ERROR: SVN_HOME environment variable is not set, no automated SVN

check in.

echo ERROR

goto exit

:exit

endlocal

Once the APEX application exports have completed, we check the export iles into
SVN. We start by seeing if the SVN_HOME environment variable is set; if not, skipping
the check-in and raising an error message. If set, the svn add command is used to
ensure that when any new applications are added to the repository, then the svn
commit command is executed, with a required check-in message.

SVN detects whether or not iles have been modiied as part of the check-in process,
so if no changes have been made to an application, it won't be checked in. The
following screenshot shows the output of the batch script, where ive applications are
exported from the database, but only one had been modiied, so only that application
was transmitted to the SVN repository.

Now that we have our batch script set up, the last step is to schedule the script to
be run automatically every day. Ideally, this would be conigured to run on the
SVN server; however, you could run the script from team members' computers,
because as we've just seen in the previous screenshot, only modiied applications are
committed to the SVN repository.

http:///

Chapter 1

[35]

Scheduling the batch ile to run automatically each day is simply a matter of calling
the batch script, using the Windows built-in scheduler to deine when and how often
you want the batch ile to run, as shown in the following screenshot:

For additional security, it would be preferable to pass
the password to the batch ile using the scheduled task,
rather than having it directly in the batch ile.

More ideas for automating the build process
As developers, we work to automate processes for end-users; yet, many of us overlook
opportunities to automate our own development processes. Using a single source
repository for all your application assets and using simple scripts as we have here to
schedule repetitive tasks are the irst steps in a journey towards continuous integration.

http:///

Setting up an Oracle APEX and Ext JS Environment

[36]

Version control systems, including Subversion, include hooks, so that the act of
checking a ile into the repository triggers an event to execute your hook program
or batch ile. So in an APEX application context, you could automatically FTP your
web assets to your web-server. Or checking in a JavaScript ile may trigger a process
to minify and combine your JavaScript iles into a single application JavaScript ile,
something we will cover in Chapter 11, Performance tuning your JavaScript.

Oracle SQL Developer 2.1 now includes a unit testing framework that allows you
to build a set of sequential steps to create test cases for testing your PL/SQL code.
Along with providing a GUI interface within SQL Developer to run unit tests and
suites, a command line interface is provided for both Windows and Linux. Here,
you could schedule a process to run your unit tests overnight, and the next morning
check a unit testing report to verify the results.

Other opportunities for automation include generating documentation, website
pages, statistics, and distribution iles.

Automating your build process can use sophisticated Continuous Integration tools,
which may require signiicant initial setup, or grow organically starting with small
and humble beginnings using command scripts as we've done here.

Either way, the most important point is to keep looking
for opportunities to improve your software quality and
streamline development and deployment processes.

Setting up a local web server
It's very worthwhile having a local web server on your computer, in addition to the
team's web server. This allows you to modify and test "application" JavaScript in
isolation from the rest of the development team. For some reason, people get upset
when you're making a change to a core JavaScript function and suddenly every page
stops working!

Setting up a local web server is much the same as we've outlined previously for the
Oracle HTTP Server or APEX Listener. The only real change is to set your /ux/ alias
to point to your SVN repository for your JavaScript, CSS, and other web assets.

By doing this you can work directly on the JavaScript iles locally and not need to
copy them onto the web server every time you need to test a change.

http:///

Chapter 1

[37]

Summary
In this chapter we've discussed the merits of the different web server options
available for Oracle APEX, covering the Oracle HTTP Server, the Embedded PL/SQL
gateway, and the Oracle APEX Listener. Installation of the Ext JS library into each
of these environments, including using Ext JS in a hosted APEX environment where
you don't have access to the web server, has also been covered.

In setting up for success, we discussed the importance of taking a little extra time at
the beginning of a project to set up a productive development environment. To aid
the development process, we set up a SVN source code repository and included some
tools to allow the automated backup and commit of an Oracle APEX workspace to the
repository. A number of other automation opportunities were also discussed.

Let's now start to get acquainted with the Ext JS library, looking at some of the
functionality it provides for manipulating the Document Object Model (DOM).

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

Getting Acquainted with Ext
In this chapter we will be familiarizing ourselves with some of the functionality the
Ext JS library provides for manipulating the Document Object Model.

The Document Object Model (DOM) is an API that provides a structural
representation of a HTML document. This allows developers to manipulate web
pages using the properties, methods, and events exposed by the DOM. Manipulation
of DOM elements is one of the basic staple tasks that almost every JavaScript code
will do.

Ext JS provides a library of methods that allow you to do cross-browser DOM
manipulation, allowing you to focus on adding business functionality, rather than
having to build separate solutions for different browsers.

This chapter explores some of the functionality Ext JS provides, with topics including:

•	 Building a sandbox for standalone testing

•	 Cross-browser DOM manipulation and traversal

•	 Sizing and positioning elements

•	 CSS classes and styling

•	 Deining event handlers
•	 Parameter passing using object notation
•	 Using namespacing to avoid collisions

Building a sandbox
Before attempting to integrate Ext JS and APEX, it's good practice to develop your
interface design using a prototyping approach. This allows for the exploration
of features and functions in isolation, to explore a design approach without the
temptation of building the inal solution at the irst try.

http:///

Getting Acquainted with Ext

[40]

To do this, we are going to use a sandbox to isolate our code and experiments from
the main development code until we are ready to merge the functionality into our
APEX application. Sandboxes contain just enough functionality to accurately test the
code under development.

Using a sandbox allows you to rapidly build and test new functionality, identify
potential problems at an earlier stage, and solve those problems before incorporating
the new functionality in the full design.

Our sandbox comprises the Mozilla Firefox browser with the Firebug plugin, along
with a series of standalone HTML pages containing static HTML markup and ile
includes to the Ext JS library and CSS stylesheets.

Using Firefox with the Firebug plugin is a very common development platform for
web developers, as Firebug provides fantastic debugging tools for inspecting and
editing the HTML, DOM, JavaScript, and CSS components that make up a web page.
It also includes a JavaScript console, allowing you to inspect JavaScript errors and
execute JavaScript code.

Other browsers also have debugging tools such as Internet Explorer Developer
Toolbar, Google Chromes' Inspector, and Opera Dragonly. While these tools all
provide many similar functions, Firebug remains the most popular and powerful
web development tool and will be used throughout this book.

Mozilla Firefox can be downloaded from http://www.mozilla.
com/en-US/firefox/. You can learn more about Firebug and
download it from http://getfirebug.com/.

Once you install Firebug, the irst step to using Ext JS is to reference the JavaScript
libraries and CSS stylesheet in your page templates.

<html>

<head>

 <title>Example 2.1</title>

 <!-- Ext stylesheet -->

 <link rel="stylesheet" type="text/css"

 href="../../extjs/resources/css/ext-all.css" />

 <!-- Application stylesheet goes here -->

 <!-- Ext adapter and library -->

 <script type="text/javascript"

 src="../../extjs/adapter/ext/ext-base.js">

 </script>

 <script type="text/javascript" src="../../extjs/ext-all.js">

http:///

Chapter 2

[41]

 </script>

 <!-- Application javascript library goes here -->

</head>

<body>

 <!-- body content -->

</body>

</html>

This code contains the minimum requirements for a page to use Ext JS, the source
located in chapter02\Example 2.1.html of the example code for the book. To use
Ext JS, we need to include references to the following iles, and the iles must be in the
include order listed:

•	 ext-all.css: This is the main Ext CSS ile that controls the look and feel
for the Ext framework and widgets. Rather than making modiications to
this ile to customize or make adjustments to the CSS, you should include a
separate "application" CSS ile. When using an application CSS ile, it should
be included after the ext-all.css ile and before any JavaScript iles. When
determining which CSS rule is applied by the browser, two factors are
considered—CSS speciicity and order. When two CSS rules have the same
speciicity, the last rule is applied.

•	 ext-base.js: This provides an adapter layer of base-level functionality for
DOM manipulation, event handling animation, and so on. Prior to version
1.1, Ext required the use of one of the following base libraries: YUI, jQuery,
or Prototype. By creating adapters for each of the external libraries, Ext
maintained a separation of concerns, allowing developers to choose which
external library to use. Beginning with Ext version 1.1, Ext included its own
native Ext adapter, so external libraries are no longer required.

•	 ext-all.js: This contains the entire JavaScript for all of the Ext components
and widgets. When developing, it's easiest to include ext-all.js or
ext-all-debug.js, which is an uncompressed, unminiied version better
for debugging. Not all sites require the full Ext library, so cut-down
versions can be assembled by including just the components being used.
This is discussed further under performance considerations in Chapter 11,
Performance Tuning your JavaScript.

Similarly to include application CSS iles after the ext-all.css, you should include
your application JavaScript iles. When two JavaScript functions have the same
speciication signature, the last version of the function is the one called.

http:///

Getting Acquainted with Ext

[42]

So, if you haven't already done so, open the chapter02\Example 2.1.html in
Firefox, start Firebug, and type the following command into the console:

Ext.Msg.alert('Hello World', 'Ext JS is very cool!');

Provided your include paths are correct, you should see a modal alert that prevents
you from interacting with the rest of the page until the alert is closed, similar to that
shown in the following screenshot. If not, you probably have an error message Ext is
not deined; adjust your include path to reference the Ext JS library iles correctly.

http:///

Chapter 2

[43]

In fact, you're not really looking at a modal alert, despite your being able to move it
around within the browser window, and it behaving like one. It's really just a bunch
of HTML tags combined with CSS and some JavaScript events. If you switch to the
HTML tab in Firebug, you will see something similar to the following screenshot:

Remember, our page originally had no HTML within the body. Everything you see
in the previous screenshot has been created dynamically using JavaScript and our
call to Ext.Msg.alert. Imagine coming up with the CSS and JavaScript to do this
yourself! This is a small glimpse at why Ext JS is very cool!

http:///

Getting Acquainted with Ext

[44]

Cross-browser DOM manipulation with
Ext.Element
One of the great challenges facing web developers when writing JavaScript is
the lack of consistency in how the Document Object Model (DOM) has been
implemented by the different software vendors.

The World Wide Web Consortium (W3C) was founded in 1994 to promote open
standards for the Internet, publishing standards for browser scripting languages
(ECMAScript) in 1997, and a standardized DOM in 1998. Today, browsers have
varying levels of conformance to the current DOM Level 3 speciication published by
the World Wide Web Consortium (W3C) in 2004.

To allow for many differences between different browser implementations, Ext
provides the Ext.Element class, which encapsulates a DOM element and provides
cross-browser simple DOM manipulation methods.

Open chapter02\Example 2.2.html in Firefox, which includes all of the content of
the earlier Example 2.1.html, along with the following styles and body content:

<html>

 <head>

 ...

 <style type="text/css">

 ...

 .box {

 border: 1px solid #c0c0c0;

 padding: 5px;

 }

 .ux-selected {

 background-color: #dfe8f6;

 border-color: #a3bae9;

 }

 </style>

 ...

 </head>

 <body>

 <!-- body content -->

 <div id="test" class="box">

 <div id="el-1">one</div>

 <div id="el-2">two</div>

 <div id="el-3">three</div>

 <div id="el-4">four</div>

http:///

Chapter 2

[45]

 <div id="el-5">five</div>

 <div id="el-6">six</div>

 <div id="el-7">seven</div>

 <div id="el-8">eight</div>

 </div>

 </body>

</html>

Ext provides the Ext.get method (shorthand for Ext.Element.get) to retrieve any
element as an Ext.Element. Let's see it in action, running the following commands in
the Firebug Console:

var el = Ext.get('test');

console.dir(el);

http:///

Getting Acquainted with Ext

[46]

You should see something similar to screenshot we just saw, where we've
constructed an Ext.element el using the Ext.get command, and then used the
Firebug console.dir command to display the el object on the bottom left.

Firebug shows the properties in a black font, the methods/functions in a green font,
and constructor classes in a red font. When using Firebug to display JavaScript
objects, be aware that you are seeing the raw JavaScript object, so both public and
private methods are exposed.

Ext documentation is included when you download
the Ext JS SDK, and it is also available online at
http://www.sencha.com/deploy/dev/docs/.

You should always consult the Ext documentation if you are unsure whether or not
a method is private, as calling a private method out of context may have undesirable
side effects.

Heavyweight versus lyweight
Ext.get accepts an ID of the node, a DOM Node, or an existing Ext.Element as a
parameter, and returns an Ext.Element (or null when unmatched), so the following
statements are all valid:

// string Id

var el1 = Ext.get('test');

// DOM node

var el2 = Ext.get(document.getElementById('test'));

// Ext Element

var el3 = Ext.get(el1);

Let's try using one of the Ext.Fx methods highlight, which is automatically
applied to the Ext.Element interface, to highlight an element briely:

var el = Ext.get('test');

el.highlight();

The test div should change its background color to yellow and then fade out to its
original color.

We could have written the same instruction using JavaScript chaining as follows:

Ext.get('test').highlight();

http:///

Chapter 2

[47]

If all we are doing with our test div is highlighting it once, the overhead of creating
an Ext.Element is a wasteful of memory resources. The Ext team recognized this,
and created the Ext.fly method (shorthand for Ext.Element.fly), which uses a
global shared lyweight Ext.Element across the library.

Ext.fly takes the same arguments as Ext.get, but should only ever be used for
one-time references to DOM elements that are not going to be used again. So, for our
previous example, we can write instead:

Ext.fly('test').highlight();

For an example of using Ext.fly incorrectly:

/*** example showing incorrect use of Ext.fly ***/

var el = Ext.fly('el-5');

Ext.fly('test').setWidth(400);

Ext.fly('test').center();

el.highlight();

Here, we have assigned a variable to the global lyweight element for Dom element
el-5, then used the lyweight to manipulate another DOM element test. When
we apply the highlight method to our variable, it is accessing the global lyweight,
no longer pointing at our original DOM element. This results in the wrong element
being highlighted.

Ext.fly should only ever be used for
one-time references to DOM elements,
which are not going to be used again.

Sizing and positioning
Ext.Element provides methods for sizing and positioning elements. Let's try a few
of them out using the Firebug console.

Set the width of the test element:

Ext.fly('test').setWidth(400);

Determine the height of the test element and conditionally resize it:

var ht = Ext.fly('test').getHeight();

console.log('ht = %s', ht);

if (ht < 200) {

 Ext.fly('test').setHeight(200);

}

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Acquainted with Ext

[48]

Center the test element in the middle of the page:

Ext.fly('test').center();

Move the test element to a speciic location at x=100, y=50 using animation:

Ext.fly('test').setLocation(100,50,true);

Hide the test element:

Ext.fly('test').hide();

Show the test element, with some animation:

Ext.fly('test').show(true);

Relocate the test element to its original position:

Ext.fly('test').clearPositioning();

As you can see, it's very easy to manipulate the size and positioning of DOM
elements using Ext.Element. We haven't explored all the features here, but if you
refer to the Ext.Element documentation at http://dev.sencha.com/deploy/dev/
docs/?class=Ext.Element, you will ind comprehensive methods for getting and
setting the margin, border, padding, and position of an element.

CSS classes and styling
Ext.Element also has a set of methods for manipulating DOM elements using CSS
classes and styles, allowing you to query, add, remove, and replace classes and
styles. Let's try a few.

First, refresh your page, and resize and center the test div:

Ext.fly('test').setWidth(400);

Ext.fly('test').center();

To add a class to an element:

Ext.fly('el-5').addClass('ux-selected');

http:///

Chapter 2

[49]

Your page should look like the following screenshot:

To remove a class:

Ext.fly('el-5').removeClass('ux-selected');

To alternately add and remove a class, you can toggle it:

Ext.fly('el-5').toggleClass('ux-selected');

To "stripe" the test elements' child elements so each alternate row is highlighted, and
toggle the striping effect on and off:

Ext.fly('test').select('div:even').toggleClass('ux-selected');

http:///

Getting Acquainted with Ext

[50]

The result is shown in the following screenshot:

To add a class to one element, and remove the same class from all siblings:

Ext.fly('el-5').radioClass('ux-selected');

Methods also exist for styles, for example:

Ext.fly('el-5').setStyle('border', '1px solid #FF0000');

DOM traversal
In order to be able to navigate around the DOM tree from any given position,
traversing both up and down the DOM in a browser, Ext provides a traversal
API using CSS selectors to locate elements. Ext supports most of the CSS3
selectors, along with custom selectors and basic XPath. For a complete list of
supported selectors, refer to the Ext API documentation for Ext.DomQuery at
http://dev.sencha.com/deploy/dev/docs/?class=Ext.DomQuery.

Open chapter02\Example 2.3.html, which includes all of the content of the earlier
Example 2.2.html, along with the body containing additional HTML markup for
an unordered list and a paragraph (ul and p elements).

 <body>

 <!-- body content -->

 <div id="test" class="box">

 <div id="el-1">one</div>

 <div id="el-2">two</div>

 <div id="el-3">three</div>

 <div id="el-4">four</div>

 <div id="el-5">five

 <ul id="foo">

 5.1

 5.2

 5.3

http:///

Chapter 2

[51]

 5.4

 <p>a paragraph</p>

 </div>

 <div id="el-6">six</div>

 <div id="el-7">seven</div>

 <div id="el-8">eight</div>

 </div>

 </body>

Using the Firebug console once again, let's try some of the DOM traversal methods
available in Ext.Element.

Let's toggle a class for the irst and last child elements of foo:

Ext.fly('foo').first().toggleClass('ux-selected');

Ext.fly('foo').last().toggleClass('ux-selected');

The result is shown in the following screenshot:

Passing a selector ilters for that selector:

// no selector the toggles the list

Ext.fly('el-5').first().toggleClass('ux-selected');

// using a selector, the paragraph is toggled instead

Ext.fly('el-5').first(‘p’).toggleClass('ux-selected');

http:///

Getting Acquainted with Ext

[52]

To return the irst child at any depth below the current element based on a passed in
selector, we use the child method; whereas for the irst direct child (1 level down),
we use the down method:

// child method finds the first list item

Ext.fly('el-5').child('li').toggleClass('ux-selected');

// down method does not find the first list item

Ext.fly('el-5').down('li').toggleClass('ux-selected');

Navigating between siblings is done using the next and prev methods; once again
you can optionally pass selectors to ilter for that selector:

// toggle previous sibling

Ext.fly('el-5').prev().toggleClass('ux-selected');

// toggle next sibling

Ext.fly('el-5').next().toggleClass('ux-selected');

// toggle next sibling that is a div with class "pickme"

// does not exist in the example file!!

Ext.fly('el-5').next('div.pickme').toggleClass('ux-selected');

Traversing up the DOM path is just as easy using up and parent methods, which
provide similar functionality but accept different parameters.

To select the immediate parent:

var el = Ext.get('foo').first();

el.parent().toggleClass('ux-selected');

Walking up the DOM, looking for a parent that matches the passed simple selector:

// up(String selector, [Number/Mixed maxDepth])

el.up('div.box').toggleClass('ux-selected');

This is equivalent to:

// parent([String selector], [Boolean returnDom])

el.parent('div.box').toggleClass('ux-selected');

Selecting multiple elements
In our DOM traversal examples so far, we have fetched only a single element to
manipulate. More often than not, we are going to be more interested in interacting
with multiple elements, which is where Ext.select and Ext.query come into play.

http:///

Chapter 2

[53]

Ext.select takes a query and returns an Ext.CompositeElement or an array of
Ext.Elements. This allows you to interact easily with every element returned by
Ext.select without looping and modifying each one separately.

For example, we saw earlier to "stripe" the test elements' child elements, and toggle
them on and off, is a one line command:

Ext.fly('test').select('div:even').toggleClass('ux-selected');

Another way of writing the same command could be:

Ext.select('div:even',false,'test').toggleClass('ux-selected');

To add and remove a CSS class when the mouse is over an element is just as easy:

Ext.select('div',false,'test').addClassOnOver('ux-over');

Sometimes we may want to make several changes to the elements, so you can use the
Ext.each method to iterate through an Array/NodeList:

function doSomething() {

 this.highlight();

}

var els = Ext.select('div',true,'test');

els.each(function(el) {

 // several commands..

 el.on('click',doSomething, this);

 console.log(el.id);

});

It is important point to note the second parameter in Ext.

select syntax: Ext.select(String/Array selector,
[Boolean unique], [HTMLElement/String root]).

unique, when true, returns a unique Ext.Element for each
element (defaults to false, returning a shared lyweight
object).

Try running the previous Ext.each example as is, then refresh the page and run the
example replacing true with false. Note the changed behavior; regardless of which
div you click, the last div is highlighted. Are you able to explain why this happens?

Ext.query accepts CSS selector and root node like Ext.select, but instead returns
an array of DOM nodes.

http:///

Getting Acquainted with Ext

[54]

Reworking our previous example to use Ext.query:

function doSomething() {

 this.highlight();

}

var els = Ext.query('div','test');

Ext.each(els,function(el) {

 // el is a DOM node here

 Ext.get(el).on('click',doSomething);

 console.log(el.id);

});

DOM manipulation
Ext provides a strong API to allow us to add, modify, and remove elements in the
DOM easily. We will be using chapter02\Example 2.3.html to test the Ext API
once again.

Let's start by creating some DOM elements:

Ext.fly('test').createChild('<div id="el-9">nine</div>');

Ext.fly('test').createChild({tag:'div',id:'el-10', html:'ten'});

Here, we used the Ext.Element.createChild method to create and append two div
elements to the test element, each containing a text string. For the irst div, we simply
passed the HTML to include. The second example shows an alternative method
using a Ext.DomHelper conig, which provides an abstraction of the DOM allowing
you to build up complex HTML fragments programmatically before applying them
to the DOM.

When using Ext.Element.createChild, an Ext.Element is returned, allowing you
to do additional processing:

var el = Ext.fly('test').createChild({tag:'div', html:'eleven'});

el.addClass('ux-selected');

console.log(el.id);

http:///

Chapter 2

[55]

In this example, an id for the div tag wasn't speciied, instead Ext.Element,
returned to the el variable, was used for additional processing. Take a moment to
inspect the new div using the Firebug HTML inspector. You should see the div tag
has automatically been assigned an id, as shown in the following screenshot:

Adding of elements relative to an existing DOM node is done using insertHTML,
insertSibling, or using convenience methods insertBefore, insertAfter,
insertFirst. Refresh the page, and let's try a few.

Before we do, refresh the page and run the following code to add a border and some
space around the div elements within the test dev:

// add styling to existing div elements

Ext.fly('test').select('div')

 .setStyle('border','1px solid #c0c0c0')

 .setStyle('margin','2px');

http:///

Getting Acquainted with Ext

[56]

Run the following code:

// create a reusable template for text substitution

var html = ' {text} ';

var tpl = new Ext.DomHelper.createTemplate(html);

// show insertHtml placement options

var el = Ext.get('el-4');

el.insertHtml('beforeBegin',tpl.apply({text:'beforeBegin'}));

el.insertHtml('afterBegin' ,tpl.apply({text:'afterBegin'}));

el.insertHtml('beforeEnd' ,tpl.apply({text:'beforeEnd'}));

el.insertHtml('afterEnd' ,tpl.apply({text:'afterEnd'}));

// show insertSibling placement options

var obj = Ext.get('el-7');

obj.insertSibling(tpl.apply({text: 'before Sib'}), 'before');

obj.insertSibling(tpl.apply({text: 'after Sib'}), 'after');

The result is shown in the following screenshot:

Notice the use of Ext.DomHelper.createTemplate in the code; it's something not
previously mentioned. An Ext.Template deines a fragment of HTML code with
some embedded placeholder tags, allowing you to substitute values quickly and
easily. This is done repeatedly further down in the code using the apply method,
which returns the HTML fragment with the substituted values.

http:///

Chapter 2

[57]

The insertHtml method has four different locations to insert the HTML in
relation to this element-beforeBegin, afterBegin, beforeEnd, afterEnd. The
previous screenshot shows the difference between beforeBegin and afterBegin:
beforeBegin creates a sibling node, whereas afterBegin creates a child node. The
beforeEnd and afterEnd locations work similarly.

As you would expect, insertSibling locations of before and after insert HTML
as their names imply.

The methods mentioned before for creating new elements—insertBefore,
insertAfter, insertFirst—can also be used for relocating existing elements.
Refresh your page and try these out:

Ext.fly('el-7').insertBefore('el-5');

Ext.fly('test').select('div:even').insertBefore('el-1');

Ext.fly('test').insertFirst('el-6');

Ext.fly('el-2').insertAfter('el-4').highlight();

Removing nodes is trivial, either referring to the node ID or using CSS selectors:

Ext.fly('test').select('div:even').remove();

Ext.fly('el-8').remove();

Another useful method is wrap that creates and wraps the element with another
element:

Ext.fly('foo').wrap({tag: 'div', class:'box'});

Wrapping an element is a very useful technique used
many times within Ext components.

The Ext.Element.boxWrap wraps the speciied element with a special 9-element
markup/CSS block that renders by default as a gray container with a gradient
background, rounded corners, and a four-way shadow.

www.allitebooks.com

http:///
http://www.allitebooks.org

Getting Acquainted with Ext

[58]

This special mark-up is used throughout Ext when box wrapping elements.
Examples of elements using it include the Ext.Button, Ext.Panel when attribute
frame=true is set, and Ext.Window. To see this in action, run the following code:

Ext.get("el-5").boxWrap();

Ext.get("foo").boxWrap().addClass("x-box-blue");

This screenshot shows the expected output, where el-5 has been wrapped with the
default gray container, and a four-way shadow. Element foo has been wrapped, and
a class x-box-blue has been applied to the wrapper, resulting in a blue container.
The x-box-blue CSS rules are included with Ext; to use an alternate class, you would
need to provide the necessary CSS rules also.

Deining event handlers
Event-driven programming is supported in web browsers through the use of
JavaScript to register event handlers and listeners on page elements in the DOM tree.
Event handlers provide a mechanism to make a HTML page interactive, so when
you click on page elements, or hover over something, JavaScript is executed, and the
appearance or behavior of the page changes.

Historically, developers used the Inline model to add event handlers directly to an
element as an attribute of the element:

<div id="test" onclick="alert(this.id + ' was clicked');">Click me</

div>

http:///

Chapter 2

[59]

Or developers also used the Traditional model to add event handlers via scripts,
for example:

<div id="test">Click me</div>

<script type="text/javascript>

var dom = document.getElementById('test');

dom.onclick = function () {

 alert(this.id + ' was clicked');

};

</script>

This event-handling model is known as DOM Level 0, and allows only a single
event handler for each event to be attached to a DOM node.

The W3C designed a more lexible event handling model in DOM Level 2, to
allow multiple events to be attached to a DOM node and uses methods including
addEventListener, removeEventListener, and dispatchEvent. Unfortunately,
Microsoft does not follow the W3C model, instead uses their own model using
methods including attachEvent, detachEvent, and fireEvent, to provide similar
functionality.

Ext removes the need to deal with different browser event models by wrapping the
browser's native event-object into Ext.EventObject, to provide normalized event
processing, freeing us from dealing with cross-browser differences.

Let's take a look at the ExtEventObject API. Open chapter02\Example 2.4.html,
which includes all of the content of the earlier Example 2.3.html, with some
additional formatting added to the div elements, and a new messages region
included above, as shown in the following screenshot:

http:///

Getting Acquainted with Ext

[60]

To add an event handler or listener to an element, we use the addListener method,
or preferably use the on method, which is shorthand for addListener:

function handleClick(e, t){

 e.preventDefault();

 var target = Ext.get(t);

 target.highlight();

 var msg = Ext.get('msg-ct');

 msg.update('You clicked ' + target.id +

 ', with innerHtml ' + target.dom.innerHTML);

 msg.highlight();

}

// add a click event to div el-6

Ext.fly('el-6').on('click',handleClick);

In this example, we added an event handler for a mouse-click event on a speciic
DOM element, el-6, to execute an action handler function handleClick.
The handleClick function accepts two parameters: e, which is an Ext.EventObject,
and t, the DOM element that was the target of the event. Our handleClick function
is used here to highlight the target element and update the messages region with
information about the target element and highlight the messages region.

The preventDefault method is used to prevent the default handling of the event by
a browser. It's not really necessary here, but if we had attached an event to a DOM
link, it would prevent the browser opening the link address.

Alternate syntaxes for adding the event handler:

Ext.EventManager.on("el-6", 'click', handleClick);

Ext.EventManager.addListener("el-6", 'click', handleClick);

To remove an event handler, we use the removeListener method, or the shorthand
equivalent un method:

Ext.fly('el-6').removeListener('click',handleClick);

Ext.fly('el-6').un('click',handleClick);

You must include a reference to the function passed in the addListener call. All
listeners attached to an element can be removed using removeAllListeners:

Ext.fly('el-6').removeAllListeners();

http:///

Chapter 2

[61]

Using event delegation to reduce memory
consumption
Adding listeners to multiple elements can be done easily using CSS selectors:

Ext.select('div:even','test').on('click',handleClick);

However, before you do add multiple selectors, you may want to consider event
delegation. Rather than registering multiple event handlers for each element in
a group of elements, you can register an event to a container element and take
advantage of events bubbling up the DOM hierarchy.

So, in Example 2.4.html, our HTML looks like this:

 <div id="test" class="box">

 <div id="el-1">one</div>

 <div id="el-2">two</div>

 <div id="el-3">three</div>

 <div id="el-4">four</div>

 <div id="el-5">five

 <ul id="foo">

 5.1

 5.2

 5.3

 5.4

 <p>a paragraph</p>

 </div>

 <div id="el-6">six</div>

 <div id="el-7">seven</div>

 <div id="el-8">eight</div>

 </div>

We could use event delegation as follows:

function handleClick(e, t){

 e.preventDefault();

 var target = Ext.get(t);

 target.highlight();

 var msg = Ext.get('msg-ct');

 msg.update('You clicked ' + target.id +

 ', with innerHtml ' + target.dom.innerHTML);

 msg.highlight();

}

http:///

Getting Acquainted with Ext

[62]

Ext.fly('test').on(

 'click', //event name

 handleClick, //function

 this, //scope

 {delegate: 'div:even'} //options object

);

Here, we have the optional scope and options parameters; within the options object
we have used the delegate attribute to specify a CSS selector to be applied, iltering
the descendants of the target, so that only the even div elements will ire the event.

Event delegation reduces memory consumption,
and reduces potential memory leaks.

Something else really neat about delegates is that the handler will work for any
descendant of the target that matches that CSS selector, even if it is created in
the future.

Try adding two more div elements within the test div:

Ext.fly('test').createChild('<div id="el-9">nine</div>');

Ext.fly('test').createChild('<div id="el-10">ten</div>');

Clicking on el-10 will execute the handleClick function because it matches
the CSS selector.

One-off events
To create a "one off" handler that ires once and then removes itself, we use the
options object and single attribute:

Ext.fly('test').on(

 'click', //event name

 handleClick, //function

 this, //scope

 {single: true} //options object

);

You can use the buffer option to run a handler after a delay period (in milliseconds).
If the event ires again within that period, the original event is cancelled and the new
event invoked after the new delay.

// buffer the handleClick for 1000ms (1 second)

Ext.fly('test').on('click',handleClick, this,{buffer: 1000});

http:///

Chapter 2

[63]

The delay option ires the event after the delay period, but does not cancel events:

// delay the handleClick for 1000ms (1 second)

Ext.fly('test').on('click',handleClick, this,{delay: 1000});

Parameter passing using object notation
Many of the APIs provided by Ext use a config object to pass coniguration settings
to a JavaScript function. So what exactly is this config object, and why use it?

The config object is an object literal, which we will learn about shortly. We use it
because it's more lexible and is self documenting.

Old-school parameters
Using old school JavaScript programming, a typical function looked like this:

function show_prompt(title, message, width) {

 // code

}

To call that code, you would write:

var answer = show_prompt('my title','a short message', 300);

While this isn't too bad for this example, as a developer you have to call the
function passing parameters in the order speciied, and you must pass all
parameters. In a few months time, an issue gets raised, and looking at the
function call you have absolutely no idea what 300 is about without digging
around to ind the function deinition.

Using object notation
The new way of passing parameters is done using object literals, popularized by
Douglas Crockford as JSON (JavaScript Object Notation). Its structure is simple;
it is a comma separated list of properties wrapped in curly braces. Each property is
denoted by listing its name and value separated by a colon character.

Here is a complete example, using object literals:

var config = {

 title: 'Contact details',

 msg: 'Please enter your Name:',

 width: 300,

 buttons: Ext.MessageBox.OKCANCEL,

http:///

Getting Acquainted with Ext

[64]

 multiline: true,

 fn: function (btn, answer, obj) {

 console.log('You typed: ' + answer);

 },

 icon: Ext.MessageBox.INFO

}

Ext.Msg.show(config);

While this example is a little more complicated, it's more readable because we are
passing parameter names and values, so in a few months time it's plain to see that
300 refers to the width.

Object literals don't care about the order of parameters being passed, or whether all
parameters are being passed, so the Ext team could add additional parameters to the
Ext.Msg object and our code will still work. Naturally the Ext team would need to
make the additional parameters optional, or assign default values, but they would
need to update only the object deinition.

One other less obvious beneit is that by wrapping all our variables into an object
literal, we aren't deining variables in the global namespace, reducing the chances
of overwriting an existing variable. This is an increasingly important consideration
as web pages rely more and more on JavaScript, and often include one or more
JavaScript libraries as well as custom code.

Basic syntax
An object literal is an unordered set of properties using the following syntax rules:

•	 An object is enclosed by curly braces {}
•	 Each property lists its name and value separated by a colon character

•	 Name/value pairs are separated by a comma

•	 Names can be almost any string except JavaScript-reserved keywords

•	 Values can be of any data type, including array literals and object literals
•	 Array literals are enclosed by square brackets, for example, ['a',{b: 100},

['f','g','h']]

For further information on JSON, refer to http://www.json.org/.

Beware the trailing comma after the last name/value pair.
Firefox won't object if you add it, but Internet Explorer will
trigger an error: Expected identiier, string or number.

http:///

Chapter 2

[65]

Use namespacing to avoid collisions
Something you have to be aware of when doing JavaScript programming is
corruption of the global namespace. Every time you deine a simple function, or other
variable at the top level of a web page, the names you've chosen could potentially
come in conlict with names used by other developers or libraries that you are using.
In the browser, all global variables become properties of the window object.

So when you declare a variable:

var gDebug = false;

you're actually declaring:

var window.gDebug = false;

More often than not, modern web browser applications use one or more JavaScript
libraries, snippets of code from multiple sources, and code you've written as well. For
our environment, APEX includes jQuery, jQuery UI, and APEX JavaScript libraries,
and we've added Ext also. It's not safe to assume you can reference a variable or object
in the global namespace without impacting an existing variable or object.

http:///

Getting Acquainted with Ext

[66]

When looking at Firebug's DOM tab in this screenshot, we have a basic APEX
application that includes the highlighted apex, Ext, and Playpen namespaced
objects. There are also a great many more variables shown that have been declared in
the global namespace.

If you expanded the Ext object, you would see Ext consolidates all of its classes into
a single namespace of Ext and further organizes its classes into various packages.
APEX has made a concerted effort to namespace it's JavaScript objects between the
3.2 and 4.0 releases, so is moving in the right direction, but isn't quite there yet.

JavaScript rule for namespace collisions are simple:
Last person to have their code included wins.

To see the impact of namespace collisions, open the chapter02\Example 2.1.html
example and type into the Firebug console:

Ext.Msg.alert('Hello World', 'Ext JS is very cool!');

The Ext modal alert should appear. Close it, and type into the Firebug console:

var Ext = 'fred';

Ext.Msg.alert('Hello World', 'Ext JS is very cool!');

This time we have overwritten the Ext object, the namespace collision has removed
the entire Ext object and all its components.

To avoid namespace collisions, you should create your
own namespace, and deine all your JavaScript variables
and functions within that namespace. Ext provides the
Ext.namespace method to do this simply.

http:///

Chapter 2

[67]

Ext.namespace
Ext provides the Ext.namespace method (or the shorthand Ext.ns) which will
set up namespaces for you, including checking if the namespace already exists. For
example, to set up a namespace of Playpen and the packages regions and form:

Ext.namespace('Playpen.regions', 'Playpen.form');

Then to deine a new class, such as customerDetails within Playpen.regions:

Playpen.regions.customerDetails = new Ext.Panel({

 allowDomMove : false,

 applyTo: 'customerDetails',

 animCollapse: false,

 autoHeight: true,

 ...

 titleCollapse: true

});

Ext.BLANK_IMAGE_URL
Ext uses a 1x1 pixel transparent .gif image to create inline icons with CSS
background images, allowing Ext to size objects correctly in a cross-browser
compatible way. In older versions of IE, this defaults to http://extjs.com/s.gif,
which can cause issues if extjs.com is not accessible, or you're using SSL, which will
raise security warnings in browsers.

To prevent these issues, you need to set the Ext.BLANK_IMAGE_URL to a 1x1 pixel
transparent .gif image on your local web server. If you're using a standard APEX
install, you can reference:

Ext.BLANK_IMAGE_URL = '/i/1px_trans.gif';

This needs to be included in your page template directly after the Ext JavaScript iles,
normally included in an external JavaScript ile, but could be inline as follows:

<html>

<head>

 <title>Example 2.1</title>

 <!-- Ext stylesheet -->

 <link rel="stylesheet" type="text/css"

 href="../../extjs/resources/css/ext-all.css" />

 <!-- Application stylesheet goes here -->

 <!-- Ext adapter and library -->

 <script type="text/javascript"

 src="../../extjs/adapter/ext/ext-base.js">

http:///

Getting Acquainted with Ext

[68]

 </script>

 <script type="text/javascript"

 src="../../extjs/ext-all.js">

 </script>

 <!-- Application javascript library goes here -->

 <script type="text/javascript">

 Ext.BLANK_IMAGE_URL = '/i/1px_trans.gif';

 </script>

</head>

<body>

 <!-- body content -->

</body>

</html>

Summary
In this chapter we have spent time familiarizing ourselves with some of the
underlying concepts and functionality Ext provides for manipulating the Document
Object Model (DOM).

By using simple standalone testing pages, we have done isolated testing without
worrying about interaction with APEX, or trying to build end solutions. Using the
Firebug Console, HTML, and DOM tabs, we have executed Ext code snippets and
inspected the results both in the browser and within Firebug.

We have investigated the Ext.Element component, exploring how it allows us to
easily manipulate and navigate the DOM. We have used CSS3 selectors provided
by Ext.DomQuery to retrieve elements of interest, and then modiied them by using
the Ext.Element API to add and remove classes, attach event handlers, and add or
remove elements around them.

We have explored more advanced event techniques such as delegation and one-off
events, as well as modern JavaScript programming concepts such as object notation
and the need for namespacing variables.

Enough with the theory! Let's start building some APEX templates with Ext JS.

http:///

Building a Ext JS Theme

into APEX

This chapter starts our journey building a theme based application on Ext JS into
APEX. It provides a background on APEX themes and discusses how to create an
APEX theme from scratch. Instructions on how to integrate the Ext JS library into the
page template are provided, together with potential issues you may encounter.

This chapter includes:

•	 An overview of APEX themes, explaining the template types that make up a
theme, as well as the beneits of separating the APEX engine, templates, and
application functionality from each other.

•	 Starting out creating a APEX Theme.

•	 Building a Page Template based on the Ext.Viewport component. This
covers the process of creating a template using a standalone prototype and
integrating it into an APEX page template.

•	 Discussion on how JavaScript DOM manipulation can result in input items
appearing outside the form element, and the consequences that result. A
customized version of the Ext.Viewport is created to ensure that input items
always remain with the form.

Theme basics
Out of the box, APEX comes with twenty themes, each theme comprising a collection
of templates used to deine the layout and appearance of an entire application.
An application can have many themes, but only one theme is active at any time;
switching themes is done at design time only.

http:///

Building a Ext JS Theme into APEX

[70]

You can create custom themes, which may be published, either within a workspace
by a Workspace Manager or for the whole APEX instance by an Internal Workspace
Manager. Publishing a theme encourages consistency across applications.

A theme comprises nine template types: breadcrumb, button, calendar, label, list,
page, popup list of values, region, and report. A theme must have at least one of each
of the nine template types.

Within each template type are a set of predeined classes and eight custom classes.
For example, the label template has the following classes:

•	 - Not Identiied -
•	 No Label

•	 Optional Label

•	 Optional Label with Help

•	 Required Label

•	 Required Label with Help

•	 Custom 1... Custom 8

Programmers use these templates to construct the HTML pages that make up an
application. Each page is declaratively deined using metadata to select templates to
be used for the presentation.

The APEX engine dynamically renders an HTML page using the metadata,
assembling relevant templates and injecting dynamic data into placeholders within
the templates. The HTML page is viewed when you request a page through a web
browser. When you submit a page, the APEX engine performs page processing, once
again using declaratively deined metadata to perform computations, validations,
processes, and branching.

This type of processing is a typical Model-View-Controller(MVC) pattern, where
the view is the HTML generated using the application templates. The APEX engine
is the controller and receives the GET or POST input and decides what to do with it,
handing over to domain objects. The domain objects model is encapsulated in the page
deinition and contains the business rules and functionality to carry out speciic tasks.

Separation of concerns
The MVC pattern also promotes another good design principle—separation of
concerns. APEX has been designed so that the APEX engine, templates, and the
application functionality can be optimized independently of each other.

http:///

Chapter 3

[71]

Clearly, the process of assembling and sequencing the steps necessary to render a
page, and process a page are important to the overall solution. By separating this
out and letting Oracle deal with the complexities of this through the APEX engine, it
allows programmers to concentrate on providing business functionality.

Equally, by separating presentation templates from the business logic, it allows each
aspect to be maintained separately. This provides a number of advantages including
ease of design change, allowing templates to be modiied either by different people
or at different times to enhance the interface without breaking the application.

An excellent example of this is the standard themes provided in APEX, which have
been designed to be completely interchangeable. Switching standard themes is
simply a matter of loading a theme from the repository and then switching the active
theme. APEX then remaps components to the new active theme using the template
class identiiers.

Standard themes
We will be building our own custom theme rather than using one of the twenty
pre-built ones. Nevertheless, it's worthwhile knowing what they provide, as we will
build our custom theme by using one of them as a "starter".

http:///

Building a Ext JS Theme into APEX

[72]

Looking at this image, we can see a preview of the standard APEX themes. Each
theme provides a similar interface, so really each standard theme is just a visual
variation on the others. The colors used are a little different, or the HTML layout is
tweaked slightly, but in reality they are all much the same.

Theme 4 is used by APEX as the "starter" theme and contains one template for each
template class for all the template types—a total of 69 templates. Theme 19 is also
worth noting as it's designed for mobile devices. Each of these themes are full of
good HTML practices and show how and where to use the substitution strings.

Creating a theme
When creating a theme, you can choose to copy one from the repository, create
one from scratch or from an export ile. The repository and export ile options copy
the entire theme, and you start editing the template to suit. Creating a theme from
scratch creates a theme without any templates. You then need to deine templates for
each different type before you can switch from the active theme.

In my opinion, the easiest way to build a new theme is to take the approach that the
application should always be in a working state, and the way to do this is to create a
new empty TEMPLATE application using a standard theme and build from there.

From this working base, you can progressively convert the templates to use Ext
functionality, building simple test pages as you go to verify the templates. These test
pages also form part of your template documentation, allowing team members to
examine and understand speciic functionality in isolation.

Once a theme has templates for each of the nine template types, you can publish the
theme into the workspace to be used by your business applications.

The following screenshot shows a dialog named Create Workspace Theme from the
APEX wizard. Notice that you can change the theme number when you publish a
theme, providing a very simple mechanism for you to version control your themes.

http:///

Chapter 3

[73]

A published theme can't be edited directly once it has been created, but using a
TEMPLATE application, you can republish it using a different theme number.
Applications can have multiple themes, but only one active theme. By switching
themes, applications can easily test a new version, safe in the knowledge that changing
back to the earlier version is just a matter of switching back to the prior theme.

So before we go any further, create a new TEMPLATE application based on Theme 4,
and let's begin the process of creating our Ext JS theme.

Building a Viewport Page template
Several of the examples provided with Ext feature the Viewport utility container,
including the RSS Feed Viewer shown in the screenshot below. The Viewport
automatically renders to the document body, sizing itself to the browser viewport
and dividing the page into up to ive distinct regions; the center region is mandatory,
with north, south, east, and west regions being optional.

http:///

Building a Ext JS Theme into APEX

[74]

Viewport regions are conigurable, and by setting a few simple attributes, you quickly
ind yourself with a very interactive page, with expanding/collapsing regions and
splitters to resize regions by clicking and dragging with the mouse.

We are going to build a basic viewport for our APEX page template including
all ive regions.

Starting with a standalone template
Once again we're going to take a prototyping approach to building an APEX page
template. It's easier to build a standalone HTML page and make sure we've got the
JavaScript right, and then load it into APEX.

<html>

 <head>

 <title>#TITLE#</title>

 <link rel="icon" href="#IMAGE_PREFIX#favicon.ico"

 type="image/x-icon">

 <link rel="shortcut icon"

 href="#IMAGE_PREFIX#favicon.ico"

 type="image/x-icon">

 <!-- css includes -->

 <link rel="stylesheet" type="text/css"

 href="../../extjs/resources/css/ext-all.css">

 <link rel="stylesheet" type="text/css"

 href="ex3-1-local-viewport.css">

 <!-- js includes -->

 <script type="text/javascript"

 src="../../extjs/adapter/ext/ext-base.js">

 </script>

 <script type="text/javascript"

 src="../../extjs/ext-all.js">

 </script>

 <script type="text/javascript"

 src="ex3-1-local-viewport.js">

 </script>

 </head>

 <body>

 <div id="app-north-panel">

 <div id="app-logo">#LOGO#

 </div>

 <div id="app-navigation-bar">

http:///

Chapter 3

[75]

 #NAVIGATION_BAR# #CUSTOMIZE# &APP_USER.

 </div>

 #REGION_POSITION_01#

 </div>

 <div id="app-west-panel">#REGION_POSITION_02#</div>

 <div id="app-center-panel">

 #FORM_OPEN#

 <div id="app-messages"> #GLOBAL_NOTIFICATION##SUCCESS_

MESSAGE##NOTIFICATION_MESSAGE#

 </div>

 <div id="app-content">#BOX_BODY#</div>

 #FORM_CLOSE#

 </div>

 <div id="app-east-panel">#REGION_POSITION_03#</div>

 <div id="app-south-panel">footer contents go here</div>

 </body>

</html>

The code shows the content of the standalone HTML page located in chapter03/
ex3-1-local-viewport.html, which contains a mixture of HTML elements and
APEX substitution tags (key words are enclosed by # characters).

Looking at the header section enclosed by HEAD tags, you can see the standard Ext
components: stylesheet ext-all.css, adapter layer ext-base.js, and library ext-
all.js are present. Also included are our application CSS and JavaScript iles: ex3-
1-local-viewport.css and ex3-1-local-viewport.js.

The body section, enclosed by BODY markup tags, contains a series of DIV tags
with region IDs, for example, app-north-panel, which will become panels in our
viewport. APEX uses #FORM_OPEN# and #FORM_CLOSE# substitution tags to deine the
HTML form element wwvFlowForm used for all APEX pages.

In this template, region tags #REGION_POSITION_01#, #REGION_POSITION_02#,
and #REGION_POSITION_03# are outside of the #FORM_OPEN# and #FORM_CLOSE#
substitution tags, so they cannot be used for APEX input items, which we will cover
in more depth shortly in the Issue when input items are outside the form section.

The accompanying JavaScript located in ex3-1-local-viewport.js is:

Ext.onReady(function(){

 Ext.BLANK_IMAGE_URL = '../../extjs/resources/images/default/s.

gif';

 new Ext.Viewport({

 layout: 'border',

 defaults: {

http:///

Building a Ext JS Theme into APEX

[76]

 animCollapse: false,

 autoScroll: true

 },

 items: [{

 applyTo: 'app-north-panel',

 autoHeight: true,

 autoScroll: false,

 region: 'north',

 style: {padding: '0 5px'},

 xtype: 'box'

 }, {

 contentEl: 'app-south-panel',

 height: 30,

 region: 'south',

 style: {padding: '0 5px'},

 xtype: 'box'

 }, {

 contentEl: 'app-west-panel',

 //collapseMode: 'mini',

 collapsible: true,

 margins: '0 0 0 5',

 maxSize: 500,

 minSize: 100,

 region: 'west',

 split: true,

 title: 'Navigation',

 width: 275

 }, {

 contentEl: 'app-center-panel',

 region: 'center',

 title: document.title,

 xtype: 'panel'

 }, {

 contentEl: 'app-east-panel',

 collapseMode: 'mini',

 collapsible: true,

 margins: '0 5 0 0',

 maxSize: 500,

 minSize: 100,

 region: 'east',

 split: true,

 title: 'Actions',

 width: 275

 }]

 });

});

http:///

Chapter 3

[77]

The JavaScript could be summarized as follows:

Ext.onReady(function(){

 Ext.BLANK_IMAGE_URL = '../../extjs/resources/images/default/s.

gif';

 new Ext.Viewport({ coniguration });
});

Looking at the summarized version, we are passing an anonymous function to
Ext.onReady, which executes the function after waiting for only the document
structure to be fully parsed and the HTML converted into a DOM tree. This
performs better than the traditional window.onload handler, which waits for the
entire page to be fully loaded before executing.

The anonymous function contains two statements; the irst assigns the location image
of the 1x1 pixel transparent spacer image using the following code:

 Ext.BLANK_IMAGE_URL = '../../extjs/resources/images/default/s.gif';

The second statement instantiates a new Ext.Viewport object passing its
coniguration settings as a conig object:

 new Ext.Viewport({ ..configuration.. });

Ext.Viewport is a specialized container that renders to the document body,
automatically resizing when the browser window is resized. Viewports contain up to
ive pre-deined regions (or panels) deined in the items object, with the center region
being mandatory. Each of these panels is separately conigured, and can inherit
default conigurations from the viewport.

 new Ext.Viewport({

 layout: 'border',

 defaults: {

 animCollapse: false,

 autoScroll: true

 },

 items: [{

 applyTo: 'app-north-panel',

 autoHeight: true,

 autoScroll: false,

 region: 'north',

 style: {padding: '0 5px'},

 xtype: 'box'

 }, {

http:///

Building a Ext JS Theme into APEX

[78]

 contentEl: 'app-south-panel',

 autoScroll: false,

 height: 30,

 region: 'south',

 style: {padding: '0 5px'},

 xtype: 'box'

 },

Looking at the irst part of the Viewport coniguration, you can see that defaults are
set for animCollapse to switch off animation for collapsing regions, and autoScroll
set to true, enabling scrollbars to appear in regions. These defaults are applied to all
of the regions deined within items, unless speciically overridden, as shown in the
north region.

When using north or south regions, you must specify a height; similarly for east and
west regions, you must specify a width. For the south region here, I've set the height
property in pixels, and for the north region I've used set autoHeight: true to show
an alternative method.

Notice that the north region is using applyTo: 'app-north-panel', whereas the
south region is using contentEl: 'app-south-panel'. The attributes produce a
subtly different outcome when rendered; one takes an existing HTML element and
places it into the layout of the viewport, where the other uses the existing DOM
element as part of the layout. Can you work out which attribute does what? Consult
the Ext documentation and inspect the HTML using Firebug and verify.

In this example, the difference between using applyTo and
contentEl doesn't adversely impact the behavior, but it's a little
reminder to take a little extra time to understand what's happening.

In the west region is a commented-out line //collapseMode: 'mini'. Try
collapsing and expanding the panel before comparing the behavior to the east
region. When in mini mode the regions split bar displays a small collapse button
appears in the center of the bar, and the region collapses to a thinner bar than in
normal mode. Which collapseMode do you prefer?

Finally, the CSS ile ex3-1-local-viewport.css contains the following CSS:

#app-navigation-bar {

 color:grey;

 position:absolute;

 right:5px;

}

http:///

Chapter 3

[79]

There is almost nothing in our CSS ile; just one rule to right align the
app-navigation-bar DIV element in our template. With so little content
in our CSS ile, it's hardly worth having a separate ile; we could instead
just include it within the page.

Remember here that we're taking the irst step in building our application CSS, and
we are going to be adding more rules as we go. So let's start a good habit and include
the CSS that is going to be used by every page request using the template in a
separate ile, taking advantage of static ile caching by the browser and reducing the
size of our dynamically generated page.

This screenshot shows what our prototype looks like in the browser window.

The north region on the left-hand side contains APEX substitution tags #LOGO# for the
application logo, and #REGION_POSITION_01# for breadcrumbs. The right-hand side
contains substitution tags for #NAVIGATION_BAR#, #CUSTOMIZE#, and &APP_USER.

http:///

Building a Ext JS Theme into APEX

[80]

The west region is titled Navigation, and contains the #REGION_POSITION_02#
substitution tag. As the name suggests, you would include links in this panel
to navigate your application. Similarly, the east region contains the #REGION_
POSITION_03# substitution tag, and could be used for actions speciic to the page.

The center region's title is dynamically assigned in our viewport deinition to use
JavaScript document.title property, which in our page is the #TITLE# substitution
tag. The center region body contains the #FORM_OPEN# and #FORM_CLOSE# tags that
enclose the notiication and message substitution tags #GLOBAL_NOTIFICATION#,
#SUCCESS_MESSAGE#, #NOTIFICATION_MESSAGE#, along with the #BOX_BODY#
substitution tag for our page content.

The south region here contains some plain text, and would typically be used for page
referencing and copyright information.

Loading the page template into APEX
So all that remains is to transfer the prototype into APEX as a page template, and
then make a couple of minor adjustments.

Currently the path to our included JavaScript and CSS iles is:

 <!-- css includes -->

 <link rel="stylesheet" type="text/css"

 href="../../extjs/resources/css/ext-all.css">

 <link rel="stylesheet" type="text/css"

 href="ex3-1-local-viewport.css">

 <!-- js includes -->

 <script type="text/javascript"

 src="../../extjs/adapter/ext/ext-base.js">

 </script>

 <script type="text/javascript"

 src="../../extjs/ext-all.js">

 </script>

 <script type="text/javascript"

 src="ex3-1-local-viewport.js">

 </script>

http:///

Chapter 3

[81]

You will need to modify the path for the src attributes to suit the location of the iles
on your web server.

If you are using a hosted APEX environment, such as apex.
oracle.com, you can reference Ext JS iles using the CacheFly
content delivery network, described in Chapter 1, Setting up an Oracle
APEX and Ext JS Environment. For example, for ext-all.js, use
http://extjs.cachefly.net/ext-3.3.1/ext-all.js.

The #HEAD# substitution tag needs to be added in the HTML header to include
the standard APEX JavaScript in the page template. APEX will automatically add
JavaScript and CSS includes replacing the substitution tag. It is best to add the tag
before our JavaScript and CSS iles, as it allows our custom code to override both
CSS rules and JavaScript functions when needed.

For this book the Ext library is stored on the web server under /ux/extjs/, and
application assets under /ux/playpen/, so the path looks like:

 #HEAD#

 <!-- css includes -->

 <link rel="stylesheet" type="text/css"

 href="/ux/extjs/resources/css/ext-all.css">
 <link rel="stylesheet" type="text/css"

 href="/ux/playpen/ex3-1-local-viewport.css">

 <!-- js includes -->

 <script type="text/javascript"

 src="/ux/extjs/adapter/ext/ext-base.js">
 </script>

 <script type="text/javascript"

 src="/ux/extjs/ext-all.js">
 </script>

 <script type="text/javascript"

 src="/ux/playpen/ex3-1-local-viewport.js">
 </script>

The other change you will need to make is to change the ex3-1-local-viewport.
js ile modifying the location of the 1x1 pixel transparent spacer image to: Ext Ext.
BLANK_IMAGE_URL = '/i/1px_trans.gif';.

Here, we are referencing a blank image that is part of the standard APEX install.

http:///

Building a Ext JS Theme into APEX

[82]

Now, open one of the existing page templates. This example uses the No Tabs with
Sidebar template. Replace content of the header, body, and footer regions with the
updated content from the prototype, as shown in the following screenshot:

http:///

Chapter 3

[83]

Rename the template to EXTJS No Tabs with Sidebar, so it's easy to recognize the
updated template and apply the changes.

Finally, copy the ex3-1-local-viewport.js and ex3-1-local-viewport.js iles
onto your web server in the location referenced in the page template.

Create a blank page using the newly created template, and run the page. It should
look the next screenshot:

Looking at the North panel, we haven't speciied a logo in the Application properties
so the #LOGO# substitution tag has been replaced with an empty value. The layout
issues on the right-hand side with the navigation bar and user name are caused by
additional HTML included in the Subtemplate section of the page template. The
appearance of the links in the header needs further reinement, which we will do a
little later under breadcrumb templates. So, although we have made a good start on
the page template, there is still more to do.

http:///

Building a Ext JS Theme into APEX

[84]

To ix the navigation bar on the right-hand side so that the user name is on the same
line, update the page template, changing the Subtemplate as follows.

Navigation Bar - remove the div tag

Before <div class="t4NavigationBar">#BAR_BODY#</div>

After #BAR_BODY#

Navigation Bar Entry- remove the class attribute

Before #TEXT#

After #TEXT#

While we are working on the Subtemplate, we might as well modify the Success
Message and the Notiication entries also.

The Success Message, shown at the top of the preceding screenshot, uses the
following HTML:

<div id="app-notification" class="app-success">

 <div class="x-tool x-tool-close"

 onclick="Ext.fly('app-notification').remove();"

 style="display: block; margin-left:5px"> </div>

 <div>#SUCCESS_MESSAGE#</div>

</div>

And it requires the following CSS rule to be included in the CSS ile:

.app-success {

 background:none repeat scroll 0 0 #DFE8F6;

 border:1px dotted #99BBE8;

 color:#15428B;

 cursor:default;

 clear: both;

 font:normal 11px tahoma,arial,sans-serif;

 padding:5px 0;

 text-align:center;

 margin:10px 30%; width:40%;

}

http:///

Chapter 3

[85]

Functionally, it is the same as the standard APEX content it replaces; a DIV region
displaying a message, with an image that deletes the region when clicked. JavaScript
purists may complain about including JavaScript code in the highlighted onclick
attribute.

The "better" way would be to remove the onclick attribute and adding the following
code to add a listener in your application JavaScript:

Ext.onReady(function(){

 /*… application code before…*/

 if (Ext.fly('app-notification')) {

 Ext.fly('app-notification').on('click', function(){

 this.remove();

 });

 }

});

Both ways achieve the desired outcome; it's just a matter of personal preference
which way you want to code.

The Notiication entry in the previous screenshot is a more complicated layout based
on the HTML created by Ext.Alert, allowing the reuse of existing Ext CSS rules.
It provides similar functionality to the Success Message; the HTML source is in
chapter03/ex3-2-local-viewport.html.

The page template now has all the page deinition and also the Subtemplate sections
completed. But that's not the end of the page template just yet! There is a nasty issue
potentially lurking in the template, where input items can appear outside the FORM
element, which needs to be addressed.

Issue when input items are outside the form

As web developers, we are becoming more reliant on using JavaScript to manipulate
the page layout to provide functionality such as tab panels, accordion regions, popup
dialogs, and the like. This leads to existing elements in the DOM being relocated to
new positions, and form INPUT items can end up outside the FORM element.

http:///

Building a Ext JS Theme into APEX

[86]

Irrespective of what JavaScript library you use, DOM manipulation can lead to form
INPUT items appearing outside the FORM element. In fact, you don't even need to use
JavaScript at all to cause the issue, as we will show in this example.

This screenshot shows the Page Deinition within APEX Builder for a simple page
containing the following items of interest:

•	 The Contact Details region to be rendered in location Body (3) [#BOX_
BODY#], with input items P30_FIRST_NAME, P30_LAST_NAME, and P30_
ADDRESS.

•	 The Region outside FORM region to be rendered in location Position 2
[#REGION_POSITION_02#], containing item P30_PHONE.

If you refer to the earlier page template, it shows the #REGION_POSITION_02# clearly
outside the #FORM_OPEN# and #FORM_CLOSE# substitution tags.

http:///

Chapter 3

[87]

When the page is rendered, and after the layout has been changed using JavaScript, a
simpliied view of the HTML looks like this:

<html>

<body>

<input type="text" name="p_t01" value="" id="P30_PHONE"/>

<form action="wwv_flow.accept" method="post" name="wwv_flow"

id="wwvFlowForm">

 <input type="text" name="p_t02" value="" id="P30_FIRST_NAME"/>

 <input type="text" name="p_t03" value="" id="P30_LAST_NAME"/>

 <textarea name="p_t04" id="P30_ADDRESS"></textarea>

</form>

</body>

</html>

This shows the highlighted input item, where ID P30_PHONE is clearly outside the
FORM tags.

From the HTML code shown, you can see the action for the form is wwv_flow.
accept and the item names are p_t01 .. p_t04, corresponding to the database
package procedure and parameters being executed by the mod_plsql HTTP request.

When the form is submitted, the values for the inputs are loaded into session state,
page processing occurs, and the APEX engine branches to a page. In this example,
there is no processing, simply branching to the same page, so the page is rendered
again with the passed values.

So, given the P30_PHONE item is not in the form it shouldn't be processed, but what
about the items within the form? The following is the result of submitting the form,
showing submitted and returned values:

ID Name Submitted value Returned value

P30_PHONE p_t01 aaa -

P30_FIRST_NAME p_t02 bbb -

P30_LAST_NAME p_t03 ccc bbb

P30_ADDRESS p_t04 ddd ccc

So as expected, no value is returned for P30_PHONE, because it was outside the form.
However, there is an unexpected displacement of the values, shifting them down,
so the P30_FIRST_NAME submitted value of bbb is returned in P30_LAST_NAME, and
similarly the value for P30_LAST_NAME is returned in P30_ADDRESS. The whereabouts
of the value for P30_ADDRESS is unknown and is not easily explained.

http:///

Building a Ext JS Theme into APEX

[88]

Without having access to the source code for the APEX engine, it is only possible to
speculate on why this occurs. Nevertheless, we still need to deal with the issue and
come up with a strategy to prevent it from occurring.

Ensuring that input items always remain with
the form
To ensure form items always remain within the FORM element, we need to address
both the static HTML issue and potential JavaScript DOM manipulation.

Modify the page template so that all region substitution tags are contained
within the #FORM_OPEN# and #FORM_CLOSE# substitution tags, as shown in the
following screenshot:

http:///

Chapter 3

[89]

The previous screenshot shows the updated Viewport template, addressing the static
HTML side of the issue. The #FORM_OPEN# tag now appears immediately after the
<body> markup, and the #FORM_CLOSE# tag immediately before the </body> markup.

The only other change is that the application JavaScript ile is now
ex3-1-custom-viewport.js, which addresses the JavaScript DOM manipulation.

To ensure form items always remain within the form element, we can use
a customized version of Ext.Viewport, which uses the APEX form element
wwvFlowForm as the container for the viewport, instead of the body element.

// create custom namespace if doesn't exist

Ext.ns('Ext.apex');

// custom container

Ext.apex.Viewport = Ext.extend(Ext.Container, {

 initComponent : function() {

 Ext.apex.Viewport.superclass.initComponent.call(this);

 // APEX specific code

 this.el = Ext.get('wwvFlowForm');

 if(this.el){

 this.el.addClass('x-viewport');

 var debug = Ext.getDom('pdebug');

 if (!(debug && (debug.value == 'YES'))) {

 document.getElementsByTagName('html')[0].className += '

x-viewport';

 }

 } else {

 this.el = Ext.getBody();

 document.getElementsByTagName('html')[0].className += '

x-viewport';

 }

 this.el.setHeight = Ext.emptyFn;

 this.el.setWidth = Ext.emptyFn;

 this.el.setSize = Ext.emptyFn;

 this.el.dom.scroll = 'no';

 this.allowDomMove = false;

 this.autoWidth = true;

 this.autoHeight = true;

 Ext.EventManager.onWindowResize(this.fireResize, this);

 this.renderTo = this.el;

 },

http:///

Building a Ext JS Theme into APEX

[90]

 fireResize : function(w, h){

 this.fireEvent('resize', this, w, h, w, h);

 }

});

// Register container so that lazy instantiation may be used

Ext.reg('apex-viewport', Ext.apex.Viewport);

The script starts by creating a custom namespace, Ext.apex, to ensure that we don't
pollute the global namespace. The Ext.apex.Viewport is then deined, which is a
direct copy of the Ext.Viewport, excepting the highlighted APEX speciic code.

For APEX, the code checks to see if the APEX form element with the wwvFlowForm
ID is present in the page, and if yes, whether it uses this as containing item for the
Viewport. When wwvFlowForm is not present, it reverts to standard Ext.Viewport
functionality, using the document body instead. This is useful when previewing the
page template, or selecting the location for a region in the APEX Builder.

Finally, the container is registered so that lazy instantiation can be used using the
xtype attribute value of apex-viewport. See the panel deinitions in the application
code for examples of xtypes box and panel.

A check is also done to see if APEX is in debug mode, and if yes, it ensures the
HTML page allows scrolling, otherwise scrolling is disabled for the page and
scrolling is managed within the viewport using Ext features.

To use the custom viewport, we simply replace calls to Ext.Viewport with Ext.
apex.Viewport like this:

Ext.onReady(function(){

 Ext.BLANK_IMAGE_URL = '../../extjs/resources/images/default/s.

gif';

 new Ext.apex.Viewport({ coniguration });
});

The custom viewport needs to appear before the application code in the JavaScript
ile. The application code has also been modiied to show the east panel only when
its container app-east-panel has child nodes other than text.

Ext.onReady(function(){

 var items = [];

 Ext.BLANK_IMAGE_URL = '/i/1px_trans.gif';

 items.push({

http:///

Chapter 3

[91]

 applyTo: 'app-north-panel',

 autoHeight: true,

 autoScroll: false,

 region: 'north',

 style: {padding: '0 5px'},

 xtype: 'box'

 }, {

 contentEl: 'app-south-panel',

 autoScroll: false,

 height: 30,

 region: 'south',

 style: {padding: '0 5px'},

 xtype: 'box'

 }, {

 contentEl: 'app-west-panel',

 //collapseMode: 'mini',

 collapsible: true,

 margins: '0 0 0 5',

 maxSize: 500,

 minSize: 100,

 region: 'west',

 split: true,

 title: 'Navigation',

 width: 275

 }, {

 contentEl: 'app-center-panel',

 region: 'center',

 title: document.title,

 xtype: 'panel'

 });

 // conditionally add east panel if it contains child nodes

 if (Ext.fly('app-east-panel') &&

 Ext.fly('app-east-panel').first()) {

 items.push({

 contentEl: 'app-east-panel',

 collapseMode: 'mini',

 collapsible: true,

 margins: '0 5 0 0',

 maxSize: 500,

 minSize: 100,

 region: 'east',

 split: true,

 title: 'Actions',

http:///

Building a Ext JS Theme into APEX

[92]

 width: 275

 });

 }

 new Ext.apex.Viewport({

 layout: 'border',

 defaults: {

 animCollapse: false,

 autoScroll: true

 },

 items: items

 });

});

The page template is now complete and the issue of input items appearing outside
the form element has been resolved.

Summary
We have seen how APEX page processing its a typical Model-View-Controller
(MVC) pattern, where the view is the HTML generated using the application
templates. The APEX engine is the controller and receives the GET or POST input
and decides what to do with it, handing it over to domain objects. The domain
objects model is encapsulated in the page deinition and contains the business rules
and functionality to carry out speciic tasks.

This separation of concerns provided by the MVC pattern allows APEX to easily
swap themes for an application. The publishing mechanism allows new versions of a
theme to be built separately from the application. By switching themes, applications
can easily test a new version, safe in the knowledge that we can revert to the earlier
version if required.

We then set about creating a page template, using a standalone prototype initially to
make sure the markup and JavaScript works correctly before loading it into APEX.
Once a few adjustments were made to load it, the page template was up and running
in APEX. This revealed some layout issues with the navigation sub-template (which
was corrected), as along with the success and error notiications.

http:///

Chapter 3

[93]

Finally, the issue of JavaScript DOM manipulation potentially causing input items
appearing outside the form element was demonstrated. A custom version of Ext.
Viewport was developed to ensure that this would never happen in our page template.

While we won't be going through any more page templates here, it is very
worthwhile to put some time into the "Login" template before you preview your
application to anyone. After all, irst impressions count, and the irst page people
will see is the Login page.

In the next chapter we turn our attention to other APEX template types used within
the page template for regions, labels, and lists.

http:///

http:///

Ext Themed Regions,

Labels, and Lists
This chapter continues building a theme based on Ext into APEX, developing
templates for the regions, labels, and lists.

Regions act as the basic building block for content within a page. Each page can
hold an unlimited number of regions. The appearance of regions is controlled using
Region templates, which can use a mixture of HTML markup, CSS, and JavaScript to
control the visual and structural layout.

HTML lists are enormously versatile when combined with CSS layouts, due to their
graphically lexible nature. In this chapter we will develop list templates, which use
traditional CSS styling, as well as using list templates to act as a JavaScript generator
to integrate with the Ext JS TreePanel component.

In this chapter we will cover:

•	 Creating region templates using Ext JS panels

•	 Adding JavaScript functionality to region templates

•	 Creating simple label templates

•	 Using Ext JS QuickTips for error messages

•	 Styling simple list templates relying on just HTML and CSS
•	 Using list templates to integrate the Ext JS TreePanel component

http:///

Ext Themed Regions, Labels, and Lists

[96]

Region templates
The APEX Theme 4 we are using as our "starter" theme contains 22 region templates,
one for each of the region template classes. Using this many template classes in an
application can only lead to confusion and inconsistencies. Oracle has provided so
many alternatives to give you a wide range of templates from which to pick and
choose when designing your application layout, but don't expect that you would use
them all.

Well-designed APEX applications will typically rationalize this down to a small
number of region templates used for the everyday functionality covering most of the
application, and then perhaps add a few "specialized" region templates.

Region templates must contain a #BODY# token; all other allowable tokens are
optional. Tokens for the title #TITLE#, #REGION_ID# or #REGION_STATIC_ID#, and
#REGION_ATTRIBUTES# are commonly included.

Button position names, such as #EDIT#, #CLOSE#, #CREATE#, #CREATE2#, #EXPAND#,
#HELP#, #DELETE#, #COPY#, #NEXT#, and #PREVIOUS# are also commonly included.
Similar to reducing the number of template types, it's a good idea to rationalize the
number of button position names to just a few. Because buttons can be assigned to
any button position name, the ordering of buttons can be mostly managed through
sequencing of buttons within the page region.

Report Region
The Ext Basic Panel works well here for the Report Region template, which is
typically used for "classic" reports.

To construct the "Basic Panel, No JavaScript" template shown in the previous
screenshot, the following HTML has been used:

<div id="#REGION_STATIC_ID#" class="x-panel ux-panel">
 <div class="x-panel-header">

 #TITLE#

http:///

Chapter 4

[97]

 </div>

 <div class="x-panel-bwrap">

 <div class="x-panel-body">

 <div class="x-panel-tbar" align="right">
 #PREVIOUS##NEXT##DELETE##COPY##CHANGE#

 </div>

 <p>#BODY#</p>

 </div>

 </div>

</div>

If you refer the Ext documentation for Ext.Panel - frame conig option, available
at http://dev.sencha.com/deploy/dev/docs/?class=Ext.Panel, you will see
the same HTML is generated for a dynamically constructed panel. We are including
the panel-speciic structural markup to reproduce the visual appearance of the Ext.
Panel component.

Two minor additions to the Ext markup have been included, both shown in bold.

Adding the ux-panel CSS class to the outer DIV allows customization of the DIV
and its child components without affecting other objects using the Ext CSS classes.
For example, the following CSS adds a margin at the bottom of the Panel to create
a vertical spacing between panels. Also added is some padding to the body of the
panel, so contained elements are not hard up against the border.

.ux-panel {margin-bottom: 10;}

.ux-panel .x-panel-body {padding: 5px}

The other change included is the align="right" attribute to the x-panel-tbar DIV,
used to right align button elements.

To make the Report Region template collapsible, simply add the following JavaScript
immediately after the HTML in the template body:

<script type="text/javascript">

Ext.onReady(function(){

 new Ext.Panel({

 allowDomMove : false,

 applyTo: '#REGION_STATIC_ID#',

 animCollapse: false,

 autoHeight: true,

 collapsible:true,

 titleCollapse: true

 });

});

</script>

http:///

Ext Themed Regions, Labels, and Lists

[98]

Setting conig option applyTo with the #REGION_STATIC_ID# tag will render the
Panel to the corresponding DOM node. When applyTo is used, the Ext.Panel
code checks the DOM node for constituent parts of the panel speciied by CSS
class names within the main element. The panel will automatically create those
components from that markup. Any required components not speciied in the
markup will be auto-generated if necessary.

The following class names are supported (baseCls defaults to x-panel):

•	 baseCls + '-header'

•	 baseCls + '-header-text'

•	 baseCls + '-bwrap'

•	 baseCls + '-tbar'

•	 baseCls + '-body'

•	 baseCls + '-bbar'

•	 baseCls + '-footer'

The other conig options make the panel collapsible, adding a collapse icon in the
top right of the header bar. When the icon is clicked, the panel body collapses to be
completely hidden. The icon inverts, and clicking on it again restores the panel body.
Setting the titleCollapse option to true allows you to click anywhere in the title to
collapse the panel body.

Form Region
In case of Form Regions, it is useful to distinguish them visually from non-editable
regions. Once again we will use the Ext Basic Panel, this time using the "framed" look.

http:///

Chapter 4

[99]

The following is the HTML code for the Framed Panel, No JavaScript, shown in the
previous screenshot:

<div id="#REGION_STATIC_ID#" class="x-panel ux-panel">

 <div class="x-panel-tl">

 <div class="x-panel-tr">

 <div class="x-panel-tc">

 <div class="x-panel-header">

 #TITLE#

 </div>

 </div>

 </div>

 </div>

 <div class="x-panel-bwrap">

 <div class="x-panel-ml">

 <div class="x-panel-mr">

 <div class="x-panel-mc">

 <div class="x-panel-tbar" align="right">

 #PREVIOUS##NEXT##DELETE##COPY##CHANGE#

 </div>

 <div class="x-panel-body">

 <p>#BODY#</p>

 </div>

 </div>

 </div>

 </div>

 <div class="x-panel-bl x-panel-nofooter">

 <div class="x-panel-br">

 <div class="x-panel-bc"></div>

 </div>

 </div>

 </div>

</div>

Like the Basic Panel used for the Reports Region template, it contains the same
basic "structural" DIV elements, with the addition of a series of DIVs to provide the
rounded corners. The CSS rules applied to the panel body are different, providing
the blue background color, and more signiicant visual difference, we are after.

http:///

Ext Themed Regions, Labels, and Lists

[100]

The HTML code for the Framed Panel, Collapsible region is much simpler. It is
quite similar to that used for the Basic Panel in the Reports Region template.

<div id="#REGION_STATIC_ID#" class="x-panel ux-panel">

 <div class="x-panel-header">

 #TITLE#

 </div>

 <div class="x-panel-tbar" align="right">

 #PREVIOUS##NEXT##DELETE##COPY##CHANGE#

 </div>

 <div class="x-panel-body"><p>#BODY#</p></div>

</div>

The differences being the x-panel-bwrap DIV is not present, and the x-panel-tbar
DIV is a sibling instead of a child node of the x-panel-body DIV.

The previous screenshot shows the HTML without the JavaScript to convert it into a
Framed Panel. It looks like an imperfect version of the Basic Panel. The reason behind
this much simpler HTML gets back to the applyTo conig option for Ext.Panel, which
is looking for the "structural" class names to convert within the main element. If we
kept the Framed Panel, No JavaScript version, the Ext.Panel JavaScript does not check
for the "visual classes", so they are ignored leading to a questionable result.

The JavaScript to create the Framed Panel is once again almost identical, the only
difference being the frame: true conig option:

<script type="text/javascript">

Ext.onReady(function(){

 new Ext.Panel({

 applyTo: '#REGION_STATIC_ID#',

 animCollapse: false,

 autoHeight: true,

 collapsible:true,

 frame: true,

 titleCollapse: true

 });

});

</script>

http:///

Chapter 4

[101]

Additional region templates
Undoubtedly you will need more region templates than we have created here. As we
progress through the chapters, we will be adding more specialized templates as we
go, and revisiting the ones we have created.

For the Form Region and Report Region templates, and some additional variations of
both, which include a toolbar region, see chapter04/ex-4-panels.html.

Label templates
Label templates have only ive predeined classes:

•	 No Label

•	 Optional Label

•	 Optional Label with Help

•	 Required Label

•	 Required Label with Help

Probably the only real decision required for which classes you need to deine
templates is whether or not your application is going to use item-level help.

The need to distinguish between optional and mandatory labels visually, as well as
the need to easily hide labels, indicates that you will need to deine a template for
each of these classes.

http:///

Ext Themed Regions, Labels, and Lists

[102]

This screenshot shows the optional and mandatory labels we will be creating,
with the mandatory label including a red asterisk to differentiate it visually. The
appearance of the labels is similar to that used for Ext labels; however, the HTML
markup and CSS used has to be completely customized because APEX uses HTML
tables to layout items and labels.

Optional label
The HTML for the optional label is as follows:

Before label:

<span id="#CURRENT_ITEM_NAME#-label"

 class="ux-form-item-label">

<label for="#CURRENT_ITEM_NAME#">

After label:

</label>

On error before label:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="#ERROR_MESSAGE#">

On error after label:

</div>

The CSS that is used with the label is:

.ux-form-item-label{

 font:normal 11px tahoma,arial,helvetica,sans-serif;

}

.ux-status-error {

 background: transparent no-repeat 3px 2px;

 background-image: url(/ux/extjs/resources/images/default/form/

exclamation.gif);

 color: #CC3333;

 cursor: pointer;

 display: inline;

 line-height:16px;

 padding:2px 2px 2px 25px;

}

http:///

Chapter 4

[103]

The HTML used for the label is very basic, simply a label element referencing its
item using the #CURRENT_ITEM_NAME# tag, which is then enclosed by a span element.
The purpose for wrapping the label with a span element is that it allows more CSS
rules to be applied than the label element. For example, you could specify a CSS
rule setting a ixed width for the span, but if you tried to do the same for the label
element, the rule would simply be ignored.

QuickTips for error messages
Looking at following screenshot, you can see one of the issues faced when displaying
inline error messages. The input items have been pushed to the right, the length of
the error message forcing the input item to be partially obscured.

So, how can we overcome this problem while still providing meaningful inline
error messages?

One way is to include a small error image and include the error message in the title
and alt attributes, so when the mouse hovers over it the message is revealed as a
tooltip. Ext has taken this concept and improved it with Ext.QuickTips, as shown in
the following screenshot:

http:///

Ext Themed Regions, Labels, and Lists

[104]

Ext.QuickTips provides attractive and customizable tooltips for any element, and
can be conigured via tag attributes directly in markup.

Ext documentation summarizes the supported attributes (optional unless
otherwise noted).

•	 hide: Specifying "user" is equivalent to setting autoHide = false. Any
other value will be the same as autoHide = true.

•	 qclass: A CSS class to be applied to the quick tip (equivalent to the "cls"
target element conig).

•	 qtip (required): The quick tip text (equivalent to the "text" target
element conig).

•	 qtitle: The quick tip title (equivalent to the "title" target element conig).
•	 qwidth: The quick tip width (equivalent to the "width" target

element conig).

You can also conigure the QuickTips singleton in addition to the
supported attributes.

To enable Ext.QuickTips, you need to include a call to Ext.QuickTips.init in your
application JavaScript.

Ext.onReady(function(){

 // Init the singleton.

 // Any tag-based quick tips will start working.

 Ext.QuickTips.init();

 // Apply a set of config properties to the singleton.

 // Use interceptTitles to pick up title attribute,

 // excepting IE as cannot prevent tooltip appearing also.

 Ext.apply(Ext.QuickTips.getQuickTip(), {

 interceptTitles: (!Ext.isIE),

 maxWidth: 300,

 minWidth: 100,

 showDelay: 50,

 trackMouse: true

 });

 // more code

});

http:///

Chapter 4

[105]

For the example provided in the previous screenshot, the markup for the Last Name
label with its error message looks like:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="Last name must be specified and must contain upper and lower

case letters.">

 <label for="P30_LAST_NAME">Last Name</label>

</div>

The DIV element has a class attribute of ux-status-error, which displays a
background image, padding the element suficiently to display the image and
provide some spacing before the label text.

Specifying the ext:qclass="x-form-invalid-tip" attribute means the QuickTip
will use an Ext CSS rule speciically designed for errors, rather than the standard
QuickTip styling.

Optional label with help
The HTML is identical to that of the optional label, with an additional link element:

Before label:

<span id="#CURRENT_ITEM_NAME#-label"

 class="ux-form-item-label">

<label for="#CURRENT_ITEM_NAME#">

After label:

</label>

On error before label:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="#ERROR_MESSAGE#">

On Error after label:

</div>

http:///

Ext Themed Regions, Labels, and Lists

[106]

The CSS that is used with the label is:

.ux-form-item-label a {

 color:#1E4176;

 cursor:pointer;

 text-decoration:none;

 -moz-outline: none;

 outline: none;

}

.ux-form-item-label a:hover {

 text-decoration:underline;

}

The HTML used here is the same as for the optional label, with the inclusion
of a link <a href="javascript:popupFieldHelp('#CURRENT_ITEM_ID#',
'&SESSION.')">, which calls the APEX JavaScript to display item help in a
popup window.

Additional CSS has been included to make the link visually similar, but not the same
as the optional label, with a subtle color difference and different cursor to provide
visual cues for a different behavior. When the mouse hovers over the label, it is
underlined, reinforcing again the cue for a different behavior.

Mandatory label
The HTML for the mandatory label is almost identical to the optional label:

Before label:

<span id="#CURRENT_ITEM_NAME#-label"

 class="ux-form-item-label">

<label for="#CURRENT_ITEM_NAME#">

After label:

*

</label>

On error before label:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="#ERROR_MESSAGE#">

http:///

Chapter 4

[107]

On error after label:

</div>

The only difference between the optional and mandatory labels is the addition of the
* markup in the After Label section, and the additional CSS rule to make
the asterisk red:

.ux-form-item-label em {color:#CC3333;}

Mandatory label with help
The HTML is identical to that of the mandatory label, with an additional link element
used to display ield-level, context-sensitive help:

Before label:

<span id="#CURRENT_ITEM_NAME#-label"

 class="ux-form-item-label">

<label for="#CURRENT_ITEM_NAME#">

After label:

*

</label>

On error before label:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="#ERROR_MESSAGE#">

On error after label:

</div>

No additional CSS is required for the link element, which uses the same CSS rules as
the optional label with help.

Hidden label
The HTML for the hidden label is even simpler:

Before label:

http:///

Ext Themed Regions, Labels, and Lists

[108]

After label:

On error before label:

<div class="ux-status-error" ext:qclass="x-form-invalid-tip"

ext:qtip="#ERROR_MESSAGE#">

On error after label:

 </div>

For this label, we are using a SPAN element with an Ext class named x-hidden to
hide the label text. The On error label markup remains the same as the optional label,
allowing errors to be displayed even when no label is visible. An extra HTML string
() has been added to ensure the error icon displays correctly when no text has
been provided for the label.

This wraps up the section on Label templates, which really are quite straightforward,
just requiring a minimal amount HTML markup and some CSS styling. The addition
of Ext.QuickTips here neatly solves the problem of error messages ruining
region layouts while retaining APEX provided functionality for item-level,
context-sensitive help.

List templates
Lists are one of the most versatile HTML elements, providing a way to display
content and information in a very easy way to scan and read. APEX contains a great
variety of lists already with its built-in themes, as is evident by the template classes
for lists:

•	 Button List

•	 Hierarchical Expanded

•	 Hierarchical Expanding

•	 Horizontal Images with Label List

•	 Horizontal Links List

•	 Pull Down Menu

•	 Pull Down Menu with Image

•	 Tabbed Navigation List

•	 Vertical Images List

•	 Vertical Ordered List

http:///

Chapter 4

[109]

•	 Vertical Sidebar List

•	 Vertical Unordered List with Bullets

•	 Vertical Unordered List without Bullets

•	 Wizard Progress List

The list templates display data deined in APEX lists, and may be lat or hierarchical
in structure. A list is considered to be hierarchical when a parent-child relationship
has been deined in the list for one or more entries.

If your lists become overly complicated or lose their simplicity, you will have lost
the essence of the list and will lose your visitors' interest as well. To start with, let's
create the list templates shown in previous screenshot.

Vertical unordered list without bullets
The list template has a large number of ields available to use; only the ones being
populated are shown here.

•	 Name: EXTJS vertical unordered list without bullets

•	 Template Class: Vertical unordered list without bullets

List template before rows:

<div class="ux-list">

List template current:

<li class="ux-list-selected">#TEXT#

http:///

Ext Themed Regions, Labels, and Lists

[110]

List template current with sub list items:

<li class="ux-list-selected">#TEXT#

List template noncurrent:

#TEXT#

List template noncurrent with sub list items:

#TEXT#

Sublist template current:

<li class="ux-list-selected">#TEXT#

Sublist template current with sub list items:

<li class="ux-list-selected">#TEXT#

Sublist template noncurrent:

#TEXT#

Sublist template noncurrent with sub list items:

#TEXT#

Sublist template after rows:

</div>

For a lat list, the sublist ields are unnecessary, and removing the sublist markup
would make absolutely no difference. However, not having the sublist markup
would mean a hierarchical list would only display the top-level list items. For this
reason, it's a good practice to deine the sublist markup and apply CSS styling to suit.

Ext includes some CSS rules to "reset" unordered lists and list items, removing
margins, padding, and list item indicators; so, before we add any CSS rules of our
own, both a lat list and a hierarchical list look like Before CSS styling list in the
following screenshot, which is close to the desired result:

http:///

Chapter 4

[111]

The following CSS will produce the look of the After CSS styling list shown earlier
in previous screenshot:

.ux-list {

 background:#fff;

 padding:10px;

 text-align:left;

 border:0 none transparent;

}

.ux-list li {

 color:#ccc;

 line-height:16px;

 font-family: helvetica,arial,tahoma,sans-serif !important;

 font-size:11px;

}

.ux-list .ux-list-selected {

 background-color:#D9E8FB;

}

.ux-list a {

 color:#555555;

 padding-left:2px;

}

.ux-list a:link, .ux-list a:visited, .ux-list a:active {

 color:#555555;

 text-decoration:none;

http:///

Ext Themed Regions, Labels, and Lists

[112]

}

.ux-list a:hover {

 color:#0464BB;

 text-decoration:underline;

}

.ux-list .ux-list-selected a {

 color:#000000;

}

By wrapping a DIV tag around the list and assigning a class name of ux-list to the
DIV tag, all unordered list and list items within don't need any class attributes. This
reduces the size of the generated markup slightly, and also makes it easy to restyle
the list by changing the class name for the DIV, as we will see in the next template.

For the "Current" ields, the ux-list-selected class has been added, but because
the corresponding CSS rules are preixed by ux-list, changing the class name for
the DIV will follow on to any "current" list item.

Vertical unordered list with bullets
To create this template, all we need to do is copy the "EXTJS vertical unordered list
without bullets" template using the APEX copy feature on the Shared Components |
Templates page within APEX Application Builder and make the following edits:

Name: EXTJS Vertical Unordered List with Bullets

Template Class: Vertical Unordered List with Bullets

List Template Before Rows:

<div class="ux-list ux-list-bullet">

Surprised at how little was changed?

Because the structure of the list isn't being changed, only the CSS class needs to be
modiied and additional CSS rules added:

.ux-list-bullet ul {

 list-style-type: square;

 margin-left:13px;

}

http:///

Chapter 4

[113]

In this case, the original class ux-list was kept and a second class name
ux-list-bullet added. For CSS styling it means the original classes are
applied and any new classes have their attributes added.

The addition of the one CSS rule adds the square bullet to the list, with the left
margin indenting the list, and for hierarchical sublists, the indent is multiplied by the
number of levels. The previous screenshot shows the difference between a lat list
and a hierarchical list using the template.

Building an Ext JS tree template using lists
Every computer user is immediately familiar with using a tree view for navigating in
an application. Tree components allow hierarchical data to be presented in a compact
and structured manner, allowing the user to interact to hide or show information.

APEX hierarchical lists are ideal for presenting static data, and using the built-in
lists to store and display the data provide some advantages over a custom
table-based solution.

Built-in lists allow you to use conditional logic when displaying list entries using
either the "Conditions" ields, or "Authorization Scheme". This means you can
conditionally show items depending on security privileges, or show or hide items
based on some application state.

http:///

Ext Themed Regions, Labels, and Lists

[114]

A second advantage is the list data is part of the APEX application export, so you
don't need to remember to migrate data from application tables.

Let's take a look at the prototype, chapter04/ex-4-tree-panel.html, shown in
previous screenshot, and examine the JavaScript used to construct the tree.

<div id="tree-div"></div>

<script type="text/javascript">

Ext.onReady(function(){

 // define tree data as an object

 var treeData = {text:"Root Node", expanded:true, children:[

 {id:"L01",text:"Cars", href:"#",leaf:false,children: [

 {id:"L02",text:"Passenger", href:"#",leaf:true},

 {id:"L03",text:"4WD", href:"#",leaf:true}]},

 {id:"L04",text:"Marine", href:"#",leaf:false,children: [

 {id:"L05",text:"Motorized", href:"#",leaf:false,children: [

 {id:"L06",text:"Diesel", href:"#",leaf:true}]},

 {id:"L07",text:"Sail", href:"#",leaf:true}]},

 {id:"L08",text:"Motorcycles",href:"#",leaf:false,children: [

 {id:"L09",text:"Road", href:"#",leaf:true},

 {id:"L10",text:"Off Road", href:"#",leaf:true}]}

]};

 // create the tree

 new Ext.tree.TreePanel({

 renderTo:'tree-div',

 useArrows:true,

http:///

Chapter 4

[115]

 autoScroll:true,

 animate:true,

 border:false,

 rootVisible: false,

 root: treeData

 });

});

</script>

Looking at the prototype code, you can see two separate code blocks, the irst being a
JavaScript object of tree node deinitions. Each tree node has the id, text, href, and
leaf properties deined, except the root node, which just has the text and expanded
properties deined.

Ext JS automatically assigns an ID to each tree node if it doesn't already have an
ID assigned, so the ID is optional. The generated ID is a text string in the form ext-
genN, with N being replaced with a number. The reason behind assigning an ID
to the other elements is the fact that we are interacting with the backend server,
asynchronously loading tree nodes or manipulating nodes, and those nodes are
associated with backend data such as a database records primary key, so it's very
useful to be able to match nodes with the backend data.

However, the root node is an artiicial construct, required by Ext.tree.TreePanel,
because every tree must have only one root node.

The second code block instantiates an Ext.tree.TreePanel object, passing a
coniguration block. Along with coniguring how the tree is to be displayed, it also
assigns the root to the treeData object deined in the irst code block, and sets the
renderTo:'tree-dev' property to use the DIV markup immediately before the
script block.

APEX 4.0 tree template
Release 4 of APEX added the "Template Deinitions for First Entry" section to the List
Template, including four new ields:

•	 List Template Current (First)

•	 List Template Current with Sub List Items (First)

•	 List Template Noncurrent (First)

•	 List Template Noncurrent with Sub List Items (First)

http:///

Ext Themed Regions, Labels, and Lists

[116]

These new ields assist in generating a unique ID for the target DIV tag, used to
render the tree. I will show you an alternative version for earlier releases of APEX
shortly, but let's irst look at the APEX 4 version.

List template current:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true,

isCurrent:true}

List template current with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

isCurrent:true, children:[

List template noncurrent:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true}

List template noncurrent with Sub List Items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

children:[

Between List Elements:

,

List template current (irst):

<div id="tree#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = 'tree#LIST_ITEM_ID#';

var treeData = {text:"Root Node", expanded:true, children:

[{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true,

isCurrent:true }

List template current with sub list items (irst):

<div id="tree#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = 'tree#LIST_ITEM_ID#';

http:///

Chapter 4

[117]

var treeData = {text:"Root Node", expanded:true, children:

[{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

isCurrent:true, children:

[

List template noncurrent (irst):

<div id="tree#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = 'tree#LIST_ITEM_ID#';

var treeData = {text:"Root Node", expanded:true, children:

[{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true}

List template noncurrent with sub list items (irst):

<div id="tree#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = 'tree#LIST_ITEM_ID#';

var treeData = {text:"Root Node", expanded:true, children:

[{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

children:

[

Sub list template current:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true,

isCurrent:true }

Sub list template current with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

isCurrent:true, children: [

Sub list template noncurrent:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true}

http:///

Ext Themed Regions, Labels, and Lists

[118]

Sublist template noncurrent with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false, children:

[

Between sub list items:

,

Sublist template after rows:

]}

List template after rows:

]};

new Ext.tree.TreePanel({

 renderTo:treeRegion,

 useArrows:true,

 autoScroll:true,

 animate:true,

 border:false,

 rootVisible: false,

 root: treeData

});

});

</script>

Traditionally, templates contain HTML markup and occasionally a little JavaScript.
Here we are doing exactly the opposite with just a single DIV element, and using the
rest of the template to generate JavaScript code.

Despite appearances, the template is close to our original prototype; however, there
is one adjustment that had to be made.

In the prototype, the DIV tag the TreePanel component will be rendered into is
speciied by the renderTo attribute as a string:

 // create the tree

 new Ext.tree.TreePanel({

 renderTo:'tree-div',

 useArrows:true,

 autoScroll:true,

 animate:true,

 border:false,

 rootVisible: false,

 root: treeData

 });

http:///

Chapter 4

[119]

In the APEX template, a variable has been deined and referenced:

<div id="tree#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = 'tree#LIST_ITEM_ID#';

 // code...

new Ext.tree.TreePanel({

 renderTo:treeRegion,

 useArrows:true,

 autoScroll:true,

 animate:true,

 border:false,

 rootVisible: false,

 root: treeData

});

The reason for doing this is that the list template does not allow #REGION_ID# or
some equivalent substitution tag to be used in the List template before rows ield.
To generate a unique ID for DIV, the #LIST_ITEM_ID# has been used in the irst list
item. Because this cannot be referenced later in the List Template After Rows ield,
the ID has to be passed by variable reference.

In case you're wondering, the treeRegion variable is local to the anonymous
function enclosed by Ext.onReady, so you could have multiple instances of the
variable without any issue.

Prior APEX versions tree template
APEX versions prior to APEX 4.0 don't have the "Template Deinitions for First
Entry" section, so it is a two-part solution to create a tree component using a list
template. The tree deinition remains mostly unchanged in the list template, the code
in the "First Entry" ield needs to be moved to a customized region template.

The markup for the "EXTJS Tree Panel" region is as follows:

<div id="#REGION_STATIC_ID#" #REGION_ATTRIBUTES#></div>

<script type="text/javascript">

Ext.onReady(function(){

var treeRegion = '#REGION_STATIC_ID#';

http:///

Ext Themed Regions, Labels, and Lists

[120]

// define tree data as an object

var treeData = {text:"Root Node", expanded:true, children:[

#BODY#

]};

new Ext.tree.TreePanel({

 renderTo:treeRegion,

 useArrows:true,

 autoScroll:true,

 animate:true,

 border:false,

 rootVisible: false,

 root: treeData

});

});

</script>

The region creates a DIV element with an ID populated by the #REGION_STATIC_ID#
substitution tag. The #BODY# tag will be populated by the list deinition:

List template current:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true,

isCurrent:true}

List template current with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

isCurrent:true, children:[

List template noncurrent:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true}

List template noncurrent with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

children:[

Between list elements:

,

Sub list template current:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true,

isCurrent:true}

http:///

Chapter 4

[121]

Sub list template current with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false,

isCurrent:true, children: [

Sub list template noncurrent:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:true}

Sublist template noncurrent with sub list items:

{id:"#LIST_ITEM_ID#",text:"#TEXT#",href:"#LINK#",leaf:false, children:

[

Between sub list items:

,

Sublist template after rows:

]}

The only differences between this and the APEX 4.0 version are that the Template
Deinitions for First Entry section doesn't exist, and the List Template After Rows
ield is blank.

Highlighting the current node
To highlight the "current" node in our tree, as shown in the following screenshot, the
list template use the attribute isCurrent:true for the current entries.

For example the "Sub List Template Current" looks like:

{id:"#LIST_ITEM_ID#", text:"#TEXT#", href:"#LINK#", leaf:true,

isCurrent:true}

http:///

Ext Themed Regions, Labels, and Lists

[122]

Now we need to modify the JavaScript to detect this attribute and use built-in Ext.
tree.treePanel functionality to select the node. Because you're most likely to be using
the tree regularly, it's worthwhile creating a custom component and saving it to your
application JavaScript ile, rather than embedding the code within the page. A nice
way of doing this is by extending the Ext JS component.

The code shown here is in chapter04/Ext.apex.tree.TreePanel.js.

// create custom namespace if doesn't exist

Ext.ns('Ext.apex.tree');

/**

 * @class Ext.apex.tree.TreePanel

 * @extends Ext.tree.TreePanel

 * <p>The APEX TreePanel highlights the first node with "isCurrent"

set to true.</p>

 */

Ext.apex.tree.TreePanel = Ext.extend(Ext.tree.TreePanel, {

 afterRender: function(){

 Ext.apex.tree.TreePanel.superclass.afterRender.call(this);

 this.highlightCurrentNode();

 },

 highlightCurrentNode: function(){

 var path = this.getCurrentNodePath(this.root.attributes);

 this.expandPath(path, 'id', function(isSuccess, currentNode){

 if (isSuccess) {

 currentNode.select();

 currentNode.ensureVisible();

 }

 });

 },

 getCurrentNodePath: function(node){

 if (node.isCurrent) {

 return this.pathSeparator + node.id;

 }

 else {

 if (node.children) {

 for (var i = 0; node.children.length > i; i += 1) {

 var result = this.getCurrentNodePath(node.children[i]);

 if (result) {

 return this.pathSeparator + node.id + result;

 }

http:///

Chapter 4

[123]

 }

 }

 }

 // not found

 return null;

 }

});

// Register container so that lazy instantiation may be used

Ext.reg('apex-treepanel', Ext.apex.tree.TreePanel);

Ext uses lazy loading an Ext.tree.TreeNode's child nodes, meaning the child nodes
are loaded only when a tree node is expanded. This reduces the number of DOM
nodes rendered by the initial tree load and improves performance, particularly for
large trees.

However, it's somewhat inconvenient here, as the Ext.tree.treePanel API doesn't
provide a mechanism to search for nodes that haven't been rendered yet. As the
data for the tree is contained within the page, and not being fetched by an AJAX
request, it's safe to extend the Ext.tree.treePanel to search the tree data for the
unrendered nodes.

And that's what we are doing—searching down the hierarchy path of the root node:

 highlightCurrentNode: function(){

 var path = this.getCurrentNodePath(this.root.attributes);

 this.expandPath(path, 'id', function(isSuccess, currentNode){

 if (isSuccess) {

 currentNode.select();

 currentNode.ensureVisible();

 }

 });

 },

Once the current node is detected, we use the Ext.tree.treePanel API call
currentNode.select(); to select (and render) the node, and then scroll it into view
using currentNode.ensureVisible();.

To call the extension, just modify the template replacing the reference to
Ext.tree.TreePanel with Ext.apex.tree.TreePanel.

http:///

Ext Themed Regions, Labels, and Lists

[124]

Customizing individual nodes
APEX provides spare substitution tags #A01#...#A10# for list items, allowing you
to add additional content to list items if your list template supports it. It is good
practice to use these spare tags for special templates, and use the standard tags for
lists so that you can easily swap templates on a page-by-page basis.

So, modify all the template items to include #A02# after the leaf tag, for example:

{id:"#LIST_ITEM_ID#", text:"#TEXT#", href:"#LINK#", leaf:true#A02#}

Now you have a list item ield that stores 2000 characters of additional data.

For example, to change the appearance of a node:

Deine a CSS rule for the node icon in your application CSS ile, using the
!important attribute to override the normal node icon:

.ux-lock {

 background-image: url(/ux/extjs/resources/images/default/grid/

hmenu-lock.gif) !important;

}

Then add the following text in the A02 ield for a node (note the leading comma):

,iconCls: "ux-lock"

The nodes appearance is now a padlock, as shown in the following screenshot:

With 2000 characters available with which to play, you can do quite a bit, and if that's
not enough, you still have nine of the remaining #A01#..#A10# substitution tags up
your sleeve.

http:///

Chapter 4

[125]

Here's another example, attaching a click handler to a node:

,iconCls:'ux-lock',

listeners:{click:function(node, e){

 // stop standard event

 e.stopEvent();

 Ext.MessageBox.show({

 title: 'Credits',

 msg: 'Website developed by Snazzy Websites',

 buttons: Ext.MessageBox.OK

 });

}}

We will be covering much more on Ext trees in later chapters, but as you can see, you
can do quite a bit just using the list template as your data source.

Summary
In this chapter we've covered Region templates, showing how to create static
versions of the Ext.Panel with framed and unframed variants. Then, to make the
regions collapsible, a few lines of JavaScript were added with minor modiications to
the static templates.

For Label templates, we created simple HTML templates using custom CSS to
approximate the Ext look. Inline error messages can create display issues, pushing
items off the display area. By modifying the error attributes for labels to make use of
Ext.QuickTips, a small error icon is displayed instead; when the mouse hovers over
the icon, an error message is revealed.

For List templates, we started by creating some very simple templates relying on
just HTML and CSS, all using the same list structure. By modifying only the class
of a DIV wrapper element, different appearances could be achieved with minimal
additional CSS rules.

APEX lists are ideal for presenting static data, and using the built-in lists has
advantages over a custom table-based solution. Built-in lists allow you to display
entries conditionally based on "Conditions" ields, or "Authorization Scheme". List data
is also part of the application export, so you don't need to remember to include data
from database tables as part of your application promotions.

http:///

Ext Themed Regions, Labels, and Lists

[126]

Using List templates, we implemented the Ext.tree.TreePanel, showing how templates
can also be used to produce JavaScript code and JSON objects, and not just HTML.
Two versions of the Tree Template were created—one for APEX 4.0 and the other
for earlier versions of APEX. Using the current list item template ield to identify the
current tree node, the Ext.tree.TreePanel was extended to create a custom component,
allowing the current tree node to be selected and scrolled into view.

Finally, we saw how to customize the appearance of individual tree nodes using
the A01#..#A10# substitution tags available for each list item, as well as add speciic
JavaScript code.

In the next chapter we continue developing templates for the remaining template
types, emphasizing a rich and responsive interface for buttons, popups, calendars,
and reports.

http:///

Ext Themed Buttons,

Popups, Calendars,

and Reports
Have you ever stopped and asked yourself "What's the difference between a link
and button"?

You press a button when you want something to happen, just as in everyday
life. You press a button to switch on a light, change channels on TV, or start your
computer, washing machine, car, and so on. The BRB, or big red button, is often
featured in movies with the person in charge sweating over the decision of triggering
a self-destructive process. "Whatever you do, do not press the big red button." When
you press a button, there are consequences!

On the other hand, the main purpose of a link is to navigate to another location,
not really affecting anything and no real consequences. In other words, the humble
button on your web application is a really important component and needs to be
given serious design consideration.

We continue building up a theme based on Ext into APEX, developing templates for
the remaining template types: buttons, popup list of values, breadcrumbs, calendars,
and reports.

The modern website user experience is now about rich and responsive user
interfaces, with interfaces displaying intuitive visual cues to communicate the
status of the users' interaction with the system. For instance, clicking on a button
often changes the appearance from "normal" to a "pressed" look, giving immediate
feedback to the user, conirming their action has triggered an action with the system.

By the end of the chapter, you will have a "minimal" theme ready to publish.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[128]

Button templates
APEX allows you to create three styles of buttons: HTML, Template, and Image.

The HTML button creates the native browser-based button with attributes you
can specify; the rendered appearance differs based on your operating system and
browser. The HTML button is lightweight for HTTP requests, but limited in how you
can manipulate its appearance.

The Image button allows you to control the appearance by specifying the image used
and the image attributes. A signiicant limitation of image-based buttons is that you
have to specify the image details every time you create a button—a real productivity
killer. For this reason alone, I would strongly encourage you not to use image-based
buttons, but rather create a template-based button with the image details included.

The Template button provides you with far greater design lexibility, allowing you to
duplicate the HTML generated by either the HTML or Image style buttons, or create
something with greater functionality.

The additional lexibility Template buttons offer, without the drawbacks of either of
the other button styles, make it the obvious choice for all your buttons.

Over the next few pages, we will explore the following alternative approaches
to buttons:

•	 Creating a custom markup button using Sliding Doors and CSS sprites

•	 An Ext static markup template button

•	 JavaScript enabling the Ext button

•	 Toolbar buttons using pure JavaScript

Sliding doors meet CSS sprites
Here, we are creating a custom markup button using the sliding doors method to
provide horizontal scalability and creating multiple states by applying different
background images contained in a sprite image. The following screen shows
what we are trying to achieve—a normal button appearance, that is, a light blue
background when the mouse hovers over, and a darker blue background when the
button is pressed. The Apply Changes button shows the appearance of the button is
maintained for variable widths.

http:///

Chapter 5

[129]

A standalone example of the inished buttons can be found in chapter05/ex-5-
buttons.html.

The Sliding Doors technique was irst introduced on A List Apart (http://www.
alistapart.com/articles/slidingdoors/). The principle involves making
two images slide over each other, allowing the button to stretch horizontally to
accommodate the button content, as shown in the following diagram. By making one
of the images suficiently wide, you can accommodate a large range of button widths.

The simpliied HTML for this button is:

<button class="ux-btn-alt ux-btn-markup">

 Button

</button>

To hide the buttons border and a ensure consistent layout for different browsers, the
following CSS rules are applied:

button.ux-btn-alt{

 border:0;

 background:none;

 cursor: pointer;

 padding:0;

 margin:0;

 width:auto;

 overflow: visible; /* removes extra side padding in IE */

 text-align:center;

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[130]

 white-space:nowrap;

 height: 22px;

 }

.ux-btn-alt span, .ux-btn-alt span em {

 display: block;

 height: 22px;

 line-height: 22px;

}

/* override extra padding in Firefox */

.ux-btn-alt::-moz-focus-inner {

 border: 0;

 padding: 0;

}

/* prevent RH edge disappearing when pressed */

.ext-opera .ux-btn-alt span {

 margin-right:2px;

 margin-bottom:1px;

}

.ux-btn-alt em{

 color:#333333;

 font:11px arial,tahoma,helvetica,sans-serif;

 }

The border:0 setting removes the border from the button; the remaining settings
ensure the height of the button is the same as the images used and ensure that the
text positioning and appearance is consistent across different browsers.

One way of minimizing HTTP requests is to combine multiple images into a single
image, or sprite, and using the CSS background-image and background-position
properties to display the desired image segment. Here, we are using the sprite
shown in the following igure, which holds left and right images for the button on a
transparent background. The button positions for the "Normal" state are shown with
the left button at (0,0) and the right button at (right,-100px).

http:///

Chapter 5

[131]

.ux-btn-alt em{

 padding-left:10px;

 background:url(btn-sprite.gif) no-repeat 0 0;

 }

.ux-btn-alt span{

 padding-right:0 10px 0 0;

 background:url(btn-sprite.gif) no-repeat right -100px;

 }

The images for the button are speciied using the CSS background property,
a shorthand way of specifying background-image and background-position
properties. The EM element is used for the left image, and the SPAN element is used
for right image. Here, both images have been combined into a single image, using
CSS offsets to reference the right image.

To create the "hover" and "active" appearance for the buttons, we use the CSS
selectors of the same name with the !important attribute to override the
background-position of the SPAN and EM elements:

.ux-btn-alt:hover em, .ux-btn-alt-over em {

 background-position: 0 -30px !important;

}

.ux-btn-alt:hover span, .ux-btn-alt-over span {

 background-position: right -130px !important;

}

.ux-btn-alt:active em, .ux-btn-alt-click em{

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[132]

 color:#000000;

 background-position: 0 -60px !important;

}

.ux-btn-alt:active span, .ux-btn-alt-click span {

 background-position: right -160px !important;

}

All modern browsers support the :active pseudo selector; however, when it comes
to supporting the :hover pseudo selector, there is an exception of IE6 and IE7. The
additional ux-btn-alt-over selector was added to be able to include JavaScript to
address this deiciency.

For toolbars, the button borders can be hidden until the mouse hovers over using:

.x-toolbar .ux-btn-alt span, .x-toolbar .ux-btn-alt em {

 background-position: 0 -100px;

}

APEX sliding door CSS sprite button template
To include this little gem as an APEX button template, add the CSS rules and button
sprite to your resource iles, and create the following button template:

<button type="button" class="ux-btn-alt ux-btn-markup"

onclick="#LINK#" value="#LABEL#" #BUTTON_ATTRIBUTES#>

 #LABEL#

</button>

The complete CSS for the button can be found in chapter05/ex-5-buttons.html,
and is shown below. Just add the images to your resources, and include the CSS in
your project CSS ile, adjusting the paths for the images as necessary.

button.ux-btn-alt{

 border:0;

 background:none;

 cursor: pointer;

 padding:0;

 margin:0;

 width:auto;

 overflow: visible; /* removes extra side padding in IE */

 text-align:center;

 white-space:nowrap;

 height: 22px;

 }

http:///

Chapter 5

[133]

.ux-btn-alt span, .ux-btn-alt span em {

 display: block;

 height: 22px;

 line-height: 22px;

}

/* override extra padding in Firefox */

.ux-btn-alt::-moz-focus-inner {

 border: 0;

 padding: 0;

}

/* prevent RH edge disappearing when pressed */

.ext-opera .ux-btn-alt span {

 margin-right:2px;

 margin-bottom:1px;

}

.ux-btn-alt em{

 color:#333333;

 font:11px arial,tahoma,helvetica,sans-serif;

}

.ux-btn-alt em{

 padding-left:10px;

 background:url(btn-sprite.gif) no-repeat 0 0;

 }

.ux-btn-alt span{

 padding:0 10px 0 0;

 background:url(btn-sprite.gif) no-repeat right -100px;

 }

.ux-btn-alt:hover em, .ux-btn-alt-over em {

 background-position: 0 -30px !important;

}

.ux-btn-alt:hover span, .ux-btn-alt-over span {

 background-position: right -130px !important;

}

.ux-btn-alt:active em, .ux-btn-alt-click em{

 color:#000000;

 background-position: 0 -60px !important;

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[134]

}

.ux-btn-alt:active span, .ux-btn-alt-click span {

 background-position: right -160px !important;

}

.x-toolbar .ux-btn-alt span, .x-toolbar .ux-btn-alt em {

 background-position: 0 -100px;

}

So, there you have it, a cross-browser method for custom styling button elements using
sliding door sprites to provide interactive feedback on hover and when clicked.

Let's have a look now at how we can create an Ext.Button from markup.

Building a hideous Ext.Button
The markup used for the standard Ext.Button is made up using in the Ext team's
own words "a hideous table template". Hideous it may be, but the advantage of
using this complex table structure is that it provides enormous lexibility in its
dimensions. The following screenshot shows some of the layouts that can be
created using an Ext.Button:

To create a button template duplicating the Ext layout, the irst thing we need to
do is get the markup generated for an Ext.button. This can be done quite easily
using Firebug.

http:///

Chapter 5

[135]

Open an example page that has the Ext JavaScript iles attached, and run the
following commands from the Firebug console:

Ext.get(document.body).update('<div id="test"></div>');

new Ext.Button({

 text: '#TITLE#',

 scale:'small',

 renderTo: 'test'

});

The irst command replaces the entire HTML document body, with a single DIV
element having an ID of test. The second command renders an Ext.Button into the
DIV. I'm using the small scaled button here, but you may prefer the "medium" or
"large" buttons for your application.

From there, locate the test DIV in the Firebug HTML tab, as shown in the following
screenshot. select it, and using the right-click menu, choose the Copy innerHTML
option and paste it into your favorite text editor.

With a little formatting, the markup looks something like this:

<table style="width: auto;" id="ext-comp-1013" class="x-btn x-btn-

noicon " cellspacing="0">

<tbody class="x-btn-small x-btn-icon-small-left">

<tr>

 <td class="x-btn-tl"><i> </i></td>

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[136]

 <td class="x-btn-tc"></td>

 <td class="x-btn-tr"><i> </i></td>

</tr>

<tr>

 <td class="x-btn-ml"><i> </i></td>

 <td class="x-btn-mc">

 <em class="" unselectable="on">

 <button class=" x-btn-text" id="ext-gen15"

type="button">#TITLE#</button>

 </td>

 <td class="x-btn-mr"><i> </i></td>

</tr>

<tr>

 <td class="x-btn-bl"><i> </i></td>

 <td class="x-btn-bc"></td>

 <td class="x-btn-br"><i> </i></td>

</tr>

</tbody>

</table>

To convert this into an APEX button template only requires us to strip out
the ID attributes, and add in the APEX substitution tags for #LINK# and
#BUTTON_ATTRIBUTES#. Like every good lazy programmer, I had already
included the #LABEL# tag when creating the button.

The inished markup for the EXTJS Button template is:

<table onclick="#LINK#" cellspacing="0" class="ux-btn ux-btn-markup

x-btn x-btn-noicon" style="width:auto;" #BUTTON_ATTRIBUTES#>

<tbody class="x-btn-small x-btn-icon-small-left">

<tr>

 <td class="x-btn-tl"><i> </i></td>

 <td class="x-btn-tc"></td>

 <td class="x-btn-tr"><i> </i></td>

</tr>

<tr>

 <td class="x-btn-ml"><i> </i></td>

 <td class="x-btn-mc">

 <em unselectable="on" class="">

 <button type="button" class="x-btn-text">#LABEL#</button>

 </td>

 <td class="x-btn-mr"><i> </i></td>

</tr>

http:///

Chapter 5

[137]

<tr>

 <td class="x-btn-bl"><i> </i></td>

 <td class="x-btn-bc"></td>

 <td class="x-btn-br"><i> </i></td>

</tr>

</tbody>

</table>

The opening TABLE element highlighted in the template needs some explanation.

First, using the onclick="#LINK#" attribute allows the button to work quite happily
using standard APEX functionality without any further JavaScript manipulation
whatsoever. This provides robustness to the design. As soon as the button has been
rendered, a user can click on the button, and it will execute. For very simple pages,
such as wizards with sensible default values, an experienced user will click through
the page rapidly.

The class="ux-btn ux-btn-markup x-btn x-btn-noicon" has two non-standard
class attributes:

ux-btn-markup acts as a marker that will be used shortly to add some JavaScript
functionality. ux-btn is used to apply the following CSS rules, ensuring standard
Ext buttons created using tables (which are block level elements) are changed to
inline-block elements to allow side-by-side layout.

Ext usually renders buttons in separate table cells to avoid this issue; we need to
allow for this not being the case. IE provides support only for inline-block in version
8 and upwards in some modes, so for IE, use inline instead.

table.ux-btn {display:inline-block}

.ext-ie table.ux-btn {display:inline}

Finally, the #BUTTON_ATTRIBUTES# substitution tag allows the developer to assign a
speciic ID attribute to a button. The following shows how you assign the ID in the
Button Display Attributes section of the button:

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[138]

APEX supports a #BUTTON_ID# substitution tag, but
performs substitutions only for buttons in Region
positions and not for button items.

Use button attributes instead to assign a speciic ID.

So now we have a functioning button that looks just like an Ext button, but doesn't
behave like one. The "hover" and "active" effects aren't happening, and they aren't
registered Ext components, so we can't manipulate them easily. We also haven't
covered adding icons and menus to the buttons.

It's time to convert the button to take advantage of the rich Ext API.

Converting our buttons
Before we look at the JavaScript to convert our static markup buttons to Ext buttons,
it is worthwhile discussing why we want to convert them in the irst place. The
"hover" and "active" effects for our buttons are a nice to have feature, rather than a
must have.

Converting buttons to Ext buttons opens additional display and functional options,
with the rich Ext API allowing you to add icons easily, or make buttons toggle on and
off. Ext also provides menus so that clicking a menu button displays a drop-down
menu, or in the split button case, provides a "primary action" when you click the main
button region and shows a drop-down menu when the drop-down region is clicked.
You can see these features in the following screenshot.

When you create an Ext.Button, it is automatically registered with the
Ext.ComponentMgr, providing a mechanism to easily access all Ext
components by component ID. So, you could easily disable or enable buttons
based on the state of some page item, or show or hide items based on a button's state.

To convert our buttons to Ext buttons, we irst need to override the Ext.Button
object to modify its functionality, in order to allow the button object to be applied
to our markup.

http:///

Chapter 5

[139]

In Chapter 4, Ext Themed Regions, Labels, and Lists, we saw Ext.Panel detect
panel-speciic structural markup when using the applyTo coniguration attribute,
converting static APEX region templates into an Ext.Panel. The Ext.Button, however,
does not provide equivalent functionality to detect structural markup, so we need to
add it ourselves.

Ext contains Ext.Extend and Ext.Override utility functions, providing the
mechanism for simulating class inheritance. Using these functions gives you the
ability to modify or extend the base functionality of any JavaScript class without
making code changes directly to the class.

If you are adding or changing the behavior of a class, usually you would use
Ext.Extend to create a new class; however, in this case I've chosen to override the
Ext.Button class because I want the changes to low through to its child classes. The
following screenshot, taken from the Ext documentation, shows the inheritance path
for Ext.SplitButton; observe that SplitButton extends Button.

By using Ext.Override, the changes to the Button class will be inherited by
SplitButton, which in turn subclasses CycleButton.

The code for the button override is contained in chapter05/Override.Ext.Button.
js and includes commenting, which has been stripped out here for brevity.

Ext.override(Ext.Button, {

 // private

 isRendered: false,

 arrowSelector: 'em',

 initComponent: function(){

 if (this.transformEl) {

 this.isRendered = true;

 this.applyTo = this.transformEl;

 delete this.transformEl;

 }

 Ext.Button.superclass.initComponent.call(this);

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[140]

 this.addEvents(

 'click',

 'toggle',

 'mouseover',

 'mouseout',

 'menushow',

 'menuhide',

 'menutriggerover',

 'menutriggerout'

);

 if(this.menu){

 this.menu = Ext.menu.MenuMgr.get(this.menu);

 }

 if(Ext.isString(this.toggleGroup)){

 this.enableToggle = true;

 }

 },

So, here we can see a couple of additional variables, isRendered and
arrowSelector, being declared. In the initComponent function, a small piece
of code has been added to detect when a button has been instantiated, with a
transformEl attribute identifying the markup button to be converted. After setting
the isRendered variable to true, the transformEl variable is reassigned to the
applyTo variable, to be used by the standard Ext.Button code.

 onRender: function(ct, position){

 if (!this.template) {

 if (!Ext.Button.buttonTemplate) {

 // hideous table template

 Ext.Button.buttonTemplate = new Ext.Template(

 '<table id="{4}" cellspacing="0" class="x-btn {3}">',

 '<tbody class="{1}">',

 '<tr><td class="x-btn-tl"><i> </i></td>',

 '<td class="x-btn-tc"></td>',

 '<td class="x-btn-tr"><i> </i></td></tr>',

 '<tr><td class="x-btn-ml"><i> </i></td>',

 '<td class="x-btn-mc">',

 '<em class="{2}" unselectable="on">',

 '<button type="{0}"></button></td>',

 '<td class="x-btn-mr"><i> </i></td></tr>',

 '<tr><td class="x-btn-bl"><i> </i></td>',

 '<td class="x-btn-bc"></td>',

 '<td class="x-btn-br"><i> </i></td></tr>',

 '</tbody></table>');

 Ext.Button.buttonTemplate.compile();

http:///

Chapter 5

[141]

 }

 this.template = Ext.Button.buttonTemplate;

 }

 var btn, targs = this.getTemplateArgs();

 if (this.isRendered) {

 btn = this.el;

 // remove class from transformed btn

 btn.removeClass('ux-btn-markup');

 // remove onclick from DOM and make button event

 var clickString = btn.getAttribute('onclick');

 if (clickString) {

 btn.dom.onclick = null;

 // config handler overrides onclick attribute

 if (!this.handler) {

 if (Ext.isIE) {

 eval("this.on('click', " + clickString +

 ");");

 }

 else {

 eval("this.on('click', function(){ " +

 clickString + "});");

 }

 }

 }

 // assign config text or markup when not specified

 if (!this.text) {

 this.btnEl = btn.child(this.buttonSelector);

 this.text = this.btnEl.dom.innerHTML;

 }

 btn.child('tbody').dom.className = targs[1];

 // Menu - assign class if specified

 if (this.menu && targs[2]) {

 btn.child(this.arrowSelector).addClass(targs[2]);

 }

 } else {

 if (position) {

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[142]

 btn = this.template.insertBefore(position, targs, true);

 }

 else {

 btn = this.template.append(ct, targs, true);

 }

 }

 this.btnEl = this.btnEl || btn.child(this.buttonSelector);

 this.mon(this.btnEl, {

 scope: this,

 focus: this.onFocus,

 blur: this.onBlur

 });

 this.initButtonEl(btn, this.btnEl);

 Ext.ButtonToggleMgr.register(this);

 }

});

While there is quite a lot of code in the listing, we need to focus only on the highlighted
code, as everything else has been copied directly from Ext.Button. The isRendered
variable is picked up in the onRender function, executing our custom code.

Overrides to Ext components should be included in a script
immediately after the Ext library, and before application scripts.
This ensures the overrides are applied and available to your
application scripts.

Let's not get bogged down in the detail of the onRender function. Basically, we are
converting the markup button including the onclick attribute into an Ext.Button,
unless the coniguration for the new button overrides the markup.

Whew—that saved some time explaining the boring bits!

http:///

Chapter 5

[143]

Much more interesting is looking at an example usage shown in previous screenshot,
and found in chapter05/ex-5-buttons-transform.html:

Ext.onReady(function(){

 // Page specific code

 new Ext.SplitButton({

 transformEl: 'P40_APPLY_CHANGES',

 id:'P40_APPLY_CHANGES',

 iconCls: 'ux-icon-tick',

 menu: {

 // dropdown menu items when the arrow is clicked

 items: [{

 text: 'Item 1',

 request:'ITEM1',

 handler: onMenuItemClick

 }, {

 text: 'Item 2',

 request:'ITEM2',

 handler: onMenuItemClick

 }]

 }

 });

 function onMenuItemClick(item){

 //apex.submit(item.request);

 Ext.Msg.alert('Menu Item Click', 'You clicked the "' +

 item.text + '" item with request "' +

 item.request + '".');

 }

});

// Application code

Ext.onReady(function(){

 // Convert remaining markup buttons to Ext components

 // assigns id if exists, otherwise Ext will generate

 var els = Ext.select("table.ux-btn-markup", true);

 els.each(function(el){

 new Ext.Button({transformEl: el, id:el.dom.id});

 });

});

This shows some page-speciic code, which is doing the task of transforming the
P40_APPLY_CHANGES button, assigning the same ID to the button component, and
adding an icon and a menu with a function to process the menu items.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[144]

In this example, an icon is added using:

 iconCls: 'ux-icon-tick',

Ext assigns the class to the button as part of the transform; you just need to include a
CSS rule specifying the background-image attribute for your image:

.ux-icon-tick {

 background-image:url(tick-square.gif) !important;

}

The !important attribute used here raises the speciicity of the CSS rule, ensuring
that this background is used in preference to the Ext-supplied rule.

A menu has also been added to the button using:

 menu: {

 // dropdown menu items when the arrow is clicked

 items: [{

 text: 'Item 1',

 request:'ITEM1',

 handler: onMenuItemClick

 }, {

 text: 'Item 2',

 request:'ITEM2',

 handler: onMenuItemClick

 }]

 }

In this case, a separate click-handler function has been assigned to each menu item,
so you could call completely different functions for each item.

Ext also lets you assign default values for the menu, which are applied to every
menu item unless overridden at the menu item level:

 menu: {

 // defaults for all menu items, unless overridden

 defaults: {

 handler: doSomethingDifferent

 },

 items: [{

 text: 'Item 1',

 request:'ITEM1'

 }, {

 text: 'Item 2',

 request:'ITEM2',

 handler: onMenuItemClick

 }]

 }

http:///

Chapter 5

[145]

In this code snippet, Item 1 uses the menu's default click handler to
doSomethingDifferent, whereas Item 2 uses onMenuItemClick.

The onMenuItemClick function is showing an Ext alert, but notice the
commented line:

 function onMenuItemClick(item){

 //apex.submit(item.request);

 Ext.Msg.alert('Menu Item Click', 'You clicked the "' +

 item.text + '" item with request "' +

 item.request + '".');

 }

Uncommenting this would pick up the standard APEX page submit code, passing a
request matching the menu items request attribute. This is how you would tie your
menu items in to your APEX page processing.

Finally, at the end of the script is the application code:

// Application code

Ext.onReady(function(){

 // Convert remaining markup buttons to Ext components

 // assigns id if exists, otherwise Ext will generate

 var els = Ext.select("table.ux-btn-markup", true);

 els.each(function(el){

 new Ext.Button({transformEl: el, id:el.dom.id});

 });

});

This code would be included in your application JavaScript ile and executed after
any page speciic scripts. The code converts any buttons using the table-based
template that haven't already been converted—a set and forget feature.

We've spent quite a bit of time looking at buttons. Initially, we saw how to use a
HTML and CSS-only approach using Sliding Doors and CSS Sprites to create your
own custom buttons. We then covered creating a static version of an Ext button as
an APEX template, showing how the button can work without any further changes.
And inally, we looked at how to convert the static Ext button into a fully functioning
button, opening up a range of possibilities that the Ext.Button API offers.

Let's move on to the remaining template types.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[146]

Popup List of Values template
The Popup List of Values template controls how the popup list of values items
are displayed in the APEX application for all items of type POPUP. Unlike other
template types, only one popup template is allowed per theme.

The popup template is more restricted than other templates in how you can modify
the layout, but it is still possible to change its appearance to give it an Ext look, and
make some minor functional improvements. The previous screenshot shows the
popup page in use. The header and footer regions use Ext styling, and use ixed CSS
positioning to ensure that both regions are always visible when scrolling large lists.

http:///

Chapter 5

[147]

The template responsible to make this happen is:

Before ield text:

<div class="ux-top-toolbar">

Filter text attributes:

For pre APEX 4.0, versions only, add the following line:

id="search-item"

In APEX 4.0 this value is automatically included.

After ield text:

</div>

This wraps a DIV tag around the search ield, and assigns an ID to the ield, so we
can modify the appearance using CSS.

Pagination result row X of Y:

Row(s) #FIRST_ROW# - #LAST_ROW#

Before result set:

<div style="padding: 20px 10px 40px">

After result set:

</div>

<div class="ux-btm-toolbar">

Page body attributes:

onload="first_field()"

Page footer text:

</div>

Similarly, wrapping the result set with a DIV tag allows padding to be added using
an inline style attribute. A DIV tag for the bottom toolbar is also added, and the
Pagination Result Row X of Y has all HTML tags removed, leaving just the text.

At this point, all that remains to be done is to add the CSS rules. Because the popup
page has only a few elements to style, rather than linking to an external CSS ile, you
can embed the styles directly in the page header instead.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[148]

Page HTML Head:

<style type="text/css">

body {background-color:#FFFFFF;margin:0}

* {font: normal 12px tahoma,arial,helvetica,sans-serif;}

a:link, a:visited, a:active {

 font: normal 12px tahoma,arial,helvetica,sans-serif;

 color: #0464BB;

 text-decoration:none;

}

a:hover {

 color: #1C417C;

 text-decoration: underline;

}

.ux-top-toolbar {

 background-color:#D0DEF0;

 background:none repeat-x scroll left top transparent;

 background-image: url("/ux/extjs/resources/images/default/toolbar/

bg.gif");

 border-color:#A9BFD3;

 border-style:solid;

 display:block;

 overflow:hidden;

 padding:2px;

 width:100%;

 border-width:0 0 1px;

 left:0;

 position:fixed;

 top:0;

}

.ux-btm-toolbar {

 background-color:#D0DEF0;

 background:none repeat-x scroll left top transparent;

 background-image: url("/ux/extjs/resources/images/default/toolbar/

bg.gif");

 border-color:#A9BFD3;

 border-style:solid;

 display:block;

 overflow:hidden;

 padding:2px;

 width:100%;

 border-width:1px 0 0;

 top:auto;

http:///

Chapter 5

[149]

 left:0;

 position:fixed;

 bottom:0;

}

#search-item {

background-color:#FFFFFF;

background-image: url("/ux/extjs/resources/images/default/form/text-

bg.gif");

border:1px solid #B5B8C8;

line-height:normal;

padding:3px 3px 0;

vertical-align:middle;

}

</style>

The CSS styles the body search item and link elements, as well as uses ixed
positioning to ensure that the top and bottom toolbars remain in position regardless
of scrolling.

Popup List of Values are ine to use, but we will see better alternatives in later
chapters when we look at AJAX-enabled combo boxes.

Breadcrumb templates
Breadcrumbs or breadcrumb trails provide a navigation aid to assist in identifying
the user's location in a website. Breadcrumbs typically are used as a secondary
navigation scheme, and appear horizontally near the top of a page, showing the
path taken to reach the current page.

Typical breadcrumbs look like this:

Home page > Section page > Subsection page

There are three types of web breadcrumbs:

•	 Path breadcrumbs are dynamic, and show the user the exact steps they have
taken to arrive at their current location.

•	 Location breadcrumbs are static, showing where the page is located in the
website hierarchy.

•	 Attribute breadcrumbs give information that categorizes the current page,
for example, Electronics > Televisions > Plasma TV.

APEX supports only location and attribute breadcrumbs, because it uses static
hierarchies to deine breadcrumbs.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[150]

Beneits of using breadcrumbs
Breadcrumbs work well in websites that have a large amount of content organized
in a hierarchical manner, such as e-commerce websites, in which a large variety of
products are grouped into logical categories.

Some of the beneits of using a breadcrumb trail are:

•	 Reduced clicks to return to higher-level pages: APEX-generated pages often
use a Cancel or Back button to return to an earlier page. Using breadcrumbs,
users can return to a higher-level page with a single click instead of
navigating back through the pages, saving multiple page loads.

•	 Consumption of minimal screen real estate: Typically, breadcrumbs are
horizontally oriented and use plain styling, consuming minimal screen space
and minimal overhead to page content.

•	 Alternative uses: Breadcrumbs can be used for speciic page groups, such as
wizards or guided tours. The following screenshot shows how Flickr uses a
breadcrumb trail, indicating the number of sections in the Flickr tour:

When not to use breadcrumbs
Breadcrumb trails have a linear structure, so using them will be dificult if your
pages can't be classiied into neat categories. Deciding whether to use breadcrumbs
largely depends on how you've designed your website hierarchy. If you can navigate
to a lower-level page from more than one location or category, breadcrumb trails are
ineffective, inaccurate, and confusing to the user.

Basic horizontal breadcrumb template
The breadcrumb template shown in the next screenshot uses a simple unordered list
and some CSS to deine a horizontal breadcrumb trail:

http:///

Chapter 5

[151]

The source for the breadcrumb template is:

Start with: Parent to Leaf

Before irst:

<div class="breadcrumb">

Current page breadcrumb entry:

 #NAME#

Non-current page breadcrumb entry:

 #NAME#

After last:

</div>

Maximum Levels: 12

The template is just the minimal markup required to deine an unordered list, with
non-current pages containing a link element with a title attribute. The list is wrapped
by a DIV element with a class attribute.

So, the only thing controlling the horizontal layout of the list is the CSS:

.breadcrumb {

 color: grey;

 display:block;

 left:0;

 overflow:hidden;

 padding:2px;

 position:relative;

 top:0;

}

.breadcrumb li {

 float: left;

 display: inline;

 margin-right: 4px;

}

.breadcrumb a {

 color: #222;

 background: url(/i/r_arrow.gif) no-repeat scroll right center;

 padding-right: 12px;

 text-decoration: none;

}

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[152]

Using display: inline changes the list from a vertical to a horizontal list.
Everything else is visual styling.

Breadcrumbs are usually contained in a Region template of type "Breadcrumb
Region". As the template deined here is self contained, the region template is
just a wrapper:

Template Class: Breadcrumb Region

Template:

<div id="#REGION_STATIC_ID#" #REGION_ATTRIBUTES#>#BODY#</div>

Breadcrumbs are simple to implement and effective to use; let's move onto
something a little more challenging in Report templates.

Report templates
APEX has two report types, the "Classic Report" and the "Interactive Report".

Classic reports have been in APEX since its inception, and are the formatted result of
the SELECT statement of SQL language. The report templates used to control the layout
of a classic report can either be "Generic Column" or "Named Column" templates. The
main difference being that Generic Column templates render every column using the
same column sub-template, whereas Named Column templates allow you to render
each column differently, but need to deine each column in the template.

The overwhelming majority of APEX applications will predominantly use Generic
Column templates, reserving Named Column templates for very speciic report
layouts. We will be looking only at the Generic Column Report template in this
chapter, as this will give you the maximum beneit in creating your initial Ext JS theme.

Interactive Reports were irst introduced in APEX 3.1, providing the user with the
ability to customize the appearance of the data through a searching, iltering, sorting,
column selection, highlighting, and other data manipulations. They were the "killer
feature" of the APEX 3.1 release, causing both developers and application users to
clamor at managers doors demanding to "Upgrade immediately!".

In APEX 4.0, a whole series of new features have been added to Interactive Reports,
including icon and detail views, the ability to have multiple "saved reports",
e-mailing reports, and more. While all this makes Interactive Reports even more
compelling to use, they don't have templates, so we won't be covering them here.

Another limitation of Interactive Reports is that you are limited to one Interactive
Report per page, leaving a huge hole to be illed by Classic reports.

http:///

Chapter 5

[153]

It's a classic
The Ext Grid is one of the most advanced and widely used components of Ext JS.
You can use it to simply display and paginate tabular data using AJAX, edit data
inline, drag–and-drop columns, hide and show columns, have expanding and
collapsing rows, and so on.

In this template we are going to "fake it", using the built-in functionality of an APEX
Classic report and combining it with some CSS, so it looks like a read-only Ext Grid
with AJAX paging.

The following screenshot shows what our report template looks like, sitting inside
a collapsible Report Region template. Notice how some of the elements we have
already covered are all coming together—the report is sitting very nicely within
a collapsible panel, looking very integrated with the panel. The buttons for the
pagination and the CSV download use CSS sprite techniques we also covered earlier
in this chapter.

Create a new report template, populating the ields shown here.

Report Template Name: EXTJS Standard

Template Class: Standard

Before rows:

<div class="x-panel-body ux-report">

<table id="report-#REGION_STATIC_ID#" cellpadding="0" cellspacing="0"

class="ux-table" #REPORT_ATTRIBUTES#>

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[154]

Before column heading:

<thead>

Column heading template:

<td id="#COLUMN_HEADER_NAME#" class="ux-cell-hd x-grid3-header"

#ALIGNMENT# #COLUMN_WIDTH#>#COLUMN_HEADER#</td>

When using a version prior to APEX 4.0, leave out the #COLUMN_WIDTH# attribute.

After column heading:

</thead>

<tbody>

Before each row:

<tr #HIGHLIGHT_ROW#>

Column template 1:

<td class="ux-cell valign="top" #ALIGNMENT#>#COLUMN_VALUE#</td>

Column template 1 condition:

Use for odd numbered rows

Column template 2:

<td class="ux-cell-alt" valign="top" #ALIGNMENT#>#COLUMN_VALUE#</td>

Column template 2 condition:

Use for even numbered rows

After each row:

</tr>

After rows:

</tbody>

</table>

</div>

<div class="x-panel-bbar">

 <div class="x-toolbar x-small-editor x-toolbar-layout-ct">

 <table cellspacing="0" class="x-toolbar-ct"><tbody><tr>

 <td align="left" class="x-toolbar-left">

 <table cellspacing="0">#PAGINATION#</table>

 </td>

http:///

Chapter 5

[155]

 <td class="x-toolbar-right">

 <table cellspacing="0" align="right"

 class="x-toolbar-right-ct"><tbody>

 <tr>

 <td class="pagination">

 </td>

 <td class="pagination">#CSV_LINK#</td>

 <td class="pagination">#EXTERNAL_LINK#</td>

 </tr></tbody>

 </table>

 </td>

 </tr></tbody></table>

 </div>

</div>

Background color for checked row:

#cfe0f1

Background color for current row:

#efefef

Pagination template:

Displaying #TEXT#

Next page template:

 <img src="/i/1px_trans.gif" width="16px" height="16px" class="x-

tbar-page-next"/>

Previous page template:

 <img src="/i/1px_trans.gif" width="16px" height="16px" class="x-

tbar-page-prev"/>

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[156]

Next set template:

 <img src="/i/1px_trans.gif" width="16px" height="16px" class="ux-

tbar-pageset-next"/>

Previous set template:

 <img src="/i/1px_trans.gif" width="16px" height="16px" class="ux-

tbar-pageset-prev"/>

Looking at the earlier ields for the template, you can see we are using a very
standard table layout, integrating the relevant APEX substitution tags as we go. It's
really all quite ordinary in fact!

If you are using APEX versions earlier than APEX 4.0 for the Column Heading
Template, the #COLUMN_WIDTH# substitution tag is not available. You can ix column
widths without it anyway, using CSS rules picking up the table ID and column ID.
So for this template, if the region used a static region name of customer and the
column name was first_name you could set the column width using a CSS rule in
the page header:

#report-customer #first_name {width: 80px}

The After Rows ield looks quite complicated, but that's only because APEX insists
on creating the #PAGINATION# sub-template as a table row, using table cells with
a "pagination" class attribute. To get this to it into the Ext toolbar markup and
right align the #CSV_LINK# on the same line, some fancy footwork has been done,
introducing some additional embedded tables as a means to achieving a result.

For the Pagination components, starting at After Rows all the way down to Previous
Set Template, two techniques have been repeatedly used to create the pagination
icons and the CSV download icon.

http:///

Chapter 5

[157]

For the button outline, the CSS sprite technique discussed at the beginning of the
chapter has been reused, this time with a ixed width image, as all the icons used
are of a known size. Once again the "hover" and "active" appearance for the buttons
have been achieved using the CSS background-image and background-position
properties to display the desired image segment. The following diagram shows the
image used for the button outline:

The icons for the "next" and "previous" indicators and CSV download use a
transparent image with a ixed size of 16x16 pixels, and a class specifying the CSS
background-image attribute for the icon. For example, the "next" page indicator uses
the following markup for the image:

<img src="/i/1px_trans.gif" width="16px" height="16px" class="x-tbar-

page-prev"/>

The x-tbar-page-prev class attribute picks up the Ext CSS rule for the icon:

.x-tbar-page-prev{

 background-image: url(../images/default/grid/page-prev.gif)

!important;

}

It is worth remembering that by using the background-image attribute instead of
directly assigning the image source, you can easily update the image by modifying
the CSS ile once, rather than in every place you reference the image source.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[158]

A better sorting indicator
For the column-sorting indicator, APEX gives you some predeined choices, and if
you don't like those choices it can be dificult to reference another image.

The reason behind it being dificult is that APEX preixes whatever image name you
specify in the Ascending Image and Descending Image ields in the Sorting section
of the Report Attributes for a Report Region with /i/, and not the #IMAGE_PREFIX#
substitution tag as you would expect.

Fortunately, among the standard images supplied with APEX in that folder is a
one-pixel transparent image, allowing you to use the CSS background-image
technique to use the transparent image once again, and specify a class to pick up
the image you want to use. The following screenshot shows how to assign the
image and classes:

The CSS for the sorting indicator is:

.ux-sort-asc {

 background-image:url(/ux/extjs/resources/images/default/grid/sort_

asc.gif);

 background-repeat:no-repeat;

 display:inline;

 height:4px;

 margin-left:3px;

 vertical-align:middle;

 width:13px;

}

.ux-sort-desc {

 background-image:url(/ux/extjs/resources/images/default/grid/sort_

desc.gif);

http:///

Chapter 5

[159]

 background-repeat:no-repeat;

 display:inline;

 height:4px;

 margin-left:3px;

 vertical-align:middle;

 width:13px;

}

CSS for the standard report
There is quite a lot of CSS behind this report template, so rather than showing it all
here, I will just refer you to the CSS ile located in chapter5/playpen-book.css.
Look for the section under "Reports".

Calendar templates
Calendar templates are unusual because they contain multiple layouts within
a single template. Within a Calendar template, there are separate templates for
monthly, weekly, and daily calendars, and in APEX 4.0 there is an additional custom
calendar template.

The calendar we will be creating is shown in the following screenshot. It scales to
the width of the enclosing region, and scales vertically based on the content of the
calendar items. To restrict the size of the calendar, set the enclosing regions width in
the Region Attributes ield for the region.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[160]

Create a new Calendar template, name it EXTJS Calendar, and populate the ields for
the Monthly Calendar:

Month formats:

Month title format

<div class="ux-calendar x-list-wrap"> <div class="x-list-header">

<div class="x-list-header-inner"> <div><em style="border-left-

width:0">#IMONTH# #YYYY#</div> </div> </div>

Day of week format

<th>#IDY#</th>

Month open format

<table border="0" cellpadding="0" cellspacing="1px" summary="0"

class="x-date-inner">

Month close format

</table>

</div>

Week formats:

Week open format

<tr>

Week close format

</tr>

Weekday formats:

Day title format

<div>#DD#</div>

Day open format

<td class="x-date-active" title="">

Day close format

</td>

Today open format

<td valign="top" class="x-date-active x-date-today">

http:///

Chapter 5

[161]

Non-day formats:

Non-day title format

<div>#DD#</div>

Non-day open format

<td class="x-date-disabled" title="">

Non-day close format

</td>

Weekend formats:

Weekend title format

<div>#DD#</div>

Weekend open format

<td class="x-date-active" title="">

Weekend close format

</td>

The weekly and daily calendars are very similar; the main differences to note is the
enclosing DIV element has an additional class attribute—ux-calendar-weekly or
ux-calendar-daily.

The weekly template is:

Month title format

<div class="ux-calendar ux-calendar-weekly x-list-wrap"> <div

class="x-list-header"> <div class="x-list-header-inner"> <div><em

style="border-left-width:0">#WTITLE#</div> </div> </div>

Day of week format

<th>#IDY#
#MM#/#DD#</th>

Month open format

<table border="0" cellpadding="0" cellspacing="1px" summary="0"

class="x-date-inner">

Month close format

</table> </div>

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[162]

Hour formats

Hour open format

<tr>

Hour close format

</tr>

Weekday formats:

Day open format

<td class="x-date-active" title="">

Day close format

</td>

Today open format

<td valign="top" class="x-date-active">

Time formats:

Time title format

#TIME#

Time open format

<th>

Time close format

</th>

Weekend formats:

Weekend open format

<td>

Weekend close format

</td>

http:///

Chapter 5

[163]

And the Daily Calendar template is:

Month formats:

Month title format

<div class="ux-calendar ux-calendar-daily x-list-wrap"> <div

class="x-list-header"> <div class="x-list-header-inner"> <div><em

style="border-left-width:0">#IMONTH# #DD#, #YYYY#</div> </div> </

div>

Day of week format

<th width="100%"><div>#IDAY# #DD#/#MM#</div></th>

Month open format

<table border="0" cellpadding="0" cellspacing="1px" summary="0"

class="x-date-inner">

Month close format

</table> </div>

Hour formats:

Hour open format

<tr>

Hour close format

</tr>

Weekday formats:

Day open format

<td class="x-date-active" title="">

Day close format

</td>

Today open format

<td valign="top" class="x-date-active">

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[164]

Time formats:

Time title format

#TIME#

Time open format

<th class="c1">

Time close format

</th>

So inally, after three whole chapters, we have created each type of template, and
now have a "minimal" theme. Hooray!! Let's clean up and publish our theme.

Removing unused templates quickly
Now is the time to go through your templates deciding, which ones to keep and
which ones aren't needed for the time being. We will temporarily remove all those
we don't need before we publish our APEX theme. Throughout the book, all the
templates have been created using EXTJS as a preix, making it easy to identify
which ones to keep; hopefully you've done something similar.

In Chapter 1, Setting up an Oracle APEX and Ext JS Environment, two APEX utilities
included in the source were mentioned—the APEXExport and APEXExportSplitter
Java classes located in the Oracle APEX distribution in utilities/oracle/apex
directory. At the time we set up a batch script to run the APEXExport utility. We are
now going to make use of the APEXExportSplitter.

First, export your theme from Application Builder | Export, as shown in the
following screenshot:

http:///

Chapter 5

[165]

Save the ile onto your computer and copy it to a second ile, which I'll name
theme.sql here.

From the command prompt, you then need to set your Java CLASSPATH and run
the APEXExportSplitter. I'm doing it here from a DOS prompt; Unix users will need
to adjust accordingly.

If you're using database 11g, set the CLASSPATH to ojdbc6.jar.

set CLASSPATH=%CLASSPATH%;<path>\ojdbc6.jar

For database 10g, set the CLASSPATH to classes12.jar.

set CLASSPATH=%CLASSPATH%;<path>\classes12.jar

Also, set the CLASSPATH to include the utilities directory containing the
APEXExportSplitter.

set CLASSPATH=%CLASSPATH%;<path>\utilities

Now you can run the splitter.

In case of my local environment:

set CLASSPATH=%CLASSPATH%;C:\playpen\oracle\instantclient_10_2\

classes12.jar

set CLASSPATH=%CLASSPATH%;C:\playpen\oracle\utilities

java oracle.apex.APEXExportSplitter theme.sql

This splits the ile into the individual components in subfolders, as shown in the
following screenshot:

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[166]

Locate the install.sql ile in the top folder and edit it, commenting out all the
unwanted templates. I've modiied the text replacing shared_components/user_
interface/templates with … in following code for layout purposes. You simply
need to comment out the lines containing unwanted templates.

Now, if you run the install.sql script from a SQL*Plus session as the database
user for your APEX workspace, the theme will be deleted and recreated with just the
uncommented components.

If you missed a ile or two, you can edit and rerun this script as often as you like.

Publishing your theme
You are now in a position to publish your "minimal" theme. At this point you have
at least one template for each of the template types (breadcrumb, button, calendar,
label, list, page, popup list of values, region, and report), but lack templates for every
template class within each template type.

Publishing a theme takes a copy of your theme and stores it in the theme repository
for the workspace. The published theme cannot be edited directly; to modify it you
need to create an application with the theme, modify it, and then publish it to the
theme repository.

Having a TEMPLATE application, where you keep the current version of your theme
within your workspace, is a really good idea. Apart from having the latest copy on
hand, it also lends weight to the argument if you have a policy of no changes to be
made to templates within an application without thorough testing. By ensuring that
template changes are made in your TEMPLATE application, you can have all your
use cases and developer usage documentation in a tidy little bundle—also useful
when bringing in new people to your team.

http:///

Chapter 5

[167]

The actual process of publishing a theme is very simple. From within Application
Builder, navigate to Shared Components | Themes | Manage Workspace
Themes. From there, you step through a simple wizard to publish your theme.
The following screenshot shows the most complicated step—coming up with
a name for your theme!

APEX Instance Administrators can publish your theme as a public theme. Public
themes are available to all workspaces. Generally, it's advisable to have templates
for each of the template types, as well as each of the classes within each type, before
making a theme public.

Summary
In this chapter, we had a good long look at buttons, creating a custom markup
button using the sliding doors method to provide horizontal scalability, and creating
multiple states by applying different background images contained in a sprite image.

We then integrated the "horrible" Ext button, starting out using static markup,
showing how the button can work without any further changes. After that we
converted the static Ext button into a fully functioning button, opening up a range
of possibilities that the Ext.Button API offers, including transforming it to include
drop-down menus and icons.

Popup list of values and breadcrumbs were covered next, tweaking the template
types to create the Ext look, with some simple changes.

http:///

Ext Themed Buttons, Popups, Calendars, and Reports

[168]

The Classic report template was then given a makeover, "faking it" so it looks
and behaves like a basic Ext Grid, using the built-in APEX functionality. The
report template demonstrated how some of the earlier templates and techniques
covered are all coming together, with the report working very nicely within a
collapsible panel.

The Calendar template was covered next, once again adding some visual polish
to an already functional APEX component.

You saw how to delete all the unwanted templates quickly from the APEX theme
using the APEXExportSplitter Java class, and discussed the process of publishing
the theme.

Also pointed out are the beneits of maintaining a TEMPLATE application, providing
a place to modify your theme templates, and also have all your use cases and
developer usage documentation in a tidy little bundle.

Now have our working theme up and running. The next chapter starts introducing
some Ext widgets into our application.

http:///

Adding Ext Layout Elements
In consulting circles the term "low-hanging fruit" is often used to describe
quick-win solutions, where a minor change signiicantly improves some aspect
of an application with a broad impact across the entire application.

Consultants and developers in general love "low-hanging fruit" solutions because
they are easy to reach, and help keep the forward momentum of a project going.
With estimating task complexity and duration in software development not being an
exact science, some activities take far longer than originally estimated while others
come in well under time. Having a few "low-hanging fruit" solutions available means
you can smooth out some of the overruns and buy some time by reporting "feature
X was held back this release because we implemented feature Y across the entire
application".

Having said that, the term evokes visual imagery of fruit-laden trees and ironically
in orchards, picking the low-hanging fruit irst is the worst thing to do. Experienced
pickers start at the top of the tree where the fruit is ripest. Starting at the top makes
the job easier, as you rest the bag, which is around your neck and shoulders on the
ladder. You ill as you go down, so the bag is full when you get to the bottom.

In this chapter, we will cover the following "low-hanging fruit":

•	 Converting APEX Classic dates to the Ext.DatePicker

•	 Making all text areas resizable, or better still, auto-sizing

•	 Transforming select lists to auto-completing combo boxes

•	 Building tab panels using subregions

•	 Building toolbars and menus

http:///

Adding Ext Layout Elements

[170]

Speed dating with a Date Picker
In versions prior to APEX 4.0, the Date Picker component displays a text ield with a
calendar icon next to it. When clicked, the icon displays a small calendar in a pop-up
window as a separate page request. Selecting a date passes back the value to the text
ield, and closes the pop-up window. This date picker still exists in APEX 4.0, as the
Date Picker (Classic), shown on the left of the following screenshot:

The Ext alternative to this classic date picker is the Ext.DatePicker, a highly
conigurable component, which dynamically constructs a calendar within the page
when the icon is clicked. It also allows you to rapidly scroll through months and
years using keyboard shortcuts; it also features auto-complete functionality, allowing
you to type partial dates or use alternative date formats, which are automatically
converted when you tab out of the ield.

In APEX 4.0, the Date Picker item type uses the jQuery UI Datepicker as the
replacement for the Date Picker (Classic). It offers similar functionality to the Ext.
DatePicker component, rendering a calendar dynamically within the page and uses
keyboard shortcuts to rapidly scroll through months and years.

It comes with the added advantage that as a native APEX item, it has a number of
settings that can be applied declaratively by the developer, as can be seen in the
following screenshot:

http:///

Chapter 6

[171]

Applications upgrading to APEX 4.0 can easily upgrade Date Picker (Classic)
items to the new Date Picker using the Application Builder | Utilities | Upgrade
Application | "Upgrade Date Picker (Classic) to new Date Picker" interface.

For APEX versions prior to APEX 4.0, the Ext.DatePicker makes very good sense to
use in preference to the Date Picker (Classic), whereas in APEX 4.0, the new Date
Picker offers similar functionality with better declarative support.

So, if you're currently using a version prior to APEX 4.0, converting to the Ext.
DatePicker is very worthwhile. The conversion approach simply adds a little generic
JavaScript to the application, resulting in minimal effort to add, and minimal effort to
remove. When you eventually upgrade to APEX 4.0, you can decide whether or not
to switch to the new APEX Date Picker.

For new applications in APEX 4.0, unless you're hell-bent on using the Ext.
DatePicker and write an APEX plugin to give you similar declarative functionality,
the APEX Date Picker is the way to go. If you like the look of the date item, you can
duplicate it using CSS anyway, as I've done in the previous screenshot and in the
included playpen-book.css ile.

Converting Classic Dates to the Ext.
DatePicker
The technique described will convert all Classic Dates to use the Ext.DatePicker, so
we are making the assumption that you use the same date format for all your dates in
your application. Usually this is done by setting the Application Date Format, found
in Application Builder under Shared Components | Globalization Attributes.

http:///

Adding Ext Layout Elements

[172]

For most applications, this is a reasonable assumption, but if you're using multiple
date formats, you can alter the code to include or exclude items with a speciic class
only, which you assign to individual date items in the HTML form element attributes.

Classic Dates are rendered in a HTML table like this:

<table cellspacing="0" cellpadding="0" border="0" id="P80_DATE_PICKER_

holder" summary="" class="datepicker">

<tbody>

<tr>

<td class="datepicker">

 <input type="hidden" value="3813216463288336"

 name="p_arg_names">

 <input type="text" id="P80_DATE_PICKER" value="23-Mar-2010"

 maxlength="2000" size="12" name="p_t08">

</td>

<td>

 <a href="JavaScript:void($p_DatePicker(

 'P80_DATE_PICKER','0',

 'DD-Mon-YYYY','#666666','','','','','2010',

 'en-us','N','103',

 '1038420889063720','06','210'));">

 <img align="absmiddle" alt="Calendar" src="/i/asfdcldr.gif"

 id="P80_DATE_PICKER_IMG">

</td>

</tr>

</tbody>

</table>

The key points to note here is that the date is rendered in a table with
class="datepicker", and the input item holding the date is in the irst TD element,
and the icon is in the second TD element.

To use the Ext.DatePicker, you would include the following code in your application
JavaScript ile:

Ext.onReady(function(){

 var els = Ext.select("table.datepicker", true);

 els.each(function(el){

 // remove the datepicker class, to remove any styling

 el.removeClass('datepicker');

 Ext.fly(el).child('.datepicker').removeClass('datepicker');

http:///

Chapter 6

[173]

 // remove the icon's table cell

 el.select('td:even').remove();

 // retrieve the date item as a dom node

 var dt = Ext.fly(el).child('input[type=text]', true);

 // convert to date

 new Ext.form.DateField({

 id: dt.id,

 applyTo: dt,

 "format": 'd-M-Y',

 "altFormats": 'j|j/n|j/n/y|j/n/Y|j-M|j-M-y|j-M-Y'

 });

 })

});

The code starts out by parsing the DOM, retrieving any tables with the
class="datepicker" attribute, and saving the results in an array els. Each table is
then processed in a loop:

 var els = Ext.select("table.datepicker", true);

 els.each(function(el){

 // process each datepicker...

 })

Within the loop, each datepicker table is modiied, removing the datepicker class
from the table and any child elements:

 // remove the datepicker class, to remove any styling

 el.removeClass('datepicker');

 Ext.fly(el).child('.datepicker').removeClass('datepicker');

 // remove the icon's table cell

 el.select('td:even').remove();

Then the input item is selected and converted to an Ext.DatePicker; the item name
and values are retained as part of the conversion:

 // retrieve the date item as a dom node

 var dt = Ext.fly(el).child('input[type=text]', true);

 // convert to date

 new Ext.form.DateField({

 id: dt.id,

 applyTo: dt,

 "format": 'd-M-Y',

 "altFormats": 'j|j/n|j/n/y|j/n/Y|j-M|j-M-y|j-M-Y'

 }) ;

http:///

Adding Ext Layout Elements

[174]

The database date format I'm using is DD-Mon-YYYY, which corresponds to the Ext
date format d-M-Y. For a complete list of format masks available, consult the Ext
documentation at http://www.extjs.com/deploy/dev/docs/?class=Date.

The "altFormats" attribute shown in the preceding code snippet includes a number
of alternative formats, which can be used for data entry. So, for example, typing 1
and then tabbing out of the date would automatically be converted to the irst day of
the current month and year. Similarly, typing 1/3 would convert to the irst of March
for the current year.

If you prefer the format DD-MON-YYYY for your dates, it's not available using the date
formats listed for Ext, but can be done by overriding the default Ext date names with
the following line of JavaScript at the beginning of your application JavaScript ile:

Date.monthNames =["JANUARY","FEBRUARY","MARCH","APRIL","MAY",

"JUNE","JULY","AUGUST","SEPTEMBER","OCTOBER","NOVEMBER",

"DECEMBER"];

This is the Ext way of internationalizing dates, so it's fully supported, and forces the
JavaScript date format "d-M-Y" to return the month in uppercase.

So there you have it, a simple "drop in" solution that you can incorporate into
existing pre-APEX 4.0 applications and give them enhanced functionality. The more
interesting question is once you have moved to APEX 4.0, are you going to keep the
Ext DatePicker, or switch to the APEX jQuery version?

Resizable text areas
In APEX 4.0, text areas have a resizable option, when enabled allowing users to
resize text areas, so they can see all the text. I'm sure you're already too familiar with
how frustrating it is using the APEX Builder when you're trying to edit code in a text
area much smaller than your code.

As developers, we normally have local administration rights on our computers, so
it's very easy to overcome this issue by using a browser add-on, such as the Firefox
"Text Area Resizer and Mover", available at https://addons.mozilla.org/en-US/
firefox/addon/8287. Our corporate users aren't usually so lucky, with locked-
down computers, so they can't alter their set up.

The following screenshot shows the Ext version of the resizable text area
compared with the APEX 4.0 resizable text area—quite similar visually, and
provides similar functionality.

http:///

Chapter 6

[175]

The Google browser has similar functionality built into the browser, making all text
areas resizable. I believe this is a very sensible approach; after all, why should only
some text areas be resizable?

To convert your text areas, just include the following code in your application
JavaScript:

Ext.onReady(function() {

 var els=Ext.select("textarea",true);

 els.each(function(el){

 new Ext.Resizable(el, {

 wrap:true,

 pinned:true,

 handles: 's',

 width:el.getWidth(),

 height:el.getHeight(),

 minWidth:el.getWidth(),

 minHeight: el.getHeight()

 });

 })

});

The script inds all text area elements on the page, and then applies the Ext.
Resizable class to the element. This applies drag handles to the element to make it
resizable, the original text area remains unchanged—very handy if you have enabled
the character counter on a text area!

As usual, Ext provides a number of coniguration options, allowing you to set which
handles to include, either 'all' or any of 'n s e w ne nw se sw', whether the handles
"pinned" to ensure they are always visible, or only visible when the user mouses over
the resizable borders, or transparent so the handles don't appear at all.

http:///

Adding Ext Layout Elements

[176]

The Ext.Resizable class can be used on more than just text areas; resizable
images are very effective also. In the examples provided with the Ext JS SDK
library, the examples/resizable/basic.html ile demonstrates the full range of
options available, including options such as animated transitions, preserved ratios,
and snapping.

Auto-sizing text areas
Having implemented resizable text areas over three years ago in some APEX
applications, my application users take this feature very much for granted. So much
so, that they started to complain about having to resize the text area every time they
visited a page to see the full content.

If like my users, you spend your entire day in an application racking up over 2000
page hits individually, you can understand how something little like this really starts
to be too much effort for a minor detail.

Having scoured the Internet looking for a solution at the time, it appears Facebook
was the irst website to introduce an auto-growing text area that gets bigger as you
type into it. After spending some time looking at some of the different solutions
available, I cobbled together a solution for Ext using techniques borrowed from other
people's great ideas.

Now you don't have to, it's a coniguration option in the Ext.form.TextArea

To make all your text areas automatically grow, add the following code to your
application JavaScript:

Ext.onReady(function() {

 var els=Ext.select("textarea",true);

 els.each(function(el){

 new Ext.form.TextArea({

 applyTo: el,

 grow: true,

 width: el.getWidth()

 });

 })

});

Setting the width coniguration option retains the original width of the text area.

http:///

Chapter 6

[177]

To limit the size of your text areas, Ext.form.TextArea includes coniguration options
growMax to set maximum height to allow when grow=true (defaults to 1000), and
growMin to set the minimum height to allow when grow=true (defaults to 60).

No more messing about with grab handles to resize your text boxes; they are always
sized to the content. Now my users are happy, for a little while.

Auto-completing text ields
The Ext.Combo provides an alternative to the text ield with auto-complete item
type, which was introduced in APEX 4.0. The text ield with auto complete item type
shows a list of possible values when the user starts typing in the ield, progressively
iltering the data as more keys are typed.

The following screenshot shows an example of the text ield with auto-complete
item type displaying a list of countries, with the ield on the right showing that the
additional character has further reduced the list of matching values.

The values are based on the deined List of Values (LOV) SQL statement returning a
single column, for example:

SELECT country_name

 FROM countries

 ORDER BY country_name

As the text ield with auto-complete item type does not prevent additional values
not already in the LOV SQL statement being entered, it is your responsibility as the
developer to determine how existing and new values are processed.

Assume we are processing a purchase order (PO) record in the PURCHASE_ORDERS
table, and currently looking up the country names from the COUNTRIES table using
the earlier query.

http:///

Adding Ext Layout Elements

[178]

Consider the following options for the country ield from the preceding screenshot
when the page is submitted to the APEX engine for processing:

Use Case Action

Existing value entered, country stored Verify existing country.

Process PO record.

Existing value entered, country ID stored Fetch country ID using country name.

Process PO record.

New value entered, country stored

New values for country are allowed

Verify existing country => NOT FOUND.

Add country to COUNTRIES table.

Process PO record.

New value entered, country ID stored

New values for country are allowed

Fetch country ID using country name =>
NOT FOUND.

Add country to COUNTRIES table,
returning country ID.

Process PO record.

Change LOV SQL to query PO table

New value entered, country stored

New values for country are allowed

Process PO record.

Looking at the Use Cases, it becomes evident that most of the time you need to do
additional validation and processing for the text ield with auto complete item type. If it
is used as a free-text ield, which accepts any input, including new values not already
in the LOV SQL statement, then this is an appropriate choice.

For most applications, this is a less common scenario, much more typically you
want to limit allowable values for an item to a pre-determined set, only allowing
additional values to be added through administration forms by privileged users,
if at all.

For this typical lookup scenario, the humble select list is appropriate for relatively
short lists of values, and the Popup LOV item type for longer lists. In fact, for the
internal APEX applications, which make up the APEX Application Builder, the select
list is by far the most commonly used input item, being used for roughly 25% of all
input items.

http:///

Chapter 6

[179]

Select Lists have a display value and a returned value for each option.

Continuing our purchase order example for the country ield, the values could be
based on the deined LOV SQL statement:

SELECT country_name d

 ,id r

 FROM countries

 ORDER BY country_name

The APEX engine would generate HTML markup for the select list as:

<select size="1" id="P70_SELECT_LIST" name="p_t08">

 <option value="65">Afghanistan</option>

 <option value="131">Aland Islands</option>

 <option value="118">Albania, Republic of</option>

 <!-- many more options... -->

 <option value="117">Yemen</option>

 <option value="64">Zambia, Republic of</option>

 <option value="54">Zimbabwe</option>

</select>

The results in a user-friendly country description displayed to the user, and the ID
value returned when the page is submitted. Looking at the highlighted code, the
displayed value is Yemen and the returned value is 117.

The Action for our earlier Use Cases when the APEX engine processes the page is
simply "Process PO record", because we have the value we wish to store.

Select lists are very useful for limiting inputs to a set of allowable values, but
don't have auto-complete functionality. This is where the Ext.form.ComboBox
comes into play.

Adding auto-complete to select lists
The Ext.form.ComboBox can be used as a direct replacement for the HTML select list.
It provides the same drop-down list of values, as well as auto-completing iltering
functionality, enabling users to ind and select a value quickly.

http:///

Adding Ext Layout Elements

[180]

The following screenshot shows a select list with a large set of values, and a
combo box showing the same set of values iltered on the irst 3 characters using
the auto-complete functionality.

To convert select lists without an onchange attribute to combo boxes is very simple:

Ext.onReady(function() {

 var els=Ext.select("select[multiple!='multiple']",true);

 els.each(function(el){

 new Ext.form.ComboBox({

 id: 'cb-'+el.id,

 hiddenId: el.id,

 disabled: el.dom.disabled,

 typeAhead: true,

 triggerAction: 'all',

 transform:el,

 width:el.getWidth(),

 forceSelection:true

 });

 })

});

http:///

Chapter 6

[181]

Once again we are using the Ext.select function to retrieve all single-line select
lists. All of the work to convert each select list into a combo box is done using the
highlighted transform coniguration option to identify the select list. The other
coniguration options deine the behavior we want for the combo box.

However, we have only solved part of the problem!

The APEX 4.0 Application Builder has ive different page actions when a select list
item type is changed, as shown in the following screenshot:

Apart from the "None (Default)" option, each of the options adds an onchange
attribute to the HTML markup for the select list.

For example, the APEX engine would generate HTML markup for the Submit page
select list as:

<select class="selectlist"

onchange="apex.submit('P90_SL_SUBMIT');"

size="1" id="P90_SL_SUBMIT" name="p_t05">

 <option value="65">Afghanistan</option>

 <option value="131">Aland Islands</option>

 <option value="118">Albania, Republic of</option>

 <!-- many more options... -->

 <option value="117">Yemen</option>

 <option value="64">Zambia, Republic of</option>

 <option value="54">Zimbabwe</option>

</select>

http:///

Adding Ext Layout Elements

[182]

The following table shows an example of the onchange HTML markup for
each option:

Option onchange

None (Default)

Submit Page apex.submit('P90_SL_SUBMIT');

Redirect and Set Value location.href='f?p=103:90:2624308855119166::NO::
P90_SL_REDIRECT:'+
this.options[selectedIndex].value;

Redirect to Page (based
on selected value)

location.href='f?p=103:'+this.options[selectedIndex].value+

':2624308855119166::NO';

Redirect to URL (based
on selected value)

location.href=this.options[selectedIndex].value;

The auto-sizing text area we modiied previously simply adds JavaScript events to
the existing DOM element, so existing onchange attributes and existing JavaScript
events are retained.

When the select list is transformed to a Ext.form.ComboBox, the JavaScript code
creates new DOM elements to make up the Ext.form.ComboBox, and then deletes
the select list DOM element together with its onchange attributes.

To convert select lists including logic from onchange attributes to combo boxes:

Ext.onReady(function() {

 var els=Ext.select("select[multiple!='multiple']",true);

 els.each(function(el){

 // save attribute as a string

 var attr = el.dom.getAttribute('onchange');

 if (attr && attr.indexOf('this.options[selectedIndex].value') !=

-1) {

 // replace Select List logic with ComboBox equivalent

 attr = attr.replace('this.options[selectedIndex].value',

'this.getValue()');

 }

 // transform Select List to ComboBox

 var cb = new Ext.form.ComboBox({

 id: 'cb-'+el.id,

 hiddenId: el.id,

 disabled: el.dom.disabled,

 typeAhead: true,

 triggerAction: 'all',

 transform:el,

http:///

Chapter 6

[183]

 width:el.getWidth(),

 forceSelection:true

 });

 // add on select event

 if (attr) {

 eval("cb.on('select', function(){ " + attr + "});");

 }

 })

});

Looking at the highlighted code, we irst save the value of the onchange
attribute into a variable and then replace any instance of the string 'this.
options[selectedIndex].value' with 'this.getValue()':

 if (attr && attr.indexOf('this.options[selectedIndex].value') !=

 -1) {

 // replace Select List logic with ComboBox equivalent

 attr = attr.replace('this.options[selectedIndex].value',

 'this.getValue()');

 }

Replacing the string changes the logic to fetch the selected value within the select list
with its Ext equivalent to fetch the selected value for the combo box.

Once we transform the select list into a combo box, we then conditionally add a
listener that executes a function when the 'select' event is ired:

 // add on select listener

 if (attr) {

 eval("cb.on('select', function(){ " + attr + "});");

 }

The listener is added using the JavaScript eval command, which evaluates the
concatenated string and executes the statement.

For example, from the earlier table for the redirect to URL option, the onchange
attribute value was originally location.href=this.options[selectedIndex].
value;, which was modiied to the string location.href=this.getValue();.

The string was then concatenated into the statement cb.on('select', function()
{location.href=this.getValue();});, which was inally executed to add a select
listener to the combo box.

Hopefully, I haven't lost you in all the detail. We now are able to transform select
lists, including those with onchange attributes, into combo boxes. Are we done yet?

http:///

Adding Ext Layout Elements

[184]

No, we're still not done! There's one more thing to take into account.

For pre-APEX 4.0 versions, we have covered all the out-of-the-box scenarios, so
unless you have written custom JavaScript, you are reasonably safe. However,
APEX 4.0 introduced new functionality, such as cascading select lists and dynamic
actions, resulting in far more JavaScript based interaction between different
elements on the page.

Consequently, there will be some circumstances where you don't want to convert
speciic select lists. A simple way to manage this is by adding a class to the select list,
and coding to not transform select lists with this class.

In the following screenshot, the class attribute has been added with the noTransform
class, along with another class in the HTML form element attributes ield for a select
list page item within the APEX Application Builder.

Finally, a check is added to the code to skip select lists with the noTransform class:

Ext.onReady(function() {

 var els=Ext.select("select[multiple!='multiple']",true);

 els.each(function(el){

 if (!el.hasClass('noTransform')) {

 // save attribute as a string

 var attr = el.dom.getAttribute('onchange');

 if (attr && attr.indexOf('this.options[selectedIndex].value') !=

-1) {

 // replace Select List logic with ComboBox equivalent

http:///

Chapter 6

[185]

 attr = attr.replace('this.options[selectedIndex].value',

'this.getValue()');

 }

 // transform Select List to ComboBox

 var cb = new Ext.form.ComboBox({

 id: 'cb-'+el.id,

 hiddenId: el.id,

 disabled: el.dom.disabled,

 typeAhead: true,

 triggerAction: 'all',

 transform:el,

 width:el.getWidth(),

 forceSelection:true

 });

 // add on select event

 if (attr) {

 eval("cb.on('select', function(){ " + attr + "});");

 }

 }

 })

});

So at last, we now have a complete solution, which can be dropped into your
Application JavaScript.

Building tab panels using subregions
APEX 4.0 introduced subregions, allowing regions to be nested within other
regions in a parent-child relationship. This provides display opportunities, such
as breaking up large forms into a series of separate sections while still maintaining
visual coherence.

http:///

Adding Ext Layout Elements

[186]

Support for subregions was also included in region templates. Adding sections for
subregion header templates, together with subregion header entry templates,
provide the possibility to generate a list of region titles of all the subregions of the
current region. Mix in a little JavaScript with your subregion templates, and building
tab panels like the one shown in the following screenshot becomes very easy:

Creating Ext.TabPanels from existing HTML markup can be done using:

•	 Pre-structured markup: A container DIV with one or more nested tab
DIVs with class 'x-tab'. Setting the Ext.TabPanel coniguration option of
autoTabs to true will automatically query and convert the nested DIVs.

•	 Un-structured markup: A tab panel can be rendered from markup that is not
strictly structured by specifying by ID the elements making up the container
and the tabs. Using this method, tab content can be pulled from different
elements within the page by ID regardless of the page structure.

We will be using the un-structured markup approach, mainly because the IDs for
each of the tab panels are known.

Specifying the IDs directly instead of querying the DOM to ind
DIVs with the class 'x-tab' has a slight performance advantage
when the browsers JavaScript engine is manipulating the page.

http:///

Chapter 6

[187]

Using the un-structured markup approach, the JavaScript shown:

Ext.onReady(function(){

 new Ext.TabPanel({

 renderTo: 'my-tabs',

 activeTab: 0,

 items:[

 {contentEl:'tab1', title:'Tab 1'},

 {contentEl:'tab2', title:'Tab 2'}

]

 });

});

would convert this markup into a tab panel:

<div id="my-tabs"></div>

<div id="tab1" class="x-hide-display">A simple tab</div>

<div id="tab2" class="x-hide-display">Another one</div>

Adding the class "x-hide-display" to each of the DIVs stops them from being
displayed outside the tabs, and reduces your page content from jumping around
when it's being rendered and then manipulated by the page JavaScript. Ext uses this
same class to hide or show the tab panels.

Building the tab panel template
The easiest approach to building the template is to start by constructing a page with
some nested subregions, and building a solution from there. This way, you can check
your progress as you go.

Start off by creating a simple page with several regions, with one for the tab panel;
assign the others as subregions of the tab panel. Assigning a region as a subregion is
done in Application Builder by setting the parent region attribute, as shown in the
following screenshot:

You don't need to assign a template to the subregions for this solution. If you do,
it will change the appearance for the content of the individual tab, but not the tab
panel itself.

http:///

Adding Ext Layout Elements

[188]

The following screenshot shows the Application Builder view of the tab panel
example shown earlier:

Within the Maintain User Details region are some region buttons and a tab panel
region as a subregion. The tab panel region in turn contains ive subregions and
some items within those regions.

No items are included in the tab panel, as the template we are creating is designed
simply to be a container for the panels within.

Next, create a new region template with the following properties:

Name:

EXTJS TabPanel

http:///

Chapter 6

[189]

Template class:

Custom 1

Template:

<div id="#REGION_STATIC_ID#" #REGION_ATTRIBUTES#></div>

#SUB_REGIONS#

#SUB_REGION_HEADERS#

For the subregion elements:

Header template:

<pre>

Ext.onReady(function(){

 var subs = [];

#ENTRIES#

 new Ext.TabPanel({

 renderTo: '#REGION_STATIC_ID#',

 activeTab: 0,

 items:subs

 });

});

</pre>

Header entry template:

 subs.push({

 contentEl:'#SUB_REGION_ID#-tab',

 title:'#SUB_REGION_TITLE#'

 });

Subregion template:

<div id="#SUB_REGION_ID#-tab" class="x-hide-display">

#SUB_REGION#

</div>

Rather than my explaining the code we have just added to the template immediately,
you should assign the template to the tab panel region in the test form you created
earlier. Then run the page to view the output. Did it look like what you expected?

http:///

Adding Ext Layout Elements

[190]

The output for the example used throughout this section is shown in the following
screenshot. It shows the contents of the Maintain User Details panel and its buttons,
but instead of a tab panel, there is just some JavaScript code. No sign of the ields
from the irst tab panel subregion at all.

Replacing script tags with pre tags around the JavaScript
components in the template allows us to view the generated content.

Now for some explanation, working our way from the bottom of the template up:

Subregion template:

<div id="#SUB_REGION_ID#-tab" class="x-hide-display">

#SUB_REGION#

</div>

Here we are wrapping the subregions with additional HTML code. In this case, a DIV
tag encloses the #SUB_REGION# substitution tag. The DIV tag uses the #SUB_REGION_
ID# substitution tag with -tab appended to create a unique ID. Assigning the class
x-hide-display hides the contents of the subregion until the Ext.TabPanel code is
ready to display the subregion.

Header entry template:

 subs.push({

 contentEl:'#SUB_REGION_ID#-tab',

 title:'#SUB_REGION_TITLE#'

 });

http:///

Chapter 6

[191]

Subregion header entry templates can be used to construct a list of region titles of all
the subregions for the current region. We are adding our own twist by constructing
JavaScript instead of HTML. The command is pushing an object literal onto an array,
the object literal containing the name of the DIV we wrapped around each subregion,
together with the subregion title. This is done by using the #SUB_REGION_ID# and
#SUB_REGION_TITLE# substitution tags.

Header template:

<script type="text/javascript">

Ext.onReady(function(){

 var subs = [];

#ENTRIES#

 new Ext.TabPanel({

 renderTo: '#REGION_STATIC_ID#',

 activeTab: 0,

 items:subs

 });

});

</script>

The subregion header template is mainly used to assemble the accumulated results
from the header entry template in the #ENTRIES# substitution tag.

Also included here is the JavaScript to create the Ext.TabPanel, which is rendered
into the DIV in the template using the ID generated from the #REGION_STATIC_
ID# substitution tag. This time the pre tags have been replaced with the script tags.

Template:

<div id="#REGION_STATIC_ID#" #REGION_ATTRIBUTES#></div>

#SUB_REGIONS#

#SUB_REGION_HEADERS#

The template is a simple DIV element the Ext.TabPanel will be rendered into. The
#REGION_STATIC_ID# is used to identify the region; the #REGION_ATTRIBUTES#
allows attributes to be assigned from the Edit Region Form. This is very useful for
sizing the DIV region, for example style="width:595px; height:240px".

The #SUB_REGIONS# and #SUB_REGION_HEADERS# are used to hold the content of the
subregions and the JavaScript we have created in the subregion header template.

Now that the script tags are in place, the tab panel will render properly using the
minimal coniguration we provided.

http:///

Adding Ext Layout Elements

[192]

Coniguring the tab panel template
The Ext.TabPanel is highly conigurable; so far we have used a minimal
coniguration when creating the tab panel in the template deinition.

Our minimal coniguration means the individual tab panel's size to their
contents. Looking at the following screenshot, you can see the height of the
User Information tab is much larger than the empty History tab shown below it.
Depending on your requirements, that may be perfectly ine. Let's look at a couple
of alternative conigurations.

Setting the tab panel's attributes value to style="width:450px; height:240px", as
shown in the following screenshot, controls the height and width of the containing DIV
the tab panel is rendered into through the #REGION_ATTRIBUTES# substitution tag:

http:///

Chapter 6

[193]

This automatically limits the width of the tab panel, which sizes to the parent
container. Using the following coniguration allows the height of the individual tabs
to be set to the same value:

new Ext.TabPanel({

 renderTo: '#REGION_STATIC_ID#',

 activeTab: 0,

 height: Ext.fly('#REGION_STATIC_ID#').getHeight()||'auto',

 defaults: {autoScroll:true, boxMinHeight: 100},

 cls: 'blue-tabs',

 plain: true,

 items:subs

});

The height conig option is set to the height of the containing DIV if speciied,
otherwise falls back to the 'auto' setting and uses the height of the tabs contents.

The defaults conig option sets all tabs to include a scrollbar automatically if the
content overlows the ixed tab region instead of clipping the content, and specifying
boxMinHeight sets a minimum height if the 'auto' setting is applied.

Adding cls: 'blue-tabs' picks up the custom CSS style:

.blue-tabs .x-panel-bwrap .x-panel-body {

 background-color:#e0ecfc; padding:10px

}

Setting plain: true removes the background from the tab strip. The result of
all these coniguration options is the very different looking tab panel in the
following screenshot:

http:///

Adding Ext Layout Elements

[194]

Flipping the tab strip from the top of the tab panel to the bottom is done by simply
setting the coniguration option tabPosition: 'bottom'; the result is shown in the
following screenshot:

There are still a large number of coniguration options we haven't explored here,
so it's well worth spending some time experimenting to work out what suits your
application best.

Toolbars and menus
Back in Chapter 4, Ext Themed Regions, Labels, and Lists, we went through a solution
to creating a hierarchical tree component using a list template to build a script and
generate an Ext.tree.TreePanel, as shown on the left-hand side of the following igure:

http:///

Chapter 6

[195]

This time we are going to use much the same approach to produce the toolbar on the
right hand side of the preceding igure. One thing really nice about this solution is
that the tree and toolbar are using the same list as the data source.

As the solution is so similar to the Ext.tree.TreePanel solution in Chapter 4, we will
only cover the APEX 4.0 solution. If you are still using an earlier APEX version, you
can easily adapt the pre APEX 4.0 solution in Chapter 4 in the same manner.

Create a new List Template:

Name: EXTJS Toolbar List

Template class: Hierarchical Expanding

List template current:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#}

List template current with sub list items:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#,menu:{

items:[

List template noncurrent:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#}

List template noncurrent with sub list items:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#,menu:{

items:[

Between list elements:

,

List template current (irst):

<div id="menu#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

 var menuRegion = 'menu#LIST_ITEM_ID#';

 var menuData = [{id:"#LIST_ITEM_ID#","text":"#TEXT#",

"href":"#LINK#"#A02#,menu:{

items:[

http:///

Adding Ext Layout Elements

[196]

List template current with sublist items (irst):

<div id="menu#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

 var menuRegion = 'menu#LIST_ITEM_ID#';

 var menuData = [{id:"#LIST_ITEM_ID#","text":"#TEXT#",

"href":"#LINK#"#A02#}

List template noncurrent (irst):

<div id="menu#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

 var menuRegion = 'menu#LIST_ITEM_ID#';

 var menuData = [{id:"#LIST_ITEM_ID#","text":"#TEXT#",

"href":"#LINK#"#A02#}

List template noncurrent with sublist items (irst):

<div id="menu#LIST_ITEM_ID#"></div>

<script type="text/javascript">

Ext.onReady(function(){

 var menuRegion = 'menu#LIST_ITEM_ID#';

 var menuData = [{id:"#LIST_ITEM_ID#","text":"#TEXT#",

"href":"#LINK#"#A02#,menu:{

items:[

Sublist template current:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#}

Sublist template current with sublist items:

{id:"#LIST_ITEM_ID#","text":"#TEXT#", "href":"#LINK#"#A02#,menu:{

items:[

http:///

Chapter 6

[197]

Sublist template noncurrent:

{id:"#LIST_ITEM_ID#","text":"#TEXT#","href":"#LINK#"#A02#}

Sublist template noncurrent with sublist items:

{id:"#LIST_ITEM_ID#","text":"#TEXT#", "href":"#LINK#"#A02#,menu:{

items:[

Between sublist items:

,

Sublist template after rows:

]}}

List template after rows:

];

 new Ext.Toolbar({

 renderTo: menuRegion,

 style: {border: '1px solid #99BBE8'},

 items: menuData

 });

});

</script>

We won't go through a detailed explanation of the code here; it really is just
repeating what was covered in Chapter 4, with minor adjustments to produce an Ext.
toolbar instead of an Ext.tree.TreePanel.

The main points to remember:

Using APEX lists allow conditions on individual entries,
allowing you to show items conditionally depending on security
privileges of application state.

APEX lists are automatically included in exports, so you don't
need to migrate data manually.

The #A02# substitution tag allows you to add extra JavaScript
code against individual menu items, for example, to change the
appearance or add a custom 'click' action.

http:///

Adding Ext Layout Elements

[198]

Attaching the toolbar to the center panel
If you want to integrate the toolbar into the center panel so it is directly attached to
the header of the center panel, as shown in the following screenshot, there are a few
simple changes to make:

First, you will need to change your page template to include an empty toolbar in the
center region. This is necessary because Ext cannot add a toolbar to a panel once it
has been rendered.

So, for a simpliied Viewport, the highlighted line adds a hidden toolbar to the
center panel:

 new Ext.Viewport({

 layout: 'border',

 defaults: {

 animCollapse: false,

 autoScroll: true

 },

 items: [{

 contentEl: 'app-west-panel',

 collapsible: true,

 region: 'west',

 split: true,

 title: 'Navigation',

 width: 275

 }, {

 id: 'gen-center-panel',

 contentEl: 'app-center-panel',

 region: 'center',

 title: document.title,

 tbar: {hidden:true, items:[]},

 xtype: 'panel'

 }]

 });

});

http:///

Chapter 6

[199]

The other item to note is that we have set the ID 'gen-center-panel' for the center
panel, making it easy to reference later.

Then either copy or modify the toolbar list template, changing the following section:

List template after rows:

];

var tb = Ext.getCmp('gen-center-panel').getTopToolbar();

tb.add(menuData);

if (!tb.isVisible()) tb.setVisible(true);

tb.doLayout();

});

</script>

Now, instead of rendering the toolbar to a DIV element, we are looking up the
existing toolbar using the ID of the center panel. Once we have this, the menu items
in the array menuData are added to the toolbar. Finally, we set the toolbar to visible
and update the layout.

The references to the DIV element the menu was originally rendered into can also be
removed from the template.

We have barely scratched the surface of what you can do with the Ext.toolbar here.
There are many more features and options available, so spend some time exploring
the toolbar examples included with the Ext library.

Summary
In this chapter, we have introduced some "low-hanging fruit" Ext JS components that
add functionality to applications with minimal effort to set them up.

For the date picker, resizable or auto-sizing text areas, and the combo boxes, we have
simply improved existing HTML components. The tab panels and toolbar menus
introduce new functionality not previously available in our theme.

In some ways, using the template approach is ultimately limited, because you
are restricted to hard-coding your coniguration options into the template. We
saw for the tab panels to have several different variations requires you to have
multiple templates.

Plugins, also introduced in APEX 4.0, offer much more lexibility, which we will see
in the next chapter.

http:///

http:///

Working with Plug-ins and

Dynamic Actions
Plug-ins and dynamic actions are the two most exciting new features for developers
in APEX 4.0. Combining them with Ext JS components is a recipe for success.

For the irst time we now have the ability to add custom "widgets" directly into
APEX that can be used declaratively in the same way as native APEX components.
Plug-ins and dynamic actions are supported with back end integration, allowing
developers to make use of APEX provided PL/SQL APIs to simplify component
development.

Plug-ins give developers a supported mechanism to enhance the existing built-in
functionality by writing custom PL/SQL components for item types, regions,
and processes.

Dynamic actions provide developers with a way to deine client-side behavior
declaratively without needing to know JavaScript. Using a simple wizard,
developers can select a page item and a condition, enter a value, and select an action
(for example, Show, Hide, Enable, and Show Item Row).

Most APEX developers come from a database development background. So, they are
much more comfortable coding with PL/SQL than JavaScript. The sooner work is
focused on PL/SQL development the more productive APEX developers become.

The ability to create plug-ins that can be used declaratively means developers don't
have to write page-speciic JavaScript for items on a page, or use messy "hacks" to
attach additional JavaScript functionality to standard APEX items.

Ext JS provides a rich library of sophisticated JavaScript components just waiting to
be integrated into APEX using plug-ins.

http:///

Working with Plug-ins and Dynamic Actions

[202]

Over the next chapters, we will be looking at plug-ins and dynamic actions and how
they interact together. This chapter will cover in detail the development process for
creating a simple NumberField plug-in, allowing you to focus on the process rather
than the widget.

A home for your plug-ins and dynamic
actions
APEX allows you to create plug-ins for item, region, dynamic action, and process
types. Like templates and themes, plug-ins are designed to be shared, so they can
be easily exported and imported from one workspace application to another.
Plug-ins can also be subscribed, providing a way to easily share and update
common attributes between plug-ins.

In Chapter 3 Building a Ext theme into APEX, I discussed the beneits of building
your theme in a dedicated TEMPLATE application, and building simple test pages
as you go to verify the templates. These test pages also form part of your template
documentation, allowing team members to examine and understand speciic
functionality in isolation. The same principle applies for building plug-ins and
dynamic actions.

Building a better Number Field
APEX 4.0 introduced the Number Field as a new item type, allowing you to
conigure number-range checks by optionally specifying minimum and maximum
value attributes. It also automatically checks that the entered value is a number, and
performs NOT NULL validation as well. You can also specify a format mask for the
number as well, presumably to enforce decimal places.

This all sounds great, and it does work as described, but only after you have
submitted the page for processing on the server.

The following screenshot shows the APEX and Ext versions of the Number Field,
both setup with a valid number range of 1 to 10,000. The APEX version allows you
to enter any characters you want, including letters. The Ext version automatically
ilters the keys pressed to only accept numbers, conditionally the decimal separator,
and the negative sign. It also highlights invalid values when you go outside the valid
number range.

http:///

Chapter 7

[203]

We are going to build a better Number Field using APEX plug-ins to provide
better functionality on the client side, and still maintain the same level of
server-side validation.

The Number Field is quite a simple example, allowing us to be introduced to how
APEX plug-ins work without getting bogged down in the details.

The process of building a plug-in requires the following:

•	 Creating a plug-in in your application workspace

•	 Creating a test page containing your plug-in and necessary extras to test it

•	 Running your application to test functionality

•	 Repeating the build/test cycle, progressively adding more features until
satisied with the result.

Creating a plug-in item
For our Number Field, we will be creating an item plug-in.

So, navigate to the plug-ins page in Application Builder, found under Application
Builder | Application xxx | Shared Components | Plug-ins, and press Create to
open the Plug-in Create/Edit page.

Start illing in the following ields:

•	 Name: Ext.form.NumberField. Here, I'm using the Ext naming for the
widget, but that's just for a convenience.

•	 Internal Name: Oracle's recommendation here is to use your organization's
domain name as a preix. So for example, a company domain of mycompany.
com would preix a plug-in named Slider, would result in an internal name
of COM.MYCOMPANY.SLIDER.

http:///

Working with Plug-ins and Dynamic Actions

[204]

•	 File Preix: As we are referencing the Ext JavaScript libraries in our page
template, we can skip this ield completely. For specialized plug-ins that
are only used on a handful of speciic pages, you would attach a
JavaScript ile here.

•	 Source: For the PL/SQL source code required to implement our plug-in,
you can either enter it as a PL/SQL anonymous block of code that contains
functions for rendering, validating and AJAX callbacks, or refer to code in a
PL/SQL package in the database.

You get better performance using PL/SQL packages in the database, so that's the
smart way to go. Simply include your package function names in the Callbacks
section, as shown in the following screenshot, noting that no AJAX function name is
speciied as no AJAX functionality is required for this plug-in. The package doesn't
need to exist at this time—the form will submit successfully anyway.

Standard attributes:

In addition to being able to create up to ten custom attributes, the APEX team
has made the standard attributes available for plug-ins to use. This is really
useful, because the standard attributes comprise elements that are useful for most
components, such as width and height. They also have items such as List of Values
(LOV), which have more complicated validation rules already built-in, checking SQL
queries used for the LOV source are valid queries, and so on.

For the Number Field, only a few attributes have been checked:

•	 Is Visible Widget: Indicating the element will be displayed

http:///

Chapter 7

[205]

•	 Session State Changeable: So that APEX knows to store the value of the
item in session state

•	 Has Read Only Attribute: So that conditional logic can be used to make the
item read only

•	 Has Width Attributes: Allowing the width of the item to be set

Notice that some of the attributes are disabled in the following screenshot. This is
because the APEX Builder conditionally enables the checkboxes that are dependent
on another attribute. So, in this screenshot the List of Values Required, Has LOV
Display Null Attributes, and Has Cascading LOV Attributes checkboxes are
disabled, because they are dependant on the Has List of Values checkbox. Once it is
checked, the other checkboxes are enabled.

Custom attributes:

Deining the custom attributes for our Number Field is largely an exercise in
reviewing the coniguration options available in the documentation for Ext.form.
NumberField, and deciding which options are most useful to be included.

You need to also take into account that some coniguration options are already
included when you deine an APEX item using your plug-in. For example, Item
Label is included with an APEX item, but is rendered separately from the item, so
don't need to be included. Likewise Value Required is a validation rule, and is also
separate when rendering the APEX item.

http:///

Working with Plug-ins and Dynamic Actions

[206]

The following next screenshot shows some Ext.form.NumberField coniguration
options, overlaid with the custom attributes deined in APEX for the plug-in:

I've chosen not to include the allowBlank conig option as a custom attribute, simply
because this can be determined by the APEX Value Required property. Other
Coniguration options, such as allowDecimals and allowNegative, are included as
custom attributes as Yes/No types.

The custom attributes created are listed in the following table:

Label Type Required Depending on Values

Allow Decimals Yes/No Yes

Allow Negative Yes/No Yes

Decimal Precision Number No Allow Decimals

Minimum Value Number No

Maximum Value Number No

Number Alignment Select List No left, center, right

http:///

Chapter 7

[207]

Custom events:

Custom events are used to deine JavaScript event that can be exposed to dynamic
actions. For this simple plug-in, there is no need to deine any custom events.

At this point, we are done deining the Number Field in APEX; it's time to turn our
attention to building the database package to execute the Callbacks to render and
validate the plug-in.

Deining the plug-in Callback functions
Plug-ins must implement a ixed interface, deined for the plug-in type (item, region,
dynamic action) and the Callback function (Render, AJAX, Validation).

For example, the item type plug-in Render Functions must implement the
following interface:

function <name of function> (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result

So, for the Number Field plug-in, I'm using a package name plug_ext_form_
numberfield, and function names render, ajax, and validate.

The PL/SQL package speciication becomes:

CREATE OR REPLACE PACKAGE plug_ext_form_numberfield AS

function render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result;

function ajax (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin)

 return apex_plugin.t_page_item_ajax_result;

function validate (

http:///

Working with Plug-ins and Dynamic Actions

[208]

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 return apex_plugin.t_page_item_validation_result;

END;

/

For the PL/SQL package body, we'll start out by building working stubs for the
functions, and ill in the details, as we work through the solution.

CREATE OR REPLACE PACKAGE BODY plug_ext_form_numberfield AS

FUNCTION render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result

IS

 l_result apex_plugin.t_page_item_render_result;

 subtype attr is

 apex_application_page_items.attribute_01%type;

 -- assign local names to attributes

 l_allow_decimals attr := p_item.attribute_01;

 l_allow_negative attr := p_item.attribute_02;

 l_decimal_precision attr := p_item.attribute_03;

 l_min_value attr := p_item.attribute_04;

 l_max_value attr := p_item.attribute_05;

 l_align attr := p_item.attribute_06;

 -- Only use escaped value for the HTML output!

 l_code varchar2(32767);

 l_escaped_value varchar2(32767)

 := sys.htf.escape_sc(p_value);

 l_name varchar2(30);

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item,

http:///

Chapter 7

[209]

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 end if;

 if p_is_readonly or p_is_printer_friendly then

 -- emit hidden field if necessary

 apex_plugin_util.print_hidden_if_readonly (

 p_item_name => p_item.name,

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 -- emit display span with the value

 apex_plugin_util.print_display_only (

 p_item_name => p_item.name,

 p_display_value => p_value,

 p_show_line_breaks => false,

 p_escape => true,

 p_attributes => p_item.element_attributes);

 else

 -- If a page item saves state, we have to call the

 -- get_input_name_for_page_item to render the internal

 -- hidden p_arg_names field. It will also return the

 -- HTML field name which we have to use when we render

 -- the HTML input field.

 l_name := apex_plugin.get_input_name_for_page_item(false);

 sys.htp.p('<input type="text" name="'||l_name||

 '" id="'||p_item.name||'" '||

 'value="'||l_escaped_value||

 '" size="'||p_item.element_width||'" '||

 'maxlength="'||p_item.element_max_length||'" '||

 coalesce(p_item.element_attributes,

 'class="x-form-text"')||' />');

 -- **

 -- @todo - write code for widget here

 -- **

 l_code := 'Ext.onReady(function(){'||

 'alert("@todo - write widget code");'||

 '});';

http:///

Working with Plug-ins and Dynamic Actions

[210]

 -- Initialize page item when the page has been rendered.

 apex_javascript.add_onload_code(p_code => l_code);

 -- Tell APEX engine that field is navigable, in case

 -- it's the first item on the page, and APEX page is

 -- configured to navigate to first item (by default).

 l_result.is_navigable := true;

 end if;

 return l_result;

END render;

FUNCTION ajax (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin)

 return apex_plugin.t_page_item_ajax_result

IS

 l_result apex_plugin.t_page_item_ajax_result;

BEGIN

 -- @note - not using AJAX for this widget

 -- usually logic goes here

 -- not used by APEX yet

 return l_result;

END ajax;

FUNCTION validate (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 return apex_plugin.t_page_item_validation_result

IS

 l_result apex_plugin.t_page_item_validation_result;

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item);

 end if;

 -- @todo - write validation code

http:///

Chapter 7

[211]

 return l_result;

END validate;

END plug_ext_form_numberfield;

/

Once the PL/SQL package speciication and body has been compiled in the same
schema as the parsing schema for the APEX Application, you have a fully functional
"stub" for an item plug-in. The "stub" is a basic template pattern for item plug-ins;
you simply insert the relevant code for your particular plug-in where the @todo
comments are shown.

I'm not going to spend much time going through this PL/SQL code; that would be
like "teaching your Grandmother how to suck eggs", as the saying goes.

There are a few important points worth noting though.

The APEX plug-in engine does a lot of work for you before it calls the plug-in code
to render, validate, or execute AJAX processing on an item. The engine gathers the
relevant metadata for the speciic APEX page item, performing substitutions along the
way before passing that information through to the plug-in as record-type parameters.

So, looking at the render function speciication,

FUNCTION render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result

you can see the the function is being passed record types apex_plugin.t_page_
item and apex_plugin.t_plugin, and returning t_page_item_render_result.

The deinitions for the record types are contained in the APEX_PLUGIN
(APEX_040000.WWV_FLOW_PLUGIN) package speciication, and include the
following type declarations:

type t_plugin is record (

 name varchar2(45),

 file_prefix varchar2(4000),

 attribute_01 varchar2(32767),

 ...

 attribute_10 varchar2(32767));

http:///

Working with Plug-ins and Dynamic Actions

[212]

type t_page_item is record (

 id number,

 name varchar2(255),

 label varchar2(4000),

 plain_label varchar2(4000),

 format_mask varchar2(255),

 is_required boolean,

 lov_definition varchar2(4000),

 lov_display_extra boolean,

 lov_display_null boolean,

 lov_null_text varchar2(255),

 lov_null_value varchar2(255),

 lov_cascade_parent_items varchar2(255),

 ajax_items_to_submit varchar2(255),

 ajax_optimize_refresh boolean,

 element_width number,

 element_max_length number,

 element_height number,

 element_attributes varchar2(2000),

 element_option_attributes varchar2(4000),

 escape_output boolean,

 attribute_01 varchar2(32767),

 ...

 attribute_10 varchar2(32767));

type t_page_item_render_result is record (

 is_navigable boolean default false,

 navigable_dom_id varchar2(255));

As you can see, there is a fairly substantial amount of metadata available for you to
use when generating code for your plug-in.

Once you start writing, your plug-in the package APEX_PLUGIN_UTIL (APEX_040000.
WWV_FLOW_PLUGIN_UTIL) contains some very useful procedures to help you
build plug-ins quickly. A number of them have already been included in our
stub plug-in.

http:///

Chapter 7

[213]

One of the utility procedures most useful when starting out building your plug-in is
the debugging procedure, called using the following code:

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item);

 end if;

With debugging enabled for a page containing your plug-in, the debugging page
shows the parameters values being passed to your plug-in package, as can be seen in
the following screenshot:

At this point, it's a good time to create a page and include the number plug-in, so we
can do some testing and progressively add functionality to the plug-in.

http:///

Working with Plug-ins and Dynamic Actions

[214]

Creating a page item based on the Number
Field plug-in
Creating a page item based on your plug-in is done exactly the same way you would
any standard APEX item. Simply create the item, then select your plug-in under the
Display option, and start illing in the details for the item as usual.

The standard attributes available are determined by the plug-in deinition; we didn't
select the standard attribute Has List of Values for the plug-in earlier, so that section
isn't available for our Number Field. The custom attributes we deined for the Number
Field appear in the Settings section, as you can see in the following screenshot:

So, go ahead and create a test page with your shiny new Number Field plug-in,
and give it a test run. If everything is working as expected, then it should look and
behave exactly like a standard APEX Text Field. It will accept any text you enter,
submit and store the result in Session state, and render it as a read-only ield if you
set the Read-Only Condition.

http:///

Chapter 7

[215]

The only inconvenient thing about it is that annoying JavaScript alert shown in
preceding screenshot, reminding us that we haven't inished writing the plug-in
source. Let's remedy that now.

Render functionality for the Number Field
plug-in
Our stub function already includes enough logic to behave as a standard APEX Text
ield. To make it behave as an Ext.form.NumberField, providing automatic keystroke
iltering and number validation, we need to generate JavaScript code to convert it.

The generated JavaScript will look similar to the following:

Ext.onReady(function(){

 new Ext.form.NumberField({

 applyTo: 'P120_NUMBER_FIELD',

 allowDecimals: false

 allowNegative: false,

 decimalPrecision: 2,

 minValue: 1,

 maxValue: 10000,

 value: 54

 });

});

You can easily test this on your test page by pasting the preceding code into the
Firebug console in Firefox, changing the applyTo value to match your page item, and
running it.

Looking at the generated JavaScript, it's readily apparent that the code generator
simply needs to build up the text, adding the parameters and dynamic values
as it goes.

The inal version of the render function is as follows:

FUNCTION render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result

IS

 l_result apex_plugin.t_page_item_render_result;

http:///

Working with Plug-ins and Dynamic Actions

[216]

 subtype attr is

 apex_application_page_items.attribute_01%type;

 -- assign local names to attributes

 l_allow_decimals attr := p_item.attribute_01;

 l_allow_negative attr := p_item.attribute_02;

 l_decimal_precision attr := p_item.attribute_03;

 l_min_value attr := p_item.attribute_04;

 l_max_value attr := p_item.attribute_05;

 l_align attr := p_item.attribute_06;

 -- Only use escaped value for the HTML output!

 l_code varchar2(32767);

 l_escaped_value varchar2(32767)

 := sys.htf.escape_sc(p_value);

 l_name varchar2(30);

To improve the readability of your code, it's worthwhile assigning the p_item
attribute values to local variables.

Also highly recommended is escaping any values passed from the HTML page
using the Oracle provided sys.htf.escape_sc function to prevent SQL injection
attacks. A malicious person can easily circumvent any HTML page protection using
developer tools, such as Firebug, to force the page to submit SQL injection text.

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item,

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 end if;

 if p_is_readonly or p_is_printer_friendly then

 -- emit hidden field if necessary

 apex_plugin_util.print_hidden_if_readonly (

 p_item_name => p_item.name,

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 -- emit display span with the value

http:///

Chapter 7

[217]

 apex_plugin_util.print_display_only (

 p_item_name => p_item.name,

 p_display_value => p_value,

 p_show_line_breaks => false,

 p_escape => true,

 p_attributes => p_item.element_attributes);

 else

 -- If a page item saves state, we have to call the

 -- get_input_name_for_page_item to render the internal

 -- hidden p_arg_names field. It will also return the

 -- HTML field name which we have to use when we render

 -- the HTML input field.

 l_name := apex_plugin.get_input_name_for_page_item(false);

 sys.htp.p('<input type="text" name="'||l_name||

 '" id="'||p_item.name||'" '||

 'value="'||l_escaped_value||

 '" size="'||p_item.element_width||'" '||

 'maxlength="'||p_item.element_max_length||'" '||

 coalesce(p_item.element_attributes,

 'class="x-form-text"')||' />');

The irst section of the procedure remains exactly the same as the earlier version.
Now we remove the stubbed code:

 -- **

 -- @todo - write code for widget here

 -- **

 l_code := 'Ext.onReady(function(){'||

 'alert("@todo - write widget code");'||

 '});';

The stubbed code is replaced with the following highlighted code:

 -- build Ext.form.NumberField properties

 l_code := wwv_flow_javascript.add_attribute(

 'applyTo', p_item.name)

 ||wwv_flow_javascript.add_attribute(

 'allowDecimals'

 ,case when l_allow_decimals = 'N' then 'false' end)

 ||wwv_flow_javascript.add_attribute(

 'allowNegative'

 ,case when l_allow_negative = 'N' then 'false' end)

 ||wwv_flow_javascript.add_attribute(

 'decimalPrecision', l_decimal_precision)

http:///

Working with Plug-ins and Dynamic Actions

[218]

 ||wwv_flow_javascript.add_attribute(

 'minValue',l_min_value)

 ||wwv_flow_javascript.add_attribute(

 'maxValue',l_max_value)

 ||wwv_flow_javascript.add_attribute(

 'value',l_escaped_value);

 -- can't use add_attribute() as it escapes double quotes

 if l_align is not null then

 l_code := l_code||'"style": {"text-align":"'

 ||l_align||'"},';

 end if;

 l_code := l_code||wwv_flow_javascript.add_attribute(

 p_name => 'ajaxIdentifier',

 p_value => apex_plugin.get_ajax_identifier,

 p_add_comma => false);

 l_code :=

 'Ext.onReady(function(){new Ext.form.NumberField({'

 ||l_code||'});});';

 -- Initialize page item when the page has been rendered.

 apex_javascript.add_onload_code(p_code => l_code);

 -- Tell APEX engine that field is navigable, in case

 -- it's the first item on the page, and APEX page is

 -- configured to navigate to first item (by default).

 l_result.is_navigable := true;

 end if;

 return l_result;

END render;

The highlighted code shows the changes to the stubbed version, simply replacing the
alert message with the inal JavaScript we want, dynamically assigning the property
values using the APEX items metadata. Once again, APEX has provided utilities
in the APEX_JAVASCRIPT (APEX_040000.WWV_FLOW_JAVASCRIPT) package to
simplify the process.

http:///

Chapter 7

[219]

Validation functionality for the Number Field
plug-in
Currently, the validation function for the Number Field plug-in does absolutely
nothing; it's just a stub that compiles and nothing more. Even so, APEX does some
validation for us, checking for mandatory items.

The inal code for the validation function veriies the page item value is a number
with a value conforming to the rules speciied for the page item:

FUNCTION validate (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 return apex_plugin.t_page_item_validation_result

IS

 subtype attr is

 apex_application_page_items.attribute_01%type;

 -- assign local names to attributes

 l_allow_decimals attr := p_item.attribute_01;

 l_allow_negative attr := p_item.attribute_02;

 l_precision number := to_number(p_item.attribute_03);

 l_min_value number := to_number(p_item.attribute_04);

 l_max_value number := to_number(p_item.attribute_05);

 n number;

 l_result apex_plugin.t_page_item_validation_result;

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item);

 end if;

 -- Nothing to do when null (APEX checks for mandatory items)

 if p_value is null then return l_result; end if;

 -- verify value is numeric

 begin

 n := to_number(p_value);

 exception

 when value_error then

http:///

Working with Plug-ins and Dynamic Actions

[220]

 l_result.message := 'Value for '||

 p_item.plain_label||' must be a number';

 return l_result;

 end;

 case when l_allow_decimals = 'N' and n <> trunc(n) then

 l_result.message := 'Decimals not allowed for '||

 p_item.plain_label;

 when l_precision is not null

 and n <> trunc(n,l_decimal_precision) then

 l_result.message := 'Decimals places cannot exceed '||

 l_precision||' for '||p_item.plain_label;

 when l_allow_negative = 'N' and n <> abs(n) then

 l_result.message := 'Negative numbers not allowed'||

 ' for '||p_item.plain_label;

 when l_min_value is not null and n < l_min_value then

 l_result.message := 'The minimum value for '||

 p_item.plain_label||' is '||l_min_value;

 when l_max_value is not null and n > l_max_value then

 l_result.message := 'The maximum value for '||

 p_item.plain_label||' is '||l_max_value;

 else null;

 end case;

 -- return l_result with error message, success => null

 return l_result;

END validate;

That wraps up the implementation for the Number Field Plug-in; the inal package
speciication and package body are found in the iles included with the book
under Chapter 7.

http:///

Chapter 7

[221]

Summary
In this chapter, we have covered the development process for creating an item type
plug-in, showing how to deine the plug-in and its parameters in APEX.

We initially created a "stub" PL/SQL package for the Plug-in, allowing us to create
a test page for our Plug-in and start using it as a standard APEX text item. Once
the stub was working, we then were able to add in the enhanced JavaScript
functionality progressively on the web page, before completing the Plug-in by
adding the server-side validation.

Since the NumberField is just enhancing a standard HTML input ield and does
not add additional HTML elements, the standard Dynamic Actions will work quite
happily without change. We haven't implemented any AJAX functionality because
there hasn't been any requirement.

Chapter 8 implements a much more sophisticated component, the Ext.form.
ComboBox, as a Plug-in, and deals with both AJAX functionality and Dynamic
Actions, so we will have a look at that next.

http:///

http:///

Data Stores, AJAX-enabled

Plug-ins, and Dynamic

Actions
Data Stores provide the Ext JS framework with the ability to store data on the
browser client acting much like an in-memory database. This provides enormous
lexibility for data-aware components, such as the ComboBox, GridPanel, and
TreePanel, as it logically separates the component from the data.

This makes the process of integrating AJAX functionality into plug-ins far simpler,
because the AJAX processes will be focused on just passing data between the
browser client and the database. The Ext components already contain the client-side
functionality to update the display.

On the database side, APEX provides rich PL/SQL APIs to speed up the
development of plug-ins. We will be making good use of the APEX-provided PL/
SQL APIs to simplify component development.

In this chapter we will cover:

•	 Storing data on the browser client using Ext.data.Store
•	 Creating a complex ComboBox Plug-in, dealing with more advanced plugin

concepts including AJAX processing and interacting with dynamic actions

•	 Overriding standard Ext.form.ComboBox functionality to work within the
APEX Dynamic Actions framework

•	 Creating APEX Custom Events for the ComboBox plugin

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[224]

It makes for an interesting chapter, by really bringing the client-side Ext JS
framework together with the server-side capabilities of APEX to harness
their full potential.

Storing data on the browser client
The Ext.data.Store class is used to store data on the browser client acting much
like an in-memory database. The Store class caches Record objects that are used by
data-aware components such as the ComboBox, GridPanel, and TreePanel.

Data is loaded into a Store using different formats such as JavaScript Arrays, XML, or
JSON through the Ext.data.DataReader class. The DataReader class has subclasses
ArrayReader, JsonReader, and XmlReader that read structured data from a data
source in a speciic format, converting it into Record objects and metadata for use by
a Store object.

A number of Store types are available such as ArrayStore, JsonStore, and XmlStore,
customized and pre-conigured for use with a speciic DataReader. These custom
store types act as a helper class to provide a simpler shorthand way of implementing
the same solution.

For example, a basic Data Store to consume an Array looks like:

// data array of records

var countryData = [

 ["Afghanistan","65"]

 ,["Aland Islands","131"]

 ,["Albania, Republic of","118"]

 /*..snipped..*/

 ,["Zambia, Republic of","64"]

 ,["Zimbabwe","54"]

];

// define the record type structure

var countryRecord = Ext.data.Record.create([

{ name: 'countryName', mapping : 1 },

{ name: 'countryId', mapping : 2 }

]);

// create a reader, assigning the record type

var arrayReader = new Ext.data.ArrayReader({}, countryRecord);

// create a store, assigning the reader

var store = new Ext.data.Store({

http:///

Chapter 8

[225]

 reader : arrayReader

});

// manually load the store

store.loadData(countryData);

It can be re-written using the Ext.data.ArrayStore, when it simply becomes:

// data array of records

var countryData = [

 ["Afghanistan","65"]

 ,["Aland Islands","131"]

 ,["Albania, Republic of","118"]

 /*..snipped..*/

 ,["Zambia, Republic of","64"]

 ,["Zimbabwe","54"]

];

// create the store, assigning fields

var store = new Ext.data.ArrayStore({

 fields: ["countryName", "countryId"],

 data: countryData

});

We will be using Ext.data.ArrayStore when data is locally deined in the page.
The ArrayStore is conigured with an Ext.data.ArrayReader that automatically
calls the store's load method after creation to load the data into the store.

The following function should be included as part of a database package to render
the ArrayStore:

FUNCTION render_local_store (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 RETURN sys.dbms_sql.desc_tab2

IS

 l_sql_handler apex_plugin_util.t_sql_handler;

 l_col_value_list apex_plugin_util.t_column_value_list;

 l_col_count number;

BEGIN

 -- open sql cursor and get description for sql statement

 l_sql_handler := apex_plugin_util.get_sql_handler (

 p_sql_statement => p_item.lov_definition,

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[226]

 p_min_columns => 1,

 p_max_columns => 999,

 p_component_name => p_item.id

);

 l_col_count := l_sql_handler.column_list.count();

 -- binds all page item bind variables

 apex_plugin_util.prepare_query (

 p_sql_handler => l_sql_handler);

 -- fetch the data

 l_col_value_list := apex_plugin_util.get_data (

 p_sql_handler => l_sql_handler);

 -- close the open cursor created by get_sql_handler

 apex_plugin_util.free_sql_handler(l_sql_handler);

 -- start script

 sys.htp.p('<script type="text/javascript">');

 sys.htp.p('Ext.onReady(function(){');

 sys.htp.p('var ns = Ext.ns("Ext.apex.'||p_item.name||'");');

 -- print data

 if l_col_value_list.exists(1) then

 sys.htp.p('ns.data = [');

 for i in 1 .. l_col_value_list(1).count loop

 sys.htp.prn(case when i > 1 then ',' else ' ' end||'[');

 for j in 1 .. l_col_count loop

 sys.htp.prn(case when j > 1 then ',' end||

 '"'||apex_plugin_util.escape(

 l_col_value_list(j)(i),true)||'"');

 end loop;

 sys.htp.p(']');

 end loop;

 sys.htp.p('];');

 else

 sys.htp.p('ns.data = [];');

 end if;

 -- print store

 sys.htp.p('// simple array store');

 sys.htp.p('ns.store = new Ext.data.ArrayStore({');

 sys.htp.prn(' fields: [');

http:///

Chapter 8

[227]

 for i in 1 .. l_col_count loop

 sys.htp.prn(case when i > 1 then ',' end||

 '"'||l_sql_handler.column_list(i).col_name||'"');

 end loop;

 sys.htp.p('],');

 sys.htp.p(' data : ns.data');

 sys.htp.p('});');

 -- end script

 sys.htp.p('});');

 sys.htp.p('</script>');

 return l_sql_handler.column_list;

EXCEPTION

 when others then

 apex_plugin_util.free_sql_handler(l_sql_handler);

 raise;

END render_local_store;

The render_local_store uses the APEX_PLUGIN_UTIL (WWV_FLOW_PLUGIN_UTIL)
package to prepare the SQL query, bind session state variables, and retrieve the data.
That's quite a bit of work done for you by APEX, leaving you to render the data in
the desired format, in this case as a data store.

The JavaScript produced by the render_local_store function looks like
the following:

<script type="text/javascript">

Ext.onReady(function(){

 var ns = Ext.ns("Ext.apex.P120_COMBO");

 ns.data = [

 ["Afghanistan","65"]

 ,["Aland Islands","131"]

 ,["Albania, Republic of","118"]

 /* ..snipped .. */

 ,["Zambia, Republic of","64"]

 ,["Zimbabwe","54"]

];

 // simple array store

 ns.store = new Ext.data.ArrayStore({

 fields: ["CODE_DESCRIPTION","ID"],

 data : ns.data

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[228]

 });

});

</script>

The only difference from our earlier example of an ArrayStore is that the store has
been namespaced:

 var ns = Ext.ns("Ext.apex.P120_COMBO");

...

 ns.store = new Ext.data.ArrayStore({

 fields: ["CODE_DESCRIPTION","ID"],

 data : ns.data

 });

The Ext.apex.P120_COMBO namespace has been deined using the Ext.ns
(namespace) function. By assigning local variable ns to the namespace, an "alias" has
been deined, allowing you to code using the generic, abbreviated version. The store
is an object within this namespace, and can be referenced from JavaScript elsewhere
in a page using the fully qualiied name Ext.apex.P120_COMBO.store.

Using Data Stores with large datasets
It's not practical for large datasets to be stored locally in the page, so when returning
large datasets, the sensible approach is to fetch only a subset of data using an AJAX
request, letting the user remotely load the data and use pagination and iltering
functionality to ilter the results.

For large datasets, we will use Ext.data.JsonStore, which is automatically
conigured with Ext.data.JsonReader, and implicitly creates Ext.data.HttpProxy
if a URL is speciied. The HttpProxy uses the browser's XHR (XML Http Request)
object to perform generic AJAX requests.

For APEX plug-ins, a JsonStore would look like:

var store = new Ext.data.JsonStore({

 url: 'wwv_flow.show',

 root: 'rowset',

 idProperty: 1,

 fields: ["countryName", "countryId"],

 baseParams: {

 p_flow_id: Ext.getDom('pFlowId').value,

 p_flow_step_id: Ext.getDom('pFlowStepId').value,

 p_instance: Ext.getDom('pInstance').value,

 p_request: 'PLUGIN=4A6E248DAACFAED09B96..7261F1E1F7E'

 },

http:///

Chapter 8

[229]

 paramNames: {

 start:'p_widget_action_mod',

 limit:'p_widget_action'

 }

});

The JsonStore calls the named url, passing parameter names and values sourced
from the baseParams and paramNames conig options.

The following PL/SQL function render_remote_store generates the JavaScript for
a remote store deinition, and should be included in a database package:

FUNCTION render_remote_store (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 RETURN sys.dbms_sql.desc_tab2

IS

 l_sql_handler apex_plugin_util.t_sql_handler;

 l_col_value_list apex_plugin_util.t_column_value_list;

 l_col_count number;

 l_col_names varchar2(32767);

 l_script varchar2(32767) := q'^

 Ext.onReady(function(){

 var ns = Ext.ns('Ext.apex.#ITEM_NAME#');

 // simple array store

 ns.store = new Ext.data.JsonStore({

 url: 'wwv_flow.show',

 root: 'rowset',

 fields: [#FIELD_LIST#],

 baseParams: {

 p_flow_id: Ext.getDom('pFlowId').value,

 p_flow_step_id: Ext.getDom('pFlowStepId').value,

 p_instance: Ext.getDom('pInstance').value,

 p_request: 'PLUGIN=#AJAX_IDENTIFIER#'

 },

 paramNames: {

 start:'p_widget_action_mod',

 limit:'p_widget_action'

 }

 });

 });

 ^ ' ;

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[230]

The baseParams speciied are all required by APEX to perform AJAX processing
successfully. These parameters identify the application, page, session, and plugin on
the page. Specifying them in the baseParams attribute ensures they are passed to the
server with every AJAX request for this component.

Parameter names passed by the Ext AJAX process must
correspond to parameter names for the APEX database
procedure wwv_flow.show, otherwise APEX will error, raising
a HTTP Status 500 - System Unavailable message.

Overriding the names passed by the JsonStore to identify the starting record and
limit records returned to 'p_widget_action_mod' and 'p_widget_action' is
necessary to match the parameter names of the called database procedure
wwv_flow.show, identiied here in the url attribute.

BEGIN

 -- for remote store we only need to describe the store

 -- open sql cursor and get description for sql statement

 l_sql_handler := apex_plugin_util.get_sql_handler (

 p_sql_statement => p_item.lov_definition,

 p_min_columns => 1,

 p_max_columns => 999,

 p_component_name => p_item.id

);

 -- close the open cursor created by get_sql_handler

 apex_plugin_util.free_sql_handler(l_sql_handler);

 l_col_count := l_sql_handler.column_list.count();

 -- build comma separated string list of column names

 for i in 1 .. l_col_count loop

 l_col_names := l_col_names||

 case when i > 1 then ',' end||

 '"'||l_sql_handler.column_list(i).col_name||'"';

 end loop;

 -- substitute values into placeholders

 wwv_flow_utilities.fast_replace(l_script,

 '#ITEM_NAME#',p_item.name);

 wwv_flow_utilities.fast_replace(l_script,

http:///

Chapter 8

[231]

 '#FIELD_LIST#',l_col_names);

 wwv_flow_utilities.fast_replace(l_script,

 '#AJAX_IDENTIFIER#',apex_plugin.get_ajax_identifier);

 -- add JS to bottom of page

 apex_javascript.add_onload_code (

 p_code => l_script);

 return l_sql_handler.column_list;

EXCEPTION

 when others then

 apex_plugin_util.free_sql_handler(l_sql_handler);

 raise;

END render_remote_store;

Again, the APEX_PLUGIN_UTIL package is used to parse the query and retrieve the
column names. This time we don't need to return any data because this will be done
by the Ext data-aware component when it initiates a XHR request. Instead, we are
just deining the structure of the records held in the data store, and deining the
parameters for the HttpRequest object.

The code to retrieve the data will be dependent on each custom plug-in and handled
by the PL/SQL code for AJAX requests, so we won't provide the details here. For a
simple tabular component such as a ComboBox or Grid, data returned would
look like:

{"total":20,"rowset":[

 {"CODE_DESCRIPTION": "Bahamas, Commonwealth of the","ID": "170"}

,{"CODE_DESCRIPTION": "Bahrain, Kingdom of","ID": "67"}

,{"CODE_DESCRIPTION": "Bangladesh, People's Republic of","ID": "68"}

,{"CODE_DESCRIPTION": "Barbados","ID": "171"}

,{"CODE_DESCRIPTION": "Belarus","ID": "124"}

,{"CODE_DESCRIPTION": "Belgium, Kingdom of","ID": "121"}

,{"CODE_DESCRIPTION": "Belize","ID": "173"}

,{"CODE_DESCRIPTION": "Benin, People's Republic of","ID": "20"}

,{"CODE_DESCRIPTION": "Bermuda","ID": "172"}

,{"CODE_DESCRIPTION": " Belize","ID": "173"}

]}

Here, the total number of records is shown for the iltered result set for the
query. This example shows countries starting with "B". There are a total of 20
matching records; the records shown are the irst results returned for a pageSize
limit of 10 records.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[232]

Data Stores are a critical component for data-aware components, but are quite
straightforward to understand once you start using them. Let's move onto the
ComboBox plug-in to see them in action.

Building a ComboBox plug-in
We introduced Ext.form.ComboBox in Chapter 6, Adding Ext Layout Elements,
showing how it can be used as a direct replacement for the HTML Select List. It
provides the same drop-down list of values, as well as auto-completing iltering
functionality, enabling users to ind and select a value quickly.

But that's only scratching the surface of what the ComboBox can do!

In this section, we will cover creating a plug-in ComboBox, enabling functionality for
it to do both local and remote loading of data. The ComboBox can use all of the Ext
data store classes for its input data, so we will cover using the ArrayStore for local
ComboBoxes, and the JsonStore for remote ComboBoxes.

Unlike the new APEX 4.0 Auto-complete item type and the HTML Select List,
ComboBoxes are not limited to just one or two columns for data. We will also cover
how to use the Ext.XTemplate to provide enhanced formatting options to show
more information to your application users. The example in the following screenshot
shows a person's name, address ields, and a credit limit using CSS-formatted text
and images—all displayed using conditional logic.

http:///

Chapter 8

[233]

The ComboBox can also be used as a direct replacement for the native APEX Popup
List of Values. Those clunky popups in a separate browser window will be a thing of
the past!

Finally, we will cover how Dynamic Actions interact with widgets made up of
multiple DOM elements like the ComboBox.

Deining the ComboBox plug-in
We will be picking up the pace in our ComboBox deinition, as deining plug-ins is
about following a pattern. The new functionality will be covered in greater detail;
the full source for the database package is included in the Chapter 8 source code iles
available on Packt's site .

Plugin name:

Ext.form.ComboBox

Callbacks:

•	 Render function name: plug_ext_form_combo.render

•	 AJAX function name: plug_ext_form_combo.ajax

•	 Validation function name: plug_ext_form_combo.validate

Standard attributes:

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[234]

Having the List of Values enabled is the key to deining the query for our ComboBox.
We will be adding an extra column as part of the solution, limiting the number of
allowable columns to just 998 columns!

As a design choice, I've decided a minimum of two columns are required, these
columns are the description and value ields.

Custom attributes:

Label Type Required Depending on Values

Mode Select List Yes remote, local

Empty text Text No

Template conig Textarea No

Page size Number No Mode

Min. characters Integer No Mode

Events:

Name Internal name

onSelect select

Deining the ComboBox plug-in callback
functions
The PL/SQL package speciication for the ComboBox is identical to the NumberField
package speciication, apart from the changing of the name:

CREATE OR REPLACE PACKAGE plug_ext_form_combo AS

function render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result;

function ajax (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin)

 return apex_plugin.t_page_item_ajax_result;

http:///

Chapter 8

[235]

function validate (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 return apex_plugin.t_page_item_validation_result;

END;

/

Once again we will look at the details of each function separately; the full package
body and speciication are included in the Chapter 8 source iles available for
download on Packt's site.

Rendering functionality for the ComboBox
plug-in
The PL/SQL render function uses the metadata passed to it to generate HTML and
JavaScript to fulill the following requirements:

•	 For a display-only item, create a stateful HTML element as a SPAN element

OR

•	 Create an HTML element that will be transformed into a ComboBox

•	 Generate JavaScript deining a data store either locally with the data
in a JavaScript array, or as a remote data store with parameters for an
XHR request

•	 Generate JavaScript code deining the ComboBox and referencing the store

The PL/SQL code for the render function is as follows:

FUNCTION render (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2,

 p_is_readonly in boolean,

 p_is_printer_friendly in boolean)

 return apex_plugin.t_page_item_render_result

IS

 l_result apex_plugin.t_page_item_render_result;

 subtype attr is

 apex_application_page_items.attribute_01%type;

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[236]

 -- assign local names to attributes

 l_mode attr := p_item.attribute_01;

 l_emptyText attr := p_item.attribute_02;

 l_tpl attr := p_item.attribute_03;

 l_pageSize number := to_number(p_item.attribute_04);

 l_minChars number := to_number(p_item.attribute_05);

 -- Only use escaped value for the HTML output!

 l_code varchar2(32767);

 l_escaped_value varchar2(32767)

 := sys.htf.escape_sc(p_value);

 l_name varchar2(30);

 l_columns sys.dbms_sql.desc_tab2;

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item,

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 end if;

 if p_is_readonly or p_is_printer_friendly then

 -- emit hidden field if necessary

 apex_plugin_util.print_hidden_if_readonly (

 p_item_name => p_item.name,

 p_value => p_value,

 p_is_readonly => p_is_readonly,

 p_is_printer_friendly => p_is_printer_friendly);

 -- emit display span with the value

 apex_plugin_util.print_display_only (

 p_item_name => p_item.name,

 p_display_value => p_value,

 p_show_line_breaks => false,

 p_escape => true,

 p_attributes => p_item.element_attributes);

 else

 -- If a page item saves state, we have to call the

 -- get_input_name_for_page_item to render the internal

 -- hidden p_arg_names field. It will also return the

http:///

Chapter 8

[237]

 -- HTML field name which we have to use when we render

 -- the HTML input field.

 l_name

 := apex_plugin.get_input_name_for_page_item(false);

 -- emit the input item to be transformed

 sys.htp.p('<input type="text" name="'||l_name||

 '" id="'||p_item.name||'" '||

 'value="'||l_escaped_value||

 '" size="'||p_item.element_width||'" '||

 'maxlength="'||p_item.element_max_length||'" '||

 coalesce(p_item.element_attributes,

 'class="x-form-text"')||' />');

 -- call store rendering routine

 if l_mode = 'local' then

 l_columns := render_local_store (

 p_item => p_item,

 p_plugin => p_plugin,

 p_value => p_value);

 else

 l_columns := render_remote_store (

 p_item => p_item,

 p_plugin => p_plugin,

 p_value => p_value);

 end if;

 -- build combo properties

 -- local procedure PUSH adds values to associative array

 -- (index by table)

 -- use convention ext-xxx, where xxx is the item name

 -- makes it easy to lookup components using Ext.getCmp().

 push('id' ,'''ext-'||p_item.name||'''');

 push('hiddenName' ,''''||l_name||'''');

 push('hiddenValue' ,''''||l_escaped_value||'''');

 push('applyTo' ,''''||p_item.name||'''');

 push('mode' ,''''||l_mode||'''');

 push('forceSelection' ,'true');

 push('triggerAction' ,'''all''');

 push('selectOnFocus' ,'true');

 push('resizable' ,'true');

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[238]

 push('store' ,'Ext.apex.'||p_item.name||'.store');

 push('displayField',''''||l_columns(1).col_name||'''');

 push('valueField' ,''''||l_columns(2).col_name||'''');

 push('emptyText' ,''''||escape_json(l_emptyText)||'''');

 -- detect DOM node disabled

 -- allows developers to set element attribute to disabled

 push('disabled',

 'Ext.fly('''||p_item.name||''').dom.disabled'

);

 -- Can create a customized layout using Ext.XTemplates

 -- otherwise uses Ext.form.ComboBox default

 if l_tpl is not null then

 push('itemSelector' ,'''div.search-item''');

 push('tpl',

 'new Ext.XTemplate('||CRLF||l_tpl||')'

);

 end if;

 -- lookup the display value when the value is not null

 if p_value is not null then

 push('value', '"'||escape_json(

 apex_plugin_util.get_display_data (

 p_sql_statement => p_item.lov_definition,

 p_min_columns => 2,

 p_max_columns => 999,

 p_component_name => p_item.name,

 p_search_string => p_value,

 p_display_extra => false))||'"'

);

 end if;

 -- remote combos have extra params

 if l_mode = 'remote' then

 -- the APEX ajaxIdentifier is required to

 -- identify the item and session for AJAX processes

 push('ajaxIdentifier',

 ''''||apex_plugin.get_ajax_identifier||''''

);

 push('queryParam' ,'''x01''');

 push('idProperty',

http:///

Chapter 8

[239]

 ''''||l_columns(2).col_name||''''

);

 push('triggerClass','''x-form-search-trigger''');

 push('pageSize' ,l_pageSize);

 push('minChars' ,l_minChars);

 push('getParams' ,'function(q){var p = {};'||

 'if (this.pageSize) {p[''p_widget_action_mod''] = 0;'||

 'p[''p_widget_action''] = this.pageSize;}return p;}');

 end if;

 -- assemble the code, retrieving the "pushed" parameters

 -- as a varchar2 string

 l_code := CRLF||

 'Ext.onReady(function(){'||CRLF||

 ' new Ext.form.ComboBox({'||CRLF||

 get_properties(8)||' });'||CRLF||

 '});'||CRLF;

 -- Initialize page item when the page has been rendered.

 apex_javascript.add_onload_code (

 p_code => l_code);

 -- Tell APEX engine that field is navigable, in case

 -- it's the first item on the page, and APEX page is

 -- configured to navigate to first item (by default).

 if p_is_readonly or p_is_printer_friendly then

 l_result.is_navigable := false;

 else

 l_result.is_navigable := true;

 -- set navigable element when not same as item name

 -- l_result.navigable_dom_id := 'some other DOM id';

 end if;

 end if;

 return l_result;

END render;

We won't be going into great detail for the render function, as much of the code is
very similar to the code for the NumberField plug-in. Some areas are new, which do
need some discussion.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[240]

Some convenience routines not used in the NumberField example have been
added, those being push, escape_json, and get_properties. The push procedure
temporarily stores name and value attributes in an associative array (index by
table) for later retrieval by the get_properties function. Using an associative
array indexed by the attribute name means the attributes can be sent as output
in alphabetical order when it suits later in the code. Having the attributes in
alphabetical order isn't necessary, but it does help when debugging JavaScript.

Using custom routines instead of the APEX supplied wwv_flow_javascript.add_
attribute routine gives a little more control for JSON escaping text, which is done
by the escape_json function.

The second area of interest is the render_local_store and render_remote_store
functions that build store deinitions. The code to render both the local and remote
stores was covered earlier in the chapter, so all we are doing here is calling the
PL/SQL routines to generate the code.

To show the JavaScript generated, I've created a simple ComboBox item using a local
store. The settings and LOV query are shown in the following screenshot:

http:///

Chapter 8

[241]

The JavaScript output for only the ComboBox is:

apex.jQuery(document).ready(function(){

(function(){

Ext.onReady(function(){

 new Ext.form.ComboBox({

 applyTo: 'P120_COMBO',

 disabled: Ext.fly('P120_COMBO').dom.disabled,

 emptyText: 'Select a Country...',

 forceSelection: true,

 hiddenName: 'p_t05',

 hiddenValue: '221',

 id: 'ext-P120_COMBO',

 mode: 'local',

 resizable: true,

 selectOnFocus: true,

 triggerAction: 'all',

 value: 'Australia, Commonwealth of',

 displayField: 'CODE_DESCRIPTION',

 store: Ext.apex.P120_COMBO.store,

 valueField: 'ID'

 });

});

})();

});

The JavaScript code generated by the ComboBox plug-in has been wrapped by
an anonymous function, and a apex.jQuery(document).ready function. APEX
automatically added these extra functions when we called the apex_javascript.add_
onload_code procedure to ensure that JavaScript is not executed until the browser has
the DOM tree loaded (without waiting for external resources). To ensure that the Ext
library has been loaded, I would also like to include the Ext.onReady call.

References to the Store have been highlighted; the Store is identiied by its fully
qualiied name Ext.apex.P120_COMBO.store, with the ComboBox's display and
value ields assigned to use the Store records CODE_DESCRIPTION and ID columns.

In this example, the value and hiddenValue attributes have been assigned by
the render function, performing a lookup on the APEX session state value for
the P120_COMBO item.

The inal area of interest is around the use of Ext.XTemplate to provide enhanced
formatting options, which we will cover together with retrieving data for ComboBox
using XHR requests under the AJAX section.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[242]

AJAX functionality for the ComboBox plug-in
For large datasets, the ComboBox can be conigured to fetch a subset of data using an
AJAX request to load the data remotely, and use pagination and type-ahead search
functionality to ilter the results.

FUNCTION ajax (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin)

 return apex_plugin.t_page_item_ajax_result

IS

 l_result apex_plugin.t_page_item_ajax_result;

BEGIN

 -- indicate we are returning application/json data

 apex_plugin_util.print_json_http_header;

 emit_json_data (

 p_item => p_item,

 p_plugin => p_plugin,

 p_value => null

);

 -- not used by APEX yet

 return l_result;

END;

The AJAX function here just calls an APEX procedure to print a JSON mime-type
header, indicating the data being returned is in JSON format and shouldn't be
cached. The actual text returned in the HTML Response header is:

Content-Type: application/json

Cache-Control: no-cache

Pragma: no-cache

The real work is done by the following the EMIT_JSON_DATA procedure:

PROCEDURE emit_json_data (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

IS

 l_sql_handler apex_plugin_util.t_sql_handler;

 l_new_sql varchar2(32767);

 l_col_value_list apex_plugin_util.t_column_value_list;

 /** @todo assign from combo attributes */

http:///

Chapter 8

[243]

 l_search_type varchar2(20) := 'EXACT_IGNORE';

 l_search_col varchar2(32767);

 l_col_count number;

 -- assign values from ajax parameters

 l_start number

 := coalesce(apex_application.g_widget_action_mod, 0);

 l_limit number

 := coalesce(apex_application.g_widget_action, 100);

 l_search_string varchar2(32767)

 := apex_application.g_x01;

BEGIN

Ext Stores need to know the total number of records in the result set, so it's necessary
to enclose the original query within a select statement to return the total as an extra
column named ext$totalrows:

 -- add ext$totalrows column to sql statement

 l_new_sql := 'select q.* ,count(*) over () ext$totalrows'||

 ' from ('||p_item.lov_definition||') q';

The total number of records is used by the Ext.PagingToolbar object, a sub-
component of the ComboBox, to provide automatic paging control.

 l_sql_handler := apex_plugin_util.get_sql_handler (

 p_sql_statement => l_new_sql,

 p_min_columns => 1,

 p_max_columns => 999,

 p_component_name => p_item.name

);

 apex_plugin_util.free_sql_handler(l_sql_handler);

 l_col_count := l_sql_handler.column_list.count() - 1;

 -- can't use APEX search because need to display totals

 -- where clause has to be included at this level

 if l_search_string is not null then

 l_search_string := apex_plugin_util.get_search_string(

 p_search_type => l_search_type,

 p_search_string => l_search_string

);

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[244]

 l_search_col := l_sql_handler.column_list(1).col_name;

 l_new_sql := l_new_sql||CRLF||

 case l_search_type

 when 'CONTAINS_CASE' then

 'where instr('||l_search_col||', '''||

 l_search_string||''') > 0'

 when 'CONTAINS_IGNORE' then

 'where instr(upper('||l_search_col||'), '''||

 l_search_string||''') > 0'

 when 'EXACT_CASE' then

 'where '||l_search_col||' like '''||

 l_search_string||'%'''

 when 'EXACT_IGNORE' then

 'where upper('||l_search_col||') like '''||

 l_search_string||'%'''

 when 'LOOKUP' then

 'where '||l_search_col||' = '''||

 l_search_string||''''

 end;

 end if;

The where clause needs to be included here to return the correct value for total
matching records, because APEX wraps the passed query inside another query
to limit the rows returned and the position of the irst row returned, for example,
returning rows 100 to 110 of the result set.

 -- get data based on our new sql statement

 l_col_value_list := apex_plugin_util.get_data (

 p_sql_statement => l_new_sql,

 p_min_columns => 1,

 p_max_columns => 999,

 p_component_name => p_item.id,

 p_first_row => l_start,

 p_max_rows => l_limit

);

 -- print data

 if l_col_value_list.exists(1) then

 sys.htp.p('{"total":'||

 l_col_value_list(l_col_count + 1)(1)||',"rowset":['

http:///

Chapter 8

[245]

);

 for i in 1 .. l_col_value_list(1).count loop

 sys.htp.prn(case when i > 1 then ',' else ' ' end||'{');

 for j in 1 .. l_col_count loop

 sys.htp.prn(case when j > 1 then ',' end||

 '"'||l_sql_handler.column_list(j).col_name||'": '||

 '"'||escape_json(l_col_value_list(j)(i))||'"'

);

 end loop;

 sys.htp.p('}');

 end loop;

 sys.htp.p(']}');

 else

 sys.htp.prn('{"total":0,"rowset":[]}');

 end if;

EXCEPTION

 when no_data_found then

 apex_plugin_util.free_sql_handler(l_sql_handler);

 sys.htp.prn('{"total":0,"rowset":[]}');

 when others then

 apex_plugin_util.free_sql_handler(l_sql_handler);

 raise;

END emit_json_data;

Once again, the APEX-provided APIs do most of the work processing the inal query,
binding any session state variables, and returning the data, which we render using
JSON notation.

Using the Ext.XTemplate to provide enhanced
formatting
The Ext.XTemplate class provides a templating mechanism that can be used to
render arrays of records automatically. It provides advanced functionality such as
conditional processing with basic comparison operators, basic math functions, and
executing arbitrary inline code using template variables.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[246]

To show how the Ext.XTemplate is used for ComboBoxes, I've created a remote
ComboBox using the settings shown in the following screenshot:

The SQL query used for the LOV on this ComboBox is:

select c.cust_first_name||' '||c.cust_last_name customer_name

 ,c.customer_id

 ,c.cust_street_address1

 ,c.cust_street_address2

 ,c.cust_city

 ,c.cust_state

 ,c.cust_postal_code

 ,c.credit_limit

 from demo_customers c

 order by lower(c.cust_first_name||' '||c.cust_last_name)

We are not particularly interested in the query itself; it obeys the rules for our
ComboBox plug-in, with the irst column returned to be displayField, and the
second column valueField. It also retrieves a number of other ields that can also be
displayed by using XTemplates.

The PL/SQL PLUG_EXT_FORM_COMBO.RENDER function generates the following
JavaScript for our ComboBox on a webpage:

Ext.onReady(function(){

 new Ext.form.ComboBox({

 applyTo: 'P120_AJAX_COMBO',

 disabled: Ext.fly('P120_AJAX_COMBO').dom.disabled,

http:///

Chapter 8

[247]

 displayField: 'CUSTOMER_NAME',

 emptyText: 'Customer Name...',

 forceSelection: true,

 getParams: function(q){

 var p = {};

 if (this.pageSize) {

 p['p_widget_action_mod'] = 0;

 p['p_widget_action'] = this.pageSize;

 }return p;

 },

 hiddenName: 'p_t06',

 hiddenValue: '',

 id: 'ext-P120_AJAX_COMBO',

 idProperty: 'CUSTOMER_ID',

 itemSelector: 'div.search-item',

 minChars: 2,

 mode: 'remote',

 pageSize: 20,

 queryParam: 'x01',

 resizable: true,

 selectOnFocus: true,

 store: Ext.apex.P120_AJAX_COMBO.store,

 tpl: new Ext.XTemplate(

'<tpl for="."><div class="search-item">',

 '<h3 nowrap="nowrap">{CREDIT_LIMIT}</

span>{CUSTOMER_NAME}</h3>',

 '{CUST_STREET_ADDRESS1}
',

 '<tpl if="(CUST_STREET_ADDRESS2)">',

 '{CUST_STREET_ADDRESS2}
',

 '</tpl>',

 '{CUST_CITY} {CUST_STATE} {CUST_POSTAL_CODE}',

'</div></tpl>',

{compiled: true}),

 triggerAction: 'all',

 triggerClass: 'x-form-search-trigger',

 valueField: 'CUSTOMER_ID'

 });

});

The JavaScript shows the ComboBox coniguration, including references to the data
store and the XTemplate deinition, which has been highlighted.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[248]

Typing the characters "be" in the ComboBox initiates an AJAX request to load the
data store. Two matching records are returned by the PLUG_EXT_FORM_COMBO.AJAX
function to the browser.

{"total":2,"rowset":[

 {"CUSTOMER_NAME": "Benjamin Freeman",

 "CUSTOMER_ID": "25560",

 "CUST_STREET_ADDRESS1": "2",

 "CUST_STREET_ADDRESS2": "19 Princes St",

 "CUST_CITY": "KALPOWAR",

 "CUST_STATE": "QLD",

 "CUST_POSTAL_CODE": "4630",

 "CREDIT_LIMIT": ""}

,{"CUSTOMER_NAME": "Bernard Newman",

 "CUSTOMER_ID": "25649",

 "CUST_STREET_ADDRESS1": "4 Bartlett Gr",

 "CUST_STREET_ADDRESS2": "",

 "CUST_CITY": "FLINDERS LANE",

 "CUST_STATE": "VIC",

 "CUST_POSTAL_CODE": "8009",

 "CREDIT_LIMIT": ""}

]}

At this point the data store ires the datachanged event, and the ComboBox refreshes
its view using the speciied XTemplate to render the data.

When a XTemplate is not provided, the ComboBox uses the default template string.

'<tpl for="."><div class="x-combo-list-item">{' + this.displayField +

'}</div></tpl>'

The XTemplate for this example is:

'<tpl for="."><div class="search-item">',

 '<h3 nowrap="nowrap">{CREDIT_LIMIT}</

span>{CUSTOMER_NAME}</h3>',

 '{CUST_STREET_ADDRESS1}
',

 '<tpl if="(CUST_STREET_ADDRESS2)">',

 '{CUST_STREET_ADDRESS2}
',

 '</tpl>',

 '{CUST_CITY} {CUST_STATE} {CUST_POSTAL_CODE}',

'</div></tpl>',

{compiled: true}

http:///

Chapter 8

[249]

The XTemplate tpl tag and the for operator are used to process the data object for
the ComboBox. The for="." operator loops through the entire data object starting at
the root node.

Each array record is processed, substituting the column values into the column name
placeholders, for example {CUSTOMER_NAME}.

Conditional logic can be applied using the tpl tag and the if operator to provide
conditional checks to determine whether or not to render parts of the template.
Consider the following rule:

 '<tpl if="(CUST_STREET_ADDRESS2)">',

 '{CUST_STREET_ADDRESS2}
',

 '</tpl>',

In this example, this rule is used to produce output text only when the
CUST_STREET_ADDRESS2 ield has a value.

When the XTemplate is being used to process multiple records, the compiled: true
attribute should be set for optimized performance.

The HTML produced on the browser by the XTemplate for the highlighted record
shown in the previous screenshot is:

<div class="search-item x-combo-selected">

<h3 nowrap="nowrap">1000

Adam Fripp</h3>

10 Kentish Dr
UPPER WOODSTOCK TAS 7150

</div>

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[250]

Additional CSS rules need to be provided, either in the APEX page or the application
CSS ile to produce the actual HTML formatting. The following CSS rules were
applied for this example:

.search-item {

 border-color:#FFFFFF #FFFFFF #EEEEEE;

 border-style:solid;

 border-width:1px;

 color:#555555;

 font:11px tahoma,arial,helvetica,sans-serif;

 padding:3px 10px;

 white-space:normal;

}

.search-item h3 {

 color:#222222;

 display:block;

 font-weight:bold;

}

.search-item h3 span {

 clear:none;

 display:block;

 float:right;

 font-weight:normal;

 margin:0 0 5px 5px;

 line-height: 18px;

}

.cc-limit {

 color:#c0272b;

 font:normal 11px tahoma, arial, helvetica, sans-serif;

 background: transparent no-repeat 0 2px;

 background-image:url(/ux/playpen/resources/images/icon/

creditcards.gif);

 padding-left:18px;

}

So as you can see, XTemplates provide a powerful mechanism to render HTML on
the browser client.

For AJAX-based processes, this removes the need to return formatted HTML, or
the necessity to have complicated JavaScript coding to render HTML tags inserting
values from the JSON data, when returning JSON data only.

http:///

Chapter 8

[251]

Validation functionality for the ComboBox
plug-in
After the relatively lengthy code for the RENDER and AJAX functionality, the code
to validate the ComboBox is quite trivial:

FUNCTION validate (

 p_item in apex_plugin.t_page_item,

 p_plugin in apex_plugin.t_plugin,

 p_value in varchar2)

 return apex_plugin.t_page_item_validation_result

IS

 l_display_value varchar2(32767);

 l_result apex_plugin.t_page_item_validation_result;

BEGIN

 -- Debug information

 if apex_application.g_debug then

 apex_plugin_util.debug_page_item (

 p_plugin => p_plugin,

 p_page_item => p_item);

 end if;

 -- Nothing to do when null (APEX checks for mandatory items)

 if p_value is null then return l_result; end if;

 -- lookup the display value when the value is not null

 if p_value is not null then

 l_display_value :=

 apex_plugin_util.get_display_data (

 p_sql_statement => p_item.lov_definition,

 p_min_columns => 2,

 p_max_columns => 999,

 p_component_name => p_item.name,

 p_search_string => p_value,

 p_display_extra => false);

 -- return error when no display value found

 if l_display_value is null then

 l_result.message :=

 'Error: no display value found for '||

 p_item.name||' value '||p_value||'.';

 end if;

 end if;

 -- populate l_result with error message, otherwise null

 return l_result;

END;

The validate function uses the APEX-provided utilities to verify that matching display
value exists for the supplied value using the LOV query. If not, it raises an error.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[252]

Mixing ComboBoxes with Dynamic
Actions
Dynamic Actions provide a declarative mechanism for generating JavaScript to
provide client-side behaviors. Native actions include simple actions that show, hide,
enable, and disable page elements when a page item's value changes. More advanced
native actions include setting item values, executing JavaScript code, and executing
PL/SQL code via AJAX calls.

Native actions work immediately for custom plug-ins based on simple DOM
elements, such as the NumberField plugin in Chapter 7, Working with Plug-ins
and Dynamic Actions. For plugins based on multiple DOM elements such as the
ComboBox, or the built-in APEX shuttle-box, some additional work has to be done
before the native dynamic actions will work correctly.

The following screenshot shows the before and after views of a dynamic action to
hide the three items in the region. The APEX Auto-complete item uses a simple
DOM text item, with the other two items being Ext ComboBoxes, each built using
multiple DOM elements.

The APEX-generated code for the Hide Item dynamic action references the APEX
item names, assuming the items are simple DOM elements. For ComboBoxes, this
results in the text item component being hidden, leaving the trigger icon visible.

Similarly, when using the Disable Item dynamic action, the text item component is
disabled, leaving the trigger icon still enabled! So, despite attempting to restrict users
from modifying the item, the trigger icon allows users to change the value.

Fortunately for us, the APEX team has addressed the issue when developing
complex native items, building the apex.widget.initPageItem function to
integrate plug-in items with the Dynamic Actions code seamlessly.

http:///

Chapter 8

[253]

Integrating plugins with the Dynamic Action
framework
The apex.widget.initPageItem function deinition is:

apex.widget.initPageItem = function (pName, pOptions) {

 apex.item(pName, pOptions);

};

It accepts two parameters—the item name and an object literal containing callback
conigurations for any or all of the functions: getValue, setValue, enable, disable,
show, hide, nullValue.

An example initialization for an item P1_MY_ITEM is:

apex.widget.initPageItem("P1_MY_ITEM", {

 getValue: function(){},

 setValue: function(){},

 nullValue: "%null%"

});

You would write suitable code for each of the functions shown to get and set the item
values. In this example, the nullValue doesn't use a function; instead, it is a simple
string value.

The apex.widget.initPageItem function is located in the APEX installation iles at
apex\images\javascript\uncompressed\apex_widget_4_0.js. Further examples
on its use can be seen in this ile for some of the native APEX items.

The Ext.form.ComboBox already has methods for getValue, setValue, enable,
disable, show, and hide. Our task is to initialize a ComboBox with the Dynamic
Action framework, so that any code associated with the APEX item name will be
redirected to use functions referencing the ComboBox methods.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[254]

Before writing the JavaScript, it's best to build a testing harness so that you can
validate your code as you go. The following screenshot shows the test page set
up for this example. Each of the Dynamic Actions modiies all of the items in the
region below.

The Dynamic Actions created are summarized in the following table:

Name When
event

When elements When
condition

Actions

Set State Change
(bind)

P120_SET_STATE
(Item)

equal to:
Enabled

Enable: when true

Disable: when false

Set Item
Display

Change
(bind)

P120_SET_DISPLAY
(Item)

equal to: Show Show: when true

Hide: when false

Set
Value

Change
(bind)

P120_SET_VALUE
(Item)

is not null JavaScript Expression:

$v('P120_SET_VALUE')

The ComboBox plugin we have created is rendered by irst creating a simple
input text item and then using JavaScript to transform it into a ComboBox
using the applyTo attribute. This becomes the logical place to call the
apex.widget.initPageItem function.

http:///

Chapter 8

[255]

By overriding the standard ComboBox, this change can be made in the application
JavaScript library.

Ext.override(Ext.form.ComboBox, {

 applyToMarkup: function(el){

 Ext.form.ComboBox.superclass.applyToMarkup.call(this, el);

 // remove APEX applied class

 Ext.fly(el).removeClass('apex_disabled');

 // get the Ext id for the component

 var x = this.getId();

 // Register customized standard actions for the

 // originating DOM element.

 // Original element has been replaced with ComboBox.

 apex.widget.initPageItem(el, {

 getValue: function(){

 return Ext.getCmp(x).getValue();

 },

 setValue: function(v){

 Ext.getCmp(x).setValue(v);

 },

 enable: function(){

 Ext.getCmp(x).enable();

 },

 disable: function(){

 Ext.getCmp(x).disable();

 },

 show: function(){

 Ext.getCmp(x).show();

 Ext.select(el + '-label').show();

 },

 hide: function(){

 Ext.getCmp(x).hide();

 // Hide label

 // Relies on using label templates, and label naming

 // convention. Could check parent TD for label element

 // for this el, and parent's prev sibling TD for

 // label also.

 Ext.select(el + '-label').hide();

 }

 });

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[256]

 // trigger APEX DA event when value selected

 this.on('select', function(o, record, index){

 apex.jQuery('#' + o.el.id).trigger('select');

 });

 }

});

The irst few lines perform some basic housekeeping before we register our
customized dynamic actions.

Ext.override(Ext.form.ComboBox, {

 applyToMarkup: function(el){

 Ext.form.ComboBox.superclass.applyToMarkup.call(this, el);

 // remove APEX applied class

 Ext.fly(el).removeClass('apex_disabled');

The highlighted line executes the standard applyToMarkup functionality for a
ComboBox, which doesn't reside in the ComboBox object, but resides a few levels up
the object inheritance hierarchy in the Component object.

APEX may have applied a apex_disabled class to the text item to be transformed
into a ComboBox, so it is necessary to remove the class.

We then fetch the ID of the ComboBox we are creating to use in subsequent
function calls.

 // get the Ext id for the component

 var x = this.getId();

 // Register customized standard actions for the

 // originating DOM element.

 // Original element has been replaced with ComboBox.

 apex.widget.initPageItem(el, {

 getValue: function(){

 return Ext.getCmp(x).getValue();

 },

 setValue: function(v){

 Ext.getCmp(x).setValue(v);

 },

The apex.widget.initPageItem function is called, passing the original APEX
item name in the el parameter, and deining the callback functions. Because Ext
has existing functions to enable/disable, show/hide, and set values, our task is
to redirect the code to the ComboBox using the Ext.getCmp(x) call to select
the component.

http:///

Chapter 8

[257]

Testing shows the ComboBox correctly performs the enable/disable and
show/hide actions. The setValue function works correctly for the local ComboBox,
but the following screenshot shows it does not retrieve the description for the AJAX
ComboBox, which needs to retrieve the data remotely from the database.

To ix this, a second override needs to be made to the standard Ext.form.ComboBox,
this time modifying the setValue function. Typically, the override would be
included with the earlier override, but it can also be applied separately as done here.

Ext.override(Ext.form.ComboBox, {

 oneShot: false,

 setValue: function(v){

 var text = v;

 if (this.valueField) {

 var r = this.findRecord(this.valueField, v);

 if (r) {

 this.oneShot = false;

 text = r.data[this.displayField];

 }

 else {

 // do extra step for remote mode

 if (this.mode == 'remote' && this.oneShot == false) {

 this.oneShot = true;

 this.store.on('load',

 this.setValue.createDelegate(this, arguments),

 null, {

 single: true

 });

 this.store.load({

 params: {

 'p_widget_num_return': v

 }

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[258]

 });

 return;

 }

 else {

 this.oneShot = false;

 if (Ext.isDefined(this.valueNotFoundText)) {

 text = this.valueNotFoundText;

 }

 }

 }

 }

 this.lastSelectionText = text;

 if (this.hiddenField) {

 this.hiddenField.value = Ext.value(v, '');

 }

 Ext.form.ComboBox.superclass.setValue.call(this, text);

 this.value = v;

 return this;

 }

});

This time the highlighted code contains the modiied functionality. When the
setValue function doesn't ind the value cached in the JavaScript store, ComboBoxes
with remote stores will make one attempt to retrieve the display value from the
database via an AJAX request, setting this.oneShot = true; before loading the
data returned for the value passed by the parameter p_widget_num_return. The
store loads any returned records and executes the setValue function again using the
createDelegate function. Refer to the following screenshot, and you will realize
that the AJAX ComboBox now correctly shows the display value:

If the display value was still not found, the ComboBox uses default functionality to
show the valueNotFoundText text if conigured, or the hidden value. Submitting
this value to the server would result in a validation error.

http:///

Chapter 8

[259]

Deining custom events for the ComboBox
You can create custom events for plug-ins, allowing them to be exposed to dynamic
actions. This allows the developer to create custom dynamic actions initiated by
a plug-in to interact with other page items on the client. The following screenshot
shows a custom event added for the ComboBox:

The event is triggered by client-side JavaScript for the plug-in, so for our ComboBox
the event would be added to the code as follows:

Ext.override(Ext.form.ComboBox, {

 applyToMarkup: function(el){

 Ext.form.ComboBox.superclass.applyToMarkup.call(this, el);

 // ***snipped*** //

 // trigger APEX DA event when value selected

 this.on('select', function(o, record, index){

 apex.jQuery('#' + o.el.id).trigger('select');

 });

 }

});

Here, a listener has been added for the Ext.form.ComboBox select event, calling
a function to trigger the apex.jQuery select event for the APEX item. The APEX
Dynamic Action framework then executes any dynamic actions listening for
the event.

Note that the event name triggered is the

internal name for the custom event.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[260]

The following screenshot shows a custom onSelect [Ext.form.ComboBox] event
added to a ComboBox item. It has a single action associated with it, when the event
is triggered, setting the value for another page item.

The details for the Set Value action are:

Identiication

Dynamic Action: set_numberfield

Action: Set Value

Execution options

Fire when event result is: True

Fire on page load: Unchecked

Stop execution on error: Checked

http:///

Chapter 8

[261]

Settings

Set type: JavaScript Expression

JavaScript expression: Ext.getCmp('ext-' + this.triggeringElement.
id).getValue();

Affected elements

Selection type: Item(s)

Item(s): P120_APEX_NUMBER_FIELD

From the details of the Set Value action, the JavaScript Expression used for settings is
slightly unusual. It relies on the naming convention that the ComboBox component
ID is the APEX item name preixed with ext-, something set up in the PL/SQL
package for our plug-in ComboBox.

Using the ComboBox component name, it returns the value of the ComboBox to the
Dynamic Actions framework, which populates the affected elements with the value.

This closes the loop for our ComboBox; it is now fully integrated to use standard
dynamic actions, as well as triggering custom actions that can affect other page items.

Summary
In this chapter, we integrated the Ext ComboBox component into APEX. The
ComboBox is a data-aware component that uses Ext Data Stores to hold record-based
information in the browser client.

The ComboBox utilizes all aspects of creating a custom plug-in, implementing
render, AJAX, and validation callbacks. The plug-in makes use of many of the
standard attributes available to plug-ins, taking full advantage of the built-in LOV
functionality. It also uses custom attributes to expose additional parameters to the
developer, as well as a custom event to be used by Dynamic Actions.

The APEX provided PL/SQL APIs for plug-ins greatly sped up the development of
the server-side functionality.

On the client side, the Ext ComboBox component was able to be integrated with the
Dynamic Actions framework using the apex.widget.initPageItem function to
declaratively override standard dynamic actions to show/hide, enable/disable and
get/set values.

http:///

Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions

[262]

The functionality was integrated using the Ext.override method to add custom
code, and extend the existing functionality when setting values for ComboBoxes with
remote data stores.

We achieved a great deal in this chapter, covering many of the complexities of
integrating Ext components into APEX.

For our next challenge, we will look at integrating Ext JS GridPanels into APEX.

http:///

Getting Interactive with

GridPanels
GridPanels are, without doubt, one of the most powerful and most often-used
components within the Ext framework. Even the most basic implementations of
the GridPanel provide column management features including sorting, resizing,
drag-and-drop column reordering, and show/hide columns.

Data presentation is handled separately from data retrieval within GridPanels,
with data retrieval done using a Data Store component. For GridPanels with paging
and remote sorting enabled, changes made on the client browser, such as hiding or
re-ordering columns, are automatically maintained when new data is loaded.

As if that's not impressive enough, GridPanels support plugins (not to be confused
with APEX Plug-ins), which allow additional functionality, such as expander rows
and "Group By" header menu options, to be integrated.

GridPanels provide a way for you to add functionality to your Classic Reports that's
currently only available in Interactive Reports, with the added advantage that you
can have multiple Classic Reports on one page.

In this chapter we will cover:

•	 GridPanel components: Data Store, Column Model, Grid View, and
Selection Model

•	 Key concepts for getting GridPanels into APEX

•	 Creating a GridPanel Region Plug-in

•	 Making a GridPanel Stateful

•	 Using the GridPanel to convert Classic Reports

http:///

Getting Interactive with GridPanels

[264]

Components making up a GridPanel
The Ext.grid.GridPanel brings together a number of other supporting components
to present data in a tabular format. Those components are the Store, Column model,
View, and Selection model.

Let's take a look at standalone example of the GridPanel to see how these supporting
components each play their part, before we attempt to integrate it into APEX.

We will be going through the code for the GridPanel shown in the previous
screenshot; it's also included in chapter09/ ex-9-simple-grid.html.

The overall structure of the page is:

<html>

<head>

 <!-- details snipped

 Ext library includes

 -->

</head>

<body>

 <div id="wrapper">

 <div id="gridRegion"></div>

 </div>

<script type="text/javascript">

Ext.onReady(function() {

http:///

Chapter 9

[265]

 /** details snipped

 localJsonStore, columnModel, gridView, selectionModel

 */

 var grid = new Ext.grid.GridPanel({

 id : 'my-grid',

 store : localJsonStore,

 colModel : columnModel,

 view : gridView,

 selModel : selectionModel,

 height : 260,

 width : 450,

 renderTo : 'gridRegion',

 stripeRows : true,

 title : 'Commonwealth Games 2010 Medal Talley'

 });

});

</script>

</body>

</html>

The overall structure of our standalone page is really quite straightforward. The header
includes the usual Ext library and CSS includes, and the body of the page contains a
DIV region with ID of gridRegion, into which our GridPanel will be rendered.

JavaScript code instantiates a new Ext.grid.GridPanel object, specifying parameters
in an object literal. The highlighted parameters for store, colModel, view, and
selModel reference other Ext components created earlier in the script, but not shown.
The entire script is enclosed by a Ext.onReady function call, so that the code is
executed as early as possible, ensuring variables are declared in a local namespace.

Okay, so that's the 10,000 feet view of GridPanel; let's look at the referenced
components individually.

Deining the Data Store
The irst thing we need to do is store our data locally in the HTML page in a
Data Store.

var myData = {

 records : [

 {c1:1, c2:"Australia",

 gold:74, silver:55, bronze:48, total:177},

 {c1:2, c2:"India",

http:///

Getting Interactive with GridPanels

[266]

 gold:38, silver:27, bronze:36, total:101},

 {c1:3, c2:"England",

 gold:37, silver:60, bronze:45, total:142},

 {c1:4, c2:"Canada",

 gold:26, silver:17, bronze:33, total:76 },

 {c1:5, c2:"South Africa",

 gold:12, silver:11, bronze:10, total:33 },

 /** snipped **/

 {c1:35, c2:"Bangladesh",

 gold:0, silver:0, bronze:1, total:1 },

 {c1:35, c2:"Saint Lucia",

 gold:0, silver:0, bronze:1, total:1 }

]

};

// Fields definition

var fields = [

 {name: 'rank', mapping: 'c1' },

 {name: 'name', mapping: 'c2' },

 {name: 'gold', mapping: 'gold' },

 {name: 'silver', mapping: 'silver' },

 {name: 'bronze', mapping: 'bronze' },

 {name: 'total', mapping: 'total' }

];

// create the data store

var localJsonStore = new Ext.data.JsonStore({

 fields : fields,

 data : myData,

 root : 'records'

});

We irst introduced the Data Store in Chapter 8, Data Stores, AJAX-enabled Plug-ins,
and Dynamic Actions, so this should look very familiar to you. This time we are
using Ext.data.JsonStore object, which comes pre-conigured with a speciic
DataReader to read data structured in a JSON format.

The JsonStore needs two things—the data itself that we are passing by reference with
the myData variable, and a description of the data done using the fields variable.

A reader built into the JsonStore interprets the data using the ields deinition. The
root property in the JsonStore is required by the DataReader to identify the name of
the property containing the Array of row objects.

http:///

Chapter 9

[267]

We have used minimal information in our ield deinitions here, just including an
optional mapping expression to reference the data from an element of the data item's
root Array.

The fields deinition could be simpliied even further; the mapping value defaults
to the name value, so can be rewritten as:

 var fields = [

 {name: 'rank', mapping : 'c1' },

 {name: 'name', mapping : 'c2' },

 'gold','silver','bronze','total'

];

A more complex ield deinition could contain information such as data type, date
format, default value, sort direction, and more; for example:

{ name:'myDate', mapping:'d1', type:'date', dateFormat:"Y-m-d g:i:s

A", allowBlank: false }

So now that we have deined our data and described how to interpret the data, we
need to conigure how the data is to be displayed.

Coniguring the Column Model
The Ext.grid.ColumnModel is used by the GridPanel to conigure how and what
parts of the data will be displayed.

var cols = [

 {header:"Rank", width:50, dataIndex:'rank'},

 {header:"Country", width:160, dataIndex:'name', id:'auto-expand'},

 {header:"Gold", width:50, dataIndex:'gold'},

 {header:"Silver", width:50, dataIndex:'silver'},

 {header:"Bronze", width:50, dataIndex:'bronze'},

 {header:"Total", width:50, dataIndex:'total'}

];

var cm = new Ext.grid.ColumnModel({

 defaults: {

 sortable: true

 },

 columns: cols

});

Display information for the columns is created here using an Array of Ext.grid.
Column column coniguration objects to deine the initial layout and display of the
columns in the GridPanel.

http:///

Getting Interactive with GridPanels

[268]

Here, we have included basic display information, being the header and width
conig options, and a dataIndex containing the name of the ield in the records
contained in the GridPanel's Store. As usual, Ext has many more conig options, such
as align, editable, ixed width, hidden, resizable, sortable, and so on.

We have used an object deinition to deine our ColumnModel, passing it the
defaults conig property for all columns to be sortable, as well as the columns Array.

Deining the GridView
The Ext.grid.GridView encapsulates the user interface of the GridPanel. It is
responsible for rendering the outer components of the GridPanel and co-ordinating
the rendering of the columns using the ColumnModel. It also manages events
for the grid such as iring an update event when a record is modiied or iring the
datachanged event when the Data Store performs a load.

// view is automatically created when not specified

var gridView = new Ext.grid.GridView({

 forceFit: true

});

Only one conig option has been speciied in this example—setting forceFit to
true to ensure that the column widths are automatically sized, so that all displayed
columns occupy the full width of the grid at all times. So, if a column is resized
manually or programmatically, the other columns are automatically adjusted to it
the grid width.

Most of the time, the conig options you will be interested in are forceFit and
autoFill; the remaining conig options are more relevant if you are writing a new
component extending the GridView. While the GridView is an important piece of
the solution, hardly any of the GridPanel examples provided by Sencha include it in
their conigs; the GridView is always created, even when not explicitly speciied.

Deining the Selection Model
The selection model for GridPanels determines how rows and cells are selected,
and how many can be selected at a time. Ext provides RowSelectionModel,
ColumnSelectionModel, and a CheckboxSelectionModel, which enable selecting
records using checkboxes at the beginning of a row.

http:///

Chapter 9

[269]

Each selection model provides methods to retrieve the selected elements. For
example, RowSelectionModel provides getSelected to retrieve the irst selected
row, and getSelections to retrieve an Array of selected records.

 var selectionModel = new Ext.grid.RowSelectionModel({

 singleSelect:true

 });

Our example uses a RowSelectionModel, with a conig option to allow only a single
record to be selected.

The choice of selection model will be largely dependent on the needs of your
application. It's best to be consistent and limit yourself to only one or two selection
models, so it's immediately apparent to the user what model you're using. For
example, always limit row selection to a single record, and use the checkbox
selection model for multiple rows.

To demonstrate how to use a different Selection Model, change our example to use
CheckBoxSelectionModel by modifying the following piece of code:

 var checkboxSM = new Ext.grid.CheckboxSelectionModel();

 var cols = [

 checkboxSM,

 {header: "Rank", width: 50, dataIndex: 'rank'},

 {header: "Country", width: 160, dataIndex: 'name', id : 'auto-

expand'},

 {header: "Gold", width: 50, dataIndex: 'gold'},

 {header: "Silver", width: 50, dataIndex: 'silver'},

 {header: "Bronze", width: 50, dataIndex: 'bronze'},

 {header: "Total", width: 50, dataIndex: 'total'}

];

Add the line declaring the checkboxSM variable before the cols deinition and also
include the reference to the checkboxSM in the cols deinition. This adds a checkbox
column to our list of columns

Then change the GridPanel declaration to use checkboxSM as the selection model.

 var myGrid = new Ext.grid.GridPanel({

 id : 'my-grid',

 store : localJsonStore,

 colModel : columnModel,

 view : gridView,

 selModel : checkboxSM,

 //autoExpandColumn : 'auto-expand',

http:///

Getting Interactive with GridPanels

[270]

 height : 260,

 width : 450,

 renderTo : 'gridRegion',

 stripeRows : true,

 title : 'Commonwealth Games 2010 Medal Talley'

 });

The result of our changes can be seen in the following screenshot; a checkbox column
has been added to the beginning of the grid, shown here with multiple rows selected.

We have now covered each of the major supporting components of a GridPanel:

•	 Store: Model that holds and describes the data records

•	 Column model: Used to describe how the data is displayed in the GridPanel

•	 View: Renders GridPanel and manages GridPanel events

•	 Selection model: Controls the selection behavior when a row or column
is selected.

Built-in features
Our basic example of the GridPanel already includes column management
features, including sorting, resizing, drag-and-drop column reordering, and
show/hide columns.

http:///

Chapter 9

[271]

The preceding screenshot shows the Total column being moved to another position
using a drag-and-drop action; releasing the mouse would complete the action and
relocate the column.

The previous screenshot shows the Total column in its new position, along with a
column header menu containing sorting options and a checkbox list of columns to hide
or show columns. Notice that the Rank column has been unchecked, and is now hidden.

These features, as well as resizing columns, are out of the box for GridPanels and
are conigurable to enable/disable the functionality. They really do enhance the user
interface, giving a far more interactive experience.

We now need to work out how to integrate the GridPanel into APEX.

http:///

Getting Interactive with GridPanels

[272]

Getting the GridPanel into APEX
It's possible to implement GridPanels in APEX in more than one way, with solutions
varying from extremes of using almost no APEX functionality to relying mainly on
APEX functionality.

•	 Almost no APEX approach:

An example of an "Almost no APEX" approach would be to create a plug-in
region where you deine the SQL query, and use no more standard APEX
functionality. The solution would rely totally on the plug-in functionality
written by you to manage the GridPanel.

Using the query, you could quite easily generate the datastore, the column
headings based on the column aliases for the query. We have mostly written
this already in Chapter 8, using the code for the ComboBox.

So, what about sorting and pagination? Okay, well you would need to write
some functionality to pass sorting requests from the GridPanel through to
your plug-ins AJAX function, and extend your code to support sorting
and pagination.

Good, so what about format masks on columns—you can do that in Classic
Reports. And while we're on the topic, what about column formatting,
column links, link validation, authorization, and conditional display logic?
This is starting to sound like a whole lot of work. Before you know it,
you're going to be writing a whole "shadow" API, just to duplicate
functionality in APEX.

Then you will have to igure out some way to maintain it. Are you going to
do it declaratively? If so, you will need to build an application to support it,
and after that you'll need to build an API to migrate your metadata when
you promote it from DEV to TEST to PROD.

Okay, so maybe this isn't such a great idea—let's look at another alternative.

•	 Relying on APEX approach:

This approach is built on the simple premise that APEX already provides a
lot of functionality for you already. All you are doing is extending what's
already there.

This is the approach I want to show you for the GridPanel. It's a more
sustainable solution long term, because you're working within the APEX
product, which is supported by a whole team of developers who are trying to
make your job easier.
Perhaps in some future release the functionality we are adding will be
native to APEX. Our task then will be to swap over the plug-in with the
native component.

http:///

Chapter 9

[273]

Testing the concepts irst
Before we embark down the path of building our solution, let's irst have a look at
the key concepts we are going to use.

Converting APEX-generated table into a GridPanel
One of the Sencha-provided examples is the From Markup Grid Example, found in
the Ext JS SDK under /examples/grid/from-markup.html ile. It converts a simple
HTML markup table, shown in the left-hand side of the following screenshot, and
transforms it into the GridPanel shown on the right-hand side.

The JavaScript to transform the table is:

var grid = new Ext.ux.grid.TableGrid("the-table", {

 stripeRows: true

});

grid.render();

It's simply calling a custom Ext.ux.grid.TableGrid component, passing the ID of
the table to transform and a conig object literal.

The smarts are in the TableGrid component, shown here with comments.

Ext.ux.grid.TableGrid = function(table, config){

 config = config ||

 {};

 Ext.apply(this, config);

 var cf = config.fields || [], ch = config.columns || [];

 table = Ext.get(table);

 var ct = table.insertSibling();

http:///

Getting Interactive with GridPanels

[274]

After assigning the conig object literal to this object and a reference to the table, a
new DIV element is inserted into the DOM as a sibling of the markup table. This will
later be used as the target to render the TableGrid into.

 var fields = [], cols = [];

 var headers = table.query("thead th");

 for (var i = 0, h; h = headers[i]; i++) {

 var text = h.innerHTML;

 var name = 'tcol-' + i;

 fields.push(Ext.applyIf(cf[i] ||

 {}, {

 name: name,

 mapping: 'td:nth(' + (i + 1) + ')/@innerHTML'

 }));

 cols.push(Ext.applyIf(ch[i] ||

 {}, {

 'header': text,

 'dataIndex': name,

 'width': h.offsetWidth,

 'tooltip': h.title,

 'sortable': true

 }));

 }

 var ds = new Ext.data.Store({

 reader: new Ext.data.XmlReader({

 record: 'tbody tr'

 }, fields)

 });

 ds.loadData(table.dom);

 var cm = new Ext.grid.ColumnModel(cols);

The Field model for the Data Store is built by querying the DOM, using the table
header cells to generate ields and mapping them to the innerHTML of a table cell
using: mapping : 'td:nth(' + (i + 1) + ')/@innerHTML'.

The Data Store here uses an XMLReader to read the table rows in applying the
mapping expression to load the data, accomplished using the statement:

ds.loadData(table.dom);

http:///

Chapter 9

[275]

The Column Model is also built when querying the DOM table header cells.

 if (config.width || config.height) {

 ct.setSize(config.width || 'auto', config.height || 'auto');

 }

 else {

 ct.setWidth(table.getWidth());

 }

 if (config.remove !== false) {

 table.remove();

 }

 Ext.applyIf(this, {

 'ds': ds,

 'cm': cm,

 'sm': new Ext.grid.RowSelectionModel(),

 autoHeight: true,

 autoWidth: false

 });

 Ext.ux.grid.TableGrid.superclass.constructor.call(this, ct, {});

};

Ext.extend(Ext.ux.grid.TableGrid, Ext.grid.GridPanel);

The width and height is then determined for the TableGrid—either passed using
conig properties or using the width of the markup table. The Ext.applyIf
command is used to conigure the TableGrid components if not already speciied;
the Datastore, Column model, and Selection model components are assigned at this
time. Finally, the TableGrid superclass (GridPanel) is called to continue creating a
standard GridPanel.

Idea: Use APEX report table as local Data Store
We can use a similar approach to the TableGrid to transform an APEX Classic Report
into a GridPanel. To see how well the TableGrid works, include a script reference to
the Sencha-provided JavaScript in a page header:

<script type="text/javascript" src="/ux/extjs/examples/ux/TableGrid.

js"></script>

http:///

Getting Interactive with GridPanels

[276]

Then modify the report Id to match your report, and run the following JavaScript
from the FireBug console:

var grid = new Ext.ux.grid.TableGrid("report_R3369531070222725", {

 stripeRows: true // stripe alternate rows

});

grid.render();

The following screenshot shows the result after transforming our "fake" report region
template from Chapter 5, Ext Themed Buttons, Popups, Calendars, and Reports. Not a
bad result for zero effort. Columns now have menus and can be resized, hidden, and
swapped around using drag-and-drop.

A few minor issues need ixing, such as the drop-down menu has a sorting indicator
next to the ID column. This is because the image was part of the header converted
using the innerHTML mapping. The header labels still include the original APEX
header hyperlinks making sorting a little confusing, depending on which part of the
header is clicked data is either locally sorted, or remote sorted.

Pagination still uses the template links and changes the GridPanel back into a
standard report. Any changes to the column layout are lost.

Instead of using the table header to determine the Column model, we can query the
APEX metadata for the report for the same information. This is more reliable, and
also means we don't need to strip out unwanted elements from the header, just like
the sort image and the JavaScript calls to do column sorting.

http:///

Chapter 9

[277]

Retrieving the content of a table cell using the DOM innerHTML method means
there is no extra work needed to be done regardless of the cells' content. So, if
the markup table cell contains a hyperlink deined through the APEX builder, it
continues to work unchanged. It's not necessary to do any additional work to deine
an Ext "select" event.

So, using the TableGrid as a starting point looks very good once we sort
out pagination.

GridPanel pagination using APEX Partial Page
Refreshes
Our GridPanel will use the rendered table for the initial page load; once transformed,
it will continue to use standard APEX Partial Page Refreshes (PPR) to retrieve
additional records. We need to call the standard APEX pagination routines,
retrieving the results to load into the GridPanel's Data Store before presenting
the results to the user.

When APEX does a Partial Page Refresh, it executes JavaScript to create an
XMLHttpRequest object, issuing an HTTP Post request. Details of the request,
including the parameters making up the request can be seen in the Firebug console,
as shown in the following screenshot:

http:///

Getting Interactive with GridPanels

[278]

Using this information, we can create an Ext.Ajax.request, passing the same
parameters and then capturing the server response.

var regionId = "3369531070222725";

Ext.Ajax.request({

 url: 'f',

 params: {

 'p': Ext.getDom('pFlowId').value +

 ':' + Ext.getDom('pFlowStepId').value +

 ':' + Ext.getDom('pInstance').value +

 ':FLOW_PPR_OUTPUT_R' + regionId + '_pg_R_' +

 regionId +':NO',

 'pg_max_rows': 10,

 'pg_min_row': 11,

 'pg_rows_fetched': 10

 },

 success: function(response, opts){

 Ext.Msg.show({

 title: 'AJAX Response',

 msg: response.responseText,

 width: 450

 });

 },

 failure: function(response, opts){

 console.log('server-side failure with status code ' +

 response.status);

 }

});

The parameters passed in the HTTP request are built up using the form details
on the APEX page, retrieving values for the application, page, and session using
Ext.getDom() calls.

http:///

Chapter 9

[279]

AJAX server requests are asynchronous, meaning the JavaScript code will have
completed before the response is received. A callback function is required to process
any returned data. Ext provides conig options for both success and failure options;
here responseText is utilized as a modal Ext.MessageBox message for successful
responses, as can be seen in the following screenshot:

So, with very little effort so far, we have veriied that we can transform a Classic
Report into a GridPanel using the output of the report, and also execute APEX
pagination calls and retrieve the response for further JavaScript manipulation.

It's time to put our solution together.

GridPanel as a region plug-in
We are building a GridPanel as a region plugin, using it as a container for a Classic
Report region, as APEX doesn't support deining reports directly into region plugins.

http:///

Getting Interactive with GridPanels

[280]

The intention is for the Plug-in to transform a single Classic Report included as
a sub-region into a GridPanel, using the metadata for the report and its column
deinitions to deine the columns and data store for the grid. The following
screenshot shows an example page in the APEX Application Builder:

Our GridPanel plug-in has a very simple deinition with just a few custom attributes.
All the complexity is contained in the database package and the associated JavaScript.

Plug-in deinition
The new functionality will be covered in greater detail; the full source for the
database package and JavaScript can be found in the Chapter 9 source code iles
available on the Packt site.

Plugin name:

Ext.apex.TableGrid

Callbacks:

Render Function Name: plug_ext_tablegrid.render

AJAX Function Name: plug_ext_tablegrid.ajax

http:///

Chapter 9

[281]

Standard attributes:

None

Custom attributes:

Label Type Required Depending on Values Default

Totals Calculation
Method

Select List Yes auto,
function

auto

Totals Function PL/SQL
Function
Body

Yes Totals Calculation
Method

Width (px) Number No

Collapsible Select List Yes true, false true

The Totals Calculation Method has two options, auto and function; these options
need a little explaining.

Data Stores with remote data sources need to know the total number of records in
the dataset as returned by the server. This is used to manage the pagination bar at
the bottom of a GridPanel, shown in the following screenshot:

APEX doesn't publish the total record count for a Classic Report, so the plugin needs
to provide this functionality. For the auto option, this is done by wrapping the
Classic Report's query with a select count(*) statement:

select count(*) from (original query)

This is done when the page is rendered, adding an additional query to the
performance overhead of the page. If the original query is expensive, developers can
set the calculation method to function and deine an anonymous PL/SQL function
returning the total rows value using some other calculation method.

http:///

Getting Interactive with GridPanels

[282]

Plug-in package
The package speciication for a Region plug-in is very similar to an Item plug-in—the
differences being the datatypes of the parameters and that Region plug-ins don't
have a validation function.

CREATE OR REPLACE PACKAGE plug_ext_tablegrid AS

 function render (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

 ,p_is_printer_friendly in boolean

)

 return apex_plugin.t_region_render_result;

 function ajax (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

)

 return apex_plugin.t_region_ajax_result;

END plug_ext_tablegrid;

/

We will look at the details of each function separately; the full package body and
speciication are included in the Chapter 9 iles included with the book.

Render functionality for the GridPanel plug-in
The GridPanel render function is used primarily to generate JavaScript to instantiate
a TableGrid, passing the column and ield mappings, together with some other
settings in conig object to transform the markup table.

It uses APEX metadata to generate this content; the output will look like the
following JavaScript:

Ext.onReady(function(){

 new Ext.apex.TableGrid("report_R3369531070222725", {

 apexMinRow:1,

 apexPageSize:10,

 apexPluginId:"20F91201D0AC...1D996C7D5A1A2D36",

 apexTotalRows:36,

 collapsible:true,

 columns:[

 {dataIndex:"c1", header:"Id", width:82, hidden:true},

http:///

Chapter 9

[283]

 {dataIndex:"c2", header:"Ranking", width:82},

 {dataIndex:"c7", header:"Total", width:82},

 {dataIndex:"c3", header:"Country", width:204},

 {dataIndex:"c4", header:"Gold", width:82},

 {dataIndex:"c5", header:"Silver", width:82},

 {dataIndex:"c6", header:"Bronze", width:82}

],

 fields:[

 {name:"c1", mapping:"td:nth(1)/@innerHTML"},

 {name:"c2", mapping:"td:nth(2)/@innerHTML"},

 {name:"c3", mapping:"td:nth(3)/@innerHTML"},

 {name:"c4", mapping:"td:nth(4)/@innerHTML"},

 {name:"c5", mapping:"td:nth(5)/@innerHTML"},

 {name:"c6", mapping:"td:nth(6)/@innerHTML"},

 {name:"c7", mapping:"td:nth(7)/@innerHTML"}

],

 id:"my-grid",

 regionId:"3369531070222725",

 sortInfo:{field:"c2", direction:"DESC"},

 title:"Commonwealth Games 2010 Medal Talley",

 width:617

 });

});

The JavaScript should look quite familiar, as it is similar to the standalone GridPanel
example we saw earlier in the chapter. Here, we are instantiating a custom
TableGrid, passing a mix of standard and custom conig options in an object literal.

The fields array shows the column aliases c1 to c7 for the markup table returned
by APEX with a simple mapping rule deining how to extract the column data.

Notice that the highlighted line, dataIndex c7, is out of sequence, in position 3. The
user has re-arranged the column order using drag-and-drop, and this information
has been saved to the database for later retrieval. Other stateful attributes include
column widths, column hidden attribute, sort information, and the GridPanel width
are also included.

The PL/SQL code for the render function is:

FUNCTION render (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

 ,p_is_printer_friendly in boolean

)

 return apex_plugin.t_region_render_result is

http:///

Getting Interactive with GridPanels

[284]

 type t_type is table of pls_integer index by varchar2(255);

 l_default_col_idx t_type;

 l_result apex_plugin.t_region_render_result;

 l_rpt_region_id number;

 l_total_rows varchar2(32767);

 l_page_size number;

 l_sort varchar2(4000);

 l_script varchar2(32767);

 l_fields varchar2(32767);

 l_column_model varchar2(32767);

 ca varchar2(255);

 j pls_integer;

 -- report column details

 l_col_headings wwv_flow_global.vc_arr2;

 l_col_aliases wwv_flow_global.vc_arr2;

 l_col_sortable wwv_flow_global.vc_arr2;

 -- user defined preferences

 l_panel_width varchar2(4000);

 l_pref_columns wwv_flow_global.vc_arr2;

 l_pref_widths wwv_flow_global.vc_arr2;

 l_pref_hidden wwv_flow_global.vc_arr2;

BEGIN

 -- debug info

 if wwv_flow.g_debug then

 wwv_flow_plugin_util.debug_region (

 p_plugin => p_plugin

 ,p_region => p_region

 ,p_is_printer_friendly => p_is_printer_friendly

);

 end if;

 -- TableGrid plugin has Classic Report as a sub-region.

 get_grid_report_properties (

 p_gridpanel_id => p_region.id

 ,p_rpt_region_id => l_rpt_region_id

 ,p_page_size => l_page_size

 ,p_sort_preference => l_sort

http:///

Chapter 9

[285]

 ,p_col_headings => l_col_headings

 ,p_col_aliases => l_col_aliases

 ,p_col_sortable => l_col_sortable

);

 if l_rpt_region_id is null then

 raise_application_error(-20001,'TableGrid Plugin'||

 ' must have a Classic Report sub-region.'

);

 end if;

 -- Define fields for Ext Reader.

 -- This identifies the column order APEX returns the data.

 for i in 1 .. l_col_aliases.last loop

 l_fields := l_fields||case when i > 1 then ',' end||

 CRLF||' {'||

 'name: "'||l_col_aliases(i)||'", '||

 'mapping:"td:nth('||i||')/@innerHTML"}';

 end loop;

 -- Retrieve custom user preferences for grid layout.

 -- Users can re-order column layout using drag-and-drop,

 -- and save modified layout as a user preference.

 fetch_config (

 p_region_id => p_region.id

 ,p_panel_width => l_panel_width

 ,p_arr_columns => l_pref_columns

 ,p_arr_widths => l_pref_widths

 ,p_arr_hidden => l_pref_hidden

);

 -- Define Column Model containing display details.

 -- May be based on user preferences.

 if l_pref_columns.count() = 0 then

 -- no preferences, so use defaults

 for i in 1 .. l_col_aliases.last loop

 l_column_model := l_column_model||

 chr(10)||' {'||

 'header: "' || l_col_headings(i) || '", '||

 'dataIndex: "'||l_col_aliases(i)||'"},';

 end loop;

 l_column_model := rtrim (l_column_model,',');

http:///

Getting Interactive with GridPanels

[286]

 -- set view to fill table width

 push('viewConfig' ,'{autoFill: true}');

 else

 -- Index column aliases using associative array,

 -- allowing us to lookup column position by name.

 -- i.e. l_default_col_idx('c4') = 4

 for i in 1 .. l_col_aliases.last loop

 l_default_col_idx(l_col_aliases(i)) := i;

 end loop;

 -- Ext renders columns in the order specified, so need

 -- to specify columns in same order as preferences.

 for i in 1 .. l_pref_columns.last loop

 if l_default_col_idx.exists(l_pref_columns(i)) then

 j := l_default_col_idx(l_pref_columns(i));

 l_column_model := l_column_model||

 chr(10)||' {'||

 'dataIndex: "'||l_col_aliases(j)||'", '||

 'header: "' || l_col_headings(j) || '", '||

 -- saved preferences

 'width: ' || l_pref_widths(i) ||

 case when l_pref_hidden(i) is not null then

 ', hidden: true' end||

 '},';

 end if;

 end loop;

 l_column_model := rtrim (l_column_model,',');

 end if;

 -- Calculate apexTotalRows

 if p_region.attribute_01 = 'auto' then

 for rec in (select r.region_source

 from apex_application_page_regions r

 where r.region_id = l_rpt_region_id

)

 loop

 l_total_rows :=

 wwv_flow_plugin_util.get_plsql_function_result(

 p_plsql_function =>

 'declare n number; '||

 'begin select count(*) into n from ('||

http:///

Chapter 9

[287]

 rec.region_source||'); return n; end;'

);

 end loop;

 else

 l_total_rows :=

 wwv_flow_plugin_util.get_plsql_function_result(

 p_plsql_function => p_region.attribute_02

);

 end if;

 -- Add sortInfo preference

 -- e.g. sortInfo: {field: 'c2', direction: 'ASC'}

 if l_sort is not null then

 -- stored as fsp_sort_2 or fsp_sort_2_desc

 l_sort := substr(l_sort,10);

 case when substr(l_sort,-4) = 'desc' then

 l_sort := '{field: "c'||

 substr(l_sort,1,length(l_sort)-5)||

 '", direction: "DESC"}';

 else

 l_sort := '{field: "c'||l_sort||

 '", direction: "ASC"}';

 end case;

 end if;

 -- panel width can be a preference, or default

 l_panel_width := nvl(l_panel_width,p_region.attribute_03);

 -- Assemble TableGrid config properties

 push('columns' ,'['||l_column_model||CRLF||']');

 push('fields' ,'['||l_fields||CRLF||']');

 push('apexTotalRows',l_total_rows);

 push('apexMinRow' ,1);

 push('apexPageSize' ,l_page_size);

 push('sortInfo' ,l_sort);

 push('id' ,'"'||p_region.static_id||'"');

 push('regionId' ,'"'||l_rpt_region_id||'"');

 push('title' ,'"'||escape_json(p_region.name)||'"');

 push('width' ,l_panel_width);

 push('collapsible' ,p_region.attribute_04);

 push('apexPluginId',

 '"'||wwv_flow_plugin.get_ajax_identifier||'"'

http:///

Getting Interactive with GridPanels

[288]

);

 l_script := CRLF||

 'Ext.onReady(function(){'||CRLF||

 ' new Ext.apex.TableGrid("report-R'||

 l_rpt_region_id||'", {'||CRLF||

 get_properties(8)||' });'||CRLF||

 '});'||CRLF;

 -- add JS to bottom of page

 wwv_flow_javascript.add_onload_code (p_code => l_script);

 return l_result;

END;

We won't be going into great detail for most of the render function, as much of the
code is very similar to earlier code used for the ComboBox and NumberField Plug-
ins. Some convenience routines, such as push, escape_json and get_properties
have been reused, so no need to discuss those either.

New subroutines added are get_grid_report_properties and fetch_config.

The get_grid_report_properties procedure retrieves details for the report and
report columns by querying the APEX views: APEX_APPLICATION_PAGE_REGIONS
and APEX_APPLICATION_PAGE_RPT_COLS. It's very straightforward, so just look at
the source code included with this chapter if you want to see the details.

The fetch_config procedure retrieves some custom preferences we will be creating
using the plug-in's ajax function, so we will look at that a little later when we
discuss the ajax function.

Calculating the number of rows for TableGrid is somewhat of a necessary evil. From
an APEX perspective, it's generally recommended not to do this for report regions,
as it adds a performance overhead to the query by requiring it to process the entire
result set to count the number of records returned. However, we need to do this for
the Ext pagination functionality to work for the Data Store.

To address the potential performance issue, we deined two ways of calculating the
number of records returned.

 -- Calculate apexTotalRows

 if p_region.attribute_01 = 'auto' then

 for rec in (select r.region_source

 from apex_application_page_regions r

 where r.region_id = l_rpt_region_id

)

http:///

Chapter 9

[289]

 loop

 l_total_rows :=

 wwv_flow_plugin_util.get_plsql_function_result(

 p_plsql_function =>

 'declare n number; '||

 'begin select count(*) into n from ('||

 rec.region_source||'); return n; end;'

);

 end loop;

 else

 l_total_rows :=

 wwv_flow_plugin_util.get_plsql_function_result(

 p_plsql_function => p_region.attribute_02

);

 end if;

The irst method automatically calculates total rows returned by wrapping the
report query with a select count(*) statement in an anonymous function,
shown highlighted in the code snippet. The second method allows the developer
to specify a custom function possibly to improve performance, as shown in the
following screenshot:

The built-in WWV_FLOW_PLUGIN_UTIL.GET_PLSQL_FUNCTION_RESULT function allows
developers to use bind variables in exactly the same way as they would for any
standard APEX code region.

http:///

Getting Interactive with GridPanels

[290]

Minor pagination issue
APEX is stateful when paginating using Partial Page Refresh (PPR) report, but does
not make the starting row information accessible to developers in the public APEX
PL/SQL packages.

This causes problems if a user has PPR report and paginates to, say page 2 with 10
records per page, and then does a page refresh from the browser. APEX has saved
the state of the PPR report, recording that it needs to display records starting from
row 11 of the result set.

The PPR report renders the records from row 11 onwards, however, there is no way
for our custom plug-in to identify we haven't returned records from the irst row.
This results in the TableGrid recording incorrect information in its pagination bar.

I've raised this as an issue with the APEX development team, and it is being
considered for a release after APEX 4.02.

In the mean time, the workaround is to reset pagination every time the page
is refreshed. This changes APEX behavior for a normal report region, but is an
acceptable solution.

To do this for a single page, create an unconditional page process to Reset
Pagination for the Current Page at the process point On Load - Before Regions, as
shown in the following screenshot:

Alternatively, you can create a similar page process on APEX Page 0, to conditionally
reset pagination on pages containing the TableGrid plug-in.

http:///

Chapter 9

[291]

AJAX functionality for the GridPanel plug-in
Recall from our earlier investigations for the plug-in that we are going to call the
standard APEX routines for pagination and sorting, meaning we don't require any
AJAX processing for standard functionality.

However, the TableGrid now supports drag-and-drop column ordering, menu
options to show or hide columns, and column resizing. You can imagine your users
are very quickly going to demand that APEX remember these settings also!

So, our TableGrid will be using AJAX functionality to remember the layout state. To
implement this, we are adding two toolbar items to the panel header, shown in the
following screenshot, to save the settings and also restore default settings.

The PL/SQL code for the AJAX function is:

FUNCTION ajax (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

)

 return apex_plugin.t_region_ajax_result is

 l_result apex_plugin.t_region_ajax_result;

BEGIN

 -- indicate we are returning application/json data

 wwv_flow_plugin_util.print_json_http_header;

 -- direct to sub-routine

 case apex_application.g_widget_action

http:///

Getting Interactive with GridPanels

[292]

 when 'saveConfig' then

 save_config (p_region_id => p_region.id);

 when 'resetConfig' then

 reset_config (p_region_id => p_region.id);

 else

 -- invalid action

 raise_application_error(-20001,'Invalid action: "'||

 apex_application.g_widget_action||'"'

);

 end case;

 -- not used by APEX yet

 return l_result;

EXCEPTION

 when others then

 htp.p('{success: false,');

 htp.p(' errors: {"sqlCode": "'||

 escape_json(sqlcode)||'",');

 htp.p(' "sqlErrm": "'||

 escape_json(sqlerrm)||'"');

 htp.p(' }');

 htp.p('}');

 return l_result;

END;

The AJAX function here just prints a mime-type header, and directs requests to the
appropriate subroutine.

Saving modiications is done using the save_config procedure:

procedure save_config (p_region_id in number) is

 l_prefix varchar2 (255) :=

 'EXT_'||v('APP_ID')||'_'||v('APP_PAGE_ID')||'_'||

 p_region_id||'_';

begin

 wwv_flow_preferences.set_preference (

 p_preference => l_prefix || 'PANEL_WIDTH'

 ,p_value => apex_application.g_x01

);

 wwv_flow_preferences.set_preference (

 p_preference => l_prefix || 'COL'

 ,p_value => wwv_flow_utilities.table_to_string2

 (apex_application.g_f01)

);

http:///

Chapter 9

[293]

 wwv_flow_preferences.set_preference (

 p_preference => l_prefix || 'WIDTH'

 ,p_value => wwv_flow_utilities.table_to_string2

 (apex_application.g_f02)

);

 wwv_flow_preferences.set_preference (

 p_preference => l_prefix || 'HIDDEN'

 ,p_value => wwv_flow_utilities.table_to_string2

 (apex_application.g_f03)

);

 htp.p('{success: true}');

end;

Here, we are saving values passed in an AJAX request into the database using the
built-in wwv_flow_preferences.set_preference procedure. These values are
stored by APEX in the WWV_FLOW_PREFERENCES$ table, and persist across both page
requests and sessions.

We are storing the panel width, displayed columns, column widths, and hidden
columns. The column-based ields use associative arrays (index by tables), so need
to be converted into varchar2 strings using the wwv_flow_utilities.table_to_
string2 procedure.

The preference names and values stored in the database look like those shown in the
next table:

Parameter Value

EXT_103_145_3371020966238884_PANEL_WIDTH 425

EXT_103_145_3371020966238884_COL c1:c2:c7:c3:c4:c5:c6

EXT_103_145_3371020966238884_WIDTH 82:82:57:121:52:53:56

EXT_103_145_3371020966238884_HIDDEN true::::::

Interpreting the values shown for the COL parameter, column 7 (c7) has been
repositioned next to column 2 (c2). Also, looking at the HIDDEN parameter, the irst
column (c1) has been hidden.

Complementing the save_config procedure are procedures fetch_config
and reset_config; we won't show these here as their purpose is self-evident.
These procedures use APEX-supplied procedures wwv_flow_preferences.
set_preference, wwv_flow_utilities.string_to_table2, and wwv_flow_
preferences.remove_preference.

Let's turn our attention to the JavaScript for our TableGrid.

http:///

Getting Interactive with GridPanels

[294]

Building a custom DataReader
Ext provides multiple Readers for reading structured data from a data source and
converting it into an object containing Ext.data.Record objects and metadata for use
by an Ext.data.Store.

However, to integrate with APEX, we need to create a custom DataReader.
Fortunately, this isn't too hard, because we can extend an existing DataReader to
meet our needs:

Ext.ns('Ext.apex.data');

Ext.apex.data.HtmlReader = Ext.extend(Ext.data.XmlReader, {

 read: function(response){

 var doc = Ext.DomHelper.createDom({

 html: response.responseText

 });

 if (!doc) {

 throw {

 message: "XmlReader.read: XML Document not available"

 };

 }

 return this.readRecords(doc);

 },

 readRecords: function(doc){

 this.xmlData = doc;

 var root = doc,

 totalRecords = this.meta.apexTotalRecords || 0;

 var records = this.extractData(

 Ext.DomQuery.select(this.meta.record, root), true);

 return {

 success: true,

 records: records,

 totalRecords: totalRecords || records.length

 };

 }

});

In this snippet, we are extending the Ext.data.XmlReader, which expects
AJAX responses to be returned with the header in the HTTP response set to
text/xml or application/xml, and the XML document contained in a property
named responseXML.

For the TableGrid paging bar to display the total records and paginate correctly,
the custom Reader also needs to have totalRecords assigned. This is done when the
custom Reader is instantiated using the meta.apexTotalRecords parameter, as
APEX doesn't pass this information with the PPR refresh.

http:///

Chapter 9

[295]

Creating a custom TableGrid component
Following through from our earlier "proof of concept", we are modifying the
Sencha-provided example From Markup Grid Example, to create a custom
TableGrid component speciically for APEX.

The JavaScript for the TableGrid and the HtmlReader are included
with the iles for Chapter 9 in Ext.apex.TableGrid.js, and
should be added to your application JavaScript.

The TableGrid is created by passing the DOM ID of the table and a conig object
literal containing arrays of field and column deinitions, the total rows in
apexTotalRows, pagination details, sort-order information, and so on.

Using the Ext.apply call, we apply the conig object to this TableGrid object, passing
additional default conig options as well.

Ext.apex.TableGrid = function(table, config){

 config = config || {};

 // apply config, and a default config

 Ext.apply(this, config, {

 autoHeight: true,

 collapseFirst: false,

 iconCls: 'icon-grid',

 loadMask: true,

 stripeRows: true,

 titleCollapse: true

 });

The ield and cols variables are assigned to the arrays passed by the conig
object literal.

 var fields = config.fields || [], cols = config.columns||[];

A DIV element is inserted as a sibling DOM element to the original table, which will
eventually become the TableGrid component.

 table = Ext.get(table);

 var ct = table.insertSibling({

 id: this.id || Ext.id(),

 style: "margin-bottom: 10px"

 });

http:///

Getting Interactive with GridPanels

[296]

Our Reader object is then instantiated using the custom HtmlReader component
we created earlier. This will read the table rows and cells passed by the APEX PPR
refresh responses into a data store.

 var myReader = new Ext.apex.data.HtmlReader({

 apexTotalRecords: config.apexTotalRows || null,

 record: 'tbody tr'

 }, fields);

The Data Store is the next object to be deined. Parameter names and values are
assigned to match correctly with the parameters expected by APEX.

// create the data store

var ds = new Ext.data.Store({

 url: 'f',

 baseParams: {

 'p': Ext.getDom('pFlowId').value + ':' +

 Ext.getDom('pFlowStepId').value + ':' +

 Ext.getDom('pInstance').value +

 ':FLOW_PPR_OUTPUT_R' + config.regionId + '_',

 'pg_max_rows': config.apexPageSize || 15,

 'pg_rows_fetched': config.apexPageSize || 15

 },

 remoteSort: true,

 sortInfo: config.sortInfo,

 paramNames: {

 start: 'pg_min_row',

 limit: 'pg_max_rows'

 },

 reader: myReader,

 listeners: {

 beforeload: function(obj, options){

 // APEX uses 1 based rowcount, so adjust

 if (options.params && options.params.pg_min_row >= 0) {

 options.params.pg_min_row += 1;

 }

 if (!options.params || !options.params.sort ||

 !this.prevSortInfo ||

 options.params.sort == this.prevSortInfo.field &&

 options.params.dir == this.prevSortInfo.direction)

 {

 options.params.p = ds.baseParams.p + 'pg_R_' +

 config.regionId +':NO';

 }

http:///

Chapter 9

[297]

 else {

 var sortConfig = 'fsp_sort_' +

 options.params.sort.substring(1);

 if (options.params.dir == 'ASC') {

 sortConfig += '_desc';

 }

 options = Ext.apply(options, {

 params: {

 p: ds.baseParams.p + sortConfig + '::RP',

 fsp_region_id: config.regionId,

 pg_min_row: options.params.pg_min_row || 1

 }

 });

 }

 // always remove sort params

 delete options.params.sort;

 delete options.params.dir;

 },

 load: function(obj, records, options){

 // APEX uses 1 based rowcount, so adjust

 if (options.params && options.params.pg_min_row > 0) {

 options.params.pg_min_row -= 1;

 }

 // store sort details to help identify sort requests

 this.prevSortInfo = Ext.apply({}, this.sortInfo);

 }

 }

});

Next data is loaded from the HTML markup table created when the page
was rendered.

 ds.loadData(table.dom);

Following this, we complete the coniguration of a typical GridPanel by assembling a
PagingToolbar, ColumnModel, and the height and width attributes.

 var paging = new Ext.PagingToolbar({

 pageSize: config.apexPageSize || 15,

 store: ds,

 displayInfo: true,

 displayMsg: 'Displaying rows {0} - {1} of {2}'

 });

http:///

Getting Interactive with GridPanels

[298]

 var cm = new Ext.grid.ColumnModel({

 defaults: {

 sortable: true,

 menuDisabled: false

 },

 columns: cols

 });

 if (config.width || config.height) {

 ct.setSize(config.width || 'auto', config.height || 'auto');

 }

 else {

 ct.setWidth(table.getWidth());

 }

The markup table is then deleted from the DOM, and all the components making up
the GridPanel are assigned to the object.

 table.remove();

 Ext.applyIf(this, {

 'ds': ds,

 'cm': cm,

 'sm': new Ext.grid.RowSelectionModel(),

 bbar: paging

 });

At this point, all that's left to do is call the constructor function to create
the TableGrid.

 //@todo - add tools to save TableGrid state

 Ext.apex.TableGrid.superclass.constructor.call(this, ct);

};

Ext.extend(Ext.apex.TableGrid, Ext.grid.GridPanel);

Notice the @todo comment; we will be adding more code here to make the
TableGrid stateful.

http:///

Chapter 9

[299]

Making the TableGrid Stateful
Before we make the TableGrid stateful, let's add one more piece of functionality to
make the TableGrid resizable. Add the following code before the @todo comment:

 // add listener to resize TableGrid width

 Ext.applyIf(this, {

 listeners: {

 render: function(p){

 new Ext.Resizable(p.getEl(), {

 handles: 'e',

 pinned: true,

 transparent: true,

 resizeElement: function(){

 var box = this.proxy.getBox();

 p.updateBox(box);

 if (p.layout) {

 p.doLayout();

 }

 return box;

 }

 });

 }

 }

 });

This adds a listener to the TableGrid, so when it is rendered, an Ext.Resizable
object is wrapped around the TableGrid to make it resizable, as shown in the
following screenshot:

http:///

Getting Interactive with GridPanels

[300]

Ext.Panels support an array of tool button conigs to be added to the header tool
area. We are adding the two extra tool items to the panel header, as seen in the
previous screenshot, and then adding handlers to pass AJAX requests back to the
database.

The structure of the code looks like the following, with just the details needing to be
added to the handlers.

var tools = [{

 id: 'restore',

 qtip: 'Restore default settings',

 handler: function(event, toolEl, panel){

 // restore logic

 }

},

{

 id: 'save',

 qtip: 'Save settings',

 handler: function(event, toolEl, panel){

 // save logic

 }

}]

Ext.apply(this, {

 tools: tools

});

The code to "save settings" is more complicated, so we will look at that here:

{

 id: 'save',

 qtip: 'Save settings',

 handler: function(e, toolEl, panel){

 var f01 = [], f02 = [], f03 = [];

 var cfg = panel.getColumnModel().config;

 // capture column, width, hidden

 for (var i = 0, c; c = cfg[i]; i++) {

 f01[i] = c.dataIndex;

 f02[i] = c.width;

 f03[i] = c.scope.hidden || null;

 }

http:///

Chapter 9

[301]

We start out by creating three empty arrays, then populating them with details from
the panels column model retrieved using panel.getColumnModel().config. The
dataIndex, width, and hidden state are loaded into the arrays, which would look
like the following when populated:

f01[c1,c2,c7,c3,c4,c5,c6]

f02[82,82,57,121,52,53,56]

f03[true,,,,,,]

This data, together with other parameters and APEX application, page, session, and
request information is bundled into an Ext.Ajax.request object and submitted to
the database for processing by our TableGrid plug-in code. Callback functions for
success and failure states then display a message to the user.

 Ext.Ajax.request({

 url: 'wwv_flow.show',

 success: function(){

 Ext.Msg.alert('Message',

 'Panel configuration saved.');

 },

 failure: function(){

 Ext.Msg.show({

 title:'Error',

 msg: 'Process failed.',

 buttons: Ext.Msg.OK,

 icon: Ext.MessageBox.ERROR

 });

 },

 params: {

 'p_flow_id': Ext.getDom('pFlowId').value,

 'p_flow_step_id': Ext.getDom('pFlowStepId').value,

 'p_instance': Ext.getDom('pInstance').value,

 'p_request': 'PLUGIN=' + config.apexPluginId,

 'p_widget_action': 'saveConfig',

 'f01': f01,

 'f02': f02,

 'f03': f03,

 'x01': panel.getWidth()

 }

 });

 }

}

Ext.apply(this, {

 tools: tools

});

http:///

Getting Interactive with GridPanels

[302]

It's not well known that you can pass arrays of data using the f01..f20 parameters,
which are then loaded into PL/SQL associative arrays g_f01..gf20 (index by tables)
in the WWV_FLOW package—an extremely useful fact!

Using the TableGrid
Before you can start using the TableGrid, there's one more thing you need to add
speciically a report template for the TableGrid.

As the report template is only being used to pass data to the browser, and isn't
required for presentation at all, the simplest table format we can create is the
best solution.

TableGrid template
Report Template Name: EXTJS TableGrid

Template Class: Custom 1

Before Rows:

<table id="report-#REGION_STATIC_ID#" class="x-hidden">

The x-hidden class ensures that the user never sees the table until after it's converted
to a GridPanel.

Before column heading:

<thead>

Column heading template:

<th>#COLUMN_HEADER#</th>

After column heading:

</thead>

<tbody>

Before each row:

<tr>

Column template 1:

<td>#COLUMN_VALUE#</td>

http:///

Chapter 9

[303]

After each row:

</tr>

After rows:

</tbody>

</table>

That's it—no row highlighting colors, no pagination required.

Convert Classic Reports to TableGrids
To use the TableGrid, irst build a Classic Report exactly as you would normally.

Then create a region using the TableGrid plug-in, and assign it as the Parent Region
of the Classic Report, as shown in the following screenshot:

The TableGrid uses the TableGrid plug-ins title, ignoring the Classic Report
Region title.

http:///

Getting Interactive with GridPanels

[304]

Do the following tasks to complete the conversion:

•	 Set Report Region Template to No Template.

•	 Set Report Template to EXTJS TableGrid.

•	 Set Report Pagination Scheme to Use Externally Created Pagination Buttons.

•	 Add pagination work-around. Create an unconditional page process
to Reset Pagination for the Current Page at the process point
On Load - Before Regions.

All being well, you now have a fully functional GridPanel, giving users stateful
column management features.

http:///

Chapter 9

[305]

Summary
In this chapter, we looked at the components making up the GridPanel, the Data
Store, Column Model, Grid View, and Selection Model.

Different approaches were discussed on how you can integrate GridPanels into
APEX, contrasting the "Almost no APEX" approach with the "Relying on APEX"
approach. Here, we came to the realization that APEX already provides a lot of
functionality to you already. It's far more productive if you work to extend what's
already there, rather than creating a whole framework just to support your plug-in.

We then set about creating a TableGrid plug-in using the APEX Classic Reports
as the base for deining the report query and column deinitions. By hooking into
existing Classic Reports functionality for querying, pagination, and sorting, we
minimized the amount of work required for the plug-in.

The GridPanel includes column management features, including sorting, resizing,
drag-and-drop column reordering, and show/hide columns. We went one step
further, adding functionality to make the GridPanel stateful, allowing user settings
to be saved back into APEX using APEX preferences.

There is much more functionality available to the Ext.grid.GridPanel than we've
covered here, so I would encourage you to explore the Sencha examples further, and
see what functionality would work for your applications.

In the next chapter, we will be looking at adding iFrame functionality via Ext JS into
your applications. It will transform the way your applications work.

http:///

http:///

IFrame Tabs, Panels, and

Popup Windows
iFrames can completely transform the way your APEX applications work, making
them far more functional by allowing you to present multiple HTML pages
(documents) to your users within a single window.

Modern web browsers have all implemented tabbed browsing interfaces, allowing
you to open multiple web pages within a browser window. It allows you to read a
web page, opening referenced links in another tab, without losing your place in the
original page. After reading the link you can close the tab, or just switch back to the
original tab.

Switching between pages is very useful for comparison shopping or cross
referencing different information sources. It's also very useful when doing APEX
application development, allowing you to switch from the APEX Builder view to
your application view without having to do multiple page refreshes.

Our application users are very much used to tabbed browsers, so if we don't give
them similar functionality in APEX applications, they will quickly resort to opening
multiple browser tabs. This can create some nasty issues for the users' APEX session
state, with pages relying on APEX session variables that may have been altered in
another browser tab.

Far better to give them similar functionality to open multiple pages in a single
browser tab, where we can control what pages are opened and thus maintain session
state as needed.

http:///

IFrame Tabs, Panels, and Popup Windows

[308]

In this chapter, we will explore using iFrames in three different ways:

•	 Embedding other pages within a page using iFrame panels

•	 Making popup windows modal

•	 Creating a tabbed document interface allowing users to switch between
pages easily without opening multiple browser tabs

Embedding pages using iFrame panels
Embedding iFrames into another page is as simple as including an iFrame HTML
markup element in the region source of a page region.

<iframe width="600" height="400" frameborder="0" src="f?p=&APP_

ID.:200:&APP_SESSION.:"></iframe>

In this example, we have speciied the width, height, and the src attribute of
iFrame using APEX built-in substitution strings for the application ID and session, to
reference page 200 in the current application.

That didn't feel very satisfying to me, how about you? It does show that iFrames are
easy to implement, but let's see if we can add some more functionality.

This time we will embed an iFrame element in a collapsible Ext.Panel, including
extra functionality to make it resizable like the one shown in the following screenshot
and included in chapter10/ex-10-resizable-iframe-panel.html.

Starting off, we create a simple reusable iFrame component.

http:///

Chapter 10

[309]

Reusable iFrameComponent
Creating a simple iFrame component allows it to be used as an item within more
complex components such as panels, windows, and tab panels. This component
should be included in your application JavaScript.

Ext.ns('Ext.apex');

Ext.apex.IFrameComponent = Ext.extend(Ext.BoxComponent, {

 /**

 * The url to be shown in iframe

 * @type {String}

 */

 url : Ext.SSL_SECURE_URL,

 /**

 * @private Just render an iframe

 */

 onRender : function(ct, position){

 var url = this.url;

 this.el = ct.createChild({tag: 'iframe', id: 'iframe-' + this.

id, frameBorder: 0, src: url});

 }

});

Ext.reg('iframe', Ext.apex.IFrameComponent);

The Ext.apex.IFrameComponent created here inherits all the conig options
and methods of Ext.BoxComponent in addition to the url option and the
onRender function.

The component accepts a url option and creates an iframe HTML element as a child
of the container element, like as the panel shown earlier in the irst igure.

The url option defaults to Ext.SSL_SECURE_URL, which uses about:blank
excepting for IE in secure mode, where it uses javascript:"" to prevent the IE
insecure content warning.

Resizable iFrame panel
Looking more closely at the example in chapter10/ex-10-resizable-iframe-
panel.html, you can see we have created a standard Ext.Panel, applying it to a DIV
element in the page.

<div id="example-1"></div>

<script type="text/javascript">

Ext.onReady(function(){

http:///

IFrame Tabs, Panels, and Popup Windows

[310]

 new Ext.Panel({

 allowDomMove: false,

 applyTo: 'example-1',

 animCollapse: false,

 frame: true,

 height: 400,

 width: 600,

 collapsible: true,

 titleCollapse: true,

 title: 'iFramed Page',

 items: [new Ext.apex.IFrameComponent({

 id: 'myIFrame',

 url: "content-page.html"

 })],

 layout: 'fit',

 listeners: {

 render: function(p){

 new Ext.Resizable(p.getEl(), {

 handles: 'all',

 pinned: true,

 transparent: true,

 resizeElement: function(){

 var box = this.proxy.getBox();

 p.updateBox(box);

 if (p.layout) {

 p.doLayout();

 }

 if (Ext.isIE) {

 this.syncHandleHeight();

 }

 return box;

 }

 });

 }

 }

 });

});

</script>

The highlighted code shows that the Ext.apex.IFrameComponent is added
to the panel as an item, in exactly the same way you would add any other Ext
item. The layout: 'fit' conig option is important here as it ensures that the
IFrameComponent automatically expands to ill the layout container. The following
diagram shows what happens when the option is commented out:

http:///

Chapter 10

[311]

Also note that the Ext.Resizable element is added when the panel is rendered:

 listeners: {

 render: function(p){

 new Ext.Resizable(p.getEl(), {

 handles: 'all',

 pinned: true,

 transparent: true,

 resizeElement: function(){

 var box = this.proxy.getBox();

 p.updateBox(box);

 if (p.layout) {

 p.doLayout();

 }

 if (Ext.isIE) {

 this.syncHandleHeight();

 }

 return box;

 }

 });

 }

 }

http:///

IFrame Tabs, Panels, and Popup Windows

[312]

The Ext.Resizable class adds drag handles to the panel to make it resizable, as
shown in the following diagram. In this case, we have used handles: 'all' to add
handles to all sides of the panel; more typically you would use handles: 's e se'
to constrain the top-left corner of the panel to its starting position and still allow the
panel to be sized both horizontally and vertically.

The Ext.Resizable class uses a dashed DIV element as a proxy when sizing using a
click-and-drag motion. Once the user releases the mouse click, the iFrame is resized
to the new dimensions. Resizing iFrames multiple times as the user moves the mouse
is a much more expensive on memory resources than a simple DIV element, so using
a proxy element is a sensible solution.

Pre-conigured components using the factory
pattern
Several examples shown throughout the book have created new components using
the Ext.extend method to add new functionality or use the Ext.override method
to over-ride existing functionality.

The Ext.apex.Viewport component from Chapter 3 uses the Ext.extend method,
to create a new component, adding functionality to the Ext.Container component:

Ext.apex.Viewport = Ext.extend(Ext.Container, {

 initComponent : function() {

 Ext.apex.Viewport.superclass.initComponent.call(this);

 // new APEX specific functionality

 /** snipped **/

 },

 // new method

http:///

Chapter 10

[313]

 fireResize : function(w, h){

 this.fireEvent('resize', this, w, h, w, h);

 }

});

In Chapter 8, Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions, the Ext.override
method was used to alter an existing ComboBox method to add the APEX-speciic
code:

Ext.override(Ext.form.ComboBox, {

 applyToMarkup : function(el){

 Ext.form.ComboBox.superclass.applyToMarkup.call(this, el);

 // add APEX specific code

 /** snipped **/

});

Sometimes creating a new component really isn't necessary; instead, all that's
required is a speciic coniguration of an existing class. In these cases, you can use a
factory pattern function to create new instances with a speciic coniguration:

function createMyPanel(config) {

 return new Ext.Panel(Ext.apply({

 // Pre-configured config options go here

 width: 300,

 height: 300,

 plugins: [new Ext.ux.MyPluginClass()]

 }, config));

};

var myfirstpanel = createMyPanel({

 title: 'My First Panel'

});

var mysecondpanel = createMyPanel({

 title: 'My Second Panel',

 width: 400

});

In this example, we have a function that returns a new pre-conigured panel. This
panel sets the width and height properties and a plug-in when called. Two panels are
then instantiated, passing different title property values.

A good reference discussing creating custom components by extending,
overriding, or using factory patterns can be found at http://www.
sencha.com/learn/Tutorial:Creating_new_UI_controls.

http://www.sencha.com/learn/Tutorial:Creating_new_UI_controls
http://www.sencha.com/learn/Tutorial:Creating_new_UI_controls
http:///

IFrame Tabs, Panels, and Popup Windows

[314]

Notice that Ext.apply is used within the function to apply the pre-conigured options
irst; any instance speciic options are applied later. Applying the instance-speciic
options after allows the pre-conigured options to be changed, as shown here for the
second panel that overrides the pre-conigured width with a new value.

IFrame panel factory pattern
In the example ile named chapter10/ex-10-resizable-iframe-panel-factory.
html, the following factory pattern function has been created for the iFrame panel:

Ext.apex.iFramePanel = function(config){

 return new Ext.Panel(Ext.apply({

 allowDomMove: false,

 animCollapse: false,

 collapsible: true,

 deferIFrame: config.collapsed || false,

 items: [new Ext.apex.IFrameComponent()],

 layout: 'fit',

 titleCollapse: true,

 url: Ext.SSL_SECURE_URL,

 listeners: {

 render: function(p){

 if (this.handles != 'none') {

 new Ext.Resizable(p.getEl(), {

 handles: config.handles || 's e se',

 pinned: true,

 transparent: true,

 resizeElement: function(){

 var box = this.proxy.getBox();

 p.updateBox(box);

 if (p.layout) {

 p.doLayout();

 }

 if (Ext.isIE) {

 this.syncHandleHeight();

 }

 return box;

 }

 });

 }

 },

 afterrender: function(){

 this.iframe = this.body.child('iframe');

http:///

Chapter 10

[315]

 if (!this.deferIFrame) {

 this.setSrc(this.url);

 }

 },

 expand: function(){

 if (this.iframe && !this.iframe.rendered) {

 this.setSrc(this.url);

 }

 }

 },

 setSrc: function(url){

 if (this.rendered && this.iframe) {

 var mask = new Ext.LoadMask(this.body, {

 removeMask: true

 });

 new Ext.util.DelayedTask(function(){

 mask.show();

 new Ext.util.DelayedTask(function(){

 mask.hide();

 }).delay(250);

 }).delay(150);

 this.iframe.dom.src = url;

 this.iframe.rendered = true;

 }

 return this;

 }

 }, config));

};

This script would normally be included in your application JavaScript library
external to the page.

Similar to the earlier chapter10/ex-10-resizable-iframe-panel.html example,
it creates a Panel containing an Ext.apex.IFrameComponent. It does so when the
Ext.apex.iFramePanel function is called, allowing multiple Panels to be created.

Towards the bottom of the example ile, we instantiate two panels:

<div id="example-1" class="ux-panel"></div>

<div id="example-2"></div>

<script type="text/javascript">

Ext.onReady(function(){

http:///

IFrame Tabs, Panels, and Popup Windows

[316]

 Ext.apex.iFramePanel({

 applyTo: 'example-1',

 title: 'iFramed Page',

 frame: true,

 height: 400,

 width: 600,

 url: "content-page.html"

 });

 Ext.apex.iFramePanel({

 applyTo: 'example-2',

 height: 400,

 width: 600,

 collapsed: true,

 title: 'Wikipedia',

 url: "http://wikipedia.com",

 handles: 'all'

 });

});

</script>

The beneits of using a factory pattern function become very apparent; we pass only
those parameters speciic to the layout of the individual panels. This reduces the size
of pages and makes the code more readable as well.

An additional piece of functionality was also added to the factory function. The
iFrame is created using the default IFrameComponent coniguration, which sets the
url value to Ext.SSL_SECURE_URL—a blank ile.

 deferIFrame: config.collapsed || false,

 items: [new Ext.apex.IFrameComponent()],

For panels initially rendered in a collapsed state, the iFrame src is not updated until
the panel is expanded. This provides better performance, loading the main page and
loading only iFramed pages when requested by the user.

 afterrender: function(){

 this.iframe = this.body.child('iframe');

 if (!this.deferIFrame) {

 this.setSrc(this.url);

 }

 },

 expand: function(){

 if (this.iframe && !this.iframe.rendered) {

 this.setSrc(this.url);

http:///

Chapter 10

[317]

 }

 }

 },

 setSrc: function(url){

 if (this.rendered && this.iframe) {

 var mask = new Ext.LoadMask(this.body, {

 removeMask: true

 });

 new Ext.util.DelayedTask(function(){

 mask.show();

 new Ext.util.DelayedTask(function(){

 mask.hide();

 }).delay(250);

 }).delay(150);

 this.iframe.dom.src = url;

 this.iframe.rendered = true;

 }

 return this;

 }

When the iFrame src is changed, a mask is applied to the panel body using
Ext.util.DelayedTask, as shown in the following diagram. Showing the mask
after a small delay, and then hiding it after another small delay, helps the perception
that the iFramed content loads quickly.

Now we have a good understanding of the resizable iFrame Panel prototype, the last
step is to implement it as an APEX Plug-in.

http:///

IFrame Tabs, Panels, and Popup Windows

[318]

IFrame panel plug-in
The IFrame plug-in we are creating could also be implemented as a APEX
Region Template. By making it a plug-in, more attributes can be exposed to use
declaratively.

The full source for the database package and JavaScript is included in the Chapter 10
source iles, available on the Packt site.

Plugin name:

Ext.apex.IFramePanel

Type:

Region

Callbacks:

Render function name: plug_ext_iframepanel.render

Standard attributes:

none

Custom attributes:

Label Type Required Depending on Values Default

URL Text Yes

Width (px) Number Yes

Height (px) Number Yes

Collapsible Select List Yes true, false true

Collapsed Select List Yes Collapsible true, false false

Frame Select List Yes true, false true

Resize
Handles

Select List Yes south: s

east: e

south and east: s e se

all: all

none: none

s e se

http:///

Chapter 10

[319]

The attributes used for the iFrame panel Plug-in are very straightforward; the URL
attribute deines the source page for the iFrame, whereas the width and height
attributes deine the panel size. The URL attribute can accept absolute and relative
URLs and will also convert APEX substitution tags. The following examples are
both valid:

// absolute URL

http://apex.oracle.com

// relative URL containing APEX substitution strings

f?p=&APP_ID.:60:&APP_SESSION.::NO::P60_ID:&P160_REF_ID.:

The Collapsible attribute determines if the panel is expandable and whether or not
the collapsible behavior is enabled, whereas Collapsed determines if the panel starts
in a collapsed or expanded state. When the Frame attribute is set to true, the panel is
rendered with rounded corners, otherwise it is rendered as a plain panel. The Resize
Handles attribute determines which sides of the panel have grab bars for resizing.

This screenshot shows a typical use of the iFrame panel plug-in with a relative URL
referencing another APEX page and containing APEX substitution strings. Notice
in the User Interface section that the Template ield has been set to No Template
because the plug-In will create a panel automatically.

http:///

IFrame Tabs, Panels, and Popup Windows

[320]

Plug-in package
The package speciication for the IFrame panel is a simple Region Plug-in
declaration, with only a render function required.

CREATE OR REPLACE PACKAGE plug_ext_iframepanel AS

 function render (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

 ,p_is_printer_friendly in boolean

)

 return apex_plugin.t_region_render_result;

END plug_ext_iframepanel;

/

The full package body and speciication are included in the Chapter 10 source iles
available on the Packt site as part of the code bundle.

Render functionality for the iFrame panel
plug-in
The iFrame panel render function generates JavaScript calling the Ext.apex.
iFramePanel function to instantiate a pre-conigured Ext Panel with an embedded
iFrame element.

The output will look like the following JavaScript:

Ext.onReady(function(){

 Ext.apex.iFramePanel({

 applyTo: "R3699425022908871",

 collapsed: true,

 collapsible: true,

 frame: false,

 handles: "s e se",

 height: 400,

 title: "IFramed Panel",

 url: "f?p=103:60:2236942287935549::NO::P60_ID:110:",

 width: 600

 });

});

In this code snippet, the url attribute is using the standard APEX f?p syntax:
f?p=App:Page:Session:Request:Debug:ClearCache:itemNames:itemValues:

PrinterFriendly

http:///

Chapter 10

[321]

The original URL shown in the previous screenshot—f?p=&APP_ID.:60:&APP_

SESSION.::NO:P60_ID:&P_160_REF_ID—has been converted with APEX
substitution tags replaced to give the inal URL.

The PL/SQL code for the render function is:

FUNCTION render (

 p_region in apex_plugin.t_region

 ,p_plugin in apex_plugin.t_plugin

 ,p_is_printer_friendly in boolean

)

 return apex_plugin.t_region_render_result is

 type t_type is table of pls_integer index by varchar2(255);

 l_default_col_idx t_type;

 l_result apex_plugin.t_region_render_result;

 l_script varchar2(32767);

BEGIN

 -- debug info

 if wwv_flow.g_debug then

 wwv_flow_plugin_util.debug_region (

 p_plugin => p_plugin

 ,p_region => p_region

 ,p_is_printer_friendly => p_is_printer_friendly

);

 end if;

 -- print div as target

 htp.p('<div id="R'||p_region.id||

 '" class="ux-iframe"><div>');

 -- Assemble config properties

 push('url' ,'"'||p_region.attribute_01||'"');

 push('width' ,p_region.attribute_02);

 push('height' ,p_region.attribute_03);

 push('collapsible' ,p_region.attribute_04);

 push('collapsed' ,p_region.attribute_05);

 push('frame' ,p_region.attribute_06);

 push('handles' ,'"'||p_region.attribute_07||'"');

 push('applyTo' ,'"'||p_region.static_id||'"');

 push('title' ,'"'||escape_json(p_region.name)||'"');

http:///

IFrame Tabs, Panels, and Popup Windows

[322]

 l_script := CRLF||

 'Ext.onReady(function(){'||CRLF||

 ' Ext.apex.iFramePanel({'||CRLF||

 get_properties(8)||

 ' });'||CRLF||

 '});'||CRLF;

 -- add JS to bottom of page

 wwv_flow_javascript.add_onload_code (p_code => l_script);

 return l_result;

END;

Once again, we have reused custom convenience routines from previous Plug-ins;
push, escape_json and get_properties, so no need to discuss those here.

The PL/SQL used here is quite trivial, simply rendering a DIV element and then
generating the JavaScript using the parameter values for the Region Plug-in.

We don't even have to implement search and replace functionality to convert the
APEX substitution strings into session state values—APEX does that automatically
for us.

That wraps up this section on iFramed panels; let's now turn our attention to Modal
Popup Windows.

Modal popup windows
Creating popup windows is a straightforward process of opening another browser
window using the JavaScript window.open() command. APEX does this for Popup
LOV items, the legacy datepicker, and within Application Builder for online help, to
name a few examples.

The challenging issue with popup windows is you can't make them modal in any
standard way across the major browsers. The second issue with popup windows is
that you cannot completely hide the browser "chrome", or border components of a
web browser window, which includes window frames, menus, toolbars, and
scroll bars.

http:///

Chapter 10

[323]

The modal Ext.Window with an embedded iFrame page, shown in the previous
screenshot, neatly solves both of these issues and gives a more polished-looking
solution at the same time.

In this example, clicking on the edit link for the Interactive Report launches the
modal popup window to edit the user details. Once the details are updated, clicking
the Apply Changes button submits the page for processing; a successful result closes
the popup and re-queries the Interactive Report to display the updated details.

An unsuccessful result keeps the popup open with the usual error messages
displayed; the Cancel button simply closes the popup window. Let's see how the
solution is put together.

Modal iFramed window
Starting with the example in chapter10/ex-10-modal-iframed-window.html, you
can see just how easy it is to add the iFrame functionality to a standard Ext.Window.

<input type="button" id="show-btn" value="Show Window" />

<script type="text/javascript">

http:///

IFrame Tabs, Panels, and Popup Windows

[324]

Ext.onReady(function(){

 var win;

 Ext.get('show-btn').on('click', function(){

 // create the window on the first click

 //reuse on subsequent clicks

 if(!win){

 win = new Ext.Window({

 title:'Modal Window',

 width: 600,

 height: 400,

 items: [new Ext.apex.IFrameComponent({ url: "content-

page.html" })],

 closeAction:'hide',

 layout: 'fit',

 modal: true,

 plain: true,

 resizable: true

 });

 }

 win.show(this);

 });

});

</script>

Here, an Ext click event listener has been added to an HTML button, creating an Ext.
Window if it doesn't already exist. The Ext.Window includes our custom Ext.apex.
IFrameComponent as an item, with a URL specifying the HTML page to open.

Making the window modal is done using the modal: true conig setting. It really
is that simple to solve the irst of our challenging issues; using an embedded iframe
markup element takes care of the lesser browser chrome issue.

Notice the closeAction conig option is set to hide, in order to hide the Window
when closed, rather than the default 'close' setting which destroys the Window,
removing it from the DOM. Our eventual solution will use the default close setting,
but it's important to understand the signiicance of this setting.

http:///

Chapter 10

[325]

This diagram shows the chapter10/ex-10-modal-iframed-window.html example.
Try opening the example and experimenting with it; you will ind this very simple
example can be dragged around the page, resized, and repeatedly opened and
closed. Amazing functionality for so little effort on our part.

Popup window component
The inal solution for the modal popup window extends Ext.Window to create
a custom component named Ext.apex.PopupWindow that contains custom
conigurations as well as an additional event and function. It should be added to
your JavaScript application library.

Ext.apex.PopupWindow = Ext.extend(Ext.Window, {

 url: Ext.SSL_SECURE_URL,

 title: document.title,

 width: 700,

 height: 600,

 initComponent: function(){

 // starting config, can't be modified externally

 var config = {

 border: false,

 closable: true,

 closeAction: 'close',

 header: true,

 items: [new Ext.apex.IFrameComponent({

 url: this.url

 })],

http:///

IFrame Tabs, Panels, and Popup Windows

[326]

 layout: 'fit',

 maximizable: true,

 modal: true,

 plain: true

 };

 // apply config

 Ext.apply(this, Ext.apply(this.initialConfig, config));

 Ext.apex.PopupWindow.superclass.initComponent.call(this);

 this.addEvents(

 /**

 * @event success

 * Fires when iframed page has been processed

 * successfully.

 * @param {Ext.apex.PopupWindow} this

 */

 'success');

 },

 processSuccessful: function(){

 this.fireEvent("success", this);

 this[this.closeAction]();

 }

});

Here, the initComponent function of Ext.Window has been overridden to include a
config object literal with a set of property values that can't be modiied from outside
the component when instantiating a new Window.

Using Ext.apply to apply this coniguration, irst to the window's initialConfig
and then to the new window instance, ensures that these properties override any
similarly passed properties. Standard Ext.Window initComponent functionality is
then called using:

Ext.apex.PopupWindow.superclass.initComponent.call(this);

A custom success event is added, allowing the code that instantiated the Ext.apex.
PopupWindow to include callback functionality to listen for this event. We will see
exactly how this works shortly.

http:///

Chapter 10

[327]

In conjunction with the success event, a custom processSuccessful function
is deined:

 processSuccessful: function(){

 this.fireEvent("success", this);

 this[this.closeAction]();

 }

The processSuccessful function ires the success event, and then closes the
window using the method speciied by the closeAction attribute. It is designed
to be called from an iFramed page to indicate data has been updated before closing
the window.

This is quite dry reading, so let's put together a working example to bring it to life!

Ext.apex.PopupWindow example
To demonstrate the Ext.apex.PopupWindow component, I'm using the APEX Wizard
to create new pages using the Form on a Table with Report option, shown in the
following screenshot:

Stepping through the wizard, I selected a table named APP_USERS as the data source,
creating a Report page titled Application Users, using an Interactive Report, and a
second DML Form page Edit Application Users.

http:///

IFrame Tabs, Panels, and Popup Windows

[328]

After completing the wizard, the end result is an Interactive Report page shown in
the following screenshot, with an edit icon for each row, which opens the DML Form
page in the current window, retrieving the details for the selected record. It also
includes a Create button that opens the same DML Form page to insert new records.

I'm sure this is all very familiar to you, so I won't elaborate on this standard process
any further. Let's start converting the solution to use the PopupWindow conig,
starting with the Link Column settings for the Edit icon.

Link Column settings
In the APEX Application Builder, open the Interactive Report page and then navigate
to the Interactive Report Attributes | Link Column section. Your settings should
look very similar to those shown in the following screenshot, except the Link
Attribute value.

http:///

Chapter 10

[329]

The full text for the Link Attributes ield is:

onclick="new top.Ext.apex.PopupWindow({

 url: this.href,

 title: 'Edit User Details',

 width: 490,

 height: 500,

 listeners: {'success': gReport.search}

}).show();

return false;"

Here, we are launching Ext.apex.PopupWindow by adding an onclick attribute to
the HTML link element generated by APEX. To prevent the default behavior of the
link, we use the return false; statement at the end of the script.

The PopupWindow conig uses url: this.href to pick the href attribute value,
allowing developers to build the link details using the APEX Builder functionality
as usual.

Notice that we are using the top keyword when instantiating PopupWindow,
ensuring that the window is opened from the topmost page window in case the
current window is in an iFrame. This is not necessary for this example as presented
here, but becomes necessary when Interactive Reports are embedded in iFrames,
just like we will be doing in the tabbed document interface section coming up in
this chapter.

onclick="new top.Ext.apex.PopupWindow({

 /* snipped */

 listeners: {'success': gReport.search}

}).show();

return false;"

The Ext.apex.PopupWindow component includes a custom success event, which is
executed when the processSuccessful function is used to close the PopupWindow
conig. Closing the PopupWindow using the standard Ext.Window close function
does not ire the success event.

By adding a listener for the success event, we can automatically re-query the
Interactive Report when PopupWindow is closed, using the processSuccessful
function:

 listeners: {'success': gReport.search}

Using the success event eliminates unnecessary refresh requests for the Interactive
Report by only refreshing when the PopupWindow conig indicates that changes
have been made.

http:///

IFrame Tabs, Panels, and Popup Windows

[330]

Classic Report link settings
 If you were to use a Classic Report instead of an Interactive Report, replace the
gReport.search function with the equivalent $a_report function to refresh a
Classic Report:

onclick="new top.Ext.apex.PopupWindow({

 url: this.href,

 title: 'Edit User Details',

 width: 490,

 height: 500,

 listeners: {'success':

 $a_report('3833408439418014',0,0,0,0,'current')

 }

 }

).show();

return false;"

The $a_report function requires the report ID of the report as the irst parameter,
and the string current as the sixth parameter, specifying the report is to be refreshed
with current pagination settings. The other parameters are not used by the function
when refreshing but need to be speciied, so zero values can be used.

Create Button settings
The Create Button functionality to launch PopupWindow is similar to the Link
Column settings, only slightly less elegant.

The lack of elegance comes about because we are unable to use APEX "Action When
Button Clicked" functionality. Instead, the URL must be speciied in the Button
Attributes section, as shown in the following screenshot:

http:///

Chapter 10

[331]

It is also necessary to create a custom button template ExtJS Button, Attributes
Only by copying the ExtJS Button template and removing the onclick="#LINK#"
reference:

The inished markup for the ExtJS Button, Attributes Only template is:

<table cellspacing="0" class="ux-btn ux-btn-markup x-btn x-btn-noicon"

style="width:auto;" #BUTTON_ATTRIBUTES#>

<tbody class="x-btn-small x-btn-icon-small-left">

<tr>

 <td class="x-btn-tl"><i> </i></td>

 <td class="x-btn-tc"></td>

 <td class="x-btn-tr"><i> </i></td>

</tr>

<tr>

 <td class="x-btn-ml"><i> </i></td>

 <td class="x-btn-mc">

 <em unselectable="on" class="">

 <button type="button" class="x-btn-text">#LABEL#</button>

 </td>

 <td class="x-btn-mr"><i> </i></td>

</tr>

<tr>

 <td class="x-btn-bl"><i> </i></td>

 <td class="x-btn-bc"></td>

 <td class="x-btn-br"><i> </i></td>

</tr>

</tbody>

</table>

This is quite a useful button template, because it allows us to specify the onclick
functionality to suit any individual situation.

The code for the Button Attributes in the previous screenshot is:

onclick="new top.Ext.apex.PopupWindow({

 url:'f?p=&APP_ID.:155:&APP_SESSION.::NO:155::',

 title: 'Create New User',

 listeners: {'success': gReport.search}

}).show();

return false;"

Notice that here the URL has to be speciied, but can use APEX substitution strings
and session state values. The width and height attributes weren't included here,
using the default values speciied in our custom component.

http:///

IFrame Tabs, Panels, and Popup Windows

[332]

Don't forget to reset the target page in the URL for standard
"create" functionality to work correctly. This is done by setting
the sixth parameter to the target page using the f?p syntax.

We've implemented the necessary changes to the Source Interactive Report page, so
let's turn our attention to the Target DML Form.

Closing the PopupWindow
Our solution so far is launching the PopupWindow correctly; we just need to modify
the behavior of the iFramed page to close the PopupWindow.

http:///

Chapter 10

[333]

This screenshot shows the target DML Form embedded in the modal popup
window. The default processing created by the APEX wizard simply redirects the
browser to the calling page when the Cancel button is clicked. When the Apply
Changes button is clicked, the form is submitted for processing—either successfully
completing and branching to the calling page, or redisplaying the current page with
error messages.

So we need to deal with two different behaviors, modifying the Cancel button to
simply close the PopupWindow, and for the Apply Changes button to process the
page and close the PopupWindow.

Cancel Button functionality
The Cancel Button functionality is very straightforward, using our EXTJS
Button, Attributes Only button to include a simple onclick attribute with
the relevant JavaScript.

This screenshot shows the JavaScript in its entirety:

onclick="parent.Ext.WindowMgr.getActive().close()"

Here, we are utilizing the Ext.WindowMgr singleton that centralizes management
of all Ext.Window components on a page. Taking advantage of this fact, we
implemented the PopupWindow as a modal window; it's inferred that it must be the
active window, and as the target page is iFramed, the window must belong to the
iframe parent.

Putting all these pieces together, we have a simple one-line solution to close
the window.

http:///

IFrame Tabs, Panels, and Popup Windows

[334]

Apply Changes functionality
The Apply Changes functionality is a little trickier. We have to submit the page, and
when it successfully completes the page processing, it branches to the target page
and closes the PopupWindow. Fortunately, APEX 4.0 provides similar functionality
to what we need, giving the vital clues to the end solution.

APEX 4.0 provides the Close popup window page process shown in the previous
screenshot, which almost does what we want, so let's explore how that works irst.

The Close popup window page process works by creating a page process, which
upon execution, closes the current popup window. The next screenshot shows the
execution order of processing a page. Here we can see the Close Window process
executing after the row processing for the APP_USERS table, after records have been
insert, updated, or deleted.

http:///

Chapter 10

[335]

The Close Window process completes before the After Processing section where
page branching occurs. It does this by rendering a very small HTML page and then
terminating any further processing by the APEX engine.

The page it creates looks like:

<html>

<script>if (self != window.opener) window.close();</script>

</html>

How lightweight is that! An HTML page containing a one-line instruction to close
the current window. Using this process for our solution would close the iFrame
successfully, but leaves a blank Ext.Window remaining.

The solution for an Ext.apex.PopupWindow is to mimic the built-in process,
modifying the JavaScript to suit our needs.

First off, create an Application Process:

Process point:

On Demand: Run this application process when requested by a page

process.

Name:

Succeed and Close Ext.apex.PopupWindow

Process text:

-- Force APEX to not show any HTML

wwv_flow.g_page_text_generated := true;

wwv_flow.g_unrecoverable_error := true;

htp.init;

htp.prn('<html><script> parent.Ext.WindowMgr.getActive().

processSuccessful(); </script></html>');

This only needs to be done once, and is available for all APEX pages to use. The
magic is in the two highlighted lines, which tell the APEX engine that the page text
has been generated and to do no further page processing.

Our script is similar to the Cancel button functionality, except that we call the
custom processSuccessful function instead to trigger the success event before
closing the window.

http:///

IFrame Tabs, Panels, and Popup Windows

[336]

Then simply add a page process to the target page, calling the "on-demand"
application process at the process point "On Submit - After Computations and
Validations", ensuring that it occurs after the other page processes, as shown in the
following screenshot:

This completes the functionality for the Ext.apex.PopupWindow component.

http:///

Chapter 10

[337]

You now can open pages in popup windows like the previous screenshot, listening
for a success event. Changes made by the popup window page can trigger the
success event when the window is closed, providing the option of including
JavaScript code to update the original page.

Creating a tabbed document interface
To discourage users from opening multiple browser tabs, where we have no control
over which pages are opened, we can give them similar functionality to open
multiple pages in a single browser tab.

This allows developers to design the APEX application so that we are in control
of what pages can be opened, and also design the pages so they are less reliant on
maintaining session state.

This screenshot shows the example ile named chapter10/ ex-10-tree-iframe-
tabs.html that we will examine in this section.

Unlike the earlier examples shown in this chapter, we won't be going through how to
incorporate this into your APEX application in detail. Instead, we will only examine
the functionality of the prototype to understand the JavaScript behavior.

http:///

IFrame Tabs, Panels, and Popup Windows

[338]

Examining the HTML page
The structure for the page layout for the example page is quite simple.

<html>

<head>

 <title>#TITLE#</title>

 <link rel="icon" type="image/x-icon"

 href="#IMAGE_PREFIX#favicon.ico">

 <link rel="shortcut icon" type="image/x-icon"

 href="#IMAGE_PREFIX#favicon.ico">

 <!-- standard includes -->

 <link rel="stylesheet" type="text/css"

 href="../../extjs/resources/css/ext-all.css">

 <script type="text/javascript"

 src="../../extjs/adapter/ext/ext-base.js"></script>

 <script type="text/javascript"

 src="../../extjs/ext-all.js"></script>

 <!-- Static json tree data. In APEX would use list or

 table to dynamically generate in the page -->

 <script type="text/javascript"

 src="navigation-tree-data.js"></script>

 <!-- application javascript -->

 <script type="text/javascript"

 src="TabCloseMenu.js"></script>

 <script type="text/javascript"

 src="ex-10-tree-iframe-tabs.js"></script>

</head>

<body>

 <div id="app-north-panel"><h1>Header Contents</h1></div>

 <form id="wwvFlowForm">

 <!-- Snipped Static page content -->

 <!-- Usually APEX Region tags -->

 </form>

</body>

</html>

http:///

Chapter 10

[339]

The header section contains the usual references to the Ext CSS and JavaScript iles
and also our application-speciic CSS and JavaScript iles. The body comprises a DIV
element named app-north-panel that contains all the HTML markup for the north
panel of an Ext.Viewport layout.

The remaining markup of interest is the FORM wwvFlowForm element created
by APEX using the #FORM_OPEN# and #FORM_CLOSE# substitution tags. For our
Ext.Viewport layout, the wwvFlowForm element is used for the center panel, and
contains all page content.

The JavaScript ile named navigation-tree-data.js contains a static array to
deine the tree data for this example:

var jsonTreeData = [

 {id :"L3529107364353923",

 text:"Application",

 href:"#",

 leaf:false,

 children: [{

 id :"L3529403918353923",

 text:"Page 0",

 href:"content-page.html",

 leaf:true

 }, {

 id :"L3529722176353923",

 text:"Attachments",

 href:"content-page.html",

 leaf:true

 }]

 }, {

 /** snipped many more tree nodes */

 }

];

Usually in APEX, the tree data would be generated dynamically, either using a
custom table-based solution or as we did in Chapter 4, Ext Themed Regions, Labels, and
Lists, using an APEX list combined with a List template that generated a JSON tree
deinition. In fact, the example here with minor edits uses the data that has been cut
and pasted directly from a page using the APEX list solution.

http:///

IFrame Tabs, Panels, and Popup Windows

[340]

The TabCloseMenu.js JavaScript ile contains an Ext custom plug-in copied from the
extjs/examples/ux/ directory. When the plug-in is included in a TabPanel region,
it adds a right-click context menu to close tabs, as shown in the following screenshot:

We will see how the TabCloseMenu plug-in is included in the ex-10-tree-iframe-
tabs.js JavaScript ile, which is the only component that remains to be examined.

Examining the JavaScript
The Ext.apex.IFrameComponent component has been declared in this standalone
example, but is not shown here. As usual for any code being executed in the page,
we enclose it within an Ext.onReady statement with an anonymous function,
ensuring any variables declared are localized to the function and ensuring that the
code is executed when the document is ready.

Ext.onReady(function(){

 Ext.QuickTips.init();

 var contentPanel = {

 id: 'content-panel',

 region: 'center',

 xtype: 'tabpanel',

 margins: '2 5 5 0',

 enableTabScroll: true,

 activeItem: 0,

 plugins: new Ext.ux.TabCloseMenu(),

 border: true,

 defaultType: 'iframe',

 defaults: {

 closable: true

 },

 items: [{

 xtype: 'panel',

http:///

Chapter 10

[341]

 closable: false,

 title: 'Normal Tab',

 contentEl: 'wwvFlowForm'

 }]

 };

The contentPanel object literal is deined with the region: 'center' attribute,
ensuring that the panel is rendered into a region within the Viewport container
further on in the code. At this point, only the coniguration for the panel has been
deined, and the panel hasn't been created yet.

Notice the contentPanel is speciied as xtype: 'tabpanel' using lazy
instantiation. The xtype will be looked up at render time to determine what type
of child Component to create. By deining it as a TabPanel, it acts like a standard
Ext.Panel for layout purposes, but allows additional panels to be added at a later
time as separate tabs. The Ext.usTabCloseMenu component has been added as a
plugin to the TabPanel.

The TabPanel includes an Ext.Panel declared as xtype: 'panel' using lazy
instantiation and uses the existing HTML wwvFlowForm element as the content of
the panel component. Ext may re-arrange the DOM components when rendering the
page, but this ensures that the APEX form and its child components will be in the
center region of the Viewport.

 // Create the TreePanel now so that we can use it below

 var treePanel = new Ext.tree.TreePanel({

 id: 'tree-panel',

 region: 'center',

 minSize: 150,

 autoScroll: true,

 border: false,

 // tree-specific configs:

 rootVisible: false,

 lines: false,

 singleExpand: true,

 useArrows: true,

 loader: new Ext.tree.TreeLoader({

 clearOnLoad: false,

 preloadChildren: true,

 pathSeparator: '>'

 }),

 root: new Ext.tree.AsyncTreeNode({

http:///

IFrame Tabs, Panels, and Popup Windows

[342]

 leaf: false,

 expanded: true,

 text: 'Tree Root',

 draggable: false,

 children: jsonTreeData

 })

 });

An Ext.tree.TreePanel component is created, specifying that it is to be rendered
into the center region of its container. Unlike the earlier contentPanel, the tree
component exists as a DOM object, but hasn't been rendered yet. The root node uses
the JavaScript array of tree nodes deined in the navigation-tree-data.js ile as
its child nodes.

 // only make leaf nodes selectable

 treePanel.getSelectionModel().on('beforeselect', function(sm, node){

 return node.isLeaf();

 });

A beforeselect event is added to the TreePanel selection model to cancel any
selection events for branch nodes, typically represented as folders. This is done as an
application design choice, to use folders to classify related pages that are represented
by the leaf nodes.

We can only add the event to the TreePanel here because it exists as a DOM object.

 // Create layout actions for tree node click.

 treePanel.on('click', function(node, e){

 e.stopEvent();

 if (!node.isLeaf())

 return false;

 var tab, tabs = Ext.getCmp('content-panel');

 if (tabs && (tab = tabs.getComponent('tab-' + node.id))) {

 tabs.setActiveTab(tab);

 }

 else {

 tab = tabs.add({

 title: node.text,

 id: 'tab-' + node.id,

 url: node.attributes.href,

 closable: true

 });

 tab.show();

 }

 });

http:///

Chapter 10

[343]

A click event listener is added to the TreePanel, deining the actions to be performed
when a leaf node is selected. A stopEvent() utility is used to stop the event from
propagating up the DOM hierarchy and also prevent the event default action from
occurring. This is very important to include, because Ext renders tree nodes as HTML
links, with the default action opening the link in the current window.

The TabPanel we declared earlier is identiied using Ext.getCmp('content-
panel'), because it hasn't been created at this point. Using the tree node.id, a check
is done to see if a matching tab exists with the same ID preixed by 'tab-'. When
a match is found, the tab is set as the active tab; otherwise, a new tab containing an
iframe is added to the tab panel opening the node's URL in the iFrame.

 // Finally, build the main layout

 new Ext.Viewport({

 layout: 'border',

 items: [{

 applyTo: 'app-north-panel',

 autoHeight: true,

 autoScroll: false,

 region: 'north',

 style: {

 padding: '0 5px'

 },

 xtype: 'box'

 }, {

 layout: 'border',

 id: 'navigationPanel',

 title: 'Navigation',

 region: 'west',

 border: true,

 split: true,

 margins: '2 0 5 5',

 width: 275,

 minSize: 100,

 maxSize: 500,

 animCollapse: false,

 animate: false,

 collapsible: true,

 collapseMode: 'mini',

 items: [treePanel]

 }, contentPanel]

 });

http:///

IFrame Tabs, Panels, and Popup Windows

[344]

An Ext.Viewport component is instantiated with north, west, and center regions. The
north region picks up the HTML markup contained in the app-north-panel DIV
element. The center region uses the contentPanel containing the APEX form and the
west region is a container for a nested sub-region using the treePanel.

 Ext.getCmp('content-panel').on('tabchange', function(tp, tab){

 treePanel.getSelectionModel().clearSelections();

 var node = treePanel.getNodeById(tab.id.substring(4));

 if (node) {

 node.ensureVisible();

 node.select();

 }

 });

});

Finally, functionality is added to the TabPanel component ensuring the correct tree
node is selected and highlighted when a user clicks on a different tab.

That covers the functionality of the tabbed document interface, but why haven't we
covered getting it into APEX?

Adding the tabbed document interface to
APEX
There are a number of tasks to perform to incorporate the tabbed document interface
into your APEX theme, and it requires some thought and planning on your part.

First, you will need to create a new page template for the main page and include
the JavaScript functionality in an external ile. You will also need to review the page
template for the pages opened up in the tabs.

But that's really the least of your challenges. The most important task to think about
is your application navigation. What pages do you want to open in the tabs? How do
you navigate to other pages from a tabbed page?

A possible option could be to open interactive reports in the tabbed pages, and from
there, open any child pages as popup windows.

Or alternatively, you could open summary pages in a tab, which then drill
down to detail pages within the tab. You would need to ensure that you have
appropriate options to navigate backwards and forwards between the pages
for this to be functional.

http:///

Chapter 10

[345]

Also under consideration is session state. When is it safe to reset session state for a
page? Can you still clear session state for all pages in your application, or is that too
dangerous now?

The potential beneits of tabbed document interfaces are huge from an end user
perspective, and can make your applications far more functional and productive.
There is, however, a bit to think about—either before you retro-it tabbed document
interfaces to your existing application, or in upfront design considerations for
new applications.

Summary
In this chapter we have looked at using iFrames in three different ways:

•	 Embedding other pages within a page using iFramed Panels

•	 Making popup windows modal

•	 Creating a tabbed document interface allowing users to switch backwards
and forwards easily between pages without opening multiple browser tabs

IFrames open up a host of new opportunities to add improved functionality to your
applications. You need to be more mindful of APEX session state, but the beneits are
most deinitely there.

In the next chapter, we will be looking performance tuning your JavaScript,
reducing the size of the iles and eliminating unused Ext components from the
standard Ext library.

http:///

http:///

Performance Tuning

Your JavaScript
Despite increasing speeds in broadband connections, it's still important as ever to
keep web pages as lightweight as possible. High-speed Internet connections aren't
available everywhere. For example, I work for a large infrastructure and mining
organization, which has a number of sites in remote and inhospitable areas, with
communications often dependent on low bandwidth, high-latency satellite links.

The trend towards applications aimed at mobile devices, such as Smartphone and
other handheld devices with expensive data charges and relatively slow download
rates also encourages us to keep web pages lightweight.

Throughout this book, we have been using the full Ext JS library in our APEX page
templates, either using the compressed ext-all.js ile or the larger uncompressed
ext-all-debug.js version. A series of custom JavaScript components and
application functionality have also been developed along the way, which I keep
telling you to add to your application JavaScript ile also. All this adds up to lots of
JavaScript on top of the iles already included by the APEX engine!

In this chapter, we will be looking at ways of keeping our JavaScript lightweight by:

•	 Enabling HTTP compression

•	 Using JSBuilder2 to combine and minify JavaScript and CSS iles
•	 Eliminating unused Ext components from the standard Ext JS library

•	 Combining and minifying application JavaScript

http:///

Performance Tuning Your JavaScript

[348]

Best practices for JavaScript and CSS
Internet giants, such as Yahoo and Google, have published a series of best practices
for making web pages fast, integrating the practices into tools to measure page
performance. Yahoos' YSlow and Googles' Page Speed are both available as
Firebug add-ons.

Download the page performance tools from the following URL:

https://addons.mozilla.org/en-US/firefox/addon/5369

Page Speed from the following URL:

http://code.google.com/speed/page-speed/download.html

These tools make many recommendations covering all components making up a web
page, as well as web server coniguration. Behind each of the recommendations is
detailed explanations and extensive research.

Some of the key recommendations relating to JavaScript and CSS are as follows:

•	 Enable HTTP compression

•	 Externalize JavaScript and CSS to take advantage of browser caching

•	 Reduce HTTP requests by combining JavaScript and CSS iles into as few
iles as possible

•	 Reduce the size of JavaScript and CSS iles by minifying them
•	 Load CSS iles in the page header, JavaScript iles as late as possible in

the page

HTTP compression
Enabling HTTP compression is the easiest way to reduce bandwidth and improve
speed of your website.

HTTP compression uses standards based gzip and delate compression algorithms to
compress your XHTML, CSS, and JavaScript to speed up web page downloads and
save bandwidth.

Many web servers can compress iles before sending them for download, either by
calling a third-party module or using built-in routines. All of the major browsers
today are compression aware to the HTTP 1.1 standard.

Browsers send a header to the web server indicating they can accept compressed
content through a HTTP request header "Accept-Encoding: gzip, deflate". HTTP
compression enabled web servers recognize the request header and dynamically
compress content and include a Content-Encoding ield in the HTTP response.

https://addons.mozilla.org/en-US/firefox/addon/5369
https://addons.mozilla.org/en-US/firefox/addon/5369
http:///

Chapter 11

[349]

It's very easy to check whether your web server currently has HTTP compression
enabled or not by checking the Response Headers under the Net tab in Firebug,
looking for Content-Encoding gzip, as shown in the following screenshot:

Browsers such as Google Chrome and Microsoft Internet Explorer have similar
developer tools built into the browser that you can use to inspect Response Headers.

A study of 9,281 HTML pages of popular sites by Destounis et al in 2001 found a
mean compression gain of 75.2%. This translates into faster download times and a
better user experience. You may be surprised that I'm referencing such an old study;
it does reinforce the point that HTTP compression has been around for a long time.

The following screenshot shows compression data for an APEX page using the Ext JS
page template:

http:///

Performance Tuning Your JavaScript

[350]

The Firebug YSlow add-on by Yahoo shows the reduced size of page components
when gzip compression is enabled. You can see the Ext library ext-all.js has a
gzipped size of 238.4K compared with 715.4K, or roughly a 70% reduction in size.

If your web server doesn't currently have HTTP compression enabled, I strongly
encourage you to enable it as it can result in a dramatic reduction in download time.
There are many references on the Internet on how to enable it.

Externalize JavaScript and CSS
External iles generally produce faster pages because the JavaScript and CSS iles are
cached by the browser. JavaScript and CSS content that is included in-lined in HTML
pages get downloaded every time the page is requested.

The following screenshot shows graphs from the YSlow utility showing the beneits
of browser caching when the JavaScript and CSS are in external iles.

The size of the HTML document is reduced dramatically. In this example, the page
size is reduced by roughly 400K, or 90%, because the JavaScript and CSS are in
external iles.

APEX applications that are used frequently by their users beneit the most from
browser caching, because the likelihood of the iles remaining in the browsers cache
is much higher.

http:///

Chapter 11

[351]

Combining JavaScript and CSS iles
Combining external scripts into as few iles as possible cuts down the number of
HTTP request/response round-trips and delays downloading of other resources.
It also ensures that JavaScript iles with dependencies in other iles are loaded and
executed in the correct sequence.

The ext-all.js library combines 26 separate JavaScript iles, which can be
referenced instead of the ext-all.js ile. The following screenshot shows the
download proile of an HTML ile containing just the ext-base.js ile and the 26
iles making up the ext-all.js ile using the Firebug Net panel:

http:///

Performance Tuning Your JavaScript

[352]

Notice that only four iles are being downloaded from the host at any given time.
Many browsers block the downloading of resources referenced in the document
after scripts until those scripts are downloaded and executed. Older browsers, such as
IE 6 and IE 7, allow only two concurrent connections to a host, slowing down the
download process even further.

Compare the difference shown in the following screenshot, which shows the iles
combined into the ext-all.js library:

The download time is still substantially less despite this example being run on a
local web server. Running the same example on a remote server would increase the
round-trip times, making the difference even larger.

Currently, APEX 4.0 typically includes ive separate JavaScript iles in the page
header before you start including your JavaScript iles. This will be addressed in
APEX 4.1, with the iles being combined into a single ile.

Google recommend a maximum of three, or preferably two, JavaScript iles. CSS iles
should be combined as well, with Google recommending a maximum of three, but
preferably two CSS iles for a page.

Minifying JavaScript and CSS iles
Miniication is the practice of removing unnecessary characters from code to reduce
its size and thus improving loading times. When the code is miniied, all comments
are removed, along with unneeded white space characters. For example, Sencha
provides the miniied ext-all.js at 715.4K, which is roughly half the unminiied
ext-all-debug.js version at 1367.8K.

The smaller ile size reduces network latency, and allows the JavaScript to be loaded
and executed more quickly by the browser.

There are a number of miniication tools freely available on the Internet, including
Yahoos' YUI Compressor, which is used by the Sencha JSBuilder2 tool we will be
using in this chapter to combine and minify JavaScript and CSS iles.

http:///

Chapter 11

[353]

Ordering CSS and JavaScript iles
Correctly ordering external stylesheets and external and inline scripts enables better
parallelization of downloads and speeds up the browser rendering time.

JavaScript code can alter the content and layout of a web page, so browsers must
download and execute JavaScript iles and inline scripts before processing the
remainder of the page, blocking the downloading of remaining resources.

The generally accepted recommendations are to include external CSS iles in the
page header, with external JavaScript iles included after the CSS iles, or even later
in the page. Any code executed as part of the page load should be deferred as late as
possible, preferably after the pages DOM elements have been rendered.

We see this in practice with APEX 4.0 with the APEX JavaScript iles included after
the CSS iles, and the active JavaScript to add functionality to the APEX provided
widgets included at the very end of the page. This is also encouraged in the plug-in
APIs as well.

JSBuilder2 installation and usage
JSBuilder2 is a JavaScript and CSS project build tool developed by Sencha, which
enables you to assemble multiple iles into a deployment package easily. It is a Java
utility, which uses a simple JSON-based coniguration ile to combine multiple
JavaScript iles into packaged iles. CSS iles can also be combined as well.

JSBuilder2 uses the YUI Compressor to minify JavaScript. It also uses additional YUI
Compressor options for minimizing JavaScript, enabling munging to replace variable
names with shorter versions, removing unnecessary semicolons, and performing
other built-in micro optimizations.

JSBuilder2 can be downloaded from the following URL:

http://www.sencha.com/deploy/JSBuilder2.zip

We will be using JSBuilder2 to remove unused components from the Ext JS Library,
as well as assemble and minify our project JavaScript iles.

Installation
JSBuilder2 requires the Java Development Kit (JDK) of Version 1.4 or greater, which
you should already have installed from Chapter 1, Setting up an Oracle APEX and Ext
JS Environment, when we setup the APEXExport utility. It has no other dependencies.

http:///

Performance Tuning Your JavaScript

[354]

The following screenshot shows the layout of my SVN repository, which I'll be
referencing in upcoming examples:

As you can see that within the trunk folder of the apex-solutions/playpen project,
I've created a series of folders to partition my application logically. The bin folder
holds my batch scripts, including the JSBuilder2.jar and buildPlaypen.bat script
detailed shortly.

Also note the src folder, which contains apex and APP folders containing JavaScript
iles, a resources folder containing CSS and custom image assets, and the playpen-
book.jsb2 coniguration ile used by JSBuilder2 to package the iles.

http:///

Chapter 11

[355]

JSBuilder2 usage
JSBuilder2 is a command-line utility, and accepts the following arguments:

--projectFile -p (REQUIRED) Location of a JSB2 project ile

--homeDir -d (REQUIRED) Home directory to which to build the project

--verbose -v (OPTIONAL) Output detailed information about what is
being built

--debugSufix -s (OPTIONAL) Sufix to append to JS debug targets, defaults to
'debug'

--help -h (OPTIONAL) Prints this help display

Each of the arguments has a long form and a short form, making the following
Windows examples equivalent:

java -jar JSBuilder2.jar --projectFile C:\Apps\src\ext.jsb2 --homeDir

C:\Apps\deploy\

is the same as:

java -jar JSBuilder2.jar -p C:\Apps\src\ext.jsb2 -d C:\Apps\deploy\

As JSBuilder2 is a Java utility, it can also be run under Unix/Linux and OS X also:

java -jar JSBuilder2.jar --projectFile /home/aaron/www/trunk/ext.jsb2

--homeDir /home/aaron/www/deploy/

For convenience, include the JSBuilder2 command in a batch or shell script for
your project, as I've done in the preceding screenshot, where the batch script
buildPlaypen.bat loads the playpen-book.jsb2 ile to assemble my JavaScript iles
and resources for deployment into the web folder.

The source for the batch ile is:

@echo off

setlocal

REM Navigate to the scripts location to execute

set HOME=%CD%

cd /d %~dp0

java -jar JSBuilder2.jar -p ..\src\playpen-book.jsb2 -d ..\web\ux\ -v

goto exit

:exit

cd /d %HOME%

endlocal

http:///

Performance Tuning Your JavaScript

[356]

Relative paths have been passed to the JSBuilder2 utility in this example.

The only argument passed to the JSBuilder2 utility that needs explanation is the
format of the projectFile, so let's turn our attention to that now.

JSB2 ile format
The JSB2 ile format is a JSON encoded coniguration ile developed by Sencha for
managing JS & CSS project builds. Details for the ile format can be found in the
JSB2FileFormat.txt ile included in the ZIP ile with the JSBuilder2 utility.

The best way to understand the ile format is to examine the ext.jsb2 ile used to
compile the Ext JS library, and included in the top directory of the ZIP ile when you
download the Ext JS library.

Removing most of the ext.jsb2 ile contents, the structure of the looks like
the following:

{

 "projectName": "Ext JS",

 "deployDir": "ext-3.3+",

 "licenseText": "Ext JS Library 3.3.1\nCopyright(c) 2006-2010

Sencha Inc.\n

licensing@sencha.com\nhttp://www.sencha.com/license",

 "pkgs": [{

 /** snipped **/

 }],

 "resources": [{

 "src": "src/",

 "dest": "src/",

 "filters": ".*\\.js"

 },{

 "src": "examples/",

 "dest": "examples/",

 "filters": ".*[\\.html|\\.jpg|\\.png|\\.gif|\\.css|\\.js|\\.

php]"

 },{

 /** snipped **/

 },{

 "src": "resources/",

 "dest": "resources/",

 "filters": ".*"

 },{

 /** snipped **/

 },{

http:///

Chapter 11

[357]

 "src": "ext.jsb2",

 "dest": "ext.jsb2",

 "filters": ".*"

 }]

}

All the top-level, keys are shown here; the projectName is a simple string describing
the project.

The deployDir is a string specifying the directory to create within the homeDir
speciied on the command line. So, using the command:

java -jar JSBuilder2.jar --projectFile C:\Apps\src\ext.jsb2 --homeDir

C:\Apps\deploy\

to compile the Ext library, would result in the Ext library being created into C:\
Apps\deploy\ext-3.3+\, picking up the value of the deployDir attribute.

The licenseText attribute is a string, which is added to the header of all JavaScript
and CSS iles created by JSBuilder2. Note the use of \n to add newlines in the output.

The pkgs attribute is an array of package descriptors, which we will go into in more
detail shortly.

The resources attribute is used to copy iles from a location to a folder within the
deployment directory. It uses an array of resource descriptors to specify which iles
are copied. The src and dest descriptors specify the source and destination folders,
and regular expression filters are used to specify which iles are included.

Asterisks can be used as wildcards, and backslashes (\) must be escaped using a
double backslash (\\) as shown:

{"src": "src/", "dest": "src/", "filters": ".*\\.js"}

Multiple ilters for a single source directory can be speciied by separating ilter
expressions with the pipe (|) symbol:

{

 "src": "examples/",

 "dest": "examples/",

 "filters": ".*[\\.html|\\.jpg|\\.png|\\.gif|\\.css|\\.js]"

}

Use ".*" to include all iles in a source directory, and any child directories use:

{"src": "resources/","dest": "resources/", "filters": ".*"}

http:///

Performance Tuning Your JavaScript

[358]

The JSBuilder2 utility automatically excludes .svn and hidden iles, originally a
feature for the Sencha team for their own internal development, and useful for
us also.

The pkgs attribute is used to deine package deinitions, which combine JavaScript
iles of related functionality into a single package ile, outputting an unmodiied
debug version, and a miniied version. The ext.jsb2 ile includes the "Data – XML"
package; a concise example showing all the package descriptors:

{

 "name": "Data - XML",

 "file": "pkgs/data-xml.js",

 "isDebug": true,

 "pkgDeps": ["pkgs/data-foundation.js"],

 "includeDeps": false,

 "fileIncludes": [

 {"text": "XmlWriter.js","path": "src/data/"},

 {"text": "XmlReader.js","path": "src/data/"},

 {"text": "XmlStore.js", "path": "src/data/"}

]

}

The name simply describes the package; file speciies the name of the output ile to
create within the deployment directory and may include directory paths as shown
here. The isDebug descriptor is a true/false lag to generate debug builds; however,
it is currently ignored and a debug version is always generated in addition to the
compressed version.

The pkgDeps descriptor is an array of JavaScript iles on which this package is
dependent to work correctly. In this example, the includeDeps lag to include
dependent iles in the package build is set to the default false value, so the pkgDeps is
simply listing its dependencies. Setting the includeDeps lag to true would add the
source of the dependent iles to the beginning of the packages' ile.

The fileIncludes descriptor is an array of iles, which need to be included in this
package. In this example, three iles have been included, passing the directory and
ile name using the path and text descriptors.

CSS iles can be packaged in exactly the same way as JavaScript iles. The JSBuilder2
utility distinguishes the ile type using the output ilename sufix. Currently,
the utility does not minify CSS iles, but simply packages multiple CSS iles into a
package ile.

http:///

Chapter 11

[359]

Eliminating unused Ext JS library
components
Even with compression enabled, the Ext JS library and CSS iles are still quite large.
So, we will look at reducing the size of the source iles using the JSBuilder2 utility.

Up to this point, the APEX page templates we have developed included the ext-
base.js and ext-all.js JavaScript iles in addition to the JavaScript iles which
are automatically included by APEX. We can reduce the size of the Ext iles, by
removing duplicate functionality and unused components.

Early versions of Ext required one of the following base libraries to be included:

•	 YUI

•	 jQuery or
•	 Prototype/Script.aculo.us

Ext contains adapters that provide some of the basic plumbing utilities from
those libraries, including Ajax support, animation, DOM manipulation, and
event handling.

Beginning with Version 1.1, Ext included a native Ext adapter ext-base.js, so
the external libraries were no longer required. The adapters have continued to be
maintained, proving useful for applications using multiple JavaScript libraries.

The following screenshot shows the Ext and base library relations. To use Ext
components, you need to use a base library, either ext-base.js or a third party
library with its adapter, together with the complete Ext library ext-all.js or a
subset of the iles making up the Ext library.

http:///

Performance Tuning Your JavaScript

[360]

Removing duplicate functionality
Because APEX 4.0 automatically includes the jQuery library jquery-1.4.2.min.
js in page headers, swapping the ext-base.js ile with the ext-jquery-adaptor.
js ile in your APEX page templates is a very simple way to eliminate duplicated
functionality in the base library and reduce the size of the Ext footprint.

Removing unused components
Removing unused components from the Ext library to create a custom build is
quite straight-forward using the JSBuilder2 utility. Start by copying and renaming
the ext.jsb2 ile. Then, you use an iterative process, removing some components,
compiling the custom build and testing against your application checking for errors
until you are satisied you have an optimal library.

I've found the simplest approach, which is to start from the Ext All package and
work backwards from there. The following code shows the "Ext All No Core" and
"Ext All" packages:

{

 "name": "Ext All No Core",

 "file": "ext-all-no-core.js",

 "isDebug": true,

 "includeDeps": true,

 "pkgDeps": [

 "pkgs/ext-foundation.js",

 "pkgs/cmp-foundation.js",

 "pkgs/ext-dd.js",

 "pkgs/data-foundation.js",

 "pkgs/data-json.js",

/** snipped **/

 "pkgs/pkg-forms.js",

 "pkgs/pkg-grid-foundation.js",

 "pkgs/pkg-grid-editor.js",

 "pkgs/pkg-grid-property.js",

 "pkgs/pkg-grid-grouping.js"

],

 "fileIncludes": []

},{

 "name": "Ext All",

 "file": "ext-all.js",

 "isDebug": true,

 "includeDeps": true,

 "pkgDeps": [

http:///

Chapter 11

[361]

 "pkgs/ext-core.js",

 "ext-all-no-core.js"

],

 "fileIncludes": []

}

You can see here that the Ext All package combines just two iles: ext-core.js and
ext-all-no-core.js; the second ile is created by the Ext All No Core package.

Typically, I combine these two packages into a single custom package and comment
out individual package dependencies for my custom build:

{

 "name": "Playpen Custom Build",

 "file": "ext-playpen.js",

 "isDebug": true,

 "includeDeps": true,

 "pkgDeps": [

 "pkgs/ext-core.js",

 "pkgs/ext-foundation.js",

 "pkgs/cmp-foundation.js",

 "pkgs/ext-dd.js",

 "pkgs/data-foundation.js",

 "pkgs/data-json.js",

 "pkgs/data-xml.js",

 "pkgs/data-grouping.js",

 "ZZZpkgs/direct.js",

 "pkgs/resizable.js",

 "pkgs/window.js",

 "ZZZpkgs/state.js",

 "ZZZpkgs/data-list-views.js",

 "pkgs/pkg-tabs.js",

 "pkgs/pkg-buttons.js",

 "pkgs/pkg-toolbars.js",

 "ZZZpkgs/pkg-history.js",

 "pkgs/pkg-tips.js",

 "pkgs/pkg-tree.js",

 "ZZZpkgs/pkg-charts.js",

 "pkgs/pkg-menu.js",

 "pkgs/pkg-forms.js",

 "pkgs/pkg-grid-foundation.js",

 "pkgs/pkg-grid-editor.js",

 "ZZZpkgs/pkg-grid-property.js",

 "ZZZpkgs/pkg-grid-grouping.js"

],

 "fileIncludes": []

 }

http:///

Performance Tuning Your JavaScript

[362]

Unfortunately, the JSB2 format doesn't currently support commenting out lines,
something that will be addressed in a future release by Sencha. As a work-around,
you can comment out lines by creating an invalid path, as I've done here by preixing
package paths with ZZZ. When you are completely sure that the packages aren't
required, the commented lines can be completely removed.

Once you have eliminated all the packages you can, the next step is to remove iles
within packages. This is a fairly aggressive step, something you would only consider
when you're about to do a production release. The beneit of simply eliminating
packages is that the Sencha team has already been through the process of identifying
dependencies and sequencing the iles to build. Despite their efforts, it's not always
obvious which iles should be bundled together.

For example, in the earlier custom build, I kept the pkg-grid-editor.js
package for editable grids because the TableGrid component created in Chapter 9,
Getting Interactive with GridPanels, would fail if this package wasn't present. This
was counter-intuitive, because the package was speciically for editable grids and
the TableGrid component wasn't editable.

It turns out that the TableGrid component was dependent on one ile within the pkg-
grid-editor.js package, allowing other iles to be commented out:

{

 "name": "Grid Editor",

 "file": "pkgs/pkg-grid-editor.js",

 "isDebug": true,

 "pkgs": ["pkgs/pkg-grid-foundation.js"],

 "fileIncludes": [{

 "text": "CellSelectionModel.js",

 "path": "ZZZsrc/widgets/grid/"

 },{

 "text": "EditorGrid.js",

 "path": "src/widgets/grid/"

 },{

 "text": "GridEditor.js",

 "path": "ZZZsrc/widgets/grid/"

 }]

 }

The process for eliminating individual iles within packages is far more time
consuming. Your testing needs to be more thorough, but the effort does gradually
add up to give you a smaller Ext Library, resulting in faster downloads and a more
responsive application.

http:///

Chapter 11

[363]

Minimizing Application JavaScript
Having already gone through the JSB2 ile format, this section focuses more on
structuring your application build ile. I'm using the following JSB2 ile to assemble
my JavaScript iles and CSS and image assets:

{

 "projectName": "Playpen",

 "deployDir": "playpen-1.0",

 "licenseText": "Playpen JS Library 1.0",

 "pkgs": [{

 "name": "Ext Library",

 "file": "pkg/ext-playpen-plus.js",

 "isDebug": true,

 "fileIncludes": [{

 "text": "ext-playpen.js",

 "path": "../extjs/"

 },{

 "text": "TabCloseMenu.js",

 "path": "../extjs/examples/ux/"

 }]

 },{

 "name": "Base Components",

 "file": "pkg/ext-extensions.js",

 "isDebug": true,

 "fileIncludes": [{

 "text": "apex_4_0_overrides.js",

 "path": "apex/"

 },{

 "text": "core.js",

 "path": "apex/"

 },{

 "text": "Override.Ext.Button.js",

 "path": "apex/"

 },{

 "text": "Override.Ext.form.ComboBox.js",

 "path": "apex/"

 },{

 "text": "Ext.apex.Report.js",

 "path": "apex/"

 },{

 "text": "Ext.apex.tree.TreePanel.js",

 "path": "apex/"

 },{

 "text": "Ext.apex.IFrameComponent.js",

 "path": "apex/"

 },{

http:///

Performance Tuning Your JavaScript

[364]

 "text": "Ext.apex.iFramePanel.js",

 "path": "apex/"

 }]

 },{

 "name": "Application No IFrames",

 "file": "pkg/playpen.js",

 "isDebug": true,

 "includeDeps": true,

 "pkgDeps": ["pkg/ext-playpen-plus.js","pkg/playpen-core.js"],

 "fileIncludes": [{

 "text": "Ext.apex.Viewport.js",

 "path": "apex/"

 },{

 "text": "application.js",

 "path": "APP/"

 }]

 }],

 "resources": [{

 "src": "./",

 "dest": "./",

 "filters": ".*"

 },{

 "src": "playpen-book.jsb2",

 "dest": "playpen-book.jsb2",

 "filters": ".*"

 }]}

It assembles the JavaScript resources into logical packages, sequencing the iles in
dependency order.

The irst package is the Ext Library package:

{

 "name": "Ext Library",

 "file": "pkg/ext-playpen-plus.js",

 "isDebug": true,

 "fileIncludes": [{

 "text": "ext-playpen.js",

 "path": "../extjs/"

 },{

 "text": "TabCloseMenu.js",

 "path": "../extjs/examples/ux/"

 }]

}

http:///

Chapter 11

[365]

It includes the optimized library from our earlier work, containing just the Ext
packages and iles we need for our application. It also contains an additional Ext
ile not included in the standard Ext library. The Ext iles have been included in the
application build, so only two JavaScript iles need to be included in the APEX page
template: the ext-jquery-adaptor.js ile and playpen.js containing both the
Ext library and custom application JavaScript. This builds a package ile ext-
playpen-plus.js.

Next is the Base Components package: },{

 "name": "Base Components",

 "file": "pkg/ext-extensions.js",

 "isDebug": true,

 "fileIncludes": [{

 "text": "apex_4_0_overrides.js",

 "path": "apex/"

 },{

 "text": "core.js",

 "path": "apex/"

 },{

 "text": "Override.Ext.Button.js",

 "path": "apex/"

 },{

/** more components snipped **/

 },{

 "text": "Ext.apex.iFramePanel.js",

 "path": "apex/"

 }]

 },{

This package includes APEX over-rides, a core.js ile, and several custom
components. Keeping any APEX over-rides in a separate ile allows changes to be
easily managed when the next version of APEX is released.

The core ile contains all namespaces for custom components and modiied values
for Ext constants. Keeping this information in a separate ile ensures that all
declarations happen at the beginning of the combined package, reducing the risk of
dependencies occurring in an incorrect sequence.

Examples of settings within the core ile are:

// Namespaces used for custom components

Ext.ns("Ext.apex", "Ext.apex.data", "Ext.apex.grid", "Ext.apex.tree");

// Blank image (using Oracle APEX image)

http:///

Performance Tuning Your JavaScript

[366]

Ext.BLANK_IMAGE_URL = Ext.isIE6 || Ext.isIE7 || Ext.isAir ?

'/i/1px_trans.gif' : '

AMDAwAAAACH5BAEAAAAALAAAAAABAAEAAAICRAEAOw==';

// Override default month names to force 3 character upper case

Date.monthNames = ["JANUARY", "FEBRUARY", "MARCH", "APRIL", "MAY",

"JUNE", "JULY", "AUGUST", "SEPTEMBER", "OCTOBER", "NOVEMBER",

"DECEMBER"];

Including all namespaces in a single ile means namespaces don't need to be included
in individual iles.

The application ile is next, which combines the contents of the earlier packages:

 },{

 "name": "Application No IFrames",

 "file": "pkg/playpen.js",

 "isDebug": true,

 "includeDeps": true,

 "pkgDeps": ["pkg/ext-playpen-plus.js","pkg/playpen-core.js"],

 "fileIncludes": [{

 "text": "Ext.apex.Viewport.js",

 "path": "apex/"

 },{

 "text": "application.js",

 "path": "APP/"

 }]

 }],

It lists the earlier packages as dependencies with the includeDeps lag set to true,
ensuring that all earlier scripts referenced are included in the generated ile. It also
includes iles speciic to a "No IFrames" application. With very little effort, a second
build could be included speciically for an IFrame application.

Summary
In this chapter, we have looked at ways of keeping our JavaScript lightweight, using
recommendations from Yahoo and Google add-ons for Firebug. We have discussed
the beneits of enabling HTTP compression to reduce ile size when it's transmitted
"over the wire".

Reducing ile size "at the source" was also covered, learning about and using
JSBuilder2 to build a customized lighter version of the Ext Library with unused
components removed. We also used the JSBuilder2 utility to combine and miniied
our custom application JavaScript.

http:///

Index

Symbols

$a_report function 330
:active pseudo selector 132
#BUTTON_ATTRIBUTES# substitution

tag 137
#BUTTON_ID# substitution tag 138
#COLUMN_WIDTH# substitution tag 156
--debugSufix -s 355
--help -h 355
--homeDir -d 355
:hover pseudo selector 132
!important attribute 124, 131, 144
#PAGINATION# sub-template 156
--projectFile -p 355
@todo comments 211
--verbose -v 355

A

addListener method 60
After ield text 147
After result set 147
After Rows ield 156
Agile Manifesto

URL 12
ajax function 207, 288
AJAX functionality

for ComboBox plug-in 242-245
for GridPanel plug-in 291-293

AJAX function name 233
Allow Decimals label 206
Allow Negative label 206
APEX

tabbed document interface 344
APEX 4.0

number ield, building 202, 203
apex_disabled class 256
APEXExport 164

about 30, 33
coniguring 30
using 30-35

APEXExportSplitter 164
APEX-generated table

converting, into GridPanel 273-275
apex_javascript.add_onload_code

procedure 241
apex.jQuery(document).ready function 241
apex.jQuery select event 259
APEX Partial Page Refreshes

used, by GridPanel pagination 277
APEX_PLUGIN_UTIL package 231
APEX report table

using, as local data store 275-277
APEX theme. See theme
APEX Theme 4

region template 96
apexTotalRows, pagination 295
apex.widget.initPageItem function 253, 256
application JavaScript

minimizing 363-366
Apply Changes button 128
apply changes functionality, Ext.apex.

PopupWindow example 334-337
applyTo conig option 100
applyTo coniguration attribute 139
applyToMarkup functionality 256
applyTo value 215
applyTo variable 140
Ascending Image ield 158
attribute breadcrumbs 149
Attributes Only template 331

http:///

[368]

auto-complete
adding, to select lists 179-183

autoFill conig option 268

B
baseParams attribute 230
baseParams conig option 229
Before ield text 147
Before irst 151
Before result set 147
beforeselect event 342
Between list elements, list template 195
Between sublist items, list template 197
border:0 setting 130
boxMinHeight 193
breadcrumbs

about 149
attribute breadcrumbs 149
basic horizontal breadcrumb

template 150-152
disadvantages 150
location breadcrumbs 149
path breadcrumbs 149
using, beneits 150

breadcrumb template
After last 151
Before irst 151
Current page breadcrumb entry 151
Maximum Levels 151
Non-current page breadcrumb entry 151
Start with 151

build process, automating
about 30, 35
APEXExport, coniguring 30-35
APEXExport, using 30-35

Button class 139
buttons

and link, differentiating 127
converting 138, 139

button settings, Ext.apex.PopupWindow
example

creating 330, 331
button templates

about 128
buttons, converting 138-142
CSS sprite button template 132, 133

hideous Ext.Button, building 134-137
HTML button 128
Image button 128
Template button 128

C

calendar template
Day close format 160-163
Day of week format 160-163
Day open format 160-163
Day title format 160
Hour close format 162, 163
Hour formats 162, 163
Hour open format 162, 163
Month close format 160-163
Month formats 160, 163
Month open format 160-163
Month title format 160-163
Non-day close format 161
Non-day formats 161
Non-day open format 161
Non-day title format 161
Time close format 162, 164
Time formats 162, 164
Time open format 162, 164
Time title format 162, 164
Today open format 160-163
Week close format 160
Weekday formats 160-163
Weekend close format 161, 162
Weekend formats 161, 162
Weekend open format 161, 162
Weekend title format 161
Week formats 160
Week open format 160

calendar templates
about 159
creating 160-163
theme, publishing 166
unused templates, removing 164, 165

callback function, ComboBox plug-in
deining 234, 235

cancel button functionality, Ext.apex.
PopupWindow example 333

CDN 27
checkboxSM variable 269

http:///

[369]

child method 52
class="ux-btn ux-btn-markup x-btn x-btn-

noicon" 137
class="datepicker" attribute 173
classic dates

converting, to Ext.DatePicker 171, 172
classic reports

converting, to TableGrids 303, 304
click event 343
closeAction conig option 324
close function 329
Collapsible attribute 319
ComboBox

custom events, deining 259-261
mixing, with dynamic actions 252

ComboBox plug-in
AJAX functionality 242-245
building 232, 233
callback functions, deining 234, 235
custom attributes 234
deining 233, 234
enhanced formatting, Ext.XTemplate used

245-250
functionality, rendering 235-241
validation functionality 251

conig object 326
Content Delivery Network. See CDN
contentPanel object 341
createDelegate function 258
CSS background-image technique 158
CSS iles

and JavaScript , externalizing 350
and JavaScript, externalizing 350
and JavaScript, miniication 352
and JavaScript, ordering 353

Current page breadcrumb entry 151
custom DataReader

building 294
custom TableGrid component

creating 295-298
custom viewport

using 90, 91

D

datachanged event 248, 268
DataReader class 224

data stores
using, with large datasets 228-232

Date Picker
about 170, 171

Day close format 160-163
Day of week format 160-163
Day open format 160-163
Day title format 160
Decimal Precision label 206
defaults conig option 193
deployDir 357
deployDir attribute 357
Descending Image ield 158
dest descriptor 357
development environment

setting up 11
directories, Ext JS SDK

adapater 15
docs 15
examples 15
ext-all.js 15
ext.jsb2 15
pkgs 15
test 15

display:inline 152
Display option 214
DIV element 199
Document Object Model. See DOM
DOM 39
Domain Speciic Languages. See DSLs
DOM Level 0 59
DOM Level 2 59
downloading

Ext JS 14, 15
dynamic actions

about 201, 202
ComboBoxes, mixing 252
home 202
plugins, integrating with 253-258

E

Embedded PL/SQL gateway. See EPG
Embedded PL/SQL Gateway. See EPG
EMIT_JSON_DATA procedure 242
EPG

about 16, 20

http:///

[370]

Ext JS, loading onto 21-23
escape_json function 240
eval command 183
event handlers

adding 60
buffer option, using 62
deining 58, 59
delay option, using 63
event delegation, using 61
one off handler, creating 62
preventDefault method, using 60
removing 60

Ext.Ajax.request object 301
ext-all.js JavaScript iles 359
Ext All No Core package 361
Ext All package 361
Ext.apex.IFrameComponent 309
Ext.apex.iFramePanel function 320
Ext.apex.P120_COMBO namespace 228
Ext.apex.PopupWindow

component 327, 329
Ext.apex.PopupWindow example

about 327, 328
link column settings 328, 329

Ext.apex.Viewport component 312
Ext.BLANK_IMAGE_URL

setting 67
Ext.BoxComponent 309
Ext.Button 142
Ext.Button class 139
Ext.Button code 140
Ext.Combo 177
Ext.Container component 312
Ext.data.ArrayReader 225
Ext.data.ArrayStore 225
Ext.data.DataReader class 224
Ext.data.JsonStore 228
Ext.data.JsonStore object 266
Ext.data.Record object

for GridPanel plug-in 294
Ext.data.Store class 224
Ext.DatePicker 170

about 171
classic dates, converting to 171-174

Ext documentation
supported attributes 104

Ext.each method 53

Ext.Element class 44
Ext.Element.createChild method 54
Ext.extend method 312
Ext.Extend utility function 139
Ext.form.ComboBox 179
Ext.form.ComboBox select event 259
Ext.getDom() call 278
Ext.get method 45
Ext.grid.Column column 267
Ext.grid.GridPanel 264
Ext.grid.GridPanel object 265
Ext.grid.GridView 268
Ext JS

downloading 14, 15
loading, on OHS 19, 20
loading, onto EPG 21-23
using, in hosted APEX environment 27

ext.jsb2 ile 356
ext.jsb2 ile contents 356
EXTJS Button, Attributes Only button 333
ExtJS Button template 331
EXTJS Button template 136
Ext JS library components

duplicate functionality, removing 360
unused components, eliminating 359
unused components, removing 360-362

Ext JS tree template building, list template
used

about 113, 115
advantage 113
APEX 4.0 tree template 115-119
APEX tree template, prior versions 119, 121
current node, highlighting 121-123
individual nodes, customizing 124

Ext Library package 364
Ext.MessageBox message 279
Ext.namespace method 67
Ext.ns (namespace) function 228
Ext.onReady call 241
Ext.onReady function 265
Ext.override method 313
Ext.Override utility function 139
Ext.PagingToolbar object 243
Ext.Resizable class 176, 312
Ext.Resizable element 311
Ext.select function 181
Ext.tree.TreePanel 126

http:///

[371]

Ext.tree.TreePanel component 342
Ext.Viewport component 344
Ext.Viewport functionality 90
Ext.WindowMgr singleton 333

F

factory pattern
resizable 312

fetch_conig procedure 288
ields array 283
ields deinition 267
ields variable 266
ileIncludes descriptor 358
Filter text attributes 147
Firebug plugin 40
forceFit conig option 268
form items

retaining, within FORM element 88-92
Frame attribute 319

G

get_grid_report_properties procedure 288
get_properties function 240
GridPanel plug-in

AJAX functionality 291-293
minor pagination issue 290
render functionality 282-289

GridPanels
about 263
APEX-generated table, converting 273-275
APEX-generated table, using as local Data

Store 275, 277
as region plug-in 279, 280
built-in features 270, 271
column model, coniguring 267, 268
components 264, 265
data store, deining 265-267
getting, into APEX 272
GridView, deining 268
pagination, APEX Partial Page Refreshes

used 277-279
selection model, deining 268-270

growMax option 177
growMin option 177

H

handleClick function 62
Has List of Values 214
Has Read Only Attribute 205
Has Width Attributes 205
header entry template, region

template 189-191
header template, region template 189, 191
height conig option 193
hideous Ext.Button

building 134-136
Hour close format 162, 163
Hour formats 162, 163
Hour open format 162, 163
HTML button 128
HTML page, tabbed document interface

338, 339
HtmlReader component 296
HTTP compression

enabling 348-350
HttpProxy 228
HttpRequest object 231

I

iFrame
about 307
iFrameComponent, reusable 309
IFrame panel factory pattern 314-317
iFrame panel, resizable 309-312
panel plug-in 318, 319
panels, used for embedding pages 308
plug-in package 320
pre-conigured components, factory panels

used 312-314
render functionality 320-322

iFrameComponent
reusable 309

iFrame panel
resizable 309-312

IFrame panel factory pattern 314-317
IFrame panel plug-in

about 318, 319
package 320
render functionality 320-322

http:///

[372]

Image button 128
includeDeps lag 358, 366
initComponent function 140, 326
Inline model 58
innerHTML mapping 276
INPUT items

outside, the FORM element 86
insertHtml method 57
installation

Oracle APEX 13
source code repository 27

isDebug descriptor 358
isRendered variable 140
Is Visible Widget 204

J

Java Development Kit. See JDK
Java Enterprise Edition. See JEE
JavaScript

and CSS iles, combining 351, 352
and CSS iles, externalizing 350
and CSS iles, miniication 352
and CSS iles, ordering 353

JavaScript Object Notation. See JSON
JavaScript, tabbed document interface 340,

342-344
JDK 30, 353
JEE 23
JSB2. See JSBuilder2
JSBuilder2

about 353
ile format 356-358
installation 353, 354
usage 355, 356

JSON 63
JsonStore 229

L

Label templates
predeined classes 101

large datasets
data stores, using with 228-232

licenseText attribute 357
link

and button, differentiating 127

link column settings, Ext.apex.
PopupWindow example 328, 329

List of Values (LOV) 177
List template after rows, list template 197
List template current (irst), list template

195
List template current, list template 195
List template current with sublist items (irs

t), list template 196
List template current with sublist items, list

template 195
List template noncurrent (irst), list template

196
List template noncurrent, list template 195
List template noncurrent with sublist items

(irst), list template 196
List template noncurrent with sublist items,

list template 195
List Template, properties

Between list elements 195
Between sublist items 197
List template after rows 197
List template current 195
List template current (irst) 195
List template current with sublist items 195
List template current with sublist items

(irst) 196
List template noncurrent 195
List template noncurrent (irst) 196
List template noncurrent with sublist items

195
List template noncurrent with sublist items

(irst) 196
name 195
Sublist template after rows 197
Sublist template current 196
Sublist template current with sublist items

196
Sublist template noncurrent 197
Sublist template noncurrent with sublist

items 197
template class 195

list templates
about 109
built-in themes 108-113
Ext JS tree template, building 113, 114
Vertical unordered list with bullets 112

http:///

[373]

Vertical unordered list without
bullets 109-112

local web server
setting up 36

location breadcrumbs 149

M

Maintain User Details region 188
mapping value 267
Maximum Levels 151
Maximum Value label 206
meta.apexTotalRecords parameter 294
method

addListener 60
Ext.Element.createChild 54
Ext.get 45
Ext.namespace 67

Minimum Value label 206
modal iFramed window 323, 324
modal popup windows

about 322, 323
apply changes functionality 334-337
button functionality, canceling 333
button settings, creating 330, 331
class report link settings 330
Ext.apex.PopupWindow example 327, 328
link column settings 328, 329
modal iFramed window 323, 324
PopupWindow, closing 332, 333
popup window component 325, 326, 327

Model-View-Controller. See MVC
mod_plsql plugin 23
Month close format 160, 161, 163
Month formats 160, 163
Month open format 160, 161, 163
Month title format 160, 161, 163
Mozilla Firefox

URL 40
MVC 70
myData variable 266

N

name, list template 195
name, region template 188
namespace collision

avoiding 66

Ext.namespace method, using 67
using 65, 66

name value 267
Non-current page breadcrumb entry 151
Non-day close format 161
Non-day formats 161
Non-day open format 161
Non-day title format 161
No Tabs with Sidebar template 82
Notiication entry 85
noTransform class 184
Number Alignment label 206
number ield

building 202, 203
page item based, creating 214, 215
plug-in callback functions, deining 207-213
plug-in item, creating 203-207
render functionality 215-218
validation functionality 219, 220

O

OHS
about 17, 19
Ext JS, loading on 19, 20

onchange attribute 181, 182
onclick="#LINK#" attribute 137
onclick attribute 142, 329, 333
onMenuItemClick function 145
onRender function 142, 309
onSelect [Ext.form.ComboBox] event 260
Oracle APEX

application iles 29
installing 13
success, setting up 12

Oracle APEX listener
about 23
Ext JS, loading for 24

Oracle HTTP Server. See OHS
Oracle Instant Client

using 31
Oracle Technology Network. See OTN
OTN 13

P

P30_PHONE item 87
P40_APPLY_CHANGES button 143

http:///

[374]

Page body attributes 147
Page footer text 147
page item based, number ield

creating 214, 215
page performance tools

downloading, URL 348
page rendering

about 85-87
region outside FORM 86

pages, embedding
iFrame panels used 308

page speed
downloading, URL 348

Pagination result row X of Y 147
parameter passing, object notation used

object literal, syntax 64
object notation, using 63
old school parameters 63

paramNames conig option 229
Partial Page Refreshes (PPR) 277
path breadcrumbs 149
path descriptor 358
p_item attribute value 216
pkgDeps 358
pkgDeps descriptor 358
pkg-grid-editor.js package 362
pkgs attribute 357, 358
PL/SQL package 207
PL/SQL PLUG_EXT_FORM_COMBO.

RENDER function 246
plug_ext_form_numberield package 207
plug-in callback function, number ield

deining 207-213
plug-in item, number ield

creating 203-207
plug-ins

about 201, 202
home 202

plugins
integrating, with Dynamic Action

framework 253
popup template

about 146-149
After ield text 147
After result set 147
Before ield text 147
Before result set 147

Filter text attributes 147
Page body attributes 147
Page footer text 147
Pagination result row X of Y 147
pre APEX 4.0 versions 147

popup window component 325, 326
PopupWindow, Ext.apex.PopupWindow

example
closing 332

pre APEX 4.0 versions 147
predeined classes, Label templates

about 101, 102
error messages, tips 103-105
hidden label 107
mandatory label 106, 107
mandatory label with help 107
optional label 102, 103
Optional label with help 105, 106

preventDefault method 60
processSuccessful function 327, 329, 335
production setup

Internet-Firewall-DMZ-Firewall-Intranet
architecture 26

overview 25
purchase order (PO) 177
push procedure 240
p_widget_num_return parameter 258

R

Region Attributes ield 159
region plug-in

deinition 280, 281
GridPanel, using as 279, 280
package 282

region template, properties
header entry template 189-191
header template 189, 191
name 188
subregion template 189, 190
template 189, 191
template class 189

removeListener method 60
render function 207, 215, 239, 241
render functionality

for GridPanel plug-in 282-286, 289
for IFrame panel plug-in 320-322

http:///

[375]

render functionality, number ield
creating 215-218

Render function name 233
render_local_store 227
render_local_store function 227, 240
render_remote_store function 240
render_remote_store PL/SQL function 229
report templates

about 96, 101, 152
classic reports 152
components 96
Form Regions 98-100
interactive reports 152
Report Region template 96-98
sorting indicator 158
standard report, CSS for 159

resources attribute 357
RowSelectionModel 269

S

sandbox
building 39, 40

sandbox, building
components 40
cross-browser DOM manipulation, Ext.

Element used 44-46
CSS classes, using 48, 49
CSS styles, using 48, 49
DOM, manipulating 54-58
DOM, traversing through 50-52
elements, positioning 47, 48
elements, sizing 47, 48
ile references 41-43
Heavyweight versus lyweight 46, 47
multiple elements, selecting 52, 53

save_conig procedure 293
Secure Socket Layers. See SSL
select count(*) statement 289
select statement 243
Session State Changeable 205
setlocal command 32
setValue function 257, 258
sliding doors method

:active pseudo selector 132
:hover pseudo selector 132
about 128-131

Apply Changes button 128
border:0 setting 130
buttons border, hiding 129
!important attribute 131
ux-btn-alt-over selector 132

source code repository
installing 27

SQL*Plus Instant Client 31
src descriptor 357
SSL 26
Start with 151
Store class 224
Sublist template after rows, list template

197
Sublist template current, list template 196
Sublist template current with sublist items,

list template 196
Sublist template noncurrent, list template

197
Sublist template noncurrent with sublist

items, list template 197
subregions

used, for building tab panels 185-187
subregion template, region template 189,

190
Subversion

URL 28
svn add command 34
SYSAUX tablespace 13
sys.htf.escape_sc function 216
SYSTEM tablespace 13

T

tabbed document interface
adding, to APEX 344, 345
creating 337
HTML page, examining 338, 339
JavaScript, examining 340-343

TableGrid
classic reports, converting 303, 304
custom TableGrid component, creating

295-298
template 302, 303
using 302

TableGrid component 362

http:///

[376]

TableGrid Stateful
making 299, 300, 302

tab panels
building, subregions used 185-187
template, building 187-191
template, coniguring 192-194

Template button 128
template class, list template 195
template class, region template 189
template, region template 189, 191
text areas

auto-sizing 176
resizable 174-176

text descriptor 358
text ields

auto-complete, adding to select lists 179-
185

auto-completing 177-179
theme

basics 69, 70
Create Workspace Theme 72
creating 72, 73
editing 73
label template, classes 70
separation of concerns 70, 71
standard themes, building 71, 72

the return false; statement 329
Time close format 162, 164
Time formats 164
Time open format 162, 164
Time title format 162, 164
Today open format 160-163
toolbar

attaching, to center panel 198, 199
top keyword 329
Totals Calculation Method, options

auto 281
function 281

traditional model 59
transformEl attribute 140
transformEl variable 140

U

un-structured markup 186
update event 268
url attribute 230

url option 309
ux-btn-alt-over selector 132
ux-btn-markup 137
ux-list-selected class 112

V
validate function 207
validation functionality, number ield

creating 219, 220
Validation function name 233
Value Required 205
Viewport Page Template

building 73, 74
page template, loading into APEX 80-85
standalone template 74-80

VisualSVN Server
URL 28

W

W3C 44
web server

application builder iles, customizing 17
assets, storing 16
selecting 16

Week close format 160
Weekday formats 160, 162, 163
Weekend close format 161, 162
Weekend formats 161, 162
Weekend open format 161, 162
Weekend title format 161
Week formats 160
Week open format 160
window.open() command 322
World Wide Web Consortium. See W3C
wwvFlowForm element 339
wwv_low_javascript.add_attribute routine

240
wwv_low_preferences.set_preference

procedure 293
wwv_low_utilities.table_to_string2

procedure 293

X

XMLHttpRequest object 277

http:///

Thank you for buying

Oracle Application Express 4.0 with Ext JS

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more speciic and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it irst before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:///

Oracle Application Express 3.2 -
The Essentials and More
ISBN: 978-1-847194-52-7 Paperback: 644 pages

Develop Native Oracle database-centric web
applications quickly and easily with Oracle APEX

1. Grasp the principles behind APEX to develop
eficient and optimized data-centric native web
applications, for the Oracle environment

2. Gain a better understanding of the major
principles and building blocks of APEX, like the
IDE and its modules

3. Review APEX-related technologies like HTML
and the DOM, CSS, and JavaScript, which will
help you to develop better, richer, and more
eficient APEX applications

Oracle APEX 4.0 Cookbook
ISBN: 978-1-849681-34-6 Paperback: 328 pages

Over 80 great recipes to develop and deploy fast,
secure, and modern web applications with Oracle
Application Express 4.0

1. Create feature-rich web applications in APEX
4.0

2. Integrate third-party applications like Google
Maps into APEX by using web services

3. Enhance APEX applications by using
stylesheets, Plug-ins, Dynamic Actions, AJAX,
JavaScript, BI Publisher, and jQuery

Please check www.PacktPub.com for information on our titles

http:///

Oracle Fusion Middleware
Patterns
ISBN: 978-1-847198-32-7 Paperback: 224 pages

10 unique architecture patterns powered by Oracle
Fusion Middleware

1. First-hand technical solutions utilizing the
complete and integrated Oracle Fusion
Middleware Suite in hardcopy and ebook
formats

2. From-the-trenches experience of leading IT
Professionals

3. Learn about application integration and how
to combine the integrated tools of the Oracle
Fusion Middleware Suite - and do away with
thousands of lines of code

Oracle Coherence 3.5
ISBN: 978-1-847196-12-5 Paperback: 408 pages

Create Internet-scale applications using Oracle’s high-
performance data grid

1. Build scalable web sites and Enterprise
applications using a market-leading data grid
product

2. Design and implement your domain objects
to work most effectively with Coherence
and apply Domain Driven Designs (DDD) to
Coherence applications

3. Leverage Coherence events and continuous
queries to provide real-time updates to client
applications

Please check www.PacktPub.com for information on our titles

http:///

http:///

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Setting up an Oracle APEX and Ext JS Environment
	Setting up for success
	Installing Oracle APEX
	Downloading Ext JS
	Which web server to use?
	Storing your web assets
	Customizing application builder files

	Oracle HTTP Server
	Loading Ext JS onto the Oracle HTTP Server

	Embedded PL/SQL Gateway
	Loading Ext JS onto the Embedded PL/SQL Gateway

	Oracle APEX listener
	Loading Ext JS for the Oracle APEX listener

	Overviewing the production setup
	Using Ext JS in a hosted APEX environment
	Installing a source code repository
	Automating the build process
	Configuring and using APEXExport
	More ideas for automating the build process

	Setting up a local web server
	Summary

	Chapter 2:
Getting Acquainted with Ext
	Building a sandbox
	Cross-browser DOM manipulation with Ext.Element
	Heavyweight versus flyweight
	Sizing and positioning
	CSS classes and styling
	DOM traversal
	Selecting multiple elements
	DOM manipulation

	Defining event handlers
	Using event delegation to reduce memory consumption
	One Off events

	Parameter passing using object notation
	Old school parameters
	Using object notation
	Basic syntax

	Use namespacing to avoid collisions
	Ext.namespace

	Ext.BLANK_IMAGE_URL
	Summary

	Chapter 3:
Building a Ext JS Theme
into APEX
	Theme basics
	Separation of concerns
	Standard themes

	Creating a theme
	Building a Viewport Page template
	Starting with a standalone template
	Loading the page template into APEX

	Issue when input items are outside the form
	Ensuring input items always remain with the form

	Summary

	Chapter 4:
Ext Themed Regions,
Labels, and Lists
	Region templates
	Report Region
	Form Region
	Additional region templates

	Label templates
	Optional label
	QuickTips for error messages

	Optional label with help
	Mandatory label
	Mandatory label with help
	Hidden label

	List templates
	Vertical unordered list without bullets
	Vertical unordered list with bullets
	Building an Ext JS tree template using lists
	APEX 4.0 tree template
	Prior APEX versions tree template
	Highlighting the current node
	Customizing individual nodes

	Summary

	Chapter 5:
Ext Themed Buttons, Popups, Calendars,
and Reports
	Button templates
	Sliding doors meet CSS sprites
	APEX sliding door CSS sprite button template

	Building a hideous Ext.Button
	Converting our buttons

	Popup List of Values template
	Breadcrumb templates
	Benefits of using breadcrumbs
	When not to use breadcrumbs
	Basic horizontal breadcrumb template

	Report templates
	It's a classic
	A better sorting indicator
	CSS for the standard report

	Calendar templates
	Removing unused templates quickly

	Publishing your theme
	Summary

	Chapter 6:
Adding Ext Layout Elements
	Speed dating with a Date Picker
	Converting Classic Dates to the Ext.DatePicker

	Resizable text areas
	Auto-sizing text areas
	Auto-completing text fields
	Adding auto-complete to select lists

	Building tab panels using subregions
	Building the tab panel template
	Configuring the tab panel template

	Toolbars and menus
	Attaching the toolbar to the center panel

	Summary

	Chapter 7:
Working with Plug-ins and Dynamic Actions
	A home for your plug-ins and dynamic actions
	Building a better Number Field
	Creating a plug-in item
	Defining the plug-in Callback functions
	Creating a page item based on the Number Field plug-in
	Render functionality for the Number Field plug-in
	Validation functionality for the Number Field plug-in

	Summary

	Chapter 8:
Data Stores, AJAX-enabled Plug-ins, and Dynamic Actions
	Storing data on the browser client
	Using Data Stores with large datasets

	Building a ComboBox plug-in
	Defining the ComboBox plug-in
	Defining the ComboBox plug-in callback functions
	Rendering functionality for the ComboBox plug-in
	AJAX functionality for the ComboBox plug-in
	Using Ext.XTemplate to provide enhanced formatting
	Validation functionality for the ComboBox plug-in

	Mixing ComboBoxes with Dynamic Actions
	Integrating plugins with the Dynamic Action framework
	Defining custom events for the ComboBox

	Summary

	Chapter 9:
Getting Interactive with GridPanels
	Components making up a GridPanel
	Defining the Data Store
	Configuring the Column Model
	Defining the GridView
	Defining the Selection Model
	Built-in features

	Getting the GridPanel into APEX
	Testing the concepts first
	Converting APEX-generated table into a GridPanel
	GridPanel pagination using APEX Partial Page Refreshes

	GridPanel as a region plug-in
	Plug-in definition
	Plug-in package
	Render functionality for the GridPanel plug-in
	Minor pagination issue

	AJAX functionality for the GridPanel plug-in
	Building a custom DataReader
	Creating a custom TableGrid component
	Making the TableGrid Stateful

	Using the TableGrid
	TableGrid template
	Convert Classic Reports to TableGrids

	Summary

	Chapter 10:
IFrame Tabs, Panels and Popup Windows
	Embedding pages using iFrame panels
	Reusable iFrameComponent
	Resizable iFrame panel
	Pre-configured components using the factory pattern
	IFrame panel factory pattern

	IFrame panel plug-in
	Plug-in package
	Render functionality for the iFrame panel plug-in

	Modal popup windows
	Modal iFramed window
	Popup window component
	Ext.apex.PopupWindow example
	Link Column settings
	Create Button settings
	Closing the PopupWindow
	Cancel Button functionality
	Apply Changes functionality

	Creating a tabbed document interface
	Examining the HTML page
	Examining the JavaScript
	Adding the tabbed document interface to APEX

	Summary

	Chapter 11:
Performance Tuning
Your JavaScript
	Best practices for JavaScript and CSS
	HTTP compression
	Externalize JavaScript and CSS
	Combining JavaScript and CSS files
	Minifying JavaScript and CSS files
	Ordering CSS and JavaScript files

	JSBuilder2 installation and usage
	Installation
	JSBuilder2 usage
	JSB2 file format

	Eliminating unused Ext JS library components
	Removing duplicate functionality
	Removing unused components

	Minimizing Application JavaScript
	Summary

	Index

