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Foreword

The growing recognition that decision makers will often try to achieve multiple, and
usually conflicting, objectives has led during the last three decades to the development
of multi-criteria decision analysis (MCDA). This is now a vast field of research, with
its scientific community and its specialized journals, as well as a large and growing
number of real-world applications, for supporting both public policy making and
decisions by private corporations.

Students and practitioners coming to the field, however, will be surprised by the
plethora of alternative methods, overloaded by the array of software available, and
puzzled by the diversity of approaches that an analyst needs to choose from. For
precisely these reasons, this book is a very welcome event for the field. Alessio
Ishizaka and Philippe Nemery have managed to provide an accessible, but rigorous,
introduction to the main existing MCDA methods available in the literature.

There are several features of the book that are particularly innovative. First, it
provides a balanced assessment of each method, and positions them in terms of the
type of evaluation that the decision requires (a single choice among alternatives, the
ranking of all alternatives, the sorting of alternatives into categories, or the description
of consequences) and the level of preference information that each method requires
(from utility functions to no preference information). This taxonomy helps both
researchers and practitioners in locating adequate methods for the problems they
need to analyze.

Second, the methods are presented with the right level of formulation and axiom-
atization for an introductory course. This makes the book accessible to anyone with
a basic quantitative background. Readers who wish to learn in greater depth about a
particular method can enjoy the more advanced content covered ‘in the black box’ of
each chapter.

Third, the book illustrates each method with widely available and free software.
This has two major benefits. Readers can easily see how the method works in practice
via an example, consolidating the knowledge and the theoretical content. They can
also reflect on how the method could be used in practice, to facilitate real-world
decision-making processes.

Fourth, instructors using the book, as well as readers, can benefit from the com-
panion website (www.wiley.com/go/multi criteria decision analysis) and
the availability of software files and answers to exercises.
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xii FOREWORD

This book should therefore be useful reading for anyone who wants to learn
more about MCDA, or for those MCDA researchers who want to learn more about
other MCDA methods and how to use specialized software to support multi-criteria
decision making.

Gilberto Montibeller
Department of Management

London School of Economics

www.allitebooks.com

http://www.allitebooks.org


Acknowledgements

We are indebted to Kimberley Perry for her patience and constructive feedback while
reviewing the manuscript. We would like to thank Ian Stevens and Alfred Quintano,
who proofread a chapter.

We wish to express our sincere gratitude to Prof. Roman Słowiński, Poznań Uni-
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1

General introduction

1.1 Introduction

People face making decisions both in their professional and private lives. A manager
in a company, for example, may need to evaluate suppliers and develop partnerships
with the best ones. A household may need to choose an energy supplier for their
family home. Students cannot ignore university rankings. Often candidates for a job
vacancy are ‘ranked’ based on their experience, performance during the interview,
etc.
As well as ranking and choice problems, there are also classification problems

that have existed since classical times. In the fourth century bc, the ancient Greek
philosopher Epicurus arranged human desires into two classes: vain desires (e.g.
the desire for immortality) and natural desires (e.g. the desire for pleasure). These
classifications were supposed to help in finding inner peace. Nowadays, classification
problems occur naturally in daily life. A doctor, for instance, diagnoses a patient
on the basis of their symptoms and assigns them to a pathology class to be able
to prescribe the appropriate treatment. In enterprise, projects are often sorted into
priority-based categories. Not long ago, a study showed that over 20millionBrazilians
have moved from the lower social categories (D and E) to category C, the first
tier of the middle class, and are now active consumers due to an increase in legal
employment (Observador 2008). Hurricanes or cyclones are sorted into one of the
five Saffir–Simpson categories based on their wind speed, superficial pressure and
tide height.
All of these examples show that delicate decision problems arise frequently.

Decision problems such as ranking, choice and sorting problems are often complex as
they usually involve several criteria. People no longer consider only one criterion (e.g.
price) when making a decision. To build long-term relationships, make sustainable
and environmentally friendly decisions, companies consider multiple criteria in their
decision process.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



2 MULTI-CRITERIA DECISION ANALYSIS

Table 1.1 Category of decision problems.

Decision Time perspective Novelty Degree of structure Automation

Strategic long term new low low
Tactical medium term adaptive semi-structured middle
Operational short term every day well defined high

Most of the time, there is no one, perfect option available to suit all the criteria:
an ‘ideal’ option does not usually exist, and therefore a compromise must be found.
To address this problem the decision maker can make use of naı̈ve approaches such
as a simple weighted sum. The weighted sum, described in Section 4.3.1, is a special
case of a more complex method and can only be applied with the right precautions
(correct normalization phase, independent criteria, etc.) to enable sensible outputs.
In reality, this approach is unrefined as it assumes linearity of preferences which may
not reflect the decision maker’s preferences. For example, it cannot be assumed that a
wage of £4000 is twice as good as one of £2000. Some people would see their utility
of preference improved by a factor of 5 with a wage of £4000. This cannot always be
modelled with a weighted sum.
Multi-criteria decision analysis (MCDA)methods have been developed to support

the decision maker in their unique and personal decision process. MCDA methods
provide stepping-stones and techniques for finding a compromise solution. They have
the distinction of placing the decision maker at the centre of the process. They are not
automatable methods that lead to the same solution for every decision maker, but they
incorporate subjective information. Subjective information, also known as preference
information, is provided by the decision maker, which leads to the compromise
solution.
MCDA is a discipline that encompasses mathematics, management, informatics,

psychology, social science and economics. Its application is even wider as it can be
used to solve any problem where a significant decision needs to be made. These
decisions can be either tactical or strategic, depending on the time perspective of the
consequences (Table 1.1).
A large number of methods have been developed to solve multi-criteria problems.

This development is ongoing (Wallenius et al. 2008) and the number of academic
MCDA-related publications is steadily increasing. This expansion is among others
due to both the efficiency of researchers and the development of specific methods for
the different types of problem encountered inMCDA. The software available, includ-
ing spreadsheets containing method computations, ad hoc implementations, off-the-
shelf, web or smartphone applications, has made MCDA methods more accessible
and contributed to the growth in use of MCDA methods amongst researchers and the
user community.
The aim of this book is to make MCDA methods even more intelligible to

novice users such as students, or practitioners, but also to confirmed researchers.
This book is ideal for people taking the first step into MCDA or specific MCDA
methods. The cases studies and exercises effectively combine the mathematical and
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practical approach. For each method described in this book, an intuitive explanation
and interpretation of the method is set out, followed by a detailed description of
the software best suited to the method. Free or free trial version software has been
intentionally chosen, as it allows the reader to better understand the main ideas
behind the methods by practising with the exercises in this book. Furthermore, the
user has access to a Microsoft Excel spreadsheet containing an ‘implementation’ of
each method. Software files and answers to the exercises can be downloaded from the
companion website, indicated by the icon in the book. The selected software and
exercises allow the user to observe the impact of changes to the data on the results.
The use of software enables the decision maker or analyst to communicate and justify
decisions in a systematic way.
Each chapter contains a section (‘In the black box’) where scientific references

and further reading are indicated for those interested in a more in-depth description
or detailed understanding of the methods. Each chapter concludes with extensions of
the methods to other decision problems, such as group decision or sorting problems.
This first chapter describes the different type of decision problems to be addressed

in this book. This is followed by the introduction of the MCDA method best suited
to solving these problems along with the corresponding software implementation.
As several methods can solve similar problems, a section devoted to choosing an
appropriate method has also been included. The chapter concludes with an outline of
the book.

1.2 Decision problems

On any one day people face a plethora of different decisions. However, Roy (1981)
has identified four main types of decision:

1. The choice problem. The goal is to select the single best option or reduce the
group of options to a subset of equivalent or incomparable ‘good’ options. For
example, a manager selecting the right person for a particular project.

2. The sorting problem. Options are sorted into ordered and predefined groups,
called categories. The aim is to then regroup the optionswith similar behaviours
or characteristics for descriptive, organizational or predictive reasons. For
instance, employees can be evaluated for classification into different cate-
gories such as ‘outperforming employees’, ‘average-performing employees’
and ‘weak-performing emplyees’. Based on these classifications, necessary
measures can be taken. Sorting methods are useful for repetitive or automatic
use. They can also be used as an initial screening to reduce the number of
options to be considered in a subsequent step.

3. The ranking problem. Options are ordered from best to worst by means of
scores or pairwise comparisons, etc. The order can be partial if incomparable
options are considered, or complete. A typical example is the ranking of
universities according to several criteria, such as teaching quality, research
expertise and career opportunities.
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4. The description problem. The goal is to describe options and their conse-
quences. This is usually done in the first step to understand the characteristics
of the decision problem.

Additional problem types have also been proposed in the MCDA community:

5. Elimination problem. Bana e Costa (1996) proposed the elimination problem,
a particular branch of the sorting problem.

6. Design problem. The goal is to identify or create a new action, which will
meet the goals and aspirations of the decision maker (Keeney 1992)

To this list of problems the ‘elicitation problem’ can be added as it aims to elicit
the preference parameters (or subjective information) for a specific MCDA method.
Moreover, when the problem involves several decision makers, an appropriate group
decision method needs to be used.
Many other decision problems exist, often combining several of the problems

listed above. However, this book concentrates on the first four decision problems and
presents extensions of some of the methods that allow, for example, group, elicitation
and description problems also to be addressed.

1.3 MCDA methods

To solve the problems defined in the previous section, ad hoc methods have been
developed. In this book, the most popular MCDA methods are described along with
their variants. Table 1.2 presents these methods and the decision problems they solve.
There are many more decision methods than those presented in Table 1.2, but this
book confines itself to the most popular methods that have a supporting software
package.

Table 1.2 MCDA problems and methods.

Choice Ranking Sorting Description
Chapter problems problems problems problems

2 AHP AHP AHPSort
3 ANP ANP
4 MAUT/UTA MAUT/UTA UTADIS
5 MACBETH MACBETH
6 PROMETHEE PROMETHEE FlowSort GAIA, FS-Gaia
7 ELECTRE I ELECTRE III ELECTRE-Tri
8 TOPSIS TOPSIS
9 Goal Programming
10 DEA DEA
11 Multi-methods platform that supports various MCDA methods
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Table 1.3 MCDA software programs.

Problems MCDA Methods Software

Ranking, description,
choice

PROMETHEE – GAIA Decision Lab,
D-Sight, Smart Picker Pro,
Visual Promethee

Ranking, choice PROMETHEE DECERNS
ELECTRE Electre IS, Electre III-IV
UTA Right Choice, UTA+, DECERNS
AHP MakeItRational, ExpertChoice,

Decision Lens, HIPRE 3+,
RightChoiceDSS, Criterium,
EasyMind, Questfox,
ChoiceResults, 123AHP,
DECERNS

ANP Super Decisions, Decision Lens
MACBETH M-MACBETH
TOPSIS DECERNS
DEA Win4DEAP, Efficiency

Measurement System, DEA
Solver Online, DEAFrontier,
DEA-Solver PRO, Frontier
Analyst

Choice Goal Programming -
Sorting, description FlowSort - FS-GAIA Smart Picker Pro
Sorting ELECTRE-Tri Electre Tri, IRIS

UTADIS -
AHPSort -

1.4 MCDA software

Researchers and commercial companies have developed various software programs
over the last decade to help users structure and solve their decision problems. The aim
of this book is not to describe all existing software, but to narrow the list down to the
packages that apply to the methods described. A non-exhaustive list of the programs
available is given in Table 1.3. The software packages represented in this book are in
bold. Let us remark that the user has access to all the Microsoft Excel spreadsheets
on the companion website.

1.5 Selection of MCDA methods

Considering the number of MCDA methods available, the decision maker is faced
with the arduous task of selecting an appropriate decision support tool, and often
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the choice can be difficult to justify. None of the methods are perfect nor can they
be applied to all problems. Each method has its own limitations, particularities,
hypotheses, premises and perspectives. Roy and Bouyssou (1993) say that ‘although
the great diversity of MCDA procedures may be seen as a strong point, it can also
be a weakness. Up to now, there has been no possibility of deciding whether one
method makes more sense than another in a specific problem situation. A systematic
axiomatic analysis of decision procedures and algorithms is yet to be carried out.’
Guitouni et al. (1999) propose an initial investigative framework for choos-

ing an appropriate multi-criteria procedure; however, this approach is intended for
experienced researchers. The next paragraphs give some guidance on selecting an
appropriate method according to the decision problem, which will avoid an arbitrary
adoption process.
There are different ways of choosing appropriateMCDAmethods to solve specific

problems. One way is to look at the required input information, that is, the data and
parameters of the method and consequently the modelling effort, as well as looking
at the outcomes and their granularity (Tables 1.4 and 1.5). This approach is supported
by Guitouni et al. (1999).
If the ‘utility function’ for each criterion (a representation of the perceived utility

given the performance of the option on a specific criterion) is known, then MAUT
(Chapter 4) is recommended.However, the construction of the utility function requires
a lot of effort, but if it is too difficult there are alternatives. Another way is by using
pairwise comparisons between criteria and options. AHP (Chapter 2) andMACBETH
(Chapter 5) support this approach. The difference is that comparisons are evaluated
on a ratio scale for AHP and on an interval scale for MACBETH. The decision maker
needs to know which scale is better suited to yield their preferences. The drawback
is that a large quantity of information is needed.
Another alternative way is to define key parameters. For example, PROMETHEE

(Chapter 6) only requires indifference and preference thresholds, whilst ELECTRE
(Chapter 7) requires indifference, preference and veto thresholds. There exist so-
called elicitation methods to help defining these parameters, but if the user wants to
avoid those methods or parameters, TOPSIS (Chapter 8) can be used because only
ideal and anti-ideal options are required. If criteria are dependent, ANP (Chapter 3)
or the Choquet integral1 can be used.
The modelling effort generally defines the richness of the output. One advantage

to defining utility functions is that the options of the decision problem have a global
score. Based on this score, it is possible to compare all options and rank them from
best to worst, with equal rankings permitted. This is defined as a complete ranking.
This approach is referred to as the full aggregation approach where a bad score on
one criterion can be compensated by a good score on another criterion.
Outranking methods are based on pairwise comparisons. This means that the

options are compared two-by-two by means of an outranking or preference degree.
The preference or outranking degree reflects how much better one option is than

1 This method has not been described in this book because it is not supported by a software package.



Table 1.4 Required inputs for MCDA ranking or choice method.

tuptuOdohtemADCMtupnitroffEstupnI

R
an

ki
ng

/
ch
oi
ce

pr
ob

le
m

HGIHyreVnoitcnufytilitu MAUT Complete ranking with scores

pairwise comparisons on a ratio scale

and interdependencies

ANP Complete ranking with scores

pairwise comparisons on an interval

scale

MACBETH Complete ranking with scores

pairwise comparisons on a ratio scale AHP Complete ranking with scores

indifference, preference and veto

thresholds

ELECTRE Partial and complete ranking

(pairwise outranking degrees)

indifference and preference thresholds PROMETHEE Partial and complete ranking (pairwise

preference degrees and scores)

ideal option and constraints Goal programming Feasible solution with deviation score

ideal and anti-ideal option TOPSIS Complete ranking with closeness

score

no subjective inputs required Very LOW DEA Partial ranking with effectiveness

score
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Table 1.5 Required inputs for MCDA sorting methods.

Effort

Inputs Input MCDA method Output

So
rt
in
g
m
et
ho

d

utility function HIGH UTADIS Classification with

scoring

pairwise comparisons

on a ratio scale

AHPSort Classification with

scoring

indifference, preference

and veto thresholds

ELECTRE-TRI Classification with

pairwise outranking

degrees

indifference and

preference thresholds

LOW FLOWSORT Classification with

pairwise outranking

degrees and scores

another. It is possible for some options to be incomparable. The comparison between
two options is difficult as they have different profiles: one option may be better based
one set of criteria and the other better based on another set of criteria. These incom-
parabilities mean that a complete ranking is not always possible, which is referred to
as a partial ranking. The incomparability is a consequence of the non-compensatory
aspect of those methods. When facing a decision problem, it is important to define
the type of output required from the beginning (presented in Tables 1.4 and 1.5).
Goal programming and data envelopment analysis (DEA) are also part of the

MCDA family but are used in special cases. In goal programming, an ideal goal can
be defined subject to feasibility constraints. DEA is mostly used for performance
evaluation or benchmarking, where no subjective inputs are required.

1.6 Outline of the book

Following this introduction, in which general concepts of MCDA are explained, nine
chapters describe themajorMCDAmethods. Each chapter can be read independently,
and they are grouped into three sections, according to their approach:

� Full aggregation approach (or American school). A score is evaluated for each
criterion and these are then synthesized into a global score. This approach
assumes compensable scores, i.e. a bad score for one criterion is compensated
for by a good score on another.

� Outranking approach (or French school). A bad score may not be compensated
for by a better score. The order of the options may be partial because the notion
of incomparability is allowed. Two options may have the same score, but their
behaviour may be different and therefore incomparable.
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� Goal, aspiration or reference level approach. This approach defines a goal
on each criterion, and then identifies the closest options to the ideal goal or
reference level.

Most chapters are divided into four sections, with the exception of specificMCDA
methods, as extensions do not exist. Specific objectives are as follows:

� Essential concepts. The reader will be able to describe the essentials of the
MCDA method.

� Software. The reader will be able to solve MCDA problems using the corre-
sponding software.

� In the black box. The readerwill understand the calculations behind themethod.
An exercise in Microsoft Excel facilitates this objective.

� Extensions. The reader will be able to describe the extensions of the MCDA
methods to other decision problems, such as sorting or group decisions.

The book concludes with a description of the integrated software DECERNS,
which incorporates six MCDA methods and a Geographical Information System.
Linear programming, the underlying method for MACBETH and goal programming,
is explained in the Appendix.
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Analytic hierarchy process

2.1 Introduction

This chapter explains the theory behind and practical uses of the analytic hierarchy
process (AHP) method as well as its extensions. MakeItRational, a software package
that helps to structure problems and calculate priorities using AHP, is described.
Section 2.3 is designed for readers interested in the methodological background of
AHP. Section 2.4 covers the extensions of AHP in group decision, sorting, scenarios
with incomparability and large size problems.

The companion website provides illustrative examples with Microsoft Excel, and
case studies and examples with MakeItRational.

2.2 Essential concepts of AHP

AHP was developed by Saaty (1977, 1980). It is a particularly useful method when
the decision maker is unable to construct a utility function, otherwise MAUT is
recommended (Chapter 4). To use AHP the user needs to complete four steps to
obtain the ranking of the alternatives. As with any other MCDA method, the problem
first has to be structured (Section 2.2.1). Following this, scores – or priorities, as they
are known in AHP – are calculated based on the pairwise comparisons provided by
the user (Section 2.2.2). The decision maker does not need to provide a numerical
judgement; instead a relative verbal appreciation, more familiar to our daily live, is
sufficient. There are two additional steps that can be carried out: a consistency check
(Section 2.2.3) and a sensitivity analysis (Section 2.2.4). Both steps are optional but
recommended as confirmation of the robustness of the results. The consistency check
is common in all methods based on pairwise comparisons like AHP. The supporting
software of MakeItRational facilitates the sensitivity analysis.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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2.2.1 Problem structuring

AHP is based on the motto divide and conquer. Problems that require MCDA tech-
niques are complex and, as a result, it is advantageous to break them down and solve
one ‘sub-problem’ at a time. This breakdown is done in two phases of the decision
process during:

� the problem structuring and

� the elicitation of priorities through pairwise comparisons.

The problem is structured according to a hierarchy (e.g. Figure 2.2) where the top
element is the goal of the decision. The second level of the hierarchy represents the
criteria, and the lowest level represents the alternatives. In more complex hierarchies,
more levels can be added. These additional levels represent the sub-criteria. In any
case, there are a minimum of three levels in the hierarchy.

Throughout this chapter, a shop location problem (Case Study 2.1) will be con-
sidered to illustrate the different steps of the AHP process.

Case Study 2.1

A businessman wants to open a new sports shop in one of three different locations:

(a) A shopping centre. The shopping centre has a high concentration of a
variety of shops and restaurants. It is a busy area, with a mix of customers
and people walking around. Shops regularly use large displays and pro-
motions to attract potential customers. As demand for these retail units is
low, the rental costs are reasonable.

(b) The city centre. The city centre is a busy area, and a meeting point for
both young people and tourists. Attractions such as dance shows, clowns
and market stalls are often organized, which attract a variety of visitors.
The city centre has several small shops located at ground level in historical
buildings, which suggests high rental costs. These shops have a high
number of customers and are often in competition.

(c) A new industrial area. The new industrial estate is in the suburbs of the
city, where several businesses have recently been set up. Some buildings
have been earmarked for small shops, but on the whole it has been dif-
ficult to attract tenants, which means that rental costs are currently low.
Customers of the existing shops mainly work in the area and only a few
customers come from the surrounding towns or cities to shop here.

Given the description of the problem, four criteria will be considered in making
the final decision (Table 2.1).
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Table 2.1 Criteria for shop location decision.

Criterion Explanation

Visibility Probability that a random passer-by notices the shop
Competition Level of competition in the area
Frequency Average number of customers in similar shops in the area
Rental cost Average rental cost by square metre

Figure 2.1 represents the hierarchy of Case Study 2.1. It has three levels, the min-
imum required to solve a problem with AHP. Other sub-criteria could be considered,
for example, the competition criterion could be broken down into two sub-criteria:
direct and indirect competition. Direct competition would be the number of other
sports shops. Indirect competition would represent other types of shop, which could
distract potential customers. To keep the example simple, additional levels will not
be considered at this stage.

Each lower level is prioritized according to its immediate upper level. The appro-
priate question to ask with regard to prioritization depends on the context and some-
times on the decision maker. For example, in order to prioritize the criteria of level
2 with regard to the goal ‘location of a sports shop’, an appropriate question would
be: ‘Which criterion is most important for choosing the location of the sports shop
and to what extent?’ On the other hand, the alternatives in level 3 must be prioritized
with regard to each criterion in level 2. In this case, an appropriate question would

Location of a
sports shop

Visibility

Industrial area

Shopping centre

City centre

Competition

Industrial area

Shopping centre

City centre

Frequency

Industrial area

Shopping centre

City centre

Rental cost

Industrial area

Shopping centre

City centre

Level 3

Level 2

Level 1

Figure 2.1 Hierarchy of decision levels for Case Study 2.1.



16 MULTI-CRITERIA DECISION ANALYSIS

Location of a
sports shop

Visibility Competition

Industrial area Shopping centre City centre

Frequency Rental cost

Level 3

Level 2

Level 1

Figure 2.2 Traditional representation of the hierarchy.

be: ‘Which alternative is preferable to fulfil the given criterion and to what extent?’
In Case Study 2.1, five different prioritizations are required:

� four local prioritizations of alternatives with regard to each criterion and

� one criteria prioritization.

The aggregation of the local and criteria prioritizations leads to global prioritizations.
As Figure 2.1 contains redundant information at the lowest level, the alternatives

in the hierarchy are often not repeated or are connected as in Figure 2.2.

2.2.2 Priority calculation

A priority is a score that ranks the importance of the alternative or criterion in the
decision. Following the problem-structuring phase (see Section 2.2.1), three types of
priorities have to be calculated:

� Criteria priorities. Importance of each criterion (with respect to the top goal).

� Local alternative priorities. Importance of an alternative with respect to one
specific criterion.

� Global alternative priorities. Priority criteria and local alternative priorities
are intermediate results used to calculate the global alternative priorities. The
global alternative priorities rank alternatives with respect to all criteria and
consequently the overall goal.

The criteria and local alternatives priorities are calculated using the same tech-
nique. Instead of directly allocating performances to alternatives (or criteria) as in
the other techniques from the American school (see MAUT, Chapter 4), AHP uses
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Table 2.2 The 1–9 fundamental scale.

Degree of importance Definition

1 Equal importance
2 Weak
3 Moderate importance
4 Moderate plus
5 Strong importance
6 Strong plus
7 Very strong or demon-strated importance
8 Very, very strong
9 Extreme importance

pairwise comparisons. Psychologists often use this technique (Yokoyama 1921; Thur-
stone 1927), for example, to evaluate the food preference of a cat by presenting two
dishes at a time. The cat indicates its preference by eating one dish. The psycholo-
gists argue that it is easier and more accurate to express a preference between only
two alternatives than simultaneously among all the alternatives. The use of pairwise
comparisons (called paired comparisons by psychologists) is generally evaluated on
the fundamental 1–9 scale. The conversion from verbal to numerical scale is given
in Table 2.2. Psychologists suggest that a smaller scale, say 1–5, would not give the
same level of detail in a data set, and that the decision maker would be lost in a
larger scale: for example, on a scale of 1–100, it is difficult for the decision maker to
distinguish between a score of 62 and 63. In practice, there is no fixed rule and other
scales have been proposed (Section 2.4.2).

The comparisons are collected in a matrix (Example 2.1).

Example 2.1 The comparison matrix in Figure 2.3 gathers the pairwise compar-
isons between the criteria. All comparisons are positive. The comparisons on the main
diagonal are 1 because a criterion is compared with itself. The matrix is reciprocal
because the upper triangle is the reverse of the lower triangle, for example visibil-
ity is 1/4 as important as competition and competition is 4 times as important as
visibility.

The advantage of precision requires more effort, especially when there are a large
number of criteria or alternatives. The number of necessary comparisons for each
comparison matrix is

n2 − n

2
(2.1)
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Visibility

Visibility

1 1/4 1/5 2

Competition

Competition

4 1 1/2 1

Frequency

Frequency

5 2 1 4

Rental costs

Rental costs

1/2 1 1/4 1

Figure 2.3 Comparison matrix.

where n is the number of alternatives/criteria. This formula can be explained as
follows:

� n2 is the total number of comparisons that can be written in a matrix.

� n of these represent the comparison of the alternative with itself (on the main
diagonal). The evaluation is 1 and therefore not required (shown in bold in
Figure 2.3).

� As the matrix is reciprocal, only half of the comparisons are required. The
other half are automatically calculated from the first half.

For example, in Figure 2.3 we have n = 4, therefore the number of comparisons to
provide is (42 − 4)/2 = 6.

Even though the squared number is reduced by n and divided by 2, the required
number of comparisons can be very high. For example, 10 alternatives lead to 45 ques-
tions for each criterion. The effort required to complete the matrix is time-consuming
and can be discouraging. In Section 2.5.3, ways to deal with this quadratic increase
in the number of comparisons will be discussed.

From these comparison matrices, the software will calculate the local and criteria
priorities; see Section 2.4.4, where the calculation of these priorities is explained.
Finally, it aggregates these two priorities to establish the global priority. Priorities
only make sense if they are derived from consistent or near-consistent matrices, and
as a result a consistency check must be performed, to which we now turn.

2.2.3 Consistency check

When the matrix is complete, a consistency check may be performed to detect possible
contradictions in the entries. When several successive pairwise comparisons are
presented, they may contradict each other. The reasons for these contradictions could
be, for example, vaguely defined problems, a lack of sufficient information (known
as bounded rationality), uncertain information or lack of concentration. Suppose that
the decision maker, as an example, gives the following pairwise comparisons:

� The shopping centre is two times more visible than the city centre.

� The city centre is three times more visible than the industrial area.

� The industrial area is four times more visible than the shopping centre.
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The third assertion is inconsistent as determined from the two first assertions; the
industrial area is six times more visible than the shopping centre (2 × 3). Human
nature is often inconsistent, for example, in football it is possible for the team at
the top of the table to lose against the team at the bottom of the table. To allow
this inconsistent reality, AHP allows up to a 10% inconsistency compared to the
average inconsistency of 500 randomly filled matrices. A calculation is done by the
supporting software and indicates if a matrix needs to be reconsidered due to its high
inconsistency (a detailed description is available in the black box Section 2.4.3).

2.2.4 Sensitivity analysis

The last step of the decision process is the sensitivity analysis, where the input data is
slightly modified to observe the impact on the results. As complex decision models
are often inherently ill defined, the sensitivity analysis allows different scenarios to
be generated. These different scenarios may result in other rankings, and further
discussion may be needed to reach a consensus. If the ranking does not change, the
results are said to be robust – otherwise they are sensitive. The sensitivity analysis in
MakeItRational is performed by varying the weight of the criteria and observing the
impact on the global alternative priority.

Exercise 2.1

The following multiple-choice questions test your knowledge of the basics of AHP.
Only one answer is correct. Answers can be found on the companion website.

1. What does AHP stand for?

a) Analytic Hierarchy Program

b) Analytic Hierarchy Process

c) Analytic Hierarchical Programming

d) Analytical Hierarchy Partitioning

2. What is the typical Saaty scale?

a) A 1–5 scale

b) A 1–9 scale

c) A 1–10 scale

d) A 1–100 scale

3. What is the main purpose of AHP?

a) AHP prioritizes alternatives based on criteria and constraints

b) AHP assigns goals to alternatives
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c) AHP prioritizes alternatives based on criteria

d) AHP assigns criteria to alternatives

4. Pairwise comparisons in AHP are based on which scale?

a) Ratio scale

b) Interval scale

c) Ordinal scale

d) Nominal scale

5. How many pairwise comparisons are required to rank five criteria?

a) 25

b) 20

c) 15

d) 10

2.3 AHP software: MakeItRational

The available AHP software has greatly contributed to the success of the AHP method.
The software incorporates intuitive graphical user interfaces, automatic calculation of
priorities and inconsistencies, and provides several ways of processing a sensitivity
analysis (Ishizaka and Labib 2009). At the time of writing there are several software
packages: Expert Choice, Decision Lens, HIPRE 3+, RightChoiceDSS, Criterium,
EasyMind, Questfox, ChoiceResults and 123AHP, as well as the option of adapting
a template in Microsoft Excel (e.g. see Exercise 2.3).

This section describes the AHP web software MakeItRational, available from
http://makeitrational.com. This software was chosen because of its simplicity and the
free trial version available (Kaspar and Ossadnik 2013). The disadvantage of the free
version is that models cannot be saved, but as MakeItRational is an online software
package, it is automatically updated. Data is stored on the web server, although a
server edition can be purchased, which allows the data to be saved on computer. When
using MakeItRational, it is not necessary to know how priorities are calculated, only
what should be ranked. This section describes the graphical user interface. The four
steps introduced in Section 2.2 will be followed by navigating between the top tabs
(Figure 2.5) of the software.

2.3.1 Problem structuring

For problem structuring, three tabs are necessary.

� Project tab: Name the project (this is needed to save it) and enter a description
(optional).
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� Alternatives tab: Enter a minimum of two alternatives.

� Criteria tab: Enter a minimum of two criteria.

2.3.2 Preferences and priority calculation

The Evaluation tab in Figure 2.4 displays the pairwise comparisons needed to calcu-
late the priorities. The user first has to select the Goal in the left panel, and the right
panel will ask for pairwise evaluations of the criteria. For example, in Figure 2.4,
Competition has been evaluated as twice as important as Frequency. When this step
is complete, the user will need to select the first criterion from the left panel, where
again the right panel will ask for pairwise comparisons. In Figure 2.5, the City centre
has been evaluated as 5 times as important as the Industrial area with regard to
Competition. This process is repeated for each criterion.

MakeItRational allows a direct rating of the alternatives/criteria if they are already
known. For example, in Figure 2.6, the exact frequency of people per hour for each
alternative is known; therefore the precise amount can be entered. Note that the
criterion needs to be maximized. For criteria to minimize, the score needs to be
inverted, for example x becomes 1/x. If all evaluation preferences are rated directly,
then the weighted sum is used. In this case, the decision maker needs to know the
utility function either implicitly or explicitly. MakeItRational is able to support both
methods because they share several common features.

Priorities will be automatically calculated by MakeItRational after a consistency
check.

Figure 2.4 Pairwise comparisons of criteria in MakeItRational. Reproduced by
permission of BS Consulting Dawid Opydo.
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Figure 2.5 Pairwise comparisons of alternatives in MakeItRational. Reproduced by
permission of BS Consulting Dawid Opydo.

2.3.3 Consistency check

MakeItRational has various consistency checks represented by the icons on the left
pane of the tab (Figure 2.6). Table 2.3 explains the status.

� The Complete status means that all pairwise comparisons have been consis-
tently entered.

� In the Enough status, not all pairwise comparisons are entered but those pro-
vided can be used to estimate the missing ones (Section 2.4.4.1). This status can
be used when a large number of alternatives are evaluated in order to decrease
the number of required pairwise comparisons. Therefore, comfortable compar-
isons should be entered first.

Figure 2.6 Direct rating of alternatives in MakeItRational. Reproduced by permis-
sion of BS Consulting Dawid Opydo.
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Table 2.3 Preference status. Reproduced by permission of BS Consulting Dawid
Opydo.

Icon Status Description

Complete All judgements in the context of this criterion have
been provided. The entered pairwise comparisons
are consistent (CR < 10%).

Enough There are some empty judgements in the context of
this criterion but weights/scores can be calculated.

Inconsistency The entered pairwise comparisons are inconsistent
(CR > 10%).

Contradictory Contradictory pairwise comparisons in the context
of this criterion.

Missing There is not enough data to calculate weights/scores.
Error The decision problem contains only one criterion or

one alternative.

� The Inconsistency status recommends the revision of pairwise comparisons in
order to decrease inconsistency. The consistency ratio (CR) should be lower
than 10% to be considered acceptable. MakeItRational will recommend which
comparison to modify. For example, in Figure 2.7, the most inconsistent com-
parison is between visibility and rental costs. MakeItRational recommends
modifying the comparison to 4.

Figure 2.7 Inconsistency and recommended comparisons. Reproduced by permis-
sion of BS Consulting Dawid Opydo.
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� The Contradictory status indicates logically impossible cardinal preferences.
For example, I prefer the shopping centre to the city centre, I prefer the city
centre to the industrial area, and I prefer the industrial area to the shopping
centre, which induces an impossible preference cycle:

shopping centre > city centre > industrial area > shopping centre.

� The Missing status indicates that not enough data has been provided to calculate
priorities.

� The Error status indicates an error in the problem structuring: a criterion
contains only one sub-criterion or the problem contains only one alternative.

Priorities will be calculated for the first four matrix statuses, but it is strongly rec-
ommended to revise pairwise comparisons for the Inconsistency and Contradictory
status.

2.3.4 Results

Figure 2.8 shows the global priorities of the alternatives with regard to the goal
‘Location selection for a sports shop’. The results are displayed with scores and
stacked bar diagrams for better visualization. It can be seen that the city centre is
the preferred alternative, especially because of its high frequency. In the chart data

Figure 2.8 Global priorities in MakeItRational. Reproduced by permission of BS
Consulting Dawid Opydo.
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Figure 2.9 Local priority in MakeItRational. Reproduced by permission of BS Con-
sulting Dawid Opydo.

of Figure 2.8, it can be seen that frequency contributes 23.94 towards the total score
of 36.86.

MakeItRational allows the local (Figure 2.9) and criteria priorities (Figure 2.10)
to be seen.

Figure 2.9 displays the unweighted local priorities in a spider diagram and the
scores in the table immediately below. This representation allows a visualization of
the strengths and weaknesses of each alternative. In this case, the industrial area is
very strong on the competition criterion but very weak on the visibility and frequency
criteria. The shopping centre scores very high on the frequency and visibility criteria.
Figure 2.10 displays the criteria priorities in a pie chart and the scores in the table
beneath it.

2.3.5 Sensitivity analysis

On the same Results tab, a sensitivity analysis in MakeItRational allows the impact
of the changes of one criterion weight over the global priority to be seen. For
example, in Figure 2.11, if the current rental costs weight of 18.1% is increased
to over 22.35%, then the preferred alternative is no longer the city centre but the
industrial area.

Finally, the results can be collected in a report and downloaded in different
formats. An example of a report can be downloaded from the companion website
( Report_MakeItRational.pdf).
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Figure 2.10 Criterion priorities in MakeItRational. Reproduced by permission of
BS Consulting Dawid Opydo.

Figure 2.11 Sensitivity analysis in MakeItRational. Reproduced by permission of
BS Consulting Dawid Opydo.
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Exercise 2.2

In this exercise, the sports shop problem in Case Study 2.1 will be solved with the
MakeItRational software.

Learning Outcomes

� Structure a problem in MakeItRational

� Enter pairwise comparisons

� Understand the results

� Conduct a sensitivity analysis

Tasks

a) Open the webpage http://makeitrational.com/demo. The free version has the
full functionalities but the problem cannot be saved.

b) Read the description of Case Study 2.1, on page 14.

c) Give your decision project a name (Project tab).

d) Enter the alternatives (Alternatives tab).

e) Enter the criteria (Criteria tab).

f) Enter the pairwise comparisons (Evaluation tab). Are they consistent?

g) Read your global ranking and conduct a sensitivity analysis (Results tab).

2.4 In the black box of AHP

2.4.1 Problem structuring

In most cases, the problem is not as well defined as in Case Study 2.1. The decision
maker may have a vague idea of wanting to open a shop but without knowing the
precise alternatives and criteria. A structure must be formed through brainstorming
sessions, analysing similar problem studies and organizing focus groups etc. Saaty
and Forman (1992) have written a book describing hierarchical structures in various
AHP applications, which may be of use in the structuring process.

This hierarchization of decision elements is important because a different structure
may lead to a different final ranking. Several authors (Pöyhönen et al. 1997; Stillwell
et al. 1987; Weber et al. 1988) have observed that criteria with a large number of
sub-criteria tend to receive more weight than when they are less detailed.
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Table 2.4 Food and drink quantities in two menus.

Food [kg] Drinks [l]

Menu A 0.80 1
Menu B 2 0.5

2.4.2 Judgement scales

The use of verbal comparisons (Table 2.2) is intuitively appealing, user-friendly
and more common in our everyday lives than numbers. It may also allow for some
fuzziness in difficult comparisons – a verbal comparison is not as precise as a number.
However, this ambiguity in the English language has also been criticized (Donegan
et al. 1992).

AHP, due to its pairwise comparisons, needs ratio scales, which, contrary to
methods using interval scales (Kainulainen et al. 2009), require no units of compar-
ison. The judgement is a relative value or a quotient a / b of two quantities a and b
having the same units (intensity, utility, etc.). Barzilai (2005) claims that preferences
cannot be represented with ratio scales, because in his opinion an absolute zero does
not exist, for example, temperature or electrical tension. Similarly, Dodd and Done-
gan (1995) have criticized the absence of zero in the preference scale in Table 2.2.
On the contrary, Saaty (1994a) states that ratio scales are the only possibility for
aggregating measurements in a commensurate (i.e. same units) way (Example 2.2).

Example 2.2 Consider two lunch menus evaluated on two criteria of the quantity
of food and quantity of drinks (Table 2.4). The food quantity is considered twice as
important as the drinks quantity. The two menus can be compared on a ratio scale:

Menu B

Menu A
= 2 · 2

0.8
+ 0.5

1
= 5.5.

Therefore, menu B is five and half times as good as menu A. On an interval scale,

Menu B − Menu A = 2 · (2 − 0.8) + (0.5 − 1) = 1.9.

This result also indicates that menu B is better.
However, if the scale is changed from litres to decilitres, the results change for

the interval scale,

Menu B − Menu A = 2 · (2 − 0.8) + (5 − 10) = −2.6,

but not for the ratio scale,

Menu B

Menu A
= 2 · 2

0.8
+ 5

10
= 5.5.
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In order to correct this change, the weights should be adjusted as well:

Menu B − Menu A = 2 · (2 − 0.8) + 0.1 (5 − 10) = 1.9.

If mathematically the weight adjustment is feasible, can the decision maker be
expected to adjust the weight preferences when a change on the scale is adopted?

To derive priorities, verbal comparisons must be converted to numerical ones. In
Saaty’s AHP the verbal statements are converted into integers 1–9. Theoretically, there
is no reason to be restricted to these numbers and this verbal gradation. If the verbal
gradation has been little investigated, various other numerical scales have been pro-
posed (Table 2.5, Figure 2.12 and Figure 2.13). Harker and Vargas (1987) evaluated a
quadratic and a square root scale in only one simple example and argued in favour of
Saaty’s 1–9 scale. However, one example is not enough to conclude the superiority
of the 1–9 linear scale. Lootsma (1989) argued that the geometric scale is preferable
to the 1–9 linear scale. Salo and Hämäläinen (1997) point out that the integers
1–9 yield local weights that are unevenly dispersed so that there is lack of sensitivity

Table 2.5 Different scales for comparing two alternatives.
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Linear (Saaty 1977) 1 2 3 4 5 6 7 8 9
Power (Harker and

Vargas 1987)
1 4 9 16 25 36 49 64 81

Geometric (Lootsma
1989)

1 2 4 8 16 32 64 128 256

Logarithmic (Ishizaka
et al. 2006)

1 1.58 2 2.32 2.58 2.81 3 3.17 3.32

Square root (Harker
and Vargas 1987)

1 1.41 1.73 2 2.23 2.45 2.65 2.83 3

Asymptotical (Dodd
and Donegan 1995)

0 0.12 0.24 0.36 0.46 0.55 0.63 0.70 0.76

Inverse linear (Ma and
Zheng 1991)

1 1.13 1.29 1.5 1.8 2.25 3 4.5 9

Balanced (Salo and
Hämäläinen 1997)

1 1.22 1.5 1.86 2.33 3 4 5.67 9
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Figure 2.12 Graph of judgement scales.

when comparing elements which are preferentially close to each other. Based on
this observation, they propose a balanced scale where the local weights are evenly
dispersed over the weight range [0.1, 0.9]. Earlier, Ma and Zheng (1991) calculated
a scale where the inverse elements x of the scale 1/x are linear instead of the x in
the Saaty scale. Donegan et al. (1992) proposed an asymptotic scale avoiding the
boundary problem (e.g. if the decision maker enters the pairwise comparison aij =
3 and ajk = 4, they are forced into an intransitive relation because the upper limit
of the scale is 9 and they cannot enter aik = 12). Ji and Jiang (2003) propose a
mixture of verbal scale and geometric scale. The possibility of integrating negative
values into the scale has also been explored (Millet and Schoner 2005; Saaty and
Ozdemir 2003a).

Figure 2.13 Graph of the judgement scales with the geometric and power scales
omitted.
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Figure 2.12 and Figure 2.13 represent graphically the different scales of Table 2.5.
Large differences are noted, which imply different final results (Ishizaka et al. 2010).

Among the proposed scales, the linear scale with the integers 1–9 and their recip-
rocals have been used most often in applications. It is also the only one implemented
in Expert Choice and MakeItRational. Saaty (1980, 1991) advocates it as the best
scale to represent weight ratios. However, the cited examples deal with objective
measurable alternatives like the areas of figures, whereas AHP treats mainly deci-
sion processes on subjective issues. It is technically much more difficult to verify
the effectiveness of scales through subjective issues. Salo and Hämäläinen (1997)
demonstrate the superiority of the balanced scale when comparing two elements. The
choice of the ‘best’ scale is a hotly debated issue. Some scientists argue that the choice
depends on the person and the decision problem (Harker and Vargas 1987; Pöyhönen
et al. 1997). Therefore, other scales would be welcomed in the AHP software.

2.4.3 Consistency

In Section 2.2.3, minimal consistency was necessary to calculate meaningful pri-
orities. A matrix filled by the pairwise comparison aij is called consistent if the
transitivity (2.2) and the reciprocity (2.3) rules are respected.

Transitivity Rule:

aij = aik · ak j (2.2)

where aij is the comparison of alternative i with j.
Suppose a person likes an apple twice as much as an orange (a12 = 2) and an

orange three times as much as a banana (a23 = 3). If the person likes an apple six
times as much as a banana (a13 = 6), the transitivity rule is respected.

Reciprocity Rule:

aij = 1

aji
(2.3)

where i, j and k are any alternatives of the matrix.
If a person likes an apple twice as much as an orange (a12 = 2), then they like an

orange half as much as an apple (a21 = 1/2).
If we suppose that preferences pi are known, a perfectly consistent matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p1/p1 · · · p1/p j · · · p1/pn

· · · 1 · · · · · · · · ·
pi/p1 · · · 1 · · · pi/pn

· · · · · · · · · 1 · · ·
pn/p1 · · · pn/p j · · · pn/pn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.4)
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can be constructed because all the comparisons aij obey the equality

aij = pi

p j
, (2.5)

where pi is the priority of the alternative i.
Priorities are not known in advance in AHP. As priorities only make sense if

derived from consistent or near-consistent matrices, a consistency check must be
applied. The threshold for defining an intolerably inconsistent matrix is not clear.
Several methods have been proposed to measure consistency. Peláez and Lamata
(2003) describe a method based on the determinant of the matrix. Crawford and
Williams (1985) prefer to add the difference between the ratio of the calculated
priorities and the given comparisons. The transitivity rule (2.2) was used by Salo and
Hämäläinen (1997) and later by Ji and Jiang (2003). Stein and Mizzi (2007) use the
normalized column of the comparison matrix. However, the most commonly used
method (including in MakeItRational) was developed by Saaty (1977), who proposed
a consistency index (CI), which is related to the eigenvalue method (Section 2.4.4):

CI = λmax − n

n − 1
, (2.6)

where λmax is the maximal eigenvalue. The consistency ratio (CR) is given by

CR = CI/RI, (2.7)

where RI is the random index (the average CI of 500 randomly filled matrices). If CR
is less than 10% (the inconsistency is less than 10% of 500 randomly filled matrices),
then the matrix is of an acceptable consistency.

Saaty (1977) calculated the random indices shown in Table 2.6. Other researchers
have run simulations with different numbers of matrices (Alonso and Lamata 2006;
Lane and Verdini 1989; Tummala and Wan 1994) or incomplete matrices (Forman
1990). Their random indices are different than but close to Saaty’s.

Alonso and Lamata (2006) have computed a regression of the random indices
and propose the formulation

λmax < n + 0.1(1.7699n − 4.3513). (2.8)

Table 2.6 Random indices from Saaty (1977).

n 3 4 5 6 7 8 9 10

RI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
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For all proposed consistency checking methods, some questions remain: where is
the cut-off to declare the matrix inconsistent? Should this rule depend on the size of
the matrix? How should the consistency definition be adapted when using another
judgement scale?

2.4.4 Priorities derivation

Priorities derivation is the corner-stone of the mathematics behind the AHP method,
otherwise rankings could not be produced. Various methods have been proposed to
calculate priorities from a pairwise comparison matrix (Lin 2007; Cho and Wedley
2004). In this section, three methods will be introduced: an approximate method, the
eigenvalue method and the geometric mean. The approximate method requires only
additions and averages. The eigenvalue method calculates not only the priorities but
also the degree of inconsistency. The geometric mean has been proposed to solve
the problem of the right–left rank reversal of the eigenvalue method. Each method
calculates identical priorities when matrices are consistent.

2.4.4.1 Approximate method

This method is based on two simple steps:

1. Summation of the elements of row i:

ri =
∑

i

aij. (2.9)

2. Normalization of the sums:

pi = ri∑
i ri

. (2.10)

Example 2.3 Suppose the decision maker has provided the comparisons in
Table 2.7. The two steps are thus as follows:

1. The rows are summed as in the final column of Table 2.7.

2. Normalization the sums gives the criteria priorities as in Table 2.8

Table 2.7 Sum of the elements of the rows.

Industrial area Shopping centre City centre Total

Industrial area 1 6 2 9.00
Shopping centre 1/6 1 1/2 1.67
City centre 1/2 2 1 3.50
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Table 2.8 Criteria priorities.

Industrial area Shopping centre City centre Total

Industrial area 1 6 2 0.64
Shopping centre 1/6 1 1/2 0.12
City centre 1/2 2 1 0.25

The approximate method does not calculate the consistency of the matrices.
Therefore, all the AHP software packages that have been tested prefer to use a more
intensive calculation method, which allows the calculation of the inconsistency rate.

2.4.4.2 Eigenvalue method

In the eigenvalue method, the vector of the priorities p is calculated by solving the
equation

Ap = np (2.11)

where n is the dimension of A and p = (p1, . . . , pj, . . . , pn).
First, the validity of the eigenvalue method on a consistent matrix A is demon-

strated. Let us suppose that the priorities are known. It is easy to deduce a consistent
comparison matrix from the priorities as follows. Let aij = pi/p j . Multiplying A by
the priority vector p gives the right-hand side of equation (2.11). To simplify the
calculation, only row i of A is first considered:

pi

p1
p1 + pi

p2
p2 + . . . + pi

p j
p j + . . . + pi

pn
pn = pi + pi + . . . + pi + . . . + pi = npi

or

∑
j

pi

p j
· p j = npi . (2.12)

Thus the product of row i by the priority vector p gives n times the priority pi. By
multiplying all the elements of the comparison matrix A by the priority vector p, the
following equality is obtained:

⎡
⎢⎢⎢⎢⎣

p1/p1 p1/p2 · · · p1/pn

p2/p1 p2/p2 · · · p2/pn

· · · · · · · · · · · ·
pn/p1 pn/p2 · · · pn/pn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

p1

p2

· · ·
pn

⎤
⎥⎥⎥⎥⎦ = n

⎡
⎢⎢⎢⎢⎣

p1

p2

· · ·
pn

⎤
⎥⎥⎥⎥⎦ ,
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Table 2.9 Consistent comparison matrix.

Industrial area Shopping centre City centre

Industrial area 1 6 3
Shopping centre 1/6 1 1/2
City centre 1/3 2 1

which is equation (2.11). Therefore, for a consistent matrix, the priority vector is
obtained by solving equation (2.11).

Example 2.4 The eigenvalue problem is illustrated by the comparison matrix in
Table 2.9. Because the comparison matrix is consistent, the priorities can be calculated
by solving (2.11):

Ap =

⎡
⎢⎣

1 6 3

1/6 1 1/2

1/3 2 1

⎤
⎥⎦ p = 3.p

The priority vector p is the solution of following the linear system:

1 · p1 + 6 · p2 + 3 · p3 = 3 · p1

1/6 · p1 + 1 · p2 + 1/2 · p3 = 3 · p1

1/6 · p1 + 1 · p2 + 1/2 · p3 = 3 · p1.

Solving this system for the unknowns p1, p2 and p3 results in

p =

⎡
⎢⎣

p1

p2

p3

⎤
⎥⎦ =

⎡
⎢⎣

0.667

0.111

0.222

⎤
⎥⎦ .

For an inconsistent matrix, this relation is no longer valid, as the comparison
between element i and j is not necessarily given by formula (2.5). Therefore, the
dimension n is replaced by the unknown λ. The calculation of λ and p, from an equa-
tion such as Ap = λp is called, in linear algebra, an eigenvalue problem. Any value
λ satisfying this equation is called an eigenvalue and p is its associated eigenvector.

According to the Perron theorem, a positive matrix has a unique positive eigen-
value. The non-trivial eigenvalue is called the maximum eigenvalue λmax. If λmax =
n, then the matrix is perfectly consistent. Otherwise, the difference between λmax – n
is a measure of the inconsistency (Section 2.4.3).
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Table 2.10 First iteration of the power method.

Industrial Shopping Sum of the
area centre City centre row Eigenvector

Industrial area 3 16 7 26 0.62
Shopping centre 0.583 3 1.333 4.916 0.12
City centre 1.333 7 3 11.333 0.27

42.249 1

Is the eigenvalue still valid for inconsistent matrices? Saaty (1977, 1980) justifies
the eigenvalue approach for slightly inconsistent matrices with perturbation theory,
which says that slight variations in a consistent matrix imply only slight variations of
the eigenvector and eigenvalue.

In order to calculate the eigenvector associated to the maximum eigenvalue, most
software packages, including MakeItRational, use the power method, which is an
iterative process:

1. The pairwise matrix is squared: An+1 = AnAn.

2. The row sums are then calculated and normalized. This is the first approxima-
tion of the eigenvector.

3. Using the matrix An+1, steps 1 and 2 are repeated.

4. Step 3 is repeated until the difference between these sums in two consecutive
priorities calculations is smaller than a given stop criterion.

Example 2.5 Considering the inconsistent matrix B of Table 2.7, the first iteration
of the power method is given in Table 2.10.

The power method is not fully transparent, much less than the approximate
method. Several articles have highlighted this irrationality. According to Johnson
et al. (1979), the ‘aggregation process embedded in the eigenvector . . . is not fully
understood mathematically’. Chu et al. (1979) say that ‘the weighted least squares
method . . . is conceptually easier to understand than the eigenvalue method’.

If the matrix of Table 2.11 is considered, it is known that a comparison can be
estimated indirectly by the transitivity rule (2.2). Using (2.2), the comparison a13 is
calculated as follows:

a13 = a11 · a13 = 1 · 2 = 2,

a13 = a12 · a23 = 1/7 · 6 = 0.857,

a13 = a13 · a33 = 2 · 1 = 2,

a13 = a14 · a43 = 1/2 · 1 = 1/2.
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Table 2.11 Criteria comparison matrix with illustrative values.

Visibility Competition Frequency Rental cost

Visibility 1 1/7 2 1/2
Competition 7 1 6 2
Frequency 1/5 1/6 1 1
Rental cost 2 1/2 1 1

It can be seen that the estimations of comparison a13 are very different. The matrix
in Table 2.11 is thus inconsistent.

By squaring the matrix, the power method combines all the estimates of a13 due
to the scalar product of the first column and the third row of the matrix. In general,
each element a′

ij of A2 is given by the sum a′
ij = ∑

k aik · akj. Each additional squaring
refines the estimation of the comparison. Therefore, the eigenvalue method is based
on a procedure of averaging the direct and indirect estimations of the comparisons.

The eigenvalue method has a major drawback: the right–left inconsistency, which
leads to a rank reversal phenomenon after an inversion of the scale, was discovered
two years after the publication of the original AHP method (Johnson et al. 1979). If
all comparisons are replaced by their reciprocal values (e.g., 5 becomes 1/5), then the
derived ranking should logically also be reversed. This is not always the case for the
eigen value method; however, if a matrix is perfectly consistent or of rank n = 3, then
a rank reversal is impossible. For inconsistent matrices of rank n ≥ 4, rankings can be
different after a scale inversion. The following example illustrates this phenomenon.
Consider the matrix in Table 2.12, asking ‘Which alternative is most economical?’.
The calculated priorities give the following ranking of the alternatives: D > B > C >

A > E.
If the question is inverted: ‘Which alternative is most expensive?’, then the

comparisons are simply inverted (Table 2.13). The calculated priorities give the
following ranking of the alternatives: B > D > C > A > E. In this case, alternative B
is preferred, but before it was alternative D. This rank reversal is due to the formulation
of the problem (which is different from and independent of rank reversal due to the
introduction or deletion of an alternative, discussed in Section 2.4.5).

Table 2.12 Comparison matrix.

A B C D E Priority Rank

A 1 1/7 1/2 1/8 2 0.061 4
B 7 1 3 1 8 0.374 2
C 2 1/3 1 1/4 5 0.134 3
D 8 1 4 1 5 0.387 1
E 1/2 1/8 1/5 1/5 1 0.043 5
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Table 2.13 Comparisons of Table 2.11 inverted.

A B C D E Priority Rank

A 1 7 2 8 1/2 0.299 4
B 1/7 1 1/3 1 1/8 0.047 1
C 1/2 3 1 4 1/5 0.140 3
D 1/8 1 1/4 1 1/5 0.051 2
E 2 8 5 5 1 0.462 5

2.4.4.3 Geometric mean

In order to avoid the left–right rank reversal, Crawford and Williams (1985) adopted
another approach by minimizing the multiplicative error (2.13):

aij = pi

p j
eij, (2.13)

where aij is the comparison between object i and j, pi is the priority of object I, and
eij is the error.

The multiplicative error is commonly accepted to be log-normally distributed
(similarly, the additive error would be assumed to be normally distributed). The
geometric mean,

pi = n

√√√√ n∏
j=1

aij, (2.14)

is the one, which minimizes the sum of these errors,

min
n∑

i=1

n∑
j=1

(
1n(aij) − 1n

(
pi

p j

))2

. (2.15)

The geometric mean (also sometimes known as logarithmic least squares method)
can be easily calculated by hand and has been supported by a large segment of the AHP
community (Aguarón and Moreno-Jiménez 2000, 2003; Barzilai 1997; Barzilai and
Lootsma 1997; Budescu 1984; Escobar and Moreno-Jiménez 2000; Fichtner 1986;
Leskinen and Kangas 2005; Lootsma 1993, 1996). Its main advantage is the absence
of rank reversals due to right–left inconsistency: the row and column geometric means
provide the same ranking in an inverse order (this is not necessarily the case with the
eigenvalue method).
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Example 2.6 The priorities of Table 2.12 are

p1 = 5

√
1 · 1

7 · 1
2 · 1

8 · 2 = 0.447, p2 = 2.787,

p3 = .0.964, p4 = 2.759, p5 = 0.302.

Note that these priorities are in in the reverse order compared to the priorities of
Table 2.13: p1 = 2.237; p2 = 0.359; p3 = 1.037, p4 = 0.362, p5 = 3.314. Therefore
the geometric mean does not have any rank reversal due to an inversion of the scale.

2.4.5 Aggregation

The last necessary step is the synthesis of the local priorities across all criteria in
order to determine the global priority. The historical AHP approach adopts an additive
aggregation with normalization of the sum of the local priorities to unity. This type of
normalization is called distributive mode. This additive aggregation is expressed as

Pi =
∑

j

w j · pij (2.16)

where Pi is the global priority of alternative i, pij is the local priority with regard to
criterion j, and wj is the weight of the criterion j.

If priorities are known, the distributive mode is the only approach that will
retrieve these priorities. However, if a copy (Belton and Gear 1983), or near-copy
(the pairwise comparison is almost the same as the original) (Dyer 1990b), of an
alternative is introduced or removed (Troutt 1988), a rank reversal of the alternatives
may occur. This phenomenon has been criticized by some (Dyer 1990a, 1990b;
Holder 1990, 1991; Stam and Duarte Silva 2003) and accepted by others (Harker
and Vargas 1987, 1990; Pérez 1995; Saaty 1986, 1990, 1991, 1994b, 2006). This
rank reversal phenomenon is not unique to AHP but common to all additive models
having a normalization step (Triantaphyllou 2001; Wang and Luo 2009). In fact,
when the number of alternatives is changed, the denominator for the normalization
is also changed, which implies a change of scale and possible rank reversal.

To avoid this rank reversal problem, priorities should be normalized by dividing
them by the same denominator in any configuration of the problem for which the
ideal mode was proposed. This normalization is done by dividing the score of each
alternative by the score of the best alternative under each criterion.

When should the distributive or ideal mode be used? Millet and Saaty (2000) give
some guidance on which normalization to use. If in a closed system (i.e. no alternative
will be added or removed), then the distributive mode should be used. If in an open
system (i.e. alternatives can be added or removed) and the preference is allowed for
alternatives to be dependent on other alternatives (in other words, the rank reversal
phenomenon is accepted), then the distributive mode is indicated. If we are in an
open system and do not want other alternatives to affect the outcome, then the ideal
mode is recommended.
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Multiplicative aggregation has been proposed to prevent the rank reversal phe-
nomenon observed in the distributive mode (Lootsma 1993; Barzilai and Lootsma
1997). In the notation of (2.16), this form of aggregation is expressed as

pi =
∏

j

pwj

ij (2.17)

Multiplicative aggregation has non-linear properties allowing a superior compro-
mise to be selected; this is not the case with additive aggregation (Stam and Duarte
Silva 2003; Ishizaka et al. 2006, 2010). Vargas (1997) demonstrated that additive
aggregation is the only way to retrieve exact weights of known objects. MakeItRa-
tional offers only the additive distributive and ideal mode of aggregation.

Exercise 2.3

First you will learn to calculate priorities for one criterion step by step. Then you will
be given the opportunity to complete the spreadsheet for the other criteria.

Learning Outcomes

� Understand the calculation of priorities with the approximate method in
Microsoft Excel

� Understand the calculation of priorities with the eigenvalue method in Excel

� Understand the calculation of priorities with the geometric mean method in
Excel

Tasks

Open the file Sport Shop.xls. It contains three spreadsheets with the three different
priority calculation methods.

Complete the following tasks:

a) Describe the meaning of each calculation cell and its formula. Read the
comments in the red squares in case of difficulties.

b) The spreadsheets are incomplete because they calculate only one local alter-
native. Complete them in order to calculate the other local alternatives.

2.5 Extensions of AHP

In this section, four extensions of AHP are presented. The analytic hierarchy pro-
cess ordering method was introduced to separately analyse criteria that have to be
minimized and maximized. The group analytic hierarchy process is used for group
decisions. The clusters and pivots technique is applied to large problems to reduce the
number of pairwise comparisons. AHPSort is implemented to solve sorting problems.
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Location of a
sports shop

Visibility Floor space

Industrial area Shopping centre City centre

Frequency Window size

Level 3

Level 2

Level 1

Figure 2.14 Benefit hierarchy.

2.5.1 Analytic hierarchy process ordering

The analytic hierarchy process ordering method, which considers incomparability,
was first proposed by Ishizaka and Labib (2011). In line with the philosophy of AHP,
some researchers have proposed deconstructing the model into sub-problems (Azis
1990; Clayton et al. 1993; Wedley et al. 2001). They propose separating the criteria
in opposite directions in different hierarchies: benefits versus cost. The reason for
this additional decomposition is that criteria in the same direction are much easier to
compare than in opposite directions, such as a criterion to be minimized and another
maximized.

For example, suppose that three more criteria are added to Case Study 2.1:
vandalism, floor space and window size. We now have seven criteria in total. Some
have to be maximized (visibility, floor space, frequency and window size) and others
minimized (competition, rental costs, vandalism). Two hierarchies can be constructed:
a benefit hierarchy (Figure 2.14) and a cost hierarchy (Figure 2.15). These two
hierarchies are then solved separately. As a result the output of the method is a partial
ranking (and not priorities).

Location of a
sports shop

Competition Rental costs

Industrial area Shopping centre City centre

Vandalism

Level 3

Level 2

Level 1

Figure 2.15 Cost hierarchy.
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Benefit

Cost

0

0

Alternative AAlternative B

Figure 2.16 Graphical representation of the preference relation.

If cost and benefit rankings are not aggregated, we have a partial ordinal ranking
(Ishizaka and Labib 2011). A partial ordinal ranking can be derived from the cost
and benefit analysis, where:

1. Alternative A is better than alternative B if alternative A is ranked better than
alternative B in the cost and benefit analysis (Figure 2.16).

2. Alternative A and alternative B are indifferent if alternative A has the same
score as alternative B in the cost and benefit analysis (Figure 2.17).

3. Alternative A is incomparable to alternative B if alternative A is better in one
analysis and worse in the other analysis (Figure 2.18).

Incomparability does not exist in standard AHP. This status is important as it reveals
that a decision maker cannot decide which of the two alternatives is the best, while
not being indifferent: an alternative is better in some aspects but worse in others. To
decide which alternative is better, further discussion between the decision makers and
moderation by the analyst are needed. This debate may require additional information.

However, if a debate cannot be held (e.g. if the decision maker is unavailable), the
cost and benefit analysis can be merged into a complete ranking. First, the importance
scores of the benefits and costs are weighted and then the weighted score of the cost
analysis divides the weighted score of the benefit analysis. This produces the complete
cardinal ranking.

Benefit

Cost

0

0

Alternative A
Alternative B

Figure 2.17 Graphical representation of the indifference relation.
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Figure 2.18 Graphical representation of incomparability.

Researchers have proposed four hierarchies: benefit, cost, opportunity and risk
(Saaty and Ozdemir 2003a; Saaty 1994b). Each hierarchy is solved separately and
the local priorities are aggregated according to

pi = a · po + b · pb

c · pr + d · pc
(2.18)

where a, b, c, d are weights, po is the priority of the opportunity hierarchy, pb is the
priority of the benefit hierarchy, pr is the priority of the risk hierarchy, and pc is the
priority of the cost hierarchy.

Exercise 2.4

In this exercise, you will be able to solve the sports shop problem with the Analytic
Hierarchy Process Ordering.

Prerequisites

Exercise 2.2

Learning Outcomes

� Structure the benefit and cost hierarchy in MakeItRational

� Understand the partial ordinal ranking

� Understand the complete cardinal ranking

Tasks

a) In MakeItRational, construct the two hierarchies as in Figure 2.14 and
Figure 2.15.

b) Evaluate the pairwise comparisons and calculate the priorities for each
hierarchy.

c) Draw a graph similar to that in Figure 2.16, Figure 2.17 or Figure 2.18.
Confirm whether alternatives are preferred, indifferent or incomparable.

d) Aggregate the priorities of the two alternatives to obtain a complete cardinal
ranking.
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Table 2.14 Four ways to combine preferences (Ishizaka and Labib 2011).

Mathematical aggregation

Yes No

Judgements
(Figure 2.19)

Geometric mean on
comparisons

Consensus vote on comparisons

Priorities
(Figure 2.20)

Weighted arithmetic mean
on priorities

Consensus vote on priorities

A
gg

re
ga

tio
n

on

2.5.2 Group analytic hierarchy process

2.5.2.1 Group aggregation

As a decision often affects several people, standard AHP has been adapted so that
it can be applied to group decisions. By consulting various experts, the bias often
present when judgements are accepted from a single expert is eliminated. There are
four ways to combine the preferences into a consensus rating (Table 2.14).

The consensus vote is used when there is a synergistic group and not a collection
of individuals. In this case, the hierarchy of the problem must be the same for all
decision makers. On the judgement level, this method requires the group to reach
an agreement on the value of each entry in a matrix of pairwise comparisons. A
consistent agreement is usually difficult to obtain, the difficulty increasing with the
number of comparison matrices and related discussions. To bypass this difficulty, the
consensus vote can be postponed until after the calculation of the priorities for each
participant. O’Leary (1993) recommends this version because an early aggregation
could result ‘in a meaningless average performance measure’. An aggregation after
the calculation of priorities allows decision makers with different opinions to be
detected and further discussion over any disagreement.

If a consensus cannot be reached (e.g. with a large number of people or people
in different locations), a mathematical aggregation can be adopted. Two synthesizing
methods exist and provide the same results in the case of perfect consistency in the
pairwise matrices (Saaty and Vargas 2005). In the first method, the geometric mean
of the individual evaluations is used as an element in the pairwise matrices and then
priorities are calculated from that (Figure 2.19). The geometric mean method must be
adopted instead of the arithmetical mean to preserve the reciprocal property (Aczél
and Saaty 1983). For example, if person A enters comparison 9 and person B enters

1/9, then by intuition the mathematical consensus should be
√

9 · 1
9 = 1, which is a

geometric mean and not (9 + 1/9)/2 = 4.56, which is an arithmetic mean. However,
Ramanathan and Ganesh (1994) give an example where the Pareto optimality (i.e.
if all group members prefer A to B, then the group decision should prefer A) is not
satisfied with the geometric mean method. Van den Honert and Lootsma (1997) argue
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Person 1

Person 2

Person n

Comparisons of
person 1

Comparisons of
person 2
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person n

Aggregation of
comparisons

Calculation of
priorities

Figure 2.19 Aggregation at the comparison level.

that this violation is expected because the pairwise assessments are a compromise
of all the group members’ assessments and, therefore, the compromise does not
represent any one opinion of the group members. Madu and Kuei (1995) and Saaty
and Vargas (2007) introduce a measure of the dispersion of the judgements to avoid
this problem. If the group is not homogeneous, further discussions are required to
reach a consensus.

In the second method (Figure 2.20), decision makers constitute the first level
below the goal of the AHP hierarchy (Figure 2.21). Priorities are computed and then
aggregated using the weighted arithmetic mean method. Applications can be found in
Labib and Shah (2001) and Labib et al. (1996). Arbel and Orgler (1990) introduced
a level above that of the stakeholders representing the several economic scenarios.
This extra level determines the priorities (weights) of the stakeholders.

In a compromise method an individual’s derived priorities can be aggregated at
each node. According to Forman and Peniwati (1998), this method is ‘less meaningful
and not commonly used’. Aggregation methods with linear programming (Mikhailov
2004) and the Bayesian approach (Altuzarra et al. 2007) have been proposed to make
a decision even when comparisons are missing, for example, when a stakeholder does
not have the expertise to judge a particular comparison.

A group decision may be skewed due to collusion or distortion in the judgements
to secure the preferred outcome. This problem does not arise when there is a single
decision maker because the first choice will always remain the first. In a group
decision, a participant does not have this certitude as the results are aggregated with
those of the other stakeholders. One decision maker may overweight their preferred
alternative and bias the group decision. As individual identities are lost with an
aggregation, early aggregation is not recommended.



46 MULTI-CRITERIA DECISION ANALYSIS

Person 1
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Comparisons of
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Calculation of
priorities person 1

Calculation of
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Calculation of
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Figure 2.20 Aggregation at the priorities level.

2.5.2.2 Weight of stakeholders

If the decision makers do not have equal weight, their priorities must be determined
as discussed in Ishizaka and Labib (2011). The weights should reflect the expertise
of a decision maker (Weiss and Rao 1987) or the importance of the impact of the

Location of a
sports shop

Visibility Competition

Industrial area Shopping centre City centre

Frequency Rental cost

Level 4

Level 3

Level 1

Stakeholder A Stakeholder B Stakeholder C
Level 2

Figure 2.21 Hierarchy including the stakeholders.
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decision on the decision maker. The weights can be allocated by a supra decision
maker or by a participatory approach. Finding a supra decision maker or benevolent
dictator, accepted by everybody, may be difficult.

Ramanathan and Ganesh (1994) proposed a method based on pairwise compar-
isons to calculate the weights. All n members complete a comparison matrix with
the relative importance of each member. A vector of priorities is calculated for each
member. The n vectors of priorities are gathered in an n × n matrix and the final
weight of each member is given by the eigenvector of this matrix. To incorporate the
uncertainty of the expertise of the participants, AHP has been combined with variable
precision rough sets (Xie et al. 2008) and fuzzy logic (Jaganathan et al. 2007).

Ishizaka and Labib (2011) also use pairwise comparisons to judge other members
of the group, with each evaluated member allowed the possibility of a veto on the
received evaluation. This technique can be viewed as fairer and is applied in situations
such as sporting competitions, for example ice-skating, where judges cannot evaluate
competitors of the same nationality. The consistency of the weights given by the
appraisers is checked with the consistency ratio formula (2.6).

Cho and Cho (2008) have a surprising way of determining weights with levels of
inconsistency: decision makers with less inconsistency receive more weight. We do
not support this method because inconsistency is useful feedback for the user (Section
2.2.3): it highlights the decision maker’s consistency and gives a hint as to revisions
of comparisons that could be manual errors in setting the comparisons, sometimes
forced due to the upper limitation of the comparison scale (e.g. if the user first enters
a12 = 4 and a23 = 5, they should enter a13 = 20 to be consistent, but they can only
enter a13 = 9 due to the maximal value of the measurement scale). The consistency
index is therefore not a measure of the quality or expertise of the decision maker.

Exercise 2.5

In this group exercise, you will be able to solve a group decision with the group
analytic hierarchy process.

Prerequisites

Exercise 2.2

Learning Outcomes

� Structure a group hierarchy in MakeItRational

� Understand the aggregation of individual priorities

� Understand the final group ranking

Tasks

a) Form a group of three or four people.

b) In MakeItRational construct the hierarchy shown in Figure 2.21.
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c) Each stakeholder evaluates the pairwise comparisons.

d) Evaluate pairwise the weight of each stakeholder.

e) Discuss the final ranking. Is everybody satisfied?

2.5.3 Clusters and pivots for a large number of alternatives

The main drawback of AHP is the high number of pairwise evaluations required for
completing large matrices; see expression (2.1). To bypass this problem, a cluster and
pivots method has been proposed (Saaty 2001; Ishizaka 2012). It is based on four
steps:

a) For each criterion, all alternatives are ordinally ranked. If all criteria produce
the same order of alternatives, they would be a replica of themselves and the
problem would be a mono-criterion one.

b) For each criterion, alternatives are divided into clusters. The classical cluster
analysis cannot be used in this case because AHP incorporates qualitative
criteria in the model. It is a delicate and subjective operation, for which no
algorithm exists. The decision maker must evaluate which alternatives are
close enough and therefore easy to compare. A heuristic way to construct the
clusters is to compare the best ordered alternative successively with the next
ones, from the second best to the worst, until:

– either the cluster contains seven elements. Psychologists have observed
that it is difficult to evaluate more than seven elements (Saaty and Ozdemir
2003b). It is recommended that clusters do not contain more than seven
elements.

– or the comparison entered is 9 (if a 9-point scale is used). As no higher
strength of preference is available on the comparison scale (Table 2.2), it
is appropriate to close the cluster.

The last compared alternative becomes the pivot (which becomes now the
best amongst the remaining ones) at the boundary of both clusters. The same
process is repeated with the pivot until seven elements are in the cluster, a
comparison value of 9 is entered, or all entries are provided. In Figure 2.22,
alternative D is the pivot.

c) All alternatives of the same cluster are compared and then priorities are
calculated.

d) Priorities of the clusters are joined with a common element: ‘the pivot’. The
pivot is used for the conversion rate between two clusters.

In AHP, all alternatives are compared to each other in a unique comparison
matrix, which can be perceived as a one-cluster problem. In a scoring model, direct
judgements are used. Each element can be considered a separate cluster. The AHP
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A B C D E F
A 1 9
B 1
C 1
D 1
E 1
F 1

Figure 2.22 Building clusters.

and scoring model represent the two extremes, where 1 or n clusters are used. This
model is the middle way between the two methods.

Example 2.7 Suppose that in Case Study 2.1, the businessman has to choose where
to situate the sports shop from a choice of 12 cities. In this example, only one criterion
is considered (e.g. quality of life), as the process is identical with several criteria.

a) Alternatives are preordered. The 12 cities are preordered according to their
quality of life: A, B, C, D, E, F, G, H, I, J, K, L.

b) Alternatives are divided into clusters. The best city for quality of life, A, is
compared successively with the next cities until the comparison entered is
9 (Table 2.15). As city A is 9 times better than F for its quality, alternative F
is declared the pivot: the last element in the first cluster and the first element
in the second cluster.

c) Comparisons are entered in clustered matrices and priorities are calculated.
Notice that the process requires 30 comparisons (highlighted in grey in

Table 2.15 Comparison matrix for the criterion quality – the unnecessary
comparisons are shaded grey.

A B C D E F G H I J K L

A 1 2 3 5 8 9
B 1 2 3 6 7
C 1 3 5 6
D 1 4 5
E 1 2
F 1 1 3 4 5 5 7
G 1 3 3 4 5 7
H 1 2 3 4 6
I 1 2 2 4
J 1 1 3
K 1 3
L 1
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Table 2.16 First cluster of cities.

Cities Priority

F 0.311
G 0.289
H 0.157
I 0.097
J 0.061
K 0.057
L 0.028

Table 2.17 Second cluster of cities.

Cities Priorities
Priorities linked

with the first cluster

A 0.404 4.333
B 0.249 2.670
C 0.178 1.909
D 0.101 1.083
E 0.040 0.429
F 0.029 0.311

Table 2.15) less than the classical AHP approach. Priorities are calculated
for both clusters (Tables 2.16 and 2.17).

d) Priorities of both clusters are joined with a common element: ‘the pivot’.
Results of the second cluster (Table 2.17) are linked to the first (Table 2.16)
by dividing them by the ratio of the scores of pivot F in the two clusters:
0.311/0.029. Final results are given in Table 2.18.

2.5.4 AHPSort

Whilst AHP solves ranking problems, AHPSort has been developed for sorting prob-
lems (Ishizaka et al. 2012). This method is a variant of AHP used when alternatives
have to be sorted into categories predefined with central limiting profiles. Suppose
that the businessman in Case Study 2.1 aims to open several sports shops in different
cities. The cities will be sorted into three classes (Figure 2.23):

a) cities where sports shops will be highly profitable;

b) cities where sports shop may be profitable;

c) cities where sports shops will not be profitable.



ANALYTIC HIERARCHY PROCESS 51

Table 2.18 Priorities of the cities.

Cities Priorities

A 4.333
B 2.670
C 1.909
D 1.083
E 0.429
F 0.311
G 0.289
H 0.157
I 0.097
J 0.061
K 0.057
L 0.028

AHPSort is based on eight steps:

A) Problem definition

1) Define the goal, criteria and alternatives of the problem.

2) Define the categories Ci, i = 1, . . . , n.

3) Define the profiles of each class. This can be done with limiting profiles
lpi, which indicate the minimum performance needed on each criterion to
belong to class Ci, or with central profiles cpi, given by a typical example
of an element belonging to class Ci. To define each class, n – 1 limiting
profiles or n central profiles are needed.

B) Evaluations

4) Evaluate pairwise the importance of the criteria and derive weights
(Section 2.4.4).

Class 1:
Set of retained cities

Class 3:
Set of discarded cities

AHPSortAlternatives

Limiting profile for class 1

Limiting profile for class 2

Class 2:
Set of possible

cities

Figure 2.23 AHPSort for the sorting process.
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Class 1
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Class 3

Class 4

Class 5

Class 6

lp1

lp2

lp3

lp4

lp5

pj
must be greater

than lpi to belong to
class Ci

Figure 2.24 Sorting with limiting profiles.

5) Compare in a pairwise comparison matrix a single candidate to be sorted
with limiting or central profiles for each criterion to derive local priorities
for each criterion (Section 2.4.4).

6) Aggregate the local weighted priorities, which provide a global priority
pj of alternative aj.

C) Assignment to classes

7) The global priority pj is used to assign the alternative aj to class Ci.

a) Limiting profiles. If limiting profiles have been defined, then alternative
aj is assigned to class Ci which has the lpi just below the global priority
pj (Figure 2.24).

p j ≥ lp1 ⇒ a j ∈ C1

lp2 ≤ p j < lp1 ⇒ a j ∈ C2

· · ·
p j < lpn−1 ⇒ a j ∈ Cn

b) Central profiles. Alternative aj is assigned to class Ci which has the
nearest central profile cpi to pj (Figure 2.25). In the case of equal
distance between two central profiles, the optimistic assignment vision
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cp3

cp4
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Figure 2.25 Sorting with central profiles.

allocates aj to the upper class, whilst the pessimistic assignment vision
allocates aj to the lower class.

pi ≥ cp1 ⇒ a j ∈ C1

cp2 ≤ p j < cp1 AND (cp1 − p j ) < (cp2 − p j ) ⇒ a j ∈ C1

cp2 ≤ p j < cp1 AND (cp1 − p j ) = (cp2 − p j ) ⇒ a j ∈ C1 in the

optimistic vision

cp2 ≤ p j < cp1 AND (cp1 − p j ) = (cp2 − p j ) ⇒ a j ∈ C2 in the

pessimistic vision

cp2 ≤ p j < cp1 AND (cp1 − p j )>(cp2 − p j ) ⇒ a j ∈ C2

· · ·
p j < cpn ⇒ a j ∈ Cn (2.19)

8) Repeat steps 4–7 for each alternative to be classified.

Exercise 2.6

In this exercise, you will sort cities into three categories:

a) cities where sports shops must be open;

b) cities where sports shops may be opened later;

c) cities where sports shops would not be profitable.
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Prerequisites

Exercise 2.2

Learning Outcomes

� Structure a sorting problem in MakeItRational

� Define classes

� Understand the sorting results

Tasks

a) Choose 10 potential cities as alternatives for opening a sports shop.

b) Define two limiting profiles for each class.

c) Model the problem in MakeItRational.

d) Enter the pariwise comparison for each city.

e) Sort the city into a category according to its score.
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Analytic network process

3.1 Introduction

This chapter explains the theory and practical uses of the analytic network process
method (ANP). You will learn how to use Super Decisions (Section 3.3), a software
package that helps to structure decision problems and calculate priorities (scores)
based on the ANP methodology. As ANP is a generalization of the analytic hierar-
chy process (AHP), it is advisable to read Chapter 2 first in order to ensure better
understanding. Section 3.4 is dedicated to the methodological background of ANP.
The companion website provides illustrative examples withMicrosoft Excel, and

case studies and an example with Super Decisions.

3.2 Essential concepts of ANP

ANP is a generalization of AHP which deals with dependencies. In AHP, as with the
other methods presented in this book, we assume that criteria are independent. If they
are not independent, correlated criteria would result in an overevaluated weight in
the decision, as will be illustrated. For example, if we want to buy a car, the criteria
of speed and engine power are correlated. In the traditional MCDA methods, this
dependency implies a heavier weight of these joint criteria. The ANP method allows
these dependencies, also called feedbacks, to be modelled; they are closer to reality
and, as a result, yield more accurate results. As dependencies can arise between any
of the elements in the decision problem (i.e. alternatives, criteria, sub-criteria, the
goal), the model is no longer linear as in AHP (Figure 3.1), where the elements are
arranged in levels. A hierarchy is not necessary in the ANP model, where clusters
replace the levels and each cluster contains nodes or elements (see Figure 3.2). The
clusters are connected by a line, which in turn means that the elements or nodes
contained are connected.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Goal

Criteria

Sub-criteria

Alternatives

Cluster (level)

Node
(Element)

Figure 3.1 Linear hierarchy of AHP.

C2

C5

C3
C1

C4

Feedback network

Figure 3.2 Five-cluster ANP network with feedbacks.

To illustrate the utility of ANP, we introduce in Sections 3.2.1–3.2.3 three types
of dependency that cannot be solved with AHP.

3.2.1 Inner dependency in the criteria cluster

An inner dependency is a correlation of elements in the same cluster. Let us consider
Case Study 3.1, which contains such a dependency.

Case Study 3.1

A school has decided to increase the educational level of the students. To accom-
plish this, it intends to reward the highest-achieving students in the national
language, mathematics and physics. A transparent methodology for ranking stu-
dents has been requested by the dean of the school.
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The structure of Case Study 3.1 has three levels: goal, criteria and alternatives.
The evaluation is biased towards the scientific students, as there is a high

correlation between the mathematics and physics courses. This inner dependence
in the cluster cannot be modelled with AHP.
As an illustrative case, we consider two students: Shakespeare and Newton.

Shakespeare has a talent for languages and Newton excels in scientific subjects.
If the criteria are assumed to have the same weight, the result calculated by AHP
would favour Newton as his strengths lie in the two scientific criteria (see Figure
3.3). ANP is necessary for modelling the inner dependency.

Figure 3.3 Evaluation of Shakespeare and Newton with AHP inMakeItRational.
Reproduced by permission of BS Consulting Dawid Opydo.

The ANP problem structure is very similar to that of AHP, with three levels of
clusters: goal, criteria and alternatives. The difference is the additional loop over the
cluster criteria, which indicates an inner dependency (Figure 3.4).
In addition to the pairwise comparisons in traditional AHP,matricesmodelling the

inner dependency are required. These matrices aim to capture the relative importance

Best Student

Maths Physics Language

Shakespeare Newton

Goal

Criteria

Alternatives

Figure 3.4 Case Study 3.1 structured in clusters.

www.allitebooks.com

http://www.allitebooks.org


62 MULTI-CRITERIA DECISION ANALYSIS

of the criteria when another dependent criterion has already been evaluated. In Case
Study 3.1, three additional matrices are required. The questions to be answered are
as follows:

� If your goal is to select the best student and you know that you are evaluating
them against Physics, which other criterion, Language or Maths, would be
more important and by how much?
As there is a strong correlation between Maths and Physics, a stronger

importance (9 times more important) is given to Language.

� If your goal is to select the best student and you know that you are evaluating
them against Language, which other criterion, Maths or Physics, would be
more important and by how much?
As there is neither a correlation between Language and Physics, nor

between Language and Maths, a similar weight is given to both criteria.

� If your goal is to select the best student and you know that you are evaluating
them against Maths, which other criterion, Language or Physics, would be
more important and by how much?
As there is strong correlation betweenMaths and Physics, a stronger impor-

tance (9 times more important) is given to Language.

The results are different than those calculated using AHP (Figure 3.5). The
Language criterion receives a much higher weight (0.47) than the two other criteria
(0.26). Newton (0.52) and Shakespeare (0.48) are now very close in their ranking,
giving an unbiased evaluation.
If the decision maker set a weight of 0.5 for Language and 0.25 for Maths and

Physics, the comparison to enter would be an infinite amount more important to
Language compared to Maths and Physics. This is technically impossible to enter in
the software but can be approximated with a very high number.

Figure 3.5 Ranking with ANP. C© 1999/2003 Thomas L. Saaty. Reproduced by
permission of Thomas L. Saaty.
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3.2.2 Inner dependency in the alternative cluster

An inner dependency can also exist in an alternative cluster. This phenomenon is
rare and less often considered. Two alternatives are negatively correlated in Case
Study 3.2. The presence of two similar alternatives decreases their attractiveness.

Case Study 3.2

A woman wants to buy an elegant evening dress. The sales assistant suggests two
dresses: A and B. The woman prefers A over B. However, the sales assistant then
presents dress C as a third option, which is very similar to A. As the woman is wor-
ried about another woman wearing the same dress to the gala evening, she buys B.
If we model the problem in AHP and consider dresses A and C to be the same

with regard to elegance and four times more elegant than dress B, then A and
C would be given the highest priority (Figure 3.6). The inner dependency is not
considered in this model and therefore ANP is needed.

Figure 3.6 Dress evaluation with AHP in MakeItRational. Reproduced by per-
mission of BS Consulting Dawid Opydo.

The ANP problem structure is similar to AHP, apart from the additional loop
over the cluster alternatives, which indicates an inner dependency (Figure 3.7).

Elegance

Dress A Dress B Dress C

Criteria

Alternatives

Figure 3.7 Case Study 3.2 structured in clusters.

In addition to the pairwise comparisons in traditional AHP, matrices modelling
the inner dependency are required. These matrices aim to capture the relative
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importance of the alternatives, when it is known that another dependent alternative
has already been evaluated. In Case Study 3.2, three new matrices modelling the
inner dependency are required. The questions to be answered are as follows:

� If your goal is to select your preferred dress and you know that dress A is
also in the evaluation cluster, which dress, B or C, is preferred?
As dresses A and C are similar, dress B will be preferred (9 times more

important).

� If your goal is to select your preferred dress and you know that dress B is
also in the evaluation cluster, which dress, A or C, is preferred?
As dresses A and C are similar and there is no correlation with dress B,

they are equally preferred.

� If your goal is to select your preferred dress and you know that dress C is
also in the evaluation cluster, which dress, A or B, is preferred?
As dresses A and C are similar, dress B is preferred (9 times more

important).

The global priorities are now different than in AHP (Figure 3.5). Dress B is
the preferred alternative (Figure 3.8).

Figure 3.8 Dress ranking with ANP. C© 1999/2003 Thomas L. Saaty. Reproduced
by permission of Thomas L. Saaty.

3.2.3 Outer dependency

An outer dependency or feedback is a correlation between two clusters. For example,
we can have an outer dependency between the cluster criteria and the cluster alter-
native: the weight of the criteria depends on the available alternatives. In AHP, these
feedbacks can be captured through intuitive iterations. For example, in Case Study
3.3, the woman changes the weight of the criteria once she has learnt the price of the
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dresses. ANP uses a more formal approach. Instead of weighting the elegance and
price criteria with respect to the goal, ANP assesses the relative importance of the
criteria first with respect to dress A, then B.

Case Study 3.3

A woman decides to buy an evening dress. There are two criteria she considers
to aid her decision: elegance and price. Elegance is considered to be much more
important than price. The salesman presents the woman with two alternatives:
dress B is not as elegant as dress A. The woman’s preference is dress A, although
it is much more expensive. In this case, the woman gives more weight to the price
criterion and finally chooses dress B.
The problem structure in AHP of Case Study 3.3 has three levels: goal (buy

a dress), criteria (elegance, price) and alternatives (dress A and dress B). If we
consider the elegance criterion to be nine times as important as price, dress A to
be twice as elegant as B, and dress B being nine times cheaper than A, dress A
would be the preferred alternative (Figure 3.9).

Figure 3.9 Evaluation with AHP. Reproduced by permission of BS Consulting
Dawid Opydo.

Dress B would be preferred if the relative importance of elegance was twice
as high as price. It is unlikely that the decision maker would take time to recon-
sider the judgements. Therefore, ANP is more appropriate for modelling outer
dependencies.
The goal of the problem is used to establish criteria and alternatives, and it

does not appear in the ANP network of Case Study 3.3 (Figure 3.10). This is

Price Elegance

Dress A Dress B

Figure 3.10 Case Study 3.3 structured in clusters.
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conceptually surprising, especially for a decision maker using other MCDAmeth-
ods. The justification for this absence is that no element in the problem depends
on the goal: in this case, the weight of the criteria depends on the alternatives
available and not on the goal.
As a result, in Figure 3.10, there is an arrow with double direction. If the

weight of the criteria does not depend on the available alternatives, a goal needs to
be added and the arrow between the criteria cluster and alternatives cluster would
point in the direction of the alternatives.
In addition to the pairwise comparisons asked in traditional AHP, matrices

modelling the outer dependency are required. These matrices aim to capture the
relative importance of the criteria, with regard to the alternatives. In Case Study 3.3
two additional matrices (one for each alternative) are required.
The questions to answer are:

� If your goal is to buy a dress, and you know that dress B is in the cluster of
the alternatives, which criterion, elegance or price, is more important and
by how much?
As dress B is elegant and moderately expensive, an extreme importance

(9 times as much) is given to elegance.

� If your goal is to buy a dress, and you know that dress A is in the cluster of
the alternatives, which criterion, elegance or price, is more important and
by how much?
As dress A is elegant but also expensive, a moderate amount of impor-

tance (3 times as much) is given to price.

The results are now different than those in AHP (Figure 3.11). The elegance
criterion is given a more moderate weight and, as a result, dress B is preferred.

Figure 3.11 Dress ranking with ANP. C© 1999/2003 Thomas L. Saaty. Repro-
duced by permission of Thomas L. Saaty.
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Table 3.1 Influence matrix for a simple hierarchy.

Goal Alternatives Criteria

A1 A2 A3 A4 C2 C3 C4

G
oa
l

A1 x x x
A2 x x x
A3 x x x
A4 x x xA
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C1 x
C2 x
C3 xC

ri
te
ri
a

3.2.4 Influence matrix

When the problem has been formulated and criteria and alternatives defined, it is
good practice to complete an influence matrix. The influence matrix records with a
cross any dependency between elements of the network. In AHP, the influence matrix
would look like Table 3.1: the evaluation of the criteria depends on the goal, and
the evaluation of the alternative depends on the criteria. In ANP, additional Xs in
the influence matrix are possible to indicate the dependences between the different
elements. If the criteria depend on the alternatives, the cluster goal is removed from
the influence matrix (see Section 3.2.3).

Exercise 3.1

The following multiple-choice questions allow you to test your basic knowledge
of ANP. Only one answer is correct. Answers can be found on the companion
website.

1. What does ANP stand for?

a) Analytic Neural Program

b) Analytic Neural Process

c) Analytic Network Process

d) Analytical Network Program
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2. What is an inner dependency?

a) A correlation between two clusters

b) A correlation between decision makers

c) A correlation between alternatives and criteria

d) A correlation of nodes in the same cluster

3. What is ‘feedback’ in an ANP structure?

a) A correlation between two clusters

b) A sensitivity analysis

c) An inner dependency

d) A master–slave dependency

4. Which of the following statements is false?

a) ANP is more precise than AHP

b) ANP requires more pairwise comparisons than AHP

c) ANP is an extension of AHP

d) ANP, unlike AHP, uses direct evaluations

5. In ANP, a goal node is not necessary when . . .

a) Criteria depend on alternatives

b) Alternatives depends on criteria

c) A goal is unclear

d) There is an inner dependency

3.3 ANP software: Super Decisions

There are two main programs that support ANP: Super Decisions andDecision Lens.
Super Decisions has been developed for teaching purposes and can be downloaded,
free of charge, from http://www.superdecisions.com. Decision Lens is an expensive
commercial software package used in industry. Due to the cost of this software, it
has not been possible to test it, so no comment can be made. In this section, the
essentials for using Super Decisions are provided. A full tutorial can be downloaded
from http://www.superdecisions.com/demos_tutorials.php3.
When using Super Decisions it is not necessary to understand how priorities are

calculated. The decision maker identifies what should be ranked and the correlations
between the elements in the problem.
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To illustrate Super Decisions, the example of the purchase of an evening dress,
as described in Case Study 3.4, will be used throughout this section.

Case Study 3.4

A woman would like to buy one of three evening dresses:

Salsaly.1 a) Red lace ruffle dress in silk. Bodycon fit and one shoulder. Lace
ruffle from shoulder to centre front and from back centre. The dress is a
well-known Italian brand (same as the Tangal dress) designed by a famous
German designer. It is priced at £2700.

Tangal. b) Asymmetric red draped dress in silk. Draped detail to front and back,
with flower embellishment on shoulder. The dress is a well-known Italian
brand (same as the Salsaly dress) designed by a famous French designer. It
is priced at £2000.

Xenthila. c) Black minidress in satin. A wrap over chiffon drape design, with
contrast mesh top, plunging V neck and sleeveless styling. The dress is a
French brand by a famous Italian designer. It is priced at £1900.

The decision will be based on four criteria (Table 3.2).

Table 3.2 Criteria for dress purchase.

Criteria Explanation

Brand Brand usually determines prestige and quality
Designer Designer is related to prestige and creativity
Fabric Fabric of the dress
Price Price of the dress

3.3.1 Problem structuring

Before using the software, it is important to structure the problem. All the elements
(nodes) should be listed. These usually result frombrainstorming and are then grouped
into clusters.
In Super Decisions, new clusters can be created by selecting Design/Cluster/New

from the menu. Similarly, new alternatives are added by selecting Design/Node/New.
The next step is to detect the influence one node could have on the others. Once

detected, there are two ways to create links between the parent and child nodes.

1The names of the dresses are fictitious. Any resemblance to existing names is entirely coincidental.
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� From themenu selectDesign/Node connexions from. From the list that appears,
select a parent (or source) node. A second list will appear for all dependent
nodes to be selected.

� Click on the ‘three arrows’ icon Do connexions. Left-click on the source node
and right-click on all the dependent nodes, which will turn red.
There are three types of dependencies:

� Outer dependencies:

� Criteria influence the choice of an alternative with regard to the purchase
of an evening dress, therefore all cells on the upper right-hand side of the
matrix will always contain Xs.

� The available alternatives influence the weight of the criteria, therefore all
cells on the lower left-hand side of the matrix contain Xs.

� Inner dependencies cluster criteria:

� The brand has a renowned name, which influences the price.

� The name of the designer influences the price of the dress, as well as the
type of the fabric used.

� The fabric influences the price of the dress.

� Inner dependencies cluster alternatives:
The availability of one alternative may have an influence on another. For
example, a woman may decide not buy a dress if a similar one is available, as
it might be awkward to see another woman wearing an almost identical dress
on the same night (see Case Study 3.2).

There is no obligation to compile an influence matrix; the influence mapping can
be done directly on the network diagram (e.g. Figure 3.12). However, an influence
diagram like Table 3.3 gives a global view and a common reference for a group
discussion. The nodes are grouped in clusters: criteria and alternatives. The goal
node does not exist because in this case, the weight of the criteria depends on the
alternatives available and not the goal. If the weight of the criteria does not depend
on the available alternatives, a goal needs to be added.

3.3.2 Assessment of pairwise comparison

All the nodes to be pairwise compared are always in the same cluster. They are
compared with respect to their parent node and provide local priorities. In order to
start the process, you need to selectAssess/Compare thenNode Comparisons from the
menu and click on Do Comparison. Four comparison modes are available: graphic,
verbal, matrix and questionnaire. Figure 3.13 displays the questionnaire mode where
the Salsaly and Tangal dresses are equivalent with regard to brand preference; the
Salsaly brand is 5 times as preferable as that of Xenthila and Tangal is 5 times as
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Figure 3.12 Case Study 3.4 structured with Super Decisions. C© 1999/2003 Thomas
L. Saaty. Reproduced by permission of Thomas L. Saaty.

preferable as Xenthila. To switch from one mode to another, you need to click on the
top buttons.
To calculate the priorities and inconsistencies from any of the comparison modes,

select Computations/Show new Priorities. In Figure 3.14 the local priorities of the
matrix shown in Figure 3.13 are displayed. Salsaly and Tangal are the two most

Table 3.3 Influence matrix of Case Study 3.4.

Alternatives Criteria

Salsaly Tangal Xenthila Brand Designer Fabric Price

Salsaly x x x x x x
Tangal x x x x x x
Xenthila x x x x x x

A
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Brand x x x x
Designer x x x x x
Fabric x x x x
Price x x xC
ri
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Figure 3.13 Pairwise comparisons of alternatives in Super Decisions. C© 1999/2003
Thomas L. Saaty. Reproduced by permission of Thomas L. Saaty.

preferred alternatives with regard to brand. The matrix is consistent because the
inconsistency index is 0. If the inconsistency index is higher than 0.1, it is advisable
to revise the comparisons. To do this, select Computation/Most inconsistent from
the menu where the most inconsistent comparison will be shown. For example, in
Figure 3.15, themost inconsistent comparison, 2, is highlighted. The best replacement
value is calculated by clicking Show Best Value.

Super Decisions allows a direct rating of the alternatives/criteria if they are already
known. For example, in Figure 3.16, the price of each dress is known, therefore an
exact amount can be entered. As a higher price is less preferable, the priorities need
to be inverted, which is done by checking Inverted. If all evaluation preferences are
rated directly, then a weighted sum is being used. Super Decisions supports ANP,
AHP and a weighted sum because they share various common features.

Figure 3.14 Local priorities in Super Decisions. C© 1999/2003 Thomas L. Saaty.
Reproduced by permission of Thomas L. Saaty.
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Figure 3.15 Most inconsistent comparison is highlighted. C© 1999/2003 Thomas L.
Saaty. Reproduced by permission of Thomas L. Saaty.

3.3.3 Results

The global priorities of the alternatives are obtained by selecting Computations/
Synthesize from the menu or by clicking on the icon (Figure 3.12). The
Ideals column is obtained from the Normals column by dividing each priority by
the largest value, which means that the best alternative always has a score of 1. The
Normals column normalizes the priorities to 1 and the Raw column comes from
the limit supermatrix (see Section 3.4). In Figure 3.17, the Xenthila dress would be
the better option.

Figure 3.16 Direct rating of the alternatives. C© 1999/2003 Thomas L. Saaty. Repro-
duced by permission of Thomas L. Saaty.
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Figure 3.17 Global priorities in Super Decisions. C© 1999/2003 Thomas L. Saaty.
Reproduced by permission of Thomas L. Saaty.

3.3.4 Sensitivity analysis

The sensitivity analysis in ANP is more complicated than in AHP. In AHP, one
criterion weight can be changed, whereas in ANP, each node can be linked to another
node; an independent nodemust be definedwith regard to a parent node. The following
steps are used in Super Decisions:

� Select Computations/Sensitivity from the menu to access the sensitivity
module.

� Select Edit/Independent Variable from the menu.

� In the Edit parameter window, select SuperMatrix for the Parameter Type, the
parent node (Wrt Node, i.e. With respect to) and the independent node (1st
other node). For example, in Figure 3.18, the independent variable is Price
and the parent node is Salsaly.

� Click on Done on the Edit parameter window.

� Click on Update on the Sensitivity input selector.

In Figure 3.19, the weight of Price is plotted on the x-axis and the priorities of
the alternatives are plotted on the y-axis. By clicking and dragging the black dotted
vertical line it is possible to change the local priority of Price. We can appreciate that
in any scenario, the Xenthila dress is a robust choice.
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Figure 3.18 Parent and independent nodes. C© 1999/2003 Thomas L. Saaty. Repro-
duced by permission of Thomas L. Saaty.

Figure 3.19 Sensitivity analysis in Super Decisions. C© 1999/2003 Thomas L. Saaty.
Reproduced by permission of Thomas L. Saaty.
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Exercise 3.2

In this exercise, you will solve the evening dress problem set out in Case Study 3.4
with the Super Decisions software.

Learning Outcomess

� Structure a problem in Super Decisions

� Enter pairwise comparisons

� Understand the results

� Conduct a sensitivity analysis

Tasks

a) Open the Super Decisions software.

b) Read the description of Case Study 3.4 on page 69.

c) Enter the clusters (Design/Cluster/New).

d) Enter the nodes (Design/Node/New).

e) Link the dependent nodes (Design/Node connexions from).

f) Enter the pairwise comparisons (Menu Assess/compare then Cluster Com-
parisons). Are they consistent?

g) Read your global ranking (Computations/Synthesize).

h) Conduct a sensitivity analysis (Computations/Sensitivity).

3.4 In the black box of ANP

ANP rests on the same theory as AHP (Section 2.4), the only difference being the
supermatrix. In this section, the priorities calculation from the supermatrix will be
explained. The supermatrix is a partitionedmatrix, where each submatrix is composed
of a set of relationships between two nodes in the network. It is similar to Table 3.3,
but consists of intensities instead of Xs. The priority calculation is based on the
Markov chains process, which is explained in the following section.

3.4.1 Markov chain

A Markov chain, named after Andrey Markov, is a system that undergoes random
transitions from one state to another with no memory of the past. This means that
only the current state of the process can influence the next state. A more extensive
presentation can be found in Norris (1997). As a simple example, we consider four
children (Tom, Sam, Liz and Franz) passing a ball to each other. As they have different
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Tom Sam Liz Franz

Tom 0 0.2 0.5 0.3

Sam 0.4 0 0.4

Liz 0.4 0.3 0 0.3

Franz 0.1 0.3 0.6 0

0.2

Figure 3.20 Transition probability matrix.

Tom Sam Liz Franz

Tom 0.31 0.24 0.22 0.23

Sam 0.12 0.26 0.44 0.18

Liz 0.15 0.17 0.44 0.24

Franz 0.36 0.20 0.11 0.33

Figure 3.21 Probability matrix after the second transition.

affinities, the ball is passed with unequal probabilities among them. The matrix in
Figure 3.20 contains the transition probability of the ball from one child to another.
For example, the probability of Tom giving the ball to Sam is 0.2, to Liz 0.5, and to
Franz 0.3. The section across the diagonal will always be zero as the child will not
keep the ball at each transition but pass it to another child. It is important to note that
the sum of each row is 1, which indicates that the ball is always with a child. The
probabilities are unchanged during the game because a previous pass has no influence
on the next one.
In order to find the ball after the second transition, the matrix is squared

(Figure 3.21).
If the number of transitions is infinite (i.e. high), the probabilities will stabilize

and be identical in each column (Figure 3.22). This indicates that at the end of the
game. After a large number of transitions, the probability of the ball being with Tom
is 0.233, with Sam is 0.213, with Liz is 0.307 and with Franz is 0.247.

Tom Sam Liz Franz

Tom 0.232755 0.212865 0.307237 0.247143

Sam 0.232755 0.212865 0.307237 0.247143

Liz 0.232755 0.212865 0.307237 0.247143

Franz 0.232755 0.212865 0.307237 0.247143

Figure 3.22 Probability matrix after a large number of transitions.
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Exercise 3.3

You will cover the Markov chain process step by step.

Learning Outcomes

� Understand how a probability matrix is compiled

� Understand the calculation of probabilities

Tasks

Open the file Ball Game.xls. It contains a spreadsheet with the calculation of
priorities from a supermatrix.
Answer the following questions:

a) Describe the meaning of each cell in the supermatrix. (Read the comments in
the red box in case of difficulty.)

b) Calculate by hand the second probability matrix.

3.4.2 Supermatrix

The influence of each node on other nodes in a network can be gathered in a superma-
trix (Saaty, 2001). The supermatrix in Figure 3.23 sets out the influence on the three
clusters: goal, alternatives and criteria. The order of these in the matrix is irrelevant
(this is not the case with the hierarchy in AHP). If dependencies do not exist between

Goal Alternatives CriteriaCluster node
model

A1 A2 A3 C1 C2 C3

Goal 0 0 0 0 0 0 0

A1 0

A2 0Alternatives

A3 0

eigenvector of influence on each
alternative (because of inner dependency

in the alternative cluster)

local priority of
alternative Ai  with regard

to criteria Ci

C1 0 0 0

C2 0 0 0

C3 0 0 0
Criteria

Weight
of the

criteria

eigenvector of influence
on each criterion
(because of inner

dependency in the
criteria cluster)

Figure 3.23 Supermatrix with no outer dependency from the alternatives of the
criteria.
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Alternatives Criteria
Cluster node

model
A1 A2 A3

A1

Alternatives A2

eigenvector of influence on each
alternative (because of inner dependency

in the alternative cluster)

local priority of
alternative Ai with regard

to criteria Ci

A3

C1

C2

C3

Criteria

weight of the criteria with regard to each
alternative

eigenvector of influence
on each criterion
(because of inner

dependency in the
criteria cluster)

C1 C2 C3

Figure 3.24 Supermatrix with outer dependency from the alternatives on the criteria.

nodes, zero is entered. For example, only the grey sections in Figure 3.23 are com-
pleted. The network becomes a hierarchy and, as a result, AHP can be used; however
the calculation can still be done using ANP. The results are the same in both cases.
However, the disadvantage is that the calculation is more time-consuming. AHP uses
a simple weighted sum for aggregation, whereas ANP requires the supermatrix to be
squared many times. Because of this, ANP is not recommended if no dependency
exists.
If an outer dependency from the alternatives on the criteria exists, the cluster goal

can be removed and the weights with regard to each alternative can be added (section
shown in grey on Figure 3.24).
The columns in the supermatrixmust be normalized to 1 in order to have a stochas-

tic matrix that can be used in a Markov chain process. To capture the transmission of
influence along all possible paths of the network, the matrix is raised to powers. The
matrix is squared to represent the direct influence of one element on another. The
cubic power is taken to express the indirect influence of a second element, and so on.
As the matrix is stochastic, it will converge to a limit supermatrix, which contains
the global priorities.

Exercise 3.4

You will learn to calculate priorities from a supermatrix step by step.

Learning Outcomes

� Understand how a supermatrix is completed

� Understand the calculation of priorities from the supermatrix
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Tasks

Open the file Evening Dress.xls. It contains a spreadsheet with the calculation of
priorities from a supermatrix.
Answer the following questions:

a) Why does each column in the matrix have to be normalized to 1?

b) Describe the meaning of each cell in the supermatrix. (Read the comments in
the red box in case of difficulty.)

References
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Multi-attribute utility theory

4.1 Introduction

This chapter explains the theory and practical uses of themulti-attribute ultility theory
(MAUT) method. You will learn how to use RightChoice, a software package that
helps to structure decision problems and calculate scores based on theMAUTmethod.
Section 4.3 is designed for readers interested in the methodological background
of MAUT. As the MAUT method requires the decision maker to specify lots of
input parameters, some ‘elicitation’ methods are presented in Section 4.4. The UTA,
UTAGMS and GRIP elicitation methods help to infer preference parameters from
a sample ranking given by the decision maker. This section will include a brief
description of the UTA+ and VisualUTA software.
The companion website provides illustrative examples withMicrosoft Excel, and

case studies and an example with RightChoice.

4.2 Essential concepts of MAUT

MAUT is widely used in the Anglo-Saxon world and is based on the main hypothesis
that every decisionmaker tries to optimize, consciously or implicitly, a functionwhich
aggregates all their points of view. This means that the decision maker’s preferences
can be represented by a function, called the utility function U (Keeney and Raiffa
1976). This function is not necessarily known at the beginning of the decision process,
so the decision maker needs to construct it first.
The utility function is a way of measuring the desirability or the preference of

objects, called alternatives. These can be consumer goods (cars, smartphones, etc.)
or services. The utility score is the degree of well-being those alternatives provide

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 4.1 Representation of the ranking of the set A using the MAUT model.

to the decision maker. The utility function is composed of various criteria which
enable the assessment of the global utility of an alternative. Consider, for instance,
the purchase of a smartphone (see Case Study 4.1). In order to choose the most
appropriate smartphone, one will measure the global utility of those available. The
utility is usually grounded on several criteria, such as price, customer reviews, size.
For each criterion, the decision maker will give a score, called the marginal utility
score. The marginal utility scores of the criteria will be aggregated in a second phase
to the global utility score.
Each alternative of set A is evaluated on the basis of function U and receives

a ‘utility score’ U (a) (see Figure 4.1). This utility score allows the ranking of all
alternatives from best to worst. The preference and indifference relations amongst
the alternatives of A are thus defined as follows:

∀ a, b ∈ A : a P b ⇔ U (a) > U (b) : a is preferred to b, (4.1)

∀ a, b ∈ A : a I b ⇔ U (a) = U (b) : a and b are indifferent. (4.2)

The issue of incomparability between two alternatives, as in the outranking meth-
ods (see Chapters 6 and 7), does not arise since two utility scores (i.e. real numbers)
are always comparable. Moreover, the preference relation on set A based on the utility
scores is transitive. This means that if alternative a is better than alternative b, which
in turn is better than alternative c, we can conclude that a is also better than c based
on the utility score.
The utility function U can be defined in several different ways. In this chapter,

the most common approach will be presented: the additive model. Moreover, only
situations in which the evaluations of the alternatives are definedwith certainty will be
considered, although MAUT methods have been extended in the case of uncertainty
and with stochastic information.
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4.2.1 The additive model

Denote by F the set of q criteria f j ( j = 1, . . . , q). The evaluations of the alternatives
f j (ai ) are first transformed into marginal utility contributions, denoted by U j , in
order to avoid scale problems. The marginal utility scores are then aggregated with a
weighted sum or addition (hence the term additive model). The additive model is the
most popular and widely used model.
The general additive utility function can be written as follows:

∀ ai ∈ A : U (ai ) = U ( f1(ai ), . . . , fq (ai )) =
q∑

j=1
U j ( f j (ai )) · w j , (4.3)

whereU j ( f j ) ≥ 0 is usually a non-decreasing function, and w j represents the weight
of criterion f j . They generally satisfy the normalization constraint:

q∑
j=1

w j = 1 (4.4)

The weights represent trade-offs, that is, the amount a decision maker is ready to
trade on one criterion in order to gain one unit on another criterion.
When using additive functions some conditions such as the preferential indepen-

dence condition between the criteria need to be respected; see the detailed explanation
in Section 4.5. The ‘simple’ weighted sum is a special case in this model where U j

are all linear functions. The utility score corresponds to:

∀ ai ∈ A : U (ai ) =
q∑

j=1
f j (ai ) · w j . (4.5)

Generally, the marginal utility functions are such that the best alternative (virtual
or real) on a specific criterion has amarginal utility score of 1 and the worst alternative
(virtual or real), on the same criterion, a score of 0. If the weights are normalized, the
utility score of an alternative is always between 0 and 1.
Some examples of marginal utility functions are shown in Figures 4.2–4.4. The

shapes of the marginal utility functions are determined by the decision maker and
correspond to different attitudes with respect to risk or preference. If the decision
maker estimates that small differences on low criteria performances are significant,
he/she will opt for concave functions (risk-averse attitude). Figure 4.4 shows such
a utility function. This is, for instance the case for the price criterion (which has to
be minimized), where the decision maker expresses those small differences on low
prices that are significant. This is given by the fact that the function decreases rapidly
even if the price rises slowly.
On the other hand, if the decision maker considers small differences on high per-

formances as important, he/she will opt for convex functions (risk-prone behaviour).
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Figure 4.2 Piecewise linear marginal utility function.

In Figure 4.3, the marginal utility score of the criterion increases slowly at the begin-
ning but rises sharply for higher values. Let us finally remark that linear functions
represent a risk-neutral attitude (Zopounidis and Doumpos 2002).

Case Study 4.1

As illustrative example, consider the ranking of five fictitious smartphones
(SP1, . . . ,SP5), which are evaluated on the following criteria:

(1) price (to be minimized);

(2) customer reviews (to be maximized);

(3) screen size (to be maximized);

(4) storage size (to be maximized).

The performance of the five smartphones on those criteria is given in Table 4.1.

Table 4.1 Performance table.

Raw data Price (€) Customer review Screen size (in) Storage size (Gb)

SP1 429 4 4.65 32
SP2 649 4 3.5 64
SP3 459 5 4.3 32
SP4 419 3.5 4.3 16
SP5 519 4.8 4.7 16

In order to compute the marginal utility functions, the decision maker first
needs to rescale the raw performances between 0 and 1. This step depends on
the definition of the marginal utility function. If this function takes only values
between 0 and 1, then the raw performances need to be rescaled or normalized.
If, on the other hand, the utility function can take any value, omit this step. The
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rescaling or normalization step is usually based on the minimum and maximum
performance of the alternatives on each criterion:

f ′
j (ai ) = f j (ai )−min( f j )

max( f j )−min( f j )
(4.6)

when maximizing the criterion, or

f ′
j (ai ) = 1+

(
min( f j )− f j (ai )

max( f j )−min( f j )

)
(4.7)

when minimizing the criterion. Table 4.2 represents the rescaled performances of
Case Study 4.1. Let us remark that this rescaling step might be performed after
applying the marginal utility function in order to ensure utility scores of between
0 and 1.

Table 4.2 Rescaled performance table.

Rescaled Price (€) Customer Review Screen Size (in) Storage Size (Go)

SP1 0.957 0.333 0.958 0.333
SP2 0.000 0.333 0.000 1.000
SP3 0.826 1.000 0.667 0.333
SP4 1.000 0.000 0.667 0.000
SP5 0.565 0.867 1.000 0.000
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Figure 4.3 Positive exponential marginal utility function.
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Figure 4.4 Negative exponential marginal utility function.

Suppose that the marginal utility functions of the screen size and storage size
criteria are linear. On the other hand, consider an exponential marginal utility
function for customer review and price as depicted in Figure 4.3 and Figure 4.4
with an exponent of 3 and 2, respectively. We remark that (4.8) uses the rescaled
values (with (4.6) and (4.7)), which explains the decreasing utility function for
the price utility function (Figure 4.4) despite the value of 2 for its exponent. The
corresponding utility values are given in Table 4.3.

Table 4.3 Marginal utility values for the alternatives.

Marginal
utility scores Price (€) Customer review Screen size (in) Storage size (Gb)

SP1 0.814 0.069 0.958 0.333
SP2 0.000 0.069 0.000 1.000
SP3 0.441 1.000 0.667 0.333
SP4 1.000 0.000 0.667 0.000
SP5 0.115 0.658 1.000 0.000

The exponential marginal utility score for the price criterion is computed as
follows:1

U1(a j ) = exp( f ′
j (ai )2)− 1
1.71

(4.8)

1exp(1)= 2.71, which explains the subtraction of 1 in the nominator as well as the division by 1.71
in order to obtain 1 for the best alternative.
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Finally, consider the weights attached to the criteria as given in Table 4.4
and sum the marginal utility score to obtain the final utility scores. The resulting
ranking is given in Table 4.5.

Table 4.4 Weights associated to the criteria.

Price (€) Customer review Screen size (in) Storage size (Gb)

Weights 0.35 0.35 0.15 0.15

Table 4.5 Global utility scores and ranking.

Final utility scores Scores Ranking

SP1 0.503 2
SP2 0.174 5
SP3 0.654 1
SP4 0.450 3
SP5 0.421 4

Central to theMAUTmethod are the marginal utility function and weights, which
reflect the decision maker’s preferences for each criterion. These parameters need
to be designed by the decision maker with the possible help of a software package
or analyst. Section 4.6 will present different analytical ways to define the utility
functions and weights, whereas Section 4.4 will present the RightChoice Software
which implements MAUT.

Exercise 4.1

You will learn how to calculate the marginal utilities of the alternatives, then
aggregate the marginal utility scores to the global utility of the smartphones in
Case Study 4.1.

Learning Outcomes

� Understand the normalization of data inMicrosoft Excel

� Understand the calculation of the marginal utility functions inMicrosoft Excel

� Understand the calculation of the global utility

� Understand the calculation of the final ranking
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Tasks

Open the file Example_SmartPhones_MAUT.xls. This contains a spreadsheet
with the different calculation steps of the utility scores.

Answer the following question:

Describe the meaning of each calculation cell and its formula. (Read the comments
in the red squares in case of difficulties.)

Exercise 4.2

The following multiple-choice questions allow you to test your knowledge of the
basics ofMAUT. Only one answer is correct. Answers can be found on the companion
website.

1. What does MAUT stand for?

a) Measuring Awareness by a Utilization Technique

b) Measuring Assurance by a Utility Technique

c) Measuring Attractiveness by Utility Technique

d) Multi-Attribute Utility Theory

2. Which of the following statements is correct?

a) MAUT leads to a partial order of the alternatives

b) A limited number of different marginal utility functions exist

c) The utility scores lead to a complete order

d) The utility function is always a sum of marginal utility functions

3. Which of the following statements is incorrect?

a) The additive model is the most used aggregation model of MAUT

b) The weighted sum is a particular MAUT model

c) The normalization of the performances of the alternatives can be omitted
in MAUT if the marginal utility functions are defined accordingly

d) The MAUT method compare the alternatives pairwise in order to attribute
them a score

4. Decreasing utility functions are generally for:

a) Criteria to be minimized

b) Criteria to be maximized
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c) Criteria to be minimized or maximized

d) Only increasing criteria exist

5. What does not exist in MAUT?

a) Preferences

b) Indifferences

c) Incomparability

d) Sensitivity analysis

4.3 RightChoice

The additive MAUT method is easy to implement (see Exercise 4.1). However, if
the decision maker wants to modify the input data easily and needs to perform
a ‘what-if’ analysis (i.e. changing the weights, utility functions, etc. to analyse
the impact on the final ranking), the use of dedicated software is recommended.
RightChoice, which supports the additive model of MAUT, is a free software pack-
age with no limitations in usage, time or in the number of criteria or alternatives.
RightChoice has been developed by Ventana Systems UK and can be downloaded
from http://www.ventanasystems.co.uk/.

RightChoice calculates the marginal utility scores, global utility scores and the
ranking of the alternatives. RightChoice models the decision problem as a tree of
alternatives and criteria to define groups and subgroups of alternatives and criteria.
RightChoice facilitates the sensibility analysis in a user-friendly and flexible manner.
However, if a decisionmaker uses a similar shape of utility function (e.g. exponential)
for several criteria, the parameters of those functions cannot be adapted for each
criterion: they must all be the same (i.e. the exponent will always be of the same
value). This is the main drawback of this software.
Furthermore, RightChoice allows the introduction of several scenarios of prefer-

ence settings, which can be used in a group decision.
To illustrate this, Case Study 4.1 will be solved while changing some of the

utility functions. The reader will find on the companion website the basic steps of
the additive MAUT calculations in an Excel spreadsheet as well as the RightChoice
input files.

4.3.1 Data input and utility functions

First enter the alternatives from Case Study 4.1. The user needs to define a ‘root’
group of alternatives by right-clicking in the left panel shown in Figure 4.5 (e.g.
‘Smart Phones’) and adding alternatives to the group by either right-clicking in the
same place, or selecting ‘Alternatives’ from the menu. The user can define as many
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Values

Figure 4.5 Tree for Case Study 4.1 in RightChoice. Reproduced by permission of
Ventana Systems UK Ltd.

as groups and subgroups of alternatives as required. The menu allows the addition
and removal of groups and alternatives.
Similarly, to enter the criteria of the decision problem the user needs to define a

‘root’ group of criteria by right-clicking in the right panel shown in Figure 4.5 (e.g.
Objective). The user can define a hierarchy of criteria by adding ‘sub-criteria’ to a
root criterion as illustrated in Figure 4.5.
The multi-level trees (compared to unique-level trees) will play a role when

evaluating the alternatives (see Section 4.4.4).
Once the alternatives and criteria tree have been defined, the next step is to

introduce the values of the alternatives or to evaluate them via the Criterion menu.
After choosing the alternative or group of alternatives, as well as a criterion (as

highlighted in Figure 4.5: ‘Brand 2’ and ‘Screen Size’), the user needs to select Values
either using the button or menu View/Values. This leads to the Screen Size dialogue
box shown in Figure 4.6.
If the alternatives are given in raw data (i.e. not normalized) complete the follow-

ing procedure: click on the Select button in the dialogue window which defines the
minimum and maximum values of the alternatives for this particular criterion (Units,
Scale and Functions dialogue; see Figure 4.7). This step allows the normalization of
data (see equations (4.6) and (4.7)). According to Table 4.1, the screen size criterion
has minimum value 3.5 and maximum value 4.7. Click on OK and define the values
of the chosen alternatives; see Figure 4.7. The raw data of the other alternatives needs
to be entered in the same way.
Once all the raw data for a criterion have been entered, go back to the Units,

Scale and Functions dialogue and choose from the five different marginal utility
functions (linear, logarithmic, exponential, step and quadratic). The user needs to
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Scale

Figure 4.6 Evaluation of the alternatives.
Reproduced by permission of Ventana
Systems UK Ltd.

Figure 4.7 Dialogue box for defining
the units, scale and functions. Repro-
duced by permission of Ventana Systems
UK Ltd.

specify whether the criterion is to be maximized or minimized (Graph Type in Figure
4.8): this changes the shape of the utility function (compare Figure 4.7 and Figure 4.8).
The user can define the convexity or concavity of the marginal utility function

by specifying the numerical parameter of the function (as illustrated in Figure 4.9)
but cannot define piecewise linear marginal utility functions. This can be done in
Tools/Options/Functions. However, as previously mentioned, the user cannot change
the value of the parameter for different criteria once a shape is defined.

Figure 4.8 Dialogue box for defining the units, scale and functions when minimizing
the criterion. Reproduced by permission of Ventana Systems UK Ltd.
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Figure 4.9 Parameters defining the utility functions. Reproduced by permission of
Ventana Systems UK Ltd.

RightChoice can also be used to help the decision maker evaluate alternatives on
the criteria. The dialogue box for values (Figure 4.10) for a chosen criterion permits
the introduction of utility values of different alternatives. Usually, the decision maker
starts by defining the worst and best alternative, to which they assign the marginal
utility score of respectively 0 and 100.
The weight of the criteria can easily be modified with theWalkingWeights option

by clicking on theWeights button or via View/Weights (Figure 4.11). By changing the
weights, the impact on the utility scores can be visualized. The user always needs to
specify the group of criteria they want to act on. By selecting the root criterion, the

Figure 4.10 Dialogue box for the values on the screen size criterion. Reproduced
by permission of Ventana Systems UK Ltd.
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Figure 4.11 Walking weights in RightChoice. Reproduced by permission of Ventana
Systems UK Ltd.

user will be able to modify the first-level criteria and group-criteria (see, for instance,
the left panel of Figure 4.11).

4.3.2 Results

By clicking on Frontier Analysis or going to Tools/Frontier Analysis, the user can
display the utility scores and the ranking of alternatives for a given criterion. The
utility scores in RightChoice vary between 0 and 100, where 100 is the best score.
To display the global utilities (Figure 4.12), the user needs to select the root of the
criteria (i.e. Objective in Figure 4.5).

Figure 4.12 Utility scores for the alternatives in Case Study 4.1. Reproduced by
permission of Ventana Systems UK Ltd.
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Figure 4.13 Sensitivity Analysis box in RightChoice. Reproduced by permission of
Ventana Systems UK Ltd.

If there are groups of alternatives defined, all the alternatives need to be dragged
and dropped into the root group, otherwise the user will only be able to see the scores
per group and not for the complete set of alternatives.

4.3.3 Sensitivity analysis

RightChoice can perform a sensitivity analysis to illustrate when the ranking will be
modified after changing a specific weight value. Figure 4.13 shows the sensitivity
analysis of the global utility scores of the five smartphones when changing the price
criterion. This graph shows that if the weight of price is lower than 0.44, then SP3
has the highest score; otherwise, it is SP4. To display this window, the user needs to
click on the Sensitivity Analysis button or go to Tools/Sensitivity Analysis.
Unfortunately, it is not possible to change the parameters of the marginal utility

functions (e.g. the exponent) in order to analyse their impact on the results.

Figure 4.14 Score analysis in RightChoice. Reproduced by permission of Ventana
Systems UK Ltd.
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Figure 4.15 Addition/suppression of a weight group. Reproduced by permission of
Ventana Systems UK Ltd.

Furthermore, the user can perform a Score Analysis (go to Tools/Sensitivity Anal-
ysis) to establish for which criteria a specific alternative has not achieved a benchmark
score.
From Figure 4.14, one can see that SP1 does not reach the marginal utility score

of 50 on the customer review and storage size criteria, which are marked in red.

4.3.4 Group decision and multi-scenario analysis

In some situations the decision maker might want to define several scenarios for their
decision problem. For each scenario (also called a weight group), the decision maker
can define different weight and utility functions.
The user can add/delete a new weight group via the toolbar menu as shown in

Figure 4.15 and can then modify their settings by selecting the appropriate weight
group.
Once the different scenarios have been set out, the user can define different

weights for each scenario by opening theWeights Series Overview. By going to View/
Series Overview the user can access the interactive Weights Series menu as well as
the frontier analysis for the Weight Series Overview (Figure 4.16). This will allow
the user to analyse the global ranking when changing the weights of the different
scenarios.
If the decision problem involves several decision makers, the group facilitator can

set out several scenarios corresponding to each decision maker’s preference setting.
Each decision maker can thus be weighted differently and the final group decision is
given in the Frontier Analysis: Weight Series Overview. Unfortunately, no automatic
insight is given about the difference in the ranking of the participants.

Exercise 4.3

In this exercise, you will solve the decision in Case Study 4.1 with the RightChoice
software.

Learning Outcomes

� Structure a problem in RightChoice

� Enter the preference parameters

� Understand the results



96 MULTI-CRITERIA DECISION ANALYSIS

Figure 4.16 Weight Series Overview, Weights Series menu and the corresponding
Frontier Analysis when several scenarios have been defined. Reproduced by permis-
sion of Ventana Systems UK Ltd.

Consider Case Study 4.1, where the performance of the alternatives is given in
Table 4.1. Enter the data in the RightChoice software and check that the same results
as in Figure 4.12 are obtained.

Tasks

a) Read the description of Case Study 4.1 and open the software. Choose New
in the File menu.

b) From the Criterion menu, choose Add and insert the new criteria. For each
criterion specify a name. From the Alternatives menu, choose Add and insert
the new alternatives. Define some groups in the decision tree and drag and
drop the alternatives and criteria into the groups (see Figure 4.5).

c) From the View menu, choose Values and edit the performance of the alterna-
tives after choosing a specific criterion in the criterion tree. Enter theminimum
and maximum values for the criterion considered, before specifying the scale
transformation.

d) Choose an exponential scale for the price and customer reviews criteria with
20 as the exponent. Choose the linear scale for the two size criteria.
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e) Display the marginal utility scores for each criterion and check if the marginal
ranking corresponds to your intuition. Display the global utility score per
group of alternatives as well as for the whole set of smartphones.

f) Is the ranking stable for any weight given to the combined size criterion?

g) At which specific weight values, given to the price criterion, will the ranking
change?

h) Find the criteria for which SP2 does not reach the benchmark of 20 by
performing a score analysis.

Answers can be found on the companion website.

4.4 In the black box of MAUT

MAUT is a method of total aggregation which computes the trade-off between cri-
teria that respects the axioms of comparability, reflexivity, transitivity of choices,
continuity and dominance (Beuthe and Scannella 1997). To have a family of criteria
which consistently represents the decision maker’s preferences, it is necessary for
the criteria of F (see Section 4.3.1), defined on the set of alternatives A, to satisfy the
axioms of exhaustibility, cohesion and non-redundancy. If these axioms are fulfilled,
the criteria define a so-called consistent family of criteria (Roy 1974). The use of
additive functions is only permitted if the preferential independence is respected.
Refer to Keeney and Raiffa (1976) and Vincke (1992) for more information on this
topic.
Having formulated the conditions that the utility functions need to fulfil, the

shape of the utility functions must be considered. There are two different methods for
constructing the utility functions: the direct and indirect methods. Before detailing
these methods, the following considerations must be taken into account. This family
of methods enables a complete pre-order of the alternatives, which is a rich result (i.e.
a score is given for each alternative of A). The scores allow the preference strength
to be assessed. On the other hand, the Pareto dominance relation only ascertains the
dominating and dominated alternatives. Nothing is mentioned about the preference
strength. Nothing can be said about efficient alternatives (i.e. alternatives that neither
dominate nor are dominated by other alternatives). The dominance relation therefore
gives a poor result.
The amount of information needed to build such aggregation models (through

several questions asked of the decisionmaker) is very important and the hypotheses or
axioms of this theory (existence, construction, additivity, etc. of U) are very strong.
Such rich results are not always needed (e.g. a person may only want to find an
ordinal ranking). These considerations have led to the development of a mid-way
theory consisting of a mixture of the dominance relation and multi-attribute utility
theory (Vincke, 1992): the outranking methods (see Chapters 6 and 7).
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In the direct method, the marginal utility function U j is estimated to construct U
directly. The decision maker evaluates the parameters by answering direct questions
about their preferences (through ratings, rankings, preferences on lotteries which
generally include the choice between a certainty option and uncertain outcome but
with probable higher gain). Several questioning procedures exist (Vincke, 1989), and
Fishburn (1973) proposes various methods, which include probabilities, utilization
of compensations between the marginal utility functions, etc.
The analyst needs to estimate this function by asking the decisionmaker appropri-

ate questions. Nevertheless, two fundamental problems are inherent to this approach
(Vincke, 1992):

1. How are the marginal utility functions constructed? How can their parameters
be defined?

2. What properties should the decision maker’s preference have? Can they be
estimated analytically?

To tackle these problems, indirect methods are an alternative for constructing the
marginal utility functions. They estimate the utility functions with global judgements
(i.e. not for each criterion) expressed by the decision maker on a learning set L. This
is achieved if the ranking of the alternatives of L is given. The elicited parameters
have to respect the given ranking. These methods imply that the criteria need to be
defined on a quantitative scale.
Jacquet-Lagreze and Siskos (1982) work on the basis of the utilities additives

(UTA) method, which uses linear programming to obtain the parameters. The main
idea of this method is that the marginal utility functions can be estimated through
piecewise linear functions. Greco et al. (2008) proposed UTAGMS, a generalization of
the UTA method, which addresses the shortcomings of UTA. Recently Figueira et al.
(2009) proposed the GRIP method, which generalizes both the UTA and UTAGMS

methods. GRIP has all of the features of UTAGMS but takes into account the additional
preference information in the form of the comparison of intensities of preference
between pairs of reference actions.
UTA, UTAGMS and GRIP are described in Section 4.6; other MAUT elicitation

methods can be found in Krantz et al. (1971), Jacquet-Lagreze and Siskos (1982),
Beuthe and Scannella (1997), Greco et al. (2008) and Figueira et al. (2009).

4.5 Extensions of the MAUT method

4.5.1 The UTA method

The aimof theUTAmethod (Jacquet-Lagreze andSiskos 1982) is to infer themarginal
utility functions of U through the ordinal ranking given by the decision maker on
the learning set L. The decision maker needs to rank the best to the worst of the
alternatives of L, by giving each alternative a rank. Constraints can be imposed on the
marginal utilities to respect (as much as possible) the given ranking. Properties such
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as transitivity will impose additional constraints. A brief introduction to the linear
optimization technique is given in the Appendix.
TheUTA+ software implements the UTAmethod. This software has been chosen

because it is not only user-friendly, but also provides a rich output such as themarginal
utility functions, which can be interactively modified based on a learning set.
The software has a nice user interface but unfortunately only runs on Windows

3.1, 95, 98 and 2000. The software is available from Lamsade at Université Paris-
Dauphine (http://www.lamsade.dauphine.fr/spip.php?article250). The main reason
for describing this old software is to give the reader an intuitive description of the
elicitation process. In Section 4.6.2, the more recent softwareVisualUTA is described,
which does not currently have similar advanced functionalities.
In what follows, the weights are defined as

∀ j : w j ( f j ) · U j ( f j ) = u j ( f j ) (4.9)

This normalization allows us to avoid defining the weights as they are incorporated
into the u j ( f j ) functions.
Let f +

j and f −
j be respectively the maximum and minimum values of the alter-

natives in set A to be ranked and the learning set L on criterion j (Figure 4.17).
The interval [ f −

j , f +
j ] can be subdivided into α j − 1 equal intervals where α j is a

parameter defined by the analyst (with α j ≥ 1). When a criterion accepts only dis-
crete scores, this parameter can also correspond to the number of possible values for
this criterion. This allows us to define the ‘endpoints’ and which unknown marginal
utility scores have to be determined by the linear program.
The ith endpoint f i

j of the piecewise linear function of criterion j is defined as
follows (Figure 4.17):

f i
j = f −

j +
i − 1

(
f +

j − f −
j

)
(α j − 1) (4.10)
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Figure 4.17 Representation of the piecewise linear function for criterion j.
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If the marginal utility scores of these endpoints are known, the utility score of any
point in [ f −

j , f +
j ] can be inserted in the following way: if f j (a) ∈ [ f i

j , f i+1
j ], then

u j ( f j (a)) = u j
(

f i
j

) + f j (a)− f i
j

f i+1
j − f i

j

[
u j

(
f i+1

j

)
− u j

(
f i

j

)]
(4.11)

For all the alternatives of the learning set, the approximate marginal utility function
U ′, ∀a ∈ L can be calculated:

U ′(a) = U (a)+ σ (a) =
q∑

j=1
u j ( f j (a))+ σ (a) (4.12)

where σ (a) represents the potential error and u j ( f i
j ) is unknown. The sum of all the

potential errors needs to be minimized:

Minimize G =
[∑

a∈L

σ (a)

]
minimize

∑
a∈L

σ (a)

. (4.13)

Since the decision maker has expressed an ordinal ranking (possibly with equal
rankings) on the learning set L, some new constraints (equalities and inequalities)
need to be added to the utility scores of the alternatives of L to satisfy the preference
and indifference relations as defined in (4.1) and (4.2).
Given the transitivity of the utility scores, the equalities and inequalities obtained

from (4.1) can be reduced to the preference relations between equivalent classes
(i.e. groups of indifferent alternatives) and the indifference relations within each
equivalence class. Suppose that there are Q equivalent classes with each n p (p =
1, . . . , Q) indifferent alternatives. Then the following constraints exist:

Constraint 1. Q preference relations: for all a, b ∈ L ,

a P b ⇔ U (a) > U (b) ⇔
q∑

j=1
u j ( f j (a))−

q∑
j=1

u j ( f j (b))+ σ (a)− σ (b) ≥ δ,

where δ is a small positive number.

Constraint 2.
∑Q

p=1 n p indifference relations: for all a, b ∈ L ,

a I b ⇔ U (a) = U (b) ⇔
q∑

j=1
u j ( f j (a))−

q∑
j=1

u j ( f j (b))+ σ (a)− σ (b) = 0.

Constraint 3. Normalized marginal utility functions are required:

q∑
j=1

u j

(
f +

j

)
= 1.
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Constraint 4. To fulfil the monotonicity condition, the following condition needs
to be added:

u j

(
f i+1

j

)
− u j

(
f i

j

) ≥ t j , l = 1, . . . , α j − 1; j = 1, . . . q

where t j ≥ 0 constitutes an indifference threshold for each criterion j.

Constraint 5. To express the fact that potential errors are positive, feasibility
conditions on the error variables andmarginal utilities are given: ∀a ∈ L , ∀i, j ,

σ (a) ≥ 0.

Constraint 6. The utility value of the minimum value on the criterion equals zero:

u j

(
f −

j

)
= 0.

Constraint 7. The utility values are always greater than or equal to zero:

u j
(

f i
j

) ≥ 0.

To find the variables u j ( f i
j ), the linear program that minimizes G, the sum of the

errors, needs to be solved subject to Constraints 1–7.
The optimal marginal utility functions obtained can lead to G∗ = 0 or G∗ �= 0.

If G∗ �= 0, there is no set of utility functions compatible with the given ranking by
the decision maker. Jacquet-Lagreze and Siskos (1982) recommend increasing the
number of endpoints (i.e. α j , j = 1, . . . , qα j ) of the marginal utility functions to
avoid this problem. On the other hand, several sets of utility functions may lead to
the same value of G∗. In this situation, Jacquet-Lagreze and Siskos (1982) propose
a further post-optimality analysis such that the utility functions lead to a ranking
on L sufficiently ‘close’ to the reference ranking given by the user (in the sense of
Kendall’s rank correlation coefficient, which measures the similarity between two
rankings). These steps correspond to the choice of only one set of utility functions
(although several are possible), which implies that some preference information is
lost (Greco et al. 2008). For more information on this topic, see Jacquet-Lagreze and
Siskos (1982) and Greco et al. (2008).
In theUTAmethod, themarginal utility functions are limited to linear or piecewise

linear marginal utility functions. This requires the analyst or decision maker to define
the number of endpoints for each criterion, which is cumbersome and restrictive.
Finally, the decision maker needs to provide a complete ranking on the learning

set L which avoids any incomparability amongst alternatives. A way of avoiding this
problem is to ask the decision maker to define pairwise comparisons as proposed in
Greco et al. (2008).
To address some of the shortcomings of UTA and in order to generalize its

approach, Greco et al. (2008) proposed UTAGMS, described in Section 4.6.2.
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Exercise 4.4

In this exercise, you will learn how to use UTA+.

Learning Outcomes

� Construct the marginal utility functions using UTA+
� Understand the steps required in the UTA+ software
� Obtain the ranking on the basis of a learning set

� Perform a what-if analysis

Tasks

Consider the problem of the ranking of smartphones in Case Study 4.1 based on a
learning set. Define the learning set of three reference alternatives: SP3, SP2 and SP4.
Introduce the list of the alternatives of A and L. In other words, first introduce the

list of all alternatives regardless of whether or not they belong to the learning set.

a) Go to Problem/Edit, and add the names of the alternatives (left-hand column
in the Edition dialogue box in Figure 4.18).

b) Introduce the list of criteria (left-hand column in the Edition dialogue box in
Figure 4.18). Define the settings for each criterion by clicking on Edit in the
Edition dialogue box. Define the utility type: Gain or Cost (corresponding
respectively to maximizing or minimizing the criterion) and the number of
breakpoints for the utility functions.

c) Enter the performance of the alternatives (click onEdit in the Edition dialogue
box after selecting the corresponding alternative); see Figure 4.19. Enter the

Figure 4.18 Criterion’s Info dialogue box in UTA+. Reproduced by permission of
LAMSADE.
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Figure 4.19 Dialogue box for entering the performance of an alternative in UTA+.
Reproduced by permission of LAMSADE.

complete ranking on the learning set (choose Ranking from the menu bar);
see Figure 4.20.

d) Define the settings for solving the linear program (go to Solve); see Fig-
ure 4.20. Generate the solution of the linear program and analyze the marginal
utility functions. Do the elicited marginal utility functions lead to the given
ranking on the learning set? Generate the ranking on all alternatives of A (see
Figure 4.21).

e) Modify the shape of one marginal utility function and check that it defines
a coherent ranking on learning set L (Figure 4.22). What is the new ranking
under these new functions? (Figure 4.23).

Figure 4.20 Introduction of the ranking on the learning set L = {SP3,SP2,SP4}.
Reproduced by permission of LAMSADE.
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Figure 4.21 Introduction of the parameters to solve the linear programme. Repro-
duced by permission of LAMSADE.

Figure 4.22 The elicited marginal utility functions which ensure a coherent complete
ranking on L. Reproduced by permission of LAMSADE.
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Figure 4.23 Window to modify the shape of the marginal utility function. Reproduced
by permission of LAMSADE.

4.5.2 UTAGMS

TheUTAGMS method generalizes theUTAmethod in three aspects (Greco et al. 2008).
Unlike the UTA method which uses only one set of piecewise linear functions, the
UTAGMS method can take all additive value functions compatible with the preference
information provided by the decision maker (see Figure 4.24). The only hypothesis
on these functions is that they are non-decreasing (this generalizes the piecewise
linearity). Moreover, the ranking on the learning set L does not need to be complete
(i.e. there might be incomparable alternatives in L).
The software VisualUTA that supports UTAGMS is available from http://idss.cs

.put.poznan.pl/site/visualuta.html and will be described briefly in Exercise 4.5.
Similarly to UTA, the UTAGMS method takes input from the decision maker in

the form of an ordinal ranking on the learning set L. The ranking can be a partial pre-
order: the decision maker provides pairwise comparisons between the alternatives of
L. Non-decreasing additive utility functions are elicited such that they are compatible
with the given preference information.
To determine the utility function values the following constraints need to be

respected (analogous to Constraints 1–7):

1. Constraint 1 takes into account the user preferences on the learning set:

∀a, b ∈ L :

{
aPb ⇔ U (a) > U (b)
aIb ⇔ U (a) = U (b).

0

1

c

fj

Figure 4.24 Marginal utility functions in UTAGMS.
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2. Constraint 2 expresses the fact that the highest value on a criterion has a
marginal utility of 1, for all i:

q∑
j=1

u j ( f +
j ) = 1.

3. Constraint 3 expresses the fact that the lowest value on a criterion has a
marginal utility of 0:

∀ j : u j

(
f −

j

)
= 0.

4. Constraint 4 requires that the utility values are always greater than or equal
to 0:

∀i, j : u j
(

f j
(
aτ j (i−1)

)) ≥ 0

5. Constraint 5 ensures the monotonicity condition, that is, that higher criterion
values lead to higher utility values:

u j
(

f j
(
aτ j (i)

)) − u j
(

f j
(
aτ j (i−1)

)) ≥ 0, i − 1, . . . , m; j = 1, . . . , q,

u j

(
f +

j

)
− u j

(
f j

(
aτ j (m)

)) ≥ 0, j = 1, . . . , q,

where m = |L| and τ j is the permutation on the set of indices of alternatives
from L that reorders the alternatives with respect to the increasing evaluation
on criterion f j . In other words,

f j
(
aτ j (1)

) ≤ f j
(
aτ j (2)

) ≤ . . . ≤ f j
(
aτ j (m)

)
.

Compatible value functions with the preference information given by the decision
maker do not necessarily exist (i.e. the linear program does not necessarily have
a solution). This might happen if the decision maker has made an error in their
statements or if the statements are inconsistent. On the other hand, it might be
possible that an additive model cannot model the preference information. Greco et al.
(2008) suggest that, in order to overcome this impasse, incompatibilities are either
accepted or not.
Based on the elicited functions, two preference relations can be defined on the

alternatives of A: the weak necessary preference relation and the possible weak
preference relation.

1. In the necessary ranking, a is at least as good as b, written as a �N b, if
U (a) ≥ U (b) for all the value functions. In this case, a necessary preference
relation which is reflexive and transitive is needed. The necessary ranking is a
partial pre-order (Greco et al. 2008).
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2. In the possible ranking, a is at least as good as b, written as a �P b, if
U (a) ≥ U (b) for at least one value function compatible with the ranking on
L. The possible ranking is ‘strongly’ complete (Greco et al. 2008): there is no
incomparability in the possible ranking.

Consider the notation a 
 b ⇔ U (a) ≥ U (b). This leads to

∀a, b ∈ L : a 
 b ⇒ a 
N b and a Pb ⇒ not (b 
P a).

The necessary preference relation is included in the possible preference relation
(
P⊇
N ): if U (a) ≥ U (b) for all possible value functions U, then there is at least
one compatible value function U ′ such that U ′(a) ≥ U ′(b).
The necessary ranking can be considered as robust with respect to the provided

ranking on L, since the preference relations between two alternatives hold for any
value function. When no preference relation exists between a pair of alternatives, the
necessary ranking corresponds to the weak dominance relation and the preference
relation is a complete relation.
The authors suggest using the UTAGMS method interactively with the decision

maker by adding alternatives to learning set L, since this will be taken into account
by the model in the next iteration.
In order to compute the binary relations 
N and 
P for two alternatives a, b of

A, proceed as follows (Greco et al. 2008):

1. Reorder the alternatives from L ∪ {a, b} from the worst to the best on criterion
f j , and note this permutation π j :

f j
(
aπ j (1)

) ≤ f j
(
aπ j (2)

) ≤ . . . ≤ f j
(
aπ j (η)

)
, (4.14)

where η = |L ∪ {a, b}|. This value can be equal to m + 2, m + 1 or m accord-
ing to the union operator.

2. The endpoints of the utility functions are defined as follows: ∀ j = 1, . . . , q,

f 0j = f −
j ; f i

j = f j
(
aπ j (i)

)
; . . . ; f η+1

j = f +
j . (4.15)

3. The following constraints, depending on a and b, need to be satisfied for
i = 1, . . . , η + 1 and j = 1, . . . , q .

Constraint 8

∀a, b ∈ L :

{
aPb ⇔ U (a) > U (b)+ σ

aIb ⇔ U (a) = U (b)
∀i, j : u j

(
f 0j

) = 0; j = 1, . . . , q,

where σ is random small positive number.

Constraint 9

u j
(

f i
j

) − u j

(
f i−1

j

)
≥ 0; i = 1, . . . , η + 1.
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Constraint 10

q∑
j=1

u j ( f η+1
j ) = 1.

1. If the solution space is not empty:

◦ a �N b ⇔ d(a, b) ≥ 0 where d(a, b)min{U (a)− U (b)} respecting
Constraint 10;

◦ a �P b ⇔ D(a, b) ≥ 0 where D(a, b) = max{U (a)− U (b)} respecting
Constraint 10.

Let us remark that not all the distances d(a,b) and D(a,b) need to be computed,
as explained in Greco et al. (2008).

The authors of the UTAGMS method have proposed an extension where the deci-
sion maker can assign confidence levels to pairwise comparisons. This yields valued
necessary preference relations and valued possible preference relations.

Exercise 4.5

In this exercise, you will learn how to use VisualUTA.

Learning Outcomes

� Input the data into VisualUTA

� Understand the results of VisualUTA

Tasks

Consider the problem of the ranking of smartphones in Case Study 4.1 based on a
learning set. As in Exercise 4.4, define the learning set of three reference alternatives:
SP3, SP2 and SP4.
Input the alternatives in the same list regardless of whether they belong to ranking

set A or learning set L.

1. For this task, go to the Alternatives panel on the left of the screen, input the
name of the alternative and then click on the ‘+’ button (see Figure 4.25).

2. Input the list of criteria (at the bottom left of the screen). Click on the ‘+’
button in the Criteria Set panel, specify the name, the description and the
type of criterion. Choose Gain if the criterion has to be maximized or Cost
otherwise (see Figure 4.26).
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Figure 4.25 Inputting the set of alternatives A and L in VisualUTA. Reproduced by
permission of Roman Słowiński.

3. Enter the performance of the alternatives by clicking on the toolbar menu,
which opens the evaluation grid (see Figure 4.26). Define the set of reference
alternatives as well as their corresponding ranking by dragging and dropping
the reference alternatives from the Alternatives Set panel to the Reference
ranking panel. Modify the rank of a chosen reference alternative with the ‘+’
and ‘−’ button (Figure 4.27) if necessary.

4. Solve the problem by pressing F5, going to Calculate/Solve or by click-
ing on the calculator icon in the toolbar. This leads to the ‘Final Ranking
worked out with UTA MD’ (dominance model), the ‘Alternatives compari-
son matrix’ and the ‘Resulting preference graphs worked out with the UTA
GMS’ (Figure 4.28). Is the ranking similar to the deduced ranking obtained in

Figure 4.26 Inputting the set of criteria in VisualUTA. Reproduced by permission
of Roman Słowiński.
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Figure 4.27 Inputting the ranking on the learning set L = {SP3,SP2,SP4}. Repro-
duced by permission of Roman Słowiński.

Figure 4.28 Display of the results of the Visual UTA software. Reproduced by
permission of Roman Słowiński.
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Exercise 4.4? What are the relationships between the alternatives in the pref-
erence graphs?

5. Change the settings (the delta threshold of the linear programming correspond-
ing to σ in Constraint 8) and epsilon used when computing the ‘distances’
d(a, b) and D(a, b) by going to Calculate/Options. What is the impact of
those parameters on the ranking?

Members of the Laboratory of Intelligent Decision Support of the Institute of Com-
puting Science of the Poznań University of Technology have recommended setting
the value of epsilon slightly lower than delta due to the calculation errors which usu-
ally occur when solving linear programs. If the delta and epsilon thresholds are small
enough, an outranking relation is defined for (almost) all compatible value functions.
For greater values of these thresholds, a model is developed concerning just a set of
value functions, for which the relations of preference between reference alternatives
are clear (the difference between the value of two alternatives is greater than delta).

4.5.3 GRIP

The generalized regression with intensities of preference (GRIP) method belongs
to the class of methods based on indirect preference information and the ordinal
regression paradigm. In other words, GRIP enables the ranking of a finite set of
alternatives A based on a partial pre-order and intensities of preferences on a subset
of reference actions L given by the decision maker. Currently, there is no dedicated
software that implements the GRIP method, but see Figueira et al. (2009) for more
technical information and implementation steps of the method.
In contrast to other elicitation methods, the given preference information in GRIP

does not need to be complete. The decision maker can provide some comparisons
between the reference actions. A complete pre-order as in UTA is thus not required.
Moreover, these comparisons can be considered on all criteria (i.e. comprehensively)
or on specific criteria (i.e. partially). The decision maker can specify comparisons of
strengths of preferences between some pairs of reference actions: for example, ‘x is
preferred to y at least as much as w is to z’ or ‘x is preferred to y at least as much as
w is to z, on criterion fi ’. GRIP can be seen as a generalization of both the UTA and
UTAGMS methods.
The indirect preference information given by the decision maker is interpreted as

a set of ordinal regression constraints (analogously as in UTA and UTAGMS), which
define a compatible set of additive value functions. The obtained additive value
functions lead to the following preference relations in A and intensities of preference
for these relations:

� The necessary and possible rankings for all pairs of actions (x, y) ∈ A × A.

� The necessary and possible rankings with respect to the comprehensive inten-
sities of preferences for all ((x, y), (w, z)) ∈ A × A × A × A.
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� The necessary and possible rankings with respect to the partial intensities of
preference for all ((x, y), (w, z)) ∈ A × A × A × A and for all criteria fi ∈ F .

In practice, the necessary and possible rankings are the most useful outputs for the
decision maker.
The input given by the decision maker in GRIP can be considered as similar to the

information required by AHP (see Chapter 2). In both methods, the decision maker
can compare pairwise alternatives on a particular criterion with respect to strength of
preferences. This permits the comparison of AHP with GRIP in respect to a single
criterion. In AHP the strength of preference (given on a scale from 1 to 9) is translated
into quantitative terms by for instance the principal eigenvectors, which is not always
easy to justify. In GRIP, themarginal value functions are a numerical representation of
the original qualitative-ordinal information without any intermediate transformation
into quantitative terms (Figueira et al. 2009).
Furthermore, in GRIP weights do not need to be elicited (contrary to AHP) since

the marginal value functions are expressed on the same preference scale and, as a
result, the value functions can be summed. The elicited marginal value functions can
be based on judgements which involve all the criteria simultaneously. For a more
detailed comparison of GRIP and AHP, see Figueira et al. (2009).
GRIP can also be compared to MACBETH (see Chapter 5), which takes into

account a preference order of actions and strength of preference comparisons on
specific criteria (Figueira et al. 2009). Based on the preference information provided,
MACBETHbuilds an interval scale for each criterion bymeans of linear programming
models. GRIP and MACBETH both deal with qualitative judgements to build a
numerical representation of the preferences. However, GRIP is more general than
MACBETH since the comparisons in GRIP can involve all criteria simultaneously.
As explained in Figueira et al. (2009), the structure of strength of preference in
MACBETH is a particular case of that in GRIP. For a more detailed comparison of
GRIP and MACBETH, see Figueira et al. (2009).
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5

MACBETH

5.1 Introduction

This chapter explains the theory and practical uses of MACBETH. You will learn
how to use the M-MACBETH software, which helps to structure problems and cal-
culate the attractiveness (scores) of the options (choices). Section 5.3 is designed
for readers interested in the methodological background of MACBETH. In order
to understand this section, an understanding of linear programming is needed (see
the Appendix).
The companion website provides illustrative examples withMicrosoft Excel, and

case studies and an example with MACBETH.

5.2 Essential concepts of MACBETH

MACBETH stands for ‘Measuring Attractiveness by a Categorical Based Evaluation
Technique’. From a user point of view, MACBETH has many similarities with AHP.
A novice may even not see the difference. Both methods are based on pairwise
comparisons entered by the user, but MACBETH uses an interval scale and AHP
adopts a ratio scale (Example 5.1). The calculation process behind AHP (Section 2.4)
is different from MACBETH as described in Section 5.3.

Example 5.1 Consider the price of a Chinese (£1000) and Japanese caterer (£5000)
for a conference that you organize. The pairwise comparisons inAHPandMACBETH
are performed differently. AHP uses a ratio scale, 50001000 = 5, whichmeans that the price
of the Japanese caterer is 5 times as expensive. MACBETH uses an interval scale:
5000 – 1000 = £4000. The decision maker should therefore evaluate the difference
(£4000) between the two prices.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Value tree

Caterer selection

Consumables

Drinks

Food

Service

Quality

Price

Reliability

Flexibility

Figure 5.1 Tree of the decisions. Reproduced by permission of BANA Consulting
Lda.

The user of MACBETH will need to complete three steps in order to obtain the
ranking of the options. As with any MCDA method, the first step is to structure the
problem, followed by entering pairwise comparisons into a judgement matrix. If
the matrix is sufficiently consistent, the attractiveness can be calculated, otherwise
the user is obliged to revise their judgements. Finally, an optional sensitivity
analysis is recommended. This task is largely facilitated by the supporting software
M-MACBETH.

5.2.1 Problem structuring: Value tree

MACBETH structures the problem in a tree or hierarchy, but makes a distinction
between criteria and non-criteria nodes. Non-criteria nodes are included in the tree
to help with the evaluation of criteria nodes but are not directly influential in the
decision. They act only as comments to structure the problem and therefore will not
be evaluated. Only one-criterion nodes can be set between the overall node (top of
the tree) and the leaves (bottom of the tree). For example, in Figure 5.1, only Quality
is set as a criterion between the top of the tree (Caterer selection) and the leaf (Food).
It would have been impossible to set another node (Consumables, Service, Drinks or
Food) as criterion under the node Quality. For those who are familiar with AHP, this
is unusual. Indeed, if there is only one criterion between the overall node and leaf,
then the value tree is not equivalent to the AHP criteria tree. The structure can be
reduced to one level with no subcriteria.
This chapter will consider a caterer selection problem in order illustrate the

different steps of the MACBETH process (Case Study 5.1).
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Case Study 5.1

A university organizes a three-day conference and needs to select a caterer to
provide the lunches. It is expected to have around 200 participants, but the exact
number is uncertain. The schedule is very tight and a delay in the service would
disrupt all the presentations in the afternoon. The organizing committee contem-
plates four options:

a) Internal caterer
The university has a catering service,which ismore expensive than external
caterers. It provides a large range of sandwiches. It has been used to cater
for other conferences, and its service is reliable. It is very flexible in that
the number of lunches can be adjusted the day before.

b) Indian caterer
A member of the organizing committee has used an Indian caterer for a
private party. It produced high-quality food for a reasonable price. How-
ever, it does not have previous experience of catering for large numbers
and may be a risky solution.

c) Chinese caterer
A Chinese fast food restaurant also provides catering for big events. Its
service has been used successfully at past conferences as an alternative to
the internal caterer. Its food quality is average and its price is low. It is
very flexible with regard to the number of lunches, as the food is prepared
on the spot in large woks.

d) Japanese caterer
A Japanese caterer has just opened. Its main dishes are sushi. It has the
same price range as the internal caterer but offers higher-quality food. As it
is a new business, its flexibility and reliability in providing a large number
of lunches is not known.

The decision will thus be based on four criteria given in Table 5.1.

Table 5.1 List of criteria.

Criteria Explanation

Quality Quality of the food and service
Price Cost of the service
Reliability Capacity to work on a tight schedule for the conference
Flexibility How easily they adjust the number of lunches for

additional participants

Figure 5.1 represents the tree, generally referred to as a ‘value tree’, from Case
Study 5.1. The top node of the tree contains the overall goal. Quality, Price, Reliability
and Flexibility are criteria nodes (in bold in Figure 5.1). Consumables, Service,Drinks
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and Food are non-criteria but essential information in order to evaluate the Quality
criterion.

5.2.2 Score calculation

After the problem-structuring phase of previous section, three types of scores have
to be calculated:

� Weighting criteria. These measure the attractiveness of each criterion in rela-
tion to the top goal.

� Scores of options. These represent the attractiveness of an option to one
specific criterion.

� Overall score of options. Criteria weight and option scores are only interme-
diate results used to calculate the overall score of options. Whilst the score of
options ranks themwith regard to a single criterion, the overall score of options
ranks them with regard to all criteria and consequently to the overall goal.

The relative attractiveness of each criterion is evaluated pairwise. Then, the options
are compared pairwise with regard to each criterion. In Case Study 5.1, five different
judgement matrices are required: four local scores of options with regard to each
criterion and one weight criteria score.
MACBETH is a pairwise comparison based method on an interval scale. The user

will need to provide only qualitative judgements about the difference of attractiveness
between two options. The traditional MACBETH offers seven semantic categories
for the evaluation (Table 5.2) but other verbal scales can be imagined. For example,
a ‘4’ would read as ‘Option A is moderately more attractive than Option B’.
It is recommended to first order the elements to be evaluated. This is not a

mandatory step but it helps to ensure consistency when filling the judgement matrix.
Your judgements will be in an increasing order from right to left and from the bottom
to the top of your matrix (see Table 5.3). Only the upper triangle of the matrix needs
to be completed because the lower triangle is the reverse and can be deduced from the
upper triangle. As in AHP (Chapter 2), the redundancy of information leads to a gain
in precision but requires a higher effort, especially for a large number of decision
elements.

Table 5.2 Seven semantic categories.

Semantic categories Quantitative scale

no 1
very weak 2
weak 3
moderate 4
strong 5
very strong 6
extreme 7
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Table 5.3 Matrix of judgements.

Quality Price Reliability Flexibility

Quality no very weak weak moderate
Price no very weak weak
Reliability no weak
Flexibility no

Example 5.2 In order to weight the criteria of Case Study 5.1, first rank the criteria
in order of importance. In this case, quality is the most important criterion, followed
by price, reliability and, finally, flexibility. Then the matrix of judgements (Table 5.3)
expresses the difference in attractiveness between the criteria. For example, quality
is slightly more important than price. The main diagonal has no values because a
criterion does not need to be compared to itself.

From such a matrix of judgements, the software will calculate the weights and
scores of options. First, the least attractive option/criterion is grounded to 0. Then,
lists of conditions reflecting the user’s judgement in Table 5.3 are set. A linear
optimization is used to minimize the score of the most attractive option/criterion.
However, as several solutions may exist, the scores can be readjusted in accordance
with the user’s feelings (see Figure 5.10), while still fulfilling the semantic category
constraint conditions. This easy readjustment is done in the software with a graphical
thermometer bar. Advanced readers can refer to Section 5.4 to understand how the
scores are calculated.
Finally,MACBETH aggregates theseweighted scores additively in order to derive

the overall score of options. Unlike toAHP,MACBETH requires a high consistency in
order to be able to calculate scores. Therefore, each time a judgement is provided, the
software will verify the consistency and suggest changes to resolve any inconsistency.
The consistency check is explained in the next section.

5.2.3 Incompatibility check

When filling a judgement matrix, the decision maker may introduce incompatible
judgements. This can occur with comparative and semantic judgements. A compar-
ative judgement is given between two actions on a semantic category (Table 5.2). It
is the judgements that a decision maker enters in the matrix. A semantic judgement
is the comparison between two comparative judgements. It is the difference between
two judgements entered into a matrix.

Example 5.3

Comparative judgements:

� A is weakly more attractive than B.

� C is moderately more attractive than B.
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Attractiveness
on one criterion

B

A

C

Figure 5.2 Semantic judgement difference of attractiveness B – C > A – C.

Semantic judgement:

� The difference in attractiveness between C and B (moderate) is bigger than the
difference in attractiveness between A and B (weak).

There are two types of incompatibility in MACBETH: incoherence and semantic
inconsistency.

Incoherence inconsistency. There are four cases where a conflict can arise between a
comparative judgement and a semantic judgement.

� In Figure 5.2, the semantic judgement difference of attractiveness between
B and C is higher than that of A and C (B – C > A – C). This would be
‘incoherent’ with the comparative judgement A better than B (A > B).

� In Figure 5.3, the semantic judgement difference of attractiveness between B
and C is higher than the difference of attractiveness between B and A (B –
C > B – A). This would be ‘incoherent’ with the comparative judgement C
better than A (C > A).

� In Figure 5.2, the semantic judgement difference of attractiveness between B
and C is higher than the difference of attractiveness between A and C (B –
C > A – C). This would be ‘incoherent’ with the comparative judgement A is
equal to B (A = B).

� In Figure 5.3, the semantic judgement difference of attractiveness between B
and C is higher than the difference of attractiveness between B and A (B –
C > B – A). This would be ‘incoherent’ with the comparative judgement C
equal to A (C = A).
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on one criterion

B

A

C

Figure 5.3 Semantic judgement difference of attractiveness B – C > B – A.

B

C

A D

weak

very weak

very strong

moderate

Figure 5.4 Graph of semantic inconsistency.

Semantic inconsistency. The semantic inconsistency is tested by a linear program that
can be found in Bana e Costa et al. (2005). Basically, it tests that ‘two paths’ between
two points (representing the preference strength) should have the same ‘length’. For
example, the graph in Figure 5.4 presents a semantic inconsistency because A – B >

A – C and B – D > C – D, therefore the path A-B-D is much longer than A-C-D.
However, the linear program accepts surprising cases as in Figure 5.5, where the path
A-B-D is much longer than A-C-D.

B

C

A D

 very weak

very weak

extreme

very weak

Figure 5.5 Consistent graph.
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Exercise 5.1

The following multiple-choice questions allow you to test your knowledge on the
basics of MACBETH. Only one answer is correct. Answers can be found on the
companion website.

1. What does MACBETH stand for?

a) Measuring Awareness by a Consistent Based Evaluation Technique

b) Measuring Assurance by a Cooperative Based Evaluation Technique

c) Measuring Attention by a Coherent Based Evaluation Technique

d) Measuring Attractiveness by a Categorical Based Evaluation Technique

2. What type of scale is used in MACBETH for expressing comparisons?

a) A ratio scale

b) A nominal scale

c) An interval scale

d) A categorical scale

3. How many semantic categories are there in MACBETH?

a) 6

b) 7

c) 8

d) 9

4. If the judgements are A < B and B – C >A – C, are they:

a) Consistent?

b) Incoherent?

c) Semantic inconsistent?

d) None of the above

5. If the judgements are: A is weakly better than B, B is strongly better than C,
and A is moderately better than C, are they:

a) Consistent?

b) Incoherent?

c) Semantic inconsistent?

d) None of the above
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5.3 Software description: M-MACBETH

MACBETH is supported by M-MACBETH. As far as we know there is no other
commercial software for MACBETH, although a template in Microsoft Excel can
be generated (Section 5.4). M-MACBETH is a user-friendly program with intuitive
graphical user interfaces that automatically computes attractiveness and possible
inconsistencies, as well as ways to process a sensitivity analysis. M-MACBETH has
been translated into four languages (English, French, Portuguese and Spanish).
This section describesM-MACBETH and the essential functions of the graphical

user interface. A full tutorial can be downloaded from the M-MACBETH website:
http://www.m-macbeth.com/en/downloads.html.
A free trial version can be downloaded from http://www.m-macbeth.com/. This

version is limited to five criteria and five options. It is not necessary to know how
scores are calculated, but only what should be ranked.
In this section the three steps introduced in Section 5.2 will be followed.

5.3.1 Problem structuring: Value tree

Nodes are entered by right-clicking on the parent node followed by selecting Add a
node. By default all nodes are set as non-criteria. In order to change a non-criterion to
a criterion node, right-click on the node and select node properties. Select to compare
the options of the problem only or the options and two benchmark references. These
two benchmarks are by default the upper and lower reference. They can easily be
changed, for example, to good and neutral. These two benchmarks are virtual and
optional. They permit two reference points for entering judgements. The drawback
is that the number of judgements required increases.
Nodes can also be directly compared on qualitative or quantitative performance-

level scales. For example, in Figure 5.6, five qualitative levels for price are defined.
Options are entered via the menu Options/Define.

5.3.2 Evaluations and scores

Two types of evaluation are possible on a qualitative or quantitative performance-
level scale: pairwise judgement of the options or direct evaluation. The choice of the
evaluation technique needs to be done when setting the criterion nodes (see Section
5.3.1). In order to enter the assessments for the options or performance levels, click
on the criterion node and choose Judgements. The evaluation of the criteria can also
be done in a matrix of judgements by selecting the menuWeighting/Judgements.
The evaluation of the options (Figure 5.7), performance levels (Figure 5.8) and

criteria follows a similar process. It is recommended to order the options by selecting
and dragging them up or down in the column of the judgement matrix in decreasing
order of attractiveness (Figure 5.6). Only n – 1 independent evaluations are required
as the others can be deduced by transitivity. However, it is better to fill the upper
triangle of the matrix using the semantic categories (Table 5.2). If the decision maker
is unsure about the exact category, they can select two or more successive categories
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Figure 5.6 Qualitative levels. Reproduced by permission of BANA Consulting Lda.

as in Figure 5.8. Between low and high price, the difference is evaluated from very
strong to extreme. The best option/level will be highlighted in green whilst the worst
will be in blue.
The calculation of scores is done by clicking on the seventh button shown in

Figure 5.7 and Figure 5.8. The scores are scaled so that the upper reference is 100
and the lower reference is 0 (Figure 5.9). If the two reference levels are not defined,

Figure 5.7 Matrix of judgements for options with regard to quality. Reproduced by
permission of BANA Consulting Lda.
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Figure 5.8 Matrix of judgements for performance levels of price. Reproduced by
permission of BANA Consulting Lda.

Figure 5.9 MACBETH numerical scale. Reproduced by permission of BANA Con-
sulting Lda.
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Figure 5.10 MACBETH weighting scale. Reproduced by permission of BANA Con-
sulting Lda.

the software automatically assigns the scores 0 and 100 to the two endpoints of the
scale. The normalization of the weights is different from that of the options (Figure
5.10). They are normalized to 100 (the sum of the weights adds up to 100).

M-MACBETH allows the scores to be readjusted, whilst being compatible with
the judgements provided in the matrix. The permissible interval is shown in red on
the left part of the thermometer bar and options can be dragged up or down the axis
(Figure 5.9 and 5.10).
In the direct evaluation of options, the performance levels calculated in Figure

5.8 need to be allocated to the options by choosing Options/Table of performances
(Figure 5.11).

5.3.3 Incompatibility check

When contradictory evaluations are entered, M-MACBETH will detect them and
issue a warning. For example, in Figure 5.12, the judgement between the Indian and
Chinese caterers being weak is inconsistent with the previously entered judgements.
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Figure 5.11 Performance table. Reproduced by permission of BANA Consulting Lda.

Figure 5.12 Matrix with inconsistent judgements. Reproduced by permission of
BANA Consulting Lda.

The red arrow pointing down explains that the judgement should be decreased and
the number indicates the number of categories. In Figure 5.12, the first suggestion
implies that the judgement of very strong between the Indian and internal caterers
should be reduced to weak. To see the other suggestions, click on the fourth button.
By clicking on the second button, the contradictions are explained. Figure 5.13

explains the incompatibility of the matrix of Figure 5.12. The first problem is an
incoherence and the second one is a semantic inconsistency (see Section 5.2.3).

Figure 5.13 Incompatibility explanation. Reproduced by permission of BANA Con-
sulting Lda.
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Figure 5.14 Overall scores. Reproduced by permission of BANA Consulting Lda.

5.3.4 Results

Selecting Options/Table of scores displays the table of results (Figure 5.14). This
table contains the overall scores and scores with regard to each criterion. The scores
are normalized for each criterion in order that the most attractive option has a score
of 100 and the least attractive option receives 0. The internal caterer is the most
attractive option.
A further analysis of the options can be done graphically. The difference between

the profiles for any two options can be viewed (go to Options/Difference profiles).
For example, in Figure 5.15, the internal caterer is compared to the Indian caterer.
If the quality of the Internal caterer is far less attractive than the Indian caterer, it
compensates this deficit with more attractive price, reliability and flexibility.
Another way to analyze the results is to use a two-dimensional graph, where each

axis represents a criterion (go to Options/XY Map). In Figure 5.16, the options are
represented according to their attractiveness on the price and quality criteria. It can be
seen that the Japanese caterer has a high quality but is not attractive on the price. On
the other hand, the internal caterer has an attractive price and a low quality. The line
represents the efficient frontier. In this case, the Chinese caterer is a dominated option.

5.3.5 Sensitivity analysis

A static graphical sensitivity analysis is available in M-MACBETH (go to Weight-
ing/Sensitivity analysis by weight). It allows the impact of the change on one criterion
weight on the overall score to be observed. For example, in Figure 5.17, the impact
of the quality criterion weight is plotted. If the weight given to quality is over 46.2,
the Indian caterer will be overall the most attractive option instead of the internal
caterer. If the weight is more than 80, than the Japanese caterer becomes the most
attractive option.

5.3.6 Robustness analysis

The robustness analysis allows exploration if the proposed solution remains
unchanged after a variation in the weights of the criteria. This analysis is important
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Figure 5.15 Profiles difference. Reproduced by permission of BANA Consulting Lda.

in an uncertain problem with imprecise information. In Figure 5.18, a 5% uncertainty
is used for each weight of the criterion. Three types of symbols can be found:

� The symbol means that the global preference of the line action over the
column action does not depend on any combination of weight criteria.

� The symbol means that the preference of the line action over the column
action is not modified if there is less than the defined uncertainty in the weight
alteration.

� The ? symbol means that the preference of the line action over the column
action can be modified if there is less (or more) than the defined uncertainty in
the weight alterations.

For example, in Figure 5.18 the Indian caterer is always preferred over the
Japanese caterer and is preferred over the Chinese and internal caterer if the weight
alteration is below 5%.
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Figure 5.16 Comparison of scores on two criteria. Reproduced by permission of
BANA Consulting Lda.

Figure 5.17 Sensitivity analysis. Reproduced by permission of BANA Consulting
Lda.
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Figure 5.18 Robustness analysis with an uncertainty of 5%. Reproduced by permis-
sion of BANA Consulting Lda.

Exercise 5.2

In this exercise you will solve the caterer selection problem in Case Study 5.1 with
the M-MACBETH software.

Learning Outcomes

� Structure a problem inM-MACBETH

� Enter pairwise judgements

� Understand the results

� Conduct a sensitivity analysis

Tasks

a) In the trial version of M-MACBETH, create a new file (File/new).

b) Read the description of Case Study 5.1, on page 116.

c) Enter the alternatives (Options/Define).

d) Enter the criteria (right-click on Overall and then Add a node).

e) Enter the pairwise evaluations of the options or the performance levels (click
on the criterion node and then Judgements).
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f) Enter the pairwise evaluations for the criteria (Weighting/Judgements).

g) Read the overall ranking (Options/Table of scores), analyse it (Options/ Differ-
ence profiles andOptions/XY Map) and conduct a sensitivity analysis (Weight-
ing/ Sensitivity analysis by weight).

5.4 In the black box of MACBETH

The basic MACBETH scale is derived from the evaluations of the decision maker by
solving a linear programming problem. Therefore, if the reader is not familiar with
this technique, it is advisable to first read the Appendix.

5.4.1 LP-MACBETH

LP-MACBETH is the method used to calculate scores for each judgement matrix
(Bana e Costa et al. 2003; Bana e Costa and Vansnick 1999; De Corte 2002). It
consists of the solution to the following linear program.We have an objective function
of the problem:

minimize �(o1)

where�(o1) is the score of the most attractive option o1. If we maximize it, the score
of the most attractive option will be infinite. Our decision variables are:

�(oi ), i ∈ {1, 2, . . . , n}

We have constraints as follows.
� Ordinal conditions:

∀oi , o j , i, j ∈ {1, 2, . . . ,n}: oi is preferred to o j ⇒ �(oi ) ≥ �(o j )+ δ(i, j)

∀ oi , o j , i, j ∈ {1, 2, . . . ,n}: oi and o j are indifferent ⇒ � (oi ) = �(o j )

where δ(i,j) is the difference of attractiveness between oi and oj

� Semantic conditions:

∀ oi , o j , ok, ol , i, j, k, l ∈ {1, 2, . . . , n} :� (oi )− � (o j ) ≥ �(ok)− �(ol)
+ δ(i, j, k, l)

where δ(i, j, k, l) is the number of semantic categories between the difference
of attractiveness between oi and oj, and the difference of attractiveness
between ok and ol.

� Grounding conditions:

�(on) = 0

i.e. the score of the least attractive option is zero.
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Figure 5.19 Matrix of judgements. Reproduced by permission of BANA Consulting
Lda.

The optimal solution of this linear program is not always unique. The scale
obtained is called aMACBETHscale. This scale is transformed in order for the highest
score to be 100 and the lowest 0. This transformation allows commensurable scores
between criteria, which is necessary for adding them together in an overall score. Let
us reminder that this linear programmemust be performed for each judgement matrix.

Exercise 5.3

You will learn to calculate the scores from a matrix of judgements step by step.

Learning Outcomes

� Understand the modelling of an LP-MACBETH problem

� Understand the configuration of Microsoft Excel Solver

Tasks

Open the file Caterer selection.xls. It contains a spreadsheet with the calculation
of scores from Figure 5.19.
Complete the following tasks:

a) In the spreadsheet, find the objective of the problem, the decision variables
and constraints.

b) Open the Solver. What is entered in the set target cell? What is entered in the
box ‘by changing cells’? What is entered in the box ‘Subject to constraints?’

c) How do you transform the MACBETH scale in order for the most attractive
score to be 100?



MACBETH 133

5.4.2 Discussion

MACBETH relies on a strongmeasurement theory foundation. This theoretical rigour
raises practical issues.
The judgement matrix has to be consistent enough for the calculation of the

attractiveness with a linear program. However, the decision maker might not always
be consistent due to a lack of information or simply because the problem is incon-
sistent by nature (e.g. a football tournament, where the highest classified team can
lose against the lowest classified). In practice, the decision maker will be forced to
enter judgements proposed by M-MACBETH otherwise the attractiveness cannot be
calculated. The final result may not reflect the real ranking the decision maker had
in mind.
Another problem of MACBETH is related to linear programming. It is well

known that several optimal solutions (i.e. rankings) can be obtained with the linear
programming method. These different rankings can be confusing for the decision
maker. The presence of a facilitator is therefore recommended in order to discuss
which solution would best fit their preferences.
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PROMETHEE

6.1 Introduction

This chapter describes the theory along with the practical utilization of the
PROMETHEE method. You will learn how to use Smart Picker Pro, a software
package that helps to express preferences amongst actions (alternatives or choices).
Smart Picker Pro computes, as a main output, a partial and global ranking based
on the PROMETHEE methodology. Section 6.3 is designed for readers interested in
the methodological background of PROMETHEE, while Section 6.4 deals with the
extensions of PROMETHEE in group decision and sorting problems.

The companion website provides illustrative examples in Microsoft Excel, and
case studies and examples with Smart Picker Pro.

6.2 Essential concepts of the PROMETHEE method

The acronym PROMETHEE stands for ‘Preference Ranking Organization METHod
for Enriched Evaluation’. Thus the PROMETHEE method will provide the decision
maker with a ranking of actions (choices or alternatives) based on preference degrees.
The method falls into three main steps:

1. the computation of preference degrees for every ordered pair of actions on
each criterion;

2. the computation of unicriterion flows;

3. the computation of global flows.

Based on the global flows, a ranking of the actions will be obtained as well as a
graphical representation of the decision problem. Before describing these three steps

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



138 MULTI-CRITERIA DECISION ANALYSIS

more in depth, let us introduce the following case study that will be used throughout
this chapter.

Case Study 6.1

A decision maker wants to buy a new car and is considering five different cars of
various types. He therefore defines four criteria:

� price (to be minimized);

� consumption (to be minimized);

� comfort (to be maximized);

� power (to be maximized).

After gathering data and testing the five cars, he evaluates their performances
on the four criteria (Table 6.1).

Table 6.1 Performance of the five cars evaluated on four criteria.

Price (£) Consumption (l/km) Comfort Power (hp)

Economic 15 000 7.5 Very Bad 50.0
Sport 29 000 9.0 Bad 110.0
Luxury 38 000 8.5 Very Good 90.0
Touring A 24 000 8.0 Average 75.0
Touring B 25 500 7.0 Average 85.0

It can be seen from Table 6.1 that no ideal car exists: no car is the best on all
four criteria. The decision maker will inevitably have to make a compromise. The
PROMETHEE method will help the decision maker in his decision process.

6.2.1 Unicriterion preference degrees

The PROMETHEE method is based on the computation of preference degrees. A
preference degree is a score (between 0 and 1) which expresses how an action is
preferred over another action, from the decision maker’s point of view.

A preference degree of 1 thus means a total or strong preference for one of the
actions on the criterion considered. If there is no preference at all, then the preference
degree is 0. On the other hand, if there is some preference but not a total preference,
then the intensity will be somewhere between 0 and 1.

A decision maker might express a preference when looking at the prices of the
cars of Table 6.1. The preference degree of Touring B compared to Luxury might be
1 since it would mean a strong preference for the cheapest car. On the other hand, the
preference degrees between Touring A and Touring B will be relatively small, since
they are similarly priced.
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Figure 6.1 Linear (left) and Gaussian (right) preference functions.

We use the term pairwise preference degree since the preference of action A
over action B cannot be deduced from the preference of action B over action A (nor
vice versa). The PROMETHEE method will help the decision maker to evaluate
these unicriterion pairwise preference degrees. For each criterion, this unicriterion
preference degree is computed through rescaling or enriching the evaluations of the
actions by means of preference information.

What matters in PROMETHEE is how the decision maker perceives the difference
between the (objective) evaluations (often measured) on every specific criterion.
These pairwise comparisons are based on the difference between the evaluations
of the two actions (e.g. the difference in price between the actions). Therefore, he
can choose between two types of preference functions: the linear and the Gaussian
function. These preference functions are shown in Figure 6.1 and Figure 6.2.

If the decision maker opts for a linear function, then the preferences will gradually
increase as a function of the difference between the evaluations on a particular
criterion. When using the Gaussian preference function, the increase follows an
exponential function.

In order to specify each preference function, one or two parameters are required.
The linear preference function requires two parameters: an indifference threshold q
and the preference threshold p. On the other hand, the Gaussian function requires
only one parameter: the inflexion point s.

If the difference between the evaluations on a criterion is smaller than the indif-
ference threshold, then no difference can be perceived by the decision maker between
these two actions (i.e. the preference degree is 0). If the difference is higher than the
preference threshold, then the preference is strong (i.e. the preference degree is 1).
The preference function gives the value of the preference for differences between the
indifference and preference threshold.

Figure 6.2 represents the linear preference function for particular parameters. If
q = p = 0 (Figure 6.2(a)), then there is a strong preference for an action as soon as
there is a difference (however small the difference might be). In Figure 6.2(b) there
is no indifference zone (q=0) which signifies that every difference is considered
proportionally. Finally, in Figure 6.2(c) the preference function is given by a ‘step
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Figure 6.2 Three linear preference functions.

function’. This means that the strength of preference can only take three values: 0,
0.5 or 1.

Let us consider Table 6.1 – more specifically, the price criterion which has to
be minimized. Suppose that the indifference threshold is 2000 and the preference
is 5000. The unicriterion preference degrees of Figure 6.3 will be computed by the
software based on this input, but it is interesting to understand its meaning. Let us
therefore compute the unicriterion preference degrees given in Table 6.2.

All the elements of the diagonal are 0 because an action cannot be preferred to
itself. Since the Sport car is more expensive than the Economic car, Sport cannot be
preferred to Economic: the preference degree (Sport, Economic) is thus necessarily
0. Similarly, we have only zeros in the first column because Economic is the cheapest
car: the first column rendering how the other actions are preferred to Economic.

Since the difference between Economic and Sport is 14 000 and thus higher than
the preference threshold p (= 5000), we show that the preference of Economic over
Sport is 1. Touring B is £3500 cheaper than Sport. The preference degree of Touring
B on Sport can be read in Table 6.2. If you are not scared of some mathematics, this
is how the preference degree is obtained: (3500 – 2000) / (5000 – 2000) = 0.5.

1

difference

Preference

0

50002000

0.5

3500

Figure 6.3 Computation of the preference degree when the difference is 3500 and
q = 2000 and p = 5000.
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Table 6.2 The unicriterion preference degrees for price with a linear function when
p = 5000 and q = 2000.

Price Economic Sport Luxury Touring A Touring B

Economic (£15 000) 0 1 1 1 1
Sport (£29 000) 0 0 1 0 0
Luxury (£38 000) 0 0 0 0 0
Touring A (£24 000) 0 1 1 0 0
Touring B (£25 500) 0 0. 5 1 0 0

If, with the same indifference and preference threshold, the decision maker had
chosen a stepwise preference function, then the difference would fall ‘in the step’
(Figure 6.2). The preference would also be 0.5.

Finally, let us remark that the difference between the Touring A and Touring B
is 1500, which implies that there is no preference between those two cars from the
price point of view. The difference in price is lower than the indifference threshold.
The remaining unicriterion preference degrees are given in Table 6.2.

Figure 6.4 is a graphical representation of Table 6.2. If the preference of car A
over car B is greater than 0, then there is an arrow from A to B. Thus, there is no arrow
from Touring B to Economic since the preference of Touring B over Economic is 0.
Moreover, the intensity or the size of the arrow indicates the strength of preference.
This explains why the arrow between Touring B and Sport is dotted: the preference
is only 0.5.

Moreover, from Figure 6.4 we can deduce that Economic is preferred to all the
other cars since no arrow is aimed at Economic. On the other hand, Luxury is not
preferred to any other car. No preference has been expressed by the decision maker
between the Touring A, Touring B and Sport cars: therefore there is no arrow between
them. Remember that this graph only relates to the price criterion.

It is worthwhile noting that although we considered numerical values in this
example, the PROMETHEE method can deal easily with scaled values (e.g., good,

Economic
Luxury

Touring A

Sport

Touring B

Figure 6.4 Representation of the price preference degrees.
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excellent, etc.). As we will see in Section 6.3.2, the verbal values need only to be
translated into numerical values.

6.2.2 Unicriterion positive, negative and net flows

It is not easy to draw conclusions from the preference degrees table (Table 6.2) or its
graphical representation (Figure 6.4), especially when the number of actions is large.
Therefore, the criterion pairwise preference degrees are summarized in the so-called
unicriterion leaving or positive flows, the entering or negative flows, and the net flows.
These scores measure how an action is preferred over all other actions or how it is
preferred by all other actions.

6.2.2.1 Positive flows

The unicriterion positive flow (or leaving flow) of an action is a score between 0 and 1.
It indicates how an action is preferred (according to the decision maker’s preference)
over all other actions on that particular criterion. The higher this positive flow is,
the more preferred the action is compared to the others (i.e. the better is the action).
It is in fact an average ‘behaviour’ obtained by the average of all the preferences of
an action compared to the others (excluding the preference degree compared with
itself). It is thus the normalized sum of all the row elements and always lies between
0 and 1.

Referring again to our example, the positive flow of Economic is indeed 1 since
this car is preferred over all other actions. The flows thus take into account the
minimizing or maximizing aspect of the criteria. The positive flow of Luxury is 0
since it is the most expensive car. The positive flow of Sport is 1/4 = 0.25 (Table 6.3).

On the left of Figure 6.5 are the initial evaluations of the cars with respect to
the price criterion. This scale is then transformed via the pairwise preferences to
the positive flows depicted on the right. Although Touring A and Touring B are
indifferent (preference degrees between the two cars are 0), their positive scores are
slightly different. This is due to the fact that both cars ‘behave’ differently compared
to the others cars (in particular compared to Sport). Changing the indifference and
preference thresholds changes the positive scores, and their distribution as will be
illustrated further in Section 6.2.5.

Table 6.3 Positive, negative and net flows for the price criterion of Case Study 6.1.

Actions\Criterion Flows Positive Negative Net Price Flows

Economic (£15 000) 1 0 1
Sport (£29 000) 0.25 0.625 –0.375
Luxury (£38 000) 0 1 –1
Touring A (£24 000) 0.5 0.25 0.25
Touring B (£25 500) 0.375 0.25 0.125
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Figure 6.5 Representation of the price evaluations (on the right) and the positive
flows with q = 2000 and p = 5000.

6.2.2.2 Negative flows

Analogously, the negative flows represent an average behaviour. They measure how
the other actions are preferred to this action. The negative flow is thus obtained by
taking an average of all the preference degrees of the actions compared to that par-
ticular action (excluding the preference degree compared with itself). It corresponds
to the average of the entire column except for the diagonal element. This score thus
always lies between 0 and 1.

The third column of Table 6.3 gives the negative flows of all the actions for the
criterion price. Let us emphasize that this score has to be minimized since it represents
the weakness of a car compared to the other cars. Since no car is cheaper than the
Economic car, its negative flow is equal to zero.

6.2.2.3 Net flows

Finally, to take both the positive and the negative aspects into account, we use the
net flows of an action which are obtained by subtracting the negative flows from the
positive flows. These have to be maximized since they represent the balance between
the global strength and the global weakness of an action. The net score of an action
thus always lies between –1 and 1.

6.2.3 Global flows

In the previous section we considered only one criterion. In order to take into account
all the criteria simultaneously, the decision maker needs to provide the relative impor-
tance of each criterion. For instance, the price of a car can be twice as important as
the power. On the other hand, security might be more important than price. In other
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Table 6.4 Preference parameters for Case Study 6.1.

Criteria wi qi pi

Price 0.25 2000 5000
Consumption 0.25 0.5 1
Power 0.25 1 2
Comfort 0.25 10 20

words, the decision maker specifies a weight for each criterion which permits him or
her to aggregate (by means of a weighted sum) all the unicriterion positive, negative
and net flows into global positive flows, global negative flows and global net flows.
These flows thus take all the criteria into account.

The relative importance of a criterion can be depicted in several ways (verbal,
pairwise comparisons, etc.) but in the end it is, in any case, transformed into a
numerical value associated with each criterion (i.e. the weight of the criterion). As
we will see in Section 6.3.3, the Smart Picker Pro software offers several ways to
determine the weights of the criteria.

The global positive score indicates how an action is globally preferred to all the
other actions when considering several criteria. Since the weights are normalized, the
global positive score always lies between 0 and 1.

Analogously, the global negative score indicates how an action is preferred by
the other actions. The negative score always lies between 0 and 1 and has to be
minimized.

The net flows of an action, obtained by subtracting the negative flows from the
positive flows, take into account both views (being preferred over and being preferred
by all other actions).

If we consider equally weighted criteria and linear preference functions with
parameters given in Table 6.4 we obtain the flows reflected in Table 6.5.

Note that we chose the following scale conversion for the comfort criterion: very
bad, 1; bad, 4; average, 8 and very good, 10.

Table 6.5 Positive, negative and net flows for the cars of Case Study 6.1.

Actions Positive flows Negative flows Net flows

A1 - Economic 0.375 0.5 –0.125
A2 - Sport 0.375 0.53125 –0.15625
A3 - Luxury 0.34375 0.4375 –0.09375
A4 - Touring A 0.375 0.28125 0.09375
A5 - Touring B 0.46875 0.1875 0.28125
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6.2.3.1 The PROMETHEE I ranking

The PROMETHEE I ranking is based on the positive and the negative flows. In this
ranking, there are four different scenarios when analysing the flows of two actions:

� One action has a better rank than another if its global positive and negative
flows are simultaneously better (i.e. if the global positive score is higher and
the global negative flow is lower). Considering the global positive and negative
scores of Table 6.5, the Touring A car has a better rank than Luxury. This can
be easily detected from Figure 6.6, where the positive and negative scores are
shown. An action should be simultaneously the first listed on the positive and
negatives axes.

� One action has a worse rank than another if both global positive and the
negative scores are worse. Touring A therefore has a worse rank than Touring
B: its positive scores are lower and its negative scores are higher.

� Two actions are said to be incomparable if one action has a better global
positive score but worse global negative score (or vice versa). Economic and
Luxury are incomparable since Luxury has a lower positive score and a lower
negative score. This can be easily detected graphically as the two actions cross
each other (Figure 6.6).

� Two actions are called indifferent if they have identical positive and negative
flows.

6.2.3.2 The PROMETHEE II ranking

The PROMETHEE II ranking is based on the net flows only and leads to a complete
ranking of the actions (i.e. the incomparable status does not exist). The actions can
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0
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1

1

Figure 6.6 Global positive and negative scores from Case Study 6.1.



146 MULTI-CRITERIA DECISION ANALYSIS

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Economic

Sport

Luxury

Touring A

Touring B

Figure 6.7 Global net flows from Case Study 6.1.

thus be ordered from the best to the worst: Table 6.5 gives the net scores of the cars
and Figure 6.7 is the graphical representation.

To summarize the steps of the decision process, the decision maker needs to
define the criteria taken into account in his or her decision. Then all actions to be
ranked need to be evaluated according to those criteria. By specifying this preference
information, the pairwise criterion preference degrees can be computed. From those
preference degrees, unicriterion flows are computed. In a final step, the criterion flows
are aggregated into global flows by taking into account the relative importance of
each criterion. We then have a ranking.

6.2.4 The Gaia plane

The Gaia plane is a two-dimensional representation of a decision problem. It contains
all the aspects of the decision problem: the actions, the criteria and the decision
maker’s preference information (thresholds and weights). We will not prolong the
suspense any further: Figure 6.8 shows the Gaia plane for the car decision problem
of Case Study 6.1.

In this Gaia plane, actions are represented by bullets and criteria by arrows. The
position of the actions gives the decision maker some idea as to their similarities: the
closer the actions, the more similar the actions. Touring A and Touring B are close
to each other in Figure 6.8. In contrast, Sport is far away from Economic. The Sport
car is thus very different from the other cars.

The similarity and non-similarity are defined by the indifference and preference
threshold. This implies that the Gaia plane depends on the preference information
given by the decision maker.

Analogously, the relative position of the criteria indicates to us the correlation and
anti-correlation (or conflict) of criteria. The closer the arrows, the more correlated the
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Figure 6.8 Gaia plane for the car decision problem of Case Study 6.1. Reproduced
by permission of Smart Picker.

criteria in the decision problem. The greater the angle between criteria, the greater
the conflict between them. In Case Study 6.1, power conflicts with consumption:
the consumption has to be minimized, the power maximized, and indeed the more
powerful a car, the more it consumes. The Gaia plane enables the visualization of the
conflicting points of view.

As one can see, the lengths of the criteria are different. The length of a criterion
measures its ‘discriminating’ or ‘differentiating’ power as a function of the data. The
more different the actions on a criterion, the longer the arrow and thus the more
discriminating the criterion. Power is represented by a long arrow since it has a
high discriminating power, whereas consumption does not differ greatly amongst the
actions. The discriminating power of a criterion depends on the chosen thresholds
(the higher the indifference threshold, the less discriminating the criterion) and on
the corresponding weight.

Finally, the arrow labelled D (called the decision stick) renders the compromise
solution chosen by the decision maker, since it corresponds to his or her weight setting.
The projection of the actions on this line represents their priorities. The higher the
action on the stick, the better the action. However, since this is only a two-dimensional
representation, projection results in a loss of information which makes the Gaia
plane less accurate (or less representative of the decision problem). The amount of
information preserved (the so-called delta) depends on the data and the number of
criteria. As a consequence of the information loss, the ranking obtained by projection
on the decision stick does not necessarily correspond to the PROMETHEE II ranking.
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6.2.5 Sensitivity analysis

One of the main advantages of the Smart Picker Pro software is the ability to conduct a
detailed sensitivity analysis. It is important to test the sensitivity of the ranking relative
to the input parameters. Trying different parameters (e.g. dynamically changing the
weights or the indifference and preference thresholds) enables us to be aware of
the stability or instability of the ranking. A small variation of one single parameter
inducing a complete change in the ranking indicates an unstable solution. The decision
maker needs to be aware that the conclusions drawn are only valid for this precise
set of chosen parameters and any small error or perturbation leads to a very different
solution. If on the other hand, the ranking remains the same for a large variety of
different sets of parameters, then the decision maker might be quite confident about
the stability of the solution.

Exercise 6.1

The following multiple-choice questions allow you to test your knowledge on the
basics of PROMETHEE. Only one answer is correct. Answers can be found on the
companion website.

1. What does PROMETHEE stand for?

a) Positive Organization METHod with Enriched Evaluation

b) PReference Organization METHod for Enriched Evaluation

c) PROfessional METHod for Easy Evaluation

d) PROactive MEasurement THEory Evaluation

2. Which of these statements is incorrect?

a) PROMETHEE can be used in a wide range of applications

b) Every decision maker will find the same ranking

c) The PROMETHEE method requires a lot of input parameters

d) Results can be explained

3. What is the main purpose of PROMETHEE?

a) PROMETHEE prioritizes actions based on criteria and constraints

b) PROMETHEE assigns goals to actions

c) PROMETHEE ranks actions based on criteria

d) PROMETHEE assigns criteria to alternatives

4. Pairwise comparisons are based on which type of scale?

a) Ratio scale

b) Interval scale
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c) Ordinal scale

d) Nominal scale

5. How many input parameters does a decision maker need to specify for a
criterion (supposing he has chosen a linear preference function)?

a) 5

b) 4

c) 3

d) 2

6.3 The Smart Picker Pro software

All the PROMETHEE computations can easily be implemented in a spreadsheet,
though graphs really help the decision maker to visualize the issues and key points in
the decision. A number of user-friendly software packages have certainly contributed
to the success of the PROMETHEE method. They incorporate intuitive graphical
user interfaces, automatic calculation of preference degrees, flows, etc. One of the
main advantages of the use of these software packages is the possibility to perform
a sensitivity analysis. This allows the user to answer questions such as ‘What if I
change this parameter?’ which is useful in scenario planning and dealing with risk.
Among those currently available are Decision Lab, D-Sight, Smart Picker Pro, and
Visual Promethee.1

This section will describe the Smart Picker Pro standalone software because of its
simplicity, and because it is available as a free trial version (www.smart-picker.com)
with time-unlimited use, unlike other software. The trial version is, however, restricted
to five actions and four criteria, though this is ample for gaining familiarity with its
application. Smart Picker Pro does not require much understanding of the method:
as soon as the evaluations are entered, a ranking is available (by the use of default
values which will be provided throughout this section).

However, this might not entirely reflect the decision maker’s preferences. That is
why we suggest entering all input parameters step by step.

As an illustration, we will completely resolve Case Study 6.1 according to a
fictitious set of preference parameters given in Table 6.4. On the companion website
the reader will find the basic steps of the PROMETHEE calculations in a spreadsheet
as well as the Smart Picker Pro input files.

6.3.1 Data entry

The decision maker needs to first enter the decision problem before entering his
preference parameters, although actions or criteria can be deleted or added during the

1 At the time of writing, there was only a beta version of Visual Promethee.



150 MULTI-CRITERIA DECISION ANALYSIS

Figure 6.9 Data entry in Smart Picker Pro. Reproduced by permission of Smart
Picker.

decision process. The spreadsheet of the All Data tab (Figure 6.9) shows the actions,
the criteria and the initial scores of the actions on each criterion. Each row represents
an action and each column represents a criterion of the decision problem. Adding or
deleting actions or criteria can be easily done by:

� accessing the Problem menu, or

� using keyboard shortcuts (e.g., Alt+A, Alt+C, Alt+Shift+A, Alt+Shift+C),
or

� placing the cell cursor on the last row or in the last column and clicking on the
Down arrow (↓) or Alt + right arrow (Alt+ →).

The red value in a specific column indicates the worst evaluation for that criterion
and blue the best value. This means that if a criterion is to be minimized, the lowest
score is blue and the highest score is red. The colours are reversed when maximizing
criteria.

Furthermore, the decision maker can enter numerical values as well as verbal
evaluations. Sometimes, it is easier to work with a verbal scale rather than a numerical
scale. For instance, it is easier to define the quality or the comfort of a car by means
of words such ‘good’, ‘average’ and ‘excellent’. As we will see, there is a method in
the software to assess how much better ‘good’ is compared to ‘average’, etc.

The PROMETHEE method permits the use of a verbal scale provided that this
scale is later translated into a numerical scale. This can be done in the Parameters tab
(see Section 6.3.2).

Finally, it is worth mentioning that evaluations of all the actions are not required.
In Figure 6.9 one can see that the power of the Touring A and Touring B cars are
equal to ‘nan’ (i.e. not a number). This means that the user does not necessarily need
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to specify all the values. The Smart Picker Pro software will by default replace all
the missing values on one particular criterion by the mean value for this criterion.
However, the user is able to change this setting by going to Data Analysis/Parameters
Processing and choosing either the median value or a desired default value.

6.3.2 Entering preference parameters

The Parameters tab by default displays the preference parameters of the first criterion
(Figure 6.10). To enter the parameters of a specific criterion, the user can just pick
the criterion from the combo-box (marked 1 in Figure 6.10).

In this tab the user can specify the following preference parameters:

� the preference function – a linear function, a stepwise function or a Gaussian
function (2 in Figure 6.10);

� the preference direction – to maximize or minimize the criterion (3 in Fig-
ure 6.10);

� the values of the indifference and preference thresholds (4 in Figure 6.10).

The graph in the lower part of Figure 6.10 should help the decision maker in
determining the shape of the preference function and its thresholds. Along with the

1
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5

6

Figure 6.10 Parameters tab in Smart Picker Pro. Reproduced by permission of Smart
Picker.
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Figure 6.11 Unicriterion net flows in Smart Picker Pro. Reproduced by permission
of Smart Picker.

preference function selected, all the differences between the actions on the selected
criterion are plotted in blue on the horizontal axis. The highest difference is indicated
by D-Max (5 in Figure 6.10).

Changing the preference function and/or the preference thresholds directly
changes the shape of the preferences as depicted in Figure 6.10.

The decision maker can visualize the effect of his or her chosen preference and
indifference thresholds on the unicriterion net flows/scores which are represented
in (Figure 6.11), accessible via the Flow Viewer button (6 in Figure 6.10) from the
Parameters tab.

Note that if the decision maker does not specify any preference information,
the Smart Picker Pro software will assign default values so that a ranking can still
be computed. The default preference parameters for a criterion are: maximizing the
criterion, a linear preference function with q = p = 0 and a weight value equal to 1
(which will be normalized to the other criteria).

As the perception of scale values is subjective, the user will have to define his or
her scale by clicking on the Scale button in the Parameters tab. This leads him or her
to the view shown in Figure 6.12. Smart Picker Pro offers several ways to translate a
verbal scale into a numerical scale:

� by specifying a direct numerical value for each verbal scale label.

� by ranking the verbal scale labels by their importance (i.e. specifying for
instance that very good is the best, good is the second best, etc.). The software
generates a score based on this ranking.

� by pairwise comparing the labels on a 3-, 5- or 7-level scale. This enables the
user to specify for instance that very good is 3 times better than good and that
very bad is neutral to bad.
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Figure 6.12 Entering scale definition in Smart Picker Pro. Reproduced by permission
of Smart Picker.

6.3.3 Weights

The decision maker can specify the weights in the Weights tab (Figure 6.13). He or
she can modify the value of the weights by directly dragging the weight bars up or
down or by selecting a criterion on the drop-down menu and using the slider to its
right. This can be done for a criterion relative to the others (i.e. when the weight of a
criterion is increased, then the other weights will be proportionally decreased) or in
absolute terms (the values of the other weights do not change). Furthermore, Smart
Picker Pro provides the user with a context-specific assistance tool for evaluating the
weights (by clicking on the ‘?’button – (1 in Figure 6.13).

The decision maker can choose how he or she specifies the weights (1 in Fig-
ure 6.14):

� by directly entering a value.

� by ranking the criteria according to their importance (e.g. specifying that the
space criterion is the most important). The software generates a score based on
this ranking.

� by pairwise comparing the weights on a 3-, 5- or 7-level scale. This facilitates
specifying, for instance, that price is 3 times more important than consumption
and that power is as important as space (2 in Figure 6.14).
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Figure 6.13 Weights tab in Smart Picker Pro. Reproduced by permission of Smart
Picker.

Figure 6.14 Weights assistant in Smart Picker Pro. Reproduced by permission of
Smart Picker.
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Figure 6.15 Summary of the preference parameters in Smart Picker Pro. Reproduced
by permission of Smart Picker.

Note here that the user can retrieve all of the preference parameters from a
summary table (shown in Figure 6.15). This table can also be used to directly enter
these parameters.

6.3.4 PROMETHEE II ranking

Once the data, the preference parameters and the weights are entered, the complete
PROMETHEE II ranking is computed by pressing F6 or by selecting Ranking/
Ranking Scores. To help the decision maker in his or her analysis, the results can
be displayed as a table (Figure 6.16) or in one of several graphical representations
(accessible via the button marked 1 in Figure 6.17).

The contribution of each positive flow (stacked bar above the zero line) and
negative flow (stacked bar below the zero line) in Figure 6.18 to the net flows (the
white dotted line and the black bullet) permit the decision maker to clearly understand
the strengths and the weaknesses of each action; and thus their rank.

For example, the Economic car has a high score due to its good performance on
the price criterion (indicated by the high price bar). However, the Economic car does

Figure 6.16 Net scores in table view in Smart Picker Pro. Reproduced by permission
of Smart Picker.
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1

Figure 6.17 Graphical representation of net scores (PROMETHEE II ranking) in
Smart Picker Pro. Reproduced by permission of Smart Picker.

not perform well on the comfort and power criteria. This is indicated by their negative
contribution. The Luxury car performs well only on the power criterion (only positive
contribution) and performs very badly on the price criterion.

Smart Picker Pro includes an easily understandable representation of the
PROMETHEE I ranking via a triple thermometer view, where incomparability is
easily detectable. The first thermometer (on the left in Figure 6.19) indicates the
scores of the negative flows, the second thermometer represents the scores of the

Figure 6.18 Criterion flows in Smart Picker Pro. Reproduced by permission of Smart
Picker.
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Figure 6.19 Positive, negative and net flows in Smart Picker Pro. Reproduced by
permission of Smart Picker.

net flows, and the third thermometer shows the scores of the positive flows. All
thermometers are bounded from the worst score (bottom) to the best score (top).
Therefore, the negative flow thermometer starts from 1 on the left axis and finishes
at 0. A dotted line represents the score of one action on the three flows. If two lines
cross, there is an incomparability between the two actions.

6.3.5 Gaia plane

Smart Picker Pro provides the user with an interactive Gaia map. The projections on
each criterion and on the decision stick can be visualized easily by left-clicking on the
arrows. Some information can be gained by left-clicking on the bullets (representing
the actions). Moreover, in the menu (see the toolbar in Figure 6.20), the user can
choose to display the initial performances of the actions, to see a weighted view of
the Gaia map, etc. The user can also see the consequences of changing the thresholds
or the weights very easily: increasing the indifference threshold may lead to some
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Figure 6.20 Interactive Gaia map in Smart Picker Pro. Reproduced by permission
of Smart Picker.

actions being closer (more similar). In contrast, increasing the preference threshold
or changing the preference function may lead to more spread (difference) on the Gaia
map. This step helps the decision maker to better understand the decision problem as
well as the sensitivity of the preference parameters.

6.3.6 Sensitivity analysis

As mentioned in Section 6.2.5, a variation in the values of the parameters may lead to
a change in the scores and ranking. It is therefore crucial to perform some sensitivity
tests in order to have an idea of the stability of the final decision. One of the main
features of Smart Picker Pro is that it enables the decision maker to change all of
the parameters dynamically while simultaneously analysing the different rankings.
The user can thus directly modify all the preference parameters. On the other hand,
Smart Picker Pro permits the user to change the evaluations of the actions, while
keeping the same preference parameters. As shown in Figure 6.21, the user can
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Figure 6.21 Sensitivity analysis by changing the evaluations of the actions in Smart
Picker Pro. Reproduced by permission of Smart Picker.

gradually increase/decrease the evaluation of a specific action on a chosen criterion.
This permits the measurement of the required improvement (or deterioration) of the
criterion evaluation of an action in order to be higher (or lower) ranked.

Exercise 6.2

In this exercise, you will solve the car selection problem of Case Study 6.1 using
Smart Picker Pro.

Learning Outcomes

� Structure a problem in Smart Picker Pro

� Enter the preference parameters

� Understand the results

� Conduct a sensitivity analysis

Tasks
a) Read the description of the Case Study 6.1, on page 138 and open Smart

Picker Pro. Choose ‘Create a new problem with the Companion’ in the
opening wizard and click on the Go button.

b) Choose the left figure or Ranking actions.
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c) Fill in the information about your decision problem (i.e. file name, the user
name, etc.). Enter the alternatives (Alternatives tab) and click on Next.

d) Enter the names of the criteria.

e) Enter the names of the actions.

f) Enter the performance of the different cars and click on Next. Specify for
each criterion if it is to be minimized or maximized.

g) Enter the weights for each criterion. If you chose equally weighted criteria,
just click on Next.

h) Enter the preference parameters for each criterion as given in Figure 6.15.

i) Choose the results you want to display followed by Next. Check the results
with the ones given in Figure 6.16–Figure 6.18.

j) Are there any incomparable actions?

k) Does the PROMETHEE II ranking change if you increase the weight of price
to 35% while maintaining the relative weight of the other criteria?

l) On which criterion does the best action perform the worst?

m) How does the decision stick move? Do the projections of the actions on the
decision stick correspond to the net flow ranking?

n) Does an increase of 10% on the power criterion change the top-two ranking?

6.4 In the black box of PROMETHEE

The PROMETHEE method has already been used successfully in a lot of cases.
Behzadian et al. (2010) listed 200 papers since its conception where PROMETHEE
has been applied in environment management (47 papers), business and financial
management (25), hydrology and water management (28), chemistry (24), logistics
and transportation (19), manufacturing and assembly (19), energy management (17),
social science (7), design (2), agriculture (2), education (2), sports (1), information
technology (1) and medicine (1) up to 2008. Recently, PROMETHEE has been used in

� water management (Kodika 2010; Silva et al. 2010);

� banking (Doumpos and Zopounidis, 2010);

� energy management (Ghafghazi 2010; Oberschmidt 2010);

� manufacturing and assembly (Kwak and Kim 2009; Tuzkaya 2010; Venkata
Rao and Patel 2010; Zhu 2010);

� logistics and transportation (Lanza and Ude 2010; Safaei Mohamadabadi 2009;
Semaan 2010);
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� chemistry (Cornelissen 2010; Ni 2009);

� maritime commerce (Castillo-Manzano 2009);

� strategy (Ghazinoory 2009);

� project management (Halouani 2009);

� construction (Castillo-Manzano 2009; Frenette 2010);

� urban development (Juan 2010);

� location analysis (Luk 2010; Ishizaka et al. 2013);

� environment (Nikolic 2010; Soltanmohammadi et al. 2009; Zhang 2009);

� safety (Ramzan 2009);

� engineering (Ishizaka and Nemery 2011);

� e-commerce (Andreopoulou 2009).

The PROMETHEE method belongs to the family of outranking methods, which
means that the method is based on pairwise comparisons of the actions. As we will
see, the use of pairwise comparisons to infer global rankings has a direct influence
when an action is added to or deleted from the problem (Keyser and Peeters 1996;
Mareschal et al. 2008).

Denote by A = {a1,a2, . . . ,an} the set of actions to be ranked; and let
F={f1,f2, . . . ,fm} be the set of criteria. As in most multi-criteria decision aid meth-
ods, the set of criteria is assumed to be a coherent set of criteria as defined in Vincke
(1992). Without loss of generality, we will suppose in this section that all criteria
have to be maximized. Furthermore, we will denote by fi(aj) the evaluation of action
aj on criterion fi. Let us first assume that fi(aj) is a numeric value.

In this section we will present the PROMETHEE method in a slightly different
way than in Section 6.2, where we introduced the unicriterion flows as an aggre-
gation of the criterion preference degrees at a global action level, that is, from a
pairwise behaviour to a global behaviour. These unicriterion flows are then aggre-
gated (by means of a weighted sum) to the global positive and negative flows by
taking into account the weights of the criteria. This is illustrated on the left-hand side
of Figure 6.22.

In this section we will deduce the global flows from the so-called preference
matrix. This preference matrix contains the global pairwise preference degrees,
computed between all the ordered pairs of actions. The global preference degrees
are deduced from the criterion preference degrees by means of the weighted sum.
Based on the global preference degrees, the global flows can be easily deduced, as
we will see.

The reason for introducing this preference matrix is the information in the pairwise
comparisons. The preference matrix enables us, for instance, to detect ‘local incom-
parable actions’ (incomparable if you only consider these two actions) but which
are ‘indifferent’ in the final ranking. The preference matrix contains information
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Criterion preference degrees Criterion preference degrees

Global positive, negative and
net flows

Global positive, negative and
net flows

Criterion positive, negative and
net flows

Global preference degrees

Aggregation with respect to the
actions 

Weighted aggregation
with respect to the criteria

Aggregation with respect to the
actions

Weighted aggregation with respect
to the criteria 

Figure 6.22 Two different ways of computing the global flows based on criterion
preference degrees.

which is lost when aggregating the pairwise preference degrees to the global flows.
This computation process is represented on the right-hand side of Figure 6.22.

The two approaches are totally complementary since the first approach allows
one to render the global behaviour of an action compared to all the other actions on
one particular criterion. On the other hand, the global preference degree represents
how an action compares globally to one specific other action.

The outline of this section is as follows. First, we will introduce the unicriterion
preference degree. Based on this, we will define the preference degree and the prefer-
ence matrix. The global flows will be directly deduced from these pairwise preference
degrees. A sensitivity analysis will then be performed on the pairwise comparisons.

6.4.1 Unicriterion preference degrees

For each ordered pair of actions (ai,aj) of A, the unicriterion preference degree Pk
ij

(also noted Pk(ai , a j ) is computed and reflects how strongly action ai is preferred to
aj based solely on criterion fk. Pk

ij is a number between 0 and 1, and is a function of
the difference between the evaluations (i.e. fk(ai) – fk(aj)): the higher this difference,
the stronger the unicriterion preference degree.

The preference degree is computed based on the preference functions (illustrated
in Figure 6.1 and Figure 6.2). The decision maker thus has the choice between three
different types of preference functions. If we consider the linear preference function
with q and p as, respectively, the indifference and preference threshold, we have
formally that

Pk
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if fk(ai ) − fk(a j ) ≤ q[
fk(ai ) − fk(a j ) − q

]
[p − q]

if q < fk(ai ) − fk(a j ) < p

1 if fk(ai ) − fk(a j ) ≥ p

(6.1)
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(Brans and Mareschal 2005; Brans and Vincke 1985). On the other hand, if we
consider the Gaussian preference function, where s represents the inflexion point, we
have

Pk
ij =

⎧⎪⎨
⎪⎩

1 − exp

(−( fk(ai ) − fk(a j ))2

2s2

)
if fk(ai ) − fk(a j ) ≥ 0

0 otherwise.

(6.2)

Conversely, the unicriterion preference degreePk
ij expresses how aj is preferred

to ai according to the decision maker. Pk
ij and Pk

ji are not symmetric numbers but
respect the condition 0≤ Pk

ij + Pk
ji ≤1.

6.4.2 Global preference degree

Having all the ordered unicriterion preference degrees, the global preference degree
πij can be computed while taking into account the weights associated to each criterion.
Let wk be the weight associated to criterion fk. If the weights respect the condition∑q

k=1 wk = 1, we have (Brans et al. 1986) that

π (ai , a j ) = πij =
q∑

k=1

w j · Pk
ij . (6.3)

The preference degree πij expresses the global preference of action ai on aj according
to all criteria. This preference degree, which lies between 0 and 1, respects the
constraint 0 ≤ πij + πji ≤ 1. We observe that we have necessarily that ∀i : πi i = 0.

Suppose, therefore, that the preference degree reflects a ‘local’ behaviour: com-
parison of one action to just one other action. The preference degree translates either
an indifference (similar and low preference degrees between the actions, πij ≈ 0 ≈
πji), an incomparability (similar and high preference degrees, πij ≈ 0.5 ≈ πji) or a
preference (high difference between the preference degrees,

∣∣πij − πji

∣∣ � 0) between
two actions. We note here that the definitions of indifference, incomparability and
preference are not precise but left to the interpretation of the decision maker.

All the ordered pairwise comparisons are usually presented in the preference
matrix �, where the element �(i, j) represents πij.

As an illustration of this, let us consider the following numerical example:

Example 6.1 Table 6.6 represents the evaluation matrix of four actions on two
criteria. If we consider the criteria to be equally weighted, modelled with the linear
preference function where q = 0.2 and p = 0.5, we have the preference matrix given
in Table 6.7, from which we can conclude that:

� Action A1 is preferred to action A2 since we have: π12 = 1 and π21 = 0.

� Action A2 is incomparable to action A1: π32 = 0.5 and π32 = 0.5. In other
words, actions A1 present some strength on one criterion and some weaknesses
on the other criterion, compared to action A2.
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Table 6.6 Numeric example.

Actions Criterion 1 Criterion 2

Action 1 (A1) 1 1
Action 2 (A2) 0 0.5
Action 3 (A3) 0.75 0
Action 4 (A4) 1 0.1

� Actions A3 and A4 can be considered as indifferent, since the prefer-
ence degrees between both actions are similar and small (π43 = 0.08 and
π34 = 0).

6.4.3 Global flows

The positive and negative flows summarize the ordered preference degrees into a
unique score for each action. Let us denote by �+(ai) and �−(ai) respectively the
positive and negative flows of action ai. These can be computed as follows:

�+(ai ) =
∑n

j=1 πij

n − 1
, (6.4)

�−(ai ) =
∑n

j=1 πji

n − 1
. (6.5)

The positive flow of action ai thus represents the mean preference degree of action
ai compared to all other actions. In other words, it measures the global ‘preferred’
behaviour of action ai compared to the other actions. Mathematically, it corresponds
to the sum of all the elements in the corresponding row divided by the number of
actions reduced by 1, as it cannot be compared to itself. The positive flow always lies
between 0 and 1. The higher this number is, the better the action will be.

Analogously, the negative flow of action ai represents the mean preference of the
other actions on action ai. In other words, it measures the global ‘being preferred’
behaviour of action ai compared to the other actions. Mathematically, it corresponds

Table 6.7 Preference matrix of the problem in Table 6.6.

A1 A2 A3 A4

A1 0.0 1.0 0.58333 0.5
A2 0.0 0.0 0.5 0.33333
A3 0.0 0.5 0.0 0.0
A4 0.0 0.5 0.08333 0.0
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Table 6.8 The global flows of the numerical example of Table 6.7.

Actions �+ �− �

Action 1 (A1) 0.69444 0 0.69444
Action 2 (A2) 0.27778 0.66667 –0.38889
Action 3 (A3) 0.16667 0.38889 –0.22222
Action 4 (A4) 0.19444 0.27778 –0.08333

to the sum of all the elements in the corresponding column divided by the number of
actions minus 1.The negative flow also always lies between 0 and 1. The higher this
number is, the worse the action will be.

Finally, the net flow summarizes those two perspectives in the following way:

�(ai ) = �+(ai ) − �−(ai ). (6.6)

It is a number between –1 and 1. The higher this number is, the better the action
will be.

All the flows of actions of Example 6.1 are given in Table 6.8 and illustrated
in Figure 6.23. Observe that the scales lie between 0 and 1 for the positive and
negative flows (with an inverted orientation of the axis) and between –1 and 1 for the
net flows.

3

3

3

4 2

2

2

0 0.5 1

–1 0 1

1 0.5 0
1
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1

1

1

4

4

Figure 6.23 Graphical representation of the positive, net and negative flows of
Table 6.8. Reproduced by permission of Smart Picker.
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6.4.4 PROMETHEE I and PROMETHEE II ranking

The positive and negative flows can be used to compute the PROMETHEE I ranking,
which is a partial ranking, whereas the net flows can be used for the PROMETHEE
II ranking, which is a complete ranking.

Let us express the relations (S+,I+) and (S−,I−) as the two complete pre-orders
induced by the positive and negative flows (Brans and Mareschal 2005):

� The positive flow of action ai outranks the positive flow of action aj:

ai S
+a j ⇔ �+(ai ) > �−(a j ).

� The positve flow of action ai and the positive flow of action aj are indifferent:

ai I
+a j ⇔ �+(ai ) = �−(a j ).

� The negative flow of action ai outranks the negative flow of action aj:

ai S
−a j ⇔ �−(ai ) < �−(a j ).

� The negative flow of action ai and the negative flow of action aj are indifferent:

ai I
−a j ⇔ �−(ai ) = �−(a j ).

These relations permit us to define the partial PROMETHEE I ranking which is the
intersection of these two pre-orders (Brans and Mareschal 2005):

� The action ai is preferred to the action aj if

ai P a j ⇔ [ai S+ a j AND ai S− a j ] OR [ai S+ a j AND

ai I− a j ] OR [ai I+ a j AND ai S− a j ].

� The action ai and the action aj are indifferent if

ai I a j ⇔ [ai I+ a j AND ai I− a j ].

� The action ai is incomaprable to the action aj if

ai J a j ⇔ [ai S+ a j AND a j S− ai ] OR [a j S+ ai AND ai S− a j ].

Here P stands for global preference, I for global indifference and J for global incom-
parability.

The PROMETHEE I ranking is a partial ranking; an incomparability exists if there
is no preference or indifference relation between two actions. The partial ranking of
Example 6.1 is depicted in Figure 6.24, where ‘→’ means ‘is preferred to’. Note here
that no preference relation can be stated between A4 and A2 or between A3 and A2.
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A1

A2

A4 A3

Figure 6.24 Representation of PROMETHEE I ranking.

The PROMETHEE II ranking is a complete ranking where a preference relation
exists between any pair of actions. This is due to the fact that the PROMETHEE II
ranking is based solely on the net flows, which are necessarily transitive. Based on
Figure 6.23, the PROMETHEE II ranking is as follows: A1 is ranked first, followed
by A4, A3 and finally A2.

6.4.5 The Gaia plane

The Gaia method permits a visual representation of a decision problem and there-
fore uses the unicriterion net flows computed by the PROMETHEE method. Let us
consider the matrix � containing the unicriterion net flows of all the actions of the
decision problem (Mareschal and Brans 1988):

φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1(a1) φ2(a1) · · · φ j (a1) · · · φq (a1)
φ1(a2) φ2(a2) · · · φ j (a2) · · · φq (a2)

· · · · · · · · · · · · · · · · · ·
φ1(ai ) φ2(ai ) · · · φ j (ai ) · · · φq (ai )
· · · · · · · · · · · · · · · · · ·

φ1(an) φ2(an) · · · φ j (an) · · · φq (an)

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.7)

This matrix is similar to the performance table since each row of the matrix represents
an action and each column represents a criterion. However, the matrix contains some
preference information given by the decision maker since it incorporates the prefer-
ence functions and their parameters. It thus measures the intra-criteria information.

In order to represent the inter-criteria information, the decision maker can use
the Gaia method (Brans and Mareschal 1994). The actions will be represented by
points, denoted by αi with the coordinates αi: (ϕ1(ai), . . . , ϕj(ai), . . . , ϕq(ai)) in
q-dimensional space. The vector αi is a line in the matrix �.

To graphically represent this matrix in two dimensions, the GAIA method uses
the statistical technique of principal component analysis (PCA). For this purpose, the
variance–covariance matrix of our decision problem, denoted by C, is first computed.
This matrix can be obtained by using the relation

nC = �T · �, (6.8)
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where �T denotes the transpose of �, and n is a positive integer. Then, two eigenvec-
tors, denoted by u and v, are calculated such that they have the greatest eigenvalues
λ1 and λ2. These two eigenvectors are orthogonal (u⊥v) and define the best plane,
called the Gaia plane, to use for the projection of the αi points while minimizing the
loss of information (Brans and Mareschal 1994; Mareschal and Mertens 1990, 2003).
By definition, this plane is the one that holds the maximum amount of information
after the projection has been realized. The amount of information preserved can be
calculated as follows:

δ = λ1 + λ2∑q
j=1 λ j

. (6.9)

The coordinates of Ai, the projections of the αi points, on the Gaia plane will be:{
ui = αT

i · u

vi = αT
i · v

(6.10)

where αT
i denotes the transpose of αi , αi the ith row of �.

In order to represent the intra-criteria information, each criterion fj will be pro-
jected on the Gaia plane by considering each criterion axis ej as follows:

e j : (0, 0, . . . , 1, 0, . . . , 0), j = 1, 2, . . . , q (6.11)

The angle between the projections of two criteria is a measure of similarity or
conflict between two criteria. The smaller the angle, the more similar the two criteria.
In contrast, the angle will be greater when criteria are conflicting, given the data set.

Finally, the information on the weights chosen by the decision maker can be
added by finding the projection of the weights vector w = (w1, . . . , wq).

The vector D = (wu, wv) obtained is called a decision stick, as it represents the
decision maker’s priorities. An illustration of the Gaia plane is given in Figure 6.8.

We note here that Nemery et al. (2011) recently showed the importance of taking
the weights into account in the GAIA projections.

6.4.6 Influence of pairwise comparisons

Several authors have studied the theoretical properties of the PROMETHEE I and
PROMETHEE II ranking methods (Bouyssou 1992; Bouyssou and Perny 1992;
Keyser and Peeters). We now describe the major characteristics of these ranking
methods.

First, let us suppose that the preference degree π ij does not result from an aggre-
gation of several criteria, but corresponds to a percentage of voters considering that
action ai is preferred or indifferent with respect to aj. We may note here that the
PROMETHEE II ranking corresponds to the well-known method of Borda (Fishburn
1973) where the actions are ordered according to their sums of votes (Bouyssou 1992;
Bouyssou and Perny 1992). Moreover, if we suppose that ∀ai, aj ∈ A: π ij ∈ {0,1}, i.e.
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binary values, then the PROMETHEE II ranking method amounts to the Copeland
ranking method (Bouyssou 1992; Bouyssou and Perny 1992).

Furthermore, we can obtain the preference degrees π ij by other means as given
in previous sections. The preference degrees can be obtained while using other pref-
erence functions or can even be provided directly by the decision maker (when
comparing ai to aj). Nevertheless, regardless of how these preference degrees are
obtained, we may still compute the positive, negative and net flows. These ranking
methods are called ranking methods based on leaving, entering and net flows (Bouys-
sou 1992; Bouyssou and Perny 1992). The PROMETHEE I and PROMETHEE II
methods are thus particular ranking methods based on flows.

The ranking methods based on net flows and on the difference of the entering and
leaving flows make use of the ‘cardinal properties’ of the valued preference degrees.
In fact, if we transform the preference degrees by a strict increasing transformation
T(x) on the real line and such that T(0) = 0 and T(1) = 1, it may happen that the
initial flow ranking is not preserved. As a consequence, it does not seem appropriate
when the comparisons of the valuations (preference degrees) only have an ordinal
meaning in term of credibility (Bouyssou 1992; Bouyssou and Perny 1992). The
PROMETHEE methods may only be applied if the decision maker is able to express
a preference between two actions, either on a certain criterion or on a ratio scale –
and not on an ordinal scale (Keyser and Peeters 1996).

The ranking methods based on net flows and on the difference of the entering and
leaving flows are said to be neutral. In particular, PROMETHEE I and PROMETHEE
II do not discriminate actions in their ranking on the basis of their label or their given
name (Bouyssou 1992; Bouyssou and Perny 1992). Assume that alternatives are
numbered a1, a2, a3, . . . and then renamed (while keeping the same order) to aj, an,
a3, . . . . The ranking obtained after renaming the alternatives will remain coherent
with the initial ranking.

The PROMETHEE I and PROMETHEE II ranking methods are strongly
monotonic since the rankings respond in the right direction to a modification
of the preference degrees. This property excludes, in particular, the use of any
threshold in the treatment of the valuations (Bouyssou 1992; Bouyssou and Perny
1992). When two actions are compared similarly to any other action of the set
A (in terms of preference degrees: π (ai , x) = π (a j , x), π (x, ai ) = π (x, ai ) and
π (ai , a j ) = π (a j , ai ),∀x ∈ A), they will be considered as globally indifferent. This
is often called the non-discriminatory property of a ranking method. Nevertheless,
it has as a drawback that a situation of indifference or incomparability between two
actions may be similarly treated in the final ranking.

When comparing actions by means of pairwise comparisons, cycles may occur:
ai is preferred to aj which aj is preferred to al which is preferred to ai, etc. This is the
so-called ‘Condorcet paradox’. A consequence of aggregating the comparisons into
a global complete ranking is that the order in the final ranking may not correspond
to these pairwise comparisons (Mareschal et al. 2008). It may suffer from pairwise
rank reversal since we may have that π (ai , a j ) > π (a j , ai ) with �(ai ) < �(a j ).

Since PROMETHEE II is not pairwise rank reversal free, it may suffer from the
rank reversal phenomenon: the addition to the set A or the suppression of an action of
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the set A may lead to a rank reversal between two actions since the computed flows
can vary when the initial set A is altered. Some examples of pairwise rank reversals
and rank reversals are given in Keyser and Peeters (1996). Nevertheless, the rank
reversal phenomenon occurs when the difference of flows between two actions is
‘small’. The interested reader may find more information on situations where there
is no rank reversal in Mareschal et al. (2008), Nemery (2008) and Verly and De Smet
(in press).

Exercise 6.3

In this exercise, you will learn the step-by-step calculation of the preference matrix,
and then have the opportunity to compute the positive, negative and net flows.

Learning Outcomes

� Understand the calculation of the performance matrix in Microsoft Excel

� Understand the calculation of the positive, negative and net flows in Microsoft
Excel

Tasks

Open the file Car Selection.xls.
Answer the following questions:

a) Describe the meaning of each calculation cell and its formula. (Only read the
comments in the red squares in the case of difficulty.)

b) Analyze Figure 6.22 and verify the complementaries and uniqueness of both
approaches. Are there some local and global incompatibilities?

6.5 Extensions of PROMETHEE

Several extensions of the PROMETHEE method have been proposed in recent
decades. Amongst others, let us mention the extension of the PROMETHEE method
to uncertainty and imprecision (Teno and Mareschal 1998; D’Avignon and Vincke
1998; Drechsler 2004; Oberschmidt 2010; Saidi Mehrabad and Anvari 2010), group
decision support (Macharis et al. 1998; Brans and Mareschal 2005; Silva et al. 2010)
and sorting problems (Araz and Ozkarahan 2007; Nemery and Lamboray 2008).
In this section we briefly describe the latter two. Nemery et al. (2010) propose a
unification of problem formulations with the PROMETHEE methods.

6.5.1 PROMETHEE GDSS

Sometimes decisions have to be made by a group of people rather than a single person.
Rarely do all the stakeholders of the problem requiring a decision have completely
identical perceptions and preferences with regard to the problem. Moreover, it might
happen that not all the decision makers have the same weight of importance in the final
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decision. To tackle this situation, the group can use a group decision support system
(GDSS). In what follows, we assume that the group has agreed upon a set of actions
and a set of criteria. These will not subsequently be altered by any decision maker.

The PROMETHEE GDSS method enables the tackling of a ranking problem
involving several decision makers as follows (Macharis et al. 1998; Brans and
Mareschal 2005; Ishizaka and Nemery 2012). Every person acts, at first, as if he
were the only decision maker and uses the PROMETHEE II method to score and
rank each action of the decision problem. In a second phase, the individual rankings
are aggregated into a group ranking. This approach is recommended when the eval-
uations of the actions on the different criteria are not required to be identical for all
decision makers (i.e. no consensus about the evaluations is specified).

To aggregate the individual rankings, each individual net flow ranking will be
considered as a criterion of the group problem. In other words, in the second phase,
each decision maker will act as a criterion of the group performance matrix. The
evaluation of an action on a group criterion is equal to the net flows of that action in
the individual ranking. This is illustrated in Figure 6.25.

Each decision maker can define his own evaluations and preference parameters
(preference functions, thresholds, weights, etc.) in the first step. In the second step,
the weights can be equal or not depending upon whether all decision makers have the
same weight in the decision. The group of decision makers need to define whether
the preference functions of the second phase are all identical or not.

Decision Maker A (DMA)

price power comfort security score

car A

car B

car C

Decision Maker B (DMB)

price power comfort security score DMA DMB DMC score

car A car A

car B car B

car C car C

Decision Maker C (DMC)

price power comfort security score

car A

car B

car C

Phase 1: individual ranking 
with PROMETHEE II

Phase 2: group ranking with 
PROMETHEE II

Figure 6.25 The group decision process.
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The preference function will determine the role played by the difference between
the net flows of the actions. Small differences can be considered as negligible (use
of a linear preference function with a high indifference threshold), while sometimes
a small difference can be significant (use of a linear preference function with the
indifference and preference threshold equal to 0).

Finally, the criterion arrows of the Gaia representation of the second phase rep-
resent the individual rankings of the decision makers. Thus this means that if two
arrows are close, then the corresponding decision makers are consensual and have
similar rankings. On the other hand, two opposite arrows indicate opposite rankings
and thus a situation of conflict between two decision makers. For detailed examples
we refer the reader to Ishizaka and Nemery (2011, 2012).

Exercise 6.4

In this group exercise, you will be able to solve a group decision with PROMETHEE
GDSS.

Prerequisites: Exercise 6.2

Learning Outcomes

� Structure a group hierarchy in Smart Picker Pro

� Understand the aggregation of individual rankings

� Understand the final group ranking

Tasks

a) Form a group of three or four people.

b) Using Smart Picker Pro, each person enters the performances of Table 6.1
and his own preference parameters.

c) Collect the net flows of each decision maker and open a new problem in
Smart Picker Pro. Define the problem as follows: the actions are the cars and
the criteria correspond to the different persons. The evaluation of the car for
each criterion corresponds to the net flow of the corresponding person.

d) Compute the final ranking while choosing equal weights. Discuss the final
ranking. Is everybody satisfied with the outcome? Identify the persons with
similar and opposite rankings in the Gaia plane.

6.5.2 FlowSort: A sorting or supervised classification method

In a sorting problem, the decision maker wants to assign a set of actions A = {a1,
a2, . . . , an} to K predefined categories C1, . . . ,CK (Figure 6.26). The categories
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A

a1

a2 ai

R = {r1,...,rK+1}.an

aj

C1

Ch

CK

Sorting
Method

Figure 6.26 The sorting process.

are predefined in the sense that the decision maker knows their exact meaning. In a
sorting context, there is a complete order on the categories. This means thus that the
decision maker is able to order the categories from best to worst. Category C1 is the
best category and CK the worst category.

An example of a sorting problem is the assignment of projects into two categories:
the accepted or rejected projects. Several real-world decision problems have been
addressed through sorting models, including financial decision-making problems,
environmental decisions, marketing decisions, and even medical decisions (diagnosis)
(Zopounidis and Doumpos, 2002).

An important requirement in a sorting problem is that the assignment of the
actions is independent: the assignment of an action to a category must not depend on
the assignment of another action (i.e. the actions are not pairwise compared). This
constitutes a fundamental difference in dealing with the sorting problem compared
to the ranking problem. This explains why we have chosen to describe the FlowSort
method (instead of for instance the PromSort method (Araz and Ozkarahan 2007)
or the sorting method proposed by Doumpos and Zopounidis (2004) where the
assignment of an action is not independent of the other assignments).

The FlowSort method (Nemery 2008; Nemery and Lamboray 2008) is a direct
extension of the PROMETHEE method and is based on the following idea: in order
to assign an action to a category, compare the action to the profiles by means of the
PROMETHEE method and deduce its category based on its rank.

In the FlowSort method, the K categories are predefined by either limiting profiles
or central profiles. In the first case, each category is defined by an upper and a lower
boundary. The category Cj is thus defined by the upper limiting profile rj (maximum
value in order to be categorized in the Cj category) and the lower profile rj+1 (minimum
value in order to be categorized in the Cj category) of the limiting profiles set denoted
by R={r1, . . . ,rK+1}. The first category and the worst category can be defined as
open classes or as closed classes. In the former case, the two extremes categories will
be defined by an upper and lower limit respectively. In the latter case, the extreme
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Figure 6.27 Limiting profiles and central profiles; open and closed categories.
Reproduced by permission of Smart Picker.

categories will not be defined by these extreme limits. This can be chosen as the type
of profile in the Smart Picker Pro software, as illustrated in Figure 6.27. Defining
closed classes can be used to eliminate actions that are out of the boundaries defined
by the two extreme profiles.

In the second case, the categories are defined by a central element. The category
Cj is thus defined by the central profile r∗

j .
For simplicity, only the case of limiting profiles defining closed classes is pre-

sented in this chapter.
So if an action ai is compared to the limiting profiles and if it is ranked between

two successive limiting profiles rh and rh+1 then it will be assigned to category Ch.

Formally, we can define the assignment rule as follows:

C (ai ) = Ch, ifφRi (rh) > φRi (ai ) ≥ φRi (rh+1) ,

where

φRi (ai ) =
q∑

l=1

wl · φ
Ri
l (ai ) =

q∑
l=1

wl ·
⎡
⎣ 1

|Ri | − 1

K+1∑
j=1

[
Pl

(
ai , r j

) − Pl
(
a j , ri

)]⎤⎦.

This therefore requires that the limiting profiles are always ranked with respect to the
category they define (i.e. avoiding situations where, for instance, rh+1 has a better
rank than rh). This condition is met if a limiting profile dominates (i.e. is better on
all criteria than) all the successive limiting profiles. Formally, if the criteria have to
be maximized, we need the following condition:

∀h = 1, . . . , K ; l = 1, . . . q : fl (rh) ≥ fl (rh+1) and ∃ j : f j (rh) > f j (rh+1) .

Figure 6.28 illustrates this condition, where limiting profiles rh and rh+1 define
category Ch. In the left figure rh and rh+1 respect the condition but don’t respect it on
the right since f j (rh) < f j (rh+1).

Let us stress that the ranking method is applied on the data set consisting of one
action to be assigned and the reference profiles, Ri = {r1, . . . , rk+1} ∪ {ai }. This
means thus that if n actions have to be sorted, we will perform n rankings of the sets
R1, R2, . . . , Rn .

The FSGaia plane (illustrated in Figure 6.29) makes it easy to detect whether
actions (represented by circles) assigned to a same category are incomparable (e.g.,
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rh rh

rh+1

fi fj fl fi fj fl

Ch

rh+1

Figure 6.28 Limiting profiles which respect the dominance condition (left) and
which do not respect it (right).

r4

r3
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a5

C3 C2 C1

r3

r1

r2

Figure 6.29 Plane representing the actions, reference profiles and criteria.

a1 and a3) or indifferent (e.g., a1 and a2). Moreover, it enables comparison of the
actions in a global view of the profiles (represented by the rectangles). It is thus a
descriptive approach, and is provided in Smart Picker Pro. The first application of
the FSGaia plane in a real case study can be found in Nemery et al. (2012).

Exercise 6.5

In this exercise, you will learn how to use Smart Picker Pro in a sorting problem.

Learning Outcomes

� Structure a sorting problem in Smart Picker Pro

� Understand the steps of the FlowSort sorting method
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Action Price Consumption Power

Limiting profile 1 23000 8 80
Economic 15000 7.5 50
Sport 29000 9 110
Luxury 38000 8.5 90
Touring A 26000 9 75
Touring B 25500 7 85

Figure 6.30 Performance of the limiting profile and the actions to be sorted.

Figure 6.31 Data in Smart Picker Pro for Exercise 6.5. Reproduced by permission
of Smart Picker.

Figure 6.32 Sorting parameters. Reproduced by permission of Smart Picker.

Tasks

a) Consider the actions and the limiting profiles given in Figure 6.30 and enter
their performance in the left and right panels as shown in Figure 6.31.

b) Enter the sorting parameters as given in Figure 6.32.

c) Determine the category to which each action is assigned and explain the
assignment of each action regarding the limiting profile.

d) Can you deduce anything from a comparison between the actions themselves?
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7

ELECTRE

7.1 Introduction

This chapter describes the theory and practical uses of the ELECTRE methods. You
will learn how to use the Electre III-IV software package which permits the (partial)
ranking of options. Section 7.3 is designed for readers interested in themethodological
background of the ELECTRE methods. Section 7.4 is devoted to the extensions of
ELECTRE in group decision and sorting problems.
The companion website provides illustrative examples withMicrosoft Excel, and

case studies and examples with the ELECTRE software package.

7.2 Essentials of the ELECTRE methods

The ELimination Et Choix Traduisant la REalité (elimination and choice expressing
reality) methods, referred to as ELECTRE, belong to the outranking methods. They
constitute one of the main branches of this family despite their relative complexity
(due to many technical parameters and a complex algorithm).
The outranking methods are based on pairwise comparisons of the options. This

means that every option is compared to all other options. As we will see, this will
be computed for the user by the Electre III-IV software. Based on these pairwise
comparisons, final recommendations can be drawn.
The main characteristic and advantage of the ELECTRE methods is that they

avoid compensation between criteria and any normalization process, which distorts
the original data.
B. Roy, the father of the outranking methods, presented ELECTRE I for the first

time at a conference in 1965 and published the first paper on this topic in 1968
(Roy 1968). This initiated a long series of improvements, research and developments

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Table 7.1 Overview of the different ELECTRE methods.

Decision Problem Method Software

Choice problem ELECTRE I
ELECTRE Iv
ELECTRE Is

–
–
Electre Is

Ranking problem ELECTRE II
ELECTRE III
ELECTRE IV

–
Electre III–Electre IV
Electre III–Electre IV

Sorting problem ELECTRE-Tri-B
ELECTRE-Tri-C

Electre-Tri
IRIS

Elicitation
problem

Elicitation of the weights in
ELECTRE
Elicitation for ELECTRE-Tri:
� IRIS method

� other elicitation methods

SRF
IRIS
Electre Tri Assistant

of the ELECTRE methods in order to tackle new decision problems. They can be
subdivided according to the type of problem they solve (cf. Table 7.1).
ELECTRE methods are relevant when facing decision problems with more than

two criteria and if at least one the following conditions is satisfied (Figueira et al.
2005):

� The performances of the criteria are expressed in different units (e.g. duration,
weight, price, colour, etc.) and the decision maker wants to avoid defining a
common scale, which is difficult and complex.

� The problemdoes not tolerate a compensation effect (e.g. theweak performance
of the time delay can not be compensated by good quality).

� There is a need to use indifference and preference thresholds, such that small
differences may be insignificant although the sum of small differences is deci-
sive (e.g. we are indifferent to an additional grain of sugar in a cup of tea but
not to an additional 100 grains of sugar).

� The options are evaluated on a scale presenting an order or on a ‘weak’ interval
scale (temperature and calendar dates are examples of interval scales), where
it is difficult to compare differences (e.g. a temperature of 60◦F is 30◦F more
than 30◦F, but it cannot be said to be twice as warm as 30◦F, because interval
variables do not have a true zero point).

The first ELECTRE method, ELECTRE I, and its variants ELECTRE Iv and
ELECTRE Is (cf. Table 7.1) were developed to solve choice problems. In a choice
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problem the decision maker will select, amongst a given set of options, the smallest
subset containing the best options. The only difference between ELECTRE I and
ELECTRE Iv is the introduction of the veto concept: if an option performs badly
on a single criterion compared to another option, the option will then be considered
as outranked, irrespective of its performance on the other criteria. The novelty of
ELECTRE Is is the use of pseudo-criteria. Pseudo-criteria are introduced to model
the fact that a decision maker might not have a preference between two options of
a criterion, if the difference in their performance is smaller than the indifference
threshold. On the other hand, it is also used to reflect a situation where the preference
might be strong if the difference is higher than a preference threshold. Such thresholds
permit situations to be handled where data are imprecise or uncertain. Today, choice
problems are mostly tackled with the ELECTRE Is method.
ELECTRE II, ELECTRE III and ELECTRE IV (cf. Table 7.1) are ranking meth-

ods, which may lead to a partial order on a set of options (i.e. the ranking accepts
that two options are incomparable) but without assigning a score to the alternatives.
The preference order amongst the options is the output of the methods. ELECTRE
III is distinguished from ELECTRE II by the use of pseudo-criteria and outranking
degrees (instead of binary outranking relations). ELECTRE IV, on the other hand,
does not require the relative importance of criteria (i.e. the weights). ELECTRE III
is the most used ranking method in the ELECTRE family and is implemented, along
with ELECTRE IV, in the Electre III and IV software.
ELECTRE-Tri-B (more commonly known asELECTRE-Tri) andELECTRE-Tri-

C are sorting methods that enable the independent assignment of a set of options to
one or several predefined categories. These methods are thus supervised classification
methods, butwith the particularity of a preference relation amongst the categories, that
is, they can be ordered from best to worst. The difference between the two methods
lies in the definition of the categories: either by limiting profiles or Boundaries (hence
ELECTRE-Tri-B), or by typical or Central profiles (ELECTRE-Tri-C). A detailed
description is provided in Section 7.5.
The drawback of the ELECTRE methods is that they require various (difficult)

technical parameters, which means that it is not always easy to fully understand
them. As a result, researchers have made some significant progress in the automatic
elicitation of those parameters. This requires that the decision maker rank (real or
fictitious) options that have a clear ranking in order to infer parameters such as the
weights of the criteria, and the thresholds. These methods cannot, however, always be
considered as a complete panacea for fixing the parameters. They may point to some
of the decision maker’s inconsistencies or contradictions, which means re-evaluating
the judgements. This might form the basis for a discussion to set the value of the
parameters.
The ELECTRE methods have been successfully applied in many areas such

as environmental management, agriculture and forest, energy, water management,
finance, calls for tender, transportation and military (Figueira et al. 2005). In par-
ticular, ELECTRE III is a well-established partial ranking method with successful
real-world applications such as environmental and energy management (Parent and
Schnabele 1988; Hokkanen and Salminen 1996; Karagiannidis and Moussiopoulos
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1997; Rogers and Bruen 1998a, 1998b; Karagiannidis and Papadopoulos 2008;
Figueira et al. 2005), and strategic planning (Kangas and Pykäläinen 2001).
The next section describes the ELECTRE III ranking method along with the

corresponding Electre III-IV software, given its success with the ELECTREmethods.
Section 7.5 is devoted to the ELECTRE-Tri sorting method.

7.2.1 ELECTRE III

ELECTRE III is divided into two phases. First, the outranking relationship between
the options is constructed and then exploited, although most of the information
from the decision maker is required in the first phase: the weight of the criteria, the
indifference, the preference and the veto thresholds. The meaning of those parameters
is explained in this section as well as the final results of the ELECTRE III method.
The intermediate steps, which require a more advanced understanding, are explained
in Section 7.4.
In what follows, the term ‘alternative’ instead of ‘option’ will be used, in line

with the ELECTRE methods and software terminology. Without loss of generality,
the preference directions of all criteria are taken to be increasing: in other words, all
the criteria have to be maximized.
ELECTRE III makes use of outranking relations. An outranking relation, where

a outranks b (denoted by a S b),1 expresses the fact that there are sufficient arguments
to decide whether a is at least as good as b and there are no essential reasons to refute
this (Roy 1974). An outranking degree S(a,b) between a and b will be computed in
order to ‘measure’ or to ‘evaluate’ this assertion.
Case Study 7.1 illustrates this concept.

Case Study 7.1

Governmental organizations and companies are often facedwith the task of recruit-
ing new employees, promoting promising staff and awarding grants, etc. In today’s
meeting, a committee has a travel grant to award to one of six research students.
In order to evaluate the candidates, the committee has agreed on five criteria:

1. Number of years of university study (to be maximized)

2. Their professional experience expressed in years (to be maximized)

3. The requested grant amount expressed in pounds (to be minimized)

4. The evaluation of the application letter (to be maximized)

5. The potential return of the allocated grant (to be maximized).

For the last two criteria, the committee will allocate a score between 0 and 10.

1 S stands for ‘surclasse’ in French, which means ‘outranks’.
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Suppose that the committee has agreed on the evaluations and the preference
parameters. Table 7.2 suggests that there is no ideal candidate as none of the
applicants have the highest score for each of the five criteria: none of the candidates
are efficient. The committee will have to compromise.

Table 7.2 Performance table of the six applications evaluated on five criteria.

Education
(years)

f1

Experience
(years)

f2

Grant
(× £100)

f3

Letter
(score)

f4

Potential
return (score)

f5

Candidate 1 6 5 28 5 5
Candidate 2 4 2 25 10 9
Candidate 3 5 7 35 9 6
Candidate 4 6 1 27 6 7
Candidate 5 6 8 30 7 9
Candidate 6 5 6 26 4 8

The ELECTRE III method will help the decision maker in the decision process
and deduce the (final) partial order. It will compare the candidates pairwise by
calculating the outranking degrees.

The strength of the assertion a outranks b is given by the credibility or outranking
degree S(a,b). It is a score between 0 and 1, where the closer S(a,b) is to 1, the
stronger the assertion. This outranking degree S(a,b) considers two perspectives: the
concordance and the discordance of the statement that a outranks b. The concordance
and discordance are measured respectively while incorporating the decision maker’s
preference on various (often conflicting) criteria. The user is required to provide the
indifference and preference thresholds for calculating the concordance degree, while
the veto threshold is needed for the discordance degree.

7.2.1.1 Concordance

A partial concordance degree ci(a,b) measures the assertion ‘a outranks b’ or ‘a is
at least as good as b’ on the specific criterion fi. Table 7.2 concludes that candidate
1 is as good as candidate 2 on the experience criterion. As experience has to be
maximized, this assertion is strong because the experience of candidate 1 is higher
than that of candidate 2 and as a result as good: the partial concordance degree will
be equal to 1.
Consider now the opposite comparison: candidate 2 is at least as good as candidate

1 on the experience criterion (where the performances are respectively 4 versus 6).
This can be true or false depending on the perception of the decision maker: one
person can consider a difference of 2 as negligible whereas another may feel this
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0

ci(a,b)

fi(b)

fi(a) fi(a)+qi fi(a)+pi

1

Figure 7.1 The partial concordance index ci(a,b).

is decisive. Therefore, the decision maker needs to specify the indifference (qi) and
preference (pi) threshold in order to measure the difference in performance.
The indifference threshold indicates the largest difference between the perfor-

mances of the alternatives on the criterion considered such that they remain indifferent
for the decision maker.
The preference threshold indicates the largest difference between the perfor-

mances of the alternatives such that one is preferred over the other on the considered
criterion. Between these two thresholds, the partial concordance degree is computed
on the basis of a linear interpolation, represented in Figure 7.1:

� If the performance of alternative b on fi is higher than a augmented with the
preference threshold pi, there is a strict preference for b over a. The concordance
degree stating that a is as good as b on fi is thus zero. Formally, if fi(b) is higher
than fi(a)+pi then ci(a,b) = 0.

� If the performance of b is between the performance of a augmented with the
indifference threshold and the performance of a augmented with the preference
threshold, then b is weakly preferred to a. The concordance degree is deduced
by linear interpolation: if fi(b) is between fi(a)+qi and fi(a)+pi then ci(a,b) is
between 0 and 1.

� If the performance of b is smaller than the performance of a augmented with
the indifference threshold, a and b are indifferent. The concordance degree
stating that a is at least as good as b on fi is 1: if fi(b) is smaller or equal to
fi(a)+qi then ci(a,b) = 1.

Table 7.3 gives some examples of the variation of the concordance index for
criterion 1 between candidate 2 and candidate 1 for different values of q1 and p1. The
reader can easily check that c1(candidate 1,candidate 2) is always 1 for any value of
q1 and p1.
A global concordance degreeC(a, b) aggregates all the partial concordance indices

on the different criteria by taking into account their corresponding criteria weight.
This global index is thus the weighted sum of all the partial concordance indices and
measures how concordant the assertion ‘a is at least as good b’ is regarding all the
criteria. The Electre III-IV software computes these global concordance degrees.
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Table 7.3 Some examples of c1(a,b) in Case Study 7.1
for different values of q and p.

q1 p1 c1(candidate 2,candidate 1)

0 0 0
1 1.5 0
1 3 0.5
1 4 0.66

≥2 ≥ q1 1

7.2.1.2 Discordance

On the other hand, the partial discordance degree dj(a,b) measures the decision
maker’s discordance with the assertion ‘a is at least as good as b’ on criterion fj. If the
decision maker, when considering criterion fj, strongly disagrees with the assertion,
the discordance degree reaches its maximum value 1 and reflects the fact that fj sets
its veto. This is the case if the difference in performances (i.e. fj(b) − fj(a)) is higher
than a so-called veto threshold, denoted by vi. The discordance degree has minimum
value 0, when there is no reason to refute the assertion. As in the case of the partial
concordance degree, between these two extremes, dj(a,b) will vary linearly between
the preference and veto thresholds as a function of the difference fj(b) – fj(a), as
shown in Figure 7.2:

� If fi(b) is higher than fi(a)+vi, the difference between b and a exceeds the veto
threshold which means a total discordance with the assertion: d(a,b) =1.

� If the performance of b is between the performance of a augmented with
the preference threshold and the performance of a augmented with the veto
threshold, b is slightly preferred to a. The concordance degree is deduced by
linear interpolation: if fi(b) is between fi(a)+pi and fi(a)+vi then, ci(a,b) is
between 0 and 1.

0

di(a,b)

fi(b)

fi(a)+pi fi(a)+vi

1

Figure 7.2 The partial discordance degree dj(a,b).
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Table 7.4 Some examples of d1(a,b) in Case Study 7.1
for different values of p and v.

p1 v1 d1(candidate 2, candidate 1)

0 0 1
1 1.5 1
1 2 1
1 3 0.5
≥2 > p1 0

� If fi(b) is smaller than or equal to fi(a)+pi, the assertion is correct. There is no
discordance hence di(a,b) = 0.

Table 7.4 gives some examples of the variation of the partial discordance index
for criterion 1, between candidate 2 and candidate 1, for different values of p1 and v1.
It is easy to see that d1(candidate 1,candidate 2) is always 0 for any value of p1
and v1.

7.2.1.3 Outranking degree

Finally, a global outranking degree S(a,b) summarizes the concordance and dis-
cordance degrees into one measure of the assertion ‘a outranks b’ using a rather
complicated formula, shown in Section 7.4. One of the intermediary outputs of Elec-
tre III-IV software is the value of the ordered outranking degrees of the alternatives.
This is the reason for temporarily ignoring the exact formula.

7.2.1.4 Distillation

The second phase consists of exploiting these pairwise outranking degrees: the
ascending and descending distillation procedures lead each to a complete (i.e. tran-
sitive) pre-order. Each pre-order takes into account respectively the outranking and
outranked behaviour of an alternative with regard to the others. Since these pro-
cedures may lead to two different procedures, a final ranking is generated as the
intersection of the two pre-orders. The final ranking, as illustrated in Figure 7.3, is a
partial ranking resulting from the preference parameters given in Table 7.5.
In Figure 7.3, we can see that the best alternative in both distillations is A5 and

thus also in the final ranking. Alternatives A4 and A6 are incomparable in the final
graph: there is no arrow (and thus no preference relation) between the two alternatives.
This is the result of the fact that A6 has a different ranking (compared to A4) in the
descending distillation than in the ascending distillation. A4 is ranked third in both
distillations, whereas A6 respectively fourth in the descending distillation and second
in the ascending distillation.



188 MULTI-CRITERIA DECISION ANALYSIS

Figure 7.3 Descending and ascending distillation graphs anf the final graph
obtained with the Electre III-IV software for Case Study 7.1. Reproduced by per-
mission of LAMSADE.

Table 7.5 Preference parameters for Case Study 7.1.

f1 f2 f3 f4 f5

wi 0.2 0.2 0.2 0.2 0.2
qi 0 0 0 0 0
pi 1 1 1 1 1
vi 0 0 0 0 0

Exercise 7.1

The following multiple-choice questions test your knowledge on the basics of ELEC-
TRE. Only one answer is correct. Answers can be found on the companion website.

1. What does ELECTRE stand for?

a) ELimination Et Choix Traduisant la REalité

b) ELicit, Evaluate Criteria Through REferences
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c) ELECitation and TRained Evaluation

d) Evidence Limitée Et Confidence Transcripte de la Réalité

2. Which statement is incorrect?

a) ELECTRE can be used in a wide range of applications

b) Every decision maker will find the same ranking

c) The ELECTRE method requires a lot of input parameters

d) Results can be explained

3. What is the main purpose of ELECTRE III?

a) ELECTRE III prioritizes alternatives based on criteria and constraints

b) ELECTRE III assigns goals to alternatives

c) ELECTRE III ranks alternatives based on criteria

d) ELECTRE III sorts alternatives

4. On what scale are pairwise comparisons based?

a) Ratio scale

b) Interval scale

c) Ordinal scale

d) Nominal scale

5. How many input parameters does a decision maker need to specify for each
criterion in ELECTRE III?

a) 5

b) 4

c) 3

d) 2

7.3 The Electre III-IV software

It is possible to implement all the ELECTRE III computation steps in a spreadsheet
but it is not a simple task. Only one software package supports the ELECTRE III and
ELECTRE IV methods: the Electre III-IV software. It is an old software package,
which runs onWindows 3.1, 95, 98, 2000, XP and Vista. As the software is no longer
maintained, it is not guaranteed to run on more recent operating systems. A free
version is available at Lamsade at Université Paris-Dauphine with no time expiration
and with no limitation on the number of alternatives or criteria. Later in this chapter,
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software supporting other ELECTRE methods (see Table 7.1) such as ELECTRE-Tri
is described. Electre III-IV computes the concordance matrix, discordance matrix
and the different intermediate rankings. Compared to other existing software, it lacks
the functionality to enable the user to model the decision problem. It is difficult to
understand what is happening behind the scenes and there are not many graphical
representations explaining the results. Moreover, it does not perform a thorough
sensitivity analysis: the user is unable to ask questions such as ‘What if I change this
parameter?’. Nevertheless, entering the data is relatively simple and the final results
are easy to interpret.
As an illustration, Case Study 7.1 will be solved according to the set of preference

parameters set out in Table 7.5. The basic steps of the ELECTRE III calculations can
be found on the companion website in a spreadsheet format, as well as the Electre
III-IV input files.

7.3.1 Data entry

From the menu bar, select File/New Project to create a new decision problem. Specify
the name of the owner, a small description of the decision problem and the desired
decision support method (ELECTRE III in this case).
The next consecutive steps are: the definition of the criteria, the alternatives,

performance of alternatives and threshold of criteria. This is done via Edit from the
menu bar.
In the Edit Criteria Table window (Figure 7.4, left), click on Insert which opens

the Edit Criterion window (Figure 7.4, right). A name for the criterion, its associated
weight, direction of preference (increasing if the criterion is to be maximized or
decreasing if it is to be minimized) and optionally a code or abbreviation for the
criterion, are specified.
Once the Edit Criterion window is completed, click on OK to add the criterion

to the list of criteria (displayed in the Edit Criteria Table). To add a new criterion,
click on the Insert button again, which opens a blank Edit Criterion window. To avoid
going back to Edit Criteria Table, the Auto Insert Mode in the Edit Criteria Table

Figure 7.4 The Edit Criteria Table (left) and Edit Criterion (right) windows. Repro-
duced by permission of LAMSADE.
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Figure 7.5 The Edit Alternatives Table (left) and Edit Alternative (right) windows.
Reproduced by permission of LAMSADE.

window can be activated: the Edit Criterion window will continuously appear after
clicking OK until Cancel is selected. In order to modify the parameters of an already
defined criterion, double-click on the name of the criterion from the list.
The definition of the alternatives is done in an analogous way: from the Edit

Alternatives Table (via Edit/Alternatives) open the Edit Alternative window (see
Figure 7.5).
Once the criteria and alternatives have been defined, enter the performance of the

alternatives in the Edit Performances Table dialogue box (see Figure 7.6) by selecting
Edit/Performances from the menu bar. We remark that only numerical values can be
entered in the software.
At this stage, the criteria, alternatives and their performance have been entered.

Following this, the decision maker needs to introduce the preference settings.

7.3.2 Entering preference parameters

The user needs to define the preference parameters for each criterion via the Edit
Thresholds Table (see Figure 7.7). Analogously, the user can change the settings by

Figure 7.6 The Edit Performances Table. Reproduced by permission of LAMSADE.



192 MULTI-CRITERIA DECISION ANALYSIS

Figure 7.7 Input boxes for preference information. Reproduced by permission of
LAMSADE.

choosing a criterion in the Edit Thresholds Table window (Figure 7.7, left), which
leads to the Edit Thresholds window (Figure 7.7, right).
Various parameters are required. The user has to define the indifference and

preference threshold for each criterion. The veto threshold is optional (by checking
the Disable Veto box).
The ELECTRE III preference thresholds can be constant values or proportionate

to the performance of the alternative. If the user wants to use a fixed threshold,
the α-coefficient must be equal to 0. The β-coefficient takes the value of the fixed
threshold. The Mode of Definition does not play any part in this situation.
In Case Study 7.1, the indifference and preference thresholds for the criterion f5

were set to 0 and 1, respectively (see Table 7.5). These parameters are entered into
Electre III-IV (see Figure 7.7, right):

� α-indifference coefficient = 0,
� β-indifference coefficient = 0,
� α-preference coefficient = 0;
� β-preference coefficient = 1.

Moreover, we need to disable the veto.

7.3.2.1 Advanced settings

Let us suppose that with regard to the potential return criterion of Case Study 7.1, the
decision maker considers that two alternatives are indifferent if their score difference
is less than 10%. In this case, the indifference threshold is not absolute, but relative
to the performance of the alternatives.
This relative proportion is introduced via the coefficient α of the indifference and

preference thresholds in the software. The user needs to specify which performance
the proportion is taken from: either 10% from the highest performance or 10% from
the lowest one. This can be specified by the ‘mode of definition’ (see Figure 7.7, left):
if the direct mode is chosen, the worst performance between the two will be used to
compute the relative threshold. The term ‘worst’ means ‘the least preferred’, which
might be the lowest value for criteria to be maximized or highest for criteria to be
minimized. If the mode of definition is ‘inverse’, the best performance is chosen.
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Figure 7.8 Display of the relative indifference threshold and absolute preference
threshold for f5. Reproduced by permission of LAMSADE.

The absolute threshold is defined via the coefficient β. Relative and absolute
thresholds are added if neither is zero.
There is a menu in Electre III-IV to display the thresholds as a function of the

alternatives (Figure 7.8). The defined threshold also depends on themode of definition
(direct or inverse).
Throughout the rest of this section, all thresholds are in absolute terms as defined

in Table 7.5.

7.3.3 Results

The most useful results are presented in Figure 7.3 (accessible via: Menu/Results):
the final (partial) ranking, distillation results, concordance and credibility matrix.
Figure 7.9 gives additional information such as the final rank of the alternatives.
We can thus see that candidate A5 is ranked first, while candidates 4 and 6 are
ranked the same but are incomparable. This information is deduced from the ranking
matrix, which includes the global reference relations (indifference, preference or
incomparability, denoted respectively ≡, ≺ and �) amongst the alternatives. If the
decision maker wants a complete pre-order, which suppresses incomparabilities, they
might want to display the median pre-order. The median pre-order takes into account
the relative rank of the two alternatives in the two partial rankings. The difference
in the two partial rankings for candidate 4 is –1 (i.e. 3 – 4) and for candidate 6 is 1
(4 – 3). Therefore, candidate 4 has a better rank than candidate 6.

Figure 7.9 Ranks, ranking matrix and median pre-order for Case Study 7.1. Repro-
duced by permission of LAMSADE.
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Exercise 7.2

In this exercise, you will solve the problem set out in Case Study 7.1 with Electre
III-IV.

Learning Outcomes

� Structure a problem in Electre III-IV

� Enter the preference parameters

� Understand the results

Consider Case Study 7.1 where the performance of the alternatives is given in
Table 7.2 and the preference parameters in Table 7.5. Enter the data in Electre III-IV
and cross-reference your results with those set out in Figure 7.3 and Figure 7.9.

Tasks
a) Read the description of Case Study 7.1 on page 183 and open the Electre

III-IV software. Choose New Project from the File menu; specify the name
of the owner and choose ELECTRE III as the ranking method.

b) From Edit select Criteria, which displays the Edit Criteria Table where a
new criterion can be inserted. For each criterion specify its name, weight and
direction of preference.

c) FromEdit selectAlternatives,which displays the Edit Alternative Tablewhere
new alternatives can be inserted. For each alternative specify the name and
code name.

d) From Edit select Performances, which presents the Edit Performances Table
where the performance of the alternatives can be edited.

e) From Edit select Thresholds, which displays the Edit Threshold Table where
the preference parameters of the criteria can be edited.

g) Check the results against those in Figure 7.3 and Figure 7.9.

g) Check that the concordance matrix corresponds to Table 7.6.

h) Are there any incomparable actions?

7.4 In the black box of ELECTRE III

7.4.1 Outranking relations

ELECTRE III makes use of outranking relations. An outranking relation on a set A is
a binary relation: a collection of ordered pairs of elements ofA and thus a subset of the
Cartesian product A × A (where A × A = {(a,b)|a∈A and b∈A}; this means that it is
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1. For each criterion fi of the set F:

2. Aggregation of the concordance and discordance degrees:

partial discordance degree:
di(a,b)

global concordance degree:
C(a,b)

global discordance degree:
D(a,b)

partial concordance degree:
ci(a,b)

Outranking degree
S(a,b)

3. Calculation of the outranking degree or credibility index

Figure 7.10 Steps in the calculation of the outranking degree S(a,b).

the set of all possible ordered pairs). According to (Roy 1974), an outranking relation
is such that for two elements a and b of A, a outranks b (written a S b), if, given what
is known about the decision maker’s preferences, the quality of the valuations of the
alternatives and the nature of the problem, there are enough arguments to decide that
a is at least as good as b, where there is no essential reason to refute this statement.
An outranking degree S(a,b) between a and b will be computed to ‘measure’ or

‘evaluate’ this assertion. The score will be between 0 and 1: the stronger the assertion,
the closer S(a,b) to 1. The outranking relation is a non-symmetric relation:∃a, b ∈
A : S(a, b) �= S(b, a).
The outranking degree is calculated in three steps as shown in Figure 7.10:

1. The partial concordance and partial discordance degrees are computed for each
criterion of the set F.

2. The criteria are aggregated to the global concordance and global discordance
degree.

3. The aggregation of the concordance and discordance degree leads to the out-
ranking degree or credibility index.

7.4.2 Partial concordance degree

For each criterion fj from F the assertion ‘b is at least as good as a’ or ‘b outranks a’
is measured by the partial concordance index noted cj(b,a). This degree is obtained
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as follows (Roy and Bouyssou 1993):

c j (b, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if f j (b)+ p j < f j (a)
f j (b)+ p j − f j (a)

p j − q j
if f j (b)+ q j < f j (a) < f j (b)+ p j

0 otherwise,
(7.1)

where qj, pj (satisfying pj > qj) represent respectively the indifference and preference
thresholds as illustrated in Figure 7.1.
These thresholds may be absolute or dependent (i.e. relative) on the performances

of a or b: p j = p j ( f j (b)) and q j = q j ( f j (b)). The stronger the confidence of the
decision maker with the outranking assertion, the higher the concordance index. Its
value is always between 0 and 1. A concordance degree of 0 means that b does not
outrank a. A score of 1means that b is as least as good as a (on this particular criterion).

7.4.3 Global concordance degree

The global concordance degree C(a, b) aggregates all the partial concordance indices
on the different criteria by taking into account their corresponding weight, denoted
by wj for all fj with j = 1, . . . q . It is the weighted sum of all the partial concordance
indices, which measures how concordant the assertion ‘a is at least as good b’ is,
regarding all the criteria. We have

C(b, a) =
∑

j=1,...,q
w j · c j (b, a). (7.2)

We remark that the weight of the criteria cannot be considered as substitution rates
as in compensatory methods such as AHP (Chapter 2), MAUT (Chapter 4) and
MACBETH (Chapter 5) (Figueira et al. 2005). The weights depend neither on the
range nor the scale of the criteria (Figueira et al. 2005).
To illustrate, consider the performancematrix of Case Study 7.1 given in Table 7.2

and the preference parameters given in Table 7.5. This leads to the concordancematrix
in Table 7.6.

7.4.4 Partial discordance degree

For each criterion fj from F, the measure of the discordance with the assertion ‘b is
at least as good as a’ is given by the partial discordance index dj(a,b). This index is
calculated as follows:

d j (b, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if f j (b)+ v j < f j (a)
0 if f j (a) < f j (b)+ p j
f j (a)− p j − f j (b)

v j − p j
otherwise, (7.3)
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Table 7.6 Concordance matrix of Case Study 7.1 with the preference parameters
in Table 7.5 obtained with the Electre-III software.

A1 A2 A3 A4 A5 A6

A1 1 0.5 0.35 0.5 0.35 0.45
A2 0.5 1 0.5 0.75 0.5 0.5
A3 0.65 0.5 1 0.45 0.2 0.7
A4 0.75 0.25 0.55 1 0.35 0.45
A5 0.9 0.7 0.8 0.9 1 0.9
A6 0.55 0.5 0.55 0.55 0.1 1

where vj (satisfying vj > pj) represents the veto threshold for criterion fj as illustrated
in Figure 7.2. The veto threshold can be absolute or relative: v j = v j ( f j (b)).

7.4.5 Outranking degree

The (global) outranking degree S(a,b) summarizes the concordance and discor-
dance degree into one measure of the assertion ‘a outranks b’ using the following
formula:

S(b, a) = C(b, a) ·
∏

V

[
1− d j (b, a)

1− C(b, a)

]
, (7.4)

where V is the set of criteria for which dj(b,a) > C(b,a).
If the concordance index C(b,a) is greater than or equal to the partial discordance

indexes (i.e. C(b,a) ≥ dj(b,a), for all j), then the outranking degree is equal to the
concordance index.
The outranking degree S(a,b) always lies between 0 and 1 and is not symmetrical.

The information contained in both S(a,b) and S(b,a) can be combined to express
whether a is preferred over b (a P b) while considering the whole set of actions of A
(Giannoulis and Ishizaka 2010):

a P b ⇔ S(a, b) > λ2 and S(a, b)− S(b, a) > s(λ0), (7.5)

where λ2 is the largest credibility index, which is just below the cut-off level λ1.
Here

λ2 = max
{S(a,b)≤λ1}

S(a, b) ∀a, b ∈ A; (7.6)
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λ1 is the cut-off level

λ1 = λ0 − s(λ0); (7.7)

λ0 is the highest degree of credibility in the credibility matrix,

λ0 = max
a,b∈A

S(a, b); (7.8)

and s(λ0) is the discrimination threshold,

s(λ0) = α + βλ0. (7.9)

In this obscure formula, α and β are technical parameters that Roy and Bouyssou
(1993) suggest setting to α = –0.15 and β = 0.3.
It is worth noting that the preference relation between two actions, in ELECTRE

III, is dependent on the outranking degrees between the other actions given the
definitions of λ2 and λ0. This is not the case with the preference relation, defined in
ELECTRE-Tri (Section 7.5).
To illustrate, consider Case Study 7.1, where the preference relations of the

alternatives are computed based on the concordance matrix given in Table 7.6. The
parameters are given in Table 7.7. Based on these parameter values, the following
preference relation between two alternatives of A exist:

a P b ⇔ S(a, b) > 0.8 and S(a, b)− S(b, a) > 0.15. (7.10)

Equation (7.11) leads to the following conclusions: alternative A1 is preferred to no
other alternative as its outranking relation to the other alternatives is always lower
than 0.8. Alternative A5 is the only alternative preferred over A1: S(A5,A1) = 0.9 >

0.8 and S(A5,A1) – S(A1,A5) = 0.55 > 0.15 and as a result A5 � A1.
Considering two outranking degrees S(a,b) and S(c,d) with S(a,b) > S(c,d), it is

tempting to say that the assertion ‘a outranks b’ is more credible (or more likely) than

Table 7.7 Values of the parameters
for Case Study 7.1.

Parameters Values

λ0 1
α, β α=–0.15 and β=0.3
s(λ0) 0.15
λ1 0.85
λ2 0.8
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the assertion ‘c outranks d’. Due to the arbitrary nature of the computation of these
indices, this should be avoided (Tervoren et al. 2004). However, if λ ∈ [0,1] and if
[S(a,b) = λ and S(c,d) = λ – η with η > s(λ0)], then we can say that a S b is strictly
more credible than c S d.

7.4.6 Partial ranking: Exploitation of the outranking relations

The second phase consists of exploiting the outranking degrees by the ascending
and descending procedures, which give two complete (i.e. transitive) pre-orders O1
and O2. The final ELECTRE III partial pre-order, O, is obtained by calculating the
intersection of O1 and O2.
The distillation procedures are based on the qualification of the alternatives. The

qualification score of an alternative is a score which characterizes its global behaviour
with regard to the other alternatives. Each time one action is preferred to another, the
score is incremented by 1 (strength), whereas if it is preferred by another, this score
is reduced by 1 (weakness). The qualification of an alternative is thus the balance of
its strengths and weaknesses.
For instance, in Case Study 7.1, the strength of candidate 1 is 0 (candidate 1 is not

preferred to any other alternative) and its weakness is 1 (one other candidate (can-
didate 5) is preferred to candidate 1). Therefore, the qualification of candidate 1
will be –1.
The descending distillation procedure leading to the complete pre-order O1 can

be explained as follows:

� We start with the complete set of alternatives. From this set, the alternative(s)
fromAwith the highest qualification is extracted. This constitutes the first group
(denoted byC1). Thismeans that it is not possible to decide between the remain-
ing alternatives in the subset, and therefore they are declared indifferent and
belong to C1.

� From the remaining set of alternatives (i.e. A\C1), the best alternative is
again extracted to obtain the second group C2. On the successive distilla-
tions, the cut-off level λ1 (defined in (7.8)) is progressively reduced, which
makes the condition weaker and easier for an alternative to be preferred over
another.

� This procedure is repeated until A has been distilled completely (i.e. all alter-
natives of A belong to a subgroup).

The complete descending pre-order corresponds to the order C1, C2, etc. Figure 7.11
illustrates the descending distillation procedure, while Figure 7.3 represents the
descending pre-order of Case Study 7.1.
The ascending distillation procedure is comparable in some respects; however,

instead of starting with the best subset, it starts with the worst.
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a1

a1

a1

a2

a2

a3

a3a6

a6

Step 1 Step 2 ...

a6

a5

a5

C1

C2

A

A\C1

A\(C1     C2)

a4

a4

a4

a2 a3

Figure 7.11 The descending distillation procedure.

The final partial pre-order O is defined as the intersection of O1 and O2. The
global relations are defined as follows:

� a is globally better than b, written a � b, if and only if:

◦ a is better than b in O1 and in O2, or

◦ a is indifferent with respect to b in O1 but better than b in O2, or

◦ a is better than b in O2 and indifferent with respect to b in O2.

� a and b are globally indifferent, written a ≡ b, if and only if a and b are
indifferent in O1 and O2.

� a is globally incomparable to b, written a � b, if and only if:

◦ a is better than b in O1 but b is better than a in O2,

◦ b is better than a in O1 but a is better than b in O2.

� a is globally worse than b, written a ≺ b, if and only if:

◦ b is better than a in O1 and in O2, or

◦ a is indifferent with respect to to b in O1 but b is better than a in O2, or

◦ b is better than a in O2 and indifferent with respect to a in O2.

Example 7.1 Consider the following example, where four alternatives are to be
ranked with the ELECTRE III partial rankingmethod according to two criteria. These
criteria are to be maximized; suppose that they are true criteria (i.e. for all j = 1,
2: qj = pj = 0 and with vj = 0). The performance matrix of A is given in Table 7.8.
The binary relations (based on the values of the credibility matrix S) are given in
Table 7.10 and represented in Figure 7.12 when fixing λ > 0.5.
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Table 7.8 The performance matrix
of the alternatives in Example 7.1.

f1 f2

a1 1 1
a2 0 0.5
a3 0.5 0
a4 0 0

a1a4

a2

a3

Figure 7.12 Outranking graph of A.

Table 7.9 The outranking degrees for Example 7.1.

S a1 a2 a3 a4

a1 1 1 1 1
a2 0 1 0.5 1
a3 0 0.5 1 1
a4 0 0 0 1

Based on the outranking matrix given in Table 7.9, the outranking graph given
in Figure 7.12 can be drawn, where an arrow between two alternatives represents a
(binary) preference relation; thus a3 and a2 are incomparable.
The ascending and descending distillation procedures lead to the complete ranking

represented in Figure 7.13 with the ranking relations given in Table 7.10. The results
were acquired from Electre III-IV.

O = O1 = O2 :

a1 a4a2  a3,

Figure 7.13 The partial pre-order for Example 7.1 obtained with ELECTRE III.

From Figure 7.13, ELECTRE III leads to a complete pre-order, although a more
intuitive partial ranking could be expected on the basis of the outranking graph in
Figure 7.12. If only the transitive outranking relations are represented, the partial
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Table 7.10 The binary relation between
the alternatives in the global ranking O.

S a1 a2 a3 a4

a1 ≡ � � �
a2 ≺ ≡ ≡ �
a3 ≺ ≡ ≡ �
a4 ≺ ≺ ≺ ≡

pre-order given in Figure 7.14 (what we will call the reduced outranking graph) is
obtained. The main difference lies in the incomparability between a2 and a3 being
preserved.
A potential drawback of the ELECTRE III method is that it cannot always clearly

differentiate between indifference and incomparability between two alternatives in
the final ranking (Roy and Bouyssou, 1993, p. 423). As one might notice, the prefer-
ence relations given in Table 7.10 are based on a ‘global’ level. However, based on
these outranking degrees and a cut-off level λ defined by the decision maker, four
possible pairwise (local) comparisons can be defined when comparing alternative a
to alternative b:

� a P+ b: a is preferred to b if and only if S(a, b) ≥ λ and S(b, a) < λ, that is,
we have that a is at least as good as b but b is not at least as good as a.

� a P− b: b is preferred to a if and only if S(a, b) < λ and S(b, a) ≥ λ, that is,
we have that a is not at least as good as b but b is at least as good as a.

� a I b: a and b are indifferent if and only if S(a, b) ≥ λ and S(b, a) ≥ λ, that
is, we have that a is at least as good as b and b is at least as good as a.

� a R b: a and b are incomparable if and only if S(a, b) < λ and S(b, a) < λ,
that is, we have that a is not at least as good as b but neither is b compared to a.

If we define a value higher than 0.5 for the cut-off level λ, we obtain the pairwise
preference relations given in Table 7.11.

a1a4

a2

a3

Figure 7.14 The partial pre-order of the set of alternativesA obtained by ‘reducing’
the outranking graph.
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Table 7.11 The pairwise preference relations
between the alternatives.

a1 a2 a3 a4

a1 I P+ P+ P+

a2 P− I R P+

a3 P− R I P+

a4 P− P− P− I

As we can see from Table 7.11, the alternatives a2 and a3 are (locally) incom-
parable but are considered as indifferent in the global ranking O (see Table 7.10).
The decision maker can nevertheless accept this as a2 and a3 behave similarly with
respect to the alternatives a1 and a4. An analogous result would be obtained with
PROMETHEE. This is a direct consequence of the aggregation of the pairwise
comparisons. To avoid this situation, a modified version of ELECTRE III has been
proposed and can be found in Roy and Bouyssou (1993).

7.4.7 Some properties

When comparing alternatives by means of pairwise outranking degrees, cycles may
occur, for example, ai outranks aj outranks ak outranks ai. This is the ‘Condorcet
paradox’. The consequence of aggregating the comparisons into a global complete
ranking is that the order in the final rankingmay not correspond to these pairwise com-
parisons (Mareschal et al. 2008). It may suffer from pairwise rank reversal since a S b
with b having a better rank in the final ranking than a. InO1 of Case Study 7.1, notice
that a6 has a lower rank than a4 (see Figure 7.14) even though S(a4, a6) < S(a6, a4).
A consequence of pairwise rank reversal, as described byMareschal et al. (2008),

is that the addition or the suppression of an alternative to set A may lead to a rank
reversal phenomenon in the final ranking. The pre-ordersO1 andO2 can be modified.
Wand and Triantaphyllou (2006) conducted some computational experiments on ran-
domly generated and real-life decision problems to test the rank reversal phenomenon
with the ELECTRE III method. They observed that the rates of ranking irregularities
were significant in both the simulated and real-life decision problems.
ELECTRE III is neutral to the name or label given to the alternatives, as it does

not discriminate alternatives in their ranking on the basis of their label or their given
name (Bouyssou and Perny 1992; Bouyssou 1992). Assume that alternatives are
numbered a1, a2, a3, . . . ., and then renamed (while keeping the same order) to aj, an,
a3, . . . . The ranking obtained after renaming the alternatives will remain coherent
with the initial ranking.
When two alternatives, a and b, are compared similarly to any other alternative

of set A (i.e. ∀x ∈ A: S(a, x) = S(b, x); S(x, a) = S(x, b) and S(a, b) = S(b, a)), they
will be considered globally indifferent. This is often called the non-discriminatory
property of a ranking method.
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Finally, Gabrel (1990) and Perny (1992) have pointed out that ELECTRE III does
not fulfill the property of monotonicity since the rankings do not respond ‘in the right
direction’ to a modification of performances of the alternatives: the amelioration of
the performances of an alternative may lead to deterioration in its final ranking.

Exercise 7.3

You will learn the calculation of the outranking matrix step by step, and then have
the opportunity to compute the rank of the alternatives based on the distillation
procedures.

Learning Outcomes

� Understand the calculation of the outranking matrix inMicrosoft Excel

� Understand the calculation of the ascending and descending distillation pro-
cedures

� Understand the calculation of the final ranking

Tasks

Open the file Grant.xls. The spreadsheet contains the steps of the ELECTRE III
procedure. Answer the following questions:

a) Describe the meaning of each calculation cell and its formula. (Read the
comments in the red square in case of difficulty.)

b) The spreadsheets are incomplete because they calculate only one local alter-
native. Complete them in order to calculate the other local alternatives.

7.5 ELECTRE-Tri

7.5.1 Introduction

ELECTRE-Tri is a multi-criteria sorting method used for the assignment of a set of
alternatives A into K completely ordered categories C1, . . . ,CK where category C1 is
the best category and CK the worst. For example, the prioritization of projects, which
are categorized as low, medium or high priority.
In ELECTRE-Tri, the categories can be defined either by limiting profiles (or

boundaries (Yu 1992)) or by central profiles (or centroids (Dias et al. 2010)). In the
first case, the method is named ELECTRE-Tri-B and in the second ELECTRE-Tri-
C. In this section, ELECTRE-Tri-B, which has been named ELECTRE-Tri, will be
described.
A limiting profile rh is the upper reference profile for category Ch and the lower

reference profile for category Ch–1. The best profile will be denoted by r1 and the
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rh rh

Ch

rh+1 rh+1

fi fj fl fi fj fl

Figure 7.15 Limiting profiles respecting (left) and infringing (right) the dominance
condition.

worst rK+1 . This convention has been chosen because the best category is ranked 1
and the worst has is ranked K.
Since the limiting profiles define ordered categories, they need to respect the

condition of dominance: a limiting profile dominates, written �D , all the successive
limiting profiles of worse categories. Formally, if all the criteria fl (l = 1, . . . , q) are
to be maximized, the following condition has to be satisfied:

∀h = 1, . . . , K ; rh �D rh+1 ⇔ ∀l = 1, . . . , q : fl(rh) ≥ fl (rh+1)
and ∃ j : f j (rh) > f j (rh+1).

(7.11)

This condition implies that the performance of the upper limit of a class must be at
least as good as the performance of its lower limit and at least better on one criterion.
Figure 7.15 illustrates the condition of dominance, where limiting profiles rh and

rh+1 define category Ch. On the left, rh and rh+1 respect the condition dominance.
The condition of dominance is not respected in the figure on the right, because on
criterion fj, profile rh is lower than rh+1.

7.5.2 Preference relations

To assign alternative a to one of the categories, the outranking relations between a
and the limiting profiles are built based on a set of coherent criteria F: S(a,rh) and
S(rh,a), ∀h = 1, . . . , K + 1. These outranking degrees measure the strength of the
assertion that ‘a is at least as good as rh’ (and vice versa) and are calculated in the
same way as ELECTRE III (Section 7.4.5).
On the basis of these outranking degrees and a cut-off level λ defined by the

decision maker, four possible situations may occur when comparing alternative a to
the limiting profile rh:2

� a � rh : a is preferred to rh if and only if S(a, rh) ≥ λ and S(rh, a) < λ, that is,
a is at least as good as rh but rh is not at least as good as a.

2 We remark that we use the symbols of a pairwise (local) preference relation (and not a global one as
in Section 7.4.6) in order to keep consistent with the symbols of the Electre-Tri software.
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� a ≺ rh : rh is preferred to a if and only if S(a, rh) < λ and S(rh, a) ≥ λ, that is,
a is not at least as good as rh but rh is at least as good as a.

� a I rh: a and rh are indifferent if and only if S(a, rh) ≥ λ and S(rh, a) ≥ λ, that
is, a is at least as good as rh and rh is at least as good as a.

� a R rh: a and rh are incomparable if and only if S(a, rh) < λ and S(rh, a) < λ,
that is, a is not at least as good as rh but neither is rh compared to a.

Although the outranking relations S are calculated the same way in ELECTRE
III and ELECTRE-Tri, the preference relations are not identical. ELECTRE-Tri has
the advantage of a clear definition of preference, indifference and incomparability
relationships based on a fixed cut-off level. In ELECTRE III, this cut-off level varies
across different distillation steps.
Based on these preference relations, an additional condition needs to be introduced

on the limiting profiles, which translates the fact that the categories are completely
ordered:

∀h = 1, . . . , K : rh � rh+1. (7.12)

Condition (7.13) is stronger than the dominance condition (7.12) as it imposes a
preference relation between successive profiles (instead of the dominance relation).
This condition implies that the categories are not ‘too close’ to each other: unlike
the dominance relation, the preference relation requires that the performance of
successive limiting profiles are such that there is a preference relation (and avoids an
indifference relation between limiting profiles).
When comparing alternative awith regard to the reference profiles, three different

situations may occur (Roy and Bouyssou 1993, p. 392):

1. Alternative a is, in the sense of the preference relation, ‘in between’ two
consecutive limiting profiles: r1 � a, . . . , r j ≺ a, a � r j+1, a � r j+2, . . . ,
a � rK+1.

2. Alternative a is indifferent with respect to one or several (i.e. k +1)
consecutive limiting profiles: r1 � a, . . . , r j−1 � a, aIr j , aIr j+1, . . . , aIr j+k,

a � r j+k+1, . . . , a � rK+1.

3. Alternative a is incomparable to one or several (i.e. k +1) consecu-
tive limiting profiles: r1 � a, . . . , r j−1 � a, aRr j , aRr j+1, . . . , aRr j+k, a �
r j+k+1, . . . , a � rK+1.

If alternative a behaves in a similar way (i.e. indifference or incomparability) to
several limiting profiles, these profiles must be consecutive. In other words, there
cannot be a ‘hole’ in the sequence of similar profiles. This monotone behaviour is
due to the dominance condition (7.12) imposed on the limiting profiles and the way
outranking degrees are calculated.
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7.5.3 Assignment rules

ELECTRE-Tri proposes two different assignment rules: the optimistic and pessimistic
assignment rule. Both rules use different preference relations to compare the limiting
profiles with the alternative to be assigned. The optimistic assignment rule uses the
preference relation (�) and the pessimistic assignments rule uses the outranking
relation (S). Both procedures handle the situation in a different way.

Optimistic assignment rule. Alternative a will be assigned to category Ch if the
upper limiting profile rh is the worst (lowest) profile which is preferred to a. Formally:

� Compare successively a and rh, with h from K+1 to 1, where K+1 is the worst
profile.

� If rh is the first reference profile such that rh � a, then a is assigned to Ch.

Pessimistic assignment rule. Alternative a will be assigned to category Ch if the
lower limiting profile rh+1 is the best (highest) profile, which is outranked by a or
with which a is at least as good. Formally:

� Compare successively a and rh with h from 1 to K+1.
� If rh+1 is the first reference profiles such that a S rh+1, then a is assigned to Ch.

Let us consider situations 1, 2 and 3 defined in Section 7.5.2. The assignment rules
lead to the assignments given in Table 7.12. Note that the two rules lead to different
assignments in situation 3, when an alternative is incomparable to one limiting profile.
In the optimistic case, it is assigned to the ‘best’ category or to the category whose
lower limiting profile is the best profile to which the alternative is incomparable. In
the pessimistic case, the alternative is assigned to the ‘worst’ category or the category
whose upper limiting profile is the worst one to which the alternative is incomparable
(i.e. rj+k).

Table 7.12 Summary of the assignment results when
using the ELECTRE-Tri rules.

Optimistic rule Pessimistic rule

Situation 1 Cj Cj

Situation 2 Cj–1 Cj–1

Situation 3 Cj–1 Cj+k

7.5.4 Properties

ELECTRE-Tri has the following properties (Yu, 1992; Roy and Bouyssou 1993):

� Every alternative is assigned to one category according to one of the procedures
(‘uniqueness property’). However, optimistic and pessimistic procedures may
assign an alternative to a different category.



208 MULTI-CRITERIA DECISION ANALYSIS

� The assignment of an alternative does not depend on the assignment of the
other alternatives of A. (‘independence property’).

� When two identical alternatives are compared to the reference profiles (i.e. the
outranking relations between the alternatives and the profiles are the same),
they are assigned to the same categories (‘strong homogeneity property’).

� If alternative a dominates alternative b, then a will be assigned to the cate-
gory which is at least as good as the category to which b will be assigned
(‘monotonicity property’).

� The fusion of two successive categories or the separation of a category into two
new categories does not affect the assignment of the alternatives in the other
categories (‘stability property’).

� If the performance of alternative a is ‘between’ the performance of two con-
secutive limiting profiles, it will unequivocally be assigned to the category
delimited by these profiles (‘conformity property’).

Exercise 7.4

In this exercise, you will learn how to use the Electre-Tri software in a sorting
problem.

Learning Outcomes

� Structure a sorting problem in the Electre-Tri software (download from
http://www.lamsade.dauphine.fr/spip.php?rubrique64)

� Understand the steps of the sorting method ELECTRE-Tri

Tasks

a) Consider the two limiting profiles in Table 7.13, evaluated on five criteria
defining three ordered categories. In the software the best profile is denoted
by rK+1 (r2 in our example) and the worst by r1. Enter the limiting profiles in
the software.

b) Consider the alternatives to be sorted, whose performance is given in the top
left matrix of Figure 7.16. Enter their performances in the software.

Table 7.13 Evaluation of the performances
of the limiting profiles.

f1 f2 f3 f4 f5

r2 15 15 15 15 15
r1 10 10 10 10 10
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Figure 7.16 The performances of the alternatives, a visualization of the perfor-
mances of alternative 7 compared to the profiles and the outranking degrees between
the alternatives and the profiles in theElectre-Tri software. Reproduced by permission
of LAMSADE.

Figure 7.17 Results in the Electre Tri software: the preference relations between
alternatives to be assigned and the profiles as well the pessimistic and optimistic
assignments.
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c) The parameters associated to each criterion are identical: qj = 1, pj = 2, vj

= 4, wj = 0.2. All criteria are to be maximized. The λ-threshold is set at 0.76.
Enter these parameters into the software.

d) Compute the outranking degrees between the actions and limiting profiles.
Check that your results are the same as in the right-handmatrix of Figure 7.16.
Based on the outranking degrees, and the λ-threshold of 0.76, verify the
binary relations between the actions and limiting profiles. Check that your
results are the same as in the upper matrix of Figure 7.17.

e) Assign the actions according to the pessimistic and optimistic assignment
rules. The results are given in the lower matrix of Figure 7.17.
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TOPSIS

8.1 Introduction

This chapter explains the theory and practical uses of TOPSIS, which stands for
‘Technique of Order Preference Similarity to the Ideal Solution’. In this chapter
Microsoft Excel is used to illustrate problem solving with TOPSIS, while DECERNS,
one of the few available software packages supporting TOPSIS, is described in
Chapter 11. TOPSIS is not based on a complex algorithm and therefore a ‘black box’
section is unnecessary.

The companion website provides an illustrative example with Microsoft Excel.

8.2 Essentials of TOPSIS

The TOPSIS method requires only a minimal number of inputs from the user and
its output is easy to understand. The only subjective parameters are the weights
associated with the criteria. Several applications can be found in Behzadian et al.
(2012). The fundamental idea of TOPSIS is that the best solution is the one which
has the shortest distance to the ideal solution and the furthest distance from the anti-
ideal solution (Hwang and Yoon 1981; Lai et al. 1994; Yoon 1980). For example,
in Figure 8.1, where both criteria are to be maximized, alternative A is closer to the
ideal solution than B and further from the anti-ideal solution if the criteria weights
are equivalent. As a result, TOPSIS presents alternative A as a better solution than
alternative B.

The TOPSIS method is illustrated by Case Study 8.1.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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Figure 8.1 TOPSIS method.

Case Study 8.1

A company wants to recruit a new principal assistant for its international market.
Four candidates have been shortlisted: Anna, Tom, Jack and Emma. Four criteria
have been selected to make the decision. As the post requires intensive contact
with various customers, it is necessary for the principal assistant to have strong
interpersonal skills, with the ability to interact effectively with diverse client
styles within different working environments. The role involves dealing with the
international market, and as a result, extensive experience of living abroad would
be advantageous. Similar work experience would be beneficial. Each candidate is
required to sit a written exam to assess their knowledge of international culture.
The performances of each candidate against the four criteria are shown in Table 8.1.

Table 8.1 Weights of the criteria and performances of the alternatives.

Interpersonal skills Living abroad Written test Work experience
(score out of 10) (years) (score out of 10) (years)

Weight 0.1 0.4 0.3 0.2

Anna 7 9 9 8
Tom 8 7 8 7
Jack 9 6 7 12
Emma 6 11 8 6
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The TOPSIS method is based on five computation steps. The first step is the
gathering of the performances of the alternatives on the different criteria. These
performances need to be normalized in the second step. The normalized scores are
then weighted and the distances to an ideal and anti-ideal point are calculated. Finally,
the closeness is given by the ratio of these distances. These five steps are explained
in more detail below.

The performances of n alternatives a with respect to m criteria i are collected in
a decision matrix X = (xia) as in Table 8.1 where i = 1, . . . , m and a = 1, . . . , n.

1. The performances of the different criteria are normalized in order to be able
to compare the measure on different units (e.g. pounds, years, . . .). Several
normalization methods can be found for this purpose:

(a) The distributive normalization requires that the performances are divided
by the square root of the sum of each squared element in a column.

ria = xia√∑n
a=1 x2

ia

for a = 1, . . . , n and i = 1, . . . , m. (8.1)

If we consider the performances of Table 8.1, the distributive normalization
method gives the scores shown in Table 8.2.

(b) The ideal normalization requires dividing each performance by the highest
value in each column if the criterion has to be maximized. If the criterion
has to be minimized, each performance is divided by the lowest score in
each column.

rai = xai

u+
a

for a = 1, . . . , n and i = 1, . . . , m, (8.2)

where u+
a = max(xai ) for all a = 1, . . . , n;

rai = xai

u−
a

for a = 1, . . . , n and i = 1, . . . , m, (8.3)

where u−
a = min(xai ) for all a = 1, . . . , n.

For the performances of Table 8.1, the ideal normalization method
gives the scores shown in Table 8.3.

Table 8.2 Distributive normalization.

Interpersonal skills Living abroad Written test Work experience

Anna 0.46 0.53 0.56 0.47
Tom 0.53 0.41 0.50 0.41
Jack 0.59 0.35 0.44 0.70
Emma 0.40 0.65 0.50 0.35
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Table 8.3 Ideal normalization.

Interpersonal skills Living abroad Written test Work experience

Anna 0.78 0.82 1.00 0.67
Tom 0.89 0.64 0.89 0.58
Jack 1.00 0.55 0.78 1.00
Emma 0.67 1.00 0.89 0.50

2. Now the weights are taken into account: A weighted normalized decision
matrix is constructed by multiplying the normalized scores rai by their corre-
sponding weights wi :

vai = wi · rai . (8.4)

For the distributive normalized scores, we obtain the weighted scores shown
in Table 8.4.

3. The weighted scores will be used to compare each action to an ideal (zenith) and
anti-ideal (or nadir or negative ideal) virtual action. There are three different
ways of defining these virtual actions.

(a) By collecting the best and worst performance on each criterion of the
normalized decision matrix. For the ideal action we have

A+ = (
v+

1 , . . . , v+
m

)
, (8.5)

and for the anti-ideal action

A− = (
v−

1 , . . . , v−
m

)
, (8.6)

where v+
i = maxa(vai ) if criterion i is to be maximized and v−

i = mina(vai )
if criterion i is to be minimized.

(b) Assuming an absolute ideal and anti-ideal point, which are defined without
considering the actions of the decision problem, A+ = (1, . . . , 1) and
A− = (0, . . . , 0)

(c) The ideal and anti-ideal points are defined by the decision maker. These
points must be between the ideal and anti-ideal points calculated with the
two other methods explained above. This method is not often used as it
requires an input from the user, which is often difficult to elicit.

4. Calculate the distance for each action to the ideal action,

d+
a =

√∑
i

(v∗
i − vai )2, a = 1, . . . , m, (8.7)
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Table 8.4 Weighted normalized scores.

Interpersonal skills Living abroad Written test Work experience

Anna 0.046 0.213 0.168 0.093
Tom 0.053 0.165 0.149 0.082
Jack 0.059 0.142 0.131 0.140
Emma 0.040 0.260 0.149 0.070

and the anti-ideal action,

d−
a =

√∑
i

(v−
i − vai )2, a = 1, . . . , m. (8.8)

In (8.7) and (8.8), we use a Euclidean distance (L2), which is the most popular,
but another metric could be adopted (e.g. L1, the Manhattan metric).

5. Calculate the relative closeness coefficient of each action:

Ca = d−
a

d+
a + d−

a
. (8.9)

The closeness coefficient is always between 0 and 1, where 1 is the pre-
ferred action. If an action is closer to the ideal than the anti-ideal, then Ca

approaches 1, whereas if an action is closer to the anti-ideal than to the ideal, Ca

approaches 0.

Table 8.5 contains the ideal and anti-ideal action with the ideal and distributive
normalization. Table 8.6 contains the details of the closeness calculation. Emma is
the selected action independently of the normalization adopted.

TOPSIS has been criticized because it sometimes gives illogical results. Opri-
covic and Tzeng (2004) presented a simple example where an extreme action (A1),
evaluated on two similarly weighted criteria, is preferred over a superior compro-
mise (A2). In a slightly modified example (Table 8.7), Figure 8.2, produced with
DECERNS, shows that compromise A2 will never be ranked first indifferently of the
assigned weights.

Table 8.5 Ideal and anti-ideal action.

Ideal normalization Distributive normalization

Interpersonal Living Written Work Interpersonal Living Written Work
skills abroad test experience skills abroad test experience

A+ 0.100 0.400 0.300 0.200 0.059 0.260 0.168 0.140
A− 0.067 0.218 0.233 0.100 0.040 0.142 0.131 0.070
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Table 8.6 Closeness calculation.

Ideal normalization Distributive normalization

Anna Tom Jack Emma Anna Tom Jack Emma

d+
a 0.101 0.171 0.194 0.111 0.068 0.113 0.124 0.075

d−
a 0.133 0.057 0.105 0.185 0.084 0.035 0.073 0.120

Ca 0.507 0.250 0.350 0.630 0.550 0.240 0.370 0.610

Table 8.7 Table of scores.

A1 A2 A3

Criterion 1 (to be maximized) 3000 3750 4500
Criterion 2 (to be minimized) 1 2 5

Figure 8.2 TOPSIS prefers never prefers the comprmise A2. Reproduced by permis-
sion of Boris Yatsalo.
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Finally, we remark that using the Euclidean distance, as in (8.7) and (8.8), which
magnifies large distances (Lai et al. 1994), may lead to different results than methods
based on Manhattan distances (L1).

Exercise 8.1

First you will familiarize yourself with the step-by-step TOPSIS calculations in
Microsoft Excel and then have an opportunity to complete the spreadsheet for the
other criteria.

Learning Outcomes

� Understand the calculation of the closeness with a distributive normalization

� Understand the calculation of the closeness with an ideal normalization

� Understand the calculation of the closeness with an ideal and absolute ideal
solution

Tasks

Open the file Recruitment.xls. It contains four spreadsheets with variants of
TOPSIS.

Answer the following questions:

a) Describe the meaning of each calculation cell and its formula. Compare the
four variants.

b) Customize the spreadsheets for a problem of your choice.
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Goal programming

9.1 Introduction

This chapter explains the theory and practical use of the goal programming meth-
ods. After a theoretical section, Section 9.3 explains how to solve goal programming
problems with Microsoft Excel. Three variants of goal programming are presented.
This chapter does not include a black box section as the algorithm behind the goal
programming is the well-known simplex method (see Ignizio and Cavalier 1994;
Schniederjans 1984). Since goal programming is an extension of linear program-
ming to handle multiple conflicting objectives, the reader is advised to first read the
Appendix on linear programming to ensure a better understanding.
The companion website provides illustrative examples with Microsoft Excel.

9.2 Essential concepts of goal programming

The idea of goal programming is that there is an ideal goal to be achieved while also
satisfying hard constraints. This goal is composed of several objectives that may be
conflicting. The main difficulty is the modelling of the problem: to find the goal and
the soft and hard constraints. Case Study 9.1 will be used to illustrate this point.

Case Study 9.1

A company produces two types of product: A and B. To manufacture, product A
requires 5 parts of type I and 3 parts of type II; B requires 4 parts of type I and 2
parts of type II. The profit is £20 for A and £30 for B. The company aims to achieve
a weekly profit of £2000. The production time per unit of A is 7 man-hours and per
unit of B is 3 man-hours. The company employs seven people in the production
department and would like to keep within the 250 available hours of work each

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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week. A contract has been signed with a supplier to deliver up to 80 parts of type
I and 60 parts of type II. It is possible to order more parts but they would be much
more expensive. The manufacturing capacity of the machine for both products
combined is limited to a maximum of 80 products per week. The company has a
strategic target to produce at least 50 units of each product per week.

The modelling of the problem requires first the identification of the decision
variables, goals and constraints.

Identification of the decision variables. The decision variables are indepen-
dent variables that are changed until the desired quantity is obtained. In
Case Study 9.1, they are given by x1, the number of units of product A manu-
factured per week, and x2, the number of units of product B manufactured per
week.

Identification of the goals and soft and hard constraints. A hard constraint is an
inequality that describes a threshold that cannot be exceeded as it represents an
unfeasible region of solution. All solutions below the threshold have the same
preference. A goalwith a soft constraint has a threshold which is an ideal point,
but can be exceeded because solutions over this point are feasible even if they
are not attractive. In this case, both deviational variables should be added. Why
should unattractive solutions be accepted? As there are often several goals, not
all can be achieved simultaneously; therefore, some good solutions may be
unattractive to some goals. A goalwith a hard constraint has a threshold which
is an ideal point and cannot be exceeded. The nearest solutions to the ideal
point are preferred. In this case, only the deviational variable to be minimized
should be introduced into the equation.

In Case Study 9.1, there are seven constraints:

� The profit target of the company of £2000 sets the first constraint:

30x1 + 20x2 ≥ 2000.

Is this a soft or hard constraint? The company will still survive if the benefit is
lower; therefore it is a desirable goal. The inequality can be transformed into
an equality with two adjustment variables: n1 for a negative deviation of the
goal and p1 for a positive deviation:

30x1 + 20x2 + n1 − p1 = 2000.

One direction of the deviation will be preferred over the other. In this case, it
is preferable to have a greater than a lesser benefit. The deviational variable n1
is thus to be minimized.
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� The second constraint is set by the total working hours in a week:

7x1 + 3x2 ≤ 250.

Again, is it a soft or hard constraint? As employees can do overtime or tempo-
rary staff can be hired, this inequality can be considered a goal and transformed
into:

7x1 + 3x2 + n2 − p2 = 250.

In this case, the extra hours variable (p2) is the deviational variable tominimize.

� The next two constraints are set by the capacity of the suppliers: for parts of
type I,

5x1 + 4x2 ≤ 80;

For parts of type II,

3x1 + 2x2 ≤ 60.

As the suppliers are able to deliver additional parts, these are soft constraints
and can be transformed into:

5x1 + 4x2 + n3 − p3 = 80,

3x1 + 2x2 + n4 − p4 = 60.

Additional parts are more expensive and as a result, the positives deviations p3
and p4 are to be minimized.

� The following two constraints are set by the strategic aims of the company,
which is to produce a minimum of 50 units of product A and B. The constraints
can be written as:

x1 ≥ 50,
x2 ≥ 50.

It is possible to produce less, therefore the constraints above are transformed
into goals:

x1 + n5 − p5 = 50,

x2 + n6 − p6 = 50.



GOAL PROGRAMMING 225

� The last constraint is set by the capacity of the machine:

x1 + x2 ≤ 80.

This is a hard constraint because the machine cannot produce more than its
capacity. Therefore, it cannot be transformed into a goal.

Putting all goals and constraints together, we have the following goal program:

min z = n1 + p2 + p3 + p4 + n5 + n6

subject to:

30x1 + 20x2 + n1 − p1 = 2000

7x1 + 3x2 + n2 − p2 = 250

5x1 + 4x2 + n3 − p3 = 80

3x1 + 2x2 + n4 − p4 = 60

x1 + n5 − p5 = 50

x2 + n6 − p6 = 50

x1 + x2 ≤ 80
x1, x2 ≤ 0
ni , pi ≥ 0, i = 1, . . . , 6.

Note that the goal program does not contain any weight. They will be introduced in
the section 9.4.1. In the program modelling, supplementary constraints are added to
ensure that all decisional and deviational variables are positives.
It is important to transform hard constraints into goals where possible. This allows

the examination of a larger solution space, which may contain potentially good or
optimal solutions. It is also important to incorporate both deviational variables n and
p, when possible, for the same reason.
The goal programming method cannot detect a Pareto front. A Pareto front

contains the set of solutions that, when compared to other solutions, are at least
as good with respect to all objectives and strictly better with respect to at least
one objective. This is problematic if the goals are set too low because a better
solution may exist but will not be proposed as it is too far from the goal set by
decision maker. For example, if the Pareto optimum is at profit of £10 000, it
will not be detected if the decision maker sets a low goal as £2000. Techniques
have been developed to detect and restore the Pareto inefficiency (Hannan 1980;
Romero 1991).
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Exercise 9.1

The following multiple-choice questions allow you to test your knowledge on the
basics of goal programming. Only one answer is correct. Answers can be found on
the companion website.

1. How many deviational variables are in the objective function of goal program-
ming?

a) Equivalent to the number of goals

b) Twice the number of goals

c) Equivalent to the number of soft and hard constraints

d) Twice the number of soft and hard constraints

2. What is a soft constraint?

a) An inequality

b) A constraint with a threshold indicating unfeasible solutions

c) A goal

d) A constraint that is not needed in the modelling of the problem

3. Which statement is incorrect?

a) All deviational variables should be included in the equation

b) A hard constraint is not a goal

c) Several solutions may exist

d) All goals are always satisfied

4. What type of problems can goal programming solve?

a) Problems with a discrete solution space

b) Problems with continuous solution space

c) Problems with a binary solution space

d) Sorting problems

5. Goal programming is a generalization of which method?

a) MACBETH

b) Linear programming

c) TOPSIS

d) DEA
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Figure 9.1 Microsoft Excel spreadsheet for the Case Study 9.1 goal program.

9.3 Software description

Linear goal programs can be solved using linear programming software, for exam-
ple the Microsoft Excel Solver add-in or LINGO package. The widespread use and
knowledge ofMicrosoft Excel is themain reason to opt for theMicrosoft Excel Solver.
This section describes how to use it.

9.3.1 Microsoft Excel Solver

To explain theMicrosoft Excel Solver, Case Study 9.1 will be used. The essential first
step to solving a goal programming problem is correct modelling. A goal program
must be written by hand as in Section 9.2 as the software is unable to do this. When
it has been defined, it must be rewritten in aMicrosoft Excel spreadsheet. There is no
strict rule on how to enter it, but it is helpful to have a clear structure.
In Figure 9.1:

� Line 4 determines the deviational variables to be minimized. In this case, they
all have the same weight. Section 9.4 describes how to weight them differently.

� Lines 5–10 contain the goals, and line 11 the hard constraint.

� Line 13 contains the decision and deviational variables that need to be found
by the solver.

� Cell E15 represents the objective to minimized, which is the sum of n1, n5, n6,
p2, p3 and p4. This information is entered in the Solver parameters shown in
Figure 9.2.

Exercise 9.2

You will learn the use of theMicrosoft Excel Solver for solving goal programs.

Learning Outcomes

� Understand the modelling of a goal programme

� Understand the parameters in Microsoft Excel Solver
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Figure 9.2 Solver parameters.

Tasks

Open the file Production.xls on the un-weighted GP tab. It contains a spreadsheet
with the goal programme of the problem of the Case Study 9.1.
Answer the following questions:

a) In the spreadsheet, find the objective of the problem, the decision variables,
the goals and hard constraints. (Read the comments in the red square in case
of difficulty.)

b) Open the Solver. What is entered in the set target cell? What is entered in the
box ‘by changing cells’? What is entered in the box ‘Subject to constraints?’

9.4 Extensions of the goal programming

As not all goals have the same importance, several variants have been conceived to
weight goals differently (Jones and Mehrdad 2010).

9.4.1 Weighted goal programming

In weighted goal programming, penalty weights are attached to the unwanted devi-
ational variables. These weights are composed of two parts: a conversion factor in
order to assure a commensurability of the deviational variables, and the importance
of the penalization given at each deviation.
There are different ways to normalize deviational variables. A practical way is

to use percentage normalization, which indicates the percentage away from the goal.
For this purpose, the deviational variable is divided by the goal of the objective. The
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weights are set in the numerator part. For example, in Case Study 9.1, we consider
1% deviation from the target of 250h/week is five times more important than the
other goals. The new weighted goal program is:

min z = 1

2000
n1 + 5

250
p2 + 1

80
p3 + 1

60
p4 + 1

50
n5 + 1

50
n6

subject to:

30x1 + 20x2 + n1 − p1 = 2000

7x1 + 3x2 + n2 − p2 = 250

5x1 + 4x2 + n3 − p3 = 80

3x1 + 2x2 + n4 − p4 = 60

x1 + n5 − p5 = 50

x2 + n6 − p6 = 50

x1 + x2 ≤ 80
x1, x2 ≥ 0
ni , pi ≥ 0, i = 1, . . . , 6

(the deviational variables to be minimized are in bold).

Exercise 9.3

You will learn the use of the Microsoft Excel Solver for solving a weighted goal
program.

Learning Outcomes

� Understand the modelling of a weighted goal program

� Understand the parameters in Microsoft Excel Solver

Tasks

Open the file Production.xls on the weighted GP tab. It contains a spreadsheet
with the weighted goal program of the problem in Case Study 9.1.
Answer the following questions:

a) In the spreadsheet, find the objective of the problem, the decision variables,
the goals, the hard constraints and weights. (Read the comments in the red
square in case of difficulty.)

b) How has the optimal result changed?
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9.4.2 Lexicographic goal programming

The lexicographic goal programming is used when the decision maker has a clear
preference order for satisfying the goals. For example, in Case Study 9.1, the goal of
the total working hours in a week is strictly preferable to the other goals because the
staff could strike. The first step is to minimize this goal:

min z = p2

Subject to:

30x1 + 20x2 + n1 − p1 = 2000

7x1 + 3x2 + n2 − p2 = 250

5x1 + 4x2 + n3 − p3 = 80

3x1 + 2x2 + n4 − p4 = 60

x1 + n5 − p5 = 50

x2 + n6 − p6 = 50

x1 + x2 ≤ 80
x1, x2 ≥ 0
ni , pi ≥ 0, i = 1, . . . , 6

(the deviational variables to be minimized are in bold).
An optimum is found at p2 = 0. Then the second priority level is optimized. This

goal program has all the goals and constraints of the previous formulation plus the
additional constraint p2 = 0:

min z = n1 + p3 + p4 + n5 + n6

subject to:

30x1 + 20x2 + n1 − p1 = 2000

7x1 + 3x2 + n2 − p2 = 250

5x1 + 4x2 + n3 − p3 = 80

3x1 + 2x2 + n4 − p4 = 60

x1 + n5 − p5 = 50

x2 + n6 − p6 = 50

x1 + x2 ≤ 80
p2 = 0

x1, x2 ≥ 0
ni , pi ≥ 0, i = 1, . . . , 6.



GOAL PROGRAMMING 231

Figure 9.3 Lexographic goal program, first-level priority.

Figure 9.4 Lexographic goal program, second-level priority.

InMicrosoft Excel, each priority level is solved in a new spreadsheet (Figure 9.3
and Figure 9.4). The model is solved for each priority level at a time by adding a
constraint in the spreadsheet (line 18 in Figure 9.4) and in theMicrosoft Excel Solver
parameters box. For a large number of priority levels, the process can be automated
by programming a macro in Visual Basics for Applications.

Exercise 9.4

You will learn the use of theMicrosoft Excel Solver for solving a lexicographic goal
program.

Learning Outcomes

� Understand the modelling of a lexicographic goal program

� Understand the parameters in Microsoft Excel Solver
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Tasks

Open the file Production.xls on the LGP1 and LGP12 tabs. It contains two spread-
sheets with the lexicographic goal program of the problem in Case Study 9.1.
Answer the following questions:

a) In the two spreadsheets, find the objective of the problem, the decision vari-
ables, the goals, the hard constraints and weights. (Read the comments in the
red square in case of difficulty.)

b) Compare the Solver box of the two spreadsheets. How do the parameters
differ?

c) How has the optimal result changed from the traditional goal program?

9.4.3 Chebyshev goal programming

Unweighted, weighted and lexographic goal programming often find extreme points
(intersections of goals, constraints and axes), which lead to an unbalanced solution:
some goals are achieved and others are far from satisfactory. In order to counter this
problem, Chebyshev goal programming has been developed (Flavell 1976). The idea
of this method is to introduce additional constraints to the model to ensure a balance
between the objectives.
If we assume equal preferential weights and a percentage normalization, the

Chebyshev goal programme of Case Study 9.1 is given by:

min z = λ

subject to:

1

2000
n1 ≤ λ

5

250
p2 ≤ λ

1

80
p3 ≤ λ

1

60
p4 ≤ λ

1

50
n5 ≤ λ

1

50
n6 ≤ λ

30x1 + 20x2 + n1 − p1 = 2000

7x1 + 3x2 + n2 − p2 = 250

5x1 + 4x2 + n3 − p3 = 80
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Figure 9.5 Chebyshev goal program.

3x1 + 2x2 + n4 − p4 = 60

x1 + n5 − p5 = 50

x2 + n6 − p6 = 50

x1 + x2 ≤ 80
p2 = 0

x1, x2 ≥ 0
ni , pi ≥ 0, i = 1, . . . , 6

(the deviational variables to be minimized are in bold). In theMicrosoft Excel spread-
sheet, the additional constraints are also added (lines 13–18 in Figure 9.5).

Exercise 9.5

You will learn the use of the Microsoft Excel Solver for solving a Chebyshev goal
program.

Learning Outcomes

� Understand the modelling of a Chebyshev goal program

� Understand the parameters in Microsoft Excel Solver

Tasks

Open the file Production.xls on the Chebyshev tab. It contains a spreadsheet with
the Chebyshev goal program of the problem in Case Study 9.1.
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Answer the following questions:

a) In the spreadsheet, find the objective of the problem, the decision variables,
the goals, the hard constraints and weights. (Read the comments in the red
square in case of difficulty.)

b) Open the Solver in the spreadsheets. How have the parameters of the Solver
boxes been changed compared to Exercise 9.2?

c) How has the optimal result changed from the traditional goal program?
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Data Envelopment Analysis
Jean-Marc Huguenin1

10.1 Introduction

This chapter introduces a performance measurement technique called DEA, which
stands for ‘Data Envelopment Analysis’. Firm efficiency is defined as the ratio of the
sum of its weighted outputs to the sum of its weighted inputs (Thanassoulis et al.
2008, p. 264). As Giannoulis and Ishizaka (2010) point out, the analogy with other
multi-criteria methods is striking: firms can be considered as alternatives, outputs as
criteria to be maximized and inputs as criteria to be minimized. What distinguishes
DEA is that the weights assigned to outputs and inputs are not allocated by users.
Moreover, it does not rely on a common set of weights for all firms. Instead, a different
set of weights is calculated by a linear optimization procedure in order to show each
firm in its best possible light.
DEA helps decision makers in the following ways:

� By calculating an efficiency score, it indicates if a firm is completely efficient
or has capacity for improvement.

1Jean-Marc Huguenin is a Senior Lecturer and a Project Manager at the Swiss Graduate School
of Public Administration at the University of Lausanne, Switzerland. He also heads the Independent
Economists, an economic intelligence unit founded in 1999. He was previously an economist at the Swiss
National Bank, an economist for the Swiss in-service training centre for secondary school teachers and
an economics professor at the College of Bienne, Switzerland. His areas of research and expertise are the
evaluation of productivity and efficiency of organizations and the economics andmanagement of education
systems.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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� By setting target values for input and output, it calculates by how much input
must be decreased or output increased in order to become efficient.

� By identifying the nature of returns to scale, it indicates if a firm has to decrease
or increase its scale (or size) in order to minimize the average total cost.

� By identifying a set of benchmarks, it specifies which other firms’ processes
need to be analyzed in order to improve its own practices.

After this introduction, Section 10.2 presents the essentials of DEA, alongside a
case study to give an intuitive understanding of its application. Section 10.3 introduces
Win4DEAP, a software package that conducts efficiency analysis based on DEA
methodology. Section 10.4 is designed for more demanding readers interested in the
methodological background ofDEA. Finally, four advancedDEA topics are presented
in Section 10.5: adjustment to the environment, preferences, sensitivity analysis and
time series data.
The companion website provides a case study using Win4DEAP, solutions to

exercises, and an illustrative example using Microsoft Excel Solver.

10.2 Essential concepts of DEA

10.2.1 An efficiency measurement method

DEA is used to measure the performance of firms or entities (called decision-making
units, DMUs) which convert multiple inputs into multiple outputs. It is suitable for
the use of both private sector firms and public sector organizations (and even for
entities such as regions or countries). DEA was formulated in Charnes et al. (1978,
1981) in order to evaluate a US federal government programme in the education
system called ‘Program Follow Through’. The use of DEA then spread to other
public organizations (hospitals, elderly care facilities, social service units, unem-
ployment offices, police forces, army units, prisons, waste management services,
power plants, public transportation companies, forestry companies, libraries, muse-
ums, theatres, etc.) and to the private sector (banks, insurance companies, retail
stores, etc.).
EachDMU’s efficiency score is calculated relative to an efficiency frontier. DMUs

located on the efficiency frontier have an efficiency score of 1 (or 100%). DMUs
operating beneath the frontier have an efficiency score less than 1 and so have the
capacity to improve future performance. Note that no DMU can be located above the
efficiency frontier because they cannot have an efficiency score greater than 1. DMUs
located on the frontier serve as benchmarks – or peers – for inefficient DMUs. These
benchmarks (i.e. real DMUs with real data) are associated with best practices. DEA
is therefore a powerful benchmarking technique.
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10.2.2 A DEA case study

To better understand the mechanics behind DEA, this section presents a simple
practical case study. It includes only one input and one output, although DEA can
handle multiple inputs and multiple outputs.

Case Study 10.1

FiveRegisterOffices (A toE) produce one output (total number of documents, such
as marriage or birth certificates) with one input (number of full-time equivalent
public servants).2 The data are listed in Table 10.1. For example, first row of the
table shows that two public servants work in Register Office A. They produce one
document (during a certain period of time).

Table 10.1 Five Register Offices produce documents with public servants.

Input Output

Register Office Public servants (x) Documents (y)

A 2 1
B 3 4
C 5 5
D 4 3
E 6 7

10.2.2.1 Two basic DEA models

Two basic models are used in DEA, leading to the identification of two different
frontiers:

� The first model assumes constant returns to scale (CRS model). This is appro-
priate when all DMUs are operating at an optimal scale. However, note that
this is quite an ambitious assumption. To operate at an optimal scale, DMUs
should evolve in a perfectly competitive environment, which is seldom the
case. The CRS model calculates an efficiency score called constant returns to
scale technical efficiency (CRSTE).

� The second model assumes variable returns to scale (VRS model). This is
appropriate when DMUs are not operating at an optimal scale. This is usually

2 In order to represent this example in a two-dimensional graph, we consider a total of two outputs and
inputs (one output, one input; no variable representing the quality of the variables).
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the case when DMUs face imperfect competition, government regulations, etc.
The VRS model calculates an efficiency score called variable returns to scale
technical efficiency (VRSTE).

Comparison between the two models reveals the source of inefficiency. CRSTE
corresponds to the global measure of a DMU performance. It is composed of a ‘pure’
technical efficiency measure (captured by the VRSTE score) and a scale efficiency
(SE) measure. Section 10.2.2.6) demonstrates how these three notions (CRSTE,
VRSTE and SE) relate to each other.

10.2.2.2 Input or output orientation

A DEA model can be input- or output-oriented:

� In an input orientation, DEA minimizes input for a given level of output; in
other words, it indicates how much a DMU can decrease its input for a given
level of output.

� In an output orientation, DEA maximizes output for a given level of input; in
other words, it indicates how much a DMU can increase its output for a given
level of input.

The efficiency frontier will be different in a CRS or a VRS model (see Section
10.2.2.6). However, within each model, the frontier will not be affected by an input
or an output orientation. DMUs located on the frontier in an input orientation will
also be on the frontier in an output orientation.
In a CRS model, technical efficiency scores have the same values in an input

or an output orientation. But these values will be different according to the model’s
orientation when VRS is assumed. However, Coelli and Perelman (1996, 1999) note
that, in many instances, the choice of orientation has only a minor influence upon the
technical efficiency scores calculated.
The model’s orientation should be chosen according to which variables (inputs

or outputs) the decision maker has most control over. For example, a school prin-
cipal will probably have more control over his teaching staff (input) than over the
number of pupils (output). An input orientation will be more appropriate in this
case.
In the public sector, but sometimes also in the private sector, a given level of input

can be assigned and secured to a DMU. In this case, the decision maker may want
to maximize the output (and therefore choose an output orientation). Alternatively, if
the decision maker’s task is to produce a given level of output (e.g. a quota) with the
minimum input, he will opt for an input orientation.
If the decision maker is not facing any constraints and has control of both input

and output, the model’s orientation will depend on his objectives. Does he need
to cut costs (input orientation) or does he want to maximize production (output
orientation)?
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10.2.2.3 CRS efficient frontier

Figure 10.1 shows the efficient frontier for Case Study 10.1 assuming constant returns
to scale (CRS efficient frontier). The CRS efficient frontier starts at the origin and
runs through Register Office B. Register Office B happens to be the observation
with the steepest slope, or the highest productivity ratio, among all Register Office
(4/3 = 1.33, meaning that one public servant produces 1.33 document). Register
Office B is on the frontier; it is 100% efficient. Register Offices A, C, D and E
are below the frontier. Their respective efficiency scores are less than 100%. DEA
assumes that the production possibility set is bounded by this frontier. This actually
implies that DEA calculates relative and not absolute efficiency scores. Although
DMUs on the efficient frontier are assigned a 100% efficiency score, it is likely that
they could further improve their productivity.
Figure 10.1 also illustrates how DEA measures efficiency scores. The example

of Register Office A is described below:

� In an input orientation, A’s efficiency score is equal to the distance SACRS-I
divided by the distance SA. ACRS-I is the projection of point A on the efficient
frontier (assuming constant returns to scale and an input orientation). Note
that one can easily calculate efficiency scores using a ruler and measuring the
distances on the graph. A’s score is 37.5%. This means that Register Office
A could reduce the number of public servants employed (input) by 62.5%
(100 – 37.5) and still produce the same number of documents (1).

� In an output orientation, A’s efficiency score is equal to the distance TA divided
by the distance TACRS-O. ACRS-O is the projection of point A on the efficient
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Figure 10.1 Register Offices beneath the efficient frontier have the capacity to
improve performance.
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frontier (assuming constant returns to scale –CRS– and an output orientation).
A’s score is 37.5%, as in an input orientation.3 This means that Register Office
A could increase its production of documents (output) by 62.5% (100 – 37.5)
whilst holding the number of public servants constant at 2.

10.2.2.4 VRS efficient frontier

Figure 10.2 shows the efficient frontier for Case Study 10.1 assuming variable returns
to scale technology (VRS efficient frontier). The VRS efficient frontier is formed by
covering all the observations. Register Offices A, B and E are on the frontier. They
are 100% efficient. Register Offices C and D are below the frontier. Their respective
efficiency scores are less than 100%. DEA assumes that the production possibility
set is bounded by this frontier. Again, this implies that DEA calculates relative and
not absolute efficiency scores. Although DMUs on the efficient frontier are assigned
a 100% efficiency score, it is likely that they could further improve their productivity.
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Figure 10.2 For the same level of input, Register Office D could improve its output
up to the projected values of point DVRS-O (i.e. from 3 to 5 documents).

Figure 10.2 also illustrates how DEA measures efficiency scores. The example
of Register Office D, one of the two inefficient offices, is described below:

� In an input orientation, D’s efficiency score is equal to the distance UDVRS-I
divided by the distance UD. DVRS-I is the projection of point D on the efficient
frontier (assuming variable returns to scale and an input orientation). Note
that one can easily calculate efficiency scores using a ruler and measuring the

3 Note that the efficiency scores in a CRS model are always the same for an input or an output
orientation.
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distances on the graph. D’s score is 66.7%. This means that Register Office
D could reduce the number of public servants employed (input) by 33.3%
(100 – 66.7) and still produce the same number of documents (3).

� In an output orientation, D’s efficiency score is equal to the distanceVDdivided
by the distance VDVRS-O. DVRS-O is the projection of point D on the efficient
frontier (assuming variable returns to scale and an output orientation). D’s
score is 60%.4 This means that Register Office D could increase its production
of documents (output) by 40% (100 – 60) whilst holding the number of public
servants constant at 4.

10.2.2.5 Interpreting efficiency scores according to the DEA model’s output
or input orientation

Register Office C has an efficiency score of 75% in the CRS model. It will get the
same efficiency score in an output or in an input-oriented model under the constant
returns to scale assumption. However:

� In the input-oriented model, the capacity to improve input (i.e. a reduction) by
25% (100 – 75) is calculated using the original input value of 5 public servants.
The DEAmodel calculates a projected value of 3.75. The 25% improvement is
then calculated according to the original value: ((5 – 3.75) / 5) 100= 25. From
a practical point of view, the capacity to improve input by 25% means that
the Register Office should reduce all of its inputs by 25% in order to become
efficient.

� In the output-oriented model, the capacity to improve output (i.e. an augmenta-
tion) by 25% (100 – 75) is calculated using the projected output value. Register
Office C has an original output value of 5 documents. The DEA model cal-
culates a projected value of 6.67 documents. The 25% improvement is then
calculated according to the projected value: ((6.67− 5) / 6.67) 100= 25. From
a practical point of view, the capacity to improve output by 25%means that the
Register Office should augment all of its outputs by 25% in order to become
efficient.

10.2.2.6 CRS, VRS and scale efficiency

Figure 10.3 shows both the CRS and VRS efficient frontiers on the same graph.
Register Office B is CRS and VRS efficient, as it is located on both frontiers. Register
Offices A and E are efficient under the VRS assumption but inefficient under the CRS
assumption. Finally, Register Office D and C are both CRS and VRS inefficient; they
are located neither on the CRS nor on the VRS frontiers.
The gap observed between the CRS and the VRS frontiers is due to a problem of

scale. For example, Register Office A is VRS efficient. To become CRS efficient, A

4 Note that the efficiency scores in a VRS model are different for an input or an output orientation.
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Figure 10.3 Register Offices A and E are VRS efficient but CRS inefficient.

should modify its scale (or size). Only by operating at point ACRS-I would A be as
productive as B, which is the only CRS efficient Register Office (and thus the most
productive one).
Some Register Office (D and C) are not even located on the VRS frontier. These

Register Office not only have a scale problem but are also poorly managed. For exam-
ple, D should move to point DVRS-I located on the VRS frontier in order to become
VRS efficient (i.e. to eliminate the inefficiency attributable to poor management).
Furthermore, D should move from point DVRS-I to point DCRS-I located on the CRS
frontier in order to become CRS efficient (i.e. to eliminate the inefficiency attributable
to a problem of scale).
As a result, the CRS efficiency (also called ‘total’ efficiency) can be decomposed

into two components: the VRS efficiency (also called ‘pure’ efficiency) and the scale
efficiency. The following ratios represent these three types of efficiency for Register
Office D (input orientation):

Technical efficiency of D Technical efficiency of D
under CRS under VRS Scale efficiency of D

TECRS = UDCRS−I

UD
=56.3%; TEVRS = UDVRS−I

UD
=66.7%; SE= UDCRS−I

UDVRS−I
=84.4%;

Knowing TE under CRS and TE under VRS, the scale efficiency is easily calculated.
As TECRS = TEVRS × SEk , the scale efficiency is obtained through the division of TE

under CRS by TE under VRS: SE = TECRS
TEVRS

.
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Figure 10.4 Register Offices A and D face increasing returns to scale (IRS,
economies of scale), while C and E face decreasing returns to scale (DRS, dis-
economies of scale).

10.2.2.7 Nature of returns to scale

The nature of returns to scale of Register Offices not located on the CRS frontier (in
other words, scale inefficient) has to be identified. Figure 10.4 shows the CRS efficient
points ACRS-I and ECRS-I of Register Offices A and E (which are CRS inefficient but
VRS efficient). It also shows the CRS efficient points DCRS-I and CCRS-I and the VRS
efficient points DVRS-I and CVRS-I of Register Offices D and C (which are CRS and
VRS inefficient).
To identify the nature of returns to scale, one has to focus on the slope of the

VRS efficient points A, DVRS-I, B, CVRS-I and E (or productivity). Three situations
can occur:

� A Register Office is located both on the CRS and the VRS efficient frontiers
(such as point B). Register Office B has the highest productivity of all VRS
efficient points (4/3 = 1.33). It is facing constant returns to scale. Such a firm
achieves its optimal size (or efficient scale).5 It is operating at a point where
the scale (or size) has no impact on productivity. This situation occurs when
the average input consumption is minimized and does not vary with output. In

5 In the economic context, a firm operates at the optimal size (or efficient scale) when it minimizes
its average cost. In the context of DEA, we can measure efficiency in physical or monetary terms.
Because cost and price information is not always available or appropriate, the use of technical efficiency
is often preferred. As this latter measure is based on physical terms, we prefer to talk about average input
consumption rather than average cost.
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Figure 10.5 The ratio of productivity is increasing with the scale.

a situation of constant returns to scale, an increase in output of 1% requires a
proportionate (i.e. 1%) increase in input.

� A Register Office (or the projected point of a Register Office) is located at a
point where the scale (or size) has a positive impact on productivity. Points
A and DVRS-I are in such a position (see Figure 10.5). The productivity of A
(1/2 = 0.5) is less than the productivity of DVRS - I (3/2.67 = 1.125). The ratio
of productivity is increasing with the scale. This situation occurs until point B,
which has a productivity of 1.33. Register Offices A and D are therefore facing
increasing returns to scale (or economies of scale). In this situation, the average
inputs consumption declines whilst output rises. Register Offices A and D have
not yet reached their optimal size (or efficient scale). To improve their scale
efficiency, they have to expand their output. In a situation of economies of
scale, a variation in output of 1% results in a variation in input of less than
1%. Hence, an increase in output results in a reduction of the average input
consumption.

� A Register Office (or the projected point of a Register Office) is located at a
point where the scale (or the size) has a negative impact on productivity. Points
CVRS-I and E are in such a position (see Figure 10.6). The productivity of
CVRS-I (5/4 = 1.25) is superior to the productivity of E (7/6 = 1.17). The ratio
of productivity is decreasing with the scale. This situation occurs from point B,
which has a productivity of 1.33. Register Offices C and E are therefore facing
decreasing returns to scale (or diseconomies of scale). In this situation, the
average input consumption rises whilst output rises. Register Offices C and E
have exceeded their optimal size (or efficient scale). To improve their scale
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Figure 10.6 The ratio of productivity is decreasing with the scale.

efficiency, they have to reduce their output. In a situation of diseconomies of
scale, a variation in output of 1% results in a variation in input of more than
1%. Hence, a decrease in output results in a reduction of the average input
consumption.

The specific cases of the five Register Offices are described below (see
Figure 10.4):

– A is located on the VRS frontier but not on the CRS frontier. Its inefficiency is
due to an inappropriate scale. A is facing increasing returns to scale. A variation
in output of 1% results in a variation in input of less than 1%.

– D is located neither on the CRS nor on the VRS frontier. Its inefficiency is
due to an inappropriate scale and to poor management. D is facing increasing
returns to scale. A variation in output of 1% results in a variation in input of
less than 1%.

– B is located both on the CRS and on the VRS frontier. It has no inefficiency at
all. B is facing constant returns to scale. A variation in output of 1% results in
a variation in input of 1%.

– C is located neither on the CRS nor on the VRS frontier. Its inefficiency is
due to an inappropriate scale and to poor management. C is facing decreasing
returns to scale. A variation in output of 1% results in a variation in input of
more than 1%.

– E is located on the VRS frontier (but not on the CRS frontier). Its inefficiency is
due to an inappropriate scale. E is evolving in a situation of decreasing returns
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to scale. A variation in output of 1% results in a variation in input of more
than 1%.

10.2.2.8 Peers (or benchmarks)

DEA identifies, for each inefficient DMU, the closest efficient DMUs located on the
frontier. These efficient DMUs are called peers or benchmarks. If inefficient DMUs
want to improve their performance, they have to look at the best practices developed
by their respective peers.
Under the CRS assumption, Register Office B is the only DMU located on the

efficient frontier. Hence it is identified as the peer for all other inefficient Register
Offices.
Figure 10.7 illustrates the peers under theVRS assumption. ThreeRegisterOffices

(A, B and E) are located on the efficient frontier. Two (C and D) are inefficient. C has
two assigned peers, B and E, because CVRS-I, the projected point of C on the VRS
frontier, lies between these two benchmarks. D has also two assigned peers, A and
B, because DVRS-I, the projected point of D on the VRS frontier, lies between these
two benchmarks.
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Figure 10.7 A and B are peers of D, while B and E are peers of C.

10.2.2.9 Slacks

Particular positions located on the frontier are inefficient. Assume there is an addi-
tional Register Office in our sample, F. It produces 0.5 documents with two public
servants. Figure 10.8 illustrates the efficient frontier under VRS. F is not located on
the frontier. In order to become efficient, it has first to move to point FVRS-I without slacks.
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Figure 10.8 DEA adjusts the projected values of inefficient DMUs to take slacks
into account.

At this location, F should have an efficiency score of 100%, as it is located on the
frontier. But A, next to it on the frontier, is also 100% efficient. The difference
between F and A is striking. With the same number of inputs (2 public servants), F
produces 0.5 document and A produces 1 document (i.e. 0.5 more than F). Therefore
point FVRS-I without slacks cannot be considered as 100% efficient, because it produces
less output with the same amount of inputs than another Register Office (A). To get
a 100% efficiency score, point FVRS-I without slacks has to move further up to point A.
This additional improvement needed for a DMU to become efficient is called a slack.
Indeed, every point located on the sections of the frontier which run parallel to

either the x or the y axes has to be adjusted for slacks. DEA is designed to take slacks
into account.

10.2.3 Multiple outputs and inputs

DEA allows multiple outputs and multiple inputs to be taken into account. For
example, a shirt company uses machines, workers and cotton (three inputs) in order
to produce T-shirts, trousers and underwear (three outputs). DEA can account for all
of these variables and even more. As a result, DEA goes far beyond the calculation
of single productivity ratios such as the number of T-shirts produced per worker (one
output divided by one input).
However, the total number of outputs and inputs being considered is not limitless

from a practical point of view. It depends on the number of DMUs in the data set. If
the number of DMUs is smaller than, roughly speaking, three times the sum of the
total number of inputs and outputs, it is highly probable that several DMUs, if not
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all, will obtain a 100% efficiency score.6 For example, a data set containing 21 shirt
companies should be evaluated on a maximum number of seven outputs and inputs
(21 divided by 3). As Cooper et al. (2006, p. 106) point out, ‘if the number of DMUs
(n) is less than the combined number of inputs and outputs (m + s), a large portion of
the DMUs will be identified as efficient and efficiency discrimination among DMU
is questionable due to an inadequate number of degrees of freedom. ( . . . ) Hence,
it is desirable that n exceeds m + s by several times. A rough rule of thumb in
the envelopment model is to chose n ( . . . ) equal to or greater than max{m × s,
3 × (m + s)}.’
DEA measures DMU efficiency based on multiple outputs and multiple inputs.

If shirt company A produces a lot of T-shirts but only a few trousers and underwear,
DEA will automatically attribute a high weighting to the T-shirts variable in order to
emphasize this strength. As a result, DEA automatically optimizes the weighting of
each variable in order to present each DMU in the best possible light.
Unfortunately, DEA does not work with negative or zero values for inputs and

outputs. However, zero values can be substituted with very low values such as 0.01.
Adistinction has to bemade between variableswhich are under the control ofman-

agement (discretionary variables) and variables which are not (non-discretionary or
environmental variables). Ideally, a DEAmodel will exclusively include discretionary
variables, although someDEAmodels can also accommodate non-discretionary ones.
In a second step, efficiency scores can be adjusted to account for environmental vari-
ables (i.e. such variables influence the efficiency of a DMU but are not a traditional
input and are not under the control of the manager).
Moreover, variables should reflect both quantitative and qualitative characteristics

of DMUs’ resources and services. Although it may not be easy to identify and
to convert qualitative characteristics into numbers, it is desirable to include such
variables in the model in order to appropriately benchmark DMUs.

10.2.4 Types of efficiency

The notion of efficiency refers to an optimal situation; the maximum output for a
given level of input or the minimum input for a given level of output. Subject to data
availability, several types of efficiency can be measured:

� Technical efficiency, in which both outputs and inputs are measured in physical
terms.7

6 The higher the number of inputs and outputs that are taken into consideration for a given number
of firms, the more probable it is that each firm will be the best producer of at least one of the outputs.
Therefore, all firms could obtain a 100% efficiency score.

7 This chapter focuses on the measurement of technical efficiency for two main reasons. First, firms
in the public sector are often not responsible for the age pyramid of their employees; therefore taking
into account the wages of the employees (which often increase with seniority) would unfairly alter the
efficiency of a firm with a greater proportion of senior employees. Second, firms in the public sector do
not often produce commercial goods or services with a set price.
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� Cost efficiency: identical to technical efficiency, except that cost (or price)
information about inputs is added to the model.

� Revenue efficiency: identical to technical efficiency, except that price informa-
tion about outputs is added to the model.

� Profit efficiency: identical to technical efficiency, except that cost information
about inputs and price information about outputs are added to the model.

Technical efficiency is a global measure of DMU performance. However, it does
not indicate the source of inefficiency. This source could be twofold:

� the DMU could be poorly managed and operated;

� it could be penalized for not operating at the right scale.

Technical efficiency can be decomposed into a ‘pure’ technical efficiency measure
and a scale efficiency measure to reflect these two sources of inefficiency.8

10.2.5 Managerial implications

DEA is a benchmarking technique. The efficiency scores provide information about a
DMU’s capacity to improve output or input. In this sense, DEA offers strong support
to decision making. Conducting an efficiency analysis and interpreting the results
often raises practical questions. The following list of frequently asked questions
offers some advice.

� Is it advisable to involve the managers of the DMUs to be benchmarked in the
efficiency analysis from the beginning of the process?
Yes, it is, and for two main reasons. First, managers know the processes of
their DMUs and the data available. Therefore they are the right persons to
pertinently identify which inputs and outputs to integrate into the analysis.
Second, managers involved from the beginning of the process are more likely
to accept the results of the analysis (rather than to reject them).

� How should one respond to managers who claim that their DMUs are different
from others, and therefore cannot be compared to them?
Sometimes inefficiencies can be explained by indisputable environmental vari-
ables. But sometimes not. Managers often justify the low efficiency scores
of their DMUs by arguing that their situations are different compared to the
situations of the other DMUs. They claim to be a ‘special case’ (and therefore

8 The firm’s management team will definitely be held responsible for the ‘pure’ technical efficiency
score. In a situation where it does not have the discretionary power to modify the DMU’s size, it will
likely not be accountable for the scale efficiency score. However, especially in the private sector, one has
the choice of the scale at which it operates: the management team can easily downsize the DMU and, with
some effort, upsize it also.
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it is acceptable to be inefficient). Actually, the majority of DMUs could pos-
sibly claim to be different as most possess something unique. However, it is
likely that the difference of one DMUwill be compensated by the difference of
another. More generally, it is up to the managers to prove that they really face
a hostile environment. If they cannot prove it, management measures should
be taken to improve efficiency.

� Assume that a DMU obtains an efficiency score of 86.3%. Should this number
be strictly applied?
Not really, it should be interpreted more as an order of magnitude. This order
of magnitude informs managers that they have to increase their outputs or to
decrease their inputs in order to become more efficient. But one should not
focus too strictly on the capacity for 13.7% improvement. Such a number
could be interpreted by practitioners as too ‘accurate’. Therefore it is better
to consider efficiency scores as more of an objective basis to hold an open
discussion about the way to improve DMU efficiency rather than a number to
be strictly applied.

� A DMU faces increasing returns to scale. It has economies of scale.What does
that concretely mean from a managerial point of view?
Such a DMU has not yet reached its optimal size. In order to reduce its average
total cost (or its average input consumption), it has to increase its size. In
practice, this could be done either by internal growth (i.e. producing more
output) or by merging with another DMU which is also facing increasing
returns to scale. If, for some reason, managers cannot influence the scale of a
DMU, they should not be held accountable for this source of inefficiency.

� A DMU faces decreasing returns to scale. It has diseconomies of scale. What
does that concretely mean from a managerial point of view?
Such a DMU is already oversized, having exceeded its optimal size. In order
to reduce its average total cost (or its average inputs consumption), it has to
decrease its size. In practice, this could be done either by internal decay (i.e.
producing less output) or by splitting the DMU into two separate businesses.
Note that some of the production could be transferred to a DMU facing increas-
ing returns to scale. If, for some reason, managers cannot influence the scale
of a DMU, they should not be held accountable for this source of inefficiency.

� Is efficiency the only criterion to assess a DMU’s performance?
Not necessarily. Basically, the assessment of aDMU’s performancewill depend
on themanagement objectives. Other criteria such as effectiveness or equity are
often considered alongside efficiency. If this is the case, the overall performance
should be balanced with the various criteria.

� One DMU obtains a score of 100% but all the others in the data set obtain
much lower scores (e.g. starting at 40% or lower). Is this realistic?
It could be realistic, but the gap appears to be important. In such a case, data
should be carefully checked, and especially data of the efficient DMU. If a data
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problem is not identified, such results mean that the efficient DMU is likely to
have completely different processes than the other DMUs. It should therefore
be absolutely presented as a best practice model. However, even if they are
realistic, such results are likely to be rejected by managers whose DMUs have
low efficiency scores. These managers are likely to be discouraged because it
is obviously unrealistic for them to improve their DMU’s efficiency by 60%
(or more) in the short run. Therefore it is better to exclude the efficient DMU
from the sample and to run a new model.

� Almost all the DMUs obtain an efficiency score of 100%. Does that mean that
all of them are really efficient?
Yes, it could mean that all the DMUs are efficient. Such results would be great!
But they are unlikely. Here, the total number of inputs and outputs is probably
too high compared to the number of DMUs in the data set. In this case, one
variable should be excluded and a new model run. If the number of DMUs
obtaining a 100% score decreases, this indicates that the number of variables
was too high compared to the number of DMUs. If not, all the DMUs are just
efficient and should be congratulated!

� The model does not show any results. What does that mean?
The data should be checked. This could happen when data with a value of zero
are included. Zeros should to be substituted by a very small number (0.01).

Exercise 10.1

The following multiple-choice questions test one’s knowledge on the basics of DEA.
Only one answer is correct. Answers can be found on the companion website.

1. What is the main purpose of DEA?

a) DEA measures DMUs’ effectiveness

b) DEA measures DMUs’ efficiency

c) DEA measures DMUs’ profit

d) DEA measures DMUs’ productivity

2. A data set includes information about input quantity, input cost and output
quantity. Which type of efficiency cannot be measured?

a) Technical efficiency

b) Cost efficiency

c) Revenue efficiency

d) Scale efficiency
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3. ‘Pure’ technical efficiency reflects:

a) A global measure of DMU performance

b) The efficiency of a DMU operating at an incorrect scale

c) A measure of profit efficiency

d) The efficiency of a poorly managed DMU

4. DMU A is inefficient. Who is (are) its peer(s)?

a) One or several DMUs whose efficiency scores are worse than A’s
efficiency

b) One or severalDMUswhose efficiency scores are better thanA’s efficiency,
but which are not located on the efficiency frontier

c) Any DMU located on the efficiency frontier

d) One or several specific DMUs (i.e. a subgroup of efficient DMUs) located
on the efficiency frontier

5. A DMU faces diseconomies of scale. How can the management team improve
its efficiency?

a) By merging with another DMU

b) By producing more output

c) By producing less output

d) By producing the same amount of output

6. A manager plans to measure efficiency using three inputs and two outputs.
What is the minimum number of DMUs that should be included in the data
set?

a) 10

b) 6

c) 15

d) It does not matter

10.3 The DEA software

The user-friendly software packages for DEA incorporate intuitive graphical user
interfaces and automatic calculation of efficiency scores. Someof themare compatible
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with Microsoft Excel. For a survey of DEA software packages, see Barr (2004).
Several software packages have been developed:

� Free packages include DEAP (Timothy Coelli, Coelli Economic Consulting
Services) andWin4DEAP (Michel Deslierres, University of Moncton), Bench-
marking package in R (Peter Bogetoft, Copenhagen Business School, and
Lars Otto, University of Copenhagen), Efficiency Measurement System (Hol-
ger Scheel, University of Dortmund) and DEA Solver Online (Andreas Kleine
and Günter Winterholer, University of Hohenheim).

� Commercial packages include DEAFrontier (Joe Zhu, Worcester Polytech-
nic Institute), DEA-Solver PRO (Saitech, Inc.), PIM-DEA (Ali Emrouznejad,
Aston Business School) or Frontier Analyst (Banxia Software Ltd). Zhu (2003)
includes an earlier version of DEAFrontier, DEA Microsoft Excel Solver, on
a CD-ROM. This software works only under Microsoft Excel 97, 2000 and
2003. It allows an unlimited number of DMUs and is available at little cost.
Cooper et al. (2006) include a CD-ROM with a DEA-Solver version limited at
50 DMUs. It is also available at little cost.

This section focuses on the ‘twin’ DEA software packages DEAP/Win4DEAP.9

These packages centre on the basics ofDEA, are simple to use and are stable over time.
They are freely available10 and come with data files as examples. As Win4DEAP is
theWindows-based interface ofDEAP (which is a DOS program), the current section
refers only to Win4DEAP. All screenshots and icons presented in this section from
DEAP or Win4DEAP are reproduced by permission of Timothy Coelli and Michel
Deslierres.
The use of Win4DEAP is illustrated by a case study including a sample of 15

primary schools (see Table 10.2).

Case Study 10.2

The data used in this case study are fictitious (but are very similar to real ones).
Fifteen schools produce one output (number of pupils) with three inputs (number
of full-time equivalent (FTE) teachers, number of full-time administrative staff and
number of computers – used as a proxy for technology investment). For example,
school no. 8 is teaching 512 pupils with 28.6 teachers, 1.3 administrative staff and
26 computers.

9 As DEAP is a DOS program, a user-friendly Windows interface has been developed for it
(Win4DEAP). These ‘twin’ software packages must both be downloaded and extracted to the same folder.
Win4DEAP cannot work without DEAP.

10 DEAP Version 2.1 is available from http://www.uq.edu.au/economics/cepa/deap.htm, and
Win4DEAP Version 1.1.3 from http://www8.umoncton.ca/umcm-deslierres_michel/dea/install.html.
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Table 10.2 Data for Case Study 10.2.

Input Output

School FTE teachers FTE admin. staff Computers Pupils

1 40.2 2.0 37 602
2 18.1 1.1 17 269
3 42.5 2.1 41 648
4 11.0 0.8 10 188
5 24.8 1.3 22 420
6 21.1 1.3 19 374
7 13.5 1.0 13 247
8 28.6 1.3 26 512
9 23.5 1.3 22 411
10 15.9 1.0 15 285
11 23.2 1.3 22 397
12 26.0 1.4 25 466
13 11.1 0.8 11 198
14 28.8 1.6 26 530
15 19.7 1.3 18 357

10.3.1 Building a spreadsheet in Win4DEAP

Win4DEAP is launched by clicking on the MD icon ( ). DMUs are listed in the
rows, and variables (outputs and inputs) in the columns (see Figure 10.9). The opening
spreadsheet contains one decision-making unit (DMU1), one output (OUT1) and one
input (IN1) by default.
To edit and name DMUs, outputs and inputs, the user must click on the row

and column labels DMU1 ( ), OUT1 ( ) and IN1 ( ), respectively. The
dialogue box shown in Figure 10.10 allows the user to (1) assign a long name and
a label (maximum of eight characters) to any variable and (2) select the nature of

Figure 10.9 The opening spreadsheet contains one DMU, one output and one input.
Reproduced by permission of Timothy Coelli and Michel Deslierres.
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Figure 10.10 Input and output editing. Reproduced by permission of Timothy Coelli
and Michel Deslierres.

the variables (either ‘input’ or ‘output’). Finally, the user should select the with price
option if he intends to measure cost efficiency (i.e. a price column will be added in
the spreadsheet to the variable selected).

The icons enable the user to add DMUs. The icons enable the user
to add variables (inputs or outputs). The and icons are used to delete any

existing DMUs or variables. Finally, the icons allow the user to reverse the
order of appearance of DMUs (rows) or variables (columns).
Data can be imported from a Microsoft Excel file into Win4DEAP by following

these steps:

1. Save theMicrosoft Excel data (only numbers, no names of DMUs or variables
should be included) in CSV format (comma-delimited).

2. In Win4DEAP, first select the File menu, then the Import option and finally
the New data set application.

3. Select the CSV file and open it.

The data will now appear in the Win4DEAP spreadsheet, though still need to be
configured (DMUs and variables need to be named and variables defined as inputs or
outputs).

10.3.2 Running a DEA model

To run a DEA model, the user can click on the lightning icon ( ). The window
shown in Figure 10.11 appears. This window allows a calibration of the model by
following steps 1–4 below:

1. Select an input or an output orientation (Orientation box).

2. Select the assumption about returns to scale (Returns to scale box). By checking
constant, one assumes CRS; by checking variable, one assumes VRS. If one
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Figure 10.11 Win4DEAP cockpit. Reproduced by permission of Timothy Coelli and
Michel Deslierres.

cannot be certain that DMUs are operating at an optimal scale, running a VRS
model is recommended.

3. Select a model (Calculate box). Three main options are available:

3.1. To calculate technical efficiency (TE) or technical (CRS), ‘pure’ (VRS)
and scale efficiency (SE), check ‘DEA (multi-stage)’. Options ‘DEA (1-
stage)’, ‘DEA (2-stage)’ and ‘DEA (multi-stage)’ correspond to different
treatments of slacks. Following Coelli (1998), the multi-stage treatment
is recommended.

3.2. To calculate cost efficiency, checkDEA-COST. For this option, cost infor-
mation about variables must be available and added to the spreadsheet.

3.3. To calculate technical and scale efficiency when panel data are available,
check MALMQUIST. See Section 10.5.4 to learn more about this.

4. Decide how to display the results (Report box): choose between summary
tables only and firm-by-firm results.

5. Click on Execute to run the model.
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Exercise 10.2

The objective of this exercise is to correctly calibrate a spreadsheet in Win4DEAP
and to run a DEA model. Answers can be found on the companion website.

a) Prepare a spreadsheet in Win4DEAP including 15 DMUs, three inputs and
one output. Name the DMUs ‘School 1’ to ‘School 15’. The first input is
‘FTE teachers’, the second ‘FTE administrative staff’ and the third ‘Number
of computers’. The output corresponds to the number of pupils.

b) Feed the data appearing in Table 10.2 into the spreadsheet.

c) Save the file, preferably into the same folder containing DEAP/Win4DEAP
(menu File/option/ Save as).

To run a DEA model in Win4DEAP, the following information is available:

� Schools are confronted with budget restrictions.

� The school system is heavily regulated.

� An obligatory school by school report is expected.

d) Calibrate the model.

e) Execute the model.

10.3.3 Interpreting results

After executing the selected model, a short notice appears with information about
Timothy Coelli, the developer of DEAP. Results are displayed after closing this
window. It is recommended that first-time users spend some time navigating through
the results file in order to become familiar with it. Some results tables are commented
on in this section. Table 10.3 contains a list of abbreviations with the main acronyms
used in the results file.
Figure 10.12 shows an extract from the results file and features an efficiency sum-

mary. The first column contains the 15 schools. The second one displays the constant
returns to scale technical efficiency (CRSTE) scores.11 This ‘total’ efficiency score is
decomposed into a ‘pure’ technical efficiency measure (VRSTE, third column) and

11 Note that if you had run a CRS model instead of a VRS one, you would have obtained only one type
of efficiency score in your results file (technical efficiency). Technical efficiency scores are strictly equal
to the CRSTE scores obtained in the CRSTE column of the VRS model.
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Table 10.3 A table of abbreviations to help with reading the results file.

Acronym Full name

DEA data envelopment analysis
CRS constant returns to scale
VRS variable returns to scale
TE technical efficiency
CRSTE constant returns to scale technical efficiency
VRSTE variable returns to scale technical efficiency
SE scale efficiency
IRS increasing returns to scale
DRS decreasing returns to scale

a scale efficiency measure (SE, fourth column). The last column indicates the nature
of returns to scale (IRS, DRS or a dash):

� IRS means the DMU faces increasing returns to scale (economies of scale).
� DRSmeans the DMU faces decreasing returns to scale (diseconomies of scale).
� A dash means the DMU faces constant returns to scale; it is operating at an
optimal scale.

Figure 10.12 Technical efficiency (CRSTE) is decomposed into ‘pure’ technical
efficiency (VRSTE) and scale efficiency (SE). Reproduced by permission of Timothy
Coelli and Michel Deslierres.
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On average, schools efficiency scores are:

� 94% for CRSTE; overall, schools could reduce their inputs by 6% whilst
educating the same number of pupils.

� 97.5% for VRSTE; a better school organization would be able to reduce input
consumption by 2.5%.

� 96.4% for SE; by adjusting their scale, schools could reduce their inputs by
3.6%.

All subsequent tables displayed in the results file refer to the VRSTE scores.
These tables contain the following information:

� The number of the DMU under review (‘Results for firm’).

� The technical efficiency score (‘Technical efficiency’), corresponding to the
VRSTE when a VRS model has been run or to the CRSTE when a CRS model
has been run.

� The scale efficiency score (‘Scale efficiency’); note that the SE is mentioned
only when a VRS model has been run.

� The rows of the matrix represent the outputs and the inputs of the model
(‘output 1’, ‘output 2’, etc., ‘input 1’, ‘input 2’, etc.)

� The first column of the matrix recalls the original values of the variables’
outputs and inputs (‘original values’).

� The second column of the matrix represents the movement an inefficient DMU
needs in order to be located on the frontier (‘radial movement’).

� The third column of the matrix is the additional movement a DMU located on
a segment of the frontier running parallel to the axis needs in order to become
efficient (‘slack movement’).

� The fourth column of the matrix lists the values of the variables which enable
the DMU to be efficient (‘projected value’); these projected values take into
account both the radial and the slack movements.

� Finally, the listing of peers is given. Each peer is identified by a number and has
an associated weight (‘lambda weight’) representing the relative importance
of the peer.

By way of illustration, three individual school tables are specifically commented
on. School 1 (Figure 10.13) has a ‘pure’ efficiency score of 95.1% and a scale
efficiency score of 86.9%. It is facing decreasing returns to scale (DRS). By improving
the operation of the school, 4.9% (100 – 95.1) of inputs could be saved. By adjusting
the school to its optimal size, 13.1% (100 – 86.9) of inputs could be saved.
The ‘original value’ column contains the original values of the school’s vari-

ables: school 1 teaches 602 pupils with 40.2 teachers, 2 administrative staff and 37
computers. However, school 1 could ‘produce’ the same quantity of output with
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Figure 10.13 Results table for school 1. Reproduced by permission of Timothy Coelli
and Michel Deslierres.

fewer inputs: 37.186 teachers instead of 40.2; 1.902 administrative staff instead of 2;
35.185 computers instead of 37 (see the ‘projected value’ column). The decreases in
inputs 2 and 3 are equal to 4.9% of the original values: (−0.098/2)100 for input 2
and (−1.815/37)100 for input 3.12 The case of input 1 is slightly different: to become
efficient, it has to decrease not only by 4.9% (minus 1.972 from the ‘radial move-
ment’ column) but also by an additional 1.042 (from the ‘slack movement’ column).
Overall school 1 has to decrease its first input by minus 3.014 (−1.972+ −1.042) to
become efficient. This represents 7.5% [(−3.014/40.2)100].
To improve its efficiency, school 1 has to analyze the practice of schools 3, 14

and 8, which are identified as its peers. To be a peer (or a benchmark), a DMU must
have a ‘pure’ efficiency score of 100%. The lambda weight associated with each
peer corresponds to its relative importance among the peer group. Ideally, school 1
should analyze best practice from a composite school formed by schools 3 (61.2%),
14 (37.3%) and 8 (1.4%). As such a ‘virtual’ school does not exist, school 1 should
concentrate its best practice analysis on the peer associated with the highest lambda
value (i.e. school 3).
School 2 (Figure 10.14) has a ‘pure’ efficiency score of 83.8% and a scale

efficiency score of 96.4%. It is facing increasing returns to scale (IRS). By improving
the operation of the school, 16.2% (100 – 83.8) of inputs could be saved. By adjusting
the school to its optimal size, 3.6% (100 – 96.4) of inputs could be saved.
The ‘original value’ column contains the original values of the school’s variables:

school 2 teaches 269 pupils with 18.1 teachers, 1.1 administrative staff and 17 com-
puters. However, school 2 could ‘produce’ the same quantity of output with fewer
inputs: 15.163 teachers instead of 18.1; 0.922 administrative staff instead of 1.1;
14.242 computers instead of 17 (see the ‘projected value’ column). The decreases
in inputs 1, 2 and 3 are equal to 16.2% of the original values (‘radial movement’

12 In aVRSmodel, the improvement in variables (decrease in inputs or increase in outputs) is calculated
according to the VRSTE score (only). In a CRS model, it is calculated according to the CRSTE score, or
TE score, including not only the pure efficiency but also the scale efficiency.
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Figure 10.14 Results table for school 2. Reproduced by permission of Timothy Coelli
and Michel Deslierres.

Figure 10.15 Results table for school 3. Reproduced by permission of Timothy Coelli
and Michel Deslierres.

column). No slack movement is identified. To improve its efficiency, school should
refer to schools 13, 4, 14 and 8, which are identified as its peers.
School 3 (Figure 10.15) has a ‘pure’ efficiency score of 100%and a scale efficiency

score of 84.2%. It is facing decreasing returns to scale (DRS). This school is well
managed. It cannot improve its ‘pure’ efficiency. The only capacity for improvement
lies in a scale adjustment: 15.8% (100 – 84.2) of inputs could be saved.
The ‘original value’ column contains the original values of the school’s variables:

school 3 teaches 648 pupils with 42.5 teachers, 2.1 administrative staff and 41 com-
puters. These values are equal to the projected ones (‘pure’ efficiency = 100%). As
school 3 is purely efficient, it acts as its own peer.

Exercise 10.3

The objective of this exercise is the interpretation of DEA results. Figure 10.16
displays results for one of the 15 schools. It has been truncated in order to hide the
VRS technical efficiency score. Answers can be found on the companion website.
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Figure 10.16 An efficiency table helps a DMU to make decisions based on objective
information. Reproduced by permission of Timothy Coelli and Michel Deslierres.

Tasks

Answer the following questions:

a) The variable returns to scale technical efficiency score has been removed
from the table. Find a way to calculate it.

b) Assume that the ‘pure’ efficiency score is equal to 96.3%. What is the main
feature in need of improvement: the school’s management or the school’s
scale?

c) Assume that the school only has time to analyze best practice in one of its
peers. Which one should it select?

d) By how much must the school reduce input 3 in order to be located on the
efficiency frontier?

10.4 In the black box of DEA

This section describes the two principal DEA models: the constant returns to scale
model (Charnes et al. 1978) and the variable returns to scale model (Banker et al.
1984). DEA is based on the earlier work of Dantzig (1951) and Farrell (1957), whose
approach adopted an input orientation. Zhu and Cook (2008), Cooper et al. (2007)
and Coelli et al. (2005) provide a comprehensive description of the methodology. By
2007, Emrouznejad et al. (2008) identified more than 4000 research articles about
DEA published in scientific journals or books.
DEA is a non-parametric method. Unlike parametric methods (such as ordinary

least squares, maximum likelihood estimation or stochastic frontier analysis), inputs
and outputs are used to compute, using linear programming methods, a hull repre-
senting the efficiency frontier. As a result, a non-parametric method does not require
specification of a functional form.
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10.4.1 Constant returns to scale

Charnes et al. (1978) propose a model assuming constant returns to scale (CRS
model).13 This is appropriate when all DMUs operate at the optimal scale. Efficiency
is defined by Charnes et al. (1978, p. 430) as ‘the maximum of a ratio of weighted
outputs to weighted inputs subject to the condition that the similar ratios for every
DMU be less than or equal to unity’. Following the notation adopted by Johnes
(2004), let s be the number of output, m be the number of inputs, and TEk be the
technical efficiency of DMU k, k = 1, . . . , n, using the m inputs to produce the s
outputs. Then

TEk =

s∑

r=1
ur yrk

m∑

i=1
vi xik

(10.1)

where yrk is the quantity of output r produced by DMU k, xik is the quantity of input
i consumed by DMU k, ur is the weight of output r, and vi is the weight of input i.
The technical efficiency of DMU k is maximized under two constraints:

maximize TEk =

s∑

r=1
ur yrk

m∑

i=1
vi xik

(10.2)

subject to

s∑

r=1
ur yr j

m∑

i=1
vi xi j

≤ 1, j = 1, . . . , n, (10.3)

ur , vi > 0 ∀r = 1, . . . , s; i = 1, . . . , m. (10.4)

Inequality (10.3) says that the weights applied to outputs and inputs of DMU k cannot
generate an efficiency score greater than 1 when applied to each DMU in the data set.
Furthermore, the weights on the outputs and on the inputs are strictly positive (10.4).
This linear programming problem can be dealt with by two different approaches.

In the first, the weighted sums of outputs are maximized holding inputs constant
(output-oriented model). In the second, the weighted sums of inputs are minimized
holding outputs constant (input-oriented model). Note that the output and input

13 This model is also known as the Charnes, Cooper and Rhodes model (CCR model).
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orientations refer to the dual equations of each model, which are not presented in this
chapter. The primal equations for each model, known as the multiplier form, are as
follows. For the CRS output-oriented model we solve

minimize
m∑

i=1
vi xik (10.5)

subject to

m∑
i=1

vi xi j −
s∑

r=1
ur yr j ≥ 0, j = 1, . . . , n, (10.6)

s∑
r=1

ur yrk = 1, (10.7)

ur , vi > 0 ∀r = 1, . . . , s; i = 1, . . . , m. (10.8)

For the CRS input-oriented model we solve

maximize
s∑

r=1
ur yrk (10.9)

subject to

m∑
i=1

vi xi j −
s∑

r=1
ur yr j ≥ 0 j = 1, . . . , n (10.10)

m∑
i=1

vi xik = 1 (10.11)

ur , vi > 0 ∀r = 1, . . . , s; i = 1, . . . , m (10.12)

Using the duality in linear programming, an equivalent form, known as the
envelopment form, can be derived from this problem. It is often preferable to solve the
computation using the envelopment form because it contains only s+m constraints
rather than n+1 constraints in the multiplier form. Dual equations can be found in
Johnes (2004, p. 631).
Each DMU located on the sections of the efficiency frontier running parallel to

the axes must be adjusted for output and input slacks. A formulation of the dual
equations which integrates slacks can be found in Johnes (2004, p. 632). For an in-
depth analysis on the treatment of slacks, and especially the multi-stagemethodology,
see Coelli (1998).

Exercise 10.4

The objective of this exercise is to programm a CRS input-oriented model using
Microsoft Excel Solver. Answers can be found on the companion website.
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Figure 10.17 AMicrosoft Excel spreadsheet ready to use with theMicrosoft Excel
Solver.

Instructions

The companion website contains a file called ‘CRS with Solver’ . It is recom-
mended that users spend some time navigating around the file in order to become
familiar with the formulas associated with some of the cells.
The spreadsheet is divided into two parts (Figure 10.17). The first part comprises

rows 2 and 3. This section enables users to successively calculate the efficiency of
the five Register Offices (one at a time), producing two outputs (birth and marriage
certificates) with one input (public servants). The second part comprises rows 6
to 10. It contains the data for Register Offices A to E (output 1 = column B,
output 2 = column C, input 1 = column D, weighted sum of outputs = column E,
weighted sum of the input = column F). An additional column, G, is included in
the spreadsheet. It is a working column used by Microsoft Excel Solver. Column G
contains the weighted sum of the input minus the weighted sum of outputs.
In the first part, data from each Register Office must be entered successively in

the dark grey cells (row 2, columns B, C and D). The spreadsheet already contains
data on Register Office C. The two outputs and one input of Register Office C are
assigned weights in cells B3 to D3 (light grey cells). A value of 1 has been assigned
to all of them in the spreadsheet (by default). The efficiency score is calculated in cell
G2 (light grey cell). The value shown in this cell (700%) exceeds 100% because the
Solver has not yet been run and thus the constraints of the CRSmodel do not yet apply.
The Solver must first be loaded in the user’s version ofMicrosoft Excel.14

Tasks

Answer the following questions about the Solver:

a) Which cell is to be optimized?

b) In this case, do you maximize output or minimize input?

c) Which equation of the CRS model is optimized by the Solver?

14 Instructions on loading the Solver can be found in the Microsoft Excel help files.
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d) Which variables can be changed in the optimization process?

e) The Solver contains two constraints. Which one corresponds to equa-
tion (10.10) in the CRS model?

f) What does the other constraint show?

g) Solve the CRS model. What is the efficiency of register office C?

h) To get a 73.08% efficiency score, what are the weights associated with out-
put 1, output 2 and input 1?

i) Replace the values in cells B2, C2 and D2 with the values of another Register
Office (A, B, D or E). What is the efficiency score?

10.4.2 Variable returns to scale

Banker et al. (1984) propose a model assuming variable returns to scale (VRS
model).15 This is appropriate when DMUs do not operate at optimal scale. As Coelli
et al. (2005, p. 172) point out, ‘the use of the CRS specification when not all DMUs
are operating at the optimal scale, results in measures of TE that are confounded by
scale efficiencies (SE). The use of the VRS specification permits the calculation of TE
devoid of these SE effects.’ The CRS model can be modified by relaxing the constant
returns to scale assumption. A measure of return to scale for DMU k is added in the
primal equation.
The linear programming problem to be solved under VRS includes a measure of

returns to scale on the variables axis, ck, for the DMU k. The primal equations are as
follows. For the VRS output-oriented model we solve

minimize
m∑

i=1
vi xik − ck (10.13)

Subject to

m∑
i=1

vi xi j −
s∑

r=1
ur yr j − ck ≥ 0, j = 1, . . . , n, (10.14)

s∑
r=1

ur yrk = 1, (10.15)

ur , vi > 0 ∀r = 1, . . . , s; i = 1, . . . , m. (10.16)

15 This model is also known as the Banker, Charnes and Cooper (BCC) model.
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For the VRS input-oriented model we solve

maximize
s∑

r=1
ur yrk + ck (10.17)

subject to

m∑
i=1

vi xi j −
s∑

r=1
ur yr j − ck ≥ 0, j = 1, . . . , n, (10.18)

m∑
i=1

vi xik = 1, (10.19)

ur , vi > 0 ∀r = 1, . . . , s; i = 1, . . . , m. (10.20)

The reader may refer to Johnes (2004) for the dual equations (p. 634) and the dual
equations with slacks (pp. 634–635).
A further step needs to be taken in order to identify the nature of the returns

to scale. This relates to another model, the non-increasing returns to scale (NIRS)
model, derived from the VRS model (Coelli et al. 2005). In Figure 10.18 the NIRS
efficiency frontier has been added (the dotted line). This corresponds to the CRS
frontier from the origin to point B followed by the VRS frontier from point B.
The nature of the scale inefficiencies for each DMU can be determined by com-
paring technical efficiency scores under NIRS and VRS. If NIRS TE �= VRS TE
(as for DMUs A and D), increasing returns to scale apply. If NIRS TE = VRS TE
(but �= CRS TE) (as for DMUs E and C), decreasing returns to scale apply. Finally,
if NIRS TE = VRS TE = CRS TE, as for DMU B, constant returns to scale apply.

CRS efficient frontier
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VRS efficient frontier

Input

Output

D’D’’
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NIRS efficient frontier

Figure 10.18 The nature of returns to scale is identified by comparing an NIRS and
a VRS model.
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10.5 Extensions of DEA

In this section, a selection of four extensions of DEA is briefly introduced: adjusting
for the environment, preferences (weight restrictions), sensitivity analysis and time
series data. For a broader overview of the major developments in DEA, see Cook and
Seiford (2008). For an up-to-date review of DEA, see Cooper et al. (2011).

10.5.1 Adjusting for the environment

Environmental variables influence the efficiency of DMUs but are not under the
control of the management team. In DEA, several methods are used to accommodate
such variables. These include the Charnes et al. (1981) approach, the categorical
model (Banker and Morey 1986a) and the non-discretionary variable model derived
by Banker and Morey (1986b) (which includes the environmental variable directly
in the DEA model).
The most convincing of these methods, however, is the two-stage method, the

advantages of which are described in Coelli et al. (2005, pp. 194–195) and in Pastor
(2002, p. 899). The two-stage method combines a DEA model and a regression
analysis. In the first stage, a traditional DEAmodel is conducted. This model includes
only discretionary inputs and outputs. In the second stage, the efficiency scores are
regressed against the environmental (i.e. non-discretionary or exogenous) variables.
Tobit regression is often used in the second stage. However, recent studies have shown
that ordinary least squares regression is sufficient to model the efficiency scores (Hoff
2007) or even more appropriate than tobit (McDonald 2009).
The coefficients of the environmental variables, estimated by regression, are used

to model the efficiency scores to correspond to an identical condition of environment
(e.g. usually the average condition). Simar and Wilson (2007, p. 32) provide a selec-
tion of studies using the two-stagemethod. Among these are applications in education
(Chakraborty et al. 2001; McMillan and Datta 1998; McCarty and Yaisawarng 1993),
hospitals (Burgess andWilson 1998), defence (Barros 2004), police (Carrington et al.
1997), farming (Binam et al. 2003) and banking (O’Donnell and van der Westhuizen
2002). Sueyoshi et al. (2010) and Sibiano and Agasisti (2012) provide more recent
applications in the manufacturing sector and education.

10.5.2 Preferences

For different reasons (e.g. the weights assigned to variables by DEA are considered
as unrealistic for some DMUs; the management team may wish to give priority to
specific variables), preferences about the relative importance of individual inputs and
outputs can be set by the decision maker. This is done by placing weight restrictions
on outputs and inputs (also called multiplier restrictions). Cooper et al. (2011) and
Thanassoulis et al. (2004) provide a review of models regarding the use of weights
restrictions. An earlier review can be found in Allen et al. (1997). Generally, the
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imposition of weight restrictions worsens efficiency scores. Three main approaches
are identified to accommodate preferences:

� Dyson and Thanassoulis (1988) propose an approach which imposes absolute
upper and lower bounds on input and output weights. This technique is applied
in Roll et al. (1991) to highway maintenance units and in Liu (2009) to garbage
clearance units.

� Charnes et al. (1990) develop the cone-ratio method. This approach imposes
a set of linear restrictions that define a convex cone, corresponding to an
‘admissible’ region of realistic weight restrictions. See Brockett et al. (1997)
for an application to banks.

� Thompson et al. (1986, 1990) propose the assurance region method. This
approach is actually a special case of the cone ratio. It imposes constraints on
the relative magnitude of the weights. For example, a constraint on the ratio of
weights for inputs 1 and 2 can be included, such as L1,2 ≤ ν2

/
ν1 ≤ U1,2, where

L1,2 and U1,2 are lower and upper bounds for the ratio of the weight of input 2
(ν2) to the weight of input 1 (ν1). As a result, the assurance regionmethod limits
the ‘region’ of weights to a restricted area by prohibiting large differences in
the value of those weights. An application of this model is provided by Sarica
and Or (2007) in the assessment of power plants.

10.5.3 Sensitivity analysis

Cooper et al. (2006, p. 271) mention that the term ‘sensitivity’ corresponds to stability
or robustness. For Zhu (2003, p. 217), ‘the calculated frontiers of DEA models are
stable if the frontier DMUs that determine the DEA frontier remain on the frontier
after particular data perturbations are made’. Sensitivity analysis aims to identify the
impact on DMU efficiency when certain parameters are modified in the model.
The first way to test the sensitivity of DEA results is to add/remove DMUs to/from

DEA models. Dusansky and Wilson (1994, 1995) and Wilson (1993, 1995) provide
different approaches to deal with this concern. The approach of Pastor et al. (1999)
allows users to identify the observations which considerably affect the efficiency
of the remaining DMUs. It also determines the statistical significance of efficiency
variations which are due to the inclusion of a given DMU in the sample.
Another way to test the sensitivity of DEA results is to modify the values of

outputs and inputs. They focus on the maximum data variations a given DMU can
endure whilst maintaining its efficiency status. Approaches include:

� perturbation of a single variable of an efficient DMU (Charnes et al. 1985),
data of other DMUs remaining fixed;

� simultaneous proportional data perturbation of all outputs and inputs of an
efficient DMU (Charnes and Neralic 1992), data of other DMUs remaining
fixed;
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� simultaneous data perturbation of an efficient DMU in a situationwhere outputs
and inputs can be modified individually (Seiford and Zhu 1998a; Neralic and
Wendell 2004), data of other DMUs remaining fixed;

� simultaneous proportional data perturbation of all outputs and inputs of all
DMUs (Seiford and Zhu 1998b).

For more on sensitivity analysis, see Zhu (2001).

10.5.4 Time series data

In DEA, panel data are considered using two methods: window analysis and the
Malmquist index.
Window analysis, introduced by Charnes et al. (1985), examines the changes

in the efficiency scores of a set of DMUs over time. A ‘window’ of time periods
is chosen for each DMU. The same DMU is treated as if it represented a different
DMU in every time period. In this sense, window analysis can also be considered as
a sensitivity analysis method. For instance, a model including n DMUs with annual
data and a chosen ‘window’ of t years will result in n × t units to be evaluated.
For each DMU, t different efficiency scores will be measured. The ‘window’ is then
shifted by one period (one year in our example) and the efficiency analysis is repeated.
Yue (1992) provides a didactical application of window analysis. Other applications
include Yang and Chang (2009), Avkiran (2004) and Webb (2003).
The Malmquist total factor productivity index was first introduced by Malmquist

(1953) before being further developed within the framework of DEA. It is used to
measure the change in productivity over time. The Malmquist index decomposes
this productivity change into two components The first is called the ‘catch-up’;
this captures the change in technical efficiency over time. The second is called the
‘frontier-shift’; this captures the change in technology that occurs over time (i.e. the
movement of efficiency frontiers over time). Readers may refer to Färe et al. (2011)
and Tone (2004) for actual reviews. Applications of the Malmquist index can be
found in Coelli and Prasada Rao (2005) and Behera et al. (2011).
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Multi-method platforms

11.1 Introduction

The multi-criteria decision aid literature is overloaded with various different methods
and algorithms, with the aim of helping a decision maker faced with a complex, real-
world decision problem. These methods differ in the type of problem they tackle,
the underlying philosophy on which they are based, the assumptions they rely on
and the input information they require, etc. Nevertheless the methods share some
commonalities. Most of the well-known and commonly used methods have been
implemented in different software packages, as the contents of this book attest.

It might be difficult for a decision maker to choose the most appropriate software
for solving the decision problem. Furthermore, the decision problems change and
evolve over time and might require the method to be changed for a more appropriate
one. From a practical point of view, using different methods for the same problem (if
the input conditions allow and assumptions are valid) may strengthen confidence in
the results.

Two main projects have arisen over the last decade in order to combine several
methods and to strengthen interoperability: Decision Deck and DECERNS. Although
these two projects differ considerably in their approach, they both enable the user to
test different methods in one package.

In this chapter Decision Deck is briefly described and a user-oriented description
of DECERNS is put forward. As our aim is to describe methods and software packages
that require no a priori technical knowledge and can be used by beginners and
experienced practitioners alike, we describe the DECERNS project in more detail. The
DECERNS project includes several methods that have been described in the previous
chapters of this book. It also contains an integrated Geographical Information System
that can be useful if the decision maker is dealing with with spatial alternatives.

Multi-Criteria Decision Analysis: Methods and Software, First Edition. Alessio Ishizaka and Philippe Nemery.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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11.2 Decision Deck

The aim of Decision Deck (http://www.decision-deck.org/) is ‘collaboratively devel-
oping Open Source software tools implementing MultiCriteria Decision Aid (MCDA)
techniques which are meant to support complex decision aid processes’. Decision
Deck is a collaborative project involving 18 researchers (from several European coun-
tries such as France, Spain, the Netherlands, Luxembourg and Belgium) and is led
by an executive committee.

Decision Desktop, also called D2, which is a rich open source Java client, includes
the following MCDA methods:

� the IRIS sorting method (Dias and Mousseau 2003);

� the RUBIS and VIP choice method (Bisdorff et al. 2008; Dias and Climaco,
2000);

� the UTA-GMS/GRIP ranking method (Greco et al. 2008; Figueira et al. 2009);
see Chapter 4.

Furthermore, Decision Deck proposes a standardized XML schema to represent
MCDA objects and data structures. This XML schema permits better interoperability
between software packages. Based on this schema, the user has access to XMDA
web services, enabling the distribution of the RUBIS Python solver and the Kappalab
R-script (Grabisch et al. 2012).

The Decision Deck project is also active in the development of the so-called Diviz
open source Java client and server (Veneziano et al. 2009) which is for designing,
executing and sharing several MCDA methods by composition of web services,
workflow management and deployment.

It must be stressed that the main feature of these software solutions is that they
are interoperable in order to create a coherent ecosystem.

Decision Deck is targeted at practitioners, teachers and researchers who want to
compare and test different methods. However, to use it effectively requires a strong
technical and theoretical background.

11.3 DECERNS

The aim of DECERNS (which stands for Decision Evaluation for Complex Environ-
mental Risk Network Systems) is ‘the development of an integrated, user-intuitive
software platform which can use diverse data sources including spatial and tempo-
ral data, value and judgment criteria and quantitative environmental models output,
to provide a comprehensive risk management tool’ (Grebenkov et al. 2007). The
DECERNS project is thus orientated ‘to the creation of web spatial decision support
systems, including web-based and desktop software tools for multicriteria decision
analysis on land use planning, risk management, and, in general, on a wide range of
problems on (multicriteria) analysis of alternatives’ (Yatsalo et al. 2010a).
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The DECERNS platform, illustrated in this section, provides the user with all the
functionalities and tools for data input, scoring, weighting and sensitivity analysis,
etc. for several MCDA methods. However, it does not include all method-specific
aspects, for example the Gaia map, preference matrix or uni-criterion flows of the
PROMETHEE method. DECERNS, to the best of our knowledge, is the only platform
that easily permits the use and comparison of different methods on the same data set.
The user can define the weights for each method by choosing from various weight
elicitation methods; for example, Ishizaka et al. (2013) have compared the use of
three multi-criteria methods, namely the weighted sum, PROMETHEE and TOPSIS,
for site selection for the construction of a casino in the greater London area.

DECERNS was an internationally collaborative project carried out by Obninsk
State Technical University of Nuclear Power Engineering (Russia), Joint Institute
for Power and Nuclear Research (Belarus), Brookhaven National Laboratory (New
York) and Cambridge Environmental Inc. (Massachusetts). It was funded by the
United States Department of Energy (DoE) Initiatives for Proliferation Prevention
(IPP) programme, where its development was based on the previous web version of
PRANA Decision Support System (Yatsalo 2007).

Now a family of DECERNS systems/software tools have been developed and
are supported by the Decision Evaluation & Software Development company
(DeE&Soft); see http://deesoft.ru/lang/en.

The DECERNS Spatial Decision Support System (SDSS) has been developed
on the basis of Java technologies (Java EE5) as a distributed application constructed
on the information–application–client layer architecture. DECERNS SDSS is thus
a client–server application. The client tier that constitutes the user interaction point
with the system is presented by a set of html pages, Java applets and JavaScript
modules (Yatsalo et al. 2010a). This means that DECERNS SDSS is a web application
(provided with an advanced security access control) relying on different components
that can be (re)used in different applications as explained below. For applications
and case studies, see Yatsalo et al. (2010a, 2010b, 2011b), Sullivan et al. (2009) and
Gritsyuk et al. (2011).

The DECERNS platform contains three core modules:

� Geographical Information System (GIS) module;

� Multi-Criteria Decision Aid (MCDA) module;

� Group Decision Support System (GDSS) module.

These modules are fully integrated but can work independently and are briefly
described in the following sections.

11.3.1 The GIS module

The GIS module provides ‘map functionalities’ that allow a user-friendly, two-
dimensional visualization of spatial data and spatial data analysis (Yatsalo et al.
2010a):
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� multi-layered map visualization and colouring;

� measurements (distance along polylines, polygon area);

� zooming and panning (dragging and dropping of the map) to navigate in the
interactive map;

� feature selection (single and multi-selection of features) and searching;

� overlay operations such as intersection, union and subtraction;

� buffering (i.e. defining zones around specific map objects);

� vector format and rasterization (enables the conversion of vector formats to
raster images);

� spatial interpolation and geostatistical tools;

� defining spatial alternatives and criteria, using GIS layers, attributive data,
queries and selections.

The module is complemented with specific map data manipulation tools, used for
digital layer uploading and map attribute editing. There is a ‘map set manager’ for the
creation, editing and loading of map layers to a geo-database and a ‘map attributes
editor’, which easily updates the attributes of a map.

Figure 11.1 is a screenshot of the GIS module where the user has chosen to
display four layers: land use, railroads, main roads and rivers. The user has selected
a specific area to investigate.

Figure 11.1 GIS module of DECERNS. Reproduced by permission of Boris Yatsalo.
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11.3.2 The MCDA module

The MCDA module aims to structure a decision problem (i.e. define the criteria and
alternatives), evaluate the alternatives and weight the criteria, thereby solving the
problem. First, the decision maker has to choose from the following decision aid
methods:

� ranking methods:

◦ MAUT (see Chapter 4)

◦ MAVT (multi-attribute value theory)

◦ AHP (see Chapter 2)

◦ PROMETHEE (see Chapter 6)

◦ TOPSIS (see Chapter 8)

� sorting method:

◦ FlowSort (see Chapter 6.5.2).

It is not necessary for the input data to be precisely defined. Probabilistic distribu-
tions and ‘fuzzy’ numbers can be used in the case of uncertainty. Different graphical
and tabular tools are implemented to introduce probabilistic input/output data (i.e.
density distributions). The weights and the evaluations can be roughly defined by
means of distributions such as the normal, uniform, log-normal and delta distribu-
tions. This is illustrated in Figure 11.2. Different graphical and tabular tools are also

Figure 11.2 The probability menu in DECERNS. Reproduced by permission of Boris
Yatsalo.
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Figure 11.3 Performance table. Reproduced by permission of Boris Yatsalo.

available to present fuzzy input/output data. Fuzzy numbers, for example, triangular,
trapezoidal, piecewise linear or singleton, can be used to represent the evaluations
and weights. The following fuzzy and probabilistic multi-criteria methods have been
implemented in DECERNS (Yatsalo et al. 2011a):

� PROMAA (Probabilistic Multi-criteria Acceptability Analysis);

� FMAA (Fuzzy Multi-criteria Acceptability Analysis);

� Fuzzy MAVT (Fuzzy Multi Attribute Value Utility).

In these methods, the user can enter the data via a performance table (Figure 11.3) or
a value tree (Figure 11.4). Changing the value of the weight or preference functions
performs a sensitivity analysis.

As an illustrative example, refer to the Case Study 4.1, where the choice of five
smartphones is evaluated based on four criteria. In this section, we have chosen,
by way of illustration, to regroup the screen size and storage size criteria into the
‘technical parameters’subgroup.

Figure 11.4 Determination of the value function. Reproduced by permission of Boris
Yatsalo.
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Figure 11.5 Tree structure of a decision problem in DECERNS, showing the Direct
weighting dialogue as well as the performances of SP5. Reproduced by permission
of Boris Yatsalo.

As illustrated in Figure 11.5, the tree structure gives a user-friendly representation
of the decision problem. The task (choice of a smartphone), criteria (price, customer
reviews, etc.) and alternatives (SP1, SP2, etc.) can be viewed in this tree.

The dialogue boxes have been added to allow the introduction of direct weights
and performance of alternatives. There is another view of the decision problem, which
displays the performance table as in Figure 11.3.

Figure 11.5 shows that the weight determination can be achieved in various ways.
The user can choose from:

� direct weight determination;

� the SWING method;

� ranking of the weights;

� rating of the weights;

� pairwise comparison of the weights as with the AHP method (see Chapter 2).

The preference value functions of the criteria can be ‘drawn’ easily according
to the decision maker’s preference (see Figure 11.4). The user has a choice between
piecewise linear functions and exponential functions. The final results are illustrated
in Figure 11.6.
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Figure 11.6 Results according to the MAUT method. Reproduced by permission of
Boris Yatsalo.

The user can perform two different types of sensitivity analysis by:

� modifying the weights of the criteria or displaying the ‘Line weights’ represen-
tation which illustrates which weight value in a specifically chosen criterion
changes the ranking (Figure 11.7);

� modifying the shape of the utility function of a criterion and analysing the
corresponding change in the ranking (Figure 11.8).

The user can easily change the decision aid method, for example, when changing
the decision aid in the TOPSIS method, the user needs to redefine the model-specific
parameters, such as the preference functions in PROMETHEE. Figure 11.9 represents
the results obtained with the TOPSIS method while defining identical weight values
(the user needs to consider the meaning of the parameters for each method as they
are often different).

Figure 11.10 shows the sensitivity analysis of the result obtained with the TOPSIS
method when changing the weight values. This differs significantly from the analysis
obtained with the MAUT method.

11.3.3 The GDSS module

The DECERNS project has a specific GDSS module which permits the creation
and administration of online surveys. The results of these surveys are automatically
collected and analysed. This feature is essential when alternatives have to be assessed
by various decision makers.
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Figure 11.7 Criterion analysis window. Reproduced by permission of Boris Yatsalo.

Figure 11.8 Value function analysis window. Reproduced by permission of Boris
Yatsalo.
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Figure 11.9 Representation of the results obtained with the TOPSIS method. Repro-
duced by permission of Boris Yatsalo.

11.3.4 Integration

As mentioned in the introduction, all modules are fully integrated. This implies that the
user can define areas in a map and define them as alternatives of the decision problem.
The alternatives from a map can automatically be transferred into the performance
table and vice versa. This integration is a strong advantage of the decision support
system.

Figure 11.10 The criterion analysis window for the TOPSIS results.
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Appendix

Linear optimization

A.1 Problem modelling

Linear optimization (or linear programming) is a mathematical method for determin-
ing the value of decision variables in order to obtain the best outcome (e.g. the highest
profit or lowest cost) under given constraints. We will illustrate the method with a
transportation problem described in Case Study A.1.

Case study A.1

A company has a transportation problem. It needs to transfer two products, nails
and screws, to a warehouse. The company owns a small van, which can transport
a maximum of 5 tonnes in weight and 10 m3 in volume of goods. The transport
needs to take into account the following data: 1 tonne of nails has a volume of
1 m3 and brings in a revenue of £200; 1 tonne of screws has a volume of 5 m3 and
brings in a revenue of £300. What quantity of each product should the company
transport in order to maximize the benefit?

The solution to a linear programming problem is achieved in four steps:

1. Identify the objective of the problem.
The objective of the problem is to either maximize (e.g. profit) or minimize
(e.g. costs) a function. In Case Study A.1, the objective is to maximize the
benefit.

2. Indentify the decision variables
Decision variables are independent variables that are changed until the desired
benefit is obtained (i.e. maximum or minimum). In Case Study A.1, the weight
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of the nails and screws should be adjusted to maximize the benefit under the
given constraints.

3. Identify the objective function
The objective function describes a linear relation between the decision vari-
ables and the objective of the problem. InCase StudyA.1, we need tomaximize
the weight of nails (x) and screws (y) sold in order to maximize the profit:

max 200x + 300y.

4. Identify the constraints
The constraints define the limit of the decision variables. They are also linear.
In Case Study A.1, the constraints are set by the capacity of the van:

x + y ≤ 5 (constraint on weight)
x + 5y ≤ 10 (constraint on volume)
x, y ≥ 0 (non-negative constraint)

A.2 Graphical solution

If the problem only contains two decision variables, a solution can be found graphi-
cally. Each axis represents a decision variable and the straight lines of the constraints,
obtained by replacing the inequality with equality, are sketched:

y = −x + 5 (constraint on weight)
y = (−x + 10)/5 (constraint on volume)

These lines determine the feasible region, which is the collection of all the points
that satisfy all constraints. The direction of the arrows (left or right of the lines) is
decided by testing one point, generally the origin. If this point satisfies the constraint,
then the arrow points in that direction. For example, if we introduce the origin (0,0)
in the constraint weight (0 ≤ 5) and volume (0 ≤ 10), both constraints are satisfied.
Finally, the coordinates of each corner point should be substituted into the objec-

tive function to determine the optimal value because the solution is necessarily on
one of the corner point. In Case Study A.1, the optimal value is 3.75 tonnes of nails
and 1.25 tonnes of screws (Figure A.1).
For an analytic solution, where there are more than two decision variables, the

simplex algorithm is used.

A.3 Solution with Microsoft Excel

In Figure A.2 the problem is modelled in Microsoft Excel. The first three lines are
the given data. The variable parameters (Figure A.2) have to be entered in Solver
(Figure A.3):
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y (screws)
x + y ≤ 5 (weight) 

x + 5y ≤ 10 (volume) 

max z = 200x + 300y

optimum

(3.75;1.25)

x (nails)
95

5

Figure A.1 Graphical solution.

� The objective of the problem to be maximized is given by the benefit in cell
D12.

� The decision variables are set in cells B6 and B7.

� The constraint on weight is given by cell B12 (which must be less than or equal
to B14).

� The constraint on volume is given by cell C12 (which must be less than or
equal to C14).

The Solver changes the initial data in B6 and B7 until the maximum in D12 is
obtained.

Figure A.2 Modelling of the problem inMicrosoft Excel.
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Figure A.3 Solver parameters.

Exercise A.1

Here you will learn to use theMicrosoft Excel Solver.

Learning Outcomes

� Understand the modelling of a linear optimization problem

� Understand the configuration of Microsoft Excel Solver

Tasks

Open the file Transport.xls. It contains a spreadsheet with the modelling of the
problem of the Case Study A.1.
Answer the following questions:

a) In the spreadsheet, find the objective of the problem, the decision variables
and the constraints. (Read the comments in the red square in case of difficulty.)

b) Open the Solver. What is entered in the set target cell? What is entered in
the ‘By Changing Cells’ box? What is entered in the ‘Subject to Constraints’
box?
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