
M A N N I N G

William D. Back
Nicholas Goodman

Julian Hyde

Open source business analytics

www.allitebooks.com

http://www.allitebooks.org

Mondrian in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Mondrian in Action
OPEN SOURCE BUSINESS ANALYTICS

WILLIAM D. BACK

NICHOLAS GOODMAN

JULIAN HYDE

M A N N I N G

Shelter Island

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Susanna Kline
20 Baldwin Road Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Janet Vail

Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

ISBN 9781617290985
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

v

brief contents
1 ■ Beyond reporting: business analytics 1

2 ■ Mondrian: a first look 17

3 ■ Creating the data mart 36

4 ■ Multidimensional modeling: making analytics data accessible 57

5 ■ How schemas grow 86

6 ■ Securing data 115

7 ■ Maximizing Mondrian performance 133

8 ■ Dynamic security 162

9 ■ Working with Mondrian and Pentaho 176

10 ■ Developing with Mondrian 198

11 ■ Advanced analytics 227

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

contents
preface xiii
about this book xiv
acknowledgments xviii

1 Beyond reporting: business analytics 1

1.1 The need for business analytics 2

1.2 Replacing static reports with online analytical processing
(OLAP) 4

1.3 OLAP to the rescue 8

Mondrian lets users drive analysis 8 ■ Mondrian is a low-cost,
low-risk solution 11 ■ Mondrian is fast 13 ■ Mondrian is
secure 14 ■ Mondrian is based on open standards 14

1.4 Summary 15

2 Mondrian: a first look 17

2.1 Mondrian’s role in analytics 18

2.2 Running and using Mondrian 19

Getting and running the software 20 ■ Navigation and viewing
reports 22 ■ Interactive analytics 24 ■ MDX analysis with
Saiku 25

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

2.3 Multidimensional modeling 27

A simple report 27 ■ Modeling business questions 28

2.4 Getting and organizing the data 30

The data warehouse: physically storing the data 31 ■ Examining
the Adventure Works data 32 ■ Populating the data 33

2.5 Summary 34

3 Creating the data mart 36

3.1 Structuring data for analytics 37

Characteristics of analytic systems 37 ■ Data architecture for
analytics 38 ■ Star schemas 40 ■ Comparing star schemas with
3NF 42 ■ Star schema benefits 43

3.2 Additional star schema modeling techniques 44

Slowly Changing Dimensions (SCDs) 44 ■ Time dimensions 50
Snowflake design 52 ■ Degenerate and combination/junk
dimensions 54

3.3 Summary 56

4 Multidimensional modeling: making analytics data
accessible 57

4.1 A simple schema 58

Schema element 60 ■ Cube element 61 ■ Attribute element 62
Dimension element 65 ■ Measure element 65 ■ PhysicalSchema
element 66

4.2 Anatomy of a schema 70

XML schema files 70 ■ Structure of a schema 71 ■ Schema
versioning and upgrading 71

4.3 Dimensions, hierarchies, and levels 73

Hierarchies and levels 73 ■ Time dimension 77 ■ Attribute
hierarchies 81 ■ The measures dimension 83

4.4 Summary 84

5 How schemas grow 86

5.1 Schema evolution 87

Multiple cubes in a schema 88 ■ Shared dimensions 89
Conformed dimensions 90 ■ Using a dimension twice in the same
cube 91 ■ Measures across multiple fact tables 91 ■ Smart
evolution: multiple cubes versus single cubes 95 ■ Other schema
evolution patterns 96

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

5.2 Alternative ways to store dimensions 97

Star dimensions 98 ■ Snowflake dimensions 98 ■ Degenerate
dimensions 101

5.3 Advanced hierarchy structures 102

Parent-child hierarchies 102 ■ Ragged hierarchies 104

5.4 Calculations 106

Bucketing attributes 106 ■ Calculated members 107

5.5 Summary 114

6 Securing data 115

6.1 Use of roles 116

What’s a role? 116 ■ Declaring roles in the Mondrian schema 118
Enforcement of roles 118

6.2 Security grants 122

Schema grants 123 ■ Cube grants 124 ■ Dimension and hierarchy
grants 126 ■ Member grants 128 ■ Measure grants 131

6.3 Summary 132

7 Maximizing Mondrian performance 133

7.1 Figuring out where the problems are 134

Performance improvement process 134 ■ Preparing for
performance analysis and establishing current performance 135

7.2 Tuning the database 138

7.3 Aggregate tables 139

Creating aggregate tables 141 ■ Declaring an aggregate
table 142 ■ Which aggregates should you create? 143

7.4 Caching 143

Types of caches 144 ■ External segment cache 146

7.5 Priming the cache 152

7.6 Flushing the cache 156

Flushing the schema cache 156 ■ Flushing specific cubes 159
Flushing specific regions of the cache 160

7.7 Summary 161

8 Dynamic security 162

8.1 Preparing for dynamic security 163

Creating an action sequence 163 ■ Configuring and running the
action sequence 164

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

8.2 Restricting data using a dynamic schema processor 165

Modifying the schema to support a DSP 166 ■ Example dynamic
schema processor 166 ■ Configuring the DSP 167

8.3 Restricting data using dynamic role modification 169

Preparing the schema 170 ■ Custom MDX connection 171
Custom delegate role and custom hierarchy access 172
Configuring the custom MDX connection 173

8.4 Deciding which security approach to use 174

8.5 Summary 175

9 Working with Mondrian and Pentaho 176

9.1 Pentaho Analyzer 177

Overview of Pentaho Analyzer 177 ■ Using Analyzer for
analysis 178 ■ Charting with Analyzer 181 ■ Special schema
annotations for using Analyzer 183

9.2 Saiku 185

9.3 Community Dashboard Framework 185

Creating a CDF dashboard 186 ■ Using Community Data
Access 187

9.4 Pentaho Report Designer 189

Creating an OLAP data source 189 ■ Using parameters 193
PRD and the dynamic schema processor 194

9.5 Pentaho Data Integration 195

9.6 Summary 197

10 Developing with Mondrian 198

10.1 Calling Mondrian from a thin client 200

XML for Analysis (XMLA) 200 ■ Configuring Mondrian as an
XMLA web service 201 ■ Calling XMLA services with Ajax 202
XMLA for JavaScript (xmla4js) 218

10.2 Calling Mondrian from a Java application 222

Creating connections via olap4j 222 ■ Querying data 223

10.3 Summary 226

11 Advanced analytics 227

11.1 Advanced analytics in Mondrian with MDX 227

Running MDX queries 229 ■ Ratios and growth 229 ■ Time-
specific MDX 233 ■ Advanced MDX 234

CONTENTS xi

11.2 What-if analysis 238

11.3 Statistics and machine learning 241

R 242 ■ Weka 242

11.4 Big Data 243

Analytic databases 244 ■ Hadoop and Hive 245 ■ NoSQL
systems and Hadoop 245

11.5 Summary 247

appendix A Installing and running Mondrian 249

appendix B Online resources 252

appendix C Schema shortcuts 255

index 257

xiii

preface
I joined Pentaho in 2011 with only a vague notion of business analytics or Mondrian

and was told by my boss at the time that I should focus on becoming the Mondrian

“expert” on the team. As I do when learning any new technology, my first action was to

create a personal project to implement. In addition to my personal efforts, I was also

assigned to support several clients dealing with Mondrian-related challenges.

 As I started looking at the documentation and learning Mondrian, I quickly discov-

ered that useful information was in multiple places, including the Mondrian site, forums,

product websites, best practices, and even just in the heads of people who had been work-

ing with Mondrian for a while. To help myself, I began gathering notes together in one

location and got the idea that a book on Mondrian would be very helpful.

 After some encouragement from various friends and coworkers, I contacted Julian

Hyde, who also recommended Nick Goodman for the project. Together we agreed

that it was a good idea, so we started checking around for reputable publishers. Since

I already had a shelf, both physical and virtual, full of Manning books, it wasn’t really a

difficult choice.

 This book is the work of the authors over the course of more than a year, but con-

tains information created by multiple developers and communities over a decade. If

you’re already using Mondrian, I hope you’ll find this a useful reference and learn a

thing or two, particularly about the upcoming Mondrian 4.0. If you’re new to Mon-

drian, then I hope you’ll find this a useful learning tool that covers both the basics

and advanced topics. No matter where you fall on the Mondrian knowledge scale, I

hope you’ll find this book and the tools contained in it a useful aid in helping busi-

nesses make better decisions.

WILLIAM BACK

http://www.manning.om/

xiv

about this book
This book is about Mondrian 4.0 and related technologies. It’s organized into chap-

ters based on functionality. Chapters are designed to be standalone in most cases, but

it’s easier, especially for beginners, to start at the beginning and work through the

chapters of interest in order. Depending on your role in the organization, different

chapters will be more relevant than others.

Intended audience

This book is targeted at four general types of users:

 The business analyst is the person who will use Mondrian to perform analysis. This

reader mainly wants to use Mondrian and the related tools, not necessarily under-

stand all of the inner workings, such as configuration and database format.

 The data warehouse architect is the person who’s responsible for setting up the data

for Mondrian for business analysts to use. This person makes it possible for analysis to

be fast and easy.

 The business intelligence enterprise architect is responsible for making Mondrian work

within the enterprise. This includes installation, configuration, scaling, and security.

 Finally, application developers will want to learn how to integrate Mondrian in their

own applications. Integration approaches include embedding the Mondrian engine

into your application as well as using Mondrian’s web services to get data.

Roadmap

Here’s what you’ll learn in each chapter:

ABOUT THIS BOOK xv

■ Chapter 1 introduces you to business analytics and why you’d want to use a tool

like Mondrian. After reading this chapter you should have an understanding of

the problem that Mondrian is trying to solve. You’ll also understand how Mon-

drian fits into the larger business analytics architecture.
■ Chapter 2 gives you a high-level overview of Mondrian and how it works to sup-

port the enterprise. This chapter provides general context for most of the rest

of the book. By reading this chapter you should understand what Mondrian can

do for your organization.
■ Chapter 3 introduces the concept of star schemas and data marts. This chapter

explains why and how to organize the data for maximum effectiveness with

Mondrian. After finishing this chapter you’ll understand why certain data orga-

nization is better than others and how to create data marts for your solution.
■ Chapter 4 presents the fundamentals of the Mondrian schema. This schema

logically describes the data in the database. You’ll be able to create your own

schemas for analysis after reading this chapter.
■ Chapter 5 expands on chapter 4 and looks at advanced schema features. It

includes features such as parent-child hierarchies and hanger dimensions that

allow you to model more complex data. After reading this chapter and chap-

ter 4 you’ll know the vast majority of all Mondrian schema features.
■ Chapter 6 introduces the concept of roles and security. You’ll learn how to

restrict access to data for users based on their role—for example, limiting cost

information to cost accountants and financial managers.
■ Chapter 7 talks about how to maximize Mondrian performance. In particular

you’ll learn how to create and configure aggregate tables and use advanced in-

memory caching features to make analysis with Mondrian even faster.
■ Chapter 8 revisits the question of security to include dynamically setting access

to data as well as support for multi-tenancy. This chapter is of particular interest

to anyone managing a large-scale Mondrian installation with many users,

including external clients.
■ Chapter 9 talks about how Mondrian is used within Pentaho, the leading open

source business analytics framework. You will learn how to use Mondrian as a

source for analytics, reporting, and dashboards. This chapter also describes

using Mondrian with the Community Dashboard Framework, a popular open

source plug-in for Pentaho.
■ Chapter 10 is for the developers who want to either embed Mondrian into their

application or use it as a source of analytics data. Detailed examples are pro-

vided to help you create your own solutions.
■ Chapter 11 wraps up the book with an overview of some advanced analytics top-

ics. It shows how to perform advanced analytics within Mondrian and use popu-

lar data mining tools. We also place Mondrian in the Big Data landscape.

ABOUT THIS BOOKxvi

Recommended reading

Table 1 shows the chapter likely to be of most interest to each type of reader. That’s not

to say that the other chapters won’t also be of interest, but that these are most relevant.

Code conventions and downloads

The code in this book is generally in individual listings. When code is inline it’ll be

specified by code markings to make it easily identifiable. Code is set in a fixed-width

font like this.

 Note that the listings only show what’s necessary to explain something. You should

download the software to get the full examples. See appendix A for more information

on how to download the software; go to the publisher’s website at www.manning.com/

MondrianinAction to download the examples.

Software requirements

The code in this book, when specific to Mondrian, is for Mondrian 4.0. Most will work

with Mondrian 3.5 or later. Mondrian 4.0 will be released as part of Pentaho 5.1 in

early 2014. You can currently use Mondrian 4.0 with Saiku, which was used to validate

the examples in this book. If you encounter problems with the code examples in this

book, please let the authors know in the Manning Author Online forum.

 In addition to the software described in appendix A, you’ll need a system capable

of running Java and a web browser. The code has been tested with Java 1.6, but should

also run on Java 1.7 or later. You’ll also need a database that’s supported by Mondrian,

such as MySQL or PostgreSQL.

Table 1 Relevant chapters by reader

Chapter
Business

Analyst

Data

Architect

Enterprise

Architect

Application

Developer

Chapter 1, “Beyond reporting: business

analytics”
✓ ✓ ✓ ✓

Chapter 2, “Mondrian: a first look” ✓ ✓ ✓ ✓

Chapter 3, “Creating the data mart” ✓

Chapter 4, “Multidimensional modeling: making

analytics data accessible”
✓ ✓

Chapter 5, “How schemas grow” ✓ ✓

Chapter 6, “Securing data” ✓ ✓

Chapter 7, “Maximizing Mondrian performance” ✓ ✓

Chapter 8, “Dynamic security” ✓ ✓

Chapter 9, “Working with Mondrian and Pentaho” ✓ ✓ ✓ ✓

Chapter 10, “Developing with Mondrian” ✓ ✓

Chapter 11, “Advanced analytics” ✓ ✓

www.manning.com/MondrianinAction
www.manning.com/MondrianinAction

ABOUT THIS BOOK xvii

 An IDE that supports HTML, Javascript, XML, and Java, such as IntelliJ Idea or

Eclipse, is ideal but not required. You can enter all of the examples in a text editor

and compile from the command line. But an IDE will make it a lot easier.

Author Online

The purchase of Mondrian in Action includes free access to a private web forum run by

Manning Publications, where you can make comments about the book, ask technical

questions, and receive help from the authors and from other users. To access the

forum and subscribe to it, point your web browser at www.manning.com/Mondrian-

inAction. This page provides information on how to get on the forum once you are

registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the authors can take

place. It’s not a commitment to any specific amount of participation on the part of the

authors, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and archives of previous discussions will be accessible

from the publisher’s website as long as the book is in print.

About the cover illustration

The figure on the cover of Mondrian in Action is captioned a “Man from Konavle.” The

illustration is taken from the reproduction published in 2006 of a 19th-century collec-

tion of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane

Carrara (1812 – 1854), an archaeologist and historian, and the first director of the

Museum of Antiquity in Split, Croatia. The illustrations were obtained from a helpful

librarian at the Ethnographic Museum (formerly the Museum of Antiquity), itself situ-

ated in the Roman core of the medieval center of Split: the ruins of Emperor Diocle-

tian’s retirement palace from around AD 304. The book includes finely colored

illustrations of figures from different regions of Croatia, accompanied by descriptions

of the costumes and of everyday life.

 Konavle is a small town located southeast of Dubrovnik, Croatia. The man on the

cover is wearing dark blue woolen trousers and an embroidered red vest over a white

linen shirt. Over his shoulders is draped a brown woolen shawl, and a gold sash and

red leggings complete his outfit. In his hand he holds a long pipe, and pistols and a

musket are visible, stuck in his sash and hanging over his shoulder.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

illustrations from collections such as this one.

www.manning.com/MondrianinAction
www.manning.com/MondrianinAction

xviii

acknowledgments
We’d like to thank the staff at Manning who helped make this book a reality. First,

Bert Bates patiently taught us the fundamentals of telling a story, rather than simply

writing dry, technical prose. Nick Chase helped with the technical aspects, fixing

errors and answering basic questions that helped move the project along. Immense

thanks to Susanna Kline, who not only made the book of much higher quality and

guided us through the process, but also kept us going when we didn’t want to. With-

out Susanna’s assistance, we’d still be back somewhere in chapter 3, talking about how

we should be writing more. A good editor makes a finished product possible. Finally,

thanks to the marketing and production teams at Manning for their support, guid-

ance, and encouragement throughout the publication process.

 Though it’s impossible to list everyone who provided input, we’d specifically like to

thank Anthony DeShazor, Will Gorman, and Luc Boudreau for support and guidance

as well as technical and operational insights. The Saiku team, and their lead Paul

Stoellberger, were very helpful in testing Mondrian 4.0 and ensuring accurate content

for this book. Thank you to Kevin Hanrahan who, although new to Mondrian, worked

through examples and provided feedback on errors and omissions. We’d also like to

thank the management of Pentaho for being supportive of this effort and allowing us

to reuse some internal Pentaho content. Thank you also to our colleagues and friends

at Pentaho and in the Pentaho and Mondrian community for creating such a great set

of technology and tools.

 We’d like to thank the reviewers who took time to read the drafts of our manuscript

and provide feedback so that we could make the book easier to read and understand.

ACKNOWLEDGMENTS xix

Many a poorly written section or so-so graphic was improved by input from our review-

ers: Aiden Humphreys, Alexander Helf, Barry Polley, Dan McCreary, Filip Rem-

białkowski, Garry Turkington, Greg Soulsby, Lorenzo De Leon, Marc-Steffen Kaesz,

Mark Newman, Marko Viitanen, Matt Taylor, Nadia Noori, Najib Coutya, Owen Kaser,

Ron Steiger, Saeed Alhajyousef, Salvatore Piccione, and Simon (Zihong) Wang. Thanks

also to David Fombella Pombal and Gavin Whyte for their careful technical review of the

final chapters shortly before they went into production.

WILLIAM BACK

You always read about how much work writing a book is and how it takes a team. The

reality of that fact didn’t hit me until I attempted to write a book of my own. My first

clue that I was taking on a large project should’ve been when former authors told me

what a great idea it was, but declined to participate. It’s a lot of work, and it does take

a lot of help.

 I have to first thank my wife, Tara, and my children, Lauren and Nathan. They’ve

been very patient in allowing me to spend hours and weekends locked away in my

office or talking with my coauthors. Family support is a must because of the time it

takes to write a book.

 I also want to thank my coauthors, Julian Hyde and Nick Goodman. They had

much more experience and background with past versions of Mondrian and provided

a lot of insight into how Mondrian can and should be used. The Mondrian 4.0 fea-

tures in this book would’ve been impossible to include without Julian’s knowledge of

the latest version.

NICHOLAS GOODMAN

It’s easy to wonder why anyone would write a book at all; it’s immensely time-consuming,

requires more effort than anyone thinks or knows, and can be downright frustrating.

This book, however, is something I’m proud to have been a part of, and it certainly would

not have happened by me alone.

 Julian Hyde is a long-time colleague and friend, and I’m grateful we were able to

work on this project together. His efforts shepherding Mondrian over the course of a

decade are commendable, and his talents numerous. I’m honored that he and Bill

asked me to play a small part as coauthor on this much-overdue project.

 Bill Back is the heart and soul of this book! His desire to learn, explore, perfect,

communicate, and teach are all present, and in no uncertain terms this book wouldn’t

have made it past a proposal had it not been for his desire to do this project well. If

there were a way to make Bill’s name 10x the size of mine on the cover, he’d deserve

all that extra credit and more!

 To my wife, Kathleen, who listened to me complain and wondered why I ever took

on this project, but still encouraged me to just “go work on the book for a couple

hours” here and there—you are the only reason the team at Manning received any

content from me. To my daughter, Emmeline, who was born during the final days of

www.allitebooks.com

http://www.allitebooks.org

ACKNOWLEDGMENTSxx

this book—you’ll be glad to know that daddy was doing something productive during

those middle-of-the-night sessions!

JULIAN HYDE

I once said I’d never bet my job on a technology about which no one had seen fit to

write a book. Thankfully the Mondrian community isn’t as conservative as me! Over

the past decade, many people have used Mondrian successfully based on information

gleaned from forums, the developer mailing list, and the less-than-perfect online doc-

umentation. You’ve helped each other out, and inspired the developers to make Mon-

drian faster and better. This book is the culmination of a long journey, and is my way

of saying thank you for your patience and support.

 Mondrian is an open source project, but its chief inspiration was a commercial

product: Microsoft Analysis Services. Its architects—Amir and Ariel Netz and Mosha

Pasumansky—radically simplified OLAP. Their product had a query language, MDX,

and standard interfaces OLE DB for OLAP and XML/A, where all previous products

had required building queries using a proprietary API. Their hybrid architecture com-

bined the convenience of ROLAP with the performance and expressive power of

MOLAP. Mondrian wouldn’t have been possible without their work creating standard

languages, APIs, and architectures.

 Every open source project is part of a wider movement. Thank you to all open

source software developers out there. We use your software every day for develop-

ment, debugging, builds, and testing, and you probably don’t even know it.

 Mondrian has a number of crucial “sister projects”; we literally grew up together.

The first, JPivot, started when Andreas Voss flew from Germany to meet me in San

Francisco. His company wanted to develop a web-based pivot table; they would build it

on top of my fledgling Mondrian project and release it open source if I made sure that

Mondrian had the features they needed. We shook hands, and that was that. Other

projects followed: LucidDB (John Sichi, Rushan Chen, Zelaine Fong); LucidEra

Clearview, which became Pentaho Analyzer (Benny Chow); olap4j (Luc Boudreau and

Barry Klawans); OpenI (Sandeep Giri); Saiku (Paul Stoellberger and Tom Barber);

and CTools (Pedro Alves).

 Many people have contributed code to Mondrian, and I’m grateful to them all. We

grow best and fastest when developers and architects bring challenging problems, and

work with us to solve them. So, thanks to Joe Barnett, Marc Berkowitz, Roland Bou-

man, Matt Campbell, Matt Casters, Gang Chen, Dan Dosch, Daniel Einspanjer, Rich-

ard Emberson, Sarah Gerweck, Will Gorman, Brandon Jackson, Sean McCullough,

Eric McDermid, Gretchen Moran, Thomas Morgner, Henry Olson, Kurt Walker, and

Sherman Wood.

 Open source BI wasn’t always with us. Mark Madsen, Seth Grimes, Nicholas Good-

man, James Dixon, and Jos van Dongen explained to the world how open source BI,

and in particular Mondrian, could change business. And I’d like to thank Richard

ACKNOWLEDGMENTS xxi

Daley and the whole Pentaho team for their faith and investment in Mondrian and

open source BI technology.

 Writing a book is hard work. Thank you to my coauthors, Bill and Nick, and to our

editor Susanna Kline, for their insight, stamina, and patience. And thank you to my

brother Justin and my friend Gordon Cameron, who were always happy to discuss

dimensional modeling over a beer or two at Barclay’s pub. You helped keep me sane.

 Building a piece of technology, and now writing a book, requires commitment and

sacrifice, not just from the author, but from his family, who are rarely asked or

thanked. My son, now 4, has learned the pattern from his mother: yesterday he said,

“Are you going to work at your computer again tonight, Daddy?” Thank you to my

wife, Pamela, for everything; and to my sons, Sebastian and Theodore, who will love

reading their names in print.

1

Beyond reporting:
 business analytics

Business analytics is a process for gaining insight into business performance based

on the analysis of historical data. Traditionally the tools used for business analytics

have been expensive and difficult to maintain. Mondrian, in contrast, is an open

source business analytics tool that enables organizations of any size to give business

users access to the data for interactive analysis and to create analysis reports with-

out the help of IT or database administrators. Once the data has been set up, users

can interact with it directly. This book will present you with the concepts and tech-

nical know-how to use Mondrian, including how to organize the data for easy

access, how to securely make your data available, and how to integrate this data

into other applications.

 This first chapter will introduce you to some of the common problems encoun-

tered with a report-based approach to analysis. We’ll show you the complexity

This chapter covers

■ The complexity of database-based reports

■ Advantages of OLAP reporting tools

■ Reasons for using Mondrian

2 CHAPTER 1 Beyond reporting: business analytics

involved in creating database reports and why they’re not a good fit for analysis. Then

we’ll demonstrate how Mondrian can be used to overcome those challenges and

explain some of the features that make Mondrian an ideal choice. Finally, we’ll pro-

vide an overview of the remainder of the book, where we’ll expand on all of the

aspects of Mondrian and teach you how to use Mondrian effectively for analysis.

1.1 The need for business analytics

In his book Moneyball, Michael Lewis tells the story of how the Oakland A’s managed to

put together a highly talented and competitive team on one of the lowest budgets in

professional baseball. Prior to this time, scouting was done by scouts watching players

and going on gut feel as to who would develop into a professional. As the cost of recruit-

ing players skyrocketed, so did the cost of making an error in signing the wrong guy.

 Billy Beane, Oakland’s general manager, decided that they needed a more analyti-

cal approach. He brought in analysts who would study the statistics of college players

and identify players who were good candidates, but who had been overlooked by

scouts for a variety of reasons. Statistics such as on-base percentage and number of

walks per bat became important considerations that weren’t considered important

before. This gave Oakland an edge in drafting players that other teams didn’t recog-

nize as valuable and signing them for less.

 Like the Oakland A’s, today’s businesses need to be able to optimize their spending

to maximize return on investment. Controlling aspects of the business such as inven-

tory costs, waste, excess machinery or labor, and returns is no longer optional, but man-

datory to survive in the hyper-competitive, intelligence-driven marketplace. And

businesses need good tools and processes to make this happen. The A’s wrote much of

their own software, but that approach is typically very expensive, slow, and risky. With

Mondrian, any organization can have access to world-class analytics tools that they can

get up and running quickly with a minimum of cost and risk.

 Historically, analysis and management of business has been done using spread-

sheets, operational databases, and reports. While these approaches are good for view-

ing predefined data formats, they’re not as good for exploring and discovering new

information because reports are often difficult and time consuming to create and

manipulate. Online analytical processing (OLAP) is a technology that makes business

data available with enough structure for business users to easily explore data and dis-

cover important data relationships without having to understand database query lan-

guages or the organization of a company’s operational databases.

 The following are some of the types of discoveries companies can make with OLAP

tools and how these discoveries help their businesses:

■ Discovering that a particular product is in high demand in summer months, but

low demand outside of those months. The company can now adjust inventory

seasonally to avoid excessive storage costs.

■ Finding out that there’s a change in demand for services after running ads in

various publications. The company can now coordinate advertising and staffing

3The need for business analytics

to be able to meet demand without overstaffing when launching a new advertis-

ing campaign.

■ Uncovering the fact that the gender and age of visitors to a website differ

according to the day and time. This information allows the site to tailor content

based on the day and time to reflect different demographics.

■ Figuring out when website demand peaks and by how much. The company can

now make informed decisions about how to scale without adding too much

static capacity, while being able to meet typical demand.

Making sense of the company’s data requires tools that allow users to organize and

explore the data and discover interesting facts. Mondrian is the engine for such a set

of tools.

 Mondrian is an open source OLAP engine that provides access to data in a way

that’s intuitive to users. As an engine, Mondrian can be run in a web container, such as

Tomcat or JBoss, or be embedded as part of an application. Mondrian only requires

an optional configuration, a schema defining the logical structure of the data, and a

database populated with data. Mondrian works with most databases that support Java

database connections.

 Figure 1.1 shows how Mondrian aids in analysis in a typical deployment. Mondrian

sits between the data and uses logical descriptions of the data to provide data for anal-

ysis tools and dashboards. The user explores the data graphically based on data prop-

erties, rather than through complex queries. Mondrian dynamically translates to the

underlying database query format to provide data in a logical, accurate manner.

Application or service

containing Mondrian

Mondrian

schema

Analyzer Dashboard

Business analyst

Data

warehouse

Figure 1.1 Mondrian is the analytics en-

gine for the business application.

4 CHAPTER 1 Beyond reporting: business analytics

1.2 Replacing static reports with online analytical processing (OLAP)

Businesses run on data, and that data is often presented to users in the form of

reports. Traditional reports were static and often long, with the important data

embedded in a large amount of not-so-important data. Users were also often unable

to understand the details behind the data that they did see. They also couldn’t drill

deeper into the underlying details or into related data.

 With modern online reporting, many of these challenges have been overcome,

allowing users to reduce data through filters and create links to other reports. But

these reports still lack the flexibility to do real analysis, as evidenced by the large num-

ber of users who export reports to Excel for further manipulation. This section will

present an example of a company struggling under the weight of reports and encoun-

tering problems that commonly occur with such systems. In the next section, we’ll

look at how modern analytics can be applied to overcome these problems and give the

power to the users who need the information to make decisions.

 Adventure Works is a company that sells bicycling parts and equipment. Their ana-

lyst’s job is to provide business reports that help the business users manage the busi-

ness and maximize profits. He spends much of his time exploring data collected from

the various business transactions.

MAYBE YOU’VE SEEN ADVENTURE WORKS ELSEWHERE? If you’ve worked with
other analytics systems, particularly Microsoft Analysis Services (MSAS), you’ve
likely encountered the Adventure Works database before. MSAS has been a
leader in business analytics, and Microsoft has led the way with technologies
and standards, particularly Multidimensional Expressions (MDX). Mondrian
strives to be compliant with these standards as well, so we felt it made sense to
use the same data example that Microsoft provides. Note that we’ve built on
the original Adventure Works database, so the data warehouse may be some-
what different than Microsoft’s.

The analyst works closely with the database managers to understand the structure of

the databases, so he can collect data for reports. When a new report is requested, he’ll

either create the database query if it’s easy, or work with a more experienced database

expert. He’ll then construct a report based on the data. If the business user likes the

report, it’s put into production, but more often than not, the user wants small

changes, and the analyst has to rework the report. It can take days to get a report cor-

rect, and then the user typically wants a different report.

 The analyst’s users have also been requesting a variety of reports that let them see

data at multiple levels and compare different types of data to one another. This means

the analyst has to make multiple copies of reports that contain essentially the same

data presented at different levels of detail. The users also want to be able to restrict

the data and have the ability to click and see greater detail in the data.

 Figure 1.2 shows part of the report used by senior management to see the total

orders for each city. This lets the managers understand which countries and cities have

the largest orders. Listing 1.1 shows the database query that was created to generate the

5Replacing static reports with online analytical processing (OLAP)

report. Note that it requires understanding of the source tables that have the data, how

to join the six tables, and SQL syntax.

SELECT
`salesorderdetail`.`OrderQty`,
`salesorderdetail`.`UnitPrice`,
`stateprovince`.`Name`,
`stateprovince`.`CountryRegionCode`,
`address`.`City`

FROM
`salesorderheader`
INNER JOIN `salesorderdetail`

ON `salesorderheader`.`SalesOrderID` =
`salesorderdetail`.`SalesOrderID`

INNER JOIN `customer`
ON `salesorderheader`.`CustomerID` =

`customer`.`CustomerID`
INNER JOIN `customeraddress`

ON `customer`.`CustomerID` =
`customeraddress`.`CustomerID`

INNER JOIN `address`
ON `customeraddress`.`AddressID` =

`address`.`AddressID`
INNER JOIN `stateprovince`

ON `address`.`StateProvinceID` =
`stateprovince`.`StateProvinceID`

GROUP BY
`address`.`City`

ORDER BY

Listing 1.1 Query for orders by city

Figure 1.2 Orders by city

6 CHAPTER 1 Beyond reporting: business analytics

`stateprovince`.`CountryRegionCode` ASC,
`stateprovince`.`Name` ASC,
`address`.`City` ASC

Figure 1.3 displays part of the more detailed report for country- and state-level man-

agement, showing who the big customers are for each state or province. Listing 1.2

shows the revised database query for this report. Again, the analyst has to understand

the detailed structure of the database to get the data. To make any change to a report,

a new query and a new report must be created.

SELECT
`address`.`City`,
`contact`.`FirstName`,
`contact`.`LastName`,
`salesorderdetail`.`OrderQty`,
`salesorderdetail`.`UnitPrice`,
`customeraddress`.`CustomerID`,
`customer`.`TerritoryID`,
`stateprovince`.`Name`,
`stateprovince`.`CountryRegionCode`

FROM
`address`
INNER JOIN `customeraddress`

ON `address`.`AddressID` =
`customeraddress`.`AddressID`

INNER JOIN `customer`
ON `customeraddress`.`CustomerID` =

`customer`.`CustomerID`
INNER JOIN `salesorderheader`

Listing 1.2 Query for orders by customer

Figure 1.3 Orders by customer

7Replacing static reports with online analytical processing (OLAP)

ON `customer`.`CustomerID` =
`salesorderheader`.`CustomerID`

INNER JOIN `salesorderdetail`
ON `salesorderheader`.`SalesOrderID` =

`salesorderdetail`.`SalesOrderID`
INNER JOIN `contact`

ON `salesorderheader`.`ContactID` =
`contact`.`ContactID`

INNER JOIN `stateprovince`
ON `address`.`StateProvinceID` =

`stateprovince`.`StateProvinceID`
GROUP BY

`customeraddress`.`CustomerID`
ORDER BY

`customer`.`TerritoryID` ASC,
`address`.`StateProvinceID` ASC,
`address`.`City` ASC,
`contact`.`LastName` ASC,
`stateprovince`.`Name` ASC

Lately the requests for new reports and changes have begun to become overwhelm-

ing. The Adventure Works analyst is unable to keep up with the requests and is work-

ing long hours. Frustrated business users have begun getting their data as a dump

from IT and doing analysis in Excel, but the data isn’t always up to date, and it’s diffi-

cult to view from multiple perspectives. In addition to requests for reports, the analyst

is now also getting calls to help the users manipulate their data in Excel.

 After finishing one particularly complex report with a multitable join query that

runs overnight, the analyst comes in to work to find an angry database administrator

waiting for him. Apparently the report slowed down the operational database and

caused delays in shipments to customers.

 Senior managers, happy with their reports, want to share them with regional and

store managers, but they only want to let those managers see the data that applies to

them. They ask for customized reports for each of the managers. Figure 1.4 shows the

report for the USA regional manager. It looks like there are quite a few long days

ahead to create all of these reports.

Figure 1.4 Orders by city for USA

www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Beyond reporting: business analytics

With the large number of reports and growing number of users, the system is starting

to get sluggish and reports are taking a long time to render. This is frustrating to the

business users, as they spend more time waiting for reports than analyzing the data.

 If the analyst is to stay sane and his business users are to remain happy, there needs

to be a better way to do analysis. Fortunately, he stays current in analysis techniques

and realizes that an open source OLAP tool, Mondrian, can help him out of this crisis.

It will let business users do their own analysis quickly and securely, which should help

the bottom line as well as his career.

1.3 OLAP to the rescue

Adventure Works wants a solution that allows users to perform their own analysis with-

out waiting for a report to be created or requiring users to consult with a database

administrator. They also need a low-cost solution that has minimal upfront risk.

Finally, whatever they choose has to be fast so that users can do analysis in minutes

rather than days.

 There are a number of OLAP tools available, but they decide on Mondrian for the

following reasons:

■ Mondrian supports user-driven analysis. Users are able to do their own analysis

without a lot of help from administrators or report writers.

■ Mondrian is a low-cost, low-risk choice. Mondrian is open source and can be

downloaded for free. Mondrian also comes bundled with a number of analysis

tools and suites that make it easy to install and start using.

■ Mondrian is fast. It has a variety of optimization techniques that allow users to

perform analysis at the speed of thought using interactive tools.

■ Mondrian has built-in security capabilities, making it ideal for organizations

with sensitive data.

■ Mondrian is based on open standards. It runs on a large variety of application

servers and works with most major databases. This means Mondrian won’t lock

you into a proprietary solution.

The rest of this section will elaborate on some of the benefits of Mondrian and how it

can solve problems for organizations like Adventure Works.

1.3.1 Mondrian lets users drive analysis

Mondrian solves many of the problems related to report-based analysis by removing the

need to have database administrators and query writers involved in extracting data. In

later chapters, we’ll show you how to organize the data and make it easily available to

analysts. Once you’ve done that, users can use graphical tools to access the data. They

no longer need to understand the complexity of the data and can spend their time

focusing on the analysis and making discoveries that can improve the business.

 In Mondrian, data is organized by attributes, such as location and time, so that you

can ask questions such as, “What was the increase in sales across all product lines in

9OLAP to the rescue

North America during 2011?” These data attributes are called dimensions in OLAP ter-

minology. Multiple user interfaces provide drag-and-drop abilities for looking at data

by these dimensions. You aren’t required to know any query languages.

WHY PENTAHO This book relies heavily on examples using Pentaho. This is
because Pentaho is the leading supporter of Mondrian and has it embedded
in their business analytics server. Although Mondrian is used by a variety of
other systems, Pentaho is the most common.

Figure 1.5 shows the Pentaho Analyzer view that allows business intelligence (BI) users

to drag objects to the canvas. There’s no need to understand the structure of the data-

base or use a query language to do analysis.

 Within the dimensions, data can be viewed by level, such as sales for a city, country,

or region. This allows you to look at data at the level you’re interested in, so a national

manager can view data at the national level and a regional manager can view data at

the regional level.

 Figure 1.6 shows orders at the state level created by dragging the Country, State,

Quantity Ordered, Price Each, Total, and Year fields to the canvas. As each field is

placed on the canvas, the data is updated automatically.

 Figure 1.7 shows the same analysis, but at a finer level of detail. In this case, the

user dragged the additional fields of City and Customer to the report. This version

gives you more detailed information in a matter of seconds or minutes without creat-

ing a different query or physical report.

 You can easily limit the data using filters that only show data based on some rule,

such as value, string text, and so on. Mondrian supports filters on all dimensions and

Figure 1.5 Drag-and-drop analysis

10 CHAPTER 1 Beyond reporting: business analytics

Figure 1.6 State-level orders

Figure 1.7 Customer-level orders

11OLAP to the rescue

values, as well as special filters, such as Top 10 and string-pattern matching. This

enables you to tailor the analysis to your needs rather than requiring you to look

through a long report that contains a lot of extra data.

 Figure 1.8 shows a user filtering a report to just contain the UK and US and the

year 2004. The analyst is able to focus on just the relevant information without a query

writer needing to create individual reports for each user.

1.3.2 Mondrian is a low-cost, low-risk solution

Mondrian is an open source project that anyone can download and build. There are

no licensing fees or other costs related to using the tool, which makes Mondrian a low-

risk option for analytics. Because Mondrian is an engine, you’ll also need a server to

host it. Fortunately Mondrian runs in a variety of servers, including standalone modes

and popular business analytics servers. The most popular of these servers is Pentaho,

an open source business analytics suite that has a community edition you can use for

free. Mondrian is embedded in the server and acts as the engine for drag-and-drop

tools that allow users to easily do analysis.

 Figure 1.1 showed how Mondrian acts as the engine for analysis. Figure 1.9 shows

how an analytical request from a business user is handled by Mondrian.

Figure 1.8 Filtered data

12 CHAPTER 1 Beyond reporting: business analytics

1 A business user decides to query some data using a number of different front

ends, typically a thin-client interface, such as Pentaho Analyzer.

2 The interface creates a Multidimensional Expressions (MDX) query using

either a web service call or a direct API call. MDX is a standardized general

query language used for analysis and supported by most analytics engines. The

advantage of MDX is that it simplifies the calls to the database while also being

extremely powerful. It’s also a common dialect that can be used no matter what

database the data is stored in. Some user interfaces will allow users to directly

enter or modify queries in MDX, allowing users who are comfortable with MDX

syntax to perform more complex queries and use the many functions available

in MDX.

3 Mondrian uses a logical schema, organized into cubes of dimensions (attributes

about the data, such as date and location) and measures (the actual data facts,

such as cost, inventory level, and the like). The schema also provides features

for performance optimization and security. Mondrian uses this schema to

retrieve the data either from an in-memory cache or by generating optimized

database calls. Mondrian automatically creates correct SQL for a wide number

of databases.

4 Mondrian generates SQL queries based on the metadata description and makes

a database request.

5 The database returns a result set of data to Mondrian.

6 Mondrian returns the data to the user interface, using a standard API that is

understood by the visualization tool.

7 Finally, the data is formatted graphically for the user in a tabular format that’s

easy to understand and manipulate.

The entire sequence typically only takes a few seconds, so business users are able to

explore a variety of different alternatives in a single analysis session. Additionally, if

Mondrian

schema

Analyzer Mondrian
Business

analyst

Data

warehouse

Request MDX

MDX results

Get database mapping

1

Results7

2

6

SQL

DB results

4

5

3

Figure 1.9 Execution of an analytics query

13OLAP to the rescue

you’re using Mondrian as part of the Pentaho BI suite, you can use Mondrian as a

source of data for Pentaho reports, enterprise dashboards, and, through direct manip-

ulation in Analyzer, a thin-client front end. This makes Mondrian a very flexible

engine for a variety of user-friendly interfaces, while still providing a standard data

interface for developers.

MONDRIAN MDX Although Mondrian strives to be compliant with
Microsoft’s version of MDX, there are a few minor differences. See the
Mondrian site for an up-to-date list of differences: http://
mondrian.pentaho.com/documentation/mdx.php.

1.3.3 Mondrian is fast

Mondrian is designed to run quickly. The structure of the OLAP database is designed

for performance when doing calculations on large sets of data, with changes in analy-

ses being shown in seconds. Additionally, Mondrian makes use of several optimization

techniques, such as in-memory storage of calculations, to further increase speed. And

because Mondrian can be embedded in a web application, it can easily be scaled for

use by hundreds or thousands of users.

 Although the performance gains vary significantly based on the structure of the data

warehouse, the use of aggregate tables and in-memory caching can significantly increase

performance. For example, one user had a fact table with several hundred million rows

and eight dimension tables with up to 25 million rows. Running reports directly using SQL

took about 10 minutes each. The addition of Mondrian with aggregations dropped the

time to just over 8 seconds. With the addition of caching, these queries dropped to 2.4

seconds on average. Figure 1.10 illustrates the significant gains that can be made by using

Mondrian (using Mondrian is more than 100 times faster, in this example).

1000

Performance comparison

100

SQL

query

10

1
Aggregates Caching

Query response time (sec)

Figure 1.10 Increased performance with Mondrian

http://mondrian.pentaho.com/documentation/mdx.php
http://mondrian.pentaho.com/documentation/mdx.php

14 CHAPTER 1 Beyond reporting: business analytics

Because Mondrian is fast, it allows analysts to perform advanced analytics that would

be very difficult or slow using SQL. For example, Mondrian has functions that let ana-

lysts do linear regression or compare period-over-period performance. It automati-

cally does the calculations at the level desired, without the need to write a different

query or program. This makes Mondrian an ideal solution for advanced analytics.

 Fast results are essential for interactive analysis. Speed allows analysts to explore

the data in a wide variety of ways and to discover things about the business, such as

high-selling product lines, inventory problems at warehouses, and what web market-

ing strategies are effective. In later chapters, we’ll show you how to organize the data

for maximum performance. We’ll also show you how to configure Mondrian to use

aggregate tables and caching to further increase performance.

1.3.4 Mondrian is secure

In addition to performance, enterprises have other considerations when dealing with

corporate data, such as restricting access to specific users and supporting tenanted

environments with multiple clients. Mondrian uses a role-based approach to restrict

data access.

 Role-based security means that data is restricted based on a role associated with a

user. For example, HR managers may have access to sensitive information about

employees that shouldn’t be shared with other employees. Financial managers will

need to know costs, but inventory managers will only need to know inventory levels.

By assigning unique roles to each of these different types of users, Mondrian can have

a single analytics database but only show the data needed by each user. Analysis and

reporting tools will only get the data appropriate for the particular user, so you don’t

need separate reports for different roles simply to limit data.

 In the chapters on security, we’ll show you how to apply roles to restrict access to sen-

sitive data. We’ll also show you some advanced approaches that you can use to make

roles dynamic and to separate data for multiple clients, securing the data for each in a

multi-tenanted environment. This latter feature is useful for organizations that don’t

just want to use analysis internally, but want to expose the analysis to external clients

as well.

1.3.5 Mondrian is based on open standards

Since Mondrian is built on open technology standards, such as Java and web services,

it can run on a wide variety of platforms and be included in both desktop clients and

thin clients. This makes it easy to distribute the benefits of Mondrian and OLAP to

users around the world. It also means that Mondrian users aren’t tied into any particu-

lar hardware, operating system, or proprietary software.

 Mondrian uses a variety of open, freely available standards. In particular, Mon-

drian supports the following standards:

15Summary

■ olap4j—An open standard for OLAP via Java

■ XMLA—A standard for system-to-system interaction based on SOAP

■ XML—A standard markup language that lets you create Mondrian schemas with

a simple text editor

Because it supports olap4j and XMLA, it’s easy to embed Mondrian and use it to provide

a number of solution alternatives, such as interactive analyses, reports, and dashboards.

 Mondrian works with most databases, including traditional relational databases

such as Microsoft SQL Server, Oracle, PostgreSQL, and MySQL, as well as newer colum-

nar databases, such as Greenplum, Netezza, and LucidDB. This means that although a

business will often want to organize the data in ways that get the biggest benefit from

Mondrian, they usually won’t need a new database solution to do so. Database admin-

istrators can also continue to use the systems and tools that they know.

 Finally, Mondrian is open source software. You can go online and download not

only the binaries, but the source code as well, letting you tailor and extend Mondrian

for your needs. Being open source has allowed a community of users and developers

to help one another out and contribute ideas back into the project. The community

participates in local user groups, online forums, and conferences.

 For enterprises that want professional support and additional enterprise function-

ality, Mondrian is also shipped as part of the Pentaho Enterprise Edition, a complete

business analytics platform that includes data warehousing, reporting, and data-

mining tools.

 Throughout the book, we’ll show you how to configure and use a number of tools

for Mondrian. We’ll also show you how to use Mondrian as a source of analytics infor-

mation for reports and dashboards. Finally, we’ll show you how you can integrate

Mondrian into your own applications either directly or using web services.

1.4 Summary

This chapter introduced you to business analytics with Mondrian. It covered the prob-

lems with report-based analysis and showed how Mondrian can address those problems

and how Mondrian fits into the analytics architecture as the engine for analytics. Spe-

cifically you saw how Mondrian provides the following:

■ User-driven analysis, where the user is free to explore the data

■ Increased performance through the structure of the data warehouse, aggre-

gates, and caching

■ Enterprise features, such as role-based data access to restrict data to various

users and groups

You should now have a good idea of what Mondrian can do and the types of problems

it can help solve. You should also understand where Mondrian fits into the overall

architecture of a BI solution. Finally, based on your role, you’ll know what portions of

the rest of the book are most relevant to your needs.

16 CHAPTER 1 Beyond reporting: business analytics

 The next chapter will give you a brief tour of Mondrian, showing you how

Mondrian provides data to users and how the data is structured and modeled to

support analysis. You’ll get a chance to run the system and perform analysis using

Pentaho and Saiku.

17

Mondrian: a first look

In the previous chapter, you saw how our fictional Adventure Works company could

benefit by moving from a SQL-based reporting solution to one based on OLAP and

Mondrian. Adventure Works has now implemented Mondrian inside of Pentaho,

an open source business analytics suite. In this chapter, we’ll take a look at how they

implemented Mondrian and how they can use it for analysis. We’ll start with a brief

overview of the architecture, and then we’ll see some types of things you can do

with Mondrian. Finally, we’ll talk about how the data gets from your operational sys-

tems into Mondrian for analysis.

 In addition to learning how Adventure Works is using Mondrian for analysis,

you’ll be introduced to some user-interface tools that make analysis with Mondrian

as simple as dragging and dropping. After reading this chapter, you’ll understand

the parts that make up a typical Mondrian deployment and how data is organized

and described.

This chapter is recommended for

✓ Business analysts

✓ Data architects

✓ Enterprise architects

✓ Application developers

www.allitebooks.com

http://www.allitebooks.org

18 CHAPTER 2 Mondrian: a first look

2.1 Mondrian’s role in analytics

As we stated in chapter 1, Mondrian is an engine for analytics. It accepts analytical

queries and converts them into relational queries, returning the data in a form that

supports analytics. But for Mondrian to be useful to business users, it needs some sort

of interface and application to run it.

 There are a number of common ways that Mondrian can be deployed. It can be set

up in an application server to run on its own and provide services. This approach tends

not to be very user friendly because it doesn’t have a nice graphical user interface.

Mondrian can also be embedded in a standalone application. This approach is good

for custom applications with a specific purpose but isn’t as useful for supporting a wide

variety of uses of Mondrian unless you have multiple applications. Finally, Mondrian

can be deployed as part of a larger web application that provides tools for users to work

with. This approach is the most flexible, but it also requires the most organization and

configuration. Fortunately there are solutions that are easily configured and deployed.

 Several products use Mondrian as their analytics engine for reporting and analysis,

as shown in table 2.1. One such product is Pentaho, a popular open source business

analytics server that includes Mondrian and has a variety of plugins to let users directly

use Mondrian’s capabilities. Pentaho is the largest open source distributor of Mon-

drian in the world, and it’s used by thousands of organizations. Pentaho is also one of

the main supporters and contributors to Mondrian, meaning Mondrian will continue

to work with Pentaho in the foreseeable future, and new features in Mondrian will be

quickly integrated into Pentaho.

Figure 2.1 shows how Mondrian fits into the architecture of Pentaho. This view is very

simplified, but it contains the major parts of a system that uses Mondrian.

■ Users interact using web-based tools.

■ Mondrian accepts queries from these tools and then uses logical schema

matches to generate SQL queries.

■ Mondrian then returns the results to the clients for formatting and to display to

users.

Table 2.1 Some products that use Mondrian

Name Description

Pentaho Analyzer Pentaho’s enterprise analysis UI that provides interactive analysis with tables

and graphs.

Pentaho Reporting A reporting tool that creates pixel-perfect reports using Mondrian data.

Community Dashboard

Framework

A popular open source dashboard framework for creating interactive

dashboards.

Saiku A free open source analytics tool that provides interactive analysis with tables

and graphs. Saiku is available as a Pentaho plugin or a standalone product.

19Running and using Mondrian

Mondrian has been architected to be simple to integrate, yet flexible for a variety of

users and interfaces to use.

 Now that you know how Mondrian fits into a complete architecture, let’s dive in

and start to use it.

2.2 Running and using Mondrian

Mondrian is an analytic engine rather than an application or server, so it needs to run

inside of another application or server. This makes Mondrian highly flexible in that it

can be reused within a wide variety of applications and scenarios, depending on the

business needs.

 Adventure Works has several high-level functional requirements that dictate the

approach they can take:

Report

Mondrian

schemas

Mondrian

Web browser

Analyzer Dashboard

Data

marts

Pentaho Business

Analytics Server

Users run reports

and perform analysis

using thin-client tools.

1

Mondrian receives MDX

analysis queries to process

and sends back results.

2

Mondrian uses

schemas to map from

logical cubes to

physical data mart

schemas.

3

Mondrian sends SQL

queries for the data and

returns the results to the

requestor.

4

Figure 2.1 Mondrian run-

ning in Pentaho

20 CHAPTER 2 Mondrian: a first look

■ Use a thin-client interface for user access.

■ Provide users with predefined analytical reports.

■ Allow users to do their own interactive analysis.

■ Easily scale the system as the number of users grows.

■ Provide data security based on users and their roles.

■ Provide good support and examples for using the tools and system.

■ Allow for expansion in the future.

Adventure Works investigated a number of different business analytics solutions and

decided to use Pentaho Community Edition (CE). It provides a thin-client interface

for users. There are open source tools that their analysts can use to create reports and

dashboards based on Mondrian. There are also open source plugins for user-driven

analysis. Because Pentaho CE is a web application, it can be scaled through standard

web application scaling techniques, and it also has support for data security through

the use of users and roles. Pentaho has good online documentation, a global commu-

nity of users, and a number of companies that provide support and services. Finally,

Pentaho is a framework that easily supports customization and expansion.

 Pentaho comes in two flavors, Community Edition (CE) and Enterprise Edition

(EE). CE is free to download and run; EE requires the purchase of licenses but comes

with additional features and support. This early in the process, Adventure Works feels

that they don’t need the enterprise features yet, and they’re willing to provide the

technical support with help from the Pentaho and Mondrian online communities as

needed. As their use of Pentaho grows, they know they may want to switch to EE, but

they also know that anything they do in CE will migrate smoothly to EE.

 In the rest of this section, you’ll see how to run Pentaho CE with Mondrian and

Saiku, an open source analysis tool that works with Mondrian. You’ll get some hands-

on experience with reports and analysis. We’ll start with some simple, predefined

reports and dashboards that Adventure Works has created in advance, and move on

to user-driven, visual analysis that lets you, the user, do your own data analysis.

Finally, we’ll introduce you to some advanced analysis capabilities through the use of

MDX queries.

2.2.1 Getting and running the software

To get you up and running quickly with Mondrian, we’ve created a virtual machine

using VirtualBox, an open source, free solution from Oracle. Appendix A has instruc-

tions on how to download and run the virtual machine. The operating system is

Ubuntu 12, a popular open source Linux distribution. If you don’t know Ubuntu,

don’t worry. It probably looks a lot like whatever operating system you currently use,

and we’ll provide instructions as we go along.

 Once you have the virtual machine up and running, you need to start the server if

it isn’t already. Open the terminal window by clicking on the icon on the left that looks

like a black computer monitor with >_. A terminal window with a prompt should open.

21Running and using Mondrian

 To make working with Pentaho a little easier, a few commands have been created.

Table 2.2 shows each command, what it does, and when to use it. To run the com-

mand, simply type it on the command line.

Once Pentaho is running, open Firefox and go to http://localhost:8080/. You should

see the login page shown in figure 2.2. Pentaho has some predefined users and pass-

words to make evaluation and experimentation easy, and you’ll want to change these

before deploying Pentaho for your organization, but for now just use Pentaho’s users.

Enter a username of joe and a password of password.

Table 2.2 Pentaho convenience commands

Command Description When to use

ispentahorunning Responds with a message indicating

whether or not Pentaho is running.

Use when you want to easily know if

the Pentaho process is running.

start_pentaho Starts the Pentaho BA server if it

isn’t running.

Use to start Pentaho when it isn’t

running.

stop_pentaho Stops the Pentaho BA server if it is

running.

Use to stop the Pentaho server.

kill_pentaho Kills the Pentaho process. Use as a last resort if stop
_pentaho won’t stop the process.

Figure 2.2 Pentaho login page

22 CHAPTER 2 Mondrian: a first look

The Pentaho User Console, also known as the PUC, is the main screen for users (see

figure 2.3). You can think of the PUC as the command console for business analytics.

The PUC contains five main areas that you’ll want to be familiar with:

1 The menu bar provides access to a variety of actions related to managing content.

2 The toolbar provides shortcuts to commonly used actions.

3 The solution browser shows all of the top-level solution folders and lets you

browse into subfolders.

4 The list of solution reports shows the available objects for the selected folder in

the solution browser.

5 Finally, the reports area is where you view and edit analysis and reports.

2.2.2 Navigation and viewing reports

Many users aren’t interested in doing their own analysis, but just want to see the state

of the data. The Adventure Works analysts have created a number of reports and dash-

boards that users can run by selecting them from the solutions pane. To open an exist-

ing report, simply click on the AdventureWorks folder in the solution browser and

then double-click the solution object you want to view.

 Figure 2.4 shows a report that Adventure Works has created for users to see prod-

uct sales. The report was created with Pentaho Report Designer using Mondrian data

as a source. Figure 2.5 shows a dashboard chart created using Community Dashboard

Framework (CDF) using Mondrian as a data source. Finally, figure 2.6 shows a Saiku

report that was previously created and saved. Users can open this report and edit it or

simply view the latest data. The creation of reports, CDF dashboards, and other Pen-

taho content will be covered in a later chapter.

Reports

Solution folders

Solution reports

Menu bar Toolbar

Figure 2.3 Pentaho User Console (PUC)

23Running and using Mondrian

Figure 2.4 A Pentaho re-

port: Product Sales Report

Figure 2.5 CDF: Product Sales by Month

Figure 2.6 Saiku:

Product Sales by Year

24 CHAPTER 2 Mondrian: a first look

2.2.3 Interactive analytics

Reports are convenient for standard, recurring questions, but many other tools support

reporting. Where Mondrian really shines is by providing fast interactive analytics. This

capability allows users to ask questions and discover information that’s not obvious from

a static report. For example, a marketing manager may want to know the impact of pro-

motions by gender. Mondrian with an analysis UI, such as Analyzer or Saiku, allows the

manager to do this kind of analysis interactively without the need for technical support.

 Initially, Adventure Works has chosen to use the Saiku plugin with Pentaho. Saiku

is a popular open source graphical analysis tool for Mondrian that can be run stand-

alone or as a Pentaho plugin. Pentaho CE comes with JPivot preinstalled, but Adven-

ture Works likes the more elegant and intuitive interface provided by Saiku. Pentaho

also provides a more advanced analysis plugin called Analyzer in the Enterprise Edi-

tion, but it requires purchasing a license, and Adventure Works feels Saiku will meet

all of their initial needs. Figure 2.7 shows the Saiku editor.

 The Saiku editor is made up of several related sections. Across the top of the

screen is the Saiku toolbar, which lets you control the screen, enter advanced com-

mands, drill down, export data, and even create charts. Below the toolbar is where you

drag the dimensions and measures for analysis and add any filters to restrict the data.

Along the left side are the cubes, dimensions, and measures. The canvas shows the

current results of analysis. In this example, people with some college or a bachelor’s

degree appear to be the best customers. More analysis is required, but perhaps this

calls for more advertising on college campuses or research into why people without

college degrees don’t buy as much.

Figure 2.7 Interactive analysis with Saiku

25Running and using Mondrian

To try it yourself, select a cube from the drop-down list—the form automatically popu-

lates the dimensions and measures. We’ll describe dimensions in more detail shortly

and in the next couple of chapters, but they’re basically the attributes for analysis,

such as territory, date, customer info, and so on. The measures are the values used for

the analysis, such as quantity ordered, sales, inventory, number of website visits, and

the like. Next, drag the dimensions and measures you want to use to the rows and col-

umns. Saiku will automatically update the report with the results of your analysis.

 Often you might want the values to be shown visually rather than as a table of values.

To see a chart, click on the chart icon, and the values are converted to a chart. You can

now click on the different types of charts to see the data displayed in different ways.

 One of the challenges of charts is that they can quickly become overloaded with

data and hard to read and interpret. Typically charts should only have a few values on

each axis. Experiment to find the type of chart that best represents your data.

 Once you have an analysis or chart you like, you can save it for future use either as

it is or in a dashboard. Click on the disk icon on the main toolbar to get the Save dia-

log box (see figure 2.8). If you double-click on the saved file in the solution list, it will

open up the saved analysis in the Saiku plugin.

2.2.4 MDX analysis with Saiku

Drag-and-drop analysis provides a lot of power and insight to business users—they can

rapidly perform a wide variety of analyses without knowing a query language or under-

standing the details of the underlying database. But experienced analysts might want

to perform advanced analyses that aren’t supported directly by drag and drop, such as

comparing to a previous period or doing linear regression.

 Saiku lets you go beyond drag and drop and perform advanced analysis using

MDX queries. Multidimensional Expressions (MDX) is a query language for OLAP

that allows you to use advanced techniques, such ratio to reported, parallel period

Figure 2.8 Save

a report

26 CHAPTER 2 Mondrian: a first look

comparisons, period over period growth, traffic lighting, and so forth. Mondrian will

support virtually all standard MDX queries that you write.

LEARNING MDX Multidimensional Expressions (MDX) is a large topic. We’ll
cover some of the basics of MDX and the expressions you’ll likely find useful,
but covering all of MDX is beyond the scope of this book. MDX is covered in
detail in a number of other books as well as the Microsoft website.

For example, suppose you want to be able to compare the current sales quarter to the

same quarter of the previous year. The following MDX query would allow you to do that.

WITH MEMBER [Measures].[Previous Year Sales]
AS (

[Measures].[Total Sales],
PARALLELPERIOD([Order Date].[Monthly].[Quarter].CurrentMember, 4)

)
SELECT
NON EMPTY {[Measures].[Total Sales],

[Measures].[Previous Year Sales]} ON COLUMNS,
NON EMPTY {{[Order Date].[Monthly].[Year].Members},

{[Order Date].[Monthly].[Quarter].Members}} ON ROWS
FROM [Internet Sales]

To enter this query, click the button to

switch into MDX mode. Saiku will show you

the MDX for the current query. You can

modify that query or create one from

scratch. Enter the preceding MDX com-

mand and click the Run Query button. You

should get a table with the results of the

query, as in figure 2.9.

 Now that you’ve seen what you can do

with Mondrian, let’s look at the underlying

data and schemas that are used to support

Mondrian. The next section will introduce

multidimensional modeling. Then we’ll

introduce the data warehouse that supplies Mondrian with analytics data.

Listing 2.1 Comparing quarters across years

Errors in MDX queries

MDX can get complex, and it’s picky about syntax. If you have an error in your query,

you usually get an error message, particularly for syntax errors. Unfortunately, many

other errors result in no data being returned with no indication of the problem. When

beginning with MDX, we recommend that you build a query one piece at a time, check-

ing after each change to make sure the query still works.

Figure 2.9 Results showing comparison to

same quarter a year ago

27Multidimensional modeling

2.3 Multidimensional modeling

Now that you’ve seen how Adventure Works users use Mondrian for analysis, it’s time

to talk about what you need to do to make it possible. Mondrian, as an OLAP engine,

presents data multidimensionally: the content are data facts that the business analysts

want to know about, such as sales and inventory, and the dimensions are attributes

about the data for analysis, such as warehouse, geography, customer demographics,

and so on.

 In this section, we’ll introduce modeling via cubes and look at how these models

are derived. In chapter 4, we’ll explore defining the Mondrian schema in detail.

2.3.1 A simple report

A senior manager walks into an analyst’s office with a question. “I’d like to know more

about the demographics of our customers. Can you tell me whether we are selling

more to customers who have a college education this year than last year?”

 “Sure, I’ll build a Sales cube and show you the results this afternoon.”

 The analyst builds the schema shown in figure 2.10.

 The schema, named Sales, contains a cube, also named Sales. The cube has two

measures, Units and Store Sales, and two dimensions, Time and Customer. The Time

dimension has the attributes Year, Month, and Day, and the Customer dimension has

the attributes Education and Name.

(continued)

You can often get a more detailed error message from the tomcat log files. These

files are found in the .../tomcat/logs directory. On Unix-like systems, such as the

sample VM discussed in appendix A the filename is catalina.out.

Sales schema

Sales cube

Dimensions

Time

Year

Month

Measures

Units

Store sales

Day

Customer

Education

Name

Figure 2.10 Sales schema

www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Mondrian: a first look

VIEWING THE ADVENTURE WORKS SCHEMA If you’re using the virtual machine,
you can find the Adventure Works schema in a file called adventure
_works.mondrian.xml in the /opt/pentaho/biserver-ce-4.5/biserver-ce/
pentaho-solutions/adventure_work folder.

What a schema contains and how you define it are described in chapter 4, but for the

purposes of building a report, you only need to know the logical elements. There’s

also sufficient information in the schema to map these dimensions, attributes, and

measures onto the tables and columns of the database, so the analyst is able to write

an MDX query:

SELECT {[Measures].[Units],
[Measures].[Store Sales]} ON COLUMNS,

Crossjoin([Time].[Year].Members,
[Customer].[Education].Members) ON ROWS

FROM [Sales]

And the query produces the desired result:

Year Education Unit Sales Store Sales
==== =================== ========== ===========
2011 All Educations 66,291 139,628.35

Bachelors Degree 17,066 35,699.43
Graduate Degree 3,637 7,583.71
High School Degree 19,755 41,945.65
Partial College 6,309 13,336.92
Partial High School 19,524 41,062.64

2012 All Educations 62,610 132,666.27
Bachelors Degree 16,175 34,552.11
Graduate Degree 3,880 8,096.90
High School Degree 17,907 37,797.71
Partial College 5,852 12,389.92
Partial High School 18,796 39,829.63

HIERARCHIES AND ATTRIBUTES Actually, MDX uses hierarchies, not attributes.
Mondrian generates a hierarchy for each attribute, so the effect is almost the
same. See section 4.3.3 for the full story.

Note that almost all of these elements (the Sales cube, Customer and Time dimen-

sions, the Year and Education attributes, and the Units and Store Sales measures)

are referenced in the MDX query. Because Mondrian is a query engine, the purpose of

a Mondrian schema is basically to define elements that can be used in MDX queries.

2.3.2 Modeling business questions

How do you convert a business question into a dimensional model? In this section,

we’ll look at how the abstractions of dimensional modeling—cubes, dimensions, attri-

butes, and measures—can model the running of an enterprise.

 In the previous example, the process of designing a schema was instigated by a

question from a business user. It was then possible to construct just the attributes and

measures necessary to answer that question. This is as it should be. Without a business

29Multidimensional modeling

question to provide focus, the natural inclination would be to pull in every piece of

information in the operational schema and produce an over-complicated analytic

schema. A specific question helps you to focus on what is important.

EVOLVING A SCHEMA Mondrian makes it easy to evolve a schema by adding
attributes, dimensions, measures, and calculations when you need them. This
allows you to take an agile approach, just building what you need today.

The dimensional model can be gleaned by listening to the business user’s question.

Each of the key concepts will likely turn into a cube, an attribute, a dimension, or a

measure. Attributes correspond to nouns, and attributes that are related (because

they describe the same entity in the business) are grouped into dimensions. Quantifi-

able values are measures. Cubes describe business processes, so they tend to appear as

verbs. If the business user says “compare based on ...” or “break down by ...”, the next

noun will likely be something that will become an attribute in the dimensional model.

 For example, the manager might say “Can you break the report down by quarter?”

and the analyst would infer that a [Quarter] attribute should be added to the [Time]

dimension.

 Sometimes it’s not so obvious what dimension the attribute belongs to. For exam-

ple, if the manager says, “Can you compare based on discount levels?” the analyst can

ask a follow-up question: “Does each customer always get the same discount level?” If

the manager says, “Yes,” the analyst is pleased. This means that [Discount Level]

should be an attribute of the [Customer] dimension. Life is simple.

 But suppose the manager’s reply was, “Yes and no. Each customer’s discount level

depends on whether they are a gold or silver customer, and we decide that each quar-

ter. Plus, our sales managers can use their discretion to increase the discount level for

really large orders.” Here’s how the analyst should decode this reply. Discount Level

should be a new dimension, so that it can vary for each transaction. The business rule

to populate the Discount Level is complicated, and would probably lead to unaccept-

able SQL performance if performed at runtime. The pragmatic solution is to make

Discount Level a column in the fact table, populate it using the business rule when the

data is populated in the data warehouse, and build a dimension on top of that col-

umn. This keeps the runtime schema simple, and simple schemas perform much bet-

ter than complicated ones.

 Cubes (and the fine-grained events of which they are composed) often appear as

verbs. In the original question in section 2.3.1, the manager asked, “Are we selling

more ...?” The verb “selling” or sales can become a cube.

 Facts within the cube are occurrences of a business process; examples of business

processes include sales, shipments of orders, inventory entering or leaving a ware-

house, calls arriving at a call center, clicks on a company’s website, and mentions of a

company’s name or products in social media.

 If you’re familiar with entity-relationship modeling, you’re probably wondering

whether business processes are a kind of entity. Despite the fact that they’re stored as

30 CHAPTER 2 Mondrian: a first look

rows in a database, they’re not entities. Business processes happen on their own

schedule, often outside the company and its information systems, and often don’t

have a natural unique identifier. Without a unique identifier, they don’t qualify as

entities in the classical sense of entity-relationship modeling. Consider an HR system:

an employee is an entity, but every update to that employee (hiring, firing or resigna-

tion, promotion, pay raise, transfer to a different department) is an instance of a busi-

ness process. Although these business processes involve the same entity, they’re

different business processes and should be in different cubes. This is why the business

question, to motivate the design of the dimensional model, is so important. The cubes

you’ll need to build, such as [Employee Hires] and [Employee Transfers], are not

obvious if you only look at the tables and columns of the operational database.

 In the language of traditional modeling, instances of a business process are more

like events. Events can be so multitudinous that it’s not practical to consider them

individually. Instead you should look at the aggregate properties of events that

occurred in a similar context. These properties are called measures.

 Measures are powerful because they apply not only to individual events but to col-

lections of events that occurred in a similar context (time, place, and so forth). For

example, you can look at the sum of all sales that occurred in a particular month and

region. This is much more powerful than simply generating a report of sales.

 In summary,

■ Measures are the quantities you use to analyze a business process.

■ Attributes are how you slice the set of measurements into regions that you can

compare.

■ Dimensions are convenient collections of attributes.

■ Cubes contain the measures, attributes, and dimensions necessary to answer a

particular business question.

The Mondrian schema describes the data and organizes it dimensionally. But you

need actual data for your analysis. The next section describes how to get the data and

organize it for analysis.

2.4 Getting and organizing the data

So far we’ve explored the dashboards, reports, and on-demand analysis available to

Adventure Works users. We’ve also looked at how you can organize that information

into measures, dimensions, cubes, and schemas. Now we’ll dive a bit deeper to see

what an analyst needs to do to enable this capability.

 The basic process for getting data to the analyst is shown in figure 2.11. Data is typ-

ically extracted from the transactional business system (OLTP) into an OLAP database,

via a process known as extract, transform, and load (ETL). Mondrian then uses data

source definitions to find the data and Mondrian schemas to interpret the data. Mon-

drian converts MDX queries to SQL queries to get data for users via an analytics tool

such as Analyzer or Saiku. In the remainder of this chapter, we’ll show how you can

31Getting and organizing the data

get and organize the data, and then describe and expose it for Mondrian’s use. Then,

in the next few chapters, we’ll go deeper into each topic.

2.4.1 The data warehouse: physically storing the data

As you saw in the previous section, Mondrian presents data as cubes with multiple

dimensions for analysis. But Mondrian doesn’t store the data; it simply provides a logi-

cal view of the physical data. Mondrian is a relational OLAP (ROLAP) engine, meaning

that the data is stored in a relational database and Mondrian translates MDX queries

into SQL queries for the particular RDBMS you use for storage. This has a number of

advantages from a technical perspective:

■ You can choose a database that’s optimized for the types of queries analysts will

typically perform.

■ You get all of the backup, failover, and clustering capabilities of an RDBMS sys-

tem that DBAs are already used to.

■ ROLAP engines don’t precalculate intersections of dimensions, so the data is

available to analysts as soon as it’s updated in the database.

■ You can switch to a different database in the future and still use Mondrian

(assuming the new database is supported).

Mondrian allows you to store your data in a wide variety of ways and expose it for ana-

lytic use, but some ways of organizing the data are better than others. The data ware-

housing industry discovered years ago that organizing data into “star schemas” allows

for fast analysis of large amounts of data. This is because the relationships between the

data are simplified, and the number of joins needed to connect data is minimized.

 Figure 2.12 shows a normalized database schema versus a star schema. In the nor-

malized data, to get information about where orders for a particular product originate,

you’d have to join the Product, Line Items, Purchase Order, Customer, City-State, State-

Country, and Country-Territory tables. The star schema eliminates these complex mul-

tiple joins, and it’s easy to understand how the data is related. Using a star schema, the

joins are reduced to the Purchase, Geography, and Products tables. Reducing the num-

ber of joins simplifies the schema and typically increases performance.

Mondrian

schemas

Data source

definitions

Mondrian AnalysisOLTP data OLAP data

Figure 2.11 Getting

data to the analyst

32 CHAPTER 2 Mondrian: a first look

The star schema is simplified by combining related data into single, denormalized

tables. For example, the City-State, State-Country, Country-Territory tables are all com-

bined into a Geography table. This means that there are multiple copies of a state to

country mapping, increasing data storage and possibly requiring the update of multi-

ple records should a mapping change (for example, if a country splits into multiple

countries). In chapter 3, we’ll talk about ways to avoid the redundancy, but the choice

is generally to pay for additional storage to get faster analysis. The time of a business

analyst is usually worth much more than the cost of additional storage space.

2.4.2 Examining the Adventure Works data

To see how the Adventure Works data is stored, you can use any MySQL tool to view

the data. From the command line, type mysql -u root -p. You should be presented

with a mysql> prompt. At the prompt, type use adventure_works_dw;. This will

change to using the Adventure Works database. To see the tables in the database,

type show tables;. We’re using a common convention of starting dimension tables

with dim_.

 Let’s take a quick look at a couple of tables. Type describe internet_sales;.

You’ll see a bunch of key fields and other values. The values are the facts that we’re

measuring, and the key fields are the foreign keys to the dimension tables. For exam-

ple, the ProductKey field is the key into the dim_product table.

 If you now type describe dim_product;, you’ll see all of the values that you can use

in the dimension. For example, we use EnglishProductName as the product name attri-

bute in the dimension. Because we have a product name and a link between the sales

and product tables, we’re able to do analysis of facts by product. Note that the fields in

the dim_product table can be used as levels in the dimension or as attributes. How

they’re used depends on the relationship between the fields and the types of questions

you want to answer.

Normalized data

Customer
Purchase

order

State-

country

Line

items

Vs.

City-state

Country-

territory

Product

lines
Product

Star schema

Customer

Purchase ProductsGeography

Sales

territory

Figure 2.12 Normalized data vs. star schemas

33Getting and organizing the data

2.4.3 Populating the data

The data in the warehouse is populated via a process known as extract, transform, and

load (ETL), illustrated in figure 2.13. The name describes the process. First the data is

extracted from the source system, which is usually one or more transactional, rela-

tional databases that have normalized database schemas, but big data systems, such as

Hadoop, and NoSQL systems, such as MongoDB, are also becoming more common.

The data is then transformed to fit into the data warehouse schema. This can include

steps such as data cleansing and changing the data so it’s easier for business users to

understand. Finally the data is loaded into the data warehouse, organized as a star

schema where it can be used by Mondrian.

 An additional benefit of moving data from transactional systems to analytics sys-

tems is that the multiple data sources can be combined into a single data warehouse.

Businesses, particularly large enterprises, often have many complex operational data-

bases. For example, they may have a system for inventory and warehouses, a CRM sys-

tem for customer information, an HR system for employee information, and so on.

Combining this information into a unified data warehouse enables more sophisti-

cated analysis, such as viewing changes in inventory (from the inventory system) based

on sales in a particular region (from the CRM system) by individual salespeople (from

the HR system).

 In the past, ETL was done via custom software and scripts, and the source data was

typically stored in a relational database. With the growth of the web and the huge

amounts of data being created, important data needed for analysis often resides in

multiple databases, text files, NoSQL databases, and Hadoop. Writing custom software

to perform the ETL step is a huge undertaking, both to develop and to maintain.

 Fortunately, Pentaho also provides an open source tool called Kettle (a.k.a. Pen-

taho Data Integration, or PDI) that makes ETL much easier. Kettle provides a graphi-

cal interface, called Spoon, that allows users to graphically create sequences of steps

to manipulate data. A series of steps is called a transformation because it “transforms”

data from the input source to the format that’s needed for analysis. For example, a

transformation might read some measures from multiple tables in the operational

database. The measures might then be manipulated, such as performing calculations

or converting cryptic codes to user-readable values. Then dimension keys are looked

up to associate the fact (numeric) data with dimension members, such as dates or

geography. Finally, the data is put into the analytics database. At no point in the pro-

cess does a user have to write code.

 Kettle provides support for a wide variety of data sources and conversions that

would be difficult to write by hand. Kettle allows you to access non-relational data

TransformOLTP

databases

OLAP

database

Extract Load

Figure 2.13 Loading the

data warehouse using ETL

34 CHAPTER 2 Mondrian: a first look

and “big data” from systems such as Hadoop and MongoDB without the often diffi-

cult coding that has traditionally been required. Finally, Kettle jobs can be sched-

uled, allowing data to be updated regularly so that analysts have the most recent

numbers to work with. Figure 2.14 shows how Kettle fits into the previously defined

ETL process.

2.5 Summary

In this chapter, you got an introduction to how Mondrian is used to provide analytics

services in a business setting. We discussed how Mondrian fits into the architecture of

Pentaho. You also saw some of the things Adventure Works is doing with Mondrian. In

particular, you learned the following:

■ Mondrian is an engine that’s run inside a server or application, such as Pentaho

Business Analytics.

■ Mondrian can be used to generate predefined reports and dashboards.

■ Through the use of plugins, such as Saiku and Pentaho Analyzer, business users

can do their own interactive analysis.

■ Advanced power-users can create complex analysis queries using MDX.

■ Mondrian uses a logical schema to map from physical data to a multidimen-

sional cube.

Kettle (PDI)

Hadoop

NoSQL databases

Relational OLTP

OLAP

data

Load

• Extract

• Transform

• Combine

Text documents Figure 2.14 Using Kettle for ETL

35Summary

■ For efficient work, it helps to denormalize data into a star schema.

■ The process of migrating data is called ETL, and it can be simplified through

the use of tools such as Pentaho Data Integration (PDI).

In the next chapter, we’ll dive deeper into the structure and logic of the data ware-

house. Then we’ll cover the major portions of the Mondrian schema before moving on

to more advanced topics. These chapters will give you enough information to begin cre-

ating your own data warehouse and providing analytics solutions based on Mondrian.

36

Creating the data mart

Mondrian makes it easy for users to do analysis, but behind the scenes it requires

data organized in a way that’s convenient for analysis. Historically data has been

organized for operational use in third normal form (3NF), but Mondrian has

adopted the use of star schema structures based on industry best practices.

 In this chapter, we’ll cover the general architecture of an analytic solution and

then explore star schemas, the “best practice” database modeling technique for

analytic systems. We’ll dig into their specifics, understanding that Mondrian is

expecting to perform its analytic magic on top of a star schema. We’ll compare this

with third normal form modeling and examine some of the high-level benefits of

the star schema for an analytic system.

 We’ll conclude with a few additional aspects of the star schema technique,

including how to manage changes to data over time, modeling the all-important

time dimensions.

This chapter is recommended for

Business analysts

✓ Data architects

Enterprise architects

Application developers

37Structuring data for analytics

 By the end of this chapter, you’ll understand how data is structured to make analy-

sis with Mondrian possible. This chapter is primarily aimed at the data architect, but

other readers will likely find understanding the data architecture useful as well.

3.1 Structuring data for analytics

Before we can get into the details of how to build the underlying physical architec-

ture, it’s helpful to understand what we’re trying to accomplish and the high-level

architecture required to meet these goals. In this section, you’ll learn why a particular

database architecture is needed and how it aids in analysis. By the end of the section,

you should understand what a star schema is and how it supports the goals of online

analytic processing.

3.1.1 Characteristics of analytic systems

As the data warehouse (DW) or business intelligence (BI) architect or developer for

Adventure Works, you’re charged with making sure the analytics presented to your

users exhibit the following three characteristics:

■ Fast—Users expect results at the “speed of thought,” and the fact that your

database is scanning millions of transactions to build these results is irrelevant

to them. If you haven’t presented them with the results quickly enough for

them to continue asking questions, refining their results, and exploring, you've

lost them.

FAST RULE OF THUMB If the reporting results take long enough that the
user considers going to refill their coffee, your solution isn’t fast enough.

■ Consistent and accurate—Nothing drives users more insane than running two

reports in a system and getting results that don’t match. For instance, if your

OLAP system produces reports on sales by quarter and by year, and the quarterly

totals don’t add up to the yearly total (as in table 3.1), your users will lose confi-

dence in how accurate the analytics presented by your system are. Your solution

must never present results like these.

Table 3.1 Inconsistent and inaccurate results are bad

Year Quarter USD sales

2012 Quarter 1 $50

2012 Quarter 2 $50

2012 Quarter 3 $100

2012 Quarter 4 $100

2012 All Quarters $350—Different!

www.allitebooks.com

http://www.allitebooks.org

38 CHAPTER 3 Creating the data mart

■ Information focused—Users don’t care that the SKU for the product is contained

in the column UNIQUE_RESOURCE_LOCATOR in their ERP source system and

that it’s in the PLU_BASE_UNIT column in the CRM tool. The analytics you pres-

ent in your OLAP system must focus on the information subjects, such as sales and

customers, that are analytically significant to your users. Users want to see the

customer name “Bob” and the state “California” instead of the transactional IDs

for the values (100, 22CA1, and so on).

ERP and CRM systems use IDs and codes, but users think in names and labels.

Additionally, transactional (OLTP) systems, like your CRM and ERP, change over

time. The OLAP system needs to handle data changes with grace, and delivering

reports in terms of information subjects insulates you somewhat from these

inevitable changes. Your company may someday move from Oracle Applications

to Salesforce.com, but if your analytic system is just sales and customers, this

change need not affect the reports.

If you’ve worked with technology for any period of time, you’re likely thinking that

the fast, consistent, and information-focused objectives aren’t implemented easily.

These objectives are not the low-hanging fruit that the installation of a single piece of

software can achieve. Let’s look at the architectures that will help you achieve these

characteristics.

3.1.2 Data architecture for analytics

Fortunately for all of us, building analytic systems to meet the objectives outlined in

the previous section is not new. Many thousands of professionals—numerous authors,

experts in the industry, and vendors—have spent years refining the tools, techniques,

and best practices for implementing analytic systems that are fast, consistent, and

information focused.

 This collective wisdom boils down to two almost universally accepted tenets of

building analytic systems:

■ Copy data to systems dedicated for analytics—Data, unlike physical assets, can be

duplicated with relative ease. Your transaction systems require advanced secu-

rity and high availability, and they’re designed to be fully available to run your

company. They are, generally speaking, ill-suited to performing aggregations

across many areas, such as multitable joins, and typically include analytic report-

ing as a bolt-on piece of the primary application. Doing analytics on these sys-

tems is a common source of poor system availability and high system loads. If

Desired characteristics of analytic systems

■ Fast
■ Consistent and accurate
■ Information focused

39Structuring data for analytics

you’re reading this, there’s a decent chance that you’ve received an email from

a DBA or system administrator complaining about a running query that’s slow-

ing down the whole system.

■ Transform, clean, and enrich data for analytics—While these transactional systems

tend to be flexible, they speak a foreign language of codes, effective dates, keys,

composite keys, and joins. Data is what transactional systems are built to man-

age, but that’s not what matters to the analytic users. The industry knows that in

order for the data to be useful, it must undergo a transformation from data (in

the form of CSV files or raw tables in a database) into information subjects such

as sales or customers. Often, the data necessary to do an analysis isn’t even pres-

ent in the original data stream, and integrating, matching, and enriching this

data in the analytic system is necessary to present certain analytics. The act of

moving data from the source system to the analytics system is referred to as

extract, transform, and load (ETL).

Whether you’re working with a data warehouse that serves as the long-term storage of

company data, a single analysis area commonly called a data mart, or an interdepen-

dent set of data marts, the industry has determined that analytics should be done on sepa-

rate computer resources and include data that has been cleaned, transformed, and enriched from

multiple source systems. Figure 3.1 shows an overview of a typical analytic environment

with separate source systems and analytic systems. Data is copied to the analytic envi-

ronment via ETL, and users access their reports and data in the analytic environment

rather than working directly against the source systems.

Two tenets of OLAP

■ Copy data to systems dedicated for analytics.
■ Transform, clean, and enrich data for analytics.

Mondrian
OLAP

client

Users

MDXSQL

Source data Analytic environment

Analytic database

Dimensional

structures

Database1

Database2

Flat files

Staged

extract

files

ETL

ETL

repository

Figure 3.1 Analytic architecture overview: data is copied (and enriched) from the source systems

to a dedicated analytic environment, which is where users (via Mondrian) access analytic data.

40 CHAPTER 3 Creating the data mart

3.1.3 Star schemas

The common need for analytic systems that are fast, consistent, and information

focused has led the industry to a widely accepted best practice of dimensional modeling

based on the physical star schema methods. We’ll briefly explain the basics of the star

schema and how it meets these goals, and compare it with third normal form model-

ing (3NF).

 The star schema is an industry best-practice modeling technique optimized for

massive, dynamic aggregations. 3NF modeling is the industry best practice for model-

ing transactional systems (OLTP), but star schemas are the best practice for analytics

(OLAP). The concepts and specifics are outlined comprehensively in the authoritative

book on the topic by Ralph Kimball and his colleagues, The Data Warehouse Lifecycle

Toolkit, 2nd edition (Wiley, 2008). If you’re looking for more advanced techniques or

greater detail on any concepts introduced and intentionally kept brief in this chapter,

we encourage you to refer to that book. We’ll cover, later in this chapter, some of the

reasons a star schema is a best practice and its numerous benefits.

 For all intents and purposes, Mondrian expects your data to be in a relational data-

base, in the star schema format (or one of its closely related permutations). The star

schema, as a set of relational database tables, is what Mondrian uses as the basis to per-

form aggregations and analytics.

 We’re going to cover the general structure of a star schema, but it’s worth noting that

the specifics of each individual business model are driven by the analysis needs of that

particular company, department, or user. In chapter 2, we noted that the desired ana-

lytics and model for Mondrian cubes drive the design of both the Mondrian schema

and the star schema that supports it. To understand how the analytic needs of users

drive the actual implementation model, we’ll use Adventure Works as an example.

 Adventure Works managers want to understand how much revenue they’re selling

to which types of customers. They’re looking to understand, first, their sales by cus-

tomer state. They’ll eventually wish to look at additional attributes, such as sales over

time, but for our first foray into star schemas, the basic request for sales by customer

state will suffice.

MONDRIAN AND STAR SCHEMAS Mondrian expects your data to be in a rela-
tional database, in a star schema which is an industry best-practice modeling
technique for OLAP systems.

A star schema consists of a fact table surrounded by multiple dimension tables. The

shape of a fact surrounded by dimensions is how the star schema gets its name.

Fact tables contain the stuff you’re trying to aggregate, total, and measure. The

numbers that are added together to create the total sales number are contained in the

fact table and are referred to as the measures in the cubes (more on this in chapter 4).

The measures are the what you’re trying to measure and analyze. In our example and

figure 3.2, sales is the what we’re trying to measure.

41Structuring data for analytics

Dimension tables contain the qualifying attributes that you want to split out those num-

bers (the measures) by. In our example and figure 3.2, the users wish to split out the

total sales (in the fact table) by customer state, so that you can see the total sales for

each state individually, along with the total sales for all states. Customer state is the by

that you are trying to use for comparison and filtering.

What you are trying to measure (revenue, web impressions, customer calls, and so

on) is in the fact table. The things you are trying to split it out by (product, geography,

and the like) are in the dimension tables.

 When looking at the physical database model, a star schema consists of the following:

■ Dimension tables that contain rows, independent of the transactions that have

the attributes. For instance, a product dimension would contain a row per

product and contain information on product categories, vendors, depart-

ments, and the like. Typically this foreign key is also non-nullable, so that you

can aggregate the table at any combination of dimensions and always get the

same sum total. Remember, consistency is one of the goals, and this ability to

aggregate at any combination of dimensions helps keep the sum totals consis-

tent, avoiding the results in table 3.1.

SIMPLE EXAMPLE WITHOUT HISTORY This design, with a single row per prod-
uct, is a simple example for a Type I dimension. Please see section 3.2.1 on
Slowly Changing Dimensions later in this chapter for more detailed discus-
sion of keeping history for dimensions.

Dimension tables are highly denormalized with many columns when compared

to their original source system tables. Your source system may have included

information about departments in a table separate from employees, but in the

star schema the department name is now a column in the employee dimension.

■ A single fact table that contains a row for the individual transactions (order line

items, individual clicks) matching the grain of the table (see Kimball’s book for

more information on “grain”). The fact table contains a set of surrogate integer

keys that easily join to the dimension tables for the attributes associated. Addi-

tionally, it will usually have one or more columns that contain the values to be

aggregated, associated with that single transaction.

fact_sales

sales_amount: INTEGER

dim_customer_id: INTEGER [FK]

dim_customer

dim_customer_id: INTEGER [PK]

cust_state: VARCHAR(10)

cust_name: VARCHAR(10)

Facts: what you

are measuring

Dimensions: attributes of

the by (customer state)

Figure 3.2 Star schema. The fact contains the what you’re trying to measure—sales, and more

specifically the column that has the data to be aggregated, sales_amount. The dimensions are

the by attributes that you’re trying to segment and allocate the data to—customer, and more

specifically the state the customer is from, customer_state.

42 CHAPTER 3 Creating the data mart

The other thing to note is that using this technique means that fact tables typically con-

tain at least 10 times, but more commonly at least 1000 times, more records than the dimension

tables. Fact tables contain millions to billions of rows, and dimension tables typically

contain thousands to just a few million. This has important performance benefits, and

it’s a key reason why this modeling technique can deliver speedy results even when

millions of facts are involved.

3.1.4 Comparing star schemas with 3NF

Given that you’re reading this book, you’ve likely either designed, built, maintained,

or optimized a database schema for an application. We’ll review the technique and

then examine why we’ll depart from it and use the star schema.

 As a brief refresher, 3NF is a modeling technique in which redundancy is reduced,

and foreign keys are introduced so that additional attributes (such as the name of the

state) are located in a different location and must be accessed in another table.

 The 3NF model has been blessed as the “correct” database modeling technique

with little discussion or questioning. 3NF is, for the most part, the best model for trans-

actional systems like an ERP or CRM. The 3NF modeling techniques are ideal in the

following situations:

■ Lots of concurrent users reading and modifying data—Keeping similar data together,

and factoring out and normalizing repetitive data (such as department names,

locations, and the like) allows lots of users to operate on smaller sections of the

dataset independently and without conflicts (or locks).

■ Subprograms and people are accessing small slices of data—Typically users of an HR

system are not going to update the last name of every employee in the company.

They will, more likely, access a single employee and update the last name of a

single record.

Star schema: facts and dimensions

Facts

■ Are the what you are trying to measure
■ Are usually numeric, and are aggregated (sum, count, or avg)
■ Contain millions (or more) of “skinny” records, typically only integers and numbers
■ Uses many non-nullable foreign keys to dimension records

Dimensions

■ Are the by you use to allocate or split your numerics
■ Contain thousands (sometimes more) of “fat” records, typically with many var-

char and descriptive attributes
■ Are highly denormalized, often containing typically separate items (such as cus-

tomer and state names) together in a single table

43Structuring data for analytics

■ Source systems usually access smaller slices of data joined together with a foreign key—

These joins are inexpensive with a relatively small amount of data. Databases, to

reassemble a complete order with line items, typically need to do two small

indexed reads into two tables (for example, retrieving the orders from one

table and line items from another). Reading two different locations is a small

amount of overhead when dealing with a single order.

The 3NF technique is not, however, a good model for a few users doing large aggrega-

tions touching entire sets of data. Joining a single record to others (a small amount of

data) tends to be efficient. Joining many tables, to include all the attributes used for

qualification (large numbers of database rows) requires much more work by the data-

base. You’ve likely written a few SQL statements for your reports that are a page or two

themselves, and their database EXPLAIN is a small chapter of a book; these queries tend

to perform poorly as the dataset grows in size. We certainly wrote our share of these

expensive, poorly performing queries before embarking on our OLAP adventures.

 If you’re accustomed to 3NF modeling, the first star schemas you design will not feel

“right.” They’ll leave you with a strange, lingering feeling that you’ve just built a terrible

data model. Over time, though, as the fit between the star schemas and the use cases

becomes increasingly apparent, the modeling technique won’t feel quite so strange.

3.1.5 Star schema benefits

We can’t cover all the benefits of the star schema in this book, but at a top level, the

star schema has the following benefits:

■ Star schemas require at most one pass through the table. There’s no need to look over

millions of records time and again; the database will simply make one pass

aggregating the dataset. The single remaining join path is centered on the larg-

est table. Database planners typically produce efficient executions when cardi-

nality differences between tables are large. Identifying which tables will be

expensive (and drive the single-pass approach) and which tables are smaller

lookup tables makes the planner’s job straightforward.

■ Missing join keys don’t cause sum-total issues in star schemas. Consider the difficulty in

balancing sum totals if some products are not assigned to categories. If you join

via a key that isn’t present, and the join condition in SQL isn’t satisfied, you typ-

ically lose records before doing the aggregations. In this situation, it’s possible to

do an aggregation without a GROUP BY statement and get one figure, and then to

get different totals if you join to a table. With a star schema, you can mix and

match and do aggregations at the intersection of any attributes and always come

up with the same exact sum total of revenue. You can probably think back to a

SQL report you’ve written that joins to an extra table for an additional reporting

field. All of a sudden, the users’ sum totals are missing due to missing join keys.

Star schemas help you avoid this pitfall; you must include a dimension record

that serves as the star schema equivalent of NULL so that fact records that don’t

have the attribute always join to every dimension.

44 CHAPTER 3 Creating the data mart

■ Many databases have physical optimizations for star schemas. The star schema elimi-

nates multitable joins, which are extremely inefficient and costly to perform on

large sets of data. A single, easy to optimize physical structure (one large table,

and single-key joins to surrounding smaller tables) is something that nearly

every database can perform effectively. Further, expecting this particular mod-

eling technique and seeing the physical tables organized as a star schema, some

databases have features that provide even greater efficiencies and query speed

improvements. Bitmap indexes, parallel query and partitioning, and sharded

fact tables are just a few of the techniques. In fact, there’s an entire class of col-

umn storage databases that are purposely built to handle such schemas/work-

loads and provide blazing fast performance on top of star schemas.

■ Star schemas are the preferred structure for Mondrian, but they’re also easier for anyone

writing SQL. Although the primary consumer for a star schema is an OLAP

engine like Mondrian, the database and tables themselves represent an infor-

mation-focused, easy-to-understand view of the data for reporting. A star

schema reduces the complexity and knowledge necessary to write plain old SQL

reports against the data. Analysts who typically needed to remember compli-

cated join rules (such as remembering to include an effective date in the SQL

join so you don’t get too many records and double-count your sales) have a sim-

plified information-focused model to report against.

Now that we’ve looked at the basic structure and benefits of star schema design and

compared it to 3NF techniques, it’s time to delve into some further techniques that

will almost certainly be required with a star schema of any real complexity.

3.2 Additional star schema modeling techniques

You’ve learned what star schemas are and why they’re useful. In this section, we’ll

cover some additional aspects of star schema modeling. These additional techniques

and patterns fall into two different categories:

■ Techniques for handling changes to dimension data over time—Products change cate-

gories, stores change attributes, and so on. You need to be able to handle changes

to your dimensions over time using Slowly Changing Dimension techniques.

■ Performance enhancements—We’ll cover some techniques for improving the over-

all performance of the system.

3.2.1 Slowly Changing Dimensions (SCDs)

Slowly Changing Dimensions (SCDs) are dimensions that change slowly over time, and

in this section we’ll look at techniques for handling changes to dimensional attributes.

The “slowly” need not connote any particular rate of change; data can change fre-

quently throughout a day or change once or twice per year. The key aspect we’ll try to

model and solve is how to handle these changes to data and ensure that we properly

account for changes over time.

45Additional star schema modeling techniques

Industry-standard descriptions of SCD techniques have been developed; they aren’t

particular to Mondrian but are broadly applicable to star schemas for other OLAP

products as well. The three types of SCDs (I, II, and III) were initially outlined in Kim-

ball’s definitive and timeless work on dimensional modeling, The Data Warehouse Lifecy-

cle Toolkit, 2nd edition (Wiley, 2008), and while some additional permutations of these

types exist, the three types cover nearly all use cases.

 It’s easiest to explain SCDs through an example. We’ll examine a customer named

Bob, the sales associated with him, and the changes to his data over time. We’ll look at

how we can manage changes to Bob’s data over time.

 In the source CRM system, the customer records for Bob are stored in CRM_TABLE

(figure 3.3). Bob has a single record in this table, and the table is updated as changes

are made (such as by a customer service agent using the CRM software). There is a sin-

gle, up-to-date version of Bob in the CRM system.

 Purchases made by Bob are recorded in the same system, in the CRM_SALES

table. Bob lived in California (CA) until June 2002, at which point he moved to

Washington (WA). This table contains the date of the sales transaction, foreign key

references to Bob’s CRM ID (100), and the transaction amount. This is a simplistic

(and perhaps a little oversimplified) version of the way data is commonly repre-

sented in source systems.

-- Before June 2002
select * from CRM_TABLE;
+-------+------+-------+
| CRMID | NAME | STATE |
+-------+------+-------+
| 100 | Bob | CA |
+-------+------+-------+

-- After June 2002
select * from CRM_TABLE;
+-------+------+-------+
| CRMID | NAME | STATE |
+-------+------+-------+
| 100 | Bob | WA |
+-------+------+-------+

-- All of Bobs sales
select * from CRM_SALES;

CRM_SALES

SALESID: INTEGER [PK]

SALESDATE: DATE

AMOUNT: INTEGER

CRMID: INTEGER [FK]

CRM_TABLE

CRMID: INTEGER [PK]

NAME: VARCHAR(10)

STATE: VARCHAR(10)

Figure 3.3 Source data in the CRM system. A single record per customer in CRM_TABLE is uniquely

identified by CRMID, with sales transactions related to a customer being referenced through a foreign

key in CRM_SALES.

46 CHAPTER 3 Creating the data mart

+---------+------------+--------+-------+
| SALESID | SALESDATE | AMOUNT | CRMID |
+---------+------------+--------+-------+
1001	2001-01-01	500	100
1002	2002-02-01	275	100
1003	2003-09-01	999	100
+---------+------------+--------+-------+

Given your new understanding of star schemas, it’s probably clear at this point that

because sales are the what that you’re trying to measure, sales will be a fact table in the

star. It would also be common to want to see sales by customer state (the by). Reinforc-

ing what you saw earlier in figure 3.3, you know that the by attributes (customer state)

will be in a dimension table. Now we simply need to address the challenge that arises

from Bob moving from CA to WA in June 2002.

 The challenge, of course, is determining how to appropriate certain sales amounts

in Mondrian and the star schema in keeping with the business requirements. In our

example, Bob made two purchases (2001-01-01 and 2002-02-01) while he lived in Cali-

fornia. The big question, and the one we can address with one of our SCD techniques,

is whether those two sales amounts ($500 and $275) should be totaled in California

(where Bob lived when he made those purchases) or in Washington (where Bob

resides now). The three SCD techniques give us the ability to achieve the results

Adventure Works desires.

SCD TYPE I

SCD Type I is a dimensional modeling technique that, as in our example source sys-

tem, keeps a single version of the entity. In our example, Bob just has a single record

in a customer dimension table (figure 3.4). As Bob changes attributes (from CA to

WA), his record is updated in the table; no history of changes is kept. The fact table

records have a reference to the dimension record for Bob.

-- Dimension Table (Type I). No History, single version of Bob
select * from dim_customer_type_I;
+------------+------------+-----------+
| cust_CRMID | cust_state | cust_name |
+------------+------------+-----------+
| 100 | WA | Bob |
+------------+------------+-----------+

fact_sales_type_I

fact_sales_id: INTEGER [PK]

sales_amount: INTEGER

sales_date: DATE

cust_CRMID: INTEGER [PK]

dim_customer_type_I

cust_CRMID: INTEGER [PK]

cust_state: VARCHAR(10)

cust_name: VARCHAR(10)

Figure 3.4 Type I dimension tables. Notice that the foreign key from the fact table to the di-

mension table is the single-source system identifier CRMID. Given that this is the primary key

for the dimension table, it’s clear that there’s only one record for Bob in the dimension.

47Additional star schema modeling techniques

-- Fact Table (Foreign Key to Customer dimension is cust_CRMID)
select * from fact_sales_type_I;
+---------------+--------------+------------+------------+
| fact_sales_id | sales_amount | sales_date | cust_CRMID |
+---------------+--------------+------------+------------+
1001	500	2001-01-01	100
1002	275	2002-02-01	100
1003	999	2003-09-01	100
+---------------+--------------+------------+------------+

-- Typical Mondrian Star Query (sum measure, group by dimension)
select

sum(sales_amount) as 'sales',
cust_state

from
fact_sales_type_I f,
dim_customer_type_I d

where
f.cust_CRMID = d.cust_CRMID

group by
cust_state;

+-------+------------+
| sales | cust_state |
+-------+------------+
| 1774 | WA |
+-------+------------+

In the preceding code example, notice the query to the star schema that Mondrian

will issue to present the total sales by state view. You’ll notice that since there’s a single

record for Bob, and his state is current, indicating that he’s living in WA, all of Bob’s

sales are now considered to be WA sales. This is the key attribute of Type I SCD dimen-

sions; changes are made to the single record, and all previous transactions are now

included in the new value totals. Even though Bob lived in CA for his first two pur-

chases ($500 and $275), they don’t show up in CA; the entire amount of $1,774 is

included in WA.

 Type I dimensions are often used for items that don’t change frequently (country

names, area codes, and the like), and when they do change, they represent a true

update or correction of the data. For instance, if the name of a country changes

(“Suessville” to “Democratic Peoples Republic of North Suessville”), it’s unlikely that

business users will want to see two different figures (old name and new name) and two

different names. For such an update, all records (old transactions and new ones)

should be included in the new name.

SCD TYPE II

SCD Type II dimensions keep a history of changes to the attributes of the dimension. In

our example, Bob would have two records in the customer dimension. One record rep-

resents the period from when he became a customer in 1980 up until he moved to

Washington—in this record his state is CA. The second record covers his time living in

Washington. These versioned records of Bob represent him at particular points in time.

www.allitebooks.com

http://www.allitebooks.org

48 CHAPTER 3 Creating the data mart

For Type II dimensions, a surrogate key is created to uniquely identify a particular ver-

sion (such as 8888 or 8889) of the natural key (Bob, CRMID 100). For Type II dimen-

sions, the surrogate key is meaningless and it’s used only as a simple, single-key join

from the fact table.

 There is a new unique key that’s normally omitted from the physical database

schema but is a logical constraint: a combination of the natural key (CRMID) and the

effective date identifies unique records in a dimension (figure 3.5).

 When loading the fact table, the ETL system examines the date of the sale

(sales_date) and chooses which version of the dimension key to use. In our example,

two of Bob’s transactions use the record where he lived in CA (8888) for a foreign key,

and his last transaction uses his current effective record (8889) as a foreign key. It is

this versioning, and the ability of the fact table to join to different versions of the same

entity, that give SCD Type II dimensions the ability to attribute historical transactions

to the correct attributes.

-- Bob now has TWO records in the dimension, and when the new record was
-- effective. Notice the surrogate key is now the PK for the table
select * from dim_customer_type_II;
+-----------------+---------------+----------------+-------+------+
| dim_customer_id | nat_key_CRMID | effective_date | state | name |
+-----------------+---------------+----------------+-------+------+
| 8888 | 100 | 1980-01-01 | CA | Bob |
| 8889 | 100 | 2002-06-01 | WA | Bob |
+-----------------+---------------+----------------+-------+------+

-- Now, Bob's sales point to one of his two different dimension versions
-- The two records before June 2002, point to his first record (8888)
-- The record AFTER he moved, point to his second record (8889)
select * from fact_sales_type_II;
+---------------+--------------+------------+-----------------+
| fact_sales_id | sales_amount | sales_date | dim_customer_id |
+---------------+--------------+------------+-----------------+
1001	500	2001-01-01	8888
1002	275	2002-02-01	8888
1003	999	2003-09-01	8889
+---------------+--------------+------------+-----------------+

-- Now, when creating the sales Star query, the results put Bobs
-- sales when he lived in CA into CA, and when he lived in WA
-- into WA. Notice the query has no date management; this has

fact_sales_type_II

fact_sales_id: INTEGER [PK]

sales_amount: INTEGER

sales_date: DATE

dim_customer_id: INTEGER [FK]

dim_customer_type_II

dim_customer_id: INTEGER [PK]

nat_key_CRMID: INTEGER [PK]

effective_date: DATE

cust_state: VARCHAR(10)

cust_name: VARCHAR(10)

Figure 3.5 Type II dimension tables.

49Additional star schema modeling techniques

-- already been done when choosing which version of Bob from
-- the dimension table (8888 or 8889).
select

sum(sales_amount) as 'sales',
cust_state

from
fact_sales_type_II f,
dim_customer_type_II d

where
f.dim_customer_id = d.dim_customer_id

group by
cust_state;

+-------+------------+
| sales | cust_state |
+-------+------------+
| 775 | CA |
| 999 | WA |
+-------+------------+

Notice that the same SQL query to sum sales now returns totals that put Bob’s pur-

chases into the state he was living in when he made the purchase. His $500 and $275

sales in CA are totaled in CA ($775), and his $999 purchase after he moved is attrib-

uted to WA.

SCD Type II dimensions are used when a history of changes and attributes is

needed. This is very common, and Type II dimensions are used much of the time. You

can understand the rationale; business users want accurate per-state sales. They dislike

when reports magically move historical data from one line to another; historical data

should be settled, finished data.

 Type II dimensions often include additional columns for easy management and

lookups, even if they aren’t required. It’s common to see an expiration date, in addition

to an effective date, so that the SQL that looks up the dimension can use a straightfor-

ward BETWEEN clause rather doing a MIN(effective) where date is greater than effec-

tive. It’s also not uncommon for a version identifier to be present (1, 2, 3, ...); it’s

superfluous, but it makes it easy to numerically identify versions of the entity.

SCD TYPE III

Type III dimensions are somewhat rare; we’ll cover them briefly, and you can look into

online resources or other books to dig into the details and some examples. Our exam-

ple of Bob’s purchase history doesn’t fit with a classic Type III use case.

 Type III dimensions are used when you want to keep both attributes around and

be able to use either to classify the results. Type III dimensions are often used when

you bring in a second classification system, and you don’t think of it as a “change” so

much as an additional method of bucketing or classifying.

 Take, for instance, a sales organization that’s reorganizing. Perhaps they were split

into four regions before the reorganization (West, Central, East, and International)

and they’re moving to another system (North, South, International Europe, Interna-

tional Asia). For a while, given that commissions, sales bonuses, and other key com-

pany metrics will need to be determined using the old system while the new system is

50 CHAPTER 3 Creating the data mart

being rolled out, you’ll need to be able to use both methods. You’ll need to roll up

your sales by both the new sales regions and the old sales regions.

 This is typically accomplished by adding a column to an existing dimension (Type

I or Type II) that retains both sets of regions. In our continuing example, there’d be

two columns in the dimension: NEW_REGION would contain the new region names

for that salesperson, and OLD_REGION would contain the old region names. This

enables a type of dual taxonomy analysis, allowing the user to explore either region.

SCD SUMMARY

All three types of dimensions can be used, depending on the particular business

needs associated with the dimension. A single star schema can mix and match differ-

ent types of dimension tables, so choosing a Type I for a particular dimension doesn’t

mean that for another dimension for the same fact table you can’t use Type II.

 As a general rule, most dimension tables use Type II dimensions, probably fol-

lowed by Type I. Type III dimensions are rare and represent a small number of use

cases. If you’re new to dimensional modeling and your experience doesn’t automati-

cally tell you how to model the dimension you’re adding, start by assuming it’ll be a

Type II dimension, and then adjust it only if you see the telltale signs that it’s a Type I

or Type III.

 Having covered the methods available for addressing business needs for data

changing over time, let’s move on to discuss other modeling techniques for perfor-

mance and enhanced functionality.

3.2.2 Time dimensions

Time dimensions are critically important to OLAP systems; almost every single system

has some sort of time component associated with it, and it’s very rare for watching met-

rics over time to not be a key requirement. It’s almost a foregone conclusion that for

whatever system you build using Mondrian, you’ll have some sort of time dimension.

Time dimensions are, for the most part, like any other dimension. In fact, with the

exception of a single configuration in Mondrian to enable some powerful time-centric

MDX shortcuts (such as year-to-date aggregations or current period versus prior period,

and the like), time dimensions are exactly like any other dimension table. We’ll look at

how you can make Mondrian aware of your time dimension in chapter 4.

 Time dimensions are denormalized Type I dimensions where the natural (and usu-

ally the primary) key is the date. Type I is almost always appropriate because the attri-

butes rarely change. For instance, July 01 2005 will always be a Friday. Its attributes

(the fact it was Friday, was in July, and so on) won’t ever change, so managing changes

for time dimensions is usually not necessary.

 All of the relevant pieces of the date, such as the month name, quarter, and day of

the week, are denormalized and included as columns in the table. If you’ve created SQL

reports before, you might be wondering why this is done. After all, extracting the

month number from a date is a straightforward function. Usually something like

select month(date) from table can quickly and easily extract the information. But

51Additional star schema modeling techniques

there’s a good reason to denormalize it: performing the same calculation, extracting

the same exact integer (7 for our July example) from the date (July 01 2005) millions

of times with every query, means performing a lot of unnecessary work in the database.

Also, some database optimizers can optimize, group by, and filter clauses on straight

integer columns (such as MonthNumberOfYear) but have a much harder time optimiz-

ing and grouping or filtering on a function, such as month(date). See figure 3.6.

+----------+--------------+-----------+------------+---------------+
| DateKey | CalendarYear | MonthName | FiscalYear | FiscalQuarter |
+----------+--------------+-----------+------------+---------------+
20050701	2005	July	2006	1
20050702	2005	July	2006	1
20050703	2005	July	2006	1
20050704	2005	July	2006	1
20050705	2005	July	2006	1
20050706	2005	July	2006	1
20050707	2005	July	2006	1
20050708	2005	July	2006	1
20050709	2005	July	2006	1
20050710	2005	July	2006	1
+----------+--------------+-----------+------------+---------------+

In addition to the performance benefits of having all the regular pieces of the time

dimension denormalized, there’s another benefit. It’s very common for organizations

to have additional columns and attributes that need to be used for analysis just as

fact_sales

fact_sales_id: INTEGER [PK]

sales_amount: INTEGER

DateKey: INTEGER [FK]

DimDate

DateKey: INTEGER [PK]

FullDateAlternateKey: TIMESTAMP

DayNumberOfWeek: INTEGER

EnglishDayNameOfWeek: VARCHAR(255)

SpanishDayNameOfWeek: VARCHAR(255)

FrenchDayNameOfWeek: VARCHAR(255)

DayNumberOfMonth: INTEGER

DayNumberOfYear: INTEGER

WeekNumberOfYear: INTEGER

EnglishMonthName: VARCHAR(255)

EnglishMonthName: VARCHAR(255)

SpanishMonthName: VARCHAR(255)

FrenchMonthName: VARCHAR(255)

MonthNumberOfYear: INTEGER

CalendarQuarter: INTEGER

CalendarYear: INTEGER

CalendarSemester: INTEGER

FiscalQuarter: INTEGER

FiscalYear: INTEGER

FiscalSemester: INTEGER

Figure 3.6 Time dimension: all the attributes of a date are denormalized and presented as real textual

values. Even though extracting the month number from the date is possible, a denormalized and repetitive

column (MonthNumberOfYear) is created for easy and high-performance grouping and filtering for star

queries.

52 CHAPTER 3 Creating the data mart

frequently as the standard calendar attributes. The most common of these is the fiscal

calendar in use by a company, which is typically offset a few months from the Grego-

rian calendar. Fiscal attributes (such as fiscal year, quarter, and so on) can be added as

additional columns to the time dimension.

 In some ways, the time dimension is a very effective part of the solution. When a

fact table joins to a single date in the time dimension, a wide variety of time-based

aggregations involving different categories, calendars, retail schedules, and so on, are

all possible without any additional work. In other words, a well-designed time dimen-

sion means the fact table designers and ETL developers don’t have to worry about how

to roll up these transactions by fiscal and Gregorian calendar attributes.

 Notice in figure 3.6 that the primary key for the time dimension is an integer—a

coded version of the date. July 01 2005 is the integer 20050701. This is a common trick,

so that when loading a fact table you don’t have to do a table lookup to find the time

dimension record that matches your date. A little date munging, and you can deter-

mine the integer for your desired date, without ever having to ask the database for that

information. When you’re loading millions of rows, this is a helpful little optimization.

 Notice that the time dimension has only a day portion but does not include any

intra-day attributes (such as hour, minute, and so on). Including down to the minute

or second values would make the dimension table much bigger and reduce some of

the performance benefits of having dimension tables with fewer records joined to fact

tables that have large numbers of records. If intra-day analysis is needed, this is com-

monly addressed by adding a separate time of day dimension that’s separate from the

time dimension and that has attributes for the intra-day divisions (hour, minute, and

the like).

 In section 11.1.3, we’ll cover some of the very powerful MDX extensions available

for time dimensions. Once these extensions are configured in Mondrian, common

analytic questions (this year to date versus last year to date at the same point) become

very easy in MDX. Additionally, most ETL products have some sort of time dimension

generator, and there are even websites where you can get fully baked time dimen-

sions (data and database table definitions). PDI includes a time dimension generator

in its sample directory, and Mondrian 4 has added the ability to create time dimen-

sions automatically.

3.2.3 Snowflake design

Using a star schema is considered a best practice, and this design should be used for

Mondrian in almost all cases. But as usual, there are some use cases where it’s appro-

priate to break the rules; you can use one level of normalization on dimensions (an

additional join) for various operational and performance reasons. In this approach,

an additional table and join are introduced, creating a fanning-out shape that resem-

bles a snowflake (hence the name).

 But a word of caution. Although there are sometimes good reasons to use a snow-

flake design with Mondrian, more often the design is used as a normalization crutch

53Additional star schema modeling techniques

for people new to dimensional modeling. Our advice is to try using a star schema first

(even if the snowflake looks or feels better), and to only use a snowflake when you

clearly have a reason for doing so. As we mentioned earlier, joins amongst millions of

records are costly and difficult to optimize, so it’s best to avoid them if possible. See

figures 3.7 and 3.8.

 When is using a snowflake design a good idea? There are typically two use cases

where snowflakes make good sense:

■ To reduce the size of dimension tables by factoring out seldom used but really big

columns—Most product data, such as categories and types, are small 10- to 250-

character fields, but what if there’s a very large (CLOB or LARGETEXT) field

that includes a very long product description? It’s possible that this needs to be

included in Mondrian for some reports but that it’s not a commonly used col-

umn. Keeping it in the same table, for a row-store database, means the database

may be doing a bunch of unnecessary I/O. In short, you might be able to speed

up the most common queries that don’t use that column by factoring out a

handful of columns into a separate table.

■ To more easily manage a Type I type attribute in an otherwise Type II dimension—Consider

the snowflake design in figure 3.8, where we’ve factored out countries from cus-

tomer. It’s likely that many customer attributes will change over time (including

Sales

(amount_sold, quantiy_sold)

Fact table

Products

Customers

Dimension table

Times

Channels

Dimension table

Figure 3.7 Sales fact as a star. All supplier attributes are included as additional columns in the

products dimension. All country information is included in the customers dimension as additional

columns. The database only needs to optimize one join for the relevant information.

Sales

(amount_sold, quantiy_sold)

Products

Supplies

Countries

Customers

Times

Channels

Figure 3.8 Sales fact as a snowflake. The relevant supplier information has been nor-

malized out of products. The database needs to join to the suppliers table from the prod-

ucts table to be able to aggregate and group by supplier attributes.

54 CHAPTER 3 Creating the data mart

which country the customer lives in) and will need to be managed as Type II

dimensions. The attributes of the country, however, such as its name, tend to be

Type I changes when they happen (updates, without any history). Using a snow-

flake design to separate out a table with update instead of change-tracking attri-

butes allows for easy Type I updates in an otherwise Type II dimension.

3.2.4 Degenerate and combination/junk dimensions

There are times when creating a whole separate dimension table, including a foreign

key reference, and then grouping by attribute just doesn’t make sense for performance

reasons. For instance, when the dimension only has a single attribute (such as order

type or channel), it’s overkill to create another join path, a separate table for house-

keeping, and so on for simple attributes. There are also times when you’d like to

include attributes that aren’t really analytically significant, but that are nice for drilling

and for including on some drill-through reports. For example, the original order ID for

an order would be nice to keep around, so that you could include it on a report to find

exceptions or to look up outliers in the original source system. Again, including that as

a standard dimension would be impractical because the number of rows in the original

order ID dimension would grow close to the same millions of records in the fact table.

We’ll cover the common techniques for addressing these challenges: degenerate

dimensions and combination (or junk) dimensions.

 Consider our sales fact example, which includes a few low ordinality items. We

have a sales type attribute that has very low ordinality (two different values), indicating

what type of sale record this is: NEW or RETURN. We also have a channel type (INTERNET

or RETAIL) that is similar. We also want to keep track of an order ID, which will cause a

very large dimension (nearly as large as the fact). (See figure 3.9.)

 For the single attribute dimensions (channel and sales type) it seems overkill to

maintain entire dimensions with only single-attribute, low-ordinality dimensions. We

dim_sales_type

dim_sales_id: INTEGER [PK]

sales_type: VARCHAR(10)

dim_channel

dim_channel_id: INTEGER [PK]

channel_name: VARCHAR(10)

fact_sales

fact_sales_id: INTEGER [PK]

sales_amount: INTEGER

dim_sales_type_id: INTEGER [FK]

dim_channel_id: INTEGER [FK]

dim_orig_order_id: INTEGER [FK]

dim_orig_order

dim_orig_order_id: INTEGER [PK]

original_order_code: VARCHAR(8)

Figure 3.9 Modeled as standard dimensions using surrogate foreign key references and

joins. The sales type dimension includes only two records, as does channel dimension. The

original order dimension includes nearly as many rows as the fact table does because every

new order also needs a new record in the order dimension.

55Additional star schema modeling techniques

can include these attributes as columns

directly in the fact table, eliminating

the separate table and additional join

entirely. This is the ultimate in denor-

malizing, where the attribute is kept

directly with the fact. Mondrian can be

configured so that columns in the fact

table still show as a separate dimension,

but will use the columns directly from

the fact table without doing any addi-

tional joins (figure 3.10).

 We can eliminate the joins and man-

age the attributes for those dimensions directly in the fact table. This only works for

small, low-ordinality columns or very large high-growth attributes that grow with the

fact table.

 What happens when you’ve included a bunch of these low-ordinality, single- attri-

bute dimensions in the fact table? A couple of attributes are usually OK, but when you

have a bunch of longer (10- to 50-VARCHAR) fields, your fact table size will likely be

growing more than you’d like (compared to just using dimension integer surrogate

keys). There’s another technique for taking lots of single-attribute degenerate dimen-

sions, and putting them back into a standard dimension of unrelated attributes. This

type of dimension is referred to as a combination dimension, or commonly as a junk

dimension. It should be noted that the only reason to do this is for performance; from

Mondrian’s perspective, assuming it’s been configured properly, there’s no logical

difference between consolidating multiple degenerate dimensions into a junk

or combination dimension and leaving them as degenerate dimensions in the fact

table (figure 3.11).

 Junk dimensions are created in a unique way: a Cartesian product of all possible

combinations of attributes is created, along with a surrogate key. Then, when you’re

loading the fact table, the loading process looks into the junk dimensions to

grab the record with the correct set of attributes (for example NEW, INTERNET is

record 100), which is guaranteed to be in the dimension because all possible combi-

nations are present.

junk_dim

junk_dim_id: INTEGER [PK]

channel_name: VARCHAR(10)

sales_type: VARCHAR(10)

fact_sales_junk

fact_sales_id: INTEGER [PK]

sales_amount: INTEGER

original_order_code: VARCHAR(8)

junk_dim_id: INTEGER [FK]

Figure 3.11 Multiple unrelated degenerate dimensions (channel, sales type) can be consolidated into

a junk dimension. This provides the performance benefits of a small, single integer in the fact table and

reduces the size of the fact table. Note that the high-ordinality degenerate dimension (original order)

isn’t moved into the junk dimension because to do so doesn't make sense.

fact_sales_deg

fact_sales_id: INTEGER [PK]

sales_type: VARCHAR(10)

sales_amount: INTEGER

channel_name: VARCHAR(10)

original_order_code: VARCHAR(8)

Figure 3.10 Channel, sales type, and original order

included as degenerate dimensions in the fact table.

This makes sense for small, single-attribute dimen-

sions, where it’s beneficial to eliminate manage-

ment for a separate dimension and eliminate

unnecessary joins to very small (or very large in the

case of the original order) dimensions.

56 CHAPTER 3 Creating the data mart

-- All possible combinations of attributes (Channel/Sales Type)
-- are created, along with a surrogate
select * from junk_dim;
+-------------+--------------+------------+
| junk_dim_id | channel_name | sales_type |
+-------------+--------------+------------+
100	INTERNET	NEW
101	INTERNET	RETURN
102	RETAIL	NEW
103	RETAIL	RETURN
+-------------+--------------+------------+

3.3 Summary

In this chapter, we looked at how data should be structured for use by Mondrian in

analysis. You saw how and why data is extracted from operational, normalized data-

bases, enriched, and put into a star schema. We also discussed some of the architec-

tural characteristics of an analysis database. Finally, we took a look at some advanced

concepts in dimensional modeling.

 Now that we’ve covered the basics of the star schema, some of its ins and outs, and

the overall architecture, we’re ready to configure Mondrian on top of the star schema.

The next chapter will show you how to bring together the physical star schema and

the logical analytic structures to create a complete solution. You really should have a

good sense of the basics of star schema design, and most importantly the splitting of

attributes into facts and dimensions, along with the foreign key patterns we outlined

in this chapter, before continuing.

57

Multidimensional modeling:
making analytics data accessible

In chapter 2, you saw how business questions could be described by creating

cubes, dimensions, attributes, and measures, and how a schema contains those

logical elements. Then, in chapter 3, you saw how to design and populate the

data warehouse.

 Mondrian uses the concept of a schema to map from the logical data structure

used for analysis to the physical structure used in the data warehouse. A completed

schema provides cubes that can be used for data analysis. In this chapter, you’ll see

how to build a schema. (It’s a long chapter, because no matter how you slice it, multi-

dimensional modeling is a dense topic. We suggest you read the first section, and

then take a break before you proceed with section 4.2.)

This chapter is recommended for

Business analysts

✓ Data architects

✓ Enterprise architects

Application developers

58 CHAPTER 4 Multidimensional modeling: making analytics data accessible

 This chapter describes the XML grammar of Mondrian schemas and the key XML

elements and attributes. You’ll see in detail not only how to define the logical ele-

ments (cubes, dimensions, attributes, and measures) used in analytics, but also how to

map them onto physical data structures (tables and columns) so that Mondrian knows

how to get the data from the data mart.

 You’ll see how to create a simple cube with a couple of dimensions and measures,

and then you’ll see how that cube can be extended, adding more dimensions, naviga-

tion hierarchies, and calculations. In chapter 5, we’ll cover some more advanced top-

ics in schema design, building on the material in this chapter.

 This chapter is essential if you’re an architect designing a Mondrian schema. It

assumes that you’re familiar with XML, as well as the material covered in the previous

chapters. If you’ll be using prebuilt Mondrian cubes, however, and you’re an analyst

defining reports and dashboards, you can probably skip this chapter and the next one.

 We’ll start with a simple example showing the absolutely essential elements:

Schema, Cube, Dimension, Attribute, and Measure. Later in this chapter, and continu-

ing on in chapter 5, we’ll describe other important schema elements, interspersed

with explanations and examples. We’ll cover almost all XML elements and their

important attributes, but these chapters are not meant to be exhaustive. The online

Mondrian documentation contains the definitive reference to all 80 XML elements in

a Mondrian schema.

 A brief word about how names appear in the text. As we discuss various schema fea-

tures and define example schemas, we shall refer in the text to the objects in those

schemas, and their names appear in code font with the parts of the name enclosed in

brackets, as if you were using the object in an MDX query. For instance, a measure

named “Unit Sales” would appear like this: [Measures].[Unit Sales]. The MDX lan-

guage does not require brackets if the parts of the name contain only letters, but we

use brackets throughout for consistency.

4.1 A simple schema

Section 2.3 described a company building a report to improve its sales process. The

report compared sales to customers with a college education this year to last year. In

order for Mondrian to run that report, you need to define the cube that the report is

based on, and how that cube is mapped onto the data mart. A schema is what provides

those definitions.

 Figure 4.1 shows the elements defined in that schema and an outline of the XML

schema file. Listing 4.1 shows the XML schema in full. Don’t be concerned with under-

standing each of the elements in the schema at this point; rather, focus on the overall

composite of information contained within a typical Mondrian schema.

59A simple schema

<?xml version='1.0'?>
<Schema name='Sales'>

<PhysicalSchema>
<Table name='customer'>
<Key>

<Column name='customer_id'/>
</Key>

</Table>
<Table name='time_by_day'>
<Key>

<Column name='time_id'/>
</Key>

</Table>
<Table name='sales_fact'/>

</PhysicalSchema>

<Cube name='Sales'>
<Dimensions>
<Dimension name='Time' table='time_by_day'

type='TimeDimension' key='Id'>
<Attribute name='Year' keyColumn='the_year'

levelType='TimeYears'/>
<Attribute name='Id' keyColumn='time_id'/>

</Dimension>
<Dimension name='Customer' key='Name'>

<Attribute name='Name' keyColumn='customer_id'
nameColumn='full_name'/>

Listing 4.1 Sales schema

Sales schema

Sales cube

Dimensions

Time

Year

Month

Measures

Unit Sales

Store Sales

Day

Customer

Education

Name

<Schema name= 'Sales' …>

 …

 <Cube name= 'Sales' …>

 …

 <Dimension name= 'Time' …>

 <Attribute name= 'Year' …/>

 <Attribute name= 'Month' …/>

 <Attribute name= 'Day' …/>

 <Dimension>

 <Dimension name= 'Customer' …>

 <Attribute name= 'Education' …/>

 <Attribute name= 'Name' …/>

 <Dimension>

 …

 <Measure name= 'Unit Sales' …/>

 <Measure name= 'Store Sales' …/>

 </Cube>

</Schema>

Figure 4.1 Sales schema mapped to an XML schema outline

Sales schema

Sales cube

Time dimension

Year attributeId
attribute

Customer
dimension

Name
attribute

60 CHAPTER 4 Multidimensional modeling: making analytics data accessible

<Attribute name='Education' keyColumn='education'/>
</Dimension>

</Dimensions>

<MeasureGroups>
<MeasureGroup table='sales_fact'>

<Measures>
<Measure name='Unit sales' column='unit_sales'/>
<Measure name='Store Sales' column='store_sales'/>

</Measures>
<DimensionLinks>

<ForeignKeyLink dimension='Customer'
foreignKeyColumn='customer_id'/>

<ForeignKeyLink dimension='Time'
foreignKeyColumn='time_id'/>

</DimensionLinks>
</MeasureGroup>

</MeasureGroups>
</Cube>

</Schema>

Because this is the first schema in this book, we’ve listed it in its entirety. There are

quite a few XML elements, but it’s not important to understand them all right now. At

first, we’ll only cover the key elements: Schema, Cube, Attribute, Dimension, Measure,

and PhysicalSchema. The following sections will discuss each of these elements.

 The other elements will be described later in the chapter: MeasureGroups, Mea-

sureGroup, Measures, DimensionLinks, and ForeignKeyLink.

4.1.1 Schema element

The Schema XML element is the top-level element of a Mondrian schema. There is

one, and only one, Schema element in a Mondrian schema XML file, and it represents

the container for all the pieces the schema contains. An analyst would first create a

schema and then fill in all the attributes, dimensions, and cubes that together address

the business questions.

<Schema name="Sales"
caption="Sales"
description="Optimizing the Sales process at Two Wheels Cycles"
metamodelVersion="4.0" measuresCaption="Measures"
defaultRole="Associate" missingLink="warning">

Each schema must have a name attribute (although Mondrian doesn’t do anything

important with that name), and we recommend that you also provide a description.

 We also recommend that you specify metamodelVersion="4.0", because it helps

with schema versioning ("4.0" is the current version of Mondrian, and likely the ver-

sion for which you’ll be writing your schema).

 Because Schema is the sole root element in the XML document, it contains all of

the top-level elements that constitute the schema. A schema always includes a Physi-

calSchema element, and it generally includes one or more Cube elements. Other

Education
attribute

Units
measure

Store Sales
measure

61A simple schema

common elements include Dimension (to define public dimensions—dimensions

shared between cubes), and Role for access control.

ORDERING OF XML ELEMENTS In previous versions of Mondrian, the schema
parser was extremely sensitive about the order of child elements. If you got
child elements in the wrong order (for example, a cube after a role, instead
of before as Mondrian was expecting), Mondrian would silently ignore the
cube. This situation has been fixed in Mondrian version 4.0. If you’ve used
previous versions of Mondrian, this is one thing you can stop worrying about!

4.1.2 Cube element

A cube, defined by a Cube XML element, is the context for a report or interactive anal-

ysis session. It represents a collection of events, describing the occurrences of a partic-

ular business process over the lifetime of the data warehouse. The collection may

contain a large number of events—thousands, millions, or even billions—but the

events are not presented individually.

 Cubes tend to be a complete set of measures and attributes for doing an analysis on

the set of events. For instance, if you’re interested in sales by customer attributes, you

might want to look at sales amounts (events or measures) by customer geography (attri-

butes). A cube collects these things into one place, ready for analysis and querying.

 A cube has little configuration itself, but is instead mostly an element that holds

the more important measure groups and dimensions. There is usually, but not always,

a one-to-one relationship between a star schema (a single fact table and dimension

tables outlined in chapter 3) and a cube (measures and dimensions). (For instance,

the analyst in chapter 2 would likely have built a star schema containing a sales fact

table and customer dimension table to store the data for the [Sales] cube and its

[Customer] dimension.)

<Cube name="Sales">
<Dimensions>
...

</Dimensions>
<MeasureGroups>
...

</MeasureGroups>
</Cube>

Recall from chapter 2 that a cube is a collection of measures and attributes. The mea-

sures quantitatively describe events or collections of events, and the attributes repre-

sent the context in which the events occurred. By choosing appropriate measures and

attributes, a business user can focus on the part of the history that answers their ques-

tion. Each combination of attributes and measures is effectively a new report that can

be created in seconds using a point-and-click interface, and there’s an exponential

number of such combinations.

 In the XML syntax, there are intervening XML elements between the cube and its con-

stituent attributes and measures. Attribute elements occur within Dimension

62 CHAPTER 4 Multidimensional modeling: making analytics data accessible

elements, and all dimensions in a cube are within a Dimensions element. Measure

elements occur within a MeasureGroup element, and this is inside a MeasureGroups ele-

ment. Cubes that contain multiple measure groups are a fairly advanced topic that we’ll

revisit later in section 5.1.5); we’ll explain dimensions shortly (in section 4.1.4).

4.1.3 Attribute element

An Attribute XML element describes a data value. If you’re familiar with modeling

relational database schemas, an attribute is the nearest equivalent in the Mondrian

schema to a column. In practice, nearly all of the columns in your dimension tables

(see section 3.1.3) will be configured via attribute elements.

 In the [Sales] cube (see figure 2.10) one of the attributes to be analyzed is the

education of the customer. This will likely be a column (education) in a dimension

table (customers) in the database star schema, and also a configured XML Attribute

element.

<Attribute name="Education" caption="Education level"
description="The education level of this customer"
keyColumn="education"/>

<Attribute name="Name" keyColumn="customer_id" nameColumn="full_name"/>

The preceding example shows the [Name] and [Education] attributes from the [Cus-

tomer] dimension. Every attribute must have a name. The [Education] attribute has,

in addition, caption and description attributes.

NAME, CAPTION, AND DESCRIPTION

Captions are similar to names, and people often confuse the two. The purpose of a

caption is to be displayed on the screen to a business user, whereas the name is

intended to be used in code, particularly in an MDX statement.

 Often the name and caption are the same (and the caption defaults to the name if

a caption is not explicitly specified). But they have different localization behavior: cap-

tions can be localized, but the name is the same in all languages. This makes sense,

when you consider that your business users will expect to see captions on the screen in

their own language, whereas the underlying MDX code needs to be the same regard-

less of the language the client is using.

 For example, here’s an attribute whose caption and description have been local-

ized into French:

<Attribute name="Marital Status" caption="Etat civil"
description="L'état civil de ce client" keyColumn="marital_status"/>

You use its name, [Marital Status], when writing MDX:

SELECT ... ON COLUMNS,
[Customer].[Marital Status] ... ON ROWS

FROM [Sales]

but as figure 4.2 shows, the attribute is labeled in French (“Etat Civil”) when the query

results appear in a user interface.

63A simple schema

Descriptions are quite straightforward. Many user interfaces (such as Pentaho Ana-

lyzer and Saiku) display descriptions as tooltips when you move the mouse over an ele-

ment. Descriptions can help business users find their way around a cube that they’re

unfamiliar with. Like captions, descriptions can be localized.

 Name, caption, and description are not unique to attributes; the other elements

that may appear on business user’s screen also have them, including Schema, Cube,

Measure, and Dimension. They also have a visible attribute, which tells the user

interface to hide the element but doesn’t affect its behavior in MDX queries. To see

which elements have name, caption, description, and visible attributes, consult the

Mondrian online documentation. (Appendix B lists all online resources.) The same

localization rules apply: caption and description can be localized; name can’t be, and

is therefore the same for all locales.

MAPPING ATTRIBUTES ONTO COLUMNS

We said that an attribute is like a column, but because attributes are part of a dimen-

sional model intended for business users, the behavior is richer. Every attribute is

based upon at least one database column. For example, [Education] is a simple attri-

bute that’s mapped, via the keyColumn attribute, onto the education column of the

customers table.

 For each property of an attribute, you can specify the property using an XML attri-

bute, or there’s an equivalent nested XML element. Table 4.1 shows the elements and

attributes available.

Table 4.1 XML elements and attributes that map dimensional attributes onto columns

XML attribute
Equivalent nested

XML element

May be

composite?
Description

keyColumn Key Yes Required. Specifies the column that holds the

key for members of this attribute. The key must

be unique.

nameColumn Name No Optional. Specifies the column that holds the

name of members of this attribute. If not speci-

fied, it defaults to the key (or the last key col-

umn if the key is composite).

Etat civil Country Unit sales Store sales

M

S

Germany 38 3833

France 12 1297

Belgium 5 523

Germany 38 2864

Belgium 5 257

Figure 4.2 Report showing localized caption

64 CHAPTER 4 Multidimensional modeling: making analytics data accessible

Table 4.2 shows example attributes, illustrating cases where it makes sense for the

attribute’s name, caption, and ordinal to be different from the attribute’s key.

orderByColumn OrderBy Yes Optional. Specifies sort order. If not specified,

attribute is sorted by key.

captionColumn Caption Yes Optional. Defaults to name, which in turn

defaults to last column of key.

Table 4.2 Example attributes

Dimension Attribute Key Name Caption Ordinal Comments

Time Year 2012 2012 2012 2012 Same value for all prop-

erties.

Time Month [2012, 1] 1 January [2012, 1] Composite key ensures

that January 2012 is

distinct from January

2011. Name is distinct

from caption; thus the

unique name is

[Time].[2012].[1],

but “January” is dis-

played on the screen (in

applications running in

the English locale).

Customer Name 13874 Bob Arctor Bob Arctor [Arctor, Bob] Numeric key ensures

uniqueness if there hap-

pen to be two Bob Arc-

tors. Caption is same as

name, because attribute

is not localized. (It is

unusual for attributes

with large numbers of

distinct values to be

localized.) Composite

ordinal sorts customers

by their last name.

Customer State [USA, CA] CA CA [USA, CA] Key is composite,

because the same state

name may occur in dif-

ferent nations.

Table 4.1 XML elements and attributes that map dimensional attributes onto columns (continued)

XML attribute
Equivalent nested

XML element

May be

composite?
Description

65A simple schema

4.1.4 Dimension element

A Dimension is a collection of logically related attributes. If, as we said earlier, an

attribute is the dimensional equivalent of a column, then a dimension is the equiva-

lent of a table. (And, in fact, many dimensions map directly to a dimension table in

the star schema.)

 What do we mean by logically related? [Gender], [Zipcode], and [State Popula-

tion] belong in the [Customer] dimension because they are all properties associated

with the customer who made a particular purchase. [Day of Week] belongs in the

[Time] dimension, not the [Customer] dimension, because it does not depend on the

customer: a customer might have one purchase on a Monday in their history and

another on a Thursday.

 There’s also a more down-to-earth reason to group attributes into dimensions. If a

cube contains a large number of attributes, dimensions are a convenient way of group-

ing them on the screen, in the same way that folders make large numbers of files eas-

ier to manage.

4.1.5 Measure element

The Measure XML element defines a measure. A measure is a value, almost always

numeric, that appears in a cell. If the cell represents many rows in the fact table, then

the cell’s value is the measure aggregated (usually summed) over all of those rows.

Measures are the aggregated values from columns in the fact tables described in chap-

ter 3; they represent the what you’re trying to measure.

 Consider the cell showing the [Unit Sales] measure in the second row of figure 4.2,

with a value of 12. This means that 12 units were sold to customers whose country was

France and whose marital status was M. There happen to have been three sales transac-

tions, therefore three rows in the fact table, with those criteria, and their values in the

unit_sales column are 3, 1, and 8. The cell value, 12, is the sum of these values.

 Strictly speaking, the XML Measure element defines a stored measure. Mondrian

also supports calculated measures, which are calculated from other measures using an

MDX formula. Though stored and calculated measures are defined and evaluated dif-

ferently, they appear the same to a business user running a report. Calculated mea-

sures, and more generally calculated members, are described in section 5.4.2.

 Here are some measures:

<Measure name='Unit Sales' aggregator='sum' column='unit_sales' />
<Measure name='Store Sales' aggregator='sum' column='store_sales' />
<Measure name='Sales Count' aggregator='count' />

Each measure has a name and an aggregator, describing how to roll up values. Table 4.3

shows the available aggregators. A column attribute describes which column’s values are

to be aggregated; it’s required for all aggregators except count. A count measure with-

out a column, such as the [Sales Count] measure in this example, counts rows.

66 CHAPTER 4 Multidimensional modeling: making analytics data accessible

AGGREGATE FUNCTIONS IN MONDRIAN AND SQL If you’re familiar with aggregate
functions in SQL, then Mondrian’s aggregate functions will look familiar.
Each aggregator maps to a SQL aggregate function in an obvious way. For
instance, the [Unit Sales] measure becomes SUM(unit_sales) in generated
SQL, and [Sales Count] becomes COUNT(*).

Like other elements that appear in a report, a measure definition also includes cap-

tion, description, and visible attributes.

4.1.6 PhysicalSchema element

The PhysicalSchema XML element describes which tables and columns in the data

mart provide the data for the dimensions and cubes in the schema. The physical

schema is not something that the business user is aware of; the business user interacts

only with the logical model (cubes and dimensions).

 The physical schema is a close representation of the physical star schema, with the

fact table and dimension tables, their columns, data types, and relationships. You’d

expect most of the columns, including the surrogate IDs for Slowly Changing Dimen-

sions (covered in section 3.2.1) and foreign keys in your fact table, to be defined in

your physical schema.

 The purpose of the physical schema is to provide a foundation for building the

logical model. As figure 4.3 shows, the physical schema is a bridge between the logical

model and the actual database. It presents a simple model of tables, columns, and

links between tables, where the reality may be more complex. For example, a “table”

in the physical schema may really be a view or a SQL query. Two tables with different

names might be uses of the same database table, or may inhabit different schemas or

different database instances. A column with data type “integer” might actually have a

data type of NUMBER(10, 0) when stored in Oracle.

 The physical schema also allows the structure of the data mart to change over time.

For instance, suppose that a table you need as a fact or dimension table doesn’t exist

in the schema but can be computed using a SQL query. You can create a placeholder

Table 4.3 Aggregators

Aggregator Comments

sum Sums numeric values. The most common aggregator.

count Counts the number of rows for which a column is not null; if column isn’t speci-

fied, counts the number of rows.

distinct-count Computes the number of distinct values of the column. Nulls are not counted.

max Finds the maximum value of a column.

min Finds the minimum value of a column.

avg Computes the average value of a numeric column.

67A simple schema

“table” in the physical schema and run queries against it. Tomorrow, when you have

fixed the ETL process to create and populate a real table, you can change the physical

schema to use the real table; you won’t have to change the logical schema, because the

physical schema has insulated rest of the model from changes to table structure.

 The physical schema shown in figure 4.4 and in listing 4.2 declares tables cus-

tomer, time_by_day, and sales_fact. It declares primary keys for customer and

time_by_day, which are needed because these tables will contain dimensions;

sales_fact is a fact table, so it doesn’t require a primary key. No columns are

defined, so Mondrian reads each table’s column definitions from JDBC.

User

interface

Logical schema

(cubes and

dimensions)

Physical schema

(table usages

connected by links)

Mapping

Data warehouse
SQL database

Figure 4.3 Logical and physical schemas

product

product_id

product_class

product_class_id

store

store_id

customer

customer_id

time_by_day

time_id

sales_fact_1997

Figure 4.4 Physical schema of the Sales data mart

68 CHAPTER 4 Multidimensional modeling: making analytics data accessible

<PhysicalSchema>
<Table name="customer">
<Key>

<Column name="customer_id"/>
</Key>

</Table>
<Table name="time_by_day">
<Key>

<Column name="time_id"/>
</Key>

</Table>
<Table name="sales_fact"/>

</PhysicalSchema>

Inside each table, you can list the columns explicitly. As well as serving as a check that

the columns your schema needs still exist in the database, this allows you to specify a

precise type. You can also define calculated columns.

 Listing 4.3 includes three columns customer_id, fname, and lname, and it defines

a calculated column, full_name, by concatenating first name and last name. Note that

when the fname and lname columns are used in the expression for full_name, we use

the <Column> element, because we’re using, not defining, a column.

<Table name='customer' ... />
<Key ... />
<ColumnDefs>
<ColumnDef name='customer_id' type='Integer'/>

<ColumnDef name='fname' type='String'/>
<ColumnDef name='lname' type='String'/>
<CalculatedColumnDef name='full_name' type='String'>

<ExpressionView>
<SQL>

<Column name='fname'/> ||
' ' ||
<Column name='lname'/>

</SQL>
</ExpressionView>

</CalculatedColumnDef>
</ColumnDefs>

</Table>

When Mondrian generates a SQL query to retrieve data from the database, it’ll gener-

ate an expression based on the formula within the SQL element, replacing the Column

elements with references to other columns.

 One problem with SQL is that database dialects tend to differ significantly. The

schema we just wrote will work on Oracle and PostgreSQL, which use the conventional

|| operator for concatenating strings, but it will fail on MySQL, which uses the CONCAT()

Listing 4.2 Physical schema

Listing 4.3 Physical schema with columns

customer table has
key customer_id

time_by_day table
has key time_id

sales_fact table has
no primary key

customer table

customer_id column
fname

column

lname
column

full_name
column is

calculated by
concatenating

fname and
lname in SQL

69A simple schema

function. Is it possible to write one Mondrian schema that will work against multiple

SQL databases?

 Yes! The ExpressionView element allows multiple SQL child elements, with a dia-

lect attribute to distinguish them. When you add support for MySQL, a fragment of

the previous listing becomes what’s shown in listing 4.4.

<CalculatedColumnDef name='full_name' type='String'>
<ExpressionView>

<SQL dialect='mysql'>
CONCAT(<Column name='fname'/>,

' ',
<Column name='lname'/>)

</SQL>
<SQL dialect='generic'>

<Column name='fname'/> ||
' ' ||
<Column name='lname'/>

</SQL>
</ExpressionView>

</CalculatedColumnDef>

Each table in a physical schema has a unique alias, and the alias defaults to the table

name. Usually you don’t need to assign a table an alias, but the following listing shows

some exceptions.

<Table schema='sales'
name='customer'/>

<Table schema='marketing'
name='customer'
alias='marketing_customer'/>

<Table schema='sales'
name='customer'
alias='customer2'/>

<Query alias='canadian_customer'>
<SQL>

SELECT *
FROM sales.customer
WHERE country = 'Canada'

</SQL>
</Query>

Why would you want to create more than one use of the same table? Usually to avoid

ambiguities in join paths. For example, consider a movie database where a film has

both a language and an original language; the language is usually the same as the

original language, but it will be different if the film is dubbed. The Film dimension

has one use of the film table and two uses of the language table, via different foreign

keys. When defining the physical schema, you’d create a link between the film table

and each use of the language table, as shown in listing 4.6.

Listing 4.4 Calculated column with expressions for multiple SQL dialects

Listing 4.5 Table alias examples

SQL expression to use
when running against
MySQL database

Expression to use for
all other SQL dialects

Alias is “customer”,
from table name

Explicit alias, to
avoid clash with
sales.customer

Second use of
sales.customer table

Every query
needs an

explicit alias,
because there

is no default

70 CHAPTER 4 Multidimensional modeling: making analytics data accessible

<Table name='film' ... />
<Table name='language' ... />

<Table name='language'
alias='original_language' ... />

<Link source='language' target='film'>
<ForeignKey>

<Column name='language_id'/>
</ForeignKey>

</Link>
<Link source='original_language' target='film'>

<ForeignKey>
<Column name='original_language_id'/>

</ForeignKey>
</Link>

When you base an attribute on a column in either the language or original

_language table in the physical schema, it’s clear which join path is intended.

PUTTING IT TOGETHER

PhysicalSchema is the last of the elements you need to build a simple multidimen-

sional schema. It defines the tables and relationships between them. Upon these, you

can build a cube, which contains dimensions, attributes, and measures. A cube is the

unifying concept that allows business users to analyze their own data.

 In this section, you’ve seen how to build a simple cube. Next, we’ll look at the over-

all structure of a schema file, and at some of the more advanced concepts it supports.

4.2 Anatomy of a schema

Now you’ve seen an example of a schema file and some background on its structure

and purpose. Why are schema files defined in XML? What tools can be used to

author a schema? What are the valid contents of a schema? That’s what we’ll look at

in this section.

4.2.1 XML schema files

Why does Mondrian use XML as the language to define schemas? By design, Mon-

drian gives people a choice about whether they’ll author schemas with a tool (such as

Schema Workbench) or with a text editor. XML is a language that can be written and

read by both humans and computers, and the particular dialect of XML used is

designed to be concise to type and forgiving of errors.

XML also improves interoperability between tools. For example, the Pentaho Aggre-

gate Designer generates fragments of XML and inserts them into a schema. And, you

can achieve some powerful effects by writing a dynamic schema processor, which is

invoked as a connection is being created, reads the source XML schema, and transforms

it to another piece of XML. Dynamic schema processors are used for applications such

Listing 4.6 Multiple uses of the same table

Alias is implicitly
“language”

language table
used again, as

original_language

Link to film’s (maybe
dubbed) language

Link to film’s
original
language

71Anatomy of a schema

as localization and access control in a multi-tenant environment. They’re described in

section 8.2.

 Mondrian schemas can be processed with standard text-processing tools such as

grep and diff. Authoring tools are encouraged not to make wholesale changes to the

XML, because this makes it difficult to store schemas in a version-control system, such

as Subversion or git.

XML elements typically have quite a few attributes and subelements, but we won’t

describe all of them here. This chapter aims to describe the general purpose of each

XML element, but the definitive description of each element is in Mondrian’s online

schema reference, as described in appendix B. We sometimes describe attributes sepa-

rate from their parent element, where it makes logical sense. For example, we discuss

the Schema element’s defaultRole attribute when we discuss roles and access control

in chapter 6.

4.2.2 Structure of a schema

Figure 4.5 shows the elements allowed in a Mondrian schema and their hierarchical

structure.

 As you’ve seen, Schema is always the root element. In the simple schema, its chil-

dren were a PhysicalSchema and a Cube; children can also include more Cube ele-

ments and also Dimension, Role, NamedSet, UserDefinedFunction, Parameter, and

Annotations elements.

 Some elements can occur in more than one context. For instance, Dimension may

occur within a cube (when defining a private dimension), or it can be a child of a

schema (when defining a shared dimension, as you’ll see in section 5.1.2, in the next

chapter).

 Some elements exist to hold a collection of child elements of the same type. These

are called holder elements. A holder element doesn’t have attributes, and its name is the

plural of the name of the element it contains. For example, the Dimensions element

contains a list of Dimension elements. Other examples include Columns, Dimensions,

Hierarchies, and Attributes.

 Some holder elements’ children have types that are similar but not identical. For

example, DimensionLinks has children ForeignKeyLink, FactLink, ReferenceLink,

and NoLink. These elements have a similar purpose—to create a link between a

dimension and a measure group—and several attributes in common.

4.2.3 Schema versioning and upgrading

We recommended earlier that you include the metamodelVersion="4.0" attribute in

your Schema element. This is necessary because Mondrian’s schema language changes

over time. Each Mondrian release introduces new concepts, and these are manifested

as new XML elements and attributes. The version number allows the Mondrian engine

to decide whether to run the schema as is, or to try to upgrade automatically.

72 CHAPTER 4 Multidimensional modeling: making analytics data accessible

Schema

PhysicalSchema

X… Element may occur 0 or more times
X? Element may occur 0 or 1 time
X Element occurs once

All elements may occur any order within
their parent.

Annotations may occur within any element.

Name, OrderBy, and Caption have the

same structure as Key.

Table…

Link…

Dimension…

Cube…

Dimensions

Dimension…

Attributes

Attribute…

Key?

Column…

Name?

OrderBy?

Caption?

Closure?

MemberFormatter

Property…

PropertyFormatter?

Hierarchies?

Hierarchy…

Level…

MeasureGroups

MeasureGroup…

Measures

Measure…

MeasureRef…

DimensionLinks

ForeignKeyLink…

FactLink…

ReferenceLink…

CopyLink…

NoLink…

CalculatedMembers?

CalculatedMember…

NamedSets?

NamedSet…

Role…

UserDefinedFunction…

NamedSet…

Annotations

Annotation…

Figure 4.5 Hierarchical structure of a Mondrian schema

73Dimensions, hierarchies, and levels

The version number is particularly important in the version 4.0 release because there

was a major change in the schema metamodel between Mondrian versions 3.x and

4.0. The Mondrian 4.0 engine is able to upgrade most 3.x schemas automatically. For

example, Mondrian 3.x virtual cubes became obsolete in Mondrian 4.0, and Mon-

drian automatically converts each VirtualCube element to a cube that has multiple

MeasureGroup elements.

 The metamodelVersion attribute was only introduced in version 3.4.2, and using it

is strongly recommended from version 4.0 onward. If the attribute is missing, Mon-

drian will do its best to guess the intended target version. (If there’s a Physi-

calSchema element, Mondrian assumes that the schema was intended for version 4.0

but the author forgot the version attribute; otherwise Mondrian assumes that the

schema is in 3.x format.)

 The metamodelVersion attribute will allow future versions of Mondrian to upgrade

schemas, and will also allow Mondrian to detect a schema that is too recent. For exam-

ple, if there are significant changes to the schema in Mondrian 5.0, a schema written

for that engine will be stamped with metamodelVersion="5.0" and the Mondrian 4.0

engine will refuse to run it.

 Now you’ve seen a simple schema and we’ve covered the overall structure of a

schema file. For the remainder of the chapter, we’ll look at the elements that allow

you to slice and dice data: dimensions and attributes, hierarchies and levels.

4.3 Dimensions, hierarchies, and levels

Multidimensional analysis is a top-down technique. Rather than looking at individual

rows, an analyst often starts off by looking at a single row that summarizes the entire

dataset, and then zooming in on the data of interest. You saw already how attributes

allow you to subdivide the dataset into groups, or to winnow the data into a smaller

group. Now we’ll look at how organizing attributes into hierarchies and levels allows a

business user to navigate more intuitively and efficiently.

 Each analyst knows that their business users naturally arrange data into these hier-

archies; a year is composed of four quarters, and quarters are composed of three

months. And the users want to examine their measures up and down different levels

of aggregations. This section will help make your schema reflect the reality of these

relationships that your users already know and want.

 Then we’ll look more closely at the most familiar dimension of them all, the time

dimension. You’ll see that there are some deep unifying patterns within the dimen-

sional model, that measures are members of their own special dimension, and that

every attribute has its own hierarchy, whether or not it is organized into a multi-

level hierarchy.

4.3.1 Hierarchies and levels

You’ve seen how you can use attributes to qualify the data shown in a report, and how

attributes are organized into dimensions. The attributes of a dimension can always be

74 CHAPTER 4 Multidimensional modeling: making analytics data accessible

used independently, but some attributes are so closely related that most users will want

to use them together. To do this, you can define a hierarchy.

 Listing 4.7 builds a hierarchy called [Customers] from the attributes [Country],

[State], and [City]. These attributes form the three levels of the hierarchy.

<Dimension name='Customer'>
<Attributes>
<Attribute name='Country' ... />
<Attribute name='State' .../>
<Attribute name='City' .../>

</Attributes>
<Hierarchies>
<Hierarchy name='Customers'>

<Level attribute='Country'/>
<Level attribute='State'/>
<Level attribute='City'/>

</Hierarchy>
</Hierarchies>

</Dimension>

Figure 4.6 shows some of the members of the hierarchy.

 Hierarchies allow for a better experience in

the user interface. For example, the members

of a hierarchy can be displayed in a single col-

umn, rather than with one column for each

level; each member is preceded by a “+” or “-”

icon, allowing it to be expanded or collapsed.

Several navigation actions are possible if a mem-

ber belongs to a multilevel hierarchy. Double-

clicking on the [California] member might

drill down, so that the axis now consists of just

the cities in California. Another action sup-

ported by many user interfaces is drilling up:

[California] would be replaced by the nations

[Canada], [Mexico], and [USA].

 That said, sometimes a hierarchy is too

restrictive. For a particular analysis, the business

user might wish to show only certain levels of

the hierarchy, or to put one level on the col-

umns axis and another on the rows. The best practice is to design a schema with just

the attributes at first; then create hierarchies to optimize common navigation paths

between attributes, but leave the attributes visible so that business users can work with

the raw attributes if they prefer.

 The attribute of each level of a hierarchy must have a strict one-to-many relation-

ship with the attribute of the next level. In the [Customers] hierarchy, each state

Listing 4.7 Customers hierarchy

All Customers

Canada

British Columbia

Mexico

Ontario

Quebec

+

USA–

–

–

+

+

+

Sacramento

San Francisco

Oregon

Washington

+

+

+

+

California–

Los Angeles+

Figure 4.6 Members of the Customers hi-

erarchy

75Dimensions, hierarchies, and levels

belongs to only one country, and each city belongs to only one state. The net effect is

that each level down has more members than the last.

 If your attributes don’t have this structure, you probably shouldn’t be creating a

hierarchy on them. Consider, for example, the [Month] and [Week] attributes of a

[Time] dimension, as shown in table 4.4.

Week 5 of 2012 straddles both January and February of 2012. The relationship

between [Month] and [Week] is therefore many-to-many, not one-to-many as required

for a hierarchy. The member for week 5 of 2012 does not have a well-defined parent,

so you can’t define a hierarchy where [Month] is the parent level of [Week].

KEEPING WEEKS FROM CROSSING YEAR BOUNDARIES Time dimensions often
have two time hierarchies defined: Year-Month-Day and Year-Week-Day. To
prevent weeks from crossing year boundaries, years often start with a short-
ened week 1 and end with a shortened week 53.

But hold on! Both January and February contain a member whose [Day] value is 1.

Surely this breaks the rule that a member can have only one parent. No, because Janu-

ary 1, 2012, and February 1, 2012, are different members. They may both have the

name [1], but their keys are different (Julian dates 2455927 and 2455958, respec-

tively). The short-form name is more convenient to display, and it’s unique provided

that the member is shown in the context of its parent month. (The concise name is, in

fact, another good reason to use a hierarchy.)

 Note what has happened here. Organizing attributes into a hierarchy doesn’t

affect the number of instances of that attribute. The [Day] attribute has 365 (or 366)

distinct values for each year covered by the [Time] dimension, and the resulting

[Day] level has the same number.

Table 4.4 Month and Week attribute values

Year Month Week Day of week Day

2012 January 4 Saturday 28

2012 January 5 Sunday 29

2012 January 5 Monday 30

2012 January 5 Tuesday 31

2012 February 5 Wednesday 1

2012 February 5 Thursday 2

2012 February 5 Friday 3

2012 February 5 Saturday 4

2012 February 6 Sunday 5

76 CHAPTER 4 Multidimensional modeling: making analytics data accessible

 So, when defining an attribute, you need to define a key that gives the attribute

enough distinct values. The attributes of the [Time] dimension show the various

approaches:

<Attribute name='Year' keyColumn='year'/>
<Attribute name='Month'>

<Key>
<Column name='year'/>
<Column name='month_of_year'/>

</Key>
</Attribute>
<Attribute name='Week'>

<Key>
<Column name='year'/>
<Column name='week_of_year'/>

</Key>
</Attribute>
<Attribute name='Day' keyColumn='date_id'

nameColumn='day_of_month'/>

SCHEMA SHORTHANDS

The previous example used them, so now is a good time to discuss the topic of schema

shorthands. XML can be quite a verbose language, which is fine if a machine is gener-

ating the XML (in order to save the state of a graphical schema design tool, for

instance), but it’s not as good if you’re writing the XML by hand in a text editor. Mon-

drian allows common constructs to be expressed more concisely.

 In the previous example, the [Year] attribute could have been written as follows:

<Attribute name='Year'>
<Key>
<Column name='year'/>

</Key>
<Name>
<Column name='year'/>

</Name>
</Attribute>

But we abbreviated that to keyColumn='year' because the key has just one column

and the name is the same as the key.

 The [Month] attribute in the previous example is equivalent to the following:

<Attribute name='Month'>
<Key>
<Column name='year'/>
<Column name='month_of_year'/>

</Key>
<Name>
<Column name='month_name'/>

</Name>
</Attribute>

That’s because the name of a composite key is by default the last component of that

key (the month_of_year column in this case).

77Dimensions, hierarchies, and levels

 There are other shorthands. If you’re writing XML by hand, learn the available

shorthands and save yourself some typing! The full set of schema shorthands is in the

online Mondrian documentation.

DISCONNECTED ATTRIBUTES

We just described how to ensure that the [Month] attribute has 12 values per year (120

values if your time dimension contains 10 years), but what if you wanted to compare

sales that happened from any January to any December? You’d want a version of the

month attribute that has 12 values; January would contain sales that happened in any

January, and so forth.

 In this case, you’d define an attribute for which the year column is not part of the

key:

<Attribute name='Month of Year' keyColumn='month_of_year'
nameColumn='month_name'/>

There is no formal relationship between this [Month of Year] and the [Month] attri-

bute defined previously, but because the attributes are grouped into the [Time]

dimension and are similarly named, your users will figure it out.

4.3.2 Time dimension

Cubes almost invariably have a time dimension. In section 3.2.2, you saw why it was a

good idea to model time dimensions as Type I dimensions: a time dimension table con-

taining one row for each day in the dataset, a surrogate key (usually an integer)

containing the day ID, and a foreign key column in the fact table referencing that key.

One of the advantages of that approach is that the time dimension is modeled much

like any other dimension: there’s a collection of attributes that can be used individually

or organized into hierarchies.

MDX contains a number of operators specific to the time dimension (see table 4.5).

For example, the YTD (year-to-date) function generates a range of members between the

start of the year and the current time member; summing over these members yields a

running total:

WITH MEMBER [Measures].[Unit Sales to Date] AS
Aggregate(YTD(), [Measures].[Unit Sales])

SELECT {[Measures].[Unit Sales],
[Measures].[Unit Sales to Date]} ON COLUMNS,

[Time].[1997].Children ON ROWS
FROM [Sales];

| | Unit Sales | Unit Sales to Date |
+------+----+------------+--------------------+
1997	Q1	66,291	66,291
	Q2	62,610	128,901
	Q3	65,848	194,749
	Q4	72,024	266,773

78 CHAPTER 4 Multidimensional modeling: making analytics data accessible

To enable these operators, you need to tell Mondrian which attributes represent

which kind of time period using Dimension’s type attribute and Attribute’s level-

Type attribute. Listing 4.8 shows how these attributes are used.

<Dimension name='Time' table='time_by_day' key='Time Id'
type='TimeDimension'>

<Attributes>
<Attribute name='Year' keyColumn='the_year'

levelType='TimeYears'/>
<Attribute name='Quarter' levelType='TimeQuarters'>

<Key>
<Column name='the_year'/>
<Column name='quarter'/>

</Key>
</Attribute>
...

TIME DIMENSION TABLE GENERATOR

The most common way to generate a time dimension table is through an ETL tool.

Pentaho Data Integration, for instance, includes a Time Dimension generator in its

examples directory that can be used piecemeal or can be enhanced to build time

dimension tables. But sometimes a tool like this isn’t available, such as when you’re

running Mondrian against an operational schema. Mondrian provides a neat way to

generate and populate a time dimension the first time you need it.

 Recall how you declare a regular time dimension table:

<PhysicalSchema>
<Table name='time_by_day'/>
<!-- Other tables... -->

</PhysicalSchema>

Mondrian sees the table name, time_by_day, checks that it exists, and finds the col-

umn definitions from the JDBC catalog. The table can then be used in various dimen-

sions in the schema. An auto-generated time dimension is similar:

<PhysicalSchema>
<AutoGeneratedDateTable name='time_by_day_generated'

startDate='2012-01-01' endDate='2014-01-31'/>
<!-- Other tables... -->

</PhysicalSchema>

Table 4.5 MDX time operators

Function Description

YTD() or YTD(member) Year to date

QTD() or QTD(member) Quarter to date

MTD() or MTD(member) Month to date

WTD() or WTD(member) Week to date

Listing 4.8 Labeling a time dimension and its attributes

Time dimension

Year level

Month level

79Dimensions, hierarchies, and levels

The first time Mondrian reads the schema, it notices that the table isn’t present in the

schema, and it creates and populates the table. Here’s the DDL:

CREATE TABLE `time_by_day_generated` (
`time_id` Integer NOT NULL PRIMARY KEY,
`yymmdd` Integer NOT NULL,
`yyyymmdd` Integer NOT NULL,
`the_date` Date NOT NULL,
`the_day` VARCHAR(20) NOT NULL,
`the_month` VARCHAR(20) NOT NULL,
`the_year` Integer NOT NULL,
`day_of_month` Integer NOT NULL,
`week_of_year` Integer NOT NULL,
`month_of_year` Integer NOT NULL,
`quarter` VARCHAR(20) NOT NULL);

The table contains one column for each time domain (shown in table 4.6). Table 4.7

shows the first few rows generated.

Table 4.6 Time domains recognized by <AutoGeneratedDateTable>

Role Default column name
Default

data type
Example Description

JULIAN time_id Integer 2454115 Julian day number (0 =

January 1, 4713 BC). An

additional attribute,

epoch, if specified,

changes the date at

which the value is 0.

YYMMDD yymmdd Integer 120219 Decimal date with two-

digit year.

YYYYMMDD yyyymmdd Integer 20120219 Decimal date with four-

digit year.

DATE the_date Date 2012-12-31 Date literal.

DAY_OF_WEEK day_of_week Integer 2 Ordinal of the day of the

week: a value from 1 to

7. The first day of the

week varies by locale. In

the U.S. it’s Sunday; in

France it’s Monday.

DAY_OF_WEEK_NAME the_day String Friday Name of day of week.

80 CHAPTER 4 Multidimensional modeling: making analytics data accessible

Suppose you wish to choose specific column names, or to have more control over how

values are generated. You can do that by including a <ColumnDefs> element within the

DAY_OF_WEEK_IN_MONTH day_of_week_in_month Integer 1 Ordinal number of the

day of the week within

the current month. For

example, the third Friday

of the month will have

the value 3. Unlike

DAY_OF_WEEK, the

value is the same in all

locales. Days 1 through

7 of a month have the

value 1, days 8 through

14 are 2, and so forth.

MONTH_NAME the_month String December Name of month.

YEAR the_year Integer 2012 Year.

DAY_OF_MONTH day_of_month Integer 31 Day ordinal within

month.

WEEK_OF_YEAR week_of_year Integer 53 Week ordinal within year.

MONTH month_of_year Integer 12 Month ordinal within

year.

QUARTER quarter String Q4 Name of quarter.

Table 4.7 Contents of time_by_day_generated table

JULIAN YYMMDD YYYYMMDD DATE
DAY_OF

_WEEK

DAY_OF_WEEK

_NAME

DAY_OF_WEEK

_IN_MONTH

2455928 120101 20120101 2012-01-01 1 Sunday 1

2455929 120102 20120102 2012-01-02 2 Monday 1

2455930 120103 20120103 2012-01-03 3 Tuesday 1

MONTH

_NAME
YEAR

DAY_OF

_MONTH

WEEK_OF

_YEAR
MONTH QUARTER

January 2012 1 1 1 Q1

January 2012 2 1 1 Q1

January 2012 3 1 1 Q1

Table 4.6 Time domains recognized by <AutoGeneratedDateTable> (continued)

Role Default column name
Default

data type
Example Description

81Dimensions, hierarchies, and levels

table, and <ColumnDef> elements within that—just like a regular <Table> element.

Here’s an example:

<PhysicalSchema>
<AutoGeneratedDateTable name='time_by_day_generated'

startDate='2008-01-01 endDate='2020-01-31'>
<ColumnDefs>

<ColumnDef name='time_id'>
<TimeDomain role='JULIAN' epoch='1996-01-01'/>

</ColumnDef>
<ColumnDef name='my_year'>

<TimeDomain role='YEAR'/>
</ColumnDef>
<ColumnDef name='my_month'>

<TimeDomain role='MONTH'/>
</ColumnDef>
<ColumnDef name='quarter'/>
<ColumnDef name='month_of_year'/>
<ColumnDef name='week_of_year'/>
<ColumnDef name='day_of_month'/>
<ColumnDef name='the_month'/>
<ColumnDef name='the_date'/>

</ColumnDefs>
<Key>

<Column name='time_id'/>
</Key>

</AutoGeneratedDateTable>
<!-- Other tables... -->

</PhysicalSchema>

The first three columns have nested <TimeDomain> elements that tell the generator

how to populate them. The other columns have the standard column name for a par-

ticular time domain, so the <TimeDomain> element can be omitted. For instance,

<ColumnDef name='month_of_year'/>

is shorthand for

<ColumnDef name='month_of_year' type='int'>
<TimeDomain role="month"/>

</ColumnDef>

The nested <Key> element makes that column valid as the target of a link (from a for-

eign key in the fact table, for instance), and it also declares the column as a primary

key in the CREATE TABLE statement. This has the pleasant side effect, on all databases I

know of, of creating an index. If you need other indexes on the generated table, you

can create them manually.

4.3.3 Attribute hierarchies

Earlier we suggested that you should build dimensions and attributes first, and defer

building hierarchies. This advice is valid, but it oversimplifies what’s happening.

82 CHAPTER 4 Multidimensional modeling: making analytics data accessible

Actually, the MDX language can’t see attributes at all. It can only see dimensions,

hierarchies, and levels. So, given the following schema,

<Dimension name='Customers' ...>
<Attributes>
<Attribute name='Gender' .../>

</Attributes>
</Dimension>

how can this query possibly work:

SELECT [Customers].[Gender].Members ON ROWS FROM [Sales]

The answer is that Mondrian implicitly creates attribute hierarchies.

 An attribute hierarchy is a hierarchy that’s implicitly created for an attribute. It has

the same name as the attribute, a single level, and optionally an all member. The

effect is the same as if you had added the following code to the definition of the [Cus-

tomer] dimension:

<Hierarchy name='Gender'>
<Level attribute='Gender'/>

</Hierarchy>

As a result, [Customer].[Gender] is actually referring to the attribute hierarchy. The

query yields three members:

SELECT [Measures].[Unit Sales] ON COLUMNS,
[Customer].[Gender].Members ON ROWS

FROM [Sales];

| Gender | Unit Sales |
+------------+------------+
All Gender	266,273
F	131,558
M	135,215

[Customer].[Gender].[Gender] refers to the main level of the attribute hierarchy. It

yields two members (omitting the All Gender member, which is in the [(All)] level):

SELECT [Measures].[Unit Sales] ON COLUMNS,
[Customer].[Gender].[Gender].Members ON ROWS

FROM [Sales];

| Gender | Unit Sales |
+------------+------------+
| F | 131,558 |
| M | 135,215 |

An attribute hierarchy is created by default for each attribute, but you can disable it

using the hasHierarchy attribute:

<Attribute name='Marital Status' hasHierarchy='false'/>

Such an attribute would only be useful if you explicitly include it in a hierarchy.

83Dimensions, hierarchies, and levels

 Mondrian’s MDX validator allows you to omit the name of the hierarchy from an

MDX expression if the dimension includes only one hierarchy. Then you could write

[Customer].Members as shorthand for [Customer].[Customer].Members. But the

hierarchy list includes attribute hierarchies; you would have to set hasHierar-

chy='false' for each attribute. In practice, the rule is most useful in schemas that

have been automatically upgraded from version 3 format.

4.3.4 The measures dimension

We’ll end this introduction to the structure of a schema with a word about the idiosyn-

cratic measures dimension. The fact that measures belong to a dimension—the same

kind of structure that years, months, customers, and products belong to—is one of the

characteristic features of the dimensional model. (Contrast that with the relational

model, where every value has precisely two coordinates, a row and a column, and rows

and columns behave very differently.) In the dimensional model, a cell can have a

large number of coordinates (one for each hierarchy in the cube, in fact), and every

coordinate is a member of some hierarchy. And because every cube has a measures

dimension, one of those coordinates is always a measure.

 The [Measures] dimension is implicit. Every cube has one, and it’s illegal to even

try to declare the measures dimension using a <Dimension> element. The [Mea-

sures]dimension has a single hierarchy, called [Measures], which has a single level,

also called [Measures].

CHANGING THE CAPTION OF THE MEASURES DIMENSION If you wish to localize,
since the measures dimension has is no Dimension element, you can change
the caption of the measures dimension using the measuresCaption attribute
of the Schema element.

When you define a measure using a <Measure> element (inside a measure group), it

becomes a top-level member. For example, the measure defined in figure 4.1 with the

name “Store Sales” becomes [Measures].[Store Sales]. (You can follow the usual

“dimension.hierarchy.member” naming convention and write [Measures].[Mea-

sures].[Store Sales] if you like, but qualifying with a hierarchy name is unneces-

sary because the [Measures] dimension contains only one hierarchy.)

 Some user interfaces, such as Pentaho Analyzer, allow measures to be displayed

hierarchically. The [Measures] hierarchy has just one level, so no measure has a par-

ent member. By convention, the hierarchical structure is created using an annotation

called AnalyzerBusinessGroup:

<Measure name='Parent' column='column0'>
<Annotations>

<Annotation name='AnalyzerBusinessGroup'>Numbers</Annotation>
</Annotations>

</Measure>
<Measure name='Child' column='column1'>

<Annotations>
<Annotation name='AnalyzerBusinessGroup'>

84 CHAPTER 4 Multidimensional modeling: making analytics data accessible

Numbers/Sub group
</Annotation>

</Annotations>
</Measure>
<Measure name='Grandchild' column='column2'>

<Annotations>
<Annotation name='AnalyzerBusinessGroup'>

Numbers/Sub group/Sub sub group
</Annotation>

</Annotations>
</Measure>

Then the user interface displays members in a hierarchy. When referenced from MDX,

the members are still in one flat level: [Measures].[Parent], [Measures].[Child],

and [Measures].[Grandchild].

ANNOTATIONS Because Mondrian’s schema didn’t natively allow measures to
be displayed hierarchically, Analyzer’s developers defined them using an
extension mechanism called annotations. Annotations are a way to add arbi-
trary extra information to a Mondrian schema. Mondrian doesn’t try to
“understand” the annotations, but it makes them available to tools via its API.
Section 9.1.4 describes some further annotations used by Analyzer.

Measures can also be calculated. We’ll cover the various ways to create calculated mea-

sures (and members) in section 5.4.2 in the next chapter, but for now a simple exam-

ple will suffice.

DON’T FORGET ABOUT CALCULATED MEMBERS Because “measure” sounds like
“member,” many people hear about calculated members and forget that you
can define them for dimensions other than the measures dimension. Thus
one of the dimensional model’s most powerful features, the ability to define
calculations on several dimensions simultaneously, is often ignored.

This schema fragment,

<CalculatedMember name='Profit' hierarchy='Measures'>
<Formula>

[Measures].[Store Sales] - [Measures].[Store Cost]
</Formula>

</CalculatedMember>

creates a calculated measure that can be referenced in MDX as [Measures].[Profit].

Its value doesn’t come directly from a column in the database; whenever its value is

needed, Mondrian evaluates the given expression.

4.4 Summary

In this chapter you learned a lot about Mondrian schemas. These are the main points

you should keep in mind:

85Summary

■ Mondrian schemas are represented in XML, and they can be written by hand or

with authoring tools.

■ The most important XML elements are <Schema>, <PhysicalSchema>, <Cube>,

<Dimension>, <Attribute>, and <Measure>. With just these elements (and a

few supporting elements), you can create a cube to do analysis.

■ Dimensions are collections of logically related attributes, and hierarchies and

levels make it easier to navigate among related attributes.

■ Mondrian has special support for time dimensions. Just about every cube has

one.

■ Measures belong to their own dimension, and every attribute has its own

hierarchy.

The full definitions of XML elements and their attributes can be found in Mondrian’s

online documentation, a link to which appears in appendix B.

 The next chapter continues the description of Mondrian schema elements, cover-

ing some advanced topics that may not be required for every cube and many of the

XML element types we didn’t discuss in this chapter. A few other schema elements are

so tied to particular subject areas that they’re discussed in the chapters that cover

those subject areas: roles are covered in chapter 8, which covers security; and aggre-

gate tables are described in chapter 7.

86

How schemas grow

In chapter 4, you learned how to write a Mondrian schema that contains a simple

cube. Even a basic cube can support countless analyses; each analysis answers some

questions and raises new ones. If that first cube is successful, your business users

will come back and ask for more dimensions, more attributes, and more powerful

ways to model and analyze the data.

 This chapter is about how dimensional models tend to evolve in the real world.

Much of that evolution is “more of the same”: adding cubes, dimensions, and mea-

sures. A small addition to the model can allow a significant new area of the business

to be analyzed. For example, a business user might ask you to add a Referrer

dimension to the Sales cube so that they can analyze the effectiveness of social

media campaigns.

 Mondrian has features that keep schemas manageable as they grow. We’ll look

at how you can create and use shared dimensions, and how you can use measure

groups to build a cube based on more than one fact table.

This chapter is recommended for

Business analysts

✓ Data architects

✓ Enterprise architects

Application developers

87Schema evolution

 There are also some new, advanced concepts that will allow you to model richer

kinds of data. For example, a parent-child hierarchy would allow you to model the

organizational structure of your sales organization, and by using a hanger dimension

you could compare target sales with actual sales, starting with each salesperson and

propagating to each group in the sales organization. Using a calculation, you could

project the sales for the current quarter based on sales over the last few weeks, and

using another calculation, you could compare the performance of any salesperson

with the top five salespeople in their region.

 We’ll start by looking at how schemas evolve.

5.1 Schema evolution

There’s an old saying in the software industry: bad products have no bugs. Of course,

all software has bugs, but if a piece of software is no good, the users won’t stick around

long enough to find very many. If software is good, users will employ it in ways that the

designers didn’t expect. Of course they will find bugs, but they’ll patiently stick

around until those bugs are fixed, and they’ll offer suggestions to the developers

about ways to make the software better.

 So it is with an analysis model. You’ll know that your model is being used, because

you’ll receive a stream of requests to make it better. Remember how, in the last chap-

ter, we said not to build too many hierarchies; just build attributes. Your users will ask

for the hierarchies they need, along with extra cubes, dimensions, measures, and attri-

butes. You, as the schema designer, need to translate their requirements into changes

to the analysis schema. You may also need to load additional data from the opera-

tional system into the data mart.

 Here are a few ways that a schema can evolve:

■ Change the caption, description, or format string of any element

■ Add an attribute to a dimension

■ Add a hierarchy to a dimension

■ Add a level to a hierarchy

■ Add a measure that’s the same granularity or dimensionality as existing

measures

■ Add a measure of different granularity or dimensionality than existing

measures

■ Create a calculated column and use it in an attribute or measure

■ Add a calculated member to a cube

■ Add a named set to a cube

In this chapter, we’ll discuss these and other ways that schemas can grow to address

business requirements. Some are straightforward, whereas others require structural

changes to the underlying schema, and sometimes require changes to the ETL process

that populates it. As you’ll see, Mondrian’s schema is designed to make evolution as

straightforward as possible.

88 CHAPTER 5 How schemas grow

5.1.1 Multiple cubes in a schema

Suppose you’ve built a [Sales] cube to analyze the process of taking and shipping

orders in your business, and now you wish to analyze the process of receiving products

into your warehouses, storing them as inventory, and shipping them to fulfill orders.

 In chapter 4, we defined a cube as a collection of data over time that describes a

business process. In order to analyze a new process, we therefore need a new cube.

Listing 5.1 shows the [Warehouse] cube.

<Schema name='Sales and Warehouse'>
<PhysicalSchema .../>

<Cube name='Sales'>
<Dimensions>
<Dimension name='Time' .../>
<Dimension name='Customer' .../>
<Dimension name='Product' .../>
<Dimension name='Promotion' .../>

</Dimensions>
<MeasureGroups .../>

</Cube>

<Cube name='Warehouse'>
<Dimensions>
<Dimension name='Time' .../>
<Dimension name='Product' .../>
<Dimension name='Warehouse' .../>

</Dimensions>
<MeasureGroups .../>

</Cube>
</Schema>

You can add as many cubes as you need. Mondrian allows an unlimited number of

cubes in a schema.

 Each cube is a starting point for an analysis. In Saiku or other similar tools, the

user can choose the cube that’s the best fit for the area of the business to be analyzed.

 Most of the time, each cube you build will be on a new set of data. But there are a

couple of reasons why you might want to create more than one cube on the same set

of data, so we’ll briefly mention them here.

 If you’ve designed a cube that’s daunting to some business users, you may wish to

implement what user-interface experts call information hiding. You can create a simpli-

fied version of the cube for beginner users that contains only the most important mea-

sures and dimensions. As the users get to feel more confident with the system, they

can start using the full cube.

Access control is very similar to information hiding, but it has a different goal. You

can create cubes that display different combinations of dimensions and measures, and

give access to these cubes to just the groups of users who are allowed to see them.

Listing 5.1 Schema containing Sales and Warehouse cubes

Physical
schema

shared by
both cubes

Sales cube

Time, Customer,
Product, Promotion
dimensions

Warehouse
cube

Time, Product,
Warehouse
dimensions

89Schema evolution

More access-control techniques, including how to control access to individual dimen-

sions, measures, and members, are described in chapter 6.

5.1.2 Shared dimensions

Take a look again at listing 5.1, and specifically at the dimensions that occur within

each cube. The [Sales] and [Warehouse] cubes both have [Time] and [Product]

dimensions, and then there are one or two dimensions specific to each cube.

 This is a common pattern: cubes describing different areas of a business have com-

mon dimensions where those areas have overlapping concepts, such as products,

time, or customers.

 Let’s assume for a minute that these dimensions have the same definitions. (We’ll

look at some reasons why they might not when we discuss conformed dimensions in

the next section.)

 It would seem to be a waste to have identical definitions of the [Time] and [Product]

dimensions in each cube. Even if it doesn’t affect the end user, it’s more code to maintain

and there’s a greater opportunity for inconsistencies and errors to creep in. Luckily,

Mondrian allows you to create shared dimensions at the schema level. These can be incor-

porated by any cube in the schema by using a <Dimension source=...> element.

 Listing 5.2 shows the structure of the schema after the [Time] and [Product]

dimensions have been factored into shared dimensions. The definitions of the [Time]

and [Product] dimensions in each cube, previously dozens of lines of XML each, are

now just a single line of XML.

<Schema name='Sales and Warehouse'>
<PhysicalSchema .../>

<Dimension name='Time' .../>

<Dimension name='Product' .../>

<Cube name='Sales'>
<Dimensions>

<Dimension source='Time'/>
<Dimension name='Customer' .../>
<Dimension source='Product'/>
<Dimension name='Promotion' .../>

</Dimensions>
<MeasureGroups .../>

</Cube>

<Cube name='Warehouse'>
<Dimensions>

<Dimension source='Time'/>
<Dimension source='Product'/>
<Dimension name='Warehouse' .../>

</Dimensions>

Listing 5.2 Sales and Warehouse cubes using shared dimensions

Shared Time dimension

Shared Product dimension

Time and Product dimensions based
on shared dimensions; private
Customer and Promotion dimensions

Time and Product dimensions
based on shared dimensions;
private Warehouse dimension

90 CHAPTER 5 How schemas grow

<MeasureGroups .../>
</Cube>

</Schema>

5.1.3 Conformed dimensions

What happens if, say, the Product dimension has different definitions in the two

cubes? First, let’s look at why they might be different. Unless there’s a good reason to

do otherwise, similar dimensions should have the same definitions. These are techni-

cally known as conformed dimensions.

Conformed dimensions are dimensions with the same set of attributes and hierar-

chies, and are stored in the same underlying table structure. (Ralph Kimball coined

the term when talking about star schemas, and specifically dimension tables that

could be referenced by multiple fact tables, but it naturally extends to cube design.)

 Conformed dimensions are desirable for several reasons. They allow different

parts of the business to be compared using the same terms, and they may allow cross-

departmental optimizations. As a bonus, they save disk space, because you only need

one copy of the table.

 Mondrian doesn’t have a feature called “conformed dimensions,” but if two cube

dimensions conform, you very likely should model them as uses of a single shared

dimension.

 Now back to that question of why two product dimensions might not conform. If

the dimensions have different definitions by accident (say, because they were created

by different developers), then it’s worth spending the effort to make them conform.

Once they conform, defining them as shared dimensions in the Mondrian schema will

ensure that their definitions stay the same from that point on.

 But sometimes the difference arises for political reasons. These kinds of problems

are much more difficult to solve than mere technology problems. Suppose that the

departments that own the Sales and Warehouse fact data have different definitions of

“product” and manage their data in different operational databases. To create a con-

formed dimension, the business owners would need to agree on the definition of a

product, and the ETL process that populates the data warehouse from the operational

systems would need to be changed to use the same product dimension table.

 To create a conformed dimension that meets several departments’ needs, several

people will need to agree on the solution, and several systems will need to be changed.

It may not be practical or cost-effective to fully solve the problem, at least at first. A

pragmatic approach might be to start with a partial solution, such as agreeing on a

common key and a few core attributes for analysis purposes. Use that partial solution

to demonstrate a business benefit, and then maybe you can convince the stakeholders

to support a better solution.

 Assuming that the dimensions already conform, when should dimensions be

shared? We recommend creating shared dimensions for key business concepts like

time, customer, and product, which are very likely to appear in multiple cubes. Other

91Schema evolution

dimensions can be created as private at first; it’s straightforward to promote them to

shared (and conformed) when they’re needed in another cube.

5.1.4 Using a dimension twice in the same cube

Shared dimensions aren’t always used in different cubes—you can use a shared

dimension more than once in the same cube. These are called role-playing dimensions.

 Suppose you wish to record and analyze the dates on which an order was received

and shipped. You can create dimensions called [Ship Time] and [Order Time]; since

they’re conformed, you can base them on the shared [Time] dimension, as follows.

<Dimension source='Time' name='Order Time'/>
<Dimension source='Time' name='Ship Time'/>

Note how the name attribute has been called into service to give the two uses of the

[Time] dimension different names. When a shared dimension is used only once in a

cube, usually the name is the same as the source dimension, so you can omit the name

attribute.

[Ship Time] and [Order Time] are independent dimensions. This means that the

value of one dimension can vary without affecting the other. You could, for example,

select [Order Time].[Yearly].[2011].[Q4].[12] on the columns axis and [Ship

Time].[Yearly].[2012].[Q1] on the rows axis to see which orders were made in

December but not shipped until Q1.

 Because the dimensions are independent, you need to wire them both up to the

fact table using different foreign key columns:

<DimensionLinks>
<ForeignKeyLink dimension='Order Time'

foreignKeyColumn='order_time_id'/>
<ForeignKeyLink dimension='Ship Time'

foreignKeyColumn='ship_time_id'/>
...

</DimensionLinks>

We’ll look at further examples of the ForeignKeyLink element and other kinds of

dimension links in the following sections.

5.1.5 Measures across multiple fact tables

Adding a measure is straightforward when it’s based on an existing column in the fact

table. You can apply a new aggregate function to a column already used by another

measure, or use a column that has not been used before.

 If the measure column doesn’t exist, you need to ask whether it belongs in the cur-

rent fact table. It may if the measure has the same dimensionality and granularity as

the fact table, but if not, you’ll need to put the measure in a new fact table, and that

requires something called a measure group.

A measure group is the logical equivalent of a fact table, just as a dimension is the logical

equivalent of a dimension table. It’s a collection of measures that have the same

dimensionality and granularity and that are therefore stored together.

92 CHAPTER 5 How schemas grow

 Let’s define dimensionality and granularity, and look at the various ways that mea-

sure groups are used in practice.

DIMENSIONALITY AND GRANULARITY OF MEASURES

First some definitions:

■ The dimensionality of a measure is the set of dimensions that determine its value.

■ The granularity of a measure concerns the exact attributes of the dimensions

that it depends upon.

Dimensionality and granularity are best explained using examples. Consider the fol-

lowing measures:

■ [Unit Sales] depends on dimensions [Product], [Time], [Customer], and

[Promotion], and it’s stored in the sales_fact_1997 fact table.

■ [Store Sales] depends on dimensions [Product], [Time], [Customer], and

[Promotion], and it’s stored in the sales_fact_1997 fact table.

■ [Forecast Sales] depends on dimensions [Product], [Time] (at the [Quar-

ter] level), [Customer] (at the [Region] level), and [Promotion], and it’s

stored in the sales_forecast fact table.

■ [Inventory Count] depends on dimensions [Product], [Time], and [Ware-

house], and it’s stored in the inventory_fact fact table.

The [Unit Sales] and [Store Sales] measures have identical dimensionality and

granularity. [Forecast Sales] has a coarser granularity: forecasts are made for whole

months, not down to the day level, and for a state, not individual customers. [Inven-

tory Count] has a different dimensionality: it still depends on the [Time] and [Prod-

uct] dimensions, but it depends on the new dimension [Warehouse] and doesn’t

depend on [Customer] or [Promotion] at all.

 Figure 5.1 shows the star schema that stores these four measures.

 We’ve been talking about dimensions and measures, but a star schema is physical, so

figure 5.1 shows tables and columns. Still, it is fairly clear what’s what from the names

of the tables and columns. The three fact tables are in the center of the diagram, their

arrows pointing outward to dimension tables at the sides. Measures of the same granu-

larity are stored in the same fact table: the [Unit Sales] and [Store Sales] measures

are stored as the unit_sales and store_sales columns in sales_fact_1997, [Fore-

Before measure groups

Measure groups are a new feature, introduced in Mondrian version 4.

In previous versions of Mondrian, cubes had only one fact table. If you wanted to cre-

ate a cube that had multiple fact tables, you had to create a “virtual cube” that com-

bined several regular cubes. Virtual cubes are no longer supported, but Mondrian

migrates them automatically to cubes that have multiple measure groups if it sees a

schema in version 3 format.

93Schema evolution

cast Sales] as forecast_sales in sales_forecast, and [Inventory Count] as

inventory_count in inventory_fact. This makes a lot of sense from a data normaliza-

tion standpoint.

FINE-GRAINED MEASURE GROUPS

The sales_fact_1997 and inventory_fact fact tables both contain data at a fine

level of granularity. Their contents are different because they have different dimen-

sionality: they cover different areas of the business.

 Now let’s define a cube that has a measure group for each fact table. Listing 5.3

shows the Sales cube with these measure groups.

<Cube name='Sales'>
<Dimensions .../>
<MeasureGroups>
<MeasureGroup name='Sales' table='sales_fact_1997'>

<Measures>
<Measure name='Unit Sales' .../>
<Measure name='Store Sales' .../>

</Measures>
<DimensionLinks .../>

</MeasureGroup>
<MeasureGroup name='Inventory' table='inventory_fact'>

Listing 5.3 Sales cube with multiple measure groups

product

product_id

promotion

promotion_id

product_class

product_class_id

Legend

store

store_id

customer

customer_id

time_by_day

time_id

warehouse

time_id

sales_fact_1997

*unit_sales

*store_sales

sales_forecast

*forecast_sales

inventory_fact

*inventory_count

Fact table Dimension table

Figure 5.1 Star schema with unit and store Sales, Forecast, and Inventory measure groups

Measure group based
on sales_fact_1997
fact table

Measure group based
on inventory_fact
fact table

94 CHAPTER 5 How schemas grow

<Measures>
<Measure name='Inventory Count' .../>

</Measures>
<DimensionLinks .../>

</MeasureGroup>
</MeasureGroups>

</Cube>

Each measure group has a source table (which you must have previously defined in

the physical schema), a collection of measures, and a collection of dimension links.

 Mondrian needs to know which dimensions a measure group depends upon, and,

if it depends on a particular dimension, how to join to that dimension’s table and at

which level. Dimension links convey all of that information; in short, they define

dimensionality and granularity. Table 5.1 shows the dimensionality of the Sales and

Inventory measure groups.

Now let’s consider a measure group that has the same dimensionality as the Sales

measure group but coarser granularity.

COARSE-GRAINED MEASURE GROUPS

There’s a step between using and not using a dimension in a measure group: a mea-

sure group can use a dimension at a coarse granularity. Consider the Forecast

measure group, whose dimensionality is shown in table 5.2.

In terms of dimensionality, the Forecast measure group is the same as Sales: it

depends on the [Time], [Product], and [Customer] dimensions, and not on [Ware-

house]. But the granularity is more coarse. The values of measures in this group are

Table 5.1 Dimensionality of the Sales and Inventory measure groups

Dimension Sales Inventory

Time time_id foreign key time_id foreign key

Product product_id foreign key product_id foreign key

Customer customer_id foreign key no link

Warehouse no link warehouse_id foreign key

Table 5.2 Dimensionality of the Forecast measure group

Dimension Forecast

Time (time_year_id, time_month_id) composite foreign key

Product product_id foreign key

Customer customer_country_id foreign key

Warehouse no link

95Schema evolution

defined by month, not day; a value exists at the day level, but it’s inherited. For exam-

ple, on January 31, 2012, the [Forecast Sales] measure for a particular product

does have a value, but it’s the same as for January 1, 2012. Coarser granularity means

fewer distinct values than if the key attribute had been used, but more than if the

dimension had been dropped altogether.

 Listing 5.4 shows the XML definition of the Forecast measure group. The attri-

bute attribute in the links for the [Time] and [Customer] dimensions indicate that

they are at lesser granularity. Because the [Time].[Month] attribute has a composite

key, the foreign key for the [Time] dimension matches it, using the the_year and

month_of_year columns from the sales_forecast fact table.

<MeasureGroup name='Forecast' table='sales_forecast'>
<Measures>
<Measure name='Forecast Unit Sales' .../>

</Measures>
<DimensionLinks>
<ForeignKeyLink dimension='Time' attribute='Month'>

<Column name='the_year'/>
<Column name='month_of_year'/>

</ForeignKeyLink>
<ForeignKeyLink dimension='Product' foreignKeyColumn='product_id'/>
<ForeignKeyLink dimension='Customer'

foreignKeyColumn='customer_country'
attribute='Country'/>

<NoLink dimension='Warehouse'/>
</DimensionLinks>

</MeasureGroup>

That just about concludes our first look at measure groups, but we’ll meet them again

when we discuss aggregate tables in chapter 7. Aggregate tables are basically coarse-

grained measure groups whose measures are rolled-up versions of measures from

other finer-grained measure groups. They don’t contribute any new measures for the

business user to analyze, but they give Mondrian the option of working from highly

aggregated data, which can have a stunning effect on performance.

 Next, we’ll talk about how to decide whether to create cubes that span several mea-

sure groups or more targeted cubes, and how many cubes to include in a schema.

5.1.6 Smart evolution: multiple cubes versus single cubes

Schema designers often ask, “When should I create multiple cubes, as opposed to a

single cube with multiple measure groups?” Mondrian supports shared dimensions, so

both designs are straightforward and quite similar. As a result, this is primarily a

usability question.

Listen to the business questions your users need to solve. Consider the question, “How

much of our revenue comes from products for which we have fewer than two days of

inventory in stock?” This involves the sales_fact_1997 fact table (and its revenue

Listing 5.4 The Forecast measure group

Measure
group

based on
forecast

table

Use Month attribute
as key, rather than

default Day

Composite key
matches

Month
attribute’s

composite key

Join to Country
attribute

96 CHAPTER 5 How schemas grow

measure) and the inventory_fact fact table. To solve the question, you’ll need to cre-

ate a cube based on the two fact tables.

 Shared dimensions are another clue: if the measure groups have many dimensions

in common, they should probably belong to the same cube.

 You can have it both ways. You can use a fact table in a cube with multiple measure

groups, and you can also create a more focused cube with just one measure group. If

you do this, try to name measures consistently so that your business users know that

the data is coming from the same source.

 Other typical questions are about the right size for a schema: “I have a dozen

cubes. Should they all go in the same schema, or should I create two smaller sche-

mas?” This is partly a usability question. It can be daunting to business users if there

are many cubes to choose from. Consider the subject areas that the cubes address and

the dimensions in common between cubes. If a schema seems to sprawl over several

subject areas, and there is very little in common among the cubes, split them into

smaller schemas.

 Remember, different Mondrian schemas can share the same database tables, and

copying and pasting a dimension definition from one schema to another is not diffi-

cult. Another pragmatic reason to split up a schema is to help in the development

process: a schema is defined within a single file, so only one developer can edit it at

a time.

5.1.7 Other schema evolution patterns

Let’s review a few of the other ways you can modify a schema. We’ll focus on the tools

you’ll use every day, rather than on how to solve particular problems. The right tool

for the job is usually clear.

Right-sizing cubes and schemas

When designing a schema, it’s best to start small and add complexity only if you need it.

■ Start off with simple cubes, with fewer dimensions and just one measure group.
■ Create complex cubes with multiple measure groups if you need to answer com-

plex business questions.
■ Even if you build complex cubes, keep the simple cubes around for less

advanced users performing simpler analyses.
■ Consider splitting a schema into multiple schemas if it contains many unrelated

cubes.

97Alternative ways to store dimensions

■ Change the caption, description, or format string of an element—It’s always easy to

change the caption, description, or format string of an element. Good descrip-

tions, in particular, help to make a schema accessible to business users who

haven’t used it before. No reports or MDX statements will be broken by making

these changes, so it’s worth spending a little time getting them right. Think of it

as adding a little polish.

■ Change the name of an element—Changing the name of elements is easy, but you

need to take care. If reports are based on those elements, those reports will

break. You’ll need to find and fix them manually.

■ Add an element—Adding an attribute is usually benign if the column you need is

already in the schema, but you should be careful if you use abbreviations when

you write MDX. For example, suppose that you’ve written [Time].[Day].Mem-

bers in a report, referring to the [Day] level of the [Yearly] hierarchy in the

[Time] dimension. Now you add an attribute called [Day]. Next time you run

that report, the expression will return the members of the [Day] attribute hier-

archy. Those results look similar to the members of the [Day] level but will

include an [All Day] member that wasn’t there before. This problem can also

occur when adding other elements, such as levels, hierarchies, and dimensions.

The best way to avoid it is to use full object references in hand-written MDX.

■ Add a hierarchy to a dimension—Adding a hierarchy to a dimension is straightfor-

ward if you have attributes from which to build its levels.

■ Add a level to a hierarchy—Adding a level to a hierarchy is also straightforward if

you have an attribute of the appropriate cardinality to base it upon. (See the

discussion in section 4.1.3 about choosing the right key for attributes that are to

become levels.)

■ Add a calculated member to a cube—You can easily add a calculated member to a

cube. Because it’s a pure MDX expression, you don’t need any changes to the

underlying schema. It’s usually most convenient to develop a calculated mem-

ber in the WITH MEMBER clause of a handwritten query, and then paste its MDX

expression into the cube definition. Calculated members are explained in more

detail in section 5.4.2.

■ Add a named set to a cube—You can easily add a named set to a cube. Like calcu-

lated members, you can develop named sets in a WITH SET clause of a query.

Now that you understand the ways that you can improve and change your schema,

let’s move on to some of the more advanced ways that Mondrian can map dimensions

onto tables.

5.2 Alternative ways to store dimensions

Mondrian is very flexible in how dimensions are mapped to tables, and you can use

that flexibility to improve performance, optimize the use of disk space, and map them

onto structures such as operational tables.

98 CHAPTER 5 How schemas grow

 Star, snowflake, and degenerate dimensions are three mapping styles. In this sec-

tion, we’ll cover each style in turn.

5.2.1 Star dimensions

When we showed you how to define dimensions in chapter 4, we focused on one stor-

age model, which mapped each dimension onto a single table. The [Customer]

dimension, for example, was based on the customer table. The dimension had a sur-

rogate key, customer_id, and was linked to the fact table via a ForeignKeyLink refer-

encing that key from the fact table’s customer_id foreign key column.

 This pattern is called a star dimension, and it’s so named because a diagram of

dimension tables arranged around a central fact table looks like a star. In figure 5.2,

time_by_day, customer, and store are all examples of this. But a star dimension is not

the only pattern used for storing dimensions.

 A snowflake dimension consists of two or more tables connected by a chain of

many-to-one foreign keys (product and product_class form a two-table snowflake

in figure 5.2). A degenerate dimension has no table of its own, but stores its attributes

in the fact table (the payment_type column in sales_fact_1997).

 In the next sections, we’ll describe when it makes sense to use snowflake and

degenerate dimensions, and how to define them in a schema.

5.2.2 Snowflake dimensions

A snowflake dimension is a star dimension broken up into two or more tables. If you’ve

designed OLTP database schemas before, you know what it means to convert a database

into third normal form (3NF) by splitting up tables that contain redundant information.

A snowflake is basically a “more normalized” version of a star dimension. But, as you’ll

see, it doesn’t always make sense to break all your dimensions into snowflakes.

product

product_id

product_class

product_class_id

store

store_id

customer

customer_id

time_by_day

time_id

sales_fact_1997

*payment_type

*unit_sales

*store_sales

[Store]

dimension

(star)

[Product]

dimension

(snowflake)

[Payment type]

dimension

(degenerate)

Figure 5.2 Schema with star, snowflake, and degenerate dimensions

99Alternative ways to store dimensions

Consider the [Product] dimension, with levels [Product Family], [Product Depart-

ment], [Brand Name], and [Product Name], stored as a star dimension in a single product

table. Table 5.3 shows the first few rows of the product table.

As you can see, there’s considerable duplication. Each value of product_family,

product_department, and brand_name occurs several times. To reduce the number of

duplicate values, you could try normalizing into product_class and product tables

(tables 5.4 and 5.5).

Table 5.3 [Product] dimension stored in the product table

product_family product_department brand_name product_name product_id

Food Snack Foods Best Choice Best Choice BBQ Potato Chips 218

Food Snack Foods Best Choice Best Choice Corn Chips 219

Food Snack Foods Fort West Fort West Potato Chips 1474

Food Snack Foods Fort West Fort West Lemon Cookies 1475

Food Snack Foods Fort West Fort West Graham Crackers 1476

Food Baking Goods Super Super Pepper 298

Food Baking Goods Super Super Salt 300

Table 5.4 Upper levels of [Product] dimension stored in product_class table

product_family product_department brand_name brand_id

Food Snack Foods Best Choice 45

Food Snack Foods Fort West 12

Food Baking Goods Super 4

Table 5.5 Lower levels of [Product] dimension stored in product table

brand_id product_name product_id

45 Best Choice BBQ Potato Chips 218

45 Best Choice Corn Chips 219

12 Fort West Potato Chips 1474

12 Fort West Lemon Cookies 1475

12 Fort West Graham Crackers 1476

4 Super Pepper 298

4 Super Salt 300

100 CHAPTER 5 How schemas grow

The [Product] dimension is now based on two tables, so this is a snowflake structure.

You need to declare the tables in the physical schema, and a link between them:

<Table name='product' keyColumn='product_id'/>
<Table name='product_brand' keyColumn='brand_id'/>
<Link name='product_brand' source='product_brand'

target='product' foreignKeyColumn='brand_id'/>

We first described the <Link> element in chapter 4. Here, there’s a direct link from

the product table to the product_brand table, but Mondrian will find and use a path

over multiple links, as long as there is just one path.

 Now you can use these tables’ columns when you define the attributes of the

[Product] dimension:

<Dimension name='Product' key='Product Name'
table='product_brand'>

<Attributes>
<Attribute name='Product Family'

keyColumn='product_family'/>
<Attribute name='Product Department'>

<Key>
<Column name='product_family'/>
<Column name='product_department'/>

</Key>
</Attribute>
<Attribute name='Brand Name'

keyColumn='brand_id' nameColumn='brand_name'/>
<Attribute name='Product Name'

table='product'
keyColumn='product_id'
nameColumn='product_name'/>

</Attributes>
</Dimension>

What have you achieved? You’ve reduced the number of duplicated values, and there-

fore saved some space, and you’ve simplified the task of maintaining consistency while

updating the dimension. But you’ve introduced a join, which may slow down queries.

Snowflake dimensions are a tradeoff.

 If you’ve designed OLTP databases before, you’re probably feeling uncomfortable

right now. Your inclination is to normalize all tables, so it feels natural to create snow-

flake dimensions. But remember that normalization was invented chiefly to reduce

amount of effort required to maintain consistency when performing updates; this is

much less important in a data warehouse, where reads are much more frequent than

updates. Normalizing a dimension table into two or more snowflake tables won’t save

much space on disk (especially in a modern analytic database with column-oriented

storage), but it’ll incur significantly more effort performing joins.

Declare product
and product_brand
tables

Declare a join path
from product to
product_brand

Default table for
attributes is
product_brand

Upper attributes are
based on product_brand
table

Attribute overrides
table to product

101Alternative ways to store dimensions

 When are snowflake dimensions useful? If you have a conformed dimension that’s

used at various granularities, a snowflake dimension may let you join directly to the

upper levels of the dimension. In section 5.1.5, the Forecast measure group refer-

enced the [Customer] dimension at the level of the [Customer].[Country] attribute.

That required a foreign key from the sales_forecast fact table to the country col-

umn of the customer dimension table. Because country is not unique, Mondrian has

to eliminate duplicates, generating a (SELECT DISTINCT country FROM customer) sub-

query, or something like it, and that’s expensive to evaluate.

 The same applies if the most of the uses of a dimension are at a high level, using

measures rolled up into aggregate tables (see section 7.3). If the dimension is

decomposed into a star, the aggregate table can join directly to the table holding the

upper levels.

 Otherwise, you should consider snowflaking a dimension only if there are space

savings and demonstrable performance improvements. One case where this might

happen is if the smaller of the resulting tables has a large number of columns and a

small number of rows. Then the database may be able to cache the smaller table in

memory, and the cost of the extra join will be negligible.

 Follow the performance-tuning process outlined in chapter 7 by running represen-

tative queries on the star and snowflake forms of the dimension. If the snowflake

doesn’t perform better, keep the dimension as a star.

5.2.3 Degenerate dimensions

Whereas a star dimension has one dimension table, and a snowflake dimension has

two or more, a degenerate dimension has none. All of the columns that describe the

dimension live in the fact table.

 Suppose you wish to break down orders by their payment type (cash, credit, debit),

and that the payment type is represented by a payment_type column in the

sales_fact_1997 fact table. You need to create a dimension with a single attribute

based on the payment_type column. If you were to model this as a star dimension,

you’d create a dimension table with one column and three rows, and you’d use

payment_type as a foreign key to get ... tada! ... exactly the same value. As you can see,

a star dimension would be overkill. A degenerate dimension instead lets the values

stand for themselves.

 Here’s how you could define [Payment Type] as a degenerate dimension:

<Dimension name='Payment Type' table='sales_fact_1997'>
<Attributes>
<Attribute name='Payment Type' keyColumn='payment_type'

approxRowCount='3'/>
</Attributes>

</Dimension>

The attribute definition includes the approxRowCount attribute, saving Mondrian the

effort of a full table scan to find out that there are three distinct values. Mondrian

treats this value as approximate, but it is nevertheless very useful when Mondrian is

102 CHAPTER 5 How schemas grow

making decisions, such as whether to use an aggregate table. Still, the need to do a full

scan of the fact table to find its root members is one of the downsides of a degenerate

dimension.

 In the <DimensionLinks> section of the measure group, instead of the usual <For-

eignKeyLink> element, you’d use a <FactLink> element to indicate that the dimen-

sion is in the fact table, and therefore no join is required.

<MeasureGroup name='Sales' table='sales_fact_1997'>
<Measures .../>
<DimensionLinks>
<FactLink dimension='Payment Type'/>
...

</DimensionLinks>
</MeasureGroup>

The other downside to a degenerate dimension is that it can only support a very sim-

ple structure. If you find you need to add extra attributes, or even if the attribute’s

name or ordinal property differs from its key, it’s probably time that your degenerate

dimension grew up to use a conventional star dimension structure.

 We’ve now covered how to map dimensions onto various table structures. It’s time

to discuss some data structures that present dimensions to the end user in ways other

than ordinary hierarchies.

5.3 Advanced hierarchy structures

The previous section described various ways to map hierarchies onto database sche-

mas: star, snowflake, and degenerate dimensions. These decisions affect query perfor-

mance and the amount of disk space needed for your warehouse, but they don’t affect

the end user. A dimension looks the same on the screen, regardless of how it’s stored.

 We’ll now consider some structures that affect how dimensions appear to the end

user. Parent-child hierarchies and ragged hierarchies let you model dimensions so

they look more like the real world.

5.3.1 Parent-child hierarchies

Suppose you want to analyze the human resources in an organization: the salary, ben-

efits, days worked, and accrued vacation time of every employee. Employees belong to

departments, and each department has a manager, so there’s a hierarchical structure.

 Unlike the “regular” hierarchies we’ve seen previously (in section 4.3.1), this hier-

archy doesn’t have a fixed depth. The deputy assistant janitor might be 11 levels below

the CEO, and the system should not prevent the company from hiring a trainee dep-

uty assistant janitor at level 12.

 Regular hierarchies, in contrast, have a fixed number of named levels. The [Cus-

tomers] hierarchy you saw in chapter 4 has levels based on the [Country], [State],

and [City] attributes of the [Customer] dimension, and each level is named after its

attribute. Members adhere to those strict levels: a member of the [City] level is always

a child of a member of the [State] level, which is a child of a member of the [Coun-

try] level.

103Advanced hierarchy structures

 In contrast, the [Employees] parent-child hierarchy has only one named level, but

parent and child members can each be at that level. Here’s how you would model

[Employees] in the schema:

<Dimension name='Employee' table='employee' key='Employee Id'>
<Attributes>
<Attribute name='Supervisor Id' keyColumn='supervisor_id'/>
<Attribute name='Employee Id' keyColumn='employee_id'

nameColumn='full_name' orderByColumn='employee_id'
parent='Supervisor Id' nullParentValue='0'/>

</Attributes>
<Hierarchies>
<Hierarchy name='Employees'>

<Level attribute='Employee Id'/>
</Hierarchy>

</Hierarchies>
</Dimension>

Another thing that is different about parent-child hierarchies is that users expect to

see measures rolled up. A manager’s salary total should be their personal salary plus

the salaries of all employees under them in the organization. The salary shown for the

CEO, who is at the root of the tree, would be the total salary for the whole company.

 By the way, the MDX language also lets you get at a manager’s personal salary, if you

want it. Listing 5.5 shows how.

mdx> WITH MEMBER [Measures].[Personal Salary] AS
> ([Employees].DataMember,
> [Measures].[Salary])
> SELECT {[Measures].[Salary],
> [Measures].[Personal Salary]} ON Columns,
> Head([Employees].Members, 10) ON Rows
> FROM [HR];

Salary Personal Salary
================================ ========== ===============
All Employees $39,431.67
+ Sheri Nowmer $39,431.67 $864.00

+ Derrick Whelply $36,494.07 $432.00
+ Beverly Baker $4,938.83 $324.00

+ Shauna Wyro $358.54 $162.00
+ Bunny McCown $196.54 $86.40

+ Nancy Miller $70.20 $70.20
+ Wanda Hollar $39.94 $39.94

+ Jacqueline Wyllie $4,256.29 $183.60
+ Ralph Mccoy $4,072.69 $140.40

The first column is the regular [Salary] measure, which is rolled up; the second col-

umn is the salary without rollups. How is it computed? Each member of a parent-child

Listing 5.5 MDX query on parent-child hierarchy

Calculation for employee’s
personal salary

First ten
employeesReport shows totals

with and without
underlings’ salaries

Nancy Miller has no
underlings, so totals

are the same

104 CHAPTER 5 How schemas grow

hierarchy has a shadow member, called its data member, that represents just that mem-

ber, without implicit rollups. The query accesses it using the DataMember property.

 In summary, parent-child hierarchies are a very different model for member data

than regular hierarchies. You should use a regular hierarchy if possible, but for cer-

tain kinds of nested data, a parent-child hierarchy is the natural organization.

5.3.2 Ragged hierarchies

Ragged hierarchies are another way to model data that doesn’t quite fit into the rigid

structure of a conventional hierarchy, but they’re closer to regular hierarchies than

parent-child hierarchies are. Whereas a parent-child hierarchy throws off the con-

straint of named levels, a ragged hierarchy has named levels just like a regular hierar-

chy, but allows them to be skipped. More precisely, a member’s parent may be more

than one level above it.

 Let’s consider some examples from geography:

■ The city of San Francisco belongs to the state of California, which belongs to

the country United States, which belongs to the continent of North America.

This is a “normal” sequence of members, with one at each level and each mem-

ber’s parent being one level higher.

■ The city of Tel Aviv belongs directly to the country of Israel. Israel does not have

states.

■ Vatican City belongs directly to the continent of Europe. There is no nation or

state.

■ The continent of Antarctica has no constituent countries, states, or cities.

You’ve probably realized that the easiest way to solve these problems is to cheat and

create hidden members. For example, Israel can have a single state, to which Tel Aviv

and every other Israeli city belongs. You could create a Vatican City nation and state,

and for Antarctica you could create a dummy nation, state, and city.

 Indeed that’s what Mondrian does behind the scenes. But Mondrian’s purpose is

to provide a data model for end users, and the end users don’t want to see dummy val-

ues. If you ask [Tel Aviv] for its parent member, it will return the country [Israel].

If you ask the continent [Antarctica] for its children, it will return the empty set.

 The members of the hierarchy will look like what’s shown in table 5.6.

Table 5.6 Members of the [Geography] ragged hierarchy

Continent Country State City

Antarctica (hidden) (hidden) (hidden)

Asia Israel (hidden) Tel Aviv

Europe (hidden) (hidden) Vatican City

Europe France Bouches-du-Rhône Marseille

105Advanced hierarchy structures

When you define a ragged hierarchy, you tell Mondrian when members of a level

should be considered “hidden.” The hideMemberIf attribute, whose values are shown

in table 5.7, achieves this:

<Dimension name='Geography' table='geography' key='City'>
<Attributes>
<Attribute name='Continent' keyColumn='continent'/>
<Attribute name='Country' keyColumn='country'/>
<Attribute name='State' keyColumn='state'/>
<Attribute name='City' keyColumn='city_id' nameColumn='city'/>

</Attributes>
<Hierarchies>
<Hierarchy name='Geography'>

<Level attribute='Continent' hideMemberIf='Never'/>
<Level attribute='Country' hideMemberIf='IfBlankName'/>
<Level attribute='State' hideMemberIf='IfParentsName'/>
<Level attribute='City' hideMemberIf='IfBlankName'/>

</Hierarchy>
</Hierarchies>

</Dimension>

New York City isn’t hidden, but it would have been if the City level were flagged

IfParentsName.

 Once a member is hidden, Mondrian will make sure that it stays hidden, even when

you evaluate expressions in MDX, such as <Member>.Parent and <Level>.Members.

HIDDEN, INVISIBLE, AND INACCESSIBLE Don’t confuse hidden with invisible or
inaccessible. Missing members in ragged hierarchies are called hidden. If an ele-
ment is invisible, this is just a hint to the user interface that it shouldn’t display
the element on the screen; invisible elements are otherwise normal when

Europe France Rhône Lyon

North America United States (hidden) Washington, D.C.

North America United States California San Francisco

North America United States New York New York

Table 5.7 Values for a level’s hideMemberIf attribute

Value Meaning

Never (default) Member always appears.

IfBlankName A member doesn’t appear if its name is null, empty, or all whitespace.

IfParentsName A member appears unless its name matches its parent’s.

Table 5.6 Members of the [Geography] ragged hierarchy (continued)

Continent Country State City

106 CHAPTER 5 How schemas grow

evaluating MDX. An element might also be rendered inaccessible to particular
users due to access control. Like a hidden element, an inaccessible element
doesn’t appear in MDX calculations; it may even change the value of other
elements in the calculation, if, for instance, the rollup policy says that the val-
ues of parent members should only include accessible children.

The link to a measure group works the same way as a link to a regular dimension. It

joins at the key attribute of the dimension, even if some instances of that attribute are

hidden. The hidden city in Antarctica must exist in the dimension table, and facts per-

taining to Antarctica will reference that city’s key value.

 Next, we’ll describe how Mondrian can create something out of nothing: how

members and set expressions are defined using MDX calculations.

5.4 Calculations

Mondrian has been described as a huge, virtual, multidimensional spreadsheet. It’s

fine for browsing the raw data, but things get interesting when you start to define cal-

culations. Mondrian allows you to define calculations in the schema in SQL and MDX,

and to define further calculations in MDX queries. Furthermore, the MDX language

allows you to create calculations on top of calculations.

 In this section, we’ll show you how to create new measures based on SQL expres-

sions using the example of a “bucketing attribute” that converts a continuous quantity,

such as age, into ranges that can be analyzed together. Then we’ll show you how to

create calculated measures and calculated members in other dimensions, such as

profitability of a product, growth in time, or comparison to other geographical

regions. Finally, we’ll introduce hanger dimensions, which are dimensions consisting

only of calculated members—they’re useful for building advanced analytics.

5.4.1 Bucketing attributes

Adding an attribute to a dimension is straightforward if its key, name, and other

required properties are already columns in the dimension table. If the key values for a

new attribute don’t already exist as columns, they can sometimes be calculated using a

simple SQL expression. A common case is an attribute based on bucketing values.

 Suppose you know the age of a customer in years, or their date of birth. Age is a

continuous quantity, and you can divide the dataset too finely if you put a particular

age value onto the filter axis. You aren’t interested in whether customers aged 18 years

and 100 days behave differently than customers aged 18 years and 101 days.

 The solution is to create an [Age Range] attribute that has members [0 - 19], [20

- 29], [30 - 39] and so on. The most efficient way to do this is to enhance the ETL

that populates the customer table to populate a new age_range column.

<Table name='customer'>
<ColumnDefs>
<CalculatedColumnDef name='age_range'>

<ExpressionView>

Define calculated
age_range column

107Calculations

<SQL>
CASE FLOOR(<Column name='age'/> / 10)
WHEN 0 THEN '0 - 19'
WHEN 1 THEN '0 - 19'
WHEN 2 THEN '20 - 29'
WHEN 3 THEN '30 - 39'
WHEN 4 THEN '40 - 49'
WHEN 5 THEN '50 - 59'
ELSE '60+'
END

</SQL>
</ExpressionView>

</CalculatedColumnDef>
</ColumnDefs>

</Table>

You can also apply this bucketing approach to convert measure values into attributes.

For example, the column sales_fact_1997.store_sales is a measure. But suppose

you create a new column in the fact table, order_size, whose value is Small for orders

less than $100, Medium for orders less than $1000, and otherwise Large. This column

can be used as an attribute. (Technically, it’s a degenerate dimension; these are

described in section 5.2.)

 This is another case where a calculated column is useful while you’re developing

the formula:

<Table name='sales_fact_1997'>
<ColumnDefs>
<CalculatedColumnDef name='order_size'>

<ExpressionView>
<SQL>

CASE
WHEN <Column name='store_sales'/> < 100

THEN 'Small'
WHEN <Column name='store_sales'/> < 1000

THEN 'Medium'
ELSE 'Large'
END

</SQL>
</ExpressionView>

</CalculatedColumnDef>
</ColumnDefs>

</Table>

When the formula is correct, you can improve performance by changing your ETL

process to make it a real column.

5.4.2 Calculated members

You just saw a few ways to enhance a model by writing expressions in SQL, but things

get really interesting when you use the MDX language to define calculations. The MDX

language allows you to define calculations that depend on the results of other calcula-

tions. In this respect, Mondrian is like a spreadsheet.

Reduce number of
clauses in the CASE
expression with
integer division

Define calculated
order_size column

Use < for <
because this is
XML

108 CHAPTER 5 How schemas grow

 But in a spreadsheet you define a calculation in each cell you wish to be calculated.

Because Mondrian’s set of cells is unlimited, and because cells don’t come into exis-

tence until you ask for them to be calculated in a query, it’s not practical to store cal-

culations in cells. Instead, Mondrian defines calculations in the dimensions of the

cube as calculated members.

 It’s as if your spreadsheet allowed you to define a formula on a column (say col-

umn C) that applied to all cells in that column, and furthermore allowed you to define

a formula on a row (say row 2) that applied to all cells in that row. When you compute

cell C2, there are two formulas that need to be applied, in a well-defined order. It’s a

little confusing at first, but very powerful.

A CALCULATED MEASURE

Let’s consider a simple example first. [Profit] is a calculated member that belongs to

the [Measures] dimension, and it’s computed with the following formula:

[Measures].[Store Sales] - [Measures].[Store Cost]

Here it is applied in a query:

mdx> SELECT
> { [Measures].[Store Cost],
> [Measures].[Store Sales],
> [Measures].[Profit] } ON Columns,
> Descendants(
> [Product].[Products].[Drink], 2, SELF_AND_BEFORE) ON Rows
> FROM [Sales];

Store Cost Store Sales Profit
===== ========= ==================== ========== =========== ==========
Drink 19,477.23 48,836.21 $29,358.98

Alcoholic 5,576.79 14,029.08 $8,452.29
Beverages

Beer and Wine 5,576.79 14,029.08 $8,452.29
Beverages 11,069.53 27,748.53 $16,679.00

Carbonated Beverages 2,484.60 6,236.35 $3,751.75
Drinks 2,247.11 5,642.29 $3,395.18
Hot Beverages 3,708.08 9,261.74 $5,553.66
Pure Juice Beverages 2,629.73 6,608.15 $3,978.42

Dairy 2,830.92 7,058.60 $4,227.68
Dairy 2,830.92 7,058.60 $4,227.68

When used in a query, the calculated measure works the same way as the stored mea-

sures [Store Cost] and [Store Sales].

 Calculated members can be defined either in an MDX query or in the schema (spe-

cifically, in a cube definition). There are advantages to each. Calculated members in

the schema are available to all analytics that use the cube. They’re easy to share and

maintain. In contrast, calculations in a query can be written on the fly by the user (or

tool) writing the query, so they’re better for rapid iterations.

 Let’s look at how you can add a calculated member to the schema definition.

109Calculations

DEFINING CALCULATED MEMBERS IN THE SCHEMA

Calculated members are defined in a section of the Cube element we haven’t used

before, called CalculatedMembers, as shown in listing 5.6.

<Cube name='Sales'>
...
<CalculatedMembers>
<CalculatedMember name='Profit'

hierarchy='[Measures].[Measures]'>
<Formula>

[Measures].[Store Sales] - [Measures].[Store Cost]
</Formula>

</CalculatedMember>
</CalculatedMembers>

</Cube>

Note that we’ve defined the formula and format string using subelements. If you pre-

fer a more compact notation, you can use the formula and formatString attributes.

Listing 5.7 defines an equivalent calculated member with the <Formula> element

being replaced by a formula attribute.

<CalculatedMember name='Profit'
hierarchy='[Measures].[Measures]' formatString='Currency'
formula='[Measures].[Store Sales] - [Measures].[Store Cost]'/>

XML CHARACTERS You have to take a little care with characters such as the
opening angle bracket (<) and the single quote ('), because of slight differ-
ences in how XML handles text in attributes versus elements. If you’re having
trouble with escaping, move to the first format and enclose the text of your
formula in a <![CDATA[...]]> section.

DEFINING CALCULATED MEMBERS IN A QUERY

Calculated members can also be defined in queries, using the WITH MEMBER clause of

an MDX statement. This makes them more flexible for rapid development.

 We don’t have time in this chapter for a deep dive into MDX syntax, but a simple

example should give you the general idea. The query in listing 5.8 defines a calculated

member equivalent to the previous examples.

mdx> WITH MEMBER [Measures].[Profit] AS
> [Measures].[Store Sales] - [Measures].[Store Cost],
> FORMAT_STRING = 'Currency'
> SELECT
> { [Measures].[Store Cost],
> [Measures].[Store Sales],
> [Measures].[Profit] } ON Columns,

Listing 5.6 Calculated member defined in a cube

Listing 5.7 Calculated member defined in a cube using compact notation

Listing 5.8 Calculated member defined in an MDX query

[Profit] calculated
member

MDX expression
to be evaluated

110 CHAPTER 5 How schemas grow

> Descendants(
> [Product].[Products].[Drink], 2, SELF_AND_BEFORE) ON Rows
> FROM [Sales];

Store Cost Store Sales Profit
===== ========= ==================== ========== =========== ==========
Drink 19,477.23 48,836.21 $29,358.98

Alcoholic 5,576.79 14,029.08 $8,452.29
Beverages

Beer and Wine 5,576.79 14,029.08 $8,452.29
Beverages 11,069.53 27,748.53 $16,679.00

Carbonated Beverages 2,484.60 6,236.35 $3,751.75
Drinks 2,247.11 5,642.29 $3,395.18
Hot Beverages 3,708.08 9,261.74 $5,553.66
Pure Juice Beverages 2,629.73 6,608.15 $3,978.42

Dairy 2,830.92 7,058.60 $4,227.68
Dairy 2,830.92 7,058.60 $4,227.68

Calculated members behave similarly, whether you define them in a query or a cube;

which you choose is a matter of convenience. Calculated members in a cube can be

used by any report that uses that cube (subject to access control). A query can be edited

more easily than a schema, so many people use this approach for development

and debugging.

DEBUGGING CALCULATIONS Develop your calculations in an MDX statement,
and paste them into your schema definition when they’re correct.

Mondrian uses a very similar trick behind the scenes. While it’s loading a schema, it

needs to validate the calculated members and named sets in each cube. These calcula-

tions can depend on each other and can even be recursive. Mondrian solves the prob-

lem by internally generating an MDX statement that contains all calculated members

and named sets, so that it can validate them all simultaneously. This monster state-

ment is usually invisible, but it will surface from the depths if you have made an error

in one of your calculations.

 Let’s try adding another calculated member, this time with a subtle error in the

schema:

<CalculatedMember name='Profit'
hierarchy='[Measures].[Measures]'>

<Formula>
[Measures].[Store Sales] - [Measures].[Store Cost]

</Formula>
</CalculatedMember>
<CalculatedMember name='Profit Growth'

hierarchy='[Measures].[Measures]'>
<Formula>
([Measures].[Profit], [Time].PreviousMember)

</Formula>
</CalculatedMember>

[Profit] calculated
member, as before

[Profit Growth]
calculated member

The mistake:
PreviousMember
should be
PrevMember

111Calculations

Mondrian duly fails to create the connection, giving you a nasty-looking error stack:

mondrian.olap.MondrianException: Calculated member or named set in cube
'Sales' has bad formula

at mondrian.resource.MondrianResource$_Def0.ex
...
Caused by: mondrian.olap.MondrianException: Failed to parse query 'WITH
MEMBER [Measures].[Measures].[Profit]

AS '[Measures].[Store Sales] - [Measures].[Store Cost]',
[$member_scope] = 'CUBE',
MEMBER_ORDINAL = 3
MEMBER [Measures].[Measures].[Profit Growth]

AS '([Measures].[Profit], [Time].PreviousMember)',
[$member_scope] = 'CUBE',
MEMBER_ORDINAL = 4
SELECT FROM [Sales]'

at mondrian.resource.MondrianResource$_Def0.ex
...
Caused by: mondrian.olap.MondrianException: MDX object

'[Time].PreviousMember' not found in cube 'Sales'
at mondrian.resource.MondrianResource$_Def1.ex
at mondrian.olap.Util.lookup

...

Buried in the stack, you can see the MDX statement that Mondrian’s schema loader

has generated, with the formulas of the two calculated members. The next error on

the stack comes from Mondrian’s MDX validator:

MDX object '[Time].PreviousMember' not found in cube 'Sales'

This tells you the root cause of the problem: an MDX expression. The built-in property

you need is called PrevMember not PreviousMember. Once you fix the formula, the

schema will load successfully and you can run a query:

mdx> SELECT {[Measures].[Profit],
> [Measures].[Profit Growth]} ON Columns,
> CrossJoin(
> Descendants(
> [Product].[Products].[Drink], 1, SELF_AND_BEFORE),
> [Time].[1997].Children) ON Rows
> FROM [Sales];

| | Profit | Profit Growth |
+-------+---------------------+------+----+-----------+---------------+
Drink		1997	Q1	$6,964.30	$6,964.30
			Q2	$7,186.11	$221.81
			Q3	$7,203.34	$17.23
			Q4	$8,005.22	$801.88
	Alcoholic Beverages	1997	Q1	$1,858.19	$1,858.19
			Q2	$2,117.16	$258.97
			Q3	$2,086.54	($30.62)
			Q4	$2,390.40	$303.85
	Beverages	1997	Q1	$4,069.30	$4,069.30
			Q2	$4,077.05	$7.74
			Q3	$4,127.92	$50.87

112 CHAPTER 5 How schemas grow

			Q4	$4,404.73	$276.81
	Dairy	1997	Q1	$1,036.80	$1,036.80
			Q2	$991.90	($44.90)
			Q3	$988.88	($3.02)
			Q4	$1,210.10	$221.21

Calculations are powerful because they can be built out of other calculations (as

[Profit Growth] is built from [Profit]) and because they can be applied in a wide

variety of contexts. Here, the calculations work on members of the [Product Family]

and [Product Department] levels of the [Products] hierarchy, but they would work

on any hierarchy.

CALCULATED MEMBERS ON DIMENSIONS OTHER THAN [MEASURES]

You can create calculations on hierarchies other than [Measures]. Here, for example,

is a [Top 10] member in the [Customers] hierarchy.

<CalculatedMember name='Top 10'
hierarchy='[Customer].[Customers]'>

<Formula>
Aggregate(

TopCount([Customer].[Name].[Name].Members,
10, [Measures].Value))

</Formula>
</CalculatedMember>

[Top 10] can apply to virtually any other hierarchy. (I’ll explain what I mean by “virtu-

ally” in a moment.) The following example applies it to measures and gender to com-

pute sales and profit based on the top 10 male and female customers. All that from a

small formula!

mdx> SELECT {[Measures].[Store Sales],
> [Measures].[Profit]} ON Columns,
> CrossJoin(
> [Customer].[Gender].Children,
> {[Customers].[All Customers],
> [Customers].[Top 10],
> [Customers].[USA].[CA]}) ON Rows
> FROM [Sales];

Store Sales Profit
= ============= === == =========== ===========
F All Customers 280,226.21 $168,448.73

Top 10 7,748.11 $4,659.42
All Customers USA CA 79,050.79 $47,459.17

M All Customers 285,011.92 $171,162.17
Top 10 8,603.81 $5,191.79
All Customers USA CA 80,117.05 $48,178.24

You could easily write queries to find the top 10 customers buying beer, or the top 10

customers in Q3 2004, or even the top 10 female customers buying beer in Q3 2004.

But you can’t find the top 10 customers in Oregon, or Mexico, or Pacific Grove, CA.

Here’s what I meant by “virtually”: the only hierarchy you cannot apply [Top 10] to is

113Calculations

its own, [Customers]. That’s because only one member of a hierarchy can be current

at a time. If [Top 10] is the current member, then all other customers aren’t.

USING HANGER DIMENSIONS TO ALLOW CALCULATION ON ALL DIMENSIONS

If a calculated member can’t intersect its own dimension, how can you create a calcu-

lated member that can intersect [Customers] as well as all other dimensions? The

solution is to move [Top 10] into its own dimension, a dimension reserved for calcu-

lations. This kind of dimension is called a hanger dimension.

 To define a hanger dimension, specify hanger='true' in the dimension defini-

tion, and define an attribute. You don’t need to map that attribute to any tables or col-

umns; in fact, Mondrian won’t let you. Nor will it let you create a ForeignKeyLink to

join the dimension to the measure group’s fact table. A hanger dimension is discon-

nected from the star schema; it just hangs out on its own.

<Cube name='Sales'>
<Dimensions>
...

<Dimension name='Top' hanger='true'>
<Attributes>

<Attribute name='Customers'/>
</Attributes>

</Dimension>
</Dimensions>
...

<CalculatedMembers>
...

<CalculatedMember hierarchy='[Top].[Customers]' name='Top 10'>
<Formula>

Aggregate(
TopCount([Customer].[Customers].[Name].Members,

10, [Measures].Value)</Formula>
</CalculatedMember>

</CalculatedMembers>
</Cube>

Using that hanger dimension, you can find the sales for the top 10 customers in

California.

mdx> SELECT {[Measures].[Unit Sales], [Measures].[Profit]} ON Columns,
> CrossJoin(
> {[Customer].[Customers].[USA],
> [Customer].[Customers].[USA].[CA]},
> {[Top].[Customers], [Top].[Customers].[Top 10]}) ON Rows
> FROM [Sales];

Unit Sales Profit
=== == ============= ========== ===========
USA All Customers 266,773 $339,610.90

Top 10 4,123 $5,400.41
CA All Customers 74,748 $95,637.41

Top 10 4,123 $5,400.41

Hanger
dimension

Attributes in hanger
dimensions don’t
have columns

Calculated member in
Customers hierarchy
of hanger dimension

114 CHAPTER 5 How schemas grow

Hanger dimensions also have other uses. You can use them for the “budget versus

actual” comparison commonly used by accountants. Create a [Budget vs Actual]

hanger dimension with two members, [Budget] and [Actual], and make your mea-

sures into formulas that redirect to different base measures (maybe in different measure

groups) depending on which is current. For example, the [Sales] measure would be

a calculation:

Iif([Budget vs Actual].CurrentMember Is [Budget vs Actual].[Budget],
[Measures].[Budget Sales],
[Measures].[Actual Sales])

You can also use a hanger dimension to create a parameter with a fixed set of values.

For instance, when determining investment strategy, you might create an [Interest

Rate] dimension with values [2%], [3%], and [4%]. Then you could use those values in

other calculations. In many UIs, if you include this dimension in the slicer, the UI will

present the values in a drop-down list. If you include the hanger dimension on an axis,

you can compare scenarios with different interest rates side by side.

 Lastly, Mondrian uses hanger dimensions to implement writeback. The system-

generated [Scenario] dimension is, behind the scenes, a hanger dimension. (Scenar-

ios and what-if analysis are described in section 11.2).

5.5 Summary

In chapter 4 we discussed the elements of a Mondrian schema, and this chapter filled

out that knowledge. Using multiple cubes, multiple dimensions, and various kinds of

calculations, you should be able to model complex business intelligence applications.

We also covered some advanced dimension and hierarchy types: parent-child hierar-

chies, ragged hierarchies, star and snowflake dimensions, and degenerate and hanger

dimensions. You should have a good understanding of the basics now, but if you need

more detail about the XML elements and attributes that make up the schema, consult

the online Mondrian documentation.

 Further chapters of this book will build on what you’ve learned here and will focus

on particular subject areas. In particular, the following chapters introduce further

schema elements:

■ Chapter 7 describes how to tune a Mondrian system. Some tuning techniques call

for aggregate tables (defined using the MeasureGroup element).

■ Chapter 10 describes how to extend the capabilities of your Mondrian system

using your own and third-party code. Elements such as UserDefinedFunction

register these extensions in a Mondrian schema.

First, though, chapter 6 will cover access control and introduce the Role, CubeGrant,

and related elements.

115

Securing data

A key consideration in any organization is limiting access to sensitive data, and

Adventure Works is no exception. They want to be able to restrict sensitive sales

information to only the sales managers who need it. They also want to make sure

that only HR has access to human resource information about employees.

 There are a number of ways to limit data access, such as by user ID, roles, or a

user’s attributes. Mondrian uses an approach called role-based access control

(RBAC). In an RBAC data approach, users are assigned roles, and data is restricted

by the role assigned to the user. Using RBAC means you don’t need to manage per-

missions for each individual user.

 This chapter will show you how to restrict access to specific data items, dimen-

sions, and even the entire schema.

This chapter is recommended for

Business analysts

✓ Data architects

✓ Enterprise architects

Application developers

116 CHAPTER 6 Securing data

6.1 Use of roles

The first things to understand are what a role is and how it can be used by Mondrian

to restrict access to data. After reading this section, you’ll understand what roles are,

how they’re generally applied to restrict data, and how they’re provided via external

settings. You’ll also see how to set the default role in the schema. Finally, we’ll touch

on the concept of joint roles, which let you combine multiple roles together to create

entirely new roles.

6.1.1 What’s a role?

A role can be thought of as a collection of the rights and responsibilities of a per-

son. For example, one role might be that of sales manager. This person would be

interested in the sales of the people under him or her, the level of sales for particu-

lar products or services, and who the top customers are. To perform this role, the

sales manager would need access to information about products, sales, customers,

and so on.

 A separate role might be that of inventory manager. This person would be more

interested in the sale of items by time period, popular items by region, and similar

inventory-related items. The inventory manager doesn’t need to know profit margins,

top customers, or top salespeople.

 By assigning individuals to roles, it’s possible to then restrict access to data. Table 6.1

shows a simplified view of which roles should have access to which data. In this case, the

fact table contains sales data, and there are four general roles that have access to dif-

ferent parts of the cube.

■ The product manager role is given access to the numbers of items being sold,

including the locations and dates of the sales. The product manager can use

this information to determine popular products and make decisions about

what new products to sell or products to discontinue. The product manager

isn’t given details of the sales, such as customer information and salesper-

son information.

■ The inventory manager cares about the movement of inventory in order to

anticipate stock levels in the various warehouses. The inventory manager

doesn’t require sales details.

■ The US sales manager will see almost all information about sales but doesn’t

know the details of specific item sales. This manager is interested in how sales

are going, who the big customers are, and who the top salespeople are.

■ State sales manager is a variation of the US sales manager. Adventure Works

restricts sales information for state sales managers so they can only see the data

from their state.

117Use of roles

TOO MANY ROLES? In the preceding example, you’ll notice that Adventure
Works had to create 50 different roles for the various state managers. In a
global company, there might be thousands if various regions are described.
Even more challenging is if each store has a manager who needs their own
data restrictions. In chapter 8, we’ll show you how to use information from
the user session to restrict data access, eliminating the need for so many roles.

You also need to understand the concept of a joint role. A joint role is the union of two

or more roles into a single role. A user with this role will have rights to see anything

that any of the combined roles can see. For example, if the product manager and sales

manager are combined, someone with the product and sales manager role would see

both inventory and sales information. This can be useful for managers who oversee

multiple departments and need access to all data without having to create a com-

pletely new role. Note that this means that if something is restricted in one role but

allowed in the other, the person with the joint role can see that data.

 There are two ways to combine roles. The first is by explicitly declaring a joint role

with the Union element, as shown in section 6.1.2. The Union element lists the names

of the previously defined roles and then assigns the combined role security into a single

role with a new name. This role has the combined privileges of all of the combined roles.

 The second way of combining roles is to define them implicitly at connection time

by having the user be in two or more existing roles. Because a joint role can see data from

both roles, it’s important when designing and assigning roles to make sure users in mul-

tiple roles will only see the data that they really should. If you’re using a lot of roles and

complex filters, this can get confusing and hard to manage. In this case, it might be bet-

ter to create explicit combined roles and have each user assigned to the joint roles.

Table 6.1 Data access by role

Data Product manager
Inventory

manager

US sales

manager

State sales manager

(individual state data only)

Warehouse ✓

Customer ✓ ✓

State ✓ ✓ ✓ ✓

Item ✓ ✓ ✓ ✓

Sale price ✓ ✓

Qty purchased ✓ ✓ ✓ ✓

Sales person ✓ ✓

118 CHAPTER 6 Securing data

6.1.2 Declaring roles in the Mondrian schema

Roles must be defined in the Mondrian schema to which they’ll be applied. Listing 6.1

shows the high-level role declarations. The basic declaration of a role is simple; just

use the Role element and assign a value to the name attribute. Later sections will

describe the various security grants that can be given. The last role declaration com-

bines the product and sales manager role using the Union element.

<Role name="Inventory Manager">
<grants>...</grants>

</Role
<Role name="Product Manager">

<grants>...</grants>
</Role>
<Role name="US Sales Manager">

<grants>...</grants>
</Role>
<Role name="WA Sales Manager">

<grants>...</grants>
</Role>
<Role name="OR Sales Manager">

<grants>...</grants>
</Role>
<Role name="ID Sales Manager">

<grants>...</grants>
</Role>
<Role name="Product and Sales Manager">

<Union>
<RoleUsage roleName="General Sales Manager"/>
<RoleUsage roleName="Product Manager"

</Union>
</Role>

6.1.3 Enforcement of roles

Mondrian allows you to define role-based restrictions for security. For example, if a

user is assigned to the role of sales manager, that person can only see data that a sales

manager is allowed to see. If sales managers aren’t allowed to see information about

customers, anyone assigned to this role couldn’t see customer information unless

they’re assigned to a second role that gives access to customer information.

 Mondrian schemas define roles, and Mondrian enforces roles, but it’s up to the

container to provide the role of the user when performing queries. The container

does this when it makes a connection to Mondrian. It’s important to remember that

Mondrian doesn’t perform any authentication for incoming requests. Mondrian

assumes that the security is handled by the container and that the roles provided are

correct. This makes sense, because it means Mondrian can be used in a wide variety of

containers and security scenarios without change. But it also means that if the con-

tainer doesn’t properly apply security restrictions, Mondrian will return data that you

might want restricted.

Listing 6.1 Declaring roles

Inventory manager role

Product manager role

US sales manager role

WA state sales manager role

Union role

119Use of roles

 How roles are set depends on the container. If you’re writing your own application,

setting roles must be part of the code. If you’re using the Saiku server, you can set the

user roles in the users.properties file. Finally, if you’re using Mondrian with Pentaho,

you have to tell Pentaho to send role information to Mondrian via XML configuration.

Because Pentaho is the most common container for Mondrian, we’ll explore how to

configure security for Pentaho.

 Pentaho security is configured by specifying a role mapper, which will then map

from Pentaho user roles to Mondrian roles. The configuration is done in the Pentaho

Objects.spring.xml file located in the pentaho-solutions/system directory. In chapter 8,

you’ll see how to programmatically assign custom roles, but for now we’ll use the stan-

dard role mappings provided.

NO ROLE MAPPER MEANS NO SECURITY A common mistake with new users to
Mondrian security is to forget to assign the role mapper. The default, if no
roles are set, is to have no security applied. That means that all users will see
all data in the schema.

Keep in mind that we’re talking about two different roles. The first is the role as

understood by the container. Sometimes these are called groups, but Pentaho uses the

term role. The second is the role as defined in the Mondrian schema. Our goal is to

map between the Pentaho role and the Mondrian role.

 There are three predefined role mappers in Pentaho, and each takes a slightly dif-

ferent approach. By default, no role mappers are defined, which means that Mon-

drian will not be told to restrict by role, and all users will have access to everything.

The bean ID in the configuration file is called Mondrian-UserRoleMapper. The follow-

ing sections describe each of the role mappers, along with their configurations.

ONE-TO-ONE ROLE MAPPER

The one-to-one role mapper is the simplest of the role mappers. It passes the Pentaho

roles of the user to Mondrian, so if a user has a role of “Sales Manager” in Pentaho,

then that’s passed to Mondrian without changes. Because many companies develop

Mondrian schemas for existing users and roles, this is a very common role mapper.

 This mapper has an optional parameter called failOnEmptyRoleList that will

throw an exception if no role matches from user to role are found. This is the default

behavior for the mapper, and it’s safe. You can, however, set this value to true, in

which case a user with no role mapping will have all permissions, as if no role mapper

was specified. To configure this role mapper, simply uncomment or add the bean dec-

laration shown in listing 6.2

<bean id="Mondrian-UserRoleMapper"
name="Mondrian-One-To-One-UserRoleMapper"
class="org.pentaho.platform.plugin.action.

mondrian.mapper.MondrianOneToOneUserRoleListMapper"
scope="singleton" />

Listing 6.2 One-to-one role mapper configuration

120 CHAPTER 6 Securing data

LONG JAVA CLASS NAMES The class for the role mappers is spread over two
lines in the text due to formatting limitations. When you’re configuring Mon-
drian, the entire class name will be on one line inside the quotes.

LOOKUP-MAP ROLE MAPPER

The lookup-map role mapper maps Pentaho roles to Mondrian roles. This might be

useful when you’re using the same schema for different customers or departments

that have different names for the same roles.

 The configuration for this mapper is shown in listing 6.3. To add a role mapping,

simply enter a key value that represents the role in Pentaho. Then enter a value that

the Pentaho role will be mapped to in Mondrian. When Pentaho makes calls to Mon-

drian, it will look at the user’s roles and pass the mapped roles instead.

<bean id="Mondrian-UserRoleMapper"
name="Mondrian-SampleLookupMap-UserRoleMapper"
class="org.pentaho.platform.plugin.action.

mondrian.mapper.MondrianLookupMapUserRoleListMapper"
scope="singleton">

<property name="lookupMap">
<map>

<entry key="sales_manager" value="Sales Manager" />
<entry key="product_manager" value="Product Manager" />
<entry key="inventory_manager" value="Inventory Manager" />

</map>
</property>

</bean>

USER-SESSION ROLE MAPPER

The user-session role mapper maps from a session attribute of the user to one or more

Mondrian roles. When Pentaho makes a connection to Mondrian, it will look at the

user session and find the session attribute. The values in this session attribute will then

be passed to Mondrian.

 The only configuration item you need to provide is the name of the session attri-

bute to use for the roles. In the following listing, the session attribute name is Mondri-

anUserRoles.

<bean id="Mondrian-UserRoleMapper"
name="Mondrian-SampleUserSession-UserRoleMapper"
class="org.pentaho.platform.plugin.action.

mondrian.mapper.MondrianUserSessionUserRoleListMapper"
scope="singleton">

<property name="sessionProperty"
value="MondrianUserRoles" />

</bean>

Listing 6.3 Lookup-map role mapper configuration

Listing 6.4 User-session role mapper configuration

Session attribute
that contains roles

121Use of roles

There are a number of ways that the session can be populated, and section 8.1 will

explain how to populate session variables when a user session starts. The user-

session role mapper will then extract the value from the session and convert it to

Mondrian roles.

 The conversion that takes place depends on the type of value in the session attri-

bute. Table 6.2 shows the conversion for each recognized type. The conversions are

chosen in the order listed.

YOUR VERY OWN ROLE MAPPER

If none of the provided role mappers meets your needs, you can also create your own.

The simplest approach is to extend the abstract class org.pentaho.plat-

form.plugin.action.mondrian.mapper.MondrianAbstractPlatformUserRoleMap-

per. This class does most of the heavy lifting and only requires you to implement a

single method:

protected abstract String[] mapRoles(String[] mondrianRoles, String[]

platformRoles) throws PentahoAccessControlException;

VIEWING THE PENTAHO MAPPERS You can also look at the Pentaho mappers to see
how they work. The source code is in a public Subversion repository that anyone
can access online. The root for the Mondrian platform extensions is http://
source.pentaho.org/viewvc/svnroot/pentaho-platform/trunk/extensions/src/.

The method receives an array of Mondrian roles from the schema and a set of plat-

form roles from Pentaho. It’s up to the role mapper to map between the two and

return an array of roles for the user to pass to Mondrian. The method is also expected

to throw a PentahoAccessControlException if the user shouldn’t have access to Mon-

drian for some reason.

 To make the concept a bit more concrete, listing 6.5 shows an example of a role map-

per. The management of Adventure Works has decided to restrict roles based on state.

Rather than create a unique role for each user, however, they’ll simply append the two-

letter acronym for the state to each role except Authenticated and Admin. This is done

by looking up the state for the user and then adding it to the end of each role. The code

for getting the state isn’t included here. Note that a production version might also check

to see if the new role exists in the Mondrian schema, but it’s not required.

Table 6.2 Session attribute to role list conversion process

Attribute type Conversion approach

String [] Each array entry is used as a Mondrian role.

java.util.Collection Each entry in the collection is converted to a string using

Object.toString().

Object [] Each object in the array is converted to a string using Object.toString().

Anything else The object is converted to a string using Object.toString().

http://source.pentaho.org/viewvc/svnroot/pentaho-platform/trunk/extensions/src/
http://source.pentaho.org/viewvc/svnroot/pentaho-platform/trunk/extensions/src/

122 CHAPTER 6 Securing data

package org.pentaho.mondrian.mapper;

import org.pentaho.platform.api.engine.PentahoAccessControlException;
import org.pentaho.platform.plugin.action.mondrian

.mapper.MondrianAbstractPlatformUserRoleMapper;

public class UserStateRoleMapper
extends MondrianAbstractPlatformUserRoleMapper {

protected String[] mapRoles(String[] mondrianRoles,
String[] platformRoles)

throws PentahoAccessControlException {

String userState = getUserState();
String [] newRoles = new String[platformRoles.length];
for (int cnt = 0; cnt < platformRoles.length; cnt++) {

newRoles[cnt] = platformRoles[cnt] + "_" + userState;
}

return newRoles;
}

private String getUserState() {
return "WA";

}
}

The last step to get this to work is to configure the Pentaho Objects.xml file to use the

new class as the role mapper. The following listing shows what this looks like. This dec-

laration can be put in the same area as the commented-out role mappers.

<bean id="Mondrian-UserRoleMapper"
name="Mondrian-One-To-One-UserRoleMapper"
class="org.pentaho.mondrian.mapper.UserStateRoleMapper"
scope="singleton" />

So far we’ve explored the concept of roles for restricting data. We’ve talked about

what roles are and how they’re mapped. But we still haven’t restricted access to any

data. The next section will show you how to apply a wide variety of controls to the data

based on the roles you’ve defined.

6.2 Security grants

Now that you have a few roles, it’s time to restrict data, but how do you specify the data

to be restricted? Suppose you only want the product manager to see the state, item,

and quantity purchased. Next, you want the state sales manager to see all of the same

data as the US sales manager, but only for the one state. This section shows how to

apply such restrictions.

Listing 6.5 User-state role mapper

Listing 6.6 User-state role mapper configuration

Implement
abstract method

Add state
to the role

Return array of
roles for Mondrian

Get user’s state

123Security grants

Mondrian security grants can be thought of as a set of filters on the data, and the role

can only see what their filters let through. At each level in the schema, the user can

have data explicitly blocked or shown. The nesting of the security grants matches the

general nesting of the schema design, as shown in figure 6.1.

 The SchemaGrant applies to the entire schema. Nested inside of that, the Cube-

Grant controls access to individual cubes. Each cube can have further restrictions

through DimensionGrant and HierarchyGrant. Finally, access controls can be applied

to individual members via MemberGrant. We’ll discuss each of these types of grants in

detail in the remainder of this section.

6.2.1 Schema grants

The first security grant is the SchemaGrant, and it has one attribute, access. There are

three options available for SchemaGrant access: all, none, and all_dimensions. The

all and none access grants are the most common. The access type of all_dimensions

is rarely used; it gives the same results as none and is likely to be removed in the future,

so we won’t cover it further here. The next few sections explain the use of each of the

schema grant types.

SCHEMA GRANT ALL

Listing 6.7 shows the use of the all option. It gives the role access to all of the cubes

and dimensions in the schema, but you can later limit access to all or parts of the data

using finer detailed grants. Other grants are nested within the schema grant.

Adventure Works schema

Year: 2010, 2011, 2012

Time dimension

CubeGrant

MemberGrant

HierarchyGrant

State: CA, ID, OR, WA

Local dimension

Measure: Qty orders, sales

Measures

Internet sales cube

Role: Manager, developer

Employee dimension

CubeGrant

SchemaGrant

DimensionGrant

Payments: $1200, $1500

Measures

Human resources cube

Figure 6.1 Security grants within security grants

124 CHAPTER 6 Securing data

<Role name="Product Manager">
<SchemaGrant access="all">
<!-- other grants -->

</SchemaGrant>
</Role>

SCHEMA GRANT NONE

Listing 6.8 shows the use of the none option. This option is used when you want to

restrict a user from seeing the schema completely. For example, maybe you have a

schema completely dedicated to Human Resources and want to limit it from everyone

except HR. You can create a role that all users get except HR, and then restrict the

schema from this role with a few lines of XML.

<Role name="Product Manager">
<SchemaGrant access="none">
</SchemaGrant>

</Role>

The more common use of setting access to none is to then grant access back to users.

When a role has no access to the schema, they won’t be able to see any of the dimen-

sions or cubes in the schema. If your schema has a lot of different cubes, this is an easy

way to initially restrict access to all of the cubes. Then, when specific cubes are to be

used by certain roles, you can simply add the cubes back. This also has the advantage

that if new cubes are added to the schema, the old roles won’t be able to see the new

cubes unless permission is explicitly granted, which means you don’t need to remem-

ber to restrict access to the new cubes.

 Note that when a role is granted access to something, it’s implicitly given access to

the parent. This means that if you use an access type of none for a schema and then

grant access to a cube, the role now has access to the schema as well. In this case, an

access type of none is a shortcut to taking away access from all other cubes except the

one(s) specified.

PENTAHO’S AUTHENTICATED ROLE When using the default configuration in
Pentaho, all logged-in users will have the Authenticated role. This is a conve-
nient role for limiting or granting access to all users of the system. For exam-
ple, if you create an Authenticated role and use a schema grant
access="none", the default behavior is to have no access to the schema unless
it’s explicitly granted. In cases where data is sensitive and new roles may be
created by others, this can be a good security precaution.

6.2.2 Cube grants

The next level of detail in security grants below the schema is the CubeGrant. The

CubeGrant takes two attributes: the name of the cube that the grant applies to and the

Listing 6.7 Granting access to the entire schema

Listing 6.8 Granting access to none of the schema

Allow access to
entire schema

Deny access to
the schema

125Security grants

access control for the grant. There are only two options for cube grant access: all or

none. Both work similarly to the schema grant, but at the cube level.

CUBE GRANT ALL

The all option gives the role access to the cube. If a user has no access to the schema,

this gives access to the particular cube but no others. As with the previous schema

options, you can restrict access to parts of the cube after granting access. A common

approach is to restrict access to a role that every user will have, such as Authenticated,

and then specifically grant access to the cubes the user should be able to see.

 The following listing shows the use of the all option at the cube level. In this case,

the product manager didn’t have access to the schema but is given access to the Prod-

uct Sales cube.

<Role name="Product Manager">
<SchemaGrant access="none">

<CubeGrant cube="Product Sales" access="all">
</CubeGrant>
</SchemaGrant>

</Role>

CUBE GRANT NONE

A cube grant of none means that a user who is in the given role is not given access to

the cube. Unlike with the schema grant, once access to the cube has been taken away,

the user can’t see any of the cube data. A cube grant with no access would be used

when most users of the system can see many of the things in the schema, but you want

to restrict certain cubes for certain roles. Note that unless the restricted cube is for a

role that all users are guaranteed to have, there’s a higher risk of unintentionally giv-

ing access to the cube.

 Listing 6.10 shows the use of the none option. In this case, the product manager

has access to the entire schema but doesn’t need access to the Human Resources cube

that likely contains sensitive information about employees.

<Role name="Product Manager">
<SchemaGrant access="all">

<CubeGrant cube="Human Resources" access="none">
</CubeGrant>

</SchemaGrant>
</Role>

Cube grants are often all that you need for many cubes. If roles that are allowed to see

the cube can see everything in the cube, and those that aren’t don’t know about the

cube, this is enough. But you’ll often want to control access to parts of the cube.

That’s where hierarchy grants are used.

Listing 6.9 Granting access to the entire cube

Listing 6.10 Granting access to none of the cube

Deny access to
entire schema

Allow access to
Product Sales cube

Allow access to entire schema

Deny access
to HR cube

126 CHAPTER 6 Securing data

6.2.3 Dimension and hierarchy grants

If you recall from chapter 4, hierarchies make up the structure of dimensions. Each

dimension must have at least one hierarchy and one or more levels. Similarly, within a

cube grant you can have dimension and hierarchy grants, and these are both at the

same level. The dimension grant restricts access to an entire dimension and all of its

hierarchies, whereas a hierarchy grant specifies access to just a single hierarchy within

the dimension.

 The DimensionGrant has two required attributes: dimension, the name of the

dimension, and access, which can be either all or none. An access of all doesn’t usu-

ally add a lot of value, because it’s the default, so you’ll typically only use none. Dimen-

sion grants also can’t have any children. If you want finer-grained control over the

contents of a dimension, you’ll need to use a hierarchy grant.

 The following listing shows an example of a dimension grant that gives access to

the Location dimension and restricts access to the Customer dimension.

<Role name="Product Manager">
<SchemaGrant access="none">
<CubeGrant cube="Product Sales"

access="all">

<DimensionGrant dimension="[Location]"
access="all"/>

<DimensionGrant dimension="[Customer]"
access="none"/>

</CubeGrant>
</SchemaGrant>

</Role>

The HierarchyGrant has two required attributes: hierarchy, the name of the hierar-

chy, and access. The values for each of these attributes are described in the following

sections. There are also several optional attributes that we’ll discuss in a bit. As you’ll

also see, there are some special rules for the HierarchyGrant if you want to include

other grants.

 The name of the hierarchy can be either the full name of the hierarchy or, if the

hierarchy name follows the conventions of Mondrian and there is only one, just the

dimension name. For example, if the dimension is named [Product] and the hierar-

chy is named [Products], it is enough to set the hierarchy name to [Product]. But

if you have multiple hierarchies, such as [Org Structure.Financial] and [Org

Structure.Reporting], you’d need to specify the full name for the hierarchy you

want to use.

HIERARCHY GRANT ACCESS

The hierarchy grant has three types of access: all, none, and custom.

Listing 6.11 Granting access to dimensions

Deny access to entire schema
Grant access to

Product Sales cube

Allow access to the
Location dimension

Deny access to the
Customer dimension

127Security grants

All is used when you want to grant access to the entire hierarchy and all its members.

All is the default for hierarchies, so it’s rarely explicitly set. The following listing shows

how you would explicitly grant an access type of all to the hierarchy.

<Role name="Product Manager">
<SchemaGrant access="none">
<CubeGrant cube="Product Sales"

access="all">

<HierarchyGrant hierarchy="[Product].[Products]"
access="all"/>

</CubeGrant>
</SchemaGrant>

</Role>

The hierarchy access of none restricts a user from seeing a hierarchy, including any of

the levels or members in the hierarchy. The none option, shown in the following listing,

is useful when you want to allow a role to see all parts of a cube except certain ones.

<Role name="Product Manager">
<SchemaGrant access="all">
<CubeGrant cube="Product Sales"

access="all">

<HierarchyGrant hierarchy="[Product].[Products]"
access="none"/>

</CubeGrant>
</CubeGrant>
</SchemaGrant>

</Role>

The custom access role is only used, and must be used, when you want to specify access

to particular members in a level or if you want to specify a top or bottom level. Sup-

pose you want to restrict sales managers at the state level to only see the members in

their state. An example of the custom access with a MemberGrant is shown in the next

section. Note that if you use an access type of custom and then don’t specify any other

settings, it behaves like an access type of all.

TOP AND BOTTOM LEVELS

In addition to the hierarchy grant’s required attributes of name and access, there are

two optional attributes, topLevel and bottomLevel. These attributes allow you to

grant access to a range of levels within the hierarchy, and they’re only used with an

access of custom.

 The topLevel attribute specifies the highest level in the hierarchy a user is allowed

to view data at. For example, you may want to specify that managers can only see up to

the business unit level and not the entire organization.

Listing 6.12 Granting access to all of the hierarchy

Listing 6.13 Granting access to none of the hierarchy

Deny access to entire schema

Grant access to
Product Sales cube

Allow access to the
Product hierarchy

Allow access to entire schema

Allow access to
Product Sales cube

Deny access to the
Product hierarchy

128 CHAPTER 6 Securing data

 The bottomLevel attribute does the exact opposite; it restricts access to details

of data below a certain level. This is useful when you want to provide access to

the higher-level data but not the details. For example, perhaps you want to let

salespeople see how sales in general are doing, but not how individual salespersons

have done.

 Listing 6.14 shows an example of using the topLevel and bottomLevel attributes.

In this example, you’re restricting the product manager to only be able to see sales

information up to the country level and down to the city level. The product manager

won’t be able to see at the territory level above the country, nor will they see details

about specific stores.

<Role name="Product Manager">
<SchemaGrant access="all">
<CubeGrant cube="Product Sales"

access="all">

<HierarchyGrant hierarchy="[Location]"
access="all"
topLevel="[Location].[Country]"
bottomLevel="[Location].[City]"

/>
</CubeGrant>
</SchemaGrant>

</Role>

Figure 6.2 shows how the topLevel and bottomLevel attributes restrict access to parts

of the hierarchy. In this case, topLevel hides the territory level, and bottomLevel

hides the city level. The user would only have access to the lighter shaded data.

6.2.4 Member grants

Member grants provide finer-grained control to dimensions than hierarchy grants.

The role has access to the dimension but can only see the specific members that it is

given access to. For example, the location hierarchy has a state level that includes

as members all of the individual states. Suppose you want to restrict a state sales

Listing 6.14 Limiting access to certain levels of the hierarchy

Allow access to entire schema

Allow access to
Product Sales cube

Only see from city
to country levels

Figure 6.2 Top-

and bottom-level

restrictions

129Security grants

manager to see only the values associated with their state. To do so, you’ll want to

use a member grant.

CUSTOM HIERARCHY GRANT As mentioned previously, to use member grants,
the hierarchy grant for the hierarchy must have an access type of custom.

Member grants have two access levels: all and none. How these are interpreted can be

fairly complex, so it’s good to understand what’s going on. If you have a member

grant, no matter what the access, access to all other members is taken away. For exam-

ple, if you have access of type none on [Location].[Country].[USA], that’s equiva-

lent to a hierarchy access of type none. The difference is that instead of the hierarchy

being hidden from the user, the report will simply generate no data.

 On the other hand, if you grant access of all to a member, you’ll see that member,

its parents, and all its children. In the case of [Location].[Country].[USA] that

means you’d see [North America], [USA], [CA], [WA], and so on. Understanding how

each of these works allows you to combine them in a variety of ways.

 Listing 6.15 shows an example of limiting access to only the state of Washington.

The member grant that denies access to USA limits access to USA and all of its chil-

dren. This means the user can’t see USA, CA, OR, WA, and so on. It also means the user

can’t see Europe or Asia. The next line adds back access to WA. The result is that the

user can see USA and WA, but none of the other states or their children.

<Role name="Sales Manager - WA">
<SchemaGrant access="none">
<CubeGrant cube="Product Sales"

access="all">

<HierarchyGrant hierarchy="[Location]"
access="custom">

<MemberGrant member="[Location].[Country].[USA]"
access="none"/>1((mg_no_usa_access))

<MemberGrant member="[Location].[State].[WA]"
access="all"/>

</HierarchyGrant>
</CubeGrant>
</SchemaGrant>

</Role>

Table 6.3 shows how the grants work together. To understand how the restrictions

work, assume that you have multiple countries, including [USA] and all of its states. In

the table, we only show [CA], [ID], [OR], and [WA]. Note that we’re using the {} char-

acters to indicate an MDX set.

Listing 6.15 Limiting access to specific members of the hierarchy

Deny access to entire schema

Allow access
to Product
Sales cube

Custom
access for
members

Add back
access for WA

130 CHAPTER 6 Securing data

MEMBER GRANT RULES

A key concept of member grants is that they are order-dependent, and this can cause

confusion when you first start working with them. But if you keep the following in

mind when creating member grants, you should be OK.

■ Grants are order-dependent. If you grant access to a child and then deny access to a

parent, then the role can’t see the child. For example, if you create a member

access that can see [USA].[CA] and then deny access to [USA], the role will no

longer be able to see [USA].[CA].

■ Grants inherit from other grants. For example, if you deny access to [USA], all of

the child members are also denied access because access to the children

requires access to the parent. But access to children can be granted later. This

allows you to block access to a set of members and then only give access back to

a limited few.

■ Parents are implicitly granted access if a child is. This goes with the previous rule

about inheritance. In order to reach [USA].[WA], for example, you need to first

access [USA].

■ Member grants don’t override topLevel and bottomLevel attributes at the hierarchy

grant level. This means that even if you grant access to an individual store in a

state, but you set a bottom level of the city that the store is in, you’ll still only see

down to the city level.

ROLLUP POLICIES

When access is restricted to only certain members, it can cause aggregate values to

look incorrect. For example, you may have a list of sales by state for certain states, but

the total shown is larger. This is because the aggregate is applied for the given level.

To help in managing what users see at the higher aggregation levels, Mondrian pro-

vides a concept of rollup policies. Rollup policies tell Mondrian what to return for

higher levels of aggregation.

 Rollup policies are specified using the rollupPolicy attribute, and there are three

possible values: full, partial, and hidden.

Table 6.3 Comparing member grant combinations

[USA] access [WA] access State members available

none Not specified {}

all Not specified { [CA], [ID], [OR], [WA] }

none all { [WA] }

none none {}

all none {}

all all { [WA] }

131Security grants

 A full rollup policy lets the user see the aggregate value for all children, including

those that they couldn’t normally see. This is the default policy used by Mondrian if

no rollup policy is specified. Seeing all of the data can be confusing, however, because

some higher-level reports show all of the data and others show only the data the user

should see.

 A partial rollup policy means the user will only see the aggregates for the mem-

bers the user can see. If a user is restricted to the state of Washington, then an aggre-

gate for the US will only reflect values in Washington, not the entire United States.

This is usually the policy that makes the most sense to users.

 A hidden rollup policy will hide all data at the higher levels. This means that aggre-

gates above the restricted level are completely hidden. Note that different UIs reflect

hidden in different ways. JPivot, for example, will completely hide the aggregate,

whereas Analyzer will show no data for the query.

AGGREGATE VERSUS TOTAL You may have noticed that we’re using the term
aggregate instead of total when describing rollup policies. We use this term
because the aggregate is not always the total. In Mondrian, you can specify the
aggregate to be other values, such as the count or maximum value. The roll-
up policy will be applied correctly for any of the aggregate types.

An example should make this concept clear.

Table 6.4 shows some representative data from a

cube: we have four different states with sales for

each. Now assume there’s a member grant restric-

tion to only see WA. Table 6.5 shows the aggregate

(the sum in this case) value for each policy.

6.2.5 Measure grants

Measure grants are a special case of member

grants. Measures are simply another dimension

of the cube; the existing grants can be used to

restrict access to measures. There’s no way to

explicitly specify a measure grant.

 You can use DimensionGrant, Hierar-

chyGrant, and MemberGrant to restrict access as

you can with any other dimension, but if you

completely restrict a role from seeing any mea-

sures, Mondrian will throw an exception when

you attempt to use the cube. This means that

the only way to truly restrict access to measures

is to use a combination of MemberGrant that allows access to at least one measure.

 Listing 6.16 shows a partial listing limiting access to measures. In this case the

inventory manager is able to see the quantity of items ordered but not the sale price.

State Sales

CA 15,000

ID 3,000

OR 8,000

WA 11,000

USA total 37,000

Rollup policy USA aggregate sales

full 37,000

partial 11,000

hidden

Table 6.4 Sales data by state

Table 6.5 Results of rollup policies

with member restricted to WA

132 CHAPTER 6 Securing data

As described previously, this restricts the inventory manager to only seeing the quan-

tity of items ordered unless other members have access granted.

<Role name="Inventory Manager">
<SchemaGrant access="all">
<CubeGrant cube="Product Sales"

access="all">

<HierarchyGrant hierarchy="[Measures]"
access="custom">

<MemberGrant member="[Measures].[Sales Price]"
access="none"/>

<MemberGrant member="[Measures].[Qty Ordered]"
access="all"/>

</HierarchyGrant>
</CubeGrant>
</SchemaGrant>

</Role>

6.3 Summary

This chapter showed you how roles and security grants can be used to restrict access to

data. Roles can be assigned to users, and then those roles are assigned grants. Grants

can be any of the following:

■ SchemaGrants that can limit access to entire schemas

■ CubeGrants that can limit access to specific cubes

■ DimensionGrants that can limit access to entire dimensions

■ HierarchyGrants that can limit access to dimensional hierarchies

■ MemberGrants that can limit access to specific members within a hierarchy level

■ Measure grants, a special case of the MemberGrant that limits access to measures

Now that you know how to define schemas and measures and restrict access to the

data, it’s time to take a look at performance. The next chapter will show you how to

make data access faster. This isn’t a major problem for smaller datasets, but when data

warehouses run into the millions of records, performance becomes a concern.

Listing 6.16 Example of restricting access to measures

Allow access to entire schema

Allow access to Product Sales cube

Specify custom access

Restrict sales info

See quantity ordered

133

Maximizing
 Mondrian performance

Adventure Works analysts have been generally happy with the Mondrian’s abilities.

They like the reports and dashboards and particularly being able to do analysis on

the fly. Some have even become proficient with MDX queries for performing

advanced analysis. But as the amount of data grows, some of the reports and analy-

ses are starting to feel sluggish, and not as quick as users demand.

 One of the promises of Mondrian is that it supports analytics at the speed of thought.

This means that when an analyst makes changes to a report, such as adding or remov-

ing dimensions and measures, adding calculations, and applying filters, the report

needs to be updated within seconds, rather than minutes or hours. Given that anal-

ysis is often done over millions of records, performance is extremely important.

 Out of the box, with a well-designed star schema, Mondrian performance is

very good for a wide variety of datasets and queries. But some businesses want to

This chapter is recommended for

Business analysts

✓ Data architects

✓ Enterprise architects

Application developers

134 CHAPTER 7 Maximizing Mondrian performance

do real-time analysis against millions of facts and thousands of dimension members.

Eventually, even the fastest database and software will start to bog down with straight

database calls. By default, Mondrian will perform some caching to speed things up,

but squeezing out the highest levels of performance from your data sometimes takes

additional configuration and effort.

 There are three main strategies for increasing performance: tuning the database,

aggregate tables, and caching. This chapter will discuss how to tune Mondrian using

all three approaches. By the end of this chapter, you’ll understand the techniques you

can use to optimize Mondrian performance and keep the analytics flowing smoothly.

7.1 Figuring out where the problems are

Performance is something that you’ll want to consider early on. While performance

may appear to be fine with small test sets, problems can show up when the amount of

data gets large. Some of the possible solutions, such as using aggregation tables, addi-

tional servers, and even a different database can be extremely costly and challenging

to implement after the system has gone live. This section will present a general pro-

cess for testing performance and then describe the necessary steps to prepare for per-

formance testing and improvement.

7.1.1 Performance improvement process

You can start evaluating performance with any part of the system, but experience has

identified a general approach that works best for most Mondrian deployments. Each

step in this process has the potential to improve performance, with the early steps usu-

ally providing the largest performance gains.

 Figure 7.1 shows the high-level process for this performance improvement.

Prepare for

performance analysis
Start

performance analysis

Rethink the

report or

expectations

No changes

needed

Yes

No

1

Evaluate current

performance
2

3

Yes

Fast

enough?

Yes

No

No

Evaluate

Mondrian
4

5

Fast

enough?

Evaluate

database

Fast

enough?

Figure 7.1 Performance

improvement process

135Figuring out where the problems are

There are five high-level steps to perform when evaluating Mondrian’s performance.

Figure 7.1 and the following list show the order of analysis, but the order in which you

implement solutions may vary. Either way, you can’t go wrong following these steps.

1 First, prepare for performance testing. Section 7.1.2 covers the general consid-

erations when preparing for performance testing, such as setting up the test

environment and preparing data.

2 Once you’re set up, you need to evaluate the current performance. “Executing

the queries” in section 7.1.2 covers this topic, but it essentially involves running

queries in your test environment.

3 If the performance isn’t satisfactory, it’s best to start analysis and tuning with the

database, as described in section 7.2

4 If tuning the database doesn’t solve your performance problems, you’ll want to

tune your Mondrian schema. Later sections on aggregate tables and caching

will show how to speed up your queries.

5 Finally, if you’ve done all the tuning you can and are still unhappy with the per-

formance, you should look for alternative ways of presenting the information,

such as breaking up the data into different cubes or doing analysis with preset

filters. These topics aren’t covered directly in this book.

IT MIGHT BE THE SOMETHING ELSE There are other possible reasons for poor
performance, beyond those given here. For example, poor network latency
between Mondrian and the database can slow down the system. The system
running the Mondrian engine might also be underpowered. To eliminate
these variables, it’s often ideal to initially do performance testing in a con-
fined environment.

7.1.2 Preparing for performance analysis and establishing current performance

This section will cover the first two steps of the tuning process shown in figure 7.1.

Before you can start your analysis, you need to have an environment, a baseline of test

data, and a set of queries to run. It’s helpful to have a dedicated environment for test-

ing that’s separate from the development environment. Although any improvement

helps, some of the tuning that you may want to do involves creating a cluster of serv-

ers, which is something not typically found in a development environment.

 Figure 7.2 shows what a performance test environment might look like.

HARDWARE AND SOFTWARE ENVIRONMENT

First you need the hardware environment and software set up for testing. This archi-

tecture should look a lot like what you want your production environment to look

like. For instance, suppose you plan on running the data warehouse databases on a

separate server from Mondrian. If your test environment has the database and Mon-

drian running on the same server, you’ll miss the impact of bandwidth and latency

when you’re testing.

136 CHAPTER 7 Maximizing Mondrian performance

The test environment need not be a 100% replica of your production environment,

although that can be handy. At a minimum, though, you’ll usually want a data ware-

house running on the server that you will be using, and at least one server running

Mondrian. If you’re planning on clustering Mondrian, you’ll want to cluster Mon-

drian in your performance test environment as well, again mainly to capture the cost

of clustering. Finally, if you plan on deploying to virtual machines, you should have

your performance test environment running in a virtual environment as well.

 Memory (RAM) is very important for Mondrian performance, so you’ll want the

machines running Mondrian to have the same amount of RAM as the production

machines. As you’ll see later, Mondrian uses a variety of in-memory caches to optimize

performance. Physical memory management, however, is up to the operating system.

If you have too little memory, the OS will swap page files to the hard drive, and perfor-

mance can drop dramatically. Increasing memory is one of the easy low-cost

approaches to improving performance.

REPRESENTATIVE TEST DATA

Test data should represent the production data in both type and volume. Many orga-

nizations will simply use a copy of the production database for testing, and if you don’t

expect the data to grow, this approach can work. But if you’re testing to head off

future performance problems, it helps to create data that looks like what you expect

for the future.

 There are several reasons you might want to test with very large datasets. First,

small amounts of data are easily held in memory, but when they exceed memory, the

Data

warehouse

Mondrian

Mondrian cluster

MondrianMondrian

Test drivers

Load balancer

Figure 7.2 Performance test environment

137Figuring out where the problems are

data is stored to disk, slowing performance. Certain lookups in the database can also

grow non-linearly, such as finding records in a dimension table. If you forgot to index

a relationship, that problem wouldn’t be obvious on a small dataset, but on large

amounts of data it shows up right away. Finally, small datasets don’t give you enough

data to really see the benefits of aggregate tables on performance. (Aggregate tables

will be covered in section 7.3.)

INITIAL QUERIES

Developing the initial queries is a bit of an art. It’s impossible to anticipate every ques-

tion that an analyst might ask, but you should be able to identify the really important

ones. Assuming these cover broad areas of the data, the testing should be adequate, at

least initially.

 You can start by asking your business users what information they want from the

system. A company usually implements OLAP with some idea of what information and

reports are desired. These queries are good to start with. Create the underlying que-

ries and run them against Mondrian to see what performance is like.

 Next, take a look at the dimensions or cubes you feel will have a lot of data and cre-

ate additional queries to test analysis performance against those areas. For example, if

you have a dimension with a lot of members, be sure you have queries that use that

dimension. These queries get added to those identified by business users to anticipate

possible problems in the future.

 Finally, create queries with any calculations you think might be used but that

haven’t been covered so far, such as period growth or current period comparisons.

There are often tradeoffs to be made on calculated values that can impact perfor-

mance, so including those in some queries can identify areas for improvement.

 You should now have a physical environment for testing that represents the produc-

tion environment. You should also have a set of test data that is representative of the tar-

get environment that needs to run efficiently. Finally, you should have a set of queries

that you can run for baseline values, and then run again as changes are made, to deter-

mine the impact of the changes on performance. You’re now ready to start tweaking the

system to make it faster.

EXECUTING THE QUERIES

Now that the environment is set up, all that remains is to run the queries and monitor

performance. You can use a tool, such as Analyzer or Saiku, or you can send MDX to

Mondrian via XMLA. The goal is to generate some timing results to see which queries

are slow.

 Mondrian can log the MDX statements sent to Mondrian and the SQL Mondrian

generates. This logging can be turned on by configuring some log4j files. log4j is a

common logging framework used by many Java applications, such as Mondrian.

 When using Pentaho, the log4j.xml file can be found in the <pentaho-server-

folder>. To turn on logging, edit the file, go to the bottom, and uncomment the log-

ger(s) you want to have logged. You can also change the logging location if you like.

138 CHAPTER 7 Maximizing Mondrian performance

You’ll need to restart the server after changing the log settings. Note that logging has

already been enabled in the virtual machine.

PERFORMANCE IS AN ONGOING PROCESS For most organizations, performance
testing isn’t a one-time process and then you’re done. It’s an ongoing process
that you’ll continue to perform. Over time, dimensions will likely get added,
unanticipated questions will be asked, hardware and software will be
upgraded, and so on. All of these changes can affect performance.

With the environment set up and some query performance results logged, you’re now

ready to begin performance tuning. The rest of the chapter will cover the things you

can do to improve performance. You’ll also find out how to automate some of the per-

formance steps that would otherwise require manual effort.

7.2 Tuning the database

Now that you have a baseline and know you want to increase performance, you can

move to database tuning (process 3 in figure 7.3). Because Mondrian eventually

retrieves data from a relational database, that database can be the performance bottle-

neck, so it’s the first place to start looking for performance enhancements.

 Mondrian works against a large number of databases, so our guidance here will

be broad and hopefully capture the majority of initial tweaks. The good news is that

Prepare for

performance analysis
Start

performance analysis

Rethink the

report or

expectations

No changes

needed

Fast

enough?

Yes

No

1

Evaluate current

performance
2

Evaluate

database
3

Fast

enough?

Yes

Fast

enough?

Yes

No

No

Evaluate

Mondrian
4

5

Figure 7.3 Evaluate the database

139Aggregate tables

most organizations already have database administrators who understand how to

tune the database. They can use their existing tools and experience to get the most

out of the database. But there are some common things to look for when dealing

with the database.

 First, make sure it’s really the database that’s taking the time to execute the query.

The Mondrian MDX and SQL logs can be configured to tell you how long each MDX

and SQL query takes. Run the slow queries and view the execution time of both

MDX and SQL. Then decide if the time of the SQL query is a significant portion that

should be optimized.

 Assuming you decide that the SQL queries are a problem, you’ll want to figure out

how to optimize them. As a first approach, try running the query in the native data-

base tools. This can tell you if there’s some database-related problem that’s not the

database itself. For example, you might be experiencing performance problems with

database driver configurations that are separate from the database.

 Another recommendation for all databases is to make sure your indexes are prop-

erly created. Surrogate keys in dimension tables should always be indexed—these are

typically primary keys for the dimension table. If you have other natural keys that will

be used for joins in the dimension table, index these as well. A query that takes min-

utes or even hours without indexing may only take seconds with proper indexes.

 Once you have the database tuned for the fastest queries possible, the next step is

to look at ways you can tune Mondrian-specific features. Mondrian has two major tun-

ing approaches: aggregation and caching. The rest of this chapter will cover how

Mondrian aggregation and caching work.

7.3 Aggregate tables

Once you have the database running as fast as possible, the next step is to tune Mon-

drian’s performance as shown in figure 7.4. There are two major ways to improve

Mondrian performance. The first is to use aggregate tables, which is covered here.

The second is to use in-memory caching, which is covered in the next section.

 Analytics databases often contain millions of records, because you want to store

data at the lowest grain that might yield useful analysis. But an analyst will likely be

interested in higher-level analysis. For example, analysts for Adventure Works might

generally want to see how parts are selling at the monthly level, but they still want the

ability to drill down to lower levels of detail to see specific days or customer orders.

This section will describe aggregate tables and show how they’re implemented in

Mondrian 4.

 Aggregating data across millions of records can be slow for even the fastest hardware

and database, so Mondrian allows you to specify aggregate tables that precalculate at a

higher level. Then, when analysis is being done, Mondrian can get the higher-level

details from the aggregate table and the finer details from the detailed table. All of the

data is available at the level needed, but the performance is much better. Figure 7.5

shows the relationship between the aggregate and detailed fact tables.

140 CHAPTER 7 Maximizing Mondrian performance

Prepare for

performance analysis
Start

performance analysis

Rethink the

report or

expectations

No changes

needed

Fast

enough?

Yes

No

1

Evaluate current

performance
2

Evaluate

database
3

Fast

enough?

Yes

Fast

enough?

Yes

No

No

Evaluate

Mondrian
4

5

Figure 7.4 Evaluate Mondrian

CustomerSale priceStates

ItemMonthState

ItemDate

Avg sale

price
ItemMonth

Collapse date and

drop customer and

sale price.

Collapse date and

drop state and

customer.

Detail Fact Table

Aggregate Average Sales by Item and Month

Aggregate Item Sales by State and Month

Figure 7.5 Aggregate versus detail diagram

141Aggregate tables

Aggregate tables aggregate data by collapsing and dropping dimensions. Collapsing a

dimension means that the dimension is aggregated at a particular level, eliminating the

finer-grained levels. In figure 7.5, the date dimension was collapsed to the month

level, leaving off the days. If there were thousands of facts per day, this would reduce

the size of the data by tens of thousands of rows.

Dropping a dimension means it’s left out of the aggregate table completely. You can

think of this as the ultimate level of collapsing a dimension. A dropped dimension is

essentially the same as the All Members level of the dimension. In figure 7.5, the

aggregate average sales by item and month table dropped the customer and sale price

columns because the only things we care about are identifying the items sold by state

and month. In the average sales by item and month the customer and status were

dropped to leave us with only the sales for each item by the given month.

7.3.1 Creating aggregate tables

The physical aggregate tables are created in the database and populated as part of the

ETL process. There’s nothing special about the data in aggregate tables for Mondrian.

Mondrian simply uses the data in the aggregate table when it has been configured to

do so and the query can be answered by the aggregate table. It’s up to the ETL creator

and database designer to properly populate the aggregate table.

ENABLING AGGREGATE TABLES Aggregate tables can be enabled or disabled in
the mondrian.properties file. For Pentaho they’re disabled by default. To
enable aggregates, simply set the mondrian.rolap.aggregates.Use and mon-
drian.rolap.aggregates.Read properties to true.

There are a couple of different approaches that can be used to populate the aggregate

table. The first, and most obvious, is to populate the aggregate table as the detailed

fact table is being populated. But since the data needed for the aggregate table is in

the detailed fact table, it’s recommended that you first populate the detailed fact table

from the operational or staging data, and then populate the aggregate table from the

detailed fact table. This has the secondary advantage that the fact and aggregate tables

will be internally consistent. It also removes some of the logic common to populating

facts, such as identifying new or modified facts.

AGGREGATION DESIGNER Mondrian includes a tool called Aggregation
Designer that can aid in creating summary tables. Aggregation Designer will
read a schema and make recommendations for aggregate tables. It’ll then
generate SQL that can create and populate the aggregate tables for you. You
may still need to tweak the results, but this can save time when you’re getting
started. Due to space limitations, we won’t cover Aggregation Designer in this
book in detail. The tool and its documentation are available from the Mon-
drian site.

142 CHAPTER 7 Maximizing Mondrian performance

7.3.2 Declaring an aggregate table

Aggregate tables are declared as a special usage of the MeasureGroup tag first intro-

duced in chapter 4. Listing 7.1 shows the declaration of an aggregate table for item

sales by month. The first thing that makes this an aggregate table is the type='aggre-

gation' attribute in the MeasureGroup element.

<MeasureGroup table='agg_sales_by_month'
type='aggregation'>

<Measures>
<Measure name='Sales' column='SALES'/>
<Measure name='Average Sales'

column='SALES'
aggregator='avg'
formatString='#,###.00'/>

</Measures>

<DimensionLinks>
<ForeignKeyLink dimension='Item'

foreignKeyColumn='item_id'/>

<CopyLink dimension='Time' attribute='Month'>
<ColumnRef aggColumn='TIME_YEAR'

table='time_by_day' column='the_year'/>
<ColumnRef aggColumn='TIME_QUARTER'

table='time_by_day' column='quarter'/>
<ColumnRef aggColumn='TIME_MONTH'

table='time_by_day' column='month_of_year'/>
</CopyLink>

</DimensionLinks>

</MeasureGroup>

Once the table is declared, a standard measure group is added. In this case, the aggre-

gation includes all of the sales for a given item in a given month. Notice, however, that

because this is a measure group, you can also introduce new measures that don’t exist

in the original fact table. In this case, we’re introducing a new measure called [Aver-

age Sales], which is the average for all sales for the month for the item.

 Now that the measures are defined, it’s time to declare the links. The first declara-

tion, for the item, is the same declaration that you’d use in the detailed fact table

using the ForeignKeyLink element. The next link, CopyLink, is a special element that

specifies using that we’re copying a dimension with levels, but only down to the Month

level in this case.

Listing 7.1 Declaring an aggregation table

Uses type to declare
an aggregate table

Sum of the sales for the item

New measure: average sales

Link to item
dimension

Link to month
dimension

143Caching

AGGREGATE TABLES IN OLDER VERSIONS OF MONDRIAN If you’re familiar with
versions of Mondrian prior to version 4, you’ll notice that Mondrian no lon-
ger uses the AggName approach to creating aggregates. Mondrian has also
made aggregate tables explicit and has dropped the pattern-matching
approach to aggregate tables.

7.3.3 Which aggregates should you create?

The preceding simple example shows that many different types of aggregate tables

can be created. If you have a large fact table with many dimensions and facts, you

could create hundreds or thousands of aggregate tables. So how should you decide

which aggregate tables to create?

 It’s tempting to create as many aggregate tables as possible, but this is not recom-

mended for several reasons. For one, the ETL process will grow as more aggregate

tables are created and need to be populated. One of the reasons for using a ROLAP

tool is to shorten the time needed to move data from OLTP systems to OLAP. Aggre-

gate tables are a step in the direction of “pure” OLAP where intersections are precalcu-

lated, sometimes taking hours before data is available for analysis.

 Aggregate tables also take up space in the analytics database and possibly in back-

ups of the database. The additional storage in backups can be avoided by just storing

the detailed facts and re-creating the fact tables, but this slows down the restoration

process as well as makes it more complex.

 Because it’s undesirable to create all the possible aggregates, careful performance

testing can help you determine which ones will be most useful. If you have a good per-

formance test environment and you know the common queries, you can find out

which queries could use some performance help. Start with the queries, create an

aggregate, and see what impact that has on performance. There are two nice benefits

to this approach. First, it’s fairly easy to create and populate aggregate tables. Second,

aggregates can be added after the fact to speed up slow queries, so it’s not essential to

create all the aggregates you might eventually want the first time around.

 Now let’s turn to Mondrian’s second significant performance tuning feature: cach-

ing. Whereas aggregate tables reduce the amount of data read from the database,

caching can eliminate reads entirely by storing data in RAM. Because even the fastest

read from the disk or the network is going to be thousands of times slower than in-

memory reads, this can lead to another order-of-magnitude gain in performance.

7.4 Caching

The process of retrieving schemas, dimension members, and facts and then perform-

ing calculations can be costly from an I/O perspective. Even with column-based analyt-

ics databases and fast storage, such as solid state drives, disk I/O is still orders of

magnitude slower than reading from memory. To speed up analysis, Mondrian can

cache the data in memory and use that rather than going to the database for each call.

 In this section we’ll first take a look at the different types of Mondrian caches, and

then we’ll study the special case of the external segment cache.

144 CHAPTER 7 Maximizing Mondrian performance

7.4.1 Types of caches

Mondrian has three different caches, as shown in figure 7.6.

■ The schema cache keeps schemas in memory so they don’t have to be reread

every time a cube is loaded.

■ The member cache stores member values from dimensions in memory, which

reduces the number of reads from the database.

■ The segment cache stores previously calculated values in memory so they don’t

need to be retrieved or recalculated. This can significantly speed up analysis by

reducing the number of reads for common calculations.

As of Mondrian 3.3, you can use external segment caching. External segment caches

store segments in an optional data grid. In section 7.4.2 you’ll learn how to configure

the external cache using several different technologies and when to use each.

 All of the caches work together to maximize Mondrian performance, and the next

few sections describe how they work. Understanding the caches is important for

understanding when the caches should be primed or cleared.

SCHEMA CACHE

The schema cache stores the schema in memory after it has been read the first time,

and it will be kept in memory until the cache is cleared. This means that whenever

you update the schema, you need to clear the schema cache. If you’re using

Pentaho as your container, you can clear the schema cache by selecting Tools >

Refresh Mondrian Schema Cache. Sometimes clearing all of the caches is required

because Mondrian uses a checksum of the schema XML as the key for the cache.

Members are read from the

data warehouse and stored in

the member cache.

Segments are calculated from

the data and stored in the

segment cache.

Member cache Schema cache

Mondrian Schemas are read from the

filesystem and stored in the

schema cache.

<Schema name= Sales >

 <Cube name= Sales >

 …

 </Cube>

</Schema>

[WA.Seattle]

[2012.10.01]

Segment cache

Schemas

[WA.Seattle],

[Sales], [1000.0]

Data

warehouse

Figure 7.6 The different Mondrian caches

145Caching

This becomes important if you have dynamic schema processors (discussed in chap-

ter 9) because the dynamically generated schemas will be different. Attempting to

clear just one schema will not clear all of them.

MEMBER CACHE

The member cache stores members of dimensions in memory. As with the schema

cache, there’s not much to worry about as far as configuring the member cache. Just

keep in mind that as with the schema cache, the member cache can also get out of

synch with the underlying data. Mondrian has a Service Provider Interface (SPI) that

allows you to flush the members of the cache, as described in section 7.6.

 The member cache is populated when members of a dimension are first read, and

the members are retrieved as needed. If the member is in memory, it doesn’t need to

be reread from the database, increasing performance.

Members, in this case, are specific values for levels in a dimension, such as

[Time].[2011].[February] or [Customer].[All Customers].[USA].[WA], and they

include the root and the children. It’s important to remember that a member is more

than just a value, such as WA, but rather a value within a dimension level. This is

because a member can have the same name for a given level, such as Springfield, for

different paths within the hierarchy: [NA].[USA].[Illinois].[Springfield] versus

[NA].[USA].[South Dakota].[Springfield].

SEGMENT CACHING

The segment cache is probably the hardest to understand, but it’s also the cache that

can have the biggest impact on performance. The segment cache holds data from the

fact table, usually the largest table by an order of magnitude or so, and it has aggre-

gated data. Holding data from the largest table can dramatically reduce the amount of

I/O that takes place, and caching aggregated data reduces the number of calculations

that need to occur.

 Listing 7.2 shows the conceptual structure of a segment. First, the segment deals

with a particular measure, in this case Internet Sales. Second, the segment contains

a set of predicates, or member values, for which the data is relevant. In this case, the

data is internet sales for males who graduated high school across all years. Finally, the

segment carries the actual data values that make up the segment. If a request includes

the predicates already stored, the data values can be quickly aggregated from the in-

memory values rather than making a SQL call to the database.

Measure = [Internet Sales]
Predicates = {

[Gender = Male],
[Education Level = High School],
[Year = All Years]

}
Data = [1224.50, 945.12, ...]

Listing 7.2 Conceptual segment structure

146 CHAPTER 7 Maximizing Mondrian performance

7.4.2 External segment cache

The external segment cache is a newer feature introduced in Mondrian 3.3. It’s an

optional physical implementation of the segment cache described previously. Whereas

the standard segment cache stores segments in local memory, the external segment

cache stores data in a data grid. This allows you to extend the amount of data stored in

memory by adding additional servers. In some cases, it also provides in-memory failover

of the cache, as you’ll see in the next section. Although reading data across the network

is substantially slower than reading from local memory, it’s typically still an order of

magnitude faster than reading from the database and performing calculations.

 Figure 7.7 shows the high-level architecture for the external segment cache. Mon-

drian creates aggregations of measures to return for the query, and each aggregation

is made up of segments as described previously. The segment loader is responsible for

loading the segments, and it’ll first attempt to retrieve the segment from the cache. If

the segment isn’t stored in the cache, the segment loader will query the database and

then put the segment in the cache. The segment is then returned to Mondrian to use

as part of the resulting aggregation.

 There are currently three external segment caching technologies available for

Mondrian. The first two, Infinispan and Memcached, are available as part of the Pen-

taho Enterprise Edition solution. The third, Community Distributed Cache (CDC), is

available as an open source solution. There are tradeoffs to using each of the solu-

tions. If you have an enterprise license for Pentaho, you’ll want to stick with Infinispan

or Memcached, since those are the only ones supported. If you’re using Pentaho CE,

then CDC is a good choice.

 Note that there is technically another choice, the Pentaho Platform Delegating

Cache, but at the time of writing, this cache was still experimental and not recom-

mended for production use. Infinispan and Memcached should be used instead.

Mondrian

Aggregations

Segments

Segment

loaders

RDBMS

External

cache cluster

Segment

cache SPI

JDBC/JNDI

Figure 7.7 External segment cache architecture

147Caching

YOUR OWN DATA GRID An additional option that we won’t cover is that you
can create your own data grid for external segment caching. To do so, you’d
need to implement the mondrian.spi.SegmentCache interface and then con-
figure Mondrian to use your solution. The three solutions covered in this
chapter make the need for such an approach rare.

INSTALLING THE EXTERNAL CACHE PLUGIN

The external segment cache isn’t automatically installed with Pentaho. To use the

external cache with Pentaho EE, you need to get the analysis EE plugin, available to

users of the Enterprise Edition of Pentaho. You’ll need to download the pentaho-

analysis-ee plugin package from your software site. Fully up-to-date instructions can

be found on Pentaho’s Infocenter at http://infocenter.pentaho.com/help/topic/

analysis_guide/topic_cache_control.html. Using CDC with Pentaho CE is discussed

later in this section.

 The plugin consists of two parts. The first is a lib directory that includes all of the

JAR files needed to support the plugin. These files get deployed as part of the running

application. If you’re running inside of Pentaho’s BA server, then these are deployed

to the lib directory of the app server. For Tomcat, this is the tomcat/webapps/pena-

taho/WEB-INF/lib folder. If you’re running Mondrian standalone under Tomcat, this

is the tomcat/webapps/mondrian/WEB-INF/lib folder. Other embedded uses of Mon-

drian need to have all of the files deployed so that they’re in the classpath.

WATCH THE VERSION NUMBERS! All of the library files for Mondrian contain
version numbers, such as jgroups-2.12.0.CR5.jar. This can cause problems if a
different version of the same file already exists in the classpath. Be sure to
replace such files if they exist.

The second directory, called config, contains all of the configuration files. These files

all need to be copied to a location in the classpath as well. For Pentaho and Mondrian

running under Tomcat, this is the WEB-INF/classes folder, and other servers will have

a similar location. The important thing is that the files must be accessible to the Java

classloader when the application is run.

 Once everything is deployed, you need to configure Mondrian to use the external

segment cache of your choice. The main configuration file is pentaho-analysis-

config.xml, and its purpose is to turn external segment caching on or off and to specify

the caching technology to use. To enable caching, set the USE_SEGMENT_CACHE entry to

true. To specify the caching technology to use, set the entry for SEGMENT_CACHE_IMPL

to have the name of the class that handles the cache. By default, Pentaho configures the

Infinispan version as the recommended implementation, but the other caching tech-

nologies are also preconfigured and simply need to be uncommented. If you’re using

any other approach, add an entry for the custom class.

INFINISPAN

Infinispan is an in-memory data grid that uses JGroups peer-to-peer communications

to communicate between servers. Figure 7.8 shows the architecture when using

http://infocenter.pentaho.com/help/topic/analysis_guide/topic_cache_control.html
http://infocenter.pentaho.com/help/topic/analysis_guide/topic_cache_control.html

148 CHAPTER 7 Maximizing Mondrian performance

Infinispan. Each server in the cluster has a copy of Infinispan running locally, and the

servers share data across the network using peer-to-peer communications. In the case

of Pentaho, the default is to use JGroups.

 Infinispan has a few features that make it an ideal default. Infinispan shares seg-

ments, which means that any node can store a segment in the cache and any other

node can retrieve it. Infinispan also can be configured to have multiple copies of the

segment in the cache. This allows a server to fail, and the segment to still be available

to the cluster without rereading the data. Finally, Infinispan will attempt to store and

retrieve data locally to minimize network traffic and latency. Because most segments

will be relevant to the analysis currently being performed within a server, this makes

the overall performance better.

 Infinispan has one drawback: it has no standalone nodes. To scale Infinispan you

have to add additional servers. Because many deployments of Mondrian run in a hori-

zontally scaled environment (one with multiple servers in a cluster), this is not usually

a problem. But if you’re not running in a cluster, Memcached may be a better choice.

Configuring Infinispan

You can configure Infinispan by modifying the infinispan-config.xml file. For full

configuration instructions, you can refer to the Infinispan site: www.jboss.org/infinis-

pan/. But you may just want to change the numOwners setting. This attribute speci-

fies the number of different nodes that will have a copy of the data. The default is 2,

but it can be set higher. The more copies, the safer the data is from loss due to

server failure. The tradeoff is that the more copies you have, the slower the cluster

becomes. Because the original segment is always persisted in the underlying data-

base, a low number is recommended.

Mondrian

Infinispan

JGroups P2P data sharing

Redundant

storage

Server 2

Mondrian

Infinispan

Server 3

Mondrian

Infinispan

Store

and

retrieve

Server 1

Figure 7.8 Using Infinispan for the external segment cache

www.jboss.org/infinispan/
www.jboss.org/infinispan/

149Caching

 Infinispan comes preconfigured to work with JGroups, a peer-to-peer communica-

tion technology. You can change this configuration or replace it altogether. See the

Infinispan documentation and JGroups documentation (www.jgroups.org) for details.

One change you can easily make, however, is changing the communication protocol

used by JGroups. Simply modify the value of the configurationFile property in the

infinispan-config.xml file to use a different file. By default, UDP is configured, but you

can also configure it to use TCP or EC2 if you’re deploying to Amazon’s EC2 cloud. The

filenames are of the form jgroups-protocol.xml, where protocol is udp, tcp, or ec2.

MEMCACHED

Memcached is an alternative to Infinispan, and it uses a different architecture, as shown

in figure 7.9. Memcached is a master/server data grid that stores key/value pairs. Mon-

drian interacts with the master to store and retrieve segments from memory. The master

node will then store the data in one of the server nodes with a key and a value.

The major benefit that you get from Memcached is that it’s easy to add additional

memory nodes. Simply create a server with memory, and install and run Memcached.

Then configure the master node to use the additional server. This differs from Infinis-

pan, which requires a much heavier-weight server. Memcached is ideal for vertical scal-

ing where a large, fast server is used to support fewer users but lots of data.

 The major drawback to Memcached is that there is no sharing or failover. If multi-

ple servers are using the same Memcached servers, the segments won’t be shared

between nodes. If the master node goes down, the cache is essentially lost from mem-

ory, although it can be reread from the database.

Configuring Memcached

Configuration for Memcached is done using the memcached-config.xml file. This file

has a number of configuration values, most of which can be left at their default values.

But there are two that you’ll need to modify: SERVERS and WEIGHTS.

Mondrian

Memcached

Mondrian server Memcached nodeMemcached node

MemcachedMemcached

Figure 7.9 Using Memcached for the external segment cache

www.jgroups.org

150 CHAPTER 7 Maximizing Mondrian performance

The SERVERS setting contains a comma-separated list of all of the server and port

addresses of running Memcached servers. To add another server, simply add the IP

address or DNS name plus port number that the Memcached server is listening on.

 The WEIGHTS setting is a comma-separated list of integers that describe the rela-

tive amount of memory for each server, in the same order as for the SERVERS set-

ting. For example, suppose that you have three servers: the first two have 1 GB of

RAM and the third has 4 GB of RAM. The WEIGHTS setting would contain 1, 1, 4,

indicating that the fourth server has four times as much RAM available. The weights

are relative, so 2, 2, 8 would work just as well. You should try to anticipate the small-

est server setting and make that value 1, with all other values being multiples,

although you can always change it in the future by reconfiguring. Listing 7.3 shows a

snippet of a configuration file with three servers.

<entry key="SERVERS">
seg.server1:1642, seg.server2:1642, 10.1.0.12:1642

</entry>
<entry key="WEIGHTS">

1, 1, 4
</entry>

COMMUNITY DISTRIBUTED CACHE (CDC)

CDC is an open source alternative to Infinispan or Memcached from Webdetails

(http://cdc.webdetails.org) based on Hazelcast. Its architecture, shown in fig-

ure 7.10, is similar to Memcached in that it can support standalone memory nodes.

But CDC has additional features that are not standard when using either Infinispan

or Memcached.

 In addition to caching for Mondrian, CDC provides caching for Community Data

Access (CDA), a multisource data abstraction that we’ll discuss more in chapter 9. As a

Listing 7.3 SERVERS and WEIGHTS configuration example

List of servers

Relative weights for each server

Mondrian

CDC Mondrian server CDC standalone nodeCDC standalone node

Hazelcast

Figure 7.10 Community Distributed Caching architecture

http://cdc.webdetails.org

151Caching

Pentaho plugin, CDC provides administration tools that let you see the state of the

caching directly in the user console. It also enables you to clear the Mondrian cache,

which normally requires writing software.

 The easiest way to install CDC is to use the CTools Installer that’s available for

download from https://github.com/pmalves/ctools-installer. Once you’ve down-

loaded the installer, run it as an administrator with the following command: ctools-

installer.sh -s solutionPath -w pentahoWebapPath -y. The solutionPath is the

absolute path to your pentaho-solutions directory, and pentahoWebapPath is the direc-

tory for the Pentaho web application, such as /.../tomcat/webapps/pentaho. This lat-

ter setting is optional in the script, but it must be specified for CDC to be installed.

WGET REQUIRED The CTools Installer script uses wget, a common tool for down-
loading content from the web. wget is not automatically installed on all plat-
forms, particularly Windows and more recent versions of OS X. Download and
install wget (http://ftp.gnu.org/gnu/wget) before attempting to install CDC.

Once you have CDC installed, you’ll want to install one or more standalone servers for

caching. The standalone node can be downloaded from http://ci.analytical-labs.com/

job/Webdetails-CDC/lastSuccessfulBuild/artifact/dist/cdc-redist-SNAPSHOT.zip. Sim-

ply use the launch script appropriate for your operating system to start Hazelcast.

The nodes will find one another, so no additional configuration is required. You’ll

see messages similar to the following in the terminal window showing the known Hazel-

cast servers.

Members [2] {
Member [10.0.1.7]:5701 lite
Member [10.0.1.7]:5703 this

}

Once CDC and related tools are installed, you need to tell Pentaho to start using CDC

for caching. Simply log into the Pentaho User Console and select the CDC icon in the

toolbar. Eventually CDC will load and give you an option to start caching (see figure 7.11).

Listing 7.4 Hazelcast server showing two servers

Figure 7.11 Community Distributed Caching configuration

http://ftp.gnu.org/gnu/wget
http://ci.analytical-labs.com/job/Webdetails-CDC/lastSuccessfulBuild/artifact/dist/cdc-redist-SNAPSHOT.zip
http://ci.analytical-labs.com/job/Webdetails-CDC/lastSuccessfulBuild/artifact/dist/cdc-redist-SNAPSHOT.zip
https://github.com/pmalves/ctools-installer

152 CHAPTER 7 Maximizing Mondrian performance

After toggling or otherwise changing the configuration of CDC, you must restart the

Pentaho application server. Once you do, if you use a tool that uses Mondrian you’ll

see the cache start to fill. CDC provides a simple console that displays information

about the cache and memory usage under the Cluster Info tab (see figure 7.12).

SETTING SAIKU TO USE THE SAME MONDRIAN AS THE BI SERVER By default, Saiku
is deployed with its own Mondrian version and files. In this section, we config-
ured CDC to work with Mondrian on the BI Server, so Saiku will not be able to
take advantage of CDC clustering. You can change this by running the saiku-
shareMondrian.sh script located in the pentaho-solutions/system/saiku
folder and providing the path to the Pentaho web app, usually tomcat/
webapps/pentaho.

7.5 Priming the cache

Mondrian will automatically update the caches as schemas and dimensions are read

and aggregates are calculated. This means, however, that the first user to access the

data is populating the cache rather than getting the benefits of it. What you really

want is the ability to prepopulate the cache before business users start performing

Figure 7.12 CDC cluster summary

153Priming the cache

analysis. Because the cache is populated as part of returning the results of a query, this

means any call that makes a query to Mondrian will populate the cache.

 The first question you need to ask is which queries need to be run. One approach

is to simply wait for users to complain about slow reports, but a much more proactive

approach is available. Simply turn on the Mondrian MDX log and monitor it for que-

ries that take a long time. Long is relative, but if there are queries that take more than

a minute or so, they are good candidates for precaching.

 There are a number of approaches available for precaching that can be used. All

reports in Pentaho are URL-addressable, so all slow reports can be called from a script,

populating the cache. Another approach, when using Pentaho, is to create an action

sequence that makes calls to Mondrian, populating the cache. Probably the simplest

approach, though, and one that works with most Mondrian installations, is to use XML

for Analysis (XMLA) web service calls.

XMLA is a SOAP-based standard for making web service calls. All you need to do for

this to work is to expose Mondrian cubes as XMLA data sources. By default, when

cubes, called catalogs in XMLA, are deployed to Pentaho, they’re also made available as

XMLA data sources. Other configurations, such as running Mondrian standalone, also

support XMLA.

 Chapter 10 will give more specifics on XMLA, so we won’t cover it in detail here.

What we will do here is create a web page that will make calls to XMLA using Ajax.

We’ll handle the responses, but only to note whether the call was successful or not.

This web page could then be called whenever the cache needed to be populated.

CROSS-DOMAIN CONSIDERATIONS As a security constraint, JavaScript won’t
allow calls to other domains. That means a script running on mydomain.com
can’t call a web service on yourdomain.com. There are ways to get around this
constraint, but in this case the cache refresh page can simply be deployed to
the same server, because it adds minimal overhead.

Figure 7.13 shows the sequence of messages that our script will handle. The script will

send a series of XMLA Execute messages (discussed in chapter 10) to the Mondrian

server. The server will then respond with either an error message if there was an error,

or a response to the XMLA query. The script will accept responses and log the errors

and results to the web page. If MDX logging is enabled, you can also view the logs to

see what queries were run.

 The details of sending XMLA messages are covered in detail in chapter 10, so we’ll

just focus on the specifics for enabling caching. To make the script reusable and

Mondrian
XMLA Execute

response or error

XMLA Execute

Cache script
Figure 7.13 Performance analy-

sis process

154 CHAPTER 7 Maximizing Mondrian performance

extensible, we’ve created a separate script that has the catalogs and queries to exe-

cute. Listing 7.5 shows the configuration and queries to be made, as well as the con-

nection info.

var xmlaURL = "http://localhost:8080/pentaho/Xmla"
var userid = "joe";
var password = "password";

var dataSourceInfo = "Provider=Mondrian;DataSource=Pentaho";

var queries = [
{
catalog : "AdventureWorks",
queries : [

"SELECT [Order Date].[Monthly].[Year].Members ON COLUMNS, " +
"[Customer].[Gender].[Gender].Members ON ROWS " +

"FROM [Internet Sales] " +
"WHERE [Measures].[Qty Ordered]",

"SELECT [Order Date].[Monthly].[Month].Members ON COLUMNS, " +
"[Customer].[Education Level].[Education Level].Members " +

"ON ROWS " +
"FROM [Internet Sales] " +
"WHERE [Measures].[Qty Ordered]",

]
},
{
catalog : "UnknownCatalog",
queries : [

"SELECT [NOTHING] ON COLUMNS, [NOTHING] ON ROWS" +
"FROM [Internet Sales] "

]
}

];

The connection information is simply the location of the server and the user informa-

tion for login. The DatasourceInfo is specific to the installation, but it’s otherwise

static; this example shows the data source info for Pentaho. Other ways of running

Mondrian will have a similar data source.

 The final part of the file identifies the catalogs (schemas) and queries that will be

run by the script. The catalogs are organized in an array with each containing an array

of queries. This makes it easy to add additional catalogs and queries to be run. Simply

update this one JavaScript file and rerun the script.

SHARED CACHES In this example, we have a single user, joe, that we are using
to prime the cache. Only schemas and data that joe has permissions to see will
be put into the cache. This may mean that you need to run multiple versions
of the queries with different users to prime all the caches.

Listing 7.5 MDX queries

Connection info for
the XMLA server

Data source info
for Mondrian

MDX catalogs
and queries

155Priming the cache

Listing 7.6 shows the simple page that runs the script. In addition to including the

needed scripts and style sheet, it has two <div> sections called results and errors.

The script will write the results and errors to these sections when the page is run.

<html>
<head>
<title>XMLA Cache</title>
<link rel="stylesheet" type="text/css" href="XMLACache.css" />
<script src="jquery-1.7.2.js"></script>
<script src="MDXQueries.js"></script>
<script src="XMLACache.js"></script>

</head>
<body>
<h1>Pre-Cache Mondrian via XMLA</h1>
<div id="results"></div>
<div id="errors"></div>

</body>
</html>

Listing 7.7 shows the main loop of code that runs the queries. When the main HTML

document is ready, the script simply iterates over the catalogs and queries, making an

XMLA call for each query.

$(document).ready(function() {

$("#results").html("<h2>Results</h2>");
$("#errors").html("<h2>Errors</h2>");

for (var idx = 0; idx < queries.length; idx++) {
catalog = queries[idx];

for (var qidx = 0; qidx < catalog.queries.length; qidx++) {
postMessage(

getQueryMessage(catalog.queries[qidx],
dataSourceInfo, catalog.catalog),

'xml', handleQueryCallback);
}

}

});

Figure 7.14 shows the results of executing the query. In this case, two of the queries

were successful and one failed. Examining the error message as well as the Mondrian

logs will tell you which queries failed. At this point, the caches have been prepopu-

lated with data from the successful queries and are ready for use.

 Now that you know how to prime the caches, the next consideration is how to

clear them. You need to do this whenever the underlying data has changed, making

Listing 7.6 XMLA cache web page

Listing 7.7 Execute MDX queries

156 CHAPTER 7 Maximizing Mondrian performance

the caches out of date. The next section shows how to programmatically clear each

of the caches.

7.6 Flushing the cache

The drawback to caching is that while the data is stored in memory, the original data

source can change, putting the cache out of sync with the true data. This usually

occurs when ETL is performed. This section discusses ways to flush the cache, includ-

ing using the console (for the schema cache) as well as the Cache Control API.

7.6.1 Flushing the schema cache

The schema cache keeps each of the unique caches in memory. The key for each cache

is a checksum for the schema. When the schema is flushed from the cache, its associated

member and segment caches are flushed as well, making this a brute-force approach.

But if the schema has changed, or if determining the details of what to flush is too com-

plex, this can be the best approach and certainly is the simplest. The caches can be

repopulated using the techniques described in the previous section.

 Most tools using Mondrian, such as Pentaho, provide a way to manually flush the

cache. In Pentaho you can use the Enterprise Console or User Console. If you’re

logged into the User Console as an administrator, simply select Tools > Refresh > Mon-

drian Schema Cache.

 The manual approach works fine, but administrators usually want to automate

cache flushing as part of the overall ETL workflow. Figure 7.15 shows how Mondrian

and the cache fit into the overall ETL workflow. After populating the OLAP database,

Mondrian is called to flush and then prime the cache. This process makes sure the

cache is synchronized with the underlying database so that when analysis is per-

formed, the data is up to date.

 To make it easy to integrate flushing the cache into the ETL process, you can create

a class that contains methods to flush parts of the cache. You can also create a JSP that

uses the new class. It then becomes easy to flush the cache by calling a URL with the

appropriate parameters.

 Table 7.1 shows the three scenarios that the flushing tool will support. The scenar-

ios run from flushing everything to flushing a specific region of the cache. Mondrian’s

cache control SPI is very detailed and can allow you to control any parts of the cache,

so these are only examples of what’s possible.

Figure 7.14 XMLA cache

results

157Flushing the cache

Listing 7.8 shows some JSP code that controls caching. It receives parameters and then

calls to the CacheFlusher class to flush the appropriate parts of the cache. This makes

it easy to separate the work of flushing the cache from the user interface. The same class

could be used in an action sequence or be embedded in an application if appropriate.

<%@ page import="mondrian.in.action.CacheFlusher" %>
<html>
<%

String title = "Flush Cache";
StringBuffer msg = new StringBuffer();
CacheFlusher cacheFlusher = new CacheFlusher();

String catalog = request.getParameter("catalog");
String cube = request.getParameter("cube");
String[] members = request.getParameterValues("member");

Table 7.1 Cache-flushing scenarios

What to flush Parameters required

Everything No parameters

Specific cube Catalog and cube

Specific region Catalog, cube, and members

Listing 7.8 JSP to flush the cache

4

5

6

21

3

7

TransformOperations

data

Data

warehouse

Load dataExtract data

Flush cache

Perform analysis

Mondrian

Flush cache

Prime cache

Prime cache

Analyzer

Cache

Figure 7.15 Caching and the ETL workflow

Get parameters
from request

158 CHAPTER 7 Maximizing Mondrian performance

if (catalog == null && cube == null && members == null) {
title = "Flush All";
msg.append("<p>Flushing everything.</p>")

.append (cacheFlusher.flushAll() ?
"<p>Success!</p>" : "<p>Failure!</p>");

}

else if (catalog != null && cube != null) {
if(members == null) {

title = "Flush Cube";
msg.append("<p>Flushing ")

.append(catalog).append(":").append(cube).append("</p>")

.append (cacheFlusher.flushCube(catalog, cube) ?
"<p>Success!</p>" : "<p>Failure!</p>");

}

else {
title = "Flush Region";
msg.append("<p>Flushing region from ")

.append(catalog).append(":").append(cube).append("</p>")

.append (cacheFlusher.flushCubeRegion(catalog, cube, members) ?
"<p>Success!</p>" : "<p>Failure!</p>");

}
}
else {
msg.append("<p>Invalid argument combination.</p>");

}
%>
<head>

<title><%= title %></title>
</head>
<body>

<%= msg.toString() %>
</body>
</html>

To flush the entire cache, you can simply call the JSP with no parameters. For exam-

ple, if the JSP is deployed to the public folder of the Pentaho web app on the local

machine, you’d call http://localhost/pentaho/public/FlushCache.jsp. This would

invoke the flushAll() method of the CacheFlusher class, shown in listing 7.9. Note

that this will only apply to new connections. Existing connections will continue to use

the previous information.

public boolean flushAll ()
throws SQLException, ClassNotFoundException {

List<RolapSchema> schemas = RolapSchema.getRolapSchemas();
for (RolapSchema schema : schemas) {

Listing 7.9 Flush the entire schema cache

Flush the
entire cache

Flush a
cube

Flush a
region

Flush each
schema

159Flushing the cache

CacheControl cacheControl =
schema.getInternalConnection().getCacheControl(null);

cacheControl.flushSchema(schema);

cacheControl.flushSchemaCache();
}
return true;

}

Flushing everything when only some data has changed is excessive and will decrease

performance unnecessarily for other cubes unless everything is primed again. If only

the data for one cube has changed, then only that cube’s cache should be flushed.

The next section will show how to flush a single cube’s cache at a time.

7.6.2 Flushing specific cubes

In an environment where there are many different schemas and cubes, there may be

multiple ETL processes that only apply to a specific cube. After the data has been

updated, then only the caches for the cubes that have been impacted need to be

changed. This means that other cubes will continue to use the cache. As with clearing

everything, this will only affect new connections.

 Listing 7.10 shows the code to clear a specific cube’s cache. To clear the cache, sim-

ply call the JSP and specify the catalog and cube to clear.

public boolean flushCube(String schemaName, String cubeName) {
List<RolapSchema> schemas = RolapSchema.getRolapSchemas();
for (RolapSchema schema : schemas) {
if (schema.getName().equals(schemaName)) {

CacheControl cacheControl =
schema.getInternalConnection().getCacheControl(null);

for (Cube cube : schema.getCubes()) {
if (cube.getName().equals(cubeName)) {

cacheControl.flush(
cacheControl.createMeasuresRegion(cube));

return true;
}

}
}

}
return false;

}

This will work fine if you want to clear the cache for the entire cube. But often only

parts of the cube will be updated, particularly when time is a dimension, because past

facts shouldn’t change. The next section describes how to flush specific regions of the

cube’s cache.

Listing 7.10 Flush a single cube’s cache

Flush the
schema data

Flush the
cache

Flush each schema

Flush the schema data

Flush the cache

160 CHAPTER 7 Maximizing Mondrian performance

7.6.3 Flushing specific regions of the cache

Flushing specific regions of the cube’s cache gives the finest control over the cache.

Suppose that Adventure Works has been tracking sales for several years. They also

have a nightly batch process that updates the data warehouse from the operations

database. They would only need to clear the cache for any information that has

changed, such as the sales for the current month.

 Listing 7.11 shows the code needed to flush a region. It looks a bit complex, but it

actually only has a few key calls you need to understand. The code for finding the

schema and cube should look familiar by now, so we’ll only focus on the code for

clearing the regions.

public boolean flushCubeRegion (
String schemaName,
String cubeName,
String [] members
) {

for (RolapSchema schema : RolapSchema.getRolapSchemas()) {
if (schemaName.equals(schema.getName())) {

Cube cube = schema.lookupCube(cubeName, true);
SchemaReader schemaReader = cube.getSchemaReader(null);
CacheControl cacheControl =

schema.getInternalConnection().getCacheControl(null);
CacheControl.CellRegion [] regions =

new CacheControl.CellRegion[members.length + 1];
regions[0] = cacheControl.createMeasuresRegion(cube);
int size = 1;
for (String memberName : members) {

Member member =
schemaReader.getMemberByUniqueName(

memberNameToSegmentList(memberName),true);
regions[size++] =

cacheControl.createMemberRegion(member, true);
}
CacheControl.CellRegion xregion =

cacheControl.createCrossjoinRegion(regions);
cacheControl.flush(xregion);
return true;

}
}
return false;

}

The cell regions are a set of cells in the cube that need to be cleared. There’s always

the measure region, so that gets added as the first region to include. Then each mem-

ber passed in gets converted to a cell region as well. The memberNameToSegmentList

method converts from the member name to a special list of members.

Listing 7.11 Flush the region of a cube

Find the schema

Find the
cube

Create
a cache
control
object

Cell regions
to clear

Region for
measures

Region for
each

member

Create member
region

Create cross-
join of regions

Flush region

161Summary

 Once all of the regions are defined, a cross-join is created and the cache control

object flushes the region. The next call to Mondrian that needs the cells in the spe-

cific region would read them from the database and populate the cache. If this could

be a lot of data, the cache-priming techniques discussed earlier could be used.

7.7 Summary

This chapter covered a number of topics related to improving the performance of

very large Mondrian installations. One or more of these approaches can be used, and

each provides a different advantage. These are the key points to remember:

■ Performance is something to consider up front and plan for.

■ Performance tuning is an iterative process.

■ A finely tuned database is the first step to high performance.

■ Mondrian uses multiple caches to improve performance, including schema,

member, segment, and external segment caches.

Now that you have a grasp on Mondrian performance tuning, it’s time to return to

data security. The next chapter will show you how to dynamically apply security based

on user information.

162

Dynamic security

In chapter 6 you saw how Adventure Works was able to use roles and grants to restrict

access to data based on a user’s role. Most small and medium businesses that use Mon-

drian for internal only purposes can usually get by with such standard features. But

as the numbers of users, roles, cubes, and clients grow, managing a Mondrian instal-

lation can become an administrative challenge. In a previous example from chapter

6, you saw how Adventure Works wanted to limit the state sales manager to only see

the data from their state. The solution was to create a separate role for each state and

assign managers to those roles, a tedious and error-prone solution. Additionally,

many companies want to be able to provide Mondrian data to their clients. It’s imper-

ative that each client only sees their own data and not data from other clients.

 This chapter will discuss the solutions to these challenges. Although there are

many approaches to solving these problems, the examples provided in this chapter

are specific to Pentaho because most enterprise users of Mondrian use it as part of

Pentaho. The examples in this chapter involve Java code and are mainly aimed at

This chapter is recommended for

Business analysts

Data architects

✓ Enterprise architects

✓ Application developers

163Preparing for dynamic security

the software developer, but it’s important for the enterprise architect to understand

these concepts as well.

 Figure 8.1 shows the high-level process we’ll use to restrict data in this chapter.

First, we’ll set some values in the user session to restrict data. Then we’ll use two

approaches to restrict access to data. The first is to modify the schema to restrict data

based on the database query. The second is to assign users a custom connection and

role that Mondrian uses to evaluate whether a user has access to certain data. The rest

of this chapter will focus on implementing dynamic security.

8.1 Preparing for dynamic security

Before data can be restricted, you need a way to determine which data a user is

allowed to see. The approach we’ll use in this chapter involves setting session attri-

butes for the users when they log in and then checking the values of these attributes

when queries are made to Mondrian—the values will indicate whether the user is

allowed access to the data.

 There are two common approaches to setting session attributes for the user. In sce-

narios where Pentaho is part of a larger infrastructure with single sign-on, the values

are often set during the sign-on process. In other cases, the values are set using action

sequences when a user logs in.

8.1.1 Creating an action sequence

An action sequence is an XML document that the Pentaho runtime engine knows how

to run. It causes various components to execute, it provides access to information

about the user, and it can write to the user session. Finally, there’s a special configura-

tion that can cause the action sequences to run when a user logs in.

3

1

2

Custom MDX

connection

Set session attributes for data restriction.

Update the schema when a connection is made.

Mondrian

Apply custom role

while processing data.

Session

attributes

Original

schema

Update

schema

Dynamic

schema

processor

Figure 8.1 Dynamic securi-

ty process

164 CHAPTER 8 Dynamic security

ACTION SEQUENCES WILL EVENTUALLY GO AWAY Pentaho 5.0 will dramatically
reduce the use of action sequences in favor of using Kettle transformations.
But startup action sequences will still be supported.

Listing 8.1 shows the main part of a simple action sequence, set_session_vars.xaction,

that sets some session attributes in the user session. The first attribute is USER_REGION

_CODE, which will be used with a dynamic schema processor (described in section 8.2)

to restrict the region for the user. The second is USER_STATE_PROVINCE_NAME, which is

used to restrict the state for the user. In this example we’re using fixed values. In a real

system, this value would come from a database, as a parameter or in some other way.

For our purposes, it doesn’t matter how the data ends up in the session, so long as

it does.

<action-sequence>
<inputs>
<USER_REGION_CODE type="string">

<sources>
<request>USER_REGION_CODE</request>

</sources>
<default-value><![CDATA[US]]></default-value>

</USER_REGION_CODE>
<USER_STATE_PROVINCE_NAME type="string">

<sources>
<request>USER_STATE_PROVINCE_NAME</request>

</sources>
<default-value><![CDATA[WA]]></default-value>

</USER_STATE_PROVINCE_NAME>
</inputs>
<outputs>
<USER_REGION_CODE type="string">

<destinations>
<session>USER_REGION_CODE</session>

</destinations>
</USER_REGION_CODE>
<USER_STATE_PROVINCE_NAME type="string">

<destinations>
<session>USER_STATE_PROVINCE_NAME</session>

</destinations>
</USER_STATE_PROVINCE_NAME>

</outputs>
</action-sequence>

8.1.2 Configuring and running the action sequence

Now that the action sequence is written, it needs to be run. If the action sequence is

inside a visible Pentaho folder, it can be run by double-clicking it, the same way you

can run saved analyses and reports. This is very convenient for testing because it’s easy

to see what the results of the action sequence are.

Listing 8.1 Setting user session values

Set country or
region for the user

Set state or province
for the user

Write attributes
to the session

165Restricting data using a dynamic schema processor

 If you run the preceding action sequence, you

should see something like figure 8.2.

 The final step is to make the action sequence

run when a user logs in. Pentaho has a special con-

figuration file called sessionStartupActions.xml

in the pentaho-solutions/system folder that

allows you to specify action sequences to run when

the server starts or a user logs in. To configure a

new action sequence, you just need to add the XML in listing 8.2 into the session-

StartupActionsList bean’s constructor list.

<bean
class="org.pentaho.platform.engine.core.system.SessionStartupAction"

>
<property name="sessionType"

value="org.pentaho.platform.web.http.session.PentahoHttpSession"
/>
<property name="actionPath"

value="adventure-works/set_session_vars.xaction"/>
<property name="actionOutputScope"

value="session"/>
</bean>

Now any time a user logs in, they’ll have session attributes of USER_REGION_CODE and

USER_STATE_PROVINCE_NAME that can be used by code in the system.

TESTING THE ACTION SEQUENCE If the action sequence is in a visible solution
folder in Pentaho, you can run it like a report from the Pentaho User Console.
The displayed content will show the output of the report. This is very useful for
initial testing to make sure the action sequence is working as desired.

In the next section, we’ll look at how you can use a dynamic schema processor to

restrict data based on the region value. Finally, we’ll use a different approach and

modify the user roles to restrict data based on the state value.

8.2 Restricting data using a dynamic schema processor

A dynamic schema processor (DSP) is a custom processor that’s run whenever Mon-

drian makes a connection, such as when a user starts a new Analyzer report. Prior to

Mondrian using the schema, the DSP can modify the schema. There are no restric-

tions on what modifications can be made, but the two most common uses of a DSP are

to support localization and to restrict access to data in multi-tenanted environments.

We’ll demonstrate the second use of restricting data in this section.

THE DSP IS A MONDRIAN FEATURE The DSP is not specific to Pentaho, although
the way we’ll configure it here is. Any system that includes Mondrian as the
analytics engine can use dynamic schema processors.

Listing 8.2 Configuring the action sequence to run on session start

Declare a startup action

Make this a session action

Specify action
sequence to run

Store results
in the session

Figure 8.2 Results showing values from

the action sequence

166 CHAPTER 8 Dynamic security

8.2.1 Modifying the schema to support a DSP

A multi-tenanted environment is one in which data is stored for multiple different cus-

tomers (tenants) in the same database. Each of the tables contains a column that specifies

which tenant the data is for. For example, Company A might have a 1 in the tenant ID

column for records that relate to Company A. Company B would have a 2, and so forth.

 The advantage to this approach is that there’s only one database to manage for all

tenants, rather than a separate database for each tenant. The major concern, however,

is that you must ensure that tenants only see their own data. The solution is to make

sure all queries use the ID of the tenant.

 The Adventure Works database isn’t multi-tenanted, so we’re going to restrict data

based on the region. The technique is the same for tenants; we’re just using a different

column. This same approach can be used to restrict on any column in the database.

 Chapter 4 introduced the PhysicalSchema with the Table and Query elements for

declaring tables. In this example, we’ll need to use the Query element to restrict the

data because it’s the only one that allows you to specify the where clause.

 Listing 8.3 shows the Query with a SQL element. Notice that the element contains a

WHERE clause and %USER_REGION%. At runtime we’ll modify the query to replace

%USER_REGION% with the value for the specific user.

<Query alias="dim_customer_geography" keyColumn="CustomerKey">
<ExpressionView>
<SQL>
select c.CustomerKey,

g.CountryRegionCode, g.StateProvinceName, g.City
from dim_customer as c
join dim_geography as g on c.GeographyKey = g.GeographyKey
where g.CountryRegionCode = %USER_REGION%;
</SQL>

</ExpressionView>
</Query>

SCHEMA CHANGE FROM MONDRIAN 3 If you’re familiar with this technique in
Mondrian 3, you’ll notice a change. In Mondrian 3, a SQL element could be
applied to the Table element to specify a where clause. This functionality was
removed in Mondrian 4.

8.2.2 Example dynamic schema processor

Now that the schema has been modified for use with the dynamic schema processor,

you need to create the code to make the runtime modifications. The dynamic schema

processor only requires a single class and method, as shown in listing 8.4. This class

extends the LocalizingDynamicSchemaProcessor, which is the default schema pro-

cessor used with Mondrian and which provides support for internationalization of

schemas (such as changing column names). Any class that implements the Dynamic-

SchemaProcessor interface can work as well.

Listing 8.3 Virtual table using a query

167Restricting data using a dynamic schema processor

public class DynamicSchemaProcessor
extends LocalizingDynamicSchemaProcessor {

@Override
public String filter(String schemaUrl,
Util.PropertyList connectInfo, InputStream stream)
throws Exception {

String schema =
super.filter(schemaUrl, connectInfo, stream);

IPentahoSession session =
PentahoSessionHolder.getSession();

String region =
(String)session.getAttribute("USER_REGION_CODE");

try {
schema = schema.replaceAll("%USER_REGION%", region);

}
catch (PatternSyntaxException pse) {

pse.printStackTrace();
}

return schema;
}

}

The Java code should be compiled to bytecode and deployed in a JAR file to the Pen-

taho server lib file, usually under tomcat/webapps/pentaho/WEB-INF/lib if you’re

running in the default configuration with Tomcat. The core requirement is that the

class be in a location that can be found by the Java classloader at runtime.

WHERE TO PUT THE NEW CODE If you’re using the DSP with Analyzer, you
should put the JAR file in the tomcat/webapps/pentaho/WEB-INF/lib folder.
If you’re using the DSP with Saiku in its default deployment, put the JAR file in
the pentaho-solutions/system/saiku/lib folder.

This example is straightforward. You first localize the schema by calling the parent.

Then you get the region for the user and substitute it everywhere it occurs in the

schema. Finally, you return the schema as a string to the caller.

8.2.3 Configuring the DSP

The last step required to get a DSP to work is to tell Mondrian to use the dynamic

schema processor for this schema. This configuration is done in the datasources.xml

file located in the pentaho-solutions/system/olap directory.

 Listing 8.5 shows the catalog declaration using the dynamic schema processor.

DynamicSchemaProcessor is the full class name for our new class, and it must be in the

classpath of the Pentaho server as described previously. UseContentChecksum should

Listing 8.4 Dynamic schema processor

Override filter
method

Localize the
schema

Get user region
from the session

Replace
USER_REGION
in the schema

Return the
modified schema

168 CHAPTER 8 Dynamic security

always be set to true—this property tells Mondrian to use the checksum of the schema

to determine uniqueness and map to the cache. If this is false, it’s possible to get

incorrect values for a particular user.

<Catalog name="AdventureWorks">
<DataSourceInfo>Provider=mondrian;
DataSource=AdventureWorksDW;
DynamicSchemaProcessor=

mondrian.in.action.DynamicSchemaProcessor;
UseContentChecksum=true

</DataSourceInfo>
<Definition>
solution:adventure-works/adventure_works.mondrian.xml

</Definition>
</Catalog>

PENTAHO 5.0 CHANGES In Pentaho 5.0, you will no longer use the data-
sources.xml file to configure Mondrian catalogs. Instead, you will set the
properties when importing a Mondrian schema into the Pentaho repository.

Figure 8.3 shows some of the original data without the filter, and figure 8.4 shows the

data with the filter. In the latter case, only the data where the user region is US is

shown. The next step is to restrict at the state level using custom roles.

Listing 8.5 Dynamic schema processor configuration

Figure 8.3 Unfiltered data

169Restricting data using dynamic role modification

8.3 Restricting data using dynamic role modification

Adventure Works wants to restrict sales managers so they can only see information

about customers in their state. For example, the sales manager for the state of Wash-

ington should only see the sales for Washington. As you saw in chapter 6, Adventure

Works could create a separate role for each sales manager and assign each manager to

that role, but this adds fifty roles in just the United States. That alone would be very

complex to manage. Now imagine an organization that wants to filter thousands of

stores and limit managers to see only data for their store. The management of roles

would become quite complex.

 Most organizations already have information about users that defines what roles

they have, where they work, who their clients are, and so on. This information can

be used at runtime to dynamically create roles for users and restrict data access. This

is possible because Mondrian supports the concept of a delegate role that deter-

mines access.

 In section 8.1 you saw how to set session variables for a user. In a production

environment, these action sequences would retrieve data about the user from a data-

base or other location and put it into the session. In our example, we manually set

the state via the action sequence for testing. Now we’ll use the session variable to

restrict the data.

Figure 8.4 Data

filtered by region

170 CHAPTER 8 Dynamic security

CUSTOM ROLES ARE NOT COMBINED Normally if a user belongs to multiple
roles, the roles are combined. But when you use a custom role as described
here, it’s the only role that’s applied for the user. It’s not combined with
other roles.

With the dynamic schema processor, we only needed to create one class. For this

approach, three classes are needed; they’re all simple, but each provides a different

customization. These are the three classes:

■ CustomMDXConnection replaces the defined role with a custom role.

■ CustomRoleDelegate controls access to member data.

■ CustomHierarchyAccess is an inner class of CustomRoleDelegate and helps

with access control.

In the rest of this section, we’ll look at preparing the schema for the custom delegate

role and at each of these three classes.

CACHE CONSIDERATIONS One consideration when deciding to use a dynamic
schema processor instead of a custom role is the cache. Mondrian uses the
checksum of the schema to distinguish caches, and because the DSP modifies
the schema, there’s a separate cache for each resulting schema. The custom
role is applied at a higher level than the schema, so cache data can be shared
even if the results are different for each user. The downside is that the custom
role can be slower than the dynamic schema processor.

8.3.1 Preparing the schema

Before you can apply a custom role, you need an existing role to modify. This can be any

role that the user will have, but you should consider the access for users who don’t have

that specific role. As shown in listing 8.6, we’re limiting the sales manager role. When

the connection is made, the existing role will be replaced with the custom role. Keep in

mind that you may need to limit other users who aren’t in the sales manager role by

restricting access to the cube, because those users won’t be affected by the custom role

and won’t have their data restricted.

<Role name="Sales Manager">
<SchemaGrant access="all">
<CubeGrant cube="Internet Sales" access="all">

<HierarchyGrant hierarchy="[Customer Geography].[Geography]"
access="custom" rollupPolicy="partial">

<MemberGrant member="[Customer Geography].[Country].[US]"
access="none"/>

<MemberGrant member="[Customer Geography].[State].[California]"
access="all"/>

</HierarchyGrant>
</CubeGrant>

</SchemaGrant>
</Role>

Listing 8.6 Predefined role

171Restricting data using dynamic role modification

One additional aspect of this role is that it must include a valid MemberGrant that has a

legitimate member that exists in the database. If the MemberGrant isn’t included or

the member doesn’t exist, the call to check for access is optimized away and the code

will never be invoked.

 Note that as this is written, the user will never see any members in the given hierar-

chy because access specified for the MemberGrant is none. This effectively disables

access by default so the custom role can give it back.

RESTRICTING ALL DIMENSIONS A role only restricts access to the dimensions
that it’s told to restrict. In Analyzer you can drag a dimension to the canvas
and see all of the members. If there’s an unrestricted role, all members are
shown unless the restricted dimension or a measure is included. For example,
if a user is restricted only by state and they drag only the customer names to
the canvas, they would see all customer names, even those for other states,
until a measure or the state level is added. If this is a problem, customers also
need to be restricted.

8.3.2 Custom MDX connection

The custom MDX connection is what allows the custom role to be used by Mondrian

when determining access. Listing 8.7 shows the custom MDX connection class.

public class CustomMDXConnection extends MDXConnection {

@Override
protected void init (Util.PropertyList properties) {
super.init(properties);
Connection thisConn = this.getConnection();
Role authRole =

thisConn.getSchema().lookupRole("Sales Manager");

CustomRoleDelegate customRole =
new CustomRoleDelegate(authRole);

thisConn.setRole(customRole);
setRole(customRole);

}
}

The class extends the MDXConnection that’s normally used and overrides the init

method. This method is called whenever a connection is made to Mondrian. All this

class does is create a new custom role and assign it to the connection.

 One important thing to note about the example is that you must have an Authen-

ticated role already defined. You could use any role, but the role should already exist

as a starting point, and it must be a role that the user will have.

Listing 8.7 Custom MDX connect

Extend
MDXConnection class

Call parent init

Use Sales Manager role

Create new custom role

Set custom role
for this user

172 CHAPTER 8 Dynamic security

8.3.3 Custom delegate role and custom hierarchy access

Now that you have a custom delegate role assigned to the connection, you need to cre-

ate the role and its helper class. Listing 8.8 may appear complex, but most of it is boil-

erplate code that routes the decision to the getAccess method.

public class CustomRoleDelegate extends DelegatingRole {

private String state;
private static String HIERARCHY_NAME = "Geography";

public CustomRoleDelegate(Role role) {
super(((RoleImpl) role).makeMutableClone());
this.state =

(String)PentahoSessionHolder.getSession().
getAttribute("USER_STATE_PROVINCE_NAME");

}

@Override
public HierarchyAccess getAccessDetails(Hierarchy hierarchy) {
HierarchyAccess ha = super.getAccessDetails(hierarchy);
return (ha == null ? null : new CustomHierarchyAccess(ha));

}

protected class CustomHierarchyAccess
extends RoleImpl.DelegatingHierarchyAccess {

public CustomHierarchyAccess(HierarchyAccess ha) {
super(ha);

}

public Access getAccess(Member member) {
return CustomRoleDelegate.this.

getAccess(member, hierarchyAccess.getAccess(member));
}

}

@Override
public Access getAccess(Hierarchy hierarchy) {
return role.getAccess(hierarchy);

}

@Override
public Access getAccess(Member member) {
return getAccess(member, role.getAccess(member));

}

protected Access getAccess(Member member, Access access) {
String memberHierarchyName = member.getHierarchy().getName();
if (memberHierarchyName.contains(HIERARCHY_NAME)) {

if (member.getName().equalsIgnoreCase(this.state)) {
return Access.ALL;

}

Listing 8.8 Custom role delegate

Specify hierarchy
to restrict

Create new delegate role

Get state from the session

Return access
details for the
hierarchy

Create inner delegate
for controlling access

Handle access for
member access

Return access for
the hierarchy

Return access
for members

Determine
member
access

Check if
controlled
hierarchy

173Restricting data using dynamic role modification

for (Member mem : member.getAncestorMembers()) {
if (mem.getName().equalsIgnoreCase(this.state)) {

return Access.ALL;
}

}

Access acc = (access == Access.CUSTOM) ? access : Access.NONE;
return acc;

}

return access;
}

@Override
public Access getAccess(Level level) {
return role.getAccess(level);

}

}

The getAccess method is where the decision is made as to whether or not the user

has access to the data member. The first check determines whether this is the member

the user is allowed to see. If not, a check is made to see if the member is in the hierar-

chy of the restricted member. Finally, the original access is returned if the access is cus-

tom, or NONE if not.

8.3.4 Configuring the custom MDX connection

The final step in getting the custom delegate role to work is to configure it in pentaho-

Objects.spring.xml. Simply replace the existing MDX connection declaration with one

like that in listing 8.9. This configuration tells Pentaho to use the custom class whenever

a connection to Mondrian is made.

<bean id="connection-MDX"
class="mondrian.in.action.CustomMDXConnection"
scope="prototype">

<property name="useExtendedColumnNames" value="true" />
</bean>

Figure 8.5 shows the data without the restriction by state. As you can see, the user sees

all states and not just those they should be restricted to. Figure 8.6 shows the results

when the dynamic roles are applied. In this case, the user can only see the state

they’re granted access to.

 The custom delegate role approach is very powerful because it allows you to

dynamically modify a role at runtime. You can implement virtually any customization,

but you have to understand how the role will be invoked. There are currently plans to

simplify and improve dynamic roles in a future version of Mondrian, but this

approach works with the existing version.

Listing 8.9 Configure custom MDX connection

Check for access
to higher levels

Return access
for member

Return standard access
if not controlled

Return level
access

174 CHAPTER 8 Dynamic security

8.4 Deciding which security approach to use

The dynamic schema processor and custom roles are two different ways you can

achieve the same goal of restricting data, but which approach you should use is not

always obvious. This section describes some factors to consider when making your

decision.

 To use a DSP for data security, you must have something in your data to restrict on.

This is usually an ID for the user or the group the user belongs to. The nice thing

about using a DSP is that it can significantly reduce the amount of data returned to

Mondrian for processing. The drawback is that each DSP causes a separate in-memory

cache that can impact performance and lead to complexity in clearing the caches.

Figure 8.5 No restriction on state

Figure 8.6 Restricting by state

175Summary

 The custom-role approach requires that you know what you want to restrict for the

user. Usually the restriction is at the member level, so you must have all of the mem-

bers available for restriction. If you want to restrict members within more than one

dimension, you’ll have to restrict all of them, which can lead to some fairly significant

data being stored in the user session.

 Although custom roles share a common cache, possibly improving performance,

they also require that all data be brought back from the database for a given user. If

there is a large number of users who all have custom views of the data, this may not be

faster than reducing the data returned by using a DSP. You’ll have to think about how

the data will be returned and possibly experiment to see which approach provides

security while maintaining performance.

8.5 Summary

This chapter showed you how to apply custom security when running Mondrian in

Pentaho. We first looked at one approach to setting values in the user session that can

be used to restrict data access. Then we looked at two approaches to restricting data:

■ A dynamic schema processor that rewrites the schema to restrict access to data

■ A custom role that restricted data at runtime to a single state

Both of these scenarios are common for enterprise users of Mondrian as well as for

multi-tenanted environments.

 In the next chapter, we’ll examine various ways that Mondrian data can be pre-

sented to users with Pentaho. The security techniques in this chapter apply in all of

those cases as well. No matter what the presentation is—table, report, chart, or dash-

board—the same security restrictions will be applied in all cases.

176

Working with
 Mondrian and Pentaho

As we pointed out in chapter 1, Mondrian is an OLAP engine. It provides a lot of

power, but you need to couple it with an end-user tool to make it effective. As we’ve

explored Mondrian’s various capabilities, we’ve used examples of end-user tools

use to explain particular points, but we haven’t looked very deeply into any of the

specific tools.

 In this chapter, we’ll broaden our scope and cover topics that should be of

interest to all users of Mondrian. We’re going to take a look at several tools that

are commonly used with Mondrian and show how they’re used. These tools are

written and maintained by Pentaho, as well as several tools from other companies

that work closely with Pentaho. As you’ll see, there is a rich variety of tools tai-

lored to specific needs:

This chapter is recommended for

✓ Business analysts

✓ Data architects

✓ Enterprise architects

✓ Application developers

177Pentaho Analyzer

■ Pentaho Analyzer—An Enterprise Edition plugin that provides drag-and-drop

analysis as well as advanced charting.

■ Saiku—An open source, thin-client interface that provides drag-and-drop analy-

sis and charting.

■ Community Dashboard Framework (CDF)—An open source tool that allows

users to create dashboards based on Mondrian data.

■ Pentaho Report Designer (PRD)—An open source desktop application that

allows users to create pixel-perfect reports.

■ Pentaho Data Integration (PDI)—An ETL tool that’s usually used to populate

the data used by Mondrian as described in chapter 3, but it can also use Mon-

drian as a source of data.

We won’t be providing a complete user guide to each tool—that would take another

complete book. But you should get an understanding of what each tool can do for you

and how to use it with Mondrian. We’ll also point out any peculiarities associated with

each tool as it relates to Mondrian.

9.1 Pentaho Analyzer

Pentaho Analyzer is an enterprise analysis and charting tool. It uses Mondrian as a

source of information and provides a graphical interface that allows analysts to easily

perform analysis. Analyzer is an Enterprise Edition feature that requires a license

from Pentaho to use. It has similar functionality to Saiku with some advanced features

such as geomapping and plugin visualizations.

 The rest of this section will provide an overview of some of Analyzer’s features as

well as some special additions to schemas to support mapping and time dimensions in

Analyzer.

9.1.1 Overview of Pentaho Analyzer

Figure 9.1 shows Analyzer with data in a tabular format. On the left is the list of

dimensions and measures that you can add to the analysis. These values all come from

the cube that you choose when creating an Analyzer report.

 Next to the fields is the current layout. This panel is context sensitive and will

change based on the report view. For example, a stacked bar chart allows you to spec-

ify a dimension to use for multiple charts, as shown in figure 9.2. In this case, we’re

creating a separate chart for each country.

 The toolbar contains some basic tools such as undo and redo, showing and hiding

panels, and other settings. The toolbar also allows you to switch from tabular mode to

charts, selecting the specific chart you want to use. Hovering over an icon on the tool-

bar gives a tip to show what the icon does.

 The analysis results area will show either a table of the results or the chosen chart.

Through the use of context menus, you can also add things like subtotals and coloring

to tables. We’ll describe how to use some of these features in the next section.

178 CHAPTER 9 Working with Mondrian and Pentaho

9.1.2 Using Analyzer for analysis

Let’s use Analyzer to create a report on Adventure Works’ internet sales. We’ll find cus-

tomers who purchased more than 10 items, and target them with a new promotion.

 Select File > New > Analyzer Report to create a new Analyzer report, and you’ll get

the dialog box shown in figure 9.3. (You could also click one of the icons on the main

User Console toolbar.) Choose the Internet Sales cube, and then click OK to enter a

new Analyzer report.

Toolbar

Dimensions and

measures available

from the cube

Layout of

fields

Analysis

results

Figure 9.1 Pentaho Analyzer

Layout

for chart

Multiple charts

Figure 9.2 Multiple bar charts for each country

179Pentaho Analyzer

Click the Report Options button to open the Report Options dialog box, as shown in

figure 9.4. You’re not interested in seeing customers who haven’t made a purchase, so

make sure the Also show Rows/Columns where the Measure cell is blank check box is

unchecked. You can also specify what value is shown in blank cells, and whether totals

are shown. Cell drillthrough causes each measure to have a link that can be clicked to

see the source data that went into that cell. Freezing headers is useful for large reports

so that you can see them when scrolling.

 To restrict the report to customers with 10 purchases, you need a filter. To do this,

drag the Sales field to the filter pane. (You can also right-click on a header and select

Filter.) The dialog box is shown in figure 9.5.

 There are different kinds of filters based on the type of thing being filtered. The

sales filter is based on numeric value, and there are also filters for standard dimen-

sions or time dimensions, shown in figures 9.6 and 9.7.

 Numeric filters can filter based on values or can be set to show the top or bottom

values. For example, you could identify the lowest performing stores to see how they

can be improved. Numeric filters make it possible to limit the report to only the

important values.

Selected schema

and cube

Figure 9.3 Select

cube for analysis

Rules for empty cells

Show totals

Turn on drillthrough

Always show headers

Figure 9.4 Set report options

180 CHAPTER 9 Working with Mondrian and Pentaho

Dimensional filters let you filter on specific levels in a dimension. This can be very

helpful if you just want to see a specific territory or state, for example. You can select a

value from a list of existing members or even specify a substring to match on. The fil-

ters let you include or exclude the matching data.

 The final type of filter is based on dates. When a dimension is properly defined as

a time dimension, Analyzer will allow you to specify dates related to the type of time,

such as year or month. As with standard dimensions, you can include and exclude

Filter on equality

Filter on Top-N

Field to filter on

Figure 9.5 Filter nu-

meric values

Choose

from list

FIlter type

Selections would

show here

Optional

parameter name
Figure 9.6 Filter standard di-

mension values

181Pentaho Analyzer

specific values, but you can also use more interesting filters, such as searching

between dates, choosing dates from the last time period, and so on.

9.1.3 Charting with Analyzer

Tables are very powerful for analysis, but graphical representations of data can be

even more powerful. Charts give a view of the data that can quickly highlight differ-

ences. For example, you may have a bar chart of sales by store where one bar is signifi-

cantly higher or lower than others. Such a result would suggest further analysis to see

why a store is performing above or below average.

 Creating charts is as simple as creating tabular reports. But because of the context-

based layout panel described previously, it’s much easier to start in the chart mode

and create the report rather than start with a table and convert it to a chart. To create

a new chart, simply create a new Analyzer report, click the chart icon in the toolbar,

and then drag the fields to the appropriate location.

 Figure 9.8 shows an example of a stacked bar chart. Unfortunately, this example

also demonstrates one of the dangers of charts. If they aren’t all at the same scale, they

can misrepresent the data. In this case, New Zealand appears to have dramatically

more canceled orders than the United States. But if you look closely, you’ll see that

the difference isn’t quite that large.

 A particularly compelling chart that has been recently added to Analyzer is the

Geo Map. This map presents data on a global map and allows you to drill down locally.

Figure 9.9 shows the sales of shipped items by country. The size of the bubble indi-

cates the quantity shipped, and the color specifies the quantity of sales. This allows the

viewer to easily see where the most sales are in an easy-to-understand visual form.

 One final point on charts is that Analyzer uses Pentaho’s plugin architecture and

allows you to create and use new visualizations. Some users need more than what’s

available from the standard charts, so assuming you have the technical skills, you can

Choose time filter

Set filter

Figure 9.7 Filter time di-

mension values

182 CHAPTER 9 Working with Mondrian and Pentaho

create your own visualizations. Figure 9.10 shows a chord chart, which links two metrics

and uses the width of the connection as a relative size.

 Not only can you create your own charts, but because these are plugins, you can

reuse charts that are created by others. In the future, it’s likely that the Pentaho com-

munity will provide a number of charts to represent data in a variety of ways. At this

Layout

for chart

Results

Shipped type is excluded

Figure 9.8 Example of a stacked bar chart

Chart layout

Map results

Figure 9.9 Plotting data on a Geo Map chart

183Pentaho Analyzer

time, the process isn’t well documented, but you should be able to find examples on

the Pentaho site.

9.1.4 Special schema annotations for using Analyzer

When dealing with time and geomapped data, Analyzer requires special annotations

in the Mondrian schema to make these data types work well. Time annotations allow

Analyzer to create special time-based calculations, and geomapped data allows Ana-

lyzer to show the data on maps. In this section, we’ll show you what to add to your

schema to get the full benefits of time and geomapped data.

ANNOTATING FOR TIME DIMENSIONS

Analyzer requires that levels in a time dimension have an AnalyzerDateFormat anno-

tation for each level. This tells Analyzer how to format the date for queries, and it

uses Java date format notation. For example, a four-digit year is specified as [yyyy].

Listing 9.1 shows an example of annotating the month level.

<Level name="Months" column="MONTH_NAME"
ordinalColumn="MONTH_ID"
type="String" uniqueMembers="false"
levelType="TimeMonths" hideMemberIf="Never">

<Annotations>
<Annotation name="AnalyzerDateFormat">

[yyyy].['QTR'q].[MMM]
</Annotation>

</Annotations>
</Level>

Listing 9.1 Annotating the month level for Analyzer

Territory

Highlighted: All

YearEMEA sales for 2004
Figure 9.10 Plotting

data as a chord chart

184 CHAPTER 9 Working with Mondrian and Pentaho

ANNOTATING FOR GEO MAPS

For Analyzer to display items on a map, you need to tell it how to find the geographi-

cal location of dimension members. There are two different approaches for annotat-

ing locations. The first is to specify a level, such as country, state, or city. The second is

to specify latitude and longitude. This means, of course, that the location information

must exist in the data warehouse.

 Listing 9.2 shows the declaration of a state level. Table 9.1 shows the possible

annotations.

<Level name="State Province"
column="STATE"
type="String"
levelType="Regular"
hideMemberIf="Never">

<Annotations>
<Annotation name="Data.Role">Geography</Annotation>
<Annotation name="Geo.Role">state</Annotation>
<Annotation name="Geo.RequiredParents">country</Annotation>

</Annotations>
</Level>

If you don’t have a geography dimension, you can still geotag data using latitude and

longitude, and it will be shown on the map. Latitude and longitude are added as prop-

erties and tagged with the Geo roles to indicate that they are latitude and longitude, as

shown in listing 9.3. As long as you have the data, you can geotag any level where it

makes sense.

<Level name="Customer Location"
column="CUSTOMERNUMBER"
type="Numeric"
uniqueMembers="false">

Listing 9.2 Annotating the state level for Analyzer

Table 9.1 Geo annotations

Annotation Required? Value(s)

Data.Role Required Geography— indicates that members of the level have a

geographical location.

Geo.Role Required Name of a geographical classification; country, state,

city, and zip are typical values, but you can use any

value supported by the location service.

If Geo.Role has the special value location, Analyzer

will look for properties of the level called latitude and

longitude.

Geo.RequiredParents Optional Comma-separated list of parent classifications.

Listing 9.3 Annotating the latitude and longitude for Analyzer

185Community Dashboard Framework

<Annotations>
<Annotation name="Data.Role">Geography</Annotation>
<Annotation name="Geo.Role">location</Annotation>

</Annotations>
<Property name="Latitude" column="CUSTLAT" type="Numeric" />
<Property name="Longitude" column="CUSTLON" type="Numeric"/>

</Level>

Now that you understand how to use Analyzer, let’s look at how to use Saiku, an open

source alternative to Analyzer.

9.2 Saiku

We covered Saiku in chapter 2, so we won’t go into detail about how to use it again

here. Because Analyzer requires an enterprise license, Saiku is a good choice for a

drag-and-drop tool that has no licensing costs. Even if you do have Analyzer, many

people use Saiku for its ability to generate MDX queries because it generates much

easier-to-read MDX than Analyzer.

 Another reason to use Saiku is that it has a standalone version that doesn’t require

Pentaho at all. Simply download the server and start it running. This is a very handy

approach if you simply want to do analysis without the other overhead that comes with

the entire Pentaho suite. And because Saiku is open source, you can even contribute

to the project.

 When running Saiku as a plugin, there are some things to be aware of. First, Saiku

has its own library of files in the saiku/lib folder. This means that if you should need a

different library for only Saiku, you can place it in this folder.

 A second consideration is that by default Saiku will not use Mondrian’s cache, so if

you install something like the Community Data Cache, you might wonder why noth-

ing is being cached. Reconfiguring Saiku to use Mondrian’s cache is easy. Simply run

the script saiku-shareMondrian.sh to have Saiku use the same Mondrian version as

Pentaho, including sharing the cache. Note that this means Saiku will also use the

same libraries as Pentaho.

 Hopefully you now have a feel for Analyzer and Saiku and understand some of the

trade-offs between the two. In the next section, we’ll show you how to create dash-

boards based on Mondrian data.

9.3 Community Dashboard Framework

The Community Dashboard Framework (CDF) is another project from Webdetails for

creating interactive dashboards. The dashboards are written in a combination of

HTML, JavaScript, and CSS, which means that you will need technically skilled people

to develop CDF dashboards. It also means that the dashboards can be highly interac-

tive and do anything that a dynamic web page can do.

 This section will give you a brief introduction to CDF and describe how to use Mon-

drian as a source of data for CDF components. We’ll also discuss a complementary

project, Community Data Access (CDA), that abstracts the Mondrian connection from

the dashboard while adding additional features.

186 CHAPTER 9 Working with Mondrian and Pentaho

9.3.1 Creating a CDF dashboard

A typical dashboard consists of at least three files:

■ An .xcdf file that defines the dashboard

■ An HTML file that serves as a template for dashboard

■ A JavaScript file that contains the actions of the dashboard, including the MDX

queries

Additional files commonly seen in more complex dashboards include cascading style

sheets, static images, and possibly additional JavaScript files. Because CDF dashboards

are essentially dynamic HTML pages, they can include anything that a regular dynamic

HTML page can, including jQuery or other framework files. The additional files don’t

even have to reside in the same directory, allowing you to create common files for

reuse by other dashboards.

 Listing 9.4 shows the contents of an .xcdf file. The two most important values are the

title and template. The title is what will be displayed in the Pentaho User Console and

can be localized. The template is the HTML file that will be used to create the dashboard.

<?xml version="1.0" encoding="UTF-8"?>
<cdf>

<title>MDX Chart</title>
<author>Bill Back</author>
<description>Sample chart based on MDX Query</description>
<icon></icon>
<template>charts.html</template>
<style>mia</style>

</cdf>

The .xcdf file tells Pentaho that this is a dashboard, and it calls the CDF plugin to ren-

der the dashboard. CDF will use the template file to load all of the resources needed

for the dashboard. The template file actually gets loaded into a separate template that

can be used globally by all CDF dashboards, allowing you to customize the look and

feel of all dashboards. The style tag specifies which outermost template to use. See

the CDF documentation for information on how to change the global template files,

because this involves creating and deploying a new HTML file.

 The template file contains three logical sections, as shown in listing 9.5. The first is

basic HTML that will define locations for CDF to render the objects. In this example,

we’re only adding a pie chart, so we just have a single div to hold the resulting chart.

For a complex dashboard, you might have multiple div tags and use tables or CSS to

lay out the dashboard.

 The second section is the declaration of the objects. In this example, we first

define the pie chart and then create a pie chart based on the definition. Because

we’re using Mondrian, we specify an MDX type, the catalog to use, the data source for

the data, and the actual query. This example uses Steel Wheels, the sample dataset

Listing 9.4 Declaring a CDF dashboard

Title and
description

Location
of chart

Name of style
template

187Community Dashboard Framework

that comes with Pentaho. There are a few additional settings, such as height and

width, that should also be specified but that are not shown here.

<div id="pieChart_object"></div>
<script language="javascript" type="text/javascript">

var pieChartDefinition = {
chartType: "PieChart",
datasetType: "CategoryDataset",
title: "Territory Sales",
queryType: 'mdx',
catalog:
"solution:steel-wheels/analysis/steelwheels.mondrian.xml",

jndi: "SampleData",
query: function(){

var query = "select " +
"NON EMPTY {[Measures].[Quantity]} ON COLUMNS, " +
"NON EMPTY [Markets].[Territory].Members ON ROWS " +
"FROM [SteelWheelsSales]";

return query;
}

};

pieChart = {
name: "pieChart",
type: "jFreeChartComponent",
listeners:[],
chartDefinition: pieChartDefinition,
htmlObject: "pieChart_object",
executeAtStart: true

};

var components = [pieChart];
Dashboards.init(components);
</script>

Once the dashboard has been

loaded into the repository, you

can run it and see the results, as

shown in figure 9.11. In this case,

we have the sales by territory as a

pie chart.

9.3.2 Using Community Data

Access

In the previous example, we

embedded the query directly

into the dashboard, but there

Listing 9.5 Defining a CDF dashboard with a pie chart

Define chart
content

Use MDX
with catalog

JNDI data
source

MDX query

Create pie chart

Create and init
components

Territory sales

NA =

37,952

(36%)

APAC =

12,878

(12%)

Japan =

4,923

(5%)

EMEA =

49,578

(47%)

Figure 9.11 CDF pie chart

188 CHAPTER 9 Working with Mondrian and Pentaho

are a few problems with this approach. First, it potentially exposes the details of your

data to anyone who has access to the dashboard. Second, it makes the data access dif-

ficult to change should you decide to change the type of data source.

 To solve these problems and add extra functionality, there’s another project called

Community Data Access (CDA) that allows you to separate the source of data from the

dashboard. Users will only see that you’re using CDA, but not the original source of

the data. CDA supports a wide variety of data source types in addition to Mondrian,

such as SQL and Pentaho Data Integration (PDI). You can also combine data from

multiple sources into a single query using CDA and make that available to the dash-

board as well.

CDA data access is defined in a separate file with a .cda extension. Listing 9.6 shows

a CDA file that returns the same results as the previous query. There are two sections:

the first defines the data sources to use and the second defines the specific query and

the results returned.

<?xml version="1.0" encoding="utf-8"?>
<CDADescriptor>

<DataSources>
<Connection id="1" type="mondrian.jndi">

<Jndi>SampleData</Jndi>
<Catalog>

../steel-wheels/analysis/steelwheels.mondrian.xml
</Catalog>
<Cube>SteelWheelsSales</Cube>

</Connection>
</DataSources>
<DataAccess id="1" connection="1" type="mdx" access="public">
<Name>Mdx Query on SampleData - Jndi</Name>
<Query>

SELECT
NON EMPTY {[Measures].[Quantity]} ON COLUMNS,
NON EMPTY [Markets].[Territory].Members ON ROWS
FROM [SteelWheelsSales]

</Query>
<Columns>

<Column idx="1">
<Name>Territory</Name>

</Column>
<Column idx="2">

<Name>Quantity</Name>
</Column>

</Columns>
<Output indexes="1,2"/>

</DataAccess>
</CDADescriptor>

Once you have a CDA file defined, you can edit the original CDF file to change the

data access from MDX to CDA. Listing 9.7 shows the new definition for the pie chart.

Listing 9.6 Declaring a CDA descriptor

Define a connection
to the schema

MDX query

Column descriptions

Columns to return

189Pentaho Report Designer

It’s all the same except that the MDX has been replaced with CDA settings. Once you

run the chart, it looks identical to the previous one.

var pieChartDefinition = {
chartType: "PieChart",
datasetType: "CategoryDataset",
title: "Territory Sales",
queryType: "cda",
cdaFile: "/mia/mia.cda",
dataAccessId: "1"

};

CDF and CDA provide a nice way to create a dashboard, but many users also want data

in reports. The next section will show you how to create tabular reports with Mon-

drian data.

9.4 Pentaho Report Designer

Pentaho Report Designer (PRD) is a pixel-perfect report-designing tool. It’s a stand-

alone tool that runs independently of the Pentaho BA server, and it can be down-

loaded from http://reporting.pentaho.com. If you install using the Pentaho

graphical installer, it will be placed in the design-tools directory. Start it as you would

any other Java application.

PRD allows you to use a variety of data sources to create nicely formatted reports

for users. Reports typically contain header and footer information, tabular data, and

charts. Furthermore, a Pentaho report can include parameters that allow a user to fil-

ter the data. In this section, we’ll give you a brief overview of what reports can do,

show you how to use Mondrian as a source of data, and discuss how to use a dynamic

schema processor with reports. We won’t show you all the details of creating reports,

but we’ll focus on the Mondrian-specific aspects.

 Reports are most commonly based on data from relational databases using SQL to

get the data. But PRD supports a wide variety of input sources, such as Mondrian, Pen-

taho Data Integration, big data sources such as Hadoop, and NoSQL databases such as

MongoDB. With the use of scripted data sources for languages such as Groovy and

Beanshell, the number of data sources is almost limitless.

9.4.1 Creating an OLAP data source

Let’s look at how you can use PRD to create a report based on Mondrian. First, open

up PRD and select New Report. You’ll see something very similar to the blank canvas

shown in figure 9.12.

 The first thing to do is set a source of data. There are a number of ways to specify the

data type, but we’ll use the Data tab. Click the Data tab, and then click the database icon

at the top. You’ll see a pop-up menu like that shown in figure 9.13. Click OLAP and

choose Pentaho Analysis to create a Mondrian-based connection. You’ll notice that

Listing 9.7 Defining a CDF dashboard with a pie chart

Use CDA

CDA file

Data access ID in file

http://reporting.pentaho.com

190 CHAPTER 9 Working with Mondrian and Pentaho

there are multiple OLAP options. We’ll just

cover the basic one here, since that’s the

most common one.

 After the data source editor opens (as

shown in figure 9.14), you can set the values

for the data source. You can use the Browse

button and browse to the Mondrian

schema. Note that the path to the schema

will become part of the report definition—

when the report is deployed, it’ll look for

the schema at the same path. This means

that you need some approach to make sure the report will find the schema in the envi-

ronment it’s deployed to, or else the report will need to be updated to point to the

correct path.

 The next thing to select is the data source you want to use. This is a configured

connection. Pentaho has a standard way of configuring connections to the database

that we won’t cover here, but you can choose to use standard JDBC settings or JNDI.

Whenever possible, you should use JNDI because it allows you to have a development

report that points to development data, and then as the report goes through QA and

into production, only the JNDI settings need to change, not the report.

 After setting the database, click the green button with a “+” sign on it, to the right

of Available Queries. This creates a new query. Give the query a descriptive name that

makes it easy to tell what the query does. Finally, enter a valid MDX query. This query

will return the values to use in the report.

Report canvas

Report structure

Toolbar

Available

components

Figure 9.12 Blank report

Data source

type selection

OLAP data

sources

Figure 9.13 Choose OLAP data source

191Pentaho Report Designer

EXPERIMENT WITH THE ORDER OF ROWS AND COLUMNS One word of caution: the
order of the columns and rows can cause your report to get different values,
including member names rather than the measures you might expect. You may
need to experiment with the query to get the values you want in your report.

Now that you have the query, close the data source editor and you’ll see the available

fields you can use in the report. Figure 9.15 shows the completed report. Several data

fields have been put onto the details section, and this section will repeat for each line

Mondrian schema file

Database with

Mondrian data

MDX query

Query name

Figure 9.14 Entering the OLAP settings

Data fields from MDX query

Field results

(repeated for each line of data)

Calculated

totals

Headers

Figure 9.15 Populated

report template

192 CHAPTER 9 Working with Mondrian and Pentaho

in the results. There’s also a page header that gets added to each page, containing the

report name. The report header will be displayed before the details, so you can put

the column headers there. You can also put a total in the report footer that will show

how many items were ordered by each product line.

 At this point, you have a complete report that can be run. Figure 9.16 shows the

report with data. The values are all pulled from the MDX query executing against the

database. You could now publish this report to the Pentaho server for other users to run.

Figure 9.16 Report with data

193Pentaho Report Designer

9.4.2 Using parameters

One problem with reports is that they can get pretty long. Users often want to see only

some of the data at any given time. In Analyzer you can create filters to restrict the data,

and Pentaho Report Designer offers a similar capability through the use of parameters.

 The first step is to create a query to populate the parameters. You could also just

hard code the value (for example, if you want to specify a dimension), but in this case

we’re going to parameterize the country to allow users to restrict by country. Because

of the way the query is returned, the territory needs to be in the rows, and since you

can’t specify a ROWS value in MDX without a column, you need to also specify some-

thing on the COLUMNS. In this case, we’ll just ignore the column values. Listing 9.8

shows the MDX query for the territories.

SELECT
NON EMPTY {[Product].[Line].Members} ON COLUMNS,
NON EMPTY {[Markets].[Territory].Members} ON ROWS
FROM [SteelWheelsSales]

Once you have a query, you can create a parameter to use. Figure 9.17 shows the con-

figuration for the parameter. Select the query, and then select the fields to use. In this

case, we’ll use a drop-down list.

 Now that the parameter has been defined, it needs to be added to the original

query to filter the data. There are really two ways to filter in MDX. The first is to use a

Listing 9.8 Getting the territories for parameters

Name to use in query

Label to show in report

Parameter type

Type of selection to use

Source of list data

Value to use from query

for parameter

Value to show to user

Figure 9.17 Defining the territory parameter

194 CHAPTER 9 Working with Mondrian and Pentaho

WHERE clause, which is essentially the same as adding a hidden axis that selects only

some data. Because we’re restricting on a dimension that’s already in the query, we

can’t use a WHERE, because that would cause Markets to be on two axes. In this case, we

can filter by specifying the territory in the SELECT.

 The last step is to update the original query to use the parameter. Listing 9.9 shows

the new query. Note that the market will now be populated with the children values of

the territory selected from the parameter, as indicated by ${Territories}. Figure 9.18

shows the results of running the report with a parameter.

SELECT
NON EMPTY {[Product].[Line].Members} ON COLUMNS,
NON EMPTY CrossJoin(
[Markets].[${Territories}].Children,
{[Measures].[Quantity]})
ON ROWS

FROM [SteelWheelsSales]

SLICING We’ve been using the term filter because that’s a common term for
reporting. It’s also common to see the term slicing used in OLAP when talking
about restricting data.

9.4.3 PRD and the dynamic schema processor

The last thing to mention about Mondrian and PRD is the use of dynamic schema pro-

cessors. PRD uses a different connection approach than Analyzer, Saiku, and other

Listing 9.9 Restricting the territory with a parameter

Selected parameter

Update when

parameter changes

Figure 9.18 The report with a territory parameter

195Pentaho Data Integration

tools. PRD contains the definition as part of the report. Because of this, you need to

set a dynamic schema processor in the report definition.

 To specify the DSP you want to use, edit the data source and add a new global

script, as shown in figure 9.19. This script will be called when the report is generated

and will set the DSP to use; the value specified is the class name of the DSP. Note that

you need to deploy the class into the classpath of the reporting engine so it can be

found at runtime.

 The previous sections showed you how to create visualizations based on Mondrian

data. But sometimes users just want to get data from Mondrian and do something with

it. The next section covers extracting Mondrian data using PDI.

9.5 Pentaho Data Integration

Pentaho Data Integration (PDI) is a desktop tool that allows you to extract data from a

variety of sources, modify the data, and then send it to a variety of outputs. The most

common use of PDI is to perform ETL, as described in some detail in chapter 3, but

PDI can be used in any situation where you need to get and manipulate data. This sec-

tion will describe how to use PDI to extract data from Mondrian. From there, you can

use the data as you would from any other data source.

 The first step is to create a new transformation. This is done by selecting File > New

> Transformation. Once you have a transformation, you can connect to the database.

 Figure 9.20 shows the View tab. Right-click Database Connections and select New.

You’ll get the standard database connection

form shown in figure 9.21. Enter the connec-

tion information for the data mart being used

by Mondrian.

 So far you’ve created a connection to the

database with the data for Mondrian. Now

you just need to hook it up to a schema and

get some data. From the Design tab, open the

Input folder and drag a Mondrian Input step

onto the canvas. You should now have a trans-

formation that looks similar to figure 9.22.

Use JavaScript

Script to set DSP

Figure 9.19 Adding a global script

View tab

New

transformation

Figure 9.20 PDI view

196 CHAPTER 9 Working with Mondrian and Pentaho

Next, enter the catalog, database connection, and query into the step dialog box, as

shown in figure 9.23. After the settings are entered, click the Preview button to see the

results. Figure 9.24 shows the sales by category.

Name of connection Connection settings

Type of

database

Figure 9.21 Database

connection information

Select Mondrian

input step…

…and drag to

the canvas

Figure 9.22 Adding

a Mondrian input

Valid MDX

query Mondrian

schema

Connection from

earlier step

Save settings

Preview results

Name of step

Figure 9.23 Setting Mondri-

an values

Figure 9.24 Results of query

197Summary

At this point, you can use the data as you would any other input from PDI.

9.6 Summary

In this chapter, we took a look at some of the most widely used tools for working with

Mondrian data sources. For each tool, we provided a brief overview and some high-

level instructions on how to use it with Mondrian. We also provided some tips and

considerations to be aware of when using each tool. You should now have a good idea

of what each tool provides in the way of functionality and generally understand when

it might be useful.

 In particular, we covered the following tools:

■ Pentaho Analyzer

■ Saiku

■ Community Dashboard Framework

■ Pentaho Report Designer

■ Pentaho Data Integration

Despite all the power these tools provide, they may not meet all your needs. Perhaps

you want to link Mondrian directly to your system, or perhaps you want to create a

simplified user interface. In the next chapter, we’ll take a look at how developers can

create new tools to work directly with Mondrian to meet these needs.

198

Developing with Mondrian

All of the previous chapters dealt with creating Mondrian content and using Mon-

drian from existing tools. You learned the steps necessary to create a data ware-

house and populate it for Mondrian. You learned how to create a schema and

optimize performance. You also learned how to apply security to Mondrian,

including dynamic security. Finally, you learned about a variety of tools that can

use Mondrian.

 In this chapter you take the next step and learn how to use Mondrian from your

own applications. This chapter is mainly written for software developers. It’s

expected that you have the ability to read HTML, JavaScript, and Java code to fully

understand the examples.

 Adventure Works management has decided that they want to add analytical

information to their existing web and desktop applications. This functionality

would allow them to let analysts and managers see reports and trends against their

data while using their existing applications rather than needing multiple tools.

This chapter is recommended for

Business analysts

✓ Data architects

Enterprise architects

✓ Application developers

199Calling Mondrian from a thin client

They want to use Mondrian to do so because of its rich feature set, built-in security,

and existing user base.

 They discover that there are two main ways to use Mondrian from within their

applications (figure 10.1). If they have a thin-client application, they can use XML

for Analysis (XMLA) and JavaScript to make calls to Mondrian. In this case Mon-

drian would run on a web server configured as an XMLA source. In section 10.1

we’ll show how to use Mondrian using jQuery with Ajax as well as the xmla4js

JavaScript libraries.

 If they’re writing an application using Java or some other JVM language, they can

use olap4j to talk to Mondrian. olap4j works both with Mondrian configured as a web

service or directly embedded within your application. Using olap4j you can also access

additional functionality, such as access to the cache control service provider interface

(SPI), that isn’t available when making XMLA calls from a thin client. In section 10.2

we’ll show how to use olap4j to make both types of connections.

CODE SNIPPETS IN THIS CHAPTER Note that we only show the parts of the code
that are relevant to Mondrian and XMLA. We’ve also generally kept error
detection to a minimum to make the code clearer as well. Please see the
book’s web-site (http://www.manning.com/back) to download the complete
code examples.

Calling Mondrian from a thin client

Browser-

based UI

Mondrian Mondrian

Exchange data

via XMLA

Embed the Modrian engine

olap4j

Note: Not all apps will use a UI, but

they can still use Mondrian for analysis.

App sever

Thin-client app

Swing or

similar UI

Desktop app

Swing or

similar UI

Desktop app

Figure 10.1 Mondrian can be used from web and desktop clients via XMLA, and it can

be embedded in Java applications.

http://www.manning.com/back

200 CHAPTER 10 Developing with Mondrian

10.1 Calling Mondrian from a thin client

As we described, Mondrian can be invoked from both a thin client and desktop appli-

cation. The techniques are similar but take different approaches. We’ll first introduce

XMLA to provide some background. Next, we’ll describe how to invoke Mondrian as

an XMLA service using JavaScript and Ajax. Finally we’ll describe how to use an open

source library, xmla4js, that makes working with XMLA easier. Though the xmla4js

approach is simpler, it’s worth understanding the more complex approach with

straight XMLA since xmla4js assumes you understand the messages being passed.

10.1.1 XML for Analysis (XMLA)

XML for Analysis (XMLA) is a standard that allows systems to interact with OLAP servers

via SOAP messages. XMLA was first proposed by Microsoft in 2000, and the XMLA

council was formed in 2001. Since that time, most OLAP providers, including Mon-

drian, have added support for XMLA.

SOAP, which originally stood for Simple Object Access Protocol, is a message pass-

ing protocol designed for system-to-system communications. SOAP exchanges can be

thought of as two friends sending letters back and forth. SOAP messages have an enve-

lope that contains a header and a body. The content of the message is put into the body

and is an XML document (listing 10.1). In our case, the message body will be our

XMLA messages. The receiver of the message typically responds back with another

SOAP message. SOAP message exchange is often implemented as an asynchronous

communication using a JavaScript library such as jQuery. The sender won’t wait for a

response, but rather listens for one to show up. When the SOAP message is received, a

function is called to handle the message and do something with it.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Header />
<SOAP-ENV:Body>
XML message here

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

XMLA consists of two types of messages: discover messages that allow the calling system

to retrieve information about the data sources and cubes and execute messages that let

the calling system execute remote MDX queries (figure 10.2). By using a series of

messages, you can create applications that can interact with an XMLA server for anal-

ysis without writing your own analysis code. This allows you to support a variety of

applications using the same back end. And since XMLA is a standard, you could

potentially switch between vendors.

Listing 10.1 Basic SOAP message

201Calling Mondrian from a thin client

10.1.2 Configuring Mondrian as an XMLA web service

Before Mondrian can be used as an XMLA service, it has to be properly configured.

When Mondrian is deployed with Pentaho, it’s already configured to be used as an XMLA

service. If you examine the pentaho-solutions/system/olap/datasources.xml file, you’ll

see the configuration information for the data source. Listing 10.2 shows some of the

key values. The URL is the one you’ll want to use when making connections to the XMLA

server. Note that you should pass the username and password for a valid user.

<DataSourceName>
Provider=Mondrian;DataSource=Pentaho

</DataSourceName>
<URL>

http://localhost:8080/pentaho/Xmla?userid=joe&password=password
</URL>
<DataSourceInfo>

Provider=mondrian
</DataSourceInfo>
<ProviderName>

PentahoXMLA
</ProviderName>

If you’re deploying Mondrian as part of your own web application, the steps are simi-

lar to what the BI server does. You create a datasources.xml file in your web applica-

tion WEB-INF directory. The format of the file is the same as the Pentaho one shown in

the preceding listing. You also configure the XMLA servlet in your web.xml configura-

tion file, as shown in listing 10.3. Full details with an example can be found on the

Mondrian configuration page at http://mondrian.pentaho.com/documentation/

installation.php#5_How_to_configure_Mondrian_as_an_XMLA_provider.

Listing 10.2 Mondrian configuration in datasources.xml

Discover and

execute messages

XMLA contents,

such as analysis results

1

XMLA

Request

2

XMLA

XMLA client XMLA server

Response
Figure 10.2 Exchanging

XMLA messages via SOAP

Name of data source

URL to call

Information about data source

Sets provider name

http://mondrian.pentaho.com/documentation/installation.php#5_How_to_configure_Mondrian_as_an_XMLA_provider
http://mondrian.pentaho.com/documentation/installation.php#5_How_to_configure_Mondrian_as_an_XMLA_provider

202 CHAPTER 10 Developing with Mondrian

<servlet>
<servlet-name>MondrianXmlaServlet</servlet-name>
<servlet-class>mondrian.xmla.impl.DefaultXmlaServlet</servlet-class>

</servlet>

Now that Mondrian is configured to provide XMLA services, the next step is to use the

service. Using the service can be done using either JavaScript or olap4j. The next sec-

tion will describe how to access the service using direct Ajax SOAP calls. After that we’ll

look at a library that makes it a lot simpler.

10.1.3 Calling XMLA services with Ajax

To learn how to use XMLA services in the thin clients, we’ll first build a simple web

page that will allow us to discover the available data sources from the Mondrian XMLA

server and make analytical queries. We can use this knowledge to interface from a

variety of clients. We’ll base the interface on jQuery and Ajax, since that will allow us

to create the type of dynamic interfaces that users have come to expect.

THIS IS THE HARD WAY This section provides you with the low-level details of
how to use the XMLA service. If you prefer to use libraries and simplify your
work, you can skip ahead to section 10.1.4.

CREATING THE THIN-CLIENT APPLICATION

The first thing to do is create an HTML page to define the layout of this application.

Figure 10.3 shows the client proof of concept to be built. With this client, we’ll be able

to enter the URL for the Mondrian server along with a user-name and password and

discover the available data sources and cubes. Once a data source is selected, we can

enter an MDX query and get the results as a table of data. Although simple, this exam-

ple shows how you can easily embed access to Mondrian in any thin client.

Listing 10.3 Mondrian configuration in web.xml

Mondrian

XMLA server Username Password

Discovered

catalogs

MDX query
Figure 10.3 Simple thin

client for XMLA queries

203Calling Mondrian from a thin client

The solution consists of four files:

■ QueryXMLA.html—An HTML document that defines the layout of the page

■ QueryXMLA.js—A JavaScript file that uses jQuery and does the bulk of the work

■ XMLAResponse.js—A JavaScript class that will aid in parsing responses from XMLA

■ QueryXMLA.css—A cascading stylesheet to make the page look nice

Listing 10.4 shows the simplified HTML we use to lay out the page. JavaScript will pop-

ulate the page as the user enters data and makes selections. The user first enters and

selects values, then enters an MDX query, and then views the results of the query.

<html>
<head>
<title>XMLA Query</title>
<script src="jquery-1.7.2.js"></script>
<script src="XMLAResponse.js"></script>
<script src="QueryXMLA.js"></script>

</head>
<body>
<h1>Query Mondrian with XMLA</h1>
<form id="queryForm">

<input type="text" name="serverURL" />
<input type="text" name="userId" />
<input type="password"name="password" />
<input type="button" name="discoverButton" >

value="Discover Datasources"/>
Available Catalogs:<select id="catalogSelect"></select>
<textarea type="textarea" name="mdxQuery"></textarea>

<input type="button" name="queryButton" value="Query" />

</form>
<div>

<table id="results">
<tbody></tbody>

</table>
</div>
<div id="errors"></div>

</body>
</html>

XMLA DISCOVERY

Once the layout has been defined, the JavaScript that performs the work in the thin-

client application needs to be written. Retrieving information about the data sources

and cubes is done by sending a series of XMLA Discover messages. The end goal is to

have enough information to be able to make MDX queries. To make MDX queries, we

need the data source and the schema, also called a catalog in XMLA. To get this infor-

mation, we send a series of three discover messages: DISCOVER_DATASOURCES,

DBSCHEMA_CATALOGS, and MDSCHEMA_CUBES. Figure 10.4 shows the exchange of

messages used to discover the data sources, catalogs, and cubes.

Listing 10.4 HTML layout

Form for XMLA
parameters

User MDX
query

Table for results

Error messages

204 CHAPTER 10 Developing with Mondrian

Each of the discover messages is sent as a SOAP message. The message is embedded

into the SOAP body, as shown earlier in listing 10.1. Listing 10.5 shows the messages

sent to discover all of the cube information needed to make queries.

<Discover xmlns="urn:schemas-microsoft-com:xml-analysis">
<RequestType>DISCOVER_DATASOURCES</RequestType>
<Restrictions>
<RestrictionList/>

</Restrictions>
<Properties>
<PropertyList>

<Format>Tabular</Format>
</PropertyList>

</Properties>
</Discover>

<Discover xmlns="urn:schemas-microsoft-com:xml-analysis">
<RequestType>DBSCHEMA_CATALOGS</RequestType>
<Restrictions />
<Properties />

</Discover>

<Discover xmlns="urn:schemas-microsoft-com:xml-analysis">
<RequestType>MDSCHEMA_CUBES</RequestType>
<Restrictions>

<RestrictionList>
<CATALOG_NAME>xxxCATALOGxxx</CATALOG_NAME>

</RestrictionList>
</Restrictions>
<Properties>

Listing 10.5 Discover data sources query

DISCOVER_DATASOURCES

SOAP message exchange

Data sources

List of catalogs

[for each data source]

DBSCHEMA_CATALOGS

List of cubes

[for each catalog]

MDSCHEMA_CUBES

QueryXMLA Mondrian

Figure 10.4 SOAP message

exchange for discovery

Discovers available
data sources

Discovers
available schemas

Discovers
available cubes

Catalog name

205Calling Mondrian from a thin client

<PropertyList>
<DataSourceInfo>xxxDATA_SOURCE_INFOxxx</DataSourceInfo>
<Catalog>xxxCATALOGxxx</Catalog>
<Format>Tabular</Format>

</PropertyList>
</Properties>

</Discover>

To make the call, the user will enter a URL and username and password and then click

the Discover Datasources button. When the button is clicked, the application will

retrieve the discover message defined here and will post the message to the XMLA

server using a jQuery Ajax function.

 To handle posting messages to the XMLA server, you can define a general purpose

JavaScript function to be used each time you need to send a message. Listing 10.8

shows the function that will post messages using the jQuery Ajax call. This function

takes three parameters. The first is the message to send to the XMLA server. The mes-

sage must be a valid XMLA SOAP message. The second parameter is the type of con-

tent to send to the callback handler. The valid options are text or xml. Text is

convenient for debugging or getting back generic content. Since the XMLA server

returns SOAP messages, we’ll generally specify XML. The third parameter is the func-

tion to call when the response is received from the XMLA server. We’ll describe the

format of this function in a bit.

 Since XMLA is based on message passing, a few types of errors can occur. The first

is general Ajax errors that can be handled with standard Ajax calls. The second is

XMLA errors. If the message passed to the XMLA server isn’t correct, then an error

message will be returned. Listing 10.6 shows the general form of an error message.

The main element to look for is the <error> element. If it exists, then this is an error

message and the code and description elements will tell you what the error is.

<faultcode>SOAP-ENV:Server.00HSBE02</faultcode>
<faultstring>XMLA Discover unparse results error</faultstring>
<faultactor>Mondrian</faultactor>
<detail>

<XA:error xmlns:XA="http://mondrian.sourceforge.net">
<code>00HSBE02</code>
<desc>Mondrian XMLA error message.</desc>

</XA:error>
</detail>

To support error handling, we’ll create a function to check for XMLA errors and let us

know if one occurred. Listing 10.7 shows the code to check for an error (without the

SOAP header information). If an error is found, an alert will be shown with the error,

and the function will return true. The return value can then be used by callback func-

tions to know if there was an error or if it has valid content to process.

Listing 10.6 Example XMLA error

Data source
info from

above
Catalog name

<error> element
indicates an error

Error code

Error description

206 CHAPTER 10 Developing with Mondrian

function checkForXMLAError (response) {
var hasError = false;
$(response).find('error').each (function() {
hasError = true;
var code = $(this).find('code').text();
var desc = $(this).find('desc').text();
alert ('found an error (' + code + '): ' + desc);

});
return hasError;

}

In order to post a message to the server, it’s necessary that the URL be set. The post-

Message function will verify that a URL has been entered, as shown in the following list-

ing. It’s up to the user to make sure that the URL is correct. Mondrian also allows you

to pass a user ID and password when making XMLA calls, so the postMessage function

will add those if they’re provided.

function postMessage (message, returnDataType, successCallback) {
var baseURL = queryFormElement("serverURL").val();
var userid = queryFormElement("userId").val();
var password = queryFormElement("password").val();

if (baseURL == '') {
alert ('Error: you must set the server URL prior to any calls');
return;

}

var url = baseURL + "?";
if (userid != '') { url += "userid=" + userid + "&";}
if (password != '') {url += "password=" + password;}

$.ajax({
type: 'POST',
url: url,
contentType: "text/xml",
data: message,
success: successCallback,
dataType: returnDataType

});
}

Once the message has been successfully sent, the results need to be handled in the call-

back function. jQuery Ajax callback functions take three parameters: the data returned

from the call (either text or an XML DOM object), a text status indicating whether the

Ajax call succeeded, and a jQuery object that contains information about the query. For

our program we’re only going to use the data. Note that the success text will indicate

success if the Ajax query was successful even if the XMLA query wasn’t.

 The data source information callback will provide the data source information.

Theoretically, multiple data sources can be returned, but in the case of Mondrian

Listing 10.7 Function to check for XMLA errors

Listing 10.8 Function to post XMLA SOAP messages via Ajax

Check for <error>
element

Get error code

Get description

Get URL and
parameters

Verify URL exists

Add user ID and
password

POST using Ajax

207Calling Mondrian from a thin client

embedded inside of Pentaho, only a single data source is returned so a single object is

sufficient to hold the data.

 Listing 10.9 shows a partial example of the content of the SOAP message returned.

The data source information is listed inside of a row element. The data source info is

the primary data that we’ll need, but we’ll go ahead and save all of the information

returned in case we want to display or use it later.

<row>
<DataSourceName>
Provider=Mondrian;DataSource=Pentaho

</DataSourceName>
<DataSourceDescription>
Pentaho BI Platform Datasources

</DataSourceDescription>
<URL>
http://localhost:8080/pentaho/Xmla?userid=joe&password=password

</URL>
<DataSourceInfo>
Provider=Mondrian;DataSource=Pentaho

</DataSourceInfo>
<ProviderName>
PentahoXMLA

</ProviderName>
<ProviderType>
MDP

</ProviderType>
<AuthenticationMode>
Unauthenticated

</AuthenticationMode>
</row>

Listing 10.10 shows the callback function that’s called when the response to

DISCOVER_DATASOURCES is received. It parses the response and saves the information

to the data source object. It also clears the catalogs object in case there were earlier

queries. Finally it calls to get the catalog information.

function handleDiscoverCallback (data, textStatus, jqXHR) {
if (checkForXMLAError(data) == true) {return;}

$("#datasourcesSelect").html("");
datasource = {};
catalogs = {};

$(data).find('row').each(function() {

datasource.dataSourceName =
$(this).find('DataSourceName').text();

datasource.dataSourceDescription

Listing 10.9 Content of a discover response message

Listing 10.10 Callback function for handling discover data source messages

Name of
data source

Same URL
we called,
but doesn’t
have to be

Usually same
as the name

Stop on
errors

Each row is a data source

Get data source properties

208 CHAPTER 10 Developing with Mondrian

= $(this).find('DataSourceDescription').text();
datasource.url

= $(this).find('URL').text();
datasource.dataSourceInfo

= $(this).find('DataSourceInfo').text();
datasource.providerName

= $(this).find('ProviderName').text();
datasource.providerType

= $(this).find('ProviderType').text();
datasource.authenticationMode

= $(this).find('AuthenticationMode').text();

postMessage(getDiscoverCatalogsMessage(), 'xml',
function(catalogData, catalogTextStatus, jqXHR) {

$(catalogData).find('row').each(function() {
var catalogName = $(this).find('CATALOG_NAME').text();
postMessage(

getDiscoverCubesMessage(
datasource.dataSourceInfo, catalogName),

'xml', handleDiscoverCube);
});

});
});

}

The calls to discover the catalogs (Mondrian schemas) and cubes for each catalog pro-

vide the data needed to select the schema for the query. Listing 10.11 shows the mes-

sage used to retrieve the catalogs. The response to this query is a set of catalogs available

for requests. Each of the catalogs can then be used to find the cubes for the query.

var discoverCatalogsQuery =
'<Discover xmlns="urn:schemas-microsoft-com:xml-analysis">

<RequestType>DBSCHEMA_CATALOGS</RequestType>
<Restrictions />
<Properties />

</Discover>';

function getDiscoverCatalogsMessage() {
return getSOAPMessage(discoverCatalogsQuery);

}

Listing 10.12 shows the body of the response back from the XMLA server. Several addi-

tional properties are returned, but these are the main ones we’re interested in for

now. They allow us to provide the name and description for the interface and make

MDX query calls. Each row contains information about a different catalog that can

contain cubes.

<row>
<CATALOG_NAME>ClassicModels</CATALOG_NAME>

Listing 10.11 XMLA query to discover catalogs

Listing 10.12 XMLA response for discover DBSCHEMA_CATALOGS query

Get catalogs
for data source

Handles return message

Get cubes for catalog

Discovery type

No restrictions
or properties

Send message

Schema name

209Calling Mondrian from a thin client

<DESCRIPTION>No description available</DESCRIPTION>
<ROLES/>

</row>
<row>

<CATALOG_NAME>SampleData</CATALOG_NAME>
<DESCRIPTION>No description available</DESCRIPTION>
<ROLES/>

</row>
<row>

<CATALOG_NAME>SteelWheels</CATALOG_NAME>
<DESCRIPTION>No description available</DESCRIPTION>
<ROLES/>

</row>

Listing 10.13 shows the calls to get the cubes for a given catalog. Note that the data

source information and the catalog must be included in the message. This message is

sent for each catalog.

var discoverCubesQuery =
'<Discover xmlns="urn:schemas-microsoft-com:xml-analysis">

<RequestType>MDSCHEMA_CUBES</RequestType>
<Restrictions>

<RestrictionList>
<CATALOG_NAME>xxxCATALOGxxx</CATALOG_NAME>

</RestrictionList>
</Restrictions>
<Properties>

<PropertyList>
<DataSourceInfo>xxxDATA_SOURCE_INFOxxx</DataSourceInfo>
<Catalog>xxxCATALOGxxx</Catalog>
<Format>Tabular</Format>

</PropertyList>
</Properties>

</Discover>';

function getDiscoverCubesMessage (dataSourceInfo, catalog) {
return getSOAPMessage(discoverCubesQuery
.replace(/xxxDATA_SOURCE_INFOxxx/g, dataSourceInfo)
.replace(/xxxCATALOGxxx/g, catalog));

}

A response like that shown in listing 10.14 is returned for the discover message. Each

row is a cube for the given catalog (schema). Each cube can be used for analysis queries.

<row>
<CATALOG_NAME>ClassicModels</CATALOG_NAME>
<CUBE_NAME>Inventory</CUBE_NAME>
<CUBE_CAPTION>Inventory</CUBE_CAPTION>
<DESCRIPTION>ClassicModels Schema - Inventory Cube</DESCRIPTION>

</row>

Listing 10.13 XMLA query to discover cubes for a given catalog

Listing 10.14 XMLA response for discover MDSCHEMA_CUBES query

Description

Defined roles,
if any

Discover cubes

Restrict catalog returned

Data source info

Catalog to get cubes for

Catalog name

Cube name for query

210 CHAPTER 10 Developing with Mondrian

<row>
<CATALOG_NAME>ClassicModels</CATALOG_NAME>
<CUBE_NAME>Orders</CUBE_NAME>
<CUBE_CAPTION>Orders</CUBE_CAPTION>
<DESCRIPTION>ClassicModels Schema - Orders Cube</DESCRIPTION>

</row>

As each response to the MDSCHEMA_CUBES message is received, the handle-

DiscoverCube function (listing 10.15) is called with the results. This will check each

row and store the properties of the catalog and cube. This information will be needed

for the user to execute queries later.

function handleDiscoverCube(cubeData, textStatus, jqXHR) {

if (checkForXMLAError(cubeData) == true) {return;}

$(cubeData).find('row').each (function () {
var catalogName = $(this).find('CATALOG_NAME').text();
var cubeName = $(this).find('CUBE_NAME').text();
var description = $(this).find('DESCRIPTION').text();

var catalog = catalogs[catalogName];
if (catalog == null) {

catalog = new Object();
catalog.catalogName = catalogName;
catalog.cubes = new Array();
catalogs[catalogName] = catalog;

}
catalog.cubes.push(cubeName);

setCatalogSelect();
});

}

Once the cubes have been processed and added to the list of catalogs, the select input

is updated with the list of catalogs and cubes as shown in listing 10.16. A complete

update needs to be made each time, because the user could’ve pointed to a different

XMLA server. At this point the user has a populated list of cubes to use for querying. In

the next section we’ll see how to create and send the queries.

function setCatalogSelect() {
var html = "";
for (var catalogName in catalogs) {
var catalog = catalogs[catalogName];
var cubes = catalog.cubes;

html += "<option value='" + catalogName + "'>" +
catalogName + " - " + cubes.join(" | ") +

"</option>";

Listing 10.15 Function to handle MDSCHEMA_CUBES response

Listing 10.16 Function to set the catalogs and cubes to select

Caption for display

Stop on errors

Each row is a cube

Get cube properties

New catalog, create new

Add cube to catalog

Update select element

Each catalog
Get catalog

Get cubes

Add select option

211Calling Mondrian from a thin client

}
$("#catalogSelect").html(html);

}

EXECUTING XMLA QUERIES

Now that we have all the information needed to execute a query, the application user

can enter straight MDX queries and run them. Listing 10.17 shows the message that’s

sent to the XMLA server and the JavaScript function used to get the message. The

xxxMDX_STATEMENTxxx will be replaced with the actual MDX query entered by the

user. The data source info and catalog information are set from values retrieved and

chosen earlier.

var executeQuery =
'<Execute xmlns="urn:schemas-microsoft-com:xml-analysis">

<Command>
<Statement>xxxMDX_STATEMENTxxx</Statement>

</Command>
<Properties>

<PropertyList>
<DataSourceInfo>xxxDATASOURCE_INFOxxx</DataSourceInfo>
<Catalog>xxxCATALOGxxx</Catalog>
<Format>Multidimensional</Format>
<AxisFormat>TupleFormat</AxisFormat>

</PropertyList>
</Properties>

</Execute>';
/

When the user clicks the Query button, the code checks that a query of some sort

has been entered. If not, the user gets an error message and no query is made.

Assuming a query has been entered, an Ajax call is made to the XMLA server as

shown in listing 10.18.

function getQueryMessage (mdxQuery, dataSourceInfo, catalog) {
return getSOAPMessage(
executeQuery.replace(/xxxMDX_STATEMENTxxx/g, mdxQuery)

.replace(/xxxDATASOURCE_INFOxxx/g, dataSourceInfo)

.replace(/xxxCATALOGxxx/g, catalog)
);

}

DISPLAYING THE RESULTS

After studying the return results from the query, it should be apparent that parsing

the results is going to be complex. So we’ll put the code for parsing the query results

into its own class to make it easier to understand, and we can potentially reuse it in

future projects. Two major steps are involved: parse the column and row headers, and

Listing 10.17 Execute MDX query message

Listing 10.18 Execute MDX query

Add to page

Execute message

MDX query

Data source info

Catalog name

Result and axis format

Send query

212 CHAPTER 10 Developing with Mondrian

parse the data. We’ll create a new JavaScript class called XMLAResponse to parse the

response and provide access to the headers and the data. Listing 10.19 shows the new

class with a constructor.

function XMLAResponse(XMLAContent) {
this.rowHeaders = new Array();
this.colHeaders = new Array();
this.cellData = new Array();

this.parseHeaders(XMLAContent);
this.parseData(XMLAContent);

}

When the class is created, the XML content is passed to the class. The class has three

arrays to hold the row and column headers and the data returned. The class then calls

to parse the headers and the data so they’re available to the user of the class. The

headers and data arrays hold an array of values for each row so that they can be easily

processed as shown in figure 10.5.

Listing 10.19 Class to parse XMLA response

Array of arrays, one
per row of data

The number or row header arrays

matches the number of data arrays.

0 2003

Boats

2003 2003 2004 2004 2004

337 $166.55 $56,128 416 $174.63 $72,644

312 $117.08 $36,530 369 $120.12 $44,324

284 $87.57 $24,869 473 $89.82 $42,486

1
Qty

order

Price

each
Total

Qty

order

Price

each
Total

Two rows of column headers.

0

1
Classic

cars

2
Exoto

design

Classic

cars

Autoart

design

studio

Red

stand

diecast

Two rows of column headers.

0

1

2

Six columns of data matching number of column headers.

Figure 10.5 Table

of query results

213Calling Mondrian from a thin client

Listing 10.20 shows the format of the axes returned. Of interest to us are the level and

the caption. In this example, the levels are lined neatly, but that isn’t always the case.

Sometimes the levels have a single value followed by multiple values for lower levels.

The solution is to check the level and make sure captions are at the proper level for all

of the columns and rows.

<Axes>
<Axis name="Axis0">
<Tuples>

<Tuple>
<Member Hierarchy="Product.Product">

<Caption>Classic Cars</Caption>
<LName>[Product].[Line]</LName>

</Member>
<Member Hierarchy="Scale.Scale">

<Caption>1:10</Caption>
<LName>[Scale].[Scale]</LName>

</Member>
</Tuple>
<Tuple>

<Member Hierarchy="Product.Product">
<Caption>Classic Cars</Caption>
<LName>[Product].[Line]</LName>

</Member>
<Member Hierarchy="Scale.Scale">

<Caption>1:12</Caption>
<LName>[Scale].[Scale]</LName>

</Member>
</Tuple>

</Tuples>
</Axis>
<Axis name="Axis1">
<Tuples>

<Tuple>
<Member Hierarchy="Vendor.Vendor">

<Caption>Autoart Studio Design</Caption>
<LName>[Vendor].[Vendor]</LName>

</Member>
<Member Hierarchy="Order Month.Month">

<Caption>January</Caption>
<LName>[Month].[Month]</LName>

</Member>
<Member Hierarchy="Measures">

<Caption>Quantity Ordered</Caption>
<LName>[Measures].[MeasuresLevel]</LName>

</Member>
</Tuple>
<Tuple>

<Member Hierarchy="Vendor.Vendor">
<Caption>Autoart Studio Design</Caption>
<LName>[Vendor].[Vendor]</LName>

</Member>

Listing 10.20 XMLA response axis headers

Rows axis

Hierarchy name

Caption
Level

Columns axis

214 CHAPTER 10 Developing with Mondrian

<Member Hierarchy="Order Month.Month">
<Caption>January</Caption>
<LName>[Month].[Month]</LName>

</Member>
<Member Hierarchy="Measures">

<Caption>Price Each</Caption>
<LName>[Measures].[MeasuresLevel]</LName>

</Member>
</Tuple>

</Tuples>
</Axis>

</Axes>

Listing 10.21 shows the parsing of the headers. The code reads the tuples from each

axis to get the level and caption. It then finds the correct level in the header and gets

the caption for that level. By definition in MDX, columns are axis 0 and rows are axis 1.

You can theoretically have more than two axes, but that’s difficult to display in two

dimensions, so the typical approach when presenting the data is to only handle two axes

and put them into a table. For this reason any axis above two will be ignored. Since the

values for the headers are returned the same way for all axes, we can rotates the headers

for the row to convert from column form to row form as shown in listing 10.22.

XMLAResponse.prototype.parseHeaders = function(XMLAContent) {
var axisCount = 0;

var xr = this;

$(XMLAContent).find("Axis").each(function() {
var lname = "";
axisCount++;

var levelNames = new Array();
var headers;
if (axisCount == 1) headers = xr.colHeaders;
else if (axisCount == 2) headers = xr.rowHeaders;
else {

return;
}

var currentLevel;
var level;

$(this).find("Tuple").each(function() {
$(this).find("Member").each(function() {

var caption = $(this).find("Caption").text();
var newlname = $(this).find("LName").text();
if (newlname != currentLevel) {

level = xr.findHeaderLevel(levelNames, headers, newlname);
}
level.push(caption);

});

Listing 10.21 Parse the row and column headers

“this” is contextual so
keep reference to object

First axis is columns,
second is rows

Only allow two
axes for tables

Each member
is a value

Different level

Add caption value to level

215Calling Mondrian from a thin client

});
if (axisCount == 2) xr.rotateRowHeaders();

});
}

XMLAResponse.prototype.rotateRowHeaders = function () {
var nbrOldHeaders = this.rowHeaders.length;
if (nbrOldHeaders > 0) {
var newRowHeaders = new Array();
var newLength = this.rowHeaders[0].length;
for (var cnt = 0; cnt < newLength; cnt++) {

newRowHeaders.push(new Array());
}
for (var rcnt = 0; rcnt < nbrOldHeaders; rcnt++) {

for (var ccnt = 0; ccnt < newLength; ccnt++) {
newRowHeaders[ccnt].push(this.rowHeaders[rcnt][ccnt]);

}
}
this.rowHeaders = newRowHeaders;

}
}

Finding the correct level in the data has to account for both new levels and jagged

headers, as shown in listing 10.23. First the code checks through the levels to see if this

is one of the existing levels. Once the level is found, all of the levels are made to be the

same length. This is done by populating any shorter rows with the same value. Finally,

if this is a new level, it’s created and added to the levels to be used for future values.

The current level is returned to let the value be added.

XMLAResponse.prototype.findHeaderLevel =
function (levelNames, headers, newlname) {

var level = null;
for (var cnt = 0; cnt < levelNames.length; cnt++) {
if (newlname == levelNames[cnt]) {

level = headers[cnt];
break;

}
}

if (headers.length > 0) {
var max = headers[headers.length - 1].length;
for (cnt = headers.length - 2; cnt >= 0; cnt -= 1) {

var row = headers[cnt];
var lval = row[row.length - 1];
while (row.length < max) {

row.push(lval);
}

}
}

Listing 10.22 Rotate the row headers

Listing 10.23 Find the right level

Rotate row headers

Create new array
of correct size

Copy header values

Set row header

Find level by name

Make higher rows same size

Copy current value

216 CHAPTER 10 Developing with Mondrian

if (!level) {
level = new Array();
headers.push(level);
levelNames.push(newlname);

}

return level;

}

Now that the headers have been properly handled, the cell values need to be read and

put into the right location. The data’s complexity comes from the fact that it’s all in

one, flat list. It’s up to the receiver to figure out how to handle the data. Also, only the

cells that have values are returned—empty cells aren’t. Rather, a CellOrdinal value is

returned that tells where the data belongs.

 There are two ways that the data can be populated. One alternative is to parse

through the data and fill the arrays as data is read. This approach would mean that each

cell is populated once. But it makes the code fairly complex and difficult to maintain.

An easier if less computationally efficient approach as shown in listing 10.24. First cre-

ate the arrays for the data and prepopulate them with blanks. Then use the Cell-

Ordinal value to put the cell into the correct row and column, since a value now exists

for each cell.

XMLAResponse.prototype.parseData = function(XMLAContent) {
var cnt = 0;
var rowLength = this.colHeaders[0].length;
var data = this.cellData;

for (var rcnt = 0; rcnt < this.rowHeaders.length; rcnt++) {
var row = new Array();
data.push(row);
for (var ccnt = 0; ccnt < rowLength; ccnt++) {

row.push("");
}

}

$(XMLAContent).find("Cell").each(function() {
var value = $(this).find("FmtValue").text();
var cellOrdinalValue = $(this).attr("CellOrdinal");
var cloc = cellOrdinalValue % rowLength;
var rloc = Math.floor(cellOrdinalValue / rowLength);
data[rloc][cloc] = value;

});
}

The final step is to display the results to the user, as shown in listing 10.25. First the

columns headers are added, leaving spaces for each of the row headers. Then the row

headers followed by data are added. The final result is a table of all the data returned

from the query. Figure 10.6 shows the final results for the user.

Listing 10.24 Parse the data

Create and add new level

Create data
with blanks

Process all data cells

Calculate column

Calculate row

217Calling Mondrian from a thin client

function handleQueryCallback (data, textStatus, jqXHR) {
if (checkForXMLAError(data) == true) {
return;

}

var response = new XMLAResponse(data);

$("#results tr").remove();
for (var ccnt = 0; ccnt < response.colHeaders.length; ccnt++) {
var row = "<tr>";
var ch = response.colHeaders[ccnt];
for (var rcnt = 0; rcnt < response.rowHeaders[0].length; rcnt++) {

row += "<th></th>";
}
for (var ccnt2 = 0; ccnt2 < ch.length; ccnt2++) {

row += "<th>" + ch[ccnt2] + "</th>";
}
row += "</tr>";
$("#results > tbody:last").append(row);

}

for (var rcnt = 0; rcnt < response.rowHeaders.length; rcnt++) {
var rh = response.rowHeaders[rcnt];
var data = response.cellData[rcnt];
row = "<tr>";

for (rcnt2 = 0; rcnt2 < rh.length; rcnt2++) {
row += "<th>" + rh[rcnt2] + "</th>";

}
for (dcnt = 0; dcnt < data.length; dcnt++) {

row += "<td>" + data[dcnt] + "</td>";
}
row += "</tr>";
$("#results > tbody:last").append(row);

}

}

Listing 10.25 Show query results

Stop on MDX error

Clear previous results

Row for each
column header

Blanks for
row headers

Add column
header value

Each row of data

Add row header

Add data value

Figure 10.6 Table of query results

218 CHAPTER 10 Developing with Mondrian

Now we’re satisfied with our prototype and understand what needs to be done for thin

clients. A large part of the work was creating and sending standard SOAP messages.

This seems to be a common requirement for many developers. When there’s a com-

mon technical problem, there’s often a common technical solution. The next section

will describe just such a solution for XMLA.

10.1.4 XMLA for JavaScript (xmla4js)

If you do research into XMLA for reusable libraries, you’ll find xmla4js. Xmla4js is a

JavaScript library that wraps the effort of interacting with XMLA. Although you need

to understand the messages to call and the properties to set, you no longer need to

create and parse SOAP messages. Since this approach sounds good, we can head to

http://code.google.com/p/xmla4js/ and download the library and documentation.

Now we can rework the original prototype, but using xmla4js. Though you could write

your own library, having one that has been tested and is community supported makes

a lot of sense and can save you a lot of development and testing efforts.

 Since we’re replacing the original prototype, we can reuse the same HTML and

CSS. We’ll also use jQuery as we did in the previous example. But we can replace the

XMLAResponse class by using xmla4js.

 The first step is to replace the code that gets the cubes to populate the selection

for the user. After a user enters the URL, username, and password as before, they can

click the Discover Datasources button. Before using xmla4js, this process involved for-

matting SOAP messages, sending the messages, handling the callbacks, and parsing

XML documents. As you can see from listing 10.26, the code is now much simpler.

queryFormElement("discoverButton").click(function() {
xmla = new Xmla({url: getServiceURL()});

datasource =
xmla.discoverDataSources().fetchAsObject();

var catalogs =
xmla.discoverDBCatalogs().fetchAllAsObject();

catalogsAndCubes = {}; // clear any previous.

for (var cnt = 0; cnt < catalogs.length; cnt++) {
var catalogName = catalogs[cnt].CATALOG_NAME;
var cubesRS = xmla.discoverMDCubes({

properties : {DataSourceInfo : datasource.DataSourceInfo,
Catalog : catalogName},

restrictions : {CATALOG_NAME : catalogName}
});

var cubes = cubesRS.fetchAllAsObject();
for (var cubeCnt = 0; cubeCnt < cubes.length; cubeCnt++) {

var cubeName = cubes[cubeCnt].CUBE_NAME;
var catalog = catalogsAndCubes[catalogName];

Listing 10.26 Get catalogs and cubes

Get available
data sources

Get catalogs

For each catalog...

...get all cubes

For each
cube...

http://code.google.com/p/xmla4js/

219Calling Mondrian from a thin client

if (catalog == null) {
catalog = new Object();
catalog.catalogName = catalogName;
catalog.cubes = new Array();
catalogsAndCubes[catalogName] = catalog;

}
catalog.cubes.push(cubeName);

}
}
setCatalogSelect();

});

Xmla4js makes the discover process straightforward. Each discovery is basically one

line of code. Though Xmla4js supports both synchronous and asynchronous calls, it

makes the code cleaner to use synchronous calls. This is especially nice since we need

the data for future calls. We can reuse the same selection code as the previous proto-

type to set the select options.

 Now the user can select the cube to use and enter a query. Listing 10.27 shows the

code that gets executed when the user clicks the Query button. First the values set by

the user are retrieved. Then a single call is made to execute the query and return the

value as tabular results. Tabular results are easy to put into a table, which is our goal.

var mdxQuery = $("#queryForm").find('textarea[name=mdxQuery]').val();
var dataSourceInfo = datasource.DataSourceInfo;
var catalog = catalogsAndCubes[$("#catalogSelect").val()].catalogName;

var resultsRS = xmla.executeTabular({
statement : mdxQuery,
properties : {

DataSourceInfo : dataSourceInfo,
Catalog : catalog

}
});

Among the various data returned as part of the results are the field names that specify

the columns and rows. Handling the field names is probably the most difficult part of

the effort, whereas handling the data is straightforward. Listing 10.28 shows the code

that retrieves the field names and adds them to the results. First it calls to get the fields

from the results and calls a function that parses the header data. Finally, the headers

are dynamically added to the HTML document.

var fieldNames = resultsRS.getFieldNames();

var headers = parseFieldNames(fieldNames);

Listing 10.27 Execute the MDX query

Listing 10.28 Execute the MDX query

...add catalog...

...add cube to catalog

Update select with cubes and catalogs

Get user-
provided

parameters

Execute
query

Get headers

Parse headers

220 CHAPTER 10 Developing with Mondrian

$("#results tr").remove();
for (var hcnt = 0; hcnt < headers.length; hcnt++) {

var row = "<tr>";
var h = headers[hcnt];
for (var ccnt = 0; ccnt < h.length; ccnt++) {
row += "<th>" + h[ccnt] + "</th>";

}
row += "</tr>";
$("#results > tbody:last").append(row);

}

Parsing the headers is the most difficult part of this effort. This is because the headers

are returned as a single array with the full path to indicate which column they

apply to. For example, a member caption has the form [dimension].[level]

.[MEMBER_CAPTION] and a column header has the form [level].[member]

.[level].[member].... Headers in OLAP are generally more complex than dealing

with headers in a JDBC result set because OLAP is multidimensional, whereas JDBC is tab-

ular (two dimensional). Listing 10.29 shows the code to parse the field names and put

them into a set of arrays where each array is a row of headers that can be displayed.

function parseFieldNames (fieldNames) {
var rowHeaders = [];
var colHeaders = [];

for (var fcnt = 0; fcnt < fieldNames.length; fcnt++) {
if (fieldNames[fcnt].indexOf("MEMBER_CAPTION") != -1) {

rowHeaders[rowHeaders.length] = splitField (fieldNames[fcnt]);
}
else {

colHeaders[colHeaders.length] = splitField (fieldNames[fcnt]);
}

}

var nbrColHeaderLevels = colHeaders[0].length;
var headers = [];

for (hcnt = 0; hcnt < nbrColHeaderLevels; hcnt++) {
headers[headers.length] = [];

var lastRow = (hcnt == nbrColHeaderLevels - 1);
for (rhcnt = 0; rhcnt < rowHeaders.length; rhcnt++) {

if (lastRow) {
headers[hcnt].push(rowHeaders[rhcnt][0]);

}
else {

headers[hcnt].push("");
}

}

for (ccnt = 0; ccnt < colHeaders.length; ccnt++) {

Listing 10.29 Parse field names

Add header rows

Parse all headers

Parse row
header

Parse column header

Number of
rows to return

Header rows to return

New header row

Add row header...

... but only to last row

Add column headers

221Calling Mondrian from a thin client

headers[hcnt].push(colHeaders[ccnt][hcnt]);
}

}

return headers;
}

In the previous example there was a call to split the fields. This is because the format

needs to be broken up to create multiple header cells based on the number of levels.

Listing 10.30 shows the JavaScript to parse the field. First the outside brackets are

removed, then the fields are split on the].[separator. This results in a set of fields.

Only the odd-numbered fields are needed for display, so they’re added to the output

and returned.

function splitField (field) {
var fieldNames = [];

var f = field.substr(1, field.length-2);

var fieldTokens = f.split("].[");

for (var fcnt = 1;

fcnt < fieldTokens.length;
fcnt += 2) {

fieldNames[fieldNames.length] = fieldTokens[fcnt];
}
return fieldNames;

}

The last step is to add the results to the form. The results can be returned as an array

of rows, making it simple to add them. The following listing shows how to add the

results after fetching them as an array.

var resArray = resultsRS.fetchAllAsArray();
for (var rcnt = 0; rcnt < resArray.length; rcnt++) {

row = "<tr>";
var r = resArray[rcnt];
for (var ccnt = 0; ccnt < r.length; ccnt++) {
row += "<td>" + r[ccnt] + "</td>";

}
row += "</tr>";
$("#results > tbody:last").append(row);

}

And that’s it! Using xmla4js dramatically simplified the effort of retrieving data from

XMLA. Figure 10.7 shows the results. As you can see, they look basically the same as

the longer effort that we previously performed.

Listing 10.30 Parse individual field

Listing 10.31 Add results data

Strip outer
brackets

Split fields

Get odd tokens

Get results data

Add data to form

222 CHAPTER 10 Developing with Mondrian

Although many other things can be done with XMLA and xmla4js, we’ve seen the

basics of how to integrate with XMLA via a thin client. Though xmla4js was much sim-

pler, the lessons learned from writing SOAP messages were useful for understanding

the process better. Now we’re ready to tackle integrating with Mondrian from a desk-

top application, which we’ll cover in the next section. Though you’d probably want to

start with xmla4js, hopefully you have a better understanding of what xmla4js is doing

when you make calls.

10.2 Calling Mondrian from a Java application

Now that we’ve seen how to connect to Mondrian via XMLA using thin-client applica-

tions, we’ll look at how to connect to Mondrian from Java applications. Though you

could create an application that exchanges XMLA SOAP messages with Mondrian,

there’s a much easier way: use olap4j.

 Olap4j is a standard API and driver for connecting to OLAP systems. It allows users

to generically connect to XMLA servers as well as embed Mondrian directly into an

application. The API is written in Java, so it can easily be embedded into any Java or

JVM application, including desktop applications or web service applications. The

libraries and documentation can be found at the project site: http://olap4j.org.

JDBC AND OLAP4J If you’re familiar with JDBC, much of olap4j will look
similar. olap4j was inspired by JDBC and uses a number of JDBC classes and
techniques.

JAVA OLAP INTERFACE (JOLAP) In addition to olap4j, there was a Java Specifica-
tion Request (JSR-69) called JOLAP that would’ve created a pure Java interface
for OLAP systems. JSR-69 has since been withdrawn by the specification lead.

10.2.1 Creating connections via olap4j

Currently two drivers are available for olap4j. The first is the XmlaOlap4jDriver that

provides connections to XMLA systems. You create an instance of the driver and then a

connection to the XMLA server. The server can be based on Mondrian, but it also

works with Microsoft Analysis Services (MSAS) and other OLAP servers that support

XMLA. Listing 10.32 shows creating the class and connecting to a remote server.

Figure 10.7 xmla4js query results

http://olap4j.org

223Calling Mondrian from a Java application

Class.forName("org.olap4j.driver.xmla.XmlaOlap4jDriver");

Connection cnx =
DriverManager.getConnection(
"jdbc:xmla:" +
"Server=http://yourserver.com/applicationContext/xmla",
"username",
"password")

To embed Mondrian directly, you create a different driver and create a connection.

Listing 10.33 shows the code needed to create the Mondrian driver and connect to

the database. Note that we need to unwrap the connection to an OlapConnection

before it’s ready for use. No matter which driver you choose to use, the rest of the API

is now the same.

Class.forName("mondrian.olap4j.MondrianOlap4jDriver");

String cnxURL =
"jdbc:mondrian:Jdbc=jdbc:" +
"mysql://localhost:3306/adventure_works_dw;" +

"JdbcDrivers=com.mysql.jdbc.Driver;" +
"JdbcUser=username;" +
"JdbcPassword=password;" +
"Catalog=file:/path/to/adventure_works.mondrian.xml;"

Connection connection = DriverManager.getConnection(cnxURL);
OlapConnection olapConnection = connection.unwrap(OlapConnection.class);

UNSUPPORTED METHODS Many of the methods in the driver specification
aren’t required to be implemented. So even though you may see a method in
the JavaDoc, you should verify that it’s supported.

Now that you have a connection, you can start making queries to the server from your

application. If you’re using the XMLA driver, SOAP messages will be sent between the

application and the server. If you’re using Mondrian, then direct API calls are made.

After you’re finished working with the data, make sure you call the close() method to

close the connection.

10.2.2 Querying data

The first thing we might want to do is find out which cubes are available to query. Get-

ting the list of cubes is one simple line of code: NamedList<Cube> cubes =connection

.getOlapSchema().getCubes();. The cubes can now be used to allow the user to

specify which one to use.

Listing 10.32 Create XMLA connection

Listing 10.33 Create Mondrian connection

Instantiate
XMLA driver

URL to server

Server username

Server password

Create Mondrian
driver

DB URL

DB driver
DB username

DB password

Path to schema

Create connection

Unwrap connection

224 CHAPTER 10 Developing with Mondrian

 Querying data can be done one of two ways. The first is to create a query model

(org.olap4j.query.Query) that represents the equivalent MDX query. The benefit is

that it’s all code and you don’t really have to understand MDX. The drawback is that

the query model isn’t as rich as MDX, so you may need to create MDX query strings.

Since MDX query strings will always work, that’s the approach we’ll use here.

 The following listing shows the code needed to create the MDX query. All you

need is a string value and then call to execute the query. You will get the results back

as a CellSet.

String mdx =
"select {Measures.[Qty Ordered], " +

"Measures.[Unit Price]} on columns, " +
"Customer.Gender.Members on rows " +

"from [Internet Sales]";

CellSet cellSet =
this.connection.createStatement().executeOlapQuery(mdx);

The last step in the example code will loop through the results and print them out.

Listing 10.35 shows how this is done. First you get a list of all of the positions for the

columns and rows. Then you get a list of the member values for the particular posi-

tion. Finally you get the cell and show its value.

for (Position row : cellset.getAxes().get(1)) {

for (Position column : cellset.getAxes().get(0)) {

for (Member member : row.getMembers()) {
System.out.println(member.getUniqueName());

}

for (Member member : column.getMembers()) {
System.out.println(member.getUniqueName());

}

final Cell cell = cellset.getCell(column, row);
System.out.println(cell.getFormattedValue());
System.out.println();

}
}

The results will look like listing 10.36. Each set of data shows the value for one aggre-

gate of the given members. Note that you got the aggregate for [All Gender] as well as

the values for each gender.

[Customer].[Gender].[All Gender]
[Measures].[Qty Ordered]

Listing 10.34 Execute MDX query

Listing 10.35 Show the results of the query

Listing 10.36 Output of query results

Loop through rows

Loop through columns

Get members for the row

Get members for the column

Get result cell

Get cell’s value

225Calling Mondrian from a Java application

60,398

[Customer].[Gender].[All Gender]
[Measures].[Unit Price]
$29,358,677.22

[Customer].[Gender].[Female]
[Measures].[Qty Ordered]
30,017

[Customer].[Gender].[Female]
[Measures].[Unit Price]
$14,813,618.68

[Customer].[Gender].[Male]
[Measures].[Qty Ordered]
30,381

[Customer].[Gender].[Male]
[Measures].[Unit Price]
$14,545,058.55

The last feature we’ll explore is performing drillthrough. Drillthrough returns the

underlying data that was used to create the contents of a cell. There are two

approaches to use. One is to make an MDX DRILLTHROUGH query. This approach dif-

fers from the previous query in that you’d call this.connection.createStatement()

.executeOlapQuery(mdx); rather than executeOlapQuery. This is because you’re

making a relational and not a multidimensional query. An advantage of the MDX

approach is that you can specify the maximum number of rows to return. The disad-

vantage is that you have to determine the right query to create.

 The second option is to call the drillThrough() method on a Cell as shown in

the following listing. You can then iterate through the ResultSet and display the

source data.

Cell cell = cellset.getCell(
cellset.getAxes().get(1).getPositions().get(0),
cellset.getAxes().get(0).getPositions().get(1));

ResultSet rs = cell.drillThrough();

ResultSetMetaData rsmd = rs.getMetaData();

int nbrColumns = rsmd.getColumnCount();
for (int ccnt = 1; ccnt < nbrColumns + 1; ccnt++) {

System.out.print(rsmd.getColumnLabel(ccnt) + "\t");
}
System.out.println();

for (rs.first(); !rs.isAfterLast(); rs.next()) {
for (int ccnt = 1; ccnt < nbrColumns + 1; ccnt++) {

Listing 10.37 Drilling through a cell

Get a cell

Drill through cell

Get results metadata

Show column labels

All rows

All columns

226 CHAPTER 10 Developing with Mondrian

System.out.print(rs.getObject(ccnt).toString() + "\t");
}

}
System.out.println();

rs.close();

Listing 10.38 shows the source of data from a slightly more complex query. In this case

it’s a single row, but in some cases there can be very many rows of data.

Promotion Name Product Name Qty Ordered
No Discount AWC Logo Cap 2190

This section showed how to connect to Mondrian or an XMLA server, execute an MDX

query, and get the results. Adventure Works can now integrate Mondrian into their

company’s applications to provide rich analytics capabilities without a lot of work. And

since both Mondrian and olap4j are open source projects, they’ll get the benefits of

any improvements that are made to either.

10.3 Summary

This chapter introduced integrating with Mondrian in four ways:

1. Integrating from a thin client by exchanging SOAP messages

2. Integrating from a thin client using xmla4js

3. Integrating from a desktop client using olap4j and the XMLA driver

4. Integrating from a desktop client using olap4j and embedded Mondrian

If you want to create a completely thin client, then you should consider either XMLA

and SOAP or xmla4js, the latter being much easier. If you’re creating a Java applica-

tion, then you should consider using olap4j and either integrating Mondrian directly

or calling Mondrian via XMLA. In both cases, the driver is the main difference.

 All of the APIs discussed in this chapter have many more classes and methods avail-

able for exploration. Each also has dedicated sites with documentation and examples

that you can draw on as you explore them and integrate with Mondrian. Finally, the code

is available for you to experiment with and use to truly understand the APIs. Now we’ll

turn to some advanced topics related to Mondrian and analytics in the next chapter.

Listing 10.38 Cell drillthrough results

Show value

Close resultset

227

Advanced analytics

In this chapter we’ll cover how to do more advanced analytics both inside Mon-

drian and with external tools. The advanced analytics inside Mondrian, through

MDX, meet many use cases. Adventure Works will find many of their common ana-

lytics, metrics, and scorecards can be built using these. You can run the MDX exam-

ples we present in this chapter; we cover the MDX in more detail than external

tools. We’ll also explore some limited “What If” support to allow Mondrian to help

you model and think about various scenarios. We’ll then delve into the external

tools and briefly cover where Mondrian fits within the Big Data landscape and what

tools are often used with Mondrian for data mining. These topics are primarily

aimed at the business analyst and enterprise architect.

11.1 Advanced analytics in Mondrian with MDX

Mondrian’s query language, MDX, provides a variety of advanced time-based analyt-

ics that you can leverage immediately on top of your existing cubes. MDX supports

This chapter is recommended for

✓ Business analysts

Data architects

✓ Enterprise architects

Application developers

228 CHAPTER 11 Advanced analytics

(and makes rather easy) things like “year to date” accumulations, this quarter versus

the same quarter last year, percent increase of this quarter over last quarter, and on

and on. We’ll explore and build some of these calculations in this section.

MDX stands for Multidimensional Expressions; it was made popular by Microsoft as

part of their SQL Server Analysis Services. Until 2000, no consistent vendor-agnostic

way to query OLAP cubes existed. Unlike relational databases that had a similar SQL

dialect between vendors, OLAP systems all had individual and disparate APIs. At

about the same time, Microsoft’s dominance and market leadership in the OLAP

server space made MDX a de facto standard, since the majority of the market

(already SQL Server) already knew MDX. Made official, as part of a multi vendor

standard (XML for Analysis), MDX has become the only well-implemented query lan-

guage for OLAP systems. Mondrian, like many other OLAP systems, chose it for its

compatibility and eloquence.

 Calculations in MDX are powerful, not necessarily because of their raw function.

For instance, knowing that you can do arithmetic such as (A - B) in a language isn’t

that impressive. What’s impressive about MDX is that every calculation is aggregation-

and level-aware. What does that mean? Our simple calculation (A - B) need not explic-

itly say at which level of aggregation it applies. For Adventure Works, this means they

can define (A - B) in MDX and it works if A and B are calculated at the [Year] level,

[Month] level, [All Products] level, [Product Category] level, and so on. Calcula-

tions are inherently and magically useful all over the cube at different levels of aggre-

gation. In fact, unless you deliberately make your MDX use a specific level

([Country]), it’ll apply to all levels. Contrast that to SQL, which requires the level of

aggregation (aka the GROUP BY clause) to be defined in the query with the calcula-

tion. In MDX, the calculation is defined and MDX makes sure the calculation is done

on the proper level of aggregation.

MDX is a big topic; there are entire books on writing MDX, and we’ve linked to

resources devoted to the query structure and basics in appendix B. Here we hope to give

you the basics to be able to run, see the results from, and have a quick list of common

MDX calculations you can use on your Mondrian project.

ONE TIME VERSUS SAVED IN CUBE Often, fancy MDX fragments are developed
using a free-form MDX query tool (such as the query box in Saiku). Once
developed, and useful, it’s best to take the new calculation (This Quarter ver-
sus Same Quarter Last Year) and make it a calculated member. This allows
anyone using the cube in Saiku or Analyzer to use the powerful calculation,
without needing to know anything about MDX (refer back to section 5.4.2
for details).

This saving of MDX fragments into the cube is the Mondrian equivalent of a
database view. It’s a prebuilt set of logic ready to execute, but for the user it
appears as a simple “thing” to get data from.

229Advanced analytics in Mondrian with MDX

11.1.1 Running MDX queries

In this section, we’ll make sure you know how to run MDX queries and see the results

using the sample platform. We’ll also show you the WITH MEMBER syntax.

 First, in order to run the MDX fragments in this section, you’ll need to use Saiku.

Using the sample virtual machine provided for the book, you’ll need to make sure that

Pentaho is running. Once it is, to launch Saiku you’ll want to log in to the User Console,

and then click the File menu, then New, then Saiku Analysis. Once you see Saiku, you’ll

want to select the FoodMart Schema/Sales Cube from the drop-down list. Once you’ve

done that, you should see Saiku ready to help you drag and drop to create a query. But

we’re going to use the MDX editor to manually write our MDX instead.

 There’s a button on the toolbar titled Switch to MDX Mode. You’ll want to click this

button, and then you should see a free-form text box that will allow you to enter the

MDX examples in this chapter. You can copy and paste (if you have the eBook) directly

into the text box, then click the Green arrow to run the query.

 We’ll make extensive use of the WITH MEMBER MDX syntax. This MDX construct

allows us to create calculations that exist only in the single query. Earlier in this chap-

ter we covered how to make those changes more permanent.

 Now that you know how to run MDX queries and see the results, let’s get on to spe-

cific formulas that you’ll hopefully find useful.

11.1.2 Ratios and growth

We’ll start with a straightforward post aggregation calculation using arithmetic. Say

Adventure Works would like to calculate [Gross Profit]. Its calculation is straightfor-

ward: [Store Sales] - [Store Cost]. We can make this calculation simply in MDX (list-

ing 11.1 and displayed in figure 11.1).

WITH MEMBER [Measures].[Gross Profit] as
' [Measures].[Store Sales]

- [Measures].[Store Cost]'

SELECT
{[Measures].[Store Cost]
, [Measures].[Store Sales]
, [Measures].[Gross Profit]} ON COLUMNS,
{[Product].[Product Family].Members} ON ROWS
FROM [Sales]

Listing 11.1 [Gross Profit] MDX

MDX for calculated
member

On top of report

On side of report

Figure 11.1 [Gross Profit] results

230 CHAPTER 11 Advanced analytics

The results in figure 11.1 demonstrate simple subtraction; it’s worth noting that this cal-

culation is happening in memory in Mondrian after the main aggregation and [Store

Sales] and [Store Cost] is calculated in the database. Remember, as we mentioned

previously in this section, this calculation is aggregation-safe so it’ll work the same if it’s

at the [Product Family] level, or one level below at the [Product Department] level. For

instance, here is the exact same calculation working at the [Product Department] level;

note that the WITH MEMBER fragment is identical (listing 11.2 and figure 11.2)!

WITH MEMBER [Measures].[Gross Profit] as
' [Measures].[Store Sales]

- [Measures].[Store Cost]'

SELECT
{[Measures].[Store Cost]
, [Measures].[Store Sales]
, [Measures].[Gross Profit]} ON COLUMNS,
{[Product].[Product Department].Members} ON ROWS
FROM [Sales]

Listing 11.2 [Gross Profit] at [Product Department] level

Figure 11.2 [Gross Profit] at

[Product Department] level

231Advanced analytics in Mondrian with MDX

The simple arithmetic in MDX also allows us to create important ratios and propor-

tions. For Adventure Works, the overall gross profit percentage (the [Gross Profit]

as a proportion of the [Store Sales]) is also salient. Without these types of propor-

tions and percentages, it would be hard to gauge relative effectiveness when compar-

ing scalar values of different magnitudes. For instance, looking at the raw [Gross

Profit] for individual [Product Family]s might not help you figure out which

[Product Family]s are contributing to Profit effectively (as a percentage) if you’re

looking at raw numbers. As we see in figure 11.3 the [Product Family]s have orders

of magnitude difference [Gross Profit]; you have to look at the ratio to determine

the relative profitability of each [Product Family].

WITH MEMBER [Measures].[Gross Profit] as
' [Measures].[Store Sales]

- [Measures].[Store Cost]'
MEMBER [Measures].[Gross Profit Margin] as
'[Measures].[Gross Profit] / [Measures].[Store Sales]'

SELECT
{[Measures].[Gross Profit]
,[Measures].[Gross Profit Margin]} ON COLUMNS,

{[Product].[Product Family].Members} ON ROWS
FROM [Sales]

Note in figure 11.3 that the [Gross

Profit] is wildly different for different

[Product Family]s but the [Gross

Profit Margin] is identical. Drinks, Food,

and Non-Consumables all have a gross

margin of 60%.

 The last piece we’ll cover, in terms of

cool arithmetic in MDX, is the ability to also create ratios and proportions at different

levels. For instance, say we want to see what a particular [Customer].[State]’s contri-

bution is toward the [Store Sales] for the [Country]. We can use the simple MDX

arithmetic along with MDX’s ability to navigate levels in a hierarchy to display this data.

We’ll use two MDX constructs. First, we’ll find our current member (Seattle, WA, or CA)

in the hierarchy that’s currently being evaluated for calculation. The syntax for this is

[Customer Geography].CurrentMember. Next, we’ll use the ability of any member to

navigate to other places in the hierarchy. We’ll do this using the [Member].Parent func-

tion that gets the parent of any member ([USA] is the parent of [WA]). We’ll explore

both CurrentMember and Parent in listing 11.4; we’ll divide each member’s sales by its

parent’s sales—[State]’s total divided by the [Country] total.

Listing 11.3 [Gross Profit Margin] MDX

Figure 11.3 [Gross Profit Margin]

232 CHAPTER 11 Advanced analytics

WITH
MEMBER [Measures].[Sales % of Geography] as
'([Customers].CurrentMember, [Measures].[Store Sales])
/([Customers].CurrentMember.Parent, [Measures].[Store Sales])'

SELECT
{[Measures].[Store Sales]
, [Measures].[Sales % of Geography]} ON COLUMNS,

NON EMPTY Hierarchize(
{[Customers].[State Province].Members,[Customers].[Country].Members
}) ON ROWS
FROM [Sales]

In figures 11.4 and 11.5 we can

see the results of expressing the

[Member].Parent as a percent-

age. OR represents approxi-

mately 25% of USA’s profit.

LEVEL-AGNOSTIC CALCULATIONS Remember, as long as you don’t pick a spe-
cific level, such as [Customer Geography].[State] in your MDX statements,
and you use CurrentMember and the general CurrentMember.Parent for these
types of calculations, they’ll work “up and down” the hierarchy. The same cal-
culation, [Measures].[Sales % of Geography], can be used for City to
State, State to Country, and Country to All Geographies.

Listing 11.4 [Sales % of Geography] MDX

Figure 11.5 Sales percentage of total chart

Figure 11.4 Sales percentage of total table

233Advanced analytics in Mondrian with MDX

11.1.3 Time-specific MDX

Prior Period is useful when you’re trying to calculate the classic month-over-month

growth. Adventure Works has built this month-to-month growth report many times in

SQL and knows their users will need to see it regularly! Using the MDX Member func-

tion .PrevMember you can positionally go back one day, month, quarter, or year. The

.PrevMember is level-agnostic, so the same calculation can be used for any level in the

hierarchy. We’ve also built on these raw growth figures and added some simple ratios

using the arithmetic MDX we covered in section 11.1.2 to give an idea of the total

velocity of the data. Adventure Works knows that although the raw growth values are

interesting, their users want to see it as a percentage, ideally.

WITH
MEMBER [Measures].[Prior Sales] as
'([Time].CurrentMember.PrevMember, [Measures].[Unit Sales])'
MEMBER [Measures].[Prior Sales Growth] as
'[Measures].[Unit Sales] - [Measures].[Prior Sales]'
MEMBER [Measures].[Growth %] as
'[Measures].[Prior Sales Growth] / [Measures].[Prior Sales]'
,FORMAT_STRING='0%'

SELECT
{[Measures].[Unit Sales]
,[Measures].[Prior Sales]
,[Measures].[Prior Sales Growth]
,[Measures].[Growth %]

} ON COLUMNS,
NON EMPTY {[Time].[Month].Members} ON ROWS
from [Sales]

In figures 11.6 and 11.7, we can

see, on a month-by-month basis,

the growth (as a percentage) of

sales over the previous month’s

sales. Once again, we’ve used

the scalar figure (such as -671

for Month 2) and arithmetic to

arrive at the percentage which

is preferred.

 Adventure Works also knows

that it’s common for their users

to need to calculate the aggre-

gated year-to-date totals for a

variety of measures. They know

this cumulative type aggrega-

tion is useful and often

requested from their users. The

Listing 11.5 [Prior Sales] MDX

Figure 11.6 [Prior Sales] results

234 CHAPTER 11 Advanced analytics

MDX YTD() shortcut function (see listing 11.6) returns all periods from the beginning

of the year right up to the current period and aggregates the totals to give the total

year-to-date value. Figures 11.8 and 11.9 show the results.

WITH
MEMBER [Measures].[YTD Sales] as
'Aggregate(YTD([Time].CurrentMember), [Measures].[Unit Sales])'

SELECT
{[Measures].[Unit Sales]
,[Measures].[YTD Sales]

} ON COLUMNS,
NON EMPTY {[Time].[Month].Members} ON ROWS
from [Sales]

We’ve seen how Adventure Works can use YTD(),

which returns the periods up to this point in the

year and then use the generic Aggregate() MDX

function to total those periods. The Aggregate

MDX function will use the basic aggregator for the

measure (Count, Sum, and so forth).

11.1.4 Advanced MDX

It’s common to develop some sort of target to base

your current results against. Adventure Works

sometimes has fixed targets (145,000 in sales per

quarter), and other times they’re calculated from

Listing 11.6 [YTD Sales] MDX

Figure 11.7 Prior Period chart

Figure 11.8 [YTD Sales] results

235Advanced analytics in Mondrian with MDX

past performance. Though listing 11.7 shows a fixed target, it’d be just as easy to find

the previous quarter’s figures, add 5%, and make that the “target.” Just like many of

the other raw figures, we also adorn it with some percentages to make the real metric

and velocity of the figures easily apparent to Adventure Works users.

WITH
MEMBER [Measures].[Sales Goal] as
'145000'
MEMBER [Measures].[% from Goal] as
'([Measures].[Sales Goal] - [Measures].[Store Sales])

/ [Measures].[Sales Goal]',FORMAT_STRING='0%'

SELECT
{[Measures].[Store Sales]
,[Measures].[Sales Goal]
,[Measures].[% from Goal]
} ON COLUMNS,
NON EMPTY {[Time].[1997].Children} ON ROWS
from [Sales]

Note in figures 11.10 and 11.11 that the deviation from the goal, as a percentage, is

readily apparent in the line chart.

Listing 11.7 Fixed-goal MDX

Figure 11.9 Year-to-date chart

236 CHAPTER 11 Advanced analytics

Adventure Works knows their users will want to see “What’s the overall trend?” If we

continue on this general sales pattern, ignoring the natural noise of the month-to-

month data, what will our sales be like in three months? Performing a linear regression

(with the LinRegPoint() MDX function) allows Adventure Works to show the overall

trend over a period of time. This avoids anxious calls from analysts who are worried

about a single-month drop-off; linear regressions help to smooth out data and make

general, unsophisticated forecasts for the future. We’ll discuss the ability to employ

more sophisticated forecasting options later in section 11.3.

WITH
MEMBER [Measures].[Sales Trend] as
'LinRegPoint(

Rank(
[Time].CurrentMember,
[Time].CurrentMember.Level.Members),

{[Time].CurrentMember.Level.Members},
[Measures].[Unit Sales],
Rank(

[Time].CurrentMember,
[Time].CurrentMember.Level.Members)

)'

Listing 11.8 Trend-line MDX

Figure 11.10 Fixed-goal table

Figure 11.11 Fixed-goal chart

237Advanced analytics in Mondrian with MDX

SELECT
{
[Measures].[Unit Sales]
,[Measures].[Sales Trend]
} ON COLUMNS,
NON EMPTY {
[Time].[Month].Members} ON ROWS
from [Sales]

Note in figures 11.12 and 11.13 that a general trend

for sales over the past 12 months is now projecting out

into the future where we don’t have sales figures. Lin-

RegPoint() gives Adventure Works the ability to do

simple forecasting on any measure.

 Adventure Works also needs to explore “What are

the best months for sales in the past 12 months?” In

listing 11.9 we explore how to discover the 10 best

months across the entire company. Ranking (via the

MDX Rank() function) allows you to order and rank

results and determine sets of performers. Figure

11.14 shows the output for Adventure Works.

WITH
MEMBER [Measures].[Sales Rank] as
' Rank(

[Time].CurrentMember

Listing 11.9 Ranking in MDX

Figure 11.13 Trend-line chart

Figure 11.12 Trend-line table

238 CHAPTER 11 Advanced analytics

,[Time].CurrentMember.Level.Members
,[Measures].[Store Sales])'

SELECT
{
[Measures].[Store Sales]
,[Measures].[Sales Rank]
} ON COLUMNS,
NON EMPTY {
Head(
Order([Time].[Month].Members, [Measures].[Sales Rank], BASC)
, 10)

} ON ROWS
from [Sales]

In listing 11.9 we saw how to get the relative, ordinal

rank of a figure among its peers. We also tacked on

the use of two additional MDX functions that are

commonly used with this type of analysis. Order()

changes the order of members based on a value. In

listing 11.9 we ordered by the Rank() we just created.

Next we used Head() to only grab the first 10 items in

the list of all ranked months.

 Now that we’ve covered some of the advanced

analytics we can accomplish using Mondrian by

itself, with MDX we move on to more advanced ana-

lytics. Next we discuss what happens when we want

to play around and make changes to data values for

what-if analysis.

11.2 What-if analysis

Mondrian has some support for helping you explore some “What If” analysis. Most

reporting systems present the user with data as it is; static data provides little if any

help for the data analyst’s desire to explore scenarios that haven’t actually happened.

In fact, Mondrian’s term for such what-if analysis is scenarios.

 Scenarios allow users to make nonpermanent changes to values in the cube for the

purpose of seeing how those changes affect totals, other ratios, and other metrics.

Take for instance a hypothetical Adventure Works knows their analysts investigate on a

regular basis: If we increased our gross sales for a particular product line, what does

that do to our overall bottom line? Let’s explore a scenario where we want to under-

stand whether increasing our store sales in [Drinks] by $5,000 USD, keeping costs

fixed, will dramatically increase our company’s profitability in a year.

 This example should work with the Saiku Sales Scenario cube. Make sure you

create a new Saiku report using the Sales Scenario cube to see the scenario but-

ton, not start with an existing report. In all scenario cases, you’ll start with your base

cube with actual data in Mondrian and the underlying database. In this case (shown

Figure 11.14 Ranking table

239What-if analysis

in figure 11.15), we’ll start with a report that has [All Products] and [Product

Family] (on rows), with the measures [Store Sales] and [Profit] (on columns),

and filter to one year ([1997]).

 This is our data as it is now and represents what our cube tells us with no scenarios

in play. This initial Saiku report represents our baseline.

 Next, we’ll enable our ability to make changes to the data and create our Scenario

for evaluation. In our example, we want to increase our sales by 5,000 from $48,836.21

to $53,836.21. To do so, we first start by clicking the Query Scenario button on the

toolbar, typing in the new value (58836.21), and pressing Return (see figure 11.16). At

this point, Saiku has enabled the scenario, given the changed value to Mondrian, and

Mondrian is ready to rerun the MDX query with the modified values. We’d expect to

see the value we just changed retain its +5000 value, but we’d also expect to see our

totals and other calculated members changed in other spots as well.

 Figure 11.17 shows that, as expected, the figures for the [Store Sales] totals and

[Profit] have adjusted by the 5,000 change we made to [Drink] for [1997]. What’s

also worth noting is that [Profit], which is a calculated member, has also adjusted.

Figure 11.15 Saiku scenar-

io start. This is the baseline

data from Mondrian without

any modification.

This number is modified

We expect this

to change.

Figure 11.16 Saiku

scenario change

240 CHAPTER 11 Advanced analytics

This means that Mondrian is not just updating the base figures, but when connected

with this scenario, it’s ensuring the results of all calculations also reflect that scenario

change.

 Though calculated members do reflect the changes made to it in a scenario, they

themselves can’t be changed. In our example, we can’t change [Profit] because it’s a

calculated member; we can only change a value that’s a core measure aggregated

from the database.

 In our example, we saw the results of reflecting the change of a lower level in a

hierarchy ([Drink]) on the total ([All Products]). But it’s also common to explore

scenarios where you’d like to change the overall totals by 5,000 and see what require-

ments that places on the individual product family sales. Mondrian also supports this;

it’s common for budget and planning workflows to look at year totals, then have those

spread down to the month-by-month expenditures, and so on. Mondrian scenario

support even allows various options on how the change is allocated to children

(weighted allocation, weighted increment, equal allocation, and equal increment).

SCENARIO SUPPORT IN SAIKU AND PENTAHO ANALYZER Currently Saiku is the
only visual client to Mondrian that supports Scenarios. Scenarios aren’t avail-
able via XMLA either; only OLAP4J has support for using scenarios.

Pentaho Analyzer currently has no support for Scenarios whatsoever; scenario
support is not currently in a planned Pentaho Analyzer release.

Lastly, there exists a requirement to create a hanger dimension to allow the scenarios

to be used in MDX. Refer to section 5.4.2 for more information on how to define a

hanger dimension. Readers are advised to look at the Saiku sample Mondrian schema

files for the Sales Scenario cube for a working example of creating this hanger

dimension for use with scenarios.

This calculation shows

an increased amount.

Figure 11.17 Saiku

scenario result

241Statistics and machine learning

 Now that we’ve looked at how to do what-if analysis with Mondrian, we’ll look at

how to do some real high-powered data mining (DM) and machine learning (ML)

using tools that specialize in this analysis.

11.3 Statistics and machine learning

Now that we’ve looked at some of the statistics you can do inside Mondrian (using

MDX) and the ability to explore what-if scenarios, let’s explore what companies like

Adventure Works do when they need more advanced statistics or machine learning. For

instance, though MDX helps understand growth, ratios, and simple linear regressions,

it’s nearly impossible to do a forecasting algorithm that includes commonly needed

bounds and confidence intervals. For instance, what are the upper and lower bounds

of my predicted sales figure with 95% confidence? These DM and ML packages help

answer questions that Mondrian doesn’t endeavor to; they’re complementary.

 Let’s explore, at a high level, some common use cases that would best be addressed

with DM or ML packages:

■ Predicting future values with ranges and confidence figures using regression

and other techniques

■ Clustering of similar customers together to segment customers by similar

behavior and attributes

■ Market-basket analysis to determine which items are often purchased together,

even if they seem unrelated

■ Fraud detection and analysis to determine outliers or unusual behavior

■ Classic statistical descriptions of confidence in values such as the + or - 3% qual-

ifiers typically seen in polls based on sample sizing

Mondrian doesn’t have any integrations directly with any data mining (DM) or

machine learning (ML) packages. The approaches we cover here include how these

systems are used in combination to create the end result functional requirements.

This approach is not only the only practical method of integrations, but most users

tend to find it perfectly reasonable and even preferable.

 The most common method of combining Mondrian and DM tools is by simply using

them on the same data. This is most often, and easily, achieved by using the different

tools on the same source data. Mondrian uses a star schema (chapter 3) as the source

for its multidimensional data, which also makes a perfectly good source for DM tools.

This common approach makes sense: most of a company’s investment in building an

analytic solution involves data integration, restructuring, and loading (ETL and mod-

eling) into the database. Using the ETL and modeling work along with data enriched

with additional lookup attributes is a great source for DM tools.

DATA MINING PURISTS ON STAR SCHEMAS Data mining purists may dis-
agree that the star schema, cleaned and loaded from original source, rep-
resents the best data to perform machine learning and data mining on.
Why? With one level of cleanup and enrichment (fitting into categories

242 CHAPTER 11 Advanced analytics

and hierarchies), correcting data quality issues introduces some level of
bias/effect on the data. Though this is true, in practice, DM practitioners
often do some level of data preparation themselves for their modeling
and do some similar things. Though not perfect, DM on star schemas (and
their various aggregations/samples) is common, especially when the DM

tool is to be used alongside Mondrian.

We’ll cover, at a very high level, two data mining tools commonly used in conjunction

with Mondrian solutions and when to use them. The tools, R and Weka, are also open

source themselves, which is part of the reason they’re so often used with Mondrian.

11.3.1 R

R is a language and environment for statistical computing and graphics (http://

www.r-project.org/about.html). It’s a widely and commonly used package for data

preparation, modeling, and statistical analysis. That’s worth noting: R is a language

and set of tools that focus on statistics. It excels at classifying items, clustering like

items together, and developing forecasts with confidence intervals. It’s the “go to” tool

for many data scientists to use classic statistical methods on their dataset.

 Like previously mentioned, the most common method for using R with Mondrian

is to use them side by side. You can download the R software, including the UI, connect

it to your database, retrieve sets of data, and then continue the analysis in R. It’s not nec-

essary, or even that beneficial, to think of R connecting directly to Mondrian, since R

tends to want to see the base level. In some cases, R (or the users of) would like to see

some level of aggregation on raw events; in that case, it makes sense to point R at the

aggregate tables inside the database already prepared for Mondrian performance (see

section 7.3 for more on Mondrian aggregate tables).

 An extensive community supports the R tool, including some commercial compa-

nies that offer support packages. R is primarily for statistics, but it also does have some

capabilities for machine learning; there’s some overlap between R and Weka. You

should choose whichever package fits your DM or ML needs in general. If you’re not

sure, and you’re looking for more statistical based algorithms and don’t require any

operational integration with Pentaho Data Integration, choose R. If you’re looking for

a greater focus on machine learning algorithms or need operational integration with

PDI, you should consider Weka, which we’ll discuss next.

11.3.2 Weka

Weka is a machine learning framework and tool (see figure 11.18). Similar to R, it pro-

vides UI tools for acquiring, managing, and filtering data for modeling. Models are

built and evaluated using a dataset from a variety of data sources. Weka can use the

star schema that any DM tool can access (like R), but it also has the advantage of being

integrated into PDI as a series of useful plugins for doing common tasks. More on that

later in this section.

http://www.r-project.org/about.html
http://www.r-project.org/about.html

243Big Data

Weka excels and is best known for its capabilities on machine learning algorithms. It’s

well known for its large catalog of classification techniques, given its providence as a

university project. Many researchers use Weka as their tool of choice for testing new

algorithms, so there’s no shortage of available supervised and unsupervised learning

algorithms. In fact, this large volume of available techniques and algorithms is some-

times daunting to those new to data mining.

 Given the specialized knowledge of data mining, it’s difficult to get started. By far,

the easiest way to get started with Weka is to use the prepackaged plugins available in

Pentaho Data Integration to do common DM tasks. By using the PDI plugins to do

some time-series forecasting and market-basket analysis, you’ll learn the basics of DM

without extensive training. For the common use cases that are deployed alongside

Mondrian, that’s a great way to start. With PDI’s ability to query Mondrian (http://

wiki.pentaho.com/display/EAI/Mondrian+Input) and stream results to further steps,

this is the closest direct integration between Mondrian and a DM tool.

 Hopefully you have a good sense of the tools available to use in conjunction with

Mondrian for more advanced data mining and machine learning use cases. It should

be clear how R and Weka fit in an overall solution with Mondrian; we’ll now delve into

a very Big (pun intended) topic and see where Mondrian fits in the Big Data space.

11.4 Big Data

Big Data, and the various technologies and skills involved, have garnered much atten-

tion in the past couple of years. These tools and technologies, the companies that pro-

duce them, and the practitioners that use them represent a huge segment of

businesses that are looking to handle data that has

Figure 11.18 Weka

clustering output

http://wiki.pentaho.com/display/EAI/Mondrian+Input
http://wiki.pentaho.com/display/EAI/Mondrian+Input

244 CHAPTER 11 Advanced analytics

■ Volume—Adventure Works needs to handle data volumes, where the total num-

ber of records they will manage two years from now will be more than 10x the

data they manage now. The traditional databases they used to build their appli-

cations and analytic systems won’t always do so effectively on billions of records.

■ Variety—Adventure Works will need to get data from existing corporate docu-

ments, NoSQL data stores, online resources, and multiple applications within

the firewall. Gone are the days of applications storing things solely in relational

SQL databases, but there exists an increasing amount of unstructured (or hier-

archically structured) data.

■ Velocity—Adventure Works needs to handle a constant and increasing stream of

data, and time to analyze and present that data is shrinking. Things are happen-

ing faster on both the processing of records and analysis side.

Mondrian is a nice complement and is used in conjunction with Big Data tools con-

stantly. Mondrian is, in its own way, a Big Data tool. It helps customers analyze large

amounts of data (caching, aggregate tables), do analysis on varied types of data (your

dimensions and metrics are your own), and allows near-real-time analysis with some

advanced cache management APIs (see section 7.4 for more on caching and APIs).

Mondrian’s focus on the OLAP space specifically, and leaving the heavy duty storage

and aggregation to an RDBMS (see section 2.4.1 for more on ROLAP), provides signifi-

cant benefit for nearly all companies; it’s easy to find a relational database in use

somewhere in a company. This reliance on a SQL RDBMS does tie Mondrian closely

with SQL data storage systems and limits the data stores that Mondrian can use directly

to those that speak SQL.

MONDRIAN NEEDS SQL Mondrian requires a database that speaks SQL to work
properly. Even if your back-end database has the same capabilities through an
API (filtering, aggregation by fields, and so forth), it can’t be plugged in
behind Mondrian. Users looking for connecting their NoSQL system with
Mondrian should consider the work being undertaken at the Optiq project.
Optiq is for creating a SQL layer on top of any data source (requiring a devel-
oper to write only the specific implementation) and is a practical method to
connect Mondrian with a non-SQL source. Julian Hyde, coauthor of this book
and lead developer of Mondrian, is also the project lead for Optiq (https://
github.com/julianhyde/optiq).

11.4.1 Analytic databases

Mondrian fits with many Big Data systems that speak SQL. In particular, there’s an

entire breed of databases that use SQL as their interface but have specialized storage

and processing methods for analytics. These systems are typically column-oriented

(store like data together) and often include the ability to scale out to multiple servers.

Mondrian is known to work with the following analytic databases:

https://github.com/julianhyde/optiq
https://github.com/julianhyde/optiq

245Big Data

These databases are purpose-built for performing a workload very compatible with

Mondrian. Mondrian generates many SQL statements to run in the RDBMS, from

dimension lookups to aggregation plus group by SQL statements. These databases are

purpose-built to execute the exact type of query that Mondrian generates. Though

Mondrian will work with adequate performance on most traditional OLTP databases

(Oracle, MySQL, PostGres, and so on), it’ll perform much faster, and certainly much

faster with more data, on an analytic database.

11.4.2 Hadoop and Hive

Hadoop is a very popular system for doing data processing; as a framework, it

addresses all the V’s (volume, variety, and velocity) as part of a large open source com-

munity. Hive is a SQL layer on top of Hadoop that allows users to run a SQL-like syntax

on top of HDFS and Hadoop data. This provides significant benefit to Hadoop users

performing an analytic workload on top of Hadoop. Mondrian has experimental sup-

port for Hive and will work functionally on top of Hive soon.

 But unless a system like Cloudera’s Impala or an additional query latency improve-

ment system is also utilized, Adventure Works would likely be disappointed with the

performance of Mondrian on top of Hive. Mondrian often issues many SQL queries to

a database to look up dimension members, children, and get aggregations. Hive expe-

riences high latency with often simple queries as well (5–10s); Mondrian makes an

assumption that some queries run fast (lookup members in a dimension) while the

aggregations hitting facts are slow.

HADOOP/HIVE SUPPORT Hive support is being developed; even if Mondrian is
functional on top of Hive, the latency for dimension member and similar
lookups is a challenge for making an overall high-performance OLAP system
with Mondrian and Hive.

Though Hive is a popular way to access data in Hadoop, there are other ways of using

Hadoop and Mondrian together. When Hadoop is used, without Hive, it looks similar

to the general NoSQL approaches we cover next.

11.4.3 NoSQL systems and Hadoop

Mondrian, being a system which requires SQL and a whole new class of systems that don’t

speak SQL (NoSQL = Not Only SQL), creates a natural question for Adventure Works:

How do these things work together? Adventure Works has a mobile application that uses

Cloudant (a hosted version of CouchDB) for storage; it’s a popular document-based

storage service for mobile developers. Adventure Works needs to do some reporting on

■ Vectorwise ■ InfiniDB

■ Greenplum ■ LucidDB

■ Infobright ■ MonetDB

246 CHAPTER 11 Advanced analytics

a huge amount of documents stored in Cloudant, and Mondrian matches the reporting

needs of the users.

 Two methods are available to Adventure Works to use Mondrian on data in this

NoSQL system. One is extremely common, not terribly sophisticated, and gets the job

done today using a SQL database in between. The second is a sophisticated and

cutting-edge technique to put a SQL driver in front of any system or API. We’ll cover

both approaches here.

NOSQL AS A DISTRIBUTED CACHE It’s worth mentioning that the two tech-
niques covered in this section explore using NoSQL as the primary source for
data in Mondrian. There’s another technique that integrates NoSQL technol-
ogy into Mondrian, but not as the primary storage and aggregation engine.
NoSQL systems have been used by the pluggable cache API to allow Mondrian
to share its cache among individual servers in a multiserver environment.
Though this might not help users do reporting on top of NoSQL, it can cer-
tainly leverage some of the fantastic key value scalability and performance for
managing Mondrian’s cache (see section 7.4.2 for more on using an external
segment cache).

ETL DATA INTO SQL DATABASE

This is the most common solution in practice today; for those who want to do ad hoc,

high-performance analytics on top of data with NoSQL and Mondrian, the solution isn’t

really one at all. Adventure Works can take the data in CouchDB, run a periodic ETL pro-

cess to capture the relevant data for the analytic solution, and push that data into a SQL

database. Once in the database, Mondrian performs its analysis on top of the data, with-

out modification or need to connect with the NoSQL system, as shown in figure 11.19.

Most users will only export some sort of first-level sort and aggregation to reduce the

dataset to the daily (or hourly) aggregations at the lowest level of aggregation.

 There are some advantages to this approach. First is that the technologies involved

are all mature, with years of deployment knowledge and experience. Second is that it

has the same virtue as the traditional DW in that it offloads the analytic processing

(which is different) to another system. It reduces the load on the source systems and

separates out different kinds of use cases and workload.

 There are also some disadvantages. The data is now stored separately, and there’s

an inherent staleness to data from the NoSQL system and the data presented to

Adventure Works users. Another disadvantage is that some of these NoSQL systems are

very scalable and handle the storage and aggregation as good as or better than their

RDBMS peers. In other words, we could leverage some great, free, and open source

MondrianETL MySQL

Figure 11.19 NoSQL plus database architecture

247Summary

technology to act as the primary aggregation engine for our Mondrian solution, but

we’re simply putting it back into a less scalable SQL database.

SQL ACCESS TO NOSQL SYSTEMS

This is the less commonly used approach; similar in approach to accessing Hadoop

data via Hive, this approach suggests that creating a way to “speak SQL” to NoSQL sys-

tems is interesting and is being used by many commercial tools. There’s even an up-

and-coming open source project being developed by an author of this book (Julian

Hyde) providing a general JDBC driver for any system.

 Speaking SQL to a NoSQL system has some advantages. SQL is a widely known lan-

guage; its dominance in BI tools is unmistakable, and Mondrian is no exception. If a

NoSQL system can offer the basic semantics that Mondrian SQL requires (filtering,

grouping, and aggregation), then it can act as the primary storage and aggregation

engine in Adventure Works’ solution. Some of these NoSQL solutions do this (or are

very close) and provide some remarkable scaling and performance compared to their

RDBMS peers.

 It’s not without some drawbacks as well; you lose some of the richness of the native

API for the NoSQL system. SQL, in particular the SQL Mondrian generates, represents

a “least common denominator” for accessing data in a data store. The NoSQL systems

often offer additional capabilities (intermediate group results in hierarchies) that

aren’t expressed in Mondrian SQL.

11.5 Summary

In this chapter we’ve looked at how we can do advanced ratios, percentages, and time-

based calculations in Mondrian. This provides Adventure Works a basis for calculating

many advanced analytics inside Mondrian with great speed and efficiency. We then

looked at how Mondrian and Saiku can support basic “What If” analysis, making

changes on the fly to see the effects of different scenarios.

 We then continued to see what options Adventure Works has if they’re looking to do

more advanced data mining and machine learning. We introduced R and Weka, the

most commonly used tools with Mondrian. Lastly we helped place Mondrian in the pro-

liferation of new technologies wrapped in the Big Data moniker. We introduced how

Mondrian is currently being used as, and in conjunction with, Big Data systems.

249

appendix A
Installing

 and running Mondrian

There are two ways you can get Mondrian to follow along with the examples in this

book. The first and easiest is to download the virtual machine we’ve created. The

virtual machine runs Ubuntu and has Pentaho CE configured with Mondrian,

Saiku, and CTools. It also contains the Adventure Works data running in MySQL

and a Mondrian 4.0 schema.

 To use the virtual machine, you need to download a copy of VirtualBox, which is

available as a free download from www.virtualbox.org/wiki/Downloads. Once you

have VirtualBox installed, you can download the Mondrian in Action VM from

www.manning-source.com/back/vm.html. Be sure to download the most up-to-

date version of the VM. Use VirtualBox’s import capabilities to start the machine. If

you’re prompted for a password to log in, it’s mondrian.

UPDATES TO THE EXAMPLE PLATFORM At the time of this book’s authoring/
review, Mondrian 4.0 wasn’t GA software, along with a variety of other com-
ponents that were changing as Mondrian 4.0 completed its debut. You must
check the forums (www.manning-sandbox.com/forum.jspa?forumID=823)
for the latest information for the training platform, because we expect that
by the time you read this, the VM and contents may have changed to enhance
stability and cohesion.

The alternative is install Mondrian yourself. There are a lot of good reasons to do

this, such as the following:

■ You want to understand how Mondrian and Pentaho are installed.

■ You want a different configuration than the one provided.

■ You want to run Mondrian on a server other than Pentaho.

■ You want to run locally and not in a VM.

www.virtualbox.org/wiki/Downloads
www.manning-source.com/back/vm.html
www.manning-source.com/back/vm.html
www.manning-sandbox.com/forum.jspa?forumID=823

250 APPENDIX A Installing and running Mondrian

Because there are a large variety options for installing Mondrian, we can’t cover them

all. But we can talk about a few that you may find useful when learning Mondrian. We

don’t give the instructions for installing each component because they change fre-

quently and the sites have the instructions.

A.1 Somewhere to store the data

The data warehouse can be stored in any database that’s supported by Mondrian.

The Pentaho InfoCenter contains a list of databases that are supported at http://

mng.bz/2cJM. MySQL and PostgreSQL are popular free databases. The scripts for

creating the database examples in this book are for MySQL.

A.2 Just getting Mondrian

If you just want Mondrian, you can download the latest stable version from http://

mondrian.pentaho.com. Instructions on how to install it are available at http://

mondrian.pentaho.com/documentation/installation.php. If you want the very latest

and greatest, you can visit https://github.com/pentaho/mondrian and download

from there. Note that this approach requires building the code, but if you’re a devel-

oper and don’t mind such things, it’s a great way to stay up-to-date with the most

recent developments.

A.3 Mondrian with Pentaho

Many of the examples in this book use Pentaho, and Pentaho will continue to be

updated to work with Mondrian. An easy approach, then, is to download Pentaho. You

can find downloads of the Pentaho BI Platform at http://community.pentaho.com/

projects/bi_platform/. There are two versions: the manual version that you can install

into your webapp server and the non manual version that comes bundled with Tomcat

and MySQL. This is the quickest way to get up and running. Download the package,

and unzip it into a convenient location.

PENTAHO 5.0 AND MONDRIAN 4.0 At the time this book was written, Pentaho
was on Version 4.8, which didn’t support Mondrian 4.0. If you’re using Pen-
taho CE and Saiku, this isn’t a major issue, because you can have a different
version of Mondrian for Saiku. But Enterprise users can’t use Mondrian 4.0
with Analyzer. Pentaho 5.0 will add support for olap4j but probably won’t
incorporate Mondrian 4.0 until Pentaho 5.1.

A.4 Adding C-Tools to Pentaho

You can also install C-Tools with Pentaho. Download C-Tools from WebDetails at

www.webdetails.pt/index.html#ctools. The site contains a link to the ctools-

installer. This installer is run from the command line and downloads, installs, and

configures the various C-Tools. Read the installation instructions closely; it’s not diffi-

cult, but you do have to be accurate.

http://mng.bz/2cJM
http://mng.bz/2cJM
http://mondrian.pentaho.com
http://mondrian.pentaho.com
http:// mondrian.pentaho.com/documentation/installation.php
http:// mondrian.pentaho.com/documentation/installation.php
http://community.pentaho.com/projects/bi_platform/
http://community.pentaho.com/projects/bi_platform/
https://github.com/pentaho/mondrian
www.webdetails.pt/index.html#ctools

251Mondrian with Saiku

A.5 Mondrian with Saiku

You can get Saiku directly from http://analytical-labs.com. If you just want Mondrian

with Saiku, you can download the standalone server. If you prefer to use Saiku with

Pentaho, there is a plugin you can download and deploy. Instructions for both can be

found on the Saiku site.

http://analytical-labs.com

252

appendix B
Online resources

As an open source tool, Mondrian has an active online community and resources.

This appendix contains links and descriptions for many resources you can use to

continue to learn and use Mondrian.

Table B.1 Mondrian and OLAP

Site Link Description

Mondrian http://mondrian.pentaho.com Documentation and links to the Mon-

drian source.

Mondrian schema

reference

http://mondrian.pentaho.com/

documentation/xml_schema.php

Reference guide to each XML element

in Mondrian's schema.

Mondrian source http://github.com/pentaho/

mondrian

Mondrian source code repository with

the latest versions.

Mondrian office

hours

http://mng.bz/8tYc Hours for Mondrian IRC chats with

Julian Hyde and others.

Mondrian in Action http://www.manning.com/

mondrianinaction

Information about the book and links

to the forums.

Mondrian in Action

Forum

http://www.manning-sandbox.com/

forum.jspa?forumID=823

Discussion forum for Mondrian in

Action.

olap4j http://olap4j.org Documentation for olap4j and links to

download the source.

XMLA for Analysis

(XMLA) via MSDN

http://mng.bz/3oEo Microsoft’s XMLA site. Probably the

best reference site for XMLA.

xmla4js https://github.com/rpbouman/

xmla4js

Documentation and code for xmla4js.

http://mondrian.pentaho.com
http://mondrian.pentaho.com/documentation/xml_schema.php
http://mondrian.pentaho.com/documentation/xml_schema.php
http://github.com/pentaho/mondrian
http://github.com/pentaho/mondrian
http://mng.bz/8tYc
http://www.manning.com/
mondrianinaction
http://www.manning.com/
mondrianinaction
http://www.manning-sandbox.com/forum.jspa?forumID=823
http://www.manning-sandbox.com/forum.jspa?forumID=823
http://olap4j.org
http://mng.bz/3oEo
https://github.com/rpbouman/xmla4js
https://github.com/rpbouman/xmla4js

253APPENDIX B Online resources

Table B.2 Pentaho resources

Site Link Description

Pentaho www.pentaho.com Pentaho’s main site.

Pentaho community http://community.pentaho.com Pentaho’s community site with links to

related projects, documentation, and

source.

Pentaho source http://source.pentaho.org/ Pentaho’s open source page. Note that

much of the code is being migrated to

GitHub.

Pentaho forums http://forums.pentaho.com/ Pentaho forums that are a good source of

past questions and online help.

Pentaho InfoCenter http://infocenter.pentaho.com/ Primary source of Pentaho Enterprise doc-

umentation. Most is relevant to the Com-

munity Edition as well.

WebDetails, a

Pentaho Company

www.webdetails.pt Maker of C-Tools.

Saiku http://analytical-labs.com Saiku software.

Pivot4J http://mysticfall.github.com/pivot4j/ JPivot replacement.

Table B.3 Blogs of interest

Author Link About the author

Julian Hyde http://julianhyde.blogspot.com Lead architect for Mondrian and one of the

authors of this book

Luc Boudreau http://devdonkey.blogspot.com Lead engineer for Mondrian at Pentaho

Nick Goodman www.nicholasgoodman.com/bt/blog/ One of the authors of this book

Bill Back http://billonbi.wordpress.com Director of OEM Services at Pentaho and one

of the authors of this book

Table B.4 MDX resources

Site Link Description

Mondrian online MDX

documentation

http://mondrian.pentaho.com/

documentation/mdx.php

The definitive resource to Mondrian MDX

support. Provides the functions, their sig-

natures, and a brief description of each

function. Also covers the known diver-

gences from the XMLA specification and

Microsoft’s MDX implementation.

www.pentaho.com
http://community.pentaho.com
http://source.pentaho.org/
http://forums.pentaho.com/
http://infocenter.pentaho.com/
www.webdetails.pt
http://analytical-labs.com
http://mysticfall.github.com/pivot4j/
http://julianhyde.blogspot.com
http://devdonkey.blogspot.com
www.nicholasgoodman.com/bt/blog/
http://billonbi.wordpress.com
http://mondrian.pentaho.com/documentation/mdx.php
http://mondrian.pentaho.com/documentation/mdx.php

254 APPENDIX B Online resources

Microsoft MDX language

reference

http://mng.bz/47m0 The most comprehensive online resource

for MDX. Covers language basics (opera-

tors and so on) and has an extensive

function reference. Much of the documen-

tation can be used as is, with no adjust-

ment for MSFT versus Mondrian specifics.

MSFT diverges from the specification fre-

quently, so not all functions and documen-

tation apply, but most do.

Fast Track to MDX by

Mark Whitehorn,

Robert Zare, and Mosha

Pasumansky

(Springer, 2005)

http://amzn.com/1846281741 An introductory, and dated, book on MDX.

If MDX looks like gibberish and you want

to understand the basics, this is a good

book to start with.

MDX Solutions by

George Spofford et al.

(Wiley, 2006)

http://amzn.com/0471748080 Covers MDX extensively, providing huge

numbers of practical exercises. Chapter 7

in particular is a gold mine of recipes for

doing interesting things in MDX. Most of

the MDX works as is or with minor adjust-

ments, because this book was written for

Microsoft instead of Mondrian.

Chris Webb’s blog http://cwebbbi.wordpress.com/

category/mdx/

MDX trainer and guru Chris Webb has lots

of posts on MDX. He’s into all Microsoft BI

technologies, so you’ll find many other

topics in addition to MDX, but he has

some solid info on MDX (check out his

older entries).

Table B.4 MDX resources (continued)

Site Link Description

http://mng.bz/47m0
http://amzn.com/1846281741
http://amzn.com/0471748080
http://cwebbbi.wordpress.com/category/mdx/
http://cwebbbi.wordpress.com/category/mdx/

255

appendix C
Schema shortcuts

There is often more than one way to write something in Mondrian’s XML schema

format. Mondrian provides shortcuts to allow you to write concise XML. These are

particularly useful if you’re writing XML by hand.

Name Example

Attribute.nameColumn
default

An attribute’s name defaults to its key (if the key has a single

column) or the last column of its key (if the key is a composite).

For example,

<Attribute name='Year' keyColumn='year'/>

is equivalent to

<Attribute name='Year' keyColumn='year'
nameColumn='year'/>

Attribute.keyColumn for

Attribute.Key
If an attribute’s key is a single column, you can use the key-
Column attribute. For example,

<Attribute name='Year' keyColumn='year'/>

is equivalent to

<Attribute name='Year'>
<Key>

<Column name='year'/>
</Key>

</Attribute>

256 APPENDIX C Schema shortcuts

Attribute.nameColumn for

Attribute.Name

If an attribute’s name is a column (not an expression), you can

use the nameColumn attribute. For example,

<Attribute name='Day' ... nameColumn='day_
of_month'/>

is shorthand for

<Attribute name='Day' ...>
<Name>

<Column name='day_of_month'/>
</Name>

</Attribute>

Default table for hierarchy The attribute Hierarchy.table lets you omit the

Column.table attribute in all enclosed elements.

Default table for level The attribute Level.table lets you omit the

Column.table attribute for all enclosed elements.

Attribute.ordinalColumn
default

If you don’t specify an ordinal expression, it defaults to the

name. For example,

<Attribute name='Product Name'
keyColumn='product_id'

nameColumn='product_name'/>
is shorthand for

<Attribute name='Product Name'
keyColumn='product_id'
nameColumn='product_name' ordinalColumn=

'product_name'/>

Name Example

257

index

Symbols

' (single quote) 102, 109
< > angle brackets 109
<![CDATA[...]]> section 109
|| operator 68

Numerics

3NF (third normal form) 42–43

A

abbreviations in MDX 97
access attribute

DimensionGrant 126
HierarchyGrant 126
SchemaGrant 123

access control 89
accuracy, and data structure 37
action sequences

creating 163–164
future of 164
running 164–165
testing 165

Adventure Works database
examining 32
overview 4

<AggName> element 143
aggregate functions 66
aggregate tables 13, 101

creating 141
deciding which to create 143
declaring 142–143

aggregate values 65
aggregate vs. total 131
Aggregate() function 234
Aggregation Designer 141
aggregator attribute 65
Ajax (asynchronous JavaScript

and XML)
creating thin client

application 202–203
displaying results 211–218
executing XMLA queries 211
XMLA discovery 203–210

all option
CubeGrant 125
SchemaGrant 123–124

all_dimensions option 123
Amazon EC2 149
Analyzer. See Pentaho Analyzer
AnalyzerDateFormat

annotation 183
angle brackets 109
annotations

defined 84
for geographic locations

184–185
for time dimensions 183

<Annotations> element 71
applications, using Mondrian

from
Java application

creating connections with
olap4j 222–223

executing queries 223–226
overview 222

thin client
and XMLA 200

configuring Mondrian as
XMLA web
service 201–202

creating thin client
application 202–203

displaying results 211–218
executing XMLA

queries 211
XMLA discovery 203–210
xmla4js library 218–222

approxRowCount attribute 99
asynchronous JavaScript and

XML. See Ajax
<Attribute> element 62
attributes

abstract of 29
bucketing 106–107
defined 30
disconnected 77
hierarchies of 81–83
mapping onto columns 63–64

<Attributes> element 71
Authenticated role 124, 171
authentication, lack of by

Mondrian 118
<AutoGeneratedDateTable>

element 79–80
avg aggregator 66

B

Back, Bill 253
bar charts 181
Beanshell 189
BETWEEN clause 49

INDEX258

Big Data
databases supported 244–245
Hadoop with Hive 245
NoSQL systems

overview 245–246
processing data into SQL

database 246–247
using SQL driver 247

overview 243–244
bottomLevel attribute

HierarchyGrant 127–128
not overriden by member

grants 130
Bourdreau, Luc 253
bucketing attributes 106–107
business analytics

importance of 2–3
modeling 28–30
OLAP advantages 4–8

C

C-Tools 250
CacheFlusher class 157
caching

external segment cache
CDC 150–152
Infinispan 147–149
installing plugin 147
Memcached 149–150

flushing
schema cache 156–159
specific cubes 159
specific regions of

cache 160–161
member cache 145
populating cache 152–156
schema cache 144–145
segment cache 145
types of 144
using custom roles 170
using dynamic schema

processor 170
using Saiku 185

calculated measures 65, 108
calculated members

adding to cube 97
calculated measures 108
converting calculations to 228
defining in query 109–112
defining in schema 109
hanger dimensions 113–114
on other dimensions 112–113
overview 107–108
section in schema 109

calculations
converting to calculated

members 228
in schemas 106–107

CallSet class 224
caption attribute 62–63
<Caption> element 64
captionColumn attribute 64
captions

changing 97
for measures dimension 83

Cartesian product 55
catalogs

defined 153
XMLA 203, 208

CDA (Community Data Access)
caching for 150
using in dashboards 187–189

CDC (Community Distributed
Cache) 150–152

CDF (Community Dashboard
Framework) 22

creating dashboards 186–187
defined 18, 185
using CDA in 187–189

CE. See Pentaho CE
CellOrdinal value 216
charting, with Pentaho

Analyzer 181–183
chord charts, in Pentaho

Analyzer 181
close() method 223
Cloudant 245
Cloudera 245
coarse-grained measure

groups 94–95
collapsing dimensions 141
column attribute 65
<ColumnDef> element 81
<ColumnDefs> element 80
<Columns> element 71
combination dimensions 55
Community Dashboard Frame-

work. See CDF
Community Data Access. See

CDA
Community Distributed Cache.

See CDC
comparisons using same

terms 90
complexity, of cubes and

schemas 96
CONCAT() function 68
concurrent users, 3NF model 42
configurationFile setting 149

conformed dimensions 90–91
consistency, and data

structure 37
<CopyLink> element 142
cost, advantages of

Mondrian 11–13
CouchDB 245–246
count aggregator 66
count measure 65
CRM (customer relationship

management) 42
cross-domain calls 153
CTools Installer 151, 250
<Cube> element

overview 61–62
position of 71

CubeGrant 124–125
cubes

abstract of 29
adding calculated members

to 97
adding named set to 97
and catalogs 153
complexity of 96
defined 30
flushing cache for

specific 159
limitations in Saiku 88
of dimensions 12
selecting in Pentaho

Analyzer 178
single vs. multiple 88–89,

95–96
XMLA query to discover 209

CurrentMember function 232
custom delegate role 172–173
custom hierarchy access

172–173
custom option

HierarchyGrant 127
required to use

MemberGrant 129
custom role mappers 121–122
Customer dimension 27, 29
customer relationship manage-

ment. See CRM
CustomHierarchyAccess

class 170
CustomMDXConnection

class 170–171
CustomRoleDelegate class

170, 172

INDEX 259

D

data member 103
data mining. See DM
data warehouse 31–32, 37, 250
Data Warehouse Lifecycle Tool-

kit, The 40
data, structuring for analytics

overview 37–39
snowflake design 52–54
star schema

advantages of 43–44
combination

dimensions 55
degenerate dimensions

54–55
junk dimensions 55
overview 40–42
SCD overview 50
SCD Type I 46–47
SCD Type II 47–49
SCD Type III 49–50
time dimensions 50–52
vs. 3NF 42–43

Data.Role annotation 184
database administrators 8
databases

knowledge of structure
unnecessary 9

performance tuning 138–139
supported Big Data 244–245
supported by Mondrian

3, 15, 250
DatasourceInfo setting 154
datasources.xml file 201
dates, coded version of 52
Day attribute 27
day_of_month column 80
day_of_week column 79
day_of_week_in_month

column 80
DBSCHEMA_CATALOGS

message 203, 208
debugging calculations 110
defaultRole attribute 71
degenerate dimensions 54–55,

101–102
denormalization, of dates 50–52
describe command 32
description attribute

in schema 62–63
recommeded attributes 60

descriptions, changing 97

development with Mondrian
calling from Java application

creating connections with
olap4j 222–223

executing queries 223–226
overview 222

calling from thin client
and XMLA 200
configuring Mondrian as

XMLA web
service 201–202

creating thin client
application 202–203

displaying results 211–218
executing XMLA

queries 211
XMLA discovery 203–210
xmla4js library 218–222

dialect attribute 69
diff tool 71
dim_ naming convention 32
dimension attribute 126
<Dimension> element

overview 65
position of 61, 71

dimension links 94
dimension tables

defined 40
in star schema 41
overview 41
reducing size of 53

dimensional filters 180
dimensional modeling 40
dimensionality, of measures

92–93
DimensionGrant 126
<DimensionLinks> element 71
dimensions

abstract of 29
adding hierarchy to 97
calculated members on

112–113
collapsing 141
conformed dimensions 90–91
cubes of 12
defined 9, 30
degenerate dimensions

101–102
dropping 141
in star schema 42
restrictions and roles 171
role-playing dimensions 91
shared dimensions 89, 91
snowflake dimensions 98–101
star dimensions 98

<Dimensions> element 62, 71
disconnected attributes 77
discover messages 200
DISCOVER_DATASOURCES

message 203, 207
distinct-count aggregator 66
DM (data mining)

and star schemas 241
overview 241–242
R language 242
Weka framework 242–243

downloading
Mondrian 250
Pentaho 250
Saiku 251

drag and drop analysis 9
drillThrough() method 225
dropping dimensions 141
DSP (dynamic schema

processor)
configuring 167–168
defined 165
example of 166–167
for Pentaho Report

Designer 194–195
supporting in schema 166
vs. dynamic role

modification 174–175
dynamic role modification

custom delegate role 172–173
custom hierarchy access

172–173
custom MDX connection

171, 173
overview 169–170
supporting in schema

170–171
vs. dynamic schema

processor 174–175
dynamic schema processor. See

DSP
dynamic security

action sequences
creating 163–164
running 164–165

dynamic role modification
custom delegate role

172–173
custom hierarchy

access 172–173
custom MDX

connection 171, 173
overview 169–170
supporting in schema

170–171

INDEX260

dynamic security (continued)
vs. dynamic schema

processor 174–175
dynamic schema processor

configuring 167–168
defined 165
example of 166–167
supporting in schema 166
vs. dynamic role

modification 174–175
DynamicSchemaProcessor

interface 166–167

E

Education attribute 27
EE. See Pentaho EE
engine, Mondrian as 18–19
envelopes, SOAP 200
environment, performance

testing 135–136
ERP (enterprise resource

planning) 42
<error> element 205
errors

in MDX queries 26
in XMLA 205–206

ETL (extract, transform, and
load) process

and PDI 195
defined 30
flushing and priming cache

in 156
populating data with 33–34

evolution of schemas
overview 87–88
patterns for 96–97
See also schemas

Excel, difficulty analyzing data
in 7

execute messages 200
<ExpressionView> element 69
extended segment cache 246
Extensible Markup Language.

See XML
external segment cache

CDC 150–152
Infinispan 147–149
installing plugin 147
Memcached 149–150

extract, transform, and load. See
ETL

F

fact tables
defined 40
in star schema 41

<FactLink> element 71, 102
facts, in star schema 42
failOnEmptyRoleList

parameter 119
Fast Track to MDX 254
filters

defined 9
in Pentaho Analyzer 179–181

fine-grained measure
groups 93–94

Firefox, opening Pentaho login
page 21

fiscal attributes 51
fixed targets in MDX 234–236
flushAll() method 158
flushing cache

schema cache 156–159
specific cubes 159
specific regions of cache

160–161
<ForeignKeyLink> element

71, 98, 102, 113, 142
<Formula> element 109
forums 249
fraud detection 241
full option, rollupPolicy

attribute 131

G

Geo Map charts, in Pentaho
Analyzer 181

Geo.RequiredParents
annotation 184

Geo.Role annotation 184
geographic locations, annota-

tions for 184–185
getAccess() method 173
git 71
Goodman, Nick 253
grants

CubeGrant
all option 125
none option 125
overview 124–125

DimensionGrant 126
HierarchyGrant

bottomLevel attribute
127–128

overview 126–127
topLevel attribute 127–128

MeasureGrant 131–132
MemberGrant

guidelines for using 130
overview 128–130
rollup policies 130–131

overview 122–123
SchemaGrant

all option 123–124
none option 124
overview 123

Greenplum 15, 245
grep tool 71
Groovy 189
groups 119
growth, in MDX 229–232

H

Hadoop 33, 189, 245
hanger dimensions

113–114, 240
hardware environment 135–136
Hazelcast 150
Head() function 238
hidden members

defined 104
vs. invisible and

inaccessible 105
hidden option, rollupPolicy

attribute 131
hideMemberIf attribute 105
hierarchies

adding to dimension 97
attribute 81–83
attribute relationships 74
custom hierarchy access

172–173
defined 28
improved user experience 74
multidimensional

modeling 73–76
parent-child hierarchies

102–104
ragged hierarchies 104–106

<Hierarchies> element 71
hierarchy attribute 126
Hierarchy@table attribute 256
HierarchyGrant

bottomLevel attribute
127–128

overview 126–127
topLevel attribute 127–128

INDEX 261

Hive 245
Hyde, Julian 253

I

IfBlankName value 105
IfParentsName value 105
Impala 245
in-memory caching 13
inaccessible elements 106
indexes, database

performance 139
InfiniDB 245
Infinispan

configuring 148–149
overview 147–148

infinispan-config.xml file 148
Infobright 245
information hiding 88
information subjects 38
inheritance, of member grant

rules 130
installing Mondrian

adding C-Tools to
Pentaho 250

downloading Mondrian with
Pentaho 250

downloading Mondrian with
Saiku 251

downloading only
Mondrian 250

storing data 250
using virtual machine

249–250
interactive analytics, using

Mondrian 24–25
invisible elements 105
ispentahorunning command 21

J

Java applications, using
Mondrian from

creating connections with
olap4j 222–223

executing queries 223–226
overview 222

JavaScript, cross-domain
calls 153

JDBC (Java Database
Connectivity) 190, 222

JGroups 147, 149
jgroups-ec2.xml file 149
jgroups-tcp.xml file 149

jgroups-udp.xml file 149
JNDI (Java Naming and Direc-

tory Interface) 190
joins

missing keys 43
reducing with star schema 31

joint roles 117
JOLAP 222
JPivot 24
jQuery 186, 205–206
JSR-69 (Java Specification

Request) 222
junk dimensions 55

K

Kettle transformations
and action sequences 164
defined 33

<Key> element 63, 81
keyColumn attribute 63, 255
kill_pentaho command 21

L

large columns 53
latency, network 135
Level@table attribute 256
levels 9
levelType attribute 78
linear regression in MDX

236–237
<Link> element 100
LinRegPoint() function 236
localization of captions and

descriptions 62
LocalizingDynamicSchemaPro-

cessor class 166
Log4j, testing performance of

queries 137
logging, slow queries 139
logical schema, of Mondrian 12
login page, Pentaho 21
lookup-map role mapper 120
LucidDB 15, 245

M

machine learning. See ML
mapping dimensions

degenerate dimensions
101–102

snowflake dimensions 98–101
star dimensions 98

mapRoles method 121
market basket analysis 241, 243
max aggregator 66
maximizing return on

investment 2
MDSCHEMA_CUBES

message 203, 209
MDX (Multidimensional Expres-

sions)
analysis with Saiku 25–26
and attributes 81–82
calculating growth 229–232
custom connection for

dynamic role 171, 173
debugging calculations 110
defined 4
defining calculations 107
documentation 253
errors in 26
fixed targets 234–236
in Saiku 185
linear regression 236–237
mode in Saiku 26
Mondrian vs. Microsoft 13
overview 12, 227–228
query on parent-child

hierarchy 103
ranking 237–238
ratios 229–232
resources for 253–254
running queries 229
time dimension

operators 77–78
time-centric shortcuts 50
time-specific 233–234
trends 236–237
using abbreviations in 97

MDX Solutions 254
MDXConnection class 171
<Measure> element

overview 65–66
position of 62

measure groups
coarse-grained measure

groups 94–95
dimensionality of

measures 92–93
fine-grained measure

groups 93–94
granularity of measures 92–93
overview 91–92

MeasureGrant 131–132
<MeasureGroup> element 73

declaring aggregate tables 142
position of 62

INDEX262

<MeasureGroups> element 62
measures dimension

calculated 108
caption for 83
defined 30, 40, 65
dimensionality of 92–93
overview 83–84
stored vs. calculated 65

measuresCaption attribute 83
member cache 145
MemberGrant

guidelines for using 130
overview 128–130
rollup policies 130–131

<MemberGrant> element 171
memberNameToSegmentList()

method 160
members 145
Memcached

configuring 149–150
overview 149

memcached-config.xml file 149
memory 136
metamodelVersion attribute

60, 71, 73
Microsoft Analysis Services. See

MSAS
Microsoft SQL Server 15
Microsoft, vs. Mondrian

MDX 13
min aggregator 66
missing join keys 43
ML (machine learning)

overview 241–242
R language 242
Weka framework 242–243

modeling business
questions 28–30

Mondrian
advantages of

based on open
standards 14–15

letting users drive
analysis 8–11

low-cost, low-risk
solution 11–13

security 14
speed 13–14

as engine 18–19
documentation 252
expected data structure 40
installing

adding C-Tools to
Pentaho 250

downloading Mondrian
with Pentaho 250

downloading Mondrian
with Saiku 251

downloading only
Mondrian 250

storing data 250
using virtual machine

249–250
interactive analytics using

24–25
MDX analysis with Saiku

25–26
multidimensional modeling

designing business
questions 28–30

example using 27–28
organizing data

data warehouse 31–32
populating data with

ETL 33–34
resources for 252
running 20–22
time-centric MDX

shortcuts 50
version 4 features 92, 143, 166
versions in Pentaho 250
viewing reports 22
vs. Microsoft MDX 13

mondrian.properties file 141
mondrian.rolap.aggre-

gates.Read property 141
mondrian.rolap.aggregates.Use

property 141
mondrian.spi.SegmentCache

interface 147
MondrianAbstractPlatformUser-

RoleMapper class 121
MonetDB 245
Moneyball 2
MongoDB 33, 189
Month attribute 27
month_of_year column 80
MSAS (Microsoft Analysis

Services) 4
MTD() function 78
Multidimensional Expressions.

See MDX
multidimensional modeling

attribute hierarchies 81–83
designing business

questions 28–30
disconnected attributes 77
example using 27–28
hierarchies 73–76

measures dimension 83–84
schemas

Attribute element 62
caption attribute 62–63
Cube element 61–62
description attribute 62–63
Dimension element 65
mapping attributes onto

columns 63–64
Measure element 65–66
name attribute 62–63
PhysicalSchema

element 66–70
Schema element 60–61
shorthands 76–77
structure of 71
versioning in 71–73
XML for 70–71

time dimension
overview 77–78
table generator for 78–81

multiple cubes
overview 88–89
vs. single cubes 95–96

MySQL 15, 245, 250

N

name attribute
in schema 62–63
mandatory attributes 60

<Name> element 63
nameColumn attribute

63, 255–256
named sets 97
<NamedSet> element 71
names, changing for

elements 97
Netezza 15
network latency 135
<NoLink> element 71
none option

CubeGrant 125
SchemaGrant 124

NoSQL databases 33, 189
overview 245–246
processing data into SQL

database 246–247
using SQL driver 247

numeric filters, in Pentaho
Analyzer 179

numOwners setting 148

INDEX 263

O

Oakland A's use case 2
Objects.spring.xml file 119
Objects.xml file 122
OLAP (online analytical

processing)
advantages over static

reports 4–8
defined 2
resources for 252
tenets of 39

Olap4j
creating connections

with 222–223
documentation 222
resources for 252
scenario support 240
standard 15

OLTP (online transaction
processing) 30, 245

one-to-one role mapper
119–120

online analytical processing. See
OLAP

online resources 252–254
online transaction processing.

See OLTP
operators, for time

dimension 77–78
Optiq project 244
Oracle 15, 245
order, of member grant

rules 130
Order() function 238
<OrderBy> element 64
orderByColumn attribute 64
ordinalColumn attribute 256

P

page files 136
<Parameter> element 71
parameters, in Pentaho Report

Designer 193–194
Parent function 232
parent-child hierarchies

102–104
partial option, rollupPolicy

attribute 131
passes through tables, star

schema 43
password for virtual machine

from book 249

Pasumansky, Mosha 254
PDI (Pentaho Data

Integration) 78
and data mining 243
as data source for CDA 188
defined 33
overview 195–197

Pentaho
adding C-Tools to 250
advantages of 9
Authenticated role 124
commands for 21
Community Dashboard

Framework
creating dashboards

186–187
defined 185
using CDA in 187–189

community edition 11
downloading 250
flushing cache in 144, 156
InfoCenter for 250, 253
mappers for 121
Mondrian versions 250
resources for 253
role information 119
running 20–22
testing action sequences 165
using Saiku with 185
versions 20

Pentaho Aggregate Designer 70
Pentaho Analyzer

annotations in 84
for geographic

locations 184–185
for time dimensions 183

charting with 181–183
defined 18
descriptions in 63
lack of scenario support 240
overview 177
testing performance of

queries 137
toolbar in 177
using dynamic schema

processor 167
using for analysis 178–181
vs. Saiku 24, 185

Pentaho CE 20
Pentaho Data Integration. See

PDI
Pentaho EE

external segment caching 146
overview 20

Pentaho Report Designer 22
creating OLAP data

source 189–192
overview 189
specifying dynamic schema

processor 194–195
using parameters 193–194

Pentaho Reporting 18
Pentaho User Console. See PUC
pentaho-analysis-ee plugin 147
PentahoAccessControl-

Exception 121
pentahoObjects.spring.xml

file 173
pentahoWebapPath setting 151
performance

aggregate tables
creating 141
deciding which to

create 143
declaring 142–143

caching
external segment

cache 146–152
flushing schema

cache 156–159
flushing specific cubes 159
flushing specific regions of

cache 160–161
member cache 145
populating cache 152–156
schema cache 144–145
segment cache 145
types of 144

database improvements
138–139

improving by reducing
joins 31

of Mondrian 13–14
tuning process

creating initial queries 137
executing queries 137–138
hardware

environment 135–136
overview 134–135
software environment

135–136
test data 136–137

<PhysicalSchema> element
overview 66–70
position of 71
supporting DSP in

schema 166
Pivot4J 253
populating cache 152–156

INDEX264

populating data, with ETL
33–34

PostgreSQL, Mondrian
support 15, 245

postMessage function 206
PrevMember function 233
PUC (Pentaho User

Console) 22, 165

Q

QTD() function 78
Quarter attribute 29
quarter column 80
queries

defining calculated members
in 109–112

performance tuning process
creating initial 137
executing 137–138

slow, logging 139
<Query> element 166

R

R language 242
ragged hierarchies 104–106
RAM (random-access

memory) 136
Rank() function 237
ranking in MDX 237–238
ratios in MDX 229–232
RBAC (role-based access

control)
defined 115
priming all caches 154
security using 14
See also dynamic security

Read property 141
<ReferenceLink> element 71
relational OLAP. See ROLAP
reports

viewing Mondrian 22
vs. OLAP 2–8

resources
blogs 253
MDX 253–254
Mondrian 252
OLAP 252
Pentaho 253

ResultSet class 225
return on investment 2
risk, advantages of

Mondrian 11–13

ROLAP (relational OLAP) 31
<Role> element 71, 118
role-based access control. See

RBAC
role-playing dimensions 91
roles

declaring in Mondrian
schema 118

defined 116–117
dynamic role modification

custom delegate role
172–173

custom hierarchy
access 172–173

custom MDX
connection 171–173

overview 169–170
supporting in schema

170–171
vs. dynamic schema

processor 174–175
enforcement of

custom role mappers
121–122

lookup-map role
mapper 120

one-to-one role
mapper 119–120

overview 118–119
user-session role

mapper 120–121
See also dynamic role

modification
rollup policies 130–131
rollupPolicy attribute 130

S

Saiku
CDC clustering 152
cube limitations 88
defined 18
descriptions in 63
downloading 251
MDX analysis with 25–26
MDX mode 26, 229
navigating 24
resources for 253
role information 119
scenarios in 238–241
testing performance of

queries 137
using dynamic schema

processor 167
vs. Analyzer 24, 185

saiku-shareMondrian.sh
script 152

Sales schema 27
SCDs (Slowly Changing

Dimensions)
overview 44–46, 50
SCD Type I 46–47, 53
SCD Type II 47–49
SCD Type III 49–50

scenarios 238–241
schema cache

flushing cache 156–159
overview 144–145

<Schema> element
overview 60–61
position of 71

Schema Workbench 70
SchemaGrant

all option 123–124
none option 124
overview 123

schemas
Attribute element 62
bucketing attributes 106–107
calculated members

calculated measures 108
defining in query 109–112
defining in schema 109
hanger dimensions

113–114
on other dimensions

112–113
overview 107–108

calculations in 106–107
caption attribute 62–63
conformed dimensions 90–91
Cube element 61–62
declaring roles in 118
description attribute 62–63
Dimension element 65
documentation for 252
evolution of

overview 87–88
patterns for 96–97

hierarchy structures
parent-child

hierarchies 102–104
ragged hierarchies 104–106

mapping attributes onto
columns 63–64

mapping dimensions
degenerate

dimensions 101–102
snowflake dimensions

98–101
star dimensions 98

INDEX 265

schemas (continued)
Measure element 65–66
measure groups

coarse-grained measure
groups 94–95

dimensionality of
measures 92–93

fine-grained measure
groups 93–94

granularity of measures
92–93

overview 91–92
multiple cubes in

overview 88–89
vs. single cubes 95–96

name attribute 62–63
order of elements in 61
PhysicalSchema element

66–70
purpose of 57
role-playing dimensions 91
Schema element 60–61
shared dimensions 89
shorthands 76–77, 255–256
size and complexity of 96
structure of 71
supporting dynamic role mod-

ification in 170–171
supporting dynamic schema

processor in 166
versioning in 71–73
XML for 70–71

security
advantages of Mondrian 14
grants

CubeGrant 124–125
DimensionGrant 126
HierarchyGrant 126–128
MeasureGrant 131–132
MemberGrant 128–131
overview 122–123
SchemaGrant 123–124

roles
custom role mappers

121–122
declaring in Mondrian

schema 118
defined 116–117
enforcement of 118–119
lookup-map role

mapper 120
one-to-one role

mapper 119–120
user-session role

mapper 120–121

segment cache
extended segment cache 246
external segment cache

CDC 150–152
Infinispan 147–149
installing plugin 147
Memcached 149–150

overview 145
SEGMENT_CACHE_IMPL

setting 147
SegmentCache interface 147
servers 11
SERVERS setting 149–150
service provider interface. See

SPI
sessionStartupActionsList

constructor 165
shadow member 103
shared dimensions

overview 89
single vs. multiple cubes 96
vs. conformed dimensions 91

shorthands, in schema 76–77,
255–256

single cubes, vs. multiple
cubes 95–96

single quote (') 102, 109
slicing 194
slow queries, logging 139
Slowly Changing Dimensions. See

SCDs
snowflake design 52–54
snowflake dimensions 98–101
SOAP (Simple Object Access

Protocol) 200
software environment 135–136
solutionPath setting 151
speed

advantages of Mondrian
13–14

and data structure 37
SPI (service provider

interface) 145, 199
Spofford, George 254
spreadsheets, Mondrian as 106
standalone mode 11
standards, advantages of

Mondrian 14–15
star dimensions 98
star schema

advantages of 43–44
and data mining 241
combination dimensions 55
degenerate dimensions 54–55

junk dimensions 55
overview 40–42
Slowly Changing Dimensions

overview 44–46, 50
SCD Type I 46–47
SCD Type II 47–49
SCD Type III 49–50

time dimensions 50–52
vs. 3NF 42–43

star schemas 31–32
start_pentaho command 21
starting/running,

Mondrian 20–22
startup action sequences 164
stop_pentaho command 21
stored measures, vs. calculated

measures 65
structure of schemas 71
Subversion 71
sum aggregator 66
surrogate key 48

T

<Table> element 166
table generator 78–81
TCP (Transmission Control

Protocol) 149
terminal application 20
the_date column 79
the_day column 79
the_month column 80
the_year column 80
thin clients, using Mondrian from

and XMLA 200
calling services with Ajax

creating thin client
application 202–203

displaying results 211–218
executing XMLA

queries 211
XMLA discovery 203–210

configuring Mondrian as
XMLA web service 201–202

xmla4js library 218–222
third normal form (3NF) 42–43
time dimensions 27, 29, 50–52

annotations for 183
overview 77–78
table generator for 78–81

time_id column 79
time-specific MDX 233–234
<TimeDomain> element 81
Tomcat 147, 250

INDEX266

topLevel attribute
HierarchyGrant 127–128
not overriden by member

grants 130
total, vs. aggregate 131
transactional systems 33
transformations

creating with PDI 195–197
defined 33

Transmission Control Protocol.
See TCP

trends in MDX 236–237
troubleshooting

performance 134–135
type attribute 78

U

Ubuntu 20
UDP (User Datagram

Protocol) 149
Union element 117
Units measure 27
upgrading schemas 73
Use property 141
USE_SEGMENT_CACHE

setting 147
UseContentChecksum

property 167
user experience, improving

using hierarchies 74
%USER_REGION%

variable 166
USER_REGION_CODE

attribute 164
USER_STATE_PROVINCE_NA

ME attribute 164
user-session role mapper

120–121

<UserDefinedFunction>
element 71

users, letting users drive
analysis 8–11

users.properties file 119

V

variety 244
Vectorwise 245
velocity 244
version-control systems 71
versioning, in schemas 71–73
versions, of Pentaho 20
virtual cubes 92
virtual machine from book,

installing 249–250
VirtualBox

defined 20
downloading 249

<VirtualCube> element 73
visible attribute 63
volume 244

W

WEB-INF directory 201
web.xml file 201
Webb, Chris 254
Webdetails 150, 253
week_of_year column 80
weeks, and year boundries 75
WEIGHTS setting 149–150
Weka framework 242–243
wget command 151
what-if analysis 238–241
Whitehorn, Mark 254
WITH MEMBER clause 109
WTD() function 78

X

.xcdf files 186
XML (Extensible Markup Lan-

guage)
order of elements in

schema 61
precaching techniques

153–156
schemas using 70–71
special characters in 109
standards 15
testing performance of

queries 137
XMLA (XML for Analysis)

configuring Mondrian as web
service 201–202

error handling in 205–206
lack of scenario support 240
overview 200, 218–222
resources for 252
standard 15

XmlaOlap4jDriver 222
XMLAResponse class 212, 218

Y

Year attribute 27
years, weeks passing boundries

of 75
YTD() function 78, 234
yymmdd column 79
yyyymmdd column 79

Z

Zare, Robert 254

Back ● Goodman ● Hyde

M
ondrian is an open source, lightning-fast data analysis
engine designed to help you explore your business data
and perform speed-of-thought analysis. Mondrian can be

integrated into a wide variety of business analysis applications
and learning it requires no specialized technical knowledge.

Mondrian in Action teaches you to use Mondrian for strategic
business analysis. In it, you’ll learn how to organize and present
data in a multidimensional manner. You’ll follow apt and thor-
oughly explained examples showing how to create a Mondrian
schema and then expand it to add basic security based on users’
roles. Developers will discover how to integrate Mondrian using
its olap4j Java API and web service calls via XML for Analysis.

What’s Inside
● Mondrian from the ground up—no experience required
● A primer on business analytics
● Using Mondrian with a variety of leading applications
● Optimizing and restricting business data for fast,
 secure analysis

Written for developers building data analysis solutions. Appro-
priate for tech-savvy business users and DBAs needing to query
and report on data.

William D. Back is an Enterprise Architect and Director of
Pentaho Services. Nicholas Goodman is a Business Intelligence
pro who has authored training courses on OLAP and Mondrian.
Julian Hyde founded Mondrian and is the project’s lead
developer.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/MondrianinAction

$49.99 / Can $52.99 [INCLUDING eBOOK]

Mondrian IN ACTION

BUSINESS INTELLIGENCE

M A N N I N G

“A wonderful introduction
to Business Intelligence

and Analytics.”
—Lorenzo De Leon

 Authentify, Inc.

“A great overview of
the Mondrian engine that

guided me through all
 the technical details.”—Alexander Helf, veenion GmbH

“A signi� cant complement
to the online documentation,
and an excellent introduction

to how to think about
 designing a data warehouse.”—Mark Newman

Heads Up Analytics

“Comprehensive ... highly
recommended.”—Najib Coutya, IMD Group

SEE INSERT

	Mondrian in Action
	brief contents
	contents
	preface
	about this book
	Intended audience
	Roadmap
	Recommended reading
	Code conventions and downloads
	Software requirements
	Author Online
	About the cover illustration

	acknowledgments
	WILLIAM BACK
	NICHOLAS GOODMAN
	JULIAN HYDE

	Chapter 1: Beyond reporting: business analytics
	1.1 The need for business analytics
	1.2 Replacing static reports with online analytical processing (OLAP)
	1.3 OLAP to the rescue
	1.3.1 Mondrian lets users drive analysis
	1.3.2 Mondrian is a low-cost, low-risk solution
	1.3.3 Mondrian is fast
	1.3.4 Mondrian is secure
	1.3.5 Mondrian is based on open standards

	1.4 Summary
	Chapter 2: Mondrian: a first look
	2.1 Mondrian’s role in analytics
	2.2 Running and using Mondrian
	2.2.1 Getting and running the software
	2.2.2 Navigation and viewing reports
	2.2.3 Interactive analytics
	2.2.4 MDX analysis with Saiku

	2.3 Multidimensional modeling
	2.3.1 A simple report
	2.3.2 Modeling business questions

	2.4 Getting and organizing the data
	2.4.1 The data warehouse: physically storing the data
	2.4.2 Examining the Adventure Works data
	2.4.3 Populating the data

	2.5 Summary

	Chapter 3: Creating the data mart
	3.1 Structuring data for analytics
	3.1.1 Characteristics of analytic systems
	3.1.2 Data architecture for analytics
	3.1.3 Star schemas
	3.1.4 Comparing star schemas with 3NF
	3.1.5 Star schema benefits

	3.2 Additional star schema modeling techniques
	3.2.1 Slowly Changing Dimensions (SCDs)
	3.2.2 Time dimensions
	3.2.3 Snowflake design
	3.2.4 Degenerate and combination/junk dimensions

	3.3 Summary

	Chapter 4: Multidimensional modeling: making analytics data accessible
	4.1 A simple schema
	4.1.1 Schema element
	4.1.2 Cube element
	4.1.3 Attribute element
	4.1.4 Dimension element
	4.1.5 Measure element
	4.1.6 PhysicalSchema element

	4.2 Anatomy of a schema
	4.2.1 XML schema files
	4.2.2 Structure of a schema
	4.2.3 Schema versioning and upgrading

	4.3 Dimensions, hierarchies, and levels
	4.3.1 Hierarchies and levels
	4.3.2 Time dimension
	4.3.3 Attribute hierarchies
	4.3.4 The measures dimension

	4.4 Summary

	Chapter 5: How schemas grow
	5.1 Schema evolution
	5.1.1 Multiple cubes in a schema
	5.1.2 Shared dimensions
	5.1.3 Conformed dimensions
	5.1.4 Using a dimension twice in the same cube
	5.1.5 Measures across multiple fact tables
	5.1.6 Smart evolution: multiple cubes versus single cubes
	5.1.7 Other schema evolution patterns

	5.2 Alternative ways to store dimensions
	5.2.1 Star dimensions
	5.2.2 Snowflake dimensions
	5.2.3 Degenerate dimensions

	5.3 Advanced hierarchy structures
	5.3.1 Parent-child hierarchies
	5.3.2 Ragged hierarchies

	5.4 Calculations
	5.4.1 Bucketing attributes
	5.4.2 Calculated members

	5.5 Summary

	Chapter 6: Securing data
	6.1 Use of roles
	6.1.1 What’s a role?
	6.1.2 Declaring roles in the Mondrian schema
	6.1.3 Enforcement of roles

	6.2 Security grants
	6.2.1 Schema grants
	6.2.2 Cube grants
	6.2.3 Dimension and hierarchy grants
	6.2.4 Member grants
	6.2.5 Measure grants

	6.3 Summary

	Chapter 7: Maximizing Mondrian performance
	7.1 Figuring out where the problems are
	7.1.1 Performance improvement process
	7.1.2 Preparing for performance analysis and establishing current performance

	7.2 Tuning the database
	7.3 Aggregate tables
	7.3.1 Creating aggregate tables
	7.3.2 Declaring an aggregate table
	7.3.3 Which aggregates should you create?

	7.4 Caching
	7.4.1 Types of caches
	7.4.2 External segment cache

	7.5 Priming the cache
	7.6 Flushing the cache
	7.6.1 Flushing the schema cache
	7.6.2 Flushing specific cubes
	7.6.3 Flushing specific regions of the cache

	7.7 Summary

	Chapter 8: Dynamic security
	8.1 Preparing for dynamic security
	8.1.1 Creating an action sequence
	8.1.2 Configuring and running the action sequence

	8.2 Restricting data using a dynamic schema processor
	8.2.1 Modifying the schema to support a DSP
	8.2.2 Example dynamic schema processor
	8.2.3 Configuring the DSP

	8.3 Restricting data using dynamic role modification
	8.3.1 Preparing the schema
	8.3.2 Custom MDX connection
	8.3.3 Custom delegate role and custom hierarchy access
	8.3.4 Configuring the custom MDX connection

	8.4 Deciding which security approach to use
	8.5 Summary

	Chapter 9: Working with Mondrian and Pentaho
	9.1 Pentaho Analyzer
	9.1.1 Overview of Pentaho Analyzer
	9.1.2 Using Analyzer for analysis
	9.1.3 Charting with Analyzer
	9.1.4 Special schema annotations for using Analyzer

	9.2 Saiku
	9.3 Community Dashboard Framework
	9.3.1 Creating a CDF dashboard
	9.3.2 Using Community Data Access

	9.4 Pentaho Report Designer
	9.4.1 Creating an OLAP data source
	9.4.2 Using parameters
	9.4.3 PRD and the dynamic schema processor

	9.5 Pentaho Data Integration
	9.6 Summary

	Chapter 10: Developing with Mondrian
	10.1 Calling Mondrian from a thin client
	10.1.1 XML for Analysis (XMLA)
	10.1.2 Configuring Mondrian as an XMLA web service
	10.1.3 Calling XMLA services with Ajax
	10.1.4 XMLA for JavaScript (xmla4js)

	10.2 Calling Mondrian from a Java application
	10.2.1 Creating connections via olap4j
	10.2.2 Querying data

	10.3 Summary

	Chapter 11: Advanced analytics
	11.1 Advanced analytics in Mondrian with MDX
	11.1.1 Running MDX queries
	11.1.2 Ratios and growth
	11.1.3 Time-specific MDX
	11.1.4 Advanced MDX

	11.2 What-if analysis
	11.3 Statistics and machine learning
	11.3.1 R
	11.3.2 Weka

	11.4 Big Data
	11.4.1 Analytic databases
	11.4.2 Hadoop and Hive
	11.4.3 NoSQL systems and Hadoop

	11.5 Summary

	appendix A: Installing and running Mondrian
	A.1 Somewhere to store the data
	A.2 Just getting Mondrian
	A.3 Mondrian with Pentaho
	A.4 Adding C-Tools to Pentaho
	A.5 Mondrian with Saiku

	appendix B: Online resources
	appendix C: Schema shortcuts
	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

