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Mobility Data

Mobility of people and goods is essential in the global economy. The ability to track the
routes and patterns associated with this mobility offers unprecedented opportunities for
developing new, smarter applications in different domains. Much of the current research
is devoted to developing concepts, models, and tools to comprehend mobility data and
make them manageable for these applications.

This book surveys the myriad facets of mobility data, from spatio-temporal data
modeling, to data aggregation and warehousing, to data analysis, with a specific focus
on monitoring people in motion (drivers, airplane passengers, crowds, and even animals
in the wild). Written by a renowned group of worldwide experts, it presents a consis-
tent framework that facilitates understanding of all these different facets, from basic
definitions to state-of-the-art concepts and techniques, offering both researchers and pro-
fessionals a thorough understanding of the applications and opportunities made possible
by the development of mobility data.
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3.1 Introduction 42
3.2 Data Model and Query Language 45
3.3 SECONDO 51
3.4 Representations for Sets of Trajectories 56
3.5 Indexing 58
3.6 Hermes 59
3.7 Conclusions 60
3.8 Bibliographic Notes 60

4 Trajectory Data Warehouses 62
A.A. Vaisman, E. Zimányi
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PREFACE

From the invention of the wheel to moon-landing rockets, technological progress
over thousands of years has produced increasingly powerful and efficient trans-
portation means, thus making moving easier and easier. Most recent progress in
telecommunications has added new facets to mobility. We have now the ability
to automatically keep track of our travel routes and even document them with
information such as photos about the places we have been. This prompted the
surge of small to huge databases holding mobility data, that is, the data about
where and when we have been all over the world as well as during our daily
trips to reach our workplace. Complementarily, more and more applications in
a great variety of domains have been or are being developed to make intelligent
use of mobility data.

While most of us are aware that our cellphones and cars equipped with a
GPS facility do regularly generate signals conveying their geographical position
(plus other data characterizing movement, e.g., acceleration and instant speed),
not everybody is aware of what may happen later to this data, that is, how it
can be used, by whom, and for what purpose. This book aims to introduce
the potential answers to this question. The presentation of the material aims to
make the book an easy read for all professionals (students included) in com-
puter sciences and geoinformatics. Special attention has been given to show
enough examples to optimize the understanding of the discussions. Moreover,
application-oriented chapters have been included to illustrate a number of exist-
ing application domains that already benefit from using mobility data. All topics
are covered to the level of detail that is compatible with a reasonable length of
the book.

While the ultimate goal in mobility data processing is to solve high-level
issues such as understanding how, when, where, and ultimately why objects
(including persons and animals) move, elaborating the answer to these questions
relies on a complex, multistep process, where the data sent by the data acquisition

xv



xvi Preface

device (e.g., a GPS/GSM device) are analyzed and transformed to be gradually
turned into something readily meaningful for the targeted application. This
process is sometimes referred to as the Knowledge Discovery (KD) process:
from raw data to knowledge.

This book first offers an overview of the KD process as applied to mobility
data. Each chapter from 1 to 8 discusses one of the issues involved.

Chapter 1 introduces the reader to the basic concepts and terms to deal
with mobility data. Namely, the concept of trajectory is defined together with
the various ways to approach this fundamental concept. Chapter 2 explains the
most important techniques that can be used to collect the raw data from the
acquisition devices and transform, homogenize, and prepare it for efficient
use by applications, consistently with the application requirements. This includes
potential modification of the raw data (e.g., anonymization and obfuscation) to
meet privacy requirements. Chapter 3 focuses on how to store the mobility data
in a database so that users can benefit from the existing know-how in database
management. This is extremely important for this data to become operational
with no delay. Chapter 4 similarly investigates the issues for storing mobility
data in a data warehouse, opening to its use for decision-making applications
interested in aggregated levels of knowledge rather than the detailed level of
individual trajectories. Chapter 5 is specifically devoted to addressing the uncer-
tainty issues that are inherent to mobility data, given that position measurements
are affected by observational error and thus not necessarily as precise as appli-
cations would like them to be. The chapter closes the review of the basic data
processing techniques needed for mobility data management.

With Chapter 6 the reader fully enters into the core of the knowledge man-
agement process (Part II of the book), that is, how to analyze the collected data
to find its aggregated characteristics that can be of interest to the applications
at hand. Movement patterns or trajectory behaviors are the core concern of the
chapter. However, the lack of semantics of the extracted patterns makes the
interpretation task far from obvious. To solve the mismatch following, Chap-
ter 7 introduces the semantic dimension, thus closing the gap between the appli-
cation quest for mobility information and the knowledge extracted from the
data. The identification of semantic behaviors of the moving objects holds the
final result of the KD process. Chapter 7 also presents a system, M-Atlas, which
supports the whole mobility knowledge discovery process. Chapter 8 closes the
knowledge extraction part of the book by showing through many illustrations
how visualization of mobility data can be a very effective analysis tool to detect
trends as well as singularities.

The last chapter in Part II of the book, Chapter 9, addresses the privacy issue,
that is, how to ensure that mobility data do not violate the privacy regulations
and constraints that aim at protecting individuals from the undue disclosure of
personal data. This represents a very important concern as mobility data related
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to moving persons can reveal details of the person’s life that nobody wants to
see exposed to public view. Moreover, as users of cellphones and computers
we have very little control over what happens to the data that these electronic
systems collect, most frequently without making us aware of the hidden data
collection routines.

Part III of the book details a number of application examples that show
the reader concrete uses of mobility data in a variety of domains. This part
starts with the most frequently quoted application domain: car traffic. Obviously
the popularity of this application domain is due to the relative ease of getting
massive volumes of data from the GPS-equipped cars that have become available
in recent years. Chapter 10 shows traffic application results from a variety of
data repositories.

Chapter 11 is also devoted to traffic analyses, but its moving objects are boats
and the moving space is the sea. This leads to a context that is quite different
from cars moving in a city, as navigation rules and paths for boats are different
from those of cars. The environmental data are quite different: cities show plenty
of landmarks to which a human trajectory can be linked, and the same landmark
(e.g., a commercial centre) can host a multiplicity of facilities that can be targeted
by a moving person. Instead, the destination of a boat can usually be recognized
without ambiguity, while its path is not arbitrary and has to avoid potentially
hidden obstacles.

Chapter 12 closes the analysis of transportation means showing an air traffic
control application, in which a variety of data sources, for example, meteoro-
logical data, have to be combined with trajectories of planes with very strong
security constraints. The interesting feature of this application domain is its use
of visualization tools that play an essential role in facilitating faster decision
making.

Ecology is another very popular application domain that largely benefits
from the availability of movement data. Chapter 13 discusses the evolution of
scientific approaches to modeling animals’ movement, from the formulation
of the first hypotheses to modern mathematical models supporting statistical
studies. It also discusses the devices that are used today for data acquisition of
animals’ movement.

The next application chapter, Chapter 14, covers aspects of human move-
ment. Human movement has several unique features, such as unconstrained
routes, unpredictability and sudden changes, variety of transportation means,
and a richer variety of reasons for moving than animals have. In some contexts
(e.g., large pedestrian crowds), traditional means of measuring mobility will not
suffice for quantitative analyses. The chapter introduces the Bluetooth tracking
methodology and some of its benefits in comparison with other methodologies.
Despite the coarse nature of the data, exciting analyses such as crowd size
estimations, flow analysis, pattern discovery, and profiling are possible.
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Part IV concludes the book with three more chapters. The aim of this part
is to introduce the newest developments that call for new forms and new uses
of mobility data. Chapter 15 explores how the recent developments of network
sciences can be applied to enriching mobility analysis approaches. This is a
recent combination of scientific domains that together can significantly enhance
our ability to understand movement. The second prospective chapter, Chapter 16,
explores the peculiar forms of mobility data that can be gathered thanks to the
popularity of social networks. Social network data is not necessarily in terms
of trajectories, yet it implicitly conveys data about the movement of people.
How to intelligently extract these data and analyze them is a new and exciting
challenge. At last, the concluding Chapter 17 outlines some directions for future
research in view of future applications. Obviously these are just a few examples;
the real potential is huge.
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PART I

MOBILITY DATA MODELING
AND REPRESENTATION





1

Trajectories and Their
Representations

Stefano Spaccapietra, Christine Parent, and Laura Spinsanti

1.1 Introduction

For a long time, applications have been using data about the positions of the
moving objects they are interested in. For example, city planning applications,
in particular in the transportation and traffic management domains, have been
observing and monitoring traffic flows to capture their characteristics, namely
their importance and localization, with the aim to build better models for traffic
regulation and to identify solutions for future development of the existing road
network. Sociologists have also been examining the movement of cars equipped
with GPS, focusing on individual cars rather than traffic flows, to understand the
habits of their drivers. In the logistics domain, applications have been monitor-
ing the localization of the parcels during their transportation from their source
locations to their destinations. These applications use the data both to be able to
locate a parcel at any time and to optimize the performance of the transporta-
tion and distribution strategy. Similar concerns rule the management of data
tracking airline passengers and their luggage. Ecologists have been observing
animals and, whenever possible, tracking them via transmitters and satellites,
mainly to understand animals’ individual and group behaviors. Nowadays many
enterprises are looking to extract information about their potential consumers
out of the tracks left by their smartphones, electronic tablets, or access to social
networks such as Flickr and Foursquare that record the geographic position of
their users.

Traditionally, data about movement have been captured using static facilities,
for example, sensors producing traffic flow measures or detecting an animal’s
presence. Data acquisition facilities changed drastically with the availability of
embedded positioning devices (e.g., GPS). Traffic data, for example, can now
be captured as the sequences of positioning signals transmitted by the cars’ GPS
all along their itineraries.
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4 Trajectories and Their Representations

These sequences may be very long, far longer than the ideal unit of processing
of the application. Often the processing unit is some segment of the movement
of the object instead of the whole movement itself. For instance, for animals’
study the segments may correspond to the daylight time; for employees of an
enterprise the segments are defined by working hours, for example, 8 a.m.–
6 p.m.; for hikers in a natural park segments may be defined as going from one
camp site to another camp site. These segments of movement are nowadays
called trajectories. They are the unit of interest in applications’ processing of
movement data. They are the focus of this chapter.

While movement is inherently continuous, it cannot be captured as such in
computers where stored data is by definition discrete. The movement track that
stores movement data consists of a discrete sequence of records (transmitted
by the acquisition device or input by humans) containing the position in space
and time of the moving object. Movement tracks are application independent;
their precise format and content depend on the device. Movement tracks are
analyzed and transformed to produce application-dependent representations of
trajectories. Because applications can require very different representations of
trajectories (with differences in their structure as well as differences in their
content) we define in this chapter three main kinds of trajectory representations
that we identified as particularly significant and useful: continuous, discrete, and
segmented.

Yet trajectories are not the only way to represent movement. Other repre-
sentations have been designed to suit applications that need some global view
of movement, resulting from the aggregation of the data about movement of
individual moving objects. For example, movement can be represented as a
field of vectors within a given space perceived as a continuous field. The vec-
tors aggregate data from the individual tracks to represent, for a given instant,
some characteristics – usually speed and direction – of the movements at every
position in space. Similarly, applications willing to globally analyze the flow of
objects moving among a discrete set of points (e.g., popular places within a city)
will aggregate individual movement tracks into edges between nodes of a flow
network as described in Chapter 15 on network systems. Various representations
of aggregated movements in a continuous field are presented in Chapter 8. In
this chapter we deal with trajectories only.

Furthermore, movement data is inherently uncertain, because of imprecise-
ness of the data sensing and data transmission devices, or because of human
inaccuracy and data entry errors if a position is manually acquired. This chap-
ter does not address this issue, but Chapter 5 discusses uncertainty issues and
approaches in detail.

Application users rarely reason about locations expressed as geographical
coordinates: “I am at the Eiffel Tower” is easier to understand than “I am at
48°51′29′′ North, 2°17′40′′ East.” To enable easier and richer use of movement
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data, recent research has been investigating ways to reformulate and enrich
movement data to make them better correspond to application requirements
and scenarios. This is done by adding to the movement data contextual data
that describe where the object moved (e.g., the roads it followed, the places
where it stopped), when (e.g., during which time period, during which event),
how (e.g., using which transportation means), what for (e.g., which activity it
performed when it stopped). Enriched movement tracks are nowadays referred
to as semantic trajectories. Chapters 6 and 7 in this book discuss how to build
and use semantic trajectories.

This initial chapter introduces the reader to a global understanding of the
trajectory domain. It spans from raw data to data transformation and enrichment,
to end up with the analysis tasks needed to fulfill application requirements. The
chapter covers both the static representation of the domain (what a trajectory is
and how it can be represented) and its behavioral aspects (how to understand
and characterize mobility in terms of why things move, what they do while
moving, which are meaningful movement sequences, etc.). Given the diversity of
application requirements, several representations of trajectories are considered.
Basic concepts and terminology are defined, explained, and documented via
examples.

1.2 Trajectory: Definition and Application Scenario

Mobility is a recent domain where people use diverse terminologies and con-
cepts, without much consensus on choices and definitions. To limit misunder-
standing and confusion, this section defines a set of concepts and vocabulary
that together form a consistent framework for discussing trajectories and their
analysis as understood in this book.

At the source of our movement data processing concerns there is a moving
object, that is, an object that can over time change its position in space (its
spatial coordinates). In this book, we don’t address deformation issues raised
when considering moving objects, such as hurricanes and oil spills, that span
over a changing area or volume. We focus instead on moving objects represented
as points. Keeping movement data about a moving object consists in keeping
the history of its successive positions, that is, creating a record that holds, for
this object, all past, present, and sometimes future positions and the associated
instants. We will not discuss future positioning at this point, and call this record
the movement track of the object. The sequence can be unbounded. The time
intervals between successive positions may have the same duration or different
durations.

Definition 1.1. The movement track of a moving object is the temporally ordered
sequence of spatio-temporal position records captured by a positioning device
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during the whole lifespan of the object. Each record (instant, point, features)
contains the instant of the capture, the 2D or 3D point of the object, and possibly
other features captured by the device (e.g., the instantaneous speed, accelera-
tion, direction, and rotation). There are no two records with the same instant
value.

Before going into a detailed analysis of what trajectories are and how they can
be tailored into useful information for the targeted applications, we informally
sketch an example application scenario that uses trajectories to describe the
movement of tourists visiting Paris.

1.2.1 Tourists Application Scenario

Tourism represents an important source of revenue for many countries, regions,
and cities. Its promotion has become a critical business. The efficiency of promo-
tion activities can be boosted by the acquisition of knowledge about the habits
of tourists, their preferences, and the local features that are likely to attract
them in large numbers. Part of this knowledge can nowadays be extracted from
the analysis of on-site movements of tourists, collected via their smartphones
equipped with GPS and connected to social networks.

From a promoter’s viewpoint, a tourist destination is a geographical area that
offers tourists the opportunity of visiting a variety of places (e.g., museums,
parks, monuments, and attractions) while using many services (e.g., restaurants,
accommodations, shops, and travel agencies). All these tourist places and ser-
vices are collectively referred to as points of interest (POIs), chosen from a
tourist perspective. A tourist day consists in moving from one POI to another
one, and so on, while stopping for some time in each one of the visited POIs for
eating, resting, shopping, visiting, sleeping, attending a show, or meeting other
people, as shown in Figure 1.1.

The oriented line in Figure 1.1 shows the spatial route of the trajectory
made by a tourist during one day while visiting Paris. Very often, applications
use only this spatial representation of movement on a background map. It is
very intuitive, yet it provides very little temporal information. Time is only
implicitly conveyed by the fact that the sequence of points forming the line is a
temporally ordered sequence. In other words, going further down the line (from
its beginning to its end) corresponds to moving later in time. In Figure 1.2, part
of this trajectory is shown with a volume (x, y, t) visualization. The trajectory
is represented by the thick line in the upper part of the figure, and its projection
on the (x, y) plane shows its spatial route as a line lying on the map. As time
never stops and always flows on, no two points can have the same time value,
and the thick 3D line always moves further on the time axis. When a moving
object stops, its position in the (x, y) plan does not change. In the (x, y, t)
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Figure 1.1 A daily trip of a tourist in Paris, visiting several tourist attractions.

visualization an object stopping results in a vertical segment whose length
corresponds to the duration of the stop. Figure 1.2 shows three vertical segments
that represent stops at Place de la Concorde, Le Louvre museum, and the Babylon
café.

Figure 1.2 A volumetric representation of part of the tourist’s daily trip of Figure 1.1.
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Figure 1.3 Two trajectories extracted from the movement of an object.

Collecting information on daily travels of tourists enables extracting knowl-
edge on their favorite places, in which order places are visited, how much time
tourists spend at each attraction, etc. This can be used to tune the facilities to
better match tourist expectations and regulate the flow of tourists to avoid large
waiting lines. It can also be used to build tourist profiles, propose personalized
tours and services, and suggest to tourists on the move their next preferred des-
tination. Similar kinds of moving persons’ scenarios are used in many research
papers to illustrate various kinds of analysis. We will use it throughout this
chapter for illustrating the concepts.

1.2.2 Trajectory Definition

As stated in Section 1.1, while some applications keep and analyze whole
movement tracks, many other applications are interested in specific segments
of the movement. We call trajectories the segments of the object’s movement
that are of interest for a given application. Obviously the whole movement is a
particular case of trajectory.

Definition 1.2. A trajectory is the part of the movement of an object that is
delimited by a given time interval [tBegin, tEnd]. It is a continuous function from
the time interval [tBegin, tEnd] to Space. The spatio-temporal position of the object
at tBegin (resp. tEnd) is called the Begin (resp. End) of the trajectory.

Figure 1.3 shows (as a dotted line) a section of the movement of an object
and, superimposed as continuous lines, two segments identified as relevant
trajectories.

The criterion to identify trajectories within movement is application depen-
dent. For instance, in the tourists scenario, to globally analyze the activities
performed by a tourist during his/her stay in Paris, the whole track left by the
tourist will generate a single trajectory (spatial criterion “inside Paris”). On the
other hand, in order to analyze what tourists do in one day in Paris (whatever
the length of their stay), or what they do on specific days (e.g., on Sundays, on
December 25), each daily track of each tourist in Paris will generate a separate
trajectory as in Figure 1.1.

In the real world, time, movements, and trajectories are continuous, but in the
digital world, where applications are implemented, we can only store discrete



1.2 Trajectory: Definition and Application Scenario 9

(a) (b) (c)

Figure 1.4 The three kinds of representations of movement: continuous, discrete, and
stepwise.

implementations, such as the movement track. In order to satisfy applications
that need a continuous view of trajectories, the discrete implementation may be
enriched with interpolation functions that allow dynamically reconstructing a
continuous representation of the discretized trajectory.

Definition 1.3. A continuous representation of a trajectory (or continuous tra-
jectory in short) is a trajectory representation that describes in a continuous way
the movement of the object for the time interval [tBegin, tEnd] of the trajectory. It
usually consists of a finite sequence of spatio-temporal positions, and the inter-
polation functions that enable the computation of the spatio-temporal position
of the moving object for any instant in [tBegin, tEnd].

Whenever the movement track is too sparse for inferring the original con-
tinuous movement of the object, or the applications do not need the continuous
movement, the finite sequence of spatio-temporal positions is used as a discrete
representation of a trajectory. Currently this is the case, for example, of the
applications that use the movement tracks generated by social networks (see
Chapter 16).

Definition 1.4. A discrete representation of a trajectory (or discrete trajectory
in short) is a trajectory representation that is made up of the finite list of spatio-
temporal positions for the time interval [tBegin, tEnd] of the trajectory, but not
providing the continuity of the movement of the object.

Figure 1.4a visualizes (as a line) a continuous representation of a trajectory.
Figure 1.4b visualizes (as a set of points) a discrete representation. Figure 1.4c
visualizes a stepwise (segmented) representation (see Section 1.3).

To complete the basic picture we briefly introduce two trajectory concepts,
holes and semantics gaps, which address the understanding of missing points
at the conceptual level. These concepts contribute to a more complete vision of
trajectories. The reader has to be aware that they only play an important role in
a limited number of application cases, which explains why researchers rarely
take these concepts into account.

The term missing point denotes the existence, within a movement track, of an
abnormal (longer than the sampling rate) temporal gap between two consecutive



10 Trajectories and Their Representations

recorded positions: the information on the movement of the object is missing. If
this is accidental (e.g., because of a device malfunction) we say there is a hole
in the track. The typical case where this still happens is when a GPS is taken
through a tunnel. The connection is cut as long as the GPS doesn’t get out of
the tunnel. Short-duration holes may sometimes be “filled,” using, for example,
linear interpolation algorithms that compute the missing positions. In this case
the hole disappears.

If missing points are not due to some data acquisition accident (whatever
the cause), it follows that their absence is due to a decision by the application
designer to interrupt data acquisition during some specific periods. For example,
a company running daily tourist tours in Paris may decide to track tourists’
positions during its hours of operation (say from 8 a.m. to 6 p.m.) but not during
lunchtime (say from 12:30 p.m. to 2 p.m.) when tourists on a tour are free to
do whatever they want. Consequently, tourists’ daily trajectory tracks will be
filled with positions from 8 a.m. to 12:30 p.m. and from 2 p.m. to 6 p.m., and no
positions during the lunchtime break. This lunchtime break is not an accidental
hole in the trajectory; we call it a semantic gap (its semantic in this case is that
of the lunch period).

A trajectory with semantic gaps is defined for a set of disjoint time intervals
instead of a unique time interval. For the sake of simplicity, in the rest of the
chapter we will deal only with trajectories defined on a single interval (i.e.,
without semantic gaps).

1.3 From Raw Trajectories to Semantic Trajectories

The two representations of trajectories defined above come directly from the
movement track. It is why they are often called raw trajectories. They are
well fitted if, for example, the aim of the application reduces to locating some
moving objects (e.g., where was Mr. Smith on the evening of June 12, 2012?) or
computing statistics on the spatio-temporal characteristics of the trajectory (e.g.,
which percentage of daily tourist trajectories show a global speed over 7 km/h?).
On the other hand, many applications need more informative results, such as
those that can be computed by combining raw data with the contextual data
(e.g., geo-objects and events that show a spatial or temporal relationship with
the trajectory data), and with the thematic data available for the moving object
itself (e.g., age, gender). These applications can reach this goal by following
one of two approaches:

1. The application dynamically accesses the contextual data during its compu-
tations.

2. The application first preprocesses the trajectory representations, enriching
them with contextual data and appropriate restructurings, and after that it
computes its results by using the enriched trajectories.
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Both Chapter 3 (trajectory databases) Chapter 8 (visual analytics for tra-
jectories) of this book follow the first approach, with two different methods.
They allow their users to analyze the trajectories in context, that is, by ana-
lyzing the relations between the moving object and the environment. On the
other hand, Chapters 6 and 7 on trajectory analysis by data mining follow the
second approach: The trajectories are first enriched and then mined. In contrast
to raw trajectory representations, we qualify as semantic any trajectory repre-
sentation that has been created by enriching and transforming a raw trajectory
in order to add more meaning. In this chapter, we focus on the second approach
and therefore explore which kinds of semantic trajectory representations are
needed.

To create semantic representations of trajectories, the trajectory management
system needs to have access to application contextual data, which typically
includes knowledge of geographical objects (i.e., objects that have a known
position in geographical space) and events in the region and time period tra-
versed by the trajectories. For example, in the tourists scenario we will naturally
assume that the knowledge about the city map is available so that, for example,
trajectory paths can be described in terms of streets and crossroads and the points
where people stop can be identified with places of interest, such as landmarks,
significant buildings, monuments, museums, shops, restaurants, cafes, and sports
centers. Information about ongoing events, for example, shows, fairs, concerts,
and football games, is to be collected too, as it may influence the organization of
tourist tours. We use the term contextual data repository to generically refer to
whatever external source that can be used by the application to enrich trajectory
data.

All the following kinds of information can be used together with raw trajec-
tories in order to get semantic representations:

� The geo-objects representing the places of interest, roads, regions where the
trajectory passed;

� The events related to the movement of the object;
� The transportation means used by the person for moving;
� The activities performed by the person or animal when (s)he stopped.

The geo-objects corresponding to the positions of a trajectory can be found by
a process called geo-localization, which is a usual technique for adding semantics
to spatial data. It maps spatial coordinates (x, y) to the corresponding geo-objects
of the contextual data repository. For instance, in Figure 1.1, the coordinates of
the spatio-temporal positions where the tourist stopped for a while have been
mapped to the corresponding POIs: Eiffel tower, Palais Bourbon, Le Louvre
museum, and so on. The positions where (s)he was moving have also been
mapped to the corresponding street segments. Chapter 2 presents in detail this
geo-localization process. Similarly, it is possible to find which events correspond
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Figure 1.5 A Stop/Move segmented representation of the tourist’s trajectory of Figure 1.1.

to the temporal data of the raw trajectories. For instance, June 17, 2012, was
Ascension Day, a public holiday in France.

All this information is conceptually associated with the spatio-temporal posi-
tions of the trajectory, but it would be space and time consuming to actually store
it for each position of the trajectory. Indeed, usually one does not characterize a
given position but a sequence of positions. For instance, when a tourist visits Le
Louvre museum, he or she may stay there for several hours, which may mean
thousands of consecutive recorded positions with the same annotation value:
“Le Louvre.” Therefore a common method consists in segmenting the trajectory
into maximum subsegments of spatio-temporal positions that are all associated
with the same value of a given expression whose range of values is a finite set
of annotation values. Each change of value of the expression signals the starting
of a new segment. The segments are called episodes and, instead of storing the
information with the position, it is stored with the episode. A common kind of
segmentation is the segmentation into episodes of kind Stop (segments of the
trajectory where the object roughly does not move) and Move (segments of the
trajectory where the object moves). It is a generic segmentation that relies only
on computation of the raw data. It is often based on the instantaneous speed of
the object, but the exact expression depends upon the application. For the tourists
scenario, the expression could be the Boolean expression: speed ≤1 km/h. This
expression defines a Stop episode when the expression value is True, and a
move episode when it is False. Chapter 2 provides more details on trajectory
segmentation methods.

As shown in Figure 1.5 for the tourist’s trajectory of Figure 1.1, segmenta-
tion produces a semantic representation that is more abstract than the contin-
uous representation it comes from. The continuous representation contains the
sequence of spatio-temporal positions of the trajectory, while a segmented rep-
resentation provides a semantic view of the trajectory as a sequence of episodes,
each one described by a tuple (time interval, annotation value). A segmented
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representation does not implement a continuous function: the moving object
jumps (so to speak) from one episode and annotation value to the next. It corre-
sponds to a step function as shown in Figure 1.4c.

According to their needs, applications may use the continuous representation,
a segmented one, or both superimposed. For example, Figure 1.1 shows for a
tourist’s trajectory the superimposition of the continuous representation and a
Stop/Move segmented representation.

Definition 1.5. A segmented representation of a trajectory (or segmented tra-
jectory in short) is the implementation of a step function that maps the time
interval [tBegin, tEnd] to a finite set of values, D. Each step of the function is
called an episode, and its corresponding D-value the defining annotation of the
episode.

Practically, a segmented trajectory representation is a temporally ordered sub-
sequence of tuples (time interval, defining annotation value, annotation values),
where the time intervals are all disjointed.

Another example of segmentation of human trajectories is the transportation
means. Chapter 2 shows how this information can be computed automatically by
combining the raw trajectory data with the data on the public transport system
and some common sense rules about transportation modes. Often a human
trajectory starts with a first “walk” segment (at least to get out of the building
and into the first transportation means), and this segment is followed by, say,
a “metro” segment, then again a “walk” segment, and so on. In this case the
segmenting expression is a procedure call whose result is the corresponding
defining annotation, for example, “walk,” “metro,” “bus,” “car,” or “boat.”

A given trajectory may be structured into episodes in many different ways,
that is, using different expressions. For example, the tourists’ trajectories may
be alternatively segmented into episodes based on (1) stops and moves, (2) the
time period corresponding to the instant of the spatio-temporal position (e.g.,
morning, noon, afternoon, evening, night), and (3) the category of the area
of the city corresponding to the location of the spatio-temporal position (e.g.,
residential, touristic, commercial, recreational, services, special). There is no
limit to the number of episode segmentations that can be applied to a set of
trajectories. Each segmentation into episodes provides a new interpretation of
the trajectory that can be superimposed as needed.

Moreover, while episodes are created via their defining annotation, episodes,
like every other component (especially spatio-temporal positions) of a trajectory,
can be further annotated using other annotations. For instance, assuming that
the tourists’ trajectories have been segmented into Stop and Move episodes,
the Stop episodes may be further annotated with the nearest point of interest
that is the most likely to have been visited by the tourist during this stop. The
Move episodes may be annotated with the transportation means. It is the case
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in Figures 1.1 and 1.5: The trajectories (1) have first been segmented into Stop
and Move episodes, (2) their Move episodes have been annotated with a new
annotation, the main transportation means for this move segment, and (3) their
Stop episodes have been annotated with two new annotations: the geo-object
(POI) where the stop took place and (POI) the activity of the tourist during this
stop. Figure 1.5 provides also an alternative annotation of the Stop episodes:
the types of the POI associated to the stop (hotel, museum, restaurant, etc.)
instead of the POI itself (the hotel Zola, the museum Le Louvre, the restaurant
Babylone, etc.).

Once the best-fitting representations of the trajectories have been built, appli-
cation analysts can use them to extract all kinds of statistical and higher-level
knowledge useful to the application.

1.4 Trajectory Patterns and Behaviors

Section 1.3 discussed how to enrich the raw trajectories with the related contex-
tual data to come up with semantically rich trajectories. This section discusses
the concepts involved in the process that extracts relevant semantic knowl-
edge from the trajectories. Since long ago, researchers have developed novel
techniques to extract knowledge taking into account the spatio-temporal speci-
ficity of movement data. These techniques support learning from trajectories far
beyond retrieving factual data about specific moving objects (e.g., where was the
car 345FT92 at time t?) and computing statistics about populations of moving
objects (e.g., how many cars per hour travel this road on weekdays?).

Of vital importance for a large number of applications is the identification
of the significant trends shown by a population of moving objects. Sociological
studies, for example, may aim at comparing commuters’ shopping habits versus
shopping habits of noncommuters. Trajectory analysis reveals which persons
qualify as commuters and identifies their favorite shopping places. Similarly,
analysis of tourists’ trajectories may detect trends in tourist behavior that provide
important information to tourist agencies to optimize their offers.

A significant trend can be identified as a set of trajectory characteristics that
repeatedly appear in the set of trajectories under consideration. Most frequently,
trends are “found” using a knowledge extraction tool, usually applying data
mining techniques. The data mining community uses the term “pattern” to denote
the findings from the extraction, and “frequent pattern” to denote those patterns
that appear frequently enough in the source data to be considered potentially
interesting for the application at hand. For example, “The trajectory ends at the
same place it began” is a trajectory characteristic that can be denoted as a Loop
pattern. The pattern identifies trajectories whose spatial trace, as a whole, forms
a loop. Its definition relies on the spatio-temporal positions Begin and End, and
nothing else. We call it a spatio-temporal pattern.
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When the trajectory analysis uses only raw trajectories and no contextual
data, the analysis can produce only spatio-temporal patterns, as the Loop pattern
above. Since semantic trajectories and contextual data have gained attention,
several research groups have been trying to identify patterns that would have
a more semantic flavor than the traditional spatio-temporal patterns. For exam-
ple, a frequently discussed pattern in more recent works is the HomeToWork
pattern that applies to the daily routine trips of people going to work. Its defi-
nition requires knowledge of the home-place and the work-place of the moving
person, which is contextual knowledge that is likely to be available from pub-
lic people and company repertoires or inferable from the analysis of people’s
trajectories. As the definition of these patterns relies on the semantic and con-
textual information associated with the trajectories, we refer to them as semantic
patterns.

It is worth noting that currently there is no consensus on the terminology, and
recent research tends to use either pattern or behavior, as well as behavioral pat-
tern, without a clear distinction among the concepts. This book is no exception,
and in the following chapters the reader will find the terms pattern and behavior
as denoting the same concept. In this chapter we use behavior, with the following
definition that covers both semantic and spatio-temporal behaviors/patterns.

Definition 1.6. A trajectory behavior (or behavior, in short) is a set of trajectory
characteristics that identifies a peculiar bearing of a moving object or of a set
of moving objects. The behavior is defined by a predicate that says if a given
trajectory (or a given set of trajectories) shows the behavior. Synonym: trajectory
pattern.

Definition 1.7. A trajectory semantic behavior is a trajectory behavior whose
defining predicate includes conditions on some semantic representation of the
trajectories and/or conditions on some contextual data that are spatio-temporally
related to the trajectories. Synonym: trajectory semantic pattern.

Definition 1.8. A trajectory spatio-temporal behavior is a trajectory behavior
whose defining predicate bears only on the raw representation of the trajectories,
excluding any contextual data. Synonym: trajectory spatio-temporal pattern.

The predicate defining a behavior can rely on any characteristic of the trajec-
tories (e.g., spatio-temporal positions, episodes, annotations), contextual data
linked to the trajectories (e.g., the type of the geo-objects linked to some epi-
sodes or some of their attribute values), spatial relationships with geo-objects
(e.g., stopping near some given geo-object), temporal relationships with events
(e.g., moving during some given event), and relationships with other moving
objects (e.g., moving ahead of a given group of trajectories).
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Considering our tourists scenario and its set of daily trajectories of persons
moving in Paris with a GPS, the following behavior definition can be used to
separate the trajectories of tourists from the trajectories of other persons:

Tourist behavior: A daily trajectory shows the Tourist behavior if: Its
Begin point P1 is a place of kind “Accommodation,” it makes at least
one stop in a in a place of kind “Museum” or “TouristAttraction,”
it makes one stop in a in a place of kind “EatingPlace,” and its End
point is in the same P1 place as its Begin point.

This Tourist behavior is a semantic behavior. An example of spatio-temporal
behavior, always for the tourists scenario, is the LongTrajectory behavior defined
as: the duration of the trajectory is greater than 14 hours. The number of behaviors
that can be defined is unlimited. For example, “Going from the Place de la
Concorde to the Champs Elysées” and “Going from the Place de la Concorde
to Place de la Madeleine” could be semantic behaviors of interest for travel
agencies organizing tourist tours in Paris. Trajectories showing these behaviors
would also qualify as showing the more generic semantic behavior “Going from
a tourist spot to a commercial area.”

Interesting behaviors can be inferred using various methods for extracting
useful knowledge from trajectory data sets: data mining methods are discussed
in Chapters 6 and 7 of this book, and visual analytics methods are discussed
in Chapter 8. The most common outputs of these methods are clustering (tra-
jectories are grouped into classes that share some common characteristics) and
behaviors/patterns (describing the characteristics shared by significant groups
of trajectories).

Alternatively, an application manager interested in application-specific trends
can manually define behaviors a priori. Back to our tourists scenario, a large num-
ber of behaviors can be manually predefined, each one targeting the identification
of a subset of the population moving in Paris: Tourist behavior, OfficeWorker
behavior, Housewife behavior, and so on. In some smaller-scale applications the
number of interesting behaviors may be small enough to be exhaustively defined.
Moving object database query languages, like the one presented in Chapters 3
and 12 of this book, can be very effective for searching the trajectories that
comply with a given behavior.

Researchers have defined generic families of behaviors that rely on the con-
stancy/variation of some given characteristic of the trajectory (e.g., same direc-
tion or speed for a while) or on the similarity or correlation of the values of
some characteristic of a group of trajectories (e.g., proximity for a while). For
example, potentially interesting features in the shape or combinations of shapes
of trajectory traces have lead to the definition of a number of spatio-temporal
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behaviors. Well-known examples include the Meet, Convergence, and Flock
behaviors that are discussed in Chapters 6 and 7. Most spatio-temporal behav-
iors are generic behaviors, that is, they are supposed to be applicable to any
application domain. Semantic behaviors tend to be application-specific as they
handle the semantic aspects of trajectories and these semantic aspects are the
most frequently application-specific.

Behaviors are defined for trajectories. Still, many behaviors can also qualify
parts of trajectories. Most spatio-temporal behaviors that characterize the shape
of the trace of the trajectory can qualify whole trajectories as well as parts of
trajectories. For instance, the Straight behavior that characterizes a straight spa-
tial trace can be used for defining trajectories whose whole trace is straight as
well as trajectories that contain at least one straight segment whose length is
longer than some given threshold. Another example is the Flock behavior that
characterizes a group of trajectories that travel together (see Chapter 7). The
common travel may last during the whole trajectories or only during some part
defined by a time interval. On the other hand, behaviors that rely on some global
characteristic of the trajectories (e.g., some aggregation on the whole trajec-
tory, Begin and End) can apply only to whole trajectories. An example is the
StopMoreThanMove behavior that characterizes Stop/Move segmented trajec-
tories that spend more time during the stops than during the moves.

The number of behaviors that can be defined is unbounded, as any application
domain has its own typical requirements and any application adds its specific
requirements. We purposely abstain from trying to define a taxonomy of behav-
iors. Description of some works devoted to building such taxonomy can be
found in the Bibliographic Notes section. Of particular importance in clarifying
the broad vision of behaviors is the separation between individual and collective
behaviors, and the Sequence behaviors, both discussed in the next section.

1.5 Individual, Collective, and Sequence Trajectory Behavior

A very important feature of behaviors is whether they apply to single trajectories
or to groups of trajectories. The former are called individual behaviors, the latter
collective behaviors.

Definition 1.9. A trajectory individual behavior is a trajectory behavior that is
characterized by a predicate p(T ) that bears on a single trajectory T .

Definition 1.10. A trajectory collective behavior is a trajectory behavior that is
characterized by a predicate p(S) that bears on a set of trajectories S.

The Tourist behavior we have seen in the previous section is an individ-
ual behavior: for each single trajectory in the data set we can decide whether
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Figure 1.6 Individual (Tourist) versus collective (GroupOfTourists) Behaviors.

it shows this behavior or not. Should a GroupOfTourists behavior be defined
(as a group of trajectories that represents a group of persons moving together
and each of them complies with the Tourist behavior), it would be a collec-
tive behavior. Well-known collective spatio-temporal behaviors, such as Meet
(a group of trajectories that simultaneously end up at the same place) and
Flock (a group of trajectories that travel together), are described in Chapters 6
and 7.

Figure 1.6 illustrates that, for finding which moving objects show a given
individual behavior, each trajectory has to be individually checked against the
behavior predicate. On the opposite, finding which moving objects show a given
collective behavior implies checking a group of trajectories.

Generally, collective behaviors are observed in groups of trajectories that are
simultaneously run by various moving objects. But collective behaviors may
also be defined for a set of trajectories run by a given moving object at different
times. A typical example is the Commuter behavior that characterizes a group
of trajectories made by the same object on working days and that show the same
peculiar trace: they start from a point P1 and go to another one where they stay,
then they end by going back to P1.

A case where the classification individual versus collective behavior is not
necessarily intuitive is when the behavior involves multiple trajectories with
one of them playing a special role in the group. For instance, given a group
of tourists, the tourists and their guide move together but the guide’s trajectory
obeys additional rules: During the stops the guide is in the middle of the group;
during the moves, the guide moves a few steps ahead of the other members.
The group of tourists (guide included) shows the GroupOfTourists collective
behavior, yet the guide trajectory complies with the individual TouristGuide
behavior. Both the group and the guide’s trajectory are needed in order to get
the TouristGuide behavior.

Other cases exist where a fixed number of trajectories is needed for the
behavior. For instance the CourtshipDance behavior of some birds, such as



1.5 Individual, Collective, and Sequence Trajectory Behavior 19

cranes, involves two trajectories with the same role. Another example is the
Pursuit behavior that also involves two trajectories, but with opposite roles.

A trajectory representation is inherently a temporally ordered list of ele-
ments, be they raw tuples (spatio-temporal positions) or annotated episodes. The
predicate used to define a behavior can involve any number of elements. The
simplest behaviors will only require a predicate on a single element. Examples
include behaviors such as “starting from a given geo-object” (whose predicate
only constrains the Begin element) and “passing by a given geo-object” (whose
predicate is satisfied as soon as one of the trajectory elements is located inside or
equal to the geo-object). More advanced behaviors rely on complex predicates
that involve several elements so that each element has to satisfy the condition
associated to it. A simple example is the HomeToWork behavior, whose predi-
cate is composed of two component predicates: one on the Begin element and
another one on the End element.

Complex predicates may require that their component predicates be satis-
fied by a sequence of elements that complies with a specified temporal order.
Consider, for example, the predicate “starting at a given point P1, later crossing
the area A1, 2 hours later crossing the line L1, and ending up inside the area
A2.” This predicate on the one hand constrains the Begin and End elements
(Begin must be point P1, End must be inside A2), and on the other hand imposes
two additional constraints that have to be satisfied by some elements. Which
elements satisfy the two constraints is not relevant, but the element crossing the
A1 area has to come before the element crossing the L1 line. Complex predi-
cates where a temporal order is specified define behaviors denoted as Sequence
behaviors.

Definition 1.11. A trajectory sequence behavior is a trajectory behavior whose
predicate is composed of several conditions, each condition being coupled with
a temporal constraint, such that the constraints enforce a specific temporal order
on the elements satisfying the conditions.

As sequence behaviors may be quite complex, a language is defined for
expressing the various sequence operators that link the component conditions.
The most usual operators are:

� AND_THEN_NEXT[N]: the next element (or the N next elements) of the
trajectory must comply with the predicate;

� AND_THEN_LATER[d]: there must be later (or at least/exactly some duration
d later) within the trajectory, an element that complies with the predicate.

The definition of the Tourist behavior given in the previous section is a
complex behavior, but not a sequence one, because the two component predicates
“it makes at least one stop in a place of kind Museum or TouristAttraction” and
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“it makes one stop in a place of kind EatingPlace” can be satisfied in any order.
On the opposite, the following would be a sequence behavior:

Tourist2 behavior: A daily trajectory shows the Tourist2 behavior if:
its Begin point P1 is a place of kind “Accommodation,” it makes at
least one stop in a in a place of kind “Museum” or “TouristAttrac-
tion,” later it makes one stop in a in a place of kind “EatingPlace,”
and its End point is in the same P1 place as its Begin point.

Chapters 6 and 7 present data-mining methods for searching sequence behav-
iors. Chapter 12 presents a query language for searching complex behaviors
containing generic temporal constraints.

1.6 Conclusions

In order to introduce the reader to the broad spectrum of concerns that are dis-
cussed in detail in the rest of the book, this chapter has aimed at providing a
consistent vision of the trajectory domain. We have defined the basic concepts
that underline trajectory management, emphasizing aspects related to various
representations of trajectories. Secondly, we have shown how trajectory behav-
iors can be precisely described by predicates involving movement attributes
and/or relationships to the context and/or semantic annotations.

While earlier research mainly focused on processing the raw data received
from sensors, GPS devices and the like, recent research rather focuses on meth-
ods to enrich a movement track with more semantic, application-oriented infor-
mation. Semantic additions enable new capabilities of running far-reaching
analyses of mobility-related phenomena, thus conveying a huge potential for all
kinds of innovative applications. As each application may have its own view of
its trajectories, such as a discrete, continuous, or semantic view, we have defined
three kinds of trajectory representations that can be superimposed.

In a broader perspective, several complementary types of movement remain
to be investigated, including movement of large and deforming objects (e.g., oil
spills, diseases), constrained movements (e.g., cars, trains that are constrained
by a network), or more aggregated representations of movement, such as flows.

After choosing the representation of the movement best fitted for the appli-
cation, frequently the major focus is to understand the behaviors of the moving
objects. Understanding why and how people and animals move, which places
they visit and for which purposes, what their activities are, and which resources
they use is of tantamount importance for many kinds of decision makers, in
particular public authorities in charge of managing societal resources.

At the core of behavioral analysis is identifying which characteristics of the
moving objects define which behaviors. In the simplest case, experts define
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the set of behaviors and the problem is to express these behaviors in terms of
movement characteristics to be used for searching a trajectory database. Here,
database approaches such as the one presented in Chapter 3 are suitable. A
more challenging issue arises when no behaviors are known a priori. How can
we learn potentially meaningful behaviors from trajectory analyses? Techniques
for this kind of research typically include data mining, machine learning, and
knowledge extraction in general, as well as visualization.

There are research efforts aiming at defining behaviors in a given domain in
a more abstract and generic way, for example, not for the purpose of a specific
application. These behaviors stem, for example, from an observation of possible
spatio-temporal configurations of moving objects and are assumed to be relevant
to a variety of applications. Other research aims at defining an ontology of all the
behaviors. We presented a set of basic concepts regarding behaviors. Chapters 6
and 7 develop a more detailed discussion on behaviors (called patterns).

1.7 Bibliographic Notes

Background knowledge on spatial, temporal, and spatio-temporal data descrip-
tion and management is largely covered by the literature. The well-known
ChoroChronos book written by Koubarakis et al. (2003) reports the outcomes
from an early European project on spatio-temporal databases. Güting and
Schneider (2005) is an excellent reference book on a formally sound approach
to moving object management. This approach, built on abstract data types, is
described in Chapter 3 of the present book. Finally, a conceptual perspective
on spatio-temporal data modeling and manipulation is provided in Parent et al.
(2006).

Most of the trajectory issues discussed in this chapter were first addressed in
Giannotti and Pedreschi (2008), a book produced by the European GeoPKDD
project on privacy-preserving techniques for trajectory mining. In this book, the
chapters on “Basic Concepts of Mobility Data” and “Trajectory Data Models”
nicely complement the content of our chapter.

The conceptual approach that has been very inspirational in writing this
chapter was published in a journal by Spaccapietra et al. (2008). This paper
develops a comprehensive view on trajectories from a conceptual data modeling
perspective. It introduces the concept of semantic trajectories and of segmented
trajectories, namely using Stop and Move episodes. Many further papers on
trajectory analysis stem from a similar approach.

Trajectory behaviors have been extensively addressed. Dodge et al. (2008)
is one of few contributions that aim at proposing a taxonomy of behaviors for
raw trajectories. The authors studied the literature on data mining and visual
analysis dealing with movement data and they collected definitions of various
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movement behaviors, most of which are collective behaviors. The collected
types of behaviors have been organized in an informal taxonomy based on the
spatial and temporal characteristics of the raw trajectories.

Laube et al. (2005) centered their research on studying relative movement
among a set of moving objects. They use a matrix of synchronized raw trajecto-
ries that allows an easy comparison of the movement of an object in time or of
the movements of several objects at some instant. They analyze the variability
of characteristics of the moving objects to characterize a number of behaviors as
either individual or collective behaviors. They use the complex behavior concept
(as a composition of basic behaviors) in the same way we used it in this chapter.

Wood and Galton (2009) and Wood and Galton (2010) develop a deeper
investigation into concepts for collective behaviors. Their ontological approach
develops some fundamental questions about definition and properties of groups.
These questions are still open for research.
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2.1 Introduction

The research area of trajectory databases has addressed the need for represent-
ing movements of objects (i.e., trajectories) in databases in order to perform
ad hoc querying and analysis on them. During the last decade, there has been
a lot of research ranging from data models and query languages to implemen-
tation aspects, such as efficient indexing, query processing, and optimization
techniques.

This chapter covers aspects related to data collection and handling so as
to feed trajectory databases with appropriate data. We will also focus on the
step trajectory reconstruction of the Geographic Privacy-aware KDD process
(illustrated in Figure 2.1) emerged from the GeoPKDD project which proposed
some solid theoretical foundations at an appropriate level of abstraction to deal
with traces and trajectories of moving objects aiming at serving real world
applications. This process consists of a set of techniques and methodologies
that are applicable to mobility data and are organized in some well-defined and
individual steps that have a clear target: to extract user-consumable forms of
knowledge from large amounts of raw geographic data referenced in space and
in time. However, when mobility data are about individuals, data collection is
subject to privacy regulations and restrictions. To enable privacy-aware collec-
tion of position data, a complementary class of techniques is used, known as
location PETs (privacy-enhancing technologies).

This KDD process can be applied to heterogeneous sources of mobility data.
The cellphone icon that is illustrated in Figure 2.1 could represent various data
sets coming from various devices. In Section 2.2, we present such sources.

Before applying trajectory reconstruction techniques we may need to per-
form some basic trajectory preprocessing. This may include parameterized tra-
jectory compression (so as to discard unnecessary details and concurrently keep

23
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Figure 2.1 The big picture of moving object data management, warehousing, and mining
concepts.

informative abstractions of the portions of the trajectories transmitted so far), as
well as techniques to handle missing/erroneous values. Moreover, to deal with
moving object applications that are restricted to some network, map-matched
trajectories may be needed. In other words, we may need the specific trajectory
points and portions to correspond to valid network paths. This may include,
for example, performing preprocessing or postprocessing tasks that do not vio-
late the validity of trajectories in terms of the real underlying network. We
describe these kinds of tasks as trajectory data handling and we present them in
Section 2.3.

In Section 2.4, we present trajectory reconstruction techniques for transform-
ing sequences of raw sample points into meaningful trajectories and store them
in trajectory databases. The reconstructed trajectories can be either semantic-free
(raw trajectories) that just represent the movement of an object or semantically
enriched, containing information about the nature of the movement.

Section 2.5 presents techniques for the privacy-preserving collection of tra-
jectory data.

2.2 Tracking Trajectory Data

In this section, we present some technologies that can be used for tracking
trajectories of moving objects. More specifically, these technologies provide
us access to position data that may represent an incomplete, partial, or vague
representation of the real movement of moving objects but with the appropriate
handling techniques (Section 2.3) can lead to the reconstruction of trajectories
(Section 2.4).
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GPS Data
GPS is the fully-functional satellite navigation system that utilizes more than two
dozen satellites. It broadcasts precise timing signals by radio to GPS receivers,
allowing them to accurately determine their location (longitude, latitude, and
altitude) in any weather, day or night, anywhere on Earth. A GPS receiver
calculates its position by precisely timing the signals sent by GPS satellites high
above the Earth. Each satellite continually transmits messages that include:

� The time the message was transmitted,
� Precise positioning information, and
� The general system health and rough orbits of all GPS satellites.

The receiver computes the distance to each satellite by using the messages it
receives to determine the transit time of each message. These distances along
with the satellites’ locations are used to compute the position of the receiver. This
position is then displayed, perhaps with a moving map display or latitude and
longitude; elevation information may be included. Many GPS-enabled devices
show derived information such as direction and speed, calculated from position
changes. GPS-enabled devices provide us with all the required information for
trajectory tracking. They give us access in accurate, time-stamped locations for
each tracked moving point.

GSM Data
GSM is the most popular standard for mobile phones in the world, nowadays used
by more than 1.5 billion people across more than 210 countries and territories.
The ubiquity of the GSM standard makes international roaming very common
between mobile phone operators, enabling subscribers to use their phones in
many parts of the world. GSM networks consist of a number of base stations,
each responsible for a particular spatial area (known as “cell”). Hence, for each
GSM-enabled device we can collect information about the base stations it was
served by at different timestamps, and as such, assume its movement.

A GSM-enabled device can be tracked by collecting all the communication
signals transmitted (cell, signal strength) between this device and the network
infrastructure or by studying the log of the outgoing calls (UserID, data and time
of the call, duration of the call, the cell where the call began, the cell where the call
finished). However, in both levels the accuracy of trajectories that can be col-
lected is very low since the most detailed level of available information is the
network cell and not a spatial point.

Bluetooth Data
The movement of a Bluetooth device within an area can be tracked by consid-
ering the distance of the device from Bluetooth receivers and using trilateration
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approaches. The distance of a Bluetooth device from a specific receiver can be
calculated using techniques that consider signal levels.

The disadvantage of this technique is that it can be mainly used for indoor
tracking of objects as Bluetooth receivers cover a limited area and they cannot
really be used for outdoor object tracking.

RFID Data
The purpose of an RFID system is to enable data to be transmitted by a portable
device, called a tag, which is read by an RFID reader and processed according to
the needs of a particular application. A typical RFID tag consists of a microchip
attached to a radio antenna mounted on a substrate. A typical chip can store as
much as 2 kilobytes of data. A reader is needed to retrieve the data stored on
an RFID tag. A typical reader is a device that has one or more antennas that
emit radio waves and receive signals back from the tag. The data transmitted
by the tag may provide identification or location information, or specifics about
the product tagged, such as price, color, and date of purchase. As in Bluetooth
technology, RFID readers can locate tags within a limited area so it is hard to
apply this technology for outdoor tracking of moving objects.

2.3 Handling Trajectory Data

Real-life trajectory data, collected using the technologies previously presented,
are not really readily used for analysis purposes. In this section, we elaborate
on various approaches for handling trajectory as a necessary step for identifying
clean (i.e., without noise), accurate (i.e., map-matched), and compressed (i.e.,
compact) trajectories, from the original sequence of spatio-temporal positions
(e.g., GPS records) of the moving objects.

2.3.1 Data Cleaning

Data sets collected by mobile sensors are often imprecise either unintentionally,
due to limitations of positioning systems (e.g., inaccurate GPS measurement
and sampling errors, signal loss, battery running out), or intentionally, so as to
protect individuals’ privacy (e.g., people may expose an approximation of their
positions).

In case of unintentional (GPS) errors, trajectory cleaning (i.e., removing
errors) is an important step in the procedure of constructing meaningful raw
trajectories from the GPS feeds. Generally speaking, two types of GPS errors
can be identified: systematic errors, due to a system’s limitations, and random
errors, due to external reasons. Systematic errors can be caused by horizontal
dilution of position (HDOP) due to the low number of available satellites, while
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random errors are small errors up to ± 15 meters caused by the satellite orbit,
atmospheric and ionospheric effects, and receiver issues. We should note here
that errors are related to the spatial positions and not to the temporal aspect of
mobility as it is considered highly precise.

In order to identify systematic errors, researchers may resort to visual inspec-
tion in case of small data sets. For that reason, we could use a filtering method
that filters noisy positions by taking advantage of the maximum allowed speed
of a moving object. This threshold/parameter is used in order to determine
whether a reported position from the GPS stream must be considered as noise
and consequently discarded, or kept as a normal record.

On the other hand, random errors are small distortions from the true values.
Their influence is reduced by smoothing methods. In the literature, different
approaches can be found based on Gaussian kernels, where a smoothed spatial
position is the weighted local regression based on past and future positions within
a sliding time window considering the weight as a Gaussian kernel function,
and Kalman filter, which uses measurements observed over time (the positions
coming in the GPS receiver) and predicts positions that tend to be closer to the
true values of the measurements.

2.3.2 Map Matching

The previous trajectory cleaning methods are designed for objects moving with-
out any constraint in their movement. However, real-world applications usually
consider objects that are restricted to move within a given spatial network
that is represented as a graph (e.g., road/railway network) (you can find more
information about this topic on Chapter 3). Other applications may consider
spatio-temporal constraints (e.g., a pedestrian cannot walk at a speed above a
certain limit, usually bats don’t fly during the daytime).

For network-constrained trajectories, the map-matching approach refers to the
mapping of a trajectory to the edges and nodes of the network. More precisely,
the general idea is the replacement of each position of the original trajectory by
the point on the network that is the most likely position of the moving object.
From a computational point of view, map-matching methods can be categorized
to online (processing streams of new positions in real time) or offline (when all
positions are available), while both groups can be further classified as geometric,
topological, or hybrid methods.

Geometric methods take into consideration the underlying road network and
various distance measures to determine the actual traveled roads. These distance
measurements can be point-to-point (e.g., Euclidian distance), point-to-curve
(e.g., perpendicular distance), or curve-to-curve (e.g., Fréchet distance). For
instance, Dijkstra’s shortest path algorithm can be used to determine the distance
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Figure 2.2 Applying map matching.

between a trajectory and a sequence of arcs on a map. The route with the smallest
distance from the initial trajectory is taken as the map-matched trajectory. For
instance, Figure 2.2 illustrates such a methodology: for every point Pi , given
that point Pi−1 has already been matched to an edge, the adjacent edges to this
edge are the candidate edges to be matched to Pi and they are evaluated as
illustrated in Figure 2.2. In this example, Pi−1 is matched to edge c3, hence
c1, c2, and c3 are the candidate edges for point Pi . Two measures are used for
choosing among the candidate edges that are based on similarity and orientation
criteria. The higher the sum s of these measures is, the better the match to this
edge is. If the projection of the current point on the candidate edges does not lie
between the end points of any of these edges, the algorithm does not proceed
to the next point. Instead, the nearest edge of the candidates is set as part of the
trajectory and then the next set of candidate edges is evaluated. On the contrary to
geometric approaches, the topological approaches account for the connectivity
and contiguity of the road network without assuming any knowledge of the
expected traveling route and the speed or heading information supplied by the
GPS.

More recent map-matching methods deal with the problematic case where
GPS data are arriving with low sampling rate (e.g., one point every two minutes)
and high noise. These new methods employ both distance and topology and
aim to align an entire trajectory with the road network. In some cases, not only
distance and topology are used but also hidden Markov model approaches to
find the most likely road route corresponding to a sequence of positions.

The various proposals usually include several postprocessing techniques
to calibrate and correct the initial matching results. Obviously this worsens
the cost/efficiency of the algorithm. This is an important issue that should be
addressed by future research.

2.3.3 Data Compression

Trajectory data in applications grow progressively and intensively as the tracking
time goes by. Such huge amounts of data raise storage, transmission, computa-
tion, and display challenges. Therefore, trajectory data compression is an essen-
tial task of trajectory reconstruction. The research in this area usually assumes
that the objectives of trajectory compression are: (1) to reduce the size of the



2.3 Handling Trajectory Data 29

Pb(xb,yb,tb)

Pn(xn,yn,tn)
sed

P1(x1,y1,t1)

P’b(xb’,yb’,tb’)

Figure 2.3 Using SED.

data set, (2) to ensure that the reduced data set should allow computations of
acceptable/low complexity, and (3) to ensure that a trajectory from the reduced
data set should not deviate from the original one by more than a given threshold.

From a geometric perspective, compression techniques exploit online sim-
plification algorithms that remove positions from a trajectory without warping
the trend of the trajectory or distorting the database. In general, trajectory com-
pression algorithms can be classified into four categories: top-down, bottom-up,
sliding window, and opening window. The top-down algorithm recursively splits
the sequence of positions and only keeps the key (representative) positions in
each subsequence, that is, the ones that lie far from the line that would result if
these points were removed. A classical top-down method is the Douglas-Peucker
(DP) algorithm, with many subsequent extensions. The bottom-up algorithm
starts from the finest possible representation, and merges the successive points
until some halting conditions are met. Sliding window methods compress data
in a fixed window size; open window methods use a dynamic and flexible data
segment size.

For instance, the Top-Down Time Ratio (TD-TR) and Open Window Time
Ratio (OPW-TR) algorithms have been proposed for the compression of spatio-
temporal data. The TD-TR approach uses the DP algorithm and, moreover, takes
the time into account. In particular, it replaces the Euclidean distance used in
DP by a time-aware one, called Synchronous Euclidean Distance (SED), as
illustrated in Figure 2.3. In this example, let Pb be the currently examined point
against line P1Pn. The DP approach uses the perpendicular distance of Pb to
P1Pn, while the TD-TR uses the distance of Pb to (P ′)b (i.e., the SED). The
coordinates of point P ′

b are calculated using linear interpolation. The OPW-TR
algorithm works as follows. Initially, it defines a line segment between the first
and the third data point. If the SED from each internal point to the segment
is not greater than a given threshold, the algorithm moves the end point of the
segment one position up in the sequence. When the threshold is exceeded, the
data point that causes the threshold excess or its precedent is defined as the end
position of the current segment and the start position of a new one. As long as
new positions arrive, the method continues as described.

Two other interesting algorithms in the literature are the Thresholds and
STTrace, appropriate for online trajectory data compression. The algorithms
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use the coordinates, speed, and orientation of the current position in order to
calculate a safe area where the next position might be located. If the next
incoming position lies in the calculated safe area, it can be ignored. There are
two options for the definition of the safe area. It is either calculated by using
the last position, whether it has been previously ignored or not, or by using the
last chosen position. In order to achieve better results, a combination of the two
algorithms is also proposed. Both areas are calculated, but only their intersection
is defined as the safe area.

These trajectory compression approaches are primarily based on the exten-
sion of geometric methods such as the DP algorithm. However, they are not
suitable for network-constrained trajectories. Therefore, recent works proposed
another kind of trajectory compression model that makes use of the underlying
road network. Through map matching, trajectories can be reconstructed (or rep-
resented) by only the matched road segments, without the need for keeping the
original movement points.

2.4 Reconstructing Trajectories

Chapter 1 introduced the differentiation between raw and semantically enriched
trajectories. Here we present reconstruction techniques for both types. Trajectory
reconstruction refers to the task of transforming raw spatio-temporal positions
into meaningful trajectories. An interesting note here is that different applica-
tions may need different trajectories. For instance, there may be a considerable
difference between the semantic definitions of a trajectory given by a traffic ana-
lyst and, on the other hand, a logistics manager. Let us consider a fleet of trucks
moving in a city and delivering goods in various locations. The logistics manager
may consider, for each truck, a number of different trajectories (e.g., between
the different delivery points) while the traffic analyst may consider a single tra-
jectory for the whole day. Thus, in order to satisfy these two, quite different in
semantics, requirements we would have to retrieve raw spatio-temporal position
data from a common repository and then execute two different reconstruc-
tion tasks so as to produce trajectories that are semantically compliant to each
domain. For instance, Figure 2.4a illustrates a raw data set of spatio-temporal
positions. Different needs may result in different set of reconstructed trajectories
(Figure 2.4b–d, respectively). Recalling the previous example of the truck data
set, let us consider Figure 2.4b and c, which illustrate the reconstructed trajecto-
ries for the logistics manager and for the traffic manager respectively. Another
example of trajectory reconstruction is presented in Figure 2.4d, which considers
a compressed trajectory of the movement. The exact number of reconstructed
trajectories depends on the different semantic definitions that can be given to a
trajectory. In this section, we present reconstruction techniques that can be used
to produce either raw or semantically enriched trajectories.
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Figure 2.4 Three different trajectory reconstruction approaches (b, c, d) for a raw data
set (a).

Reconstructing Raw Trajectories
Collected raw data represent spatio-temporal locations (Figure 2.5a). Apart from
storing these raw data, we are also interested in reconstructing trajectories (Fig-
ure 2.5b). The so-called trajectory reconstruction task is not a straightforward
procedure. Having in mind that raw points arrive in bulk sets, we need a filter
that decides if the new series of data is to be appended to an existing trajectory
or not.

The process of algorithm reconstruction needs a method for determining
different trajectories, which should be applied to raw positions. Taking into
consideration that the notion of trajectory cannot be the same in every application
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Figure 2.5 (a) Raw locations; (b) reconstructed raw trajectories.

due to the fact that different requirements and semantics arise, some generic
trajectory reconstruction parameters can be:

� Temporal gap between trajectories: The maximum allowed time interval
between two consecutive spatio-temporal positions of the same trajectory for
a single moving object (case a in Figure 2.5a).

� Spatial gap between trajectories: The maximum allowed distance in 2D plane
between two consecutive spatio-temporal positions of the same trajectory
(case b in Figure 2.5a).

� Maximum speed: The maximum allowed speed of a moving object, used to
determine noisy spatio-temporal positions (case c in Figure 2.5a).

� Maximum noise duration: The maximum duration of a noisy part of a trajec-
tory so as to consider creating a new trajectory containing this part (case d in
Figure 2.5a).

� Tolerance distance: The maximum distance between two consecutive spatio-
temporal positions of the same object in order for the object to be considered
as stationary (case e in Figure 2.5a).

Reconstructing Semantic Trajectories
Raw trajectories contain only spatio-temporal positions 〈x, y, t〉, which
are insufficient for building meaningful trajectory applications. Therefore,
researchers have proposed to reconstruct trajectories from the low-level col-
lected data (e.g., GPS records, movement tracks) to high-level data abstractions,
thus building semantic trajectories. The idea of semantic trajectories is to encode
meaningful geo-locations/geo-objects (e.g., points of interest such as a shopping
mall, roads) into the raw spatio-temporal tracks; additional semantic annotations
(e.g., trajectory behaviors such as traveling in Paris, walking on Avenue des
Champs-Elysées, taking Metro 3, shopping in a supermarket) are attached to the
semantic trajectories.

Figure 2.6 briefly presents the main procedure of reconstructing such semantic
trajectories from the raw GPS alike mobility records. From the initial GPS
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Figure 2.6 Annotation for semantic trajectories.

records, we can compute the trajectory episodes (e.g., stops, moves, which
are largely used in the literature to understand the structure of trajectories,
presented in Chapter 1); afterward, a couple of dedicated annotation algorithms
are provided for enriching trajectories using additional geo-objects and semantic
tags. There are four main technical components for constructing such semantic
trajectories, as follows:

� Building trajectory episodes: The aim is to build trajectory episodes to fur-
ther understand the inner structure of each individual raw trajectory. Trajec-
tory episode is a subsequence of the raw trajectory. Trajectory data points
inside one episode are more or less homogenous (e.g., staying in the same
place, having the same travel speed), though data points in two neighbor-
ing episodes are unrelated. There are different kinds of episodes, such as
Begin, End, Stop, and Move. In addition to these four types of episodes,
additional episodes can be further designed according to the application sce-
narios, for example, specific episodes for representing congestions in traffic.
The core issue here is to design efficient and robust trajectory segmenta-
tion algorithms to find these meaningful episodes. A couple of trajectory
segmentation algorithms are proposed for building trajectory episodes, such
as velocity, density, orientation, and even time-series-based segmentation
methods.



34 Trajectory Collection and Reconstruction

� Annotating trajectory with regions: This component enables annotation of
trajectories with meaningful geographic or application domain sources of
semantic regions. It does so by computing topological correlations between
trajectories and third party data sources containing geo-objects of regions
(called regions of interest or ROI). We need to design a spatial join algorithm,
which can work for both regular regions (e.g., 100 m × 100 m grid-based
land use data) and irregular regions (e.g., regions with free-style shapes such
as EPFL Rolex Learning Center).

� Annotating trajectory with lines: This component annotates trajectories with
lines of interest (LOI) such as road networks and considers variations present
in heterogeneous trajectories (e.g., vehicles run on road networks, while
human trajectories use a combination of transport networks and walkways).
Given data sources of different forms of road networks, the purpose is to
identify correct road segments as well as infer the transportation modes such
as “walking,” “cycling,” and “public transportation” such as metro and bus.
Thus, the algorithms in this component include two major parts: the first part
is designing/reusing a global map-matching algorithm to identify the correct
road segments for the move episodes of a trajectory, and the second one is
inferring the transportation modes that the moving objects/people used during
their moves.

� Annotating trajectory with points: This component annotates the Stop epi-
sodes in trajectory using information about suitable points of interest (POIs).
Examples of POI are “restaurants,” “bars,” “shops,” and “movie theaters.” For
scarcely populated landscapes, it is relatively trivial to identify the objective
of a stop (e.g., petrol pump on a highway, back home in a very sparse resi-
dential area). However, densely populated urban areas bring many different
types of candidate POIs for a trajectory stop. The problem of inferring stop
behaviors using POIs becomes challenging. Further, low GPS sampling rate
due to battery outage and GPS signal losses makes the problem more intri-
cate. Recently, a HMM (hidden Markov model)-based inference algorithm
has been designed to extract the underlying stop behaviors in the trajectory.
In this algorithm, the location of individual trajectory stop is modeled as a
model observation, whilst the POI category is considered as the hidden state
that needs to be extracted.

2.5 Protecting the Privacy of Individuals’ Positions

This section overviews techniques that aim at protecting users’ privacy during
the data collection process. The concern for privacy stems from the fact that
whenever position refers to individuals, position is qualified as personal data,
and collecting personal data is restricted by privacy norms and law in several
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countries worldwide. In particular, semantic trajectories magnify the risk for
privacy because behavior information on individuals is explicitly extracted and
represented in a machine-readable form, and therefore can be used within infor-
mation processing applications and easily unfolded to third parties. Though
fundamental, privacy regulations are not capable of preventing malicious and
curious parties from improperly accessing and using collected data. This instead
is the goal of location PETs (privacy-enhancing technologies). In general, loca-
tion PETs can be applied at two different stages:

1. Before position data are collected. In this case the goal of location PETs
is to prevent mobility data collectors from obtaining the exact location and
trace of individuals, everytime and everywhere. Because these techniques
are applied on the fly, we refer to this form of protection as online location
privacy.

2. After position data are collected and trajectories reconstructed. The goal of
location PETs is to shape trajectory data in a way that the data set can be
published or released to some other party without incurring privacy violations.
We refer to this as offline location privacy.

Offline and online location privacy present different requirements, which call
for different solutions. In particular, the solutions for the online protection of
location privacy have to deal with incomplete knowledge of the individuals’
trajectories (usually only the current and past positions are known); moreover,
techniques must be efficient so as not to compromise the effectiveness of data
collection. In what follows, we survey major paradigms supporting online loca-
tion privacy while techniques for offline location privacy will be presented later
on in Chapter 9.

2.5.1 Online Location Privacy

Research on position privacy took off early last decade with the emergence of
mobile applications enabling the tracking of moving objects, for example, the
vehicles monitored by a fleet management system, and location-based services
(LBS), for example, search of points of interests nearby. These applications
typically rely on a client-server architecture: the position is collected by mobile
devices (the clients) and conveyed to a server handled by a service provider. In
this scenario, service providers are in the position of collecting large amounts of
position data, therefore, if they are disrespectful of users’ rights and requirements
or, simply, if the collected data are stolen, users’ privacy is at stake. Commonly,
location PETs seek to limit the transmission of either accurate or explicit loca-
tion information to service providers. These techniques can be further classified
based on the information to be protected, that is, the privacy goals. In particular,
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we distinguish three main goals: identity privacy, location privacy, and seman-
tic location privacy. In what follows we survey representative location PETs
addressing these goals.

Identity Privacy
Identity privacy techniques are conceived to forestall the reidentification of
seemingly anonymous users based on position information. For example, con-
sider the case in which an LBS is offered to the members of a community poten-
tially subject to discrimination, for example, the gay community, and assumes
users will interact with the system through pseudo-identifiers. Unfortunately,
simply stripping off users’ identifiers is not sufficient to ensure anonymity,
because the service provider can draw identities from trajectory information; for
example, if a user requests the service from a certain place early in the morning,
it is likely that such a place is his or her home and thus the user can be easily
reidentified through a white pages service. We refer the reader to the literature
for a survey of identity privacy techniques and limit ourselves to consider one
of the most popular paradigms, that is, location k-anonymity.

Given a population of users, location k-anonymity postulates the following
requirement: that the user’s position disclosed to the service provider must be
indistinguishable from the position of at least k − 1 other users. In practice, the
exact user’s position must be replaced by a coarser position, normally called
cloaked region, large enough to contain the position of k − 1 other users located
nearby at the time the online service is requested. Accordingly, the service
provider cannot identify the requester of the service based exclusively on the
position information. This situation is exemplified in Figure 2.7. For k = 10, the
position of the single individual is replaced by a larger region (i.e., a cloaked
region) containing 10 persons. If the online service is requested from this region,
the maximum probability of identifying the requester is 1/10. Another promi-
nent feature of this privacy mechanism is that it typically requires a dedicated
trusted middleware, the location anonymizer, between the clients and the service
provider. The role of the location anonymizer is to collect the position of all the
clients, intercept the individual’s requests, replace the user’s identifier with a
pseudo-identifier, and, finally, replace the true position with the dynamically
generated cloaked region.

One representative solution of this class is the Casper system (Figure 2.8).
Casper consists of the location anonymizer and the privacy-aware query proces-
sor, a software component that runs on the server and resolves users’ requests
with respect to a position that is not a point, as usual, but a region, and returns a
set of candidate answers.

A common criticism to location k-anonymity is that it is difficult to gauge
which size of k is minimally necessary or sufficient. The higher the value of
k, the higher the level of protection but also the loss of position accuracy, that
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Figure 2.7 A cloaked region for 10-anonymity.

is, the cloaked region is likely larger. Moreover, the position accuracy varies in
time and space based on the distribution of people in space, that is, if individuals
are sparse then the cloaked regions are larger.

Location Privacy
Unlike identity privacy, location privacy aims at protecting the position informa-
tion. The protection strategy is to transmit a position that is somewhat different
in the content or in the form from the actual position. In particular, the disclosed
position can be fake, cloaked, or transmitted using some cryptographic protocol.

� A fake position is a position deliberately represented with a wrong value.
Privacy is achieved from the fact that the reported position is false. The
accuracy and the amount of privacy mainly depend on how far the reported
location is from the exact location. For example, the client requesting a
service, for example, “where is the closest restaurant?” can transmit to the
service provider a fake position in proximity of the actual position and then
properly filter out candidate answers.

Location & query

Answer

Location anonymizer Privacy-aware query processor

Location-based
data server

Client

Location & query

Candidate answers

Figure 2.8 The Casper architecture.
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� An obfuscated position (another term for cloaked region) is a coarse region
including the exact user’s location. Therefore the service provider does know
that the user is located in the cloaked region, but has no clue where exactly
the user is located. A popular obfuscation method, which is often used in
commercial applications, replaces the actual position with a predefined region
chosen in a taxonomy of locations at different granularities, for example,
street, zip code area, city. Unfortunately, predefined locations can be too
broad to ensure an appropriate quality of service, for example, a zip code
region can cover an area of few squared kilometers, or conversely can be
too small to provide privacy guarantees, for example, a short street. Another
simple method obfuscates the position with a circle of user-defined radius
and random center containing the actual position. In other solutions, the size
of the obfuscated region can be the result of a trade-off between privacy and
position accuracy. Moreover, the transmission of the position can be also
delayed a while to cloak the temporal dimension.

� Cryptographic protocols define techniques for the secure collaboration of
different parties. An example of cryptographic protocol used for privacy
protection in LBS is PIR (private information retrieval). This technique allows
users to issue a query without disclosing to the LBS provider the information
that is requested as well as the information being returned. In this sense this
technique protects both the identity and the location. The method ensures
the maximum privacy. However, it incurs high computational costs and can
be only applied to certain categories of queries, for example, the retrieval of
stationary objects (i.e., nonmobile objects).

One specific problem that may arise when the position is obfuscated by a coarse
region is that consecutive positions in the user’s trajectory are correlated, that is,
the presence in one region constrains the position in the subsequent regions. This
information can be exploited to prune the obfuscated regions and more precisely
delimitate the user’s position. To prevent this inference when the maximum
speed of the user is known (e.g., the user can be a pedestrian, a car driver, a
cyclist, and so on) and the movement is frequently sampled, that is, the position
is continuously reported, an approach is to modify the position in space and
time before it is released. This form of privacy leak is also called velocity-based
linkage attack.

Semantic Location Privacy
Semantic location privacy is a form of location privacy that aims at prevent-
ing data collectors from identifying the semantic locations in which users
stay, for example, hospitals, religious buildings, and so on. Forestalling this
type of inference is important for the construction of privacy-aware semantic
trajectories.
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Figure 2.9 The Probe system: (a) The workflow. (b) Obfuscated map: the blue polygons
represent cloaked regions, the red rectangles sensitive places, the gray background the
distribution of population in space. (See color plate.)

The motivation behind semantic location privacy is that the sensitivity of
positions may vary depending on the nature of places; for example, the position
of a user staying in an oncological clinic is likely more sensitive than the position
of a user walking along a street. If all the positions are treated as though they
are sensitive, the protection would be excessive. More effective is to obfuscate
only those positions that are perceived as sensitive, while disclosing the others
with no change. In this way the loss of position accuracy is limited. This form
of obfuscation is called semantic location cloaking. A sound semantic cloaking
strategy should guarantee:

� Semantic diversity: The user’s position cannot be blurred exclusively when
the user is inside a sensitive place, but also when he or she is outside. That
way, the place in which the user is located remains uncertain. An obfuscated
region thus must include places of diverse types.

� Independence of the position cloaking method from the user’s position. This
condition prevents the discovery of the correlation between the cloaked region
and the true position, which could be exploited to infer where the user is
located.

These guidelines have been embodied in the privacy-preserving framework
called Probe (Privacy-Aware Obfuscation Environment).

Figure 2.9 illustrates the workflow of the privacy enforcement process in
the Probe system. Users first specify in a privacy profile which categories of
points of interest are sensitive (selecting, for example, from a pre-defined list,
for example, hospitals, religious buildings, and so on) along with the degree of
privacy desired for each of those categories. For example, a privacy degree of
0.1 assigned to hospitals means that the (posterior) probability of locating the
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user inside a hospital must be less than 0.1. Next, coarse regions are generated
satisfying the privacy preferences, independently from the user’s position, in
order to prevent possible inferences on their reciprocal positions. A sample set
of obfuscated regions is shown in Figure 2.9b. Finally, at runtime if the user’s
position falls inside one of the coarse regions, that region is delivered instead of
the exact position. This solution is grounded on a conceptually founded privacy
metric. Moreover, an additional metric is defined, the utility metric, providing a
measure of the spatial accuracy of the cloaked regions. Unlike more traditional
obfuscation techniques, the utility measure can be computed prior to any service
request. In this way users can tune and balance the amount of privacy with the
quality of service.

2.6 Conclusions

In this chapter, we presented techniques for collecting mobility data and han-
dling them appropriately (applying data cleansing, data compression, and map
matching) so as to produce noise-free and meaningful trajectories (trajectory
reconstruction). Finally, privacy issues in mobility data collection and handling
were discussed.

We outline next a few research directions that originate in the discussion
provided in this chapter.

With respect to trajectory reconstruction, future work may include the explo-
ration of intelligent ways to automatically extract proper values of trajectory
reconstruction parameters according to a number of characteristics of data sets,
as well as the extension of this technique so as to be able to identify different
movement types (pedestrian, bicycle, motorbike, car, truck, etc.) and hence to
apply customized trajectory reconstruction.

With respect to privacy issues, major research directions include privacy
usability, that is, how to provide personalizable, conceptually founded, and
simple-to-use privacy mechanisms so to enhance user experience; and context-
aware location privacy, that is, tailoring privacy protection based on the context
in which individuals are located. While semantic location privacy is a first
attempt to introduce the contextual dimension in privacy, this notion can be
extended along several directions; for example, to account for the temporal and
social dimension of privacy.

2.7 Bibliographic Notes

In this section, we distinguish and annotate some works from the literature.
With regard to the data-handling approaches, Yan et al. (2010) proposed

a Gaussian kernel-based local regression model to smooth out GPS feeds.
Brakatsoulas et al. (2005) proposed the methodology for map matching that is
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illustrated in Figure 2.2. Quddus et al. (2007) proposed a technique for replacing
each position of the original trajectory by the point on the network that is the
most likely position of the moving object. Greenfeld (2002) proposed a method
based on topological analysis using the observed position of the individual with-
out assuming any knowledge of the expected traveling route and the speed or
heading information supplied by the GPS. Furthermore, Newson and Krumm
(2009) used hidden Markov model approaches to find the most likely road route
corresponding to a sequence of positions.

Meratnia and de By (2004) proposed the Top-Down Time Ratio (TD-TR)
and Open Window Time Ratio (OPW-TR) algorithms for the compression of
spatio-temporal data. Potamias et al. (2006) proposed the two algorithms, called
Thresholds and STTrace, respectively, for online trajectory data compression.
Kellaris et al. (2009) present a different approach by replacing certain episodes
of a trajectory by selected shortest paths between the beginning and ending
position of these episodes. As for the trajectory reconstruction topic, Marketos
et al. (2008) presented a method for determining different trajectories as part
of a trajectory reconstruction manager. On the other hand, Yan et al. (2011)
presented a technique for reconstructing semantic trajectories from the raw GPS
mobility records.

With regard to privacy issues, Gruteser and Grunwald (2003) introduced the
concept of location k-anonymity in the context of LBS; Jensen et al. (2009) intro-
duced the dichotomy of identity privacy versus location privacy; Casper (Chow
et al., 2009) is a major privacy preserving framework supporting location k-
anonymity; the velocity-based attack is described in more detail in Ghinita et al.
(2009); Damiani et al. (2010, 2011) introduce the semantic location cloaking
paradigm.
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Trajectory Databases
Ralf Hartmut Güting, Thomas Behr, and Christian Düntgen

3.1 Introduction

In this chapter, we consider the problem of modeling and representing trajecto-
ries in the context of database systems. Since about 1995 there has been research
on moving objects databases (MODs), also termed spatio-temporal databases.
The general goal has been to allow one to represent moving entities in data-
bases and to enable a user to ask all kinds of questions about such movements.
This requires extensions of the DBMS data model and query language. Further,
DBMS implementation needs to be extended at all levels, for example, by pro-
viding data structures for representation of moving objects, efficient algorithms
for query operations, indexing and join techniques, extensions of the query opti-
mizer, and extensions of the user interface to visualize and animate moving
objects.

Moving objects databases come in two types. The first represents a set of
currently moving objects. One is interested in maintaining the current locations
and asking queries about current and expected near future locations. The second
type maintains complete histories of movement. These are sometimes called
trajectory databases and are the topic of this chapter.

Whereas spatio-temporal databases had been around for a much longer time,
they supported only discrete changes of geometries over time. The empha-
sis in the new field of moving objects databases is to consider continuously
changing geometries. Neither the position of a car on a road nor the shape and
location of a hurricane changes in discrete steps; these are clearly continuous
phenomena.

A driving force in the development of database systems has always been
to provide to the user a simple conceptual model of data. Relational databases
have been so successful because they introduced the simple view of representing
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Figure 3.1 A value of type moving point (mpoint) and a value of type moving region
(mregion).

data in tables and allowing one to manipulate and combine tables, rather than
thinking of records in files containing fields in certain formats.

In a similar way, moving objects databases let the user view a vehicle moving
on a road simply as a time-dependent position (either relative to the Euclidean
plane or to the road). Mathematically, this is a function

f : instant → point

if instant represents a continuous domain of time and type point represents
(x, y) positions in the Euclidean plane. Such a function can be visualized in a
3D (x, y, t) space as shown in Figure 3.1.

Obviously, to arrive at a powerful query language on moving objects we need
not only a simple view of data but also operations to manipulate them. What can
we do with a continuous curve as shown in Figure 3.1?

For example, we can project it into the (x, y) plane. This forgets the temporal
information and returns just the path in the plane the object (e.g., vehicle) has
taken.

We can also project it on the time axis and get the time interval(s) when the
object existed (more precisely, when its movement information is available).

We can reduce it to the times when the position has certain properties, for
example, when it is inside a given region of the plane, or within some distance
to another object, perhaps even a moving object.

A model of data together with some operations on it is captured by the concept
of an abstract data type (ADT). Hence the idea is to model the time-dependent
position of a vehicle as an abstract data type. Because only the position as a
point is represented (ignoring the shape of the vehicle), the data type is called
moving point (mpoint).1 Similarly, for some entity for which capturing the
extent is relevant (e.g., a forest fire), the time-dependent shape and location is
represented in a data type moving region (mregion).

1 We denote data types in italics and underlined.
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The operations that we introduce need a name as well as definition of argument
and result types. More formally, this is called a signature. For the three operations
mentioned above, the signatures would be:

trajectory: mpoint → line
deftime: mpoint → periods
at: mpoint × region → mpoint

Of course, the data types to represent the arguments and results must be
available in the system as well. Types line and region may be available in
DBMSs with spatial support. Type periods represents a set of disjoint time
intervals and must be added.

What are the advantages of using such a model? Chapter 1 introduced move-
ment tracks as the set of captured data over time for a moving object and
explained that it typically can be represented as a sequence of pairs (instant,
position), hence as a sequence 〈(t1, p1), . . . , (tn, pn)〉 where ti is of type instant
and pi of type point. Given a DBMS that has such data types, we can then simply
represent a set of captured moving tracks in a table with schema:

Observations(Id: int, Time: instant, Position: point)

Is it not sufficient to use such a representation in a DBMS? It is sufficient
as long as one tries to formulate only very simple queries. Basically, simple
queries (for a MOD) become difficult to formulate and advanced queries become
practically impossible. Consider two simple queries.

1. Where have the vehicles been at 6:30 p.m.?
The problem is that positions generally have not been recorded at 6:30 p.m.
In the SQL query, for each vehicle we have to find the last recorded position
before 6:30 p.m. and the first after 6:30 p.m. Then, in the select clause we
need to perform interpolation between the two time instants and positions
with the time argument 6:30 p.m.

In a MOD, one would instead have a table

Vehicles(Id: int, Trip: mpoint)

and the query is written as

select Id, val(Trip atinstant six30) as Pos630 from Vehicles

The query operations used are explained in Section 3.2.
2. At what times and positions did vehicles pass the river Rhine?

Here it is not so easy to determine positions before and after crossing the
river Rhine and then do the interpolation as above. Perhaps the best strategy
is to perform a self-join on the Observations table to put together pairs
of adjacent observations and then to construct a line segment connecting
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them. Using some spatial database capability, these line segments can then
be checked for intersection with the river Rhine. If we have kept times and
positions for the observations corresponding to the start and the end of the
line segment, we may again do interpolation as for the previous query.

Assume we have a table for rivers.

Rivers(Name: string, Curve: line)

In the MOD, the query is written as follows.

select v.Id, inst(initial(v.Trip at r.Curve)) as PassingTime,

val(initial(v.Trip at r.Curve)) as PassingPos

from Vehicles as v, Rivers as r

where r.Name = "Rhine" and v.Trip passes r.Curve.

Again, query operations are explained in the following section.
Besides easier formulation of queries, a MOD system can offer more efficient

implementation techniques including indexing and query optimization as the
system is “aware” of the moving objects.

The rest of the chapter is structured as follows. Section 3.2 describes the data
model and query language for a MOD based on abstract data types. There are
two prototypical implementations of this model, Secondo and Hermes. In Sec-
tion 3.3 we describe Secondo. Section 3.4 discusses alternative representations
of sets of moving objects in the context of this model, including creating the
representations from raw trajectories. Section 3.5 addresses indexing of moving
objects. Section 3.6 provides a short introduction to Hermes, the other MOD
prototype, and explains some differences. The chapter ends with conclusions
(Section 3.7) and bibliographic notes (Section 3.8).

3.2 Data Model and Query Language

In this section we address the extensions of a DBMS data model and query
language to support representation and querying of moving objects. We have
already seen in the introduction that the basic idea is to use abstract data types.
These can be embedded in the role of attribute types into a relational or other
DBMS model, and the ADT operations can be embedded into the DBMS query
language, typically SQL.

The fundamental data type moving point (mpoint) to represent a trajectory
also has been introduced already. To obtain an expressive query language, the
model provides several further data types together with a carefully designed set
of operations. In the following section we motivate and introduce these types
and operations by examples. Later we consider the design principles that have
led to this model and we briefly sketch its implementation.
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3.2.1 Motivating Examples

Examples are based on a database that is delivered with the Secondo system
presented in Section 3.3. Secondo is open source, so the reader can in fact
install Secondo and run the example queries.

The example database is called berlintest. It contains spatial data about
the city of Berlin and some moving object data. Here we will use the following
database objects. Note that in Secondo a database may hold not only relations
but also “atomic” objects of any available data type.

Relation Trains describes underground trains moving according to schedule
on a certain day in the city of Berlin.

Trains(Id: int, Line: int, Up: bool, Trip: mpoint)

Each tuple describes one train trip by its identifier, the number of the train
line to which it belongs, in which direction along the route it was going, and the
complete movement description in attribute Trip.

Further objects are:

train7: mpoint, mehringdamm: point, thecenter: region

Here train7 is a DB object with a value of type mpoint. mehringdamm is
an underground train station in Berlin. Finally, thecenter is a region roughly
describing the city center.

Let us start with some simple expressions on atomic objects. Expressions are
composed of database objects, constants, and operations. Secondo provides the
query command to evaluate expressions, so one can write query 3 * 4 and
get 12 as a result.

query train7

This is already a very simple expression and it returns a value of type mpoint.
In Secondo, this value is displayed at the GUI as a point at the position of the
start time. The movement can then be animated.

The following operations have already been introduced in the introduction:

trajectory: mpoint → line
deftime: mpoint → periods
at: mpoint × region → mpoint

The expressions

train7 at thecenter, trajectory(train7 at thecenter),

deftime(train7 at thecenter)

return train7 reduced to the times when it was in the city center area, the path
taken in the center, and the time when it was at the center.
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We can determine the distance between two moving objects or a moving
object and a static object.

query distance(train7, mehringdamm)

Clearly as train7 is moving, the distance to mehringdamm is time dependent.
Hence the result is a real number varying with time. There is a data type for this
called moving real (mreal) and the distance operation has signature

distance: mpoint × point → mreal

It would be nice if we could determine when and where the speed of train7
has been higher than 50 km/h. We can write it as follows.2

query speed(train7) > 50

Here a time-dependent speed, obviously an mreal, is compared to a real constant.
The result is a time-dependent Boolean value, represented in a type mbool. Hence
the two operations used have signatures:

speed: mpoint → mreal
<: mreal × real → mbool

We can determine the position of a moving object at any instant of time (it
may be undefined if the mpoint function is not defined at that time). We can also
reduce it to a given time interval (or set of time intervals).

let six30 = theInstant(2003, 11, 20, 6, 30);

let kmh = 1000 / 3600;

query val(train7 atinstant six30)

query trajectory(train7 atperiods

deftime( (speed(train7) > (50 * kmh)) at TRUE ) )

Here we define six30 as 6:30 a.m. on the day when trains are defined. We
also introduce kmh as the factor to convert km/h to m/s. The first query then
determines the position of train7 at 6:30. The second reduces train7 to the
periods of time when its speed was higher than 50 km/h. The signatures used
are the following.

2 To be honest, one has to be a bit careful with the units used. In theberlintest database, geometries
are given in units of meters, hence the speed of train7 will be returned in m/s rather than km/h
and one needs to apply the appropriate factor to the constant, omitted here for clarity.
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atinstant: mpoint × instant → ipoint
inst: ipoint → instant
val: ipoint → point
at: mbool × bool → mbool
deftime: mbool → periods
atperiods: mpoint × periods → mpoint

The operation atinstant returns a data type intime(point), ipoint for short.
The type represents a pair (i, p) consisting of an instant and a point. From
such pairs one can determine the two components using the operations inst and
val. Operation at reduces a time-dependent Boolean value to the times when it
assumes the second argument. deftime works for type mbool in the same way
as for mpoint.

The need to reduce a moving object to the times when it fulfills certain
properties occurs frequently. For a moving object x, the expression

x atperiods deftime(predicate(x) at TRUE)

can be abbreviated to x when[predicate(x)] using operator when with sig-
nature

when: mpoint × mbool → mpoint

Hence we can write the previous query more simply, as

query trajectory(train7 when[speed(train7) > (50 * kmh)])

It goes without saying that all the operations presented can be used in set-
oriented queries, that is, in the select or where clause of an SQL query.

We also need some predicates to determine whether a moving object passes
through a certain area or is defined at a given time. The following query finds
all trains passing through mehringdamm and determines the times when they
arrive at or leave this station.

select Id, Line, Up,

inst(initial(Trip at mehringdamm)) as ArrivalTime,

inst(final(Trip at mehringdamm)) as DepartureTime

from Trains

where Trip passes mehringdamm

Here operations are used:

passes: mpoint × point → bool
initial, final: mpoint → ipoint
at: mpoint × point → mpoint
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As a final example, how can we find pairs of trains that met, that is, have been
at the same place at the same time? When and where did they meet?

select t1.Id, t1.Line, t2.Id, t2.Line,

inst(initial(intersection(t1.Trip, t2.Trip))) as MeetingTime,

val(initial(intersection(t1.Trip, t2.Trip))) as MeetingPlace

from Trains as t1, Trains as t2

where t1.Id < t2.Id and sometimes(t1.Trip = t2.Trip)

This query uses new operations

=: mpoint × mpoint → mbool
sometimes: mbool → bool
intersection: mpoint × mpoint → mpoint

3.2.2 Design Principles

The examples have demonstrated that it is useful to have a collection of related
data types and operations to obtain a query language for moving objects. The
quality of such a language, that is, its ease of use and expressive power, depends
on the principles applied in the design of types and operations. The following
principles are observed.

D1 For all base types of interest, there are corresponding time-dependent types.
D2 Definitions of static and time-dependent types should be consistent.
D3 For each time-dependent type, there are types to represent the projection to

the domain and range of the respective function.
D4 The type system has many types – to avoid a proliferation of operations, one

should use generic operations as much as possible.
D5 The space of possible operations should be explored systematically.
D6 Operations on static and time-dependent types should be consistent.

The type system used is shown in Figure 3.2. It starts from the set of standard
types int, real, bool, and string, and spatial types point, points, line, and region.
All these types are made uniformly time dependent by introducing a type con-
structor, moving. It returns for a given static type α the type whose values are
partial functions from the time domain into α.

More formally, let Aα denote the domain of type α, that is, the set of possible
values of type α. Then the domain for type moving(α) is

Amoving(α) := {f |f : Ainstant → Aα is a partial function}
One can observe that design rules D1 and D2 are fulfilled.

The range type constructor provides for a given type α, which must have
a total order, the type whose values are finite sets of disjoint intervals over
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Figure 3.2 Type system.

the domain of α. So, for example, range(real) is a set of real-valued intervals;
periods is in fact another name for range(instant). The types range(α) together
with the spatial types points, line, and region are sufficient to represent the
projections into the ranges for all types moving(α). Further, the values of all
types moving(α) can be projected on the time axis resulting in a periods value.
Hence design rule D3 is fulfilled.

The design of operations proceeds in three steps:

1. Carefully define a set of operations on the static types.
2. By a technique called lifting, make these operations time dependent.
3. Add some specific operations for the time-dependent types.

Lifting means to make a static operation time dependent by allowing any
(combination) of its arguments to be time dependent. For example, consider
the equality and intersection operations on two points. By lifting, the following
signatures are available.3

= : point × point →bool intersection : point × point →point
mpoint × point →mbool mpoint × point →mpoint
point × mpoint →mbool point × mpoint →mpoint
mpoint × mpoint →mbool mpoint × mpoint →mpoint

Lifted versions of these two operations are used in the last query of Section 3.2.1.

3.2.3 Implementation

In the model described so far, the semantics of time-dependent types, that is,
of types moving(α), have been simply defined as partial functions, disregarding

3 We generally abbreviate the formally defined notation moving(α) by mα.
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Figure 3.3 Sliced representations for moving(real) and moving(point).

completely the issue of how such functions can be represented. A function
f : Ainstant → Aα is simply an infinite set of pairs from Ainstant × Aα .

We call a model where it is allowed to define the semantics of types just
in terms of infinite sets an abstract model. An abstract model is conceptually
simple and elegant, but to implement it, we have to provide a discrete model. In
a discrete model, all the infinite sets of the abstract model have to be described
in terms of finite representations.

The discrete model for the design above introduces for the time-dependent
types the so-called sliced representation. That means that to represent a function
of time, the time domain is cut into disjoint time intervals (slices) such that
within each slice the development can be represented by some simple function
of time. “Simple” actually means finitely representable. In other words, the
function for a slice can be described by a few parameters rather than an infinite
set of pairs. Figure 3.3 illustrates the sliced representation for a moving(real)
and a moving(point).

The representation of a single slice, consisting of the time interval and the
function description, is called a unit. In the discrete model it makes sense to
introduce explicit data types for units, for example, upoint, ureal, ubool. Such
types are available in the Secondo system described below.

The representations of functions within a slice (called unit functions) are
chosen to support as many operations of the abstract model as possible in
a consistent way. For a moving(point) a linear function of time is used. For
moving(real), unit functions are quadratic polynomials of time or square roots
thereof. This allows one to represent the time-dependent distances between
moving objects, or the development of the perimeters or sizes of moving regions,
correctly.

3.3 SECONDO

In this section we describe the Secondo DBMS prototype. In the context of this
chapter, Secondo is of interest for the following reasons: (1) It implements the
model of Section 3.2. (2) It allows one to visualize and animate moving objects
and the results of queries. (3) It is extensible at all levels (kernel, optimizer, and



52 Trajectory Databases

GUI). (4) It provides data manipulation and querying at two levels, that is, not
only in SQL, but also in so-called executable language. The last two features
are important in highly dynamic fields such as trajectory analysis where new
methods often need to be added and used even before they can be fully integrated
into query optimization.

3.3.1 Overview

Secondo is a DBMS prototype developed since about 1995 at University of
Hagen. It runs on Windows, Linux, and MacOS X platforms and is freely
available, open-source software.

It does not have a fixed data model. Instead, it provides a system frame
that can be filled with implementations of different data models. The parts that
are model dependent are implemented within so-called algebra modules. Each
algebra module provides a collection of data types (type constructors, to be
precise) and operations. Note that algebra modules encompass all parts of a
data model implementation. Hence there are algebra modules with types for
relations and tuples and query processing operations such as join methods, and
there are algebra modules with types for indexes such as a B-tree or R-tree with
the respective search operations.

Secondo consists of three major components, namely, the kernel, the opti-
mizer, and the graphical user interface (GUI). These are written in different
programming languages and can run as cooperating processes.

The kernel implements specific data models and is extensible by algebra
modules. It provides query processing over the implemented algebras. It uses an
underlying storage manager (BerkeleyDB) to provide stable storage at the level
of files and records, including transaction management, locking, and recovery.
The kernel is written in C++.

The optimizer is more restricted than the kernel with respect to the data model
as it assumes an object-relational model (including complex attribute data types
such as mpoint). Its core capability is cost-based conjunctive query optimiza-
tion.4 It translates SQL queries to query plans in the executable language. The
optimizer is written in Prolog.

The GUI provides an extensible graphical user interface, appropriate for an
extensible DBMS. It is extensible by viewers; a viewer can provide its own
graphical representation, animation, or interaction mode for a specific data type
or collection of types. The GUI contains a powerful viewer for spatial and time-
dependent types which itself is extensible by display methods for new data types.
The GUI is written in Java.

4 Conjunctive query optimization is the fundamental problem: Given a set of relations and a set of
selection and/or join predicates, determine an optimal plan.
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3.3.2 Writing Queries in Executable Language

The Secondo kernel provides a complete interface for data manipulation and
querying that is data model independent. It provides the following generic com-
mands:5

create <ident>: <type expression>

update <ident> := <value expression>

let <ident> = <value expression>

delete <ident>

query <value expression>

A database is essentially a collection of named objects. In the basic com-
mands, a type expression is any well-formed expression over the type construc-
tors of the active algebras, and a value expression is any expression involving
database objects, constants, and operations of the active algebras. With the basic
commands, one can create an object of a given type (with undefined value),
one can update the value of an object, one can create a new object whose type
and value are given by the value expression (let), one can delete an object
from the database, and, finally, one can evaluate an expression and show the
result at the user interface.

In Section 3.2 we have already seen example uses of the query and let

commands. The query command has been used to evaluate expressions on
atomic data types. In this section we show how expressions can actually represent
efficient execution plans for a database system.

Roughly speaking, the basic idea is to write a query like an expression in
relational algebra where operations are applied sequentially to obtain a query
result. However, there are two important differences:

� Instead of materializing relations, for efficiency reasons individual tuples
need to be passed between operations (called pipelining).

� Operations of relational algebra are descriptive in the sense that their mean-
ing is a mathematical function telling which result relation is derived from
argument relations. For example, the join operation has many different imple-
mentations. In the executable language, operations have associated fixed
algorithms such as specific join methods.

Pipelining is implemented in Secondo by providing a special type constructor
called stream. Operations defined in an algebra can have arguments or results of

5 We only show the basic commands for data manipulation; there are further commands for inquiries
about the system or the database, transactions, import and export, etc.
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type stream(x). Implementation of operators and evaluation through the query
processor is then set up to pass arguments via pipelining.

The following example query implements a simple selection on the Trains
relation:

query Trains feed filter[.Trip passes mehringdamm] consume

Operations are written in postfix notation. Operation feed passes tuples from
a relation into a stream. filter evaluates a predicate on each tuple of a tuple
stream. consume collects a tuple stream into a relation. These three operations
have signatures:

feed: rel(tuple) → stream(tuple)
filter: stream(tuple) × (tuple → bool) → stream(tuple)
consume: stream(tuple) → rel(tuple)

Here tuple is a type variable representing some tuple type.
The following query is an example use of a hashjoin operation:

query Trains feed {t1} Trains feed {t2} hashjoin[Line_t1, Line_t2]

count

The notation {t1} denotes a renaming that appends the string _t1 to every
attribute name, to make attribute names of the two arguments for the hashjoin
distinct.

Various index types are also provided by some algebra modules, such as
B-trees or R-trees. The following command creates a B-tree index on attribute
Id of the Trains relation:

let Trains_Id_btree = Trains createbtree[Id]

It can then be used to retrieve a train with a given Id, say 50:

query Trains_Id_btree Trains exactmatch[50] consume

To summarize this section, Secondo has a precise textual language to
describe query plans. Queries in executable language are completely syntax-
and type-checked and errors reported.

3.3.3 Writing Queries in SQL

One can also write queries in SQL and use query optimization. One has to observe
some small notational differences as the Secondo optimizer is programmed in
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Prolog and the queries written are in fact Prolog terms. Still, they look quite
similar to regular SQL.

The last query from Section 3.2 can be entered into Secondo as follows:

select [t1:id, t1:line, t2:id, t2:line,

inst(initial(intersection(t1:trip, t2:trip))) as meetingtime,

val(initial(intersection(t1:trip, t2:trip))) as meetingplace]

from [trains as t1, trains as t2]

where [t1:id < t2:id, sometimes(t1:trip = t2:trip)]

The main differences in notation are that lists need to be written in square
brackets, colon is used instead of period for qualified attributes, and names of
relations and attributes need to be written in lower case. Further, the where

clause is generally a conjunction of predicates, separated by commas rather than
a single Boolean expression.

The optimizer provides cost-based query optimization and produces a plan
in Secondo executable language. For the query above, the following plan is
constructed.

query Trains feedproject[Id, Line, Trip] {t1}

Trains feedproject[Id, Line, Trip] {t2}

symmjoin[sometimes((.Trip_t1 = ..Trip_t2))]

{0.0238913, 0.350099}

filter[(.Id_t1 < .Id_t2)] {0.517808, 0.00916338}

extend[

Meetingtime: inst(initial(intersection(.Trip_t1, .Trip_t2))),

Meetingplace: val(initial(intersection(.Trip_t1, .Trip_t2)))]

project[Id_t1, Line_t1, Id_t2, Line_t2, Meetingtime,

Meetingplace]

consume

Due to the space limitation we will not explain this plan in detail. In addition
to query operations, the optimizer also inserts annotations into the plan such as
the selectivity of predicates and the cost of evaluating them. These are used for
query progress estimation during execution.

The user may enter this query plan directly and have it executed without
involving the optimizer. After evaluation, the result of the query is presented at
the user interface.

3.3.4 Visualization and Animation of Data Sets and Results

The graphical user interface is extensible by viewers. The Hoese-Viewer is
specialized in displaying spatial data and animating moving objects. It can
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Figure 3.4 Map matching based on network built from OSM data.

also show map backgrounds from tiled map servers such as OpenStreetMap
or GoogleMaps. Figure 3.4 shows a map-matched trajectory. Map matching
(see Chapter 2) was done based on a directed graph representation of the road
network constructed within Secondo from OpenStreetMap source data. The
original trajectory of the mpoint is displayed together with the sequence of edges
obtained from map-matching. The black circle indicates the current position of
the moving object during the animation. The current time and coordinates are
shown at the top of the viewer.

3.4 Representations for Sets of Trajectories

Storing and analyzing trajectories relies on methods to represent trajectory data
within a database. In this section, we show how trajectory data can be loaded
and represented in Secondo. The DB commands are presented in the Secondo
executable language.
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3.4.1 Loading Data

First, we show how the raw trajectory data from a CSV text file Traj.csv can
be imported to a Secondo database.6 We assume the text file has the schema

(Id: int, Line: int, Up: bool, Time: instant, PosX: real,

PosY: real)

which would correspond to raw data observed for theTrains relation introduced
in Section 3.2.

let TrainsRaw = [const rel(tuple([Id: int, Line: int, Up: bool,

Time: instant, PosX: real, PosY: real])) value ()]

csvimport[’Traj.csv’, 0, "", ","]

projectextend[Id, Line, Up, Time; Pos: makepoint(.PosX, .PosY)]

consume;

This creates a relation

TrainsRaw(Id: int, Line: int, Up: bool, Time: instant, Pos: point)

where attribute Pos contains the position data as a point (easting, northing). In
the following, we briefly investigate two different ways to represent trajectories
more effectively according to the data model of Section 3.2 within Secondo:
the compact representation and the unit representation.

3.4.2 Compact Representation

In TrainsRaw the information on a vehicle is distributed among many tuples.
Using the model of spatio-temporal data types (Section 3.2), we now express the
same data in a relation with only a single tuple per vehicle. The data type mpoint
is used to capture the temporal development of attribute Pos. We achieve this
by grouping TrainsRaw by Id and applying the approximate operator to each
group. Using Time as the least significant sorting criterion prior to grouping
guarantees that the positions for each train enter the approximate operator in
increasing temporal order:

let Trains = TrainsRaw feed

sortby[Id, Line, Up, Time]

groupby[Id, Line, Up; Trip: group feed approximate[Time, Pos] ]

consume;

The result is the relation Trains with the schema shown earlier. This is what
we call the compact representation of moving object data. It is easy to apply

6 It is also possible to import NMEA recordings using an operator mneaimport.
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many different kinds of temporal and spatio-temporal operations as introduced
in Section 3.2 to the temporal attribute.

3.4.3 Unit Representation

A second way to represent moving object data is to employ the respective unit
types. Several operations allow one to transform a value of a type moving(α) to
a stream of values of the corresponding unit type and vice versa, so it is easy
to translate between, say, an mpoint and a set of upoints and to use both kinds
of data types together. A upoint represents a single time interval and a linear
movement of a single object during this time. Let us create the unit representation
for relation Trains:

let UnitTrains = Trains feed

projectextendstream[Id, Line, Up; UTrip: units(.Trip)]

addcounter[No, 0] consume;

The result is a relation

UnitTrains(Id: int, Line: int, Up: bool, UTrip: upoint, No: int)

For each vehicle identifier, UnitTrains contains a set of tuples, each of which
contains one of the temporally disjoint units whose union forms the train’s
complete trajectory.

The units operator converts each mpoint to a stream of upoints, and pro-
jectextendstream creates one copy of the input tuple, projected on the attributes
listed, for each upoint value. The addcounter operator extends the tuples with
a counter attribute called No, starting from 0. Because this unit representation,
as we call it, replicates attributes Id, Line, and Up, it is less space efficient.
However, it has a higher degree of organization than TrainsRaw, and is quite
useful when creating indexes supporting certain query types.

3.5 Indexing

Indexing, of course, has been a major research topic in the field of spatio-
temporal databases (also termed moving objects databases) and it is beyond
the scope of this chapter to treat the issue at any depth. Surveys describing
and classifying an impressive number of proposed structures are mentioned in
Section 3.8.

A major distinction concerns indexing current and expected near future move-
ment versus indexing histories of movement, or trajectories. In the context of
trajectory databases only the latter case is of interest. Further, one can distin-
guish whether movement is described relative to the Euclidean plane (that is, by
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(x, y) coordinates) or relative to a network, called free and network-constrained
movement, respectively.

Structures proposed to index free movement include the STR-tree and the
TB-tree. Both are R-tree variants with the goal of keeping 3D line segments of
the same trajectory (units in the terminology of this chapter) clustered together
on pages. Whereas the STR-tree modifies the insertion and split strategy of the
R-tree toward this goal, the TB-tree does this in a more radical way and ensures
that a leaf page contains only segments of the same trajectory.

Besides such specialized structures, regular R-trees can also be used to index
the spatial, temporal, or spatio-temporal dimensions.

In network-constrained movement, the position of a moving object is
described relative to an edge of the network graph or a path in the network.
Two index structures for this case are the FNR-tree and the MON-tree.

Secondo includes implementations of the R-tree as well as of the TB-tree and
the MON-tree. In most applications, for example, the BerlinMOD benchmark
(see Section 3.8), just R-trees are used. Generally, the index serves to retrieve
sets of candidates based on bounding box comparisons, which need to be further
checked for exact fulfillment of a query predicate. This is the so-called filter-
and-refine strategy.

When indexing moving points by R-trees, different granularities can be cho-
sen. The roughest one is to index the mpoint as a whole. If an mpoint was
observed over a long period, its bounding box may be very large, leading to a
lot of dead space within the index. The index will contain only a few entries, but
its selectivity is bad; this means the resulting candidate set will contain a lot of
false hits. The other extreme is to index single units of the mpoint. Here, com-
pared with indexing of the whole mpoint, less dead space is produced. But the
complete mpoint is distributed over many index entries. A third way is indexing
groups of connected units. All three possibilities are available in Secondo.

3.6 Hermes

Another system dealing with moving objects is Hermes. It is implemented on top
of the Oracle 10g database system using PL/SQL as a programming language.
Beside the core system of Hermes, there is an implementation of a web-based
query builder and viewer. Hermes does not implement own data structures for
spatial objects, rather it uses the spatial objects of the underlying system.

Because Hermes implements the same data model as Secondo does, the
data types and operations on them are quite similar. Additionally to the types
provided by Secondo, Hermes has implementations for moving circles, moving
rectangles, and moving collections (sets of moving objects of different types).

Like Secondo, Hermes uses the sliced representation for representing mov-
ing objects. Units belonging to a moving object are stored within a nested table.
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Besides the moving data types, Hermes contains a TB-tree implementation.
This structure supports the standard operations for this index (point query and
range query), but also k-NN and similarity queries.

Hermes’ query language is SQL extended by spatio-temporal operations.
Although SQL is familiar to most database systems’ users, formulating complex
temporal queries in SQL is a hard task and queries tend to degenerate to deeply
nested function calls.

3.7 Conclusions

In this chapter, we have motivated a high-level conceptual model of trajectories
as continuous functions, represented by abstract data types. These serve as a
foundation to extend the data model and query language of a DBMS to support
representation and querying of movement data. We have shown how queries can
be formulated in this framework. The implementation within a DBMS prototype
was sketched.

3.8 Bibliographic Notes

The field of moving objects databases is covered in depth in the textbook by
Güting and Schneider (2005). The data model of Section 3.2 was developed
in a series of papers. In Güting et al. (2000), the type system and operations
are carefully designed. Further papers define the discrete model and develop
algorithms for the operations (see Güting and Schneider, 2005, for references).
The model was extended to a network-based representation of moving objects
(or trajectories) in Güting et al. (2006). Recently, it was generalized to model
objects moving in different environments (for example, road networks, public
transport, indoor spaces) and according to different transportation modes (Xu
and Güting, 2013).

The Secondo system is freely available for download from its Web site,7

where a lot of further documentation can be found.
Survey articles on spatio-temporal indexing are Mokbel et al. (2003) and

Nguyen-Dinh et al. (2010). The TB-Tree is described in Pfoser et al. (2000), the
MON-tree in Almeida and Güting (2005). The Hermes system, which also par-
tially implements the model of Section 3.2, is decribed in Pelekis and Theodor-
idis (2005) and Pelekis et al. (2008a).

Secondo supports further query types such as continuous nearest neighbor
queries (Güting et al., 2010) and spatio-temporal pattern queries (Sakr and
Güting, 2011). The latter are discussed in Chapter 12.

7 http://dna.fernuni-hagen.de/Secondo.html/
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BerlinMOD is a benchmark for evaluating MOD systems, implemented
within Secondo. It allows one to create scalable trajectory data sets. It is based
on a simulation approach: For 2000 (fictitious) people living in Berlin, their
car trips are “observed” over a period of one month. The mentioned parame-
ters define the standard benchmark at scale factor 1.0. However, one can set
parameters to select any number of people and length of observation period.
The benchmark further defines a set of representative queries to evaluate the
performance of a MOD system. The BerlinMOD benchmark is presented in
Düntgen et al. (2009). Its Web site8 provides scripts and further documentation.

8 http://dna.fernuni-hagen.de/Secondo.html/BerlinMOD/BerlinMOD.html
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Trajectory Data Warehouses
Alejandro A. Vaisman and Esteban Zimányi

4.1 Introduction

In previous chapters we have seen that the usage of location-aware devices
enables the collection of large volumes of trajectory data. Effective analysis of
such data imposes new challenges for their management, while raising oppor-
tunities for discovering behavioral patterns that can be exploited in applications
such as location-based services or traffic control management.

Data warehouses (DW) and online analytical processing (OLAP) have been
successfully used for transforming detailed data into valuable knowledge for
decision-making purposes. Extending DWs for coping with trajectory data,
leading to trajectory data warehouses (TDW), allows us to extract essential
knowledge from raw or semantic trajectories. For example, a TDW can be used
for analyzing the average speed of cars in different urban areas.

Trajectory data in a warehouse must be typically analyzed in conjunction
with other data, for example, to find out the correlation between the speed
of cars and temperature, precipitation, or elevation. In light of these needs,
in this chapter we provide an overall view that integrates trajectory data in a
more general data warehousing framework, which we call spatio-temporal data
warehousing.

We start this chapter by introducing in Section 4.2 the notion of data ware-
housing and describing the main elements in a DW architecture. After giving
in Section 4.3 the running example used throughout this chapter, we address
in Section 4.4 spatio-temporal data warehousing, and show that trajectory data
warehouses can be regarded as a particular case of spatio-temporal DW. We
introduce in Section 4.5 continuous fields and show that they enhance the pos-
sibilities of decision making. In Section 4.6 we discuss a representative TDW,
the one proposed by the GeoPKDD project. We conclude in Section 4.7.

62
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Figure 4.1 A typical data warehouse architecture.

4.2 Data Warehousing

Data warehouses are large data repositories that support the decision-making
process. Figure 4.1 shows a typical multi-tier data warehousing architecture. We
can see that data coming from heterogeneous data sources, after a staging process
that acts as a kind of buffer, pass through a process known as ETL, standing
for extraction, transformation, and loading. The extraction phase gathers data
from the data sources. These may be operational databases, but also files in
various formats, which may be internal or external to the organization. The
transformation phase modifies the data from the format of the data sources to
that of the warehouse. This includes several aspects: cleaning, which removes
errors in the data and converts them into a standardized format; integration,
which reconciles data from different data sources, both at the schema and at
the data level; and aggregation, which summarizes the data obtained from data
sources according to the level of detail (granularity) of the data warehouse.
Finally, the loading phase feeds the data warehouse with the transformed data.
This also includes refreshing the data warehouse, that is, propagating updates
from the data sources to the data warehouse at a specified frequency in order to
provide up-to-date data for the decision-making process. We will see later that
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the trajectory reconstruction process explained in Chapter 2 is part of the ETL
process in a TDW architecture.

Continuing with Figure 4.1, a DW makes use of metadata, which include
information about the DW schema, the data source schemas, the mappings
between source and DW attributes, as well as the frequency of data refreshment.
From the organizational DW smaller DWs can be built to satisfy departmental
needs. These DWs are called data marts.

On the next tier, an OLAP server provides a multidimensional view of the
data stored in the DW. This enables analysts, managers, and executives to gain
insight into data through interactive access to a wide variety of possible views
of information. Thus, at a conceptual level, data are perceived by the user as
a hypercube where each cell contains values, called measures, which quantify
facts. The axes of the hypercubes are called dimensions. Dimensions are typically
organized into hierarchies, which allow to aggregate measures at different levels
of detail. Queries addressed to the OLAP server are expressed using OLAP
operators such as slice, dice, roll-up, and drill-down. The slice operator removes
a dimension in a cube, that is, obtains a cube of n − 1 dimensions from a
cube of n dimensions. This is analogous to a relational algebra projection. Dice
applies a Boolean condition to a cube, and returns another cube containing only
the cells that satisfy such condition. This is analogous to a relational algebra
selection. Roll-up aggregates measures according to a dimension hierarchy,
using an aggregate function, to obtain measures at a coarser granularity. Drill-
down disaggregates previously summarized measures, and can be considered
the inverse of a roll-up.

Finally, the user interacts with the OLAP server through several tools, such
as OLAP, reporting, statistical, and data-mining tools. In the case of an OLAP
client, the user can then perform OLAP analysis interactively.

If a DW stores trajectory data, we are in the presence of a TDW. Typical
analysis over a TDW includes finding out the distribution of trajectories by road
type (which requires a roll-up operation to aggregate trajectories by road type,
and a slice operation to keep the dimensions of interest), or the total number of
cars in a certain location at a given moment. We will give examples of TDW
queries in the following sections.

At the logical level, a typical implementation, referred to as relational OLAP
(ROLAP), stores the data in relational databases. This leads to two kinds of
tables. Fact tables store the data elements under analysis (e.g., trajectories in
a TDW), while dimension tables describe the axes of analysis (e.g., roads,
vehicle type) of the data contained in the fact tables. If dimension tables are
denormalized, that is, there is a single table for the whole dimension, we
have a star schema. Otherwise, that is, if there is one table for each level in
a dimension hierarchy, we have a snowflake schema. Fact tables are usually
normalized.
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Figure 4.2 An example of a trajectory data warehouse.

4.3 Running Example

We introduce next the running example that will be used throughout this chapter.
The Italian city of Milano has one of the highest rates of car ownership in Europe.
Since this induces many problems, a DW can be useful for understanding and
analyzing traffic data so that corrective measures may be taken. Spatial data in
the warehouse include the road network, the political division of the city into
zones and districts (administratively, the city is divided into nine zones, each zone
encompassing a number of districts), and the trajectories themselves. Nonspatial
data include the characteristics of the car performing the trajectory. Figure 4.2
shows the conceptual schema depicting the above scenario using the MultiDim
model due to Malinowski and Zimányi (although any other conceptual model
could be used instead). Note that to support spatio-temporal data, we extended
the MultiDim model with time-dependent (or moving) types, which capture
the evolution over time of base types (e.g., real, integer) and spatial types.
For details about these data types and their operators, we refer the reader to
Chapter 3.

When building a data warehouse, the data to be analyzed (in our case tra-
jectories) determine the facts and associated measures. An important question
then is to determine the axes of analysis, or dimensions, that will be used for
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analyzing the facts. In our case we would like to analyze the trajectories by days,
districts, roads, and the cars that performed the trajectory. Therefore, we need
to segment the trajectories into episodes such that each episode is related to a
single district, road, and day. Nevertheless, since we need to keep track of all
episodes belonging to a single trajectory, we define an additional dimension that
groups the data pertaining to each trajectory as a whole.

As shown in the figure, there is a fact relationship, Episode, that is related to
five dimensions: Time, District, Road, Trajectory, and Car. Dimensions
are composed of levels and hierarchies. For example, while the Road dimen-
sion has only one level, the District dimension is composed of two levels,
District and Zone, with a one-to-many parent-child relationship defined
between them. Levels have attributes that describe their instances, referred
to as members. For example, level District has attributes such as name,
population, and area. A level or an attribute can be spatial, that is, it has
an associated geometry (e.g., point, line, or region) that is indicated by a pic-
togram. In our example, dimension levels District and Zone are spatial, and
their geometry is a region; dimension Road is also spatial, and its geometry
is a line. On the other hand, startLocation and endLocation are spa-
tial attributes of the Trajectory dimension, and their geometry is of type
point.

There are four measures: route, distance, duration, and avgSpeed.
The first one, route, keeps the movement track of the episode. It is a spatio-
temporal measure of type time-dependent (or moving) point, as indicated by the
symbol m(•). The other measures are numerical ones, derived from route.

Finally, topological relationships may be represented using pictograms in
fact relationships and in parent-child relationships. For example, the topological
relationship in Episode indicates that whenever a district and a road are related
in an instance of the relationship, they must overlap. Similarly, the topological
relationship in the hierarchy of dimension District indicates that a district is
covered by its parent Zone.

As stated before, the movement tracks of episodes are kept in measure route,
while data describing the whole trajectories are kept in dimension Trajectory.
Alternatively, we could have represented episodes or even whole trajectories
in a dimension. Our model is flexible enough to represent a wide spectrum of
situations, where trajectories can be aggregated along spatial and alphanumerical
dimensions, or facts can be aggregated over a trajectory dimension. The choice
among these representations depends on the queries to be addressed. Indeed,
the complexity of the queries and their execution time will depend on how much
the information requested is precomputed in measures, as data warehouses are
optimized for aggregating measures along dimensions. In other words, although
it is possible to aggregate data from dimensions, queries will be more elaborate
to write, and less efficient to execute.
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Figure 4.3 An alternative partition of episodes with respect to road type.

The DW depicted in Figure 4.2 partitions a trajectory into episodes with
respect to days, roads, and districts. An alternative schema shown in Figure 4.3
partitions trajectories with respect to the road type in which they occur. For
example, a trajectory can be segmented into episodes occurring in highways,
national roads and regional roads. This partitioning is close to the notion of
episodes discussed in Chapter 1. Notice also that the time granularity in Fig-
ures 4.2 and 4.3 differs. In the former case, the granularity is day, although we
keep the movement track in the route measure with a timestamp granularity.
In the latter case, we relate each episode with its initial and final timestamps.
The choice among the two alternative data warehouse schemas depends on
application requirements and the typical OLAP queries to be addressed.

When trajectories are used as measures, the problem of aggregation arises.
In the examples of Figures 4.2 and 4.3, we segmented the trajectories into epi-
sodes and kept their movement track in a geometry of type time-dependent
point. Thus, we can aggregate such episodes (or the whole trajectories) along
the different dimensions. An alternative approach for trajectory aggregation
aims at identifying “similar” trajectories and merging them in a class. This
aggregation may come together with an aggregate function, which may be the
count function in the simplest case, although more complex ones may be
used. The main problem consists in adopting an appropriate notion of trajectory
similarity, through the definition of a similarity measure, for example, a distance
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function. The simplest approach to define similarity between two trajectories is
viewing them as vectors and using the Euclidean distance as similarity mea-
sure. The problem with this technique is that it cannot be easily applied to
trajectories having different length or sampling rate (see Chapter 2), and it
is not effective in the presence of noise in the data. A typical way of aggre-
gating trajectories is clustering them together, considering different distance
functions or other characteristics (e.g., same starting point, same ending point,
etc.). Discovering trajectories with the same pattern is another way of aggre-
gating trajectories. This is extensively covered in Chapters 6, 7, and 8 of this
book.

Finally, in Section 4.6 we will study an alternative design of a trajectory data
warehouse, where space and time are partitioned into spatio-temporal cells, and
where each cell contains aggregated measures that are precomputed from the
trajectories that cross the cell. Examples of such aggregated measures would
be the number of trajectories or their average speed. In this way, the movement
tracks of individual trajectories are no longer stored in the data warehouse, only
aggregated data about the trajectories are kept.

4.4 Querying Trajectory Data Warehouses

In order to address queries to our TDW we translate the conceptual schema in
Figure 4.2 into a snowflake schema. Episode becomes a fact table, dimension
levels become dimension tables (with identifier id), and foreign keys are used
for linking the fact table to dimension tables, and to link dimension tables that
represent two consecutive levels in a dimension hierarchy. For example, the
hierarchical relationship between District and Zone is represented by the
attributes zone in the former and id in the latter, where id is a foregin key
referencing zone. The resulting schema is given next.

Episode(time, district, road, trajectory, car, route, distance,

duration, avgSpeed)

Time(id, date, week, isHoliday, ..., month)

Month(id, month, ..., quarter)

Quarter(id, quarter, ..., year)

Year(id, year, ...)

District(id, name, population, area, ..., zone)

Zone(id, number, name, ...)

Road(id, number, name, ...)

Trajectory(id, number, distance, duration, startTime, endTime,

startLocation, endLocation, ...)

Car(id, number, model, year, fuel, ..., carType)

CarType(id, name, ...)
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4.4.1 OLAP Queries

We use a functional SQL-like query language for expressing OLAP queries.
This language, denoted by Qagg, is based on the well-known relational calculus
with aggregate functions proposed by Klug. We show next what a Qagg query
looks like, using our running example.

Query 4.1. “Give by zone the total number of episodes performed by diesel
cars in February 2011.”

SELECT z.number, nbrEpisodes

FROM Zone z

WHERE nbrEpisodes = COUNT( SELECT e.id

FROM Episode e, Car c, Time t, District d

WHERE e.car = c.id AND e.time = t.id

AND e.district = d.id AND d.zone = z.id

AND c.fuel = ’diesel’ AND t.date >= 1/2/2011

AND t.date < 1/3/2011 )

For each zone, the inner query counts the number of trajectories in the zone
satisfying the conditions in the query, and the result is stored in the variable
nbrEpisodes. Notice that the inner query performs in the WHERE clause a dice
operator by selecting facts with diesel cars in February 2011. The only attribute
in the SELECT clause of the inner query is the identifier of the episodes. This
corresponds to a series of slice operators removing all dimensions associated
with the facts. Finally, the correlation between the inner and the outer queries
through districts performs a roll-up operator.

The query just presented involved the fact table Episode. We give next an
example of an OLAP query involving the Trajectory dimension.

Query 4.2. “Give the average duration of trajectories that traversed the Lambrate
district in the last quarter of 2010.”

AVG( SELECT j.duration

FROM Trajectory j

WHERE EXISTS ( SELECT *

FROM Episode e, District d, Time t

WHERE e.trajectory=j.id AND e.district=d.id

AND e.time=t.id AND d.name=‘Lambrate’

AND t.date >= 1/10/2010 AND t.date <= 31/12/2010 ) )

Here, for each instance of the Trajectory dimension, the inner query verifies
that at least one episode of the trajectory is related to the Lambrate district and
occurred on the last quarter of 2010. Notice that the durations of the trajectories
are precomputed in the Trajectory dimension and therefore it is possible to
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apply the average function to them. If the durations of the whole trajectories
must be calculated, then the query would be as follows.

AVG( SELECT totDuration

FROM Trajectory j

WHERE EXISTS ( SELECT *

FROM Episode e, District d, Time t

WHERE e.trajectory=j.id AND e.district=d.id

AND e.time=t.id AND d.name=‘Lambrate’

AND t.date >= 1/10/2010 AND t.date <= 31/12/2010 )

AND totDuration = SUM( SELECT e.duration

FROM Episode e WHERE e.trajectory=j.id ) )

As can be seen in the examples above, an OLAP query is just a relational
calculus query with aggregation.

To characterize OLAP queries we consider a set of base types, namely int,
real, bool, and string, with the usual interpretation, except that their value
may be undefined. In addition, we define an identifier type id (introduced
in the examples above), which is used to identify dimension level members.
There are also time types, which are instant and periods, the latter being
a set of time intervals. Finally, there is a type constructor range(α), where
α ∈ {int, string, bool, real,instant}, which yields sets of intervals over
α. Thus, the type periods is just a shorthand notation for range(instant).
Base and time types have an associated set of operations, defined in Chapter 3.

It can be proved that the language Qagg, defined over the sets of base and time
types, has the same expressive power of the relational calculus extended with
aggregate functions. Based on this, it follows that the class of OLAP queries
includes all the queries that are expressible byQagg. Therefore, a data warehouse
is a data repository that supports OLAP queries.

4.4.2 Spatial OLAP

We consider now the spatial data types point, points, line, and region,
with their associated operations. For example, the predicate inside can be used
to test whether a point is inside a region. To express the following query, we
need to extend Qagg with spatial data types.

Query 4.3. “For roads intersecting the Lambrate district, give the number of
trajectories in the last quarter of 2010.”

SELECT r.name, nbTrajs

FROM Road r, District d

WHERE d.name=‘Lambrate’

AND intersects(r.geometry,d.geometry)
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AND nbTrajs = COUNT( SELECT e.trajectory

FROM Episode e, Time t

WHERE e.road=r.id AND e.time=t.id

AND t.date >= 1/10/2010 AND t.date <= 31/12/2010 )

The outer query selects the roads that intersect the Lambrate district using
the intersects predicate, which determines if a pair of geometries intersect.
Then, the inner query (an OLAP query as defined above) joins the fact table
Episode with the dimension level Time, selects the episodes that occurred in
the last quarter of 2010 and in the road of the outer query, counts the number of
trajectories, and stores this number in the variable nbTrajs.

Qagg augmented with spatial types yields the class of Spatial OLAP (SOLAP)
queries. As a consequence, we denote spatial data warehouse as a data ware-
house that supports SOLAP queries.

4.4.3 Spatio-Temporal OLAP

As explained in Chapter 3, time-dependent types are obtained by apply-
ing the type constructor moving(·) to a base or spatial type. For example,
a value of type moving(point) is a continuous function with signature
f : instant → point. Time-dependent types are partial functions, that is,
they may be undefined for certain periods of time. Time-dependent types are
equipped with a set of operations, also defined in Chapter 3. For example, the
projection of a time-dependent point into the plane consists of the points and
lines returned by the operations locations and trajectory, respectively.
Further, all operations over a nontemporal type are lifted to allow any of the argu-
ment types to be a time-dependent type and returns a time-dependent type. As
an example, the distance function, with signature point × point → real,
has lifted versions where one or both of its arguments can be time-dependent
points and the result is a time-dependent real. Intuitively, the semantics of such
lifted operations is that the result is computed at each time instant using the
nonlifted operation.

Analogously, aggregation operators can also be lifted. For example, a lifted
avg operator combines a set of time-dependent reals describing velocity for
several cars, and results in a new time-dependent real where the average is
computed at each instant. In addition, time-dependent aggregation operators
compute a scalar value from all the values taken by a time-dependent type.
For example, operator mavg can be used to obtain the average value from a
time-dependent real describing velocity.

Spatio-temporal OLAP (ST-OLAP) accounts for the case when the spatial
objects evolve over time. Thus, to express the following query, we need to extend
Qagg with both spatial types and the time-dependent types introduced above.
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Query 4.4. “For each road, give the geometry of the segments of the road on
which at least one trajectory passed on May 1, 2012.”

SELECT r.name, travGeom FROM Road r

WHERE travGeom = UNION( SELECT trajectory(e.route)

FROM Episode e, Time t WHERE e.road=r.id

AND e.time=t.id AND t.date=1/5/2012 )

In this query we apply the trajectory operation to the route measure
(of type time-dependent point) in order to obtain a line containing all the points
traversed by the time-dependent point. Then, we perform a spatial union on all
the geometries thus obtained, and store the result in the variable travGeom.

We next present another example of a spatio-temporal OLAP query.

Query 4.5. “Give the number of trajectories that started in the Lambrate district
on May 1, 2012.”

COUNT( SELECT j.id

FROM Trajectory j, District d

WHERE d.name=‘Lambrate’ AND date(j.startTime)=1/5/2012

AND intersects(j.startLocation,d.geometry) )

Notice that because j.startTime returns a timestamp, the date function
is applied for obtaining the corresponding day. The query takes advantage of the
fact that the start time and the start location of trajectories are precomputed in
the Trajectory dimension. If this were not the case, the query would read:

COUNT( SELECT e.id

FROM Episode e, District d WHERE d.name=‘Lambrate’

AND inst(initial(e.route)) =

MIN( SELECT inst(initial(e1.route)) FROM Episode e1

WHERE e1.trajectory=e.trajectory )

AND date(inst(initial(e.route)))=1/5/2012

AND intersects(val(initial(e.route)),d.geometry) )

In this case, the first episode of a trajectory is selected by verifying that the
start time of the episode given by inst(initial(e.route)) is the smallest
among all those of the episodes composing the trajectory. Then, it remains to
be tested that the start instant of the episode is on May 1, 2012, and that the
start location of the episode given by val(initial(e.route)) intersects
the geometry of the Lambrate district. Because inst(initial(e.route))
returns a timestamp, date is applied for obtaining the corresponding day.

Based on the above, we define the class of spatio-temporal OLAP (ST-OLAP)
queries as the one composed of all the queries that can be expressed by Qagg,
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augmented with spatial and time-dependent types. Therefore, a spatio-temporal
data warehouse is a warehouse that supports ST-OLAP queries.

As we have stated in the introduction, a trajectory data warehouse is a par-
ticular case of spatio-temporal data warehouse, where the facts are trajectories,
part of trajectories, or some aggregation of trajectories or parts of trajectories.

4.5 Continuous Fields

Continuous fields are phenomena that change continuously in space and/or time.
Examples include altitude and temperature, where the former varies only on
space and the later varies on both space and time. Continuous fields have been
extensively studied in GIS, although multidimensional analysis of continuous
fields is a novel area of research. We will show in this section that combining tra-
jectory data with continuous field data provides additional analysis capabilities
for decision making.

At a conceptual level continuous fields can be represented as a function that
assigns to each point of space (and possibly in time) a value of a particular domain
(e.g., integer for altitude). However, at a logical level, continuous fields must be
represented in a discrete way. For this, we need first to discretize the space, that
is, to partition the spatial domain into a finite number of elements (what is called
a tessellation), and then assign a value of the field to a representative point in each
partition element. Furthermore, because values of the field are known only at a
finite number of points (called sampled points), the values at other points must
be inferred using an interpolation function. In practice, different tessellations
and different interpolation functions may be used. The most popular represen-
tation is the raster tessellation, which partitions the space in regular elements
(squares, cubes, etc.) and assigns the same value to each point belonging to an
element.

We extend next our conceptual model with continuous fields, independently of
their underlying implementation. Fields can be seen as two- or three-dimensional
cubes with a single measure. For example, a time-dependent field representing
temperature can be seen as a spatio-temporal cube that associates a real value
to any given point in space and time. This view of fields as cubes allows us
to seamlessly combine fields with regular cubes composed of fact relationships
and dimensions. As we will see in the queries below, relating fields to fact
relationships or to dimensions is performed through spatial or spatio-temporal
operators. Fields can also be included as measures in fact relationships, although
this is beyond the scope of this chapter.

Figure 4.4 extends our example with continuous fields. Nontemporal fields are
identified by the f( ) pictogram, while time-dependent ones are identified by the
f( , ) pictogram. There are two nontemporal fields, Elevation and LandUse.
The former could be used, for example, for analyzing the correlation between
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Figure 4.4 Extending our running example with continuous fields.

speed of trajectories and elevation (or slope), and the latter to select trajectories
starting in a residential area and finishing on an industrial area. Further, there are
two time-dependent fields, Temperature and Precipitation. In addition,
numerical measures can be calculated from field data. An example is given
by measure riskLevel, which represents knowledge from domain experts
about the relative risk of the episodes. Such a measure (e.g., a real value) can
be computed from the measure route and the four fields. For example, an
episode with high speed in descending slopes, in residential areas, with frozen
temperatures, or with high precipitation will have high a risk level.

To be able to express OLAP queries involving fields, we define field types,
which capture the variation in space of base types. They are obtained by applying
a constructor field(·). Hence, a value of type field(real) (e.g., represent-
ing altitude) is a continuous function f : point → real. Field types have
associated operations, which are analogous to those defined for time-dependent
types in Chapter 3. In particular, field types have lifted operations that generalize
those of the base types. Their semantics is such that the result is computed at
each point in space using the nonlifted operation. Aggregation operators are also
lifted. For instance, a lifted avg operator combines several fields, yielding a
new field where the average is computed at each point in space. In addition,
field aggregation operators compute a scalar value from all the values taken by a
field. For example, operator favg can be used to obtain the average value from
a field describing altitude.

Time-dependent fields are obtained by composing the moving and field

type constructors. For example, a value of type moving(field(real)), which
defines a function f : instant → (point → real), can be used to repre-
sent temperature, which varies on time and space. In our model the types
moving(field(real)) andfield(moving(real)) are equivalent, that is, they
define a spatio-temporal cube that associates a real value to each point in the
cube. All operations defined for time-dependent types in Chapter 3 apply for
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time-dependent fields. However, lifted operators must be renamed to differen-
tiate those that operate on space or on time. For example, sum_s and sum_t

correspond to the sum operator lifted in space and in time, respectively. Thus,
given a set of time-dependent fields ti representing the number of cars of type
i that are present at a location in space at a particular instant, sum s({ti}) will
result in a time-dependent field t obtained by applying the operator sum_t
to each point in space, because each point in space defines a time-dependent
real. Similarly, sum t({ti}) will result in a time-dependent field t obtained by
applying the operator sum_s to each instant, since each instant defines a field
of reals.

In addition, new spatio-temporal operators have to be defined. For example,
operators atMPoint, atMLine, and atMRegion restrict the field to a given
subset of the spatio-temporal cube defined by a time-dependent spatial value.
In particular, projecting a time-dependent field to a time-dependent point with
function atMPoint will keep only the points in the field that belong to the
moving track of the point (i.e., a 3D line in the cube).

Consider the following query, which involves the field LandUse.

Query 4.6. “Give the average duration of the trajectories that started in a
residential area and that ended in an industrial area on February 1, 2012.”

AVG(SELECT j.duration

FROM Trajectory j, LandUse l

WHERE date(j.startTime)=1/2/2012 AND date(j.endTime)=1/2/2012

AND intersects(j.startLocation,defspace(at(l,’Residential’))),

AND intersects(j.endLocation,defspace(at(l,’Industrial’))))

Here, function at projects the land use field to the values of type residential
or industrial, function defspace obtains the geometry of the restricted field,
and function intersects ensures that the start or end location is included in
the obtained geometry. Because it is supposed that the attribute startTime

is of type timestamp, function date is used for obtaining the corresponding
date.

The next query involves the time-dependent field Temperature.

Query 4.7. “For episodes that occurred on February 1, 2010, give the average
speed and the maximum temperature during the episode.”

SELECT e.number, e.avgSpeed, mmax(atMLine(l,e.route))

FROM Episode e, Time t, Temperature l

WHERE e.time=t.id AND t.date=1/2/2010
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In the above query, function atMLine projects the time-dependent field to the
movement track of the episode, resulting in a time-dependent real. Then, function
mmax obtains the maximum temperature value during the episode.

The class of spatio-temporal OLAP and continuous field (STOLAP-CF)
queries is the class that contains the queries expressed by Qagg augmented
with spatial types, time-dependent types, and field types. It follows that a con-
tinuous field data warehouse is a data warehouse that supports STOLAP-CF
queries.

4.6 An Example Trajectory DW: GeoPKDD

We showed in previous sections that individual trajectories can be represented
in facts and/or dimensions and that they can be aggregated and analyzed. An
alternative way of analyzing trajectory data, as we commented in Section 4.3,
consists in partitioning the space into regions (or road segments) and precom-
puting aggregated trajectory data relative to each partition. For example, we can
partition the space into regular squares and for each square compute the number
of trajectories at a given instant. This precomputation allows us to get rid of the
trajectories, and analyze them using traditional DWs. One relevant example of
this approach is the TDW developed in the GeoPKDD project.1

The GeoPKDD TDW allows analyzing trajectory data without actually stor-
ing the trajectories themselves, but instead storing preaggregated measures
resulting from a complex ETL process that feeds the TDW. During this ETL
process, the sampled positions received by GPS-enabled devices are converted
into trajectory data and stored in a moving object database, using the trajectory
reconstruction techniques explained in Chapter 2. The moving object database
also contains user profiles, spatial partitions, and temporal intervals.

After the reconstruction step, the TDW is fed with aggregate trajectory data
using either a cell-oriented or a trajectory-oriented ETL approach. The cell-
oriented approach searches for the trajectory portions that lie within the spatio-
temporal cells. Then, those portions are decomposed with respect to the user
profiles they belong to. On the other hand, the trajectory-oriented approach
looks for the spatio-temporal cells where each trajectory resides. Then, portions
of the trajectory that fit into each of those cells are computed, taking into account
the user profiles.

In such a TDW, the dimensions are typically organized as follows. The
temporal dimension is designed to range over equally sized time intervals, which
can be aggregated according to larger intervals as we move up in the dimension
hierarchy. The spatial dimension represents a partition of the space that defines
the cells (or the road segments) where measures are recorded. Further, the fact

1 http://www.geopkdd.eu



4.6 An Example Trajectory DW: GeoPKDD 77

AggTrajectories

presence
distance
sumDistance
duration
sumDuration
velocity
acceleration
crossX
crossY
crossT

Profile

profileID
gender
ageGroup
profession
maritalStatus
deviceType
...

Cell

cellNo
...

GeoLocation

District

name
population
area
...

Zone

number
name
...

E
nd

Ti
m

e

S
ta

rtT
im

e

Time

dateTime
...

Calendar

Month

month
...

Year

year
...

Day

date
week
isHoliday
...

Figure 4.5 The GeoPKDD TDW in the MultiDim model.

table references the dimensions, and includes measures that provide indicators
about the trajectories in each element of the partition (e.g., number of trajectories,
total time spent in the cell or road segment, etc.). Finally, these aggregate data
are exploited using a Visual OLAP interface that allows multidimensional and
interactive analysis (covered in Chapters 7 and 8).

Figure 4.5 shows the conceptual schema of such a TDW using the MultiDim
model. Dimension Profile collects demographic information (such as gender
and age group) of the car drivers. In the spatial dimension, Cell represents the
smallest unit we consider (i.e., a rectangle belonging to a grid that partitions the
spatial domain). Further, a cell belongs to one district (this is obviously a simpli-
fying approximation) and a district belongs to one zone. The Time dimension is
analogous to the one in Figure 4.3, and the fact relationship AggTrajectories
is related twice to this dimension, as illustrated by the roles startTime and
endTime. Finally, each instance of the fact relationship contains aggregated
measures about the trajectories of a given profile that cross a spatio-temporal
cell. These measures are as follows:

� presence: the number of distinct trajectories.
� distance: the average distance of the trajectories.
� sumDistance: total distance covered by the trajectories.
� duration: the average duration of the trajectories.
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� sumDuration: sum of the durations of the trajectories.
� velocity: average speed of the trajectories.
� acceleration: average change of speed of the trajectories.
� crossX, crossY, crossT: total number of distinct trajectories crossing the

border between the cell and its adjacent cells, along the spatial (X and Y) and
temporal (T) axes. These measures will be explained in Section 4.6.1.

We remark that these measures represent aggregated numeric information
about trajectories. Thus, no spatio-temporal information about trajectories is
recorded in the TDW whatsoever. This information lies only in the moving
object database, and can be used for answering queries, along with the data
in the TDW, when detailed (nonaggregated) information is required. Formally
speaking, according to the definitions given in Section 4.4, the data warehouse
in Figure 4.5 is a spatial data warehouse. Although useful in many practical situ-
ations, this approach does not suffice for a comprehensive analysis of movement
data (see Section 4.8).

4.6.1 The Double-Counting Problem

As we have seen, the individual trajectories are not stored in the GeoPKDD
TDW; only aggregate information is kept. As result, the double-counting prob-
lem may appear during aggregation over the partitioned space. We use the
measure presence, explained above, to show the problem. Consider the three
trajectories over the space divided into six regions R1 through R6 in Figure 4.6.
If we perform a roll-up to aggregate the number of trajectories in regions R4,
R5, and R6 (suppose they constitute a district), we would obtain a total of six
trajectories (resulting from adding three trajectories in R4, two in R5, and one
in R6), while the correct number to obtain would have been three trajectories.
Solving this problem requires accessing the moving object database to com-
pute super-aggregates in all dimension levels. This problem may occur while
answering the following query.

Query 4.8. “Give the number of trajectories per district on January 1, 2010.”

In the above query, the measure presence must be aggregated over all the
cells that belong to a district. A first solution would be to simply sum up the
measure values of these cells. In the literature, this is a common, although very
imprecise, approach to aggregating spatio-temporal data.

Another approach uses linear interpolation to prevent omitting in the result
the cells crossed by a trajectory but in such a way that no sample point of the
trajectory occurred within them. This approach borrows from statistical methods
to deal with the double-counting problem. The basic idea is the following.
Let us denote presCx,y,t

the presence measure in a given cell Cx,y,t . Given
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Figure 4.6 The double-counting problem.

a cell Cx,y,t , the measures crossX and crossY give the number of distinct
trajectories crossing the spatial borders between Cx,y,t and Cx+1,y,t and Cx,y+1,t ,
respectively. Analogously, crossT gives the number of distinct trajectories
crossing the temporal border between Cx,y,t and Cx,y,t+1. Knowing the values
of presence for two adjacent cells, Cx,y,t and Cx+1,y,t , the aggregate value of
pres over a new cell Cx ′,y ′,t = Cx,y,t ∪ Cx+1,y,t can be computed as follows:

presCx′,y′,t = presCx,y,t
+ presCx+1,y,t

− Cx,y,t .crossX

Similarly, the values Cx,y,t .crossY and Cx,y,t .crossT can be used to compute
the presence in cells Cx,y,t ∪ Cx,y+1,t and Cx,y,t ∪ Cx,y,t+1, respectively.

4.6.2 Querying the GeoPKDD TDW

We now use our query language Qagg for querying the GeoPKDD TDW. As in
Section 4.4, we assume a straightforward translation of the MultiDim schema
in Figure 4.5 into a snowflake schema. Notice that, because the TDW does not
contain moving object data, but only spatial data representing the partition of
the space, only SOLAP queries can be addressed to the TDW.

For example, Query 4.8 above reads in Qagg:

SELECT d.name, sumPres

FROM District d

WHERE sumPres= SUM( SELECT a.presence

FROM AggTrajectories a, Cell c, Time t1, Time t2

WHERE a.cell=c.id AND contains(d.geometry,c.geometry)

AND a.startTime=t1.id AND a.endTime=t2.id

AND intersects(range(t1.dateTime,t2.dateTime),1/1/2010) )
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Figure 4.7 Combining the TDW in Figure 4.2 with the GeoPKDD TDW in Figure 4.5, the
latter seen as set of time-dependent fields, one for each measure.

For each district we sum the presence measure for all cells contained in the
district and such that the interval defined by start and end time of a trajectory
intersects January 1, 2010.

4.6.3 Representing the GeoPKDD TDW as Continuous Fields

The reader may have noticed that each measure of the TDW in Figure 4.5
defines a collection of time-dependent fields, one for each user profile. These
time-dependent fields are defined over spatio-temporal cells that have a fixed
granularity of, say, one square kilometer and one hour. We can produce a time-
dependent field for each measure by projecting out the Profile dimension and
aggregating the measure with the functions studied in Section 4.5. For example,
from the presence measure in Figure 4.5 we can produce a time-dependent
field Presence by adding up the total presence by hour and square kilometer
for all profiles using one of the functions sum_s or sum_t. We can proceed
analogously with every measure in the cube, ending up with a collection of time-
dependent fields with the same granularity as that of the original TDW. Notice
that the functions defining these fields are stepwise ones, that is, the value of the
measure is constant in each spatio-temporal cell.

As shown in Figure 4.7, using the approach above we can combine the TDW
of our running example in Figure 4.2 with the GeoPKDD TDW in Figure 4.5. As
an example, consider the following query, which combines the field Presence
from the GeoPKDD TDW with our running example for discovering dense
traffic areas in residential zones.

Query 4.9. “For districts with more than 70% of residential use, give the average
presence of cars in January 21, 2012, at each point of the district.”

SELECT d.name, projPres

FROM District d, LandUse l, Presence p
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WHERE projPres = favg(atperiod(atregion(p,d.geometry),21/1/2012))

AND (area(defspace(atregion(at(l,‘Residential’),

d.geometry)))/area(d.geometry)) >= 0.7

In this query, the time-dependent field Presence is projected to the geometry
of the district and to the date January 21, 2012, and the favg operator is applied
to compute the average of presence across hours of the day. The resulting
nontemporal field is kept in the variable projPres. On the other hand, the
nontemporal field LandUse is projected to residential zones and to the geometry
of the district, and the correspoding region is divided by the area of the district
to verify the 70% condition specified in the query.

4.7 Conclusions

We have discussed data warehousing techniques that, in the presence of trajec-
tory data, help to improve the decision-making process. For this, we defined
the notion of trajectory data warehouses (TDW) as a particular case of spatio-
temporal data warehouses, where trajectories can be represented both as mea-
sures and dimensions. By means of a running example we showed how a
TDW can be modeled, designed, and queried, in order to deliver an aggregated
view of trajectory data. In addition, as a particular case study, we discussed
the GeoPKDD TDW, where facts contain aggregated trajectory measures
instead of the trajectories themselves. Finally, we showed that representing the
GeoPKDD TDW as a collection of continuous fields, one for each measure,
provides additional possibilities for analysis.

4.8 Bibliographic Notes

Basic data warehousing concepts can be found in the classic book by Kim-
ball (1996). This chapter is based on previous research work on spatio-temporal
data warehousing and continuous fields performed by the authors (Vaisman and
Zimányi, 2009a,b). Hierarchies in OLAP are studied, among other works, in
Cabibbo and Torlone (1997). MultiDim, the conceptual model we use in this
chapter, was introduced in Malinowski and Zimányi (2008). The query language
we use throughout the chapter is based in the classic relational calculus with
aggregate functions introduced by Klug (1982). The data type system follows
the approach of Güting and Schneider (2005). The view of continuous fields
as cubes was introduced in Gómez et al. (2012). The GeoPKDD TDW, its
associated ETL process, and the double-counting problem during aggregation
are studied in Orlando et al. (2007). A good discussion on TDW is presented
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in Pelekis et al. (2008b) and in Marketos et al. (2008). Analysis tools for the
TDW can be found in Raffaetà et al. (2011). Andrienko and Andrienko (2010)
provide a state-of-the-art analysis on trajectory aggregation. They show that
approaches like the one of the GeoPKDD TDW sometimes are not enough for
a comprehensive trajectory analysis.
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Mobility and Uncertainty
Claudio Silvestri and Alejandro A. Vaisman

5.1 Introduction

Mobility data are inherently uncertain due to several contributing factors related
to different phases of their life cycle, from acquisition to interpretation. When
data are processed, uncertainty propagates to intermediate and final results.
Thus, it is important to be aware of uncertainty in trajectory data and explicitly
account for it in their modeling and managing. For example, consider a simple
scenario where people move around a city and disclose their positions twice an
hour; to avoid stalking, the disclosed position is randomly selected from inside a
circle with a radius of one kilometer, which contains the position of the user. Not
being aware of uncertainty could lead to inconsistent conclusions. For instance,
we could erroneously assume that a group of people have met or that someone
has visited a privacy-sensitive place. On the contrary, taking uncertainty into
account, we can avoid such erroneous conclusions; for example, if someone
was farther than one kilometer from the place of an accident, we can certainly
assume that this person was not involved in that accident.

We next introduce a well-known taxonomy of uncertainty (see Bibliographic
Notes section), aimed at clearly defining terms that are often given multiple
meanings in the literature.

A Taxonomy of Uncertainty
The taxonomy we present here considers, at the highest abstraction level, that
uncertainty in mobility and geographic information is caused by the complexity
of the system conformed by three kinds of entities: human being, earth (i.e.,
geographic/moving), and computing machinery. In simple terms, uncertainty
reflects the variety of the geographic and movement reality, the computational
capability of machines, and the limits of human cognition.

A first distinction classifies uncertainty as: (1) uncertainty of the enti-
ties within each one of the three domains above, and (2) uncertainty of the
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relationships between entities in the three domains. For example, both the uncer-
tainty due to the finite representation of coordinates and the one due to unknown
positions fall into class (1), since they are caused respectively by the uncertainty
in the computer representation and in the human cognition (lack of knowledge/
memory) of entities.

The second branch (i.e., the uncertainty due to human, machine, and geog-
raphy/movement relationships) can be refined according to the kind of differ-
ence existing between the corresponding entities in the different domains. In
particular we can distinguish: inaccuracy/error, a deviation of a measurement
from the reality; incompleteness, caused by a partial description of the reality;
inconsistency, indicating the existence of different computational and cognitive
statements referring to the same entity (e.g., because of semantic mismatch
or contradiction, or simply due to different representations); and imprecision,
which refers to a lack of exactness of computational or cognitive values. We can
further classify imprecision depending on its degree in: nonspecificity, meaning
that only a set containing the true value is known; ambiguity, when it is not
possible to define univocally a set containing the exact value; and vagueness,
when it is not possible to define a set containing the exact value, because true
or false are just two of the possible truth values. We refer to fuzziness when the
truth of a value is replaced by a continuously changing degree of truth. In both
cases, no sharp/crisp boundary separates true and false values.

Uncertainty in Mobility Data
Using different position collection techniques entails different kinds of uncer-
tainty affecting recorded data. Some of the tracking methods described in Chap-
ter 2 have irrelevant errors on position and time measurement for most applica-
tion scenarios, whereas other ones are intrinsically less precise. In other cases,
the position is not measured, for example when it is manually inserted during
a data entry process. In this case the position could be inaccurate, because of
digitization errors, or vague, due to the nature of entities involved. For example,
a valley is a vague concept and it is hard to devise crisp borders that have separate
interior and exterior points. As a consequence, it is not possible to select the
trajectories that stopped inside a valley in an exact way. Similarly, due to the lack
of crisp borders of a zone frequently subject to avalanches, it is difficult to deter-
mine the number of skiers at risk even if we know exactly all of their trajectories.

Mobility data are characterized by several dimensions. In particular, in addi-
tion to space and time, data related to movement semantics and user actions could
also be present. Each of these dimensions is potentially affected by one of the
above kinds of uncertainty. For example, the semantic annotation and segmen-
tation of trajectories could be affected by uncertainty in the spatial dimension.
Thus, in case the geometry of a place of interest (POI) is fuzzy, or the positions
of the objects are inaccurate, it could be difficult to assert that an object stopped
at a POI.
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In this chapter, after discussing the principal causes of uncertainty in mobility
data, we address trajectory uncertainty and discuss two models for its represen-
tation: the cylinder and the space-time prisms model. We also address trajectory
uncertainty for movement constrained to road networks. In this context, we show
how the space-time prisms model can be used to address the map-matching prob-
lem introduced in Chapter 2. Finally, we also discuss how uncertainty can be
accounted for in trajectory clustering.

5.2 Causes of Uncertainty in Mobility Data

Appropriate accounting for uncertainty requires being aware of its sources, both
in data collection and data processing. This identification is crucial to decide
if uncertainty should be accounted for in a given situation and how to manage
it. Therefore, before moving on to the representation of uncertainty, we briefly
discuss its main causes, distinguishing the uncertainty in the movement data
per se from that introduced by postprocessing or deliberate accuracy/specificity
reduction. Further, we analyze the observational error introduced by the main
trajectory-tracking techniques suitable for mobility data.

Uncertainty in Localization
The uncertainty introduced when measuring moving object positions depends
both on the technique adopted and on the context in which it is applied, as
we detail later in this section. Regardless of the specific method used to track
object positions, we can identify two kinds of sources of uncertainty: (1) those
related to the nonspecificity of the acquired position, and (2) those related
to the inaccuracy in the position measurement process. A presence sensor, for
example, reveals the identity of objects that are within its range. Thus, by design,
the spatial extent containing an object is known but the actual position of such
object is unknown; therefore, the resulting position is affected by nonspecificity.
On the other hand, the results of GPS position and time measures are precise, but
affected by context-dependant stochastic errors, making them inaccurate. Note
that for some position-tracking technology, both aspects may coexist. Consider a
wireless communication equipment (GSM, WiFi, RFID, Bluetooth, etc.) used to
detect when objects enter its range. In this case the position of the spotted object
is a vague region, due to the possibly mutating environment. For example, some
kind of obstacle may be on the line of sight of the receiving antenna, hindering
the communications and thus potentially causing the object to be out of the range
of the equipment.

Uncertainty Due to Intentional Accuracy Degradation
A measured position, by itself imprecise and inaccurate to some extent, can be
further degraded either at collection time or later, before subsequent processing
or disclosure. This apparently surprising choice is usually determined by privacy



86 Mobility and Uncertainty

or efficiency concerns. For example, Chapter 2 describes how the position of a
mobile user may be obfuscated to protect his or her privacy either at the time the
position data are acquired or before performing an operation that could disclose
potentially harmful information to third parties. The same chapter presents
methods for the compression of trajectories, which discard nonrepresentative
positions in order to reduce the size or the digital representation of the trajectory.
Also in this case the transformation yields a result that is less similar to the
actual trajectory than the measured one. Finally, when representing a collection
of trajectories, a further level of compression makes sense: grouping similar
segments of trajectories and storing just a representative portion of each cluster
instead of all of the original segments. Once again, this is a trade-off between
accuracy and compact representation.

Uncertainty Due to Incomplete Data
Another source of uncertainty is the incompleteness of data. A typical example
is the sampling of a trajectory: we know the position of an object at given
time instants (both affected by observational errors). The positions occupied
by the object between two samples can be obtained by means of interpolation
techniques, making assumptions about the object’s movement; for instance,
using linear interpolation we are assuming that the object moves from one
sample point to the next one at constant speed. Location inference is another
possibility, which is based on the use of information about the object or about
the context to restrict the possible object positions. For example, we may know
that some action performed by the moving object was only possible at given
positions, or that an object can only perform certain movements.

5.2.1 Localization Techniques and Uncertainty

The trajectory tracking methods presented in Chapter 2, as any other method
of measurement, are affected by observational errors. These errors can directly
affect the position and time measurement (when the measure is direct), or
propagate to the computed position and time values (in the case of indirect mea-
surement). We next discuss uncertainty in the localization techniques described
in Chapter 2, and some other ones that the interested reader may find in the
bibliographic notes section.

GPS
The computation of the GPS position is based on the computation of the dis-
tance of the receiver from a set of GPS satellites. This distance is measured
indirectly, based on the different travel time of signals from the satellites to the
receiver. Thus, an error in time measurement is propagated through the compu-
tation, and affects the accuracy of the resulting position. In practice, to obtain a
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position, the distance from four known satellites is needed. The larger the num-
ber of satellites in sight, the higher the accuracy of the computed GPS position.
The nominal accuracy of GPS position is 20 meters; however, by using more
advanced techniques, it is possible to obtain higher accuracy: under one meter
with ordinary differential GPS devices, and down to a few millimetres using
specially equipped receivers to detect the phase differences between distinct
satellite signals.

GSM
There are many ways of tracking GSM phones. The most basic one is to use the
call record data containing the IDs of the starting and ending cells associated
with the calls. In this case the uncertainty of the position is essentially due to
the nonspecificity of the spatial information: depending on the density of the
cellular network, the size of a cell could range from a hundred meters to some
kilometers. More advanced alternatives are common to other wireless networks
and are discussed later.

5.2.2 Generic Methods for Wireless Communication

RFID, Bluetooth, and WiFi, as well as GSM, are discussed together, based on
the assumption that the mobile device signal can be identified by some fixed
reference points, called anchors.

Range-Based Methods
This is the case of Bluetooth fixed receivers continuously querying nearby
objects, RFID readers, and WiFi access points, but also of GSM cells, in case
devices entering and exiting cells are logged. Once the coverage of an antenna
is known, it is possible to restrict the position of the object to an area. If there
is more than one anchor, it is possible to intersect the ranges to obtain a more
accurate position. In this case the uncertainty is determined by both the size and
the overlap of the antenna ranges. The denser the cells (as in metropolitan GSM
areas), the more accurate is the determined position. Obstacles, at worst, may
rule out some anchor even if it is in the proximity, thus losing an opportunity
for position refinement.

Range-Free Methods
These methods rely on information about the radio signal strength (RSSI)
received by the different anchors/antennas. The absolute value is not relevant,
since they are conceived to work with the ratio between RSSIs. One of these
methods, for example, is based on the computation of the centroid of the anchor
points weighted with the respective RSSIs, which is invariant if the proportion
of weights is preserved. The uncertainty is due to RSSI error propagation, and
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to factors that affect signal in a nonlinear way, for example the presence of
objects along the signal path, whereas omnidirectional signal attenuations are
not relevant.

Distance and Direction-Based Methods
Unlike the methods described in the previous paragraph, distance-based meth-
ods use absolute RSSI to directly compute distance estimations. This method,
however, requires calibration of the specific radio used, and it is particularly
sensitive to any kind of perturbation. For this reason it is best suited for short-
range distance measurement with known devices. A different approach, based
on the use of a particular array of antennas that are able to compute RSSI for
different directions, uses both the angle of arrival (AOA) and the RSSI to detect
the position of the device. In both cases, assuming no obstacle, the uncertainty
derives from the original observational errors involved in the computation of the
indirect position measure, namely AOA and RSSI errors.

5.3 Uncertainty Models for Spatio-Temporal Data

We now turn to the problem of studying uncertainty of the trajectory of a
moving object. A moving object’s trajectory is obtained from raw trajectories,
which are finite sequences of time-space points. The most-used technique for
reconstructing trajectories from trajectory samples (see Chapter 2 in this book)
is linear interpolation. However, it relies on the assumption that in between
sample points, an object moves at constant minimal speed. It would be more
realistic to assume that moving objects have some physically determined speed
bounds. Given such upper bounds, uncertainty models have been proposed to
estimate the possible positions between every two consecutive points in a trajec-
tory sample. Note that uncertainty in trajectory databases may also arise from
other sources, discussed earlier in this chapter, and also in Chapter 2. In this
way, uncertainty not only refers to the possible locations of a moving object
between two points in a sample, but also to these points themselves, which are
not (in general) exactly recorded. Although the trajectory of a moving object
has been traditionally modeled as a polyline in a 3D space (two dimensions
for geography and one for time), modern approaches model such trajectory as
a volume in 3D, either cylindrical or of a more complex kind. More precisely,
in some of these approaches, the uncertainty of the moving object’s position
in between sample points is studied using space-time prisms. Informally, the
space-time prism between two consecutive sample points is defined as the col-
lection of space-time points where the moving objects may have passed, given a
speed limitation. Geometrically, it is the intersection of two cones in the space-
time space such that all possible trajectories of the moving object between the
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two consecutive space-time points, given the speed bound, are located within
them.

A rigorous analysis of a moving object’s trajectory requires that both the data
model and the query language account for uncertainty. That means the language
constructs must be aware that the data being queried are uncertain. Typical
queries on moving object data ask for the objects inside a region sometime during
a time interval, or for the ones always inside a region during a time interval.
For example, taking into account the uncertainty of the objects’ position, one
may query the objects that were possibly inside the region or the ones that were
definitely there. For example, we may be interested in a query like: “Give me
the current location of a bus that will possibly be at the corner of Avenue A and
Avenue B at some time between 4:00 p.m. and 4:30 p.m.”

In the remainder of the section we study two models for considering uncer-
tainty in trajectories. We also discuss uncertainty in road networks, and conclude
the section studying how uncertainty is accounted for in trajectory clustering.

5.3.1 A Simple Model for Trajectory Uncertainty

Let R denote the set of the real numbers, and R
2 the 2D real plane. We consider

objects moving in a subset of the 2D (x, y) space R
2 and describe this movement

in the (t, x, y) space R × R
2, where t represents time. Moving objects (which

hereon we assume to be points) produce, as we have already seen in this book,
the kind of curves that we denote as trajectories. In practice, trajectories are
only known at discrete moments in time, and given as sequences of the form
S = {(x0, y0, t0), (x1, y1, t1), . . . , (xN, yN, tN )}. Given a trajectory T between
times t1 and tN , the expected location of the object at a point in time t
between ti and ti+1(1 ≤ i < N) could be obtained through linear interpolation
between (xi, yi) and (xi+1, yi+1).

Note that in its general form, a trajectory can represent both the past and
future motion of objects. For future movement one can think of the trajec-
tory as a set of points describing the motion plan of the object. The most
common assumption is that we have a set of points that the object is going
to visit, and that between the points the object is moving along the shortest
path.

This simple model allows defining the notion of uncertain trajectory, obtained
by associating an uncertainty threshold r with each line segment of the trajectory.
For a given motion plan, the moving object associated with, for instance, a GPS
device will update a server if and only if it deviates from its expected location
(according to the trajectory) by r or more. In practice, a GPS update is sent
at certain predefined intervals; therefore, the location of the object is known,
and by linear interpolation, the object’s expected location can be computed at
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Figure 5.1 Uncertain trajectories.

any point in time. The deviation is just the distance between the actual and the
expected location. Formally:

Definition 5.1. Let r denote a positive real number and T denote a trajec-
tory between times t1 and tn. An uncertain trajectory UT r is the pair (T , r),
where r is called the uncertainty threshold. For each point (x, y, t) in T, its
uncertainty area is a horizontal disk (i.e., the circle and its interior) with
radius r centered at (x, y, t), where (x, y) is the expected location at time
t ∈ [t1, tn].

Figure 5.1 graphically depicts this definition.

Definition 5.2. Let UT r = (T , r) be an uncertain trajectory between instants
t1 and tn. A possible motion curve PMC(T) of T is any continuous function
fpt with signature Time → R2 defined in the interval [t1, tn] such that for any
t ∈ [t1, tn], the 3D point (fpt (t), t) is inside the uncertainty area of the expected
location at time t .

Intuitively, a PMC describes a possible route (and its associated times) that
a moving object may take without generating an update. In other words, in a
practical situation, a moving object does not need to update the database as long
as it is on some possible motion curve of its uncertain trajectory. The projection
over the plane of a possible motion curve is called a possible route.
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Querying the Model

According to the model, we can classify operators for querying moving objects
with uncertainty in two classes: (a) operators for point queries; (b) operators for
querying the relative position of a moving object with respect to a region, within
a given time interval. Each one of these operators corresponds a spatio-temporal
range query.

Operators for Point Queries
Two operators for point queries are defined in the literature:

� Where At(T , t): returns the expected location on the route of trajectory T

at time t .
� When At(T , l): returns the times at which the moving object whose trajec-

tory is T is expected to be at location l. (Note that in this case the answer may
be a set of time instants, if the moving object passes through a point more
than once).

If the location l = (xl, yl) is not on the route of T , the WhenAt(T , l) operator
finds the set of all the points C on this route that are closest to l, and returns the
set of time instants at which the object is expected to reach each point in C.

Operators for Spatio-Temporal Range Queries
These operators comprise a set of Boolean predicates such that each predicate
is satisfied if the moving object is inside a given region R during a given time
interval [ts, te]. Queries may ask if the condition is satisfied sometime or always
within [ts, te] (due to the motion of the object), and/or if, due to the uncertainty,
the object possibly or definitely satisfies the condition at some time within the
interval. The main operators corresponding to spatio-temporal range queries are:

� Possibly Sometime Inside(T ,R, ts, te). The predicate is true iff
there exists a PMC(T ) for the trajectory T and a time t ∈ [ts, te] such that
PMC(T ) at time t is inside the region R.

� Possibly Always Inside(T ,R, ts, te). The predicate is true iff there
exists a PMC(T ) that is inside the region R for every t ∈ [ts, te].

� Always Possibly Inside(T ,R, ts, te). True iff for every time value
t ∈ [ts, te] there exists some (not necessarily unique) PMC(T ) that is inside
(or on the boundary of) R at t .

� Always Definitely Inside(T ,R, ts, te). This is true iff at every
time t ∈ [ts, te], every possible motion curve PMC(T ) is in region R.

� Definitely Sometime Inside(T ,R, tb, te). This is true iff for every
possible motion curve PMC(T ) of the trajectory T , there exists some time
t ∈ [tb, te] in which the particular motion curve is inside R.
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Figure 5.2 Uncertain query operators: (a) Possibly Sometime Inside R1; (b)
Possibly Always Inside R2; (c) Always Possibly Sometime Inside
R3 (c). Dashed lines indicate PMCs that satisfy the predicates. Solid lines represent the
routes, and solid ellipses the uncertainty zones.

Figure 5.2 illustrates the semantics of the first three operators.

5.3.2 The Space-Time Prism Model

We now discuss the more general space-time prism model for uncertainty man-
agement, and describe its possible application to different problems. This model
assumes that besides the time-stamped locations of the object, also some back-
ground knowledge, in particular a (e.g., physically or law-imposed) speed limita-
tion vi at location (xi, yi) is known. The speed limits that hold between two con-
secutive sample points can be used to model the uncertainty of a moving object’s
location between sample points. The approach of Section 5.3.1 (sometimes
called the cylinder approach) depends on an uncertainty threshold value r > 0
which produces a sort of buffer along the trajectory. Instead, in the space-time
prism approach, for each consecutive pair of points (ti , xi, yi), (ti+1, xi+1, yi+1)
in a trajectory T , their related space-time prism does not depend on an uncer-
tainty threshold value, but rather on a maximal velocity value vmax of the moving
object.

Intuitively, the space-time prism between two consecutive points is defined
as the set of time-space points where the moving objects may have passed,
respecting the speed limitation. The chain of space-time prisms connecting
consecutive trajectory points is denoted the lifeline necklace (see Figure 5.3).

We now formalize the concepts above. We know that at a time t , ti ≤ t ≤ ti+1,
the object’s distance to a point (xi, yi) is at most vi(t − ti) and its distance to
(xi+1, yi+1) is at most vi(ti+1 − t). The spatial location of the object is there-
fore somewhere in the intersection of the disc with center (xi, yi) and radius
vi(t − ti) and the disc with center (xi+1, yi+1) and radius vi(ti+1 − t). The geo-
metric location of these points is referred to as a space-time prism, and defined
as follows, for general points p = (tp, xp, yp) and q = (tq , xq, yq), and speed
limit vmax.
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Figure 5.3 Space-time prisms and lifeline necklaces.

Definition 5.3. The space-time prism with origin p = (tp, xp, yp), destination
q = (tq , xq, yq), with tp ≤ tq , and maximal speed vmax ≥ 0 is the set of all points
(t, x, y) ∈ R × R

2 that satisfy the following constraint formula.

�B(t, x, y, tp, xp, yp, tq, xq, yq, vmax) := (x − xp)2 + (y − yp)2 ≤
(t − tp)2v2

max ∧ (x − xq)2 + (y − yq)2 ≤ (tq − t)2v2
max ∧ tp ≤ t ≤ tq .

In the formula �B(t, x, y, tp, xp, yp, tq, xq, yq, vmax), t, x, y are variables
defining the subset of R × R

2, while all the other terms are parameters.

5.3.3 Uncertainty in Road Networks

So far we have not made any assumption about where the trajectories under
study develop. These trajectories are usually called unconstrained. However,
in general, trajectories develop within a road network in R

2. In this case, they
are denoted constrained trajectories. This constrained movement has its own
peculiarities. Before studying them, we first need to formalize the notion of a
road network.

Definition 5.4. A road network RN is a graph embedding in R
2 a labeled graph

given by a finite set of vertices V = {(xi, yi) ∈ R
2 | i = 1, . . . , N}, and a set of

edges E ⊆ V× V that are labeled by a speed limit and an associated time span.
This graph embedding satisfies the following conditions. Edges are embedded as
straight line segments between vertices, and may intersect in nonvertex points,
to support modeling bridges and tunnels. If an edge is labeled by the speed limit,
then its time span is the time needed to get from one side of an edge to another
when traveling at the speed limit.
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Figure 5.4 A projection of a prism and a road network.

A trajectory on a road networkRN is then a trajectory whose spatial projection
is in RN. In the remainder we consider a uniform speed limit vi on the network
to construct the space-time prism between two sample times ti and ti+1.

Space-Time Prisms in Road Networks

Using space-time prisms on a road network is usually more involved than sim-
ply taking the intersection of a space-time prism representing unconstrained
movement and the road network. Consider, for instance, the projection of the
unconstrained space-time prism along the time axis onto the xy-plane. This
projection is an ellipse such that its foci are the points of departure and arrival,
that is, p and q. At a time t between two instants tp and tq , the object’s distance
to p is at most vmax(t − tp) and its distance to q is at most vmax(tq − t). Adding
those distances gives vmax(t − tp) + vmax(tq − t) = vmax(tq − tp), which is con-
stant. Therefore, all possible points a moving object with speed limit vmax could
have visited must lie within this ellipse with foci p and q, and the sum of their
distances to p and q is less than or equal to vmax(tq − tp). Any trajectory that
touches the border of the ellipse and has more than two straight line segments
is longer than vmax(tq − tp) (see Figure 5.4). This particular trajectory lies in
the ellipse and hence in the intersection of the unconstrained space-time prism
and the road network, but it does not lie in the road network space-time prism
entirely, because there are points on it that can be reached in time but from which
the destination cannot be reached in time, and vice versa. Just suppose a case
where there is no path on the road network from a vertex p that reaches another
one q in a given time interval. The intersection of the space-time prism with the
road network would not be empty. However, the road network space-time prism
clearly is, because there is no way to reach q from p using the network.

To define space-time prisms on a road network, we need an appropriate
distance function on the network. This distance measure is derived from the
shortest-path distance used in graph theory.
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Definition 5.5. Consider a road network RN, given by the tuple (V,E) and
to points p = (xp, yp) and q = (xq, yq) on RN, not necessarily vertices; the
point p lies on the embedding of the edge ((xp,0, yp,0), (xp,1, yp,1)) and q

lies on the embedding of the edge ((xq,0, yq,0), (xq,1, yq,1)). We construct a
new road network RNpq from RN, such that Vpq = V ∪ {p, q}, and Epq = E ∪
{((xp,0, yp,0), (xp, yp)), ((xp, yp), (xp,1, yp,1)), ((xq,0, yq,0), (xq, yq)), ((xq, yq),
(xq,1, yq,1))}.

Definition 5.5 builds a new network by splitting the edges on which p and
q are located. The speed limits are the ones of the original edges, and the time
spans of the new edges are computed according to Definition 5.4. Based on
this construction, we define the distance along the road network RN and the
space-time prism between p and q on RN.

Definition 5.6. Let RN be a road network and let p, q ∈ RN. The road network
time between p and q, denoted by dRN(p, q), is the shortest-path distance (i.e.,
as usual in graph theory) between p and q in the graph (Vpq,Epq), with respect
to the time span labeling of the edges.

Note that the road network time between p and q in Definition 5.6 returns the
earliest possible time from q to p and vice versa. The metric takes two points
from a road network and returns the shortest time needed to get from one to the
other when traveling at the allowed maximal speed at each segment. If there are
different speed limits per edge, then the metric of Definition 5.6 is the shortest
time span metric on the temporal projection of the spatio-temporal data. In this
case the shortest paths are not always the fastest paths. Conversely, if all edges
in road network have the same speed limit, then the metric results in the shortest
path on the graph embedding.

We are ready to define a space-time prism on a road network. We provide a
simplified definition, and omit the most technical details.

Definition 5.7. A space-time prism on a road network between two spatio-
temporal points (xp, yp, tp) and (xq, yq, tq), is the geometric location in R ×
RN ⊂ R × R

2 of all points a moving object could have visited when traveling,
restricted to RN, from an origin p to a destination q within a time frame ranging
from tp to tq , respecting the speed limits on the edges of RN. That means that
given a point u = (x, y) ∈ RN, dRN(p, u) + dRN(u, q) ≤ (tq − tp).

Figure 5.5 shows an example of a space-time prism.

5.3.4 An Application: Using Space-Time Prisms for Map Matching

Chapter 2 studied a typical problem that presents in network-constrained trajec-
tories: map matching. Informally, this problem consists in mapping a trajectory
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Figure 5.5 A space-time prism on a road network. Note that the possible positions of
moving objects (represented by the cones in Figure 5.3 for unconstrained movement) occur
over the network, and that edges have potentially different speed limits.

to the edges and nodes of the network. In that chapter, map matching algorithms
were classified as geometric, topological, hybrid, and probabilistic. In this sec-
tion we show how the space-time prisms model can be applied to solve this
problem. This method was applied to a real-world case study involving an emer-
gency service in a European city (for privacy reasons we cannot disclose further
information). This service wanted to optimize the time to arrive at the place of
intervention. Even though the company could solve this problem purchasing a
standard route planner, the shortest/fastest route computed by these commercial
route planners would not be the best solution, because, for instance: (1) they do
not take into account the time of the observations (e.g., at five o’clock there is
always a traffic jam at the city station, so cars must avoid this area around that
time, if possible); (2) they do not take into account certain locations, such as
schools; (3) they do not take into account additional information (such as school
routes or tram lines). Thus, they decided to design a tool to solve the problem
described above. As a first step of this work, there was the need to perform
data analysis over a set of routes followed by cars during their interventions.
The officers were asked to record their positions using a GPS device, from the
moment they got a call from the headquarters to the moment when they arrived
at the intervention site. Measures were recorded every ten meters, and drivers
were requested to fill out a survey with questions, for example, about the reason
for taking a particular route. In this scenario, a typical problem that arises is
that about ninety-five percent of the points fall outside the road actually taken.
Thus, there is a need to map points to the road network, that is, a map matching
problem. This problem is formalized in Definition 5.8.
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Figure 5.6 Projection of a space-time prism for two points, a and b.

Definition 5.8. An object is moving along a finite system (or set) of streets, N.

A location-aware device provides an estimate for the vehicle’s location at a finite
number of points in time, denoted by {0, 1, . . . , t}. The vehicle’s actual location
at time t is denoted by P

t
and the estimate is denoted P t . Map matching is the

process of determining the street in N that contains P t . That is, to determine the
street that the vehicle is on at time t.

For applying the space-time prisms method to the map-matching problem,
we must first make the following considerations. Given the time between two
consecutive recorded points, a and b, and a maximal speed, a car could have been
in many possible locations, determined by the projection of the space-time prisms
over the plane. Even though this projection would be an ellipse, we can simplify
this computation defining a bounding box given by two points, R(X1, Y1) and
U (X2, Y2), as Figure 5.6 shows (the line within the ellipse represents the actual
road). R is computed as follows: X1 is the farthest point on the x-axis that can
be reached moving away from b driving at maximum speed vmax. Analogously,
Y1 is the is the farthest point on the y-axis that can be reached moving away
from b driving at maximum speed vmax. U is computed as follows: X2 is the
farthest point on the x-axis that can be reached moving away from a driving at
maximum speed vmax. Analogously, Y2 is the is the farthest point on the y-axis
that can be reached moving away from a driving at maximum speed vmax.

We next sketch an algorithm for map matching based on space-time prisms
(in the following, ST-MM).

1. First, bound the network by calculating, for each pair of consecutive points,
the roads that connect them (as described above).

2. For each GPS point, compute the n closest road segments, assigning weights
to each segment in a way such that the one closest to the point gets weight n,
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the second closest receives weight n − 1. The closest n road segment receives
weight 1. Notice then that the road segments to be included are computed
using space-time prisms. A score for a segment s is computed adding up the
weights of all the segments that match s.

3. Finally, compute, within this limited network, the k-shortest paths, taking the
shortest path with the highest score computed in Step 2.

Chapter 2 studied geometric map-matching algorithms. These algorithms
are efficient due to their simplicity. On the other hand, geometric algorithms
have some drawbacks that sometimes prevent trajectory reconstruction. This
is the case, for instance, when observations are taken at irregular intervals, or
there are large gaps in the data (this may occur, for example, when an object
enters a large tunnel, preventing signal reception). In these cases, we need
more sophisticated algorithms, such as the one described above. Summarizing
experiments performed on real-world data showed the following:

� ST-MM is sensitive to the maximum speed. For relatively high speeds (70–
120 km/h) it is stable and delivers good performance, with an average of
around eighty percent trajectory reconstruction rate. When speeds are lower,
performance decreases as well as the reconstruction rate.

� Geometric algorithms perform well when data are recorded at regular inter-
vals and there are not large gaps between observations (note that these algo-
rithms are independent of the maximum speed).

� When data are irregular and contain large gaps, ST-MM delivers better recon-
struction rates, except when maximum speeds are low. In the latter case, geo-
metric algorithms are more efficient, although reconstruction rates remain
low for both algorithms.

� The scenario where ST-MM is clearly better than simple geometric algo-
rithms is the one in which speeds are relatively high and measures are taken
at irregular intervals. On the contrary, where speeds are low, geometric algo-
rithms perform better because the prisms in ST-MM include a high number
of roads, decreasing performance.

5.3.5 Trajectory Clustering and Uncertainty

Clustering is a data mining technique that partitions a data set into collections
of data objects, such that within each partition the objects are “similar” to
each other and “different” from the objects contained in other partitions. In the
context of moving object data, the clustering technique aims at identifying
groups of objects that follow similar trajectories. Clustering is tackled in detail in
Chapter 6 of this book. In this section we show how the presence of uncertainty
impacts on clustering results.
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Many clustering techniques (discussed in Chapter 6), such as the popular
k-means, can be applied to the trajectory setting using a so-called distance func-
tion between trajectories, which measures the similarity between trajectories.
This leads to the notion of distance-based clustering. Clustering trajectory data
usually produces groups containing geographically close trajectories. Many dif-
ferent distance functions can be defined, ranging from the most simple ones (for
instance, clustering trajectories with the same origin and/or destination), to very
complex mathematical functions.

The space-time prism approach allows defining a distance function for tra-
jectories that accounts for uncertainty. Let us consider two trajectory samples
T 1 and T 2, such that their uncertainty is represented by two lifeline necklaces,
N1 and N2, respectively, that connect consecutive sample points of each tra-
jectory. Intuitively, the larger the intersection of the necklaces with respect to
their union, the smaller the distance between both trajectories. In other words,
the more uncertainty shared by T 1 and T 2, the closer they are. On the other
hand, if N1 and N2 do not intersect, this indicates that these trajectories could
not have met, given the speed limit. Then, a clustering algorithm should not
group together these two trajectories. We can conjecture that the temporal pro-
jection of the intersection of the space-time prisms of two trajectories represents
the instants when the two trajectories could have met. Therefore, the longer
this period, the more similar the trajectories are. This notion is captured by
Definition 5.9.

Definition 5.9. Let us denote A and B two necklaces corresponding to two
trajectory samples τ1 and τ2, respectively; also, we denote VC the volume of a
3-dimensional figure C. Then, the expression

du(A,B) = 1 − VA∩B

VA∪B

is named the uncertainty-based distance between τ1 and τ2.

It can be proved that du(A,B) is a distance metric, that is, it verifies
identity (∀ i : d(i, j ) = 0 iff i = j ), positive definiteness (∀ i, j, i �= j :
d(i, j ) > 0), symmetry (d(i, j ) = d(j, i)), and triangle inequality (∀ i, j, k :
d(i, j ) + d(j, k) ≥ d(i, k)).

The most difficult part of applying this uncertainty-aware distance function
consists in the computation of the intersection between two chains of space-time
prisms for any given two trajectories whose distance we need to calculate. To
make this computation more efficient, information related to the road network
can be preprocessed. The reader is encouraged to check the bibliographic notes
of this chapter, where references to works describing this computation are given.
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Approaches based on fuzzy regions have also been proposed in the recent
literature. In these approaches, trajectory databases are considered as fuzzy sets
that represent the regions that a trajectory possibly crosses, and fuzzy values
represent the probabilities of presence and nonpresence of the moving objects
in the area. Based on this model, an uncertainty-aware distance metric is defined
and used in a clustering algorithm. In the bibliographic notes we provide the
reference to this work.

5.4 Conclusions

Several kinds of mobility-related data are to some extent uncertain; explicitly
representing and managing uncertainty ensures that data are handled in a sen-
sible way. In this chapter we first analyzed several causes of uncertainty in
data collection and management, and the accuracy of several location-tracking
methods. We then described two well-known models for trajectory uncertainty.
If movement is constrained to road networks (as it is in most real-world scenar-
ios), uncertainty modeling becomes more involved. Thus, we studied uncertainty
in road networks and also presented an approach based on the space-time prism
model to address the typical problem of map matching. Finally, we showed how
uncertainty can be accounted for in trajectory clustering.
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were taken from Trajcevski et al. (2004). Figures 5.1 and 5.2 are also based
on that article. A detailed mathematical analysis on uncertainty in trajectories
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space-time prisms. However, space-time prisms were already known in the
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Othman (2009) studied the problem of space-time prisms on road networks,
and introduced an algorithm for computing and visualizing space-time prisms.
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introduced in Kuijpers et al. (2009). The computation of the distance function
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Mobility Data Mining
Mirco Nanni

6.1 Introduction

6.1.1 What Is Mobility Data Mining?

The trajectories of a moving object are a powerful summary of its activity related
to mobility. As seen in Chapters 3 and 4, such information can be queried in
order to retrieve those trajectories (and the objects that own them) that respond
to some given search criteria, for instance following a predefined interesting
behavior. However, when massive amounts of information are available, we
might be able to move a step further and ask that such “interesting behaviors”
automatically emerge from the data. That is precisely the domain explored by
mobility data mining.

Moving from queries to data mining essentially consists of adding degrees
of freedom to the search process that the algorithms perform. For instance, a
query might consist of searching those trajectories that at some point perform
the following sequence of maneuvers: abrupt slow down, U-turn, and, finally,
accelerate. One possible corresponding data mining task, instead, might require
one to discover which sequences of maneuvers are performed frequently in the
database of trajectories. Then, the output sequences obtained might also contain
the slow down → U-turn → accelerate example just mentioned. To perform
this data mining process the user needs to specify the general structure of the
behaviors he or she searches (sequences), what kind of elements they can contain
(the set of maneuvers to consider, as well as a precise way to locate a given
maneuver within a trajectory), and a criterion to select “interesting” behaviors –
in our example, the user wants only behaviors that appear frequently in the
data.

105
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6.1.2 Note on Terminology

In this chapter we will make frequent use of the term “trajectory pattern.”
As mentioned in Chapter 1, the notion of trajectory pattern is substantially
equivalent to that of “trajectory behavior,” which also appeared in previous
chapters of this book. The two notions originate from different communities and
simply reflect different perspectives of the same subject: the data management
view (where “trajectory behavior” originates) focuses more on determining
which trajectory is associated to each behavior; the data mining view, on the
contrary, is more focused on what are the interesting behaviors in the input
trajectories.

The several forms and variants of existing analysis tasks that belong to mobil-
ity data mining cannot be easily categorized into a set of fixed classes. However,
it is possible to recognize a few simple dimensions along which to locate the
different analysis methods. In the following we mention one of them, which will
also be used later as guideline during the presentation of analysis examples.

6.1.3 Local Patterns versus Global Models

The example of behavior illustrated at the beginning of this section is represen-
tative of a class of mining methods, called local patterns or, in most contexts,
simply patterns. The key point of local patterns is the aim of identifying behav-
iors and regularities that involve only a (potentially small) subset of trajectories,
and that describe only a (potentially small) part of each trajectory involved.

The complementary class of mining methods is called global models, or
simply models. Their objective is to provide a general characterization of the
whole data set of trajectories, thus going toward the definition of general laws
that regulate the data, rather than spotting interesting yet isolated phenomena.
For instance, we will see later mining tasks aimed to define a global subdivision
of all trajectories into homogeneous groups, as well as tasks aimed to discover
rules able to predict the future evolution of a trajectory (i.e., the next locations
it will visit).

In the rest of the chapter we will provide an overview of the problems and
methods available in the mobility data mining field. For obvious reasons of
space, the discussion will not cover exhaustively the available literature on the
subject, and instead will propose some representative examples of the various
topics. The presentation will mainly follow the distinction between local patterns
and global models already introduced. In this chapter we will assume that raw
location information, such as GPS traces, has already been preprocessed to
obtain trajectories according to the discussions provided in Chapter 2, and
will not consider the additional issues related to uncertainty already tackled
in Chapter 5. Besides the examples provided here, the reader can find some
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applications of the trajectory data mining methods we describe here in the next
chapters, especially Chapters 7, 9, and 10.

6.2 Local Trajectory Patterns/Behaviors

The mobility data mining literature offers several examples of trajectory patterns
that can be discovered from trajectory data. Among this wide variety, a very
large number of proposals actually adopt two basic assumptions: first, a pattern
is interesting (and therefore extracted) only if it is frequent, and therefore it
involves (or appears in) several trajectories1; second, a pattern must describe
(also) the movement in space of the objects involved, and not only aspatial or
highly abstracted spatial features. In this chapter we will adopt such assumptions,
in order to better focus the discussion.

While the spatial component of trajectory data is typically part of the patterns
extracted, the temporal one (also intrinsic in trajectory data) can be treated in
several different ways, and we will use this differentiation to better organize the
presentation. Then, while a trajectory pattern always describes a behavior that is
followed by several moving objects, we can choose whether they should do so
together (i.e., during the period), at different moments yet with the same timing
(i.e., there can be a time shift between the moving objects), or in any way, with
no constraints on time.

6.2.1 Using Absolute Time or Groups That Move Together

One of the basic questions that arise when analyzing moving objects trajectories
is the following:

Are there groups of objects that move together for some time?

For instance, in the realm of animal monitoring such kind of patterns would
help to identify possible aggregations, such as herds or simple families, as well
as predator–prey relations. In human mobility, similar patterns might indicate
groups of people moving together on purpose or forced by external factors, for
example, a traffic jam, where cars are forced to stay close to each other for a
long time period.

Obviously, the larger the groups and/or the longer the period they stay
together, the higher the likelihood that the observed phenomenon is not a pure
coincidence. For instance, if two members of a population of zebras under mon-
itoring happen to move close to each other for a short time, that can be seen
as a random encounter. However, if dozens of zebras are observed together for

1 Of course, significant exceptions exist, including the extreme case of outlier detection, consisting of
anomalous (and thus infrequent) patterns. For ease of presentation, outlier detection will be described
later in this chapter, in the context of global models.
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(c)(b)(a)

Figure 6.1 Visual representation of (a) a trajectory flock, (b) a sample result on a real data
set with all trajectories involved, and (c) a zoom on the segments that form the flock. (See
color plate.)

several hours, we can safely assume that they form a herd or that something is
happening that forces them to keep together.

The simplest form of trajectory pattern in literature that exactly answers the
question posed above is the trajectory flock. In one of its most common variants,
a flock is defined as a group of moving objects that satisfy three constraints as
follows:

� A spatial proximity constraint: Within the whole duration of the flock, all its
members must be located within a disk of radius r – possibly a different one
at each time instant, that is, the disk moves to follow the flock;

� A minimum duration constraint: The flock duration must be at least k time
units;

� A frequency constraint: The flock must contain at least m members.

Figure 6.1a shows an abstract example of flock, where three trajectories meet
at some point (at the fifth time unit), keep close to each other for some time
(four consecutive time units) and then separate (ninth time unit). If, for instance,
the constraints chosen by the user are the radius r used in the figure to draw
the circles, a minimum duration of four time units (or less), and a minimum
size of three members, then the common movement shown in the figure will be
recognized as a flock.

Figures 6.1b–c show an example extracted from a real data set that contains
GPS tracks of tourists in a recreational park (Dwingelderveld National Park, in
the Netherlands). Figure 6.1b depicts the three trajectories that were involved in
the flock, while Figure 6.1c shows (a zoom with) only the segments of trajectories
that create the flock. As we can see, in this example a flock is a local pattern,
both in the sense of involving only a small subset of trajectories (three, in our
case), and in the sense of describing an interesting yet relatively small segment
of the whole life of the trajectories involved.

The general concepts of moving together or forming a group are implemented
by the flocks framework in the simplest way possible: the objects are required
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to be very close to each other during the duration of the flock. However, a
group might appear also under different conditions. One of these alternatives is
to require that at each timestamp the objects form a cluster – thus borrowing
ideas and methods from the clustering literature. Notable examples are moving
clusters and convoys, two forms of pattern that at each time stamp group objects
by means of density-based clustering. Such an approach can be summarized in
the following points (see also Figure 6.5c for an example):

� First, all objects that have a large number of neighbors are labeled as core
objects; among the remaining objects, those that are neighbors of core objects
are labeled as border objects; the remaining objects are labeled as noise;

� Second, core objects are grouped into clusters in such a way that each pair
of neighboring core objects falls in the same cluster. Essentially, clusters are
computed as transitive closure of the neighbor relation;

� Finally, border objects are assigned to the same cluster of their neighboring
core objects2, while noise is discarded.

The neighbors of an object are all the objects at a distance not larger than a
threshold r , and the minimum number of neighbors required to make an object
a core object is also a parameter m. Therefore, we can see that a core object and
its neighbors approximately satisfy the closeness requirements of a flock – more
exactly, these are density requirements. The step forward here is that multiple
compact groups can be merged together if they are adjacent (see the second
step), in order to form larger ones. Besides their sheer size, the groups formed
through this process can also have a relatively large extension (therefore not all
pairs of objects in the cluster will be close to each other, because they actually
are neighbors of neighbors of neighbors) and an arbitrary shape. In several con-
texts this can be useful, for instance in analyzing vehicle trajectories, since the
road network simply forces large groups of cars to distribute along the roads
(therefore creating a cluster with a snake-like shape) instead of freely agglom-
erate around a center (which would instead yield a compact, spherical-shaped
cluster).

The key difference between moving clusters and convoys is the fact that
convoys require that the population of objects involved in the pattern is always
the same, while in moving clusters it can gradually change along the time: the
only strict requirements are that at each timestamp a (spatially dense) cluster
exists, and that when moving from a timestamp to the consecutive one the
population shared by the corresponding spatial clusters is larger than a given
fraction (a parameter of the method). A simple example of moving cluster that
illustrates this point is shown in Figure 6.2: at each time slice a dense cluster is

2 Notice that a border object might have two or more neighboring core objects belonging to different
clusters. In this case one of them is chosen through any arbitrary criterion.
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Figure 6.2 Visual example of a moving cluster over three time units.

found, formed by three objects, and any pair of consecutive clusters shares two
of the three objects. This way, moving clusters that last a long time might even
start from a set of objects and end in a completely different (possibly disjoint)
set. In our example, only one object permanently belongs to the moving cluster.
In some sense, the pattern is not strictly related to a population that generates
it. The purpose of the pattern becomes to describe phenomena that happen in
the population, not to find a group of individuals that do something peculiar
consistently together.

One element of rigidity that affects both the patterns illustrated so far is the
fact that they describe continuous portions of time. For instance, if a herd that
usually moves compactly gets dispersed for a short time (for instance, due to an
attack by predators) and later becomes compact again, both flocks and moving
clusters will generally result into two different and disconnected patterns – the
before and the after the temporary dispersion. One possible way to avoid this loss
of information consists of allowing gaps in the patterns, that is, a pattern involves
a set of timestamps that are not necessarily consecutive. In the literature we can
find a solution of this kind, known as swarm patterns. Swarms are a general form
of patterns that generalize flocks and moving clusters, as any spatial clustering
method can be applied at the level of a single timestamp, and then spatial clusters
belonging to different timestamps are linked (in case they share an appropriate
fraction of population) regardless of their temporal distance.

6.2.2 Using Relative Time

In some contexts, the moving objects we are examining might act in a similar
way, even if they are not spatially located together. For instance, similar daily
routines might lead several individuals to drive their cars along the same routes,
even if they leave home at very different hours of the day. Or, tourists who visit
a city on different days of the year might actually visit it in the same way –
for instance, by visiting the same places in the same order and spending there
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approximately the same amount of time – because they simply share interests
and attitude. This leads to a new category of questions, which can be well
represented by the following:

Are there groups of objects that perform a sequence of movements, with similar
timings, though possibly during completely different moments?

Patterns such as flocks and moving clusters can provide some answers to the
question, but usually in small numbers, since the set of answers is limited to
movements that happen synchronously among all objects involved. The question
involves a much weaker constraint on the temporal dimension of the problem,
and therefore might allow many more answers. In the following we will present
one example of a pattern that goes in this direction and extracts spatio-temporal
behaviors that are followed by several objects, but allowing any arbitrary time
shift between them.

Trajectory patterns (T-Patterns) are defined as sequences of spatial locations
with typical transition times, such as the following two:

Railway Station
15min−→ Museum

2h15min−→ Castle Square

Railway Station
10min−→ Middle Bridge

10min−→ Campus

For instance, the first pattern might represent the typical behavior of tourists
who rapidly reach a museum from the railway station and spend there about
two hours before getting to the adjacent square. The second pattern, instead,
might be related to students who reach the university campus from the station
by passing through the mandatory passage on the central bridge over the river.
A graphical example is also provided in Figure 6.3a.

The two key points that characterize T-Patterns are the following: first, they
do not specify any particular route among two consecutive regions described:
instead, a typical travel time is specified, which approximates the (similar) travel
time of each individual trajectory represented by the pattern. In the gap between
two consecutive regions a trajectory might even have stopped in other regions
not described in the pattern. Second, the individual trajectories aggregated in
a pattern need not to be simultaneous, since the only requirement to join the
pattern is to visit the same sequence of places with similar transition times, even
if they start at different absolute times.

T-Patterns are parametric on three main parameters: the set of spatial regions
to be used to form patterns, that is, the spatial extension of “Railway Station”
and any other place considered relevant for the analysis3; the so-called minimum

3 Actually, the algorithmic tool provided in literature to extract T-patterns also contains heuristics to
automatically define such regions, but in general the domain expert might want to do it manually in
order to better exploit knowledge or to better focus the analysis, or both.
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Figure 6.3 (a) Visual representation of a T-pattern and (b) sample result on a real data set.

support threshold, corresponding to the minimum size of the population that
contributes to form the pattern (the parameter m for flocks); and a time tolerance
threshold τ , which determines the way transition times are aggregated: transition
times that differ less than τ will be considered compatible, and therefore can be
joined to form a common typical transition time.

Figure 6.3a depicts an example of a T-Pattern on vehicle data describing the
movements of a fleet of trucks. The pattern shows that there exists a consistent
flow of vehicles from region A to region B, and then back to region C, close
to the origin. Also, the time taken to move from region A to region B (t1 in
the figure) is around ten times greater then the transition time from B to C.
That might suggest, for instance, that the first part of the pattern describes a set
of deliveries performed by the trucks, while the second part describes the fast
return to the base.

6.2.3 Not Using Time

In many cases it is interesting to understand if there are typical routes followed
by significant portions of the population, that is:

Are there groups of objects that perform a common route (or segment of route),
regardless of when and how fast they move?
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Figure 6.4 Visual representation of a spatio-temporal sequential pattern.

That means, for instance, that we are interested in what path an individual
follows, but not the hour of the day he/she does it, nor the transportation means
adopted: cars, bicycles, pedestrians, and people on the bus might follow the
same path yet at very different speeds, resulting in different relative times. Also
notice that we are interested here in routes that might be just a small part of a
longer trip of the individual.

The mobility data mining literature provides a few definitions of patterns that
can answer the question given above. In particular, we will briefly summarize
one of the earliest proposals that appeared, at that time generically named spatio-
temporal sequential pattern (in contrast, the trend in recent times is to assign
elaborate and sonorous names to any new form of pattern or model).

The basic idea, also depicted in Figure 6.4, consists of two steps4: first, each
trajectory is cut into quasi-linear segments, and then such trajectory segments
are grouped based on their distance and direction, in such a way that each group
is well described by a single representative segment (see the two thick segments
in the figure); second, consecutive segments are joined to form the pattern.
Frequent sequences are then outputted as sequences of rectangles such that their
width quantifies the average distance between each segment and the points in
the trajectory it covers. Figure 6.4 depicts a simple pattern of this kind, formed
of two segments and corresponding rectangles. In particular, it is possible to
see how the second part of the pattern is tighter than the first one, that is, the
trajectory segments it represents are more compact.

6.3 Global Trajectory Models

A common need in data analysis at large is to understand the laws and rules
that drive the behavior of the investigated objects. In the context of mobility
data mining we refer to such laws and rules as (global) trajectory models,
and in this area we can recognize three important representative classes of

4 The original proposal of this pattern considers a single, long input trajectory. However, the same
concepts can be easily extended to multiple trajectories.
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problems: dividing trajectories into homogeneous groups; learning rules to label
any arbitrary trajectory with some tag, to be chosen among a set of predefined
classes; and predicting where an arbitrary trajectory will move next. In the
following we will introduce and discuss each of them.

6.3.1 Trajectory Clustering

In data mining, clustering is defined as the task of creating groups of objects that
are similar to each other, while keeping separated those that are much different.
In most cases, the final result of clustering is a partitioning of the input objects
into groups, called clusters, which means that all objects are assigned to one
cluster, and clusters are mutually disjoint. However, exceptions to this general
definition exist and are relatively common.

While the data mining literature is extremely rich with clustering methods for
simple data types, such as numerical vectors or tuples of a relational database,
moving to the realm of trajectory makes it difficult to directly apply them. The
problem is that trajectories are complex objects, and many traditional clustering
methods are tightly bound to the simple and standard data type they were
developed for. In most cases, to use them we need to adapt the existing methods
or even to reimplement their basic ideas in a completely new, trajectory-oriented
way. We will see next some solutions that try to reuse as much as possible existing
methods and frameworks; then, we will discuss a few clustering methods that
were tailored around trajectory data in the first place.

Generic Methods with Trajectory Distances
Several clustering methods in the data mining literature are actually clustering
schemata that can be applied to any data type, provided that a notion of similarity
or distance between objects is given. For this reason, they are commonly referred
to as distance-based methods. The key point is that such methods do not look
at the inner structure of data, and simply try to create groups that exhibit small
distances between their members. All the knowledge about the structure of
the data and their semantics is encapsulated in the distance function provided,
which summarizes this knowledge through single numerical values, the distances
between pairs of objects; the algorithm itself, then, combines such summaries
to form groups by following some specific strategy.

To give an idea of the range of alternative clustering schemata available in lit-
erature, we mention three very common ones: k-means, hierarchical clustering,
and density-based clustering.

k-means (Figure 6.5a) tries to partition all input objects into k clusters, where
k is a parameter given by the user. The method starts from a random partitioning
and then performs several iterations to progressively refine it. During an iteration,
k-means first computes a centroid for each cluster, that is, a representative object
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Figure 6.5 Example of clustering with different basic methods. (a) k-means. (b) Hierarchi-
cal. (c) Density-based.

that lies in the perfect center of the cluster5, then reassigns each object to the
centroid that is closest to it. Such iterative process stops when convergence
(perfect or approximate) is reached.

Hierarchical clustering methods (Figure 6.5b) try to organize objects in a
multilevel structure of clusters and subclusters. The idea is that under tight
proximity requirements, several small and specific clusters might be obtained,
while loosening the requirements some clusters might be merged together into
larger and more general ones. For instance, agglomerative methods start from
a set of extremely small clusters – one singleton for each input object – and
iteratively select and merge together the pairs of clusters that are most similar.
At each iteration, then, the number of clusters decreases by one unit, and the
process ends when only one huge cluster is obtained, containing all objects.
The final output will be a data structure called dendogram, represented as a
tree where each singleton cluster is a leaf, and each cluster is a node having as
children the two subclusters that originated it through merging.

Finally, density-based clustering (Figure 6.5c), as already introduced in Sec-
tion 6.2.1, is aimed to form maximal, crowded (i.e., dense) groups of objects,

5 Notice that such object is a new one, computed from those in the cluster. Therefore, some level of
understanding of the data structure is needed here. When that is not possible, usually a variant is
applied, called k-medoid, that selects the most central object of the cluster as representative.
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thus not limiting the cluster extension or its shape and, in some cases, putting
together couples of very dissimilar objects. Also, objects that cannot be linked
to any cluster are labeled as noise and removed.

How does one choose the appropriate clustering method? While no strict rule
can exist, a general hint consists of paying attention to some basic characteristics
of the data and the expected characteristics of the output. For instance, if we
expect that our data should form compact clusters of spherical shapes (i.e.,
they should agglomerate around some centers of attraction), then k-means is
a good candidate, especially if the data set is large – k-means is known to
be very efficient. However, the user should know the number k of clusters to
be found in the data, or at least some reasonable guess. That can be avoided
with hierarchical, agglomerative algorithms, since the dendograms they produce
synthesize the results that can be obtained for all possible values of k, from 1
to N (the number of input objects). The choice of the most appealing k can
be postponed after the computation, and be supported by an examination of
the dendogram. However, hierarchical clustering is usually expensive (efficient
variants exist, yet these introduce other factors to be evaluated), so it is not a
good option with large data sets. Finally, density-based methods apparently do
not suffer of any of the issues mentioned above, and are also more robust to noisy
data, yet the resulting clusters will usually have an arbitrary shape and size –
a feature that might be unacceptable in some contexts, and extremely useful in
others.

Depending on the analysis task that the user wants to perform, once the
clustering schema to be adopted has been selected, he or she needs to choose
the most appropriate similarity function, that is, the numerical measure that
quantifies how much two trajectories look similar. The range of possible choices
is virtually unlimited. The examples that can be found in the literature include
the following, approximately sorted in increasing order of complexity6:

� Spatial starts, ends, or both: Two trajectories are compared based only on
their starting points (the origin of the trip), the ending points (the final des-
tination of the trip), or a combination of them. The distance between the
trajectories, then, reduces to the spatial distance between two points. When
both starts and ends are considered, the sum or average of their respective
distances is computed. The output of a clustering based on these distances
will generally put together trajectories that start or end in similar places,
regardless of when they do start/end and what happens in the rest of the
trajectory.

6 Notice that distance computation is at the base of classical database queries such as range queries
and k-nearest neighbors (see Chapter 3). Indeed, k-means involves a 1-nearest neighbor query in
the cluster assignment step, while density-based methods execute a range query to compute the
neighborhood of each point.



6.3 Global Trajectory Models 117

(a) (b)

Figure 6.6 Sample trajectory clustering on a real data set of vehicles (GPS data collected
by OctoTelematics S.p.A.), obtained using a density-based clustering schema and a spatial
route distance function. (See color plate.)

� Spatial route: In this case, the spatial shape of the trajectory is considered,
and two trajectories that follow a similar path (though possibly at different
times and with different speeds) from start to end will result in a low distance.

� Spatio-temporal route: In this case, the time is also considered, therefore two
trajectories will be similar when they approximately move together through-
out their life.

Obviously, the selection of the clustering schema and the selection of the
distance function might also be performed in the opposite order. Indeed, in some
cases the choice of the distance to adopt is relatively easy or even enforced by
the specific application, in which case the selection of the distance is performed
first.

Figure 6.6b shows an example of a result obtained by a specific combination
of schema and distance, namely a density-based clustering algorithm using
the spatial route distance described above. Different clusters are plotted with
different colors. The data set used in the example contains trajectories of vehicles
in Tuscany, Italy, also plotted on Figure 6.6a.

Trajectory-oriented clustering methods. A complementary approach to clus-
tering, as opposed to the distance-based solutions described so far, consists in
algorithms that try to better exploit the nature and inner structure of trajectory
data. From a technical point of view, that usually translates to deeply readapting
some existing solution in order to accommodate the characteristics of trajectory
data.

One important family of solutions makes use of standard probabilistic model-
ing tools. A very early example was provided by mixture models-based clustering
of trajectories. The basic idea is not dissimilar from k-means: we assume that
the data actually form a set of k groups, and each group can be summarized by
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means of a representative object. The difference is that now the representative
is a probability distribution of trajectories that fits well with the trajectories in
its cluster. Another well-known statistical tool often adopted when dealing with
trajectories is hidden Markov models (HMMs). The basic approach, here, con-
sists of modeling a trajectory as a sequence of transitions between spatial areas.
Then, a cluster of trajectories is modeled by means of a Markov model (i.e., the
set of transition probabilities between all possible pairs of regions) that better
fits the trajectories.

Other examples of trajectory-oriented clustering methods can arise by adding
novel dimensions to the clustering problem. For instance, in the literature the
problem was investigated of finding clusters by means of a distance-based clus-
tering method (a density-based one, more exactly, though a similar process might
be easily replicated for other approaches) when it is not known in advance the
time interval to consider for clustering. For instance, we might expect that rush
hours in urban traffic data exhibit cluster structures that are better defined than
what happens in random periods of the day. The problem, then, becomes to find
both the optimal time interval (rush hours were just a guess to be confirmed)
and the corresponding optimal cluster structure. The solution proposed, named
time-focused trajectory clustering, adopts a trajectory distance computed as the
average spatial distance between the trajectories within a given time interval,
which is a parameter of the distance. Then, for each time interval T , the algo-
rithm can be run focusing on the trajectory segments laying within T . The
quality of the resulting clusters is evaluated in terms of their density, and a
simple procedure is provided to explore only a reasonable subset of the possi-
ble values of T . A sample result of the process is given in Figure 6.7, which
depicts a set of trajectories forming three clusters (plus some noise) and shows
the optimal time interval (that where the clusters are clearest) as dark trajectory
segments.

6.3.2 Trajectory Classification

Clustering is also known as unsupervised classification, since the objective is
to find a way to put objects into groups without any prior knowledge of which
groups might exist, and what their objects look like. In several contexts such
knowledge is available, more exactly in the form of a set of predefined classes
and a set of objects that are already labeled with the class they belong to –
the so-called training set. The problem, here, becomes finding rules to classify
new objects in a way that is coherent with the prior knowledge, that is, they
fit well with the training set. For instance, we might have access to a set of
vehicle trajectories that were manually labeled with the vehicle type (car, truck,
motorbike), and we would like to find a way to automatically label another,
much larger set of new trajectories.
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Figure 6.7 Three-dimensional depiction of sample result obtained with time-focused tra-
jectory clustering on a data set of synthetic trajectories.

The simplest solution to the problem is the so-called k-nearest neighbors
(kNN) approach: instead of inferring any classification rule, it directly compares
each new trajectory t against the training set and finds the k labeled trajectories
that are closest to t . The most popular label among the neighbors is then also
assigned to t . The assumption is that the more similar two trajectories are, the
more likely they belong to the same class. Obviously, everything revolves around
a proper choice for the similarity measure applied, which should be as coherent
as possible with the classification problem at hand. As an example, we can
expect that a similarity function that takes into consideration the acceleration of
objects will recognize well the vehicle type – the lighter the vehicle, the easier
it is to reach high accelerations. On the contrary, a measure based only on the
places visited might perform more poorly.

The same idea is also applied in several sampling-based solutions to the
clustering problem: when the data set is too large to process, one approach
consists of randomly sampling a small subset of trajectories and computing
clusters on them. Then, all other trajectories are assigned to the cluster (i.e.,
classified) with a kNN approach or by comparing them against the centroid of
each cluster.

Approaching the problem from a different viewpoint, each class involved in
the classification problem could be modeled through a probabilistic model that
is fitted to the available trajectories in the class. Then, each new trajectory can be
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assigned to the class whose model most likely generated it. Similarly to what we
have seen with clustering, HMMs are a common choice to do it. As compared
to clustering, the problem is now simplified, since the association trajectories ↔
classes is known a priori. Behind the probabilistic framework they operate in,
HMMs essentially aggregate trajectories based on their overall shape, again
assuming that similar trajectories have better chances of belonging to the same
class.

The final way to classify trajectories we will see is based on a traditional
two-step approach: first extract a set of discriminative features by a preliminary
analysis of the trajectories, then use such features – that can be expressed as a
database tuple or a vector – to train any existent standard classification model
for vector/relational data.

The first step requires one to understand which characteristics of the tra-
jectories appear to better predict which class each trajectory belongs to. One
straightforward approach might consist in calculating a predefined set of mea-
sures expected to be informative enough for the task. For instance, aggregates
such as average speed of the trajectory, its length, duration, average acceleration,
and diameter of the covered region might be used. Other, more sophisticated,
solutions might instead try to extract finer aspects of the movement, tuned to
calculate only the most useful ones. A proposal of this kind can be found in lit-
erature with the name TraClass, which heavily relies on a trajectory-clustering
step. TraClass is based on a fundamental observation: in many cases, the features
that best discriminate trajectory classes are related to a small part of the overall
trajectory. All approaches mentioned so far, on the contrary, uniquely consider
overall characteristics – that includes HMM-based solutions, since each model
must fit whole trajectories. Single, short-duration events hidden in the long life
of a trajectory might then be lost in the process. TraClass tries to fill in the
gap by extracting a set of trajectory behaviors (which, we recall, look for local
behaviors rather than overall descriptions of full trajectories). The basic tool
adopted is trajectory segmentation and the clustering of such segments to form
movement patterns.

TraClass works at two levels: regions and trajectory segments. At the first
one, it extracts higher-level features based on the regions of space that the
trajectories visited, without using movement patterns; at the second one, lower-
level trajectory-based features are computed, using movement patterns. The
extraction phase is made more effective by evaluating the discriminative power
of the regions and patterns under construction. For instance, a frequent movement
that is performed by trajectories of all classes will be not useful for classification
(knowing that a trajectory contains such a pattern does not help in guessing the
right class to associate to it); on the contrary, a slightly less frequent pattern that
is mostly followed by trajectories of a single class is a very promising feature.
In the proposed framework, trajectory partitioning makes discriminative parts
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Figure 6.8 Sample decision tree on regions and patterns.

of trajectories identifiable, and the two types of patterns collaborate to better
characterize trajectories.

Once a vector of features has been computed for each trajectory, we can
choose any generic, vector-based classification algorithm. One representative
(and easy to grasp) example is decision trees. The resulting classification model
has the structure of a tree, whose internal nodes represent tests on the features
of the object to classify, and the leaves indicate the class to associate to the
objects. Figure 6.8 shows a fictitious example based on TraClass features, with
two classes: positive (P) and negative (N). When a new trajectory needs to be
classified, the test on the root (the top circle) is performed on it. In the example,
if the trajectory actually visits region A, then we move to the left child of the root
and continue the evaluation from there, otherwise we move to the right child.
In the first case, we have now to test whether the trajectory follows pattern X:
in case of a positive answer, the trajectory is labeled with “class P,” otherwise
with “class N.” The classification process proceeds in a similar way when
different outcomes are obtained, always starting from the root and descending
through a path till a leaf is reached, which provides the label prediction. Another
way to read a decision tree is as a set of decision rules, one for each path
from root to leaf, such as “If (Visit region A) AND (Follow patter X) THEN
Class P.”

6.3.3 Trajectory Location Prediction

Trajectory classification can be seen as the problem of predicting a categorical
variable related to a trajectory. However, prediction is most naturally related
to the temporal evolution of variables. Since the basic aspect of objects in the
context of trajectory is their location, predicting their future position appears to
be a problem of primary interest.
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Figure 6.9 Sample prediction tree produced by WhereNext.

The modeling tools that are able to model the sequential evolution of the
objects they describe are good candidates for a predictive usage. Indeed, once
a trajectory has been associated to the most likely model (for instance, by
choosing one of the k HMMs combined in a mixture-model, as described for
the clustering problem), such model can be run to simulate the most likely next
steps. In most cases we can apply the same remarks discussed earlier in this
section for classification: if the model is based on an overall summary of the
behavior of a set of trajectories, most likely it will not be able to capture local
events, even though their appearance is highly correlated with a future behavior –
in our case, the next location.

In literature it can be found an approach called WhereNext, which works in a
way not too dissimilar from the one followed by TraClass for the classification
problem. Basically, WhereNext extracts T-patterns (see Section 6.2.2) from a
training data set of trajectories and combines them into a tree structure similar to
a prefix-tree. In particular, each root-to-node path corresponds to a T-pattern, and
root-to-leaf paths correspond to maximal patterns. Figure 6.9 shows a sample
prediction tree, condensing 12 patterns, 7 of which are maximal (one per leaf).

When a new trajectory is presented, its most recent segment is compared
against the regions represented in the tree, looking for the best match among the
root-to-node paths. For instance, Figure 6.9 depicts the case where the last part
of the trajectory visits region A followed by region B after a delay between 9
and 15 time units. The match is depicted by the dark shaded sequence. Then, the
model finds that the matched sequence is a prefix of a longer pattern, and so it
suggests as likely continuation region E (marked in light shaded in the figure),
to be reached after a delay between 10 and 56 time units.
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6.3.4 Trajectory Outliers

The general objective of clustering is to fit each object in data into some category
(and discovering the categories is part of the problem). However, sometimes the
analyst is exactly interested in those objects that deviate from the rest of the data
set, and therefore cannot really fit any category. Such objects are called outliers.

Finding an outlier object means to discover some feature or pattern that holds
for the object, and yet is anomalous or at least very rare in the data set. In
this sense, the problem can be properly seen as a (infrequent) pattern discovery
task. The reason for discussing it now is that most outlier detection methods
in literature actually adopt some clustering procedure, and identify outliers as
those objects that are (or would be) left out of any cluster. Here we provide two
examples.

A basic method for discovering trajectory outliers consists in adopting a
density-based clustering perspective, and therefore computing the number of
neighbors of each trajectory over a reasonably large neighborhood. Then, the
trajectories that have too few neighbors are classified as outliers. As density-
based clustering, the method is parametric on the distance measure adopted,
and therefore, in principle, any distance between trajectories can be applied.
Alternatively, from each trajectory a set of predefined representative features
can be extracted, such as average speed and initial position, and then applied
any standard distance over vector data.

In Section 6.3.2 the TraClass trajectory classification method was presented,
which has the characteristic of working over trajectory segments (obtained by
properly cutting original trajectories) rather than whole trajectories. By cluster-
ing such segments, relevant subtrajectory patterns were extracted and later used
for classification purposes. Following the same idea, outliers can be found within
trajectory segments, therefore focusing on single parts of trajectory that behave
in an anomalous way. In particular, each trajectory segment is compared against
the representative segment of each cluster, and if no representative segment fits
well enough, the input trajectory segment is classified as an outlier.

6.4 Conclusions

We conclude this chapter with a few notes on the topics presented and some of
the open questions in mobility data mining research.

Mobility data mining, as many other instantiations of the general data mining
paradigm into specific contexts, brings with itself the general categorization of
problems and methods it inherited from standard data mining. In particular, the
three main categories – frequent patterns, clustering, and classification – appear
again. However, some specificities of trajectory data emerged and stimulated
the development of new approaches. In particular, the complexity of the data,
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joining temporal and spatial information, greatly increases the search space of
most interesting problems, such as finding patterns or discovering discriminative
spatio-temporal features for classification or prediction problems.

One aspect of mobility data mining that the reader might have guessed by
reading this chapter is the fact that this research field still lacks an overall,
comprehensive, and clear theoretical framework. Such a framework should be
able to accommodate existing problems and solutions proposed in literature,
as well as clarify the relations between them. Some examples of efforts in
this direction exist in literature, and we also reported a few of them – for
instance, the relation between local trajectory patterns and global trajectory
classification models, and their abilities to grasp different, complementary kinds
of discriminatory features of trajectory data; or the relations between some of
the various forms of trajectory pattern. However, such cases are rather isolated,
and at the present, providing an integrated view of methods and issues is still a
largely unexplored part of the research field.

Another important point in mobility data mining is the fact that several
data sources might provide information about the same mobility phenomena
coming from different viewpoints. Each data source usually has distinctive
characteristics, strong points, and limitations, and their integration might help in
overcoming the limits of each of them. For instance, vehicle GPS data are usually
very detailed in space (i.e., spatial uncertainty is small) and time (frequency of
data acquisition is relatively high), yet it is inherently limited to the vehicles
that are involved in the data collection process; instead, mobile phone service
providers are able to collect information about mobility of all their customers,
and through the collaboration of a few providers it is possible to cover the
activity of very large portions of the real population. One example is call detail
records (CDRs), which describe the cell towers that served each call performed
by each phone, together with the call’s timestamp. CDRs allow us to build
mobility trajectories for each customer served. However, such trajectories are
very sparse (one point corresponds to a call, which are usually not so frequent)
and spatially rough (a point actually represents the whole area served by the
cell tower). Activities that try to combine these two data sources have begun
to appear recently, with the aim of improving the representativity of GPS data
through the extremely high penetration of the (spatially and temporally poor)
CDR data.

Finally, so far, our discussion has always implicitly assumed that the trajectory
data were analyzed offline and in a centralized setting, that is, by first collecting
all data in a single database and then analyzing them. However, mobility data are
usually massive and arrive as a continuous stream from the data source(s). Mas-
siveness and the streaming nature of data leads to make it impossible to collect
them, at a large scale, in a centralized database, and therefore analysis methods
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need to be developed that exploit appropriate technologies, such as distributed
databases (a paradigm where data are distributed along several data centers, to
be queried to obtain the data needed for each specific analysis or computation
step), distributed computation (several nodes with computation powers collabo-
rate to analyze data), and streaming-oriented computation (essentially aimed to
perform computation by looking at the input data only once).

6.5 Bibliographic Notes

As mentioned at the beginning of the chapter, the literature on mobility data
mining is rather extensive – especially for such a young field – and heteroge-
neous. Attempting an exhaustive discussion of existing problems and proposals
would require much more space and would be beyond our purposes as well. In
the following, we will provide a list of essential bibliographic references for the
reader, including those describing the methods cited in the chapter and a few
pointers for further reading.

The original definition of flock patterns required that the group of objects meet
at a single time instant and have the same direction of movement. Successive
variants introduced the temporal duration constraint, also adopted in this chapter,
starting from Gudmundsson et al. (2004). Moving clusters were defined by
Kalnis et al. (2005), provided with a few heuristics for incrementally computing
the interesting patterns, while convoys are described in Jeung et al. (2008) and
spatio-temporal sequential patterns appear in Cao et al. (2005).

T-patterns were introduced by Giannotti et al. (2007), and later were exploited
in building WhereNext – a location prediction method by Monreale et al. (2009) –
as well as in several application works.

One rich source for a library of trajecory distances – to be used within generic
clustering algorithms – is provided by Pelekis et al. (2007). Several references
exist for standard (distance-based) clustering schema that can be applied to
trajectory data, including basic introductions to data mining such as Tan et al.
(2005).

Model-based approaches to trajectory clustering can be found in several
isolated papers, especially on specific application domains (video surveillance,
animal tracking, etc.). The mixture-models trajectory clustering described in
this chapter was first introduced in Gaffney and Smyth (1999), later extended to
include time shifts. Hidden Markov models-based approaches can be found, for
instance, in Mlich and Chmelar (2008).

Time-focused clustering, an extension of density-based clustering for trajec-
tories, was presented in Nanni and Pedreschi (2006).

The TraClass framework for trajectory classification was introduced in Lee
et al. (2008a), mainly based on previous works of the same authors on trajectory
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segmentation and clustering. The same principles were then applied to the outlier
detection problem, as described in Lee et al. (2008b).

Finally, a few sources already exist for exploring more deeply the subject of
data mining on trajectory data, including the book by Giannotti and Pedreschi
(2008), which contains a chapter on spatio-temporal data mining, and the book
chapter on spatio-temporal clustering by Kisilevich et al. (2010b).
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Understanding Human Mobility
Using Mobility Data Mining

Chiara Renso and Roberto Trasarti

7.1 The Mobility Knowledge Discovery Process

We often say that “Knowledge is power” and this is particularly true in the
mobility field, because mobility knowledge gives great power in terms of appro-
priate decision making to actors in several application files, ranging from traffic
management to urban planning to ethology, just to give some examples. Mobility
knowledge can be rephrased as how, when, where, and why objects move? For
example, a traffic manager could improve traffic sustainability in a city when
he or she discovers why a specific traffic congestion happens, or an ethologist
could finally gain a deep understanding of why a given animal behaves in a given
way.

The mobility data mining research field has seen a growing interest in the
last few year – as already stated in Chapter 6 – providing several algorithms and
techniques tailored on trajectory data. However, a common problem of these
techniques is that the knowledge produced by the mining step is generally not
really applicable to the application domain as it is. The lack of semantics of the
extracted patterns makes the interpretation task far from obvious. This problem,
commonly recognized in the data mining literature, is particularly significant in
mobility data mining, where the complexity of the data themselves, together with
the extreme multifariousness of the mobility application requirements, makes
the knowledge discovery even more challenging. The interestingness evaluation
of the discovered movement patterns makes sometimes the KDD process a mere
academic application, useless in reality. A way to close the gap between “KDD
knowledge” and “application actionable knowledge” is to reinforce the KDD
process with tools capable of easily managing the steps integrated with new
elements focussed on the semantic aspect for an improved data and patterns
understanding. This results in a number of techniques, tailored to mobility data,
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aimed at enriching the steps of the knowledge discovery process with the final
objective of getting meaning from movement data.

It is worth noticing that most of the methods to compute trajectory patterns, as
illustrated in Chapter 6, are focused on the geometric properties of the trajectory.
However, just discovering geometric trajectory patterns can be of limited interest
since they lack the necessary semantics to be fully understood by the domain
expert user. For example, assume that a cluster is found on a trajectory data set
representing human movements in a city: this pattern represents how people are
moving, not why, or the reason for the movement. The reason why entities move
needs a deeper understanding of the movement based on the context semantics,
or context knowledge – also called background knowledge. For example, we can
discover that a particular movement happened due to a football match, or that a
cluster represents tourists visiting attraction points in a city or commuters during
their daily routine. The conceptual lift from finding how movement happened
(e.g., a cluster) to understanding why entities are moving in that way (e.g., due
to a commuting flow), needs an improved knowledge discovery process tailored
to mobility data characteristics and possibly enriched with contextual semantic
information.

We believe that mobility understanding and semantic enrichment encom-
passes the whole discovery process, from the preprocessing step to data mining
and the pattern interpretation performed during the postprocessing step. For
this reason, this chapter is centered on approaches devoted to improving the
understanding of mobility data and patterns with the final objective of giving
insights into why the movement happens. These approaches range from data
preprocessing techniques, to mining, to postprocessing, where semantics have a
more pervasive role.

We introduce this process by presenting a system called M-Atlas. M-Atlas
provides the basic components for supporting the mobility discovery steps
from data preprocessing to mining to postprocessing. We are introducing the
system as a specific instance of a mobility knowledge discovery support system
highlighting the steps that allow us to infer the new knowledge from trajectory
data, possibly combined with semantic information. First of all, we highlight
the importance of the preprocessing step to get a better perception of the
values and the knowledge embedded in the data, and thus drive the mining task
accordingly. During the mining and postprocessing phases the semantics have
a major role since they are explicitly considered to interpret of the patterns in
terms of mobility knowledge. Therefore, we present the core concepts of the
M-Atlas system illustrating tasks such as data preparation for a context-driven
preparation of data for mining or data validation where the mobility data set
is evaluated against an application domain knowledge that acts as a “ground
truth.” This latter step allows us to establish if, and at which degree, the data set
to be analyzed are representative of the real world and therefore the results of
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the analysis are still valid in the real world. Other techniques aimed at getting
useful results from the mining step include progressive clustering and parameter
tuning. The second part of the chapter focuses on trajectory behavior as already
introduced in Chapter 1, distinguishing between spatio-temporal and semantic
behavior. We illustrate how to extract semantic behavior such as “StuckInTraffic-
Jam” or “Commuter” using a semantic-enriched mobility knowledge discovery
process.

7.2 The M-Atlas System

M-Atlas1 is a running system developed to handle all the steps of the mobility
knowledge discovery process. M-Atlas is a querying and mining system based
on extensions of SQL and centered on the concept of trajectory. Besides the
mechanisms for storing and querying trajectory data, M-Atlas has mechanisms
for mining trajectory patterns and models that, in turn, can be stored and queried.
The basic design choice is compositionality, that is, querying and mining of tra-
jectory data; patterns and models may be freely combined in order to provide the
expressive power needed to master the complexity of the mobility knowledge
discovery process. The conceptual model behind M-Atlas views the knowledge
discovery process as the interaction between two conceptual worlds: the data
world and the model world. The former is a set of entities to be mined, tra-
jectories in our case; the latter is a set of models and patterns extracted from
the data, representing the result of mining tasks. Two kinds of operators con-
nect the two worlds: the mining operators, and the entailment operators. Mining
operators map data into models, or patterns, while entailment operators map
models, patterns, and data into the data that satisfy the property expressed in
the given model or pattern. This view supports compositionality, as data can
be mapped onto models and vice versa, coherently with inductive database
vision. Another design choice of the system is that all entities are represented
in the object-relational data model, which is more suitable to tackling the struc-
tural complexity of spatio-temporal data compared with the standard tabular
data.

The M-Atlas system is equipped with a graphical user interface and a set
of interactive graphical tools allowing the user to navigate the data and model
easily. This has the advantage of making the tool usable by domain expert users
to get full advantage of their domain expertise. Each interaction of the analyst
with the interface is compiled into a sequence of M-Atlas queries that can be
retrieved at any moment to describe or review the entire process. Alternatively,
an expert data mining analyst can directly submit queries to the M-Atlas engine,
to exploit its full expressiveness.

1 Available for download at the address http://www.m-atlas.eu
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The use of a data mining algorithm in a knowledge discovery process is not
a straightforward process: usually the choice of the best algorithm and the best
parameters setting to extract meaningful and useful patterns is difficult even for
an expert analyst user.

In this section we introduce a set of techniques, demonstrated with examples
using M-Atlas, to drive a user through the mobility knowledge discovery process
by optimizing the data analysis and tuning the parameters setting. The techniques
introduced here have been tailored to the case of mobility data, although they
can be applied to general data mining.

7.2.1 Data Preprocessing

In this section we present some data preprocessing techniques useful in mobility
knowledge discovery, illustrating them through the use of M-Atlas.

Data Validation
Data validation is a necessary step to measure how much the trajectory data
set we are going to analyze is consistent and representative of the real world
phenomena. Here we consider the data already cleaned and reconstructed as
described in Chapter 2. However, the reconstruction step does not eliminate all
the possible imperfections in the data and errors at higher level may still exist.
This is due to bias in the data (e.g., tracking only a certain category of the
users) or technological problems (i.e., an area where the devices don’t work)
that can produce unusual and unwanted effects on the analysis results. To asses
the significance of a data set as a proxy of the real mobility phenomena within
a certain area, the trajectory data set (as a set of spatio-temporal points) can be
compared against a “ground truth” such as survey data composed by a set of
interviews about mobility habits, for example done by phone (or other forms
of a priori knowledge). However, an important issue to be considered in this
comparison is the population of these two data sets. For example, considering the
data set coming from a set of private cars, this covers only vehicular movements,
whereas surveys usually include all kinds of movement, including pedestrians
and public transportation. Second, the automatic collection procedure and the
cleaning step applied for the car data set ensures that all movements are correctly
captured, whereas surveys leave space for omissions or distortions. Finally, the
data provide no explicit semantic information about the purpose of movements,
such as the final destination and profiles of the citizens involved, whereas surveys
explicitly collect this information. A significant difference holds also for the size
of the sample, which can alter the reality represented in the data set. A method
that can help to understand if the data are consistent with the ground truth is
to replicate a statistic analysis for each data set and make a comparison. This
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phase of the analysis is crucial, as only after assessing the correspondence of
the preliminary analysis results with the ground truth can we proceed with
the mobility knowledge discovery steps having the guarantee that the results
will represent real mobility patterns. In Chapter 10, dedicated to car traffic
monitoring, we will see an example of this validation process on the Milano
data set.

Trajectory Reconstruction and Preparation
As explained in the previous chapter, the data mining algorithms apply to the
concept of trajectory: but which trajectory definition? It is simply the ordered
sequence of observations of the user’s history? Or a subsequence represent-
ing the movements between stops? And how to define and compute a stop?
Answering these questions is crucial and affects deeply the results of the knowl-
edge discovery process. For example, if we are interested in frequent paths
followed by a certain number of users we need to consider T-pattern applied
to the whole user history as single trajectory, so that the support of a single
pattern will be the number of users that follow that path. Alternatively, if we
are interested in the usage of certain frequent paths then we do not need to dis-
tinguish between distinct users. As a consequence, the concept of trajectory to
be mined becomes the subsequences of user trajectories delimited by two stops
as described in Chapter 2. There are several ways of reconstructing trajectories
considering different constraints and thresholds thus leading to different sets of
trajectories. In M-Atlas we can perform this operation with the data constructor
statement.

CREATE DATA <trajectory_table> BUILDING MOVING_POINTS

FROM (SELECT userid, longitude, latitude, datetime

FROM <raw_observation_table>

ORDER BY userid, datetime)

SET MOVING_POINT.<constraint_name> = <value> AND ...

The syntax of queries in M-Atlas extends the standard SQL. In this query we see
a CREATE DATA operation building a new kind of data to be stored in the data-
base from a pure relational table. As we can see, a new trajectory table is built
from the raw observations using trajectory reconstruction parameters expressed
in the constraints. Some examples are MAX_TIME_GAP or MAX_SPEED which
realize the two constraints described in Chapter 2. These values depend on
the application and their values have to be carefully chosen because they
affect all the subsequent analysis. Examples are MAX_TIME_GAP = 30 min

or MAX_SPEED = 5 km/h to cut trajectories where there is a temporal gap of
30 minutes or a max speed of 5 km per hour, respectively.
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Data Manipulation
Before the execution of a data mining algorithm the analyst can manipulate
(e.g., select the data in a particular area or period) or transform the data (e.g.,
anonymize for privacy reasons). To these purposes, the system provides a rich
set of operations: the relational statement represents the creation of a relation
between two objects applying a predicate while the transformation statement
modifies the original data according to a transformation function (or algorithm).
To better understand the relation statements and transformation statements we
present two examples. The first one is the relation between a trajectories table
and a temporal period table, which computes the temporal distribution of the
movements:

CREATE RELATION <relation_table> USING INTERSECT

FROM (SELECT t.id, t.object, p.id, p.object

FROM <trajectories_table> t,

<time_periods_table> p)

The objective of this query is to create a new table where the trajectories are
intersected with a temporal period. This is useful in the analysis process when
the data to be mined have to be selected based on space and/or time, as in the
example above. All the spatio-temporal operators embedded into the system –
such as INTERSECT – assume a different meaning according to the types of data
to which they are applied. For example, the INTERSECT operator when applied
to two trajectories becomes a spatio-temporal intersection and this operation
returns true when the two moving users are in the same place at the same time.

The second example is a transformation operation that builds a new set of
trajectories to be mined. A classic example is the anonymization of trajecto-
ries, where the initial data set is transformed to guarantee a certain degree of
anonymization of the trajectories. The main idea is that, in the anonymized
data set, each individual is indistinguishable from other k − 1 individuals, as
detailed in Chapter 9. However, for explaining the TRANSFORMATION operation
it is important to point out that the original data set is changed into a new one with
some properties that, in this case, guarantee the anonymity of the individuals.

CREATE TRANSFORMATION <trans_table> USING K-ANONYMITY

FROM (SELECT * FROM <trajectories_table> t)

SET K-ANONIMITY.K = <k_value>

7.2.2 Data Mining

Naturally, the mining step applies the mining algorithm. However, several actions
can be taken during the mining step in order to make the knowledge discovery
more effective. Moreover, models can be further manipulated and combined.



7.2 The M-Atlas System 133

Data Mining Step
Data mining is the core step of the process and consists in the execution the
algorithms, as for example the ones presented in Chapter 6. M-Atlas realizes
this step with a mining statement:

CREATE MODEL <model_table> MINE AS <mining_algorithm_name>

FROM (SELECT t.id, t.object

FROM <trajectories_table> t)

SET <mining_algorithm_name>.<param>= <value> AND ...

As we can see, this statement creates a new model as the result of a mining task
specifying the mining algorithm to execute on a selection of trajectories where
the algorithm has to be applied. This set is identified by the SELECT statement
on the trajectories table having as attributes the ID (t.id) and the trajectory
object (t.object). The SET component defines the algorithm parameters.

Mining a Data Sample
Applying a data mining algorithm to a large trajectory data set may be extremely
time- and memory-consuming, making the direct application of the algorithm
to the entire data set not possible due the time or memory limitation. This
problem can be solved using the data mining algorithms presented in Chapter 6
in combination with data sampling techniques. In general, sampling the data is a
technique to reduce the size of the data without altering the statistical properties.

The data can be sampled using semantic criteria such as dividing the data
using the spatial or temporal characteristics of the trajectories. Whatever sam-
pling technique is chosen by the analyst, the important issue is to maintain the
consistency of the data or, at least, understand exactly the bias introduced, as
this may strongly affect the extracted patterns.

An example of random sampling realized in M-Atlas is expressed as follows:

CREATE MODEL <model_table> MINE AS <mining_algorithm_name>

FROM (SELECT t.id, t.object

FROM <trajectories_table> t

ORDER BY RANDOM()

LIMIT 20%)

SET <mining_algorithm_name>.<param>= <value> AND ...

We notice here the RANDOM keyword that allows us to reorder trajectories in a
random way, selecting only the 20% of them. Once the models are extracted on
the sampled data, we can apply them to the remaining data set to determine their
real support. Chapter 10 presents an example of this technique for the Milano
data set.
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Figure 7.1 The process of extracting knowledge from the data using the progressive mining
technique, restricting the constraint at each level.

Model Manipulation
Similarly to the trajectory data, the models resulting from the mining step can
be stored and manipulated to produce a useful and meaningful representation
of the trajectories behaviors. For this reason, the relation statements and the
transformation statements can be used also on models. In particular, M-Atlas
provides a relation that is a bridge between data and models called entails,
which identifies the data that support a model, realized with the following
query:

CREATE RELATION <relation_table> USING ENTAILS

FROM (SELECT t.id, t.object, m.id, m.object

FROM <trajectories_table> t, <models_table> m)

Notice the use of ENTAILS keyword in the query. The idea is to apply the
entails operation to the join between trajectories and extracted models specified
in the SELECT statement. This relation is crucial to the knowledge discovery
process, as it implements the interaction of the process building complex pro-
gressive queries between data and models. This procedure is called progressive
mining and it is illustrated in the following paragraph.

Progressive Mining
As described in previous sections, the knowledge discovery process is not a
straightforward sequence where a single run of data mining algorithm can per-
form the whole understanding task. The iterative and interactive aspects are
crucial to get a real understanding of the data and extracted patterns. The pro-
gressive mining technique is the concatenation of a series of mining algorithms,
which restrict, at each step, their constraints, removing the not interesting data
or noise. Figure 7.1 shows a graphical representation of the process where at
each step the models are extracted and the data supporting them are reused
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to apply a stricter version of the mining algorithm. An example is to use the
T-clustering algorithm (see Chapter 6), reducing the allowed distance between
trajectories or choosing different distance functions that become more precise
at each level, such as the starting points, route similarity, and then synchronized
route similarity. In M-Atlas, each step is realized as a sequence of two kinds of
queries: a mining query to perform the clustering step and a relation query for
the entails operation, that is, the selection of trajectories satisfying the cluster
definition. This is depicted as follows:

CREATE MODEL <model_table> MINE AS T-CLUSTERING

FROM (SELECT t.id, t.object

FROM <trajectories_table> t)

SET T-CLUSTERING.METHOD = <distance function> AND ...

CREATE RELATION <relation_table> USING ENTAILS

FROM (SELECT t.id, t.object, m.id, m.object

FROM <trajectories_table> t, <model_table> m

WHERE m.id<>’noise’)

The first query performs a clustering task on all trajectories. The following
query uses both the resulting model table representing the clustering and the
original trajectories data set to find trajectories that belong to some clustering,
thus excluding the noise – here specified by the “noise” ID. In every step
the classification of the noise can be both unsupervised, for example, the T-
clustering, or supervised, where the user individually selects the interesting
patterns extracted in the last data mining execution.

Chapter 10 illustrates examples of use of this technique on the Milano data
set.

Tuning the Parameters
Tuning the parameters of the data mining algorithm is not easy, because it usually
requires several attempts to evaluate the results and adjust the parameters values
accordingly. In general, we must consider two aspects when dealing with the
parameters settings: the number of patterns and the usefulness of the patterns.
Usually the objective of the analyst is to find a small set of useful and meaningful
patterns. Finding a good value for the parameters that guarantees this result is
highly arduous. However, some techniques may be used to guess a reasonable
value. Essentially, the idea is to progressively adjust the parameter values based
on the characteristics of the resulting patterns. As an example, let us consider the
T-pattern algorithm presented in Chapter 6, although similar methodology may
be used for other algorithms. Recall that the parameters are the support threshold,
the time tolerance, and an initial set of spatial regions and the algorithm finds
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the most frequent sequences of regions visited by the users with their traveling
time. The method we propose adjusts the parameters based on the analysis of
the mining results. The objective is to iterate the mining task with different
parameter values toward the objective considering the characteristics of the
resulting patterns. Therefore, depending on the resulting set of patterns, an
action must be taken as summarized here.

The result set is as follows:

� Small and contains useful patterns: In this case, the objective of the analyst
is reached.

� Too big or the algorithm is not terminating: In this case, the support threshold
is probably is too low and too many regions become frequent, leading to an
explosion of patterns. There are three possible solutions: (1) to increment the
support threshold, (2) check the set of regions to reduce them, or (3) increase
the time tolerance so more patterns will be merged together.

� Small, but time intervals are trivial: The time tolerance is too high and makes
the pattern too inclusive, leading to trivial ones. We need to lower the time
tolerance.

� Small, but the sequences of regions are trivial: In this case, the support
threshold is too high and the real patterns are hidden in the data or the set of
regions is not meaningful. Some regions could be too large and therefore they
can be split into a finer granularity, thus leading to a better differentiation in
the resulting patterns.

When a reasonable result is obtained, the analyst can apply a pruning in the
postprocessing phase to remove some of the patterns, considering additional
properties such as the number of regions in a T-pattern. The parameter setting
in any data-mining algorithm is recognized in the literature as an open issue
and the optimal solution is far from being trivial. However, having a method-
ology to drive the parameter setting is a first step in searching for a good
solution. Naturally, it could be that in some cases an algorithm is oversensitive
to parameter changes, thus making it extremely difficult to find a good parameter
setting.

The problem of finding a good initial parameter configuration is also worth
a discussion: the analyst can simply start from a reasonable or random set of
thresholds and then start tuning the parameters as described earlier. Another,
smarter possibility is a parameter estimation performed considering the critical
steps of the algorithm. Consider again the basic step of the T-pattern algorithm:
the detection of frequent regions in the area under analysis makes the support
threshold the most influent parameter for the whole process. We present a
heuristics data-driven method to estimate the value for this threshold. This is
based on the cumulative frequency distribution of trajectories in the spatial grid
cells. An example on the Milano data set is shown in Figure 7.2a. The points
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(a) (b)

Figure 7.2 Cumulative frequency distribution of trajectories in space. (a) The plot proposes
a ranked list of three candidate values for the T-pattern support threshold (13, 24, 82) based
on detected points of significant slope variation. (b) Cumulative distribution of transition
times between each pair of points in each trajectory.

of significant slope change in this distribution are the best candidates for the
support threshold, because these points separate groups of grid cells that have a
rather uniform frequency internally, while the frequency between the different
groups is very different.

Another crucial parameter for the extraction of T-pattern is the time tolerance
τ . In Figure 7.2a we plot all the time distances for every possible pair of points in
each trajectory. These represent all the possible transition time candidates in the
T-pattern mining algorithm. The sharp steps in the zoomed inset are the artifact of
the average sampling rate, ≈ 33 seconds. This is the minimum admissible value
for the τ parameter. We note that with a high value of τ the T-pattern computation
aggressively merges the transition times. For instance, with 130 seconds 10% of
transition times are merged. An adequate candidate for the τ parameter is around
the 50th percentile (14 minutes) and, in any case, between the 10th and the 90th
percentiles (2 minutes–45 minutes). The frequency distribution of trajectories
in M-Atlas is realized computing the intersection between the spatial grid and
the set of trajectories as specified in the following query:

CREATE RELATION intersection_table USING INTERSECT

FROM (SELECT t.id, t.object, s.id, s.object

FROM <trajectories_table> t, <grid_cells> s)

and grouping the result by the cells. We see the use of the RELATION query with
the INTERSECT operation that here applies to trajectories and spatial objects.
Once the presence of trajectories in the spatial cells is computed by this query, a
frequency distribution has to be computed. Therefore, the cumulative distribution
and the identification of the slopes can be done using the mathematical functions
provided by standard SQL.
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7.2.3 Trajectory Postprocessing

Postprocessing refers to the set of operations that can be done once the mining
step has been concluded and usually refers to the evaluation or interestingness
of the extracted patterns. The validation of the patterns aims at measuring how
much the extracted patterns are valid and not just random results. The patterns
interpretation task, instead, is more semantics in the sense that it aims to interpret
the patterns in the light of a domain knowledge. The result of this step may trigger
a new iteration of the knowledge discovery process.

Pattern Validation
The validation of a set of discovered mobility patterns can be very arduous,
as the useful patterns are usually not already known or are trivial behaviors.
Comparing the result with domain knowledge, such as a survey (when available),
can be useful to validate the knowledge discovery methodology although not
appropriate for validating the discovered patterns. In other words, the patterns
need an interpretation step that can be done with the participation of the domain
expert user or exploiting some form of contextual information, which proves the
real usefulness and interestingness of the patterns.

Although the direct assistance of the domain expert in the validation of
patterns remains the optimal solution, it is in practice not easy to realize due to
the general lack of availability of domain experts. However, there are alternative
methods to evaluate some properties of the set of patterns that can be used to
help the interpretation. Here, we present two examples that are general and valid
for the patterns described in the previous chapter.

The first example is to study the stability of a set of extracted patterns over
time. When a pattern happens to be stable over time this means it probably
reflects a common behavior in the reality. The idea is to compute the patterns
with the same parameter values for several time slots (i.e., several weeks or
days). If a pattern has the same relative support for all the temporal intervals, it
means that the pattern is stable and this confirms the pattern as a regular behavior
and not an exception that happens only occasionally.

A similar approach is to study the evolution of the patterns over time. This
can be done by extracting the patterns in different time intervals (e.g., days or
weeks) and then trying to match them in order to build the evolution of the pattern
through time. This is useful to understand how the patterns temporally evolve.
Although similar to the previous case, this method is more difficult to realize
because a distance measure has to be defined over patterns. Considering, for
example, the T-flock algorithm: we can discover a set of patterns in the first day
P = {p1, p2} and a second set of patterns in the second day P ′ = {p′

1, p
′
2, p

′
3},

then match and compare them using a distance measure f (p, p′) to link together
the closest patterns. Once we have built the evolution of the patterns over time
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we can understand when the patterns remain similar, when and how they change,
or when they disappear.

Pattern Interpretation
The intrinsic difficulty of behavior extraction lies in the need of integrating into
the discovery process the contextual knowledge. We define contextual knowl-
edge any kind of information that is not only related to the geometric parts of a
trajectory and that has some relation with the mobility data. Examples of con-
textual knowledge are: the geographical environment where the objects move
(e.g., hotels, roads, parks), any nongeometric moving object feature (e.g., the age
of the tracked person), or the application-specific concepts and behavior (e.g.,
goal of the movement or predefined behavior, such as commuting, shopping, or
touring).

Application domain knowledge may be globally represented by formally
encoding it into a knowledge representation structure such as an ontology, which
can be used to represent the main concepts of the application. Formal ontolo-
gies are described by languages that are formal and machine readable. They
often include reasoning facilities that support the automatic processing of that
knowledge. Standards such as description logics (DL) provide a deductive infer-
ence system based on a formal, well-founded semantics. The basic components
of DL are suitable to represent concepts, properties, and instances. Complex
expressions, called axioms, can be used to implicitly define new concepts. Com-
bining ontologies with data mining is an intricate, challenging, and growing
research field. Besides, in the case of mobility, additional difficulties due to the
complexity of the managed data and patterns make this combination even more
arduous. The lack of primitive spatio-temporal ontology representation and rea-
soning mechanisms is the major obstacle for the successful development of this
trend.

Some recent proposals are making the first steps in this direction involving
contextual knowledge in the form of ontologies. An interesting feature of com-
bining data mining with ontologies in the knowledge discovery process is the
possibility of integrating deduction and induction aspects. The inductive power
of the data mining, extracting patterns from data (bottom-up), is enriched with
the possibility to deductively infer additional information based on some appli-
cation domain knowledge (top-down). This combination allows us to classify
the mobility patterns, as extracted from the mining step, into the application
knowledge concepts encoded in the ontology. An example of this induction–
deduction combination is the framework Athena, an extension of M-Atlas that
is an attempt to exploit ontologies in the mobility knowledge discovery process.
Athena represents application domain knowledge in an ontology where axioms
define the behavior we want to find in the data. Therefore a classification of the
extracted pattern into predefined behavior is performed directly by the ontology
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reasoning engine. An example of the use of Athena is reported in the following
section.

7.3 Finding Behavior from Trajectory Data

The objective of the mobility KDD process is to give an understanding of
movement data, starting from the statistical analysis that gives an indication of
the properties of the data set, to the extraction of local patterns and global models
that show the hidden correlations of the geometric aspects of the trajectories.
However, these steps alone may be not enough for a proper understanding and
interpretation of mobility data in terms of movement behavior.

The main outcome of a mobility knowledge discovery process is to extract
behavior from raw trajectory data, thus performing a sort of progressive semantic
enrichment from the raw data to a semantic behavior. Trajectory behavior can
be of different types, from the behavior based only on the geometric properties
of the trajectories to the more semantic-oriented behavior involving domain
knowledge and other sources of semantic information. In the following, we
propose a classification of such behavior types, introducing some examples.
Later in the section we show a couple of examples of how these behaviors can
be extracted from raw data using the M-Atlas methodology.

7.3.1 Spatio-Temporal Behaviors

These behaviors are characterized by the geometric properties of the trajecto-
ries. They can be individual when defined on a single trajectory or collective
when multiple trajectories are involved in the behavior definition. Examples of
individual spatio-temporal behaviors are as follows:

� Residence: A trajectory shows the Residence behavior within the area A for
the time interval I if during the whole time interval I all its spatio-temporal
positions are located inside the area A.

� SystematicMovement: A trajectory represents a systematic movement if it
entails a frequent movement pattern of the user over a time period.

Examples of collective spatio-temporal behavior are:

� Flock: A set of trajectories shows the Flock behavior during a given time
interval I when all the trajectories of the set stay close to each other during
the time interval I . Or more precisely: at each instant t of the time interval I

there is a circle such that (1) its radius is smaller than a given threshold, and
(2) it contains the positions at t of all the trajectories.

� Convergence (also called Encounter): A set of trajectories shows the Conver-
gence behavior if every trajectory of the set roughly passes by the same point
at the same instant.
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� Leadership: Let S be a set of trajectories showing the Flock behavior. A
trajectory T of S shows the Leadership behavior during some given time
interval I if, during I , each time the flock S moves, T is ahead of the other
trajectories of the flock S.

7.3.2 Semantic Behaviors

These behaviors are identified by semantic properties of the trajectories. Again,
we can distinguish between individual or collective behaviors. Individual behav-
iors include the following:

� Home: The most frequent place where the user’s trajectories are resident.
� Work: The second most frequent place where the user’s trajectories are resi-

dent.
� HomeToWork: A trajectory shows the HomeToWork behavior if the trajectory

starts in the Home place and ends in the Work place.
� CommuterMovement: A trajectory that is a SystematicMovement and a

HomeToWork where the Home is “outside” the city urban area and the Work
is “inside” or vice versa.

Examples of collective semantic behaviors are described as follows:

� StuckInTrafficJam: A car trajectory shows the StuckInTrafficJam behavior if
it is part of a Flock where the speed is always lower than 1/4 of the free speed
in that area.

� Events: A public place where several trajectories Converge and then Reside
for a time interval I .

� Tourist Guide: A pedestrian trajectory that is a SystematicMovement starting
from a place labeled as “information center” which becomes Leader of a
group of trajectories.

The translation of the behavior definitions into a composition of the three
main KDD steps can be performed in the M-Atlas system. In Figure 7.3 we
present the flow of operations needed to extract the StuckInTrafficJam behavior,
used as an example. In the following we present the set of queries that implement
the process steps.

7.3.3 Extracting Behavior

Consider a table called Observations containing the raw points collected by
the GPS devices for a number of users. This table is composed of four columns:
userID, longitude, latitude, and timestamp. The first M-Atlas query
implements the data construction step, which builds the trajectories according to
the spatio-temporal constraints of 3 hours and 50 meters, respectively. This step
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Figure 7.3 The flow of operations needed to extract the StuckInTrafficJam behavior.

of trajectory reconstruction cuts the movement of the users into trips describing
real activities and thus avoids long stops, for example, during the night or during
the working time.

CREATE DATA Trajectories AS MOVING_POINTS

FROM (SELECT t.userID, t.lon, t.lat, t.timestamp

FROM Observations)

SET MOVING_POINTS.MAX_TIME_GAP = 3 hours AND

MOVING_POINTS.MAX_SPACE_GAP = 50 meters

The result is a table called Trajectories with the three columns userID,
trajID, and trajectory. We can notice that the trajectory becomes a data
type in the system. For space reasons we skip other possible preprocessing
steps and we proceed with the data mining step using the T-flock algorithm –
described in Chapter 6 – to obtain the groups of at least 10 cars with a maximal
distance of 20 meters between them for a time period of at least 5 minutes. These
parameters have been chosen as a reasonable approximation of what a candidate
traffic jam represents. However, this strongly depends on the application and the
characteristics of the analyzed urban area. Typically, bigger cities require larger
parameters for the flock to be identified as a traffic jam.

CREATE MODEL Flocks USING T-FLOCK

FROM (SELECT trajID, trajectory FROM Trajectories)

SET T-FLOCK.MIN_SUPPORT = 10 AND

T-FLOCK.MAX_SPACE_GAP = 20 meters AND

T-FLOCK.MIN_DURATION = 5 minutes

Once again, the result is stored in a table called Flocks. At this point we
have computed a spatio-temporal behavior, though we need to go a step further
toward a semantic behavior, like the StuckInTrafficJam. There are still a few
tasks to be done to identify traffic jams as the flocks with a low speed when the
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semantic aspect is considered. In this example, the free speed2 in the analyzed
area is a contextual information to be taken into account when defining a traffic
congestion. The steps to be performed are: (1) to compute the free speed in the
area of each flock using through a data manipulation step; (2) to select only the
flocks with a speed lower than 1/4 of the computed free speed applying a model
manipulation step. For the first task, we need to find all the trajectories passing
in the area where the flock is found and compute their velocity. This allows us
to compute the free speed that is compared later with the flock speed. Therefore,
we use the spatial transformation Intersection between the T-flock pattern
and a trajectory:

CREATE TRANSFORMATION SubTrajectories USING INTERSECTION

FROM (SELECT flockID, flock FROM Flocks),

(SELECT trajID, trajectory FROM Trajectories)

SET INTERSECTION.ONLY_SPATIAL = true

The resulting table SubTrajectories contains the parts of trajectories
that intersect only the spatial extent of the Flock (using the ONLY SPATIAL

parameter): in other words, we are considering the whole set of vehicles that
pass in that area in the period of analysis. From this set of subtrajectories we
extract the average speed as an estimation of the free speed:

CREATE TRANSFORMATION FreeSpeeds USING STATISTICS

FROM (SELECT flockID, trajID, trajectory

FROM SubTrajectories)

TheSTATISTICS constructor indicates a set of predefined trajectory statistics
including the average velocity, all stored in a table. The second task is the
computation of the speed of the Flocks to be compared with the free speed.

CREATE TRANSFORMATION FlockSpeeds USING STATISTICS

FROM (SELECT flockID, flock FROM Flocks)

To identify the Flocks that are traffic jams we use a model interpretation step
where we constrain the set of Flocks using the definition of a traffic jam shown
in Figure 7.3:

CREATE TABLE TrafficJams AS

SELECT f.flockID, f.flock

FROM FlockSpeeds s, Flocks f, FreeSpeeds fs

WHERE s.flockID = f.flockID AND

s.flockID = fs.FLOCK ID AND

s.avg_speed <= fs.avg_speed*.25

2 The term free speed indicates the average speed of a vehicle in a road without obstacles such as
traffic lights, accidents, or traffic congestion.
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(a) (b) (c)

Figure 7.4 A graphical representation of the process of extracting traffic jams from the
data. (a) Using the T-flock algorithm all the candidates are extracted. (b) The patterns are
colored based on ratio between their speed and the free speed in the same area (Blue>1,
Red<1). (c) The patterns with a speed lower than 1/4 of the free speed. (See color plate.)

Once we have the traffic jams, we can retrieve the trajectories of the users
who are stuck there using the a data-model manipulation realized through the
Entail relation predicate:

CREATE RELATION StuckInTrafficJam USING ENTAIL

FROM (SELECT flockID, flock FROM TrafficJams),

(SELECT userID, trajID, trajectory)

The obtained table contains the set of trajectories of the users who are part
of a traffic jam (identified by flockID). In Figure 7.4 we visualize some of
the steps on the map. However, it is important to notice how this process does
not complete the understanding of mobility. In fact, the selected trajectories
can be further analyzed to determine, for example, the reasons of the traffic
jams. An example is to combine the StuckInTrafficJam with the Commuter-
Movement to discover a possible relation of a traffic jam with the commuting
behavior.

We have seen in the previous example how the semantic information is
embedded into the discovery process when passing from a spatio-temporal
behavior to a semantic behavior, for example, passing from the flocks to the
StuckInTraffic behavior. We have used domain information in the M-Atlas
queries to identify the semantic behavior from the extracted flocks. However,
the semantic enrichment step is not explicit in the process and it is somehow
embedded into the M-Atlas queries by the analyst. A further step in the direc-
tion of extrapolating and modularizing the semantic enrichment task from the
KDD process is to define the KDD process as a combination of induction (or
mining) and deduction (inference of a semantic behavior) reasoning tasks. The
framework Athena offers a solution: an extension of M-Atlas exploiting the
integration of ontologies in the mobility knowledge discovery process. Essen-
tially, this new process consists of a querying and mining process enhanced with
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Figure 7.5 A fragment of the ontology used in Athena to discover HomeToWork behavior

reasoning tasks. Athena represents application of domain knowledge into an
ontology and a mapping between ontology concepts to data and patterns is
defined. Ontology concepts represent the data (e.g., trajectories, roads), patterns
(e.g., flocks), and semantic behavior (e.g., StuckInTrafficJam). The ontology
embeds the semantic of the domain application and, particularly, the concepts
defined by axioms define the semantic behavior we want to infer from patterns
and data.

We clarify now using as an example the CommuterMovement behavior. We
can represent this behavior in the ontology as an axiom defining a trajectory
moving from outside the city in the morning, stopping a long time in the city
center, then moving back from center to the outside in the afternoon. The map-
ping between the trajectories, patterns, and the ontology is formalized in a
specific mapping file, so that the trajectories, the mobility patterns, and the geo-
graphical knowledge become instances in the ontology. The ontology reasoning
engine is run to classify patterns and trajectories into the appropriate behav-
ior as defined by the axioms (e.g., the trajectories satisfying the HomeToWork
behavior).

In Figure 7.5 we present an example of the ontology definition for the Home-
ToWork behavior. We can see that HomeToWork and SystematicMovement are
subclasses of trajectory because they represent individual behavior, while Sys-
tematicBehavior is defined as a special kind of frequent pattern, which in turn
is a kind of pattern, thus representing collective behavior.

A special function called SEMANTIC(object) is defined in M-Atlas with
the objective of returning all the ontology concepts in which the object has
been classified by the mapping file or by the inference engine. For example,
a given trajectory may belong to either the class “Trajectory” as defined by
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the mapping file, or can belong to the class “HomeToWork” as inferred by the
deductive step by the ontology engine. Therefore, the query:

SELECT t.id, t.trajectory

FROM trajectories t

WHERE ’HomeToWork behavior’ in SEMANTIC(t.trajectory)

returns all the trajectories classified as HomeToWork by the deductive step
based on the axioms definition and the ontology inference engine. Now we can
combine the results with the concepts of inside area and outside area of the city
contained in a table called Areas to extract the CommuterMovement. This is
depicted by the following query:

CREATE TABLE CommuterMovement AS

SELECT t.trajId, t.trajectory

FROM trajectories t, areas a, areas a2

WHERE ’HomeToWork behavior’ in SEMANTIC(t.trajectory)

AND ’Systematic movement’ in SEMANTIC(t.trajectory)

AND ST_contains(ST_PointN(trajectory,first), a.area)

AND ST_contains(ST_PointN(trajectory,last), a2.area)

AND a.label = ’outside’ and a2.label = ’inside’

where ST_contains3 is a spatial predicate which checks if a point is contained
in a specific area. In Figure 7.6 we show an example of the resulting trajectories.
Similarly to the TrafficJam case presented above, we can combine the results of
these two analyses, obtaining the commuters who are stuck in a traffic jam.

SELECT sj.userID, sj.flock

FROM CommuterMovement cm, StuckInTrafficJam sj

WHERE cm.trajID = sj.trajID

7.4 Conclusions

This chapter introduced a step-by-step KDD process for mobility understanding
by using examples from the use of the M-Atlas system. We have shown that
the understanding of mobility data is a complex process that involves many
different steps, all of which are necessary for the proper understanding of
the mobility phenomena. These steps are presented here explaining the tech-
niques that have to be applied to find meaningful behaviors. During this process
we observe an increasing involvement of semantic and contextual information
embedded progressively into the process. We have defined, as the final result

3 This function and the other used in the query derive from PostGIS and they can be used directly in
the M-Atlas system.
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Figure 7.6 The trajectories obtained from the commuter movement analysis.

of this semantic-enriched mobility knowledge discovery process, the concept of
semantic trajectory behavior. To reach this objective the semantic information
may be integrated into the process mainly in two ways. On the one hand, it is
the KDD analyst who, using the M-Atlas primitives, finds the semantic behavior
properly exploiting the system functions with appropriate parameter. On the
other hand, we also have pointed out the possibility of using ontologies dur-
ing the postprocessing step to represent explicitly the semantic information and
thus automatize the discovery process. In this case we have added an automatic
deductive step where application domain knowledge is explicitly represented in
the process. In conclusion, the main message derived from the experience of
extracting behavior from data is that data mining alone – even when applied to
large masses of trajectory data – is not enough to transform data into knowledge;
we need a more complex process involving semantic information.

7.5 Bibliographic Notes

The knowledge discovery process was first introduced in Fayyad et al. (1996)
for the relational case where the main KDD steps are presented and discussed.
The KDD process presented here is the one that is at the basis of most of the data
mining and knowledge discovery research. The mobility knowledge discovery
process proposed here is basically the Fayyad one, adapted for the trajectory
case and eventually enriched with a new deductive step with ontologies. In
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fact, this step was not in the original process proposed by Fayyad, but was
introduced in the Athena system of Baglioni et al. (2012) where experiments on
two trajectories data sets representing cars and pedestrians were reported and
discussed.

The M-Atlas system has been introduced here as an example of a system
supporting the mobility knowledge discovery process with illustrating examples
along the chapter. This tool takes inspiration from the inductive database vision
by H. Mannila (1997) and it was originally introduced in Giannotti et al. (2011).
There, the experiments were run on two GPS data sets collecting car trajectories
from two Italian cities. Parts of these experiments are illustrated in Chapter 10.
The implementation of the system is based on PostGIS spatial database system,
from which many of its spatial operators have been inherited.

The techniques presented in the preprocessing step derive from literature
works. For example, a survey on data set sampling techniques is presented in
the book by Scheaffer et al. (2005) while progressive clustering on trajectory
data is introduced in the paper by Rinzivillo et al. (2008).

An approach for mobility understanding that has not been presented here
is data mining on semantic trajectories, represented as sequences of stops and
moves. In this case, standard data mining techniques such as frequent and
sequential patterns can be used. For example, in the work by Alvares et al.
(2007), trajectories are first preprocessed to transform them into stop and moves,
which is essentially a relation representation as stated in Spaccapietra et al.
(2008). Then, standard data mining techniques are applied. This simple but
clever technique allows the user to extract trajectory patterns that are purely
semantic and that cannot be found with classical spatio-temporal data mining,
based on the geometry of the trajectories. This has been the first approach to
facing the problem of mining semantic trajectories.
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Visual Analytics of Movement: A
Rich Palette of Techniques to Enable

Understanding
Natalia Andrienko and Gennady Andrienko

8.1 Introduction

Visual analytics develops knowledge, methods, and technologies that exploit
and combine the strengths of human and electronic data processing (Keim et al.,
2008). Technically, visual analytics combines interactive visual techniques
with algorithms for computational data analysis. The key role of the visual
techniques is to enable and promote human understanding of the data and
human reasoning about the data, which are necessary, in particular, for choosing
appropriate computational methods and steering their work. Visual analytics
approaches are applied to data and problems for which there are (yet) no purely
automatic methods. By enabling human understanding, reasoning, and use of
prior knowledge and experiences, visual analytics can help the analyst to find
suitable methods for data analysis and problem solving, which, possibly, can
later be fully or partly automated. In this way, visual analytics can drive the
development and adaptation of computational analysis and learning algorithms.

Visualization is particularly essential for analyzing phenomena and processes
unfolding in geographical space. Since the heterogeneity of the space and the
variety of properties and relationships occurring in it cannot be adequately rep-
resented for fully automatic processing, exploration and analysis of geospatial
data and the derivation of knowledge from it needs to rely upon the human
analyst’s sense of the space and place, tacit knowledge of their inherent proper-
ties and relationships, and space/place-related experiences. This applies, among
others, to movement data.

To support understanding and analysis of movement, visual analytics
researchers leverage the legacy of cartography, with its established techniques
for representing movements of tribes, armies, explorers, hurricanes, and so on;
time geography (a branch of human geography), with its revolutionary idea of

149
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considering space and time as dimensions of a unified continuum (space-time
cube) and representation of behaviors of individuals as paths in this continuum;
information visualization, with its techniques for user-display interaction sup-
porting exploratory data analysis; and geovisualization, with its interactive maps
and associated methods enabling exploration of spatial information.

This chapter gives a glimpse of the variety of the existing visual analytics
methods for analyzing movement data. We group the methods into four cate-
gories according to the analysis focus:

1. Looking at trajectories: The focus is on trajectories of moving objects consid-
ered as wholes. The methods support exploration of the spatial and temporal
properties of individual trajectories and comparison of several or multiple
trajectories.

2. Looking inside trajectories: The focus is on variation of movement character-
istics along trajectories. Trajectories are considered at the level of segments
and points. The methods support detecting and locating segments with par-
ticular movement characteristics and sequences of segments representing
particular local patterns of individual movement.

3. Bird’s-eye view on movement: The focus is on the distribution of multiple
movements in space and time. Individual movements are not of interest;
generalization and aggregation are used to uncover overall spatio-temporal
patterns.

4. Investigating movement in context: The focus is on relations and interactions
between moving objects and the environment (context) in which they move,
including various kinds of spatial, temporal, and spatio-temporal objects and
phenomena. Movement data are analyzed together with other data describing
the context. Computational techniques are used to detect occurrences of
specific kinds of relations or interactions and visual methods support overall
and detailed exploration of these occurrences.

We demonstrate the capabilities of visual analytics by examples using a data
set consisting of GPS tracks of 17,241 cars collected during one week in Milan,
Italy. The data were provided by Comune di Milano (Municipality of Milan).

8.2 Looking at Trajectories

In this section, we consider, first, the techniques for visual representation of
trajectories and interaction with the representations; second, the use of clustering
methods for comparative studies of multiple trajectories; and, third, the time
transformations supporting exploration of temporal properties of trajectories
and comparison of dynamic properties of multiple trajectories.
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8.2.1 Visualizing Trajectories

The most common types of display for the visualization of movements of discrete
entities are static and animated maps and interactive space-time cubes (STC).
STC is a unified representation of space and time as a 3D cube in which two
dimensions represent space and one dimension represents time. Spatio-temporal
positions can be represented as points in an STC and trajectories as three-
dimensional lines. When multiple trajectories are shown, the displays may suffer
from visual clutter and occlusions. The drawback of STC, besides occlusion,
is distortion of both space and time due to projection. It is also quite limited
with respect to the length of the time interval that can be effectively explored. To
compensate for these limitations, map and STC displays are often complemented
with other types of graphs and diagrams.

Common interaction techniques facilitating visual exploration of trajectories
and related data include manipulations of the view (zooming, shifting, rota-
tion, changing the visibility and rendering order of different information layers,
changing opacity levels, etc.), manipulations of the data representation (selec-
tion of attributes to represent and visual encoding of their values, for example,
by coloring or line thickness), manipulations of the content (selection or filter-
ing of the objects that will be shown), and interactions with display elements
(e.g., access to detailed information by mouse pointing, highlighting, selec-
tion of objects to explore in other views, etc.). Multiple coexisting displays
are visually linked by using consistent visual encodings (e.g., same colors) and
exhibit coordinated behaviors by simultaneous consistent reaction to various user
interactions.

Figure 8.1 gives examples of map and STC displays and demonstrates some
basic interaction techniques. The map in Figure 8.1a shows a subset of the Milan
data set consisting of 8,206 trajectories that began on Wednesday, April 4, 2007.
To make the map legible, the trajectory lines are drawn with only 5% opacity. A
temporal filter, as in Figure 8.1c, can be used to limit the map view to showing
only the positions and movements within a selected time interval. Thus, the
display state in Figure 8.1b corresponds to the 30-minute time interval from
06:30 a.m. till 07:00 a.m. The time filter can also be used for map animation:
the limiting time interval is moved (automatically or interactively) forward or
backward in time, making the map and other displays dynamically update their
content according to the current start and end of the interval.

Figure 8.1b also demonstrates the access to various attributes associated
with a trajectory, such as start and end time, number of positions, length, and
duration. When the mouse cursor points on a trajectory line, the attributes of
this trajectory are shown in a pop-up window as well as the time when the car
was in the position at the cursor.
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Time filter

04/04/2007 00:00:00 05/04/2007 03:58:00

04/04/2007 06:30:00 30 min. 04/04/2007 07:00:00

(a) (b)

(c)

(d) (e)

Figure 8.1 Visualization of trajectories: map and space-time cube. (a) 8,206 trajectories of
cars are shown on a map as lines drawn with 5% opacity. (b) The map shows only positions
and movements from a 30-minute time interval selected by means of a temporal filter (c).
(d) A space-time cube (STC) shows a subset of trajectories selected by means of a spatial
filter (e).
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Figure 8.1d demonstrates the space-time cube (STC) display where two
dimensions represent the space and the third dimension the time. The time axis
is oriented from the bottom of the cube, where the base map is shown, to the
top. When all trajectories are included in the STC, the view is illegible due to
overplotting. In our example, the STC shows 63 trajectories selected by means
of a spatial filter (Figure 8.1e). For the filter, we have outlined on the map two
areas to the northwest and southeast of the city and set the filter so that only the
trajectories that visited both areas in the given order are visible. There are also
many other interactive techniques for data querying and filtering, for example,
the ones suggested by Bouvier and Oates (2008) and Guo et al. (2011).

8.2.2 Clustering of Trajectories

Clustering is a popular technique used in visual analytics for handling large
amounts of data. Clustering should not be considered as a standalone analysis
method whose outcomes can be immediately used for whatever purposes. An
essential part of the analysis is interpretation of the clusters by a human analyst;
only in this way do they acquire meaning and value. To enable the interpreta-
tion, the results of clustering need to be appropriately presented to the analyst.
Visual and interactive techniques play a key role here. Visual analytics usually
does not invent new clustering methods but wraps existing ones in interactive
visual interfaces supporting not only inspection and interpretation but often also
interactive refinement of clustering results.

Trajectories of moving objects are quite complex spatio-temporal constructs.
Their potentially relevant characteristics include the geometric shape of the path,
its position in space, the life span, and the dynamics, that is, the way in which the
spatial location, speed, direction and other point-related attributes of the move-
ment change over time. Clustering of trajectories requires appropriate distance
(dissimilarity) functions that can properly deal with these nontrivial properties.
However, creating a single function accounting for all properties would not be
reasonable. On the one hand, not all characteristics of trajectories may be simul-
taneously relevant in practical analysis tasks. On the other hand, clusters pro-
duced by means of such a universal function would be very difficult to interpret.

A more reasonable approach is to give the analyst a set of relatively simple
distance functions dealing with different properties of trajectories and provide
the possibility to combine them in the process of analysis. The simplest and
most intuitive way is to do the analysis in a sequence of steps. In each step,
clustering with a single distance function is applied either to the whole set of
trajectories or to one or more of the clusters obtained in the preceding steps. If
the purpose and work principle of each distance function is clear to the analyst,
the clusters obtained in each step are easy to interpret by tracking the history
of their derivation. Step by step, the analyst progressively refines his or her
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understanding of the data. New analytical questions arise as an outcome of the
previous analysis and determine the further steps. The whole process is called
“progressive clustering” (Rinzivillo et al., 2008).

There is an implementation of the density-based clustering algorithm OPTICS
in which the process of building clusters is separated from measuring the dis-
tances between the objects. This allows clustering with the use of diverse distance
functions. Hence, the procedure of progressive clustering is done as follows: The
user chooses a suitable distance function and applies the clustering tool first to
the whole set of trajectories. Then the user interactively selects one or more clus-
ters and applies the clustering algorithm to this subset using a different distance
function or different parameter settings. The last step is iterated. In this way,
the user may (1) refine clustering results, (2) combine several distance functions
differing in semantics, and (3) gradually build comprehensive understanding of
different aspects of the trajectories.

The procedure of progressive clustering is illustrated in Figure 8.2. The first
image, Figure 8.2a, shows the result of clustering of the same subset of the car
trajectories as in Figure 8.1 using the distance function “common destinations,”
which compares the spatial positions of the ends of trajectories. From the 8,206
trajectories, 4,385 have been grouped into 80 density-based clusters and 3,821
treated as noise. Figure 8.2b shows the clusters without the noise. We have
selected the biggest cluster, consisting of 590 trajectories that end in the north-
west (Figure 8.2c), and applied clustering with the distance function “route sim-
ilarity” to it. This distance function compares the routes followed by the moving
objects. Figure 8.2d presents the 18 clusters we have obtained; the noise
consisting of 171 trajectories is hidden. The largest cluster (in red) consists of
116 trajectories going from the city center and the next largest cluster (in orange)
consists of 104 trajectories going from the northeast along the northern motor-
way. The orange cluster and the yellow cluster (68 trajectories) going from the
southeast along the motorways to the south and west are, evidently, trajectories
of transit cars. The clusters by route similarity are also shown in the STC in
Figure 8.2e. This display involves time transformation, which is discussed in the
next subsection.

8.2.3 Transforming Times in Trajectories

Comparison of dynamic properties of trajectories using STC, time graph, or
other temporal displays is difficult when the trajectories are distant in time,
because their representations are located far from each other in a display. This
problem can be solved or alleviated by transforming times in trajectories. Two
classes of time transformations are possible:

1. Transformations based on temporal cycles: Depending on the data and appli-
cation, trajectories can be projected in time onto a single year, season, month,



8.2 Looking at Trajectories 155

(a) (b)

(c) (d)

(e)

Figure 8.2 Interactive progressive clustering of trajectories. (a) The car trajectories have
been clustered according to the destinations. (b) The noise is hidden. (c) One of the clusters
is selected. (d) Clustering by route similarity has been applied to the selected cluster; the
noise is hidden. (e) The clusters by route similarity are shown in an STC. (See color plate.)
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week, or day. This allows the user to uncover and study movement pat-
terns related to temporal cycles, for example, find typical routes taken in the
morning and see their differences from the routes taken in the evening.

2. Transformations with respect to the individual lifelines of trajectories: Tra-
jectories can be shifted in time to a common start time or a common end
time. This facilitates the comparison of dynamic properties of the trajectories
(particularly, spatially similar trajectories), for example, the dynamics of the
speed. Aligning both the start and end times supports comparison of internal
dynamics in trajectories irrespective of the average movement speed.

An example of time-transformed trajectories is shown in Figure 8.2e. The
STC shows the route-based clusters of car trajectories ending in the northwest.
The times in the trajectories have been transformed so that all trajectories have
a common end time. This allows us to see that, although the routes within
each cluster are similar, the dynamics of the movement may differ greatly. The
speeds can be judged from the slopes of the lines. Fast movement is manifested
by slightly inclined lines (which means more distance traveled in less time);
steep lines signify slow movement. Vertical line segments mean staying in the
same place. In the STC in Figure 8.2 we can very clearly observe the movement
dynamics in the red cluster: the cars moved slowly while being in the city center
but could move quickly after reaching the diagonal motorway. The orange cluster
is divided in two parts. One part consists of nearly straight, slightly tilted lines
indicating uniformly high speed along the whole route. The other part consists
of trajectories with steep segments at the beginning. This means that there were
times when the movement in the eastern part of the northern motorway was
obstructed and the cars could not reach high speed. We can interactively select
the trajectories with the steep segments and find out the times of the obstructed
traffic: from about 06:00 a.m. till 01:00 p.m.; the most difficult situation was
after 10:30 a.m. Making such observations could hardly be possible with the
trajectories positioned in the STC according to their original times.

8.3 Looking inside Trajectories: Attributes, Events, and Patterns

The methods described in the previous section deal with trajectories as wholes,
that is, treat them as atomic objects. Here we consider methods operating on
the level of points and segments of trajectories. They visualize and analyze the
variation of movement characteristics (speed, direction, etc.) and other dynamic
attributes associated with trajectory positions or segments. The most obvious
way to visualize position-related attributes is by dividing the lines or bands
representing trajectories on a map or in a 3D display into segments and varying
the appearance of these segments. Attribute values are usually represented by
colouring or shading of the segments.
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Position-related dynamic attributes can also be visualized in separate temporal
displays such as a time graph or a time bars display. An example of a time
bars display is given in Figure 8.3a. The horizontal axis represents time. Each
trajectory is represented by a horizontal bar such that its horizontal position
and length correspond to the start time and duration of the trajectory. Note that
temporal zooming has been applied: a selected interval from 06:30 a.m. till
12:00 p.m. is stretched to the full available width. The vertical dimension is
used to arrange the bars, which can be sorted based on one or more attributes of
the trajectories (start time in our example). Coloring of bar segments encodes
values of some user-selected dynamic attribute associated with the positions
in the trajectories. This may be an existing (measured) attribute or an attribute
derived from the position records, that is, coordinates and times. Examples of
such derivable attributes are speed, acceleration, and direction. To represent
attribute values by colors, the value range is divided into intervals and each
interval is assigned a distinct color or shade. In Figure 8.3a, shades of red and
green represent speed values; red is used for low speeds and green for high. The
legend on the left explains the color coding. Interactive linking between displays
allows the user to relate attribute values to the spatial context: when the mouse
cursor points on some element within the time bars display, the corresponding
spatial position is marked in the map by crossing horizontal and vertical lines
and the trajectory containing it is highlighted (Figure 8.3b). In this example
we see that the car whose trajectory is highlighted moved at 06:54 a.m. to the
northeast with a speed of 1.2 km/h.

The use of this kind of dynamic link is limited to exploration of one or a
few particular trajectories. To investigate position-related dynamic attributes in a
large number of trajectories, the analyst can apply filtering of trajectory segments
according to attribute values. Figure 8.3c–d illustrate how such filtering can be
done in a highly interactive way. The color legend on the left of the time bars
display is simultaneously a filtering device: the user can switch off and on the
visibility of any value interval by clicking on the corresponding colored rectangle
in the legend. In Figure 8.3c, the user has switched off all intervals except for
that with speeds from 0 to 5 km/h. As a result, the trajectory segments with the
speed values higher than 5 km/h have been hidden. The filter affects not only
the time bars display but also the map (Figure 8.3d). It is possible to combine
several segment filters based on values of different attributes.

The points satisfying filter conditions can be extracted from the trajecto-
ries into a separate data set (information layer) consisting of spatial events,
that is, objects located in space and time. This data set can be visualized and
analyzed independently from the original trajectories or in combination with
them. In Figure 8.3e, the yellow circles represent 19,339 spatial events con-
structed from the points of the car trajectories where the speeds did not exceed
5 km/h. The filtering of the trajectory segments has been canceled so that
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Figure 8.3 (a) A time bars display shows the speeds by color-coding. Mouse-pointing
highlights the trajectory and marks the pointed position in a map (b). (c) Trajectory segments
are filtered according to the speed values. (d) Only the segments satisfying the filter are
visible on the map. (e) Low-speed events have been extracted from the trajectories according
to the segment filter. (f) Density-based spatio-temporal clusters of the low speed events are
shown in a space-time cube. (g) A scatterplot shows the times (horizontal dimension) and
movement directions (vertical dimension) of the low-speed events. (See color plate.)
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the whole trajectory lines are again visible. As could be expected, there are
many low speed events in the center of the city. However, there are also visi-
ble concentrations of such events in many places on the motorways and their
entrances/exits. These events are very probable to have occurred due to traffic
congestions.

To investigate when and where traffic congestions occurred, we apply density-
based clustering to the set of extracted events in order to find spatio-temporal
clusters of low speed events. We look for dense spatio-temporal clusters because
standalone low-speed events may be unrelated to traffic jams. The distance func-
tion we use is spatio-temporal distance between events. The STC in Figure 8.3f
displays the clusters we have obtained; the noise (15,554 events) is hidden. The
clusters are colored according to the geographical positions. We see a verti-
cally extended cluster in light green on the east of the city. More precisely, it
is located at the Linate airport. Most probably, the reason for these low-speed
events is not traffic congestions but car parking or disembarking/embarking of
passengers. The clusters in the other locations are more probable to be related to
traffic jams. Some clusters on the northwest (blue) and northeast (cyan) are quite
extended spatially, which means that the traffic was obstructed on long parts of
the roads. The existence times of the clusters can be more conveniently seen in a
2D display, such as the scatterplot in Figure 8.3g, where the times of the events
(horizontal axis) are plotted against the movement directions. It is possible to
select the clusters one by one and see when they occurred and in which direc-
tion the cars were moving. For instance, two large clusters of slow movement
westward occurred in the far northeast in the time intervals 05:38–06:50 and
10:20–12:44.

Generally, there are many possible ways in which events extracted from
trajectories can be further analyzed and used. Interested readers are referred to
papers by Andrienko et al. (2011b,c).

8.4 Bird’s Eye on Movement: Generalization and Aggregation

Generalization and aggregation enable an overall view of the spatial and temporal
distribution of multiple movements, which is hard to gain from displays showing
individual trajectories. Besides, aggregation is helpful in dealing with large
amounts of data. There are two major groups of analysis tasks supported by
aggregation:

� Investigation of the presence of moving objects in different locations in space
and the temporal variation of the presence.

� Investigation of the flows (aggregate movements) of moving objects between
spatial locations and the temporal variation of the flows.
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8.4.1 Analyzing Presence and Density

Presence of moving objects in a location during some time interval can be
characterized in terms of the count of different objects that visited the location,
the count of the visits (some objects might visit the location more than once),
and the total time spent in the location. Besides, statistics of various attributes
describing the objects, their movements, or their activities in the location may
be of interest. To obtain these measures, movement data are aggregated spatially
into continuous density surfaces or discrete grids. Density fields are visualized
on a map using color coding and/or shading by means of an illumination model
(Figure 8.4a). Density fields can be built using kernels with different radii and
combined in one map to expose simultaneously large-scale patterns and fine
features, as demonstrated in Figure 8.4a.

An example of spatial aggregation using a discrete grid is given in Figure 8.4b.
The irregular grid has been built according to the spatial distribution of points
from the car trajectories. The darkness of the shading of the grid cells is propor-
tional to the total number of visits. Additionally, each cell contains a circle with
the area proportional to the median duration of a visit. It can be observed that
the median duration of staying in the cells with dense traffic (dark shading) is
mostly low. Longer times are spent in the cells in the city center and especially
at the Linate airport in the east. There are also places around the city where the
traffic intensity is low while the visit durations are high.

To investigate the temporal variation of object presence and related attributes
across the space, spatial aggregation is combined with temporal aggregation,
which can also be continuous or discrete. The idea of spatial density can be
extended to spatio-temporal density: movement data can be aggregated into
density volumes in a 3D space-time continuum, which can be represented in an
STC.

For discrete temporal aggregation, time is divided into intervals. Depending
on the application and analysis goals, the analyst may consider time as a line
(i.e., linearly ordered set of moments) or as a cycle, for example, daily, weekly, or
yearly. Accordingly, the time intervals for the aggregation are defined on the line
or within the chosen cycle. The combination of discrete temporal aggregation
with continuous spatial aggregation gives a sequence of density surfaces, one
per time interval, which can be visualized by animated density maps. It is also
possible to compute differences between two surfaces and visualize them on a
map, to see changes occurring over time (this technique is known as a change
map).

The combination of discrete temporal aggregation with discrete spatial aggre-
gation produces one or more aggregate attribute values for each combination of
space compartment (e.g., grid cell) and time interval. In other words, each space
compartment receives one or more time series of aggregate attribute values.
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Figure 8.4 (a,b) Car tracks aggregated in a continuous density surface (a) and by discrete
grid cells (b). (c) STC shows the variation of car presence over a day in the most visited
cells. (d) The cells clustered by similarity of the presence time series shown on a time graph
in (e). (f) Hourly time intervals clustered by similarity of the spatial distributions of car
presence, which are summarized in (b). (See color plate.)
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Visualization by animated density/presence maps and change maps is possible
as in the case of continuous surfaces. There are also other possibilities. The time
series may be shown in an STC by proportionally sized or shaded or colored
symbols, which are vertically aligned above the locations; Figure 8.4c gives
an example; the color legend is given in the lower right corner of Figure 8.4.
Occlusion of symbols is often a serious problem in such a display; therefore, we
have applied interactive filtering so that only the data for the most intensively
visited cells (1,000 or more visits per day) are visible.

When the number of the space compartments is big and the time series is
long, it may be difficult to explore the spatio-temporal distribution of object
presence using only visual and interactive techniques. It is reasonable to cluster
the compartments by similarity of the respective time series and analyze the tem-
poral variation cluster-wise, that is, investigate the attribute dynamics within the
clusters and do comparisons between clusters. Figure 8.4d demonstrates the
outcome of k-means clustering of grid cells according to the time series of
car presence obtained by aggregating the car movement data from the whole
time period of one week by hourly intervals (hence, the time series consists
of 168 time steps). Distinct colors have been assigned to the clusters and used
for painting the cells on the map. The same colors are used for drawing the
time series lines on the time graph in Figure 8.4e. The colours are chosen by
projecting the cluster centroids onto a 2D continuous color map; hence, clusters
with close centroids receive similar colors and, vice versa, high difference in
colors signifies much dissimilarity between the clusters. Figure 8.4e shows a
prominent periodic variation of car presence in the grid cells over the week.
Interactive tools allow us to select the clusters one by one or pairs of clusters
for comparison and see only these clusters on the displays. We find out that the
clusters differ mainly in the value magnitudes and not in the temporal patterns
of value variation, with the exception of the bright red and orange clusters. The
value ranges in these clusters are very close. The main difference is that the red
cluster has higher values in the afternoons of Sunday and Saturday. This may
have something to do with people spending their leisure time near lakes, which
are located to the north of the city.

Spatially referenced time series is one of two possible views on a result of
discrete spatio-temporal aggregation. The other possibility is to consider the
aggregates as a temporal sequence of spatial situations. The term “spatial situ-
ation” denotes spatial distribution of aggregate values of one or more attributes
in one time interval. Thus, in our example, there are 168 spatial situations, each
corresponding to one of the hourly intervals within the week. Temporal variation
of spatial situations can also be investigated by means of clustering. In this case,
the spatial situations are considered as feature vectors characterizing different
time intervals. Clustering groups the time intervals by similarity of these feature
vectors.
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In Figure 8.4f, we have applied k-means clustering to the 168 spatial situations
in terms of car presence and built a time mosaic display where each hourly
interval is represented by a square. As in the previous case, different colors have
been assigned to the clusters. The squares in the time mosaic are painted in
these colors. The squares are arranged so that the columns, from left to right,
correspond to the days, from Sunday (the first day in our data set) to Saturday,
and the rows correspond to the hours of the day, from 0 on the top to 23 at the
bottom. We see that the working days (Columns 2–6) have quite similar patterns
of coloring, which means similarity of the daily variations of the situations.
The patterns on Sunday (Column 1) and Saturday (Column 7) are different.
The multimap display in Figure 8.4g shows summarized spatial situations: each
small map represents the mean presence values in the respective time cluster
(the color coding is the same as in the STC in Figure 8.4c; see the legend in
the lower right corner). It is seen that the shades of cyan, which occur in the
night hours, correspond to very low car presence over the city and the shades of
red, which occur in the working days from 5 till 17 o’clock, to high presence,
especially on the belt roads around the city. Red also occurs in the afternoon of
Sunday (from 15 till 17) and in the morning of Saturday (from 8 till 9).

To deal with very large amounts of movement data, possibly not fitting in
RAM, discrete spatio-temporal aggregation can be done within a database or
data warehouse. The aggregates can then be loaded in RAM for visualization
and interactive analysis.

8.4.2 Tracing Flows

In the previous section, we have considered spatial aggregation of movement
data by locations (space compartments). Another method of spatial aggregation
is by pairs of locations: for two locations A and B, the moves (transitions) from
A to B are summarized. This can result in such aggregate attributes as number
of transitions, number of different objects that moved from A to B, statistics
of the speed, and transition duration. The term “flow” is often used to refer to
aggregated movements between locations. The respective amount of movement,
that is, count of moving objects or count of transitions, may be called “flow
magnitude.”

There are two possible ways to aggregate trajectories into flows. Assuming
that each trajectory represents a full trip of a moving object from some origin
to some destination, the trajectories can be aggregated by origin-destination
pairs, ignoring the intermediate locations. A well-known representation of the
resulting aggregates is the origin-destination matrix (OD matrix) where the rows
and columns correspond to the locations and the cells contain aggregate values.
OD matrices are often represented graphically as matrices with shaded or colored
cells. The rows and columns can be automatically or interactively reordered for
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uncovering connectivity patterns such as clusters of strongly connected locations
and “hubs,” that is, locations strongly connected to many others. A disadvantage
of the matrix display is the lack of spatial context.

Another way to visualize flows is the flow map where flows are represented by
straight or curved lines or arrows connecting locations; the flow magnitudes are
represented by proportional widths and/or coloring or shading of the symbols.
Since lines or arrows may connect not only neighboring locations but any two
locations at any distance, massive intersections and occlusions of the symbols
may occur, which makes the map illegible. Several approaches that have been
suggested for reducing the display clutter either involve high information loss
(e.g., due to filtering or low opacity of lesser flows) or work well only for special
cases (e.g., for showing flows from one or two locations).

The other possible way of transforming trajectories to flows is to represent
each trajectory as a sequence of transitions between all visited locations along
the path and aggregate the transitions from all trajectories. Movement data
having sufficiently fine temporal granularity or allowing interpolation between
known positions may be aggregated so that only neighboring locations (adjacent
spatial compartments) are linked by flows. Such flows can be represented on
a flow map without intersections and occlusions of the flow symbols. To sum-
marize movement data in this way, the space can be tessellated into larger or
smaller compartments, for example, using the method suggested in Andrienko
and Andrienko (2011), to achieve higher or lower degree of generalization and
abstraction. This is illustrated in Figure 8.5a–c. The same trajectories of cars (a
one-day subset from Wednesday) have been aggregated into flows using fine,
medium, and coarse territory tessellations. The flows are represented by “half-
arrow” symbols, to distinguish movements between the same locations in the
opposite directions. Minor flows have been hidden to improve the display legi-
bility; see the legends below the maps. The exact values of the flow magnitudes
and other flow-related attributes can be accessed through mouse-pointing on the
flow symbols. Flow maps can also be built using predefined locations or space
partitioning, as demonstrated in Figure 8.5f, where the flow map is built based
on a division of the territory of Milan into 13 geographic regions.

Flow maps can serve as expressive visual summaries of clusters of similar
trajectories. To obtain such summaries, aggregation is applied separately to each
cluster.

When movement data are aggregated into flows by time intervals, the result is
time series of flow magnitudes. These can be visualized by animated flow maps
or by combining flow maps with temporal displays such as a time graph. Flows
may be clustered by similarity of the respective time series (Figure 8.5d,e) and
the temporal variation analyzed clusterwise, as was suggested for time series
of presence indicators in the previous section. Note that the spatial patterns
visible on the map and the periodic patterns of flow variation visible on the time
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Figure 8.5 (a,b,c) Flow maps based on fine, medium, and coarse territory divisions obtained
automatically. (d,e) Clustering of flows based on the time series of flow magnitudes. (f)
Flows between predefined regions. (g) Investigation of movements between the regions
over time adjusted to individual lifetimes of the trajectories. (See color plate.)
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graph are similar to those that we observed for the presence (Figure 8.4d,e).
However, we see that symmetric flows (i.e., flows between the same locations in
opposite directions) may have different patterns of temporal variation. Thus, on
the east and south of the city, symmetric flow symbols are coloured in blue and
in magenta, that is, the respective time series belong to different clusters. The
flows in the magenta cluster achieve higher magnitudes in the afternoons of all
days, except Friday (day 6).

Aggregation of movement data into transitions between locations does not
allow investigation of paths and movement behaviors where more than two
locations are visited. The visualization technique demonstrated in Figure 8.5g
aggregates trajectories in such a way that movement behaviors can be traced
(Bremm et al., 2011). This is an abstract display where the horizontal axis
represents time and colors represent different locations. The map in Figure 8.5f
shows the geographic regions of Milan filled in different colors. The same colors
are used in Figure 8.5g.

In this example, we investigate the movements of 4,634 cars that spent at
least 6 hours on the territory under study on Wednesday (i.e., we have selected
the trajectories with a duration of at least 6 hours); the flow map in Figure 8.5f
summarizes the movements of these cars. The trajectories have been aligned in
time to common start and end times, as mentioned in Section 8.2.3. The resulting
time units are thousandths (also called “per mill”) of the total trajectory duration.
Then the transformed time has been divided into 50 intervals of the length 20 per
mills, or 2 percent. The temporal display in Figure 8.5g represents time intervals
by vertical bars divided into colored segments proportionally to the number of
cars that visited the regions in these intervals. Aggregated transitions between
the regions are represented by bands drawn between the bars. The widths of the
bands are proportional to the counts of the objects that moved. Gradient coloring
is applied to the bands so that the left end is painted in the color of the origin
location and the right end in the color of the destination location.

The colored bars are shown not for all time intervals but for a subset of
intervals selected interactively or automatically. In our example, we have selected
the first 3 intervals, the last 3 intervals, and each 10th interval (i.e., 100 per mills,
200 per mills, and so on). The small rectangles at the bottom of the display
represent all time intervals. The greyscale shading encodes the amount of change
in each interval with respect to the previous interval, that is, how many objects
moved to different locations. We can observe that the most intensive movements
of the selected cars occurred in the first 2 percent and in the last 2 percent of
the total trajectory lifetime. Between the time intervals 100 and 900 the cars
mostly stayed in the same regions. The most visited region was center. There
were higher presence and more movements in the northern part of the city than
in the southern part. The most intensive flows at the beginning of the trips were
to the center and inner northeast and at the end to the outer northeast.
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By interacting with the display, it is possible to explore not only direct
transitions between locations but also longer sequences of visited locations.
When the user clicks on a bar segment, the movements of the corresponding
subset of objects are highlighted in the display (i.e., shown by brighter colors). It
is possible to see which locations were visited and when. Thus, we can learn that
from the 994 cars that were in the center in the interval 500 (i.e., in the middle
of the trip time) 489 cars were in this region during the whole time and the
remaining cars came to the center mainly from the northeast (133), southwest
(132), northwest (74) and southeast (62) in the first 2 percent of the time. At the
end, these cars moved back. Analogously, the user can click on bands connecting
segments to select the objects participating in the respective transitions and trace
their movements.

8.5 Investigation of Movement in Context

The spatio-temporal context of the movement includes the properties of different
locations (e.g., land cover or road type) and different times (e.g., day or night,
working day or weekend) and various spatial, temporal, and spatio-temporal
objects affecting and/or being affected by the movement. The methods discussed
so far seem to deal with movement data alone and not address the context of the
movement, at least in an explicit way. However, the context is always involved
in the process of interpreting what is seen on visual displays. Thus, the analyst
always tries to relate visible spatial patterns to the spatial context (e.g., the
highest car traffic density is on motorways) and visible temporal patterns to the
temporal context (e.g., the traffic decreases on weekends).

The cartographic map is a very important provider of information about spa-
tial context; therefore, maps are essential in analyzing movement data. It is not
very usual, although it is possible, to include information about temporal con-
text in temporal displays such as a time graph. A space-time cube may show
spatio-temporal context, but occlusions and projection effects often complicate
the analysis. Besides the context items that are explicitly represented on visual
displays, the analyst also takes relevant context information from his/her back-
ground knowledge. Visual displays, especially maps, help the analyst in doing
this since things that are shown can facilitate recall of related things from the
analyst’s mind. After noticing a probable relationship between an observed pat-
tern and some context item, group of items, or type of items, the analyst may
wish to check it, which can be supported by interactive visual tools.

The analyst may not only attend to the movement context for interpreting
results of previously done analysis. It may also be a primary goal of analysis
to detect and investigate particular relationships between the movement and a
certain specific context item or group of items. For example, the goal may be
to investigate how cars move on motorways or in traffic congestions. To do the
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analysis, one may need special techniques that support focusing on the context
items and relationships of interest.

Position records in movement data may include some context information, but
this is rarely the case. In any case, movement data cannot include all possible
context information. Typically, the source of relevant context information is
one or more additional data sets describing some aspect(s) of the movement
context. We shall shortly call such data “contextual data.” Context data may
result from previous analyses of movement data. In our previous examples we
have demonstrated derivation of spatial events, event clusters, as well as classes
(clusters) of locations and of time moments. Such derived data can be considered
as context data and used in further analysis of movement data.

The general approach is to derive contextual attributes for trajectory positions
by joint processing of movement data and contextual data and then visualize the
attributes to observe patterns and determine relationships. The derived attributes
may characterize the environment (such as weather conditions) at the positions
of the moving objects or relations (such as spatial distance) between the positions
and context items in focus. Values of these attributes are defined, as a rule, for all
trajectory positions. The analyst looks for correlations, dependencies, or, more
generally, stable or frequent correspondences between the contextual attributes
and movement attributes.

Besides stable relationships between movement and its context, the ana-
lyst may also be interested in transitory spatial, temporal, and spatio-temporal
relationships occurring between moving objects and context items during the
movement and lasting for limited time. This includes, in particular, relative
movements of two or more moving objects such as approaching, meeting, pass-
ing, and following, and relative movements with respect to other kinds of spatial
objects. Such occurrent relationships can be regarded as spatial events since they
exist only at certain positions in space and in time.

Many types of relationships can be expressed in terms of spatial and/or
temporal distances. This includes proximity between moving objects, visiting
of certain locations or types of locations, and being in the spatio-temporal
neighborhood of a spatial event. Spatial and/or temporal distances from moving
objects to context items can be computed and attached to trajectory positions
as new attributes, which can be visualized and/or used in further analyses.
Particularly, they can be used for filtering and event extraction as described in
Section 8.3.

As an example of analyzing movement in context, we shall investigate how
the speed of car movement on motorways is related to the distances between
the cars. Hence, there are two aspects of the movement context in which we are
interested: type of location (specifically, motorway) and other cars (specifically,
distances to them). The distances between the cars can be determined directly
from the trajectory data; no additional data are needed. This can be done using
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a computational procedure that finds for each trajectory position the closest
position in another trajectory within a given time window, for example, of 1
minute length (from −30 to +30 seconds with respect to the time of the current
position).

The location types could be taken from an additional data set describing the
streets; however, we have no such data set for Milan. We shall demonstrate the
use of previously derived data. Earlier we made a tessellation of the territory
(Figure 8.4); moreover, the clustering according to the temporal variation of the
car presence (Figure 8.4d) separates quite well the cells on motorways from the
other cells. We create a suitable classification of the cells, as in Figure 8.6d,
by editing the clusters. Here the yellow filling corresponds to the cells on
motorways. We select this class of cells and compute the distances from the
trajectory positions to the selected cells; for each position the nearest cell is taken.
The computed distances are attached to the position records as a new attribute,
which can now be used for filtering. By filtering, we extract the points and
segments of the trajectories with zero distances to the selected cells (Figure 8.6d).

We compute also the distance from each position to the nearest position of
another car within the 1-minute time window. This makes one more attribute
attached to the position records. Then we use an additional filter according
to values of this attribute to sequentially select the trajectory points with the
distances to the nearest neighbor in three different ranges: below 20 m, from
20 to 50 m, and over 50 m. For each subset of points, we produce a frequency
histogram of the respective speeds. The histograms are shown in Figure 8.6a–c.
They have the same height and bar width. The latter corresponds to a speed range
of approximately 5 km/h. Hence, despite the differing sizes of the point subsets,
the shapes of the distributions can be compared. There are many points with
low speeds (0–10 km/h) in each subset but the relative number of such points is
the highest in the first subset and the lowest in the third subset. In all subsets,
there is a smaller peak of frequencies for the speeds 80–90 km/h, but this peak
is the lowest for the first subset and the highest for the third subset. Hence, we
observe that smaller distances between cars on a motorway correspond to lower
movement speeds.

To demonstrate investigation of occurrent relationships between moving
objects and items of the context, we extract from the car trajectories the events
where the car is on a motorway and its distance to the nearest neighbor car
is at most 10 m while the movement speed is not more than 10 km/h. These
events reflect occurrent proximity relationships of cars to motorways and other
cars while the low speeds indicate that these occurrences may be related to
traffic congestions. As we did in Section 8.3, we find spatio-temporal clusters
of these events; some of them are shown in the STC in Figure 8.6e. We build
spatio-temporal convex hulls around the event clusters (the yellow shapes in
Figure 8.6e). We assume that each convex hull represents a traffic jam. Hence,
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Figure 8.6 (a,b,c) Frequency distributions of car speeds on motorways in different ranges
of distance to the nearest neighbor car: (a) below 20 m, (b) 20–50 m, (c) over 50 m.
(d) Trajectory segments on or near motorways selected by means of segment filter. (e)
Spatio-temporal clusters of low-speed events on motorways where the distance to the
nearest neighbor is 10 m or less. Yellow shapes represent spatio-temporal convex hulls of
the clusters. (f) Trajectories that passed through one of the convex hulls are selected by
filtering. (g) The selected trajectories and respective low speed events in a STC. (See color
plate.)
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we have obtained an additional data set with spatio-temporal boundaries of traf-
fic jams on motorways. It may, in turn, be considered as contextual data and
used in further analysis. Thus, Figure 8.6f shows selected trajectories passing
through one of the traffic jams, which have been used as a filter for trajectory
selection. We can closely investigate the movement of the cars affected by this
traffic jam by means of an STC (Figure 8.6g).

Sections 8.2–8.4 show that movement can be analyzed at different levels:
whole trajectories, elements of trajectories (points and segments), and high-
level summaries (densities, flows, etc.). In principle, analyzing movement in
context can also be done at these levels. A comprehensive set of visual analytics
methods addressing all these levels and different types of context items does not
exist yet, which necessitates further research in this direction.

8.6 Conclusions

Movement data link together space, time, and objects positioned in space and
time. They hold valuable and multifaceted information about moving objects
and properties of space and time, as well as events and processes occurring in
space and time. Visual analytics has developed a wide variety of methods and
tools for analysis of movement data, which allow an analyst to look at the data
from different perspectives and perform diverse analytical tasks. Visual displays
and interactive techniques are often combined with computational processing,
which, in particular, allows analysis of larger amounts of data than would be pos-
sible with purely visual methods. Visual analytics leverages methods and tools
developed in other areas related to data analytics, particularly statistics, machine
learning, and geographic information science. The main goal of visual analyt-
ics is to enable human understanding and reasoning. We have demonstrated
by examples how understanding of various aspects of movement is gained by
viewing visual displays and interacting with them, possibly after appropriate
data transformations and/or computational derivation of additional data.

8.7 Bibliographic Notes

Keim et al. (2008) give a general definition of visual analytics and describe
the scope of this research field. Andrienko et al. (2011a) suggest a conceptual
framework defining the concepts of movement data, trajectories, and events, and
possible relationships between moving objects, locations, and times. It shows
that movement data hold valuable information not only about the moving objects
but also about properties of space and time and about events and processes
occurring in space and time. To uncover various types of information hidden in
movement data, it is necessary to consider the data from different perspectives
and to perform a variety of analytical tasks. The paper defines the possible foci
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and tasks in analyzing movement data. Furthermore, it defines generic classes
of analytical techniques and links the types of tasks to the classes of techniques
that can support fulfilling them. The techniques include visualizations, data
transformations, and computational analysis methods developed in several areas:
visualization and visual analytics, geographic information science, database
research, and data mining.

Readers interested in visualization of trajectories and techniques for inter-
action with the displays can be referred to the papers by Kapler and Wright
(2005) describing a nice implementation of the space-time cube, Bouvier and
Oates (2008) suggesting original interaction techniques for marking moving
objects on an animated display and tracing their movements, and Guo et al.
(2011) showing the use of several coordinated displays and interactive query
techniques specifically designed for trajectories, such as sketching for finding
trajectories with particular shapes.

Rinzivillo et al. (2008) talk about visually supported progressive clustering of
trajectories. The paper argues for the use of diverse distance functions addressing
different properties of trajectories, describes several distance functions, and
demonstrates the use of progressive clustering by example.

Andrienko et al. (2011b,c) refer to “looking inside trajectories” (Section 8.3).
The first paper describes visual displays that show temporal variation of dynamic
attributes associated with trajectory positions. The second paper gives a struc-
tured list of position-related attributes that can be computationally derived from
movement data alone and from a combination of movement data and contextual
data. These attributes characterize either the movement itself or possible relation-
ships between the moving objects and the movement context. Both papers deal
with extraction of spatial events from movement data. The first paper introduces
a conceptual model where movement is considered as a composition of spatial
events of diverse types and extents in space and time. Spatial and temporal rela-
tions occur between movement events and elements of the spatial and temporal
contexts. The model gives a ground to a generic approach based on extraction
of interesting events from trajectories and treating the events as independent
objects. The paper also describes interactive techniques for extracting events
from trajectories. The second paper focuses more on the use of extracted events
in further analysis. Thus, it considers density-based clustering of movement-
related events, which accounts for their positions in space and time, movement
directions, and, possibly, other attributes. The clustering allows extraction of
meaningful places. The further analysis involves spatio-temporal aggregation of
events or trajectories using the extracted places.

Andrienko and Andrienko (2010) give an illustrated survey of the aggrega-
tion methods used for movement data and the visualization techniques applicable
to the results of the aggregation. These methods and techniques are also pre-
sented in a more formal way by Andrienko et al. (2011a). Willems et al. (2009)
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describe aggregation of trajectories into a continuous density surface using a spe-
cially designed kernel density estimation method, which involves interpolation
between consecutive trajectory points taking into account the speed and accel-
eration. Density fields built using kernels with different radii can be combined
into one field to expose simultaneously large-scale patterns and fine features.
Andrienko and Andrienko (2011) suggest a method for the tessellation of a ter-
ritory used for discrete spatial aggregation of movement data and generation of
expressive visual summaries in the form of flow maps. The method divides a ter-
ritory into convex polygons of desired size on the basis of the spatial distribution
of characteristic points extracted from trajectories. It uses a special algorithm
for spatial clustering of points that produces clusters of user-specified spatial
extent (radius). Depending on the chosen radius, the data can be aggregated at
different spatial scales for achieving lower or higher degree of generalization
and abstraction.

An example of visualization of flows between locations in the form of an
origin-destination matrix can be found in Guo (2007). The rows and columns can
be automatically or interactively reordered for uncovering connectivity patterns
such as clusters of strongly connected locations and “hubs,” that is, locations
strongly connected to many others.

To deal with very large amounts of movement data, possibly not fitting in
RAM, discrete spatio-temporal aggregation can be done within a database or
a data warehouse as described by Raffaetà et al. (2011). Only aggregated data
are loaded in RAM for visualization and interactive analysis. Using roll-up
and drill-down operators of the warehouse, the analyst may vary the level of
aggregation.

Andrienko and Andrienko (2012) give a comprehensive review and extensive
bibliography of methods, tools, and procedures for visual analysis of movement
data.



9

Mobility Data and Privacy
Fosca Giannotti, Anna Monreale, and Dino Pedreschi

9.1 Introduction

Mobility data represent an invaluable source of information that can be recorded
thanks to mobile telecommunications and ubiquitous computing where the loca-
tions of mobile users are continuously sensed. However, the collection, storage,
and sharing of these movement data sets raise serious privacy concerns. In fact,
position data may reveal the mobility behavior of the people: where they are
going, where they live, where they work, their religion and so on. All this infor-
mation refers to the private personal sphere of a person and therefore the analysis
of mobility data may potentially reveal many facets of his or her private life. As
a consequence, these kinds of data have to be considered personal information
to be protected against undesirable and unlawful disclosure.

In the specific case of mobility scenarios, there exist two major different
contexts in which the location privacy problem has to be taken into consideration:
online location-based services and offline data analysis context. In the first case,
a user communicates to a service provider his or her location to receive on-the-
fly a specific service. An example of LBS is find the closest point of interest
(POI), where a POI could be a restaurant. Privacy issues in the context of online
location-based services have been already addressed in Chapter 2. In the second
case, large amounts of mobility data are collected and can be used for offline
data mining analysis able to extract reliable knowledge useful to understand and
manage intelligent transportation, urban planning, and sustainable mobility, as
already highlighted in previous chapters.

Many PETs (privacy-enhancing technologies) for mobility data have been
proposed by the scientific community. The most representative methods are
presented in Section 9.3 of the present chapter by highlighting how the privacy
models initially proposed for relational databases (presented in Section 9.2),
are extended to spatio-temporal data. A common point of view among all these
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techniques is that, unfortunately, obtaining privacy protection is becoming more
and more difficult because of the complex nature of movement data: it is easy
to show that privacy cannot simply be accomplished by deidentification (i.e., by
removing the direct identifiers contained in the data). As an example, consider
the deidentified GPS trajectory of a user driving in a city for a specific period.
Using simple analytical tools, capable of visualizing the trajectory with its
geographical context, it is possible to infer important and sensitive information
about the user, such as the regions most commonly visited by the user. Moreover,
analyzing the timeline with respect to the different regions it is possible to infer
which region, among the most frequent locations, corresponds to the user’s home
since he or she usually stays there for the night, and the region corresponding to
the work place, because he or she usually goes there every day at the same time,
and stays there all the day. Clearly, by discovering the group of people living in
the identified home and those working in that identified work place it is possible
to identify the user as the person who belongs to both groups. This is possible
checking publicly available information such as web pages.

In general, the data privacy problem requires finding an optimal trade-off
between privacy and data utility. From one side, one would like to transform the
data in order to avoid the reidentification of individuals and/or locations. Thus,
one would like to publish safely the data for mining analysis or to communicate
locations for receiving an online service without risks (or with negligible risk)
for each data subject. From the other side, one would like to minimize the loss
of information that can reduce the effectiveness of the underlying data when
it is given as input to data mining methods and can cause bad quality of the
received location-based service. Therefore, the goal is to maintain the utility of
the data as much as possible. In order to measure the information loss introduced
by the data transformation process it is necessary to define measures of utility;
analogously, it is necessary to quantify the risks of privacy violation. Privacy
by design, in the research field of privacy-preserving data analysis, is a recent
paradigm that promises a quality leap in the conflict between data protection and
data utility (Section 9.4). Recent applications of this paradigm for the design of
privacy-preserving frameworks for movement data prove that it is possible to
achieve reasonable and measurable privacy guarantees and a good quality of the
analytical results.

9.2 Basic Concepts for Data Privacy

The analysis and disclosure of personal information to the general public or
to third parties such as data miners is subject to the limitations imposed by the
regulations for privacy protection. Nevertheless, if this information was rendered
anonymous, these limitations would not apply, hence making it possible to share
and analyze the information without explicit user agreement. In the last ten years,
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Quasi-Identifier Sensitive
attributes attribute

Gender Date of Birth ZIP Code Disease
F 1988 561* Flu
F 1988 561* Flu
F 1988 561* Flu
M 1990 910* Heart Disease
M 1990 910* Cold
M 1990 910* Flu

Figure 9.1 A 3-anonymous database.

different models have been proposed by the scientific community to achieve
privacy protection while sharing and analyzing personal sensitive information.
The most important privacy models are: k-anonymity, l-diversity, t-closeness,
randomization, and cryptography-based models.

k-anonymity
The k-anonymity model was introduced in the context of relational databases,
where data are stored in a table and each row of this table corresponds to one
individual. The basic idea of the k-anonymity model is to guarantee that the
information of every data subject cannot be distinguished from the information
of other k − 1 data subjects. This model is based on the assumption of the
existence of the following kind of attributes in the user’s record: identifiers,
which explicitly identify data owners, such as name and social security number
(SSN); quasi-identifiers, which could identify data owners or a small groups of
them (e.g., gender and zip code); sensitive attributes, which represent sensitive
person-specific information (e.g., disease and salary) to be protected. Based on
this classification, the privacy requirement defined by k-anonymity is that for
each released record (e.g., a record is a row in the table in Figure 9.1) there must
be at least other k − 1 records with the same quasi-identifier values. A set of
records that have the same values for the quasi-identifiers is called equivalence
class. The techniques adopted in the literature to enforce k-anonymity involve
the removal of explicit identifiers and the generalization (e.g., date of birth is
changed to the year of birth) or suppression (e.g., removing the date of birth),
or microaggregation (clustering and averaging) of quasi-identifiers. It is evident
that these techniques reduce the accuracy of the disclosed information.

l-diversity
The weakness of the k-anonymity model is that it can allow the disclosure of
sensitive information. In other words, it only protects the identity of a user.
Indeed, if a group of k records all have the same quasi-identifiers values and
the same value of the sensitive attribute, it is not able to protect the sensitive
information. As an example, consider the table in Figure 9.1. Suppose that the
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adversary knows that Alice was born in 1988, lives in the area with ZIP code
56123 and is in the database. He knows that Alice’s record is one of the first
three in the table. Since all of those patients have the same medical condition
(flu), the adversary can identify Alice’s disease.

To overcome this weakness the l-diversity model requires obtaining groups
of data subjects with indistinguishable quasi-identifiers and with an acceptable
diversity of sensitive information. In particular, the main idea of this method is
that every k-anonymous group should contain at least l different values for the
attributes containing personal information.

t-closeness
The problem with l-diversity is that it can be insufficient to prevent the disclosure
of private information when the adversary knows the distribution of the private
values. Indeed, if the adversary has prior belief about the private information of
a data subject, he or she can compare this knowledge with the probability com-
puted from the observation of the disclosed information. In order to avoid this
weakness, the t-closeness model requires that, in any group of quasi-identifiers,
the distribution of the values of a sensitive attribute be close to the distribution
of the attribute values in the overall table. The distance between the two distri-
butions should be no more than a threshold t . Clearly, this limits the information
gain of the adversary after an attack.

Randomization
The randomization model is based on the idea of perturbing the data to be
published by adding a noise quantity. More technically, this method can be
described as follows. Denote by X = {x1 . . . xm} the original data set. The new
distorted data set, denoted by Z = {z1 . . . zm}, is obtained by drawing indepen-
dently from the probability distribution a noise quantity ni and adding it to each
record xi ∈ X. The set of noise components is denoted by N = {n1, . . . , nm}.
The original record values cannot be easily guessed from the distorted data as
the variance of the noise is assumed large enough. Instead, the distribution of
the data set can be easily recovered.

Cryptography-Based Models
The basic idea of the privacy models based on cryptography techniques is to
compute analytical results without sharing the data in such a way that anything
is disclosed except the final result of the analysis. In general, the application of
these models allows one to compute functions over inputs provided by multiple
parties without sharing the inputs. This problem is addressed in cryptography in
the field of secure multi-party computation. As an example, consider a function
f of n arguments and n different parties. If each party has one of the n argu-
ments a protocol is needed that allows exchanging information and computing
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the function f (x1, . . . , xn), without compromising privacy. There exist some
methods that allow transforming data mining problems into secure multi-party
computation problems. In the literature, many protocols have been proposed
for the computation of the secure sum, the secure set union, the secure size
of set intersection and the scalar product. These protocols can be used as data
mining primitives for secure multiparty computation in case of horizontally and
vertically partitioned data sets.

9.3 Privacy in Offline Mobility Data Analysis

In the context of offline mobility data analysis, large amounts of collected
mobility data can be used for extracting reliable knowledge useful for the under-
standing of very complex and interesting phenomena. Indeed, these data can
be used for various data analyses that allow improving systems for city traffic
control, mobility management, and urban planning, as evidenced in Chapters 6,
7, and 10. Unfortunately, mobility data provide detailed movement information
of individuals and thus this information could be used for their identification and
sometimes for inferring personal sensitive information about them. Therefore,
when spatio-temporal data have to be analyzed and/or published, it is fundamen-
tal to guarantee individual privacy protection of the respondents represented in
the data.

The privacy models for relational data described in the previous section have
been widely adopted to achieve privacy protection in the context of the offline
analysis of spatio-temporal data. However, the different and more complex
nature of mobility data with respect to relational tabular data sometimes rendered
it difficult to apply these privacy models directly and this has led to the definition
of some suitable variants. The inadequacy of the aforementioned models for
trajectory data depends on the fact that these data pose new challenges due to
the following characteristics: time dependency, location dependency, and data
sparseness. The location and time components of the mobility data make it
harder to enforce privacy protection. Indeed, both the information alone or in
combination with external sources could be used by an attacker to reidentify
individuals and discover sensitive information about them. As a consequence,
a privacy defense has to take into consideration this fact and apply a data
transformation able to eliminate the privacy threats that derive from the two
sources of information. Moreover, the problem is made more difficult by the
sparseness of this large amount of data. Indeed, usually an individual visits few
locations with respect to the total number of locations available in the territory,
therefore the trajectories are relatively short and it is difficult to find overlapping
of locations among different trajectories, thus causing the sparseness problem.
Additionally, the time component makes the situation more complicated because
the same location can be visited by different individuals in different time periods.
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All this makes mobility data very sparse and in this setting, it is clearly difficult to
identify and to group together trajectories for enforcing, for example, traditional
k-anonymity.

The next section shows how the basic data privacy notions presented in
Section 9.2 have been adapted to address the new challenges posed by spatio-
temporal data in offline data analysis. We present three categories of PETs:
PETs for mobility data publishing, PETs for distributed mobility data mining,
and PETs for knowledge hiding in mobility data.

9.3.1 PETs for Publishing of Trajectory Data

Mobility data publishing includes sharing the mobility data with specific recip-
ients such as data miners and releasing the data for public download. In both
cases, the recipients could potentially be adversaries who try to associate sen-
sitive information in the published data with a known person. The privacy-
preserving techniques for mobility data publishing have the goal to transform
spatio-temporal data to make them anonymous; in other words, they provide
suitable formal safeguards against reidentification of individuals represented in
the data by their movements.

In the literature, most of the proposed PETs for mobility data publishing use
privacy models that are suitable variants of the classical k-anonymity model.
They consider adversaries that use location-based knowledge for the reidentifi-
cation of users. As explained in Section 9.2, an adversary can use quasi-identifier
attributes (e.g., age, gender, and ZIP code) representing public knowledge and
can use them as key elements for the reidentification of individuals. Similarly, in
spatio-temporal databases the attackers could identify the person corresponding
to a given trajectory by using pairs of locations and timestamps that work as
quasi-identifiers. In this context the challenge often is the definition of realistic
and reasonable quasi-identifiers. Two important questions need to be answered
when we have to consider quasi-identifiers in spatio-temporal databases: (1)
Can we assume the same set of quasi-identifiers for all the individuals in the
database? (2) Where and how should the knowledge of quasi-identifiers be
obtained?

Concerning the first question, in the literature some works argue that, unlike
in relational microdata, where every tuple has the same set of quasi-identifier
attributes, in spatio-temporal data it is very likely that various individuals have
different quasi-identifiers and clearly this fact should be taken into consideration
in modeling adversary knowledge. Unfortunately, allowing different sets of
quasi-identifiers for different individuals makes the anonymization problem
more challenging because the anonymization groups may not be disjoint.

Concerning the second question typically we have different possibilities: (a)
the quasi-identifiers may be part of the users’ personalized settings; (b) they
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may be provided directly by the users when they subscribe to the service; and
c) the quasi-identifier may be found by statistical data analysis or data mining.

Given that in the real world the definition of quasi-identifiers in movement
data is not trivial, most anonymization approaches do not use any information
about the quasi-identifiers of trajectories during the anonymization process. In
Section 9.3.1 we present the details of a typical technique of this category.

Anonymization without Quasi-Identifiers
A spatio-temporal technique that does not take into consideration any knowledge
about the quasi-identifier of trajectories implicitly assumes that an adversary may
identify a user in any location at any time. Clearly, this is a very conservative
setting and under this assumption the anonymized data sets are composed of
anonymization groups, each one containing at least k identical or very similar
trajectories. This typically is achieved by the application of clustering-based
approaches.

The application of classical k-anonymity notion in spatio-temporal data is
hard because it is necessary to take into account some problems that are specific
in this context. As an example, in the definition of the privacy model one
should consider the inaccuracy of the positioning device that introduces possible
location imprecision in the collection of data. This leads to the definition of a
variant of the k-anonymity notion called (k, δ)-anonymity suitable for moving
objects databases, where δ represents the possible location imprecision. This
novel concept is based on colocalization that exploits the inherent uncertainty
of the moving object’s whereabouts. Intuitively, the trajectory is considered as
a cylindrical volume with some uncertainty. In other words, the position of a
moving object in the cylinder then becomes uncertain. Figure 9.2 illustrates a
graphical representation of an uncertain trajectory.

Two trajectories moving within the same cylinder are indistinguishable; this
leads to the definition of (k, δ)-anonymity model:

Definition 9.1. Given an anonymity threshold k and a radius parameter δ, a
(k, δ)-anonymity set is a set of at least k trajectories that are colocalized with
respect to δ.

A set of trajectories S, with |S| ≥ k, is a (k, δ)-anonymity set if and only if
there exists a trajectory tc such that all the trajectories in S are possible motion
curves of tc within an uncertainty radius of δ

2 . Given a (k, δ)-anonymity set S,
we obtain the trajectory tc by taking, for each t ∈ [t1, tn], the point (x, y) that
represents the center of the minimum bounding circle of all the points at time t

of all trajectories in S (Figure 9.3).
The (k, δ)-anonymity framework requires transforming a trajectory database

D in D′ in such a way that for each trajectory t ∈ D′ a (k, δ)-anonymity set
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Figure 9.2 Uncertain trajectory: uncertainty area, trajectory volume, and possible motion
curve.

Figure 9.3 A (2, δ)-anonymity set formed by two co-localized trajectories, their respective
uncertainty volumes, and the central cylindrical volume of radius δ

2 that contains both
trajectories.
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S ⊂ D′ with t ∈ S exists, and the distortion between D and D′ is minimized. To
achieve (k, δ)-anonymous data sets, we can apply a method based on trajectory
clustering and spatial translation that is a form of perturbation. In particular, it
consists of three main steps:

1. Preprocessing step: The goal of this phase is to find a partition of the original
database in equivalence classes with respect to the time span. In other words,
each equivalence class contains trajectories with the same starting time and
ending time. This step is necessary because the algorithm has to compute the
Euclidean distance between trajectories and when it is computed on the input
raw data could lead to the generation of very small equivalence classes.

2. Clustering step: In this phase the trajectories, obtained by the preprocessing
step, are clustered by using a greedy approach. This step iteratively selects a
pivot trajectory as cluster center and assigns its nearest k − 1 trajectories to
the cluster. The clusters must have a radius not larger than a given threshold
to guarantee a certain compactness of the groups of trajectories. So, if this
criterion of compactness is not satisfied then the process is repeated selecting
a different pivot trajectory. Clearly, when a remaining trajectory cannot be
added to any cluster without violating the compactness constraint, then it is
trashed because it is considered as an outlier.

3. Space transformation step: The aim of this step is to transform each cluster
into a (k, δ)-anonymity set. This is achieved perturbing each trajectory by the
spatial translation that allows putting all the trajectories within a common
uncertainty cylinder.

9.3.2 Other PETs for Offline Mobility Data Analysis

Although PETs for mobility data publishing represent an important part of the
literature on privacy in mobility data analysis, there are other interesting tech-
niques that consider different scenarios and different settings and apply different
privacy models, such as techniques suitable for analyzing and mining data in
distributed environments and techniques that allow hiding models considered
sensitive in a database to be published.

Distributed Privacy-Preserving Mobility Data Mining
The methods belonging to this group aim at analyzing data sets that are parti-
tioned and distributed among several parties that do not want to (or cannot) share
the data or certain corporate information that is represented in the data, but are
interested in developing global models of common interest. Therefore, the main
assumption in this scenario is that multiple data holders want to collaboratively
perform data mining on the union of their data without revealing their sensitive
information. The question addressed in these cases is how to compute the results
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without sharing the data, so that nothing is disclosed except the final result of the
data mining process. This problem is addressed in cryptography in the field of
secure multi-party computation. An example of a problem tackled by this kind
of approach is privacy-preserving clustering in horizontally partitioned spatio-
temporal data. Here, each horizontal partition contains trajectories of distinct
moving objects collected by separate sites, which want to cluster these trajec-
tories without releasing sensitive location information to the other data holders.
At the end of the protocol the global clustering results will be available to each
data holder. The method used to achieve this goal is to construct the dissimilarity
matrix of the trajectories in a privacy preserving manner, which can be the input
of any hierarchical clustering algorithm. In this setting there is a third party that
has the following tasks: (1) managing the communication among data holders;
(2) constructing a global dissimilarity matrix; (3) clustering the trajectories by
using the dissimilarity matrix; and (4) releasing the final result to the data hold-
ers. Each party involved is considered semitrusted, in the sense that they follow
the protocol as expected to, but cannot store any information to infer sensitive
data. Moreover, parties do not share any sensitive information with each other.

As an example application of this technique, consider the case of a traffic
control office that wants to solve traffic congestion by analyzing data from
a mobile operator who cannot share these data with other entities for privacy
issues. The traffic congestion problem assumes the use of a clustering algorithm,
therefore the best solution is to apply a privacy-preserving clustering algorithm
for horizontally partitioned data that avoids sharing of the spatio-temporal data.

Knowledge Hiding in Mobility Data
Knowledge hiding refers to the activity of hiding patterns considered sensitive
in a database before being published. In fact, if the data are published as they
are, the sensitive patterns may be surfaced by means of data mining techniques.
Knowledge hiding involves a process of sanitization of the database in such a
way that the sensitive knowledge can no longer be inferred, while the original
database is changed as little as possible. This problem is particularly interesting
in the context of spatio-temporal patterns in a database of trajectories. Mobility
data contain the description of typical mobile behaviors (i.e., frequent patterns)
that are considered sensitive for political or security reasons. It is therefore
necessary to have a method capable of hiding such sensitive patterns before
the disclosure of the database. A valid hiding technique in this context should
take into consideration the road network, modeled as a directed graph, and there-
fore consider trajectories of objects moving over a background road network.
A privacy solution should sanitize the input trajectory database D in such a
way that a set of sensitive spatio-temporal patterns P is hidden while most of
the information in D is maintained. The resulting database D′, which is the
released version, is consistent with the background road network. The privacy
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solution avoids creating unreal trajectories in the sanitization process, since the
road network is publicly available knowledge and thus unreal trajectories can be
easily identified. Moreover, all sensitive patterns are hidden in D′, that is, they
have a support no more than the given disclosure threshold ψ . Finally, the last
requirement is that D′ is kept as similar as possible to D.

9.4 Privacy by Design in Data Mining

As shown in the previous sections, several techniques have been proposed by
the scientific community to develop technological frameworks for countering
the threats of undesirable and unlawful effects of privacy violation, without
obstructing the knowledge discovery opportunities of data mining technologies.
However, the common result obtained is that no general method exists that is
capable of both dealing with “generic personal data” and preserving “generic
analytical results.” The ideal solution would be to inscribe privacy protection into
the knowledge discovery technology by design, so that the analysis incorporates
the relevant privacy requirements from the very beginning. We evoke here the
concept of “privacy by design,” coined in the 1990s by Ann Cavoukian, the
Information and Privacy Commissioner of Ontario, Canada. In brief, privacy
by design refers to the philosophy and approach of embedding privacy into the
design, operation, and management of information-processing technologies and
systems.

The articulation of the general “by design” principle in the data mining
domain is that higher protection and quality can be better achieved in a goal-
oriented approach. In such an approach, the data mining process is designed
with assumptions about:

� The sensitive personal data that are the subject of the analysis;
� The attack model, that is, the knowledge and purpose of a malicious party

that has an interest in discovering the sensitive data of certain individuals;
� The category of analytical queries that are to be answered with the data.

Under these assumptions, it is conceivable to design a privacy-preserving
analytical process able to:

1. Transform the data into an anonymous version with a quantifiable privacy
guarantee – that is, the probability that the malicious attack fails;

2. Guarantee that a category of analytical queries can be answered correctly,
within a quantifiable approximation that specifies the data utility, using the
transformed data instead of the original ones.

In the next sections we present two frameworks that offer two different
instances of the privacy by design paradigm in the case of personal mobility
trajectories (obtained from GPS devices or cell phones). The first one is suitable
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for the privacy-aware publication of movement data enabling clustering analysis
useful for the understanding of human mobility behavior in specific urban areas.
The released trajectories are made anonymous by a suitable process that realizes
a generalized version of the original trajectories. The second framework is
suitable when it is required that the released data set of trajectories contains the
real locations contained in the original data. In fact, this framework applies to
the original data a process of transformation capable of maintaining unchanged
this information, even if the data become anonymous.

The application of this methodology requires one to understand: the specific
properties of the trajectories to be protected; which characteristics it is necessary
to preserve to guarantee a good quality of the analyses that have to be performed
on these data; and which adversary’s knowledge the attacker may use for the
user reidentification. Clearly, this information is fundamental for the design of
a data transformation technique.

9.4.1 Trajectory Anonymization by Spatial Generalization

In this section, we show the design of a privacy-preserving framework for the
publication of movement data, while preserving clustering analysis. The frame-
work is based on a data-driven spatial generalization of the data set of trajectories.
The results obtained with the application of this framework show how trajec-
tories can be anonymized to a high level of protection against reidentification
while preserving the possibility of mining clusters of trajectories, which enables
novel powerful analytic services for infomobility or location-based services.

Attack Model
In this framework the linkage attack model is considered, that is, the ability
to link the published data to external information, which enables some respon-
dents associated with the data to be reidentified. In relational data, linking is
made possible by quasi-identifiers, that is, attributes that, in combination, can
uniquely identify individuals, such as birth date and gender (see Section 9.2).
The remaining attributes represent the respondent’s private information, which
may be violated by the linkage attack. In privacy-preserving data publishing
techniques, such as k-anonymity, the goal is precisely to find countermeasures
to this attack, and to release person-specific data in such a way that the ability
to link to other information using the quasi-identifier(s) is limited. In the case of
spatio-temporal data, where each record is a temporal sequence of locations vis-
ited by a specific person, the dichotomy of attributes into quasi-identifiers (QI)
and private information (PI) does not hold any longer: here, a (sub)trajectory
can play both the role of QI and the role of PI. To see this point, consider that
the attacker may know a sequence of places visited by some specific person
P : for example, by shadowing P for some time, the attacker may learn that P
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was in the shopping mall, then in the park, and then at the train station. The
attacker could employ such knowledge to retrieve the complete trajectory of P

in the released data set: this attempt would succeed, provided that the attacker
knows that P ’s trajectory is actually present in the data set, if the known tra-
jectory is compatible with (i.e., is a subtrajectory of) just one trajectory in the
data set. In this example of a linkage attack in the movement data domain, the
subtrajectory known by the attacker serves as QI, while the entire trajectory is
the PI that is disclosed after the reidentification of the respondent. Clearly, as
the example suggests, is rather difficult to distinguish QI and PI: in principle,
any specific location can be the theater of a shadowing action by a spy, and
therefore any possible sequence of locations can be used as a QI, that is, as a
means for reidentification. Put another way, distinguishing between QI and PI
among the locations means putting artificial limits on the attacker’s background
knowledge; on the contrary, it is required in privacy and security research to
have assumptions on the attacker’s knowledge that are as liberal as possible, in
order to achieve maximal protection.

As a consequence of this discussion, it is reasonable to consider the radical
assumption that any (sub)trajectory that can be linked to a small number of
individuals is a potentially dangerous QI and a potentially sensitive PI. Therefore,
in the trajectory linkage attack, the malicious party M knows a subtrajectory of
a respondent R (e.g., a sequence of locations where R has been spied on by M)
and M would like to identify in the data the whole trajectory belonging to R,
that is, learn all places visited by R.

Privacy-Preserving Techniques
How is it possible to guarantee that the probability of success of the above attack
is very low while preserving the utility of the data for meaningful analyses?
Consider the source trajectories represented in Figure 9.4, obtained from a
massive data set of GPS traces (17,000 private vehicles tracked in the city of
Milan, Italy, during a week).

Each trajectory is a deidentified sequence of timestamped locations, visited
by one of the tracked vehicles. Albeit deidentified, each trajectory is essen-
tially unique – very rarely are two different trajectories exactly the same given
the extremely fine spatio-temporal resolution involved. As a consequence, the
chances of success for the trajectory linkage attack are not low. If the attacker
M knows a sufficiently long subsequence S of locations visited by the respon-
dent R, it is possible that only a few trajectories in the data set match with S,
possibly just one. Indeed, publishing raw trajectory data such as those depicted
in Figure 9.4 is an unsafe practice, which runs a high risk of violating the pri-
vate sphere of the tracked drivers (e.g., guessing the home place and the work
place of most respondents is very easy). Now, assume that one wants to dis-
cover the trajectory clusters emerging from the data through data mining, that
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Figure 9.4 Milan GPS trajectories.

is, the groups of trajectories that share common mobility behavior, such as the
commuters that follow similar routes in their home–work and work–home trips.
An anonymizing transformation of the trajectories consists of the following
steps:

1. Characteristic points are extracted from the original trajectories: starting
points, ending points, points of significant turn, points of significant stop
(Figure 9.5a);

2. Characteristic points are clustered into small groups by spatial proximity
(Figure 9.5b);

3. The central points of the groups are used to partition the space by means of
Voronoi tessellation (Figure 9.5c);

4. Each original trajectory is transformed into the sequence of Voronoi cells that
it crosses (Figure 9.5d).

As a result of this data-driven transformation, where trajectories are gen-
eralized from sequences of points to sequences of cells, the probability of re-
identification already drops significantly. Further techniques can be adopted to
lower it even more, obtaining a safe theoretical upper bound for the worst case
(i.e., the maximal probability that the linkage attack succeeds), and an extremely



188 Mobility Data and Privacy

(a) (b)

(c) (d)

Figure 9.5 Anonymization steps. (a) Characteristic points. (b) Spatial clusters. (c) Territory
tessellation. (d) Generalized trajectories. (See color plate.)

low average probability. A possible technique is to ensure that for any subtra-
jectory used by the attacker, the reidentification probability is always controlled
below a given threshold 1/k; in other words, ensuring the k-anonymity property
in the released data set. Here, the notion of k-anonymity proposed is based
on the definition of k-harmful trajectory, that is, a trajectory occurring in the
database with a frequency less than k. Therefore, a trajectory database D∗ is
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Figure 9.6 Ten largest clusters of the original trajectories.

considered a k-anonymous version of a database D if: each k-harmful trajectory
in D appears at least k times in D∗ or if it does not appear in D∗ any longer.
To achieve this k-anonymous database, the generalized trajectories, obtained
after the data-driven transformation, are transformed in such a way that all the
k-harmful subtrajectories in D are not k-harmful in D∗.

In the example in Figure 9.4, the probability of success is theoretically
bounded by 1/20 (i.e., 20-anonymity is achieved), but the real upper bound
for 95% of the attacks is below 10−3.

Clustering Analysis
The above results indicate that the transformed trajectories are orders of magni-
tude safer than the original data in a measurable sense: but are they still useful
to achieve the desired result, that is, discovering trajectory clusters?

Figures 9.6 and 9.7 illustrate the most relevant clusters found by mining the
original trajectories and the anonymized trajectories, respectively.

A direct effect of the anonymization process is an increase in the concentration
of trajectories (i.e., several original trajectories are bundled on the same route);
the clustering method will thus be influenced by the variation in the density
distribution. The increase in the concentration of trajectories is mainly caused
by the reduction of noisy data. In fact, the anonymization process tends to
render each trajectory similar to the neighboring ones. This means that the
original trajectories, initially classified as noise, can now be “promoted” as
members of a cluster. This phenomenon may produce an enlarged version of
the original clusters. To evaluate the clustering preservation quantitively, the F-
measure is adopted. The F-measure is usually adopted to express the combined
values of precision and recall and is defined as the harmonic mean of the two
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Figure 9.7 Ten largest clusters of the anonymized trajectories.

measures. Here, the recall measures how the cohesion of a cluster is preserved:
it is one if the whole original cluster is mapped into a single anonymized
cluster, and it tends to zero if the original elements are scattered among several
anonymized clusters. The precision measures how the singularity of a cluster is
mapped into the anonymized version: if the anonymized cluster contains only
elements corresponding to the original cluster its value is one, otherwise the
value tends to zero if there are other elements corresponding to other clusters.
The contamination of an anonymized cluster may depend on two factors: (1)
there are elements corresponding to other original clusters, or (2) there are
elements that were formerly noise and have been promoted to members of an
anonymized cluster.

The immediate visual perception that the resulting clusters are very similar
in the two cases in Figures 9.6 and 9.7 is also confirmed by various cluster
comparisons by F-measure, redefined for clustering comparison (Figure 9.8).

The conclusion is that in the illustrated process the desired quality of the
analytical results can be achieved in a privacy-preserving setting with concrete
formal safeguards and the protection with respect to the linkage attack can be
measured.

9.4.2 Trajectory Anonymity by Microaggregation and Perturbation

The previous technique is not suitable when it is necessary to obtain anonymous
data preserving real locations in the data. When this requirement has to be satis-
fied it is possible to use the anonymization methods called SwapLocations and
ReachLocations, which allow anonymizing trajectories composed of original
locations.
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Figure 9.8 Clustering comparison by F-measure.

Attack Model
The aim of these two methods is to protect individuals in trajectory data against
the linkage attack model. In other words, the attack model is similar to that
described in the previous section. The only difference is that the adversary
knows that each location in the anonymized trajectories must be in the original
data. This is an important point because the linkage of a location with a specific
user could reveal the exact location rather than the generalized one. Therefore,
it is possible to identify two attacks: (a) finding an anonymized version of a
specific real trajectory; and (b) determining if a location belongs to a specific
trajectory.

Privacy-Preserving Techniques
How is it possible to guarantee that the probability of success of the attack just
described is very low while preserving the utility of the data for meaningful
analyses? The countermeasure against the attack in point (a) uses microaggre-
gation to partition the set of trajectories into several clusters, by minimizing
the sum of the intracluster distances. The cardinality of each cluster must be
between k + 1 and 2k − 1. The purpose of setting k as the cluster size is to obtain
trajectory k-anonymity. Given a cluster, the algorithm takes a random trajectory
and attempts to cluster each unswapped location l of this trajectory with another
k − 1 unswapped locations. These locations must belong to different trajectories
and the following properties have to be satisfied: (1) the time stamps of these
locations differ by no more than a specific time threshold; (2) the spatial coor-
dinates differ by no more than a space threshold. Given a cluster, random swaps
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of locations are performed. In the case in which no k − 1 suitable locations can
be found for creating a cluster, l is removed. As a result, no original location is
unswapped in a cluster of k trajectories; as a consequence an adversary is not
able to link a true trajectory to an anonymized one with probability higher than
1
k
. The countermeasure against the attack in point (b) has to guarantee that from

a given location, only those locations at a distance below a threshold following
a path in an underlying network are considered to be directly reachable. Each
location is k-anonymized independently using the whole set of locations of all
trajectories. Specifically, given a location l, a cluster with at least other k − 1
locations is constructed in such a way that the locations belong to k different
trajectories and the location respects a specific spatial and temporal distance
with respect to the location l. Then, the spatial coordinates of the location l are
swapped with the spatial coordinates of some random location in the cluster. The
process stops when all locations appear swapped at least once. The result of this
transformation is that a location l of a true trajectory appears in its anonymized
version with a probability at most of 1

k
(location k-diversity).

Data Utility Analysis
The above techniques provide trajectories with a formal guarantee of protection;
but now an important question is if the transformed data are still useful to
achieve the desired analytical results. A suitable evaluation showed that the
anonymization of trajectories by the two techniques causes an acceptable space
distortion and makes the anonymized trajectories suitable for range queries by
providing low distortion for every value of k. The range query measures evaluate
the relative position of a moving object with respect to a region.

9.5 Conclusions

Mobility data represent an important source of knowledge but sharing of these
data can raise serious privacy concerns: mobility data may potentially reveal
many facets of a person’s private life. Mobility data privacy problems have
to be addressed in two different scenarios: online location-based services and
offline data analysis context. Many recent research works have focused on the
study of privacy protection in spatio-temporal data and many privacy-enhancing
technologies have been proposed, which essentially aim at finding an acceptable
trade-off between data privacy on the one hand and data utility on the other. So
far, the common result obtained is that no general method exists that is capable
of both dealing with “generic personal data” and preserving “generic analytical
results.” A recent paradigm, called privacy by design, promises a quality leap
in the conflict between data protection and data utility. The application of this
paradigm in mobility data mining showed that the desired quality of the analytical
results can be achieved in a privacy-preserving setting with concrete formal
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safeguards, so that the protection with respect to the linkage attack can be
measured. The implication of this finding is far reaching; once an analytical
process has been found and specified, it can be deployed and replicated with
the mentioned privacy-preserving safeguards in order to perform mobility data
analyses in different periods of time, in different cities, in different contexts:
once deployed, it is a safe service that generates knowledge of the expected
quality starting from truly anonymous data.

9.6 Bibliographic Notes

The literature on privacy in mobility data is becoming extensive. In the following,
we will provide an essential list of bibliographic references for the reader,
including those describing the problems and the solutions discussed in the
chapter.

Privacy issues in mobility data mining were deeply discussed by Giannotti
and Pedreschi (2008). Monreale et al. (2010) present an overview on the main
privacy-preserving data publishing and mining techniques proposed by the data
mining community and by the statistical disclosure control community. This
contribution also discusses the privacy issues in complex domains, focusing the
attention on the context of spatio-temporal data and describing some approaches
proposed for anonymity of this type of data.

The k-anonymity model was introduced by Samarati and Sweeney (1998),
and then Machanavajjhala et al. (2007) and Li et al. (2007) proposed l-diversity
and t-closeness to overcome the weaknesses of k-anonymity. This privacy model
and its variants have been widely adopted to achieve privacy in movement data,
especially in privacy-preserving publishing of trajectories. A recent survey on
this topic is presented by Bonchi et al. (2011).

The problem of hiding sensitive spatio-temporal patterns in trajectory data
was studied in Abul et al. (2010), while a privacy-preserving clustering method in
horizontally partitioned spatio-temporal data was described by Inan and Saygin
(2006).

The privacy by design paradigm in data mining was introduced by Monreale
(2011). This PhD thesis proposed this novel methodology to address the privacy
issues in complex data with a particular focus on data with a sequential nature
such as trajectory data.

Lastly, techniques for trajectory anonymity based on microaggregation
and perturbation were introduced in a recent work by Domingo-Ferrer and
Trujillo-Rasua (2012).
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Car Traffic Monitoring
Davy Janssens, Mirco Nanni, and Salvatore Rinzivillo

10.1 Traffic Modeling and Transportation Science

Transportation science, together with its related research fields, is a key disci-
pline of today’s society, due to its potential impact on several levels of societal
organization and resource usage. In this chapter we will discuss some of the main
issues of next generation transportation solutions, and traffic models in partic-
ular, and describe case studies where mobility data analysis can help provide
some answers.

Relevance of Traffic Modeling
In a research report by the United Nations in 2001, it was postulated that the
transport sector accounts for about 25% of the total commercial energy con-
sumed worldwide and that it consumes approximately 50% of the total oil
produced. The International Energy Agency (IEA) predicts that the transport
sector will overtake industry as the largest energy user by 2020. Unfortunately,
that has major negative economic, social, and environmental side effects. At the
environmental level, transport has proven to be the source of nitrogen oxides,
sulfur oxides, and other volatile organic compounds, all which have negative
environmental and health implications. Pollution, environmental degradation,
space consumption, and greenhouse gases are receiving increasing attention as
the immediately detectable externalities of transport and land-use development
patterns. At the economic level, accidents and congestions, traffic gridlocks,
stress from pedestrian and vehicular conflict, inefficient public transport, and
urban sprawl are all associated with unsustainable transport systems that indi-
rectly represent costs to society. At the social level, research reports seem to
suggest that in areas where public transport is often second-rate or absent and
where the levels of car ownership are significantly lower, a higher degree of risk
for social exclusion is perceived. Whereas a good transport system increases the
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opportunities to satisfy interaction needs, a poorly connected transport system
limits economic and social development (Ortúzar and Willumsen, 2002). The
transport system thus allows individuals to trade time for space when moving to
(activity) locations (Miller, 2003; Rietveld, 1994).

Traffic Modeling Standard
Rising concerns over these increasingly intolerable externalities have generated
particular interest in how transport planning policies might at least moderate the
pressures in growth in personal mobility and support the principles of sustainable
development (Barrett, 1996; Salomon et al., 1993). Originally, transport planning
policies focused on mastering the massive growth in car mobility. These policies
were adopted in an immediate response to the predicted growth in (car) mobility.
The estimation and forecasting of travel demand and behavior were handled
by a standard methodological approach commonly referred to as the four-step
modeling approach consisting of trip generation, trip distribution, mode choice,
and assignment of travel demand to highway and transit networks. In the trip
generation stage, the goal is to predict the total number of trips generated and
attracted to each zone of the study area. In the second stage, the question is how
to distribute trips among destinations. The result of this step is a 2D array of
cells (matrix) where rows and columns represent each of the zones in the study
area and the cells contain the number of trips that go from the origin zone (in
the rows) to the destination zone (in the columns). The latter is also known as an
origin–destination matrix. Next, in the third step the transport mode is chosen.
The output of this step is typically an origin–destination matrix that represents
the number of trips that are carried out by the different transport modes. While
the previous three steps mainly deal with the demand side of travel, the last step
in the four-stage methodology is mainly related with the supply side. In this
step, the supply side of the transportation system – which is made up of a road
network and is represented by links and costs – is confronted with the demand
side of travel that has been estimated in the first three steps. The result of this
step is the amount traffic projected on the road network, typically represented
as number of vehicles on road segments.

Toward Data-Driven/Aware Models
In parallel with the traffic science evolution discussed above, there is growing
literature and research available, originating from the field of mobility data
mining (see Chapter 6 of this book), which emerged only recently, during the
last decade. While the overall goal is the same, that is, to help policy makers
to deal with traffic-related questions, the techniques used and the processes
adopted are completely different. The main difference is the fact that most of
the techniques are fully data driven and therefore also less policy sensitive.
It can be very interesting to see how both domains could complement each
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other, and hopefully evolve into next-generation traffic modeling systems able
to better capture the dynamics of real human mobility. The following sections
try to trace some connections between the two fields, providing examples of a
mobility data mining approach to deal with some basic questions that naturally
arise when dealing with traffic understanding and modeling. Moreover, the
remaining part of the chapter will provide a series of real analytical scenarios
enabled by the methods and techniques presented in the previous chapters of this
book.

10.2 Data-Driven Traffic Models

Mobility phenomena are sensed by means of several data collections and mon-
itoring. For example, traditional transportation methods use inductive loops,
cameras, sensors, and counters to measure specific arc roads of the network. All
these observations are merged and integrated within existing models in order to
refine and fit the model parameters. Thus, the integration of the mobility models
extracted from real mobility data is crucial. There is a strong need for an accurate
mobility demand evaluation that calls for a data-driven approach to obtain better
estimations of mobility phenomena. In this chapter we will show how to cope
with a set of problems that provide the analyst with a particular view on specific
mobility behaviors. At the base of such a process there is a large preprocessing
step with the duty of integrating and merging different data sources. For the
objective of this chapter we assume that this step has already been performed
and all the data are available for the analysis in the correct format. We show
how to master the complexity of the mobility knowledge discovery process by
means of an organic analytical framework centered on the concept of trajectory.
In particular, we show how the semantic deficiency of big mobility data can be
bridged by their size and precision. To this purpose, we describe the key results
obtained in a large-scale experiment conducted with the mobility analysts of the
cities of Milan and Pisa, on the basis of real life GPS tracks sensed from tens of
thousands of private cars. We show how it is possible to find answers to chal-
lenging analytical questions about mobility behavior, which are not supported
by the current generation of commercial systems, such as:

1. What are the most popular itineraries followed from the origin to the desti-
nation of people’s travels? What are the routes, timing, and volume for each
such itinerary?

2. How do people leave the city toward suburban areas (or vice versa)? What is
the spatio-temporal distribution of such trips?

3. How can we understand the accessibility to key mobility attractors, such as
large facilities, railway stations, or airports? How do people behave when
approaching an attractor?
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4. How can we detect an extraordinary event and understand the associated
mobility behavior? How and when do people reach and leave the event’s
location? What is the spatio-temporal distribution of such (portion of) trips?

5. What will be the areas with highest traffic volume in the next hour(s)? To
what extent are our predictions accurate?

6. Are there geographic borders that emerge from the way people use the terri-
tory for their daily activities? If so, how do we define such borders? Do these
borders match the administrative ones?

More than just examples, these questions are paradigmatic representatives of
the analysts’ need to disentangle the huge diversity of individual whereabouts
and discover the subgroups of travels characterized by some common behavior
or purpose. It is no surprise, then, that finding answers to these questions is
beyond the limits of the current generation of commercial systems, and cannot
even be accomplished by simply applying single known research prototypes,
such as the mobility data mining methods presented in Chapter 6. There is the
need for a mobility knowledge discovery process aimed at discovering interest-
ing subgroups of vehicles and travels characterized by some common movement
behavior. To perform this kind of analysis, a complete querying, analysis, and
mining system is needed, able to support the overall knowledge discovery pro-
cess centered around the trajectory concept. In this chapter we will provide ana-
lytical answers based on the tools and the knowledge discovery process handled
by an analytical framework named M-Atlas, already introduced in Chapter 7. A
general analytical process on mobility data follows several steps. First the data
are explored by the analyst to understand and comprehend the several dimen-
sions of the observed phenomena. In Section 10.3 we present a set of statistical
methods that have a twofold objective: on one hand they serve to assess the
general validity of the data with respect to background knowledge; on the other
hand they provide insight into the internal distribution of data dimensions. Once
the analyst has acquired a deep understanding of the data, he or she can proceed
with the exploration. Section 10.4 provides a set of analytical scenarios where
different mobility data mining methods are used to find answers to the questions
we have proposed. The methods used have already been presented in Chapter 6,
thus we refer the reader to that chapter and we will not give further details on
the internal functionalities of each algorithm.

To present a paradigmatic mobility knowledge discovery process we concen-
trate on massive, real-life GPS data sets, obtained from tens of thousands of
private vehicles with on-board GPS receivers. The owners of these cars are sub-
scribers to a pay-as-you-drive car insurance contract, under which the tracked
trajectories of each vehicle are periodically sent (through the GSM network)
to a central server for antifraud and antitheft purposes. This data set has been
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donated for research purposes by Octo Telematics Italia S.p.A,1 the leader for
this sector in Europe. We use two GPS data sets: the first, Milano2007, describes
approximately 17,000 cars tracked during one week (from April 1 through April
7, 2007) of ordinary mobile activity in the urban area of the city of Milan (a
20 km × 20 km square). The second, Pisa2010, contains approximately 40,000
cars tracked during 5 weeks (from June 14 through July 18, 2011) in coastal
Tuscany, a 100 km × 100 km square centered on the city of Pisa. The average
sampling rate of the GPS receivers is 30 seconds. Globally, Milano2007 con-
sists of approximately 2 million observations and Pisa2010 of approximately 20
million observations, each consisting of a quadruple (id, lat, long, t), where id
is the car identifier, (lat, long) are the spatial coordinates, and t the time of the
observation. The car identifiers are pseudonymized, in order to achieve a basic
level of anonymity

The resolution of the spatial coordinates is at 10−6 degrees, and the error
of the positioning system is estimated at 10–20 m in normal conditions. The
temporal resolution is in seconds. All the observations of the same car id over
the entire observation period are chained together in increasing temporal order
into a global trajectory of car id. Using the trajectory reconstruction techniques
presented in Chapter 2, we obtained approximately 200,000 different travels in
Milano2007, and approximately 1,500,000 different travels in Pisa2010.

10.3 Data Understanding

Since the data we can use for analysis are a sample of the real population, as a
first step we need to evaluate their representativeness and statistical significance.
We do that through a set of statistical evaluations that analyze the distributions
of typical movement dynamics properties, such as speed, length of each trip, and
temporal location. In some cases these same measurements are estimated also by
traditional transportation methods, therefore a comparison is possible in order to
assess meaningfulness of the data sample as proxy of real mobility phenomena.
For the Milano2007 data set, we compared it against the survey data collected
in 2005–6 by the local mobility agency AMA,2 although the two data sources
differ in both the sampled population and the kind of collected information:
mobility reports are obtained through a survey campaign and include flows of
private vehicles but also public transportation and pedestrians.

Since the basic components of mobility data are the spatial and temporal
dimensions, we focus on the statistical analysis of these dimensions separately.
First, we try to understand when people are moving during the day. In particular,

1 http://www.octotelematics.it
2 http://www.ama-mi.it/english
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Figure 10.1 Movement distribution by hour: (a) representative weekday in MilanoSurvey
and (b) entire week in Milano2007.

we measure the number of moving vehicles in every hour of the day, and create
a histogram over the entire week. The result is shown in Figure 10.1 together
with a typical day distribution provided by the MilanoSurvey.

The two distributions match significantly, especially for the days from the
second to the fifth of the week, which actually represent regular working days,
from Monday to Thursday. Background knowledge and domain expertise, in this
case, help to explain the anomaly of Friday. Indeed, it was Easter Friday, which
explains the different shape with respect to previous weekdays. Within working
days, the most relevant deviation from the survey data is a higher volume of
movement between the two peaks in the rush hours and (to a minor extent) the
later part of the day. The assessment with the mobility agency revealed that
the results are coherent, and actually in this specific case GSP data prove to
be more robust than surveys. Indeed, the latter are known to underestimate the
movements in these periods of the day, due to the fact that interviewed people
tend not to report their occasional mobility, such as going to the dentist or visiting
a friend. Also, GPS data contain mobile activity of people who do not live in the
greater metropolitan area, while the survey focuses on Milano residents.

The second dimension of analysis is the spatial component. Here we can
try to estimate the presence of population on the territory through GPS data,
and compare it with correspondent results obtained from the declared places of
residence on the surveys (see Figure 10.2a). A similar estimate was obtained on
Milano2007 by (1) partitioning the space into a regular grid and (2) counting for
each cell the number of vehicles that were stationary in the cell for each time
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(a) (b)

Figure 10.2 Presence distribution between 11 a.m. and noon, (a) survey, (b) GPS data;
frequent locations plotted with lighter shades. (See color plate.)

interval. Such values were averaged over all (regular) working days available.
Figure 10.2b shows the results.

The two distributions match well in most locations, including some particular
areas along main streets and suburban residential areas, confirming again the
coherence of results obtained with survey and mobility data. The main deviation
occurs in the inner city center, where a high density spot found by surveys
is significantly lower in Milano2007: this is explained by the strong access
restrictions on private cars in the city center, as well as by the limited capacity
of roads and traffic, which causes an underrepresentation in the GPS data of the
people who reach their workplaces in the center with public transportation.

These two first analyses are useful to have a first insight of the data. The
next aspect to analyze is the exploration of the movement dynamics, that is,
identifying the movement quantities represented in the trajectory data sets: the
length of a trip, and the duration of a trip, the correlation of length and speed of
trips.

Trip Length and Duration
Figure 10.3a shows the distribution of trip length (in km), as estimated from
GPS trajectories. The heavy-tailed distribution of trip length highlights how
there are many short trips of a few kilometers, and few, but nonnegligible, very
long trips of tens or even hundreds of kilometers; a similar consideration applies
to the distribution of trip duration, shown in Figure 10.3b. The lesson learned
here confirms how mobility is a complex phenomenon, where a simple notion
of average behavior may be misleading. In fact the variance of the distribution
is so large that the representativeness of the average value is limited.
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Figure 10.3 (a) Trip length cumulative distribution in log-log scale; (b) trip duration cumu-
lative distribution in log-log scale.

Correlation of Length and Speed of Trips
Figure 10.4 shows the correlation plots of trip length (in km) and speed (in
km/h). For each speed value s, the plot reports the distribution of distance
traveled by all trips with average speed s. For each value of speed the box plot
reports median, 25th, 75th, and 99th percentiles. Notice that with this specific
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Figure 10.4 Correlation plot of length and average speed of trips and number of trips per
speed for the Milano2007 and Pisa2010 data sets.



206 Car Traffic Monitoring

selection of movements (in this case the trajectories with a specific average
speed s) the average length observed seems to capture well the behavior of the
observed trips, because the variance is low. In the Milano2007 data set, the plot
shows how the distance traveled grows linearly with speed, as expected, only
up to 80 km/h, while it decreases for higher speed. In the Pisa2010 data set,
the distance traveled grows linearly up to 110 km/h, with a low slope between
20 and 40 km/h. The plots show also the number of trips for each speed value:
the high diversity of lengths for speeds beyond 130 km/h (the highest speed
limit in Italy) is due to the low number of travels with that velocity and can be
considered as noise, coherently with the intuition that very fast trips take place
in particular situations of light traffic, typically at night.

We learned two lessons from our basic analytical explorations. First, all
statistics confirmed that there is a huge complexity represented in the data, a
wide variability of individual mobility behaviors that cannot be fully under-
stood in their diversity by looking only at macroscopic, global measures and
laws. Second, we realized that the basic spatio-temporal statistics are not well
suited to support the discovery and analysis of movement patterns, because
the very nature of a trajectory requires a deep understanding of the internal
dynamics of movement and their relations with the context. For these par-
ticular aspects, we exploit the mobility data mining methods introduced in
Chapter 6.

10.4 Analysis of Movement Behavior

To answer the questions proposed in Section 10.2, a complete mobility knowl-
edge discovery process centered around the trajectory concept is needed. Such
a process should be powered by a suitable system with the aim of supporting
interactive, iterative visual exploration of the analytical results, thus enabling the
analyst to combine different forms of knowledge and drive the analysis toward
the discovery of interesting movement patterns. An instance of a mobility knowl-
edge discovery process has been introduced in Chapter 7. In this section we show
how the mobility data analysis tools are able to provide answers to the questions
discussed.

10.4.1 Origin-Destination Matrix Exploration

As stated in Section 10.1, origin–destination (OD) matrix models provide a sim-
ple and compact representation of traffic dynamics, by abstracting detailed actual
movements by means of aggregation in flows between two regions. While the
traditional OD matrices are modeled by statistical analysis of surveys, sample
observations, and continuous refinements of the original models, the large avail-
ability of sensed tracks from real vehicles enables the automatic extraction of
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OD matrices. The suggested procedure is based on the traditional transportation
science approach where a spatial tessellation is used to generalize and summarize
movements. Starting from a given spatial tessellation, each GPS-tracked move-
ment is mapped to its corresponding origin and destination, that is, the former
is the region where the trip begins and the second is the region where the trip
stops. This kind of representation loses the focus on how people move, that is,
by which routes, and maintains only the information of the origin and the desti-
nation. Depending on the time interval considered, it is possible to reconstruct a
OD matrix for different time periods, allowing a precise characterization of the
evolution of traffic demand during time.

For the mobility data analyst, the OD matrix represents a valuable tool to
explore mobility data of a region, since it helps to reveal relevant flows and time
intervals. For example, to explore the main flows from the city center toward
the suburbs, we start by considering the administrative borders of Milan and its
adjacent municipalities (see Figure 10.5a). A visual interface may enable the
analyst to disentangle the complexity of the model by exploring relevant flows
on the screen. There exist several methods to visualize and explore OD matrices
(see Chapter 8 for a review of visualization methods for flows); as an example,
Figure 10.5b shows the visual interface provided by the M-Atlas system. In our
analysis, we focus on the flows leaving the city center of Milan toward the north
east suburbs.

10.4.2 Most Popular Itineraries from the City Center to Suburban Areas

Once we have selected a relevant set of flows, we can focus the analysis on the
individual trips associated to them.

The resulting trajectories are presented in Figure 10.6a. Despite the fact that
all these trips originate in the city center and end in the northeast suburbs,
a broad diversity is still evident. In order to understand which are the most
popular itineraries followed by the selected travels, we apply an algorithm that
automatically detects significant groups of similar trips. In particular we use
the density-based clustering algorithm with the Spatial Route distance function
introduced in Chapter 6. Given two trajectories, the route similarity function
returns a numeric estimation of their diversity: if the trajectories are equal it tends
to zero, otherwise it tends to infinity. A route is relevant for the mobility analyst
if it is followed by many vehicles. The clustering algorithm selects effectively
groups of trajectories with similar paths and thus provides a selection of frequent
routes. Trajectories that do not belong to any group are labeled as noise, and the
user might decide to discard them or, in some particular cases, to analyze them
separately from the others.

The clustering algorithm produces a set of clusters, each of which can be
visualized by means of a thematic rendering where the trajectories in the same
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(a)

(b)

Figure 10.5 The resulting OD matrix model for Milano2007 on a specific weekday
(Wednesday, April 3rd). (a) The regions used as input for the model: the center region
contains the administrative borders of Milan and the adjacent cells represent neighbouring
cities; (b) The visual interface to browse the OD matrix: each region is represented with
a node, nodes are displayed in a circular layout. The arc connecting two nodes represents
the flow, i.e., the number of trips from the origin to the destination node; the arc width is
proportional to the flow. The analyst visually browses the OD matrix, either selecting some
specified origins and/or destinations or highlighting the main flows by setting a minimum
support threshold.

cluster are drawn with the same color. Figure 10.6b shows how the most popular
clusters highlight the main routes used by drivers to leave the center toward the
northeast.

The frequent behaviors highlighted by the clustering process followed above
might in some cases be characteristic of some specific time period (for instance,
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(a)

(b)

Figure 10.6 The result of clustering from the trajectories moving from the center to the
northeast area. (a) The input data set for the clustering algorithm: the trajectories moving
from the center to the northeast area. (b) The resulting clusters using the Route Similarity
distance function. The clusters are visualized using a themed color, and the analyst can
select and browse them separately.

it might arise only on Monday) or might have a general validity. In order to dis-
tinguish these two cases, we need to measure how the population of the clusters
is distributed over the days of the week, and this task can be accomplished using
the clustering as an unsupervised classification model. More precisely, after the
clusters have been extracted for a specific day, one or more representatives,
named specimens, for each cluster are computed and such representatives are
used to classify the trajectories in other days of the week: every new (unseen)
trajectory T is classified by assigning it to the closest specimen (and therefore
to the cluster it represents). If the distance between T and such a specimen is
too high, however, the trajectory is assigned to the noise. Figure 10.7 shows how
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Figure 10.7 Distribution of estimated cardinality of three main clusters and number of all
travels from the city center to NE suburbs over the week April 1st (Sun) – 7th (Sat). Clusters
0 and 3 are essentially constant with a small decrease during the weekend (days 1 and 7),
while Cluster 2 has a shape similar to the general flow, with a significant decrease during
the weekend.

the distribution of the estimated population of the three clusters varies during
the week. The figure highlights that Clusters 0 and 3 are stable over the entire
week, while the most popular cluster, 2 (green), is stable over weekdays only,
suggesting that it is composed mainly of outbound commuters who travel during
working days.

The next question is to determine if the commuters of Cluster 2 travel from
home to work or vice versa. The answer can be explored by analyzing the
temporal distribution of the trips of the cluster over the hours of a weekday (see
Figure 10.8b).
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Figure 10.8 Temporal distribution of the trajectories in the clusters of Figure 10.6b on the
hours of weekdays. Cluster 0 and Cluster 3 (a, c) do not exhibit significant peaks, while
Cluster 2 (b) has a peak in the morning and one in the afternoon. The temporal profile
of Cluster 2 captures two commuting behaviors: a group leaving the city in the morning
(commuters going to work outside), and a larger group leaving the city in the late afternoon
(commuters coming back home in the suburbs after work).
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The Analytical Process in a Mobility Data Mining Platform
To give an idea of how the analytical process we described above concretely
maps into a dedicated analytical framework, we show here how the M-Atlas
system allows us to handle such complexity by means of an SQL-like language
called DMQL. All the analysis presented in this chapter can be expressed in
such language. Due to space limits, we cannot show here the corresponding
queries for all examples. We show how the previous process can be described
through DMQL. A more detailed introduction to the system is presented in
Chapter 7.

First, the OD matrix is extracted according to a spatial tessellation and then
the trajectories between a given origin and several destinations are retrieved
from the data set:

CREATE MODEL MilanODMatrix AS MINE ODMATRIX

FROM (SELECT t.id, t.trajectory FROM TrajectoryTable t),

(SELECT orig.id, orig.area FROM MunicipalityTable orig),

(SELECT dest.id, dest.area FROM MunicipalityTable dest)

CREATE RELATION CenterToNESuburbTrajectories USING ENTAIL

FROM (SELECT t.id, t.trajectory

FROM TrajectoryTable t, MilanODMatrix m

WHERE m.origin = Milan AND

m.destination IN (Monza, ..., Brugherio))

The selected trajectories are then clustered to extract groups of trips with
similar characteristics. In the following query the route similarity function is
used:

CREATE MODEL ClusteringTable AS MINE T-CLUSTERING

FROM (Select t.id, t.trajectory from CenterToNESuburbTrajs t)

SET T-CLUSTERING.FUNCTION = ROUTE_SIMILARITY AND

T-CLUSTERING.EPS = 400 AND

T-CLUSTERING.MIN_PTS = 5

The extraction of cluster specimens from a specific day of the week and the
classification of new trajectories are performed by the following queries:

CREATE MODEL WednesdaySpecimens AS MINE SPECIMENS

FROM (SELECT id, trajectory, cid FROM WedTrajsToClusters)

SET SPECIMENS.MAX_DISTANCE = 750 AND

SPECIMENS.METHOD = ROUTE_SIMILARITY

CREATE TRANSFORMATION ClassifiedTrajectories

USING SPECIMENS_CLASSIFIER
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FROM (SELECT id, trajectory FROM TrajectoryTable)

SET SPECIMENS_CLASSIFIER.SPECIMENS =

(SELECT * FROM WednesdaySpecimens) AND

SPECIMENS_CLASSIFIER.METHOD = ROUTE_SIMILARITY

This approach to the management of the mobility knowledge discovery pro-
cess allows the interoperability of models and data, and it also provides a clear
tool to summarize and formally define the analytical process.

10.4.3 Access to Key Mobility Attractors

To understand how users access big mobility attractors, we focus on the travels
ending in a specific parking lot of the city. An advanced knowledge of the
dynamics of use of a parking lot allows the mobility agency to plan specific
fares or to notify the users of extraordinary events or interruption of services.
For this case study we have selected the parking lots of the Linate Airport.
Figure 10.9 shows the set of trajectories that start in Milan and end in the
airport parking lot, selected by means of a OD matrix selection. It is evident
that vehicles start from a broad diversity of locations, but converge toward the
parking lot. Our goal is to characterize the typical behaviors of vehicles when
approaching the attractor, a task that cannot be directly addressed by clustering,
due to the fact that clustering generally works at the level of whole trajectories,
while the behaviors might emerge just on shorter subtrajectories. Also, simply
predefining a set of directions of approach and counting how many trips reach
the attractor from each of them answers our request only partially, as we want
to characterize behaviors, which might include not only incoming directions
but also particular paths followed (e.g., common shortcuts or detours). As an
example, we focus here on frequent segments of trips that are followed by a
significant volume of vehicles, a feature that can be directly detected by mining
trajectory patterns (see Chapter 6). We recall that trajectory patterns describe
sequences of regions that appear frequently in the data, together with their typical
transition times. Figure 10.9b is a visual summary of the trajectory patterns that
are supported by at least 5% of the travels to Linate. As we can see, they allow us
to characterize the three main routes to approach the attractor, together with the
different travel times. Figure 10.10 focuses on the three most frequent trajectory
patterns. Observe how the trajectory patterns approaching the airport from north
are longer than those from south, highlighting that the northern travels tend to
concentrate on the outer ring earlier than the southern travels, which instead
use a small segment of the ring. This behavior suggests the presence of more
alternative routes to get to the proximity of the airport from the south and city
center than from the north.
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(a)

(b)

Figure 10.9 Accessibility to parking lots. (a) Asymmetric OD matrix from Milano (origin)
toward parking lots (destinations). The highest fluxes to parking lots are highlighted by
adjusting the frequency threshold slide bar (bottom left). The biggest attractor is parking
lot 317 (Linate airport). (b) Travels from Milano to the Linate Airport parking lot, and
summary of associated trajectory patterns, characterizing how the travels approach the final
destination.

(a) (b) (c)

Figure 10.10 Most significant trajectory patterns for traffic directed to Linate airport: (a)
from the city center, (b) from north ring, (c) from south ring. Transition times are reported
in the insets.
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(a) (b) (c)

Figure 10.11 Distribution of presence on Tuesday, April 3rd, in three contiguous time slots
of 2 hours: (a) from 6 p.m. to 8 p.m., (b) from 8 p.m. to 10 p.m., (c) from 10 p.m. to midnight.
An evident hot spot emerges between 8 p.m. and 10 p.m., and disappears afterwards. The
location (immediately west of city center) is that of Stadio Meazza, the main soccer arena.

10.4.4 Extraordinary Events

Extraordinary events have a large impact on mobility. They can include big
planned rendezvous, such as concerts and sport competitions, which set the
destination of many individual trips toward a small area (the event location)
where many people concentrate for the event duration; but also unexpected
events, either natural or human-generated, such as car accidents or floods, that
perturb the regular traffic flow producing (often undesired) concentrations of
vehicles in some specific locations. Even if not known a priori, big events can
be easily detected by localizing exceptionally high concentrations of presence
in specific areas at specific time intervals. The reader may refer to Chapter 8
for a wide presentation of event detection in movement data. Density maps
for stationary cars can be used for visual exploratory analysis of abnormal
concentrations of presence. A density map can be generated by using a spatial
grid and a count of vehicles for each cell for each time interval of interest. For
example, in this analysis we use a grid with cells of size 0.5 km × 0.5 km and
compute, for each grid cell and for every interval of two hours of each day, the
number of cars that are stationary in the cell.

A sample of the results obtained from Milano2007 is shown in Figure 10.11.
The location of the hot spot – the main soccer arena and surrounding parking
areas – suggests that a big sport event occurred in such location. It is easy to
check that the Milan A.C. versus Bayern Munich quarter-final match of the
UEFA Champions League took place in the exact location and time, attended by
approximately 77,700 spectators.3 The detection of such hot spots can be easily
automatized by an iterative procedure that selects every cell C and time interval
h (8–10 p.m. in our case) such that the population of cell C during h is above
the 90th percentile in the distribution of the population of (C, h) over the entire
observation period.

3 Source http://en.wikipedia.org/wiki/UEFA Champions League 2006-2007
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Figure 10.12 Temporal distribution of (a) arrivals to and (b) departures from the arena
area: arrivals peak from 5 p.m. through 8 p.m., and departures peak from 10 p.m. through
midnight. Arrivals are spread over several hours, while departures occur soon after the end
of the match. (c) clusters of trips leaving the arena after the football match. Clusters are
highlighted by shades. The largest cluster performs short range trips or take the road ring,
either toward the northeast or southwest.

Going deeper in the analysis, we might want to understand when and how
attendees reached and left the event location. First, the arrival and departure
time of the each car v parked in the arena area during the day is approximated
considering, respectively, the ending point of the incoming trajectory and the
starting point of the outgoing trajectory of v. The distribution of arrivals and
departures during the day is depicted in Figure 10.12a,b. We further analyze the
return travels of the attendees after the match, in order to detect the main escape
routes – notice that they might differ from the routes planned (for example) by
public authorities, either in shape, frequency, or timing. We apply clustering to
the trajectories leaving the arena area between 10 p.m. and midnight, obtaining
the clusters shown in Figure 10.12. The detected escape routes are relevant
information for a mobility manager to enact countermeasures to prevent possible
congestion.

10.4.5 Mobility Prediction

The prediction of traffic congestions represents a challenging task for urban
mobility managers. The following experiments are aimed at showing how to
predict future areas of dense traffic that may lead to traffic congestions. For
this task we use the WhereNext location prediction algorithm (introduced in
Chapter 6) and run the experiment on the Pisa2010 data set, which covers a
larger area and a longer temporal interval compared with the Milano2007 data
set. This is particularly useful in prediction tasks because the training and test
phases use a richer data set. Here, we selected a subset of the entire Pisa2010
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(a) (b)

Figure 10.13 Distribution of presence: (a) with predicted trajectories, (b) with the real
trajectories. As highlighted on (a), the predictor is able to correctly guess the most dense
locations (green circles), though it introduces some false positives (red circles). (See color
plate.)

data set that includes trajectories from five working days (from Monday, July 5
to Friday, July 9) restricted to the morning peak hours (8 a.m.–10 a.m.). This
selection resulted in about 10,000 trajectories for the training set. Then, we
selected, as test set, the trajectories of Monday, July 12th (in the same temporal
interval), leading to a total of around 4,000 trajectories. From them, the algo-
rithm was able to predict the next location of about 3,000 trajectories focused
on 29 regions. Five of them contain more than 150 trajectories. Scaled to the
global number of circulating vehicles this corresponds to about 7,500 vehicles
predicted to converge to these areas in the two-hour interval. Figure 10.13 reports
the results of the prediction compared with the ground truth obtained by com-
puting the density map of the real GPS trajectories moving during the predicted
period.

It is worth pointing out that the interpretation of the predicted zones suggests
further, deeper analysis. Indeed, the dense regions do not necessarily indicate
traffic problems in those areas. These regions represent dense movements of cars,
which can hint the possibility of traffic jams or congestions. Further analysis,
focused on these specific areas, are needed to have a more precise indication of
possible traffic problems.

10.4.6 Borders of Human Mobility

Here, we address the problem of finding the borders of human mobility at the
lower spatial resolution of municipalities or counties. The aim of discovering
borders at a mesoscale is motivated by providing decision-support tools for
policy makers, capable of suggesting optimal administrative borders for the
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government of the territory. We apply social network analysis techniques to
mobility data. Our aim is to reach a better understanding of human mobility
patterns, using a different perspective based not on the interactions of humans
themselves, but rather on the underlying, hidden connections that reside among
different places. To do so, we apply community discovery algorithms to the
network of geographic areas (i.e., where each node represents a cell or region
of movements), with the aim of finding areas that are densely connected by the
visits of different users. A community discovery algorithm takes as input a graph
and determines a partition of its nodes into communities. Thus, to apply such a
method, it is necessary to extract a network model from the mobility data. As
in Section 10.2, we adopt census sectors to generalize movement description.
In particular, each trajectory is generalized by the sequence of census sectors it
crosses during the movement.

Generalized movements can be described by means of a weighted, directed
graph G(V,E) as follows. Each census sector is mapped to a vertex v ∈ V . A
directed edge (u, v) ∈ E is placed if there exists at least a movement from u to
v, u, v ∈ V . The weight w of the edge corresponds to the number of movements
from u and to v. The graph has an edge (u, v) ∈ E if at least one trip has two
consecutive points such that the first is mapped to census sector u and the second
to v.

Once the mobility network has been extracted, a community discovery algo-
rithm may be applied to discover groups of nodes, and hence sectors, that can be
aggregated. In particular, we adopt here one of the best performing nonoverlap-
ping community discovery algorithms, namely Infomap. Once the communities
have been discovered, it is possible to link the nodes back to the geography and
define the region covered by each community.

The clustering contains eleven clusters, which are shown in Figure 10.14. The
clusters determined by the Infomap algorithm are rendered with distinct colors:
the census sectors grouped within the same clusters are drawn with the same
color. As a reference for the actual administrative partition, we have plotted the
boundary of each town. It is worth noting how the cohesion of the sectors within
the same city is preserved. In fact, there are very few episodes of sectors of a
city that are scattered among several clusters, and this happens more frequently
for rural regions. The zones belonging to the urban centers maintain a strong
cohesion. This phenomenon is due to a larger proportion of intracity trips rather
than long-range movements: while the main highways are intuitively associated
with very dense movement, the local movement within each city is greater than
the flow registered in the outer road network. In fact, all the clusters are centered
around the big urban regions, which serve as attractors for the surrounding
mobility. In the few cases where a sector is associated to a cluster of a different
city, it happens that the “misclassified” sector is located near the administrative
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Figure 10.14 Visualization of the clusters determined from the mobility network. As a
reference to the existing administrative borders, the perimeter of each town is drawn with
a thicker line. The clusters are determined considering the communities derived from
Infomap: regions within the same cluster are themed with the same shade.

border of the city. This misclassification is not necessarily a symptom of a error,
but rather proves that the sector is attracted by the adjacent city.

Another relevant property of the clustering results is an empirical proof that
a single city cannot be considered an “island.” On the contrary, the mobility of
a city strictly depends on the mobility of the surrounding towns. In fact, each
cluster can be described as an enumeration of a series of cities. Moreover, the
cohesion property described above allows the definition of a partition of the
territory where each group, that is, each cluster, can be exploited to develop
combined mobility policies and planning. Finally, it is important to note that all
the clusters present geographically adjacent census. Although this constraint has
not been imposed to the community discovery algorithm, the strong cohesion
of regions is yielded by the high volume of internal mobility that enables the
regions to attract each other. Thus, as discussed earlier, the local short-ranged
movements dominate the long-range trips.
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10.5 Conclusions

In this chapter we have shown how mobility data mining tools can be very helpful
in supporting policy decision makers and transportation planners to answer some
very interesting research questions such as the typical access routes to a city,
the dynamics of people aggregating and scattering to/from a relevant place, the
detection of extraordinary events, and the plotting/modeling of origin destination
matrices.

In order to effectively implement and analyze policies for travel demand
management (TDM), which constitute one of the main final objectives of trans-
portation science, an increasing amount of awareness has emerged with respect
to the need for improved understanding of travel behavior. Indeed, while infor-
mation such as origin destination matrices that are derived from mobility data
mining methods may give a nice overall picture of mobility, nothing is said
about the reasons/activities behind these traffic flows. This clearly resulted in a
need for travel demand models that embody a realistic representation and under-
standing of the decision-making processes of individuals and that are responsive
to a wider range of transport policy measures. Activity-based travel analysis
approaches have received attention in recent years as a potential replacement for
trip-based approaches because they analyze travel from a theoretical perspective
that takes into account the demand for activity participation, interrelationships
among trips, and interactions among household members. In the context of the
activity-based framework, human activity is a result of actions that are moti-
vated to satisfy needs and desires of the household and its members and travel
is undertaken by individuals on their own behalf or as household members to
fulfill their needs and desires to participate in these activities. Scientific research
related to the field of activity-based modeling is motivated by the importance of
improving our understanding of human behavior on the one hand and to use this
understanding to provide better predictions of the impact of societal changes and
both travel and broader social policies on the future use of transport systems on
the other hand. Over the last decade, several of those micro-simulation models
of activity-travel demand have become operational.

Current activity-based models are based on either traditional surveys or on
full (activity) diaries to model the individual behavior of the agent in the sys-
tem. Collecting these data either in paper-and-pencil format or by means of
computer-aided technology such as small, hand-held computers is a demanding
and burdensome task for respondents. The reason for this is that data about
the principal choice dimensions underlying the simulation model have to be
collected. Typically, a temporal and spatial component always needs to be ques-
tioned. And this is exactly where larger GPS and GSM data sets, such as the ones
adopted in the research described in this chapter, could be used. However, there
is a very long way to go from raw data of individual trajectories to high-level
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collective mobility knowledge, implemented in activity-based models capable
of supporting the decisions of mobility and transportation managers.

10.6 Bibliographic Notes

The analytical scenarios presented in this chapter are linked to the techniques
and methods presented in the previous chapters. In this section we will provide
a general list of references to the scientific literature for the reader.

The analytical process for mobility data is based on a specific instance of
the knowledge discovery process (Giannotti and Pedreschi, 2008), where ana-
lytical methods and algorithms are composed by means of an SQL-based lan-
guage (Trasarti et al., 2011), introduced in Chapter 7, and integrated in the
analytical framework of M-Atlas (Giannotti et al., 2011).

The estimation of travel demand by means of the four-step model is presented
in Ruiter and Ben-Akiva (1978). The basic concept of this approach is the
definition of an origin-destination matrix where rows and columns represent
zones of origin and destination respectively and each cell estimates the flows
between the two corresponding zones. This model has been extensively used
in mobility data management to select, aggregate, and analyze specific traffic
flows. Chapter 8 presents an overview of different methods to visualize and
interact with OD matrices.

The mining algorithms, trajectory pattern, clustering, and WhereNext were
introduced in Chapter 6. In this chapter, we adopted a clustering process based
on the progressive clustering approach (Rinzivillo et al., 2008), where the
clustering analysis is organized in a stepwise process.

The extraction of the borders of human mobility by means of network analyt-
ics methods was originally presented in Brockmann et al. (2006), where mobility
flows are measured by observing the movements of banknotes. Successive works
adopted a similar approach using telephone usage data (Ratti et al., 2010) and
GPS data (Rinzivillo et al., 2012). The identification of groups of nodes within
a network is performed with a community discovery method. An extensive pre-
sentation of the available community discovery methods is given in Coscia et al.
(2011). Chapter 15 presents several techniques to analyze mobility by exploiting
network analytics methods.
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Maritime Monitoring
Thomas Devogele, Laurent Etienne, and Cyril Ray

11.1 Maritime Context

The maritime environment still represents unexploited potential for modeling,
management, and understanding of mobility data. The environment is diverse,
open but partly ruled, and covers a large spectrum of ships, from small sailboats
to supertankers, which generally exhibit type-related behaviors. Similarly to
terrestrial or aerial domains, several real-time positioning systems, such as the
Automatic Identification System (AIS), have been developed for keeping track
of vessel movements. However, the huge amounts of data provided by these
reporting systems are rarely used for knowledge discovery. This chapter aims at
discussing different aspects of maritime mobilities understanding. This chapter
enables readers to, first, understand the intrinsic behavior of maritime positioning
systems and then proposes a methodology to illustrate the different steps leading
to trajectory patterns for the understanding of outlier detection.

11.1.1 Maritime Traffic

The maritime environment has a huge impact on the world economy and our
everyday lives. Beyond being a space where numerous marine species live,
the sea is also a place where human activities (sailing, cruising, fishing, goods
transportation, etc.) evolve and increase drastically. For example, world maritime
trade of goods volume has doubled since the seventies and reached about 90% of
global trade in terms of volume and 70% in terms of value. This ever increasing
traffic leads to navigation difficulties and risks in coastal and crowded areas
where numerous ships exhibit different movement objectives (sailing, fishing,
etc.), which can be conflicting. The disasters and damages caused in the event
of sea collisions can pose serious threats to the environment and human lives.
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Figure 11.1 Ships’ trajectories, density map in Europe during one month (AIS positions,
December 2010).

Such disasters and damages often lead to highly negative effects on maritime
ecosystems and are threats not only for the important populations of marine
protected and endangered species, but also for economic, scientific, and cultural
sectors. Safety and security have therefore become a major concern, especially
in Europe.

Consideration of this security issue by the International Maritime Organiza-
tion (IMO) has partly evolved in the last decade from ship design, education, and
navigational rules (e.g., International Regulations for Preventing Collisions at
Sea: COLREGS), to technical answers for traffic monitoring. Nowadays, ships
are fitted out with almost real-time position report systems whose objective is
to identify and locate vessels at distance. Figure 11.1 shows, for instance, ships’
trajectories obtained through the AIS in Europe during one month.

The maritime environment, represented in Figure 11.1, is diverse and open,
but partly ruled. Regulation is ensured by Traffic Separation Schemes (TSS) set
up in order to split and regulate the traffic in crowded spaces into traffic-lanes,
and by the definition of exclusion areas and Particularly Sensitive Sea Areas
(PSSA) the ships have to avoid (e.g., biodiversity areas). Trajectories in such an
open space are very typical; ships often behave similarly, traveling in straight
lines, leading to visually noticeable trends and patterns. This naturally favors the
analysis of aggregated behaviors in order to detect maritime routes, dense areas,
evolution of the traffic, and finally, at individual levels, abnormal trajectories
and locations.
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11.1.2 Maritime Positioning Systems

Two of the most successful systems used in maritime navigation and positioning
are the Automatic Radar Plotting Aid (ARPA) and the AIS. Both are used
by vessels and Vessel Traffic Services on shore (VTS) in order to facilitate
navigation decisions and warn about possible collisions. Vessel traffic services
also take advantage of their higher computing and networking resources to store
data locally and share them at national and worldwide levels (e.g., program
SafeSeaNet of the European Maritime Safety Agency).

Marine Radar
with automatic radar plotting aid tracks vessels using radar contacts. A radar
transmitter generates very short pulses of radio waves. When the radio waves
of one of these pulses encounter any obstacle, such as a ship, shore line, or big
sea waves, part of the radiated energy is reflected and received by the emitting
radar. The reflected pulse constitutes a radio echo. The time between the pulse
and the echo can be accurately measured and used to calculate the distance
between the radar and the echo. The direction of the echo reflects the direction
of the pulse. When a target echo appears on a radar screen, an operator plots the
relative motion of the echo in order to determine the target’s course and speed.
The maximum range of an object detected is affected by the height of the radar
antenna as well as the height of the object due to the curvature of the earth. In
the same way, mountainous sea lines cause blind areas, and objects behind these
areas cannot be detected. Bad weather conditions can also affect significantly
the effectiveness of radar tracking. Thus, any target should be acquired and
confirmed in at least five of ten scans over a period of 2 minutes in order to be
brought to the attention of the operator with an identifier and coordinates.

Automatic Identification System
has been recently implemented and made a mandatory standard on commer-
cial and passenger ships. This system, whose objective is to identify and
locate vessels at distance, automatically broadcasts location-based information
through self organised wireless communications (VHF). AIS usually integrates
a transceiver system, a GPS receiver, and other navigational sensors on board,
such as a gyrocompass and a rate of turn indicator. An AIS transponder runs
in an autonomous and continuous mode, and regularly broadcasts a position
report according to the ship’s behavior. The information is broadcast, within a
range of 35 nautical miles, to surrounding ships and maritime authorities on the
ground. There are two different classes of AIS that can be found on ships, search
and rescue aircrafts, and base stations on ground: Mandatory AIS (class A) for
large vessels and low-cost AIS (class B), which has been introduced for smaller
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vessels. Devices from these two classes broadcast information at different time
intervals (Table 11.1) and at different ranges (typically 20–40 miles for class A
and generally 5–10 miles for class B).

Enhanced Worldwide Positioning Systems
are emerging especially to address drawbacks of both systems, which are com-
plementary but imperfect. On one hand, ARPA is useful to detect and track ves-
sels that might not have AIS devices onboard. On the other hand, it brings limited
information and cannot identify a mobile object, and its coverage includes blind
areas. The automatic identification system is useful to obtain more complete
information, but devices are not available on all ships and data can be falsified.
The most important issue that guides evolutions concerns the limited tracking
range of both systems, which is insufficient to follow ships engaged on interna-
tional journeys. Satellite communications systems are going to be more inten-
sively employed, in particular to enhance or replace the AIS. For instance, Long-
Range Identification and Tracking (LRIT) reports vessels’ positions to their flag
administrations at least four times a day. Satellite-based AIS-monitoring service
(S-AIS) uses satellite communications to broadcast AIS information. Nowadays,
position reports for European coasts reach almost 1.5 million positions per day
(about 72,000 ships). The ever-increasing data flows provided by this evolution
are going to emphasize issues on maritime data integration, fusion, filtering,
processing, and analysis.

Location-Based Data
While radar data are limited to a tuple composed of an identifier, a position,
and a related time, the automatic identification system broadcasts a wide range
of richer information. Information systems onboard or in vessel traffic services
generally merge AIS and radar positions into a single accurate one. When a
ship is not fitted with an AIS (typically small boats), the reported informa-
tion for data analysis is only limited to the aforementioned tuple. From our
perspective, this does not impact the data mining process and therefore moti-
vate an analysis focusing on the AIS data more easily accessible. Transmitted
AIS data come from twenty-seven different messages, each providing specific
information either related to the behavior of the AIS system or to a ship’s
locations and characteristics. Positioning data defines point-based trajectories
describing 2D routes on the sea surface. That is, an ordered series of locations
expressed in WGS84 format (latitude λ, longitude ϕ, time t) of a given mobile
object with t indicating the timestamp of the location (λ, ϕ). Among all the
received data, meaningful information that can be considered in a purpose of
movement discovery and understanding can be classified in the three following
categories:
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Table 11.1 AIS Shipborne Mobile Equipment Reporting Intervals.

Ship’s Dynamic Conditions – AIS Class A Freq.

Ship at anchor or moored and not moving faster than 3 knots 3 m
Ship at anchor or moored and moving faster than 3 knots 10 s
Speed between 0 and 14 knots 10 s
Speed between 0 and 14 knots and changing course 3 1

3 s
Speed between 14 and 23 knots 6 s
Speed between 14 and 23 knots and changing course 2 s
Speed over 23 knots 2 s
Speed over 23 knots and changing course 2 s

� Static: MMSI number (Maritime Mobile Service Identity: a unique ID), name,
type, International Maritime Organization code, call sign, dimension.

� Dynamic: Position (longitude, latitude), time, speed, heading, course over
ground (COG), rate of turn (ROT), navigational status.

� Trajectory-based: Destination, estimated time of arrival (ETA), draught, dan-
gerousness.

Quality of data is variable and depends, first, on the quality of the AIS device
itself and the way it implements algorithms and protocols. Therefore, data like
coordinates and speed can be more or less accurate. Longitude and latitude
are normally given in 1/10,000 minute that should give 0.18 m. However, con-
sidering this quality factor and intrinsic behaviour of GPS, the International
Maritime Organization only considers an accuracy of 10 m. The quality also
depends on people onboard. Indeed, some data, such as MMSI, name, destina-
tion, or navigational status, are manually set and possibly wrong. Contextual
information associated with geographic positions helps to understand ships’
behaviors according to space, time, destination, and ships’ types although they
require error-detection and filtering processes.

Space and Time Gaps
Time is not part of position reports, as the AIS was initially designed for real-time
purpose only. Each received message has to be timestamped by the receiver’s
clock. While it communicates on a regular basis, the automatic identification
system does not send these position reports continuously. Transponders broad-
cast data to surrounding listeners at different sampling rates according to ships’
behaviors. Table 11.1 presents sampling rates for AIS class A. Class B devices
behave in a similar way but at different sampling rates. This variation of time
intervals is very specific to the maritime domain and can vary from 2 seconds
for a fast-moving ship to several minutes when anchored.
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Figure 11.2 Data mining and trajectory qualification process.

The range covered by all VTS on shore is limited and coverage areas might
not overlap everywhere. In such a context, the observation of the maritime traffic
at a given time leads to a partial view due to space and time gaps. These received
positions will mostly not correspond to the selected times for snapshots analysis
(e.g., a ship communicated its position 10 seconds before the analysis time).
This implies one should consider time intervals and the definition of trajectories
for a successful analysis and understanding of the ships’ behaviors. Let us
note that these large and variable gaps between two position reports will affect
significantly the way trajectories can be computed.

11.2 A Monitoring System Based on Data-Mining Processes

The increase of maritime location-based information brings opportunities for
knowledge discovery on movement behaviors at sea over a long period of time.
This section shows how maritime data can be processed and analyzed in order
to qualify a given position or trajectory with computed patterns. This process
allows one, for instance, to detect outliers including real-time traffic monitoring.
It is based on data-mining principles presented in other chapters, especially
Chapter 6. The methodology postulates that normal moving objects following
a same itinerary at sea behave in a similar optimised way. Such a behavior
illustrated in Figure 11.1 helps to compute accurate trajectory patterns.

Figure 11.2 presents the functional process used to extract spatio-temporal
patterns from spatio-temporal databases and qualify ship positions and trajec-
tories. First, an acquisition step (Step 1 in Figure 11.2) integrates AIS raw
data from several monitoring systems into a structured spatio-temporal database
(STDB). In this database, zones of interest (ZOI) define either an origin or a
destination of a trip. Each identified ZOI is associated with its surface and linked
to its neighbors (and stored in the spatio-temporal database). Then, trajectories
are clustered (Step 3) according to their itineraries in order to obtain homo-
geneous groups of trajectories (HGT). A statistical analysis of these clusters
gives the median trajectory of each cluster and spatio-temporal intervals around
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them (Step 4). Median trajectories and intervals are combined together to define
the spatio-temporal pattern of HGTs. These patterns are stored in a knowledge
database (Step 5). They can be used either for geovisual analyses or to qualify
in real-time ship positions and trajectories (Step 6).

This functional process has been experimented on and used in different
contexts: real-time tracking of sailing races and maritime navigation in the
coastal area of Brest: Processing and analysis of AIS raw data from Aegean,
North, and East China seas, and from aggregated real-time data flows from
NATO countries. A maritime case study based on passenger ships in Bay of
Brest, France, illustrates, throughout this chapter, this qualification process for
safety purpose (a sample data set is available at the ChoroChronos repository.1

11.2.1 Platform, Database Model

This functional process (Figure 11.2) relies on a generic and scalable information
system that has been designed for real-time monitoring and spatio-temporal anal-
ysis of different types of moving objects at sea. So far, the underlying platform
developed is a Java-based computing system based on a PostgreSQL/PostGIS
spatial database for data manipulation and storage. It has been designed with
four tiers of client-server architecture, and organized through a distributed data
and processing model. The information system is based on different functions
depicted in Figure 11.2, as follows:

� Real-time integration of positioning information (Step 1),
� Spatio-temporal data mining (Steps 3–5),
� Spatio-temporal analysis (Step 6),
� Web-based visualisation (Step 7).

The data model set up in the PostGIS database relies on the aforemen-
tioned classification of AIS messages: static, dynamic, and trajectory based
(Table 11.2). Table AISPositions stores all the dynamic position reports of
ships. Table AISShips contains the static information, especially the ship’s
type, which can be used later to cluster trajectories of similar ships (e.g., cargo,
passenger ships, sailing ships). Table AISTrips is used to store ships’ trips,
based on information such as a ship’s destination and the type of goods it is
carrying. In addition to these tables that contain raw information, some derived
data can be added to the database. Table Trajectories is obtained from posi-
tions of the Table AISPositions and from AISTrips in order to link position
reports of a same ship together and to reconstruct its path (Table 11.2, field
trajectories.shape). As Table AISTrips gives information about ships’
destinations, these destinations can be extracted as zones of interest (ZOI) and

1 http://www.chorochronos.org
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Table 11.2 Database Model.

Table Description

Data Provided by AIS

AISPositions Position reports of each ship with additional dynamic information.
MMSI (numeric), Time (timestamp), Heading (numeric), Speed
(numeric), COG (numeric), ROT (numeric), Coordinates (geom-
etry), Status (text)

AISShips Static information about ships.
MMSI, OMI_Number (numeric), Name (text), Callsign (text),
Type (text), Length (numeric), Width (numeric)

AISTrips Trajectory-based information.
MMSI, Draught (numeric), Danger (Boolean), Destination
(text), ETA (timestamp), ReportedTime (timestamp)

Derived Data Added to the Model

Trajectories Trajectories extracted from raw data.
MMSI, BeginningTime (timestamp), EndTime (timestamp),
Shape (geometry)

Zones Zones of interest (ZOI).
ZID (numeric), Name (text), Shape (geometry)

Itineraries Itineraries between ZOI.
IID (numeric), StartZoneID (numeric), EndZoneID (numeric)

stored in a new table, Zones. The zones of interest can also be manually
defined by an operator according to various criteria such as regulations (waiting
areas, traffic channels, restricted areas), geography (obstacles, isthmuses, straits,
inlets), and economy (shops, loading sites, ports, fishing areas). These zones of
interest, represented as spatial zones, can be connected together to define a
zone graph in order to analyze ships’ mobility and describe their itineraries
(Table Itineraries).

For richer analysis, taking geographic information into account might also be
of interest. The database could therefore include a large set of tables obtained
from official S-57 vector charts that contain different kind of objects useful for
spatial analysis:

� Points of interest: buoys, shipwrecks, containers at sea, etc.
� Lines of interest: coastlines, path, channels, crossing lines, etc.
� Zones of interest: oil spills, ports, restricted areas, PSSA, etc.

The zone graph of the Bay of Brest is illustrated in Figure 11.3b. The numer-
ous dots shown in Figure 11.3a represent positions of ships. An itinerary I is
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(a) (b)

(c) (d)

Figure 11.3 From raw data to trajectory pattern (Bay of Brest).

an arc between two zones of the graph. Figure 11.3c,d, illustrating trajectory
patterns, will be presented in Sections 11.2.3 and 11.2.4.

11.2.2 From Raw Positions to Trajectories

As shown in Figure 11.3a, the numerous position reports of ships can be put
together in order to build a trajectory and address point-based query limits.
Point-based queries (strictly based on raw positions) exhibit two limits. First, a
computing limit such as point-based spatial queries is very expensive in terms
of computing cost. Second, it reaches a spatial limit as queries are applied
on reported locations provided by the AIS (a ship passing through a narrow
restricted area can report positions on both sides, due to AIS behavior and
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sampling frequency, even if the trajectory of the ship crosses the zone). There-
fore, it is difficult to identify whether a ship went through a narrow passage,
entered a restricted area, or computed exact minimal distances to the coast (this
requires interpolation and additional computing costs).

Trajectory features are required to query more correctly and efficiently the
AIS database. Further, it allows for distance computation based on polylines
instead of raw positions, route definitions, trajectory comparisons, and clear
identification of passage through an area or a line. Due to the computing limit,
the number of positions for each trajectory must be reduced using a filtering
algorithm in order to apply spatial operators and functions to efficiently answer
end users’ questions. This trajectories production stage is located between Steps
2 and 3 of the data-mining and qualification process (Figure 11.2).

Many approaches can be considered to define a maritime trajectory and
build such trajectories from a sequence of AIS positions. Let’s consider the
time-ordered sequence of all AIS positions of a given ship defined by S =
{p0, . . . , pn}. A trajectory T of this ship can be defined as a subsequence of S

so that T ⊂ S ∧ T = (pb, . . . , pj , . . . , pe) where pb stands for the beginning
position of the trajectory and pe for the ending one.

The main matter consists in selecting the beginning and ending positions from
S in order to create a set of trajectories. These particular positions (considered
as stops) can be identified by the mobile object cinematic (e.g., null speed),
its spatial position (inside a zone of interest), or the position report sampling
rate (transmission gaps). As the position reports from the AIS itself are not
regular and depend on the ship’s behavior (Table 11.1), a simple time and spatial
threshold might not be sufficient to properly detect gaps defining the beginning
and ending positions and split sequences of raw positions into trajectories. So,
dynamic spatial (δs) and temporal (δt) thresholds should be derived from the
enriched information provided by the AIS, which contains heading Hp, speed
Sp, acceleration Ap, and rate of turn Rp indications. Such an approach can rely
on the number of missed frame(s) allowed (nmf ) and the reporting intervals
expected by the AIS device onboard (Table 11.1) to define the time (δt) and
spatial (δs) thresholds. The next position of a trajectory should be transmitted
within δt and should be located within a maximum δs distance. Otherwise, the
last position is considered as a stop and future positions of the sequence S will
be associated with a new trajectory.

Another way to define these stops within a sequence of positions is to rely
on zones of interest, which can be identified in cartographic information or
manually defined by an expert (see Section 11.2.1). This inevitably changes the
semantic of the trajectory with respect to the previous method. However, such an
approach is suited better to the analysis of maritime mobilities as ships always
have a small number of well-defined origins and destinations (harbor, mooring,
or waiting area). For a more automatic process, such areas can also be created
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automatically using a density analysis. In this context, a beginning position of
a trajectory is a position that is inside a zone Z and whose next position of the
trajectory is outside this zone. An ending position of a trajectory is a position
that is inside a zone Z and whose previous position of the trajectory is outside
this zone. Therefore, the sequence S of position of a given ship can then be split
into a subset of trajectories 	 = {T0, . . . , TN } such as 	 ⊆ S.

Once the positions are assigned to trajectories, a filtering process selects the
key positions of a given trajectory. A position is considered as a key position
when either the speed or the direction changes significantly. The other positions
can be removed.

The algorithm initially introduced by Douglas and Peuker in 1973 is relevant
as it performs well on typical straight trajectories of vessels. The principles
of the original algorithm are as follows. The start and end points of a given
polyline are connected by a straight line segment. Perpendicular offsets for all
intervening end points of segments are then calculated from this segment, and
the point with the highest offset is identified. If the offset of this point is less than
the tolerance distance, then the straight line segment is considered adequate for
representing the line in a simplified form. Otherwise, this point is selected, and
the line is subdivided at this point of maximum offset. The selection procedure
is then recursively applied to the two parts of the polyline until the tolerance
criteria is satisfied. Selected points are finally chained to produce a simplified
line.

This simplification algorithm for trajectory filtering could be adapted in order
to be more efficient. Conversely to Meratnia and By (2004), who used Euclidean
Distance between points at a same time, the Haversine distance can be used.
This distance is the shortest distance (ds) between two points measured along a
path on the surface of a sphere. The perpendicular distance is therefore derived
as a spatio-temporal distance dST and is as follows:

dST (Ti, Tj , t) = ds(pi(t) − pj (t))

The spatio-temporal distances between position pi of the trajectory Tj , and
position p′

i of the interpolated trajectory T ′
j taken at a same time (relative

time from the departure) are computed. Let us note that these spatio-temporal
distances are influenced by the speed and the direction of the mobile object.
A tolerance distance should be defined appropriately. According to the GPS
position accuracy, a tolerance of 10 meters is acceptable.

In order to exemplify this filtering process, three vessel trajectories have
been selected for illustration purposes. The first trajectory concerns a passenger
boat called Bindy, whose trajectory is smooth and speed is regular. The second
trajectory is the one of a port pilot ship in the harbor of La Rochelle. This
trajectory is very sinuous, and several loops appeared. The third trajectory is
composed of long straight polylines made by the cargo ship AB Valencia.
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Table 11.3 Results for Filtering Process with 10 m Tolerance.

Trajectory % of Position % of Length
Vessel Duration Kept Kept (km)

Bindy 28 m 01s 14.0% 99.91%
(32/229) (11.284/11.294)

Port pilot boat 1 h 07 m 36 s 21.7% 99.82%
(122/562) (24.846/24.892)

AB Valencia 7 h 04 m 20 s 12.0% 99.98%
(279/2316) (175.07/175.109)

Table 11.3 summarizes the filtering result. One can note that their lengths
are very close. This leads to a filtering process where more than 80% of the
received positions can be filtered. The performance of the filtering process is
likely to increase for large ships and decrease for small ships due to the intrinsic
characteristics of their navigation.

11.2.3 Trajectory Clustering Process

Once the trajectory concept is defined, different trajectory clustering techniques
can be used to determine homogeneous groups of trajectories. Some of them
are presented in Chapter 6. Another technique based on the zone graph and
itineraries can be used to extract clusters from trajectories following the same
itinerary I . This set is called a homogeneous group of trajectories (HGT).

The first selection criterion of this approach is based on static information
such as the type of mobile objects; this information is provided by AIS messages
(Table 11.2). The second selection criterion is a geographical one. The first
position of the trajectory (pb) must be the only one within the departure zone
(ZD) of the itinerary, and the last position of the trajectory (pe) must be the
only one within the arrival zone (ZA) of the itinerary. Taking into account the
frequency of trajectory samples and the speed of the mobile object, trajectories
that cross a zone of the graph should have at least one position within this zone.
The last selection criterion used is time. Some moving objects can follow this
itinerary periodically. These different trajectories can be distinguished using a
time interval. Finally, the trajectory should not intersect any other zone of the
graph GZ that does not belong to the itinerary I . All valid trajectories previously
extracted from the STDB compose the HGT to be analyzed.

Figure 11.3c illustrates the extraction of the HGT of 500 passenger ships’
trajectories following the itinerary between Brest and Naval Academy (arc A-
F of GZ). Some density differences can be noticed on this HGT. This HGT
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highlights the outlier trajectories represented in light grey (outside the darker
grey dense area).

11.2.4 Spatio-Temporal Pattern Mining

Once the HGT clusters have been extracted and filtered, the next step aims at
defining the pattern followed by most trajectories of each HGT. The main matter
of this mining task is to deduce the median trajectory followed by the HGT
and the spatial and temporal density distribution. Studies on several trajectory
clusters showed that these data do not belong to any particular statistical distri-
bution. Gaps between mean and median values are important. Density around
these values changes frequently. For example, for the time dimension, it’s easier
for mobile objects to arrive late than early. For this kind of ordered set of data
in descriptive statics, box plot series are very useful to describe the evolution of
data according times. Box plots, proposed by John Tukey in 1977, graphically
describe groups of numerical data through five important sample percentiles:

� The sample minimum (smallest observation),
� The lower quartile or the 1st decile,
� The median,
� The upper quartile or the 9th decile, and
� The sample maximum (largest observation).

In our maritime context, data lower than the first decile or higher than the
ninth decile are considered as outliers. The idea is to enhance box plot series to
produce 2D plus time patterns. Each pattern summarizes a cluster of trajectories
(HGT) thanks to the median value, and the symmetry and dispersion of the
data set.

First of all, a synthetic median trajectory (Tm) can be computed using an
iterative refinement technique similar to the k-means algorithm. A trajectory
from the HGT is chosen as initial Tm. Tm is an ordered set of positions: Pmi

.
To optimize this algorithm, a trajectory with length and time duration close to
median length and median time duration has to be chosen as initial Tm. Then,
all positions of each trajectory of this HGT are assigned to one position of Tm

using a matching process. Amongst existing algorithms, dynamic time warping
(DTW) or Fréchet matching can be employed. They can align trajectories’
positions in order to minimize the sum of the spatial distances between matched
positions of two trajectories (DTW), or minimize the maximum distance between
matched positions (Fréchet). They also take into account the temporal order
of the positions of trajectories. Figure 11.4 illustrates the clusters of matched
positions (Cmpi

) between positions of trajectories of the HGT and the Pmi
in

black. Light grey thin lines show links between matched positions.
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Figure 11.4 Clusters of positions and spatial pattern.

Once every position is matched, the coordinate and the timestamp of Pmi
are

updated, by computation of median X (X̃), median Y (Ỹ ), and median timestamp
(t̃). A medoid approach is also possible but requires more time for similar results.
Assignment and update steps are repeated until the distance (Fréchet distance or
average distance) between two consecutive points reaches a minimal threshold
value.

As the studied mobile objects move in an open area, some of them can move
away from the main trajectory. Normal temporal or spatial deviations must
be distinguished from outliers. Two channels are computed to distinguish the
spatio-temporal outliers. First, the spatial channel is defined. Once the median
trajectory is computed, a statistical density analysis can be performed on every
cluster of matched positions (Cmpi

). These clusters are split into two subsets
of positions, Lpi

(left sided) and Rpi
(right sided), according to their side to

the median position Pmi
using the Pmi

heading. Then, spatial distances between
positions from Lpi

and the Pmi
are computed. After a statistical analysis, the
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Figure 11.5 3D spatio-temporal pattern of an itinerary and outlier trajectories.

ninth decile is chosen as left limit of the channel for this Cmpi
. The same

process is computed to define the right limit of Cmpi
. The left (right) limits are

linked according to the time to define the left (right) limit of the spatial channel.
Figure 11.4 presents the limits of the spatial channel in dark grey. Some positions
are visually outside this channel and can be defined as outliers. In the same way,
the temporal channel is defined. Positions of Cmpi

inside the spatial channel
are split into two subsets, late sided and early sided, according to the difference
between relative timestamps of positions and on the median matched position.
The early and the late limits are computed to define the temporal channel of each
Cmpi

. Positions outside the spatial channel are not taken into account because
these parts of trajectories including these positions could be shortcuts or detours.
Spatial and temporal channels at each relative time can be combined to create
the spatio-temporal channel, which is then stored in the knowledge database.
Figure 11.3d illustrates the spatio-temporal channel of the HGT (Figure 11.3c)
extracted from zone A to F of the zone graph (Figure 11.3b). The spatial and
temporal widths change. For example, for the straight part of the pattern, the
spatial width is bigger than the curved part’s width.

The spatio-temporal pattern defines five different zones (usual position zone,
right outlier zone, left outlier zone, late outlier zone, and early outlier zone) for
each relative time. This spatio-temporal pattern (median trajectory plus spatio-
temporal channel) is a 2D+t enhancement of the box plot concept. It can be
illustrated in 3D using the Z axis to represent the relative time as shown in
Figure 11.5. The median trajectory is plotted in black; the usual 3D zones
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(a) (b) (c)

Figure 11.6 Outlier detection.

are the grey boxes defined for some key positions of median trajectory linked
together. The limits of the spatio-temporal channel are outlined in light grey. Two
examples of outliers’ trajectories (dark grey) getting out of the spatio-temporal
channel are presented in this figure. The first one presents a late temporal outlier
trajectory. The second one highlight a spatial outlier trajectory (right sided).
This spatio-temporal pattern must be computed for each HGT. As new positions
are frequently acquired by the system, this spatio-temporal channel could be
improved by updating it periodically.

Quality of the set of patterns depends on the precision of the ZOI graph
and the set of mobile object types. This quality could be verified if the spatial
and temporal distributions of positions of each Cmpi

are unimodal. If several
modes appear, a new analysis can be carried out to split the set of mobile objects
according to types or to add new ZOI in the graph.

11.2.5 Outlier Detection

For each cluster, the associated spatio-temporal pattern splits the set of trajectory
positions in the outlier position group and the usual position group. For a new
vessel position, this knowledge could be useful to detect and to qualify this posi-
tion. Therefore, this section suggests that we combine the knowledge database
and the production database to obtain an inductive database and to detect the out-
lier positions in real time. Let’s consider a new position p received. The position
qualification process is decomposed into three steps (illustrated in Figure 11.6):

� Trajectory extraction from the last ZOI encountered by the mobile object
to p,
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� Matching process between this trajectory and the median trajectories of a
pattern, and

� Spatio-temporal comparison between p and selected pattern.

In the first step, the database is queried to select the start position from the
trajectory. This position is the last one of the mobile object inside the surface of
one ZOI. Positions between p and this departure position are timestamp ordered
to define a trajectory path. This last one does not link two ZOIs, consequently,
it is called a partial trajectory (Tp). In Figure 11.6, the last ZOI is A and the
start position is (b). The partial trajectory is the dashed polyline. The second
step must match Tp with part of a median trajectory. This matching can be done
according to:

� The type of the moving object,
� The geometry of the partial trajectory,
� The set of median trajectories from the departure ZOI, and
� Information about the course of the moving object to destination.

Unfortunately, information about the destination is often false or unknown,
so only the type of vessel and geometry properties can be used. In order to match
two linear geometries, the Fréchet discrete distance is selected as it allows partial
matching processes. Fréchet distance gives the maximal distance between two
lines. The Fréchet discrete distance applied to two discrete trajectories (ordered
set of points) can match trajectories together, preserving order of their points. Alt
and Godau (1995) demonstrate the advantage of this measure. Devogele in 2002
proposed to enhance this distance in order to compute the distance between a
line and a homologous part of another line. This partial discrete Fréchet distance
(dPdF) is very useful to match a trajectory where only the departure is known.
Thanks to this dPdF, the distance between Tp and median trajectories from the
same departure ZOI can be computed. Only the spatio-temporal patterns for the
same type of this object are taken into account. Tp can be partially matched
with one median trajectory (T̃ ) where dPdF(Tp; T̃ ) is lower than the dPdF with
other median trajectories plus a threshold. dPdF(Tp; T̃ ) must also be less than
a maximal value. In the example, the distance between Tp and two median
trajectories (from ZOI A to E and from A to F ) are computed. The second
distance is the lowest, so Tp is matched with median trajectories from A to F .

Finally, the position p could be qualified according to the selected pattern.
The relative time of p from departure ZOI is employed to infer the spatio-
temporal channel from the knowledge database. The 3D channel is cut at this
timestamp and the space is split into five areas (right, left, usual, late, and early).
Qualification of p is given by the area that contains p. For example, the spatial
channel of the matched pattern is limited with dark grey lines and the usual area
at the relative time of p is the grey area. Position p is an outlier and is located in
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the late area, so this object can be spatially qualified as “inside the channel” but
temporally as “running behind schedule.” Such real-time analysis methods can
be used to predict the destination and time of arrival of the ship once an itinerary
has been matched, and if the position is normal. The destination prediction can
be higher than 90%. In the same way, the confidence interval of time of arrival
could be the width of temporal channel at the arrival.

11.3 Conclusions

The maritime environment represents an increasing potential in terms of mod-
eling, management, and understanding of mobility data. The environment is
typical and recently several real-time positioning systems, such as the Auto-
matic Identification System (AIS), have been developed for keeping track of
vessel movements. This chapter outlines different aspects of maritime mobili-
ties understanding through pattern discovery and analysis of ships’ trajectories.
Underlying issues concern in particular trajectory modeling problems, trajectory
querying and simplification, similarity functions, classification and clustering
algorithms, and knowledge discovery (trends, unusual behaviors, and event
detection).

Assuming that moving objects at sea that are following the same itinerary
behave in a similar way (considered as the normality), this chapter illustrates the
different steps leading to outlier detection. The suggested methodology considers
several steps. First, the data flow provided by the automatic identification systems
is managed in structured spatio-temporal databases. Then, data mining processes
are used to extract trajectories (vessels of the same type) and spatio-temporal
patterns between two zones of interest (an origin, a destination). Each pattern
includes a median trajectory and a spatio-temporal channel that describes the
dispersion of the set of trajectories. Such trajectory patterns are meaningful to
understand maritime traffic and detect outlier positions in real time. Indeed,
each new position (partial trajectory) can be spatially and temporally qualified
according to spatial and temporal criteria. For end users monitoring maritime
traffic, such real-time qualification of positions and trajectories is tied with
triggers automatically executed when a new outlier is detected, and adapted
geovisualisation process are essential for safety purposes.

While complete, the suggested methodology still leaves several additional
challenges. First, cartographic information and environmental data such as cur-
rents, tides, and winds that affect ships’ movements could be taken into account
for further improvements. Many other algorithmic approaches for trajectory rep-
resentation and reconstruction can be considered for other knowledge discovery
objectives. Interactive and adaptive geovisualisation is also of interest. Another
challenge concerns new itineraries. Many factors can influence ships’ behavior,
leading to the apparition of new itineraries. The proposed approach handles such
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regular trajectories as outliers. An adaptive process should be therefore consid-
ered in order to detect a new pattern and possibility remove an outdated one.
Finally, the approach described could be applied or extended to other kinds of
moving objects evolving in open spaces, especially those having 3D trajectories
(e.g., underwater vehicles or planes that behave quite similarly to ships).

11.4 Bibliographic Notes

Several maritime projects worked to enhance the tracking and monitoring of
vessels. This is portrayed for example in MarNIS (2009). These monitoring
systems use ARPA and AIS sensors as input. Bole et al. (2012) describe the
ARPA system in detail. In a similar way, the Association of Marine Aids to
Navigation and Lighthouse Authorities describes the AIS in IALA (2004). These
new tracking and monitoring systems are parts of e-Navigation defined by the
International Maritime Organization in IMO (2008). e-Navigation relies on
Electronic Navigation Chart (ENC), defined by the International Hydrographic
Organization in IHO (2000).

If the reader needs additional information about some special technical points
of this chapter, several articles can be read. For the filtering part, Meratnia
and de By (2004) serves as the base for the filtering process presented in this
chapter. For the similarity measure between trajectories, Fréchet distance has
been selected. Alt and Godau (1995) explains why this measure is better for this
kind of data. Devogele (2002) describes the algorithm for discrete partial Fréchet
distance. Matching process based on dynamic time warping is also possible; see
Sakoe and Chiba (1978). Results are very similar but this later process can align
only whole trajectories. Some details about our architecture are introduced in
Bertrand et al. (2007). Finally, Etienne et al. (2012) details the clustering process
and the spatio-temporal pattern based on box plot. This representation is defined
in Tukey (1977).
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12.1 Introduction

The goal of air traffic control (ATC) is to maximize both safety and capacity, so as
to accept all flights without compromising the life of the passengers or creating
delays. Because air traffic is expected to double by 2030, new visualizations
and analysis tools have to be developed to maintain and further improve the
safety level. To do so, air traffic practitioners analyze data from the ATC activity.
These multidimensional data include aircraft trajectories (3D location plus time),
flight routes (ordered sequences of spatio-temporal points that represent planned
routes), and meteorological data. In this chapter, we detail the relevant tasks of
ATC practitioners and demonstrate recent visualization and query methods to
fulfill them.

The special properties of ATC data propose new challenges and, at the same
time, new opportunities of data analysis. The semantics of the data are rich
because they includes the third dimension (altitude), which can be used to
discover salient events such as takeoffs and landings. More semantics can be
added by augmenting background data such as the traffic network and the
meteorological data. ATC data sets are characterized by their large sizes, adding
more challenges to the analysis. Trajectory analysis is difficult due to the data set
size and to the fact that it contains many errors and uncertainties. One day’s traffic
over France contains about 20,000 trajectories (>1 million records). Recording
is done in a periodic manner (in our database: a radar plot, per aircraft, every 4
minutes), but a plot can be missed, or have erroneous data because of physical
problems that occur at the time of recording.

This chapter demonstrates recent works of trajectory analysis. Three tech-
niques are demonstrated: direct manipulation, visual analytics, and moving
object database queries. Direct manipulation visually represents the raw trajec-
tories, and allows the user to efficiently explore them and highlight interesting

240
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Figure 12.1 Factors of choosing among the methods of trajectory analysis.

subsets using convenient views and simple mouse interaction. Visual analytics
provide a rich tool box of data transformations and visualizations that help a
human analyst exploring complex movement events in the data. Moving object
database (MOD) defines query operators accessible to the user through textual
query languages. They are able to perform complex computations over large
data sets efficiently. According to the analysis task, the experience of the human
doing the analysis, and the data set size, any of these three analysis methods (or
a combination of them) can be chosen. This is illustrated in Figure 12.1.

Direct manipulation is good for having a first look at the data. It is intuitive to
use. Visual analytics provides more sophisticated transformations and aggrega-
tions, and thus it is able to process larger data sets, and to perform deeper analysis.
Human expertise is, however, a deciding factor for good analysis results. MOD
queries are mandatory for complex computations such as pattern matching. The
user must however know exactly what he or she is looking for, and how to
precisely describe it in terms of the MOD query language.

Throughout this chapter we will demonstrate each of these analysis methods,
in the context of real tasks and using a real data set. The motivation for the
analysis and the description of the data set are presented in Sections 12.2 and 12.3
respectively. Direct manipulation is demonstrated in Section 12.4. Section 12.5
demonstrates the use of visual analytics to explore movement events, such as
landings and takeoffs, and to derive useful statistics from them. Finally Section
12.6 explains a MOD query operator that is able to match complex patterns in
ATC data, such as missed approaches and stepwise descents.

12.2 Motivation

Aircraft trajectories are monitored and recorded by ground radar. They are
displayed in real time on radar screens. This data is essential for air traffic
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controllers, in order to maintain a safe distance between aircraft and to optimize
traffic fluidity (reduce flight time, noise, and fuel consumption). Our goal in this
chapter is not to provide tools for real-time usages, but rather to detail offline
tools that analyze recorded trajectories in more depth. Without this real-time
constraint, ATC practitioners can investigate, in more detail, recorded trajectories
and therefore extract relevant information and perform three main tasks: improve
safety, optimize traffic, and monitor environmental considerations.

Improving safety can be detailed as:

1. Analyzing and understanding past conflicts (when two aircraft fail to meet
minimum safety distance) and then improving safety with feedback from past
experience,

2. Analyzing the accuracy of data provided by ground radar with probe trajectory
comparison (i.e., with GPS tracking and radar test plots), and

3. Filtering and extracting trajectories in order to reuse them for air traffic
controllers’ training simulations.

Traffic optimization can be detailed as:

1. Devising new air space organization and flight routes to handle traffic
increase,

2. Studying profitability (i.e., number of aircraft on a specific flight route per
day, number of aircraft that actually land at a specific airport, etc.),

3. Calculating the metrics from the traffic: traffic density, spacing quality (mean
distance between aircraft), number of holding loops, number of rectilinear
trajectories (trajectories that are close to the shortest path from departure to
arrival), etc., and

4. Measuring the activity of each airport: number of takeoffs and landings per
hour, etc.

Finally, environmental considerations can be detailed as:

1. Comparing trajectories with environmental considerations (fuel consump-
tion, noise pollution, vertical profile comparison),

2. Detecting missed approach trajectories (which produce noise), lap training
landings (pilots who train to take off, fly around the air field and land; lap
training landings consume a lot of fuel), and

3. Counting continuous descending aircraft (since these aircraft maintain a con-
stant descent rate, they reduce their fuel consumption).

This list is not exhaustive but it gives the main tasks that ATC practitioners
perform. These tasks highlight the need for powerful tools to analyze aircraft
trajectories.
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Figure 12.2 IMAGE network with STRs.

12.3 Data Set Description

In this section, we detail the different steps required to produce data sets of
aircraft trajectories provided by the IMAGE system. In France, ground radars
send aircraft positions through the RENAR (Réseau de la Navigation Aérienne)
network. Due to network bandwidth limitations we cannot route all raw radar
information toward a single network access point to record it. Therefore, we
use the French IMAGE system. IMAGE is a system that aims to gather aircraft
positions from all French-controlled areas. Its goal is neither to monitor aircraft
activity nor to optimize traffic flow, but to give a general view of the traffic
(communication purposes). The IMAGE system is connected to the five French
STRs (Système de Traitement Radar), one in each en-route control center (Fig-
ure 12.2). STR systems receive aircraft information from different radar sources
and calculate an estimated position for each monitored aircraft (using tracking
and smoothing algorithms). The IMAGE system helps to reduce ground radar
sources to only five data sources, and enables us to retrieve aircraft positions
over France within the RENAR network.

Merging the five data sources raises lots of issues: unique aircraft identifiers,
overlapping areas, time stamps, and sampling rates. First, each STR sends the
aircraft position with an identifier from 1 to 1,023. Since more than 1,023 aircraft
can fly over France at the same time, we extend this identifier to a 16-bit format
and rereassign a unique identifier to every trajectory. To do so, we use a spatio-
temporal frame filtering to assign a new unique identifier to each trajectory: each
radar plot that has the same identifier within a 600 second time frame within
an area of a 200-km (100 Nm, nautical miles) radius (which corresponds to a
12-minute straight flight at high altitude) belongs to the same trajectory. At this
stage, trajectories with less than three plots are removed and no trajectory has
the same identifier.

Secondly, we merge all the five new, reassigned, radar records into one file.
The main issue is to connect trajectories that were recorded by different STR
sources. To do so, we resample all the data to ensure that every record has
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the same regular time stamp. Then we set up the following merging parameters:
when two trajectories overlap, they merge if the overlapping points have the same
altitude (less than 600 m/2,000 ft, which corresponds to 1-minute descent), and
close position (less than 9 km/5 Nm, which corresponds to the minimal safety
distance).

The properties of the data set we use in this chapter are typical to any IMAGE
data set. We use a data set with 17,851 flight trajectories over France during one
day (Friday, February 22, 2008) consisting of 427,651 records. The trajectories,
shown in Figure 12.3, include flights of passenger, cargo, and private airplanes
and helicopters. The temporal resolution of the data mostly varies from 1 to 3
minutes, although larger time gaps (up to 5 minutes) also occur. 3,000 trajectories
(60,000 records, 16%) fly over France per day without landing.

12.4 Direct Manipulation of Trajectories

Formulating trajectory queries is difficult for two reasons. First, they are often
only specifiable with visual features (straight lines or general shapes). Sec-
ond, users often explore the queries as much as they explore the data: in the
course of exploration, users discover that the set of features they thought rele-
vant has to be adapted, either because they were false, or because they cannot
find how to query them efficiently. Furthermore, trajectories are numerous and
tangled: one day’s traffic over France, for example, represents some 20,000 tra-
jectories. When dealing with trajectories, users must perform dynamic requests
(response time < 100 ms) on a large multidimensional data set (>1 million
data), which contains many errors and uncertainties. The problem we address
in this section is to find a way to express these queries simply and accurately,
given the constraints of size and uncertainty of the data sets. As a solution,
the visualization and direct manipulation of trajectories proposes efficient inter-
action features. Direct manipulation was introduced by Ben Shneiderman in
1983 within the context of office applications and the virtual desktop metaphor.
This term has been extended to human–computer interaction paradigms. The
intention is to allow users to directly manipulate objects presented to them,
using actions that correspond to the physical world (e.g., grasp, move objects,
etc.).

In the following sections, we first describe direct manipulation requirements
for trajectory exploration, then we detail an implementation instance, and finally
we give one scenario of usage.

12.4.1 Design Requirements for Trajectory Exploration

Based on trajectory data set characteristics, we extracted the following design
requirements to achieve the visual exploration of trajectories:
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1. View configuration: The system must permit the customization of views so
as to offer multiple means of understanding and visually querying the data. It
should allow for a change of mapping between data and visual dimensions.
The system should also provide smooth transitions between visual configura-
tions. Hence, the user will be able to visually track patterns between different
view configurations.

2. View organization and navigation: The system must also permit the display
of multiple views. The user must be able to visually compare different visual
configurations of the data set. This can be done with a matrix scatterplot or
juxtaposed views.

3. View filtering: The system must allow the user to filter out trajectories and
then reduce cluttering.

4. Trajectory selections and Boolean operations: The system must enable the
user to select trajectories and combine them in order to perform complex
queries. Some systems allow multiple selections sometimes called “layers.”
Users can combine layers with Boolean operation by applying an “and”
operation when they try to group differently selected trajectories.

12.4.2 Implementation Instance: FromDaDy

We have developed FromDaDy (Hurter et al., 2009) (which stands for “From
Data to Display”), a visualization tool that tackles the challenge of representing
and interacting with numerous trajectories (several million trajectories composed
of up to 10 million points). FromDaDy employs a simple paradigm to explore
multidimensional data based on scatterplots, brushing, “pick and drop,” juxta-
posed views, and rapid visual configuration. Together with a finely tuned mix
between design customization and simple interaction, users can filter, remove,
and add trajectories in an incremental manner until they extract a set of relevant
data, thus formulating complex queries.

12.4.3 Views Organization and Navigation

A FromDaDy session starts with a view displaying all the data in one scatterplot.
The visualization employs a default visual configuration, for example, the map-
ping between data dimensions and visual variables. The view is inside a window,
and occupies a cell in a virtual infinite grid that extends from the four sides of
the cell. The user can configure the two axes of each scatterplot and use other
visual variables such as color and line width to display data set dimensions. For
instance, in Figure 12.3, the user attached the data set field latitude to the y axis,
and the field longitude to the x axis. The user also chose to use the altitude to
color trajectory sections, showing, low altitudes in green and high altitudes in
blue.
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Figure 12.3 One day’s record of traffic over France. The color gradient from green to blue
represents the ascending altitude of aircraft (green being the lowest and blue the highest
altitude). The French coastline is apparent here in terms of pleasure flights by light aircraft
and the straight blue lines represent high altitude flight routes. A user interface shows the
data set fields and the defined visual configuration. (See color plate.)

12.4.4 Trajectory Manipulation

We have implemented a simple and efficient direct manipulation technique:
trajectory brush, pick, and drop. The user selects a subset of the data set by
means of a brushing technique. Brushing is an interaction that allows the user to
“brush” graphical entities, using a size-configurable or shape-configurable area
controlled by the mouse pointer. Each trajectory touched by this area is selected,
and becomes gray. The selection can be modified by further brush strokes, or
by removing parts of it with brush strokes in the “erase” mode. The display
shows a brush trail, so that the user can see and remember more easily how the
selection was made. The combination of fast switching between the add/erase
mode, trajectory visualization, rapid size-setting, and cursor-centered zooming
allows for fast and incremental selection.

Then the user can pick bushed trajectories by hitting the space bar. The user
extracts previously selected data from the current scatterplot and attaches them to
the mouse pointer so they appear in a “fly-over” view (transparent background).
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When the user hits the space bar for the second time, a drop occurs in the view
under the cursor. If the view under the mouse pointer is empty, the software
creates a new scatterplot with the selected data. If the user presses the space bar
while moving over a view-containing data, FromDaDy adds the selected data
to this scatterplot. Although it resembles a regular drag and drop operation, we
prefer to use the term “pick and drop,” because the data are removed from the
previous view and attached to the cursor even if the space bar is released. The
user can also destroy a view if the brush selects all the trajectories and the user
picks them.

12.4.5 Brush Pick and Drop

The fundamentally new aspect of FromDaDy, compared with existing visualiza-
tion systems, is to enable users to spread data across views. Within FromDaDy,
there is a single line displayed per trajectory: trajectories are not duplicated, but
are spread across views. The advantage of this technique is multifold. It enables
the user to remove data from a view (and drop it on to the destination view). The
fly-over view enables the user to rapidly decide if the revealed data (previously
hidden by the picked data) are interesting. Second, it makes it possible to build a
data subset incrementally. In this case, the user can immediately assess the qual-
ity of the selection by seeing it in the “fly-over” view. Furthermore, by removing
data from the first view, the user makes it less cluttered, and this makes it easier
for him or her to pick and drop more trajectories.

Another advantage of the brush, pick, and drop paradigm is that this inter-
action helps the user to perform complex Boolean operations: “I want the tra-
jectories that go into this area but not the ones that are too high and only those
that are faster than a given minimum speed.” A seminal previous work uses con-
tainers (also called layers) to cluster trajectories and explicitly applies Boolean
operations to combine them. Even with an astute interface, Boolean operations
are cumbersome to produce, because results are difficult to foresee. FromDaDy
overcomes this drawback, since all the operations of the interaction paradigm
(brush, pick, and drop) implicitly perform Boolean operations. Removing trajec-
tories corresponds to an XOR operation and dropping trajectories corresponds
to an ADD operation. The following examples illustrate the union (AND), inter-
section (OR), and negation (NOT) Boolean operations. With these three basic
operations the user can perform all kinds of Boolean operations: AND, OR,
NOT, XOR, and so on.

In Figure 12.4, users want to select trajectories that pass through region A or
through region B. They just have to brush the two desired regions and pick/drop
the selected tracks into a new view. The resulting view contains their query, and
the previous view contains the negation of the query.
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Figure 12.4 Union Boolean operation.

12.4.6 Example of Usage

In this scenario, we use one day of recordings of aircraft trajectories over
France. In this data set, a unique and incremental identifier is assigned to each
trajectory. The first trajectory of the day has the number 0′, the next one has the
number 1′, and so on. Figure 12.5 shows an abstract visualization of this data
set. The x screen axis shows the time of each radar plot and the y screen axis
shows the aircraft’s identifier. Since these identifiers are incremental over the
day, the resulting visualization shows a noticeable continuous shape, in which
each horizontal line represents the duration of one flight. The slope of the shape
indicates the traffic increase during the day (due to the incrementally assigned
identifiers). Hence, the traffic notably increases at 5 a.m. and decreases at 10 p.m.,
as reflected in the change of slope. The width of this shape indicates the average
flight duration in the data set: it is about 2.5 hours, which represents the average
time taken to cross France. But some aircraft have longer trajectory durations.
The user brushes these long trails (the ones that come out of the curved shape).
When visualizing them with a latitude (y screen) and longitude (x screen) visual
configuration, the user discovers a figure eight-shaped trajectory. This trajectory
covers 6 hours and performs 11 loops. After further investigation, it is found
that it corresponds to a military supply plane.

Figure 12.5 Detection of supply planes with an abstract visualization.
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This data exploration has been done with a visualization tool. The user would
have also been able to perform the same extraction with a textual tool, such
as SQL queries. The only difference is that a textual tool would not have led
the user to the idea of exploring long flight duration in order to extract military
aircraft. Only with the incremental trajectory exploration can the user discover
the valid requests for this data set. In a sense, the user explores the data set, and
at the same time, explores the request to perform. Even if this process is efficient,
the direct manipulation cannot be automatic. Analysts need tools to enhance
their exploration capabilities. Therefore, extended work will be presented in the
following sections.

12.5 Event Extraction

There is a class of problems where analysts need to determine places in which
movement events (m-events) of a certain type repeatedly occur and then use
these places in further analysis. The relevant places can only be delineated by
processing movement data, that is, there is no predefined set of places (e.g.,
compartments of a territory division) from which the analyst can select places of
interest. The relevant places may have arbitrary shapes and sizes and irregular
spatial distribution. They may even overlap in space; therefore, approaches
based on dividing the territory into nonoverlapping areas, as in Andrienko and
Andrienko (2011), are not appropriate. In this section, we analyze one-day
record of aircraft trajectory with a visual analytics procedure for place-centered
analysis of mobility data (Andrienko et al., 2011c). The procedure consists of
four steps: (1) visually supported extraction of relevant m-events, (2) finding
and delineating significant places on the basis of interactive clustering of the
m-events according to different attributes, (3) spatio-temporal aggregation of the
m-events and movement data by the defined places or pairs of places and time
intervals; (4) analysis of the aggregated data for studying the spatio-temporal
patterns of event occurrences and/or connections between the places.

12.5.1 Analyzing Flight Dynamics in France

We shall apply our visual analytics procedure to ATC data with the following
goals: (1) Identify the airports in use. (2) Investigate the temporal dynamics of
the flights to and from the airports (i.e., landings and takeoffs). (3) Investigate
the connections among the airports, the intensity of the flights between them,
and their distribution over a day.

It may not be obvious to the reader why the airport areas need to be determined
from the data instead of using the official airport boundaries, which should be
known. The problem is the low temporal resolution of the data. For many flights,
the first recorded positions lie outside the boundaries of the origin airports and/or
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the last recorded positions are not within the boundaries of the destination
airports. Therefore, to refer the flights to their origin and destination airports,
it is necessary to build sufficiently large areas around the airports that would
include the available first and last points. It is not known in advance how large
the areas need to be and what geometrical shapes are appropriate.

Our approach to defining the areas is based on the background knowledge that
airplanes typically land and take off in similar directions, which are determined
by the orientation of the airport runways. We extract the available last positions
of the aircraft that landed and first positions of those that took off and cluster them
by spatial positions and movement directions using a density-based clustering
method, Optics (Ankerst et al., 1999), with similarity measures designed for
spatio-temporal events (Andrienko et al., 2011c). As a result, points lying outside
or even quite far from the airports are grouped together with the points lying
within the airport boundaries if they correspond to landings or takeoffs with
similar directions. The airport “catchment” areas are built as buffers around these
clusters. The areas can be verified using the known positions of the airports: they
must be within the areas.

Not always do starts and ends of trajectories correspond to takeoffs and
landings. The radar observation data also contain parts of transit trajectories that
just pass over France as well as flights going outside France and those coming
to France from abroad. Real takeoffs and landings must be distilled from the
available starts and ends of the recorded tracks. To extract the landings, we use
the following query condition: the altitude is less than 1 km in the last 5 minutes
of the trajectory. From each trajectory that has such points, we extract the last
point as an m-event representing the landing (Figure 12.6a). In the second step of
the analysis, we cluster the landing events by the spatial positions and directions
(SD) using the thresholds of 1 km and 30 degrees, respectively. The resulting
SD-clusters are presented in the space-time cube in Figure 12.6b; the noise
(events not having sufficient counts of SD-neighbors) is excluded. The colors
represent different clusters. The vertical alignments of points correspond to the
airports where multiple landings took place during the day.

An interesting pattern can be observed in the area of Nice in the southeast of
France. There are two SD-clusters of landings, yellow and green; their points
make a column on the right in the cube. The green cluster appears as an intrusion
inside the yellow one. This means that the landing direction changed in this area
twice during the day due to a change of wind direction (aircraft take off and
land facing the wind). The map fragment in Figure 12.6c shows that the yellow
cluster contains landings from the southwest and the green cluster landings from
the northeast. The blue lines in Figure 12.6 show the last 10-minute fragments
of the respective trajectories and reflect the mandatory landing directions.

The observation of the direction changes gives us an idea that the temporal
patterns of landings should be investigated not by airports only but by airports
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(a)

(b) (c)

(d) (e)

Figure 12.6 Event extraction results. (a) The positions of the landing events extracted from
the flight data are drawn with 50% opacity. (b) The space-time cube shows the landing
events clustered by spatial positions and directions. (c) The yellow and green dots represent
two SD-clusters of landings in the airport of Nice. The time diagrams show the dynamics
of the landings from two directions. (d) The time diagrams show the dynamics of landings
in the airports of Paris. (e) The flight distribution between the airports by hourly intervals.
Highlighted are rows for the connections Marseille–Paris (yellow) and Paris–Marseille
(orange). (See color plate.)
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and landing directions. Therefore, we build 500-meter spatial buffers around the
SD-clusters, as shown in Figure 12.6c. For an analysis by airports, irrespective
of the directions, we would do a second stage of clustering (after excluding the
noise) by only the spatial positions of the events and then build buffers around
the resulting spatial clusters.

In the third step of the analysis procedure, we aggregate the landing m-events
in space by the buffers and in time by 1-hour intervals. In the fourth step, we
visualize the resulting time series by temporal diagrams positioned on the map
display; two of them can be seen in the map fragment in Figure 12.6c. They
show that the aircraft landed in the airport of Nice from the southwest almost all
times except for an interval in the middle of the day, when the landing direction
changed to the opposite. The exact times and values are displayed when the
mouse cursor points on an area.

Figure 12.6d presents the map with the temporal diagrams for the Paris region.
We can see that the Orly airport and the northern runway of the Charles de Gaulle
airport have clear peaks in the morning and in the evening. It is a typical pattern
for airline hubs: a short period of time, during which many flights arrive and
take off, maximizes the number of possible connections. The southern runway
of the Charles de Gaulle airport is used with almost constant intensity during
the day. The remaining airports are used much less intensively and mostly in the
afternoon.

So far we have considered only the landings. To investigate the takeoffs, we
repeat the procedure. To extract the takeoff events in the first step, we use the
query condition that the altitude must be less than 1 km at the beginning of the
trajectory. The remainder of the procedure is similar to that for the landings.

To investigate the connections among the airports, we need to define the
airport areas so that they include both the takeoff and the landing events. We
join the sets of the takeoff and landing events, which have been previously
filtered by removing the noise after the SD-clustering. Then we apply clustering
by spatial positions, to unite the clusters of takeoffs and landings in different
directions occurring at the same airports. We build spatial buffers around the
spatial clusters to obtain the airport areas. In the third step (spatio-temporal
aggregation), we aggregate the trajectories by pairs of places (airport areas) and
time intervals (1-hour length). We use only those trajectories that have both
takeoff and landing events. As a result, we obtain aggregate flows (vectors) with
respective hourly time series and totals of flight counts.

To investigate the aggregates (Step 4: analysis of the aggregated data), we
visualize the total counts on a flow map. The aggregate flows are shown by
directed arrows with the widths proportional to the flight counts. By interactive
filtering, we hide minor flows (less than 5 flights) and focus on the short-
distance flows (less than 100 km distance). We see that there are quite many
flights connecting close airports, particularly in Paris. As explained by a domain
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expert, a part of them are flights without passengers used for relocating aircraft
between big airports, such as Charles de Gaulle and Orly. Short-distance flows
between small airports correspond to training and leisure flights of private pilots.
Focusing on the long-distance flows (100 km and more) reveals a mostly radial
connectivity scheme with a center in Paris.

To investigate the temporal dynamics of the flows, we use the table display
as shown in Figure 12.6e. The columns of the table correspond to the hourly
time intervals and the rows to the flows. The lengths of the colored bar segments
in the cells are proportional to the flight counts for the respective flows and
intervals. The colors correspond to the eight compass directions. The table view
is linked to the flow map. Thus, clicking on the vectors connecting Paris Orly and
Marseille on the map, we get two rows highlighted. The yellow one corresponds
to the northwestern direction, that is, from Marseille to Paris, and the orange one
to the opposite direction, from Paris to Marseille. There are one or two flights
from Marseille to Paris every hour in the intervals 07–14h and 15–18h and three
flights per hour from 22h to midnight. The traffic in the opposite direction has a
different profile: three flights per hour from midnight till 02h and several flights
in the morning, at noon, and in the evening. The complementary link from the
table view to the map can be used to locate flows with particular dynamics.

12.5.2 Validation of the Findings

First, to assess the validity of the extracted areas of takeoffs and landings, we
compared them with the known positions of the airports and found that the areas
include the airports. Furthermore, the areas have elongated shapes (Figure 12.6d)
whose spatial orientations coincide with the orientations of the runways of the
respective airports. Next, the results of data aggregation by the areas (i.e., counts
of takeoffs, landings, and flights between airports) correspond very well to the
common knowledge about the sizes and connectivity of the French cities and
airports. The discovered patterns have been also checked and interpreted by a
domain expert who confirmed their plausibility.

12.6 Complex Pattern Extraction Using a Moving Object
Database System

Moving object database systems are another good candidate for air traffic anal-
ysis. This section demonstrates a concrete example of using the Secondo MOD
system in order to extract complex spatio-temporal patterns from the flight trajec-
tories. The task is to extract the missed approach and the stepwise descent events
that occurred in the ATC data set described in Section 12.3. The spatio-temporal
pattern (STP) algebra in Secondo brings a generic set of query operations acces-
sible through the Secondo query languages to let the user express arbitrarily
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complex patterns and efficiently match them on large moving objects databases.
This algebra defines the STP predicate, which is the main tool we are going to
illustrate in the section. To get the most out of this section, please first read the
chapter about moving object database systems (Chapter 3), especially the part
explaining the Secondo query languages.

12.6.1 The Spatio-Temporal Pattern Predicate

A traditional select-from-where query is formulated based on a single predicate
given in the where clause. Such a query scheme is not sufficient when dealing
with moving objects. A moving object has a lifetime and it fulfills several
predicates during it. In many applications it is required to find the objects that
fulfill a set of predicates in a certain temporal order. In ATC, for instance, it is
required to detect landing procedures such as go-around, missed approach, and
touch-and-go. Each of these procedures consists of a set of well-defined steps
that have to be implemented by the pilot in a certain temporal order. Extracting
these situations from the aircraft trajectories requires a query tool that accepts
such descriptions and matches them against the trajectories. Here comes the
spatio-temporal pattern predicate to extend the traditional select-from-where
scheme, and let the user formulate such queries.

Essentially the STP predicate is a pair 〈P, C〉, where P is a set of predicates
and C is a set of temporal order constraints on their fulfillment. Given a tuple u,
for example, representing one flight trajectory, the STP predicate yields true iff u

fulfills all the predicates in P in the temporal order asserted by all the constraints
in C. Consider for example the missed approach procedure. It can be described
by three predicates: aircraft comes close to destination, aircraft descends to a
height of less than 1,000 m, and aircraft climbs. Temporally, the third predicate
must be fulfilled after the second predicate, and both of them must be fulfilled
during the fulfillment time of the first predicate. Let’s have a quick illustration
of how this missed approach query is expressed using the Secondo executable
language:

... stpattern[

Close: distance(.Position, .Destination) < 5000.0,

Down: ((.AltitudeDerivative < 0.0) and (.Altitude < 1000.0)),

Up: .AltitudeDerivative > 0.0;

stconstraint("Close", "Down", vec("abba","a.bba","baba")),

stconstraint("Close", "Up", vec("abba","aba.b","abab")),

stconstraint("Down", "Up", vec("aabb","aa.bb"))] ...

where stpattern is the Secondo operator denoting the STP predicate. For
simplicity, we omit the query parts before and after the stpattern operator
and denote them by three dots. The stpattern predicate is placed in the query
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as a filter condition within the Secondo filter operator. Here it receives a
tuple with the schema:

tuple[Id: int, Position: mpoint, Altitude: mreal, Destination: point,
AltitudeDerivative: mreal],

where Position represents the (lon, lat) of the aircraft and the Altitude

is separately represented. This is because Secondo does not contain types for
3D moving points. The Destination is precomputed as the final (lon, lat)
of the trajectory, and AltitudeDerivative is precomputed as the derivative
of Altitude. The three predicates constituting P have the aliases Close,
Down, and Up. The Close predicate asserts that the aircraft is close (within 5
km) to its destination airport. Note that this is a time-dependent predicate, also
called lifted predicate. That is, the result of such a predicate is a time-dependent
boolean mbool. It is false whenever the aircraft is far from its destination, and
true whenever the aircraft is close to destination. Similarly, Down and Up are
time-dependent predicates. Actually, this is how the stpattern operator is
able to check the temporal constraints on the predicate fulfillment, because an
mbool contains information about when the predicate was fulfilled. The STP
predicate expects that P be a set of time-dependent predicates, each of which is
a mapping tuple → mbool. The aliases of the time-dependent predicates make
it possible to refer to them in the temporal constraints.

The set of temporal constraints C in this example consists of the three tem-
poral constraints denoted as stconstraint. Each of them asserts a temporal
relation between two predicates forming a pair in P . The temporal relation is
expressed by the vec operator. Each of the terms inside the vec operator speci-
fies a relation between two time intervals. The start and the end points of the first
interval are denoted aa, and those of the second interval are denoted bb. The
order of the symbols describes the temporal order of the four end points. The dot
symbol denotes the equality. For example, the relation aa.bb between the inter-
vals i1, i2 denotes the order: ((i1.t1 < i1.t2) ∧ (i1.t2 = i2.t1) ∧ (i2.t1 < i2.t2)).
The temporal relation expressed by the vec operator is the disjunction of its
components. A temporal constraint between two predicates pi, pj is fulfilled iff
there exists an interval on which pi is fulfilled, and another interval on which
pj is fulfilled, and the two intervals fulfill any of the interval relations in the
constraint. For the STP predicate to be fulfilled, all the temporal constraints in
C must be fulfilled.

Formally, given P = {p1, . . . , pm} a set of time-dependent predicates, C =
{c1, . . . , cn} a set of constraints, and a tuple u, let pi(u) denote the evaluation of
pi for the tuple u (i.e., pi(u) is of type mbool). Let [pi(u)]j denote the j th time
interval on which pi(u) is true. The evaluation of the STP predicate 〈P, C〉 for the
tuple u is true iff: ∃j1..jm such that the set of time intervals [p1(u)]j1 ..[pm(u)]jm

fulfills all the temporal constraints c ∈ C, and we call [p1(u)]j1 ..[pm(u)]jm
a
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supported assignment. The STP predicate yields true iff at least one supported
assignment is found. This completes our description of the STP predicate.

The STP Algebra in Secondo defines other variants of the STP predi-
cate (e.g., stpatternexextendstream). This operator is a triple 〈P, C, f 〉
where P , C are the same as before, and f is an additional condition on the
time intervals of the supported assignments. One can express, for instance, that
the Down predicate in this query must be fulfilled for at least 2 minutes. The
stpatternexextendstream is also a stream operator, not a predicate. It
extends every input tuple with attributes containing the time intervals on which
the pattern occurs. Since one trajectory might contain several matches of the
pattern, the stpatternextendstream copies the tuple, and extends every
copy with one match. The following example expresses the stepwise descent
scenario:

1 ...stpatternexextendstream[

2 Dive1: .SecondAltitudeDerivative < 0.0,

3 Lift: .SecondAltitudeDerivative >= 0.0,

4 Dive2: .SecondAltitudeDerivative < 0.0 ;

5 stconstraint("Dive1", "Lift", vec("aa.bb")),

6 stconstraint("Lift", "Dive2", vec("aa.bb"));

7 (end("Lift") - start("Lift")) > OneMinute ]

8 filter[isdefined(.Dive1) and

9 (AverageDiveAngle(.Alt atperiods .Lift) < 30.0)]...

In this scenario, the aircraft alternates between dive and cruise during its final
approach. It is expressed as a sequence of increasing, decreasing, then again
increasing rate of descent. Line 7 asserts that the Lift event stays more than a
minute. Line 9 invokes the Secondo function object AverageDiveAngle to
assert that the aircraft is flying almost horizontally during the Lift event, hav-
ing a slope of less than 30◦ with the horizontal. The two queries in this section
finish in approximately 1 minute on the given data set with 17,851 trajecto-
ries (427,651 records). The Secondo relation storing these flight trajectories
occupies approximately 172 MB of disk-space on a Linux 32 bit machine.

12.6.2 Exploring Patterns by Integrating MOD with Visual Analytics

So far, we have shown that the STP predicates and its variants are very flexible
and can be used to express arbitrarily complex patterns. In practice, tuning the
parameters of these operators is tricky. The integration with visual analytics
allows for fine tuning these parameters through user interaction. Secondo and
V-Analytics realize such an integration scheme. They are integrated so that it
is possible to interchange query results in both directions. Typically the user
starts by loading the whole data set in the databases of the two systems. The
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exploration starts in V-Analytics by removing incomplete data and artifacts, and
sending the identifiers of the candidate trajectories to Secondo. In Secondo
the user issues an STP query, and moves the result back to V-Analytics for
validation. The visualization in V-Analytics helps the human analyst in refining
the query parameters. It can take as many cycles as needed between Secondo
and V-Analytics till the results are satisfactory.

The STP query can be written in Secondo so that the result contains the time
intervals in which the pattern occurred. These can be interpreted as movement
events (m-events) in V-Analytics, so that the analysis procedures in the previous
section are applicable. For example, one is able to explore the percentage of
stepwise descents during one day, the percentage of missed approaches for each
airport, the temporal distribution of missed approaches for a given airport, and
so on.

12.7 Conclusions

In this chapter, we gave an overview of up-to-date research techniques to explore
and analyze trajectories. We detailed our motivations, gave the process we used
to build trajectory data set, and explained three trajectory exploration techniques
(direct manipulation, m-event, and MOD queries).

First, we introduced FromDaDy, a multidimensional visualization tool mak-
ing it possible to explore large sets of aircraft trajectories with direct manip-
ulation techniques. It uses a minimalist interface: a desktop with a matrix of
cells, and a dimension-to-visual variables connection tool. Its interactions are
also minimalist: brushing, picking, and dropping. Nevertheless the combination
of these interactions permits numerous functions: the creation and destruction
of working views, the initiation and refinement of selections, the filtering of data
sets, the application of Boolean operations. The cornerstone of FromDaDy is
the trajectory spreading across views with a simple brush/pick/drop paradigm.
With the incremental trajectory exploration and direct manipulation, the user
can discover the worthwhile requests for data sets. In a sense, the user explores
the data set, and at the same time, explores the request to perform.

Second, we detailed a generic procedure for analyzing mobility data that is
oriented to a class of problems where relevant places need to be determined
from the mobility data in order to study place-related patterns of events and
movements. The procedure includes: (1) extraction of relevant events from tra-
jectories by queries involving diverse instant, interval, and cumulative character-
istics of the movement and relations between the moving objects and elements
of the spatio-temporal context; (2) density-based clustering of the events by
spatial positions, temporal positions, movement directions and, possibly, other
attributes, which may be done in two stages for an effective removal of noise and
getting clear clusters; (3) spatio-temporal aggregation of events and trajectories
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by the extracted places; and (4) analysis of the aggregated data. Visual analytics
and m-events provide a rich tool box of data transformations and visualizations
which help a human analyst exploring the data.

Third, MOD queries deal efficiently with vary large data sets with theoret-
ically no limitation, and are able to express complex queries (neighborhood,
patterns, aggregations, etc.). Although direct manipulation is easy to use (users
are accustomed to manipulating tangible objects), it does not support automatic
exploration. Furthermore, direct manipulation techniques need to be interactive,
which works against the data size. For instance, FromDaDy can display up to 10
million points with an acceptable frame rate. If more data need to be displayed
or manipulated, new computation techniques need to be developed.

Since our visual analytics process uses m-events (geographic and temporal
events), this tool is not suitable for complex computations such as pattern extrac-
tion. MOD can easily extract patterns, but the user needs to know in advance
what he or she is looking for. MOD systems are not good for data exploration.
As a future work, we plan to break the direct manipulation data set limitation
with new interaction paradigms (more complex Boolean operations). We also
plan to combine MOD, visual analytics, and direct manipulation to explore large
data sets. Visualize a small sample, roughly figure out your query parameters,
issue the query in MOD, validate the results by visual analytics, refine the MOD
query, and so on and so forth.

12.8 Bibliographic Notes

For further reading, we recommend the book by Card et al. (1999), which details
the information visualization research area. We also recommend the book by
Tufte (1990), which contains many remarkable visualization instances. Two
conference proceedings contain many examples of visualizations and interac-
tion techniques. InfoVis: The IEEE Information Visualization Conference (IEEE
Transactions on Visualization and Computer Graphics) contains novel research
ideas and innovative applications in all areas of information visualization. Also,
VAST, the IEEE Conference on Visual Analytics Science and Technology, is the
first international conference dedicated to advances in visual analytics science
and technology. The scope of the conference includes fundamental research
contributions within visual analytics as well as applications of visual analytics,
including applications in science, engineering, medicine, health, media, busi-
ness, social interaction, and security and investigative analysis.

The spatio-temporal pattern predicate was first proposed in Sakr and Güting
(2011). It is demonstrated in Sakr et al. (2011). We used this demonstration as
the basis of Section 12.6.
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Plate 2.9 The Probe system: (a) The workflow. (b) Obfuscated map: the blue polygons
represent cloaked regions, the red rectangles sensitive places, the gray background the
distribution of population in space.
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Plate 6.1 Visual representation of (a) a trajectory flock, (b) a sample result on a real data
set with all trajectories involved, and (c) a zoom on the segments that form the flock.

(a) (b)

Plate 6.6 Sample trajectory clustering on a real data set of vehicles (GPS data collected
by OctoTelematics S.p.A.), obtained using a density-based clustering schema and a spatial
route distance function.
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Plate 7.4 A graphical representation of the process of extracting traffic jams from the data.
(a) Using the T-flock algorithm all the candidates are extracted. (b) The patterns are colored
based on ratio between their speed and the free speed in the same area (Blue>1, Red<1).
(c) The patterns with a speed lower than 1/4 of the free speed.
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Plate 8.2 Interactive progressive clustering of trajectories. (a) The car trajectories have
been clustered according to the destinations. (b) The noise is hidden. (c) One of the clusters
is selected. (d) Clustering by route similarity has been applied to the selected cluster; the
noise is hidden. (e) The clusters by route similarity are shown in an STC.
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Plate 8.3 (a) A time bars display shows the speeds by color-coding. Mouse-pointing high-
lights the trajectory and marks the pointed position in a map (b). (c) Trajectory segments are
filtered according to the speed values. (d) Only the segments satisfying the filter are visible
on the map. (e) Low-speed events have been extracted from the trajectories according to
the segment filter. (f) Density-based spatio-temporal clusters of the low speed events are
shown in a space-time cube. (g) A scatterplot shows the times (horizontal dimension) and
movement directions (vertical dimension) of the low-speed events.
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Plate 8.4 (a,b) Car tracks aggregated in a continuous density surface (a) and by discrete
grid cells (b). (c) STC shows the variation of car presence over a day in the most visited
cells. (d) The cells clustered by similarity of the presence time series shown on a time graph
in (e). (f) Hourly time intervals clustered by similarity of the spatial distributions of car
presence, which are summarized in (b).
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Plate 8.5 (a,b,c) Flow maps based on fine, medium, and coarse territory divisions obtained
automatically. (d,e) Clustering of flows based on the time series of flow magnitudes. (f)
Flows between predefined regions. (g) Investigation of movements between the regions
over time adjusted to individual lifetimes of the trajectories.
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Plate 8.6 (a,b,c) Frequency distributions of car speeds on motorways in different ranges
of distance to the nearest neighbor car: (a) below 20 m, (b) 20–50 m, (c) over 50 m.
(d) Trajectory segments on or near motorways selected by means of segment filter. (e)
Spatio-temporal clusters of low-speed events on motorways where the distance to the
nearest neighbor is 10 m or less. Yellow shapes represent spatio-temporal convex hulls of
the clusters. (f) Trajectories that passed through one of the convex hulls are selected by
filtering. (g) The selected trajectories and respective low speed events in a STC.
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Plate 9.5 Anonymization steps. (a) Characteristic points. (b) Spatial clusters. (c) Territory
tessellation. (d) Generalized trajectories.

(a) (b)

Plate 10.2 Presence distribution between 11 a.m. and noon, (a) survey, (b) GPS data;
frequent locations plotted with lighter shades.
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Plate 10.13 Distribution of presence: (a) with predicted trajectories, (b) with the real
trajectories. As highlighted on (a), the predictor is able to correctly guess the most dense
locations (green circles), though it introduces some false positives (red circles).

Plate 12.3 One day’s record of traffic over France. The color gradient from green to blue
represents the ascending altitude of aircraft (green being the lowest and blue the highest
altitude). The French coastline is apparent here in terms of pleasure flights by light aircraft
and the straight blue lines represent high altitude flight routes. A user interface shows the
data set fields and the defined visual configuration.
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Plate 12.6 Event extraction results. (a) The positions of the landing events extracted from
the flight data are drawn with 50% opacity. (b) The space-time cube shows the landing
events clustered by spatial positions and directions. (c) The yellow and green dots represent
two SD-clusters of landings in the airport of Nice. The time diagrams show the dynamics
of the landings from two directions. (d) The time diagrams show the dynamics of landings
in the airports of Paris. (e) The flight distribution between the airports by hourly intervals.
Highlighted are rows for the connections Marseille–Paris (yellow) and Paris–Marseille
(orange).
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Animal Movement
Stefano Focardi and Francesca Cagnacci

13.1 Introduction

13.1.1 Historical Overview

The curiosity of humans about animal movements dates back to ancient times and
probably to prehistory. As a matter of fact, Aristotle (in. The History of Animals)
described animal migrations. The capacity of animals to move with accuracy
during long displacements was surprising and has been considered a mystery of
nature till recent times. Much before the scientific foundation of diffusion due to
the botanist Robert Brown in 1927, the roman poet Lucretius described in detail
the motion of dust. For centuries, scholars hold Descartes’ view that animals are
thoughtless automata. Modern experimental research dates back to the end of
nineteenth century, after the publication of The Origin of Species by Darwin in
1859. Researchers of that period adopted a subjective and anthropomorphic view
of animal behavior and movements. Later, scholars started to interpret animal
movement in a more objective, scientifically sound way, by investigating animal
reactions to stimuli present in their environment, such as the gravitational field,
the presence of light, gradient of humisdity, and so forth.

The concept that individual animals restrict their movements to finite areas
known as home ranges is perhaps as old as ecology itself. Seton in 1909 observed
that “No wild animal roams at random over the country; each has a home-region,
even if it has not an actual home.” The definition of home range from Burt, dat-
ing back to 1943, is probably one of the most long lasting and widely used in
ecology: “that area traversed by the individual in its normal activities of food
gathering, mating and caring for young. Occasional sallies outside the area, per-
haps exploratory in nature, should not be considered as in part of the home range.”
This definition does not contain a quantitative definition of home-range bound-
aries, but it implies that a home range is a well-identifiable area; one consequence

259
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is that movement of animals is constrained to boundaries. Another implication
of Burt’s definition is that space use can arise from different behavioral activities
such as finding food, shelter, partners, and where they survive, reproduce, and
maximize their fitness, that is, the use of space is tightly connected to selective
pressures. Indeed, those are the same forces causative of much more impressive
movement bursts, that is, migrations. Forms of movement behavior intermediate
between migration and residence have been described; for example, nomadism
or commuting behavior. A reductionist approach was used by observing the
behavior of organisms (usually invertebrates) in a simple sensorial environment
in controlled experiments. This research showed how simple behavioral mecha-
nisms were adaptive for the animals, which were thus able to avoid stress factors
and exploit windows of opportunities to get significant resources. In other words,
these studies introduced the idea that appropriate responses of organisms to cues
present in the environment allowed them to attain simple forms of habitat selec-
tion, improving their fitness. The analysis of movement becomes hence fully
embedded in the evolutionary theory.

Past studies have led to important definitions still used in animal movement
studies:

� A stimulus represents a cue in the external environment that produces pre-
dictable physiological modifications. Stimuli can be scalar if they do not
carry directional information (e.g., temperature, chemical concentration) or
vectorial if they carry directional information (electromagnetic field, light
beam).

� When orientation occurs on the basis of a scalar stimulus the orientation
mechanism is called kinesis. The signal can induce a variation in the speed
of movement (ortho-kinesis) or in the turning frequency or turning angles
(klino-kinesis).

� When the stimulus is vectorial, the orientation mechanism is called taxis.
According to the direction of the movement with respect to the direction of
the stimulus we speak of positive or negative taxis. According to the nature
of the stimulus we have photo-taxis, geo-taxis, chemio-taxis, and so on.

13.1.2 State of the Art

Animal movements can be categorized in different broad categories along a
continuum of sedentarism–nomadism.

� Home range: Sedentary animals use a stable range. The definition excludes
occasional sallies or exploratory movements outside the home range. Usually
only the 95% of inner spatio-temporal positions are considered part of the
home range.
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� Commuting: Recently, an intermediate use of space between residence and
migration has been described as “commuting behavior,” that is, displacement
of individual animals between resources that are set apart in space, but not in
time.

� Migration: Migratory movement defines the shift of an organism between two
nonoverlapping home ranges. Typically, migration is a seasonal process, but
it can span also an individual life cycle, or even several generations. Vertical
migrations represent the special case where organisms shift up and down
a fluid column. Altitudinal migration indicates a shift between lowland and
elevations. It must be noted that migration may refer to the population or to the
individuals. Partial migration indicates that only a segment of the population
migrates, while facultative migration indicates that an individual may, or may
not, migrate. Differential migration means that two segments (typically males
and females) of a population have different migratory schedules. Proterandric
(proteroginic) migration indicates that males (females) migrate before the
other sex.

� Dispersal: At the individual level, dispersal indicates spreading with respect
to a reference point or area. The dispersal from the origin of the movement is
given by its mean squared displacement, MSD = (xt − x0)2, where xt denotes
the coordinates at time t and x0 at time 0, respectively. The more common
types of dispersal are natal dispersal, when an organism leaves forever the
range where it was born, and mating dispersal, when the home range is left
only for breeding purposes. The adaptive consequence of this behavior is to
reduce inbreeding.

� Nomadism: Nomadic behavior refers to an opportunistic use of space, which
is continuously searched for resources from one spot to the following.

Migrations represent one of the most surprising patterns observable in nature;
animals can move for thousands of kilometers and finally recover their wintering,
or breeding, grounds. Indeed much effort has been dedicated to the study of long-
range migrations, which are quite impressive examples of animal movement.
The Artic stern, Sterna paradisea, for instance, migrates from the North to
the South Pole, flying about 80,000 km per year. Both marine and terrestrial
mammals perform long range migrations. Grey whales (Eschrichtius spp.) in
the Pacific Ocean move from the Baja California, where they reproduce, to
the Arctic Ocean to forage; wildebeests (Connochaetes taurinus) and other
ungulates move hundreds of kilometers to attain favorable foraging habitats.
Another very impressive example is the migration of the European eel (Anguilla
anguilla) from Europe to the Sargassum sea, 5,000 km.

Migrations are outstanding movements that allow animals to exploit resources
(food, breeding territories, or refuges) that are separated in space and time. By
migrating, animals reach the most suitable conditions to their survival, and
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reproduction, at a certain time of their seasonal activity (e.g., bird migrations),
life cycle (i.e., eel, or atlantic salmon, Salmo salar migrations) or life history
across generations (i.e., monarch butterfly, Danaus plexippus). When individuals
have reached the final destination of their long displacements, they range over
shorter distances to select and use local resources.

At the other end of the movement behavior continuum, and very commonly,
animal species show a sedentary behavior, that is, they occupy a home range.
Use of space, and therefore movement, is tightly linked to the use of resources:
the former ecological concept cannot be understood without taking into account
the latter. Many animals use stable refuge for egg laying, rearing the juveniles,
accumulating reserves, overriding unfavorable climatic conditions, and so forth.
These organisms alternate the use of the refuge with excursions in the external
environment where they search for resources (e.g., food and mates). Clearly
for these organisms, it is vital to recover quickly and safely their refuge. The
homing pigeon (Columba livia) represents the paradigmatic example of this
behavior. For homing successfully an animal needs two tools: a map to know
its own position (with respect to home) and a mechanism (usually a taxis) to
move in the right direction. Many orienting mechanisms based on different cues
(sun, moon, stars, magnetic field, light polarization, and so forth) have been
demonstrated, although the maps used in animal navigation are more elusive.
The earth’s magnetic field can be used as a global map. At shorter distances it
is indeed possible to use olfactory maps, and in the area usually explored by
animals, a memory-based landmark map can be effective. Landmarks can be of
different kinds, and usually these are naturally present in the environment, but
sometimes these are pheromones purposely laid by the animals themselves, such
as in trail-following of ants, snails and butterflies. Navigation, the ability to use
“compasses and maps,” has been demonstrated for several species of animals in
different taxonomic groups.

Another broad line of research on animal movement is represented by the
use of space outside the refuge, if any, by the animal. When an organism
faces contradictory requirements while exploiting an environment, a trade-off
between the needs of minimizing risks and maximizing resource acquisition
exist. Thus, the available space is not used at random; some areas are preferred
and others avoided. The ranging movements of the animal are therefore led
by the optimal use of available space and resources and are constrained by
both physical (e.g., presence of natural obstacles) and biological (presence of
competitors and predators) factors. The resulting area is defined as home range,
or as territory, depending on whether it is defended or not against intruders.

Many methods for computing home range size have been proposed. Now
there is a general agreement that kernel density distribution methods represent
an appropriate approach for describing the structure of home ranges. Quite
recently, an innovative approach has been proposed based on the formulation



13.1 Introduction 263

of mechanistic models of home range. A mechanistic approach implies that the
researcher is able to formulate competing models based on hypotheses about the
action of causal factors on animal movement.

The tactic used by the animal to invest time in different parts of the home
range is called habitat selection. Habitat selection represents a differential use of
a resource with respect to its availability. It is usually evaluated as a hierarchical
process at different levels. The first order selection or level is the selection of a
geographical range by a species, the second level is the selection of the home
range with respect to the range typical of the species, the third level is the
selection of different habitats within the home range, and the fourth level is the
selection of a resource item (typically food) within the habitat. More specifically,
it refers to a hierarchical process of behavioral responses that may result in the
disproportionate use of habitats with respect to their availability. Finally, habitat
selection studies have taken advantage of the development of generalized mixed
model platforms, which allow researchers obtain realistic and assumption-free
models for habitat selection.

Optimization of resource acquisition is analyzed by optimal foraging theory.
In the classical approach, OFT describes the optimal use of resources after
they have been found by the animal (post-encounter processes). A new and
interesting field of research deals with the problem of optimal search (pre-
encounter processes).

The analysis of the different kinds of animal movements has received a
formidable boost by technological development. Recording animal movement
under natural conditions (known as animal tracking) is fundamental to under-
standing why and how animals move. Even today this task is not trivial. The
first important breakthrough was represented by the development of very high
frequency (VHF) telemetry. Animals are fitted with transmitting devices, the
signal is recorded by a receiver, and the spatio-temporal position (which in
ecological literature is referred to as “a fix”) of the animal is obtained using
different methods, mainly based on triangulation. This approach, albeit valu-
able, present several shortcomings. In the earliest times, VHF telemetry was
more amenable for terrestrial than flying animals due to the weight of trans-
mitters, but now VHF transmitters have been fitted even on insects (e.g., large
grasshoppers). The major limitation is represented by the need of operators to
retrieve the signal, who may in turn “lose” animals when the animals are moving
quickly. Therefore, VHF telemetry was especially useful for animals residing in
a known area, while the collection of long range displacements was quite diffi-
cult, missing most of the migratory or dispersing movements. In the 1980s the
development of Platform Terminal Transmitters (PPTs) to uplink data to Argos
satellites (using Doppler-based positioning to compute animal locations) pro-
duced the first records of wide-range movements of marine mammals and birds
(note that to contact the satellite the device must to be outside water), but the true
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revolution that has enormously spurred the study of animal movement was the
advent of GPS-based devices to track animals (Cagnacci et al., 2010).

In parallel with technological and experimental developments there was an
improvement of the statistical methods necessary to study spatial and temporal
processes. In Chapter 1, a raw trajectory is described by a list of tuples containing
mainly the instant and point of the moving object. In this chapter we use another
representation, a list of vectors, each one (in a 2D space plus time) characterized
by angle and distance. However, the statistical analysis of angles is challenging
because it requires a specific approach, because angles are defined in the interval
−π and +π and appropriate distributions are obtained by wrapping conventional
linear distributions (i.e. −π = +π , or 2π = 0). A relevant improvement was
represented by the use of the use of circular statistics in the study of animal
orientation. The first compendium on the modern analysis of biological diffusion
was due to Okubo, although Turchin provided a comprehensive theoretical
summary. The discipline studying animal paths is referred to as trajectometry.

The literature about animal movement is double-faced: the newcomer to this
field has to be aware that two different approaches are used. Many scholars
investigate the proximate causes of movement, for instance, which orienting
cues an animal uses to move from point A to B. On the other hand, researchers
are interested in the ultimate causes of movement, for instance, which are the
factors causing the size of one animal’s home range. Indeed, there is not a clear
separation between the two approaches and today the use of complex statistical
modeling makes it possible to investigate both levels of causation within the
same framework. Studies on animal movement have to be directly linked to evo-
lutionary theory, species life history, and the ecological modulation of behavior.

The aim of this chapter is to give a presentation of the state of the art in
the study of animal movement, which could help the student or the beginner to
orient him or herself in this rather cumbersome field of research. In this chapter
we try to avoid as much as possible mathematical formulations and we will use
verbal models and simulations to illustrate the main concepts. Thus the reader
can (1) use this chapter as an introduction to more complex and mathematically
demanding papers, or (2) grasp the main concepts in order to better plan data
collection and experiments and to acquire concepts and terminology useful to
foster cooperation with statistical and mathematical experts.

13.2 The Study of Animal Movement

13.2.1 A Revolution: Biologging Technology

The simplest method to study animal behavior is to use individually recognizable
tags, such as rings, collars, and ear tags. The results obtained by tags are prone to
bias, due, for instance, to differences in recovery rates (in times and/or space) or
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to the fact that only animals surviving the movement can usually be recovered.
Despite such limitations, simple methods have allowed researchers to learn
important information about the life history traits of many species.1

In general, the use of telemetry has improved the sampling design, reduced
bias, and improved reliability. In this paper, we denote by biologger any animal-
borne device able to record position and/or environmental/physiological data.
Miniaturization of GPS devices has allowed development of small and light
devices that can be fitted to a large number of animal species. It was possible
to shift by a collection of spatio-temporal positions (more or less statistically
independent) as done using VHF telemetry to a very dense (and highly corre-
lated) sampling of locations, which may represent an approximation of the actual
path followed by the animal. GPS devices use different technologies to transmit
position data. The GPS store-on-board (SOB) devices are recovered after use
and data are downloaded. SOBs are usually cheap but require that one is able to
recapture the animal or recover the device; SOBs can be used for nesting birds or
other animals likely to be easily recaptured or harvested. Drop-off mechanisms
that should cause the detachment of the SOB from the animal do not always per-
form well. GPS-GSM use a GSM (Global Service for Mobile Communication)
public network to exchange data between the biologger and the user, often using
small message services (SMS). Cleary this method is useful only in those coun-
tries where there are dense GSM networks. In other situations there are several
systems to remotely download GPS collars and retrieve the data. Probably the
cheapest method is to use a VHF beacon. The receiver can approach the tagged
animal on the terrain or using an airplane. This system is useful in wild areas
where the amount of data to recover is limited. The alternative is transmitting
data to a satellite constellation. There are several possibilities: to exploit the
Argos DCLS transmission, which allows only one-way transmission from the
animal to the user, or using satellite mobile phone systems (namely Iridium and
Globalstar services).

13.2.2 Interpretation of Animal Movement

As happens in human mobility (see Chapter 1), wildlife telemetry has quickly
changed in the last years; “a brave new world” (Tomkiewicz et al., 2010) arose
and now researchers have an array of technologies able to record the trajecto-
ries of many species of wild animals with high accuracy and in many different
ecological conditions, from the desert to the deep ocean, worldwide. It is funda-
mental to be able to exploit efficiently the information contained (some might
say “hidden”) in movement data for a large array of scientific and management
purposes. An important consequence of the use of biologging in ecology is the

1 See, e.g., http://www.phidot.org/software/mark/docs/book/
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availability of large data sets on animal behavior. Spatial databases represent a
new challenge and opportunity for scientists. On one hand, suitable analytical
methods are needed, on the other hand this requires the application of appropriate
data management tools. The amount of movement data recorded on hundreds
of species and many thousands of individuals has accumulated over the last
20 years. This represents a “treasure” and allows researchers to study species
at their distribution ranges, and to address “general questions.” Examples are
MoveBank,2 TOPP,3 and EURODEER.4

13.2.3 Emerging Theories

New paradigms and technical challenges have recently pervaded the analysis
of animal movement. On the empirical side, the extensive use of biologgers
grants for the first time systematic access to animal-borne information, such
as positional, behavioral, physiological, and environmental parameters. At the
theoretical level, the large amount of quantitative data thus obtained naturally
encourages the development of new analytical concepts and computational tools
to analyze and understand movement and its associated behaviors/parameters.
Large amounts of data can be first screened with data mining automatic proce-
dures, which can search for inner consistent structure of data. These procedures
can prove very useful, but they have to be supervised by sound ecological
interpretations. On a theoretical level, a unifying framework and an integra-
tive paradigm for animal movement has been recently proposed, referred to as
movement ecology:

the proposed framework integrates eclectic research on movement
into a structured paradigm and aims at providing a basis for hypoth-
esis generation and a vehicle facilitating the understanding of the
causes, mechanisms, and spatio-temporal patterns of movement and
their role in various ecological and evolutionary processes. (Nathan
et al., 2008: 19052)

Movement ecology aims to become an hypothesis-based (sensu Karl Popper)
discipline where theory dictates experiments and observations. Ecological stud-
ies (1) have a strong interest for the orienting mechanisms underneath animal
movement (e.g., kinesis, navigation), (2) stress the importance of adaptive value
of these movements (e.g., risk avoidance, resource gathering), and (3) model the
consequences of individual movements at the level of social group and popula-
tion (e.g., flocking behavior, diffusion). The ecologist is not especially interested
in knowing what a given whale or deer is doing, but is interested in deducing gen-
eral features (the tactics) of one species movement from a sample of individual

2 http://www.movebank.org
3 http://www.topp.org
4 http://www.eurodeer.org
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Table 13.1 Types of Tags, Sampling Schedules Often Used, and Type of Analysis
Performed. Geolocators Use Light Pattern to Compute Length of the Day (from which

One Derives Latitude) and the Time of Solar Noon (Used to Compute Longitude).

Sampling Type of Movement
Type of Mark Sampling Density Schedule Analyzed

Tag Low (usually 2 are On occasion Migration
available) Dispersal

VHF Intermediate (e.g., Systematic (only Home range
1 spatio-temporal daytime with Habitat selection
position per some days) airplanes)

Geolocator 1 per day Systematic Migration

GPS 1 each few hours Systematic Home range
Habitat selection
Migration
Dispersal

GPS 1 each few minutes Systematic Search behavior

trajectories. Movement tactics typically vary as a function of environmental
conditions. In practice, good precision in reconstructing individual animal tra-
jectories is necessary to increase the power of statistical tests. Ecologists are
interested in describing patterns, but especially in understanding the processes
below spatio-temporal patterns, so that statistical inference is the fundamental
tool to be used. Models allow us to deal with ecological complexity at different
scales. Two axes are relevant: the temporal scale of the explanation (proximate
versus ultimate) and the sampling unit that goes from the individual to the pop-
ulation through kin and social groups. Orientation mechanisms, dispersal, and
foraging are typically individual-specific but causes operate at different tempo-
ral scales (say, minutes, years, and generations). Population diffusion, spatial
distribution, and interactions determine ecosystem complexity and biodiversity,
that is, their long term properties. There are also intermediate processes: a typ-
ical home range lasts for the life span of each individual and is determined
by its energetic needs but also by local interactions with neighbors. Movement
analysis has the potential to unify these different aspects.

13.2.4 Data Sampling

In ecology an appropriate sampling design is the foundation of good science but
its importance is often overlooked. Table 13.1 summarizes the different options,
because technology, sampling design, and aims of the research are interlaced.
There is a trade-off between the cost of the tracking device and sample size. For
instance, tags are very cheap but to obtain reliable results one needs many hun-
dreds or thousands of marked animals. The use of a systematic sampling schedule
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allows one to reduce the sample size, which, however, should be representative
of the variability within the population of interest. In case of GPS devices, there
exists a trade-off (given a certain load allowed by organism’s size) between the
number of spatio-temporal positions and the duration of the survey. A com-
promise is often used, adopting a standard low frequency of spatio-temporal
positions (typically one per 4 hours) but programming a denser collection of
spatio-temporal positions during a specific period of interest (breeding time,
natal dispersal, etc.).

There is a basic difference in sampling with VHF and GPS. In the former case
one tends to use independent spatio-temporal positions, while in the second case
there is a specific aim to exploit the autocorrelation among positions to deduce
the movement tactics used by the organism. In the case of VHF telemetry the
interval among spatio-temporal positions is large (e.g., at least 24 hours) to
guarantee a certain degree of statistical independence, and the time of location
shifts from an occasion to the next one (usually one or two hours) to cover the
whole 24 hours (often sampling is stratified by month or season). However, this
sampling approach makes difficult the analysis of trajectories. On the contrary,
the usual sampling with GPS is to compute a location at fixed times of the day
(e.g., midnight, 2, 4, . . . , 22) with an interval between spatio-temporal positions
usually ranging between 2 and 6 hours. In general it is preferable to sample
at fixed time so as to yield a good estimate of animal’s speed. Modern collars,
which are going to be on sale soon, have internal capabilities for analysis of
geographical data. This would allow for adaptive sampling schedules, the merits
and potentialities of which are not yet well understood.

Many methods are available for uncertainty reduction and to get a precise
trajectory reconstruction. The causes of imprecision are reviewed in Chapter 5.
In animal movement studies, fuzzy sets are not used for correcting spatial uncer-
tainty, and state-space Bayesian models are becoming popular in the ecological
literature. Independently of the method used, a filtering of the trajectory is usu-
ally necessary. It is useful to think to a hierarchical analysis: first-order analyses
are intraindividual and so include spatio-temporal position correction, path inter-
polation, computation of angular resultants, mean speed of displacement, and so
forth. The second-order analysis refers to the sample and in this case statistics
are relative to the population on which to make inference, whether individuals
are sampled independently.

13.2.5 Analysis of Animal Trajectories

Turchin (1998) represents the reference text in this field. Let us suppose we
are recording the true trajectory or path of an animal. We may represent the
path as a set of vectors connecting spatio-temporal positions. In the first case
(Figure 13.1a) our sample overlaps the walked path at a large extent, while in
the second case (Figure 13.1b) our representation is much coarser and important
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Figure 13.1 Discretization of animal trajectories. (a) The path of an animal (in the example
a foraging deer) is perfectly recorded. (b) Path sampling at high resolution, and (c) sampling
at low resolution. Sampling is done at fixed time intervals.

biological details might be lost. Clearly the appropriate sampling depends on the
process of interest and there are not general guidelines. Thus, in order to plan
the sampling design, researchers need some preliminary understanding of the
dynamics of the process of interest. In the example of Figure 13.1, sampling (b)
cannot be sufficient to investigating the selection of food items, while sampling
(c) can be appropriate to investigate the annual home range.

The parameterization of a discretized path is represented in Figure 13.2a.
Till now we have considered a fixed time sampling. The distance among spatio-
temporal positions is referred as a “step.” The step itself is arbitrary and does
not represent a significant behavioral feature of the studied organism. In the
example path, during the first four steps the organism may have maintained the
same motivation and behavioral tactics so that the small observed differences in
speed and direction of steps may represent environmental or sampling nuisances
(such as precision of a GPS collar, irregularities of the terrain or presence of
obstacles for terrestrial organisms, or drifts due to wind or streams in flying or
swimming animals). On the contrary, the spatio-temporal position at t + 1 –
where a sharp directional shift occurs – may represent a changing of motivation.
A move represents the distance between biologically meaningful variations in
the path. It is thus appropriate to use a different discretization of the trajectory
with variable temporal intervals (Figure 13.2b). This approach is more natural
than the use of steps but it is difficult to identify turning points where meaningful
behavioral changes occur. The basic idea to identify the moves is that within
each move the αt are strongly correlated (i.e., are very close to 0) while the βi

are uncorrelated.

13.2.6 An Example: Foraging and Social Behavior of the Fallow Deer

To exemplify methods used to investigate animal movement we review some
studies about foraging and social behavior of fallow deer (Dama dama). In
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Figure 13.2 Computation of turning angles and move lengths in a trajectory. (a) A path
sampled at fixed time intervals denoted by index t . Black dots represent spatio-temporal
positions (t = 1, 2, . . . , T ). Red arrows joining consecutive spatio-temporal positions are
the steps of discretization of module st and angle αt , (st is defined in [1, T − 1] and α

in [2, T ]). (b) Sampling at unequal time intervals denoted by index i. Each grey arrow
represents a move of length di . Note that α indicates turning angles between steps, while β

represents turning angles between moves.

Figure 13.3a one can observe that fallow deer do not use pastures at random.
Some locations are much more exploited than others. Even within the same
habitat, animal movements appear quite variable. In Figure 13.3b we present
some examples of paths of fallow deer recorded at twilight in an large open
habitat surrounded by a dense forest where deer remain during the daytime in
order to minimize disturbance and risk for neonates; at night they move to open
fields to forage on good-quality food available in meadows, especially during
spring. Spatio-temporal positions were collected by observers hidden in high
seats scattered in the study areas to understand short-scale habitat selection and
dynamics of social organization.

The aim of the study was to identify general mechanisms able to reproduce
animal movements. The basic model proposed by Okubo (1980) is the Brownian
diffusion. In this specific model, the distribution of turning angles, αt , is uniform,
that is, there is not directional persistence, while the distribution of distances dt

can assume different forms provided the originating distribution is characterized
by a finite variance. Let us suppose we are studying the movement of a “jumping
frog” in a one-dimensional universe (Figure 13.4). The rules of movement for a
solitary frog are:

1. The frog jumps from the starting coordinate d0 = 0 (at time t = 0). It may
move leftward or rightward with probability 0.5.

2. Each jump, or move, is of constant length δ for a constant time duration τ .
3. Each move is independent from any previous move.
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Figure 13.3 (a) Distribution of foraging station in the study area of Castelporziano, Rome,
Italy. (b) Examples of foraging paths followed by individual fallow deer. Paths 2 and 3 are
characterized by constant sinuosity, while Paths 1 and 4 are characterized by area-restricted
search.

The question is to compute the probability, p(d, t), that the individual is at a
distance d from the starting point at a given time t . Clearly the displacement on
the nth move is d = �n

1 δi , where δi may be positive or negative according to Rule
1. For instance, with n = 5 one may have, among the others, the following series:
w = {−δ, +δ, −δ, −δ,+δ}, or w = {−δ,−δ, −δ, −δ, −δ}. Each realization,
wn, of this stochastic process is called a random walk.

From a behavioral point of view the probability to arrive at coordinate three
(on five moves) is to go rightward three times and leftward twice. In other words,
it is the probability to have three “successes” (and hence two failures) on five
“trials,” probability which is given by the binomial distribution. Of course, the
probability of having five moves leftward (or rightward) is much smaller than
having, for instance, three moves rightward and two moves leftward; this is
because one has many more realizations in this case, as the order of moves is

–δ 0 +δ +2δ

d

Figure 13.4 A jumping frog in the one-dimensional universe.
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not relevant to compute the displacement: {+δ,+δ, −δ, −δ, −δ} is equivalent
to {−δ, −δ, −δ, +δ, +δ} or {−δ,+δ, −δ, +δ, −δ}, etc.

To be more realistic, let us consider a bidimensional space. In many cases it
appears that animal movements are characterized by a directional persistence,
in the sense that animals tend to persist along their previous direction. This is
evident in Path 1 (Figure 13.3a) displaying the observed movement of a female
fallow deer. The correlated random walk (CRW) is useful to represent directional
persistence. CRW is similar to URW except that directions are correlated. This
means that next steps are more or less oriented toward the same direction (e.g.,
to the north) so that turning angles are close to zero. The CRW represents a
standard model to describe animals’ movement (Turchin 1998). For instance,
Paths 2 and 3 in Figure 13.3 are more sinuous than Paths 1 and 4.

In some respects CRW appears a more realistic model for the movement
of actual organisms that URW, however, there are some shortcomings in this
approach. First, movement appears more or less sinuous but the amount of
turning is similar (apart stochastic fluctuations) along the path. In the simple
case where the step length d is constant, the sinuosity S = σ√

d ′ , where σ is the
standard deviation of the angular distribution. However, many animals exhibit
areas where sinuosity is high intermingled with areas where the path is straighter.
This behavior is called area-restricted search (ARS).

However, animal tactics can be more complex to increase search efficiency,
that is, the amount of resources encountered per unit time. The walker intensifies
its search (increases path sinuosity) in areas where the density of targets is likely
to be higher than on average (e.g., in a food patch) and perform more linear
paths while moving among patches. This is represented by Path 4 (Figure 13.3).
In fallow deer it is possible to show the presence of area-restricted search by
computing the autocorrelation function of move length or the cross-correlation
between angles and distance. Fallow deer present a positive cross-correlated
function so that large displacements are correlated to turning angles. These
mechanisms allow these animals to remain within a food patch and provide
behavioral mechanisms for ARS.

Semantic trajectories can be used to study the ecology of the species of
interest. In this study on fallow deer we recorded the foraging stations used
by the animals and later we determine the amount of vegetal biomass of each
station. According to optimal foraging theory the animal should leave in each
station a prescribed amount of vegetal biomass. This was indeed observed.

Several models may explain the presence of ARS in one animal’s path. Here
we consider two basic, and hence potentially general, approaches to this problem.
The composite CRW (CCRW) derives directly from CRW theory by assuming
that an animal is able to vary its movement parameters (αi and di) as a function
of some specific spatial parameter. The CCRW is also called adaptive CRW.
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Figure 13.5 Rank-frequency plots using log10 axes. (a) Models’ prediction for a Brownian
walk (grey dots) and a Lévy walk (triangles). (b) The observed behavior of animals in
group (black) and solitary (grey dots). Given a sample of move length d1, d2, . . . dn sort
these value in increasing order and rank them from 1 to n. For each di compute the number
of distances ≥ di(si). Finally, si is plotted as a function of di in double-logarithmic plot.

As noted above, we have assumed till now that the probability density function
(PDF) of move length, p(d), exhibits finite variances. Recent literature, however,
has been shifting toward distributions that have a long-fat tail (see Chapter 15).
Some authors have conjectured that organismal movement is so generally heavy-
tailed that the moments of the PDF are no longer finite. Lévy distributions have
figured prominently in such treatments. Lévy walks are random movements
where the probability of a displacement d is p(d) = cd−μ for d > dmin where
c = (μ − 1)dμ−1

min . Lévy behavior applies only to the tail of the distribution, and
P (d) is valid only beyond some minimal value of d; the investigator must select
an appropriate value of dmin for a particular data set. The scaling parameter μ

has the remarkable property of being independent of the measurement units,
so direct comparison can be made across studies. Application of the central
limit theorem shows that for 1 < μ ≤ 3, a sum of Lévy distributed moves is
also Lévy distributed. Conversely, for μ > 3 the distribution of the sum of
such moves converges to a Gaussian distribution, recovering Brownian motion.
Obviously, sample variances are always finite and some authors have invoked
the use of truncated Lévy distribution as more realistic for actual animals.

The basic differences between a Brownian and a Lévy walk is presented in
Figure 13.5a, using rank-frequency plots. The rank-frequency plot is recom-
mended to discriminate between Brownian and Lévy walks. The plot demon-
strates that in a Brownian walk the fraction of very long moves falls rapidly to
0 while in a Lévy walk such a decrease is much slower and follows a linear
pattern, indicating that a Lévy distribution is characterized by a “fat” tail.

The presence of CCRW and LW in fallow deer has been studied by Focardi
et al. (2009) and it was shown that solitary fallow deer adopted a LW tactic while
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animals in groups performed a Brownian motion, indicating that living in group
reduces foraging efficiency (Figure 13.5b). This effect has indeed demonstrated
that foraging rates decrease with group size. The mechanisms seem linked to a
variation in the foraging efficiency of animals moving inside the group, which
forage less than deer moving on the borders of the group. Because with large
groups there is a larger proportion of animals inside the group, the average
foraging efficiency is lower in large groups. This is the price to pay to enjoy the
better protection afforded by large groups. Besides that both LW and CCRW
may simulate the process of area-restricted search, the two models are basically
different: Lévy walks are scale-free, while the two-level scale-specific CCRWs
are a mixture of two movements characterized by specific scale (typically, inter-
and intrapatch movement).

13.3 Conclusions

The last years have seen impressive development in the study of animal move-
ment. Important breakthroughs originated from the technological development
of biologging devices, which have allowed researchers to collect huge amounts
of movement data from a large number of animals. All possible scales of analysis
(from migration to food search) were investigated. In parallel with technological
development we have witnessed substantial improvements in data storage and
data mining and statistical models became more and more flexible. An applica-
tion of multiscale movement analyses to the understanding of animal ecology
was provided in relation to post-reintroduction displacement of elk (Cervus ela-
phus). This analysis documents behavioral shifts at different spatial and temporal
scales that permitted to these animals to survive in a difficult environment.

Despite these improvements, the analysis of animal movements remains chal-
lenging and requires important progress.

The first, apparently banal, observation is that biological samples are often
biased: to fit animals with a biologger, the animals have to be captured, thus
incurring behavioral biases, for example, hihger ability to escape or a higher
attitude to use baited traps than the average individual. Further, the device itself
may modify the behavior of an animal because of its weight and shape. Moreover,
the sample size might be inadequate to express the variability of the population.
Last but not least, the devices determining animal positions are subject to errors
as are all instruments. Finally, a movement is a continuous process but we are
forced to sample it in a discrete manner. Careful experimental design is strongly
advertised.

As also noted in Chapters 1 and 2, it is quite important to use semantically
rich trajectories. Of course the use of biologically meaningful attributes can
enhance our understanding of animal behavior and data enrichment is an impor-
tant future task to be developed with the use of innovative technology. In the
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example of fallow deer, the possibility of observing deer behavior while record-
ing spatio-temporal positions allowed us to understand whether or not foraging
behavior was optimal and to evaluate trade-offs between foraging efficiency and
protection, a factor that dominates the life of these animals.

The analyses of animal movement can be done through two different
approaches: mechanistic and statistical. A mechanistic model needs data col-
lected at a spatial and temporal scale compatible with the (behavioral) scale at
which the organism takes its own decisions or interacts with its environment,
for example, selection of food items or habitat, predator avoidance, interaction
with conspecifics, and so forth. The chance of collecting such data depends
on the context (e.g., field or experimental settings, studied species) and on the
development of appropriate technologies. For instance, the recent release of
video camera collars will allow researchers to collect data on foraging with
an unprecedented resolution on large mammals. However, the step of analysis
allowed by actual technology is often coarser than the typical behavioral scale
and the use of mechanical statistical models is appropriate to perform an analysis
of movement patterns, which can give us relevant insights in the processes of
spatial distribution of animal population, such as dispersal and habitat exploita-
tion. On the other hand, the choice of appropriate models to analyze movement
data is dependent on the sampling design used by the researcher, which, in its
turn, depends on trade-offs among costs of tags, costs of capture, weight of
devices, and so forth.

We expect that important developments may arise by the application of meth-
ods from statistical mechanics to animal movement as suggested in the recent
book by Viswanathan et al. (2011). There are many instances of transfer of
methodologies from statistical mechanics to ecology; since Okubo’s book, sev-
eral types of random walks have been first developed in physics and then applied
to organismal movement. Even results relative to diffusion are shared in the two
disciplines. This has not been a swift process, as methods and ideas that are
well established in statistical mechanics have demonstrated to be unsuitable or
problematic for applications in ecology. The study of animal movement is a chal-
lenging task: animal behavior is dictated by drives that have evolved over a long
time. On the other side, the natural environment, influencing animal movements,
is highly heterogeneous in time and space. Interdisciplinary research between
engineers, physicists, ecologists, and ethologists is more than a rhetoric plea: it
is the key to relevant breakthroughs in the future.

13.4 Bibliographic Notes

The literature on animal movement is immense. We have kept citations to a bare
minimum. An useful review of old literature can be found in Fraenkel and Gunn
(1961). Okubo (1980) represents the passage of a number of models and concepts
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from physics to biology in order to develop a more quantitative understanding of
animal movement. Okubo (1980) mainly uses an Eulerian approach by studying
the “average” movement. For a discussion of the differences between Eulerian
and Lagrangian approaches, see. Smouse et al. (2010). In Alt and Hoffman
(1990), one can find a very useful glossary, many examples of studies on solitary
and social organisms, descriptions of simulation methods, and a first mention
of Lévy walk in relation to animal movement. The book by Turchin (1998)
is the best reference text on the subject. It deals with both data analysis and
modeling and presents a wide review of the literature. The beginner is suggested
to start with this book. Gould and Gould (2012) are a useful reference for
animal navigation. Nathan et al. (2008) introduced “movement ecology” theory.
Hierarchical resource selection was originally developed by Johnson (1980). The
presence of Lévy walks in nature and the methods to discriminate Lévy walks and
Brownian motion have determined much controversy. A short presentation of
this debate can be found in Smouse et al. (2010), and a more detailed discussion
is given by Viswanathan et al. (2011). Finally, a comprehensive description of
recent technology, data management, and analysis issues in the study of animal
movement, mainly driven by the use of GPS-based devices, is offered in the
Thematic issue of Cagnacci et al. (2010). The study on elks is from Fryxell
et al. (2008). The experimental studies on fallow deer can be found in Focardi
et al. (2009), and information about biologgers in relation to animal movement
studies is described by Tomkiewicz et al. (2010). Urbano et al. (2010) is a useful
reference for animal movement databases.
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Person Monitoring with Bluetooth
Tracking

Mathias Versichele, Tijs Neutens, and Nico Van de Weghe

14.1 The Difficult Nature of Measuring Human Mobility

Human mobility on different spatial and temporal scales affects many processes
taking place in our world. Although few will disagree that the large increase
in human mobility during the twenty-first century has improved our general
quality of life, it is increasingly confronting us with some of its more negative
implications as well: congestion in and around densely populated areas by daily
commuter traffic and the resulting strain on our environment, safety issues
arising from the gathering of large crowds in relatively small areas, sudden risks
of global pandemics and the difficulty of containing them, and so on. As such, an
increase in human mobility should be accompanied by a deeper understanding
of the processes governing these movements in order to better mitigate their
negative implications.

A starting point in learning more about these movements is adequately mea-
suring them. Until recently, this has been quite problematic. Qualitative methods
such as shadowing and the collection of travel diaries are known to be error prone
and labor intensive. An alternative method of tracking people in smaller-scale
settings is through video surveillance systems. Despite technological advance-
ments in the last decade, using cameras to reconstruct the movements of a large
number of people in a realistic environment remains very difficult. Correctly
identifying trajectories of individuals in one camera view is already nontrivial
due to interactions between moving objects, changing illumination in outdoor
environments, and so on. Reconstructing trajectories over multiple camera views
is even more challenging and to date remains somewhat of a scientific fiction.

A third way of measuring human movement is through the use of proxies:
objects whose movements are in some way linked to the movement of humans
and can thereby serve as indicators of these movements. A rather unusual exam-
ple of this is the tracking of one-dollar bills throughout the United States (as
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already mentioned in Chapter 15), which could potentially offer insights in how
people move from one state to another over time. In the end, however, it is the
rapid development of positioning technologies such as GPS, and the growing
penetration of these technologies in mobile devices, such as car kits and mobile
phones, which acts as the main catalyst in a new and burgeoning research area.
After all, these devices can be regarded as very good proxies for capturing human
mobility.

As a result, there has been a rapid increase in the amount of mobility data
sets. As these data sets tend to be large, the sheer volume of data confronts
researchers with difficulties in extracting interesting and relevant knowledge.
While the importance of this issue – often used in paradigms such as “the data
avalanche” – is undeniable, it should also be stressed that human mobility is
not always as easily measurable as might be conceived at first sight. First and
foremost, persons can move around in a variety of ways. As more and more
vehicles are equipped with GPS navigation kits, the movement data from these
vehicles are already used for purposes such as the real-time monitoring and
prediction of traffic jams. Capturing the movements of cyclists and pedestrians,
however, is already significantly more difficult. Mobile phones usually remain
very close to their owners at all times, so they are the most obvious candidate
proxies. Because mobile operators keep records of telephone calls making use
of their cell towers, it is possible to reconstruct movements of phones by mining
their call logs. This methodology – usually called “mobile positioning” – delivers
very large mobility data sets that have already been used to study regional
movements. GPS loggers carried around by a test audience form an alternative
way of measuring the movements of people. Because the resulting trajectories are
usually very accurate and participants can also be surveyed before or after their
cooperation, this method is becoming increasingly popular among scientists.

Both methodologies, however, have their deficiencies. First, the cooperation
with mobile operators for mobile positioning data sets has proven to be diffi-
cult. More importantly, the spatial accuracy of this methodology (at best a few
hundred meters in urban settings) is insufficient for studying human mobility on
smaller scales. Alternatively, the distribution and recollection of GPS loggers
among a test audience is labor intensive and possibly expensive, which will auto-
matically result in a smaller sample size. Additionally, research projects making
use of this technology will essentially be limited to outdoor environments where
shadowing due to dense urban environments can potentially lower data quality as
well.

The difficult nature of capturing human mobility on smaller (in this con-
text subregional) scales shows that, despite the undeniable data avalanche
confronting researchers, there remain challenges in capturing movement data
besides processing them. In short, there is a need for a methodology that can
measure human movement on a small scale in a cost- and labor-effective way, in
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Figure 14.1 Components of a Bluetooth scanner for tracking purposes: computational unit
(1), power source (2), USB cable (3), class 2 Bluetooth sensor (4), class 1 Bluetooth sensor
(5), and different types of external antennas (6, 7).

a wide variety of environments and for a sufficiently large sample size in order
to make representative statements for the entire population.

14.2 How Bluetooth Offers an Alternative Solution

In response to these issues regarding data collection and given the ubiquity of
Bluetooth-enabled devices such as mobile phones and personal digital assistants
(PDAs) carried around by their owners, Bluetooth technology has increasingly
been suggested as a simple and low-cost alternative for the reconstruction of
spatio-temporal behavior. Section 14.5 outlines some of the research that has
already used Bluetooth as a tracking technology. “Discoverable” devices – and
by extension their owners – can be traced by means of a unique media access
control (MAC) address that is broadcasted in the Bluetooth discovery process.
Because this MAC address cannot be directly linked to any personal (or other
sensitive) information, individuals remain anonymous, avoiding potential pri-
vacy infringements.

14.2.1 Bluetooth Tracking Methodology

Bluetooth scanners – depicted in Figure 14.1 – can sense the presence of discov-
erable Bluetooth devices in their vicinity by continuously inquiring for nearby
devices with a Bluetooth sensor and logging the broadcast messages sent by
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responding mobile devices within the scanners communication range. Every
time a device is detected, its MAC address, COD (Class of Device) code,
and the timestamp of the detection are registered. Additionally, the received
signal strength intensity (RSSI) of the inquiry response is logged. This inten-
sity value is inferred from the received power level with which the response
packet was detected by the scanner and is theoretically negatively correlated
with the distance between the scanner and the detected device. Because some
users include personal information in the friendly name of the detected device
(name, phone number, etc.), it is not registered to safeguard privacy. The inquiry
phase does not require an active connection between the scanner and the mobile
device, so the methodology does not necessitate any cooperation of the tracked
individual.

By placing Bluetooth scanners at different strategic locations, meaningful
trajectories generated by mobile devices (and correspondingly by their owners)
can be reconstructed. Because of the complex environmental setting and the
resulting unpredictability of the propagation of Bluetooth signals, positioning is
currently done through the proximity principle, where the position of a detected
mobile device is approximated to the point position of the scanner by which it is
detected. The strategic locations of the scanners are used to semantically enrich
the resulting trajectories, which then become geo-localized semantic trajectories.
As with any other form of sparsely sampled (sometimes also called episodic)
movement data, the locations of mobile devices that are not within range of any
scanner are unknown.

The spatial granularity of the resulting trajectories ultimately depends on the
detection range of the Bluetooth scanners, and on the number and coverage of
Bluetooth scanners within the study area. In theory, the detection range depends
on the power class of the Bluetooth device (Class 1: 100 m, Class 2: 10 m,
Class 3: 1 m). In practice, however, this range is variable due to environmental
factors influencing (blocking, reflecting, etc.) radio signals leading to a detection
region with a fuzzy border. The temporal granularity cannot be predicted either
because the Bluetooth scanners register detections whenever they arrive instead
of using a fixed sampling interval. Devices within a direct line of sight with a
sensor will usually lead to new detections every few seconds.

14.2.2 Preprocessing and Software

The raw tracking data consist of log files – named after the combination of
the scanner and the MAC address of the sensor – containing log lines with
the following format: timestamp of detection, MAC address of the detected
device, COD code of the detected device, RSSI of detection. In order to obtain
a compressed data set, the scanners are programmed to create a second set
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voyage103 01:A3:B5:0A:4B:42 rssi.log
20100720-175338-CEST,20:21:A5:45:40:40,5898756,-81
20100720-175340-CEST,20:21:A5:45:40:40,5898756,-80
20100720-175341-CEST,20:21:A5:45:40:40,5898756,-72
20100720-175353-CEST,20:21:A5:45:40:40,5898756,-78
20100720-175355-CEST,20:21:A5:45:40:40,5898756,-82

↓
voyage103 01:A3:B5:0A:4B:42 scan.log

20100720-175338-CEST,20:21:A5:45:40:40,5898756,in
20100720-175341-CEST,20:21:A5:45:40:40,5898756,out
20100720-175353-CEST,20:21:A5:45:40:40,5898756,in
20100720-175355-CEST,20:21:A5:45:40:40,5898756,out

Figure 14.2 Extract of logged data showing the raw time-point detection data (top) and the
compressed time-interval data (bottom), depicting the compression of solitary detections
into intervals leading to an abstract and structured geo-localized trajectory. This example
shows one Bluetooth device (MAC address 20:21:A5:45:40:40) being detected five times.
The buffer time of 10 seconds causes the raw data to be split into two separate detection
time intervals (in → out). The COD code of the device (5898756) shows that this was a
cell phone.

of log files during the scanning process in the following compressed format:
timestamp of detection, MAC address of the detected device, COD code of
the detected device, in/out/pass. A buffer time of 10 seconds is used to create
detection time intervals from the detection time points. In is written when
a device enters the detection range of the sensor, and out is written when the
device leaves the range. Pass is used for solitary detections with no prior or later
detections within 10 seconds. The principle of this logging system is depicted in
Figure 14.2. In correct terminology, this compression actually transforms a geo-
localized semantic trajectory into an abstract and structured semantic trajectory
where individual detections are compressed into detection intervals representing
the presence of a mobile device within a scanner’s range during a certain time
interval.

This compressed interval-based representation adhering to the proximity prin-
ciple is then imported into our processing environment for further analysis.
Figure 14.3 shows a screenshot of this environment, dubbed a Geographical
Information System for Moving Objects (GisMo). It was developed in Java as a
desktop client.

14.3 Case Studies

To give a general overview of the merits of the Bluetooth tracking methodology,
we will show three case studies that have been carried out in three different
application contexts: crowd management and safety at a mass event, and mar-
keting insights in two retail environments: a professional fair and a shopping
mall.
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Figure 14.3 Screenshot of the GisMo analysis environment. MAC addresses have been
partly smudged for privacy reasons.

14.3.1 Crowd Management and Safety at a Mass Event: Ghent Festivities
2010 and 2011

Because Bluetooth allows for nonparticipatory, unannounced, and simultaneous
tracking of a large number of individuals, it is particularly useful for monitoring
visitor flows at mass events. However, and despite this potential, only a few
studies using Bluetooth tracking at mass events have been reported in the aca-
demic literature (some are described in Section 14.5). Hence, the methodology
was tested at the Ghent Festivities, one of the largest outdoor cultural events in
Europe, which lasts for 10 days in July and attracts around 1.5 million visitors
annually. This setting offers a challenging test bed in terms of crowd size, dura-
tion of the event, and spatial extent of the study area (the historic city center of
Ghent comprises around 4.5 km2). Because of the size and the open nature of the
event – most activities in the festival are free, and there are no explicit entrance
or exit points – collecting objective numerical data on visitors is challenging.
The resulting lack of quantitative data acts as a bottleneck for research into the
spatio-temporal dynamics of visitor movements. Exemplary to this is the issue
of calculating the total number of visitors that attend the festival, which has tra-
ditionally been estimated by using proxy variables such as the daily amount of
waste collected and the number of tram or bus tickets sold. As such, estimations



14.3 Case Studies 283

vary but the general consensus is that approximately 1.5 million (nonunique)
visitors attended the festival in 2010. Other than this rough figure and the use
of video technology by the police department to give a qualitative indication of
crowdedness or other safety issues, little is known about the general movement
patterns of these visitors within and around the festival site: how long they stay
at the festival, the number of days they visit the festival, how they reach the
event, and so on.

Given the limited range of Bluetooth scanners and the size of the event, a
full coverage of the entire study area was impossible from a practical point
of view. Instead, a careful selection of strategic coverage sites was made after
consultation with local policy makers and urban experts, with the purpose of
collecting as many significant individual movements as possible. In 2010, 22
locations were covered, including the large public squares in the city center, a
selection of points of access into the event zone, two train stations, and a tram
station located next to a park and ride facility. In 2011, we were able to capture
visitor movements in the center in a more finely grained way by employing 43
scanners exclusively in and around the center of the city.

As overcrowding is usually regarded as the main danger at mass events, we
started by using Bluetooth tracking as a counting methodology instead of a
tracking methodology as such. In order to extrapolate from counts of detected
devices to real numbers of people within the detection range of a scanner, we need
to know the fraction of visitors that are detected by our system (corresponding
to individuals carrying devices that have a discoverable Bluetooth interface). To
this end, we compared visual head counts with the number of unique Bluetooth
devices in a number of narrow passageways during a certain amount of time
(usually 15 minutes), and divided the latter by the former. This penetration rate –
also referred to as detection ratio – usually varies slightly from event to event,
but in 2010 it amounted to 11.0 ± 1.8%. Using this figure, we could extrapolate
and roughly estimate crowdedness levels. As an example of this use as a counting
methodology, the daily and hourly variations in crowdedness of the event zone
are illustrated in Figure 14.4.

The hourly variation is characterized by a very smooth curve with sharp
troughs in the morning (usually around 7 a.m.). The peaks are also usually sharp
and situated around 11 p.m. except for on days 2, 5, and 9, where a broader
peak in the late afternoon is observed. These correspond to two Sundays and
the national day of Belgium (July 21st), and these days are known to attract
more daytime visitors (such as working couples with children). As a result, the
sharp peaks around midnight do not appear because of the relatively greater
crowdedness earlier in the afternoon. The three busiest days are immediately
visible, with the fourth day being the most crowded with almost 10,000 detected
phones or around 90,000 unique visitors in the festivities zone between 11 p.m.
and 12 a.m. To aggregate over daily periods, we had to carefully consider how
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Figure 14.4 Daily (dashed line, event days starting and ending at 7 a.m.) and hourly (solid
line) number of detected phones over the entire Ghent Festivities 2010 event zone as
an indicator of crowdedness. Solid vertical gridlines point to midnights, dashed vertical
gridlines are plotted every 4 hours.

to define a day. Looking at the hourly crowdedness, it is clear that it does not
make much sense to define days starting and ending at midnight because that
is generally the most crowded period of the day. Doing so would cause the
Bluetooth observations to be segmented by unnatural breaks. Consequently, we
have considered the starting point of an “event day” to coincide with the on
average least crowded moment of a day, that is, 7 a.m. The daily aggregates
again show the three busiest days, with day 4 peaking at almost 20,500 detected
phones or 190,000 visitors.

Although the number of visitors present at a certain location and time is
already a good indicator for the likelihood of safety issues, the movement of
visitors from one location to another offers even more insight into the spatio-
temporal dynamics of a crowd. Although only flows of visitors carrying dis-
coverable Bluetooth devices can be reconstructed, the discovered patterns and
trends can aid stakeholders in making well-informed decisions regarding crowd
management and security in general. By making a time series of these flow
diagrams, it is possible to investigate the time dependency of certain visitor
flows.

Figure 14.5 shows a visualization of such dynamic visitor flows in Google
Earth, comparable to the figures presented in Chapter 8. The KML file was
generated in the GisMo environment and can be animated in time. Four snapshots
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(a) 20/07/2011 14:00-14:30 (b) 20/07/2011 22:00-22:30

(c) 21/07/2011 04:00-04:30 (d) 21/07/2011 06:00-06:30

Figure 14.5 Spatio-temporal variation of visitor flows during the Ghent Festivities 2011.
Four snapshots show the cumulative flows during four time windows of 30 minutes. The
outer border delineates the official event zone where specific regulations are in order to
make the event as safe as possible. The direction of an arrow indicates the direction of the
flow; the width of the arrow indicates its size. The widths of the arrows are normalized to
the size of the largest flow during each time period separately, so flows from other time
windows cannot be directly compared based on this visualization.

are depicted – each depicting the cumulative flows over 30 minutes. In the
afternoon (Figure 14.5a), visitor flows are quite evenly spread over the event
zone, except for the area in the northeast depicted by the rectangle. Most of
the large flows are balanced in their directionality, but the flows in the perifery
are mainly inward oriented. Visitors regularly venture further from the center
across the Leie and Lieve rivers (depicted by the oval in the west of the event
zone). In the evening (Figure 14.5b), the region in the Northeast has clearly
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sprung to life. Throughout the rest of the event zone, there is also an abundance
of visitor flows. There is still a net inflow of visitors visible in the perifery.
Later in the morning (Figure 14.5c), we see some important differences from
the previous view. First of all, most flows within the event zone seem to show a
net migration to the northeast, where there is a lot of activity. This is caused by
nighttime visitors walking to this area after all music performances have ceased
in the rest of the event zone. Additionally, flows surrounding the event zone now
show a net efflux (most apparent in the southeast). Visitors generally stay closer
to the center as well. Later, around dawn (Figure 14.5d), the largest flows are
situated in the Northeast whereas the areas that attracted large crowds during
the day are rather desolate in comparison. More importantly, most flows now
point away from the northeast. This represents the ongoing egress of visitors
returning home.

14.3.2 Marketing Insights in Retail Environments

As discussed above, Bluetooth tracking can be considered a helpful tool in aiding
crowd management during mass events. However, the gathering of large crowds
does not only cause negative consequences such as higher risks of safety issues.
It also creates opportunities because large crowds represent large volumes of
potential consumers when these people walk around in a retail environment. As
such, marketing can be regarded as an application context for our methodology
that is just as relevant as crowd safety. This is not much of a surprise as the
place constitutes an essential component of the classic marketing mix, next to
price, product and promotion. Traditionally, place in a marketing context can be
interpreted in several ways ranging from the physical location where a product is
purchased to the distribution chain linked to a product. The (changing) location
of a client browsing or purchasing in a retail environment is equally relevant,
however. The opportunity to measure these movements in a (semi)automatic
way with modern tracking technologies has even been hailed as a “third wave
of marketing intelligence.”

Visitor Movements at a Professional Fair

Fairs might not represent a retail environment sensu strictu, as the major aim is
to showcase products or services instead of selling them, but visitor movements
in these contexts are highly valuable nonetheless. Organizers of fairs often need
to distribute a limited showcasing area to a large number of companies. These
individual companies want to maximize their exposure, while the fair organizers
want to optimize the general quality of both the visitors’ experience in general
as well as the return on investment envisioned by the companies having booths
at these events. Additionally, rental prices of areas occupied by exhibition stands
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not only depend on their size but also on their location. Since certain locations
are already known to attract larger portions of the crowd (“hotspots”), these will
be more expensive for companies wanting to place a booth there. In the end,
however, fair organizers need detailed movement data in order to give more
accurate estimates of these rental prices and possibly adapt the distribution of
exhibition stands based on findings extracted from these data.

In light of this application context, a cooperation was set up with a well-known
fair organizer owning a large exposition venue composed of eight halls and
covering an area of over 50,000 m2. During two editions of a large professional
catering fair (2009 and 2010), the Bluetooth tracking methodology was tested
in this indoor environment. Some basic results are shown in this section.

Tests showed that 35% of the visitor population was tracked, which is signifi-
cantly higher than the detection ratio of around 11% during the Ghent Festivities.
The most important factor contributing to this higher figure is most likely the
increased penetration of Bluetooth-enabled devices in the population of catering
professionals. Figure 14.6a shows the distribution of the number of halls visited
per detected individual for the fairs in 2009 and 2010. The curve for the 2009
fair clearly shows a smaller share of individuals visiting four halls or less, and
a higher share visiting five halls or more. In short, visitors tended to visit more
halls on average in 2009 than in 2010. The histograms in Figure 14.6b show the
distribution of time durations spent across the different halls. Durations of less
than 5 minutes were filtered out for visualization purposes (these represent peo-
ple traversing a hall instead of “visiting” it anyway). There is a clear difference
in average times spent in each hall. Visitors seem to spend most time in hall 1
(which is the main and also largest hall), followed by hall 8 (which is the second
largest hall). The difference between the remainder of the halls (which are all
equal in size and smaller than halls 8 and 1) is smaller. Visitors spend roughly
equal amounts of time in halls 7, 4, and 3, followed by halls 2 and 5. Hall 6 is
on average visited for the shortest amount of time.

Customer Movements in a Shopping Mall

The value of modern tracking technologies in generating valuable marketing
intelligence has already been touched upon. In order to examine the specific
merit that Bluetooth tracking could hold in this context, the technology was
also tested in a retail environment sensu strictu: a shopping mall that consists
of thirty-nine stores of varying size distributed over three floors. The movement
of customers from one store to another was registered during a one-month
period leading up to Christmas. Scanners were also placed at the entrances
and the subterranean parking lot in order to analyze visitor flows in and out of
the venue. Table 14.1 shows the number of visitors that were detected in each of
the stores inside the shopping hall, sorted from the most popular clothes store to
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Table 14.1 Number of Detected Visitors at Each of the Venues in the Shopping Mall
During the One-Month Tracking Period, Ranked from High to Low. Venue Names

have been Anonymized According to the Type of Products/Services They Offer
(M: male, F: female)

Venue Detected Visitors Venue Detected Visitors

clothes MF 8064 clothes F 5 378
supermarket 2694 clothes F 2 376
household 3 1964 clothes M 1 354
household 1 1526 snacks sweet 260
clothes knitting 1461 lingerie 2 247
books etc 1 1171 bistro 1 231
clothes F 4 972 clothes F 1 226
mobilephones etc 1 889 bistro 2 199
cosmetics 1 810 clothes M 2 160
shoes 799 interim office 121
hobby 776 optician 101
snacks 717 mobilephones etc 2 93
clothes F 3 704 jewelry 92
home entertainment 673 flowers 75
household 2 667 hair salon 52
lingerie 1 588 leatherware 51
cosmetics 2 575 photo services 41
books etc 2 511

a photo services store that attracted the smallest share of visitors. As is the case
in most shopping malls, one can see that there are a number of dominant anchor
stores accompanied by smaller stores.

As an example on how these tracking data can be mined for interesting
knowledge or patterns, we will focus on association rules between the different
shops customers visit in the same shopping trip. As such, the sequence in
which shops were visited is of no importance in this analysis. Additionally,
note that we cannot distinguish between customers who made a purchase in a
store and customers who did not. More formally, the problem can be defined
as follows. Let I = i1, i2, . . . in be a set of binary attributes called items. In this
specific case, these items represent a customer’s presence in each store. Each
customer’s visiting pattern constitutes a transaction, which contains a subset
of the items in I . An association rule can then be defined as X ⇒ Y where
X, Y ⊆ I and X ∩ Y = ∅. The itemsets X and Y are called antecedent and
consequent respectively. Different measures can be used to select interesting
rules from the set of all possible rules. The support of an itemset is defined as
the proportion of transactions in the data set that contain the itemset, and the
support of an association rule is defined as the support of its antecedent. The
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confidence of an association rule is defined as support(X∪Y )
support(X) , and measures the

confidence with which an antecedent can accurately predict the consequent. The
lift of an association rule combines the previous two measures and is defined as
conf idence
support(Y ) . As such, the lift takes both the confidence and the representativeness
(support) of an association rule into account.

We used the popular WEKA data-mining platform (version 3.6.5) for a very
succinct mining exercise. A preliminary run of the Apriori algorithm for the
10 rules with the highest confidence (minimum support of 0.01) shows the
following output:

1. clothes F 3=true clothes F 4=true 238 → clothes MF=true 201
conf:(0.84)

2. clothes F 4=true clothes knitting=true 267 → clothes MF=true 217
conf:(0.81)

3. clothes F 4=true clothes F 5=true 220 → clothes MF=true 174
conf:(0.79)

4. household 3=true clothes F 4=true 258 → clothes MF=true 199
conf:(0.77)

5. shoes=true clothes knitting=true 221 → clothes MF=true 169
conf:(0.76)

6. clothes F 1=true 241 → clothes MF=true 180 conf:(0.75)
7. clothes M 1=true 385 → clothes MF=true 281 conf:(0.73)
8. clothes F 4=true 1089 → clothes MF=true 777 conf:(0.71)
9. household 1=true shoes=true 236 → clothes MF=true 168 conf:(0.71)

10. clothes F 5=true 414 → clothes MF=true 293 conf:(0.71)

The first important point to notice is that all rules contain clothes FM as an
item in their consequent. In fact, 54 out of the 64 rules found in total (minimum
support of 0.01, minimum confidence of 0.3) contain this item. As this anchor
store in the shopping mall attracts the majority of visitors (see Table 14.1), it
appears in a large number of rules with high levels of confidence and hence also
pollutes the view with rather obvious rules. Accordingly, we removed this store
from the data set and reran the algorithm (minimum support of 0.005, sort by
lift with a minimum lift of 1.1) in order to mine for less obvious (and hence
more interesting) rules. The algorithm finds 266 rules, out of which the 20 top
rules are shown below:

1. clothes F 3=true clothes F 4=true 238 → clothes F 5=true 88
conf:(0.37) <lift:(14.9)> lev:(0) [82] conv:(1.54)

2. clothes F 5=true 414 → clothes F 3=true clothes F 4=true 88
conf:(0.21) <lift:(14.9)> lev:(0) [82] conv:(1.25)

3. clothes F 4=true 1089 → clothes F 3=true clothes F 5=true 88
conf:(0.08) <lift:(10.62)> lev:(0) [79] conv:(1.08)
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4. clothes F 3=true clothes F 5=true 127 → clothes F 4=true 88
conf:(0.69) <lift:(10.62)> lev:(0) [79] conv:(2.97)
5. clothes F 2=true 414 → clothes F 5=true 101 conf:(0.24)

<lift:(9.83)> lev:(0.01) [90] conv:(1.29)
. . .
14. clothes F 4=true 1089 → clothes F 1=true 91 conf:(0.08)
<lift:(5.79)> lev:(0) [75] conv:(1.07)
15. lingerie 2=true 267 → clothes F 4=true 99 conf:(0.37) <lift:(5.68)>
lev:(0) [81] conv:(1.48)
16. clothes F 4=true 1089 → lingerie 2=true 99 conf:(0.09) <lift:(5.68)>
lev:(0) [81] conv:(1.08)
17. household 1=true clothes F 3=true 162 → clothes knitting=true 83
conf:(0.51) <lift:(5.2)> lev:(0) [67] conv:(1.83)
18. clothes knitting=true 1645 → household 1=true clothes F 3=true 83
conf:(0.05) <lift:(5.2)> lev:(0) [67] conv:(1.04)
19. household 1=true clothes F 4=true 209 → clothes knitting=true 103
conf:(0.49) <lift:(5)> lev:(0) [82] conv:(1.76)
20. clothes knitting=true 1645 → household 1=true clothes F 4=true
103 conf:(0.06) <lift:(5)> lev:(0) [82] conv:(1.05)

Again, clothes stores are abundant in the rules. The top 14 rules even exclu-
sively contain clothes stores selling women’s fashion. The rest of the top 20 is
completed with rules that also link with a household store, a lingerie store, and
a clothes store that also sells knitting accessories. Clearly, this shows that strong
associations exist between stores that are focused on a more female-oriented
public. It might be interesting to focus on clothes stores that sell men’s fashion
(clothes M) in order to zoom in on a male audience. When we filter out the rules
that do contain such a store in their itemset, we end up with the following 4
rules:

49. clothes M 1=true 385 → snacks=true 83 conf:(0.22) <lift:(4.12)>
lev:(0) [62] conv:(1.2)
50. snacks=true 874 → clothes M 1=true 83 conf:(0.09) <lift:(4.12)>
lev:(0) [62] conv:(1.08)
197. clothes M 1=true 385 → household 3=true 111 conf:(0.29)
<lift:(2.08)> lev:(0) [57] conv:(1.21)
198. household 3=true 2318 → clothes M 1=true 111 conf:(0.05)
<lift:(2.08)> lev:(0) [57] conv:(1.03)

We find associations between one men’s clothing store and a snacks store and
household store respectively. Although these rules are clearly less strong (low
confidences), it is noteworthy that other and less trivial associations are found
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in comparison with female oriented rules. The smaller number and attraction of
male-oriented stores will certainly be one of the main reasons as to why we see
this female bias. Clearly, more research is needed in order to mine for interesting
patterns that instead of stating the obvious should provide interesting and new
knowledge.

14.4 Conclusions

In this chapter, we have demonstrated the merits of Bluetooth tracking as an
innovative, inexpensive, unobtrusive, and flexible methodology for measuring
human mobility in a variety of contexts and environments. At mass events it can
aid crowd managers by delivering quantitative data on crowd sizes and flows,
and in retail environments it can extract marketing intelligence or other organi-
zational intelligence through methods ranging from visual data exploration to
data mining techniques such as association rule learning.

However, the unobtrusive nature of the tracking process resulting in large
sample sizes automatically also constitutes a methodological issue: the possi-
bility of biased results by oversampling certain segments of the total population
of individuals. Adolescents with a higher education might indeed carry more
Bluetooth-enabled devices than elderly people, and young children will probably
never be detected. The potential difference in Bluetooth usage among different
audiences might significantly influence generated insights. Accordingly, more
research is needed into the use of discoverable Bluetooth-enabled devices by
different population segments in order for Bluetooth tracking to evolve into
a technology delivering accurate and reliable information to policy makers,
crowd managers, and marketing researchers. The penetration rates we found in
our experiments ranged from around 11% for a general audience to 35% for a
professional fair visitor profile. In the end, a more systematic way of calculat-
ing the percentage of the population being tracked will be necessary for more
reliable extrapolations in the future. Additionally, the possible influence of time
and space on the detection ratio needs to be investigated.

The tentative association rule analysis with the shopping mall data only
shows a very small selection of data mining possibilities with Bluetooth tracking
data. Specifically for association rules, it soon became clear that there is a
need for methods that can filter out more interesting rules from a larger set
of less interesting rules. Intelligent visualization and/or pruning of association
rules instead of solely listing them will certainly aid in this process. Besides
association rule discovery, other data mining methods such as those described
earlier in Chapter 6 can also generate valuable knowledge from this type of sparse
movement data. They might need further modifications, however, to handle the
spatio-temporal complexity of Bluetooth tracking data.
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A Complexity Science Perspective
on Human Mobility

Fosca Giannotti, Luca Pappalardo, Dino Pedreschi, and Dashun Wang

Fueled by big data collected by a wide range of high-throughput tools and
technologies, a new wave of data-driven, interdisciplinary science has rapidly
proliferated during the past decade, impacting a wide array of disciplines, from
physics and computer science to cell biology and economics. In particular,
the ICTs are inundating us with huge amounts of information about human
activities, offering access to observing and measuring human behavior at an
unprecedented level of detail. These large-scale data sets, offering objective
description of human activity patterns, have started to reshape, and are expected
to fundamentally alter, our discussions on quantifying and understanding human
behavior. An impressive shift has been witnessed in statistical physics and
complex system theory since the beginning of the new millennium, when the
possibility of analyzing large data sets of human activities and social interactions
boosted a renewed interest in the study of human mobility on one side, and of
social networks on the other side.

The understanding of how objects move, and humans in particular, is a
longstanding challenge in the natural sciences, since the seminal observations by
Robert Brown in the nineteenth century, but it has attracted particular interest in
recent years, due to the data availability and to the relevance of the topic in various
domains, from urban planning and virus spreading to emergency response. A
first contribution of this chapter is to provide a brief account of this body of
research, with a focus on the recent results on the empirical laws that govern
the individual mobility patterns: we discuss how the key variables of people’s
travels (such as length, duration, and radius of gyration) follow universal laws,
validated against different data sets of real observations. We also discuss how
predictable people’s movements are, illustrating recent findings indicating that
the high degree of predictability of human motion is a universal characteristic
of every individual, despite the wide variety of individual whereabouts.
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Next, we move from individuals to interactions – links – among individuals,
and enter the domain of social network analysis. An extraordinary effort has
been devoted to understanding the interconnectedness of individuals, that is, the
structure of the social networks we inhabit, and how this structure influences
social phenomena, such as the importance of certain individuals or groups, the
diffusion of information, or the formation of communities. The second contri-
bution of this chapter is to provide a brief account of the key findings of network
science so far (what the distinctive features of real social networks compared
to random networks are, how the community structure of real networks mod-
els the fabric of society, what the mechanistic processes that generate realistic
networks are), to the purpose of discussing the recent results on how human
mobility shapes and impacts social relations, and the other way around. Again,
empirical laws were found that offer quantitative accounts of the intuition that
people from the same social circles tend to co-locate in space and time more
than people who are far apart in the social network. Building on this relation
among social and mobility variables, it is possible to shed more light on how
social networks (and mobile behavior) evolve over time.

We believe that the results surveyed in this chapter, about individual mobility
laws and the relations between social ties and mobility, should become basic
tools for research in various disciplines, and we envisage that the convergence of
data mining research and network science research, already apparent in some of
the works discussed here, will represent a strong trend in the near future aimed at
combining the analytical power of statistical physics and knowledge discovery.

15.1 Models of Human Mobility

We live in an era in which understanding individual mobility patterns is of
fundamental importance for epidemic preventions and urban and transportation
planning. Yet human movements are inherently massive, dynamical, and com-
plex. Indeed, on one hand, aided by modern transportation technologies, we can
now travel to any place on the globe in just a day or two. On the other hand,
while the mobility of our fellow species is mainly governed by mating needs
and food resources, human mobility is fundamentally driven by ourselves, from
job-imposed restrictions and family-related programs to involvement in routine
and social activities. Therefore, quantifying the regularities and singularities
behind human movements has remained an often elusive goal. Thanks to the
availability of large-scale data sets generated by various domains of modern
technologies, ranging from registration of dollar bills to mobile phone services
and GPS devices to location-based websites, we have witnessed a proliferation
of studies on human mobility.

In this section, we will start from the most fundamental models for motions,
dating back to the nineteenth century. We will then describe several empirical
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observations of human mobility and the new generation of mobility models, pre-
senting to what extent real human mobility patterns deviate from those expected
from simple diffusion processes.

15.1.1 Motion Models: Brownian Motion and Lévy Flights

In 1827, while he was studying sexual relations of plants, botanist Robert Brown
noticed that granules contained in grains of pollen were in constant motion, and
that this motion was not caused by currents in the fluid or evaporation. He thought
at first that they were jiggling around because they were alive or because of the
organic nature of the matter. So, he did the same experiment with dead organic
and inorganic matter, finding there was just as much jiggling. The movement
evidently had nothing to do with the substance ever being alive or dead, and
this left him and his contemporaries with a puzzling question: What is this
mysterious perpetual motion that keeps the pollen moving?

A possible explanation for the so-called Brownian motion1 is that all the
molecules in the fluid are in vigorous motion, and these tiny granules are moved
around by this constant battering from all sides as the fluid molecules bounce
off. Imagine we are in the middle of a crowd and there is a big balloon. As the
individuals move around, they push the balloon from all directions: sometimes
the balloon will move to the left, occasionally to the right, overall displaying a
random, jittery motion like the paths in Figure 15.1. A particle of pollen behaves
like a really huge balloon in the midst of a dense crowd.

Such an atomic-molecular thesis was described by Einstein, who in 1905
published a theoretical analysis of Brownian motion and showed that the mean
distance reached by particles from the first collision point must grow with the
square root of time. It means, for example, that after 4 seconds, the distance is
only twice (

√
4 = 2) the one found after a second, and not four times as insight

would suggest. Einstein’s calculations were confirmed experimentally in 1908
by physicist Jean Baptiste Perrin, who convinced even the most skeptical about
the validity of the atomic-molecular hypothesis.

Before Einstein, Louis Bachelier derived independently several mathematical
properties of Brownian motion, including the equation for the probability P (x, t)
for the position x of a Brownian random walker at time t , when the walker starts
as the origin at time t = 0. The equation for P (x, t) in one dimension is given by
the diffusion equation, with a Gaussian solution. Therefore, a Brownian motion
is basically a random walk with a normal distribution for the position of the
random walker after a time t , with the variance proportional to t . It means that

1 The first observation of Brownian motion was reported in 1785 by the Dutch physician Jan Ingen-
haysz. However, Brown was the first to discover the ubiquity of the phenomenon.
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Figure 15.1 Some examples of Brownian motions.

random walkers tend to travel roughly the same distance between sightings.
However, there are situations in which equations for Brownian motion are no
longer applicable. An example occurs if the jumps are of very large distances:
this is the case for some animal movements. Measurements on albatrosses,
monkeys, and marine predators suggested that animal trajectories are different
from the Brownian motion, and they are better approximated by the so-called
Lévy flight. The French mathematician Paul Lévy investigated in the 1930s the
mathematics of random walks with infinite moments. A random walk of N steps
is a sum of N independent and identically distributed random variables with
mean μ = 0 and variance σ 2, that is, SN = X1 + X2 + · · · + XN . Lévy posed
the following question: when does the probability distribution PN (x) of the sum
of N steps have a similar form as the probability distribution of a single step
p(x)? For walks with finite jump variances, the central limit theorem implies
that the overall probability PN (x) is Gaussian. For infinite variance random
walks, the Fourier transform of p(x) has the form p̄(k) = e−|k|β with β < 2.
The Gaussian distribution (Brownian motion case) corresponds to β = 2, and
the Cauchy distribution corresponds to β = 1. Therefore, Lévy flights are a
generalization of Brownian motions (Figure 15.2).

When the absolute value of x is large, p(x) is approximately |x|−(1−β), which
implies that the second moment of p(x) is infinite when β < 2. This means that
there is no characteristic size for the random walk jumps, except in the Gaussian
case of β = 2. It is just this absence of a characteristic size that makes Lévy
random walks scale-invariant fractals.
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Figure 15.2 Brownian motion (darker curve on the right) is described as a random walk
in which all the steps give the same contribution. A Lévy flight occurs when the trip is
dominated by a few very large steps.

15.1.2 Human Mobility Patterns

Are human movements similar to those of grains of pollen, following a Brownian
motion, or are they governed by Lévy flight, like the movements marine predators
and monkeys? Or do they follow their own laws? To answer above questions,
we need to observe humans under a microscope, like Perrin observed atoms
and was able to experimentally confirm Einstein’s theory. The technological
era, at last, allows us to track human mobility and to test models, thanks to the
exploding prevalence of mobile phones, GPS, and other handheld devices. Such
devices are our social microscopes. In 2006, Dirk Brockmann and his colleagues
proposed using the geographic circulation of bank notes in the United States
as proxy for human traffic, based on the idea that individuals transport money
as they travel. They analyzed data collected at the largest online bill-tracking
Web site, www.wheresgeorge.com, and found that most bills remain in the
vicinity of their initial entry, yet a small but a significant number have traversed
distances of the order of the size of the United States (Figure 15.3), consistent
with the intuitive notion that short trips occur more frequently that long ones.
Brockmann’s team calculated that the probability P (r) of a bank note traversing
a distance r follows a power law:

P (r) ∼ r−(1+β)

with an exponent β ≈ 0.6. Moreover, they found that the typical distance X(t)
from the initial starting point as a function of time is a power law:

X(t) ∝ t1/β .

As we know, for Brownian motion the distance X(t) scales according to the
square-root law. For a power law the variance diverge for exponents β < 2
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Figure 15.3 Short time trajectories of dollar bills in the United States. Lines connect origin
and destination locations of bank notes that traveled for less than a week. Figure from
Brockmann et al. (2006).

and it implies that bank note dispersal lacks a typical length scale resembling
Lévy flights. Lévy flights are superdiffusive; they disperse faster than ordinary
random walks. This discovery was a major breakthrough in understanding human
mobility on global scales. In light of this discovery, in dispersal humans are
similar to animals.

However, our intuition suggests that we do not move completely at random.
There are regularities in our lives: most of us have a home, a workplace, a
hobby. These activities necessarily shape our trajectories. Instead, if we do
follow a pure Lévy flight we rarely find our way back home, but our position
increasingly moves away from the initial one.

To further investigate human mobility patterns, in 2008 Barabási and his team
analyzed the trajectories of 100,000 anonymized mobile phone users whose
positions were tracked for a six-month period. Contrary to bills, mobile phones
are carried by the same individual during his or her daily routine, offering the
best proxy to capture individual human trajectories. An immediate result of the
research was that the distribution of displacements �r between a user’s positions
at consecutive calls is well approximated by a truncated power law:

P (�r) = (�r + �r0)−βexp(−�r/κ)

with exponent β = 1.75 ± 0.15, �r0 = 1.5 km, and some cutoff values κ . Such
equation suggests that human motion follows a truncated Lévy flight, apparently
confirming in a certain way observations on bank notes. However, differences
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from randomness emerge from other measures. The distribution P (rg) of radius
of gyration rg , the characteristic distance traveled by a user when observed up
to time t , also follows a power law, in contrast with random walks (Figure 15.4,
left). So, most people usually travel in close vicinity to their home locations,
while a few frequently make long journeys. Furthermore, the probability Fpt (t)
that a user returns to the position where he or she was first observed after t hours
shows several peaks at 24 hours, 48 hours, and 72 hours (Figure 15.4, right),
capturing the recurrence and temporal periodicity inherent to human mobility.

The most important result was the finding that, after appropriate rescaling
aiming to remove the anisotropy and the rg dependence, all individuals seem to
follow the same universal probability distribution �̃(x̃, ỹ) that an individual is in
a given position (x, y) (Figure 15.5b). Individuals display significant regularity,
returning to a few highly frequented locations, such as home or work. This
regularity does not apply to the bank notes: a bill always follows the trajectory of
its current owner; that is, dollar bills diffuse, but humans do not. Song et al. 2010
extended the experiment to a larger data set and measured the distribution of the
visiting time (the interval �t a user spends at one location). The resulting curve
is well approximated by a truncated power law with an exponent β = 0.8 ± 0.1
and a cutoff of �t = 17 hours, which the authors connected with the typical
awake period of humans. The number of distinct locations S(t) visited by humans
is sublinear in time, well approximated by S(t) ∼ tμ with μ = 0.6 ± 0.02, that
indicates a decreasing tendency of people to visit previously unvisited locations.
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Figure 15.5 (a) The probability density function �(x, y) of finding a mobile phone user
in a location (x, y) in the user’s intrinsic reference frame. The three plots, from left to
right, were generated for 10,000 users with: rg ≤ 3, 20 ≤ rg ≤ 30, and rg > 100 km. The
trajectories become more anisotropic as rg increases. (b) After scaling each position, the
resulting probability distribution has approximately the same shape for each group. Figure
from Song et al. (2009).

Moreover, the visitation frequency, that is, the probability f of a user to visit
a given location, is rather uneven, resulting in a Zipf-like visitation frequency
distribution P (f ) ∼ f −(1+1/ζ ).

15.1.3 Predictability of Human Mobility

What is the role of randomness in human behavior and to what degree is human
behavior predictable? This question is crucial, because the quantification of the
interplay between the predictable and the unforeseeable is very important in
a range of applications. From predicting the spread of human and electronic
viruses to city planning and resource management in mobile communications,
our ability to foresee the whereabouts and mobility of individuals can help us to
improve or save human lives. In 2009, Song et al. 2009 provided a quantitative
evaluation of the limits in predictability for human walks, using a 3-month-long
mobile phone data set of about 50,000 individuals. The authors defined three
entropy measures: the random entropy Srand

i in the case of location visited with
equal probability; the entropy Sunc

i that depends only on frequencies of visits;
and the real entropy Si that considers the probability of finding particular time-
ordered subsequences in the trajectory. To characterize the predictability across
the user population, they determined these three entropies per each user i, and
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representing an upper bound of predictability �max . Figure from Song et al. (2009).

calculated the distributions P (Srand
i ), P (Sunc

i ) and P (Si), that is, the frequency of
entropy values. As shown in Figure 15.6a, P (Si) has a peak in S = 0.8, indicating
that the real uncertainty in a typical user’s whereabouts is 20.8 ≈ 1.74. It means
that a user who chooses randomly his or her next location could be found on
average in two locations. A big difference emerges in respect to the random
entropy, for which the peak at S = 6 implies 26 ≈ 64 locations.

To represent the fundamental limit for each individual’s predictability, Song
et al. 2009 defined the probability � that an appropriate algorithm can predict
correctly the user’s future whereabouts. If a user with entropy S moves between
N locations, then his or her predictability is bounded by the maximal predictabil-
ity �max(S,N). For a user with �max = 0.2, this means that, no matter how good
the predictive algorithm is, only in 20% of the time can we hope to predict his
whereabouts. They determined �max separately for each user and found that the
distribution P (�max) is peaked around �max ≈ 0.93. Figure 15.6b highlights
that �rand and �unc are instead ineffective predictive tools.

Despite the apparent randomness of the individual’s trajectories, in a histor-
ical record of the daily mobility pattern of the users there is a potential 93%
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average predictability in user mobility, an exceptionally high value rooted in the
inherent regularity of human behavior. The most surprising is the lack of vari-
ability in predictability across the population, obtained by explored impact of
home, language groups, population density, and rural versus urban environment.
Although the population has an inherent heterogeneity, the maximal predictabil-
ity �max varies very little; there are no users whose predictability would be
under 80%.

Knowing the history of a person’s movements, the advanced pattern mining
techniques described in Chapters 6 and 7 can be used to find patterns and
regularities in human mobility, and to foresee his or her current location with
extremely high success probability.

15.2 Social Networks and Human Mobility

In the previous section we presented the evolution of the study on human mobil-
ity, describing the main patterns and models that characterize the mobility behav-
ior of individuals. Here, we take a step further in our journey of understanding
human behavior by focusing on the interplay between human mobility and social
networks, with the purpose of highlighting to what extent human movements
affect social dynamics, and how social interactions influence the way people
move.

We will first present a brief overview of network science and its growth in
the last decade, and then we will focus on recent developments and discoveries
regarding the interplay between the social world and the mobility of people.

15.2.1 Introduction to Network Science

Network science is a truly interdisciplinary field that examines the interconnec-
tions among diverse physical, engineered, information, biological, cognitive,
semantic, and social systems. In mathematical terms, a network is represented
by a graph G = {V, E}, where V is a set of n nodes and E is a set of edges that
connect V . According to the definition, any system of interacting elements can
be represented as a network. The mode of thinking of complex networks was
traditionally dominated by random graph theory, first proposed by Erdös and
Rényi in the 1950s. The random graph model presented a simple realization of
a network: we start with N disconnected nodes, and randomly connect every
pair of nodes with probability p, yielding a graph with pN(N − 1)/2 edges.
As data regarding wiring diagrams of real systems started being collected by
computer programs in late 1990s, topological information about real networks
became increasingly available, prompting many scientists to ask a fundamental
question: are real networks, from cell to Internet, truly random? Over the past
decade, we have witnessed dramatic advances along this direction, leading to
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the discovery that despite the intrinsic distinctions in the nature and functional-
ity of the nodes and their interactions, many real-world networks follow highly
reproducible patterns. There are three most studied properties that characterize
a real network:

Average path length measures the average steps it takes for one node to reach
another node in the network, also commonly referred as diameter of a network.
Although real networks often consist of a large number of nodes, they have a
very small diameter, which is most known as the “small world” property or “six
degrees of separation.” That is, individuals on the planet are separated by six
degrees of social contacts. Despite its simplicity, the random graph model well
captures this property, predicting the average path length d ∼ ln N , where N is
the size of the network.

Clustering represents densely connected cliques in a network, and was for-
mally quantified by Watts and Strogatz (1998). They introduced clustering coef-
ficient Ci for node i, which measures the fraction of neighbors of i are also
connected to each other. In the random graph model, as links are distributed
randomly among the nodes, it predicts Ci = p. Yet in almost all real networks,
the clustering coefficients are significantly higher than the random graph model
prediction. To capture the pervasive clustering phenomena, Watts and Strogatz
introduced the small-world model, also known as the WS model: start from
a regular network, for instance a ring, in which each node is connected to its
k nearest neighbors. Let us redirect links with probability p, moving one end
of an edge to a new location chosen uniformly at random from the lattice.
When p = 0, the network is a regular lattice, thus characterized by a very high
clustering coefficient but a large average path length. On the other end, when
p = 1, the network is equivalent to a random graph. As we start to increase p

from 0 to 1, the diameter of the network quickly shrinks, while the cluttering
coefficients remain roughly the same. Therefore, for a wide range of p, the WS
model gives rise to networks with both high clustering coefficients and small
diameter.

Degree distribution, P (k), measures the probability that a randomly selected
node has k edges. The random graph model predicts P (k) follows a Poisson
distribution corresponding to a homogeneous network, where every node has
roughly the same degree around 〈k〉. However, a variety of real networks, span-
ning from the Internet and WWW to scientific citations and actor collaborations,
exhibit the “scale-free” property, a highly reproducible pattern not accounted for
by either random graph model or WS model. That is, P (k) follows a power law
P (k) ∼ k−γ . This result indicates that real networks are rather heterogeneous:
most nodes in the network have very low degree, although there are a notable
number of nodes with a large number of connections. Think about Yahoo! for the
Web, ATP protein for metabolic networks, and Heathrow for air traffic network.
To explain the possible origin of the observed scale-free property, Barabási and
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Albert (1999) introduced the scale-free model (or BA model) by viewing the
network as a dynamical object that evolves with addition of nodes and links to
the system, in strong contrast to the static models that dominated the literature
before. Imagine an initial network of a small number of nodes m0. At each time
step we add a new node with m edges that links the node to m different vertices
already present in the network. The probability that a new node will be con-
nected to node i depends on the connectivity ki of that node. After t time steps
the model leads to a network with t + m0 nodes and mt edges. This network
evolves into a scale-invariant state with the probability that a node has k edges
following a power law with exponent γ = 3.

In addition to the measures listed above, the concept of tie strength has
attracted particular attention in the study of social networks. It was introduced
by sociologist Mark Granovetter in 1973 as a “combination of the amount of
time, the emotional intensity, the intimacy (mutual confiding) and the reciprocal
service which characterize the tie.” He proposed a model of society consisting
of small and fully connected circles of friends, linked by strong ties. Weak ties
connect the members of these intimate circles to their acquaintances, who have
strong ties to their own friends. Since weak ties act as bridges between separate
“social micro-worlds,” they play a crucial role in any number of social activities,
such as the spreading of information, ideas, and diseases, or in finding a job.
Conversely, strong ties link persons in intimate and tight communities, affecting
emotional and economic support.

The existence of a local coupling between tie strengths and network topology
is confirmed by recent research, which exploits the huge quantity of human
interactions recorded by modern tools and technologies. A study conducted by
Onnela et al. analyzed a huge data set that stores the mobile phone interac-
tion of millions of individuals in a time period of 18 weeks. The researchers
inferred a social network from data connecting two users with a link if there had
been at least one reciprocated pair of phone calls between them, and defining the
strength of a tie as the aggregated duration of calls. Consistent with Granovetter’s
hypothesis, the majority of the strong ties were found within highly connected
communities, indicating that users tend to talk for most of their time with the
members of their immediate circle of friends. In contrast, most links connect-
ing different communities were weaker than the links within the communities.
Moreover, as a consequence of the topological structure of the network, remov-
ing the weakest links leads to a rapid network’s sudden disintegration, while
removing first the strongest ties shrinks the network but will not precipitously
break it apart.

The interesting findings discovered by the Onnela et al. study, together with
those of more recent works, confirm the importance of tie strength in study of
networks, suggesting that weak and strong ties play a different but crucial role
in the understanding of many dynamic processes regarding our society.
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15.2.2 Interplay between Human Mobility and Social Networks

Recent advances on human mobility and social networks have turned the inter-
play between these two aspects into a crucial missing chapter in our understand-
ing of human behavior. To make progress in this direction requires large-scale
data that simultaneously capture dynamic information on individual movements
and social interactions. Thanks to the increasing availability of mobile phone
data sets and location-based online social networks (LBSN, see also Chapter 16),
scientists have started to look into the questions of to what extent human mobility
patterns shape and impact our social ties, and how our social surroundings affect
where we go. The central hypothesis here is that social interactions increase with
physical proximity. Indeed, social links are often driven by spatial proximity,
from job- and family-imposed shared programs to joint involvement in various
social activities. These shared social foci and face-to-face interactions, repre-
sented as overlap in individuals’ trajectories, are expected to have significant
impact on the structure of social networks. There are three lines of inquiry in
current literature: (1) geographic propinquity yields higher probability of form-
ing a tie; (2) overlap in trajectories predicts tie formation; (3) social environment
affects individual mobility.

Geographic Propinquity
The considerable influence of geographic distance on the formation, the evo-
lution, and the strength of friendships is probably rooted in the very nature
of our social brain. According to the anthropologist Robin Dunbar, there is a
physical cognitive limit in the number of strong ties the human brain is able
to manage, partly because it must be powered by a form of social grooming, a
time-consuming activity mainly based on geographical proximity and face-to-
face contact.

Recent analysis on Facebook and email data confirmed Dunbar’s intuition,
showing that the volume of communications is inversely proportional to geo-
graphic distance and that the probability P (d) of having a friend at a certain
distance decreases following a sort of “gravitational law.” Although in the last
decades technology has contributed to reducing distances, proximity is still
important for the establishment of relevant relationships, breaking down the
illusion of living in “a global village”: a small world in which physical and
cultural distances vanish and where lifestyle become homogeneous.

In studying the social versus geography problem, data from LBSNs proved
to be very useful. Scellato et al. used information from both the social and loca-
tion components of several LBSNs to identify the relation between friendship
and geographic distance. They noticed a weak positive correlation between the
number of friends and their average distance, and observed that the socio-spatial
structure of the users cannot be explained by taking into account separately
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geographic factors and social mechanisms. Cranshaw et al. (2010) studied the
entropy related to LBSNs locations in order to understand how it affect the
underlying social network. They found that co-locations at high entropy loca-
tions are much more likely to be random occurrences than co-locations at low
entropy locations. So, if two users are only observed together at locations of
high entropy (for example, a shopping mall or a university), they are less likely
to actually have a link in the underlying social network than if they are observed
in a place of low entropy. Moreover, users who visit locations of higher entropy
tend to be more social, having more ties in the social network than users who
visit less diverse locations.

Trajectory Overlap
Given that two persons have been on multiple occasions in the same geographic
place at the same time, how likely are they to know each other? This is another
interesting and open problem about the interplay between sociality and mobility,
regarding to which extent social ties between people can be inferred from co-
occurrence in time and space.

Crandall et al. (2010) studied this problem by analyzing a huge data set from
the popular photo sharing site Flickr, reaching interesting and striking conclu-
sions. They inferred a spatio-temporal co-occurrence between two Flickr users
if they both took photos at approximately the same place and at approximately
the same time. Rather surprisingly, they found that even a very small number of
co-occurrences can lead to orders-of-magnitude greater probabilities of a social
tie. Indeed, two users have nearly 5,000 times the baseline probability of having
a social tie on Flickr when they have just five co-occurrences in a day in an
80-km range of distance. With the aim of a deeper understanding of the under-
lying phenomenon, they developed a mathematical model in which the proba-
bilities of friendship as a function of co-occurrence qualitatively approximate
the distributions they observed in the Flickr data.

Wang et al. (2011) presented a data-mining approach to the question of to
what extent individual mobility patterns shape and impact the social network.
Following the trajectories and communication patterns of approximately 6 mil-
lion mobile phone users over 3 months, they defined three groups of similarity
measures: mobile-homophily (similarity in trajectories), network proximity (dis-
tance in the call graph), and tie strength (number of calls between two users).
Exploring the correlation between these measures, researchers discovered that
they strongly correlate with each other. The more similar two users’ mobil-
ity patterns are, the higher the chance that they have close proximity in the
social network, as well as the higher the intensity of their interactions. Starting
from these results, they designed a link prediction experiment, constructing the
entire repertoire of both supervised and unsupervised classifiers, based either
on network and/or mobility quantities. Results showed that mobility on its own
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Figure 15.7 Correlations between mobility measures and Adamic-Adar coefficient (left),
tie strength (right). The proximity measures used are the spatial co-location (CoL) and the
spatio-temporal co-location (SCos) inferred from the trajectories of the users. Figure from
Wang et al. (2011).

carries high predictive power, comparable to that of network proximity mea-
sures. By combining both mobility and network measures, in the supervised
case authors obtained that only approximately one-fourth of the predicted new
links were false positives, and only one-third of the actual links were missed by
the predictor.

The results of the study by Wang et al. suggest that Granovetter’s theory
should be integrated with a “mobility” dimension: as we can notice in Fig-
ure 15.7, the strength of a tie is correlated not only to social proximity (the
extent to which people share the same community) but also to their mobility
behavior (the overlapping of their spatio-temporal trajectories).

Social Environment Affects Individual Mobility
Cho et al. investigated the interaction of a person’s social network structure and
his or her mobility using data sets that capture human movements from Gowalla,
Brightkite, and phone location trace data. Because they uncovered a surprising
increase of the effect of distant friends on an individual’s mobility, they tried to
understand if friendships influence where people travel, or if it is more traveling
that influences and shapes social networks. In order to measure the degree of
causality in each direction, they downloaded the Gowalla social network at two
different time points, t1 and t2, three months apart. Considering friendships
at time t1, they calculated a set of check-ins Ca that occurred after time t1
and quantified the influence of sociality on future movements by measuring
what fraction of them occurred within the vicinity of friends’ homes. Similarly,
researchers examined the influence of mobility on creating new social ties by
examining a set of check-ins Cb before time t1 and counted the fractions of
check-ins that led to creation of new friendships. They found that whereas there
is, on average, a 61% probability that a user will visit a home of an existing friend,
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the probability that a check-in will lead to a new friendship is only 24%. Such
results were confirmed in phone call data, with the influence of friendship on an
individual’s mobility about 2.5 times greater than the influence of mobility on
creating friendships. Moreover, data also display a strong dependency between
probability of friendship and trajectory similarity, suggesting that there is a
strong presence of social and geographical homophily.

The most interesting aspect of such main findings in the interplay between
sociality and mobility is that they can be used to develop a model of human
mobility dynamics combining periodic daily movement patterns with the social
movement effects coming from the friendship network.

15.3 Conclusions

We have discussed in this chapter how the tools of statistical physics and com-
plexity science have been applied to the study of human mobility, both focusing
on individual movements and considering also the social relations among indi-
viduals. We have observed how, in both cases, general laws can be devised and
empirically validated based on the newly available mobility data, shedding a
new light on the underlying mechanisms behind phenomena that, at first sight,
seem to be governed by chaos.

We conclude with an observation that spontaneously emerges from the cur-
rent trend of research, as presented here: there is an evident push toward the
convergence of network/complexity science and data mining research, a pro-
gressive merge of the two scientific communities that is only beginning today,
but is steadily increasing due to the advantages of combining the complementary
strengths and weaknesses of the two approaches. Why is this merge convenient?

We learned in this chapter that statistical physics and network science are
aimed at discovering the global models of complex social phenomena, by means
of statistical macro-laws governing basic quantities; the ubiquitous presence of
power laws and other long-tailed distributions allows us to witness the behav-
ioral diversity in society at large, such as the huge variability and individual
differences of human movements. On the other hand, data mining is aimed at
discovering local patterns of complex social phenomena, by means of micro-
laws governing behavioral similarity or regularities in subpopulations, such as
the mobility patterns and clusters discussed in Chapters 6 and 7 of this book.
This dualistic approach is illustrated in Figure 15.8. In the overall set of indi-
vidual trajectories across a large city we observe a huge diversity: while most
travels are short, a small but significant fragment of travels are extraordinarily
long; therefore, we observe a long-tailed, scale-free distribution of quantities
such as the travel length and the users’ radius of gyration. Despite this com-
plexity represented in the data, mobility data mining can automatically discover
travel patterns corresponding to a set of travelers with similar mobility: in such
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Figure 15.8 The GPS trajectories of tens of thousands of cars observed for one week in
the city of Milan, Italy, and the power-law distribution of users’ radius of gyration and
travel length (left); the work–home commuting patterns mined from the previous data set
by trajectory clustering and the normal distribution of travel length within each discovered
pattern (right).

subpopulations the global diversity vanishes and similar behavior emerges. The
dual scenario of global diversity (whose manifestation is the emergence of scale-
free distributions) and local regularity (within clusters, or behavioral profiles)
is perceived today as the signature of social phenomena, and seems to repre-
sent a foundational tenet of computational social sciences. Although network
science and data mining emerged from different scientific communities using
largely different tools, we need to reconcile the macro/global approach of the
first with the micro/local approach of the second within a unifying theoretical
framework, because each can benefit from the other and together they have the
potential to support realistic and accurate models for simulation and what-if
reasoning of social phenomena. This vision of convergence among computer
science, complexity science, and the social sciences is shared today by large
research initiatives, such as the FuturICT program.2
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The famous small-world model was presented in Watts and Strogatz (1998), and
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nature of society can be found respectively in Milgram (1967) and Granovetter
(1973). The scale-free model was introduced first in Barabási and Albert (1999).

The analysis of human mobility based on dollar movements can be found in
Brockmann et al. (2006). In González et al. (2008) are described the mobility
patterns discovered by analyzing a rich mobile phone data set, a work later
extended in Song et al. (2010). Limits on predictability of human mobility
are presented in Song et al. (2009), while Karamshuk et al. (2011) classifies
mobility patterns in temporal, social, and spatial dimensions. Cranshaw et al.
(2010) studies the entropy related to LBSN locations in order to understand how
it affect the underlying social network. Crandall et al. (2010) analyzed a data set
from Flickr and discovered that even a small number of co-occurrences leads
to high probability of a social tie. Wang et al. (2011) presents a data mining
approach to the question of to what extent individual mobility patterns shape
and impact the social network. In Cho et al. (2011), authors investigate the
interactions between social network and mobility by analyzing data sets from
location-based social networks and a mobile phone network.
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Mobility and Geo-Social Networks
Laura Spinsanti, Michele Berlingerio, and Luca Pappalardo

16.1 Introduction

The social web is changing the way people create and use information. Every
day millions of pieces of information are shared through the medium of several
online social networks and online services with a social layer such as Facebook,
Google+, Twitter, Foursquare, and so on. People have discovered a new way to
exploit their sociality: from work to entertainment, from new participatory jour-
nalism to religion, from global to local government, from disaster management
to market advertisement, from personal status update to milestone family events,
the trend is to be social. Information or content is shared by users through the
web by posting images or videos, blogging or micro-blogging, surveying and
updating geographic information, or playing geographic-based games. Consid-
ering the increase in mobile Internet access through smartphones and the number
of available (geo-) social media platforms, we can expect the amount of infor-
mation to continuously grow in the near future. To understand the potential of
this change it is worth noticing the amount of “geo-social information” produced
during recent years to be a daily occurrence. The following are just few exam-
ples. In August 2006, Flickr introduced the geo-tagging feature; by 2007, more
than 20 million geo-tagged photos were uploaded to Flickr. In August 2011,
Flickr announced its 6 billionth photo, with an increase of 20% year-on-year
over the last 5 years.1 Similarly, Twitter was born in 2006. The most impressive
performance indicator is the increasing rate of messages. In 2010, the average
number of Tweets sent per day was 50 million2 while in March 2012 it has
increased to 340 million.3 In 2010, the geo-tagging feature was added to Twit-
ter. Even considering that the amount of geo-enabled messages is only around

1 Source: http://blog.flickr.net/en/2011/08/04/6000000000/
2 Source: http://blog.twitter.com/2011/03/numbers.html
3 Source: http://blog.twitter.com/2012/03/twitter-turns-six.html
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1%, this still means millions of geo-tagged messages per day. People can now be
considered as sensors, producing signals on events they are directly involved in
or they have witnessed. Finding, visualizing, and making sense of vast amounts
of geo-referenced information will lead to a multi-resolution, multi-dimensional
representation of the planet known as Digital Earth.

Such multi-modality and heterogeneity of online geo-referenced multimedia
has encompassed challenges not seen in traditional geographic data analysis and
mining and has attracted the attention of researchers from various communities
of knowledge discovery in databases, multimedia, digital libraries and com-
puter vision. However, there are clearly several challenges associated with such
information: the frequent changes in the data structure, the unstructured nature
of contents, the limited quality control of information, varying uncertainty of
geographic information, and the semantic aspect on the content published, to
mention a few issues. In the era of Web 2.0, the various geo-referenced media are
mostly socially generated, collaboratively authored and community contributed.
The temporal and geographical references, together with textual metadata, reflect
where and when the media were collected or authored, or the locations and time
described by the media content. The enriched online multimedia resources open
up a new world of opportunities to discover knowledge and information related
to location and our human society.

Social networks that also use and create geo-social information have grown
in importance and popularity, adopting names such as location-based mobile
social networks, or geographic social networks, or simply social networks with
geographic features. In general, there exist several types of media with tem-
poral and geographical references on the Internet: (1) geo-tagged photos on
photo-sharing websites like Flickr, (2) geo-referenced videos on websites like
Youtube, (3) geo-referenced web documents, such as articles in Wikipedia and
blogs in MySpace, (4) geo-referenced microblogging websites such as Twitter,
and (5) “check-in” services (users can post their location at a venue and connect
with friends) such as Foursquare. Most of these services publish unsupervised
(geo-spatial) content. Their importance has grown in such a way that several
terms are currently circulating: crowd sourcing, which considers users as sensors
for gathering data; distributed intelligence, where users are basic interpreters or
preprocessors in transmitting information; participatory science, when citizens
participate in problem definition, data collection, and data interpretation; volun-
teered geographic information (VGI), when the contributive aspect is crucial;
contributed geographic information (CGI), when the geographic features are
activated by the user; or just user generated geographic content (UGGC), when
there is a geographic reference, such as a place name, but the user-active con-
tribution is unpredictable. Some ambiguity in the use of different terms exists,
such as crowd-sourced data being synonymous with volunteered geographic
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information (VGI) without distinguish different levels of participation (or
“voluntariness”) when providing information. However, the term CGI could
act as a broader term in this context and, therefore, it will be used in the rest of
the chapter.

The voluminous geo-referenced contents on the Internet are a result of col-
lective geo-tagging by the web community. Geo-tagging refers to the process
of adding geographical identification metadata to media resources, such as pho-
tographs, video, articles, and web sites. The metadata usually consist of latitude
and longitude coordinates and, sometimes, altitude, camera heading direction, IP
address, and place name. In general, the means of geo-tagging can be classified
into two types: integrated hardware (automatic), and purely software solutions
(manual). GPS and other geolocation acquisition hardware provide an automatic
solution for geo-tagging contents. However, till now, only a small portion of
geo-referenced information is geo-tagged via these means and any geographic
information mostly depends on the nature of the content. For example, most
geo-referenced photos on the Internet are tagged by web users manually via
a geo-tagging software platform. To facilitate easy geo-tagging, commercial
media sharing services have adopted map-based tagging tools. In general, these
geo-tagging tools allow a user to drag and drop photos to a location on the map.
The intuitive map and user-friendly interface render the geo-tagging a simple
and straightforward process. However, the major limitation of such geo-tagging
processes is that, currently, no industry standards exist on tagging and storing
the geo-tags of media. Most commercial media repositories store geo-tags in
tag-based systems, similar to how text tags are stored. The most important con-
sequence is that several facets of uncertainty are related to the location that can
be retrieved as we describe later in the chapter.

The rest of the chapter gives an overview of existing and foreseen applications
that use this CGI data with a particular focus on mobility. It then describes the
problem to reconstruct trajectories from the Semantic Web and the research
issues related to geographic and semantic uncertainty of this data. Several open
issues still remain due to the novelty of this research area and they are described
at the end of the chapter.

16.2 Geo-Social Data and Mobility

The use of geo-social data covers a wide range of possible applications, essen-
tially all the contexts in which location (and time) plays an important role, such
as health, entertainment, work, personal life, and tourism. Although we want
to focus on the mobility aspects of geo-social data, we have to say that this
topic is really a forefront research of latest years. The studies conducted so far
have started based on several works produced on mobile phone data. Despite the
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similarities between geo-social data and mobility phone data, as explained in
Section 16.4.2, the conceptual framework and the characteristics of geo-social
data lead to a real new branch of research. The research about this new domain
is far from being exhaustive. As described in Section 16.3, trajectories resulting
from geo-social data are built from a collection of sparse data points. This ends
up in different groups of applications, as described here.

We can distinguish a first group of applications that use only the location
from geo-social data, generally to filter the contents (message, photo, video,
news, tweets, and so on) from a zone they want to analyze or about which
they want to receive alerts (newsfeed mechanism). Some examples from the
natural disaster field include wild fires in the United States and France, hur-
ricanes in the United States, the 2010 earthquake in Haiti, and floods in the
United Kingdom, while an example from social-political field is the Arabic
revolutions started in late 2010. In all these cases, messages were filtered using
the related location such as coordinates, user location settings, or place names
in text or tags. The impact of (geo)social media during crisis events has been
shown to have high value for relief workers or coordinators and the affected
population.

Another group of applications uses the set of places to discover patterns.
An example is the tourism knowledge scenario. In Web 2.0 communities, peo-
ple share their traveling experience in blogs and forums. These articles, named
travelogues, contain various tourism-related information, including text depic-
tion of landmarks, photos of attractions, and so on. Travelogue provides an
abundant data source to extract tourism-related knowledge. Travelogues can be
exploited to generate location overviews in the form of both visual and textual
descriptions. The method consists first in mining a set of location-representative
keywords from travelogues, and then in retrieving web images using the learned
keywords. The model learns the word-topic (local and global tourism topic,
such as an attraction sight) distribution of travelogue documents and identifies
representative keywords within a given location. Complementing travelogues,
geo-referenced photos also tell a great deal about tourism knowledge. The pho-
tos, together with their time- and geo-references, implicitly document the pho-
tographer’s spatio/temporal movement paths. The tourist-visited points can be
grouped, mined to distinguish patterns, and used to rank places of interest and
generate recommendations. In most of these cases, applications use location
extracted from human trajectories in the real world, but they are not really using
the trajectories itself.

A third group of applications also considers the users’ interactions and rela-
tionships. In fact, geo-social networks provide not only the location, but also
the explicit social links, and in some cases explicit declaration of kinships
and partnerships, giving the possibility to overcome the shortcomings of tech-
niques to infer tie strength. They also give high-resolution location data, as one
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can distinguish between a check-in to a different floor of the same building.
To give an example, Yahoo! research labs published a study on the attempt to
extract aggregate knowledge on certain locations from large scale geo-referenced
photos at Flickr. The knowledge here refers to the word or concept that can
best describe and represent a geographical region. The challenge is to extract
structured knowledge from the unstructured set of tags. The premise of the
proposed solution is based on the human attention and behavior embedded in
the photos and tags. Namely, if tags concentrate in a geographical area but do
not occur often outside that area, then these tags are more representative to
the area than those spread over large spatial region. This example shows also
that there is a need to model human behavior and this aspect constitutes an
interesting research topic by itself. Of course, models and hypotheses are geo-
graphically dependent as Western people often act differently from Eastern peo-
ple in a social context. However, online social networks’ check-ins are usually
more sporadic than phone calls, providing less temporal resolution than mobile
data.

Some references for further information are provided in Section 16.7.

Theoretical Application Scenarios
In this section we describe some possible scenarios where the analysis of virtual
movements in geo-social networks can be useful, but has not yet been investi-
gated by researchers. For instance, in the emerging field of human dynamics,
a central point is the understanding of the interplay between human mobility
and social networks. How do the mobility patterns and parameters depend on
social network characteristics? The study of such interaction requires massive
society-wide data sets that simultaneously capture dynamical information on
individual movements and social relationships. Traditionally, this problem is
addressed by using mobile phone networks, because they provide at the same
time temporal information and social contacts. However, there are at least two
problems with this kind of mobile phone data. First, friendships are not explicit
but are inferred by creating a who-called-whom graph, with the possibility of
inaccurate information about tie strengths. For example, a person does not often
call people who live with him or her. The low number of calls between them is
interpreted as a weak tie, leading to a bad representation of reality. This aspect
is overcome by social networks where strong ties generally generate more direct
messages/interactions. Secondly, we know users’ positions only when they per-
form a call, and merely know the position of the tower managing the area the
user is within, and not the actual geographical location of the user. In the geo-
social network application the user’s location can be retrieved when he or she
publishes content and can also be derived from the user’s, friends’ contents if
he or she is moving with them. In the last case some level of uncertainty is
introduced (see Section 16.4.4).
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The spreading of biological and mobile phone viruses is another context in
which geo-social data could be useful, because epidemics are also determined
by the structure of social and contact networks within the population, and human
mobility patterns. The mathematical modeling of infectious diseases must take
into account travel patterns within a city or the entire world, and accurately shape
the underlying contact network depending on the nature and the infectiousness of
the pathogen. For example, with highly contagious diseases (e.g., transmission
based on coughs and sneezes) the contact network will include any pair of
people who sat together in the same place. For a disease requiring close contact
(e.g., sexually transmitted disease), the contact network will be much sparser.
Similar distinctions arise in the computer virus context, where malware infecting
computers across the Internet will have a much broader contact network than
one that spreads by short-range wireless communication between nearby mobile
devices. Depending on the case, a contact network based on co-location in
a place or the explicit social network could be inferred by using geo-social
data from geo-social networks, geo-tagged photo websites, or geo-referenced
microblogging websites. Some research in this direction has been conducted,
but it is far away from being exhaustive.

Mobility patterns of a population can be extracted by using check-in trajec-
tories of users, in order to define the epidemic model or to perform a simulation
scenario. A very fascinating application is the development of mobility models
and routing algorithms for the so-called opportunistic networks. They are a new
paradigm of computation in which there is no fixed infrastructure, and mobility
is exploited as an opportunity to deliver data among disconnected parts of a
network. When a node has data to transfer to another node, and no network path
exists between the sender and the receiver, any possible encountered mobile
device represents an opportunity to forward and carry them until encountering
another node deemed more suitable to bring the message to the final destination.
Both in the design of routing algorithms and in the evaluation of them, a promis-
ing approach is that of incorporating the spatial dimension into a model based
on time-varying social graphs. Geo-social data are clearly the most appropriate
and useful tool in this context because thus provide at the same time all three
dimensions of human movements: spatial, temporal, and social dimensions. In
addition to this, explicit social relationships from online social networks can be
incorporated to better design protocols that are able to learn the social network
of users, for example in order to exploit the role of hubs (users with the highest
number of contacts) in the dissemination process, or to predict new friendships
and contact opportunities.

These examples are, of course, not exhaustive. They just give a hint of
the possible uses of CGI data in several different context scenarios. The tech-
nology and the application are moving and changing so fast that some very
unexpected and innovative applications can be developed even in the next few
months.
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16.3 Trajectory from Geo-Social Web

Users in the social web leave footprints of their movements: they visit real and
virtual places and their movements can be recorded and analyzed. Following the
previous scenarios, we want now answer the following question: What kind of
trajectories can we reconstruct from the geo-social web data?

Data we can commonly retrieve and access from geo-social networks is
punctual and discontinuous. The only exception so far is the GeoLife project, an
experiment carried out by Microsoft research in which 165 users tracked their
GPS trajectories on a social platform. The main reason of discontinuity is not
only related to the localization systems (GPS use low mobile battery duration),
but also to the users’ communication behavior on social networks. Generally a
user posts a content when it is important for him or her to share it with others
users or friends. This means that he or she is not interested in communicating in a
continuous way. Moreover, some media are more used in specific circumstances
(i.e., photo sharing/repository during holidays), while others in daily routine
(i.e., check-ins or status updates). Following a single user on a single social
network generates a finite list of spatio-temporal positions, which can be used
to implement a discrete trajectory (see Chapter 1). This use of discrete position
is in a very early stage and still has several limits. One example is the increasing
popular service called Google Latitude, which allows users to share their location
with friends and add it to their status message in other Google applications. The
history option (in a beta release at the moment of writing) stores the user’s past
locations. The user can access a restricted area where he or she can visualize the
trajectory on Google Maps/Earth and a dashboard showing information such as
trips, frequently visited locations, distance traveled, and time spent in different
places. This application uses raw data to reconstruct the user trajectories and
enrich them with semantic information, as described in Chapter 1 for semantic
trajectories and behaviors. In Figure 16.1 it is possible to see one of the authors’
Google Latitude trajectory from one month of data. As it is possible to see, the
trajectory reconstruction in the social network has some challenging issues such
as, for example, the data acquisition, given that the data can be discontinuous in
time. This is manifest in the figure where long straight lines connect far points
on the map. There is no attempt to connect to road map layer or transportation
means.

Following a single user in his or her daily social networks activity on different
social platforms could help in creating different trajectories or in filling some
gaps with respect to using only one social network source. A very nice example
of a segmented trajectory (see Chapter 1) is shown in Figure 16.2, extracted
from an advertising of a train WiFi connection. The option to share information
between different social networks, publishing content from one platform to
another platform, is a very recent trend and it has not yet been studied by the
scientific community.
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Figure 16.1 One-month trajectory from one author’s Google Latitude logs in the northeast
part of Italy.

16.4 Geographic Information in Geo-Social Web

In the following sections we focus on the geographic aspects related to informa-
tion it is possible to retrieve from the social web. We then answer the following
questions:

� How does location information relate to generated information on the web?
(Section 16.4.1)

� Which are the characteristics of these data? (Section 16.4.2)

Figure 16.2 A social network use segmented trajectory.
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� How can trajectories’ footprints in the web be retrieved? (Section 16.4.3)
� What are the possible sources for uncertainty (with respect to the location

information)? (Section 16.4.4)

16.4.1 Location: From Real World to Geo-Social World

We refer to “content” as any piece of information (such as text, image, audio,
or video, in any possible format) that it is possible to publish on the web as
a resource. Content is generated by a person (that represents him/herself or a
broader entity, such as an enterprise or an agency) using a device. The content
describes a real/abstract object/event. Based on the Oxford English Dictionary
definitions of “real” and “event,” we refer to a real object/event as “actually
existing as a thing or occurring in fact; not imagined or supposed.” A real object
is a perdurant entity in the world such as a mountain or a building and a real event
is “a thing that happens or takes place, especially one of importance” in a specific
place in a limited amount of time, such as a forest fire or a football match. We
refer to abstract object/event for every other type of information, including mood
and feeling description, such as messages like “I really feel good, today.” Even
if abstract object/event can have associated geographic coordinates, we limit the
discussion to the real objects/events and we call them features of interest. In
Figure 16.3 we can see three levels: the real world, the content, and the social
web levels, and the relations among objects in the different levels. The entities
in the bottom part (the real world) are the person, the device, and the feature of
interest. Each of them has a spatial location and an extension.

Any information produced is called content. A piece of information asso-
ciated to a content describing some properties of the information is generally
referred to as metadata. A geographic content, or CGI, has associated geospatial
information that represents a spatial reference and geometry in any format. In
other words, the metadata also contain the geographic reference. The metadata
can be automatically generated by the device (such as the date for a digital photo)
or manually added by a person (such as the title or the tags). A GPS device can
record the coordinate of the device and associate the geographic information to
the content metadata. Content can also include implicit geographic information
such as place name in a textual message or the object represented in a photo.
The implicit information can be made explicit using different applications and
strategies and added to the content as metadata. The content with its metadata
is published on the web and becomes published content: a shared resource for a
certain community. At the web level it is also worth noticing that a person has
a virtual identity. His or her personal information on the social web can include
geographic information related to his or her usual living place, visited places,
and/or actual location. We call them geographic user information. These data,
especially the actual position, can be manually set or automatically updated from
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Figure 16.3 Conceptual model of CGI. The shaded concepts represent where the spa-
tial information could be retrieved. The SpatialLocation concept represents the physical
extension of the entities in the real world (person, device, and feature of interest).

a GPS device. The geographic information contained in the different levels may
be synchronized and coincident. To summarize and answer the first question in
the introduction, spatial location associated with a feature of interest or a person
in the real world may have a representation in the geo-social network, very often
associated to content as metadata.

16.4.2 Comparison among GPS, GSM, and Online Geo-Social
Network Data

In the last few years, many researchers studied geo-tagged data such as GPS
traces, GSM data, and data coming from geo-social networks. These data coming
from GSM and GPS sources look different, and may seem not even comparable
with the geo-tagged data present in online social networks. However, we believe
that it is useful to the reader to highlight and compare some aspects. Therefore,
the purpose of this section is to shed some light on differences and similarities,
in both the data sources and the final tasks of analysis that can be performed on
them. Let us first review the different kinds of data that we refer to. Our first
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source, broadly discussed in the book, is the GPS (Global Positioning System)
data. We have seen that there is a large variety of devices dealing with this kind of
data: mobile GPS navigation systems, GPS loggers, GPS anti-theft systems, GPS
units for photo cameras, and so on. Clearly, the final use may differ, but these
data sets have some features in common: they all take the global coordinates
(latitude, longitude, and time) of the device and store it for a specific purpose.
Most of them (loggers and navigators, for example) take the information at
regular intervals of time spanning from one second to a few hours, depending on
the final application (e.g., turn-by-turn navigation systems continuously collect
and process the GPS signal), and store it for the final purpose. As we have seen
also in Chapters 1, 2, and 3, a single line extracted from these data typically
includes at least the following information:

ID, timestamp, latitude, longitude, quality of signal

where ID is the device id, timestamp is the current time, usually expressed
in seconds since the 1970 (higher resolutions may be needed depending on the
application), latitude and longitude are the GPS spatial coordinates, and
quality of signal may give information on the accuracy of the measure-
ment. Depending on the application, a user may personally produce small to
large amount of data of this kind. Also, different sources of this kind of data are
available, most of which are not public: anti-theft systems, GPS loggers, and
navigators, for example, are meant to be for personal use, and generally these
data are not publicly available unless the owners explcitly share them on some
social media. Another different source of data is the GSM CDR (Call Details
Record): when placing mobile phone calls, the users generate a large amount of
data about their calls, such as the number called, time, and duration. As seen in
Chapter 2, a single record of these data has usually the following format:

callerID, receiverID, time, antennaID, start, stop, callID

where antennaID is the ID of the GSM base station the phone is attached to in
that moment, and callID is used to track the call through different antennas in
the case of a user moving in space. As we see, the spatial information of these
data is much less precise: while the GPS can be accurate to the centimeter, in
GSM data we can only use the antenna ID as geographic information, and this
is very rough. In fact, a single antenna can cover a round region of very diverse
radii, depending on the power of the antenna, the placement of it (within the
city or countryside), and other factors. Therefore, the position of the caller is
estimated with a precision that usually is on the order of hundreds of meters.
Moreover, this is clearly privacy-sensitive information, and these kinds of data
are usually not publicly available. Lastly, there are the data coming from the
online geo-social networks and services. These data are of a different form with
respect to the previous two types as, in addition to the potential geographic
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information contained in it, they also typically include the content. We can,
in fact, detect two blocks of information in this type of data: the geo-location
and the media payload, the latter being either a text message, or a picture, a
video, and so on. The content contained in the second block is then said to
be “geo-tagged” according to the first block of information. The geographic
information contained in this kind of data is usually a derivative of the GPS data
coming from mobile devices (e.g., smartphones, PDAs, cameras) from which
the user generated the content. Thus we can still consider this as a GPS data
source, even if, given the very particular features of the application (i.e., no
need to continuously track the user, no need for a specific precision, and so
on), these data are differentiable from the one coming from the GPS navigators
and loggers, in terms of precision, temporal resolution, and final volume of
data collected. Given the large amount of geo-social networks and services
available nowadays, it would be impossible to list all the possible information
available online. We can, however, present here three different types of services,
representative of a large set of available online social networks: Twitter, Flickr,
and Foursquare. Twitter is a social network where users can post short messages
in their timeline (typically publicly available) that will appear automatically
within the timelines of all their followers. A typical message is a text message
no longer than 140 characters, which may contain text and URLs for attached
media such as pictures or videos. The messages can also be geo-tagged if the
user has enabled this feature. A typical piece of data then contains the following
information:

userID, messageID, text, geo-location, timestamp

Flickr is a photo sharing service with a social network layer where users can
post pictures and video in their profile. Tags, comments, geo-location, and EXIF
data (technical data about the picture) are usually associated with the pictures
(or videos). A typical piece of data regarding a picture contains the following:

pictureID, userID, geo-location, timestamp, tags, comments

Foursquare is a location-based social network where users can post their
current location and share this with all their friends. The service includes game
features to incentivize the users to share their location. A typical piece of data
contains the following:

userID, geo-location, locationID, timestamp

Table 16.1 summarizes some properties of the data we have described. Note
that they are typical properties and individual examples for real-world scenarios,
therefore may differ depending on the application. As we see, the three sources
of data differ in public availability, volume of data usually generated per user,
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Table 16.1 Summary of Typical Properties of Mobility Data from GSM, GPS, and
Geo-Social Network Sources (Real-World Scenarios may Differ Depending

on the Application).

Source Public Volume Per User Accuracy Privacy Sensitive Social Layer

GPS No High 1cm Yes No
GSM No Low to high 100m Yes Yes
Geo-social nets Yes Low to moderate 1cm to 1m No Yes

accuracy of the data, whether the data should be considered as sensitive for pri-
vacy reasons (in online social networks usually the data are sparse and provided
intentionally by the users, bringing this type of data to a reasonably nonsensible
status), and the social dimension (i.e., there exists a social connection between
two users). Clearly, given the above characteristics, the tasks of analysis to
be performed on the different data are very different, and each task should be
conducted on the most appropriate data. For example, assessing the validity of
an urban transportation system using online social network data may provide
inappropriate results, as the data do not contain enough and precise information.

16.4.3 CGI Retrieval from Geo-Social Networks

While GPS and GSM data are typically collected by private entities, tele-
com providers or citizens storing their trajectories on their personal devices,
geo-social data are characterized by being publicly available on social media
platforms. All major geo-social networking systems offer access to their huge
corpus of data via several Web APIs (“application programming interface”).
Many developers have created and made freely available libraries that do a lot
of the heavy lifting needed to interact with the APIs, allowing researchers and
data analysts to reconstruct and explore portions of social graphs and users’
movements. An API provides methods to access almost every feature of the
system, and is typically defined as a set of HTTP request messages along with
a definition of the structure of response messages (usually in an XML or JSON
format). Each API is in constant evolution and represents a facet of the system,
allowing developers to integrate specific functions or to build upon and extend
their applications in new and creative ways. However, as regards the download-
ing of data, it presents some limitations due to compliance with privacy policies
or the management of server load. Such restrictions define the level of detail and
accuracy with which is possible to get data. We present a quick discussion of
the API challenges of three very popular geo-social networks.

Twitter, for example, currently provides three APIs. Two of them offer
methods to access status data and user information (name, profile, following/
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followers, tweets), with a maximum rate limit of 350 requests per hour. The third
one, the streaming API, is the most suited access for data mining or analytic
research, allowing one to retrieve a 1% filter of all tweets that users are actually
carrying out, possibly using some filtering fields such as keywords, tags, users,
and geographic bounding box. Such a rate limit can be raised by asking Twitter
for a “gardenhose” access, in order to receive a steady stream of tweets, very
roughly 10% of all public statuses. Note that these proportions are subject to
unannounced adjustment as traffic volume varies.

Unlike Twitter, the Foursquare API allows one to view all friends of an
individual but does not allow one, for reasons of privacy, to “stalk” a specified
user. The only way to collect information about users’ activity is to select a
set of venues in one or more specific regions, and download all the activities
(check-ins) performed in those locations, with a rate limit of 5,000 requests
per hour. Both Twitter and Foursquare have severe limitations to data retrieval,
enabling one to gather only a very partial subset of users’ activities.

Among many other geo-social networks, Flickr poses the fewest limitations.
In such online photo management system, practically all the valuable meta-
data such as tags and geolocation can be accessed by API programs. Anyway,
some experiments carried out by the authors using the same query in different
moments lead to retrieve slightly different results, leaving some uncertainty on
the soundness of results. Applications can produce raw or derived data. Raw
data can be the coordinates (latitude and longitude) of the message generated
by the mobile device, and derived data can be the coordinates’ bounding box,
the place type, the place name, or the street name. This information is produced
by the social network application using the coordinates passed by the mobile
device. The information that can be produced and retrieved changes depending
on the system, the device, the privacy settings, and so on.

16.4.4 Geographic Uncertainty of CGI

As we already pointed out, geo-social data can have several sources of uncer-
tainty. Uncertainty aspects should be taken into account when performing sta-
tistical analysis and when developing systems based on these kinds of data. In
this section we discuss some of the most important uncertainty aspects of CGI
data. Other aspects of uncertainty are covered in Chapter 5.

Uncertainty about Precision
In this category we join issues related to data generation. The first source of
uncertainty is information granularity: each point of the trajectory can have a
different scale, sometimes coordinates of a specific place, sometimes a bounding
box area. The second one is related to devices. A third one is that the precision
can be modified by the social network system: in some applications (such as
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Foursquare), the GPS data are used to infer higher-level information, such as
the address of a place, and the passed coordinates are hidden. Another source
of uncertainty is the location system used by the device. Figure 16.1 shows
an example of this error. On the left bottom corner of the trajectory there is a
point located in Portoferraio, Elba island. The user never went to the island. She
set off the GPS for energy saving and the data were retrieved using the GSM
antenna. Her mobile phone was attached to the Portoferraio antenna but she was
physically on the cost, some kilometers north. There is no way to extract this
information from the generated data.

Uncertainty about Credibility
In some cases we can witness the presence of “spammer” users, who bombard
the system with tweets and/or randomly change the GPS coordinates relative to
their geographic positions to cheat the anti-spam system. In other cases people
can voluntarily publish different locations just for fun or to protect their privacy.

Uncertainty Due to Privacy Settings
At the social network level, the geographic information can be filtered and
modified for privacy reasons using a less detailed geographic level, although the
device transmits coordinates.

Uncertainty Due to Multiple Data
Tweet example: “Two very large forest fires in the mountains behind Funchal
clouds of smoke covered the sun turn sunlight deep yellow ash coming down.”4

It is possible to associate this Tweet to three locations spatially not coincident.
Referring to the conceptual model described in Figure 16.3, the Feature of
Interest described by the content is the forest fire that has itself a spatial location
(the forest location). The content has also implicit geographic information with
the toponym Funchal, or more precisely with the mountains behind the city. It
is worth noticing that there is a certain level of uncertainty both in the definition
of the forest on the mountain and in the toponym Funchal, which represent
two different locations. The third location is the user/device location. Suppose
the Tweet message itself has the coordinates originating from the source GPS
device, we can suppose that the user was sending the message a safe distance
away from the forest fire.

Uncertainty Due to User and Content Location
Photo example: Let us consider a person taking a picture with a camera or a
smartphone with GPS-integrated system. The person and the device coordinate
overlap, while the subject of the photo coordinate has a distance from the camera.

4 Twitter, posted by user “Kevin bulmer” on Fri., Aug. 13, 2010 h20:21.
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Photo content: Mount Everest 

Everest coordinates: c1=(x1, y1) 

Camera coordinates: c2=(x2, y2) 

User photo coordinates: c3=(x3, y3) 

Distance C1, C2 = 100 Km 

Distance C1, C3 = 10 Km 
distance

Figure 16.4 Comparison of device precision and semantic precision.

This distance could be considerable. Let us imagine that the content represented
in the photo is Mount Everest. The user with the camera is necessarily far from
the mountain peak to include it into the photo. As shown in Figure 16.4 on the
right side, the mountain and the camera could be consistently far one from the
other.

These last two examples illustrate that there is a discrepancy between the
location of the content (the registered device location at the time the message is
sent or the photo is taken) and the geographic content contained in the message
itself. The location of the device is not necessarily equal to the location of the
reported content: they can overlap or be far away, as in the examples. This
inconsistency is not of a technological nature, but will always include semantic
aspects.

16.5 Open Issues

Finally, we want to raise new key questions that we leave open for future research,
which we believe will constitute interesting problems for the communities of
computer scientists, sociologists, physicists, and economists in the years to come.
Huge amounts of socially generated media resources on the Internet are a result
of experience sharing by web communities. This fast-growing media collection
records our culture, society, and environment, and provides opportunities to
mine semantic and social knowledge of the world. Moreover, recent popularity
of location-based social services, such as Foursquare, Gowalla, and Hot-Potato,
has generated a huge amount of detailed location and event tags. It covers not
only popular landmarks, but also obscure places, thus providing broad coverage
of locations in unprecedented scales. This large amount of information, often
unstructured, opens a first research issue in the field of real time analysis of data
flow. The research broadly covers several aspects, such as very large data repos-
itory in nonstandard data structures, extracting semantic aggregation of tags,
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detecting places and events from unstructured text, and finding automatic ways
to link data from different sources. These topics are strictly linked to the devel-
opment of the so-called Semantic Web and big companies such as Google and
Yahoo! are constantly researching and developing in these fields. Investigation
of place and event semantics of geo-referenced tags, in addition to the represen-
tativeness, is a prerequisite to using geo-social data. A place tag is defined as a
one that exhibits significant spatial patterns, while an event tag refers to one that
exhibits significant temporal patterns. Both definitions are vague and subject to
some geographic region. For example, “carnival” may not be able to indicate any
event, but will be very specific if only carnivals in New York City are considered.
Analyzing the spatial and temporal distribution of tags and identifying the dis-
tributions of events and places with relative geographic scales can be useful to
many applications, such as image search, collection browsing, tag visualization,
and, of course, mobility analysis. Another open issue is the multilingualism of
(geo-referenced) web media. Geo-referenced media is, in fact, multilingual in
nature. However, most systems take English as the sole processing language.
This effectively excludes the media resources in other languages. The conse-
quence is that the knowledge and patterns mined from geo-referenced media are
biased toward English-speaking countries and regions, though people are more
comfortable using their local language (also dialects and slang) to communicate
with friends, especially in colloquial sentences such as the ones used in chats,
SMS, or status updates, or in stressful, demanding situations such as disasters or
danger. The geographic locations of photos on the Internet have opened up a new
host of research and application possibilities. As described in the photo example
in Section 16.4.4, a spatial gap can exist between the GPS camera position and
the position of the subject in the photo. Knowing the geographic orientation of
photos, that is, in which direction the cameras are pointing, will be useful to
fill the gap. Though most cameras are not equipped with sensors to measure
the orientation and inclination of the device, smart photos, with the iPhone
and HTC Magic as prime examples, have started to embrace digital compass
technologies. In addition to hardware sensors, software solutions to estimate
photo orientation also exist, for example estimating the relative translation and
orientation between photos, by leveraging the visual redundancy among photos.
Till now, geographic orientation of photos was rarely available. Nevertheless,
with the development of compass-equipped cameras and smartphones, such kind
of metadata is expected to emerge in the near future. With the availability of
photo orientation metadata, many compelling applications can be accomplished.
For example, with the photo alignment information, visual summarization and
browsing of photo collections can be adaptive to the user direction and perspec-
tive on the map. Moreover, 3D reconstruction of geolocation can be much more
efficient.
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16.6 Conclusions

We have discussed mobility and geo-social networks, a very promising field
of research nowadays, in which wide and multidisciplinary studies have been
conducted in the last few years. We have seen how the interest in such top-
ics is widely motivated by the close relationships that may reside between the
social and mobility behavior of humans: people move, they move with friends or
relatives, they share experiences, they propagate information about new places
to friends, and so on. Moreover, in the last years, it is clear how this process,
supported by the large amount of online (geo)social networks and services, is
extensively conducted online, in near-real time, with a clear social and partici-
pative trend. These kinds of interactions and behaviors clearly produce massive
amounts of data about human actions, related to both social and mobility aspects,
and open the way for many interesting research challenges. However, despite
the large interest and the large amount of data produced, we have seen how
there is a clear disproportion between the results obtained so far and the vast
quantity and diversity of issues that are still open. We believe that the issues and
peculiarities related to the data (availability, privacy, granularity, and so on) and
the rapid explosion of the availability of new services and trends are two clear
reasons why it is still hard for the research in this direction to take off and to
produce large and strong analytical results. The preliminary work conducted by
many researchers so far is, however, very promising, and it seems clear that we
are facing the start of a new era in the research on society and individual human
behaviors.

16.7 Bibliographic Notes

In order to complete this chapter, we present some related work. We suggest to
read them to deeper understand some ongoing research in the field of geo-social
networks. Only the last three are related to trajectories; the others deal with
the geographic aspect of geo-social data. The work of Warf and Sui (2010), in
between geographic science and philosophy, mainly discusses how in practice
neogeographers use geo-spatial technologies in multiple ways as opposite to con-
ventional GIS. Craglia et al. (2012) describe how the use of CGI contributes to
the vision of Digital Earth, extending the paradigm of spatial data infrastructures
by advocating an interactive and dynamic framework based on near-to-real-time
information from sensors and citizens. In Chorley et al. (2011), the authors,
analyzing a data set composed by check-in data from Foursquare, reveal some
individual characteristics of the cities. Cho et al. (2011) investigated the interac-
tion of a person’s social network structure and his or her mobility using data sets
that capture human movements from Gowalla, Brightkite, and phone location
trace data. They tried to understand if friendships influence where people travel,
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or if it is more traveling that influences and creates social networks. The major
contributions of Gaito et al. (2011) are the definition of the so-called geocom-
munity and the creation of a complex network-based methodology to extract
geocommunities from GPS data applying clustering algorithm. Kisilevich et al.
(2010a) propose an approach for analyzing trajectories of people, using geo-
tagged photos collected from the photo-sharing site Flickr and a Wikipedia
database of points of interest (POI). In his article, Purves (2011) discusses
the utilization of user-generated content (UGC) as a data source for studying
geographic questions, and proposes two examples: the derivation of vernacular
regions and trajectory analysis. Jankowski et al. (2011), in order to discover
itineraries and preferences of landmarks in an urban context, aggregated geo-
tagged photos downloaded from Flickr. They were able to find precise events that
attracted the attention of photographers. A spatial analysis of movement trajec-
tories led to interesting findings related to photographers’ itineraries. Lucchese
et al. (2012) were able to extract, from photos published on Flickr, touristic
points of interest in a city and provide automatically generated, personalized
recommendations.
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Mobility data management and analysis have emerged in the last decade as a
very active research domain, promoted by academic events (e.g., several ded-
icated conferences, journal issues, and seminars), international R&D projects
(e.g., GeoPKDD,1 MODAP,2 MOVE3), and industrial initiatives (e.g., the mul-
tiple mobility contests that have been organized recently by several organiza-
tions). This book documented the richness and significance of the main research
achievements in a variety of domains related to mobility data management and
showed how several application domains have already benefited from these
achievements. It also highlighted two very important areas for new applications
related to most advanced technological environments, namely social networks
and network sciences. Yet there is much room for further work in all aspects
of movement analysis. The following concluding remarks aim at showing some
further developments that are expected within the short-term future and that
build on the mobility technologies discussed in this book.

Basic Trajectory Framework
A first evidence is that new research projects are needed to expand the scope
and coverage of mobility studies, currently mainly restricted to the limited set of
basic concepts described in the first chapter of this book. For example, analyzing
movement of deforming areas (e.g., floods, pollution clouds, storms, diseases)
has received relatively little attention up to now. Yet its economic importance is
rapidly increasing as the disastrous effects of natural phenomena linked to cur-
rent climate change are influencing government policies to promote better anal-
yses of such phenomena. Several types of movement remain to be investigated,

1 http://www.geopkdd.eu/
2 http://www.modap.org/
3 http://www.move-cost.info/
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including raster representations of movement, constrained movements, and rel-
ative movement.

In a complementary direction, it is important to push much further the study
of collective behavior, that is, coordinated movement of persons, of animals,
and of any moving object driven by humans (e.g., cars, planes, ships). While
animals are obviously important to ecologists, humans’ collective movements
characterize a large number of applications, including the national security and
intelligence domain that has become so critical in our current society.

Collective movement illustrates a more general research question: How to
analyze relationships among trajectories. Current advances in this domain are
mainly in terms of clustering, classification, and similarity analyses. Yet, other
relationships could be defined and useful: inverse trajectories, useful for identi-
fying return trips, and concatenation of trajectories, to make a global sense out
of a sequence of trajectories, are just two examples of how the knowledge about
trajectory understanding could be expanded. Also somehow related to collective
movement is the study of interactions among trajectories. Indeed, a trajectory
of a moving object may influence the trajectories of nearby moving objects.
In a car traffic situation, for example, the behavior of a driver can influence
nearby drivers. Open research questions include detecting such interactions and
identifying the actors, their roles, and how influences propagate among moving
objects.

Another direction for future research is investigating the new concept of
user-centered mobility data, where all the footprints left by a moving user and
collected via different means (e.g., GPS, social networks and mobile phones)
are combined together to form a global vision on the user’s movements. This
raises clear interoperability and integration issues that have not been addressed
in this book.

Trajectory Reconstruction
Data acquisition depends on the sensing technologies that are available and
appropriate for the application at hand. Usual technological evolution will cer-
tainly introduce new features that will prompt innovation in trajectory recon-
struction approaches. Future work in this domain may include the exploration
of intelligent ways to automatically extract proper values of trajectory recon-
struction parameters according to a number of characteristics of data sets, as
well as the extension of this technique to be able to identify different movement
types (pedestrian, bicycle, motorbike, car, truck, etc.) so as to enable applica-
tion of customized reconstruction techniques, resulting in better identification
of trajectories.

Existing techniques have to be reconsidered, taking a more global approach.
For example, map matching can be significantly improved by taking into account
semantic aspects (e.g., the purpose of stops). More sophisticated analyses can
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be enabled via careful tuning (e.g., tuning stop identification and interpretation
to make it efficient even for short stops), and via consistency enforcement for
multiple, correlated annotations and segmentations.

Trajectory Storage
Commercial software is not yet ready to support trajectory data with the new
management facilities that this new type of data requires. At this point trajectory
management is appropriately supported only by research-driven prototypes that
have already reached the level of operational systems. This book presented the
Secondo system, which is the most advanced system that has been purposely
built to support mobile data management. Ongoing work in the Secondo team
aims at extending the model and the system in two major directions. On the one
hand, discussions with ecologists have shown that it is crucial to analyze moving
animals in the context of environmental data such as temperatures, elevation,
and snow extent. These data are available as raster data. Hence it is necessary
to handle raster data together with moving object data in a query. Secondo’s
high-level conceptual model needs to be extended with the data types providing
continuous functions of space and the corresponding operations. A second direc-
tion is parallelization using the MapReduce approach in order to make trajectory
database applications scalable. MapReduce will enable distributed execution of
complex queries by controlling Secondo systems running on many computers in
a network. A different trend is represented by efforts to complement commercial
systems with an external layer providing the functionality required for mobility
data management. The Hermes system is the best representative of this trend.
At what pace the new functionality will be integrated into commercial systems
depends on the DBMS industry.

Similar concerns apply to data warehousing systems, yet the situation regard-
ing trajectory data warehouses is far less advanced than for trajectory DBMS and
research still needs to clearly identify and characterize the extensions needed to
upgrade the data-warehousing paradigm to make it suitable for trajectories, and
eventually implement them efficiently.

Privacy Issues
The privacy solutions that have been discussed in the book are inherently limited
in scope as they are drawn to target specific privacy goals under well-defined
assumptions about the role of untrustworthy parties and their capabilities. A
challenge for the near future is how to overcome the fragmentation of privacy
technologies to achieve solid conceptual foundations. This question is of vital
importance for future research on privacy. A theoretical framework centered
on the concept of location privacy metric has been recently proposed to deal
with the problem. By quantifying the amount of protection offered by a privacy
enhancing technology, location privacy metrics pave the way to the definition
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of a rigorous methodology for the comparison of privacy solutions. Recent
approaches propose metrics based on the recent paradigm of differential privacy.
However, the specification of generalized metrics, while fundamental to creating
a corpus of rigorous concepts, cannot be seen as the panacea for privacy. Privacy
is eminently a user-centric requirement. In this view we believe that any privacy
solution should be eventually validated by users. Accordingly, the aspect of
privacy usability is a prime issue.

Privacy usability has multiple dimensions. One of these dimensions is person-
alization, that is, letting the user specify the requested amount of privacy. Another
one is privacy adaptability, that is, the amount of protection varies based on the
context. It is also important to consider the privacy requirements emerging from
novel applications. While most of existing research on location privacy focuses
on privacy in location-based querying in LBS, novel applications are emerging
calling for location privacy solutions. We mention in particular mobile sens-
ing applications (i.e., acquiring geo-referenced data through sensors installed
on mobile devices), location-sharing applications in geo-social network (e.g.,
place check-ins), and location services, that is, requesting location data to a third
party.

Trajectory Analysis
As long as mere spatio-temporal trajectories are concerned, trajectory analysis
significantly benefits from the existing knowledge in data mining, knowledge
extraction, and visualization. Semantic enrichment of movement data leads to
higher levels of analysis. Instead of just discovering movement patterns, research
and applications are turning toward analyzing moving objects’ behaviors. Their
discovery now represents one of the most popular uses of mobility data and
possibly the ultimate goal of trajectory analyses. Lifting up the analysis to
the semantic level largely remains to be explored. This topic is specifically
addressed, for example, in the SEEK project4 where methods to semantically
enrich the trajectory knowledge discovery process are investigated. Understand-
ing why and how people and animals move, which places they visit and for what
purposes, their activities, and what resources they use is of tantamount impor-
tance for all kinds of decision makers, in particular public authorities in charge
of managing societal resources. The relative novelty of the domain leaves many
avenues for future work open. Many experiences have been made in a great
variety of application domains and using a great variety of techniques, but much
more work has to be done by the research community to build the scientific
corpus that enables new applications to be developed easily, promptly, and on a
sound base. The active involvement of domain experts is a necessary condition
for such development.

4 http://www.seek-project.eu
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We can confidently look forward to the continuous evolution and improve-
ment of knowledge extraction techniques, moving from approaches mostly based
on a single attribute (speed) and predefined points and areas of interest to
approaches enabling multi-criteria analyses.

Similarly, we can expect an important development of the visual analytics
domain. Its advantages in terms of immediacy and understandability of results
make it very appealing for domain experts. These advantages include capability
to rapidly switch among alternative ways to look at the same data; easiness
of exploring the influence of given attributes on the behavior of trajectories;
pattern detection via visual evidence; data aggregation into, for example, flows
for higher-level analyses; and context-driven investigations. Therefore, visual
analytics will certainly play a major role in the spread of analytical tasks in the
application world.

While most of the ongoing works focus on mobility analysis, only few
attempts have been made for developing explanatory and predictive models
of mobility. For example, the DataSim project5 aims at developing next gen-
eration traffic simulation models. To improve the quality of simulation, it is
necessary to model dependencies between mobility aggregates such as velocity
(average or median) and counts of cars.

Person Monitoring
Person monitoring is rapidly evolving due to the widespread availability of posi-
tioning technologies. Unfortunately, gathering spatiotemporal information from
large crowds remains a complex, usually labor-intensive and therefore expen-
sive task. This book presented Bluetooth tracking as a possible solution for this
niche. Bluetooth tracking is very easy to deploy, can be used for indoor/outdoor
environments, and does not require any cooperation of the tracked individuals.
Foreseen applications include analyzing the dynamics of visitors at a profes-
sional fair or in a shopping mall. Both domains provide excellent opportunities
for marketing-oriented applications. Industry is very active in this domain (see,
e.g., the recent launching of services such as Google Indoor), given the strong
link between person monitoring and customized marketing.

Animal Monitoring
The last few years have witnessed a convergence between human and animal
movement studies. Many concepts, data warehousing techniques, models, and
analytical methods were developed independently and now we can stress that
further research, leading to a growing methodological and theoretical unification,
is necessary. A common and exciting challenge is represented by the analyses
of networks, both social and ecological ones. Movement ecology studies have

5 www.datasim-fp7.eu/
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demonstrated the potential of mechanistic or causal movement models that can
find wide applications in many different research fields. Concepts like ran-
dom walks and diffusion, for example, aim to connect individual and collective
patterns.

Web
The social web has changed the way people create and use information. Particu-
larly relevant to this book is the explosion of services based on geosocial content.
So-called volunteered geographic information (VGI) allows people visiting real
and virtual places to leave footprints of their movement in the social web,
with their movements being recorded and analyzed. The amount of generated
detailed location and event tags is huge and covers not only popular landmarks,
but also obscure places, thus providing broad and wide coverage of locations
in unprecedented scales. This large amount of information, often unstructured,
opens a research avenue in the field of real-time analysis of data flow in the
Semantic Web. Such interplay of mobility and geosocial networks research is
very promising. There is indeed a strong relationship between the social and the
mobility behaviors of humans. People move, they move with friends or relatives,
and they use the social web to share experiences, propagating information about
new places to friends.

The trajectory reconstruction in the social network opens such challenging
issues as, for example, data acquisition, given that such data can be discontinuous
in time, or geographically uncertain, because each point of the trajectory can
have a different scale (sometimes coordinates of a specific place, sometimes a
bounding box area).

Despite the large interest and the large amount of data produced, there is a
clear disproportion between the results obtained so far and the vast quantity and
diversity of issues that are still open. We believe that the issues and peculiarities
related to the data (availability, privacy, granularity, and so on) and the rapid
explosion of the availability of new services and trends are two clear reasons
why it is still hard for the research in this direction to take off and to produce
large and strong analytical results. The preliminary work conducted by many
researchers so far is very promising, and it seems clear that we are facing the
start of a new era in the research on societal and individual human behaviors.

Large Scale and Streams
Nowadays we live in a world overloaded by information. The information at
our disposal is so large and complex that traditional data processing tools and
paradigms are no longer capable to cope with it. This phenomenon has been
dubbed “Big Data.” New computing paradigms have been proposed as a solution
to this new state of affairs, MapReduce being the most prominent of all. Their aim
is to enable massive parallelization of data processing in order to speed up this
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process to cope with large-scale data sets. Trajectory data are not an exception
to this phenomenon. The popularization of tracking technologies (e.g., GPS-
enabled mobile devices) had as a consequence that huge amounts of trajectory
data are being continuously collected. Therefore, all the analysis methods and
software tools that have been presented in this book must be redesigned in order
to scale up for much larger data sets, as most of the methods are quite restrictive
with respect to data volume.

A related problem in this respect pertains to developing methods for stream-
ing trajectory data. In many real-world applications (e.g., telecommunications,
clickstream monitoring, sensor networks, traffic monitoring), data take the form
of continuous data streams rather than finite stored data sets. These applications
require long-running, continuous queries and analyses as opposed to single-time
ones. Many aspects of data management and processing need to be reconsidered
in this new setting and stream databases were developed as a possible solution
for this. In a similar way to large-scale processing, new methods and tools have
to be designed to enable stream-based processing of trajectory data.

Mobility Engineering
Definitely, more systematic exploration and experimentation is necessary to con-
solidate the theories and tools that this book has presented. Most of the experi-
mentations that allowed researchers to assess their results have been carried out
on an ad hoc basis and were limited to the data set available to the researchers.
Systematic exploration of the applicability of an approach to mobility manage-
ment remains to be done. Validating an approach for large-scale usage in the
real application world needs repeated testing with varying parameters, varying
techniques, and varying data sets. Among others, ground truth benchmarks need
to be developed to create better possibilities to assess the value and portabil-
ity of algorithms. Moreover, all involved tools and facilities will have to reach
online availability to enable continuous analysis of and feedback for ongoing
trajectories.

Turning research into engineering represents a huge challenge and calls for
a strong cooperation among research, industry, users, and public authorities.
The ultimate goal is to be able to develop general-purpose packages that will
allow, for example, to translate GPS tracks into semantic trajectories. Similarly,
general platforms should enable the tuning of the parameters for all tools that
create, manage, and manipulate a trajectory data set. It is a long way to go, but
as shown in this book we hopefully are on the right track.
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curves. International Journal of Computational Geometry and Applications, 5(1), 75–
91.
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Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., and Silvestri, C. 2007. Spatio-temporal
aggregations in trajectory data warehouses. Journal of Computing Science and Engi-
neering, 1(2), 211–232.
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GLOSSARY

abstract model: A model for representing time-dependent data types in terms of infinite
sets. For example, a time-dependent point value is represented as a function from time into
point values. This is to be contrasted with discrete model.

anonymization: A process that transforms data about a person to prevent the identification
of the person from his/her data.

association rule: A pattern that represents relationships between variables that occur
frequently in a data set.

attack model: The capabilities that an attacker has to attempt discovering some sensitive
information.

attacker: An unauthorized agent who accesses data to infer sensitive information about
persons.

cell: In data warehouses, the elementary unit of decomposition of a cube that contains the
measures to be analyzed. Each cell is defined by a set of coordinates, one per dimension of
the cube. It is also referred to as a fact.

classification: A process that associates an entity to a class from a predefined set of classes.
In data mining, rules to classify entities are usually inferred directly from the data through
an automatic learning step.

cloaked algorithm: An algorithm to generate cloaked locations.

cloaked location: An area defined for the purpose of blurring the exact position of a
moving object. It is also referred to as obfuscated location.

clustering: A process that groups a set of entities into homogeneous groups, referred to
as clusters, such that entities in the same cluster share a common property, that is, they
are similar with respect to some similarity measure, and are dissimilar (with respect to the
same measure) from the entities in the other clusters.

compact representation: A relational representation of time-dependent data types where
each time-dependent value is stored as a single attribute value within a single tuple.

cube: In data warehouses, a multidimensional data structure composed of cells, where each
cell contains a set of measures. Cubes are used to implement online analytical processing
(OLAP). It is also referred to as a hypercube or multidimensional cube.
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data mining: A step of the knowledge discovery process that analyzes large amounts of
data to identify unexpected or unknown patterns that might be of value to an application.

data postprocessing: A step of the knowledge discovery process that is applied after
patterns are extracted by the data mining algorithms. This step typically includes pattern
evaluation, interpretation, and visualization.

data preprocessing: A step of the knowledge discovery process where data are prepared
before data mining algorithms can be applied. This step usually includes data cleaning,
where noise in data is reduced, and data preparation, where data are formatted to be
mined.

data warehouse: A data repository specifically designed to support the decision-making
process. In a data warehouse the information is conceptually represented as a cube contain-
ing facts and measures organized according to dimensions and hierarchies.

density map: A map that shows the distribution of a phenomenon within the space covered
by the map. For example, the distribution of moving objects in a given area may be
represented as the number of objects per area unit (i.e., density). Densities are often
represented by color-coding, where brighter colors correspond to higher densities.

dimension: In data warehouses, a dimension materializes a specific viewpoint for ana-
lyzing the facts. For example, space, time, and product are frequently used dimensions.
Dimensions may be composed of hierarchies of levels. For example, a time dimension may
be composed of levels hour, day, week, month, and year.

discrete model: A model for representing time-dependent data types in a finite represen-
tation. For example, a time-dependent point value can be represented as a polyline in the
(x, y, t) space. This is to be contrasted with abstract model.

episode: A maximal subsequence of a trajectory such that all its spatio-temporal positions
comply with a given predicate. Examples include stop and move episodes and transportation
means (walk, bus, metro, train, car) episodes.

extraction-transformation-loading (ETL): The process that populates a data warehouse
from one or several data sources. It is a three-step process that extracts data from the
data sources, transforms the data, and loads the data into a data warehouse. An ETL
process also refreshes the data warehouse at a specified frequency in order to keep it up to
date.

flow: An aggregate of multiple movements all starting from the same location and ending at
the same location. Examples include count of commuting people or amount of transported
goods. A flow can be seen as a vector connecting two locations and associated with
one or more aggregate attributes derived from the individual movements that have been
aggregated.

flow map: A cartographic representation of flows shown in a geographic space. Typically,
flows are represented by straight or curved lines connecting the start and end locations
with the thickness proportional to the value of the aggregate attributes. Alternatively, the
attribute values can be represented by varying levels of transparency or by color-coding.

frequent pattern: In data mining, a pattern that occurs frequently in a data set.

fuzzy spatial object: A spatial object whose spatial extent is represented by a membership
function indicating the membership degree of each point in the extent of the object. The
uncertainty is due to imprecision of the borderline of the spatial object. For example, it is
not possible to define with certainty the line separating a mountain from the valley beneath.
This is to be contrasted with probabilistic and vague spatial objects.

hierarchy: In data warehouses, a set of hierarchically correlated levels of a dimension that
define the desired aggregation paths for the measures.
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identifier: In a database, an attribute (or a combination of attributes) whose value uniquely
identifies objects. For example, each value of a Social Security Number uniquely identifies
the person it is associated to. This is to be contrasted with quasi-identifier.

knowledge discovery: The process of extracting useful and nontrivial knowledge from
data. It includes three main steps: data pre-processing, data mining, and data post-pro-
cessing. When applied to trajectory data it is often referred to as mobility knowledge
discovery.

lifting: In spatio-temporal databases, a technique used to derive operations for data types
varying on space or time from the operations on the corresponding base data types by
allowing each argument type to be space or time dependent. For example, a function to
compute the distance between two fixed points is lifted to obtain the computation of the
distance between two points, fixed or moving.

location-based service: An information service accessible through a mobile device that
makes use of the geographical position of the mobile user to determine the most appropriate
answer to a user’s query.

location k-anonymity: A privacy paradigm for the protection of the mobile user’s identity.
A user is k-anonymous with respect to position if his/her position is indistinguishable from
the position of at least k − 1 other users.

location prediction: A predictive model specific to moving objects that is able to forecast
the future locations that the object will visit. These models are usually built from the history
of past behaviors.

location privacy: An information privacy concern that addresses the protection of personal
location information.

map matching: For objects moving within a network, the process of combining the
recorded location of the object with the digital map of the network to obtain the real
position of the object within the network.

measure: In data warehouses, a metric that quantifies facts in a cube. For analysis, mea-
sures are aggregated along the dimensions of the cube. For example, a measure that states
the price at which a product is sold in a given branch of a retail store can be aggregated along
a branch dimension to obtain the average retail price of the product among all branches.

movement track: The sequence of raw data representing the movement of an object for
the whole duration of the movement.

online analytical processing (OLAP): Interactive analysis of data contained in a data
warehouse. It comprises a set of operations such as drill down, roll up, slice, and dice.

ontology: In computer science, a formal representation of a set of concepts within a domain
and the relationships between these concepts. The formal representation is equipped with
an inference mechanism to perform logical inferences on the ontology.

origin-destination matrix (OD-matrix): A representation of flows in the form of a matrix
where the rows and columns correspond to different locations and the cells contain aggre-
gated values from the attributes of individual trajectories.

pattern: A representation that characterizes a set of data in a summarized way. In data
mining, a pattern is a model that represents a summary of the analyzed data set with respect
to some criteria. See also trajectory behavior.

point of interest (POI): A specific location that is of interest in a particular context.
Examples include monuments, hotels, and restaurants. Notice that point of interest is
a generic term which does not necessarily mean that the specific location has a point
geometry; it can be a line or a region. It is also referred to as place of interest.
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privacy: The fact that it is impossible to discover the identity of a person on the basis of
the stored data, and that the personal sensitive information is protected from unauthorized
disclosure.

privacy by design: The approach of embedding privacy protection into the design, oper-
ation, and management of information processing technologies and systems.

privacy-enhancing technologies: Information and communication technologies for the
protection of information privacy. They are also referred to as privacy-preserving
technologies.

privacy personalization: Users’ preferences about the requested type and level of privacy.

probabilistic spatial object: A spatial object whose extent is represented by a probability
(or density) function determining the probability that a given point be inside the extent of
the object. The uncertainty is due to the lack of knowledge, as in the case of the area of sea
covered by oil in case of an oil spill at a given position. This is to be contrasted with fuzzy
and vague spatial objects.

quasi-identifier: One or several attributes that from a pragmatic viewpoint (possibly with
the use of an external source) can be used to identify a person (or a small set of persons)
within the data set at hand. An example is zip code and birth date. This is to be contrasted
with identifier.

raw data: Data as captured by the sensing devices and transmitted to the receiver. It is a
sequence of spatio-temporal positions.

raw trajectory: A trajectory that holds only raw data. Antonym: semantic trajectory.

segmented trajectory: A semantic representation of a trajectory that segments the trajec-
tory into episodes, on the basis of the value of a given expression computed on the attributes
of the spatio-temporal positions. For instance, a trajectory may be segmented into stop and
move episodes on the basis of the instant stillness or speed.

semantic trajectory: A trajectory for which semantic information has been recorded:
geo-objects, events, semantic annotations. Antonym: raw trajectory.

sensitive information: Personal data, such as medical or salary data, that should not be
disclosed in association to the person’s identity. It is also referred to as private information.

sliced representation: A representation for time-dependent types using a discrete model.
In this representation, a trajectory is split into slices defined by disjoint time intervals. The
trajectory within the slice is represented by a simple function (e.g., a straight line).

sound trajectory: A trajectory that has been preprocessed, making it clean (i.e., without
noise), accurate (i.e., map matched), and possibly compact (i.e., compressed).

space-time cube (STC): A visual representation of space and time as a three-dimensional
cube in which two dimensions represent space and one dimension represents time.
In an STC, spatio-temporal positions are represented as points and trajectories as
lines.

space-time prism: The set of all spatio-temporal points that can be reached by a moving
object given a maximum possible speed and starting and ending spatio-temporal points.
A space-time prism can represent the uncertainty about the position of a moving object
between two known (measured) positions.

sparsely sampled movement data: Data about spatial positions of moving objects where
the positions between the measurements cannot be reliably reconstructed by means of
interpolation, map matching, or other methods, due to too large time intervals between the
measurements. An example is the positions of mobile phone calls.
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spatial event: An event having a specific position in space, which is not necessarily fixed
during the time of event’s existence. An event may be considered as spatial or not depending
on the spatial scale of the analysis.

spatio-temporal position: A position of a moving object at a given instant, represented
by a tuple containing at least two data (instant, point), where point is a 2D (x, y) or 3D
(x, y, z) spatial point. Other features may complement the tuple: spatio-temporal data such
as instant speed or stillness, direction, rotation, acceleration, or semantic annotations that
have been captured or inferred such as activity or transportation means.

time-dependent data type: A data type that represents data whose values change over
time. For example, the location of a moving object is represented by a time-dependent
point.

trajectory: A part of the movement of an object that is of interest for a given application
and is defined by a time interval that is included inside the lifespan of the object. The two
extreme spatio-temporal positions of the trajectory are referred to as its Begin and End
positions.

trajectory behavior: A trend characterizing some trajectories. From a data management
viewpoint, a trajectory behavior is a Boolean predicate on trajectories that can rely on
any characteristic of the trajectories (e.g., spatio-temporal positions, episodes); contextual
data linked to the trajectories (e.g., attribute values of geo-objects linked to stop episodes);
and relationships to geo-objects, events, or other moving objects. Examples are the Loop
trajectory behavior and the Flock trajectory behavior. It is also referred to as trajectory
pattern.

trajectory clustering: The process of clustering a set of trajectories into homogeneous
groups according to one or more properties characterizing them. These properties can be
spatial (e.g., begin point, end point, length), temporal (e.g., begin time, end time, duration),
or dynamic (e.g., spatio-temporal position, direction, speed at some instants).

trajectory collective behavior: A trajectory behavior that bears on a set of trajectories,
that is, a Boolean predicate p(S) where S is a set of trajectories containing more than one
trajectory. An example is the Flock trajectory behavior.

trajectory compression: The task of reducing the size of the data stored for a raw trajec-
tory by removing as many spatio-temporal positions as possible without warping the trend
of the trajectory or distorting the data set.

trajectory data mining: A specific type of data mining process applied to a set of trajec-
tories. It is also referred to as mobility data mining.

trajectory data warehouse: A specific type of data warehouse that stores trajectory data.

trajectory database: A specific type of database that stores trajectory data. It is also
referred to as a moving object database.

trajectory individual behavior: A trajectory behavior that bears on a trajectory, that is, a
Boolean predicate p(T ) where T represents a trajectory. An example is the Loop trajectory
behavior.

trajectory interpolation: Reconstruction of the most probable spatio-temporal positions
of a moving object between two recorded spatio-temporal positions.

unit representation: A relational implementation of the sliced representation where a
time-dependent value is stored as a set of tuples, each tuple representing a slice.

vague spatial object: A spatial object whose extent is represented by the spatial extent of
the kernel part, which is certainly part of the object, and the extent of the conjecture part,
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which could contain part of the object. An example is the habitat of a wild animal: The
kernel part is the known habitat, whereas the conjecture part is the region that we suppose
to be part of it. This is to be contrasted with fuzzy and probabilistic spatial objects.

visual analytics: The science of combining automated analysis techniques with interactive
visualizations for an effective understanding, reasoning, and decision making on the basis
of very large and complex data sets.
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