
www.allitebooks.com

http://www.allitebooks.org


Microsoft Dynamics CRM  
2011 Reporting

Everything you need to know to work with reports  
in Dynamics CRM 2011

Damian Sinay

   BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Microsoft Dynamics CRM 2011 Reporting

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1180613

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-230-5

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Author
Damian Sinay

Reviewers
Nishant Rana

James Wood

Acquisition Editor
Vinay Argekar

Commissioning Editor
Shreerang Deshpande

Lead Technical Editor
Mayur Hule

Technical Editors
Sharvari Baet

Jeeten Handu

Veena Pagare

Akshata Patil

Kaustubh S. Mayekar

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreaders
Aaron Nash

Paul Hindle

Indexer
Tejal R. Soni

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org


About the Author

Damian Sinay has over 15 years experience in the software development and IT 
industry. He started working with the .NET framework when its first Version 1.0 
was in the beta stage. In 2002, he won first prize in the "Building solutions based  
on XML Web Services" contest, which spanned across Latin America, by Microsoft. 
In 2006, he wrote his first book in his native language (Spanish) on web services  
with C# development.

He started working with CRM solutions prior to the first release of Microsoft 
Dynamics CRM's initial version. Since then, he has exclusively been developing 
and implementing solutions for Dynamics CRM and SharePoint. He is certified in 
Versions 3.0, 4.0, and 2011 including development, installation, configuration, and 
implementation of Dynamics CRM. He has around 18 Microsoft certifications (MCP) 
in SQL, C#, ASP.NET, TFS, Project, CRM, and SharePoint 2007 and 2010. Among 
many other things, he has co-authored the Dynamics CRM unleashed books for 
Versions 4.0 and 2011.

He held the Microsoft Most Valuable Professional (MVP) award in Dynamics CRM 
in 2012 and serves as the CEO of Remoting Coders, a Microsoft Partner company 
that is turning 10 years old in 2013, providing solutions using Microsoft products 
and technologies.

You can contact Damian at damian@sinay.com.ar, follow him on Twitter at  
@damiansinay, and can also read the blog at http://www.remotingcoders.com/
Blogsite/.

I would like to especially thank my wife Carina Godoy de Sinay and 
my kids who have been positive and unconditional supporters. 
 
I would also like to thank my clients, my colleagues, Microsoft 
MVPs, the Microsoft CRM product team, and my partners who have 
provided invaluable opportunities for me to expand my knowledge 
and shape my career.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Nishant Rana currently works at Microsoft Services Global Delivery (MSGD). He 
has done his specialization in the Microsoft .NET technology and has been actively 
involved with it since its release. His main focus area has been Microsoft Dynamics 
CRM and SharePoint. He is a Microsoft Certified Technology Specialist and an IT 
professional in Dynamics and SharePoint, and a MCAD (Application Developer)  
for .NET.

He has also reviewed the book entitled Microsoft Dynamics CRM 2011 Application 
Design, Mahendar Pal, Packt Publishing.

You can contact Nishant via his website or Twitter account:

http://nishantrana.wordpress.com/

https://twitter.com/nishantranaCRM

I would like to thank my family and my friends for their love, care, 
and support.

www.allitebooks.com

http://www.allitebooks.org


James Wood is a consultant at Gap Consulting with skills in the end-to-end 
implementation of enterprise-level Microsoft Dynamics CRM solutions. He 
graduated from the University of Huddersfield with a First Class degree in 
Computer Games Programming before making the switch to business applications.

He has worked with Microsoft Dynamics CRM for three years and is an able 
developer of bespoke applications. He has worked on a number of small to large 
implementations in sectors including local and regional government, education, 
defense, banking, manufacturing, and welfare.

He has also worked as a technical reviewer for Microsoft Dynamics CRM 2011 
Application Design and Microsoft Dynamics CRM 2011: An expert cookbook for securing, 
customizing, and extending your CRM apps.

You can read his blog at www.woodsworkblog.wordpress.com.

I would like to thank my family and friends for everything—especially 
Mum, Dad, Rob, and Chloё.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers and 
more
You might want to visit www.PacktPub.com for support files and downloads related to your book. 

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book 
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com 

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. 
Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, 
or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Introduction to Reporting in Microsoft Dynamics CRM	 7

CRM report types	 7
CRM report settings	 8

Categories	 10
Related Record Types	 12
Display in 	 14
Languages	 14

SQL reporting services versions	 14
SQL Server databases	 16
Windows Service	 17
Report Manager website	 17
Report Server Web service	 17

Installation and configuration of Reporting Services Extensions	 17
Installation and configuration of Report Authoring Extension  
(Visual Studio development)	 24
Summary	 30

Chapter 2: Database Basics	 31
ERD basics	 31

Relationship types	 33
One-to-many relationships (1:N)	 34
Many-to-one relationships (N:1)	 36
Many-to-many relationships (N:N)	 37

SQL overview	 38
Select	 38
Update	 41

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Delete	 41
Insert	 41
WHERE	 42
ORDER BY	 43
group by	 44
join	 46

SQL advanced	 47
CREATE TABLE	 48
DROP TABLE	 48
Stored procedures	 48
Cursors	 50
Transactions	 52

FetchXML overview	 52
Select fields	 59
Filters and conditions	 61
Order by	 62
Group by	 63
Linking to other entities	 64

Inner join	 64
Outer join	 64

Summary	 65
Chapter 3: Creating Your First Report in CRM	 67

Using Microsoft Dynamics CRM 2011 Report Wizard	 67
Using Visual Studio	 80
Publishing the report	 91
Summary	 92

Chapter 4: SQL Server Report Builder	 93
Report Builder overview	 93
Datasets	 96
Query Designer	 101
Creating a new report	 103

Table or Matrix Wizard	 104
Adding a logo to our report	 113

Advanced reports with Report Builder	 118
Map Wizard	 119
Map visualization types	 122
Testing the Map report	 125

The Report Builder's limitations	 126
Summary	 126



Table of Contents

[ iii ]

Chapter 5: Creating Contextual Reports	 127
Using Visual Studio	 127

Toolbox	 129
Expressions	 131
Prefilters	 132

Report parameters in detail	 133
CRM_FilterText	 133
CRM_FormatDate	 133
CRM_FormatTime	 134
CRM_FullName	 134
CRM_FilteredAccount	 134
CRM_URL	 135
CRM_CalendarType	 135

Data sources	 137
Embedded data sources	 138
Shared data sources	 139

Data sets	 143
Groups on data sets	 151

Adding columns to the report	 151
Hiding and showing columns	 153

Charts	 157
Drill-down and collapsible controls	 160
Summary	 161

Chapter 6: Creating Inline Reports	 163
Embedding reports on an entity form	 163

Creating a custom solution	 165
Creating the HTML web resource	 166
Implementing the report control	 171
Developer Toolkit	 176

Summary	 185
Chapter 7: Using Reports and Charts in Dashboard	 187

Showing report on a dashboard	 187
Exporting dashboards	 191

Basic charts	 193
Drill-down chart	 196

Charts editor	 199
Exporting charts	 204
Charts internals	 208
3D charts	 209

Summary	 210



Table of Contents

[ iv ]

Chapter 8: Advance Custom Reporting and Automation	 211
The ASP.NET report	 211

Late binding	 213
Early binding	 219
CRM integration	 222

Silverlight reports	 222
MVVM	 223

Basic report automation	 226
Report scheduling	 227

Advanced report automation (programmatically)	 234
Summary	 239

Chapter 9: Failure Recovery and Best Practices	 241
Common failures in SSR authentication	 241
Tracing	 242

Enabling CRM Trace	 243
Using SQL Trace	 246

Report development best practices	 251
Report deployment best practices	 252

Improving the performance of reports 	 253
Creating report caching	 253
Creating report snapshots	 257

Summary	 258
Chapter 10: Mobile Client	 259

New features for mobile clients	 259
The sales process	 262
The autosave feature	 264
SQL Server 2012 with SP1 	 267
Microsoft Surface	 270

The mobile client's considerations	 270
Authentication considerations 	 271
Custom reports development considerations	 273

Summary	 273
Appendix: Expression Snippets	 275

Basic expressions	 275
Constants	 277
Variables	 278



Table of Contents

[ v ]

Advanced expressions with VBScript code	 279
References	 280
Working with control events	 281

Actions	 282
Visibility	 282
Interactive Sorting	 283

Summary	 284
Index	 285





Preface
Microsoft Dynamics CRM 2011 Reporting is a practical reference guide that provides 
you with a number of different options you can use to create and empower the 
reporting capabilities of Dynamics CRM. This will give you a good grounding  
for using the reports in your Dynamics CRM 2011 implementations.

What this book covers
Chapter 1, Introduction to Reporting in Microsoft Dynamics CRM explains the different 
types of reports we can use in Dynamics CRM. Further, it explains SQL Server 
Reporting Services (SSRS) and how to install the Dynamics CRM 2011 Extensions. 
It also covers how to install the Microsoft Dynamics CRM 2011 Report Authoring 
Extension, which we are going to use and explain later in this book.

Chapter 2, Database Basics explains the entity-relationship model of Dynamics CRM; 
we will review the basic and advanced commands of the SQL language as well as  
the FETCH XML language that we will need to use in order to create the queries 
we will use in our reports. We are going to keep using these two languages in the 
following chapters.

Chapter 3, Creating Your First Report in CRM helps us to create our first report using 
the Report Wizard and also to export the report to be edited with Visual Studio 2008, 
where we will make some customizations to reupload the report in Dynamics CRM. 
We will also see how to publish the report to be visible on the Reporting Server 
manager for external use.

Chapter 4, SQL Server Report Builder helps us to create our first report using the Report 
Builder and shows us the features we can use that were not available in the standard 
CRM Report Wizard. We will also create an advanced report using the Map Wizard, 
where we will show the records held by the USA.



Preface

[ 2 ]

Chapter 5, Creating Contextual Reports explains the advanced tools and controls  
we can use to create reports with Visual Studio. We will review the CRM Report 
parameters and the chart controls. This chapter explains the differences between  
the data source and datasets, and finally looks at how to use the groups, drill-down 
and collapsible controls in reports.

Chapter 6, Creating Inline Reports shows us how we can embed a report inside any 
entity form by creating a custom solution that uses an HTML web resource. We 
will also see how to implement this custom solution on the account entity using the 
account overview report. We will then review the development toolkit, which will 
help us work in a more organized manner with custom CRM solutions to get the 
benefit of IntelliSense. The deployment capability also allows us to integrate our 
source code with a source controller software, such as the Team Foundation server.

Chapter 7, Using Reports and Charts in Dashboard shows us how we can integrate a 
report in a CRM Dashboard and explains the chart basics as well as more advanced 
details; this is always a good option to display important information about the  
CRM system if we don't want to use reports.

Chapter 8, Advance Custom Reporting and Automation shows us how we can integrate a 
custom ASP.NET or Silverlight application to show a dynamic or more sophisticated 
report inside Dynamics CRM 2011. We will look at the different ways to bind CRM 
data by using early or late binding methods, and finally we will look at some ways 
to automate SSRS reports by either using scheduling or by automating export report 
generation with code.

Chapter 9, Failure Recovery and Best Practices shows us how we can troubleshoot 
different authentication issues we might face when working with reports in Dynamics 
CRM, as well as the different ways to improve the report development performance 
and deployment by using some of the best practices for SQL Reporting Services.

Chapter 10, Mobile Client shows us the new features of Dynamics CRM and SQL 
Server 2012 to show and run reports on mobile devices, such as iPhone, iPad, and 
Surface. We will look at how to configure the IFD authentication so we can give 
external users access to our on-premise CRM environment.

Appendix, Expression Snippets shows us some basic expressions and how we can use 
them in our reports; we will learn how to use constants, variables, and functions, as 
well as using external .NET assemblies by using the references. Finally, we will look 
at the user interaction controls that will help us interact with the users.



Preface

[ 3 ]

What you need for this book
•	 Windows Server Standard Edition 2008 R2 or 2012
•	 SQL Server 2012 with SP1/2008 R2 with SP2
•	 Visual Studio 2008/2010 installed by the SQL Server development tools
•	 Dynamics CRM 2011 with RU 13 and/or CRM Online
•	 Visual Studio 2012 for custom reports in ASP.NET and Silverlight

Who this book is for
This book is an indispensable guide for users and developers new to Dynamics  
CRM Reports and SQL Server Reporting Services, and who are looking to get a  
good grounding in using the reporting capabilities of Dynamics CRM 2011. It's 
assumed that you will already have some experience in HTML and JavaScript to 
build advanced reports, but no previous programming experience is required to 
build and learn how to create some basic to intermediate reports, which will be  
used for the exercises within this book.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "To group you add the aggregate='true' 
attribute to the fetch node."

A block of code is set as follows:

<fetch version="1.0" mapping="logical" distinct="false">
  <entity name="account">
    <attribute name="telephone1" />
  </entity>
</fetch>

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

DataTable accounts = new DataTable("Accounts");
            accounts.Columns.Add("name");
            accounts.Columns.Add("accountid");
            string fetchQuery = @" 
                <fetch distinct='false' mapping='logical' > 



Preface

[ 4 ]

Any command-line input or output is written as follows:

declare @name as varchar(160)

declare @revenue as money

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Check  
the checkbox that says I accept this license agreement and click on I Accept  
to continue".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.



Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously.  
If you come across any illegal copies of our works, in any form, on the Internet,  
please provide us with the location address or website name immediately so  
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org




Introduction to Reporting in 
Microsoft Dynamics CRM

Microsoft Dynamics CRM 2011 makes extensive use of reporting, which we will be 
covering through this entire book. Reporting is a very important piece of any system 
that is heavily used by managers or upper management roles, such as the CEO and 
COO, of any enterprise. In this chapter we will cover:

•	 CRM report types
•	 CRM report settings
•	 SQL Reporting Services versions
•	 Installation and configuration of Reporting Services Extension
•	 Installation and configuration of Report Authoring Extension  

(used for Visual Studio development)

CRM report types
Microsoft Dynamics CRM 2011 allows different types of reports; not only can the 
SQL Reporting Services reports be used, but other custom reports, such as Crystal 
Reports, ASP.NET, or Silverlight reports can also be integrated.

Dynamics CRM can manage the following types of reports:

•	 RDL files, which are SQL Reporting Services reports
•	 External links to external applications such as Crystal Reports, ASP.NET,  

or Silverlight reports
•	 Native CRM dashboards with charts



Introduction to Reporting in Microsoft Dynamics CRM

[ 8 ]

The RDL files can be created in either of the following two ways:

•	 By using the Report Wizard
•	 By using Visual Studio

Dynamics CRM 2011 comes with 54 predefined reports out of the box; 25 of them 
are main reports and 29 are subreports. If for some reason you don't see any report 
as shown in the following screenshot, it means Dynamics CRM 2011 Reporting 
Extensions were not installed. This is something that can only happen for on-premise 
environments; if you are working with CRM Online, you don't need to be worried 
about any report-extension-deployment tasks.

CRM report settings
Reports in Dynamics CRM have the following settings or categories that  
you can access by clicking on the Edit button of each report, as shown in  
the following screenshot:



Chapter 1

[ 9 ]

In the Report: Account Summary window you will see two tabs, General  
and Administration.

The Administration tab will show the name of the owner of the report, when  
the report was created or updated and who did it, and whether it is viewable  
to the user or the entire organization.



Introduction to Reporting in Microsoft Dynamics CRM

[ 10 ]

In the General tab, you will see the name of the report and the description. If it is 
a subreport, we will see the parent report displayed. Lastly, in the Categorization 
section, you can see the following settings:

•	 Categories
•	 Related Record Types
•	 Display in
•	 Languages

We will study each of these settings in detail.

Categories
By default, there are four categories created out of the box in every CRM organization:

•	 Administrative Reports
•	 Marketing Reports
•	 Sales Reports
•	 Service Reports

You can change, add, or remove these categories by navigating to Settings | 
Administration | System Settings | Reporting as shown in the following screenshot:



Chapter 1

[ 11 ]

These report categories are used so that you can filter reports by each category when 
the predefined views are available in the main Reports interface, as shown in the 
following screenshot:

Notice that if you add a new category, you will also have to create the view as  
it won't be created automatically.



Introduction to Reporting in Microsoft Dynamics CRM

[ 12 ]

Related Record Types
The Related Record Types option allows you to select what entities you want the 
report to be displayed under.

The reports will be listed under the Run Report button that is on the Ribbon.  
There are two locations where the report will be listed on the entities you selected: 
the home page grid and the form.



Chapter 1

[ 13 ]

The home page grid is where you see all the records of an entity (depending on the 
view you selected) as shown in the following screenshot:

Almost every entity in Dynamics CRM has a Run Report button. As you can see, there 
are some reports that can run on the selected records and there are others that only  
run on all records. We will see how to configure this in detail when we go deeper  
into report development with Visual Studio in Chapter 5, Creating Contextual Reports.

The form is the second place where the Run Report button is located and it is visible 
on the form record that you will see when you open a record; the report will only 
affect that record.



Introduction to Reporting in Microsoft Dynamics CRM

[ 14 ]

Display in 
As we saw in the Related Record Types option, we can decide here where we want 
to show our report. The options are:

•	 Forms for related record types
•	 Lists for related record types
•	 The Reports area

The first option will make the report available on the Run Report button, which  
is on the form ribbon of an entity record as we have seen earlier.

The lists for the Related Record Types option appears on the home page grid  
ribbon button.

The Reports area refers to the main reporting interface that is in the Workplace.

Languages
This last option of the Categorization section allows us to specify the language of the 
report. We have the option of selecting all the languages on the list if you want your 
single report to be displayed in any of these languages. This is helpful if we have 
the different language packs installed on the CRM Server and the organization has 
people from different countries who understand different languages. By default all 
the reports are based on the local language.

This option might not be visible on your installation if you don't 
have any other language installed on the system.

SQL reporting services versions
The first version of reporting services was released as a separate download for 
SQL 2000. It was in the SQL 2005 version that it was integrated in the SQL Server 
installation media and became an optional feature of the SQL Server setup.

I remember that when I first installed SQL Reporting Services 2000, the setup  
was very complicated and required touching some XML files manually. It was in 
the 2005 version that it included a very nice application called Reporting Services 
Configuration Manager to help set up and deploy, which has been improving  
with every version to make this task much easier.



Chapter 1

[ 15 ]

The 2000 and 2005 versions required Internet Information Services (IIS) to be 
installed on the server to be used by the report manager and report web services. 
However, the 2008 and 2012 versions come with their own HTTP server and don't 
make use of the IIS.

There is an important difference between the versions of SQL Server and Visual 
Studio. Basically, the last version of SQL 2012 is one version behind Visual Studio  
as currently there is no support for the Report Server Project Templates in Visual 
Studio 2012. The following table shows this discrepancy:

SQL Server Visual Studio CRM Server
2005 Visual Studio 2005 4.0
2008 Visual Studio 2005 4.0 and 2011
2008 R2 Visual Studio 2008 4.0 and 2011
2012 Visual Studio 2010 4.0 and 2011

Dynamics CRM 2011 was originally designed to work with Windows Server 2008  
R2 and SQL Server 2008 R2. Installing Dynamics CRM 2011 on Windows Server 2012 
with SQL Server 2012 is very challenging; Daniel Cai, a fellow Microsoft MVP in 
Dynamics CRM, has written the necessary steps and workarounds in his article  
at http://danielcai.blogspot.com.ar/2012/05/install-crm-2011-on-
windows-server-8.html.

As we can see in the http://support.microsoft.com/default.
aspx?kbid=2791312 link, there is upcoming support for Windows 2012  
with the Update Rollup 13, which will be available on the Windows Update.

In this book, I have decided to use the latest Microsoft versions, Windows  
Server 2012 and SQL Server 2012, to take the benefits of the latest features  
and improvements. I will mention in this book whenever a specific feature  
is different from the previous versions, as some implementations might still  
use the 2008 R2 versions.

At the time of writing this book, CRM Online is using SQL Server 2012.

Some of the benefits of using SQL Server 2012 with Dynamics CRM 2011 are  
as follows:

•	 Support for the mobile client with the SQL Server 2012 Service Pack 1
•	 Alerts directly from the reporting-service control
•	 Better performance

www.allitebooks.com

http://www.allitebooks.org


Introduction to Reporting in Microsoft Dynamics CRM

[ 16 ]

There is also another version of SQL Reporting Services that uses the same concept 
but is hosted in the cloud of Windows Azure; however, this version can't be used 
with Dynamics CRM directly.

Regardless of the edition, SQL Reporting Services has four main components:

•	 SQL Server databases
•	 Windows Service
•	 Report Manager website
•	 Report Server Web service

SQL Server databases:

ReportServer

ReportServerTempDB

Reporting Web Service

Http://server/ReportServer

Reporting Server

Core

Report Manager

Http://server/Reports

windows

Service:

SQL Server

Reporting

Services

SQL Server databases
There are two databases that are used by the SQL Reporting Services—ReportServer 
and ReportServerTempDB. All the reports and configurations are stored in the 
first database, and the second one is used to store temporary data and improve the 
service performance by caching the user sessions. Notice that these databases' names 
are set by default and a Database administrator (DBA) might change the names 
using the Reporting Services Configuration Manager.



Chapter 1

[ 17 ]

Windows Service
The Windows Service is used to automatically generate scheduled reports that can 
be scheduled with the Report Manager website or the CRM interface, as we will see 
in Chapter 8, Advance Custom Reporting and Automation. You can see this Windows 
Service in the Windows Services tool with the name of SQL Server Reporting 
Services (MSSQLSERVER), where MSSQLSERVER will be the name of the  
SQL Server instance you are running.

Report Manager website
The Report Manager is the web-user interface in which a user can see, create,  
and run reports by usually going to a URL such as http://<servername>/Reports. 
From this interface, the administrator can also give and assign permissions to the 
reports as well as configure and run the reports directly.

Report Server Web service
The Report Server Web service is the web service end point where a developer 
can integrate with other custom applications. Usually, by going to a URL such as 
http://servername/ReportServer, a developer can create another user interface 
to do everything the Report Manager website can do, but with a custom interface 
or application such as a Windows or WPF app. This is the URL that Visual Studio 
and the Report Builder use to connect and interact with the reporting services to run 
and deploy reports. This web service is very useful if you want to automate some of 
the export report features, such as to automate the generation of a PDF document 
by executing a report. An example of one of the end points exposed can be found at 
http://<servername>/ReportServer/ReportService2010.asmx; there are other 
ASMX files for compatibility with previous versions, such as ReportService2006.
asmx and ReportService2005.asmx.

Installation and configuration of 
Reporting Services Extensions
If the Dynamics CRM 2011 Reporting Extensions were not installed during the 
initial setup of Dynamics CRM, you can install them manually later by executing 
the SetupSrsDataConnector.exe file that is located in the Server\amd64\
SrsDataConnector folder of the Dynamics CRM 2011 installation media. It is 
important to know that this needs to be installed on the server where the SQL 
Reporting Services is installed.



Introduction to Reporting in Microsoft Dynamics CRM

[ 18 ]

To install the Reporting Services extensions, follow the given steps:

1.	 Execute the file SetupSrsDataConnector.exe.

2.	 Click on Next to continue.



Chapter 1

[ 19 ]

3.	 Check the checkbox I accept the license agreement and click on I Accept  
to continue.

4.	 Click on Install when the Download and Install required components 
window pop ups and then click on Next to continue.

5.	 By default the setup will show the SQL Server used by CRM 2011; choose  
the suggested server name and click on Next to continue.

6.	 Choose the suggested instance and click on Next to continue.



Introduction to Reporting in Microsoft Dynamics CRM

[ 20 ]

7.	 Select the installation directory or leave the default suggested location and 
click on Next to continue.

The setup will validate the system, and in case of any errors, it will  
be displayed.
In this case, the error shown refers to a typical SQL 2012 SRS installation, 
where the local account ReportServer is used by default. We will need 
to change the reporting service account by using the Reporting Services 
Configuration Manager tool and either use a domain account specifically 
created for this purpose or use the Network Service local account.

We can use the Network Service account because this account 
is also the computer account on the domain controller (Active 
Directory). This means that at the end it is also a domain account.



Chapter 1

[ 21 ]

8.	 If we use the Network Service account, we will see a warning as shown in  
the following screenshot:

9.	 Click on Next to continue.



Introduction to Reporting in Microsoft Dynamics CRM

[ 22 ]

10.	 As we can see in the warning page, the SQL Server Reporting Service will 
need to be restarted; therefore we need to be sure that nobody would need  
it while installing this component. Click on Next to continue.

11.	 Now we are ready to install the extensions, so click on Install to continue. 
The setup will take a few minutes to complete.



Chapter 1

[ 23 ]

12.	 Click on Finish to close the installer. To validate that we have deployed 
the reports successfully, we can go to the CRM Web interface and click 
on Reports. We should now see all the reports installed as shown in the 
following screenshot:

It is very important that we also validate this page from another computer that  
is neither the CRM Server nor the SQL Server, to be sure that the reports work 
properly for the users. Issues in the configurations would make the reports work 
well only on the server but not on the user machines. In Chapter 9, Failure Recovery 
and Best Practices, we review some of the common issues and solutions related to  
the reporting services' authentication issues.

After installing the Reporting Services Extensions, it is also recommended to install 
the latest rollup updates (service packs) to match the same rollup update as the CRM 
Server. At the time of writing, the latest rollup update for Dynamics CRM 2011 was 
number 13 and it can be downloaded using either the Windows Update option or by 
going to http://www.microsoft.com/en-us/download/details.aspx?id=37133 
and downloading the CRM2011-Srs-KB2791312-ENU-amd64.exe file.



Introduction to Reporting in Microsoft Dynamics CRM

[ 24 ]

To check what rollup update version you have installed and/
or see all the different rollup updates that are available, you can 
refer to this blog article:
http://blogs.msdn.com/b/crminthefield/
archive/2012/01/12/microsoft-dynamics-crm-4-
0-and-2011-update-rollup-release-dates-build-
numbers-and-collateral.aspx

Installation and configuration of Report 
Authoring Extension (Visual Studio 
development)
The Report Authoring Extension component is essential if you are planning to  
develop SQL Reporting Service reports with Visual Studio 2008; it will add the 
necessary FetchXML data connector. As we will see in detail in Chapter 3, Creating Your 
First Report in CRM, the reports that are generated with the Report Wizard use this 
connector. So if you want to update any of the reports generated by the Report Wizard, 
you will need to have these extensions installed on your development machine.

The extensions require SQL Server 2008 developer tools to be installed; after the 
Update Rollup 13, you can now install it on the SQL Server 2010 developer tools. 
Before Update Rollup 13, the extensions were not compatible with the tools installed 
by SQL Server 2012; this is because SQL 2012 uses Visual Studio 2010 instead of Visual 
Studio 2008, which is the version that is required by default. After the Update Rollup 
13, support for the Visual Studio 2010 that comes with SQL 2012 has been added.

At the time of writing, there is no known version of the developer tools that is 
compatible with Visual Studio 2012.

To install this extension, you will need to download the Microsoft Dynamics CRM 
2011 Report Authoring Extension from the Microsoft downloads website or by going 
to the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=27823



Chapter 1

[ 25 ]

The following are the steps to install and configure Report Authoring Extension:

1.	 Download the file with the name CRM2011-Bids-ENU-i386.exe.
After downloading and executing this file, you will be prompted to select  
a folder where the files will be extracted to and the following first dialog  
will appear:

2.	 Select the option Get updates for Microsoft Dynamics CRM (recommended) 
and click on Next to continue.

www.allitebooks.com

http://www.allitebooks.org


Introduction to Reporting in Microsoft Dynamics CRM

[ 26 ]

3.	 Click on Next to continue.

4.	 Check the checkbox that says I accept this license agreement and click  
on I Accept to continue.



Chapter 1

[ 27 ]

If you try to install this tool on a Windows 2012 server, where 
you have the SQL Server Data tools installed, you will need 
to install the Windows Identity Foundation 3.5 server role 
first or this installer will fail.

5.	 Install the required components by clicking on the Install button. After that, 
click on Next to continue.

6.	 Select the recommended option and click on Next to continue.



Introduction to Reporting in Microsoft Dynamics CRM

[ 28 ]

7.	 Leave the default location as it appears or select the location where  
you want the component to be installed, and click on Next.

8.	 The setup will check whether everything is okay in the system before  
letting you start the installation; click on Next to continue.

9.	 Now click on Install.



Chapter 1

[ 29 ]

If there is any error, you will be able to see the details by clicking 
on the View the log file link.

10.	 Click on Finish to close the setup application.

You can validate whether the Report Authoring Extensions are well installed by 
looking at the data source types in Visual Studio 2008, where Microsoft Dynamics 
CRM Fetch should be listed as an option.



Introduction to Reporting in Microsoft Dynamics CRM

[ 30 ]

Summary
In this chapter we have explained the different types of reports we can use in 
Dynamics CRM. Further, we have learned about SQL Server Reporting Services 
(SSRS) and how to install the Dynamics CRM 2011 connector. We have also covered 
how to install the Microsoft Dynamics CRM 2011 Report Authoring Extension,  
which we are going to use and explain later in this book.

The next chapter will show the entity relationship model of dynamics CRM and 
review the basic and advanced commands of the SQL language as well as the 
FetchXML language.



Database Basics
Microsoft Dynamics CRM 2011 makes extensive use of the database that we are 
going to look at through the entire book.

In this chapter we will cover:

•	 ERD (Entity Relationships Diagrams) basics
•	 SQL basics
•	 SQL advanced
•	 FetchXML

ERD basics
Microsoft Dynamics CRM 2011 uses SQL Server as its database backend. There are  
two main databases that are created after the CRM server is initially set up. The 
MSCRM_CONFIG database, which is the one that holds different organizations' data and 
general configurations.  The other is a database for the organization itself, with a name 
like <organizationname>_MSCRM. Depending on the number of CRM organizations 
you have in the system, you will have the same number of databases ending with 
_MSCRM with similar database schemas. The only difference between the organizations' 
databases would be the specific customizations on the entities and fields.

Microsoft Dynamics CRM 2011 uses the concept of entities to name, which in a 
database language would be like a table. An entity is usually a noun such as a person 
or house. Dynamics CRM comes with lot of entities already created in the system, 
such as Account, Contact, and Invoice.

As in any table, the entities contain fields. Each field represents an attribute in the 
entity. Some examples of fields are First Name, Name, and Address.



Database Basics

[ 32 ]

Dynamics CRM 2011 has the following types of fields:

•	 Single line of text
•	 Option set
•	 Two options
•	 Whole number
•	 Floating point number
•	 Decimal number
•	 Currency
•	 Multiple lines of texts
•	 Date and time
•	 Lookup

You can go to http://technet.microsoft.com/en-us/
library/gg328507.aspx for a reference of the types of fields 
used in the Microsoft Dynamics CRM SDK.

Dynamics CRM is a structured system and hence it manages everything in entities. 
Once you create a field in CRM, you won't be able to change the type of field as  
you would be able to in Microsoft SharePoint.

For any entity you create in CRM, the system will create different objects in SQL: 
it will create two tables, one with the name of the entity plus the Base suffix and 
another table with the same name plus the ExtensionBase suffix.

For example, if we create an entity called Project, the following two tables will  
be created:

•	 New_ProjectBase

•	 New_ProjectExtensionBase

Notice that the New_ prefix comes with the default publisher of the solution on which 
we created the custom entity, and can be changed by creating another publisher.

Apart from the tables, there will be two views that CRM will also create in the SQL 
Server database:

•	 New_project

•	 Filterednew_project



Chapter 2

[ 33 ]

The first view, new_project, will return the join of the two tables New_ProjectBase 
and New_ProjectExtensionBase as these two tables have a one-to-one relationship 
because they share the same primary key, new_projectId. All the IDs in CRM are 
GUIDS, which are unique identifiers.

The second view is similar to the first one but with the addition of capacity to 
control the security of the results based on the calling user. So if this view is selected 
by a customer service representative, it will return only the records this user has 
permissions to see, and the first view won't validate any permissions and would 
always return all the records.

For these reasons, it is recommended to always use the filtered views when querying 
the records in our reports. That way we can be sure that we will only display 
information that the user who runs the report is allowed to see.

Another benefit of using views is that you not only get the fields of one table, such  
as the Base table, but also the fields from the ExtensionBase suffix plus the option 
set values that are also stored on a separated table.

Relationship types
The entities in Dynamics CRM can be related in the following ways:

•	 1:N (one-to-many)
•	 N:1 (many-to-one)
•	 N:N (many-to-many)

For normalization purposes, Dynamics CRM doesn't allow 1:1 (one-
to-one) relationships.
If you want to review the ERD of your CRM system and custom 
entities, you can download the solution I have published in CodePlex, 
which is located at http://crm2011erd.codeplex.com/.



Database Basics

[ 34 ]

When you go to the Dynamics CRM interface having the system administrator or 
system customizer role, you can go to Settings | Customizations | Customize the 
System. Now expand Entities and select any entity, for example, Account. You  
will see the relationships listed as shown in the following screenshot:

One-to-many relationships (1:N)
These relationships are created when you need to have more than one record of 
an entity related to a single record of another entity. For example, you can have an 
account that has more than one contact. In Dynamics CRM, there will be a lookup 
control in the Contact entity to show the related account, such as the Parent 
Customer field shown in the following screenshot:



Chapter 2

[ 35 ]

In the Account form, there will be a new entry added to the sitemap with the name 
of Contacts to show the related contact entries as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org


Database Basics

[ 36 ]

In the Customization section of the Account entity, you will see these 1:N 
relationships, and on opening it you will see the following details page:

Many-to-one relationships (N:1)
On the other hand, if we are looking at the Contact entity, we will see the same 
relationship we described in the 1:N example, but backwards. So if we open the 
Contact entity and go to the N:1 relationships, we will see the same relation we  
saw in the Account entity under the 1:N relationships.

It is important to know that when we create any type of 
relationship between two entities, we need to publish both 
entities for the changes to take effect. Similarly, when we want to 
export one entity, we will also need to include the related entities 
in our solution file to replicate the same customization in another 
organization or environment.



Chapter 2

[ 37 ]

Many-to-many relationships (N:N)
We use this type of relationship when we need to have one record of an entity that 
needs to be related to more than one record of another entity and at the same time 
this entity needs to have more than one record related to the first entity. For example, 
suppose we have a marketing list that can contain more than one account while at 
the same time an account can belong to more than one marketing list. In Dynamics 
CRM, this relationship will look as follows:

In the Account form, there won't be a lookup like in the 1:N relationship, and instead 
they will be added to the sitemap of both entities. For example, in the Account entity, 
there will be a node to show the marketing lists and in the marketing lists, there  
will be a node to show the accounts. In this particular case, they will be shown  
under the marketing members list. This example shows a particular case of a 
polymorphic relationship that, at this moment, cannot be created and only exists  
in the out-of-the-box system.



Database Basics

[ 38 ]

SQL overview
It is very important to have good knowledge and experience with SQL. SQL is short 
for Structured Query Language, and it is commonly used to handle and manage 
database records. Microsoft SQL Server has its own type of SQL called T-SQL or 
Transact-SQL. In this chapter we are going to use SQL Management Studio, which  
is installed along with Microsoft SQL Server.

The main commands of this language are Select, Update, Delete, and Insert.

Select
This command is used to query records from the database.

The syntax used is as follows:

Select field1, field2 from table

Select field1, field2 from view

We use the filtered views as follows:

Select name, address1_stateorprovince from FilteredAccount

Downloading the example code
You can download the example code files for all Packt 
Publishing books you have purchased from your account at 
http://www.PacktPub.com. If you purchased this book 
elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

This will produce the results shown in the following screenshot:



Chapter 2

[ 39 ]

In this book we are using the CRM sample data, which you can 
install by going to Settings | Data Management | Sample Data | 
Install Sample Data. Having the sample data installed will produce 
very similar results to what are described in the samples.

If you want to get all the fields, you can just use the * char as follows:

Select * from table

For example, see the following query:

Select * from FilteredAccount

This will produce the results shown in the following screenshot:

If you want to get a number of records only, you need to use the TOP keyword. For 
example, if we only want to get the first two records, we use the following command:

Select TOP 2 name, address1_stateorprovince from FilteredAccount

This will produce the results shown in the following screenshot:



Database Basics

[ 40 ]

There are also some text transformation functions you can use in your select 
command; for example, if you want to return all the values of a field in uppercase  
or in lowercase as shown in the following command:

Select UPPER(name), LOWER(address1_stateorprovince) from FilteredAccount

This will produce the results shown in the following screenshot:

As you can see in the previous screenshot, when using functions, the column names 
are missing; so we will need to add a column alias as follows:

Select UPPER(name) as name , LOWER(address1_stateorprovince) as address1_
stateorprovince from FilteredAccount

Notice that you can omit the as keyword; the following code will produce the same 
result:

Select UPPER(name) name , LOWER(address1_stateorprovince) address1_
stateorprovince from FilteredAccount

Even though you can apply text transformations in your SQL 
query, it might not be recommended to do that here because, as 
we will see later in this book, you will also be able to apply text 
transformations on your report.



Chapter 2

[ 41 ]

Update
The Update command is used to edit the data stored in the database. The syntax  
is as follows:

Update table set field = value, field = value

Notice that if you don't specify a WHERE condition, all the records will be updated;  
for example, the following command will update the country field with the U.S. 
value to all records in the Account table:

Update FilteredAccount set address1_country = 'U.S.'

It is not recommended to perform the Update, Delete, and 
Insert operations on the CRM database from SQL directly as 
it is an unsupported method. When you need to perform these 
operations, always use the web services so the plugins and 
workflows that might be associated with those operations  
can be fired.

Delete
The Delete command removes records from the database. The basic command  
is as follows:

Delete from table

Note that when using this command, if you don't specify a WHERE condition, it will 
delete all the records; be careful and use a WHERE clause when using this command,  
as follows:

Delete from table where field = value

Insert
The Insert command adds records to a table. The syntax is as follows:

INSERT INTO tablename (field1, field2) VALUES (value1, value2)

Have in mind that inserting records to the CRM tables is not an easy task because 
it requires inserting records in at least two different tables. We should never insert 
records into the CRM tables manually with SQL code; however, we will find the 
Insert command useful when working with temporary tables, as you will see  
later in this chapter in the SQL advanced section.



Database Basics

[ 42 ]

WHERE
Most of the time we want to filter the query results in such a way that they return  
a set of records but not all the records that exist in the table; this is when we use the 
WHERE clause.

Select * from FilteredAccount WHERE name = 'damian'

You can also use the AND operator to filter by another column as follows:

Select * from FilteredAccount WHERE name = 'damian' AND telephone1 = 
'9999'

With the AND operator, both name and phone number need to match the returned 
records. If you want to filter by a field or another field, we use the OR operator as 
follows:

Select * from FilteredAccount WHERE name = 'damian' OR telephone1 = 
'9999'

If you want to filter by a part of a string, similar to the contains operator in the 
Advanced Find, you use the like operator with the % character at the beginning  
and the end of the string; for example:

Select * from FilteredAccount WHERE name like '%damian%'

This will return records with account names such as the following:

Damian 

Mr Damian Sinay

Damian Sinay

Mr Damian

If you want to filter by a string that begins with another string, use the like  
operator with the % character at the beginning of the string; for example:

Select * from FilteredAccount WHERE name like '%damian'

This will return records with account names such as the following:

damian 

Mr Damian

If you want to filter by a string that ends with another string, use the like  
operator with the % character at the end of the string; for example:

Select * from FilteredAccount WHERE name like 'damian%'



Chapter 2

[ 43 ]

This will return records with account names such as the following:

damian

Damian Sinay

ORDER BY
To sort the results, we use the ORDER BY clause; for example:

Select name from FilteredAccount ORDER BY name asc

This command will generate the results shown in the following screenshot:

By default, the order will be ascending, so we can omit the word asc at the end, as 
shown in the following code, and yet it will generate the same result:

Select * from FilteredAccount ORDER BY name

To get the results in the descending order, we change asc by desc as shown in the 
following command:

Select * from FilteredAccount ORDER BY name desc



Database Basics

[ 44 ]

This sentence will generate the results shown in the following screenshot:

group by
To group records, we use the group by statement. There is an important 
consideration when using this statement; the fields we select will also need to be 
included in the group by statement, and if not included we will need to use one  
of the following aggregate functions:

•	 AVG

•	 MIN

•	 CHECKSUM_AGG

•	 SUM

•	 COUNT

•	 STDEV

•	 COUNT_BIG

•	 STDEVP

•	 GROUPING

•	 VAR

•	 GROUPING_ID

•	 VARP

•	 MAX



Chapter 2

[ 45 ]

An example of this is as follows:

Select address1_stateorprovince from FilteredAccount group by address1_
stateorprovince

This will produce the results shown in the following screenshot:

Using the aggregate functions, we can show how many records of each state are 
there, as follows:

Select address1_stateorprovince, count(*) from FilteredAccount  group  
by address1_stateorprovince

This will produce the results shown in the following screenshot:

As we can see, the column that shows the number of records per state doesn't have  
a name, so it will be good to name this column using an alias, as follows:

Select address1_stateorprovince, count(*) as state_count from 
FilteredAccount  group by address1_stateorprovince

www.allitebooks.com

http://www.allitebooks.org


Database Basics

[ 46 ]

The keyword as can be omitted; the following code will have the same result:

Select address1_stateorprovince, count(*) state_count from 
FilteredAccount  group by address1_stateorprovince

We can now see the result with the state_count name on the second column  
as shown in the following screenshot:

join
Sometimes we want to show fields from different tables. This is when we need to  
use the join clause. Notice that there need not be a relationship between the tables  
to join them in a SQL command, but the performance will be better if they are 
related. For example, suppose we want to show the name of the contacts as well  
as the name of the parent account; in this case, we can use a query as follows:

Select FilteredContact.fullname, FilteredAccount.name  from  
FilteredContact inner join FilteredAccount on FilteredContact.accountid = 
FilteredAccount.accountid

This query will produce the results shown in the following screenshot:



Chapter 2

[ 47 ]

The same query can be written in a shorter manner by using table aliases as follows:

select C.fullname, A.name from FilteredContact C inner join 
FilteredAccount A on C.accountid = A.accountid

It is best practice to use table aliases when using the join clause.

SQL advanced
We are now going to see some advanced functions of the SQL language, which we 
might need to use on complex queries or reports. Creating or dropping temporary  
or static tables, using and executing stored procedures, managing cursors, and 
working with transactions are some of the advanced SQL queries we will look at  
in the following sections.



Database Basics

[ 48 ]

CREATE TABLE
There might be cases when you might want to create temporary tables; they are 
especially useful when using cursors.

The command to create a table is as follows:

CREATE TABLE tablename (

Fieldname type,

Fieldname type)

For example, the following code will create a customer's table with two fields:

CREATE TABLE customers(

  name varchar(100),

  age int

)

To create temporary tables, we usually add a # character to the name of the table;  
for example:

CREATE TABLE #customers(

  name varchar(100),

  age int

)

DROP TABLE
After you are done with the temporary table you created, it is a good practice  
to remove the table from the system. The command to delete a table is the  
DROP TABLE command; the following is an example:

DROP TABLE #temptable

Stored procedures
A stored procedure is a very good way to store our queries in a way that we can  
use them more than once; SQL Server will optimize the execution by precompiling 
the query, so the next time we call the stored procedure, it will run faster.



Chapter 2

[ 49 ]

To create a stored procedure you use the CREATE command as follows:

CREATE PROCEDURE mySP

AS

BEGIN

  SET NOCOUNT ON;

    -- Insert statements for procedure here

  SELECT * from FilteredAccount

END

To modify a stored procedure we use the ALTER command as follows:

ALTER PROCEDURE mySP

AS

BEGIN

  SET NOCOUNT ON;

    -- Insert statements for procedure here

  SELECT name from FilteredAccount

END

To delete a stored procedure we use the DROP command as follows:

DROP PROCEDURE mySP

To execute a stored procedure we use the EXEC command as follows:

EXEC mySP

Notice that you will be able to use stored procedures only in CRM 
on-premise environments as the CRM online and partner hosted 
environments will not give you access to the database to create a 
stored procedure or use SQL data sources. Have in mind when using 
store procedures that it is not a supported way to place them in the 
same database as the CRM organization database. You can, however, 
store them on a separated database in the same SQL Server pointing 
to the CRM organization database. This is to allow the CRM to check 
the referential integrity when upgrading the database on the rollup 
updates. For more information refer to http://msdn.microsoft.
com/en-us/library/gg328350.aspx.



Database Basics

[ 50 ]

Cursors
Cursors are used when you need to read row by row from a query that generates 
more than one row in its result. If you need to make a calculation, for example,  
to show subtotals then you might need to use cursors.

To use a cursor you will first need to declare it as follows:

DECLARE account_cursor CURSOR FOR Select name, revenue from 
FilteredAccount

After you declare the cursor you will need to open it to start the calculation:

OPEN account_cursor

We will need to declare one variable per field. We will retrieve the value of the  
fields from the query we used in the cursor. In our example, we will need a variable 
to store the name and another to store the revenue, so we declare the variables  
as follows:

declare @name as varchar(160)

declare @revenue as money

We are now ready to fetch the rows one-by-one:

FETCH NEXT FROM account_cursor INTO @name, @revenue

WHILE @@FETCH_STATUS = 0

BEGIN

  -- do something here

  print @name  + ' ' + CAST( isnull(@revenue, '') as varchar(40))

  FETCH NEXT FROM account_cursor INTO @name, @revenue

END

Notice that in the code we will first use the FECTH NEXT method that will retrieve the 
first row and assign the values into the @name and @revenue variables; we will then 
iterate on the rest of the records by looking at the @@FETCH_STATUS flag. It will be 
equal to zero if there are more records available to read; otherwise it will be distinct 
to zero and our loop will be completed.

Between the BEGIN and END lines and before the last FECTH flag is where we put  
our logic, as shown in the following screenshot. In our example we are just printing 
the values.



Chapter 2

[ 51 ]

When you are done with the cursor, you will need to close it and free the memory 
resources as follows:

CLOSE account_cursor

DEALLOCATE account_cursor

The complete cursor code will look as follows:

DECLARE account_cursor CURSOR FOR Select name, revenue from 
FilteredAccount

OPEN account_cursor

declare @name as varchar(160)

declare @revenue as money

FETCH NEXT FROM account_cursor INTO @name, @revenue

WHILE @@FETCH_STATUS = 0

BEGIN	

  -- do something here

  print @name  + ' ' + CAST( isnull(@revenue, '') as varchar(40))

  FETCH NEXT FROM account_cursor INTO @name, @revenue

END

CLOSE account_cursor

DEALLOCATE account_cursor



Database Basics

[ 52 ]

Notice that using cursors slows performance; you will need to 
always think of a way to create your query in a way that you 
can avoid them.

Transactions
Transactions are used when you need to perform more than one operation such  
as Insert, Update, or Delete or when you want to validate that the result is what 
it is expected to be. If everything is good, you commit the transaction; if something 
goes wrong, you can roll back the transaction and everything goes back to what it 
was before.

To start a transaction, use the following command:

Begin tran T1

Here, T1 is the name of the transaction and can be any name you want. If everything 
is good with the operations and you want to commit the transaction, you use the 
following command:

Commit tran T1

If you want to cancel the transaction and go back to what it was before, you use  
the following command:

Rollback tran T1

FetchXML overview
FetchXML is a proprietary query language initially introduced in Dynamics CRM 
3.0 and improved through the following versions. All the dynamics CRM views are 
created with this query language and we can now write reports in CRM 2011 using 
this query language as well.

The addition of this type of data source allows Dynamics CRM online to create 
reports where this is the only type of data source supported for CRM Online.

The FetchXML queries have a limitation of 5000 records per page, so 
you need to have this in mind when working with them. If you are 
in CRM on-premise, you can tune this value by touching the registry, 
setting a value (1) of the TurnOffFetchThrottling DWORD key 
under HKLM\Software\Microsoft\MSCRM. For more information, 
refer to http://support.microsoft.com/kb/911510.



Chapter 2

[ 53 ]

The best way to learn how to create a FetchXML query is by using the Advanced 
Find tool.

With this tool, you can easily create queries from where you can download the 
generated Fetch XML by clicking on the Download Fetch XML button.

Notice that this tool won't generate all types of queries (which we can generate 
manually with XML, such as grouping to create summary results, as we will see later 
on in this chapter).

If you are more familiar with SQL sentences, there is an online 
tool available that converts SQL queries into Fetch XML 
queries, available at http://www.sql2fetchxml.com/.

A sample Fetch XML is as follows:

<fetch version="1.0" output-format="xml-platform" mapping="logical" 
distinct="false">
  <entity name="account">
    <attribute name="name" />
    <attribute name="primarycontactid" />
    <attribute name="telephone1" />
    <attribute name="accountid" />
    <order attribute="name" descending="false" />
  </entity>
</fetch>



Database Basics

[ 54 ]

Every Fetch XML starts with a root node called fetch.

The full schema of the Fetch XML can be found at http://
msdn.microsoft.com/en-us/library/gg309405.aspx.

The first child is always the entity node where we specify the primary entity  
of our query.

To test the Fetch XML queries, we can download the CRM 2011 Fetch XML Execute 
Tool from CodePlex, which is located at http://crm2011fetchexecute.codeplex.
com/.

When running this tool, we will need to enter the connection information as follows:



Chapter 2

[ 55 ]

Both the Discovery Uri and Organization Uri URLs are the URLs we can find 
when we go to the CRM web interface and then go to Settings | customizations | 
Developer resources.

If you want to start writing a Fetch XML query manually, I suggest using the 
XML editor of Visual Studio; bind the fetch.xsd schema file that comes with 
the Dynamics CRM 2011 SDK, which can be downloaded from http://www.
microsoft.com/en-us/download/details.aspx?id=24004; fetch.xsd is located 
in the \sdk\schemas folder. Binding the schema will add IntelliSense into our XML 
editor to avoid misspellings when writing our Fetch XML queries.

www.allitebooks.com

http://www.allitebooks.org


Database Basics

[ 56 ]

If you don't know how to do that, the following is a step by step guide:

1.	 Open Visual Studio (it can be 2010 or 2012).
2.	 Go to File | New | File….

3.	 Select XML File and click on Open.



Chapter 2

[ 57 ]

4.	 Go to the View menu and then click on the Properties window or hit the F4 
key, as shown in the following screenshot:

5.	 In the Properties window, find the Schemas attribute and click on the … 
button, as shown in the following screenshot:



Database Basics

[ 58 ]

6.	 In the XML Schemas dialog, click on Add.
7.	 Find the fetch.xml file in the crm sdk\schemas folder as shown in the 

following screenshot:

8.	 Click on OK.
9.	 Now you will see full IntelliSense in your XML editor to write  

FETCH XML queries.



Chapter 2

[ 59 ]

Select fields
To select fields, you add nodes of type attribute. For example, to return  
the telephone1 field of the account entity, we can write the following code:

<fetch version="1.0" mapping="logical" distinct="false">
  <entity name="account">
    <attribute name="telephone1" />
  </entity>
</fetch>

The following screenshot shows the selected field:

Notice the primary key field—in this case, the accountid field—
will always be returned, so we don't need to add an attribute node 
for it.



Database Basics

[ 60 ]

To return more than one field, we just add more attribute nodes as follows:

<fetch version="1.0" mapping="logical" distinct="false">
  <entity name="account">
    <attribute name="telephone1" />
    <attribute name="name" />
  </entity>
</fetch>

Here is something you can do with Fetch XML that cannot be generated with the 
Advanced Find tool; it is equivalent to a select * from entity query in SQL.

To return all the fields of an entity, you can just pass the <all-attributes/> node; 
the following is an example:

<fetch distinct='false' mapping='logical'>
  <entity name='account'>  
    <all-attributes/>    
  </entity>
</fetch>

We will see the result as follows:



Chapter 2

[ 61 ]

Filters and conditions
To filter, you add nodes of type filter and specify the AND or OR operator  
in the type attribute. Filters are equivalent to the WHERE clause in SQL.

The following is an example:

<fetch version="1.0" output-format="xml-platform" mapping="logical" 
distinct="false">
  <entity name="account">
    <attribute name="telephone1" />
    <filter type="and">
      <condition attribute="name" operator="eq" value="Remoting 
Coders" />
    </filter>
  </entity>
</fetch>

In this example, we query the Account entity and return the telephone1 field  
by filtering the account name field that needs to be equal to a value.

The operators available to use are as follows:

•	 eq (equal)
•	 like (contains)
•	 not-like (does not contain)
•	 ne (not equal)
•	 null (does not contain data)
•	 not-null (contains data)

The following are examples of commands using these operators:

•	 To filter by a field that is equal to a value, we use the following command:
<condition attribute="name" operator="eq" value="Remoting" />

•	 To filter by a field that contains a value, we use the following command:
<condition attribute="name" operator="like" value="%Remoting%" />

•	 To filter by a field that starts with another string, we use the following 
command:
<condition attribute="name" operator="like" value="Remoting%" />



Database Basics

[ 62 ]

•	 To filter by a field that ends with a part of a string, we use the following 
command:
<condition attribute="name" operator="like" value="%Remoting" />

•	 To filter by a field that is not equal to a value, we use the following 
command:
<condition attribute="name" operator="ne" value="Remoting" />

•	 To filter by a field that contains data, we use the following command:
<condition attribute="name" operator="not-null" />

•	 To filter by a field that does not contain data, we use the following command:

<condition attribute="name" operator="null" />

Order by
To order a field, you add a node of type order and specify the field you want to 
order in the attribute and the direction in the descending order of attributes; the 
following example will return the name and telephione1 fields of the account 
entity in the ascending order of the name field:

<fetch version="1.0" output-format="xml-platform" mapping="logical" 
distinct="false">
  <entity name="account">
    <attribute name="name" />
    <attribute name="telephone1" />
    <order attribute="name" descending="false" />
  </entity>
</fetch>

To sort in the opposite order, you just change the descending attribute to true  
as follows:

<order attribute="name" descending="true" />

If you want to order by more than one field, you just add another order node  
as follows:

    <order attribute="name" descending="true" />
    <order attribute="telephone1" descending="false" />

This previous code will sort first by name in descending order and then by 
telephone1 in ascending order.



Chapter 2

[ 63 ]

Group by
To group, you add the aggregate='true' attribute to the fetch node.

Just as in SQL, when using the group by option, you will need to either return  
the fields that are grouped or use aggregated functions for the other fields.  
The aggregated functions that are supported are as follows:

•	 sum

•	 avg

•	 min

•	 max

•	 count

Further, examples of grouping the accounts by the name field to return the count  
of records with different names are as follows:

<fetch distinct='false' mapping='logical' aggregate='true'>
  <entity name='account'>
    <attribute name='name' aggregate='count' alias='counter'/>
  </entity>
</fetch>

Testing this code will give us the following result:



Database Basics

[ 64 ]

Linking to other entities
If you want to get the fields of one related entity, you will need to use the link-
entity node and specify the join type. There are two types of joins supported by 
Fetch XML:

•	 Inner join 
•	 Outer join

Inner join
The inner join will only show records of the primary entity that has a related record. 
For example, in the following code, we will return all the accounts that have a 
primary contact associated and will return the full name of the contact:

<fetch version="1.0" output-format="xml-platform" mapping="logical" 
distinct="false">
  <entity name="account">
    <attribute name="name" />
    <attribute name="telephone1" />
    <order attribute="name" descending="false" />
    <link-entity name="contact" from="contactid" to="primarycontactid" 
visible="false" alias="praccount">
      <attribute name="fullname" />
    </link-entity>
  </entity>
</fetch>

Outer join
Contrary to an inner join, the outer join returns records that do not depend on the 
secondary entity records. To use outer join, change the link-type attribute to outer  
as follows:

<fetch version="1.0" output-format="xml-platform" mapping="logical" 
distinct="false">
  <entity name="account">
    <attribute name="name" />
    <attribute name="telephone1" />
    <order attribute="name" descending="false" />
    <link-entity name="contact" from="contactid" to="primarycontactid" 
visible="false" link-type="outer" alias=" praccount">
      <attribute name="fullname" />
    </link-entity>
  </entity>
</fetch>



Chapter 2

[ 65 ]

This example will return accounts regardless of the primary contact value, 
meaning that if there is no primary contact for that account, the record will  
be returned in the result with null value in the primary contact field.

Summary
In this chapter we have explained the entity relationship model of Dynamics CRM 
and reviewed the basic and advanced commands of the SQL language as well as  
the FetchXML language that we will need to use in order to create the queries we 
will use on our reports. We are going to keep using these two languages in the 
following chapters.

In the next chapter we will be creating our first report using the Report wizard  
and we will be exporting the report to be edited using Visual Studio 2008.





Creating Your First  
Report in CRM

In this chapter, we are going to create our first Microsoft Dynamics CRM 2011 report, 
for which we are going to use the following tools:

•	 Using Microsoft Dynamics CRM 2011 Report Wizard
•	 Using Visual Studio
•	 Publishing the report

Using Microsoft Dynamics CRM 2011 
Report Wizard
The Report Wizard is the easiest way to create a report; with this tool any person 
without any knowledge of development can create a simple report. Of course, the 
reports that are being created with the Report Wizard will have some limitations,  
but for more than one purpose they might be enough.

The reports created with this wizard will have the benefits of the export tool that  
is included in the SSRS Report Control that allows us to export the report to XML, 
CSV, PDF, MSHTML, Excel, TIFF, and Word formats.

Any report created with the Report Wizard can also be modified with the same 
Report Wizard. The Report Wizard allows you to filter what entities and fields you 
want to display, and also gives the ability to prefilter the records when running the 
report to give more flexibility to the results.



Creating Your First Report in CRM

[ 68 ]

To create a new report, follow the given steps:

1.	 Navigate to Workplace.
2.	 In the Navigation Pane, click on Reports.
3.	 Click on New.

All the fields in the window shown in the previous screenshot were 
already explained in Chapter 1, Introduction to Reporting in Microsoft 
Dynamics CRM; refer to that chapter for more details about the 
fields in this window.

4.	 Click on the Report Wizard button to start the wizard that will allow you  
to create a report.



Chapter 3

[ 69 ]

In the first screen you will be presented with two options: the first option  
will allow you to create a new report, while the second option will allow  
you to start from an existing report. Notice that you will be able to use the 
second option only for any existing report that was previously created  
with the Report Wizard.

5.	 For our first report, we will keep the first option selected and click on the 
Next button.

There are two mandatory fields that you need to fill: Report name, which  
is the name of the report so that you can easily find it later, and the Primary 
record type, which is the primary entity where the report will display the 
result. You can optionally enter the Report description and the Related 
record type; this is one limitation of the Report Wizard that it only allows  
you to select one single related record type.



Creating Your First Report in CRM

[ 70 ]

6.	 For this example, we will enter the name First report wizard for 
account and select the Accounts entity as the Primary record type,  
as shown in the following screenshot:

For the primary record type, you can specify any entity that is available in 
the system, including the custom entities you create. The related record type 
will depend on the relationships that the primary entity you selected has.  
For example, you could create a report for the Report entity that would show  
all the reports that are created in the CRM 2011 organization. Or, you could 
also create a report to show the processes (such as workflows or dialogs)  
that were run at a specific period of time.



Chapter 3

[ 71 ]

7.	 Click on Next to continue to the next step where the filters will be presented.

On this screen, you can add the filter criteria you want to use for the report; 
you can select one of the saved views or system views, or start from a new 
query. The interface is similar to the Advanced Find tool.
The filter criteria you select here can also be changed when running the 
report. This is what is called the default report filter criteria, which you 
can also change alone without having to rerun the wizard by just going to 
Reports, selecting a report, and clicking on the Edit Default Filter button  
that is on the ribbon.



Creating Your First Report in CRM

[ 72 ]

8.	 We will select the Active Accounts system view for this example and click  
on Next to continue.

9.	 In this window, you select the fields you want to be displayed on the report; 
you have three different types of groups to use and then fill in the details 
in the main box. Clicking on the main box where it says Click here to add a 
column will allow you to select the columns; for this example, we will select 
the Account Name field as follows:



Chapter 3

[ 73 ]

We can also change the width of the columns here or select the column  
and clicking on Change Properties; the options we can use to set the  
width of the columns are limited to 25px, 50px, 75px, 100px, 125px,  
150px, 200px, and 300px.
In this dialog box, you will see the option Include unformatted value 
column. This option is not enabled for every field, but is only enabled 
for fields where the types are Date Only, Date and Time, Whole Number, 
Decimal, Currency, or Floating Point Number. The purpose of this option  
is to allow the field to be handled in an Excel file when the report is exported 
to that format, as by default, if you do not select this option, all the fields  
will be exported with the string format causing some problems when you 
want to use calculations in Excel.



Creating Your First Report in CRM

[ 74 ]

10.	 Click on OK to add the field. We will repeat this process to add the Address 
1: City, Address 1: State/Province, and Address 1: Country/Region fields  
so the details should look as shown in the following screenshot:

11.	 We won't add a grouping for now, but we will set the way we want  
the record to be sorted by clicking on the Configure Sorting option.

Configuring the sorting will allow us to sort only by the fields we added to  
the details of the report as well as set the direction to ascending or descending.



Chapter 3

[ 75 ]

12.	 For this example, we will order by Account Name; so, select this field and 
click on OK.

13.	 For this sample we will change the Account Name field to 300 pixels and 
click on OK. Then click on Next in the main Report Wizard screen.



Creating Your First Report in CRM

[ 76 ]

The Summary type option will only be enabled for fields of 
type number, decimal, floating point, and currency, and will 
show the options we can use on aggregation such as Average, 
Maximum, Minimum, Percent of total, and Sum.

14.	 On this screen, we have two main options of report types we can create with 
this wizard: Table only and Chart and table. For this first report, we will 
choose Table only and click on Next. The options to select Chart and table 
might be disabled, and that is because we need to select a numeric type 
field on our report in order to use the charts, as we can see in the warning 
displayed in yellow in the previous screenshot.

15.	 We are now presented with a summary of the report that we are about to 
create. Click on Next to continue.



Chapter 3

[ 77 ]

16.	 After the report is created, the last screen will show you the status of the 
report. In this case it was successfully created, so we can click on Finish  
to close the wizard.



Creating Your First Report in CRM

[ 78 ]

Once the report is created, we will be taken back to the first screen where we 
initiated the Report Wizard, but this time with the Related Record Types, Display 
in, and Languages fields completed; we now have the option to assign a category  
if we want. We can also click on Run Report to see how our new report looks.

As with any other report, this report is displayed using the SSRS Report Control  
that allows us to export the report to XML, CSV, PDF, MSHTML, Excel, TIFF,  
and Word formats.

The Report Wizard will also make the columns sortable by default, so clicking  
on any column will change the order and direction.

In the header of the report, we will have the Filter Summary. When we expand it by 
clicking on the plus icon, it will show information about the prefilters used when we 
ran the report. In our case, by default it will show Accounts: Modified On: Last X 
Days 30.



Chapter 3

[ 79 ]

We can also add grouping fields; for example, adding the Address 1: State/Province 
field to the report result created with the CRM Report Wizard would look like  
the following:



Creating Your First Report in CRM

[ 80 ]

Using Visual Studio
The best recommendation before starting to create a report with Visual Studio is to 
create a report with the Report Wizard first and then export the RDL file generated 
by the Report Wizard to import on a Visual Studio project. By going to the Actions 
menu of the report you created and clicking on Download Report, you can 
download the RDL file.

The Make Report Available to Organization option that appears 
under Download Report will do the same thing as we change 
the Viewable By option to Organization on the Administration 
tab. If the report is already set to Viewable By Organization, this 
option will change to Revert to Personal Report, which will be the 
same as setting the Viewable By option to Individual from the 
Administration tab.

Now you can start Visual Studio 2008 and create a new report project by performing 
the following steps:

1.	 Navigate to File | New | Project… as shown in the following screenshot:



Chapter 3

[ 81 ]

2.	 Select the Report Server Project template that is on the Business  
Intelligence group.



Creating Your First Report in CRM

[ 82 ]

3.	 Enter the name for your project and click on OK.
4.	 In the Solution Explorer window, right click on Reports and navigate  

to Add | Existing Item… as follows:

5.	 Select the file you downloaded earlier and click on Add.



Chapter 3

[ 83 ]

You should now see your report in the Reports folder as shown in  
the following screenshot:

6.	 Double-click on the report name to open the report, and under the Report 
Data window that will be displayed on the left-hand side of the window, 
expand Data Sources and select CRM as shown in the following screenshot:



Creating Your First Report in CRM

[ 84 ]

7.	 Double-click on CRM Data Source to configure your connection.

If you don't see the Report Data window, you can go to the View 
menu and select the Report Data option or press Ctrl + Alt + D.

You will notice that the Type selected for the Embedded connection is Microsoft 
Dynamics CRM Fetch; if you don't see this type, it is because you didn't install the 
CRM Reporting Authoring Extensions as we have explained in the first chapter of 
this book.

The connection string will show the CRM Server URL separated by a semicolon 
with the organization name. For example, http://crm2011rep/;CRM2011Repo
rtingBook, where the server name is CRM2011rep and the organization name is 
CRM2011ReportingBook.

To verify the connection or build your data set, expand Datasets from Report Data 
and select the DSMain dataset as shown in the following screenshot:



Chapter 3

[ 85 ]

8.	 Double-click on DSMain to open the Dataset Properties window.



Creating Your First Report in CRM

[ 86 ]

9.	 Click on Query Designer to verify the connection with Dynamics CRM.

In this window, you can change the Fetch XML query and test the results  
by clicking on the red explanatory button, where you will be able to see  
the records returned by your query.
If you are prompted by the Define Query Parameters dialog box, you can 
leave the null value for the CRM_FilteredAccount parameter as shown in 
the following screenshot:



Chapter 3

[ 87 ]

The parameters such as CRM_FilteredAccount are a good way to make  
more flexible queries that will allow the user to modify the query results  
by using the prefilters when running the report without having to ask the 
report developer if he wants, for example, to see different results for active  
or inactive accounts. Leaving a value null will mean we don't want to use  
a prefilter and we want to return all the account records.

10.	 Click on OK to see the results.

We can now click on OK to close Query Designer and then click on OK  
to close the Dataset Properties window.



Creating Your First Report in CRM

[ 88 ]

We are now going to make a change on this report that we could not make with the 
Report Wizard. For example, changing the background color of the report to light 
green and changing the font size of the title to a higher value.

1.	 To change the background color of the report, select the report and go to 
the Properties window. Be sure you are in the Body control and find the 
BackgroundColor property and select the light green color as shown in  
the following screenshot:



Chapter 3

[ 89 ]

2.	 To change the font size of the title, select the title and go to the Properties 
window. Be sure you have the txtHeader control selected, then find  
the FontSize property and change the value to 20pt as shown in the 
following screenshot:

3.	 You can see how the report looks like by clicking on the Preview tab that  
is near the Design tab, which is the default tab of the report. This will  
allow you to troubleshoot and preview your report before uploading it  
to Dynamics CRM.



Creating Your First Report in CRM

[ 90 ]

4.	 We can now save the report and upload it to CRM; to do that, we need to  
go to the CRM web interface and edit the report. When the edit window  
is open, change Report Type to Existing File and enter data in the the File 
Location field of the report using the report path of the report we edited  
in Visual Studio.

5.	 Click on Save and then on Run Report to see the results.
6.	 If you are prompted with the following dialog box, click on OK to continue:



Chapter 3

[ 91 ]

As the dialog box states, every report that is created with the CRM 2011 Report 
Wizard can be easily modified using the same Report Wizard unless it is touched  
by Visual Studio, for example; in that case you won't be able to modify it again  
using the CRM 2011 Report Wizard, and the only option to modify the report will  
be by using Visual Studio or the Report Builder, as we will see in the next chapter.

Publishing the report
The reports we created with the Report Wizard or the ones we created with  
Visual Studio and then uploaded to CRM are not going to be visible if we go  
to the Reporting Service Manager interface. By default, all the reports are hidden, 
and if we want to make one of them visible, we need to publish it.

To publish a report, we go to the Actions menu then select Publish Report for 
External Use, as shown in the following screenshot:



Creating Your First Report in CRM

[ 92 ]

Summary
In this chapter, we have created our first report using the Report Wizard and we 
also exported the report to be edited with Visual Studio 2008, where we made some 
customizations to re-upload the report to  Dynamics CRM. We have also seen how  
to publish the report to be visible on the Reporting Server manager for external use.

In the next chapter, we will create our first report using the Report Builder and we 
will also see the features we can use that were not available in the standard CRM 
Report Wizard.



SQL Server Report Builder
In this chapter, we are going to create reports using SQL Server Report Builder.  
This is a tool that comes with SQL Server Reporting Services, as we will see in  
this chapter, and is more powerful than the CRM Report Wizard we saw in the 
previous chapter. It will help us create better reports without using Visual Studio.

This is a tool designed for intermediate users, and it allows us to include images, 
drawing controls such as lines and squares, charts, geographic maps, and it allows  
us to change the text font styles.

In this chapter we are going to cover the following topics:

•	 Report Builder versions
•	 Report Builder limitations

Report Builder overview
Report Builder is a tool that is available for download directly from the Report 
Manager interface of SQL Reporting Services; if we don't know the Report Manager 
URL, we can check it in SQL's Reporting Services Configuration Manager as shown  
in the following screenshot. This tool is located where SQL Reporting Services is 
installed in the server.

We will be working with Version 3.0, which is the same version that comes  
with SQL Server 2008 R2 as well as SQL Server 2012.



SQL Server Report Builder

[ 94 ]

We can also download the standalone version of Report Builder from 
the Microsoft website (if you don't have access to the SQL Server 
Manager interface) by going to http://www.microsoft.com/
en-us/download/details.aspx?id=6116 to download the 2008 
version or by going to http://www.microsoft.com/en-us/
download/details.aspx?id=35576 to download the 2012 with 
SP1 version.

When we click on Report Manager URL, we will see the following interface open:



Chapter 4

[ 95 ]

Clicking on the Report Builder menu option that is located in the top menu bar will 
download and install Report Builder on our machine.

Once we have Report Builder installed on our computer, the first screen we will see 
is the Getting Started window.

In order to create a report, the first thing we need to do is create a new dataset, as the 
reports generated by Report Builder can only use the datasets created with this tool.



SQL Server Report Builder

[ 96 ]

Datasets
There are two types of datasets: shared and embedded. To create a shared dataset, 
we will need to have access to SQL Reporting Services, as the shared dataset will be 
stored there to be accessible for future reports. If we don't have access to the SQL 
Server Reporting Services, we can skip this step and create an embedded dataset  
that will be embedded within our report (RDL file).

To create a new shared dataset, follow the ensuing steps:

1.	 Click on New Dataset.

2.	 Click on the Browse other data sources link and find the MSCRM_
DataSource data source for our organization; it will usually be located in 
a folder with our organization name plus the _MSCRM suffix, for example, 
CRMORG_MSCRM. These are shared data sources that were created by the  
CRM Setup application when the CRM was initially deployed.



Chapter 4

[ 97 ]

If we are using the standalone version of Report Builder, 
we won't be able to create or browse shared data sources.

There are also two main types of data sources: embedded and shared.  
The shared ones are stored in the SQL Server Reporting Services, while  
the embedded ones will store the data source connection details inside  
the RDL report file.
CRM 2011 installs two shared data sources per CRM organization by  
default. One uses the SQL Server connection type while the other one  
uses Fetch XML.

3.	 Select MSCRM_DataSource and click on Open.
4.	 Click on Create to go to the Dataset Editor window.

This window is the one that will allow us to design our query; from here,  
we will be able to see the database schema objects, such as tables, views,  
and functions. We will be able to select the object we want to use on our 
query as well as preview the results to validate the query.



SQL Server Report Builder

[ 98 ]

The database view panel will show two main folders for the CRM shared 
data source:

°° dbo

°° MetadataSchema

The dbo folder will show the objects related to the organization entities,  
such as the account, contacts, and lead.
The MetadataSchema folder will show CRM schema entities, such as the 
attributes, relationships, and the entities themselves, which might be useful 
if we want to create a report that will display the number of custom entities 
installed on our CRM organization.

5.	 Expand the dbo folder and then expand the Views folder as follows to locate 
the views.



Chapter 4

[ 99 ]

6.	 Select the FilteredAccount view as shown in the next screenshot:
As we already explained in the previous chapters, filtered views are good for 
maintaining the security constraints of the records, so they will only return 
the records that the user, who runs the report, has read permissions for.

7.	 We will see all the fields displayed in the Selected fields list. We can add 
filters if we want to show only a partial view of the records by clicking on  
the following icon .

8.	 This will add a new record inside the Applied filters list; we can add a filter 
to show only the active accounts by using the statuscode field, the value of 
which is set to 1, as shown in the following screenshot:



SQL Server Report Builder

[ 100 ]

9.	 To see the results, we can click on the Run Query button that is on the ribbon.

This will show us a preview of the records returned by the query inside  
the Query results panel, which appears at the bottom of the screen.

If we want to limit the number of columns returned by the query, we can 
expand the FilteredAccount view and uncheck the fields we don't want 
returned. Selecting only the necessary fields will improve the performance  
of our report. For example, we can select only the accountid, accountnumber, 
name, and createdon fields.



Chapter 4

[ 101 ]

We can also change the order in which the file will be returned by a query  
by using the up and down arrows that are on the right-hand side of the 
Selected fields list header.

If we want to use a custom entity on our report, the filtered view will 
be named with the schema name prefixed by the publisher prefix that, 
by default, is set to New_, so a custom entity called Houses will likely 
have a view named FilteredNew_Houses, for example.

Query Designer
Clicking on the Edit as Text button located in the ribbon will give us the ability to 
use a standard SQL editor that will give us better flexibility if we are more familiar 
with this language.

We can also import an SQL file if we created it before using SQL Management 
Studio; clicking on the Import button will allow us to load an SQL file that we  
can choose from our local disks.

When working in the text mode, we will be able to preview the results by clicking  
on the red exclamation mark (!). The results will be displayed in the bottom part  
of the window.

In the applied filters list, we can mark the Parameter checkbox to make a field  
we used on the filters a parameter.



SQL Server Report Builder

[ 102 ]

The operator types we can use in the filters are as follows:

•	 like / not like
•	 is / is not
•	 is any of
•	 is none of
•	 is more than
•	 is less than / is more than
•	 is less than or equal to / is more than or equal to

This mode will also give us the ability to change the Command Type listbox to  
use a stored procedure.

To save the dataset, click on the Save icon that is located in the window near the  
top-left border.

We will be asked to enter a name for our dataset and a location inside the report 
server where we want this to be stored.



Chapter 4

[ 103 ]

For this first demo purpose, I will select the CRM organization folder and leave  
the default DataSet1.rsd name, and then click on OK to continue.

Creating a new report
Now that we have our shared dataset created, we can close the dataset designer  
and open Report Builder again to select the option to create a new report.

The options available to create a new report are:

•	 Table or Matrix Wizard
•	 Chart Wizard
•	 Map Wizard
•	 Blank Report



SQL Server Report Builder

[ 104 ]

We will see that the list of the available report types we can create is very similar to 
the one exposed by the CRM Report Wizard we saw in Chapter 3, Creating your first 
Report in CRM, with the exception of the Map Wizard, which we will show later.

The Blank Report option would be a good option for advanced users who won't 
need to start from a wizard, letting us decide what controls and layout we want  
to use.

Table or Matrix Wizard
Since this is the first report we will create with Report Builder, we will use Table  
or Matrix Wizard.

If you have downloaded a report from CRM, you can select the Open option.

Going to the Recent section will show us the latest report we designed for the  
server we are connected to.



Chapter 4

[ 105 ]

Chart Wizard will allow us to select from any of the following chart types:

•	 Column
•	 Line
•	 Bar
•	 Area

Select the Choose an existing dataset in this report or a shared dataset option,  
locate the dataset we created before, and click on Next.

If you don't see the dataset listed here, click on Browse to add a shared dataset  
to this list.



SQL Server Report Builder

[ 106 ]

In this screen, we will see four main listboxes:

•	 Available fields
•	 Rows Groups
•	 Column Groups
•	 ∑ Values

We can drag-and-drop the fields from the Available fields lists to any of the three 
listboxes displayed. If we want to create a group or row group, or if we want to  
only show the fields in the details, we can drag-and-drop to the values list.

To delete a field from any of these lists, select the field and hit the Delete key on  
our keyboard, as there is no delete button or contextual menu option.

Note that adding a field to the value or groups won't remove the 
field from the available fields, as we can add them more than once 
to the values or groups.



Chapter 4

[ 107 ]

We can also add an aggregation on any field by clicking on the arrow near the  
field; this will especially be useful if we add fields on the Row groups or Column 
Groups listboxes.

The available aggregation functions we can select are:

•	 Sum: This can only be used with numeric fields and returns the sum  
of all the values

•	 Avg: This returns the average of the values
•	 Max and Min: These return the maximum or minimum value
•	 Count: This returns the count of the records
•	 ContDistinct: This returns the count of the records with different values
•	 StDev: This returns the statistical standard deviation of all values
•	 StDevP: This returns the statistical standard deviation for the population  

for all values
•	 Var: This returns the statistical variance of all values
•	 VarP: This returns the statistical variance for the population for all values
•	 First and Last: These return the first or last value
•	 Previous: This returns the previous value in the specific scope
•	 Aggregate: This returns a custom aggregate of the specified expression as 

defined by the data provider



SQL Server Report Builder

[ 108 ]

For this first report, we won't use any aggregation and will simply click on Next.

Note that the Show subtotals and grand totals options are disabled here because we 
didn't select any field of the type number or currency, or didn't use any aggregation 
type such as Count or Sum.

The different options we can select to show the subtotals are:

•	 Blocked, subtotal below: This specifies whether the subtotals should be 
displayed below the group

•	 Blocked, subtotal above: This specifies whether the subtotals should be 
displayed above the group

•	 Stepped, subtotal above: This specifies whether the report should show  
a hierarchical structure with the indented groups in the same column

By default, the option Expand/collapse groups will be checked.



Chapter 4

[ 109 ]

Clicking on Next will allow us to select a style.

We can only select from one of the six predefined styles, which can be any of  
the following:

•	 Corporate
•	 Forest
•	 Generic
•	 Mahogany
•	 Ocean
•	 State

Each of these styles differ from the font style used as well as the column header's 
background color used.



SQL Server Report Builder

[ 110 ]

Now let's select the style we want and click on Finish.

We can click on the Run button that is on the ribbon to test our report.

Our report should look as follows:



Chapter 4

[ 111 ]

We can easily add a title to the report by clicking on the Click to add title textbox 
that is already created by the wizard and located at the top of the table. The 
execution time will also be included on the footer by default.

Running the report will also allow us to do all the things we can usually do when 
viewing a report with the report viewer, such as exporting the report to different 
formats (Microsoft Excel, Microsoft Word, PDF, and so on). Print and preview  
the report.

Running the report for the first time might be a little slow if it is the first time we  
are connecting to the SQL Reporting Service; we are going to look at and explain 
some performance improvement techniques later in Chapter 9, Failure Recovery  
and Best Practices.

Click on the Design button to go back to the report designer.

We can easily add sorting to the column headers by following the given steps:

1.	 Let's select the column header where we want to add the sorting.
2.	 Right-click on the column header textbox and select Text Box  

Properties… as shown in the following screenshot:



SQL Server Report Builder

[ 112 ]

3.	 In the Text Box Properties... dialog, go to the Interactive Sorting tab and 
check the checkbox that says Enable interactive sorting on this text box; 
then, select the [accountnumber] field in the Sort by drop-down list as 
shown in the following screenshot:

This will allow us to select which field we want to use when sorting  
the column if we used a different name on the column header.

4.	 Click on OK to close the Text Box Properties... dialog.

If we now run the report, we will see a little icon near the column header that 
when clicked on, will sort the column as shown in the following screenshot:



Chapter 4

[ 113 ]

Inside each textbox that is included in the table, we can also add custom 
actions to make the values link to other reports or bookmarks, or even go  
to an external URL.

Refer to the section Working with control events, Appendix, Expression Snippets. for  
more details on how to use custom actions.

To create a bookmark, enter a name on the bookmark property of 
any textbox control.

Adding a logo to our report
Now we can do something cool with the report that we cannot do with the CRM 
Report Wizard. Before the addition of this tool, it was only possible to do certain 
things with Visual Studio. Something as simple and as necessary as adding the logo  
of our company to the header can be done easily with this tool. To add a logo to  
the report, follow the ensuing steps:

1.	 Click on the Insert tab and then on the Image button that is inside the  
Report Items group on the ribbon.



SQL Server Report Builder

[ 114 ]

2.	 Using the mouse, we can select the location where we want to place the 
image on the report, and as soon as we release the mouse button, we will be 
presented with the following dialog box:

The types of images we can use are:

°° GIF
°° JPG
°° PMG
°° BMP

3.	 Note that we can also add lines and rectangles that can be filled by a color or 
an image. We'll click on the Import button to select the image from our local 
disk and folders.
We must enter a name for the image and optionally a tooltip that we wish 
to display when the user moves the mouse over the image. We can use 
expressions on the tooltip and image; refer to Chapter 5, Creating Contextual 
Reports, for a better description of expressions or Appendix, Expression 
Snippets, for more references.



Chapter 4

[ 115 ]

The Visibility tab will allow us to configure when we want the image to be 
displayed, which can also be displayed using an expression if we want to 
depend on a specific field value.

4.	 The Action tab will allow us to add a link on the image to allow the user  
to navigate to another report, bookmark, or go to an external URL.



SQL Server Report Builder

[ 116 ]

5.	 The Border tab will also allow us to use expressions on the border's style  
and width.

6.	 Click on OK to close the Image Properties dialog; the report with the  
image should look similar to the following screenshot:



Chapter 4

[ 117 ]

We can use three different image source types:
°° Embedded: This is the source type we used that allows us to select a 

file from our local machine, and it will be encoded and saved within 
the RDL file

°° External: This option will allow us to use an image file located in the 
Report Server

°° Database: This option will allow us to select a database field where 
we'll have the binary representation of the image if we have an  
image database

7.	 Let's click on Save to save our report. Similarly to what we did for the 
dataset, we will need to specify the report server folder and a name for the 
report; note that the report extension is still an RDL file, so it can be edited in 
Visual Studio if we want. We can also import the report in Dynamics CRM 
2011 web interface by creating a new report and selecting the option of using 
an existing file. In this case, we will probably want to use some of CRM's 
predefined parameters; refer to Chapter 5, Creating Contextual Reports, for 
more details on the CRM parameters.

We can also add indicators to the reports, which are under Data Visualizations, to 
show the different icons that can be displayed in different colors or styles depending 
on the specific field value we configure. This is another alternative to use predefined 
configurable images, such as directional arrows, symbols, and shapes, such as bubbles 
or rating, to show X number of starts, depending on an associated field value.



SQL Server Report Builder

[ 118 ]

The Indicator control comes with a very neat gallery of icons that will save us a 
lot of time, as they are commonly used on any report or document. These are good 
alternatives to images, so we can consider them before re-inventing the wheel by 
using custom image controls with expressions.

Advanced reports with Report Builder
We are now going to look at some of the advanced report types we can create with 
the Report Builder tool, such as creating a report to show geographic maps. To create 
a Map report, we will need to create a dataset with at least one field that contains the 
address of a state; for example, if we wanted to show the accounts on a map by state, 
we would create a dataset as follows:



Chapter 4

[ 119 ]

Save the new dataset with a name such as AccountByStateDataset. Close Report 
Builder and open it again. To create a new Map report, select the Map Wizard  
option when the Getting Started window is presented.

Map Wizard
The following dialog box allows us to use one of the predefined maps that  
are available; they are as follows:

•	 Map gallery
•	 ESRI shapefile
•	 SQL Server spatial query



SQL Server Report Builder

[ 120 ]

Inside the Map gallery, we can select one of the following options for USA:

•	 States by County
•	 USA by State
•	 USA by State Exploded
•	 USA by State Inset

The ESRI shapefile and SQL Server spatial query options will let us use custom 
map types.

The quickest way is to use one of the three predefined options that are included  
in the gallery, such as the USA by State Exploded option.

Only the U.S. maps are available in the gallery, so if we want to 
create a report for another country, we will have to get the maps 
from the ESRI shapefile link.



Chapter 4

[ 121 ]

Click on Next to continue.

On this screen, we can add Bing Maps Layers; the options for adding them are:

•	 Road
•	 Aerial
•	 Hybrid

We can zoom in to the map to start in the state we want and also change the  
map position.

We can also change the map resolution from Smallest size for better performance  
to Best quality for better graphics.

Be sure to check the privacy and legal policies when using this type of report, as they 
might change in the future because they link to the external Microsoft public website.

Click on Next to continue.



SQL Server Report Builder

[ 122 ]

Map visualization types
Here we can select one of the three map visualizations. The options we can select are:

•	 Basic Map
•	 Color Analytical Map
•	 Bubble Map

The Basic Map option allows us to select a single color map.



Chapter 4

[ 123 ]

For this example, we will select the Color Analytical Map option and click on Next  
to continue.

Let's select the dataset we created before; note that if we don't find it on the list, we 
need to click on the Browse button, navigate to the folder location where we stored 
the dataset, and select it. If we didn't create it before or want to use another one, we 
can also create a new one from this screen. Click on Next to continue.



SQL Server Report Builder

[ 124 ]

This screen will ask us to select the field that matches the states from the fields we 
included in our dataset. We need to be sure that we have included at least one field 
with the U.S. state information or geographic information (such as latitude and 
longitude) in our dataset.

Select the following field options that match the state:

•	 STATEFP: This is an integer value representing the state by a unique 
identifier

•	 STUSPS: This is the abbreviated state name, such as CA, MA, DE
•	 STATENAME: This states the full state name

We must select at least one matching field to continue; in our case, it is the STUSPS 
field with the address1_StateOrProvince field. If we also get the other two matches, 
it will improve the report's accuracy. Click on the Next button to continue.

Dynamics CRM 2011 uses a single line of text for this type of field (state or province). 
A very common customization among the U.S. customers is to create an option set to 
show the states with a drop-down combobox.



Chapter 4

[ 125 ]

On this screen, we can select the theme (there are six different themes to select from) 
and if we want the labels to be displayed. We can also select a color rule to configure 
the color scale we want to use. Click on Finish to continue.

Testing the Map report
Click on Run to preview the report; it should look similar to the following screenshot.

We should see a darker color on the state; here its value is greater than the value of 
the lighter colors or when no color is added for the zero value states.

Going back to the design view will allow us to restart the wizard to make changes  
to the map or add more layers. The layers we can add to the map are:

•	 Tile layers
•	 Polygon layers
•	 Line layers
•	 Point layers



SQL Server Report Builder

[ 126 ]

All these layers can be displayed or hidden based on expressions.

The Report Builder's limitations
Report Builder cannot be used with CRM Online organizations as the Fetch XML 
data extension is not supported in Report Builder.

Summary
In this chapter, we have created our first report using Report Builder, and we  
also saw the features we can use that were not available in the standard CRM  
Report Wizard. We also created an advanced report using the Map Wizard  
where we can show the records of the U.S. states.

In the next chapter, we are going to learn how to create more complex reports  
using Visual Studio. Then, we will review the report parameters, charts controls,  
drill-down and collapsible controls in detail.



Creating Contextual Reports
In this chapter we are going to learn how to create more complex reports using 
Visual Studio, where we are going to cover the following topics:

•	 Using Visual Studio
•	 Report parameters in detail
•	 Charts
•	 Data sources
•	 Data sets
•	 Groups on data sets
•	 Drill-down and collapsible controls

Using Visual Studio
It is recommended to create a report with the Report Wizard first and then export the 
RDL (Report definition language) file generated by the Report Wizard, and import 
it on a new Visual Studio Report project. We can also download one of the pre-
existing reports that come with the CRM 2011 out of the box (as we saw in Chapter 3, 
Creating Your First Report in CRM, under the Using Visual Studio section) and import 
it on our Visual Studio Report project.



Creating Contextual Reports

[ 128 ]

If we take the Account Distribution report, for example, and download that report 
to start a new report, we will see that the report already contains some predefined 
report parameters. We are going to learn about them in detail in the next section.

Once we have the report added to our Visual Studio project, we need to change  
the CRM Data Source connection string so that we can preview the changes  
before updating the report in CRM.

To do that, expand the Data Sources node and double-click on the CRM  
data source, we will see, by default, that the connection string value is set to:  
data source=localhost;initial catalog=Adventure_Works_Cycle_MSCRM



Chapter 5

[ 129 ]

Change local host to our CRM SQL Server name and the Adventure_Works_Cycle_
MSCRM value to our CRM organization database. Remember this is usually the 
name of our organization with the _MSCRM suffix.

Toolbox
In Visual Studio we have the following controls that are inside the toolbox,  
which we can use on our report:

If we don't see this toolbox we can go to the View menu and then 
select the Toolbox menu option or press Ctrl + Alt + X.

•	 The Pointer is not really a control we can add to our report but it is used  
to be able to select any existing control we have on the report.

•	 The Textbox control is one of the most important controls; it allows us  
to place text in the report. We can bind the Textbox control to any field  
or expression.



Creating Contextual Reports

[ 130 ]

•	 The Line and Rectangle controls are graphical controls that allow us to draw 
lines or rectangles in the report.

•	 The Table and Matrix controls are useful for displaying the records of a data 
set. These two controls also contain Textbox inside the column headers and 
other details as we will see later in this chapter.

•	 The List control is similar to the Table control but with only one column  
in it.

•	 The Subreport control allows us to include another report, which is also 
called a subreport, inside the report.

•	 The Map control is used to embed geographic maps in our reports.
•	 The Chart, Gauge, Data Bar, Sparkline, and Indicator controls help us  

in visual representation of the data we want to display.



Chapter 5

[ 131 ]

Expressions
Expression is an advanced way to display data into the report controls. It can contain 
simple to very complex functions. We can use expressions in any property by taking 
advantage of the Expression editor.

You can refer to the Appendix, Expression Snippets, for more details on expressions.



Creating Contextual Reports

[ 132 ]

Prefilters
Dynamics CRM has a nice feature named Prefilters. Prefilters allow the user to 
predefine the records that will be displayed. Regardless of the filters we put on our 
report queries, we can allow the user to also specify his or her own filter criteria,  
so that the first time the user opens the report, the following dialog will display:

This is an example of how the Account Distribution report uses the prefilters to  
let the user select what account and opportunities he or she wants to be filtered 
before running the report. The prefilters need to be properly configured in our  
report and this can be done in two different ways:

•	 By using report parameters
•	 By using the CRMAF_ alias

We will review how to use these two methods in detail in this chapter.



Chapter 5

[ 133 ]

Report parameters in detail
CRM uses some predefined report parameters we can use in our report to get context 
information about the user and the environment where the report is running. These 
report parameters are as follows.

CRM_FilterText
CRM_FilterText is a hidden parameter that CRM 2011 uses to pass the current 
prefilters used.

We can display this value on our report by adding a textbox control and assigning  
it the value =Parameters!CRM_FilterText.Value.

As we can see, this is a value that is displayed in the account distribution report 
under the Filter Summary header.

CRM_FormatDate
CRM_FormatDate is a parameter that depends on the DSNumandCurrency data set that 
allows us to know what the user date and time configuration are, so we can display 
the date in the user format he or she has specified on his or her personal settings.



Creating Contextual Reports

[ 134 ]

As we can have users located in different countries, some users in the U.S. would like 
to see the dates in the mm/dd/yyyy format while users in Latin America would like 
to see dates in the dd/mm/yyyy format.

To display any date field in the user-specific format, we just need to set the format 
attribute of the textbox control to =Parameters!CRM_FormatDate.Value.

CRM_FormatTime
In a similar way to the CRM_FormatDate parameter, the CRM_FormatTime parameter 
returns the format of time selected by the user in his or her personal settings.

CRM_FullName
CRM_FullName parameter returns the full name of the user who is running the report, 
so we can print it on our report by adding a textbox control and setting its value to 
=Parameters!CRM_FullName.Value.

This is a hidden parameter that depends on the UserInfo data set, which contains 
the following query:

select fullname from FilteredSystemUser where systemuserid = dbo.fn_
FindUserGuid()

CRM_FilteredAccount
The parameters containing the filtered view names, such as in this case 
FilteredAccount, are the prequeries themselves that we can use to pre-filter  
our queries. This will be used in an SQL query as follows:

select * from (' + @CRM_FilteredAccount +') as acct

This way only the records pre-filtered by the user running the report will be 
returned. We can create similar parameters as this for other entities we want to  
pre-filter in our report, for example, we could create a similar parameter to pre-filter 
the accounts by creating a parameter with the name of CRM_FilteredAccount and 
with a default value using a query such as the following:

select  \[account0\].*  from  FilteredAccount as "account0"

Remember we can also use the CRMAF_ alias in our queries that will provide  
similar results in the pre-filter lists.



Chapter 5

[ 135 ]

CRM_URL
When running inside Dynamics CRM 2011 application, CRM_URL parameter will return 
the URL of the organization pointing to the drillopen.aspx page, for example:

http://crmserver/organizationName/CRMReports/viewer/drillopen.aspx

This parameter is used when we want to apply drill-down capabilities as we will  
see in detail later in this chapter.

CRM_CalendarType
CRM_CalenderType is a parameter that depends on the DSNumandCurrency data 
set, which allows us to know what the user's calendar configuration is so we can 
display the dates in the format he or she has specified in his or her personal settings. 
The DSNumandCurrency is a data set that is embedded in all the default predefined 
reports, so it will be available if we start our report by using any of the currently 
existing reports.

The query for this database looks as follows:

select * from dbo.fn_GetFormatStrings()

The different values returned by this parameter can be of the following types:

•	 Gregorian
•	 Japanese
•	 Korea
•	 Taiwan
•	 Gregorian US English
•	 Gregorian Arabic
•	 Gregorian Middle East French
•	 Gregorian Transliterated English
•	 Gregorian Transliterated French



Creating Contextual Reports

[ 136 ]

The user can change the calendar by navigating to File | Options | Formats and 
clicking on the Customize… button, then going to the Date tab. Depending on the 
language selected, the calendar options will be displayed with a drop-down list;  
for example, in the Japanese format we can see the following calendar options:

 

This parameter can then be used within any textbox where we want to display dates 
by setting the Calendar attribute to this parameter.

For a complete reference of the CRM parameters, visit http://
msdn.microsoft.com/en-us/library/gg309583.aspx



Chapter 5

[ 137 ]

Data sources
If we are working with the CRM 2011 on premise version, we can mix data with 
other data sources in our report; by default, we can create data sources using the 
following database types:

•	 Microsoft Dynamics CRM Fetch
•	 Microsoft SQL Server
•	 Microsoft SQL Azure
•	 Microsoft SQL Server Parallel Data Warehouse
•	 OLE DB
•	 Microsoft SQL Server Analysis Services
•	 Oracle
•	 ODBC
•	 XML
•	 Report Server Model
•	 Microsoft SharePoint List
•	 SAP Netware BI
•	 Hyperion Essbase
•	 TERADATA



Creating Contextual Reports

[ 138 ]

For any database type not listed here, we can always find its OLEDB 
or ODBC adapter to use it in our report.

Data sources can be created  as either of these two main types:

•	 Embedded connection
•	 Using a shared data source reference

Embedded data sources
Embedded data sources means that the data source connection will be embedded 
within the report (within the RDL file), if we are using this data source for one 
specific report then this option might be good. However, if we are planning on 
creating more than one report using the same data source, using the shared data 
sources will be the best approach.



Chapter 5

[ 139 ]

Shared data sources
Shared data sources are the best option to configure the connection string in one 
place to update more than one report at the same time; this is the type of data source 
used by Dynamics CRM. Even though when we work with Visual Studio we see the 
data source is embedded, it is then changed as soon as we upload the report into 
Dynamics CRM. This will happen to the CRM data source only, as it is a reserved 
name for dynamics to use.

The CRM data sources are hidden in the report server, if we open the report  
manager and go to the organization folder we will see an empty folder.



Creating Contextual Reports

[ 140 ]

Clicking on Details View will show two hidden data sources; one is used for  
reports in SQL and the second is used for Fetch XML reports.

To create a new shared data source to include in our report's project, go to the 
Solution Explorer in Visual Studio and right-click on Shared Data Sources and 
select the Add new Data Source menu option.



Chapter 5

[ 141 ]

Enter MyCRMDataSource in Name and select the Microsoft SQL Server type, then in 
Connection string enter data source=crm2011rep;initial catalog=test_MSCRM

Replace crm2011rep with our CRM SQL server name and test_MSCRM with our 
CRM organization database.

If we are working on CRM Online organization we won't be able to 
use the SQL Server type but will have to use the Microsoft Dynamics 
CRM Fetch type instead.



Creating Contextual Reports

[ 142 ]

Click on the Edit button to be sure that the authentication is set to Windows 
Authentication, then hit the Test Connection button to validate the connection.

Click on OK to close all the open dialog boxes.



Chapter 5

[ 143 ]

Data sets
As with data sources, we can have more than one data set defined in our report; 
however, each data set is associated with one data source at a time. To create a new 
Data set follow the given steps:

1.	 Right-click on the Datasets folder and select the Add Dataset… menu option:

2.	 When the Dataset Properties dialog box opens, we will be presented with  
the following options:

Here we can select to use a shared data set or create a data set that will be 
embedded in our report; the concept is the same as explained for data sources.



Creating Contextual Reports

[ 144 ]

3.	 If we want to create a shared data set, we will need to cancel this dialog 
box and go to the Solution Explorer window, right-click on the Shared 
Datasets folder, and select the Add New Dataset option:

4.	 When adding a new shared data set we will need to specify the Data Source, 
Query type, and Query.



Chapter 5

[ 145 ]

5.	 Enter AccountsDataSet in the Name field and select MyCRMDataSource 
from the Data source drop-down menu list.

6.	 We can either write the query manually or use the query designer by  
clicking on the Query Designer… button. When it is open we can add tables 
by right-clicking on the white textbox and selecting Add Table… as shown  
in the following screenshot:



Creating Contextual Reports

[ 146 ]

We will be able to either add Tables, Views, Functions or Synonyms. We 
recommend using views as much as possible. If the report is going to be run 
only by a high-privileged user such as the system administrator, we can use 
views such as Account and Contact. However, if our report needs to display 
results based on the user permissions, we will have to use the Filtered views, 
where one of these views is present for each entity such as FilteredAccount 
and FilteredContact.

To learn more about the use of Filtered views refer to this link 
in MSDN http://msdn.microsoft.com/en-us/library/
gg328467.aspx. Even though the article says that the only 
supported way is using Filtered views and the custom SQL-based 
reports cannot read data directly from the Microsoft Dynamics 
CRM database tables, I have verified that this is not true and I have 
to actually avoid them to gain performance for reports that are 
only intended to be used by system administrators. So I don't need 
to be worried about the security constraints.



Chapter 5

[ 147 ]

7.	 Our new data set should look like the following:

There are some important considerations in this query. In this example,  
we are using Select Account.* FROM Account.
This means that we are not checking the security of the records and 
might prevent any issue if this report is intended to be used by users that 
should not be allowed to see some records. If we want to prevent this, 
we need to change this query to use the Filtered views by using Select 
FilteredAccount.* FROM FilteredAccount.
If we also want to let the user pre-filter the records, we can use the magic  
of the CRMAF_ alias as follows:

Select * FROM FilteredAccount as CRMAF_Account



Creating Contextual Reports

[ 148 ]

8.	 The Fields tab will allow us to change the field's name or add a custom  
field to our data set, which can either be Calculated Field or Query Field.

9.	 The Options tab will allow us to configure the Collation, Case sensitivity, 
Accent sensitivity, Kanatype sensitivity, width sensitivity, and the 
Interpret subtotals as detail rows. The Collation, for example, is important 
and affects how the data will be sorted; it depends on on the language and 
country. In most cases we will want to leave the Default value for  
the Collation and the Auto value for the rest of the options.



Chapter 5

[ 149 ]

10.	 The Filters tab allows us to add filter criteria to our data set. It is always 
recommended to apply the filters in the SQL query, but there might be  
some occasions where we won't be able to, especially when working with  
a different data source than SQL Server. Here we have a good opportunity  
to filter the records in our own data set.



Creating Contextual Reports

[ 150 ]

11.	 The Parameters tab will allow us to pass the parameters we need, and is used 
especially , when we are using a stored procedure in our query and need to 
do some processing before passing the values to it, such as using a function.

12.	 Click on OK to finish the data set creation. Now, in order to use this  
new shared data set in our report we will need to go to the Report Data 
window and right-click on the Datasets folder and select the Add Dataset 
menu option, where we will be able to use the shared data set we have 
created earlier.



Chapter 5

[ 151 ]

Groups on data sets
To start using a data set we can add a Table control to our report and select the  
data set we created in the DataSetName property of the Table control as follows:

Remember we can usually access the properties window by 
hitting the F4 key if it is not visible by default in Visual Studio.

Adding columns to the report
To add a field to the table cells, we move the mouse over  the cell we want until  
we see the blue icon being displayed.



Creating Contextual Reports

[ 152 ]

Clicking on the blue icon will display the list of available fields we configure in  
our data set, so we can easily select the fields we want to display in each cell.

Selecting the fields this way will automatically add the header text with the field name.

To add a new column right-click on the column header and select Insert Column, then 
select Left or Right depending upon where we want the new column to be located.



Chapter 5

[ 153 ]

Hiding and showing columns
Selecting the Column Visibility will allow us to configure the column visibility 
based on an expression that can be dynamically updated by, for example, a report 
parameter using an expression such as =IIf(Parameters!TopAccounts.Value = 
"1", true, false).



Creating Contextual Reports

[ 154 ]

To add another details row to our table we can right-click on the left part of the  
table and select Insert Row:

To add a group to our table we can right-click on the left part of the table and select 
Add Group, then select Parent Group:



Chapter 5

[ 155 ]

After adding at least one parent group, we can add child groups if we want another 
level of grouping.

When adding a group we can either specify the field name or use an expression  
to create a more complex grouping.

Then we can select to add a header and/or a footer for the group in the table.  
After adding the group we will be able to see it in the table as follows:



Creating Contextual Reports

[ 156 ]

At runtime the report will render showing the groups, as can be seen in the  
following screenshot:

We can also add Column Groups by selecting a field from the Dataset window  
and dragging-and-dropping the field to the Column Groups area:



Chapter 5

[ 157 ]

Charts
When working with Visual Studio we can add more powerful charts with more 
options than the ones presented with the Report Wizard or the Report Builder 
applications. We are going to create a simple report to show as an example:

1.	 Drag-and-drop a chart control that is available in the toolbox. We will  
be presented with a dialog box as shown in the following screenshot:

2.	 For this sample we will select the first chart under the Column section  
and click on OK.



Creating Contextual Reports

[ 158 ]

3.	 Click on the columns to configure the fields we want to be displayed.  
That should open the following properties window to the right of the  
chart control:

4.	 Click on the plus sign under the ∑ Values list, so that we can select the fields 
that we want to use for aggregation. In this example, we will add Name and 
EarnedRevenue. Notice we can also use an expression if we want to create 
something more complex.



Chapter 5

[ 159 ]

5.	 We can add different groups of series to display more than one aggregated 
field by using the Category Groups and Series Groups.

6.	 Setting the Category Groups will configure the field to be used in the Axis.



Creating Contextual Reports

[ 160 ]

Drill-down and collapsible controls
If we used groups in our tables, a feature that would be nice to add is the collapsible 
controls, so that the groups can be collapsed or expanded. To do that we need to 
select, for example, the controls we want to be hidden or shown, such as the entire 
row detail, and right-click and select the Row Visibility… menu item as follows:

Then check the Display can be toggled by this report item checkbox and select  
the control name, such as the one used on the column header group.



Chapter 5

[ 161 ]

When we run or preview the report we will be able to collapse or expand the rows.

Summary
In this chapter we looked at the advanced tools and control, we can use to create 
reports with Visual Studio. We reviewed the CRM Report parameters and the chart 
controls. We explained the differences between the data source and data sets, and 
finally we used the groups and drill-down and collapsible controls in our reports.

In the next chapter we are going to see how we can integrate a report with an entity 
form using web resources.





Creating Inline Reports
Inline reports are the ones that are shown inside an entity form. In this chapter  
we are going to see how we can integrate a report with an entity form using  
web resources.

Web resources are components we can use to extend the entity form's visualization 
with custom control capabilities.

Embedding reports on an entity form
In Dynamics CRM 2011 every entity can have more than one form. Each form 
represents the user interface from where the user can interact with a single-entity 
record of any entity. There are different types of forms in Dynamics CRM:

•	 Main
•	 Mobile

Only the main form type allows the addition of web resources and they are the ones 
used by the web browser client as well as the outlook client. The mobile form is the 
one presented to any browser that is not supported by Dynamics CRM, such as those  
found in a mobile smart phone. By default, only the users with System Administrator 
and System Customizer roles can customize the entity's forms.



Creating Inline Reports

[ 164 ]

The different controls we can insert into a form are as follows:

•	 Sections
•	 Tabs
•	 Web resources
•	 Spacer
•	 Sub-grid
•	 IFRAME

As we can see, there are no out-of-the-box controls to insert an SQL Reporting 
Services report into a form, so we will need to create a custom solution to do that, 
using a web resource.

The web resources we can create in Dynamics CRM 2011 can be any of the following:

•	 Web Page (HTML)
•	 Stylesheet (CSS)
•	 Script (jScript)
•	 Data (XML)
•	 Stylesheet (XSL)
•	 Silverlight (XAP)

We can also store the following image types as web resources:

•	 PNG format
•	 JPEG format
•	 GIF format
•	 ICO format



Chapter 6

[ 165 ]

Creating a custom solution
The first thing we need to do is create a custom solution; even though this is not 
required it is recommended so we can easily export the customization to another 
CRM organization.

1.	 To create a new solution, go to Settings and then click on Solutions:



Creating Inline Reports

[ 166 ]

2.	 Click on New to create a new solution. Enter ReportControl in the Display 
Name textbox and press the Tab key, which will automatically fill the same 
on the Name textbox. Select the default publisher to assign a publisher in the 
Publisher lookup, enter 1 in the Version textbox, and then press the Tab key. 
This will automatically add.0.0.0 to the version text. Your solution screen 
should look like the following:

3.	 Click on the Save icon to save the solution that will enable the sitemap links.

Creating the HTML web resource
The next thing we need to do is to create a web resource of the HTML type. This  
type of web resource will allow us to embed HTML code inside the entity form.

1.	 Click on Web Resources and then on New:



Chapter 6

[ 167 ]

2.	 Enter reportcontrol in the Name field, then enter Report Control on the 
Display Name textbox, and select the Web Page (HTML) option under the 
Type option set. Your web resource should look like the following:

3.	 Click on the Text Editor button, then click on the Source tab and remove 
the code that appears by default, and write the code that is available for 
download on http://www.packtpub.com/support.
<HTML><HEAD>
<SCRIPT src="ClientGlobalContext.js.aspx"></SCRIPT>
<SCRIPT language=javascript>
        function SetReport() {
            var Parameters =  
            qs("data").toString().split('%2a');
            var id = Parameters[0];

            if (!IsGuid(id)) {
                var msg = "Please enter a valid report ID  
                in the Custom Parameter (data) box.";
                msg += "\n\nMake sure that %7b from the  
                beginning and %7d from the end of the link  
                are not included in the report ID."
                alert(msg);
                return;
            }



Creating Inline Reports

[ 168 ]

            var serverAndOrgUrl =  
            document.location.toString().split('%')[0];
            var iframeSrc = null;
                iframeSrc = serverAndOrgUrl +  
                'crmreports/viewer/viewer.aspx?action= 
                run&id=%7b' + id + '%7d';

            var report = document.createElement("iframe");
            report.setAttribute('id', 'reportFrame');
            report.setAttribute('name', 'reportFrame');
            report.setAttribute('src', iframeSrc);
            report.setAttribute('height', '100%');
            report.setAttribute('width', '100%');
            report.setAttribute('scrolling', 'auto');
            report.setAttribute('frameborder', '0');
            report.onreadystatechange = ShowFrame;

            var reportDiv = document.createElement("div");
            reportDiv.setAttribute('height', '100%');
            reportDiv.setAttribute('width', '100%');
            reportDiv.appendChild(report);
            document.body.appendChild(reportDiv);

            function ShowFrame() {
                if (report.readyState == "complete") {
                    menubar = report.contentWindow. 
                    document.getElementById('mnuBar1');
                    if (menubar != null) {
                        menubar.style.display = "none";
                    }

                    editFilter = report.contentWindow. 
                    document.getElementById 
                    ('trEditFilter');
                    if (editFilter != null) {
                        editFilter.style.display = "none";
                    }
                }
            }
            function PassIdValues() {
                var WebResource = document.getElementById 
                ('reportViewer_ctl04_ctl04_txtValue');



Chapter 6

[ 169 ]

                var ListIdTextBox = document.getElementById 
                ('reportViewer_ctl04_ctl04_txtValue');

            }

            function qs(search_for) {
            // this function is used to parse the query  
            string parameters
                var query = window.location. 
                search.substring(1);
                var parms = query.split('&');
                for (var i = 0; i < parms.length; i++) {
                    var pos = parms[i].indexOf('=');
                    if (pos > 0 && search_for ==  
                    parms[i].substring(0, pos)) {
                        return parms[i].substring(pos + 1);
                    }
                }
                return "";
            }

            function getServerUrl() {
            // this function is used to get the CRM Server  
            URL
                context = GetGlobalContext();
                return context.getServerUrl();
            }

            function IsGuid(guid) {
            // Validates if the parameter is a valid GUID
                if (guid != null) {
                    var guidRegEx = /^([0-9a-fA-F]){8}- 
                    ([0-9a-fA-F]){4}-([0-9a-fA-F]){4}- 
                    ([0-9a-fA-F]){4}-([0-9a-fA-F]){12}$/;
                    return guidRegEx.test(guid);
                }
                return false;
            }
        }
</SCRIPT>

<META charset="utf-8"></HEAD>
<BODY onload="SetReport()" style="MARGIN: 0px"></BODY></HTML>



Creating Inline Reports

[ 170 ]

4.	 Your web resource should look like the following:

5.	 Click on the OK button to close this dialog. Now click on Save and then on 
Publish.

Let's look a little more at the code we wrote above and what it does. As we can see, 
in the last line of the code, the web resource does not have a lot of HTML code but 
instead it calls the SetReport function in the BODY.onload event attribute.

The SetReport function initially parses the web resource parameters to obtain the 
report ID, as we will see in the next section of this chapter when implementing the 
report control.

If the report parameter is not a valid GUID, an error will be displayed to the user. 
Then it prepares the IFRAME URL for the report using the GUID of the report.



Chapter 6

[ 171 ]

Next an IFRAME element is created dynamically so it can host the report viewer 
URL. After the IFRAME is loaded, there is a function defined with the name of 
ShowFrame that checks when the report is loaded so it can hide the menu toolbar 
added by the CRM report viewer page.

The reference to the JavaScript file ClientGlobalContext.js.aspx added to the 
top of the code is necessary to be able to use the method context.getServerUrl() 
to know the CRM server URL. This is based on the context of where it is running 
as it might be different, depending on whether we are running on an on-premises 
environment, CRM online, or an IFD environment.

There is also a CodePlex managed solution you can download 
from http://reportingondashboard.codeplex.com/, 
which is very similar to the solution proposed here.

Implementing the report control
Now that we have the control ready, we can now use it on any entity form. We 
are going to see an example here of how to use it on the out-of-the-box Account 
Overview report in the account form.

1.	 Go to Accounts and click on New to open the account form. Then move  
to the Customize tab and click on the Form button on the ribbon under  
the Design group:



Creating Inline Reports

[ 172 ]

2.	 This will open the Account form in design mode. Click on the section where 
you want the Report Control page to be placed and move to the Insert tab. 
In this example we select the General section.

3.	 Click on the Web Resource icon and locate the web resource to assign it 
to the Web Resource lookup. Enter a name in the Name textbox such as 
ReportControl. Pressing the Tab key will autopopulate the Label textbox.



Chapter 6

[ 173 ]

4.	 To display the Account Overview report, we need to specify the GUID of the 
report as a custom parameter to the control. To get the GUID of the report, go 
to Reports and right-click on the Account Overview report. Then select the 
Copy a Link menu option as shown:

5.	 This will copy the following onto the clipboard:
http://crm2011/CRM2011ReportingBook/crmreports/viewer/viewer.
aspx?id=%7b232668A8-7960-E211-8E84-00155DFE7909%7d

After the question mark symbol you will see the ID parameter, from  
where you need to remove the %7b from the beginning of the value and  
also remove the %7d from the end of the text. So your report ID will be 
232668A8-7960-E211-8E84-00155DFE7909.



Creating Inline Reports

[ 174 ]

6.	 Copy this ID and go back to the web resource properties page and paste  
it to the Custom Parameter(data) textbox as follows:

7.	 It is a good practice to extend the height of the control, as by default it 
will only use six rows. In order to do that, click on the Formatting tab and 
change the Number of Rows value from 6 to 10 and optionally select the 
Automatically expand to use available space checkbox.



Chapter 6

[ 175 ]

8.	 Click on OK to save the changes. Then go back to the Home tab and click  
on the Save button on the form and select Publish:

Close the form designer window and close the new account form you  
opened before.



Creating Inline Reports

[ 176 ]

9.	 To test the solution go to the Account tab and open any account record. You 
will see the report displayed inside the form as follows:

Developer Toolkit
If we want to have this solution packaged in a way that we can use Visual Studio  
to edit the HTML web resources, we can use the Developer Toolkit that comes  
with the Microsoft Dynamics CRM SDK. The SDK can be downloaded from  
http://www.microsoft.com/en-us/download/details.aspx?id=24004.



Chapter 6

[ 177 ]

1.	 Inside the sdk\tools\developertoolkit folder there are two installers. 
The crmdevelopertools_installer.msi installer is the one used for Visual 
Studio 2010 while the crmdevelopertoolsvs12_installer.msi installer is 
used for Visual Studio 2012.

2.	 After installing this toolkit you will be able to create a Dynamics CRM 2011 
project template that will connect to Dynamics CRM 2011. When creating  
a new project, you can select the Dynamics CRM Package project template 
as shown in the following screenshot:

If you don't see the templates, be sure the target framework is selected  
as .NET Framework 4.



Creating Inline Reports

[ 178 ]

3.	 Enter a name for your project, say ReportControl, and click on OK. You will 
be asked to connect to a Dynamics CRM 2011 server. Enter the name and the 
port number of the CRM server you want to connect to. The default protocol 
selected is HTTPS. For this, the port number to be entered is 443. Whereas, if 
you have HTTP selected, the default port number to use will be 80. If you are 
working with the CRM Online version, you will need to enter disco.crm.
dynamics.com in the CRM Discovery Server Name textbox.

4.	 Click on Connect if you are working with CRM on premise. You can check 
the Use Default Credentials checkbox. If you are working with CRM Online 
you will need to provide the User name and Password only.

5.	 Click on the Log on button and you will be able to select the organization. 
All organizations you have permissions to access will be displayed in the 
Organization drop-down list.

6.	 After selecting the organization you will be able to select a solution from  
the Solution Name drop-down list. Select the solution you want to bind  
to the Visual Studio project.



Chapter 6

[ 179 ]

Click on OK to connect and close this dialog.

7.	 When the project is created you will see the following project structure in  
the Solution Explorer window:



Creating Inline Reports

[ 180 ]

8.	 As you can see, the WebResources folder is empty, so we will need to add 
the web resource we already created before. To do that, you will need to go 
to the CRM Explorer window, which you can open by going to the View  
menu and selecting the CRM Explorer menu option as follows:

9.	 This will open the following window from where you will be able to 
locate the web resource by expanding the organization name node, which 
is CRM2011ReportingBook in our case. Then, by expanding the Web 
Resources node and the Web Page (HTML) you should be able to see the 
Report Control HTML page we created. Right-click on this file and select 
Add to packaging project:



Chapter 6

[ 181 ]

10.	 Doing this will add the web resource to our project. This will enable us to see 
it in the Solution Explorer window (see the following screenshot showing 
the Solution Explorer window), allowing us to make it part of a Team 
Foundation server project so that we can have source control and a history  
of the changes made.

11.	 There is another benefit of using the Developer Toolkit, which  is the ability 
to edit the HTML web resources with a powerful editor where the text is 
displayed in color. And having IntelliSense is also a great benefit (see the 
following screenshot with the code editor).



Creating Inline Reports

[ 182 ]

12.	 Using the Developer Toolkit allows us to easily deploy any change we make 
on the HTML web resources by right-clicking on the solution name and 
selecting the Deploy Solution option:

13.	 Notice that after deploying the solution it is likely that we will need to 
publish the changes we made to the web resources we updated. In order 
to do that we need to go to the CRM Explorer and double-click on the web 
resource we want to publish. This will open the web resource properties page 
inside Visual Studio so we can click on the Publish button.



Chapter 6

[ 183 ]

14.	 The Developer Toolkit has some nice shortcuts. To open the CRM 
organization web client, click on the second icon at the top of the CRM 
Explorer window. Clicking on the third icon will open the Solution window.

15.	 The project properties windows, which you can open by right-clicking on the 
project name in the Solution Explorer window and selecting the properties 
window, present the option to export the solution file on every deployment  
if you set it to True under the Deploy tab.



Creating Inline Reports

[ 184 ]

16.	 It is very important that you set up a name for the Output name textbox  
(see the following screenshot) in the Package tab, or your solution zip file 
won't be created and no error will be displayed.

17.	 The solution generated will be in unmanaged state, so it won't be good for 
distribution, but will be good to have a deployment backup if you want to 
move the solution to another development organization.

A very important consideration while having a CRM project integrated with a source 
control is to be sure that you have the RegisterFile.crmregister file checked  
out when doing deployments, as these files get updated on every deployment and,  
if you don't have it checked out, you will receive an error.

The error message you will get will be as follows:

Error4Error registering plugins and/or workflows. 
The resource string "ErrorSerializingRegFile" for the "RegisterPlugin" 
task cannot be found. 
Confirm that the resource name "ErrorSerializingRegFile" is correctly 
spelled, and the resource exists in the task's assembly.  C:\Program 
Files (x86)\MSBuild\Microsoft\CRM\Microsoft.CrmDeveloperTools.12.
targets	
176  4ReportControl



Chapter 6

[ 185 ]

As you can see, the error message does not relate to the real cause of the problem, 
which is related to the RegisterFile.crmregister file. This file needs to be 
writable (not read-only) as the source control sets the files to read-only when  
they are checked in. Checking out this file will solve this problem.

Summary
In this chapter, we looked at how we can embed a report inside any entity form by 
creating a custom solution that uses an HTML web resource. We have also seen how 
to implement this custom solution on the account entity using the account overview 
report. We then reviewed the Developer Toolkit, which helps us to work in a more 
organized manner with custom CRM solutions, getting the benefit of IntelliSense  
and a deployment capability, which also allows us to integrate our source code  
with a source controller software such as Team Foundation Server.

In the next chapter we are going to see how we can integrate a report in a dashboard 
and review the basic and advanced features of the chart controls that come with 
Dynamics CRM 2011.





Using Reports and Charts  
in Dashboard

In this chapter we are going to see how we can integrate a report in a dashboard  
and we are going to review the basic and advanced features of the chart controls  
that come with Dynamics CRM 2011.

Showing report on a dashboard
We can use the same solution that we built in the last chapter to display a report 
on a dashboard. Microsoft Dynamics CRM 2011 introduces a new feature called 
Dashboard from where we can mix different types of representation of our data  
on a simple page. The dashboards are located by default in the Workplace area 
under My Work.

There are two types of dashboards:

•	 Personal dashboards
•	 System dashboards



Using Reports and Charts in Dashboard

[ 188 ]

The personal dashboards are the ones that we can create from this interface when 
clicking on the New button that is located in the ribbon. We can also share it with 
other users by using the Share Dashboard button:

The system dashboards are the ones that are created when we go to Settings | 
Customizations | Customize the system this way we will create dashboards  
in the Default Solution; we can also create a custom solution and add them there.

System dashboards are visible to all users. The components that we can add to a 
dashboard are as follows:

•	 Chart
•	 List
•	 Web Resource
•	 Iframe

To create a new dashboard, click on New.



Chapter 7

[ 189 ]

Select the layout you want (in this case we will select the first layout) and click on Create.

Click on Web Resource to locate the report control web resource that we have created. 
It is similar to what we did when including the web resource on the entity form (as we 
saw in the previous chapter). We need to pass the report ID that we want to display on 
the dashboard. We do this in the Custom Parameter (data) textbox.



Using Reports and Charts in Dashboard

[ 190 ]

Click on OK to insert the web resource on our dashboard. To make it look better, 
click three times on the Increase Width button on the ribbon so it will fit the entire 
width of the dashboard, then click on the Increase Height button five times.

Note that even though the default template comes with only two rows, we can add 
more rows if we want by clicking on the main area of the dashboard (not inside any 
cell). Inserting any component will automatically add it on a new row. However, 
there are a maximum of six rows allowed per dashboard.

Enter a name for the dashboard and click on the Save and Close button from the 
ribbon. We will see our report inside the dashboard as follows:



Chapter 7

[ 191 ]

To learn more about dashboards I recommend the book Microsoft 
Dynamics CRM 2011: Dashboards Cookbook, MVP Mark AuCoin, 
Packt Publishing (http://www.packtpub.com/microsoft-
dynamics-crm-2011-for-creating-customizing-
interacting-dashboards-Cookbook/book).

Exporting dashboards
To copy a system dashboard to another CRM organization, we will need to create a 
solution and include the dashboard that we created if we used the default solution.

We cannot export and copy personal dashboards to other 
Dynamics CRM organizations.

When we export a solution that contains a dashboard and expand the solution zip 
file, we will see the dashboard XML representation in the customization.xml file  
as follows:

  <Dashboards>
    <Dashboard>
      <LocalizedNames>
        <LocalizedName description="Reports" languagecode="1033" />
      </LocalizedNames>
      <FormId>{54ebdaa6-be6e-e211-b407-00155dfe7909}</FormId>
      <IsCustomizable>1</IsCustomizable>
      <IsDefault>0</IsDefault>
      <FormXml>



Using Reports and Charts in Dashboard

[ 192 ]

        <forms type="dashboard">
          <form>
            <tabs>
              <tab showlabel="false" verticallayout="true" 
id="{6669382b-2a96-4dae-b350-063a30f14187}">
                <labels>
                  <label description="Tab" languagecode="1033" />
                </labels>
                <columns>
                  <column width="100%">
                    <sections>
                      <section showlabel="false" showbar="false" 
columns="1111" id="{01451b67-28f2-471e-9a94-794bd73e91f6}">
                        <labels>
                          <label description="Section" 
languagecode="1033" />
                        </labels>
                        <rows>
                          <row>
                            <cell colspan="4" rowspan="18" 
showlabel="false" id="{d42521be-0876-43b0-958a-eb4c46ccbf54}">
                              <labels>
                                <label description="Componentdb2e481" 
languagecode="1033" />
                              </labels>
                              <control id="WebResource_
Componentdb2e481" classid="{9FDF5F91-88B1-47f4-AD53-C11EFC01A01D}">
                                <parameters>
                                  <Url>new_reportcontrol</Url>
                                  <ShowInROF>false</ShowInROF>
                                  <PassParameters>false</
PassParameters>
                                  <Security>false</Security>
                                  <Scrolling>auto</Scrolling>
                                  <Border>true</Border>
                                </parameters>
                              </control>
                            </cell>
                          </row>
                        </rows>



Chapter 7

[ 193 ]

                      </section>
                    </sections>
                  </column>
                </columns>
              </tab>
            </tabs>
          </form>
        </forms>
      </FormXml>
    </Dashboard>
  </Dashboards>

To understand more about the dashboard XML format go 
to http://msdn.microsoft.com/en-us/library/
gg334200.aspx.

Basic charts
Dynamics CRM 2011 introduces a new feature called Charts that helps us add  
charts easily without the need to create a report for that purpose. To create a chart 
we can either create a solution, which is always the recommended method, or  
go to Settings | Customizations | Customize the System. It will be using the 
Default Solution.

As with dashboards we can have two types of charts:

•	 Personal charts
•	 System charts

Personal charts are the ones that we can create from the entity we want. They  
can be created by going to the Charts tab on the ribbon and clicking on the  
New Chart button. These charts will be only be visible to us and they can  
be shared with other users.

System charts can be created from a Solution or by going to Settings | 
Customizations | Customize the System. It will be using the Default Solution. 
These charts will be visible to all users.



Using Reports and Charts in Dashboard

[ 194 ]

Charts depend on the entity, so we will look at them under each entity; for example,  
the account entity comes with the following out-of-the-box predefined charts:

•	 Accounts by Industry
•	 Accounts by Owner
•	 Accounts by Territories
•	 New Accounts by Month

To create a new chart, click on New. This will display the chart editor, which we  
will see in detail later in this chapter.

The differences between charts and a report to display graphical representation  
of the data is that charts don't have the ability to easily print or export the chart  
to different formats like the reports can.

Each chart depends on a View and this is because they are somehow related, 
meaning that the charts can be displayed along with the views as well. So for 
example in the account entity, depending on what view we are in, we will have  
the ability to display the charts associated to that view.



Chapter 7

[ 195 ]

If we click on the right part of the screen where it says Click here to view the Chart, 
the charts will be displayed as follows:



Using Reports and Charts in Dashboard

[ 196 ]

Clicking on the chart name will allow us to change the chart:

Drill-down chart
Charts also have a very nice feature called drill down, which allows us to get more 
detailed results based on a selected field. If we click on the bar for which we want 
detailed results, we will be presented with a dialog that will allow us to select the 
field that we want the chart to be filtered on. For example, if we are looking at the 
Accounts by Industry chart in the account entity, we can click on the bar and we  
will see the available options.

These options allow us to select a field as well as to change the type of chart that  
we want to be displayed for that field.



Chapter 7

[ 197 ]

If we select a field and any of the chart types and then click on the arrow, we will  
see a new chart grouped by the new field we selected:

When we entered into the drill-down mode a new set of buttons will appear on the 
bottom part. The first button that shows a home on the icon allows us to return to  
the first view of the chart while the second icon is a right arrow that allows us to go 
back to the previous drill-down filter as we can drill-down on a chart several times.

Notice that using the drill down affects the records displayed by the view. Hovering 
the mouse over the chart shows us a legend with more details of the portion of the 
chart we are looking for.



Using Reports and Charts in Dashboard

[ 198 ]

We can change the position of the chart and views if we don't want the chart to be 
displayed on the right-hand side of the screen by going to the top ribbon and clicking 
on the Charts tab. There is a button called Chart Pane that has the following options:

•	 Right
•	 Top
•	 Off

Notice that clicking on the New button will also allow us to create a new chart. If you 
select the Top option it will show the chart on top and the grid view on the bottom, 
as shown in the following screenshot:



Chapter 7

[ 199 ]

Charts editor
The chart editor has a ribbon from where we can select the type of chart we want  
to use. We can select one of the following options:

•	 Column
•	 Bar
•	 Area
•	 Line
•	 Pie
•	 Funnel



Using Reports and Charts in Dashboard

[ 200 ]

The Column type chart has the following subtypes:

•	 Column
•	 Stacked Column
•	 100% Stacked Column

The Bar type chart has the following subtypes:

•	 Bar
•	 Stacked Bar
•	 100% Stacked Bar



Chapter 7

[ 201 ]

The Area type chart has the following subtypes:

•	 Area
•	 Stacked Area
•	 100% Stacked Area

Once we select the type of chart we want, we need to select the fields that we  
want to display in the legends as well as the fields that we want to be used in  
the categories. Entering the name is not required as it will be formed right after  
we select the fields.

For each Legend Entries (Series) field, we can select from one of the following 
aggregated functions:

•	 Avg
•	 Count:All
•	 Count non empty
•	 Max
•	 Min
•	 Sum



Using Reports and Charts in Dashboard

[ 202 ]

For example, if we select Account Name in the Legend Entries field and Address1: 
County in the Horizontal (Category) Axis Labels field, it will automatically  
fill in the name Account Name by Address 1: County as shown in the  
following screenshot:



Chapter 7

[ 203 ]

We will also see a preview of the chart right after we select the fields so we can  
play with the different fields until we get the desired look and feel for the chart.  
For example, there might be cases where the records are too much to be displayed 
nicely on a chart; in that case we will need to minimize the number of bars  
displayed by using the Top X Rules.

For example, if we select Address1: Line 1 as the Horizontal (Category) Axis  
Labels field, we will see the chart with lots of bars. Having lots of bars on a chart 
makes it very difficult to understand.

This will be a good example where we would like to display just the top five items 
by using the Top X Rule and selecting Top 5 Items as follows:



Using Reports and Charts in Dashboard

[ 204 ]

To remove the rules selected, we can click on the Clear Rules button. Using the 
Bottom X Rule will have the reverse effect of the Top X Rule where only the bottom 
five items will be displayed.

We can either add more series or categories to the chart but not both at the same 
time. Finally, we can optionally add a description to the chart in the Description box.

Exporting charts
In order to copy the System charts we created to another organization, we will need 
to create a new solution and include the entity from where we created the chart.

When we have our solution ready, we can just export and import it to other 
organizations.

As opposed to dashboards, we can export the personal charts and import them  
to other systems by using the Export Chart and Import Chart buttons that are 
available in the Charts tab of the entity's ribbon where we created a personal chart.

When exporting and importing charts to other organizations, 
it is very important that we check whether the versions of both 
organizations match to avoid issues. Be sure that we have the same 
rollup updates applied on both organizations.

To avoid overwriting other pieces of the entity (such as forms, ribbon 
customizations, and/or views) it is recommended that we unzip the solution ZIP  
file to our local drive and edit the customization.xml file by removing everything 
that is not related to the chart. Having only the chart, XML-related nodes will 
prevent us from overwriting other pieces of the entity that we don't want to touch  
on the target organization from where we will import the chart. To do this, we 
remove the FormXml nodes and the RibbonDiffXml nodes, leaving only the 
Visualizations node as follows:



Chapter 7

[ 205 ]

<ImportExportXml xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
  <Entities>
    <Entity>
      <Name LocalizedName="Account" OriginalName="Account">Account</
Name>
      <ObjectTypeCode>1</ObjectTypeCode>      
      <Visualizations>
        <visualization>
          <savedqueryvisualizationid>{B0F28CBB-B66E-E211-B407-
00155DFE7909}</savedqueryvisualizationid>
          <datadescription>
            <datadefinition>
              <fetchcollection>
                <fetch mapping="logical" aggregate="true" count="5">
                  <entity name="account">
                    <order alias="_CRMAutoGen_aggregate_column_Num_0" 
descending="true" />
                    <attribute groupby="true" alias="_CRMAutoGen_
groupby_column_Num_0" name="address1_line1" />
                    <attribute alias="_CRMAutoGen_aggregate_column_
Num_0" name="name" aggregate="count" />
                  </entity>
                </fetch>
              </fetchcollection>
              <categorycollection>
                <category alias="_CRMAutoGen_groupby_column_Num_0">
                  <measurecollection>
                    <measure alias="_CRMAutoGen_aggregate_column_
Num_0" />
                  </measurecollection>
                </category>
              </categorycollection>
            </datadefinition>
          </datadescription>
          <presentationdescription>
            <Chart Palette="None" PaletteCustomColors="55,118,193; 
197,56,52; 149,189,66; 117,82,160; 49,171,204; 255,136,35; 97,142,206; 
209,98,96; 168,203,104; 142,116,178; 93,186,215; 255,155,83">
              <Series>
                <Series ChartType="Column" IsValueShownAsLabel="True" 
Font="{0}, 9.5px" LabelForeColor="59, 59, 59" CustomProperties="PointW
idth=0.75, MaxPixelPointWidth=40"></Series>



Using Reports and Charts in Dashboard

[ 206 ]

              </Series>
              <ChartAreas>
                <ChartArea BorderColor="White" 
BorderDashStyle="Solid">
                  <AxisY LabelAutoFitMinFontSize="8" 
TitleForeColor="59, 59, 59" TitleFont="{0}, 10.5px" LineColor="165, 
172, 181" IntervalAutoMode="VariableCount">
                    <MajorGrid LineColor="239, 242, 246" />
                    <MajorTickMark LineColor="165, 172, 181" />
                    <LabelStyle Font="{0}, 10.5px" ForeColor="59, 59, 
59" />
                  </AxisY>
                  <AxisX LabelAutoFitMinFontSize="8" 
TitleForeColor="59, 59, 59" TitleFont="{0}, 10.5px" LineColor="165, 
172, 181" IntervalAutoMode="VariableCount">
                    <MajorTickMark LineColor="165, 172, 181" />
                    <MajorGrid LineColor="Transparent" />
                    <LabelStyle Font="{0}, 10.5px" ForeColor="59, 59, 
59" />
                  </AxisX>
                </ChartArea>
              </ChartAreas>
              <Titles>
                <Title Alignment="TopLeft" DockingOffset="-3" 
Font="{0}, 13px" ForeColor="59, 59, 59"></Title>
              </Titles>
              <Legends>
                <Legend Alignment="Center" LegendStyle="Table" 
Docking="right" IsEquallySpacedItems="True" Font="{0}, 11px" 
ShadowColor="0, 0, 0, 0" ForeColor="59, 59, 59" />
              </Legends>
            </Chart>
          </presentationdescription>
          <isdefault>0</isdefault>
          <LocalizedNames>
            <LocalizedName description="Top 5: Account Name by Address 
1: Street 1" languagecode="1033" />
          </LocalizedNames>
          <IsCustomizable>1</IsCustomizable>
        </visualization>
      </Visualizations>      



Chapter 7

[ 207 ]

    </Entity>
  </Entities>
  <Roles></Roles>
  <Workflows></Workflows>
  <FieldSecurityProfiles></FieldSecurityProfiles>
  <Templates />
  <EntityMaps />
  <EntityRelationships />
  <OrganizationSettings />
  <optionsets />
  <Languages>
    <Language>1033</Language>
  </Languages>
</ImportExportXml>

Now, we want to export our chart as we want to distribute it as a commercial 
solution; so we would probably want to change the dashboard settings to not  
allow the external user to be able to customize it.

To do this, expand the entity where we have the chart, then click on Charts, select  
the chart we want to prevent users to customize, and click on More Actions then  
on Managed properties. Select False and click on OK.



Using Reports and Charts in Dashboard

[ 208 ]

Charts internals
As we can see charts are stored in CRM as XML text. When a chart is exported, we 
can see the XML code under the Visualizations node. By looking at the XML code, 
we can make some other cool customizations that are not supported by using the 
standard chart editor.

For example, we could change the font size and color of the Y axis of the chart by 
modifying the AxisY node as follows:

<AxisY LabelAutoFitMinFontSize="8" TitleForeColor="255, 0, 0" 
TitleFont="{0}, 20px" LineColor="165, 172, 181" IntervalAutoMode="Var
iableCount">

Save this change on the Customization.Xml file, compress the files again into a new 
ZIP file, and then import the solution back to our organization. We will see the chart 
displayed as follows:

To understand more about the Charts XML format go to 
http://msdn.microsoft.com/en-us/library/
gg327901.aspx.



Chapter 7

[ 209 ]

3D charts
Another thing we can do by modifying the XML code that we cannot do with the 
chart editor is enabling the 3D in the charts. Add the following code at the end of  
the ChartArea section to the same code as we used before:

<Area3DStyle Enable3D="True" LightStyle="Realistic" WallWidth="5" 
IsRightAngleAxes="true" />

After making this change, create the ZIP file and import the solution again to  
CRM and we will see the following result:

While the 3D charts are briefly documented in the CRM SDK, I'd 
like to include a reference to the article that Jukka Niiranen posted 
on this link, explaining the different parameters in detail:
http://niiranen.eu/crm/2010/10/turn-the-flat-
dynamics-crm-2011-charts-into-3d/



Using Reports and Charts in Dashboard

[ 210 ]

Summary
In this chapter, we looked at how we can integrate a report in a CRM Dashboard, 
explained the Chart basics as well as the details of the charts, which is always a good 
option to display important information about the CRM system if we don't want to 
use reports.

In the next chapter, we are going to see how we can integrate a custom report with 
Dynamics CRM 2011 that can be created with ASP.NET or Silverlight. We will see 
sample code with early and late bindings and how to automate the SQL reporting 
services' report execution.



Advance Custom Reporting 
and Automation

In this chapter, we are going to see how we can integrate a custom report with 
Dynamics CRM 2011 that can be created with ASP.NET or Silverlight. We will see 
sample codes with early and late bindings and how to automate the SQL reporting 
services' report execution. This can be done either with the CRM web interface  
or using code to automate a report-generated file such as a PDF file.

The ASP.NET report
There might be different reasons why we can find some limitations with the reports 
created in SQL Server Reporting Services (SSRS); for example, using some dynamic 
controls, which are already available for ASP.NET and are not needed on an RDL 
report, might be a good reason to think about creating our own custom report in 
ASP.NET.



Advance Custom Reporting and Automation

[ 212 ]

Open Visual Studio 2012 and create a new website application as shown in the 
following screenshot:

When working with ASP.NET, we will need to manage the Dynamics CRM 
connections and opt for one of the methods used to connect our controls with  
the CRM entities' data records. We can use early or late binding, which will  
be described in detail next.

When connecting custom applications to Dynamics CRM, it is always recommended 
to not go directly to the database; instead, it is better to use the native CRM WCF 
services that are exposed for any application integration we might need to build.

Before starting to write any application, we will need to download 
the Microsoft CRM SDK from the Microsoft download site: 
http://www.microsoft.com/en-us/download/details.
aspx?id=24004.



Chapter 8

[ 213 ]

Late binding
Late binding means that we won't tighten our code with the CRM entities (either 
system or customs) to our ASP.NET solution, so we will discover the entities' names 
and fields at runtime. This method does not have IntelliSense, but it is more generic 
if our solution needs to be installed in different organizations where the number of 
entities can be unknown.

To use late binding we have two options:

•	 Add references to the Microsoft.xrm.sdk.dll and Microsoft.crm.sdk.
proxy.dll assemblies that come with the CRM SDK in the sdk\bin folder

•	 Add a reference of the organization.svc service that is usually found at 
http://servername/organization/XRMServices/2011/Organization.
svc

To be sure we use the right address, go to the CRM web interface, and perform  
the following steps:

1.	 Go to Settings | Customizations | Developer Resources.
We will find the organization's service address there.



Advance Custom Reporting and Automation

[ 214 ]

2.	 Copy that URL and create a web reference in our Visual Studio solution 
by right-clicking on the project's name and clicking on the Add Service 
Reference... menu option, as shown in the following screenshot:

3.	 Paste the URL in the Address textbox appended with ?wsdl and click  
on the Go button.
We should see OrganizationService listed in the Services list.

4.	 Enter a good name for the namespace, such as CrmService.



Chapter 8

[ 215 ]

5.	 Click on OK to add the reference and we should see the service listed  
under Services References, as shown in the following screenshot:



Advance Custom Reporting and Automation

[ 216 ]

6.	 Create a new class named CrmAccounts and add the following code.  
As we can see, using late binding is great to use Fetch XML queries if  
we are familiar with this language:
using System.Data;
using ASPNETReport.CrmService;
  

namespace ASPNETReport
{
    public class CrmAccounts
    {
        private CrmService.OrganizationServiceClient client;
        public  CrmAccounts()
        {
            client = new CrmService.OrganizationServiceClient();
        }
        public DataTable GetAllAccounts()
        {
            DataTable accounts = new DataTable("Accounts");
            accounts.Columns.Add("name");
            accounts.Columns.Add("accountid");

            string fetchQuery = @" 
                <fetch distinct='false' mapping='logical' > 
                    <entity name='account'> 
                       <attribute name='name' /> 
                       <attribute name='accountid' /> 
                    </entity> 
                </fetch>";
            var fetchExpression = new FetchExpression();
            fetchExpression.Query = fetchQuery;

            EntityCollection crmaccounts = client.RetrieveMultiple(fet
chExpression);

            foreach (var c in crmaccounts.Entities)
            {
                DataRow mRow = accounts.NewRow();
                mRow["name"] = c.Attributes[0].Value.ToString();
                mRow["accountid"] = c.Attributes[1].Value.
ToString();

                accounts.Rows.Add(mRow);
            }
            return accounts;
        }
    }
}



Chapter 8

[ 217 ]

We can see more samples of late binding operations by 
referring to the CRM SDK in the sdk\samplecode\cs\
generalprogramming\latebound folder.

7.	 Now add a page to our solution and then a GridView control, and choose  
a data source by selecting the Object Data Source type.

8.	 Enter CRMObjectDataSource as the name for the data source.

9.	 Click on OK to continue.



Advance Custom Reporting and Automation

[ 218 ]

10.	 Select the ASPNETReport.CrmAccounts object type. If we don't see this 
object type, it is because we need to rebuild our solution first. Then click on 
Next to continue.

11.	 Select the GetAllAccounts(), returns DataTable method and click on Finish.

12.	 Press F5 to run our solution, and we should see the report's result as shown 
in the following screenshot:



Chapter 8

[ 219 ]

Early binding
As opposed to late binding, early binding will allow us to know the entities' names 
and fields at development time, so we can validate our code better at compile time. 
It also adds IntelliSense, so we can easily find the fields we need to use for avoiding 
misspellings in the code that would then fail at runtime, like we would be facing 
with late binding.

To use early binding, we will need to create the entity model by using the 
CrmSvcUtil.exe tool that comes with Dynamics CRM SDK that can be found in  
the sdk\bin folder.

This is a command-prompt application, and to run this tool, we will need to pass  
the CRM URL containing the organization name, shown as follows:

CrmSvcUtil.exe /url:http://crm2011/CRM2011ReportingBook/
XRMServices/2011/Organization.svc /out:crmcode.cs



Advance Custom Reporting and Automation

[ 220 ]

For more information about the CrmSvcUtil.exe command-
line parameters, refer to the MSDN article found at http://
msdn.microsoft.com/en-in/library/gg695820.aspx.

Depending on whether our CRM organization is located in CRM Online or in an  
on-premise environment with Claims-based authentication enabled, we will need  
to pass the credentials (the username and password) as parameters as well.

Now we need to add this generated code (crmcode.cs) to our Visual Studio project.

If we try to build the solution, we will get a lot of errors. This is because we also  
need to add the microsoft.xrm.sdk.dll assembly reference that can be found  
in the sdk\bin folder under the CRM's Software Development Kit (SDK).

Now in order to use early binding, we only need to replace the code that we put  
in the CrmAccounts.cs file with the following code:

using System;
using System.Data;
using System.ServiceModel.Description;
using Microsoft.Xrm.Sdk;
using Microsoft.Xrm.Sdk.Query;

namespace ASPNETReport
{
    public class CrmAccounts
    {
        private Microsoft.Xrm.Sdk.Client.OrganizationServiceProxy 
client;
         public CrmAccounts()
        {
             ClientCredentials credentials = new ClientCredentials();
             credentials.Windows.ClientCredential = System.Net.
CredentialCache.DefaultNetworkCredentials;
             client = new Microsoft.Xrm.Sdk.Client.
OrganizationServiceProxy(
                 new Uri("http://crm2011/CRM2011ReportingBook/
XRMServices/2011/Organization.svc"),
                 new Uri("http://crm2011/CRM2011ReportingBook/
XRMServices/2011/Organization.svc"), credentials, null);
        }



Chapter 8

[ 221 ]

        public DataTable GetAllAccounts()
        {
            DataTable accounts = new DataTable("Accounts");
            accounts.Columns.Add("name");
            accounts.Columns.Add("accountid");
            string fetchQuery = @" 
                <fetch distinct='false' mapping='logical' > 
                    <entity name='account'> 
                       <attribute name='name'  /> 
                       <attribute name='accountid'  /> 
                    </entity> 
                </fetch>";
            var fetchExpression = new FetchExpression(fetchQuery);

            DataCollection<Entity> crmaccounts = 
(DataCollection<Entity>)client.RetrieveMultiple(fetchExpression).
Entities; 
            foreach (Entity c in crmaccounts)
            {
                Account myAccount = c.ToEntity<Account>();
                DataRow mRow = accounts.NewRow();
                mRow["name"] = myAccount.Name;
                mRow["accountid"] = myAccount.AccountId.Value.
ToString();

                accounts.Rows.Add(mRow);
            }
            return accounts;
        }
    }
}

We can see more samples of late binding operations by 
referring to the CRM SDK in the sdk\samplecode\cs\
generalprogramming\earlybound folder.

Building and running this code will produce the same results as the late binding 
sample code.



Advance Custom Reporting and Automation

[ 222 ]

CRM integration
Now to see our Custom ASP.NET report integrated with Dynamics CRM,  
go to the CRM web interface and click on Reports | New.

In the Report Type drop-down list, select the Link to Web Page option and enter 
the ASP.NET report's URL in the Web Page URL textbox. In this sample, we used 
a localhost to test the development report, but we will need to provide a real URL 
so that other users can also see this report. We will need to host the ASP.NET 
application on an external IIS website.

Enter a name for our report and click on Save to close this dialog. Our report will  
be available in the reports view. When we run our report, it will look the same as 
when we run it from Visual Studio.

Silverlight reports
Silverlight is another option for creating dynamic reports that can be updated 
automatically, for example, by using a timer; this is a perfect method to create 
a monitoring console on a Dynamics CRM Dashboard, although Silverlight is a 
technology that is going to be deprecated by Microsoft, and there are not going to be 
more versions. The latest version (Version 5) has been announced to be the last one, 
as it is going to be replaced by HTML 5. Microsoft is going to support Silverlight for 
another 10 years.



Chapter 8

[ 223 ]

Silverlight is a subset of Windows Presentation Foundation (WPF) and is created 
specifically to be used on a web browser. The Adobe Flash player works in a similar 
way. Silverlight also uses the Application Extensibility Markup Language (AXML) 
as the WPF does. This technology allows a vectored representation of any control 
that can be zoomed, without losing the aspect, and also allows the creation of great 
animations that can be easily done using Microsoft Expression Blend.

When working with Silverlight, we need to keep in mind that all the web services' 
calls to the Dynamics CRM web services must be asynchronous. For this reason, 
choosing a good methodology to develop our Silverlight applications is highly 
recommended, as we will see next.

MVVM
When working with Silverlight, it is recommended to adopt a good methodology 
to develop applications. One of the best methodologies I have found is Model 
View ViewModel (MVVM). It is a three-layer methodology, where the Model is 
equivalent to the data access layer, the View is equivalent to the user presentation 
layer, and the ViewModel is equivalent to the business rules layer that connects the 
Model and the Views, so that these two layers don't need to know what they do.  
This methodology allows the developer to create a loosely coupled application.

There are several templates for MVVM available on the Internet to use; I recommend 
using MVVM Light, which can be downloaded from CodePlex by going to http://
mvvmlight.codeplex.com/.



Advance Custom Reporting and Automation

[ 224 ]

Create a new Visual Studio 2012 project using the MVVM Light project template  
as shown in the following screenshot:

Add the CRM Service reference in the same way as we did for the ASP.NET solution. 
This reference will need to slightly modify the code, and since this sample also 
requires lots of lines of code, we will explain the most important parts. Also,  
we can download the full working code from the Packt site.

Open the view, which is the \MainPage.xaml file. We just replace the TextBlock 
control with the DataGrid control so that we can display the record results as follows:

<sdk:DataGrid ItemsSource="{Binding CRMAccounts}" 
AutoGenerateColumns="False" />

In the ViewModel\MainViewModel.cs page, put the following in the constructor to 
connect the view with the model:

  public MainViewModel(IDataService dataService)
        {
            _dataService = dataService;
            CRMAccounts = _dataService.GetEntities((item, excep) 
=>{});
        }



Chapter 8

[ 225 ]

The Model\DataService.cs file is where we actually connect to the CRM service to 
perform the fetch query with the following code:

        public ObservableCollection<EntityClass> GetEntities(Action<Ob
servableCollection<EntityClass>, Exception> callback)
        {
            try
            {
                _entities = new ObservableCollection<EntityClass>();                
                OrganizationServiceClient client = 
(OrganizationServiceClient)GetConnection();
                string fetchQuery = @" 
                <fetch distinct='false' mapping='logical' > 
                    <entity name='account'> 
                       <attribute name='name'  /> 
                       <attribute name='accountid'  /> 
                    </entity> 
                </fetch>";
                var fetchexp = new FetchExpression();
                fetchexp.Query = fetchQuery;

                client.RetrieveMultipleCompleted += (s, response) =>
                {
                    
                    ObservableCollection<Entity> entitylist = new 
ObservableCollection<Entity>();
                    foreach (Entity ent in response.Result.Entities)
                    {
                        KeyValuePairOfstringanyType keyValue = ent.
Attributes.Where(a => a.key == "name").First();
                        KeyValuePairOfstringanyType keyValue2 = ent.
Attributes.Where(a => a.key == "accountid").First();

                        _entities.Add(new EntityClass() { Name = 
keyValue.value.ToString(), AccountId = keyValue2.value.ToString() });
                    }

                    if (_fetchCallback != null)
                    {
                        _fetchCallback(entitylist);
                    }
                };

                client.RetrieveMultipleAsync(fetchexp);
                return _entities;



Advance Custom Reporting and Automation

[ 226 ]

            }
            catch (FaultException<OrganizationServiceFault> ex)
            {
                throw ex;
            }
        }

The result of this solution should be similar to the following screenshot:

The deployment of the Silverlight report can be done in the same way we did for the 
ASP.NET report. We can also install the .xap file as a CRM web resource, which will 
avoid us to have a different web server setup. This way the report will run inside the 
CRM environment; this is especially helpful if we are on a CRM online environment.

Basic report automation
We can automate a report to be run automatically at specific dates/times by using 
the report scheduling; this will help to improve the report performance while having 
the report ready for the user whenever he needs it. The quickest and easiest way 
is by creating a report snapshot through the report scheduling directly from the 
Dynamics CRM interface, as we will see next.



Chapter 8

[ 227 ]

Report scheduling
Dynamics CRM 2011 has some native features that allow us to automate the SSRS 
reports that we create with either the CRM Report Wizard or with Visual Studio 
by configuring an automated run schedule. This feature is available in the Reports 
ribbon in the Actions group under the Schedule Report button, as shown in the 
following screenshot:

When we click on this button, we will be presented with a dialog that will have  
two options:

•	 On demand
•	 On a schedule

These options will generate snapshots of the report whenever we specify; if we select 
On a schedule, we will be able to specify a recurrence period where we want the 
report to be run. This is perfect for reports that take a long time to complete. So we 
can schedule them to run every week and have them completed by the time we  
need the information.



Advance Custom Reporting and Automation

[ 228 ]

The following screenshot shows how this dialog is presented to the user:

If we select the On a schedule option, we will be able to set the frequency when  
we want the snapshots to be created.

The available options are as follows:

•	 Once
•	 Hourly
•	 Daily
•	 Weekly
•	 Monthly



Chapter 8

[ 229 ]

Depending on the option we select, we will be presented with different settings.  
The following is how the different options look if we select Hourly:

If we select Daily, different options are available as shown in the following screenshot:

If we select Weekly, we will be able to select the number of weeks and days we want 
the report to run:



Advance Custom Reporting and Automation

[ 230 ]

By selecting Monthly, we will be able to select the number of days of a month or  
the number of weeks of a month, as well as the time where we want the report to  
be scheduled:

Then, depending on the report we selected, we will be presented with a dialog  
from where we will be able to predefine the report filter criteria. In our sample,  
we selected the Account Summary report, so we will see the following filters:



Chapter 8

[ 231 ]

Click on Next to continue, and we will be presented with a summary dialog  
to confirm:



Advance Custom Reporting and Automation

[ 232 ]

Click on Create to complete the wizard; this process might take a few minutes  
to complete. When it finishes, we will see the following dialog:

Click on Finish to close the wizard. Once the report snapshots are created, we will 
see them in the report's gridview as follows:



Chapter 8

[ 233 ]

By opening these reports, the gridview will run much faster than the original one, as 
it will show only a snapshot of the report that was generated at that date and time 
when the report was scheduled.

To change the frequency of the scheduled report, click on the scheduled report that 
was created, and click on the Schedule Report button from the ribbon again.

Clicking on the arrow near the checkbox will show us the snapshots of the report 
that ran previously:

Clicking on any of the snapshot's lines will show us the report with the results that 
were collected at that time, and of course, the report will be displayed much faster 
because of that.



Advance Custom Reporting and Automation

[ 234 ]

Advanced report automation 
(programmatically)
If we want to run a CRM report automatically from a custom application such as a 
Windows or ASP.NET web application, we can do it programmatically as we will  
see in this chapter.

Before creating a solution in Visual Studio, we need to be sure that we can access 
our report externally by publishing it for external use. To do that we need to go to 
the CRM web interface and then to the reports. Find the report we want to automate 
and click on the Edit button from the ribbon. In our example we will use Account 
Summary (out of the box) report. When the Edit report dialog is open, go to the 
Actions menu and select the Publish Report for External Use menu option.

Clicking this option will not return any resultant message. To check whether it is 
published successfully, we will need to run the Report Manager web application  
and then go to the folder of our organization. There we will need to validate if we 
have a report with the report name there, as shown in the following screenshot:



Chapter 8

[ 235 ]

In our example, we will use a web application to create our Visual Studio solution. 
We will need to add the following references to our project:

•	 Microsoft.ReportViewer.Common
•	 Microsoft.ReportViewer.Webforms



Advance Custom Reporting and Automation

[ 236 ]

Depending on the SSRS version, we might need to use the 10.0.0.0 
Version for SQL 2008 R2 or 11.0.0.0 for SQL Server 2012. Using 
the 10.0.0.0 Version will also work on SQL 2012, while the 11.0.0.0 
Version won't work on SQL 2008 R2.

Add a web page to our project with the name of Default.aspx and add a button  
to it named RunCRMReportButton. In the click event write the following code:

protected void RunCRMReportButton_Click(object sender, EventArgs e)
        {
            Warning[] warnings;
            string mimeType;
            string encoding;
            string extension;
            string[] streams;
            byte[] bytes;

            string reportTempId = Guid.NewGuid().ToString();
            string tempDirectory = Server.MapPath("~/");
            string destinationPath = tempDirectory + "Temp\\" + 
reportTempId + ".pdf";

            ReportViewer myReportViewer = new ReportViewer();

            myReportViewer.ProcessingMode = ProcessingMode.Remote;
            myReportViewer.ServerReport.ReportServerUrl = new 
Uri("http://crm2011/reportserver");
            myReportViewer.ServerReport.ReportServerCredentials = new 
ReportServerCredentials();
            myReportViewer.ServerReport.ReportPath = "/
CRM2011ReportingBook_MSCRM/Account Summary";

            ReportParameterInfoCollection parameters2 = 
myReportViewer.ServerReport.GetParameters();
            ReportParameter[] parameters = new 
ReportParameter[parameters2.Count];
            int counter = 0;

            foreach (ReportParameterInfo item in parameters2)
            {
                if (item.Name == "GroupBy")
                {                   
                    parameters[counter] = new ReportParameter(item.
Name, item.Values[0]); //"Owner");



Chapter 8

[ 237 ]

                }
                else
                {
                    parameters[counter] = new ReportParameter(item.
Name, item.Values[0]);
                }
                counter++;
            }

        // Sets the report parameters
            myReportViewer.ServerReport.SetParameters(parameters);

        // Executes the report and exports it to PDF format
            bytes = myReportViewer.ServerReport.Render("PDF", null, 
out mimeType, out encoding, out extension, out streams, out warnings);

            // Saves the report to a file in the local hard drive 
FileInfo myFile = new FileInfo(destinationPath);

            FileStream stream = File.OpenWrite(destinationPath);
            stream.Write(bytes, 0, bytes.Length);
            stream.Close();
        }

The ReportServerCredentials class will be coded as follows:

using System.Configuration;

namespace AutomateReportFromWeb
{
    class ReportServerCredentials : Microsoft.Reporting.WebForms.
IReportServerCredentials
    {
        private string _domain;
        private string _userName;
        private string _password;
        private string _userName2;
        private string _domain2;
        private string _password2;

        public ReportServerCredentials()
        {
            _userName = ConfigurationManager.AppSettings["username"];
            _password = ConfigurationManager.AppSettings["password"];
            _domain = ConfigurationManager.AppSettings["domain"];



Advance Custom Reporting and Automation

[ 238 ]

        }

        public ReportServerCredentials(string userName, string 
password, string domain)
        {
            _userName2 = userName;
            _password2 = password;
            _domain2 = domain;
        }

        public System.Security.Principal.WindowsIdentity 
ImpersonationUser
        {
            get
            {
                return null;
            }
        }

        public System.Net.ICredentials NetworkCredentials
        {
            get
            {
                return new System.Net.NetworkCredential(_userName, 
_password, _domain);
                //return System.Net.CredentialCache.
DefaultCredentials;
            }
        }

        public bool GetFormsCredentials(out System.Net.Cookie 
authCookie, out string userName, out string password, out string 
authority)
        {
            // Do not use forms credentials to authenticate.
            authCookie = null;
            authority = null;
            password = _password2;
            userName = _userName2;
            return false;
        }
    }
}



Chapter 8

[ 239 ]

Summary
In this chapter, we looked at how we can integrate a custom ASP.NET or Silverlight 
application to show a dynamic or more sophisticated report inside Dynamics CRM 
2011. We looked at the different ways to bind the CRM data by using early or late 
binding methods, and finally, we looked at some ways to automate SSRS reports by 
either using scheduling or by automating the export file generation with code.

In the next chapter, we are going to see how we can troubleshoot errors that might 
happen in our reports in Dynamics CRM 2011. We are also going to review the best 
practices of report development and deployment, as well as some techniques to 
improve the performance of our reports.





Failure Recovery and  
Best Practices

In this chapter, we are going to see how we can troubleshoot errors that might occur 
on our reports in Dynamics CRM 2011. We are also going to review the best practices 
of report development and deployment, as well as some techniques to improve the 
performance of reports.

Common failures in SSR authentication
Dynamics CRM uses its own authentication method that can be either of the following:

•	 Windows authentication
•	 Claims-based authentication
•	 Office 365 for CRM online

Once the user is authenticated on CRM, we don't want to request authentication 
again to run a report that is running on a separate server; that is why the CRM 
Reporting extensions need to be installed. What happens is that the CRM needs 
to authenticate the user against SQL Reporting Service in order to allow report 
execution. This process is also called a double-hop authentication. If this is not 
properly configured, we might receive an error, The report cannot be displayed. 
(rsProcessingAborted), as shown in the following screenshot:



Failure Recovery and Best Practices

[ 242 ]

Sometimes, we might also get an error such as The report cannot be displayed. 
(rsInvalidDataSourceReference). If this happens, we need to be sure that our 
report is pointing to the right data source. When developing reports with Visual 
Studio (or with Report Builder), the data source might point to a wrong place. To 
validate this, go to the Report Manager Web interface (usually found at http://
reportservername/reports/) and find the folder of your CRM organization.

Reports can be configured to be viewed either by the entire organization or by an 
individual who is the owner of the report. This can be set by clicking on the report and 
then the Edit button from the ribbon and then switching to the Administration tab.

If a user cannot see the report, make sure that this setting is not set to individual.  
If for some reason we don't want everybody to be able to see and run a report,  
we can set it to be viewed individually and then share it with a user or team.

Tracing
Tracing is a method to record everything a process does in a verbose mode so we  
can see exactly what a process is doing. There are different components that we 
might require to see and read the trace logs if the error description we are receiving 
is not very useful. For example, getting an error such as Generic SQL Error occur 
is not helpful, and we need to discover what is happening behind the scenes to 
understand what is causing the problem.



Chapter 9

[ 243 ]

Enabling CRM Trace
CRM Trace can be enabled by touching some registry keys on the server as explained 
in this KB (http://support.microsoft.com/kb/907490). However, the safest and 
easiest way to enable the trace is by using Diagnostics Tool for Microsoft Dynamics 
CRM 2011 that my fellow Microsoft MVP, Tanguy Touzard created and published on 
CodePlex. This tool can be downloaded from http://crmdiagtool2011.codeplex.
com/, and when we run it, we will see a window similar to the following screenshot:

Be sure to have the Reports option selected, and click on the Enable trace button 
to let the trace start. Once we have enabled the trace, we can perform the steps to 
reproduce the error. When we get the error, we can get back to this tool and click  
on the Open Trace Directory button to see the trace files.

It is recommended to clean the trace directory first by clicking 
on the Clean Trace Directory button, in case we had old trace 
files.



Failure Recovery and Best Practices

[ 244 ]

The names of the files will depend on the date and server where we ran the 
trace, but the important ones to look for are the ones that contain the w3wp and 
ReportingServicesService trace files in the filename.

Here is an example of the w3wp trace file:

# CRM Tracing Version 2.0
# LocalTime: 2013-02-28 21:20:37.000
# Categories: Reports.*:Verbose
# CallStackOn: No
# ComputerName: CRM2011
# CRMVersion: 5.0.9900.1010
# DeploymentType: OnPremise
# ScaleGroup: 
# ServerRole: AppServer, AsyncService, DiscoveryService, 
ApiServer, HelpServer, DeploymentService, SandboxServer, 
DeploymentManagementTools

[2013-02-28 21:20:37.000] Process: w3wp |Organization:7308a7ba-
7760-e211-8e84-00155dfe7909 |Thread:   59 |Category: Reports |User: 
871cc4fa-03fd-495a-930d-bb5c1c2bec61 |Level: Verbose |ReqId: 2a46eef4-
cb08-4104-a61c-8512cf8e1450 | ReportServer.IsDataConnectorConfigured  
ilOffset = 0x0
>Calling ReportingService.GetDataSourceContents on: /
SharedReports/5.0.xxxx/MSCRM_FetchDataSource.
[2013-02-28 21:20:37.344] Process: w3wp |Organization:7308a7ba-
7760-e211-8e84-00155dfe7909 |Thread:   59 |Category: Reports 
|User: 871cc4fa-03fd-495a-930d-bb5c1c2bec61 |Level: Verbose 
|ReqId: 2a46eef4-cb08-4104-a61c-8512cf8e1450 | RuntimeReportServer.
IsDataConnectorConfigured  ilOffset = 0xA9
>Calling ReportingService.GetDataSourceContents on: /
CRM2011ReportingBook_MSCRM/CustomReports/MSCRM_FetchDataSource.
[2013-02-28 21:20:37.375] Process: w3wp |Organization:7308a7ba-
7760-e211-8e84-00155dfe7909 |Thread:   59 |Category: Reports |User: 
871cc4fa-03fd-495a-930d-bb5c1c2bec61 |Level: Verbose |ReqId: 2a46eef4-
cb08-4104-a61c-8512cf8e1450 | ReportServer.IsDataConnectorConfigured  
ilOffset = 0x0
>Calling ReportingService.GetDataSourceContents on: /
SharedReports/5.0.xxxx/MSCRM_DataSource.
[2013-02-28 21:20:37.391] Process: w3wp |Organization:7308a7ba-
7760-e211-8e84-00155dfe7909 |Thread:   59 |Category: Reports 
|User: 871cc4fa-03fd-495a-930d-bb5c1c2bec61 |Level: Verbose 
|ReqId: 2a46eef4-cb08-4104-a61c-8512cf8e1450 | RuntimeReportServer.
IsDataConnectorConfigured  ilOffset = 0xA9
>Calling ReportingService.GetDataSourceContents on: /
CRM2011ReportingBook_MSCRM/CustomReports/MSCRM_DataSource.



Chapter 9

[ 245 ]

To help read and work with these trace logfiles, we can download and use the CRM Trace 
Log Viewer tool that can be downloaded from http://www.stunnware.com/crm2/
topic.aspx?id=tracelogviewer.

And here is an example of the ReportingServicesService logfile; this is the file 
where we will find all report-related information:

# CRM Tracing Version 2.0
# LocalTime: 2013-02-28 21:20:38.297
# Categories: Reports.*:Verbose
# CallStackOn: No
# ComputerName: CRM2011
# CRMVersion: 5.0.9900.1010
# DeploymentType: OnPremise
# ScaleGroup: 
# ServerRole: AppServer, AsyncService, DiscoveryService, 
ApiServer, HelpServer, DeploymentService, SandboxServer, 
DeploymentManagementTools

[2013-02-28 21:20:38.297] Process:ReportingServicesService 
|Organization:00000000-0000-0000-0000-000000000000 |Thread:   29 
|Category: Reports |User: 00000000-0000-0000-0000-000000000000 |Level: 
Info |ReqId:  | DataExtensionConnectionBase.ValidateCaller  ilOffset = 
0x5
>Validating immediate caller.
[2013-02-28 21:20:39.312] Process:ReportingServicesService 
|Organization:00000000-0000-0000-0000-000000000000 |Thread:   29 
|Category: Reports |User: 00000000-0000-0000-0000-000000000000 |Level: 
Info |ReqId:  | DataExtensionConnectionBase.ValidateCaller  ilOffset = 
0xA4
>Immediate caller NT AUTHORITY\NETWORK SERVICE validated successfully.
[2013-02-28 21:20:39.312] Process:ReportingServicesService 
|Organization:00000000-0000-0000-0000-000000000000 |Thread:   29 
|Category: Reports |User: 00000000-0000-0000-0000-000000000000 |Level: 
Info |ReqId:  | <>c__DisplayClass1.<Open>b__0  ilOffset = 0x3B
>Validating calling user.
[2013-02-28 21:20:39.359] Process:ReportingServicesService 
|Organization:00000000-0000-0000-0000-000000000000 |Thread:   29 
|Category: Reports |User: 00000000-0000-0000-0000-000000000000 |Level: 
Info |ReqId:  | DataExtensionConnectionBase.ValidateUser  ilOffset = 
0x4C
>Calling user S-1-5-20 validated successfully.
[2013-02-28 21:20:39.750] Process:ReportingServicesService 
|Organization:00000000-0000-0000-0000-000000000000 |Thread:   29 
|Category: Reports |User: 00000000-0000-0000-0000-000000000000 |Level: 
Info |ReqId:  | DataExtensionConnectionBase.ValidateCaller  ilOffset = 
0x5



Failure Recovery and Best Practices

[ 246 ]

Looking at this last trace file, we will be able to determine if there is any problem 
with the authentication between the CRM server and SQL Reporting Services. If we 
see the word error in this file, it will mean that we have a problem and we need to 
look at the details to be able to solve it.

Using SQL Trace
Using SQL Trace is good if we are using T-SQL sentences on our report. To trace 
SQL, we need to use SQL Server Profiler that is usually installed with the SQL  
Server development tools.

Be careful when using the trace tools as they are heavily consumed 
resources. Also, we need to make sure that we turn them on when 
we need them to troubleshoot a problem. Do not forget to disable 
them when we are done or the whole server performance and user 
experience will be affected.

When we run this application, we will see the following window:

This is a tool we will find on any version of SQL Server (from 2005 
to 2012) that look very similar, so the configuration and results are 
the same regardless of the version of SQL Server we are using.



Chapter 9

[ 247 ]

Follow these steps to trace SQL:

1.	 To start tracing SQL, go to the File menu and then click on the New  
Trace… option.

2.	 Select Database Engine in the Server type drop-down list and then  
select the database's server name and authentication. Then, click on  
the Connect button.
The Trace Properties window will appear, allowing us to set a name  
for our trace as well as to select the template we want to use from one  
of the following predefined templates:

°° Blank

°° SP_Counts

°° Standard

°° TSQL

°° TSQL_Duration

°° TSQL_Locks

°° TSQL_Reply

°° TSQL_SPs

°° Tuning



Failure Recovery and Best Practices

[ 248 ]

The Tuning template is the one that is used by the 
Database Tuning Advisor tool, which is also installed 
within SQL Server. We can read more about this tool at 
http://msdn.microsoft.com/en-us/library/
ms173494(v=sql.105).aspx.

3.	 As an example, in the Use the template option select TSQ and then click  
on the Events Selection tab.
We will be presented with a predefined set of events and columns that  
will be specified in the template we selected. From here, we will be able  
to select the columns for each event in which we are interested in seeing  
the trace log result.



Chapter 9

[ 249 ]

4.	 Select Show all columns to be able to select other columns such as 
DatabaseName and LoginName. We can optionally check the Show all 
events checkbox if we are interested in tracking other events not displayed 
by default on this template.

5.	 It is also good to filter the trace to show only the events of the CRM database. 
So to do this, click on the Column Filters button.

6.	 Click on DatabaseName and enter your CRM database name in the Like node.
7.	 Click on OK to close this dialog and then click on Run to start the trace.



Failure Recovery and Best Practices

[ 250 ]

We will see that all the TSQL sentences are flowing to SQL Server in real time; 
we can also pause and restart the trace at any time as well as clear the trace grid. 
If the trace log is too big, we can always go back to the properties to remove any 
unnecessary events or columns so we can easily identify the event and column we 
need to troubleshoot for our problem. The tools also allow us to search strings, so we  
don't need to read every line of the log if we are looking for a specific table or field.

Selecting any row from the grid will show us the complete sentence that we  
can use to copy and paste; for example, we can copy and paste into SQL Server 
Management Studio to test the query ourselves in case we don't get the expected 
results or get an error.



Chapter 9

[ 251 ]

Report development best practices
Use SQL server queries when possible; their performance is better than the Fetch 
XML queries. When using SQL queries, use stored procedures. They are precompiled 
in SQL Server and perform better than a query embedded in a report that needs to  
be interpreted and compiled every time we run the report.

We can also improve the performance of our SQL queries by looking at the execution 
plan of the query in SQL Server Management Studio.

This is something that can be enabled by clicking on the icon called Display 
Estimated Execution Plan, as shown in the following screenshot:

With this feature enabled, executing the query will suggest the indexes we might 
need to create to speed our query, as shown in the following screenshot:

Creating indexes as this tool suggests will improve query performance a lot. For 
more information about working with this tool, go to http://msdn.microsoft.
com/en-us/library/ms190402.aspx.

Be careful when creating lots of indexes as they can be 
counterproductive as they are good for queries but slower for 
inserts/updates and deletes.



Failure Recovery and Best Practices

[ 252 ]

Let's start our report by exporting one of the predefined, out-of-the box reports that 
comes with CRM 2011; they will have the properties that CRM will need already set. 
So, it will save us some time on report development, plus we will get the CRM 2011 
report layout and its look and feel.

When we are done with our report development in SQL Reporting Services either 
using Visual Studio or Wizards, it is good practice to always validate how it looks 
when exporting the report to PDF. Many times, I have seen reports being returned 
back to developers because the exported PDF looks very bad. This happens 
especially when using grids that are split into separate pages.

When using date/time fields, we must be sure to validate our display with the right 
time for the time zone we are in. Most times, we get the time in GTM 0 when we are 
actually in a different time zone. So, the users will see the wrong date and time on 
the reports if we don't take care of this.

We can read more about the best practices for reports with 
CRM at http://msdn.microsoft.com/en-us/library/
gg334654.aspx.

Report deployment best practices
When we develop reports with Visual Studio, it is recommended to use a source 
control application system such as Team Foundation Server (TFS) so we can  
control the different changes we take with the versions.

If we create the reports with CRM Report Wizard, we can always get the  
generated RDL file by downloading it as explained in the Using Visual Studio  
recipe of Chapter 3, Creating Your First Report in CRM. So, we can store the file  
on a source control system such as TFS.

We can also use a tool such as reportsync that can be downloaded from  
https://code.google.com/p/reportsync/ and will help us get all the report 
files from SQL Reporting Services easily. It will also help us to synchronize our 
development environment with our production environment.

When deploying reports to other systems, try to always use CRM solutions that only 
include the reports we want to deploy and nothing else; this means that we should 
not include any entity or web resource within our reports so as to guarantee that  
the reports are easily categorized.



Chapter 9

[ 253 ]

Improving the performance of reports 
Once we have deployed our reports, we will see that the first time the user runs the 
report, it runs really slow and the performance is also bad. It is a good idea to think 
about some methods to cache the reports so they run faster when the user runs them.

Creating report caching
Mostly all reports are cached by default, but that only happens the first time the user 
runs the report. Hence, it is better to preload the report so it will be cached and ready 
when the user wants to run it.

SQL Reporting Services has great caching options that we can take real benefit of.

Before starting to configure the caching options, we need to be sure that Reporting 
Services has an Execution Account connection properly set; this can be validated  
by running the Reporting Services Configuration manager, going to Execution 
Account, and verifying that there is an account configured as shown in the  
following screenshot:



Failure Recovery and Best Practices

[ 254 ]

We will also need to set the credentials to be stored in the MSCRM_DataSource shared 
data source by setting the option Credentials stored securely in the report server 
and specifying a username and password.

Click on Test Connection to make sure that the credentials are okay and then  
click on Apply to save this setting.

Once we have the credentials stored, we can set basic caching options by going  
to the Processing Options tab for the report properties, from where we will be  
able to set different types of caching. By default, all reports are set to not cache  
any temporary copy of the report.



Chapter 9

[ 255 ]

To create better and advanced cache options based on the report parameters,  
we need to create a cache plan that can be found by going to Report Manager.  
By going to the properties, we will see the Cache Refresh Options tab as shown  
in the following screenshot:



Failure Recovery and Best Practices

[ 256 ]

Click on New Cache Refresh Plan to create a new caching rule.

We will be able to use a specific schedule or shared schedule as well as define  
the options we want cached. The number of options will depend on the number  
of parameters the report we are configuring has.

Click on OK to create the plan. Note that we can have more than one plan defined  
on the same report with different parameter combinations.



Chapter 9

[ 257 ]

Creating report snapshots
Report snapshots are different from report caching, which are not persisted at the 
time, in the way they persist. We can have different copies of the report at different 
times, so we can take a look at these copies and compare them anytime we want 
because they persist in the database.

In some situations, we can also schedule the reports by creating report  
snapshots as we saw in the previous chapter. Refer to the Report Scheduling  
recipe of Chapter 8, Advance Custom Reporting and Automation. You can also use  
the Snapshot Options tab that is available in the Report Manager application,  
as shown in the following screenshot:

We will be able to use a specific schedule or shared schedule as well as define  
the options we want the snapshots to be created in.



Failure Recovery and Best Practices

[ 258 ]

We then need to click on Apply when we are done. We will be able to see the 
snapshots in the Report History option as shown in the following screenshot:

Summary
In this chapter, we looked at how we can troubleshoot different authentication issues 
we might get when working with reports in Dynamics CRM, and the different ways 
to improve the performance and deployment of the reports development by using 
some of the best practices of SQL Reporting Services.

In the next chapter, we are going to see how we can use CRM reports in mobile 
clients. We are going to see the options we have for the mobile CRM users that  
want to run and see reports on these types of devices.



Mobile Client
In this chapter, we are going to see how we can use the CRM reports in mobile 
clients. The mobile clients have been growing and are still growing, thanks to the 
tablet devices. We are going to see the options we have for the mobile CRM users 
that want to run and see reports on these type of devices.

New features for mobile clients
Since February 2013, when the Update Rollup 12 was released, there were some  
new features added for the benefit of mobile clients to CRM Online (only) that allow 
mobile users to use the CRM Online on the iPad, Surface, iPhone, or Windows phone 
devices. However, the report option is not available for some of these devices and  
the only reporting options available for now are the dashboards.

Not all the components of the dashboards can be used on these devices; for example, 
the Silverlight web resources won't work.

It is also important to know that the versions of the iPad and 
iPhone need to be iOS 6.0 and above to work. We can use either 
Safari or Chrome on the iPhone.

There are some commercial client applications for Dynamics CRM (for iPad in 
the Apple Store); however, I could not find any application that implements the 
reporting capabilities of CRM 2011. Most of them (such as CWR) can display 
dashboards such as the CRM Online client on an iPad, but nothing about SSRS 
reports yet. This is probably going to be a key missing piece that I expect to be 
covered soon.



Mobile Client

[ 260 ]

Here is an example of how the new mobile client for an iPad looks in CRM Online:

For more details about the CRM iPad experience, refer to 
http://blogs.msdn.com/b/crm/archive/2013/03/01/
crm-for-ipad.aspx.



Chapter 10

[ 261 ]

The site map for this new interface cannot be customized for now, and only the 
following options will be available:

•	 What's New
•	 Dashboards
•	 Accounts
•	 Contacts
•	 Leads
•	 Opportunities

Clicking on Launch Mobile Express will show the same interface the on-premise, 
with IFD enabled, which the mobile clients will see. The old mobile express interface 
looks like the following screenshot:



Mobile Client

[ 262 ]

The CRM Online users can now enjoy the new, process-driven UI that will be 
available on the forms related to the Contacts, Opportunities, Leads, and Accounts 
(COLA) entities. The new account form will look as follows on an iPad client device:

Notice that the forms neither have any ribbon on the top nor any report button. Also, 
we cannot switch to the classic form if we are on a mobile device such as an iPad.

The sales process
Dynamics CRM 2011 Online now comes with predefined sales processes that help  
us as a guideline, suggesting the actions we might need to take at each stage of a sale.

The Opportunities, Leads, and Cases entity forms now show a nice section detailing 
where we are on the sales process. The following screenshot shows this new feature:



Chapter 10

[ 263 ]

The sales process can be modified by going to a desktop client and clicking on the 
Edit Sales Process link, as shown in the following screenshot:

Clicking on this link will let us define or change the stages of the sales process.



Mobile Client

[ 264 ]

As shown in the following screenshot, the QUALIFY stage depends on the Leads 
entity, while all the other predefined stages belong to the Opportunities entity:

Each stage is comprised of steps and fields from where we can add, remove,  
or modify to simplify to the end user which field is necessary for each stage of  
the sales process.

The autosave feature
There is also a new feature added to these new forms called autosave, which 
automatically saves the form every 30 seconds after a single field change has been made.

Every time a user changes a field, there will be a legend in the bottom of the  
screen with the text unsaved changes:



Chapter 10

[ 265 ]

After 30 seconds, the autosave will fire and the legend will change to saving:

Keep in mind that this autosave feature will also fire the following components:

•	 Plugins
•	 Workflows
•	 Record auditing

A more detailed and updated documentation about this new autosave feature can 
be found in this article: http://blogs.msdn.com/b/crm/archive/2013/02/18/
auto-save-for-updated-user-experience-forms-in-december-2012-service-
update.aspx.

Even though the report option is not available on the iPad interface, we can add web 
resources to the new form by customizing it. By going to Settings | Customizations 
| Customize the system from a desktop client, we will see these new forms with 
the name of the entity we are editing, while the previous or classic ones are called 
Information of type Main.



Mobile Client

[ 266 ]

If we install the custom solution we created in Chapter 6, Creating Inline Reports, 
where we created a solution to embed a report on an entity form, we can use that 
web resource we created to display a report on these new, process-driven UI forms.

A report embedded on the new forms can be seen on an iPad for an account record, 
as shown in the following screenshot:

The report can render fine, thanks to the new features of SQL Server 2012 with 
Service Pack 1, as we will see now in detail.



Chapter 10

[ 267 ]

SQL Server 2012 with SP1 
SQL Reporting Services can work on mobile devices if we are using SQL Server 2012 
with Service Pack 1. As CRM Online uses this version, we can see the CRM reports 
by copying the URL of a report and sending it by e-mail.

To do this, open a report in a web browser on a desktop computer first, and copy  
the URL that you can see in the address bar shown in the following screenshot:



Mobile Client

[ 268 ]

If you don't see the address bar, you can press the Ctrl + N keys to open this dialog 
on a new window that will let us copy the URL address. Then paste this URL 
address on an e-mail and send it to us or to the user that needs to run the report.  
The user will then need to read the e-mail from a mobile device, and clicking on  
the URL will redirect the user to the report interface, from where he will be able  
to run the report, as shown in the following screenshot:



Chapter 10

[ 269 ]

Clicking on Run Report will show us the report on the mobile device. Depending  
on the device, we won't be able to print or export the report to other formats such  
as XML, CSV, PDF, MHTML, Excel, TIFF, and Word.



Mobile Client

[ 270 ]

Microsoft Surface
On the other hand, if we use a device such as Microsoft Surface, the report's options 
are available on the site map and we will be able to use them directly from the main 
web interface.

As we can see, the Dynamics CRM web interface runs pretty well on a Microsoft 
Surface device, not showing the same limitations as we saw in the iPad; this is 
basically because the Surface device uses Internet Explorer 10.

The mobile client's considerations
The client interfaces that we have seen earlier require the user to be connected to  
the Internet, and they don't work in an offline mode.

There are some considerations to keep in mind if our environment uses CRM on 
premise, and we want to let our user access the CRM data externally using the 
mobile devices.



Chapter 10

[ 271 ]

Authentication considerations 
Most of the mobile clients will be located outside the local network; so if we are 
working with an on-premise environment, we will have to enable Internet-Facing 
Deployment (IFD). This means we need to change the authentication method from 
an integrated windows authentication to a claims-based authentication that requires 
the deployment of the Active Directory Federation Service (ADFS).

Enabling a claims-based authentication will also force us to implement the HTTPS 
protocol that will also require us to purchase an SSL certificate. A 2048-bits SSL 
certificate is recommended. It can be obtained on Verigin.com or Godaddy.com, 
among other SSL certificate providers.

Depending on the number of organizations we have, we will need to get a certificate 
that allows different Subject Alternative Names (SAN), or better a wildcard 
certificate, so that the number of organizations is not limited.

So, we need to store this SSL certificate on the Dynamics CRM server and on the 
ADFS server if we have them in separate boxes. First, configure the certificate 
on the IIS on both servers, and then for CRM, use the Microsoft Dynamics CRM 
Deployment Manager application. Click on the Microsoft Dynamics CRM root node 
on the left-hand side and on Properties on the right-hand side. Then, change to Web 
Addresses to configure the HTTPS protocol, as shown in the following screenshot:



Mobile Client

[ 272 ]

Once we configure the HTTPS, we will be allowed to click on the Configure  
Claims-Based Authentication link on the right-hand panel. This will start a wizard 
that will require us to enter the federation URL of the ADFS server, which would  
be similar to https://sts.remotingcoders.com/FederationMetadata/2007-06/
federationmetadata.xml.

After we close this wizard, we will need to click on another link that appears on 
the right-hand panel named Configure Internet-Facing Deployment…, which will 
open another wizard where we will need to configure the web application server's 
domain, the organization server's domain, and the discovery web service's domain.

This is all we need to do on the CRM box; then there are some configurations we 
will need to make on the ADFS server, which require the creation of Relaying Party 
Trust, where we will need to pass a URL provided by Dynamics CRM's claims-based 
authentication at the end of the first wizard. It should be similar to https://crm.
remotingcoders.com/FederationMetadata/2007-06/federationmetadata.xml.

By enabling these types of authentications, external users will be able to log in to  
the CRM with a secure, forms-based authentication page:

Configuring IFD on Dynamics CRM 2011 is a very complex task; 
however, we can find a lot of videos on YouTube that show how 
to configure this properly—just do a search of CRM 2011 IFD. For 
additional technical information, we can check http://technet.
microsoft.com/en-us/library/gg188579.aspx.



Chapter 10

[ 273 ]

Custom reports development considerations
When we develop custom reports that are to be used by mobile clients, it is 
recommended to use HTML 5 and a cross browser JavaScript framework such as 
jQuery. We need to stay away from using Silverlight or ActiveX controls, as they  
are not supported on mobile devices.

All the latest tablets and smartphones such as the iPad, Surface, and Android 
support HTML5, CSS3, and JavaScript, so using these languages is the best option.

With the new capabilities of SSRS with SQL Server 2012 R2, we can now embed the 
SSRS report control on custom ASP.NET applications that will render the reports in 
the HTML5 mode.

Some functionalities such as exporting or printing the report will be missing 
on iPads, so that is something we will have to custom-develop if we have that 
requirement at present.

Summary
In this chapter, we looked at the new features of Dynamics CRM and SQL Server SP1 
to show and run reports on mobile devices such as the iPhone, iPad, and Surface.  
We looked at how to configure the IFD authentication, so we can give external  
users access to our on-premise CRM environment.

In the following appendix, we are going to see basic and advanced reporting 
services' expressions; we can use them to show data in different ways and formats. 
We are also going to see some user interactions with reports for handling some of  
the common mouse click events.





Expression Snippets
In this appendix, we are going to see the basic and advanced Reporting Services 
expressions that we can use to show data in different ways and formats. We are  
also going to look at some user interactions with the reports to handle some of  
the common mouse click events.

Basic expressions
With expressions, we are talking about the Microsoft SQL Server Reporting Server 
expressions that we can use from either the Visual Studio Report editor or with the 
SQL Report Builder tool.

The basic expressions are grouped in the following categories:

•	 Constants
•	 Built-in fields
•	 Parameters
•	 Fields
•	 Datasets
•	 Variables
•	 Operators

°° Arithmetic ( ^, *, /, \, Mod, +, -)
°° Comparison ( <, <=, >, >=, =, <>, Like, Is)
°° Concatenation ( &, +)
°° Logical bitwise ( And, Not, Or, AndAlso, OrElse)
°° Bit Shift (<<, >>)



Expression Snippets

[ 276 ]

•	 Common Functions

°° Text
°° Date and Time
°° Math
°° Inspection
°° Program Flow
°° Aggregate
°° Financial
°° Conversion
°° Miscellaneous

The basic expressions are available in the Expression editor dialog box, as shown  
in the following screenshot:



Appendix

[ 277 ]

Constants
The Constants option will show you all the constants you have defined for your 
report. Constants are useful if you want to avoid using values in your expressions 
that would not make sense in a big piece of code. For example, asking if a variable 
such as status equals zero is not the same as saying the variable status equals active. 
In that case, creating a constant for the active value would be defined as follows:

Public Const Active As Int32 = 0

You can define constants in the Code section. You can access the Code section by 
going to the Report | Report Properties menu in Visual Studio.

A custom code for this report is as follows:

Public Const MyConstantStr = "Damian"
Public Const MyConstantInt As Int32 = 1



Expression Snippets

[ 278 ]

Notice that these constants might not be displayed in the Constants category,  
but you can still use them in the Expression editor as follows:

For example, the expression set for ToolTip is as follows:

= Code.MyConstantStr

Variables
You can define global variables in the Variables section, which you can access  
by going to the Report | Report Properties menu in Visual Studio. Variables  
can be read only; in that case, they will be similar to constants and they can also 
contain expressions.



Appendix

[ 279 ]

You can then use the variables as follows:

= Variables!myVar.Value

Advanced expressions with VBScript 
code
Most of the time, you will be able to meet your report requirements using the basic 
and out of the box functions in your expressions editor; if you need to make more 
complex functions, you can write your own or use references as we will see next.



Expression Snippets

[ 280 ]

References
You can also add references to the .NET assemblies. Depending on the version of 
SQL Server you are using, you will be able to add assemblies. For example, you can 
add the assemblies created for the .NET framework 3.5 if you are working with SQL 
2008 or for the .NET framework 4.0 in SQL 2012.

You can add references in the References section by going to the Report | Report 
Properties menu in Visual Studio. There you will be able to select an assembly that is 
installed on the GAC (Global Assembly Cache) or browse it from your local drives.



Appendix

[ 281 ]

For example, you can add the System.Xml assembly if you need to manage the XML 
code in your report. Then you can use it in the expressions by writing a function in 
the Code section of the Report Properties window, as shown in the following code:

Public Function GetName()
  Dim mydoc as new  System.Xml.XmlDocument 
  mydoc.LoadXml("<root><customer>damain</customer></root>")
  Dim node as System.Xml.XmlNode 
  node = mydoc.SelectSingleNode("/root/customer")
  Return node.InnerText
End Function

Then you can use this function on any expression as follows:

= Code.GetName()

You can also add references to the custom assemblies, which you create with Visual 
Studio; in that case you need to be sure that your assembly is signed by a strong key 
and you copy that assembly on the SSRS server by either installing it on the GAC  
or in the Report Server's bin folder, which is usually located at C:\Program Files\
Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\bin.  
You will also need to edit web.config to add a reference to your custom assembly  
as follows:

<CodeGroup
  class="FirstMatchCodeGroup"
  version="1"
  PermissionSetName="FullTrust"
  Name="MyCustomAssemblyCodeGroup"
Description="A special code group for my custom assembly.">
  <IMembershipCondition
    class="UrlMembershipCondition"
    version="1"
  Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting 
  Services\ReportServer\bin\CustomAssembly.dll"/>
</CodeGroup>

Working with control events
Controls in Reporting Services have some limited interactivity with the users; this 
is because they are mostly intended to be used to show and report data with no 
interactivity as you would have on a custom application, where the user can interact 
with controls such as buttons, checkboxes, or radio buttons. That is why you will see 
these types of controls missing in the report items' toolbox.



Expression Snippets

[ 282 ]

Actions
You can add some interactivity by using the Actions section of Placeholder 
Properties as follows:

The options of Action are:

•	 None
•	 Go to report
•	 Go to bookmark
•	 Go to URL

Using this will be similar to handling the click event of any report control. To add 
a bookmark on your report, just place a Textbox control and go to the Properties 
window; there you will find the bookmark property, where you will be able to  
add a name.

Visibility
Another way to handle the click event is by using the Visibility section and checking 
the Display can be toggled by this report item: option. This option will also handle 
the user's mouse click event to show or hide other controls on your report.



Appendix

[ 283 ]

Interactive Sorting
Interactive Sorting adds another way to let the user interact with the report by 
allowing sorting of columns on a table. This way the user can change the default 
sorting presented by clicking on the column header of the table. Clicking on the 
header once will sort the records in ascending order, while clicking on it a second 
time will sort the reports in descending order.



Expression Snippets

[ 284 ]

After enabling sorting, a table would look as follows:

Summary
In this appendix, we looked at the basic expressions, and how we can use them in 
our reports; we learned how to use constants, variables, and functions as well as 
using external .NET assemblies by using references. Finally we looked at the user 
interaction controls that give us some interaction with the users.



Index
Symbols
3D charts  209

A
Actions section, control event  282
Active Directory Federation Service  

(ADFS)  271
advanced expressions, Reporting Services

about  279
control events  281
references  280, 281

advanced report
map report  118

advanced report automation  234-237
ALTER command

used, for executing stored procedure  49
AND operator  42
Application Extensibility Markup  

Language (AXML)  223
Area type chart  201
as keyword  40
ASP.NET report

about  211, 212
CRM integration  222
early binding  219-221
late binding  213-218

autosave feature  264-266

B
Bar type chart  200
basic expressions, Reporting Services

about  275, 276
constants  277, 278
variables  278, 279

basic report automation
about  226
Report scheduling wizard  227-232

best practices, report deployment
about  252
performance, improving for reports  253
report caching, creating  253-256
report snapshots, creating  257

best practices, report development  251, 252
Blank Report option  104

C
Categories option  10, 11
chart editor

about  199
Area option  201
Bar option  200
Column option  200
Funnel option  201
Line option  201
options  200-203
Pie option  201

Chart Pane button  198
charts

about  157-159, 193
creating  194
drill-down chart  196-198
exporting  204, 207
personal charts  193
system charts  193
versus report  194
viewing  195, 196

charts internal  208
Charts XML format

URL  208.



[ 286 ]

collapsible controls  160, 161
columns

adding, to report  151, 152
displaying  153-156
hiding  153-156

Column type chart  200
components, SQL Reporting Services

Report Manager website  17
Report Server Web service  17
SQL Server databases  16
Windows Service  17

conditions, FetchXML  61
configuration, Report Authoring  

Extension  24-29
configuration, Reporting Services  

Extension  17-23
considerations, mobile client

authentication  271, 272
custom reports development  273

constants  277, 278
control events

about  281
Actions section  282
Interactive Sorting section  283, 284
Visibility section  282

CREATE command
used, for creating stored procedure  49

CREATE TABLE statement  48
CRM_CalendarType parameter  135, 136
CRM_FilteredAccount parameter  134
CRM_FilterText parameter  133
CRM_FormatDate parameter  133, 134
CRM_FormatTime parameter  134
CRM_FullName parameter  134
CRM integration, ASP.NET report  222
CRM report settings  8, 9
CRM report types  7, 8
CRM Trace

about  243
enabling  243-246

CRM_URL parameter  135
Crystal Reports  7
cursors  50, 51
custom reports development  

considerations  273
custom solution

creating  165, 166

D
dashboards

creating  188-190
exporting  191
personal dashboards  188
report, displaying on  187, 188
system dashboards  188
URL, for info  191

dashboard XML format
URL, for info  193

Database administrator (DBA)  16
data sets

about  96, 143
creating  143-150
using  151

data sources
about  137, 138
database types, using  137
embedded data sources  138
shared data sources  139-142

Delete command  41
Developer Toolkit

about  176
using  177-184

Display in option  14
drill-down chart

about  160, 161, 196-198
DROP command

used, for deleting stored procedure  49
DROP TABLE statement  48
Dynamics CRM 2011

fields  32

E
early binding, ASP.NET report  219-221
embedded datasets  96
embedded data sources  138
entity form

report, embedding on  163
ERD basics  31-33
EXEC command

used, for executing stored procedure  49
Expression editor   131



[ 287 ]

F
failures, SSR authentication  241, 242
features, mobile clients

autosave feature  264-266
Microsoft Surface  270
sales process  262-264
SQL Server 2012 with SP1  267-269

FETCH flag  50
FETCH NEXT method  50
FetchXML

about  52
conditions  61
fields, selecting  59, 60
filters  61
group by option  63
joins  64
order by option  62
overview  55-58
query, creating  53
sample code  53

fields, Dynamics CRM 2011
currency  32
date and time  32
decimal number  32
floating point number  32
lookup  32
multiple lines of texts  32
option set  32
single line of text  32
two options  32
whole number  32

fields, FetchXML
selecting  59, 60

filters, FetchXML  61
forms, Dynamic CRM

main  163
mobile  163

G
GAC (Global Assembly Cache)  280
group by option, FetchXML  63
group by statement  44-46

H
HTML web resource

creating  166-171

I
image source types

database  117
embedded  117
external  117

inline reports  163
inner join  64
Insert command  41
installation, Report Authoring  

Extension  24-29
installation, Reporting Services  

Extension  17-23
Interactive Sorting section,  

control event  283, 284
Internet-Facing Deployment (IFD)  271
Internet Information Services (IIS)  15

J
join clause  46, 47
joins, FetchXML

about  64
inner join  64
outer join  64

L
Languages option  14
late binding, ASP.NET report  213-218
like operator  42
logo

adding, to report  113-118

M
main form  163
many-to-many relationships (N:N)  37
many-to-one relationships (N:1)  36
Map report

about  118
testing  125



[ 288 ]

map visualization types
about  122, 124
Basic Map option  122
Bubble Map  122
Color Analytical Map  122

Map Wizard  119-121
Microsoft Dynamics CRM 2011

about  7
ERD basics  31
report types  7, 8

Microsoft Surface  270
mobile clients

about  259
considerations  270
example  261, 262
features  259

mobile form  163
Model View ViewModel. See  MVVM
MSCRM_CONFIG database  31
MVVM  223-226

O
one-to-many relationships (1:N)  34-36
ORDER BY clause  43
order by option, FetchXML  62
outer join  64

P
personal charts  193
personal dashboards  188
prefilters  132

Q
Query Designer  101, 102

R
RDL  127
RDL files

creating, ways  8
references  280, 281
Related Record Types option  12, 13

relationship types
about  33
many-to-many relationships (N:N)  37
many-to-one relationships (N:1)  36
one-to-many relationships (1:N)  34-36

report
columns, adding to  151, 152
creating  103, 104
creating, Report Wizard used  68-79
creating, Table or Matrix Wizard  

used  105-113
creating, Visual Studio used  80-91, 127-129
displaying, on dashboard  187, 188
embedding, on entity form  163
logo, adding to  113-118
performance, increasing  253
publishing  91, 92
versus charts  194

Report Authoring Extension
configuring  24-29
installing  24-29

Report Builder
advanced report  118
limitations  126
overview  93-95
URL, for standalone version  94

report caching
creating  253-256

report control
implementing  171-175

Report definition language. See  RDL
report deployment

best practices  252
report development

best practices  251, 252
report, embedding

custom solution, creating  165, 166
HTML web resource, creating  166-171
report control, implementing  171-175

Reporting Services
advanced expressions, with VBScript  

code  279
basic expressions  275, 276

Reporting Services Configuration  
Manager  14



[ 289 ]

Reporting Services Extension
configuring  17-23
installing  17-23

ReportingServicesService logfile  245
Report Manager website  17
report parameters

about  133
CRM_CalendarType  135, 136
CRM_FilteredAccount  134
CRM_FilterText  133
CRM_FormatDate  133, 134
CRM_FormatTime  134
CRM_FullName  134
CRM_URL  135

Report scheduling wizard  227-232
ReportServerCredentials class  237
Report Server Web service  17
report settings, CRM

about  8, 9
Categories  10, 11
Display in  14
Languages  14
Related Record Types  12, 13

report snapshots
about  257
creating  257

report types, CRM  7, 8
Report Wizard

about  67
used, for creating report  68-79

S
sales process  262-264
Select command  38-40
SetReport function  170
shared dataset

creating  96-101
shared data sources  139-142
Silverlight  222
Silverlight reports

about  7, 222
MVVM  223-226

SQL
about  38
tracing, steps  247-249

SQL advanced
about  47
CREATE TABLE statement  48
cursors  50, 51
DROP TABLE statement  48
stored procedures  48, 49
transactions  52

SQL overview
Delete command  41
group by statement  44-46
Insert command  41
join clause  46, 47
ORDER BY clause  43
Select command  38-40
Update command  41
WHERE clause  42

SQL Reporting Services
components  16

SQL reporting services versions
about  14, 15
Report Manager website  17
Report Server Web service  17
SQL Server databases  16
Windows Service  17

SQL Server 2012
with SP1  267-269

SQL Server 2012, with Dynamics CRM 2011
benefits  15

SQL Server databases  16
SQL Server Reporting Services (SSRS)  211
SQL Trace

about  246
using  246

SSR authentication
failures  241, 242

SSRS Report Control  67
stored procedure

about  48
creating, CREATE command used  49
deleting, DROP statement used  49
executing, EXEC command used  49
modifying, ALTER command used  49

Structured Query Language. See  SQL
Subject Alternative Names (SAN)  271
system charts  193
system dashboards  187, 188



[ 290 ]

T
Table or Matrix Wizard

about  104
used, for creating report  105-113

Team Foundation Server (TFS)  252
toolbox, Visual Studio

about  129
Chart control  130
Data Bar control  130
Gauge control  130
Indicator control  130
Line control  130
List control  130
Map control  130
Matrix control  130
Pointer  129
Rectangle control  130
Sparkline control  130
Subreport control  130
Table control  130
Textbox control  129

tracing  242
transactions  52

U
Update command  41
Update Rollup 12  259

V
variables  278, 279
Visibility section, control event  282
Visual Studio

toolbox  129, 130
used, for creating report  80-91, 127-129

W
w3wp trace file  244
web resources, Dynamics CRM 2011  164
WHERE clause  42
Windows Presentation Foundation  

(WPF)  223
Windows Service  17



 

Thank you for buying  
Microsoft Dynamics CRM 2011 Reporting

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Microsoft Dynamics CRM 2011 
New Features
ISBN: 978-1-849682-06-0             Paperback: 288 pages

Get up to spend with the new features of Microsoft 
Dynamics CRM 2011

1.	 Master the new features of Microsoft  
Dynamics 2011

2.	 Use client-side programming to perform 
data validation, automation, and process 
enhancement 

3.	 Learn powerful event driven server-side 
programming methods: Plug-Ins and  
Processes (Formerly Workflows)

Microsoft Dynamics CRM 2011 
Application Design
ISBN: 978-1-849684-56-9             Paperback: 236 pages

Develop applictaions for any situation with our 
hands-on guide to Microsoft Dynamics CRM 2011

1.	 Create your first application quickly and with 
no fuss

2.	 Develop in days what it has taken others years

3.	 Provide the solution to your company's 
problems

Please check www.PacktPub.com for information on our titles



Microsoft Windows Server 
AppFabric Cookbook
ISBN: 978-1-849684-18-7             Paperback: 428 pages

60 recipes for getting the most out of WCF and WF 
services, including the latest capabilities in AppFabric 
1.1 for Windows Server

1.	 Gain a solid understanding of the capabilities 
provided by Windows Server AppFabric with a 
pragmatic, hands-on, results-oriented approach 
with this book and eBook 

2.	 Learn how to apply the WCF and WF skills 
you already have to make the most of what 
Windows Server AppFabric has to offer 

3.	 Includes step-by-step recipes for developing 
highly scalable composite services that 
utilize the capabilities provided by Windows 
Server AppFabric including caching, hosting, 
monitoring and persistence

Microsoft System Center 2012 
Service Manager Cookbook
ISBN: 978-1-849686-94-5            Paperback: 474  pages

Learn how to configure and administer System 
Center 2012 Service Manager and solve specific 
problems and scenarios that arise

1.	 Practical cookbook with recipes that will help 
you get the most out of Microsoft System 
Center 2012 Service Manager 

2.	 Learn the various methods and best practices 
administrating and using Microsoft System 
Center 2012 Service Manager

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Reporting in Microsoft Dynamics CRM
	CRM report types
	CRM report settings
	Categories
	Related Record Types
	Display in 
	Languages

	SQL reporting services versions
	SQL Server databases
	Windows Service
	Report Manager website
	Report Server Web service

	Installation and configuration of Reporting Services Extensions
	Installation and configuration of Report Authoring Extension (Visual Studio development)
	Summary

	Chapter 2: Database Basics
	ERD basics
	Relationship types
	One-to-many relationships (1:N)
	Many-to-one relationships (N:1)
	Many-to-many relationships (N:N)


	SQL overview
	Select
	Update
	Delete
	Insert
	WHERE
	ORDER BY
	group by
	join

	SQL advanced
	CREATE TABLE
	DROP TABLE
	Stored procedures
	Cursors
	Transactions

	FetchXML overview
	Select fields
	Filters and conditions
	Order by
	group by
	Linking to other entities
	Inner join
	Outer join


	Summary

	Chapter 3: Creating Your First 
Report in CRM
	Using Microsoft Dynamics CRM 2011 Report Wizard
	Using Visual Studio
	Publishing the report
	Summary

	Chapter 4: SQL Server Report Builder
	Report Builder overview
	Datasets
	Query Designer
	Creating a new report
	Table or Matrix Wizard
	Adding a logo to our report

	Advanced reports with Report Builder
	Map Wizard
	Map visualization types
	Testing the Map report

	The Report Builder's limitations
	Summary

	Chapter 5: Creating Contextual Reports
	Using Visual Studio
	Toolbox
	Expressions
	Prefilters

	Report parameters in detail
	CRM_FilterText
	CRM_FormatDate
	CRM_FormatTime
	CRM_FullName
	CRM_FilteredAccount
	CRM_URL
	CRM_CalendarType

	Data sources
	Embedded data sources
	Shared data sources

	Data sets
	Groups on data sets
	Adding columns to the report
	Hiding and showing columns

	Charts
	Drill-down and collapsible controls
	Summary

	Chapter 6: Creating Inline Reports
	Embedding reports on an entity form
	Creating a custom solution
	Creating the HTML web resource
	Implementing the report control
	Developer Toolkit

	Summary

	Chapter 7: Using Reports and Charts in Dashboard
	Showing report on a dashboard
	Exporting dashboards

	Basic charts
	Drill-down chart

	Charts editor
	Exporting charts
	Charts internals
	3D charts

	Summary

	Chapter 8: Advance Custom Reporting and Automation
	The ASP.NET report
	Late binding
	Early binding
	CRM integration

	Silverlight reports
	MVVM

	Basic report automation
	Report scheduling

	Advanced report automation (programmatically)
	Summary

	Chapter 9: Failure Recovery and 
Best Practices
	Common failures in SSR authentication
	Tracing
	Enabling CRM Trace
	Using SQL Trace

	Report development best practices
	Report deployment best practices
	Improving the performance of reports 
	Creating report caching
	Creating report snapshots

	Summary

	Chapter 10: Mobile Client
	New features for mobile clients
	The sales process
	The autosave feature
	SQL Server 2012 with SP1 
	Microsoft Surface

	The mobile client's considerations
	Authentication considerations 
	Custom reports development considerations

	Summary

	Appendix: Expression Snippets
	Basic expressions
	Constants
	Variables

	Advanced expressions with VBScript code
	References
	Working with control events
	Actions
	Visibility
	Interactive Sorting


	Summary

	Index

