
www.allitebooks.com

http://www.allitebooks.org

Mastering Scientific Computing
with R

Employ professional quantitative methods to answer
scientific questions with a powerful open source data
analysis environment

Paul Gerrard

Radia M. Johnson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Scientific Computing with R

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1270115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-525-3

www.packtpub.com

Cover image by Jason Dupuis Mayer (jdmphoto011@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Paul Gerrard

Radia M. Johnson

Reviewers
Laurent Drouet

Ratanlal Mahanta

Mzabalazo Z. Ngwenya

Donato Teutonico

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Greg Wild

Content Development Editor
Akshay Nair

Technical Editors
Rosmy George

Ankita Thakur

Copy Editors
Shivangi Chaturvedi

Pranjali Chury

Puja Lalwani

Adithi Shetty

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Martin Diver

Ameesha Green

Paul Hindle

Bernadette Watkins

Indexer
Priya Subramani

Graphics
Sheetal Aute

Disha Haria

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Paul Gerrard is a physician and healthcare researcher who is based out of Portland,
Maine, where he currently serves as the medical director of the cardiopulmonary
rehabilitation program at New England Rehabilitation Hospital of Portland. He
studied business economics in college. After completing medical school, he did a
residency in physical medicine and rehabilitation at Harvard Medical School and
Spaulding Rehabilitation Hospital, where he served as chief resident and stayed
on as faculty at Harvard before moving to Portland. He continues to collaborate on
research projects with researchers at other academic institutions within the Boston
area and around the country. He has published and presented research on a range
of topics, including traumatic brain injury, burn rehabilitation, health outcomes, and
the epidemiology of disabling medical conditions.

I would like to thank my beautiful wife, Deirdre, and my son,
Patrick. My work on this book is dedicated to the loving memory
of Fiona.

Radia M. Johnson has a doctorate degree in immunology and currently works
as a research scientist at the Institute for Research in Immunology and Cancer at
the Université de Montréal, where she uses genomics and bioinformatics to identify
and characterize the molecular changes that contribute to cancer development. She
routinely uses R and other computer programming languages to analyze large data
sets from ongoing collaborative projects. Since obtaining her PhD at the University of
Toronto, she has also worked as a research associate at the University of Cambridge in
Hematology, where she gained experience using system biology to study blood cancer.

I would like to thank Dr. Charlie Massie for teaching me to love
programming in R and Dr. Phil Kousis for all his support through
the years. You are both excellent mentors and wonderful friends!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Laurent Drouet holds a PhD in economics and social sciences from the University
of Geneva, Switzerland, and a master's degree in applied mathematics from the
Institute of Applied Mathematics of Angers, France. He was also a postdoctoral
research fellow at the Research Lab of Economics and Environmental Management
at the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. He was also
a researcher at the Public Research Center Tudor, Luxembourg. He is currently a
senior researcher at Fondazione Eni Enrico Mattei (FEEM) and a research affiliate
at Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy.

His main research is related to integrated assessment modeling and energy
modeling. For more than a decade, he designed scientific tools to perform data
analysis for this type of modeling. He also built optimization frameworks to couple
models of many kinds (such as climate models, air quality models, and economy
models). He created and developed the bottom-up techno-economic energy model
ETEM to study optimal energy policies at urban or national levels.

I want to thank my wife for her support every day both in my
private life and professional life.

www.allitebooks.com

http://www.allitebooks.org

Ratanlal Mahanta holds an MSc in computational finance. He is currently
working at GPSK Investment Group as a senior quantitative analyst. He has 4
years of experience in quantitative trading and strategies developments for sell
side and risk consulting firms. He is an expert in high frequency and algorithmic
trading. He has expertise in these areas: quantitative trading (FX, equities, futures
and options, and engineering on derivatives); algorithms—partial differential
equations, stochastic differential equations, the finite difference method, Monte
Carlo, and Machine Learning; code—R programming, C++, MATLAB, HPC, and
scientific computing; data analysis—Big Data analytic [EOD to TBT], Bloomberg,
Quandl, and Quantopian; and strategies—vol-arbitrage, vanilla and exotic options
modeling, trend following, mean reversion, co-integration, Monte Carlo simulations,
ValueatRisk, stress testing, buy side trading strategies with high Sharpe ratio, credit
risk modeling, and credit rating.

He has reviewed Mastering R for Quantitative Finance, Packt Publishing. He is currently
reviewing two other books for Packt Publishing: Mastering Python for Data Science and
Machine Learning with R Cookbook.

Mzabalazo Z. Ngwenya holds a postgraduate degree in mathematical statistics
from the University of Cape Town. He has worked extensively in the field of
statistical consulting, wherein he utilized varied statistical software including R. His
area of interest are primarily centered around statistical computing. Previously, he
was involved in reviewing Learning RStudio for R Statistical Computing, Mark P.J. van
der Loo and Edwin de Jonge; R Statistical Application Development Example Beginner's
Guide, Prabhanjan Narayanachar Tattar; Machine Learning with R, Brett Lantz; R Graph
Essentials, David Alexandra Lillis, and R Object-oriented Programming, Kelly Black,
all by Packt Publishing. He currently works as a biometrician.

www.allitebooks.com

http://www.allitebooks.org

Donato Teutonico has several years of experience in modeling and the simulation
of drug effects and clinical trials in industrial and academic settings. He received
his PharmD degree from the University of Turin, Italy, specializing in chemical and
pharmaceutical technology, and his PhD in pharmaceutical sciences from Paris-Sud
University, France.

He is the author of two R packages for pharmacometrics, CTStemplate and
panels-for-pharmacometrics, which are both available on Google Code. He is
also the author of Instant R Starter, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Programming with R	 7

Data structures in R	 10
Atomic vectors	 10

Operations on vectors	 14
Lists	 15
Attributes	 19
Factors	 21
Multidimensional arrays	 22

Matrices	 23
Data frames	 25

Loading data into R	 28
Saving data frames	 31

Basic plots and the ggplot2 package	 33
Flow control	 43

The for() loop	 43
The apply() function	 44

The if() statement	 46
The while() loop	 46
The repeat{} and break statement	 47

Functions	 48
General programming and debugging tools	 52
Summary	 55

Chapter 2: Statistical Methods with R	 57
Descriptive statistics	 59

Data variability	 61
Confidence intervals	 62

Probability distributions	 63

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Fitting distributions	 68
Higher order moments of a distribution	 71
Other statistical tests to fit distributions	 73

The propagate package	 74
Hypothesis testing	 79

Proportion tests	 83
Two sample hypothesis tests	 85
Unit root tests	 87

Summary	 94
Chapter 3: Linear Models	 95

An overview of statistical modeling	 95
Model formulas	 96
Explanatory variables interactions	 98
Error terms	 98
The intercept as parameter 1	 98

Updating a model	 99
Linear regression	 99

Plotting a slope	 99
Analysis of variance	 107
Generalized linear models	 111
Generalized additive models	 117
Linear discriminant analysis	 122
Principal component analysis	 130
Clustering	 136
Summary	 138

Chapter 4: Nonlinear Methods	 139
Nonparametric and parametric models	 139
The adsorption and body measures datasets	 141
Theory-driven nonlinear regression	 142
Visually exploring nonlinear relationships	 143
Extending the linear framework	 146

Polynomial regression	 147
Performing a polynomial regression in R	 147
Spline regression	 155

Nonparametric nonlinear methods	 156
Kernel regression	 161
Kernel weighted local polynomial fitting	 165

Optimal bandwidth selection	 166
A practical scientific application of kernel regression	 168

Locally weighted polynomial regression and the loess function	 169

Table of Contents

[iii]

Nonparametric methods with the np package	 171
Nonlinear quantile regression	 171

Summary	 173
Chapter 5: Linear Algebra	 175

Matrices and linear algebra	 176
Matrices in R	 176
Vectors in R	 176
Matrix notation	 177

The physical functioning dataset	 178
Basic matrix operations	 179

Element-wise matrix operations	 180
Matrix subtraction	 180
Matrix addition	 180
Matrix sweep	 180

Basic matrixwise operations	 181
Transposition	 182
Matrix multiplication	 182
Matrix inversion	 188
Determinants	 190

Triangular matrices	 190
Matrix decomposition	 191

QR decomposition	 191
Eigenvalue decomposition	 193
Lower upper decomposition	 194
Cholesky decomposition	 195
Singular value decomposition	 195

Applications	 197
Rasch analysis using linear algebra and a paired comparisons matrix	 198
Calculating Cronbach's alpha	 201
Image compression using direct cosine transform	 202

Importing an image into R	 202
The compression technique	 204
DCT in R	 206

Summary	 210
Chapter 6: Principal Component Analysis and the
Common Factor Model	 211

A primer on correlation and covariance structures	 212
Datasets used in this chapter	 212
Principal component analysis and total variance	 213

Understanding the basics of PCA	 214
How does PCA relate to SVD?	 217

Table of Contents

[iv]

Scaled versus unscaled PCA	 218
PCA for dimension reduction	 220

PCA to summarize wine properties	 221
Choosing the number of principal components to retain	 224

Formative constructs using PCA	 228
Exploratory factor analysis and reflective constructs	 233

Familiarizing yourself with the basic terms	 233
Matrices of interest	 234

Expressing factor analysis in a matrix model	 235
Basic EFA and concepts of covariance algebra	 235

Concepts of EFA estimation	 236
Direct factor extraction by principal axis factoring	 240
Performing principal axis factoring in R	 240
Other factor extraction methods	 241
Factor rotation	 242

Advanced EFA with the psych package	 246
Summary	 250

Chapter 7: Structural Equation
Modeling and Confirmatory Factor Analysis	 251

Datasets	 252
Political democracy	 252
Physical functioning dataset	 252
Holzinger-Swineford 1939 dataset	 252

The basic ideas of SEM	 253
Components of an SEM model	 254
Path diagram	 255

Matrix representation of SEM	 255
The reticular action model (RAM)	 256

An example of SEM specification	 257
An example in R	 261

SEM model fitting and estimation methods	 265
Assessing SEM model fit	 266
Using OpenMx and matrix specification of an SEM	 267
Summarizing the OpenMx approach	 268
Explaining an entire example	 268
Specifying the model matrices	 269

Fitting the model	 273
Fitting SEM models using lavaan	 276
The lavaan syntax	 276

Comparing OpenMx to lavaan	 279

Table of Contents

[v]

Explaining an example in lavaan	 279
Explaining an example in OpenMx	 280

Summary	 283
Chapter 8: Simulations	 285

Basic sample simulations in R	 285
Pseudorandom numbers	 286

The runif() function	 289
Bernoulli random variables	 293
Binomial random variables	 294
Poisson random variables	 295
Exponential random variables	 295

Monte Carlo simulations	 296
Central limit theorem	 297
Using the mc2d package	 301

One-dimensional Monte Carlo simulation	 302
Two-dimensional Monte Carlo simulation	 305
Additional mc2d functions	 310
Multivariate nodes	 316

Monte Carlo integration	 320
Multiple integration	 322
Other density functions	 324

Rejection sampling	 325
Importance sampling	 332
Simulating physical systems	 334
Summary	 336

Chapter 9: Optimization	 337
One-dimensional optimization	 338

The golden section search method	 338
The optimize() function	 346
The Newton-Raphson method	 347
The Nelder-Mead simplex method	 353
More optim() features	 356

Linear programming	 360
Integer-restricted optimization	 365
Unrestricted variables	 368

Quadratic programming	 369
General non-linear optimization	 372
Other optimization packages	 374
Summary	 374

Table of Contents

[vi]

Chapter 10: Advanced Data Management	 375
Cleaning datasets in R	 376
String processing and pattern matching	 377

Regular expressions	 378
Floating point operations and numerical data types	 383
Memory management in R	 385

Basic R memory commands	 385
Handling R objects in memory	 387

Missing data	 389
Computational aspects of missing data in R	 389
Statistical considerations of missing data	 390
Deletion methods	 391

Listwise deletion or complete case analysis	 391
Pairwise deletion	 392

Visualizing missing data	 392
An overview of multiple imputation	 394

Imputation basic principles	 394
Approaches to imputation	 394

The Amelia package	 395
Getting estimates from multiply imputed datasets	 399

Extracting the mean	 399
Extracting the standard error of the mean	 400

The mice package	 402
Imputation functions in mice	 403

Summary	 405
Index	 407

Preface
As an open source computing environment, R is rapidly becoming the lingua franca
of the statistical computing community. R's powerful base functions, powerful
statistical tools, open source nature, and avid user community have led to R having
an expansive library of powerful, cutting-edge quantitative methods not yet
available to users of other high-cost statistical programs.

With this book, you will learn not just about R, but how to use R to answer
conceptual, scientific, and experimental questions.

Beginning with an overview of fundamental R concepts, including data types,
R program flow, and basic coding techniques, you'll learn how R can be used to
achieve the most commonly needed scientific data analysis tasks, including testing
for statistically significant differences between groups and model relationships
in data. You will also learn parametric and nonparametric techniques for both
difference testing and relationship modeling.

You will delve into linear algebra and matrix operations with an emphasis not
on the R syntax, but on how these operations can be used to address common
computational or analytical needs. This book also covers the application of matrix
operations for the purpose of finding a structure in high-dimensional data using the
principal component, exploratory factor, and confirmatory factor analysis in addition
to structural equation modeling. You will also master methods for simulation,
learn about an advanced analytical method, and finish by going to the next level
with advanced data management focused on dealing with messy and problematic
datasets that serious analysts deal with daily.

By the end of this book, you will be able to undertake publication-quality data
analysis in R.

Preface

[2]

What this book covers
Chapter 1, Programming with R, presents an overview of how data is stored and
accessed in R. Then, we will go over how to load data into R using built-in functions
and useful packages for easy import from Excel worksheets. We will also cover
how to use flow control statements and functions to reduce complexity and help
you program more efficiently.

Chapter 2, Statistical Methods with R, presents an overview of how to summarize
your data and get useful statistical information for downstream analysis. We will
show you how to plot and get statistical information from probability distributions
and how to test the fit of your sample distribution to well-defined probability
distributions.

Chapter 3, Linear Models, covers linear models, which are probably the most
commonly used statistical methods to study the relationships between variables.
The Generalized linear model section will delve into a bit more detail than typical
R books, discussing the nature of link functions and canonical link functions.

Chapter 4, Nonlinear Methods, reviews applications of nonlinear methods in R
using both parametric and nonparametric methods for both theory-driven and
exploratory analysis.

Chapter 5, Linear Algebra, covers algebra techniques in R. We will also learn linear
algebra operations including transposition, inversion, matrix multiplication,
and a number of matrix transformations.

Chapter 6, Principal Component Analysis and the Common Factor Model, helps you
understand the application of linear algebra to covariance and correlation matrices.
We will cover how to use PCA to account for total variance in a set of variables and
how to use EFA to model common variance among these variables in R.

Chapter 7, Structural Equation Modeling and Confirmatory Factor Analysis, covers
the fundamental ideas underlying structural equation modeling, which are often
overlooked in other books discussing SEM in R, and then delve into how SEM is
done in R.

Chapter 8, Simulations, explains how to perform basic sample simulations and how
to use simulations to answer statistical problems. We will also learn how to use R
to generate random numbers, and how to simulate random variables from several
common probability distributions.

Preface

[3]

Chapter 9, Optimization, explores a variety of methods and techniques to optimize a
variety of functions. We will also cover how to use a wide range of R packages and
functions to set up, solve, and visualize different optimization problems.

Chapter 10, Advanced Data Management, walks you through the basic techniques
for data handling and some basic memory management considerations.

What you need for this book
The software that we require for this book is R Version 3.0.1 or higher, OpenMx
Version 1.4, and RStudio.

Who this book is for
If you want to learn how to quantitatively answer scientific questions for practical
purposes using the powerful R language and the open source R tool ecosystem,
this book is ideal for you. It is ideally suited for scientists who understand scientific
concepts, know a little R, and want to start applying R to be able to answer empirical
scientific questions. Some R exposure is helpful, but not compulsory.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can also retrieve additional information on the objects stored in your
environment using the str() function."

A block of code is set as follows:

> integer_vector <- c(1L, 2L, 12L, 29L)
> integer_vector
[1] 1 2 12 29

Preface

[4]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"To install R on Windows, click on Download R for Windows, and then click
on base for the download link and installation instructions."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output.

You can download this file from: https://www.packtpub.com/sites/default/
files/downloads/5253OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

https://www.packtpub.com/sites/default/files/downloads/5253OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5253OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

Programming with R
Scientific computing is an informatics approach to problem solving using
mathematical models and/or applying quantitative analysis techniques to interpret,
visualize, and solve scientific problems. Generally speaking, scientists and data
analysts are concerned with understanding certain phenomena or processes using
observations from an experiment or through simulation. For example, a biologist
may want to understand what changes in gene expression are required for a normal
cell to become a cancerous cell, or a physicist may want to study the life cycle of
galaxies through numerical simulations. In both cases, they will need to collect the
data, and then manipulate and process it before it can be visualized and interpreted
to answer their research question. Scientific computing is involved in all these steps.

R is an excellent open source language for scientific computing. R is broadly used
in companies and academics as it has great performance value and provides a
cutting-edge software environment. It was initially designed as a software tool for
statistical modeling but has since then evolved into a powerful tool for data mining
and analytics. In addition to its rich collection of classical numerical methods or
basic actions, there are also hundreds of R packages for a wide variety of scientific
computing needs such as state-of-the-art visualization methods, specialized
data analysis tools, machine learning, and even packages such as Shiny to build
interactive web applications. In this book, we will teach you how to use R and some
of its packages to define and manipulate your data using a variety of methods for
data exploration and visualization. This book will present to you state-of-the-art
mathematical and statistical methods needed for scientific computing. We will also
teach you how to use R to evaluate complex arithmetic expressions and statistical
modeling. We will also cover how to deal with missing data and the steps needed to
write your own functions tailored to your analysis requirements. By the end of this
book, you will not only be comfortable using R and its many packages, but you will
also be able to write your own code to solve your own scientific problems.

Programming with R

[8]

This first chapter will present an overview of how data is stored and accessed in
R. Then, we will look at how to load your data into R using built-in functions and
useful packages, in order to easily import data from Excel worksheets. We will also
show you how to transform your data using the reshape2 package to make your
data ready to graph by plotting functions such as those provided by the ggplot2
package. Next, you will learn how to use flow-control statements and functions
to reduce complexity, and help you program more efficiently. Lastly, we will go
over some of the debugging tools available in R to help you successfully run your
programs in R.

The following is a list of the topics that we will cover in this chapter:

•	 Atomic vectors
•	 Lists
•	 Object attributes
•	 Factors
•	 Matrices and arrays
•	 Data frames
•	 Plots
•	 Flow control
•	 Functions
•	 General programming and debugging tools

Before we begin our overview of R data structures, if you haven't already installed
R, you can download the most recent version from http://cran.r-project.org.
R compiles and runs on Linux, Mac, and Windows so that you can download the
precompiled binaries to install it on your computer. For example, go to http://
cran.r-project.org, click on Download R for Linux, and then click on ubuntu to
get the most up-to-date instructions to install R on Ubuntu. To install R on Windows,
click on Download R for Windows, and then click on base for the download link
and installation instructions. For Mac OS users, click on Download R for (Mac) OS X
for the download links and installation instructions.

http://cran.r-project.org
http://cran.r-project.org
http://cran.r-project.org

Chapter 1

[9]

In addition to the most recent version of R, you may also want to download RStudio,
which is an integrated development environment that provides a powerful user
interface that makes learning R easier and fun. The main limitation of RStudio is that
it has difficulty loading very large datasets. So if you are working with very large
tables, you may want to run your analysis in R directly. That being said, RStudio is
great to visualize the objects you stored in your workplace at the click of a button.
You can easily search help pages and packages by clicking on the appropriate tabs.
Essentially, RStudio provides all that you need to help analyze your data at your
fingertips. The following screenshot is an example of the RStudio user interface
running the code from this chapter:

You can download RStudio for all platforms at http://www.rstudio.com/
products/rstudio/download/.

Finally, the font conventions used in this book are as follows. The code you should
directly type into R is preceded by > and any lines preceded by # will be treated as
comment in R.

> The user will type this into R
This is the response from R
> # If the user types this, R will treat it as a comment

http://www.rstudio.com/products/rstudio/download/
http://www.rstudio.com/products/rstudio/download/

Programming with R

[10]

Note that all the code written in this book was run
with R Version 3.0.2.

Data structures in R
R objects can be grouped into two categories:

•	 Homogeneous: This is when the content is of the same type of data
•	 Heterogeneous: This is when the content contains different types of data

Atomic vectors, Matrices, or Arrays are data structures that are used to store
homogenous data, while Lists and Data frames are typically used to store
heterogeneous data. R objects can also be organized based on the number of
dimensions they contain. For example, atomic vectors and lists are one-dimensional
objects, whereas matrices and data frames are two-dimensional objects. Arrays,
however, are objects that can have any number of dimensions. Unlike other
programming languages such as Perl, R does not have scalar or zero-dimensional
objects. All single numbers and strings are stored in vectors of length one.

Atomic vectors
Vectors are the basic data structure in R and include atomic vectors and lists. Atomic
vectors are flat and can be logical, numeric (double), integer, character, complex, or
raw. To create a vector, we use the c() function, which means combine elements
into a vector:

> x <- c(1, 2, 3)

To create an integer vector, add the number followed by L, as follows:

> integer_vector <- c(1L, 2L, 12L, 29L)
> integer_vector
[1] 1 2 12 29

To create a logical vector, add TRUE (T) and FALSE (F), as follows:.

> logical_vector <- c(T, TRUE, F, FALSE)
> logical_vector
[1] TRUE TRUE FALSE FALSE

Chapter 1

[11]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

To create a vector containing strings, simply add the words/phrases in
double quotes:

> character_vector <- c("Apple", "Pear", "Red", "Green", "These are my
favorite fruits and colors")
> character_vector
[1] "Apple"
[2] "Pear"
[3] "Red"
[4] "Green"
[5] "These are my favorite fruits and colors"
> numeric_vector <- c(1, 3.4, 5, 10)
> numeric_vector
[1] 1.0 3.4 5.0 10.0

R also includes functions that allow you to create vectors containing repetitive
elements with rep() or a sequence of numbers with seq():

> seq(1, 12, by=3)
[1] 1 4 7 10
> seq(1, 12) #note the default parameter for by is 1
 [1] 1 2 3 4 5 6 7 8 9 10 11 12

Instead of using the seq() function, you can also use a colon, :, to indicate that
you would like numbers 1 to 12 to be stored as a vector, as shown in the
following example:

> y <- 1:12
> y
 [1] 1 2 3 4 5 6 7 8 9 10 11 12
> z <- c(1:3, y)
> z
 [1] 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12

To replicate elements of a vector, you can simply use the rep() function, as follows:

> x <- rep(3, 14)
> x
 [1] 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Programming with R

[12]

You can also replicate complex patterns as follows:

> rep(seq(1, 4), 3)
 [1] 1 2 3 4 1 2 3 4 1 2 3 4

Atomic vectors can only be of one type so if you mix numbers and strings, your
vector will be coerced into the most flexible type. The most to the least flexible
vector types are Character, numeric, integer, and logical, as shown in the
following diagram:

This means that if you mix numbers with strings, your vector will be coerced into
a character vector, which is the most flexible type of the two. In the following
paragraph, there are two different examples showing this coercion in practice. The
first example shows that when a character and numeric vector are combined, the
class of this new object becomes a character vector because a character vector is more
flexible than a numeric vector. Similarly, in the second example, we see that the class
of the new object x is numeric because a numeric vector is more flexible than an
integer vector. The two examples are as follows:

Example 1:

> mixed_vector <- c(character_vector, numeric_vector)
> mixed_vector
[1] "Apple"
[2] "Pear"
[3] "Red"
[4] "Green"
[5] "These are my favorite fruits and colors"
[6] "1"
[7] "3.4"
[8] "5"
[9] "10"
> class(mixed_vector)
[1] "character"

Example 2:

> x <- c(integer_vector, numeric_vector)
> x
[1] 1.0 2.0 12.0 29.0 1.0 3.4 5.0 10.0
> class(x)
[1] "numeric"

Chapter 1

[13]

At times, you may create a group of objects and forget its name or content. R allows
you to quickly retrieve this information using the ls() function, which returns a
vector of the names of the objects specified in the current workspace or environment.

> ls()
[1] "a" "A" "b" "B" "C" "character_vector" "influence.1"
[8] "influence.1.2" "influence.2" "integer_vector" "logical_vector"
"M" "mixed_vector" "N"
[15] "numeric_vector" "P" "Q" "second.degree.mat" "small.network"
"social.network.mat" "x"
[22] "y"

At first glance, the workspace or environment is the space where you store all the
objects you create. More formally, it consists of a frame or collection of named
objects, and a pointer to an enclosing environment. When we created the variable
x, we added it to the global environment, but we could have also created a novel
environment and stored it there. For example, let's create a numeric vector y and
store it in a new environment called environB. To create a new environment in R,
we use the new.env() function as follows:

> environB <- new.env()
> ls(environB)
character(0)

As you can see, there are no objects stored in this environment yet because we
haven't created any. Now let's create a numeric vector y and assign it to environB
using the assign() function:

> assign("y", c(1, 5, 9), envir=environB)
> ls(environB)
[1] "y"

Alternatively, we could use the $ sign to assign a new variable to environB
as follows:

> environB$z <- "purple"
> ls(environB)
[1] "y" "z"

To see what we stored in y and z, we can use the get() function or the $ sign
as follows:

> get('y', envir=environB)
[1] 1 5 9
> get('z', envir=environB)
[1] "purple"
> environB$y
[1] 1 5 9

Programming with R

[14]

You can also retrieve additional information on the objects stored in your
environment using the str() function. This function allows you to inspect the
internal structure of the object and print a preview of its contents as follows:

> str(character_vector)
 chr [1:5] "Apple" "Pear" "Red" "Green" ...
> str(integer_vector)
 int [1:4] 1 2 12 29
> str(logical_vector)
 logi [1:4] TRUE TRUE FALSE FALSE

To know how many elements are present in our vector, you can use the length()
function as follows:

> length(integer_vector)
[1] 4

Finally, to extract elements from a vector, you can use the position (or index) of the
element in square brackets as follows:

> character_vector[5]
[1] "These are my favorite fruits and colors"
> numeric_vector[2]
[1] 3.4
> x <- c(1, 4, 6)
> x[2]
[1] 4

Operations on vectors
Basic mathematical operations can be performed on numeric and integer vectors
similar to those you perform on a calculator. The arithmetic operations used are
given in the following table:

Arithmetic operators
+ x

- x

x + y

x – y

x * y

x / y

x ^ y

x %% y

x %/% y

Chapter 1

[15]

For example, if we multiply a vector by 2, all the elements of the vector will be
multiplied by 2. Let's take a look at the following example:

> x <- c(1, 3, 5, 10)
> x * 2
[1] 2 6 10 20

You can also add vectors to each other, in which case the computation will be
performed element-wise as follows:

> x <- c(1, 3, 5, 10)
> y <- c(13, 15, 17, 22)
> x + y
[1] 14 18 22 32

If the vectors are of different lengths, the shorter vector will be extended to match the
length of the longer vector by recycling its elements starting from the first element.
However, you will also get a warning message from R in case you did not intend to
add vectors of differing length, as follows:

> x
[1] 1 3 5 10
> z <- c(1,3, 4, 6, 10)
> x + z #1 was recycled to complete the operation.
[1] 2 6 9 16 11
Warning message:
In x + z : longer object length is not a multiple of shorter object
length

In addition to this, the standard operators also have %%, which indicates x mod y,
and %/%, which indicates integer division as follows:

> x %% 2
[1] 1 1 1 0
> x %/% 5
[1] 0 0 1 2

Lists
Unlike atomic vectors, lists can contain different types of elements including lists.
To create a list, you use the list() function as follows:

> simple_list <- list(1:4, rep(3, 5), "cat")
> str(simple_list)
List of 3
 $: int [1:4] 1 2 3 4
 $: num [1:5] 3 3 3 3 3

www.allitebooks.com

http://www.allitebooks.org

Programming with R

[16]

 $: chr "cat"
> other_list <- list(1:4, "I prefer pears", logical_vector, x, simple_
list)
> str(other_list)
List of 5
 $: int [1:4] 1 2 3 4
 $: chr "I prefer pears"
 $: logi [1:4] TRUE TRUE FALSE FALSE
 $: num [1:3] 1 4 6
 $:List of 3
 ..$: int [1:4] 1 2 3 4
 ..$: num [1:5] 3 3 3 3 3
 ..$: chr "cat"

If you use the c() function to combine lists and atomic vectors, c() will coerce
the vectors to lists of length one before proceeding. Let's go through a detailed
example in R:

> new_list <- c(list(1, 2, simple_list), c(3, 4), seq(5, 6))

Now, let's take a look at the output of the list we just created by entering new_list
in R:

> new_list
[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[[3]][[1]]
[1] 1 2 3 4

[[3]][[2]]
[1] 3 3 3 3 3

[[3]][[3]]
[1] "cat"

[[4]]
[1] 3

[[5]]

Chapter 1

[17]

[1] 4

[[6]]
[1] 5

[[7]]
[1] 6
Output truncated here

We can further inspect the new_list object that we just created using the str()
function as follows:

> str(new_list)
List of 7
 $: num 1
 $: num 2
 $:List of 3
 ..$: int [1:4] 1 2 3 4
 ..$: num [1:5] 3 3 3 3 3
 ..$: chr "cat"
 $: num 3
 $: num 4
 $: int 5
 $: int 6

You can also coerce an atomic vector into a list using the as.list() function
as follows:

> x_as_list <- as.list(x)
> str(x_as_list)
List of 4
 $: num 1
 $: num 3
 $: num 5
 $: num 10

To access different elements in your list, you can use the index position in square
brackets [], as you would for a vector, or double square brackets [[]]. Let's take
a look at the following example:

> simple_list
[[1]]
[1] 1 2 3 4
[[2]]
[1] 3 3 3 3 3

Programming with R

[18]

[[3]]
[1] "cat"
> simple_list[3]
[[1]]
[1] "cat"

As you will no doubt notice, by entering simple_list[3], R returns a list of the
single element "cat" as follows:

> str(simple_list[3])
List of 1
 $: chr "cat"

If we use the double square brackets, R will return the object type as we initially
entered it. So, in this case, it would return a character vector for simple_list[[3]]
and an integer vector for simple_list[[1]] as follows:

> str(simple_list[[3]])
 chr "cat"
> str(simple_list[[1]])
 int [1:4] 1 2 3 4

We can assign these elements to new objects as follows:

> animal <- simple_list[[3]]
> animal
[1] "cat"
> num_vector <- simple_list[[1]]
> num_vector
[1] 1 2 3 4

If you would like to access an element of an object in your list, you can use double
square brackets [[]] followed by single square brackets [] as follows:

> simple_list[[1]][4]
[1] 4
> simple_list[1][4] #Note this format does not return the element
[[1]]
NULL
#Instead you would have to enter
> simple_list[1][[1]][4]
[1] 4

Chapter 1

[19]

Attributes
Objects in R can have additional attributes ascribed to objects that you can store with
the attr() function, as shown in the following code:

> attr(x_as_list, "new_attribute") <- "This list contains the number
of apples eaten for 3 different days"
> attr(x_as_list, "new_attribute")
[1] "This list contains the number of apples eaten for 3 different
days"
> str(x_as_list)
List of 3
 $: num 1
 $: num 4
 $: num 6
 - attr(*, "new_attribute")= chr "This list contains the number of
apples eaten for 3 different days"

You can use the structure() function, as shown in the following code, to attach an
attribute to an object you wish to return:

> structure(as.integer(1:7), added_attribute = "This vector contains
integers.")
[1] 1 2 3 4 5 6 7
attr(,"added_attribute")
[1] "This vector contains integers."

In addition to attributes that you create with attr(), R also has built-in attributes
ascribed to some of its functions, such as class(), dim(), and names(). The class()
function tells us the class (type) of the object as follows:

> class(simple_list)
[1] "list"

The dim() function returns the dimension of higher-order objects such as matrices,
data frames, and multidimensional arrays. The names() function allows you to give
names to each element of your vector as follows:

> y <- c(first =1, second =2, third=4, fourth=4)
> y
 first second third fourth
 1 2 4 4

Programming with R

[20]

You can use the names() attribute to add the names of each element to your vector
as follows:

> element_names <- c("first", "second", "third", "fourth")
> y <- c(1, 2, 4, 4)
> names(y) <- element_names
> y
 first second third fourth
 1 2 4 4

You can also modify the names of vector elements using the setNames() function
as follows:

> setNames(y, c("alpha", "beta", "omega", "psi"))
alpha beta, omega psi
 1 2 4 4

If you do not provide names for some of your vector elements, the names() function
will return empty strings, <NA>, for the missing ones as follows:

> y <- setNames(y, c("alpha", "beta", "psi"))
> names(y)
[1] "alpha" "beta" "psi" NA

However, this does not mean that all vectors require names. In the event that you
haven't provided any, names() will return NULL as follows:

> x <- 1:12
> x <- 1:12
> names(x)
NULL

You can remove names using the unname() function or by replacing the names
with NULL:

> unname(y)
[1] 1 2 4 4
> names(y) <- NULL
> names(y)
NULL

Chapter 1

[21]

Factors
When dealing with categorical data, R provides an alternative framework to store
character data termed Factors. These are specialized vectors that contain predefined
values referred to as Levels. For example, say you have data for "placebo" and
"treatment" for four patients, you could store this information as factors instead
of a character vector by using the following code:

> drug_response <- c("placebo", "treatment", "placebo", "treatment")
> drug_response <- factor(drug_response)
> drug_response
[1] placebo treatment placebo treatment
Levels: placebo treatment

To check the integers used for each level, you can use the as.integer() function
as follows:

> as.integer(drug_response)
[1] 1 2 1 2

Note that you can only adjust elements in a factor with data stored as levels.
Say you wanted to change the drug_response attribute for the fourth patient from
"treatment" to "refused treatment", you will get the following
warning message:

> drug_response[4] <- "refused treatment"
Warning message:
In `[<-.factor`(`*tmp*`, 4, value = "refused treatment") :
 invalid factor level, NA generated

In order to correct this error, you need to first add a new level to the factor using the
factor() function with the levels argument as follows:

> drug_response <- factor(drug_response, levels = c(levels(drug_
response), "refused treatment"))
> drug_response[4] <- "refused treatment"
> drug_response
[1] placebo treatment placebo refused
treatment
Levels: placebo treatment refused treatment
> as.integer(drug_response)
[1] 1 2 1 3

Programming with R

[22]

Multidimensional arrays
Multidimensional arrays are created by adding dimensions to the atomic vector
created. In computer science, an array is defined as a data structure consisting of
elements identified by at least one array index. So, atomic vectors can be seen as one-
dimensional arrays. However, as mentioned earlier, arrays can have more than one
dimension. These arrays are termed multidimensional arrays. In R, you can create
multidimensional arrays using the array() function. For example, you can create
a three-dimensional array using the array() function and specify the dimensions
with the dim argument using a vector. Let's create a three-dimensional array of
coordinates where the maximal indices in each dimension is 2, 8, and 2 for the first,
second, and third dimension, respectively:

> coordinates <- array(1:16, dim=c(2, 8, 2))
> coordinates
, , 1
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8 10 12 14 16
, , 2
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 3 5 7 9 11 13 15
[2,] 2 4 6 8 10 12 14 16

You can also change an object into a multidimensional array using the dim()
function as follows:

> values <- seq(1, 12, by=2)
> values
[1] 1 3 5 7 9 11
> dim(values) <- c(2,3)
> values
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 3 7 11
> dim(values) <- c(3,2)
> values
 [,1] [,2]
[1,] 1 7
[2,] 3 9
[3,] 5 11

Chapter 1

[23]

To access elements of a multidimensional array, you will need to list the coordinates
in square brackets [] as follows:

> coordinates[1, ,]
 [,1] [,2]
[1,] 1 1
[2,] 3 3
[3,] 5 5
[4,] 7 7
[5,] 9 9
[6,] 11 11
[7,] 13 13
[8,] 15 15
> coordinates[1, 2,]
[1] 3 3
> coordinates[1, 2, 2]
[1] 3

Matrices
Matrices are a special case of two-dimensional arrays and are often created with
the matrix() function. Instead of the dim argument, the matrix() function takes
the number of rows and columns using the ncol and nrow arguments, respectively.
Alternatively, you can create a matrix by combining vectors as columns and rows
using cbind() and rbind(), respectively:

> values_matrix <- matrix(values, ncol=3, nrow=2)
> values_matrix
 [,1] [,2] [,3]
[1,] 1 5 9
[2,] 3 7 11

We will create a matrix using rbind() and cbind() as follows:

> x <- c(1,5,9)
> y <- c(3,7,11)
> m1 <- rbind(x, y)
> m1
 [,1] [,2] [,3]
x 1 5 9
y 3 7 11
> m2 <- cbind(x,y)
> m2
 x y
[1,] 1 3
[2,] 5 7
[3,] 9 11

Programming with R

[24]

You can access elements of a matrix using its row and column number as follows:

> values_matrix[2,2]
[1] 7

Alternatively, matrices and arrays are also indexed as a vector, so you could also get
the value at (2, y) using its index as follows:

> values_matrix[4]
[1] 7
> coordinates[3]
[1] 3

Since matrices and arrays are indexed as a vector, you can use the length() function
to determine how many elements are present in your matrix or array. This property
comes in very handy when writing for loops as we will see later in this chapter in
the Flow control section. Let's take a look at the length function:

> length(coordinates)
[1] 32

The length() and names() functions have attributes with higher-dimensional
generalizations. The length() function generalizes to nrow() and ncol() for
matrices, and dim() for arrays. Similarly, names() can be generalized to rownames(),
colnames() for matrices, and dimnames() for multidimensional arrays.

Note that dimnames() takes a list of character vectors corresponding
to the names of each dimension of the array.

Let's take a look at the following functions:

> ncol(values_matrix)
[1] 3
> colnames(values_matrix) <- c("Column_A", "Column_B", "Column_C")
> values_matrix
 Column_A Column_B Column_C
[1,] 1 5 9
[2,] 3 7 11
> dim(coordinates)
[1] 2 8 2
> dimnames(coordinates) <- list(c("alpha", "beta"), c("a", "b", "c",
"d", "e", "f", "g", "h"), c("X", "Y"))
> coordinates
, , X
 a b c d e f g h
alpha 1 3 5 7 9 11 13 15
beta 2 4 6 8 10 12 14 16

Chapter 1

[25]

, , Y
 a b c d e f g h
alpha 1 3 5 7 9 11 13 15
beta 2 4 6 8 10 12 14 16

In addition to these properties, you can transpose a matrix using the t() function
and an array using the aperm() function that is part of the abind package. Another
interesting tool of the abind package is the abind() function that allows you to
combine arrays the same way you would combine vectors into a matrix using the
cbind() or rbind() functions.

You can test whether your object is an array or matrix using the is.matrix()
and is.array() functions, which will return TRUE or FALSE; otherwise, you can
determine the number of dimensions of your object with dim(). Lastly, you can
convert an object into a matrix or array using the as.matrix() or as.array()
function. This may come in handy when working with packages or functions that
require that an object be of a particular class, that is, a matrix or an array. Be aware
that even a simple vector can be stored in multiple ways, and depending on the
class of the object and function they will behave differently. Quite frequently, this
is a source of programming errors when people use built-in or package functions
and don't check the class of the object the function requires to execute the code.

The following is an example that shows that the c(1, 6, 12) vector can be stored
as a matrix with a single row or column, or a one-dimensional array:

> x <- c(1, 6, 12)
> str(x)
 num [1:3] 1 6 12 #numeric vector
> str(matrix(x, ncol=1))
 num [1:3, 1] 1 6 12 #matrix of a single column
> str(matrix(x, nrow=1))
 num [1, 1:3] 1 6 12 #matrix of a single row
> str(array(x, 3))
 num [1:3(1d)] 1 6 12 #a 1-dimensional array

Data frames
The most common way to store data in R is through data frames and, if used
correctly, it makes data analysis much easier, especially when dealing with
categorical data. Data frames are similar to matrices, except that each column can
store different types of data. You can construct data frames using the data.frame()
function or convert an R object into a data frame using the as.data.frame()
function as follows:

> students <- c("John", "Mary", "Ethan", "Dora")
> test.results <- c(76, 82, 84, 67)

www.allitebooks.com

http://www.allitebooks.org

Programming with R

[26]

> test.grade <- c("B", "A", "A", "C")
> thirdgrade.class.df <- data.frame(students, test.results, test.
grade)
> thirdgrade.class.df
 students test.results test.grade
1 John 76 B
2 Mary 82 A
3 Ethan 84 A
4 Dora 67 C
> # see page 18 for how values_matrix was generated
> values_matrix.df <- as.data.frame(values_matrix)
> values_matrix.df
 Column_A Column_B Column_C
1 1 5 9
2 3 7 11

Data frames share properties with matrices and lists, which means that you can use
colnames() and rownames() to add the attributes to your data frame. You can also
use ncol() and nrow() to find out the number of columns and rows in your data
frame as you would in a matrix. Let's take a look at an example:

> rownames(values_matrix.df) <- c("Row_1", "Row_2")
> values_matrix.df
 Column_A Column_B Column_C
Row_1 1 5 9
Row_2 3 7 11

You can append a column or row to data.frame using rbind() and cbind(), the
same way you would in a matrix as follows:

> student_ID <- c("012571", "056280", "096493", "032567")
> thirdgrade.class.df <- cbind(thirdgrade.class.df, student_ID)
> thirdgrade.class.df
 students test.results test.grade student_ID
1 John 76 B 012571
2 Mary 82 A 056280
3 Ethan 84 A 096493
4 Dora 67 C 032567

However, you cannot create data.frame from cbind() unless one of the objects you
are trying to combine is already a data frame because cbind() creates matrices by
default. Let's take a look at the following function:

> thirdgrade.class <- cbind(students, test.results, test.grade,
student_ID)
> thirdgrade.class
 students test.results test.grade student_ID

Chapter 1

[27]

[1,] "John" "76" "B" "012571"
[2,] "Mary" "82" "A" "056280"
[3,] "Ethan" "84" "A" "096493"
[4,] "Dora" "67" "C" "032567"
> class(thirdgrade.class)
[1] "matrix"

Another thing to be aware of is that R automatically converts character vectors to
factors when it creates a data frame. Therefore, you need to specify that you do not
want strings to be converted to factors using the stringsAsFactors argument in the
data.frame() function, as follows:

> str(thirdgrade.class.df)
'data.frame': 4 obs. of 4 variables:
 $ students : Factor w/ 4 levels "Dora","Ethan",..: 3 4 2 1
 $ test.results: num 76 82 84 67
 $ test.grade : Factor w/ 3 levels "A","B","C": 2 1 1 3
 $ student_ID : Factor w/ 4 levels "012571","032567",..: 1 3 4 2
> thirdgrade.class.df <- data.frame(students, test.results, test.
grade, student_ID, stringsAsFactors=FALSE)
> str(thirdgrade.class.df)
'data.frame': 4 obs. of 4 variables:
 $ students : chr "John" "Mary" "Ethan" "Dora"
 $ test.results: num 76 82 84 67
 $ test.grade : chr "B" "A" "A" "C"
 $ student_ID : chr "012571" "056280" "096493" "032567"

You can also use the transform() function to specify which columns you would
like to set as character using the as.character() or as.factor() functions. This is
because each row and column can be seen as an atomic vector. Let's take a look at the
following functions:

> modified.df <- transform(thirdgrade.class.df, test.grade =
as.factor(test.grade))
> str(modified.df)
'data.frame': 4 obs. of 4 variables:
 $ students : chr "John" "Mary" "Ethan" "Dora"
 $ test.results: num 76 82 84 67
 $ test.grade : Factor w/ 3 levels "A","B","C": 2 1 1 3
 $ student_ID : chr "012571" "056280" "096493" "032567"

You can access elements of a data frame as you would in a matrix using the row and
column position as follows:

> modified.df[3, 4]
[1] "096493"

Programming with R

[28]

You can access a full column or row by leaving the row or column index empty,
as follows:

> modified.df[, 1]
[1] "John" "Mary" "Ethan" "Dora"
#Notice the command returns a vector
> str(modified.df[,1])
 chr [1:4] "John" "Mary" "Ethan" "Dora"
> modified.df[1:2,]
 students test.results test.grade student_ID
1 John 76 B 012571
2 Mary 82 A 056280
#Notice the command now returns a data frame
> str(modified.df[1:2,])
'data.frame': 2 obs. of 4 variables:
 $ students : chr "John" "Mary"
 $ test.results: num 76 82
 $ test.grade : Factor w/ 3 levels "A","B","C": 2 1
 $ student_ID : chr "012571" "056280"

Unlike matrices, you can also access a column by using its object_name$column_
name attribute, as follows:

> modified.df$test.results
[1] 76 82 84 67

Loading data into R
There are several ways to load data into R. The most common way is to enter data
using the read.table() function or one of its derivatives, read.csv() for the .csv
files, or read.delim() for .txt files. You can also directly upload Excel data in the
.xls or .xlsx format using the gdata or XLConnect package. Other file formats
such as Minitab Portable Worksheet (.mtp) and SPSS (.spss) files can also be
opened using the foreign package.

To download a package from within R, you can use the install.packages()
function as follows:

> install.packages(pkgname.tar.gz, repos = NULL, type = "source")

Next, load the package (otherwise known as a library) using the library()
or require() function. The require() function is designed to use in functions
because it returns FALSE and a warning message, instead of the error message that
the library() returns when the package is missing. You only need to load
a package once per R session.

Chapter 1

[29]

The first thing to do before loading a file is to make sure that R is in the right
working directory. You can see where R will read and save files, by default, using the
getwd() function. Then, you can change it using the setwd() function. You should
use the full path when setting the working directory because it is easier to avoid
unwanted error messages such as Error in setwd("new_directory") : cannot
change working directory.

For example, execute the following function on a Mac operating system:

> getwd()
[1] "/Users/johnsonR/"
> setwd("/Users/johnsonR/myDirectory")

To work with data in the C: drive in the myDirectory folder on a Windows version
of R, you will need to set the working directory as follows:

> setwd("C:/myDirectory")

Then, you can use the read.table() function to load your data as follows:

#To specify that the file is a tab delimited text file we use the sep
argument with "\t"
> myData.df <- read.table("myData.txt", header=TRUE, sep="\t")
> myData.df
 A B C
1 12 6 8
2 4 9 2
3 5 13 3

Alternatively, you could use the read.delim() function instead as follows:

> read.delim("myData.txt", header=TRUE)
 A B C
1 12 6 8
2 4 9 2
3 5 13 3
> myData2.df <-read.csv("myData.csv", header=FALSE)
> myData2.df
 V1 V2 V3
1 A B C
2 12 6 8
3 4 9 2
4 5 13 3

Programming with R

[30]

By default, these functions return data frames with all string-containing columns
converted to factors unless you set stringsAsFactors=FALSE in read.table(),
read.delim(), and read.csv(). Let's take a look at an example:

> str(myData2.df)
'data.frame': 4 obs. of 3 variables:
 $ V1: Factor w/ 4 levels "12","4","5","A": 4 1 2 3
 $ V2: Factor w/ 4 levels "13","6","9","B": 4 2 3 1
 $ V3: Factor w/ 4 levels "2","3","8","C": 4 3 1 2
> myData2.df <-read.csv("myData.csv", header=FALSE,
stringsAsFactors=FALSE)
> str(myData2.df)
'data.frame': 4 obs. of 3 variables:
 $ V1: chr "A" "12" "4" "5"
 $ V2: chr "B" "6" "9" "13"
 $ V3: chr "C" "8" "2" "3"

To upload Excel sheets using the gdata package, you load the package into R and
then use the read.xls() function as follows:

> library("gdata")
> myData.df <- read.xls("myData.xlsx", sheet=1) #also uploads .xls
files and returns a data frame

Alternatively, you could upload a complete workbook and read the worksheets
separately using the XLConnect package as follows:

> library("XLConnect")
> myData.workbook <- loadWorkbook("myData.xlsx")
> myData3.df <- readWorksheet(myData.workbook, sheet="Sheet1")

To read the .mtp and .spss files, you will first load the foreign package, and then
use the read.mtp() and read.spss() functions. By default, these functions return a
list of components so you will have to convert the data into a data frame afterwards.
Alternatively, for .spss files, the read.spss() function has a to.data.frame
argument that allows it to return a data frame instead.

> myData4.df <- read.spss("myfile.spss", to.data.frame=TRUE)

Chapter 1

[31]

Saving data frames
To save an object, preferably a matrix or data frame, you can write a .txt file or a file
using another delimiter using the write.table() function. You can choose to include
row.names and col.names by setting these arguments to TRUE. The output file will
be saved to your current directory. Note that the write.table() function often saves
character vectors with quotation marks in the output file. So, I also suggest that you set
the quote argument to FALSE to avoid seeing quotation marks should you open the file
with a text editor. Let's take a look at a few examples:

> write.table(myData.df, file="savedata_file.txt", quote = FALSE, sep
= "\t", row.names=TRUE, col.names=TRUE, append=FALSE)

By default, there is no column name for a column of row names. So your output
would look like this:

V1 V2 V3
1 A B C
2 12 6 8
3 4 9 2
4 5 13 3

To correct this problem to view in a spreadsheet viewer such as Excel, you can write
the table setting as col.names=NA and row.names=TRUE, as follows:

> write.table(myData.df, file="savedata_file.txt", quote = FALSE, sep
= "\t",col.names = NA, row.names = TRUE, append=FALSE)
 V1 V2 V3
1 A B C
2 12 6 8
3 4 9 2
4 5 13 3

Alternatively, you could use the write.csv() function, which has col.names=NA
and row.names=TRUE set as defaults:

> write.csv(myData.df, file = "savedata_file.csv") #same output as
above

If you would like to save a series of data frames in an Excel workbook, we recommend
that you use the WriteXLS package, which greatly simplifies the task. Here is an
example of the code you could use to save two data frames (df1 and df2) as two
separate worksheets with the sheet names set as "df1_results" and "df2_results"
in a file called combined_dfs_workbook.xls:

> library("WriteXLS")
> dfs.tosave <- c("df1", "df2")

Programming with R

[32]

> sheets.tosave <- c("df1_results", "df2_results")
> WriteXLS(dfs.tosave, ExcelFileName = "combined_dfs_workbook.xls",
SheetNames = sheets.tosave)

You can also save and reload R objects for future sessions using the dump() and
source() functions. For example, say you created several list objects containing
important data for routine analysis. Saving a list object to a spreadsheet or .txt file
can be difficult to reload afterwards, since most read functions return a data frame.
A simpler way to proceed will be to save (or dump) the object to a file that R can
reopen (source) in another session.

The following data shows how you can save that object:

> dump("myData.df", "myData.R")
> #Or if you would like to save all objects in your session:
> dump(list=objects(), "all_objects.R")

The myData.R file created will contain all the commands necessary to recreate that
object in a future session. At a later date, you can retrieve the data as follows:

> source("mydata.R")

You can also use the save() and load() functions to save and retrieve your objects
at a later time, as follows:

> save(myData.df, file="myData.R")
> load("myData.R")

A good alternative to the save() and load() functions are the saveRDS() and
readRDS() functions, respectively. The saveRDS() function doesn't save the object
and its name; instead, it just saves a representation of the object. Therefore, when you
retrieve the data with the readRDS() function, you will need to store it in an object.
However, unlike the save() function, you can only save one object at a time with the
saveRDS() function. For example, to save the myData.df object and retrieve it later,
you can execute the following lines of code:

To save the object
> saveRDS(myData.df, "myData.rds")
To load and save the object to a new object
> myData2 <- readRDS("myData.rds")

Chapter 1

[33]

You can also redirect the R output to a file using the sink(file="filename")
function as follows:

> sink("data_session1.txt")
> x<-c(1,2,3)
> y <-c(4,5,6)
> #This is a comment
> x+y #Note the sum of x+y is redirected to data_session1.txt

To stop redirecting the output to the file and print a new output to the screen, just
run the sink() function again without any arguments as follows:

> sink()
> 3+4
[1] 7

When you open the data_session1.txt file, you will notice that only the result of
the sum of x+y is saved to the file and not the commands or comments you entered.

The following is the output in the data_session1.txt file:

[1] 5 7 9

As you can see, comments and standard input aren't included in the output. Only the
output is printed to the file specified in the sink() function.

Basic plots and the ggplot2 package
This section will review how to make basic plots using the built-in R functions and
the ggplot2 package to plot graphics.

Basic plots in R include histograms and scatterplots. To plot a histogram, we use the
hist() function:

> x <- c(5, 7, 12, 15, 35, 9, 5, 17, 24, 27, 16, 32)
> hist(x)

Programming with R

[34]

The output is shown in the following plot:

You can plot mathematical formulas with the plot() function as follows:

> x <- seq(2, 25, by=1)
> y <- x^2 +3
> plot(x, y)

The output is shown in the following plot:

Chapter 1

[35]

You can graph a univariate mathematical function on an interval using the curve()
function with the from and to arguments to set the left and right endpoints,
respectively. The expr argument allows you to set a numeric vector or function
that returns a numeric vector as an output, as follows:

For two figures per plot.
> par(mfrow=c(1,2))
> curve(expr=cos(x), from=0, to=8*pi)
> curve(expr=x^2, from=0, to=32)

In the following figure, the plot to your left shows the curve for cox(x) and the
plot to the right shows the curve for x^2. As you can see, using the from and to
arguments, we can specify the x values to show in our figure.

You can also graph scatterplots using the plot() function. For example, we can use
the iris dataset as part of R to plot Sepal.Length versus Sepal.Width as follows:

> plot(iris$Sepal.Length, iris$Sepal.Width, main="Iris sepal length vs
width measurements", xlab="Length", ylab="Width")

www.allitebooks.com

http://www.allitebooks.org

Programming with R

[36]

The output is shown in the following plot:

R has built-in functions that allow you to plot other types of graphics such as the
barplots(), dotchart(), pie(), and boxplot() functions. The following are some
examples using the VADeaths dataset:

> VADeaths
 Rural Male Rural Female Urban Male Urban Female
50-54 11.7 8.7 15.4 8.4
55-59 18.1 11.7 24.3 13.6
60-64 26.9 20.3 37.0 19.3
65-69 41.0 30.9 54.6 35.1
70-74 66.0 54.3 71.1 50.0
> barplot(VADeaths, beside=TRUE, legend=TRUE, ylim=c(0, 100),
ylab="Deaths per 1000 population", main="Death rate in VA") #Requires
that the data to plot be a vector or a matrix.

Chapter 1

[37]

The output is shown in the following plot:

However, when working with data frames, it is often much simpler to use the
ggplot2 package to make a bar plot, since your data will not have to be converted to
a vector or matrix first. However, you need to be aware that ggplot2 often requires
that your data be stored in a data frame in long format and not wide format.

The following is an example of data stored in wide format. In this example, we look
at the expression level of the MYC and BRCA2 genes in two different cell lines, after
these cells were treated with a vehicle-control, drug1 or drug2 for 48 hours:

> geneExpdata.wide <- read.table(header=TRUE, text='
 cell_line gene control drug1 drug2
 CL1 MYC 20.4 15.9 1.5
 CL2 MYC 26.9 18.1 6.7
 CL1 BRCA2 109.5 18.1 89.8
 CL2 BRCA2 121.3 24.4 120.2
 ')

Programming with R

[38]

The following is the data rewritten in long format:

> geneExpdata.long <- read.table(header=TRUE, text='
 cell_line gene variable value
1 CL1 MYC control 20.4
2 CL2 MYC control 26.9
3 CL1 BRCA2 control 109.5
4 CL2 BRCA2 control 121.3
5 CL1 MYC drug1 15.9
6 CL2 MYC drug1 18.1
7 CL1 BRCA2 drug1 18.1
8 CL2 BRCA2 drug1 24.4
9 CL1 MYC drug2 1.5
10 CL2 MYC drug2 6.7
11 CL1 BRCA2 drug2 89.8
12 CL2 BRCA2 drug2 120.2
')

Instead of rewriting the data frame by hand, this process can be automated using the
melt() function, which is a part of the reshape2 package:

> library("reshape2")
> geneExpdata.long<- melt(geneExpdata.wide, id.vars=c("cell_
line","gene"), measure.vars=c("control", "drug1", "drug2"), variable.
name="condition", value.name="gene_expr_value")

Now, we can plot the data using ggplot2 as follows:

> library("ggplot2")
> ggplot(geneExpdata.long, aes(x=gene, y= gene_expr_value)) + geom_
bar(aes(fill=condition), colour="black", position=position_dodge(),
stat="identity")

Chapter 1

[39]

The output is shown in the following plot:

Another useful trick to know is how to add error bars to bar plots. Here, we have a
summary data frame of standard deviation (sd), standard error (se), and confidence
interval (ci) for the geneExpdata.long dataset as follows:

> geneExpdata.summary <- read.table(header=TRUE, text='
 gene condition N gene_expr_value sd se ci
1 BRCA2 control 2 115.40 8.343860 5.90 74.96661
2 BRCA2 drug1 2 21.25 4.454773 3.15 40.02454
3 BRCA2 drug2 2 105.00 21.496046 15.20 193.13431
4 MYC control 2 23.65 4.596194 3.25 41.29517
5 MYC drug1 2 17.00 1.555635 1.10 13.97683
6 MYC drug2 2 4.10 3.676955 2.60 33.03613
')

> #Note the plot is stored in the p object
> p<- ggplot(geneExpdata.summary, aes(x=gene, y= gene_expr_value,
fill=condition)) + geom_bar(aes(fill=condition), colour="black",
position=position_dodge(), stat="identity")
> #Define the upper and lower limits for the error bars
> limits <- aes(ymax = gene_expr_value + se, ymin= gene_expr_value -
se)
> #Add error bars to plot
> p + geom_errorbar(limits, position=position_dodge(0.9), size=.3,
width=.2)

Programming with R

[40]

The result is shown in the following plot:

Going back to the VADeaths example, we could also plot a Cleveland dot plot
(dot chart) as follows:

> dotchart(VADeaths,xlim=c(0, 75), xlab=Deaths per 1000, main="Death
rates in VA")

Note that the built-in dotchart() function requires that the
data be stored as a vector or matrix.

Chapter 1

[41]

The result is shown in the following plot:

The following are some other graphics you can generate with built-in R functions:

You can generate pie charts with the pie() function as follows:

> labels <- c("grp_A", "grp_B", "grp_C")
> pie_groups <- c(12, 26, 62)
> pie(pie_groups, labels, col=c("white", "black", "grey")) #Fig. 3B

You can generate box-and-whisker plots with the boxplot() function as follows:

> boxplot(value ~ variable, data= geneExpdata.long, subset=gene ==
"MYC", ylab="expression value", main="MYC Expression by Condition",
cex.lab=1.5, cex.main=1.5)

Note that unlike other built-in R graphing functions, the boxplot()
function takes data frames as the input.

Programming with R

[42]

Using our cell line drug treatment experiment, we can graph MYC expression for all
cell lines by condition. The result is shown in the following plot:

The following is another example using the iris dataset to plot Petal.Width
by Species:

> boxplot(Petal.Width ~ Species, data=iris, ylab="petal width", cex.
lab=1.5, cex.main=1.5)

The result is shown in the following plot:

Chapter 1

[43]

Flow control
In this section, we will review flow-control statements that you can use when
programming with R to simplify repetitive tasks and make your code more legible.
Programming with R involves putting together instructions that the computer will
execute to fulfill a certain task. As you have noticed this far, R commands consist
mainly of expressions or functions to be evaluated. Most programs are repetitive
and depend on user input prior to executing a task. Flow-control statements are
particularly important in this process because it allows you to tell the computer how
many times an expression is to be repeated or when a statement is to be executed. In
the rest of this chapter, we will go through flow-control statements and tips that you
can use to write and debug your own programs.

The for() loop
The for(i in vector){commands} statement allows you to repeat the code written
in brackets {} for each element (i) in your vector in parenthesis.

You can use for() loops to evaluate mathematical expressions. For example, the
Fibonacci sequence is defined as a series of numbers in which each number is the
sum of the two preceding numbers. We can get the first 15 numbers that make up
the Fibonacci sequence starting from (1, 1), using the following code:

> # First we create a numeric vector with 15 elements to store the
data generated.
> Fibonacci <- numeric(15)
> Fibonacci
 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Next, we need to write down the code that will allow us to generate the Fibonacci
sequence. If the first two elements of the sequence are (1, 1) and every subsequent
number is the sum of the two preceding numbers, then the third element is 1 + 1 = 2
and the fourth element is 1 + 2 = 3, and so on.

So, let's add the two first elements of the Fibonacci sequence in our Fibonacci
vector as shown:

> Fibonacci[1:2] <- c(1,1)

Programming with R

[44]

Next, let's create a for() loop, which will add the sum of the two preceding numbers
indexed at i-2 and i-1 from i=3 to i=15 (the length of the Fibonacci numeric
vector we initially created):

> for(i in 3:length(Fibonacci)){Fibonacci[i] <- Fibonacci[i-2] +
Fibonacci[i-1]}
> Fibonacci
 [1] 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

In this example, the vector evaluated by the for() loop is 3:length(Fibonacci),
but we could have also expressed the vector as c(3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15) or seq(3, 15, by=1). To simplify our code, we can create a
separate vector to store the sequence and then write our for() loop as follows:

> Fibonacci_terms <- seq(3, 15, by=1)
> for(i in Fibonacci_terms){Fibonacci[i] <- Fibonacci[i-2] +
Fibonacci[i-1]}

You don't always have to use a numeric or integer vector when writing for() loops.
For example, you can use a character vector in a for() loop to update strings in
another vector as follows:

> fruits <- c("apple", "pear", "grapes")
> other_fruits <- c("banana", "lemon")
> for (i in fruits){other_fruits <-c(other_fruits, i)} #appends fruits
to other_fruits vector
> other_fruits
[1] "banana" "lemon" "apple" "pear" "grapes"

The apply() function
A good alternative to the for() loop is the apply() function, which allows you
to apply a function to a matrix or array by row, column, or both. For example,
let's calculate the mean of a matrix by row using the apply() function. First,
let's create a matrix as follows:

> m1 <-matrix(1:12, nrow=3)
> m1
 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

Chapter 1

[45]

The second argument of the apply() function is MARGIN, which allows you to specify
whether the function should be applied by row with 1, by column with 2, or both
with c(1,2). Since we want to calculate the mean by row, we will use 1 for MARGIN,
as follows:

> meanByrow <- apply(m1, 1, mean)
> meanByrow
[1] 5.5 6.5 7.5

The last argument of the apply() function is FUN, which refers to the function to be
applied to the matrix. In our last example, we used the mean() function. However,
you can use any function including those you wish to write yourself. For example,
let's apply the x+3 function to each value in the matrix as follows:

Notice there is no comma between function(x) and x+3 when defining
the function in apply()
> m1plus3 <- apply(m1, c(1,2), function(x) x+3)
> m1plus3
 [,1] [,2] [,3] [,4]
[1,] 4 7 10 13
[2,] 5 8 11 14
[3,] 6 9 12 15

In the event that you want to specify arguments of a function, you just need to add
them after the function. For example, let's say you want to apply the mean function
by column to a second matrix but this time by specifying the na.rm argument as
TRUE instead of the default (FALSE). Let's take a look at that in that in the following
example:

> z <- c(1, 4, 5, NA, 9,8, 3, NA)
> m2 <- matrix(z, nrow=4)
> m2
 [,1] [,2]
[1,] 1 9
[2,] 4 8
[3,] 5 3
[4,] NA NA
Notice you need to separate the argument from its function with a
comma
> meanByColumn <- apply(m2, 2, mean, na.rm=TRUE)
> meanByColumn
[1] 3.333333 6.666667

www.allitebooks.com

http://www.allitebooks.org

Programming with R

[46]

The if() statement
The if(condition){commands} statement allows you to evaluate a condition
and if it returns TRUE, the code in brackets will be executed. You can add an else
{commands} statement to your if() statement if you would like to execute a block
of code if your condition returns FALSE:

> x <- 4
> # we indent our code to make it more legible
> if(x < 10) {
 x <-x+4
 print(x)
}
[1] 8

If you have several conditions to test before running an else {} statement, you can
use an else if(condition){commands} statement as follows:

> x <- 1
> if(x == 2) {
 x <- x+4
 print("X is equal to 2, so I added 4 to it.")
} else if (x > 2) {
 print("X is greater than 2, so I did nothing to it.")
} else {
 x <- x -4
 print("X is not greater than or equal to 2, so I subtracted 4 from
it.")
}
[1] "X is not greater than or equal to 2, so I subtracted 4 from it."

The while() loop
The while(condition){commands} statement allows you to repeat a block of
code until the condition in the parenthesis returns FALSE. If we look back at our
Fibonacci sequence example, we could have written our program using a while()
loop instead, as follows:

First, we create two objects to store the first and second number of the
Fibonacci sequence:

> num1 <- 1
> num2 <- 1

Chapter 1

[47]

Then, we create a numeric vector to contain the first two numbers of the
Fibonacci sequence:

> Fibonacci <- c(num1, num2)

Next, we create a count object to store the number of elements added to the
Fibonacci vector. We start the count at 2 since the first two numbers have already
been added to the Fibonacci vector as follows:

> count <- 2 #set count to start from 2

> while(count < 15) {

#We update the count number so that we can track the number of times
the loop is repeated.
count <- count +1

#Next we make sure to store the 2nd number in a new object before it
is overwritten.
oldnum2 <- num2

#Then we calculate the next number in the Fibonacci sequence.
num2 <- num1 + num2

#Then we update the Fibonacci vector with the 2nd number each time the
loop is repeated.
Fibonacci <- c(Fibonacci, num2)

#Lastly, we assign the 2nd number as the new first number to use in
the next iteration of the loop.
num1 <- oldnum2

}
> Fibonacci
 [1] 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

The repeat{} and break statement
The repeat{commands} statement is similar to the while() loop except that you
do not need to set a condition to test, and your code is repeated endlessly unless
you include a break statement. Typically, a repeat{} statement includes an
if(condition) break line, but this is not required. The break statement causes the
loop to terminate immediately.

Programming with R

[48]

If we go back to our Fibonacci example, we could have written the code as follows:

> num1 <- 1
> num2 <- 1
Fibonacci <- c(num1, num2)
> count <- 2
> repeat {
count <- count +1
oldnum2 <- num2
num2 <- num1 + num2
Fibonacci <- c(Fibonacci, num2)
num1 <- oldnum2
if (count >= 15) { break }
}

Functions
Functions are bits of code that perform a particular task and print or return its output
to an object. Writing functions are particularly useful to avoid rewriting code over
and over in your program; instead, you can write a function and every time you
would like to perform that particular task, you can call that function. In fact, all the
code we used so far in our examples call built-in or third-party R package functions.

For example, we ask for the mean of x using the following code:

> x <- c(2, 6, 7, 12)
> mean(x)
[1] 6.75

In the preceding code, we are actually asking R to call the mean() function.
Each function takes arguments. If you would like to know what arguments could
be passed to a particular R function, you can consult the help page. There are several
ways to access the help documentation in R. First, you can use the help() function
as follows:

> help(mean)
Description
Generic function for the (trimmed) arithmetic mean.
Usage
mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)
Arguments

Chapter 1

[49]

x An R object. Currently there are methods for numeric/logical
vectors and date, date-time, and time interval objects. Complex
vectors are allowed for trim = 0, only.
trim the fraction (0 to 0.5) of observations to be trimmed from each
end of x before the mean is computed. Values of trim outside that
range are taken as the nearest endpoint.
na.rm a logical value indicating whether NA values should be stripped
before the computation proceeds.
... further arguments passed to or from other methods.
[…]

Alternatively, you can use the ? symbol to obtain the documentation page for the
mean function as follows:

> ?mean #Returns the same output as above

Alternatively, you may also want to search all the help topics as shown in the
following screenshot for the mean word with the ?? symbol as follows:

> ??mean

As you can see in the preceding screenshot, R returns a table of all the search results
matching the word "mean" for all the packages you have installed on your computer.

Programming with R

[50]

The help page is very useful because it tells you what type of object the function
takes as input and a list of all the arguments it takes. The help page also informs you
of the default settings used for all the arguments the function takes. By consulting
the help page for the mean() function, you learn that the default settings are trim=0
and na.rm=FALSE. With trim set to 0, no observations or values are removed prior
to calculating the mean, and with na.rm set to FALSE, all NA entries are not removed
before calculating the mean. Consider the following example:

> x <- c(2, 6, 7, 12, NA, NA)
> mean(x)
[1] NA

If we specify na.rm=TRUE, the NA entries are ignored as follows:

> mean(x, na.rm=TRUE)
[1] 6.75

So far, we have been changing default parameters by explicitly specifying which
arguments to change, that is, na.rm=TRUE. However, R also allows you to change
default parameters using the argument position only. This means we can rewrite the
last command as follows:

> #notice "," is used to specify unchanged missing arguments in the
order they appear in the function definition on the help page
> mean(x, ,TRUE)
[1] 6.75

This also holds true for the functions you may write as well. Let's write a simple
function called vectorContains() to test whether a vector contains the number 3.
To define a function in R, we write the word function and our list of arguments
contained in parenthesis () followed by curly braces that contains the sequence of
commands we want our function to execute. For example, let's write a function to
check whether the value 3 is present in a vector. Here are the steps we will take to
write a function to check whether a value (in this case, 3) is present in an input vector:

1.	 We create a function called vectorContains and use an argument (variable)
value.to.check to store the value we want to check.

2.	 We check that the input object type is numeric using the is.numeric()
function.

3.	 We ensure that there are no missing (NA) values using the any() and
is.na() functions. The any() function will check each entry and the
is.na() function will return TRUE if NA is present. Because we want to
return TRUE when there is no NA present instead of when an NA is present, we
use the ! sign before the any(is.na()) command.

Chapter 1

[51]

4.	 We use an if else {} statement to return an error message if the vector
isn't numeric and/or contains NA values using the stop() function.

5.	 We create an object value.found to keep track of whether the value to be
checked is found. We initially set value.found to FALSE because we assume
the value is not present.

6.	 We check each value of our input vector using a for() loop. If an element (i)
of our vector matches value.to.check, we set value.found to "yes" and
break out of the for() loop.

7.	 Depending on whether value.found is set to "yes" or "no", we return TRUE
or FALSE as follows:

> vectorContains <- function(v1, value.to.check=3){
 if(is.numeric(v1) && !any(is.na(v1))) {
 value.found <- "no"
 for (i in v1){
 if(i == value.to.check) {
 value.found <- "yes"
 break
 }
 }
 if(value.found == "yes") {
 return(TRUE)
 } else {
 return(FALSE)
 }
 } else {
#When it exits the function it will print the following error
message
 stop("This function takes a numeric vector without NAs as
input.")
 }
}

Now, let's test our function as follows:

> x <- c(2, 6, 7, 12, NA, NA)

> vectorContains(x)
Error in vectorContains(x) :
 This function takes a numeric vector without NAs as input.
> y <- c(1, 4, 6, 8, 3, 12, 15)
> vectorContains(y)
[1] TRUE

Programming with R

[52]

Suppose we want to test whether a vector contains the value 6 instead of 3, we can
easily change the default value.to.check from 3 to 6, as follows:

> vectorContains(y, 6)
[1] TRUE
> vectorContains(y, value.to.check=17)
[1] FALSE

Hopefully, in the preceding example, you can see that the beauty of writing
functions instead of individual commands because you can reuse this function to
check whether a vector contains any particular value. Moreover, by saving these
lines of code to a text document (for example, vectorfunction.R), you can reload
this function in a later session using the source() command instead of rewriting the
function, as follows:

> source("/PathToFile/vectorfunction.R")

General programming and debugging
tools
Since this chapter is meant to review R programming, I will not go into too much
detail on how to write a program step by step, but I will present some general advice
on how to write a successful program.

First, it is essential that you understand the problem because R will only do what you
tell it to do. So if you don't have a clear picture of the problem, it's best you sit down
and work out what you want your program to do and think about what R tools
and/or packages are available to help you fulfill your task. Once you've explored
the R functions and packages available to you to help address your question, you
should simplify your problem by writing down general steps and functions
you can use to solve your problem and then translate your general ideas into a
detailed implementation.

A good strategy to adopt when working on a detailed implementation for a program
is to use the "top-down" design approach, which consists of writing the whole
program in a couple of steps like you would an essay outline. Then, expand each
step with additional key steps and keep expanding until you have a full program.
To save time and make your code more legible, I would suggest breaking up each of
your key steps into functions, and then run and check each function iteratively. As
a general rule of thumb, if your function starts to get really long, that is, dozens of
line, I would suggest thinking of ways to break down that function into a bunch of
smaller functions or "subfunctions", in the same way you would break down really
long paragraphs into smaller ones when writing an essay.

Chapter 1

[53]

The beauty of programming resides in the ability to write and reuse functions in
several programs. By writing generic functions that fulfill specific tasks, you can
reuse that code in another program by simply executing the following code:

> source("someOtherfunctions.R")

The trickiest part of programming is finding and solving errors (debugging). The
following is a list of some generic steps you can take when trying to solve a bug:

1.	 Recognize that your program has a bug. This can be easy when you get an
error or warning message but harder when you get an output that is not the
output expected or the true answer to your problem.

2.	 Make the bug reproducible. It is easier to fix a bug that you know how
to trigger.

3.	 Identify the cause of the bug. For example, this can be a variable, not
updating it the way you wanted it to in a function, or a condition statement
that can never return TRUE as written. Other common causes of error for
beginners include testing for a match (equality) by writing if(x = 12)
instead of if(x==12), or the inability of your code to deal with missing data
(NA values).

4.	 Fix the error in your code and test whether you successfully fixed it.
5.	 Look for similar errors elsewhere in your code.

One trick you can use to help you tease out the cause of your error
message is the traceback() function. For example, when we tried
to the vectorContains(x), we got the error message "This
function takes a numeric vector as input." If someone
wanted to see where the error message was coming from, they could
run traceback() and get the location as follows:

> traceback()

2: stop("This function takes a numeric vector as
input.") at #38

1: vectorContains(x)

Other useful functions include the browser() and debug() functions. The
browser() function allows you to pause the execution of your function, and examine
or change local variables, and even execute other R commands. Let's inspect the
vectorContains() function we wrote earlier with the browser() function as
follows:

> x <- c(2, 6, 7, 12, NA, NA)
> browser()

Programming with R

[54]

We have now entered the Browser mode.
Browse[1]> x <-c(1, 2, 3)
Browse[1]> vectorContains(x)
Error in vectorContains(x) :
 This function takes a numeric vector without NAs as input.
Browse[1]> x <-c(1, 2, 3)
Browse[1]> vectorContains(x)
[1] TRUE
Browse[1]> Q #To quit browser()

Note that the variable x we changed in the browser mode was
stored to our workspace. So if we enter x after we quit, the values
stored in browser mode will be returned, as follows:

> x

[1] 1 2 3

When we call the debug() function, we also enter the browser mode. This allows us
to execute a single line of code at a time by entering n for next, continue to run the
function by entering c, or quit the function by entering Q like in browser mode. Note
that each time you call the function, you will enter the browser mode unless you run
the undebug() function.

The following is an example using debug to inspect our vectorContains() function:

> debug(vectorContains)
> x <- c(1, 2, 3, 9)
> vectorContains(x)
debugging in: vectorContains(x)
debug at #1: {
 if (is.numeric(v1) && !any(is.na(v1))) {
 value.found <- "no"
 for (i in v1) {
 if (i == value.to.check) {
 value.found <- "yes"
 break
 }
 }
 if (value.found == "yes") {
 return(TRUE)
 }
 else {
 return(FALSE)

Chapter 1

[55]

 }
 }
 else {
 stop("This function takes a numeric vector as input.")
 }
}
Browse[2]> c
exiting from: vectorContains(x)
[1] TRUE
> undebug(vectorContains)
> vectorContains(x)
[1] TRUE

Notice that debug only enters the browser mode when you call the
vectorContains function.

Summary
In this chapter, we saw how data is stored and accessed in R. We also discussed
how to write functions. You should now be able to write and access data in vectors,
arrays, and data frames, and load your data into R. We also learned how to make
basic plots using built-in R functions and the ggplot2 package. You should also
know how to use flow-control statements in your code and write your own
functions and use built-in tools to troubleshoot your code.

Now that you have a foundation in R data structures, we will move on to statistical
methods in the next chapter, where you will find out how to obtain useful statistical
information from your dataset and fit your data to known probability distributions.

www.allitebooks.com

http://www.allitebooks.org

Statistical Methods with R
This chapter will present an overview of how to summarize your data and get useful
statistical information for downstream analysis. We will also show you how to plot
and get statistical information from probability distributions and how to test the
fit of your sample distribution to well-defined probability distributions. We will
also go over some of the functions used to perform hypothesis testing including the
Student's t-test, Wilcoxon rank-sum test, z-test, chi-squared test, Fisher's exact test,
and F-test.

Before we begin, we will load the gene expression profiling data from the
E-GEOD-19577 study entitled "MLL partner genes confer distinct biological and
clinical signatures of pediatric AML, an AIEOP study" from the ArrayExpress
website to use as a sample dataset for some of our examples. For simplicity, we
will not go into the details of how the data was generated, except to mention that
the study evaluates the expression level of 54,675 probes in 42 leukemia patients'
samples. If you would like to learn more about the study, please consult the
experiment web page at http://www.ebi.ac.uk/arrayexpress/experiments/E-
GEOD-19577. Here are the steps we will follow to load the data into R:

1.	 Download the R ExpressionSet (E-GEOD-19577.eSet.r).
2.	 Load the dataset with the load() function. This command will create the

study object, which contains the raw experimental data.
3.	 Rename the study object as MLLpartner.dataset.
4.	 Load the Biobase and affy bioconductor packages.
5.	 Normalize the data with the rma() function.
6.	 Inspect the data.

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-19577
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-19577

Statistical Methods with R

[58]

These steps can be implemented in R, as follows:

> load(url("http://www.ebi.ac.uk/arrayexpress/files/E-GEOD-19577/E-
GEOD-19577.eSet.r"))
> MLLpartner.ds <- study
> library("affy")
> library("Biobase")
> AEsetnorm = rma(MLLpartner.ds)
Background correcting
Normalizing
Calculating Expression
> head(exprs(AEsetnorm)) #output shown truncated
 GSM487973 GSM487972 GSM487971 GSM487970 GSM487969
1007_s_at 4.372242 4.293080 4.210850 4.707231 4.345101
1053_at 8.176033 8.541016 8.338475 7.935021 7.868985
117_at 5.730343 8.723568 5.172717 5.404062 5.731468
121_at 7.744487 6.951332 7.202343 7.158402 6.959318
1255_g_at 2.707115 2.717625 2.699625 2.698669 2.701679
1294_at 9.077232 7.611238 9.649630 7.911132 9.732346

Now, let's get the expression values for two probes to be used in our examples,
as follows:

> probeA <- as.numeric(exprs(AEsetnorm)[1,])
> probeA <- setNames(probeA, colnames(exprs(AEsetnorm)))
> probeB <- as.numeric(exprs(AEsetnorm)[2,])
> probeB <-setNames(probeB, colnames(exprs(AEsetnorm)))

Now, let's create a matrix with all the expression values for each probe evaluated in
the 42 patient samples, as follows:

> MLLpartner.mx <- as.matrix(exprs(AEsetnorm))
> #Lets save the object to our session
> dump("MLLpartner.mx", "MLLpartner.R")
> class(MLLpartner.mx)
[1] "matrix"
> dim(MLLpartner.mx)
[1] 54675 42

Chapter 2

[59]

Descriptive statistics
A useful tool to evaluate your data before you begin your analysis is the summary()
function, which provides a summary of the non-parametric descriptors of a sample,
as follows:

> summary(probeA)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 4.211 4.645 4.774 4.774 4.892 5.231

You can also get a summary for each column of the matrix using the summary()
function, as follows:

> summary(MLLpartner.mx) #output truncated
 GSM487973 GSM487972 GSM487971
 Min. : 2.112 Min. : 1.805 Min. : 1.994
 1st Qu.: 3.412 1st Qu.: 3.410 1st Qu.: 3.411
 Median : 4.736 Median : 4.745 Median : 4.731
 Mean : 5.342 Mean : 5.346 Mean : 5.355
 3rd Qu.: 6.870 3rd Qu.: 6.851 3rd Qu.: 6.933
 Max. :14.449 Max. :14.453 Max. :14.406

We can also get this information by calling the individual functions used to
determine these parameters, namely the mean, median, min, max, and quantile
functions, as follows:

> min(probeA)
[1] 4.21085
> max(probeA)
[1] 5.231199
> mean(probeA)
[1] 4.773866
> median(probeA)
[1] 4.774236
> quantile(probeA)
 0% 25% 50% 75% 100%
4.210850 4.644994 4.774236 4.892259 5.231199

You can also specify which probabilities to use with the probs argument, as follows:

> quantile(probeA, probs = c(0.1, 0.2, 0.6, 0.9))
 10% 20% 60% 90%
4.375377 4.576501 4.821101 5.118735

Statistical Methods with R

[60]

To avoid getting a string of numbers in your output, you can specify the number of
decimal places to be displayed using the round() function, as follows:

> round(mean(probeA), 2)
[1] 4.77

Suppose we also had information on the response to the drugA treatment for those
42 patient samples, we could include it to the probeA and probeB gene expression
levels, as follows:

> df <- data.frame(expr_probeA=probeA, expr_probeB=probeB, drugA_
response= factor(rep(c("success", "fail"), 21)))
> head(df)
 expr_probeA expr_probeB drugA_response
GSM487973 4.372242 8.176033 success
GSM487972 4.293080 8.541016 fail
GSM487971 4.210850 8.338475 success
GSM487970 4.707231 7.935021 fail
GSM487969 4.345101 7.868985 success
GSM487968 4.586062 7.909702 fail

Now, we can get a summary for each column by response to the drugA treatment
using the by() function, as follows:

> by(df, df$drugA_response, summary)
df$drugA_response: fail
 expr_probeA expr_probeB drugA_response
 Min. :4.293 Min. :6.960 fail :21
 1st Qu.:4.687 1st Qu.:7.935 success: 0
 Median :4.766 Median :8.245
 Mean :4.786 Mean :8.201
 3rd Qu.:4.895 3rd Qu.:8.575
 Max. :5.218 Max. :8.926

df$drugA_response: success
 expr_probeA expr_probeB drugA_response
 Min. :4.211 Min. :6.652 fail : 0
 1st Qu.:4.571 1st Qu.:7.597 success:21
 Median :4.776 Median :7.921
 Mean :4.762 Mean :7.950
 3rd Qu.:4.885 3rd Qu.:8.338
 Max. :5.231 Max. :9.033

Chapter 2

[61]

Data variability
In addition to general information from the mean, median, and quantiles functions,
we are often interested in knowing how variable our data points are from each other.
The simplest measure of variability is the range, which is the difference between the
largest and smallest value. We can obtain the range by subtracting the maximum
value from the minimum value, or simply using the range() function, as shown in
the following code:

> max(probeA) - min(probeA)
[1] 1.02035
> range(probeA)
[1] 4.210850 5.231199

Other measures of variability include the variance and standard deviation. The
variance is defined as the average squared deviation of the data values from the
mean. More formally, the population variance is defined as:

()22

1

1 N

i
i

x
N

σ µ
=

= −∑

In the preceding formula, N is the size and µ is the mean of the population given by
each data point ix . The sample variance is defined as:

()22 2

1

1
1 1

n

y i
i

ns y y
n n

σ
=

= = −
− − ∑

In the preceding formula, n is the number of samples from the population, n is less
than N and y is the sample mean.

In other words, the sum of squares divided by the number of data values (n) for a
population and the degrees of freedom (n-1) for a sample. We can find the mean
using the mean() function, as follows:

> mean(probeA)
[1] 4.773866

We can calculate the sum of squares in R using the sum() function, as follows:

> probeA.soq <- sum((probeA-mean(probeA))^2)
[1] 2.734039

Statistical Methods with R

[62]

Now, we can easily calculate the unbiased sample variance by dividing the sum of
squares by the number of degrees of freedom defined as (n-1), where n is length()
of the probeA vector, as shown in the following command:

> d.f <- length(probeA) - 1
> probeA.soq/(d.f)
[1] 0.06668388

A quicker way to get the variance would be to use the var() function, as shown in
the following command:

 > var(probeA)
[1] 0.06668388

Another measure of variability is the standard deviation defined as the square root
of the sample variance. To get the standard deviation for our probeA data, we can
write the formula using the sqrt() function to get the square root of the variance or,
more simply, use the sd() function, as shown in the following command:

> sqrt(var(probeA))
[1] 0.2582322
> sd(probeA)
[1] 0.2582322

Often, it is important to determine how reliable our measures are by calculating the
standard error of the mean, defined as the square root of the variance divided by
the number of samples, as shown in the following command:

> sqrt(var(probeA)/length(probeA))
[1] 0.0398461

Confidence intervals
Another way we can assess the reliability of our measurements is by determining
the confidence intervals for the mean of our data points. Confidence intervals
(CI) estimate the range the mean would fall in, should the experiment or exercise
be repeated. We can calculate the confidence intervals for the mean of our sample
distribution by multiplying the standard error by the t value associated with a
significance level of α equal to 0.025 or 0.975 quantile of the t-distribution with 41
degrees of freedom. The qt() function gives us the quantiles of the t-distribution for
n degrees of freedom, which we can apply in the formula to calculate the confidence
interval, as shown in the following code:

> std.err.s2A <- sqrt(var(probeA)/length(probeA))
> qt(.975, d.f)* std.err.s2A
[1] 0.08047082

Chapter 2

[63]

Therefore, the mean of the gene expression values for probeA is 4.77 ± 0.080 for the
42 samples with a 95 percent confidence interval.

Probability distributions
R makes it very easy to plot and get statistical information on many probability
distributions. For those who are not familiar with probability distributions, they are
defined as a table or an equation that links each outcome of a statistical experiment
with its probability of occurrence. A summary of many common probability
distributions available in R is available in the following table:

Probability distribution R name
Beta beta
Binomial binom
Cauchy cauchy
Chi square chisq
Exponential exp
F f
Gamma gamma
Geometric geom
Hypergeometric hyper
Logistic logis
Lognormal lnorm
Negative Binomial nbinom
Normal norm
Poisson pois
Student t t
Uniform unif
Tukey tukey
Weibull weib
Wilcoxon wilcox

You can also get this summary in R by entering help("distributions"). For
additional probability distributions, and the packages needed to load them, you can
consult the CRAN distributions page at http://cran.r-project.org/web/views/
Distributions.html.

http://cran.r-project.org/web/views/Distributions.html
http://cran.r-project.org/web/views/Distributions.html

Statistical Methods with R

[64]

For each probability distribution, you can obtain the function that generates the mass
or the probability function by adding the d prefix, the cumulative density function by
adding the p prefix, and the quantile function by adding the q prefix to the R name,
shown in the previous table. You can also generate random numbers from these
probability distributions by adding the r prefix to the R name. For example, you can
use qnorm() to call the quantile function for a normal distribution and rpois() to
generate random numbers from a Poisson distribution.

For the 0.65 quantile of a normal distribution with a mean of 7.5 and standard
deviation of 4, we would enter:

> qnorm(0.65, mean=7.5, sd=4)
[1] 9.041282

To generate seven random numbers from a Poisson distribution with a lambda equal
to 4, we would enter:

> rpois(7, lambda=4)
[1] 2 3 5 4 6 3 5

Now, let's consider a more detailed example using probability distribution functions
to solve a particular problem. Say the average number of liters of water consumed
per day for children under the age of 12 has a normal distribution with a mean of 7.5
and a standard deviation of 3.5. Since the 68–95–99.7 rule (also known as the three-
sigma rule or empirical rule) states that 99.7 percent randomly generated values will
fall within three standard deviations of the mean in a normal distribution, we can
approximate the interval values to be used for the x values in our plot, as follows:

> ld.mean <- 7.5
> ld.sd <- 1.5
> ld.mean+3*ld.sd
[1] 12
> ld.mean-3*ld.sd
[1] 2

So, from these calculations, we can use an interval of [0, 16] because most random
numbers generated will fall between 2 and 12:

> x <- seq(0, 16, length=100)

Next, we will use the dnorm() function, along with our mean and standard
deviation, to return the density curve for average liters of water consumed
per day for children under the age of 12:

> nd.height <- dnorm(x, mean = 7.5, sd = 1.5)

Chapter 2

[65]

Now, we can plot the normal curve for probability distribution in R using the plot()
function. We will set type = "l" in the plot() function to graph a line instead of
points, as shown in the following command:

> plot(x, nd.height, type = "l", xlab = "Liters per day", ylab =
"Density", main = "Liters of water drank by school children < 12 years
old")

The graph for this normal curve is shown in the following plot:

Suppose we want to evaluate the probability of a child drinking less than 4 liters of
water per day. We can get this information by measuring the area under the curve to
the left of 4 using pnorm(), as shown in the following code to return the cumulative
density function. Since we want to measure the area to the left of the curve, we set
lower.tail=TRUE (default command) to the pnorm() function; otherwise, we will
enter lower.tail=FALSE to measure the area to the right of the curve:

> pnorm(4, mean = 7.5, sd = 1.5, lower.tail = TRUE)
 [1] 0.009815329

We can plot the cumulative density function for x, as follows:

> ld.cdf <- pnorm(x, mean = 7.5, sd = 1.5, lower.tail = TRUE)
> plot(x, ld.cdf, type = "l", xlab = "Liters per day", ylab =
"Cumulative Probability")

Statistical Methods with R

[66]

The result is shown in the following graph:

We can also plot the cumulative probability of a child drinking more than 8 liters
of water per day on our normal curve by setting upper and lower boundaries
and then coloring in that area using the polygon() function. By looking at our
cumulative density function plot (shown in the previous diagram), we can see that
the probability of a child drinking more than 15 liters per day approaches zero so
we can set our upper limit to 15.

Plot the normal curve using the plot() function, as follows:

> plot(x, nd.height, type = "l", xlab = "Liters per day", ylab =
"Density")

Set the lower and upper limits, as follows:

> ld.lower <- 8
> ld.upper <- 15

Get all values of x that fall between 8 and 15:

> i <- x >= ld.lower & x <= ld.upper #returns a logical vector

Chapter 2

[67]

Now, we can highlight the area under the curve corresponding to the probability of a
child drinking more than 8 liters of water in red with the polygon() function:

> polygon(c(ld.lower,x[i], ld.upper), c(0, nd.height [i],0),
col="red")
> abline(h = 0, col = "gray")

Calculate the cumulative probability of a child drinking more than 8 liters of water
per day:

> pb <- round(pnorm(8, mean = 7.5, sd = 1.5, lower.tail = FALSE)
> pb
[1] 0.37

Use the paste() function to create a character vector that will concatenate the pb
value to our text:

> pb.results <- paste("Cumulative probabily of a child drinking > 8L/
day", pb, sep=": ")

Add the pb.results text as the title of our plot:

> title(pb.results)

The result is shown in the following graph:

Statistical Methods with R

[68]

Fitting distributions
Now that we have seen how to plot and gain statistical information from probability
distributions, we will show you how to use R to fit your data to theoretical
distributions. There are several methods you can use to test whether your sample
distribution fits a theoretical distribution. For example, you may want to see if your
sample distribution fits a normal distribution using a Quantile-Quantile plot (Q-Q
plot). In R, you can use the qqnorm() function to create a Q-Q plot to evaluate the
data. R also has a more generic version of this function called qqplot() to create
Q-Q plots for any theoretical distribution. To illustrate the use of these functions,
let's create a Q-Q plot to test whether the gene expression values of probeA follow
a normal or gamma distribution.

First, let's set the plot settings to display two figures in the same layout:

> par(mfrow=c(1,2))

Use qqnorm() to fit the data to a normal distribution:

qqnorm(probeA)

Add the theoretical line for a normal distribution using the default first and
third quantiles:

> qqline(probeA, distribution = qnorm, probs = c(0.25, 0.75))

To examine the fit of our data to a gamma distribution, let's estimate the shape
and rate parameters using the fitdistr() function part of the MASS package:

> require("MASS")
> fitdistr(probeA, 'gamma')
 shape rate
 341.75868 71.58950
 (74.52444) (15.62234)

Let's store the gamma parameters in an object for future use:

> gamma.par <- fitdistr(probeA, 'gamma')

Chapter 2

[69]

To know what is stored in our gamma.par object, we can use the str() function
we mentioned earlier in Chapter 1, Programming with R. Let's have a look at the
following function:

> str(gamma.par)
List of 5
 $ estimate: Named num [1:2] 341.8 71.6
 ..- attr(*, "names")= chr [1:2] "shape" "rate"
 $ sd : Named num [1:2] 74.5 15.6
 ..- attr(*, "names")= chr [1:2] "shape" "rate"
 $ vcov : num [1:2, 1:2] 5554 1163 1163 244
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:2] "shape" "rate"
 $: chr [1:2] "shape" "rate"
 $ loglik : num -2.37
 $ n : int 42
 - attr(*, "class")= chr "fitdistr"

By inspecting the structure of the gamma.par object, we now know how to access
the shape and rate values. We need to use the appropriate index from the
gamma.par$estimate parameter named numeric vector or use the name of the
index, as follows:

> gamma.par$estimate['shape'] #or gamma.par$estimate[1]
 shape
341.7587
> s <- gamma.par$estimate['shape']
> r <- gamma.par$estimate['rate']

Now, we can calculate the theoretical quantiles for a gamma distribution with the
estimated values for the shape and rate, as shown:

> theoretical.probs <- seq(1:length(probeA))/(length(probeA)+1)
> theoretical.quantiles <- qgamma(theoretical.probs,shape=s,rate=r)
> plot(theoretical.quantiles, sort(probeA),xlab="Theoretical
Quantiles",ylab="Sample Quantiles",main="Gamma QQ-plot")

Statistical Methods with R

[70]

Now, let's add a line to the first and third quantiles using the qqline() function.
Since we are not using the default qnorm function for the distribution argument
in the qqline() function, we need to create our own settings using the qgamma()
function with the appropriate shape and rate settings, as follows:

> qF <- function(p) qgamma(p, shape=s, rate=r)
> qqline(y=sort(probeA), distribution=qF)

The graph for theoretical quantiles of a Normal Q-Q plot and Gamma Q-Q plot is
shown in the following diagram:

Before going any further, let's return our plot parameter settings to its default
settings using the par() function:

>par(mfrow=c(1,1))

Chapter 2

[71]

Instead of Q-Q plots, you may choose to use a well-defined statistical test for fitting
distributions such as the Kolmogorov-Smirnov, Anderson-Darling, or Chi-square
test. For example, let's use the Kolmogorov-Smirnov method to test whether our
probeA data fits a gamma distribution with a shape of three and rate of two using
the ks.test() function, as follows:

> ks.test(probeA, "pgamma", 3, 2)
One-sample Kolmogorov-Smirnov test
data: probeA
D = 0.9901, p-value = 2.22e-16
alternative hypothesis: two-sided

Alternatively, we can use the Anderson-Darling test to test whether our probeA
dataset fits a normal distribution using the ad.test() function available in the
nortest package:

> require("nortest")
> ad.test(probeA)
Anderson-Darling normality test
data: probeA
A = 0.378, p-value = 0.3923

Higher order moments of a distribution
Higher order moments of a sample distribution are often used to estimate shape
parameters, such as skewness and kurtosis, or to measure the deviation of a sample
distribution from a normal distribution. For example, we might want to know if
the skew we observed in our probeA distribution has a long drawn out tail to the
left (negative skewing) or right (positive skewing) compared to a normal curve.
You quantify the degree of skewing using the skewness() function available in the
fBasics package and test whether the degree of skewing you calculate from your
dataset is significantly different from the theoretical value for the skew of a normal
distribution, which is zero.

Let's have a look at the following code:

> require("fBasics")
> skewness(probeA)
[1] -0.1468461
attr(,"method")
[1] "moment"

Statistical Methods with R

[72]

Now, we can determine whether the absolute value of the -0.147 skew is
significantly different from zero by performing a t-test. The approximate standard
error of a skew is defined as the square root of 6 divided by the total number
of samples:

> abs(skewness(probeA))/sqrt(6/length(probeA))
[1] 0.3885183
attr(,"method")
[1] "moment"

Now, we just need to calculate the probability of obtaining a t-value of 0.389 by
chance when the skew value is truly zero:

> 1- pt(0.389, 41)
[1] 0.3496446

Since the p-value is greater than 0.05, we cannot reject the null hypothesis and
conclude that the skew is not significantly different from zero. Thus, the skew is
not significantly different from a normal curve.

Instead of calculating the skew, we can also evaluate the kurtosis value to get an
idea of the peak or flat-top nature of the distribution. A normal curve has a kurtosis
value of zero and the approximate standard error of kurtosis is calculated by taking
the square root of 24 divided by the total number of samples. To obtain the kurtosis
value in R, we can use the kurtosis() function, which is also available in the
fBasics package:

> kurtosis(probeA)
[1] -0.5670091
attr(,"method")
[1] "excess"
> abs(kurtosis(probeA))/sqrt(24/length(probeA))
[1] 0.7500826
attr(,"method")
[1] "excess"
> 1-pt(0.750, 41)
[1] 0.2287686

Since the p-value is greater than 0.05, we cannot reject the null hypothesis and
conclude that the kurtosis of our sample distribution is not significantly different
from a normal distribution.

Chapter 2

[73]

Other statistical tests to fit distributions
R also has many other functions available to help fit your sample distribution to
many other types of distributions. For convenience, you can find a list of R functions
available to fit distributions in the following table. You can also consult Vito Ricci's
document on fitting distributions at http://cran.r-project.org/doc/contrib/
Ricci-distributions-en.pdf for more information on how to use these functions
to fit distributions.

Test Function Package
Anderson-Darling test for normality ad.test() nortest
Chi-squared test chisq.test() stats
Cramer-von Mises test for normality cvm.test() nortest
Empirical cumulative distribution function ecdf() stats
Maximum-likelihood fitting of univariate distributions fitdistr() MASS
Discrete count data distribution for goodness-of-fit tests goodfit() vcd
Jarque-Bera test for normality jarque.bera.

test()
tseries

Augmented Dickey–Fuller test adf.test() tseries
Kolmogorov-Sminorv test ks.test() stats
Returns kurtosis value kurtosis() fBasics
Lilliefors test for normality lillie.test() nortest
Estimate parameters by the method of maximum
likelihood

mle() stats4

Pearson chi-square test for normality pearson.test() nortest
Normal Q-Q plot qqnorm() stats
Q-Q plot of two datasets qqline(),

qqplot()
stats

Shapiro-Francia test for normality shapiro.test() stats
Returns skewness value skewness() fBasics

http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf

Statistical Methods with R

[74]

The propagate package
You may also find the propagate package particularly useful because it allows you
to fit your data to many distributions at once and tells you which one is the most
appropriate. For example, we can use the fitDistr() function to fit your data to
a variety of distributions. The fits for the data will be sorted by ascending Akaike
information criterion (AIC) value, where the preferred model is the one with the
minimum AIC value. The AIC value takes into account the trade-off between the
goodness-of-fit of the model and the complexity of the model. Let's have a look at
the following example:

> install.packages("propagate")
> library("propagate")

The fitDistr() function allows you to use a vector of observation or an object
generated using the propagate() function. In our first example, let's consider
a simple example using the rnorm() function to simulate 10,000 numerical
observations. Let's have a look at the following example:

> set.seed(275) #so you get the same results
> observations <- rnorm(10000, 5)
> distTested <- fitDistr(observations)
Fitting Normal distribution...Done.
Fitting Skewed-normal distribution...Done.
Fitting Generalized normal distribution...........10.........20.......
Done.
Fitting Log-normal distribution...Done.
Fitting Scaled/shifted t- distribution...Done.
Fitting Logistic distribution...Done.
Fitting Uniform distribution...Done.
Fitting Triangular distribution...Done.
Fitting Trapezoidal distribution...Done.
Fitting Curvilinear Trapezoidal distribution...Done.
Fitting Generalized Trapezoidal distribution...Done.
Fitting Gamma distribution...Done.
Fitting Cauchy distribution...Done.
Fitting Laplace distribution...Done.
Fitting Gumbel distribution...Done.
Fitting Johnson SU
distribution...........10.........20.........30.........40.........50
.........60.........70.........80.Done.
Fitting Johnson SB
distribution...........10.........20.........30.........40.........50
.........60.........70.........80.Done.

Chapter 2

[75]

Fitting 3P Weibull distribution...........10.........20.......Done.
Fitting 4P Beta distribution...Done.
Fitting Arcsine distribution...Done.
Fitting von Mises distribution...Done.

As you can see, the fitDistr() function automatically plots the best distribution
based on the AIC value. To disable this feature, you can set plot=FALSE value. The
plot is shown in the following graph:

You can see the AIC values for the other distributions by accessing the aic data
frame of the distTested object. Let's have a look at the following example:

> distTested$aic
 Distribution AIC
2 Skewed-normal -1056.7637
16 Johnson SU -1055.2898
3 Generalized normal -1055.1193
17 Johnson SB -1053.0655
19 4P Beta -1051.5507
11 Generalized Trapezoidal -1049.0981
1 Normal -1047.0616
5 Scaled/shifted t- -1046.9436
18 3P Weibull -1005.1263

Statistical Methods with R

[76]

12 Gamma -998.3562
6 Logistic -984.4944
21 von Mises -947.3471
8 Triangular -941.3394
9 Trapezoidal -940.3361
4 Log-normal -929.9566
15 Gumbel -809.9676
14 Laplace -733.8516
13 Cauchy -650.7236
10 Curvilinear Trapezoidal -581.6016
7 Uniform -391.3259
20 Arcsine -261.7417

Alternatively, you can use the fitDistr() function to fit results obtained from the
propagate() function. Consider the following example:

3 1yx −
6, 0.1x xµ σ= =

6, 0.1x yµ σ= =

First, we enter the equation in R using the expression() function and the mean and
standard deviation for the x and y variables into separate numeric vectors, as follows:

> EXPR <- expression(x^(3 * y)-1)
> x <- c(6, 0.1)
> y <- c(2, 0.1)

Then, we create a matrix that stores the means in the first row and the standard
deviations in the second row for each variable, as follows:

> DF <- cbind(x, y)

Chapter 2

[77]

Next, we use the propagate() function to generate the kernel density of the Monte
Carlo simulation results to be used in the fitDistr() function, as follows:

> RES <- propagate(expr = EXPR, data = DF, type = "stat", do.sim =
TRUE, verbose = TRUE)

Now, we can fit our data to the 21 distributions, as shown in the following code, with
the fitDistr() function:

> testedDistrEXPR <- fitDistr(RES)
Fitting Normal distribution...Done.
Fitting Skewed-normal distribution...Done.
Fitting Generalized normal distribution...........10.........20.......
Done.
Fitting Log-normal distribution...Done.
Fitting Scaled/shifted t- distribution...Done.
Fitting Logistic distribution...Done.
Fitting Uniform distribution...Done.
Fitting Triangular distribution...Done.
Fitting Trapezoidal distribution...Done.
Fitting Curvilinear Trapezoidal distribution...Done.
Fitting Generalized Trapezoidal distribution...Done.
Fitting Gamma distribution...Done.
Fitting Cauchy distribution...Done.
Fitting Laplace distribution...Done.
Fitting Gumbel distribution...Done.
Fitting Johnson SU
distribution...........10.........20.........30.........40.........50
.........60.........70.........80.Done.
Fitting Johnson SB
distribution...........10.........20.........30.........40.........50
.........60.........70.........80.Done.
Fitting 3P Weibull distribution...........10.........20.......Done.
Fitting 4P Beta distribution...Done.
Fitting Arcsine distribution...Done.
Fitting von Mises distribution...Done.

Statistical Methods with R

[78]

The plot generated for the best distribution fitted is shown in the following graph:

The AIC values for all the distributions tested are as follows:

> testedDistrEXPR$aic
 Distribution AIC
3 Generalized normal -6682.103
16 Johnson SU -6680.099
4 Log-normal -6670.469
2 Skewed-normal -5847.043
18 3P Weibull -5691.254
12 Gamma -5667.074
15 Gumbel -5611.167
9 Trapezoidal -5541.594
5 Scaled/shifted t- -5284.617
6 Logistic -5274.231
1 Normal -5256.894
14 Laplace -5220.417
13 Cauchy -5216.931
11 Generalized Trapezoidal -5105.354
20 Arcsine -4674.931
7 Uniform -4661.630

Chapter 2

[79]

8 Triangular -4661.388
10 Curvilinear Trapezoidal -4603.581
21 von Mises -4603.451
17 Johnson SB -4602.456
19 4P Beta -4599.451

Hypothesis testing
Often when we analyze data, we would like to know whether the mean of our
sample distribution is different from some theoretical value or expected average.
Suppose we measured the height of 12 females and wanted to know if the average
we calculated from our sample population is significantly different from the
theoretical average height of females, which is 171 cm. A simple test we could
perform to test this hypothesis would be the Wilcoxon signed-rank test. To do this
in R, we will use the wilcox.test() function with the mu argument set to 171:

> female.heights <- c(117, 162, 143, 120, 183, 175, 147, 145, 165,
167, 179, 116)
> mean(females.heights)
[1] 151.5833
> wilcox.test(female.heights, mu=171)
Wilcoxon signed rank test with continuity correction
data: female.heights
V = 11.5, p-value = 0.0341
alternative hypothesis: true location is not equal to 171

Warning message:
In wilcox.test.default(female.heights, mu = 171) :
 cannot compute exact p-value with ties

Because the p-value is less than 0.05, we accept the alternative hypothesis that the
mean of our sample set is not equal to 171. You will also notice in the output that R
produces a warning message stating that the exact p-value cannot be computed with
ties in the data. This is because there are repeats of the same measurement in our
dataset, which cause ties in the data. When there are ties in the data, the wilcox.
test() function will return a p-value and, if specified, confidence interval estimates
based on a normal approximation to the signed-rank statistics. Let's have a look at
the following function:

> wilcox.test(female.heights, mu=171, conf.int = TRUE, conf.level =
0.99)
 Wilcoxon signed rank test with continuity correction
data: female.heights

Statistical Methods with R

[80]

V = 11.5, p-value = 0.0341
alternative hypothesis: true location is not equal to 171
99 percent confidence interval:
 120 175
sample estimates:
(pseudo)median
 151.9893
Warning messages:
1: In wilcox.test.default(female.heights, mu = 171, conf.int = TRUE,
:
 cannot compute exact p-value with ties
2: In wilcox.test.default(female.heights, mu = 171, conf.int = TRUE,
:
 cannot compute exact confidence interval with ties

Instead of using the Wilcoxon signed-rank test with continuity correction, we can test
if the mean of our sample distribution is different from the theoretical average of 171
using a bootstrap approach that would estimate the mean from taking the mean for a
large number of random samples (in this case 10,000), each with a size of 12 and values
part of our female.heights dataset. To allow R to generate these samples, we will use
the sample() function and specify replacement=TRUE so that repetitions are allowed
and we don't always end up with all twelve values from our sample dataset.

Here is the code you would use in R to apply the bootstrap approach to test
whether the mean of our sample population is significantly different from the
theoretical average.

First, we create a numeric vector to store the 10,000 means generated from sampling
the female.heights dataset, as follows:

> f <- numeric(10000)
> for(i in 1:10000) {
 f[i] <- mean(sample(female.heights, replace=TRUE))
}
> hist(f, xlab="bootstrap means")

Chapter 2

[81]

The result is shown in the following plot:

Now, we can perform a t-test to determine whether the mean of our sampling
distribution is different for the theoretical value using the t.test() function
with the mu argument set to 171, as follows:

> t.test(female.heights, mu=171)
 One Sample t-test
data: female.heights
t = -2.7861, df = 11, p-value = 0.01771
alternative hypothesis: true mean is not equal to 171
95 percent confidence interval:
 136.2446 166.9221
sample estimates:
mean of x
 151.5833

Since the p-value is less than 0.05, we can accept the alternative hypothesis and
conclude that the female heights in our dataset are significantly different from the
theoretical average.

Statistical Methods with R

[82]

Instead of comparing the mean of two sample distributions, you might want to
compare their variance by performing an F-test. You can perform this test in R using
the var.test() function, as follows:

> var.test(probeA, probeB)
 F test to compare two variances
data: probeA and probeB
F = 0.2301, num df = 41, denom df = 41, p-value =
7.182e-06
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.1236921 0.4281015
sample estimates:
ratio of variances
 0.2301147

Another useful statistical test is the Kruskal-Wallis test used to determine whether
two sample populations are identical without assuming that they follow a normal
distribution. For example, if we go back to our data frame containing the gene
expression values for probeA and probeB and their response to the drugA treatment
(df), we can determine if the mean expression value for probeA is dependent on the
response to the drugA treatment using the kruskal.test() function. Let's have a
look at this function:

> head(df)
 expr_probeA expr_probeB drugA_response
GSM487973 4.372242 8.176033 success
GSM487972 4.293080 8.541016 fail
GSM487971 4.210850 8.338475 success
GSM487970 4.707231 7.935021 fail
GSM487969 4.345101 7.868985 success
GSM487968 4.586062 7.909702 fail
> kruskal.test(expr_probeA ~ drugA_response, data = df)
 Kruskal-Wallis rank sum test
data: expr_probeA by drugA_response
Kruskal-Wallis chi-squared = 0.0571, df = 1, p-value =
0.8111

Since the p-value is greater than 0.05, we cannot reject the null hypothesis and
conclude that the probeA expression values in response to the drugA treatments are
indeed from the same population.

Chapter 2

[83]

Proportion tests
Sometimes we want to evaluate proportions instead of individual measurements.
Several statistical tests are used to determine whether the proportion observed
in your dataset is significantly different from some theoretical value. Two useful
statistical tests used in hypothesis testing for proportions are the traditional Z-test
and the binomial exact test. Say we wanted to test that 50 percent of patients have
to wait more than 4 hours to see a doctor. We can record the waiting period for 11
patients and store that information in a numerical vector as follows:

> waiting.period <- c(3, 5, 4, 5.5, 3.5, 2.5, 3, 5, 4.5, 3, 3.5)

Next, we can count the number of patients who waited for more than 4 hours by
creating a table using the following commands:

> above4.hrs <- ifelse(waiting.period > 4, "yes", "no")
> above4hs.table <- table(above4.hrs)
> above4hs.table
above4.hrs
 no yes
 7 4

Now, if we can assume the waiting period to see a doctor is indeed 50 percent, then
we can use a Z-test to this hypothesis using the prop.test() function:

> prop.test(4, n=11, p=0.5, alternative="two.sided", correct=FALSE)
 1-sample proportions test without continuity correction
data: 4 out of 11, null probability 0.5
X-squared = 0.8182, df = 1, p-value = 0.3657
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.1516647 0.6461988
sample estimates:
 p
0.3636364

By explicitly stating correct=FALSE in the prop.test() function, we are ensuring
that no continuity correction is applied when determining the Z value.

Statistical Methods with R

[84]

Since the sample size of our female.heights dataset is small (n=11), it might be a
better idea to use "continuity-adjusted" Z value when determining whether to accept
or reject the null hypothesis by setting the correct argument to TRUE.

> prop.test(4, n=11, p=0.5, alternative="two.sided", correct=TRUE)
 1-sample proportions test with continuity correction
data: 4 out of 11, null probability 0.5
X-squared = 0.3636, df = 1, p-value = 0.5465
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.1236508 0.6838637
sample estimates:
 p
0.3636364

From the statistical test, we can accept the null hypothesis and conclude that we
don't have sufficient evidence to say that 50 percent of patients wait more than four
hours to see a doctor. In fact, from the 95 percent confidence interval, we can see
that the proportion of patients that will likely wait for more than four hours to see a
doctor is potentially between 0.12 and 0.68.

Instead of using the continuity-adjusted Z-statistic to choose whether to accept
or reject the null hypothesis, we can also perform a binomial exact test with the
binom.test() function, as follows:

> binom.test(4, n=11, p=0.5)
 Exact binomial test
data: 4 and 11
number of successes = 4, number of trials = 11, p-value =
0.5488
alternative hypothesis: true probability of success is not equal to
0.5
95 percent confidence interval:
 0.1092634 0.6920953
sample estimates:
probability of success
 0.3636364

Similarly, the binomial exact test indicates that we don't have enough evidence to
reject the null hypothesis and that the proportion of patients that wait for more than
four hours to see a doctor likely falls between 11 to 69 percent.

Chapter 2

[85]

Two sample hypothesis tests
So far, we have covered how to use statistical tests for hypothesis testing on a
single sample distribution. However, these statistical tests can also be applied to
compare two sample distributions. For example, we could test whether the mean
of the probeA sample distribution was significantly different from the probeB
sample distribution. If we can assume that the error of both samples are normally
distributed, then we can use a t-test to compare the mean of both samples by
entering t.test(probeA, probeB), as follows:

> t.test(probeA, probeB)
 Welch Two Sample t-test
data: probeA and probeB
t = -35.8398, df = 58.92, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.486162 -3.117460
sample estimates:
mean of x mean of y
 4.773866 8.075677

If the errors are not normally distributed for these samples, we can run the Wilcoxon
rank-sum test, as follows:

> wilcox.test(probeA, probeB)
 Wilcoxon rank sum test
data: probeA and probeB
W = 0, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

If these samples are paired, you can run a paired t-test or a Wilcoxon signed-rank
test by setting the paired argument to TRUE:

> wilcox.test(probeA, probeB, paired=T)
 Wilcoxon signed rank test
data: probeA and probeB
V = 0, p-value = 4.547e-13
alternative hypothesis: true location shift is not equal to 0

Statistical Methods with R

[86]

Instead of comparing the mean of two populations, you might be interested in
comparing two proportions by performing a binomial test using the prop.test()
function. Suppose you want to test the hypothesis that women are favored over
men for promotions in company A. If there are 16 out of 430 female employees and
63 out of 1,053 male employees promoted this year, you could perform a binomial
proportions test using the prop.test() function with two vectors. The first vector
will contain the number of female employees and male employees promoted this
year and the other vector will store the total number of females and males employed
by company A. Let's have a look at the following code:

> promoted.employees <-c(16, 63)
> total.employees <- c(430, 1053)
> prop.test(promoted.employees, total.employees)
 2-sample test for equality of proportions with continuity correction
data: promoted.employees out of total.employees
X-squared = 2.6653, df = 1, p-value = 0.1026
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.04717571 0.00193619
sample estimates:
 prop 1 prop 2
0.03720930 0.05982906

You can test for independence in contingency tables using the Chi-squared or
Fisher's Exact test in R, which uses the data stored in a matrix with the chisq.
test() and fisher.test() functions. For example, we can create a matrix that
stores the counts observed for blue eyes, brown eyes, blond hair, and brown hair
in a sample population of 96 Caucasian males. To test whether eye color and hair
color are independent, we can perform a Chi-squared test with the chisq.test()
function, as follows:

> trait.counts <- matrix(c(24, 14, 11, 47), nrow=2)
> colnames(trait.counts) <- c("Blue eyes", "Brown eyes")
> rownames(trait.counts) <- c("Blond hair", "Dark brown hair")
> trait.counts
 Blue eyes Brown eyes
Blond hair 24 11
Dark brown hair 14 47
> chisq.test(trait.counts)
 Pearson's Chi-squared test with Yates' continuity correction
data: trait.counts
X-squared = 17.4938, df = 1, p-value = 2.882e-05

Chapter 2

[87]

As you can see, by default, Yates' continuity correction is applied. To
remove Yates' continuity correction, you just have to specify correct=FALSE
as follows:

> chisq.test(trait.counts, correct=FALSE)
 Pearson's Chi-squared test
data: trait.counts
X-squared = 19.3544, df = 1, p-value = 1.086e-05

Since the p-value is less than 0.05, we can reject the null hypothesis that eye color
and hair color are independent traits for this sample population.

Instead of a Chi-squared test, you may be interested in performing a Fisher's exact
test. This statistical test is usually performed for the analysis of contingency tables
in which one or more of the expected frequencies are less than five. To illustrate
the fisher.test() function, let's create a 2 x 2 matrix containing hypothetical data,
as follows:

> data.counts <- matrix(c(7, 5, 2, 6), nrow=2)
> fisher.test(data.counts)
 Fisher's Exact Test for Count Data
data: data.counts
p-value = 0.1968
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.438792 55.616983
sample estimates:
odds ratio
 3.895711

You can also use the fisher.test() function with matrices much
larger than 2 x 2 vectors or you can use two vectors containing
factor levels instead of a matrix to save you the trouble of counting
the number of events in each combination of traits.

Unit root tests
R has a variety of packages that allow you to perform a variety of statistical tests. For
example, the tseries package allows you to perform unit root tests to determine
whether a time series variable is nonstationary using an autoregressive model. For
example, the Augmented Dickey–Fuller (ADF) is a test for a unit root in a time
series sample. The null hypothesis of this test is that the time series is not stationary.
The ADF test statistics is a negative number and the more negative that number, the
more strongly we can reject the null hypothesis and accept the alternative hypothesis
that there is a unit root in the time series.

Statistical Methods with R

[88]

For example, let's create a time series representing the fertility rate of women
between the age of 35 to 39 and 40 to 44 between 1997 and 2012 for residents of
New York City using the annual vital statistic tables provided by the Department
of Health at http://www.health.ny.gov/statistics/vital_statistics/. The
fertility rates provided in these tables are based on the number of live births per
1,000 females between the age of 35 to 39 and 40 to 44. A summary of this data is
provided in the fertility Data.xlsx file, which can be downloaded at (https://www.
packtpub.com/books/content/support/19729/fertilityData.xlsx). Save this
file to your current working directory, as shown:

>setwd("/directory_where_file_was_downloaded/")

You can use the getwd() function to obtain your current working
directory file path or change it using the setwd() function.

Next, load the data into your workspace using the read.xls() function, which is
available as part of the gdata package:

> library("gdata")
> fertility_rates.df <- read.xls("fertilityData.xlsx")

Change the colnames for the two time series accordingly.
> colnames(fertility_rates.df)[2:3] <- c("Age 35-39", "Age 40-44")

We can take a look at the data frame using the head() function:

> head(fertility_rates.df)
 year Age 35-39 Age 40-44
1 1997 46.4 12.4
2 1998 48.1 12.8
3 1999 49.7 12.3
4 2000 49.8 13.5
5 2001 49.2 13.2
6 2002 49.4 13.5

Next, we need to create a time series object for the fertility rate of each age group
using the ts() function. Basically, the ts() function allows us to specify the times of
the first and last observation together with the frequency of that occurrence with the
start, end, and frequency arguments, respectively. The frequency is the number of
observations per unit time, where 1 is equal to annual, 4 is equal to quarterly, and 12
is equal to monthly. To create a time series from our data frame, we will remove the
year column and specify the frequency as annual with frequency=1, as shown in the
following code:

> fertilityRates.ts <- ts(fertility_rates.df[, 2:3], start=c(1997, 1),
end=c(2012, 1), frequency=1)

http://www.health.ny.gov/statistics/vital_statistics/

Chapter 2

[89]

To inspect our time series object, we can print it, as follows:

> fertilityRates.ts
Time Series:
Start = 1997
End = 2012
Frequency = 1
 Age 35-39 Age 40-44
1997 46.4 12.4
1998 48.1 12.8
1999 49.7 12.3
2000 49.8 13.5
2001 49.2 13.2
2002 49.4 13.5
2003 51.6 14.8
2004 52.5 14.2
2005 52.0 14.3
2006 53.5 14.5
2007 53.6 15.0
2008 54.5 15.0
2009 58.2 17.1
2010 63.6 18.2
2011 65.2 18.0
2012 66.9 19.1

We can also plot the time series with the plot() function, which calls the plot.ts()
function in R to create a graph of time series objects, as shown in the following graph:

> plot(fertilityRates.ts, main="Fertility Rates for Females in NYC
from 1997 to 2012", xlab="Year")

Statistical Methods with R

[90]

Now, let's use the ADF test to check if our time series is stationary in both female
age groups using the adf.test() function as part of the tseries package. Since we
can only apply the function on univariate time series, we will evaluate each of them
separately. Let's have a look at the following function:

> library("tseries")

For the time series for women aged 35 to 39, we use the following code:

> adf.test(fertilityRates.ts[, 1])
 Augmented Dickey-Fuller Test

data: fertilityRates.ts[, 1]
Dickey-Fuller = 0.3567, Lag order = 2, p-value = 0.99
alternative hypothesis: stationary

Warning message:
In adf.test(fertilityRates.ts[, 1]) : p-value greater than printed
p-value

For the time series for women aged from 40 to 44, we use the following code:

> adf.test(fertilityRates.ts[, 2])
 Augmented Dickey-Fuller Test

data: fertilityRates.ts[, 2]
Dickey-Fuller = -0.3712, Lag order = 2, p-value = 0.9805
alternative hypothesis: stationary

In both cases, we cannot reject the null hypothesis. Therefore, we conclude that both
time series are not stationary. Indeed, we can see from the graphs that the fertility
rate for both age groups increased in the early 2000s. Now, what if we are only
interested in the fertility rate of women aged from 40 to 44 between 1997 and 2003?
We can test if this time series is stationary, as follows:

> testTS <- ts(fertility_rates.df[1:7, 2], start=c(1997, 1),
frequency=1)
> adf.test(testTS)
 Augmented Dickey-Fuller Test
data: testTS
Dickey-Fuller = -7.4101, Lag order = 1, p-value = 0.01
alternative hypothesis: stationary
Warning message:
In adf.test(testTS) : p-value smaller than printed p-value

Chapter 2

[91]

In this case, we have a p-value, which is much smaller than 0.05, so we can reject the
null hypothesis and conclude that the time series for the fertility rate of woman aged
from 40 to 44 was stationary between 1997 and 2003.

You may be interested in using the adf.test() function to know whether the price
at closing of a particular stock is stationary over a given period of time. So, for our
next example, we will test whether the Facebook stock price from 2012-06-18 to 2014-
11-28 was stationary at closing. We can download the stock price information from
Yahoo! using the getSymbols() function from the quantmod package. Let's have a
look at the following function:

> install.packages("quantmod")
> library("quantmod")

The stock symbol for Facebook is "FB" on the NASDAQ stock exchange:

> fbstock <-getSymbols("FB", src="yahoo", from= '2012-06-18',
end='2014-11-28', auto.assign=FALSE)

We can inspect the object using the head() function to print the first six dates,
as follows:

> head(fbstock)
 FB.Open FB.High FB.Low FB.Close FB.Volume FB.Adjusted
2012-06-18 29.96 32.08 29.41 31.41 42978900 31.41
2012-06-19 31.54 32.18 30.70 31.91 30849000 31.91
2012-06-20 31.92 31.93 31.15 31.60 15553600 31.60
2012-06-21 31.67 32.50 31.51 31.84 21875300 31.84
2012-06-22 32.41 33.45 32.06 33.05 74834000 33.05
2012-06-25 32.86 33.02 31.55 32.06 24352900 32.06

We can plot fbstock information using the chartSeries() function, which is also
part of the quantmod package. Since we are just interested in viewing the stock price
at closing and the total volume, we will only plot the fourth and fifth columns, as
shown in the following code:

> chartSeries(fbstock[, 4:5], theme="white", up.col="black")

Statistical Methods with R

[92]

The plot is shown in the following graph:

Alternatively, you could plot the fbstock data with the plot.ts function after
converting the fbstock data from an extended time series (xts) object to a standard
time series (ts) object with the as.ts() function:

> plot.ts(as.ts(fbstock[, 4:5]), main="FACEBOOK Stock Information from
2012-06-18 to 2014-11-28")

Chapter 2

[93]

Here is the plot the previous command generated:

Now, let's perform the ADF test with the adf.test() function, which is a part of the
tseries package, as follows:

> require(tseries)
> adf.test(fbstock[, 4])
 Augmented Dickey-Fuller Test
data: fbstock[, 4]
Dickey-Fuller = -3.123, Lag order = 8, p-value = 0.103
alternative hypothesis: stationary

Based on the p-value, we cannot reject the null hypothesis and conclude that the
time series is not stationary and thus, contains a unit root. We can confirm the ADF
test results by performing a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.
The KPSS test is also used to test whether this time series is stationary, except in this
case, the null hypothesis is that the observable time series is stationary around a
deterministic trend. To perform the KPSS test on our fbstock time series, we can use
the kpss.test() function, which is also part of the tseries package.

Statistical Methods with R

[94]

Again, since we are interested in the Facebook stock price at closing, we will perform
the KPSS test on the fourth column:

> kpss.test(fbstock[, 4])
KPSS Test for Level Stationarity
data: fbstock[, 4]
KPSS Level = 9.6561, Truncation lag parameter = 5, p-value = 0.01
Warning message:
In kpss.test(fbstock[, 4]) : p-value smaller than printed p-value

As you can see, our p-value is below 0.05, so we can reject the null hypothesis
and conclude that the time series for the Facebook stock price at closing, between
2012-06-18 and 2014-11-28, is not stationary.

If you are interested in additional packages for time series analysis
in R, we recommend you consult the CRAN R project Time Series
Analysis website at http://cran.r-project.org/web/views/
TimeSeries.html.

Summary
In this chapter, we saw how to obtain useful statistical information from sample
populations and probability distributions. You should now be able to summarize
your data and obtain useful statistical information such as the mean, median,
variance, and so on. You should also be able to plot and obtain useful statistics from
theoretical probability distributions, fit your sample data to theoretical probability
distributions, perform hypothesis testing using parametric and non-parametric
statistical tests, and plot and test whether time series data is stationary using
statistical tests.

Now that you have a foundation of how to apply statistical methods to your sample
datasets, we will be moving on to linear models in the next chapter, where you will
find out how to study the relationship between variables.

http://cran.r-project.org/web/views/TimeSeries.html
http://cran.r-project.org/web/views/TimeSeries.html

Linear Models
This chapter will cover linear models, which are probably the most commonly used
statistical methods to study the relationships between variables. The generalized
linear model section will delve into a bit more detail than typical R books, discussing
the nature of link functions and canonical link functions:

•	 Linear regression
•	 Linear model fits
•	 Analysis of variance models
•	 Generalized linear models
•	 Link functions and canonical link functions
•	 Generalized additive models
•	 Principal components analysis
•	 Clustering
•	 Discriminant analysis

An overview of statistical modeling
In order to explore the relationship between data and a set of experimental
conditions, we often rely on statistical modeling. One of the central purposes of R
is to estimate the fit of your data to a variety of models that you can easily optimize
using several built-in functions and arguments. Although picking the best model
to represent your data can be overwhelming, it is important to remember the
principle of parsimony when choosing a model. Essentially, you should only include
an explanatory variable in a model if it significantly improves the fit of a model.
Therefore, our ideal model will try and fulfill most of the criteria in this list:

Linear Models

[96]

•	 Contain n-1 parameters instead of n parameters
•	 Contain k-1 explanatory variables instead of k variables
•	 Be linear instead of curved
•	 Not contain interactions between factors

In other words, we can simplify our model by removing non-significant interaction
terms and explanatory variables, and by grouping together factor levels that do not
differ from one another or add any new information to the model. In this chapter, we
will go over the steps to fit your data to linear models, and in the following chapter,
we will go over nonlinear methods to explore your data.

Model formulas
Before we begin, we will go over the model formula and conventions used in R for
statistical modeling. This formula will then be the argument of the function defining
the model. A detailed overview of statistical modeling in R is available in Chapter 7
of Michael J.Crawley's book Statistics An Introduction using R. Briefly, the basic
structure of a model in R is specified as follows:

response_variable ~ explanatory_variable

The tilde (~) symbol signifies that the response variable is modeled as a function
of the explanatory variable. The right side of the model formula specifies the
following points:

•	 The number of continuous or categorical explanatory variables and
their attributes

•	 Potential interactions between the explanatory variables
•	 Nonlinear terms (if required)
•	 The offset of error terms (in some special cases)

It is important to remember that both the response and explanatory variables can
appear as transformations, or as powers, and polynomials. Also, the meaning of
mathematical symbols is different from arithmetic expressions in model formulas. Let's
take a look at the symbols used for statistical modeling in R in the following table:

Symbol Explanation
+ Adds this explanatory variable
− Deletes this explanatory variable
* Includes this explanatory variables and interactions
/ Nests this explanatory variables

Chapter 3

[97]

Symbol Explanation
| Denotes a condition; for example, y ~ x | z reads y as a function of x given z
: Denotes an interaction; for example, A:B indicates the two-way interaction

between A and B
I Overrides the interpretation of a model symbol to use it as an arithmetic

operator

Here are some examples to help understand how these symbols are used in
statistical modeling.

For example, y ~ 1/x fits x nested within the intercept, whereas y ~ I (1/x) will fit 1/x
as an explanatory variable.

For categorical variables A and B, y ~ A/B means fit A+B within A.

This formula can also be written as follows:

y ~ A + A:B

y ~ A + B %in% A

You can also specify the level of interactions to include using the ^ operator. For
example, by writing (A+B+C)^3, you are telling R to fit all the main effects and all
interactions up to level 3. In other words, (A+B+C)^3 can also be written as A*B*C or
A+B+C+A:B+A:C+B:C+A:B:C. If you want to exclude the three-way interaction from
A*B*C, then you could write (A+B+C)^2, which means to fit all the main effects and
the two-way interactions but not the three-way interaction. Therefore, (A+B+C)^2
could also be written as A*B*C – A:B:C. The following table gives the examples of
model formulas and their interpretation in R:

To fit A+B within A
y ~ A/B
y ~ A + A:B
y ~ A + B %in % A
To fit all the main effects and interactions
(A+B+C)^3
A*B*C
A+B+C+A:B+A:C+B:C+A:B:C
To fit all main effects and the two-way interactions excluding the three-way
interaction
(A+B+C)^2
A*B*C – A:B:C

Linear Models

[98]

Explanatory variables interactions
Another thing to bear in mind when writing model formulas is that categorical
variables are fitted differently from continuous variables. For example, y ~ A*B
means to evaluate the A and B main effect means and the A:B interaction mean (that
is, A + B + A:B). The number of interaction terms for A:B is (a – 1)(b – 1) for the two
categorical variables, where a and b are the number of levels of the factors for A and
B, respectively. So, if factor A has two levels and factor B has four levels, R would
estimate (2-1)(4-1) = 3 parameters for the A:B interaction. In contrast, if x and z are
continuous variables, then y ~ x*z tells R to fit x + z + x:z, where the x:z interaction
behaves like a new variable that was computed from the point-wise product of the
two vectors x and z explicitly calculated as xz.prod < x*z. Therefore, x + z + x:z can be
rewritten as y ~ x + z + xz.prod.

In cases that we have interactions between categorical and continuous variables,
such as y ~ A*x, where x is a continuous variable and A is a categorical variable with
n levels, R will fit n regression equations and estimate n parameters from the data. In
other words, n slopes and n intercepts.

Error terms
You can also include an error function as part of a model formula when there is
nesting or pseudo replication. For example, to include the error to model a three-
factorial experiment with categorical variables A, B, and C with three plot sizes
and three different error variances, one for each plot, you would write y ~ A*B*C +
Error(A/B/C).

The intercept as parameter 1
The null model has just one parameter, a constant, and indicates that y does not
depend on any of the explanatory variables provided. The formula to fit your data to
the null model is y ~ 1, where y is fitted to a mean of y. However, removing parameter
1 from categorical variables has a different effect. For example, if genotype is a three-
level categorical variable, the model formula y ~ genotype – 1 will give the mean for
each genotype rather than the overall mean in the summary table.

When fitting a linear model, y ~ x – 1 specifies a line through the origin. In other words,
by removing parameter 1, we are forcing the regression line through the origin.

Chapter 3

[99]

Updating a model
You can easily make a modification to a model in R by using the update() function.
By using the . character on the right-hand side of the tilde, you specify that you'll
use use the model as it is. So, if your original model is defined as model <- lm(y ~
A*B*C), you can remove the A:B interaction term as follows:

> model2 <- update(model, ~ . – A:B)
no need to repeat the response variable y

For more details and information on the formula class in R, you can
consult the help page by entering > ?formula.

Linear regression
Regression analysis is a statistical method used to estimate the relationship among
continuous variables. Linear regression is the simplest and most frequently used
type of regression analysis. The aim of linear regression is to describe the response
variable y through a linear combination of one or more explanatory variables x1, x2,
x3, …, xp. In other words, the explanatory variables get weighted with constants and
then summarized. For example, the simplest linear model is y = a + bx, where the two
parameters a and b are the intercept and slope, respectively. The model formula for
this relationship in R is y ~ x. Note that all parameters are left out. So, if our linear
model was y = a + bx + cz, then our model formula will be y ~ x + z.

Plotting a slope
Before going into a detailed example of linear regression analysis, I think it's worth
going over how to plot a slope (or the change in y divided by the change in x). Say
you wanted to plot a slope given the Cartesian coordinates (3, 7) and (4, 4). The
values for x that we need to plot are 3 and 4 and the values for y are 7 and 4. Let's
take a look at the following lines of code:

>plot(c(3,4), c(7,4), ylab="y", xlab="x", main="Slope from coordinates
(3, 7) and (4,4)", ylim=c(0,10), xlim=c(0, 10))

The plot arguments do not take Cartesian coordinates but a vector for
the x coordinates and a vector for the y coordinates.

Linear Models

[100]

To draw the change in y and consequent change in x, we use the lines() function
as follows:

>lines(c(3,3), c(7,4))
>lines(c(3,4), c(4,4))

We can add "delta y" and "delta x" to the plot by using the text() function and the
first two arguments to specify the location where the text should be added, that is, at
x = 2 and y = 5.5 for delta y and x = 3.5 and y = 3.5 for delta x. Let's take a look at this
in the following lines of code:

>text(2,5.5, "delta y")
>text(3.5,3.5, "delta x")

#To plot a red line of width=3 between the two coordinates
> lines(c(3,4), c(7,4), col="red", lwd=3)

To calculate the slope b, we divide the change in y by the corresponding change in x,
which in this case is (4-7)/(4-3), as follows:

> (4-7)/(4-3)
[1] -3

Then, we can calculate the intercept by solving a in the y = a + bx equation. Since
we know that y = 4 and x = 4 from our coordinates (4, 4) and we also know that our
slope is -3, we can solve a using the a = y – bx equation. Let's take a look at this in the
following lines of code:

> 4 - (-3)*(4)
[1] 16

Now we can add the slope to our plot using the abline() function, where the first
argument specifies the intercept and the second one specifies the slope as follows:

> abline(16, -3)

Chapter 3

[101]

The result is shown in the following plot:

Now, let's look at an example to perform linear regression in R. We will use data
generated from a quantitative real-time polymerase chain reaction (PCR) experiment
to create a standard curve to quantify GAPDH expression. In this example, we expect
the relationship between the quantity of RNA and the threshold cycle values (Ct) to
be linear. The Ct values were measured in triplicate and stored in columns A1, A2,
and A3. From this data we can get the maximum likelihood estimates for the slope
and intercept of our standard curve by performing regression analysis.

Linear Models

[102]

First, we load the data into a data frame and check its structure to make sure the data
in RNA_ng, A1, A2, A3 columns are stored as numerical vectors so that they will be
considered as continuous variables by R in our linear regression analysis. Let's take a
look at this in the following lines of code:

> gapdh.qPCR <- read.table(header=TRUE, text='
 GAPDH RNA_ng A1 A2 A3
std_curve 50 16.5 16.7 16.7
std_curve 10 19.3 19.2 19
std_curve 2 21.7 21.5 21.2
std_curve 0.4 24.5 24.1 23.5
std_curve 0.08 26.7 27 26.5
std_curve 0.016 36.5 36.4 37.2
 ')
> str(gapdh.qPCR)
'data.frame': 6 obs. of 5 variables:
 $ GAPDH : Factor w/ 1 level "std_curve": 1 1 1 1 1 1
 $ RNA_ng: num 50 10 2 0.4 0.08 0.016
 $ A1 : num 16.5 19.3 21.7 24.5 26.7 36.5
 $ A2 : num 16.7 19.2 21.5 24.1 27 36.4
 $ A3 : num 16.7 19 21.2 23.5 26.5 37.2

Since A1, A2, and A3 can be considered as levels of one explanatory variable
Ct_Value, let's transform our gapdh.qPCR data frame from wide to long format
using the melt() function from the reshape2 package. Let's take a look at this in
the following lines of code:

> library("reshape2")
> gapdh.qPCR <- melt(gapdh.qPCR, id.vars=c("GAPDH", "RNA_ng"), value.
name="Ct_Value")
> str(gapdh.qPCR)
'data.frame': 18 obs. of 4 variables:
 $ GAPDH : Factor w/ 1 level "std_curve": 1 1 1 1 1 1 1 1 1 1 ...
 $ RNA_ng : num 50 10 2 0.4 0.08 0.016 50 10 2 0.4 ...
 $ variable: Factor w/ 3 levels "A1","A2","A3": 1 1 1 1 1 1 2 2 2 2
...
 $ Ct_Value: num 16.5 19.3 21.7 24.5 26.7 36.5 16.7 19.2 21.5 24.1
...

Chapter 3

[103]

By using the attach() function, we can simplify this task by referring to the gapdh.
qPCR vectors by using the column name only (for example, RNA_ng) instead of the
long way (gapdh.qPCR$RNA_ng) or by including the data argument (data=gapdh.
qPCR). Let's take a look at the following lines of code:

> attach(gapdh.qPCR)
> names(gapdh.qPCR)
[1] "GAPDH" "RNA_ng" "variable" "Ct_Value"

Now we can easily plot the relationship between our Ct values and the quantity of
RNA by plotting Ct_Values as a function of RNA_ng as follows:

> #plots two graphs side by side
> par(mfrow=c(1,2))
> plot(RNA_ng, Ct_Value)

As you can see, if we plot the data as is, the data seems to follow a curved model,
which we want to avoid in order to follow the principle of parsimony. So let's try and
log transform the RNA_ng explanatory variable as follows:

> plot(log(RNA_ng), Ct_Value)

The result is shown in the following plot:

Linear Models

[104]

Now, our data is ready to fit a linear model using the lm() function as follows:

> lm(Ct_Value ~ log(RNA_ng))

Call:
lm(formula = Ct_Value ~ log(RNA_ng))

Coefficients:
(Intercept) log(RNA_ng)
 23.87 -2.23

R reports the intercept a and slope b as coefficients. In this model, y = a + bx, the
maximum likelihood estimate for a is 23.87 and b is -2.23.

If we would like to get more information on our model, such as the residual standard
error or the adjusted R-squared value, we can save the model as an object and use
the summary() function to print these details and more. Let's take a look at this in the
following lines of code:

> model <- lm(Ct_Value ~ log(RNA_ng))
> summary(model)

Call:
lm(formula = Ct_Value ~ log(RNA_ng))

Residuals:
 Min 1Q Median 3Q Max
-3.0051 -1.7165 -0.1837 1.4992 4.1063

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.8735 0.5382 44.36 < 2e-16 ***
log(RNA_ng) -2.2297 0.1956 -11.40 4.33e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.282 on 16 degrees of freedom
Multiple R-squared: 0.8903, Adjusted R-squared: 0.8835
F-statistic: 129.9 on 1 and 16 DF, p-value: 4.328e-09

Chapter 3

[105]

You can also see the Anova table for the analysis using the summary.aov() function
as follows:

> summary.aov(model)
 Df Sum Sq Mean Sq F value Pr(>F)
log(RNA_ng) 1 676.1 676.1 129.9 4.33e-09 ***
Residuals 16 83.3 5.2

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

You can check that your data meets the assumptions of a linear model, which are
that the variance is constant and the errors are normally distributed by plotting the
model object as follows:

> par(mfrow=c(2,2))
> plot(model)

The result is shown in the following plot:

Linear Models

[106]

In the preceding plot, the four graphs allow you to inspect your model in more detail.
The first plot shows the residuals against the fitted values. For your model to be
valid, the residuals (or error terms) must have a mean of zero and constant variance,
which means that the residuals should be scattered randomly around zero. In this
example, the error seems to be scattered randomly. Of course, with so few points it's
not so clear, but ideally you want to avoid situations where the residuals increase
or decrease with fitted values since these patterns indicate that the errors may not
have constant variance. The second plot is a qqnorm plot, which allows us to ensure
that the errors are normally distributed. Ideally, your points should be aligned in a
straight line and avoid skewed distributions. The third plot is a repeat of the first plot
except that it shows the square root of the residuals against the fitted values. Again,
you want to avoid trends in the data. For example, we would have a problem if all the
points were distributed in a triangle where the scatter of the residuals increases with
the fitted values. Finally, the last plot shows us the Cook's distance in the residuals
against leverage plot for each value of the response variable. The Cook's distance plot
highlights the points with the greatest influence on the parameter estimates. In this
case, the point with the most influence on our model is 18. To see the values for this
point, we just need to use its index, which is 18, as follows:

> RNA_ng[18]
[1] 0.016
> Ct_Value[18]
[1] 37.2

Say we wanted to see the effect of removing this point on the adjusted R-squared
value by updating our model and getting the summary as follows:

> model2 <- update(model, subset=(Ct_Value !=37.2))
> summary(model2)

Call:
lm(formula = Ct_Value ~ log(RNA_ng), subset = (Ct_Value != 37.2))

Residuals:
 Min 1Q Median 3Q Max
-2.373 -1.422 -0.470 1.033 4.275

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.6135 0.4970 47.51 < 2e-16 ***
log(RNA_ng) -2.0825 0.1878 -11.09 1.26e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chapter 3

[107]

Residual standard error: 2.047 on 15 degrees of freedom
Multiple R-squared: 0.8913, Adjusted R-squared: 0.8841
F-statistic: 123 on 1 and 15 DF, p-value: 1.259e-08

As you can see, by removing the (0.016, 37.2) point from the mode, we only slightly
increase the adjusted R-squared from 0.8835 to 0.8841. We can also look at the effect
of this change on the slope of the curve by using the following lines of code:

> model2

Call:
lm(formula = Ct_Value ~ log(RNA_ng), subset = (Ct_Value != 37.2))

Coefficients:
(Intercept) log(RNA_ng)
 23.613 -2.083

As you can see, the slope went from -2.23 to -2.083. Here, we might decide to simply
note that the point was influential or gather more data. However, if removing the
data point significantly improved the model fit, we would leave the point out and
use that model instead.

Analysis of variance
Analysis of variance (Anova) is used to fit data to a linear model when all
explanatory variables are categorical. Each of these categorical explanatory variables
is known as a factor, and each factor can have two or more levels. When a single
factor is present with three or more levels, we use a one-way Anova to analyze the
data. If we had a single factor with two levels, we would use a student's t-test to
analyze the data. When there are two or more factors, we would use a two-way or
three-way Anova. You can easily perform an Anova in R using the aov() function.

In the first example, we will look at the effect of the dose of drugA on the level of
fatigue reported by the 20 patients as follows:

> patient.fatigue <- read.table(header=TRUE, text='
 patients fatigue drugA_dose
1 1 low 0.2
2 2 low 0.2
3 3 med 0.2
4 4 med 0.2
5 5 med 0.2
6 6 low 0.4
7 7 low 0.4

Linear Models

[108]

8 8 low 0.4
9 9 med 0.4
10 10 med 0.4
11 11 med 0.8
12 12 high 0.8
13 13 med 0.8
14 14 med 0.8
15 15 high 0.8
16 16 high 1.2
17 17 high 1.2
18 18 high 1.2
19 19 high 1.2
20 20 med 1.2 ')

>attach(patient.fatigue)
> aov(drugA_dose ~ fatigue)
Call:
 aov(formula = drugA_dose ~ fatigue)

Terms:
 fatigue Residuals
Sum of Squares 1.666444 1.283556
Deg. of Freedom 2 17

Residual standard error: 0.2747786
Estimated effects may be unbalanced

A more concise way to view the results of the one-way Anova analysis is to use the
summary() function as follows:

> summary(aov(drugA_dose ~ fatigue))
 Df Sum Sq Mean Sq F value Pr(>F)
fatigue 2 1.666 0.8332 11.04 0.000847 ***
Residuals 17 1.284 0.0755

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the analysis, you can see that the relationship between the levels of fatigue
reported is related to the dose of drug_A administered. Now, we can plot the model
to ensure that the assumptions of the model are met, namely that the variance is
constant and the errors are normally distributed. Let's take a look at this in the
following lines of code:

Chapter 3

[109]

> modelA <- aov(drugA_dose ~ fatigue)
> par(mfrow=c(2,2))
> plot(modelA)

In the residuals versus leverage plot, we can see that the level of fatigue reported by
patients[20] greatly influences the data. Let's see what happens when we remove
this data point. Let's take a look at the following lines of code:

> modelB <- update(modelA, subset=(patients !=20))
> summary(modelB)
 Df Sum Sq Mean Sq F value Pr(>F)
fatigue 2 1.8152 0.9076 17.79 8.57e-05 ***
Residuals 16 0.8163 0.0510

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>

Linear Models

[110]

As you can see, the p value changes but the interpretation remains the same. We can
also investigate the effects of the different levels using the summary.lm() function
as follows:

> summary.lm(modelB)

Call:
aov(formula = drugA_dose ~ fatigue, subset = (patients != 20))

Residuals:
 Min 1Q Median 3Q Max
-0.2750 -0.1933 0.0800 0.1333 0.3250

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.06667 0.09221 11.567 3.50e-09 ***
fatiguelow -0.74667 0.13678 -5.459 5.25e-05 ***
fatiguemed -0.59167 0.12199 -4.850 0.000177 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2259 on 16 degrees of freedom
Multiple R-squared: 0.6898, Adjusted R-squared: 0.651
F-statistic: 17.79 on 2 and 16 DF, p-value: 8.575e-05

In order to interpret the meaning of these coefficients, we need to remember that
lm(y ~ x) is interpreted as y = a + bx by R, where a is the intercept and b is the
slope. Similarly, the regression model aov(y ~ x) is interpreted as y = a + bx1 +
cx2. Therefore, the intercept in this table refers to a, or based on R convention, the
factor level that comes first by alphabetical order. So in our coefficients section of the
summary table, intercept refers to fatiguehigh.

Now, if we wanted to factor in the gender of each patient in addition to fatigue into
our model, we can perform a two-way Anova as on the original dataset as follows:

> patient.sex <- as.factor(c("F", "F", "F", "M", "M", "F", "M", "M",
"M", "F", "F", "M", "M", "F", "F", "F", "M", "M", "F", "M"))

Chapter 3

[111]

> modelC = aov(drugA_dose ~ fatigue*patient.sex)
> summary(modelC)
 Df Sum Sq Mean Sq F value Pr(>F)
fatigue 2 1.6664 0.8332 9.243 0.00276 **
patient.sex 1 0.0067 0.0067 0.075 0.78842
fatigue:patient.sex 2 0.0148 0.0074 0.082 0.92158
Residuals 14 1.2620 0.0901

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the summary, you can see that the effects of gender and fatigue are not
additive. In fact, we also see that there is no significant relationship between drug_A_
dose and patient.sex. We can compare the two models using the anova() function
as follows:

> anova(modelA, modelC)
Analysis of Variance Table

Model 1: drugA_dose ~ fatigue
Model 2: drugA_dose ~ fatigue * patient.sex
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 1.2836
2 14 1.2620 3 0.021556 0.0797 0.97

As you can see, the models are not significantly different from each other based
on the p value that is equal to 0.97. So, we can choose the simpler model to explain
the data.

Generalized linear models
We just saw how to fit our data to a model using linear regression. However, as we
just saw, in order for our model to be valid, it must make the assumption that the
variance is constant and the errors are normally distributed. A generalized linear
model (GLM) is an alternative approach to linear regression, which allows the errors
to follow probability distributions other than a normal distribution. GLM is typically
used for response variables that represent count data or binary response variables.
To fit your data to a GLM in R, you can use the glm() function.

Linear Models

[112]

GLM has three important properties:

•	 An error structure
•	 A linear predictor
•	 A link function

The error structure informs us of the error distribution to use to model the data and
is specified by the family argument. For example, you might want to use a Poisson
distribution to model the errors for count data and a Gamma distribution to model
data showing a constant coefficient of variation as follows:

glm(y ~ z, family = poisson)
glm(y ~ z, family = Gamma)

The linear predictor incorporates the information about the independent variables
into the model and is defined as the linear sum of the effects of one or more
explanatory variables. The link function specifies the relationship between the linear
predictor and the mean of the response variables. By using different link functions,
the performance of the models can be compared. Ideally, the best link function to
use is the one that produces the minimal residual deviance, where the deviance
is defined as a quality of fit statistic for a model that is often used for statistical
hypothesis testing. The canonical link functions are default functions used when a
particular error structure is specified. Let's take a look at this in the following table:

Error structure Canonical link function
binomial link = "logit"

gaussian link = "identity"

Gamma link = "inverse"

inverse.
gaussian link = "1/mu^2"

poisson link = "log"

quasi link = "identity", variance = "constant"

quasibinomial link = "logit"

quasipoisson link = "log"

To use an alternative link function when fitting our data to a GLM model, we can
change the link argument as follows:

glm(y, family=binomial(link=probit))

Chapter 3

[113]

Now, let's go over a detailed example of how to fit your data to a GLM in R. In the
first example, we will look at the effect of the dose of a compound on the death of 20
male and female mice. Let's take a look at this in the following lines of code:

> cmp1.ld <- read.table(header=TRUE, text='
 lethaldose sex numdead numalive
1 0 M 1 19
2 1 M 3 17
3 2 M 9 11
4 3 M 14 6
5 4 M 17 3
6 5 M 20 0
7 0 F 0 20
8 1 F 2 18
9 2 F 2 18
10 3 F 3 17
11 4 F 4 16
12 5 F 6 14
')
> attach(cmp1.ld)

We can plot the data to take a look at the relationship between the dose of the
compound and the proportions of deaths by mouse gender. Let's take a look at this
in the following lines of code:

> proportion_dead <- numdead/20
> plot(proportion_dead ~ lethaldose, pch=as.character(sex))

The result is shown in the following plot:

Linear Models

[114]

Now we will fit our data to a GLM model. First, we combine the number of dead and
alive mice into a counts matrix as follows:

> counts <- cbind(numdead, numalive)
> cmp1.ld.model <- glm(counts ~ sex * lethaldose, family=binomial)

We can summarize the results for the GLM model with the summary() function
as follows:

> summary(cmp1.ld.model)

Call:
glm(formula = counts ~ sex * lethaldose, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.23314 -0.14226 -0.03905 0.17624 1.11956

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.2507 0.6774 -4.799 1.59e-06 ***
sexM 0.3342 0.8792 0.380 0.70387
lethaldose 0.4856 0.1812 2.681 0.00735 **
sexM:lethaldose 0.7871 0.2804 2.807 0.00500 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 125.811 on 11 degrees of freedom
Residual deviance: 3.939 on 8 degrees of freedom
AIC: 40.515

Number of Fisher Scoring iterations: 4

At first glance, there seems to be a significant interaction between the sex and the
lethaldose explanatory variables (p = 0.0050). However, before we can make this
conclusion, we need to check if there is more variability in the data than expected
from the statistical model (overdispersion). We can check for overdispersion in
our model by dividing the residual deviance by the number of degrees of freedom
as follows:

> 3.939/8
[1] 0.492375

Chapter 3

[115]

The value is less than 1, which reassures us that the data is not over-dispersed.
However, if we get a value greater than 1, we might want to re-fit the model with
a quasibinomial error structure to account for the overdispersion. For the sake of
argument, let's see if we can improve the model by using a quasibinomial error
structure instead of a binomial one. Let's take a look at this in the following lines
of code:

> summary(glm(counts ~ sex * lethaldose, family=quasibinomial))

Call:
glm(formula = counts ~ sex * lethaldose, family = quasibinomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.23314 -0.14226 -0.03905 0.17624 1.11956

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.2507 0.3957 -8.214 3.61e-05 ***
sexM 0.3342 0.5137 0.651 0.53355
lethaldose 0.4856 0.1058 4.588 0.00178 **
sexM:lethaldose 0.7871 0.1638 4.805 0.00135 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 0.3413398)

 Null deviance: 125.811 on 11 degrees of freedom
Residual deviance: 3.939 on 8 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 4

As you can see, the change in error structure did not change too much except for the
p values of the explanatory variables. Now let's see what will happen if we remove
the sex:lethaldose interaction from our original model. Let's take a look at this in
the following lines of code:

> cmp1.ld.model3 <- update(cmp1.ld.model, ~ . -sex:lethaldose)
> summary(cmp1.ld.model3)

Call:
glm(formula = counts ~ sex + lethaldose, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max

Linear Models

[116]

-1.2468 -0.6442 0.1702 0.6824 1.8965

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.8871 0.6169 -7.922 2.34e-15 ***
sexM 2.7820 0.4310 6.455 1.08e-10 ***
lethaldose 0.9256 0.1373 6.740 1.58e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 125.811 on 11 degrees of freedom
Residual deviance: 11.975 on 9 degrees of freedom
AIC: 46.551

Number of Fisher Scoring iterations: 5

The first thing you will notice is that the residual deviance/degrees of freedom ratio
is greater than 1, suggesting overdispersion:

> 11.975/9
[1] 1.330556

Now let's statistically test whether this model was significantly different from
our initial model using the anova() function with the test argument set to
Chi-square test since we are dealing with a binomial family. Let's take a look
this in the following lines of code:

> anova(cmp1.ld.model, cmp1.ld.model3, test="Chi")
Analysis of Deviance Table

Model 1: counts ~ sex * lethaldose
Model 2: counts ~ sex + lethaldose
 Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 8 3.939
2 9 11.975 -1 -8.0356 0.004587 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From this analysis, we see that the two models are significantly different from each
other. Since the second model shows signs of overdispersion, we can stick to the first
model as a better fit for this data. The important thing to remember when choosing
the best model is to choose the one that has the lowest residual deviance (goodness
of fit) while maximizing parsimony.

Chapter 3

[117]

Generalized additive models
Generalized additive models (GAMs) are a non-parametric extension of GLMs in
which the linear predictor depends linearly on unknown smooth functions of some
predictor variables. GAMs are typically used to let the data "speak for themselves"
since you don't need to specify the functional form of the relationship, the response,
and the continuous explanatory variables beforehand. To fit your data to a GAM,
you will need to obtain the gam() function from the mgcv package. It is similar to the
glm() function except that you add s() to each explanatory variable you wish to
add smooths. For example, if you wish to describe the relationship between y and to
smooth three continuous explanatory variables x, z, and w, you would enter model
<- gam(y ~ s(x) + s(z) + s(w)). Now let's go through a detailed example in R.

In this example, we will explore the relationship between the total number of
pregnancies and a variety of measurements taken from 300 mice.

Let's first simulate a dataset for 300 mice with pregnancies, glucose, pressure,
insulin, and weight as explanatory variables. Since the sample() and rnorm()
functions generate pseudorandom numbers, you will get different results when
you run the following code in R. Let's simulate our explanatory variables with the
following lines of code:

> pregnancies <- sample(0:25, 300,replace=T)
> glucose <- sample(65:200, 300,replace=T)
> pressure <- sample(50:120, 300,replace=T)
> insulinD <- abs(rnorm(150, 450, 100))
> insulinN <- abs(rnorm(150, 65, 75))
> insulin <- c(insulinD, insulinN)
> weight <- sample(20:70, 300,replace=T)

Now let's use the gam() function part of the mgcv package to explore the relationship
between diabetes and pregnancies, glucose, pressure, insulin, and weight as follows:

> library("mgcv")
> mouse.data.gam <- gam(pregnancies ~ s(glucose) + s(pressure) +
s(insulin) + s(weight))

> summary(mouse.data.gam)

Family: gaussian
Link function: identity

Formula:
pregnancies ~ s(glucose) + s(pressure) + s(insulin) + s(weight)

Linear Models

[118]

Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.3467 0.4149 32.17 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
 edf Ref.df F p-value
s(glucose) 3.225 3.995 1.270 0.282
s(pressure) 1.088 1.171 0.216 0.681
s(insulin) 1.000 1.000 1.080 0.300
s(weight) 1.000 1.000 1.562 0.212

R-sq.(adj) = 0.0118 Deviance explained = 3.26%
GCV = 52.936 Scale est. = 51.646 n = 300

As you can see from the summary results of the GAM model, R returns the effective
degrees of freedom (edf) and other useful information in assessing the fit of our data
to the GAM model. Unlike other ordinary least squares linear regression models,
the number of degrees of freedom is not equivalent to the number of predictors
in the model because it also needs to take into account the smoothing process.
Therefore, the terms associated with the smoothing process are each penalized to a
certain extent, which in turn is reflected in the edf value.

Another important term to consider when evaluating the fit of a GAM is the
generalized cross validation (GCV) score, which is used as an estimate of the mean
square prediction error. We can use the GCV as a comparative measure to choose
between different models, where the lower the GCV value, the better the model.
To read more about the information returned in the gam object summary, you can
consult the documentation page as follows:

> ?summary.gam

To plot the model to inspect 95 percent Bayesian confidence intervals to determine
whether the curvature is real or not, we can use the following function:

> par(mfrow=c(2,2))
> plot(mouse.data.gam)

Chapter 3

[119]

The result is shown in the following plot:

Alternatively, we can use the vis.gam() function to visualize the two main effect
terms in a perspective plot. In this case, the two main effect terms are glucose and
pressure as follows:

> par(mfrow=c(1,1))
> vis.gam(mouse.data.gam,theta=-35,color="topo")

The result is shown in the following plot:

Linear Models

[120]

We can also use the gam.check() function to inspect our model as follows

> gam.check(mouse.data.gam)

Method: GCV Optimizer: magic
Smoothing parameter selection converged after 13 iterations.
The RMS GCV score gradiant at convergence was 1.813108e-06 .
The Hessian was positive definite.
The estimated model rank was 37 (maximum possible: 37)
Model rank = 37 / 37

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.

 k' edf k-index p-value
s(glucose) 9.000 3.225 1.030 0.70
s(pressure) 9.000 1.088 0.999 0.44
s(insulin) 9.000 1.000 1.106 0.96
s(weight) 9.000 1.000 1.058 0.82

Let's see what happens to the fit of the model when we remove the non-significant
explanatory variables as follows:

> mouse.data.gam2 <- gam(pregnancies ~ s(insulin))
> summary(mouse.data.gam2)

Family: gaussian
Link function: identity

Formula:
pregnancies ~ s(insulin)

Parametric coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.3467 0.4174 31.97 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
 edf Ref.df F p-value
s(insulin) 1 1 0.918 0.339

R-sq.(adj) = -0.000276 Deviance explained = 0.307%
GCV = 52.626 Scale est. = 52.275 n = 300

Chapter 3

[121]

To better compare the two models, we can use the AIC() function, which calculates
the Akaike information criterion (AIC) to give us an idea of the trade-off between
the goodness of fit of the model and the complexity of the model. Generally
speaking, a good GAM has a low AIC and and the fewest number of degrees of
freedom. Let's take a look at this in the following lines of code:

> AIC(mouse.data.gam, mouse.data.gam2)
 df AIC
mouse.data.gam 8.313846 2045.909
mouse.data.gam2 3.000000 2044.313

As you can see, the number of degrees of freedom and the AIC value are slightly
lower for mouse.data.gam2, making the second GAM a better model than the first.
That being said, GAMs are best used in the preliminary phase of your analysis to
broadly explore the potential relationship between your response and explanatory
variables. Some people find it useful to examine the shape of a curve with GAMs
and then reconstruct the curve shape parametrically with GLMs for model building.
A GLM is preferable to the more complex GAM. As a general rule of thumb, it is
usually preferable to rely on a simple well-understood model to predict future cases
than on a complex model that is difficult to interpret and summarize.

Linear Models

[122]

Linear discriminant analysis
Linear discriminant analysis (LDA) is used to find the linear combinations of
explanatory variables that give the best possible separation between the groups in
our dataset. More specifically, LDA is used as a linear supervised classifier to form a
classification model from the data provided. For example, we can use LDA to classify
fish based on their length, weight, and speed underwater. Let's simulate a dataset
based on the Ontario warm water fish species Bluegill, Bowfin, Carp, Goldeye, and
Largemouth Bass.

> set.seed(459)
> Bluegill.length <- sample(seq(15, 22.5, by=0.5), 50, replace=T)
> Bluegill.weight <- sample(seq(0.2, 0.8, by=0.05), 50, replace=T)
> Bowfin.length <- sample(seq(46, 61, by=0.5), 50, replace=T)
> Bowfin.weight <- sample(seq(1.36, 3.2, by=0.5), 50, replace=T)
> Carp.length <- sample(seq(30, 75, by=1), 50, replace=T)
> Carp.weight <- sample(seq(0.2, 3.5, by=0.1), 50, replace=T)
> Goldeye.length <- sample(seq(25, 38, by=0.5), 50, replace=T)
> Goldeye.weight <- sample(seq(0.4, 0.54, by=0.01), 50, replace=T)
> Largemouth_Bass.length <- sample(seq(22, 55, by=0.5), 50, replace=T)
> Largemouth_Bass.weight <- sample(seq(0.68, 1.8, by=0.01), 50,
replace=T)

> weight <-c(Bluegill.weight, Bowfin.weight, Carp.weight, Goldeye.
weight, Largemouth_Bass.weight)

> length <-c(Bluegill.length, Bowfin.length, Carp.length, Goldeye.
length, Largemouth_Bass.length)

> speed <- rnorm(50*5, 7.2, sd=1.8)

> fish <- c(rep("Bluegill", 50), rep("Bowfin", 50), rep("Carp", 50),
rep("Goldeye", 50), rep("Largemouth_Bass", 50))
> fish.data <- data.frame(length, weight, speed, fish)

Chapter 3

[123]

> str(fish.data)
'data.frame': 250 obs. of 4 variables:
 $ length: num 17 19 21.5 22.5 19.5 21.5 15 20.5 18.5 15.5 ...
 $ weight: num 0.5 0.5 0.7 0.3 0.75 0.35 0.45 0.5 0.5 0.65 ...
 $ speed : num 6.78 7.74 5.43 4.76 9.03 ...
 $ fish : Factor w/ 5 levels "Bluegill","Bowfin",..: 1 1 1 1 1 1 1 1
1 1 ...

To help visualize the data, let's make 3D scatterplots using the scatterplot3d
package. To simplify generating the four 3D scatterplots, we will write a function
and call it to plot each figure. Let's take a look at how to do this in the following lines
of code:

> plot3DfishData <- function(x, y, z, data=fish.data){

 require("scatterplot3d")

 #To store the axis labels
 fish.variable <- colnames(data)

 scatterplot3d(data[, x], data[, y], data[, z], mar = mar0, color =
 c("blue", "black", "red", "green", "turquoise")[data$fish], pch
 = 19, xlab=fish.variable[x], ylab=fish.variable[y], zlab=fish.
 variable[z])

}

> # Load the scatterplot3d package
> library("scatterplot3d")

Now, we can use plot3DfishData() to plot the relationship between the length,
weight, and speed as follows:

> par(mfrow = c(1, 1))
> plot3DfishData(1, 2, 3)

Linear Models

[124]

To add the figure legend, click on the plot at the position you wish to add the legend
after entering the following command:

> legend(locator(1),levels(fish.data$fish), col=c("blue", "black",
"red", "green", "turquoise"), lty=c(1, 1, 1, 1, 1), lwd=3, box.lwd =
1,box.col = "black",bg = "white")

The result is shown in the following plot:

To plot all four figures in the same plot, use the following lines of code:

> par(mfrow = c(2, 2))
> plot3DfishData(1, 2, 3)
> plot3DfishData(2, 3, 4)
> plot3DfishData(3, 4, 1)
> plot3DfishData(4, 1, 2)

Chapter 3

[125]

The result is shown in the following plot:

Now let's perform an LDA analysis on fish.data by using the lda() function
available as part of the MASS package. To specify the prior probabilities of class
membership, we use the prior argument. Say we only had data from these five
fishes to classify, then the prior probability would be 1/5 for each fish group.

The probabilities in the prior argument should be specified in the
same order of the factor levels.

Linear Models

[126]

Let's take a look at this in the following lines of code:

> library("MASS")
> fish.lda <- lda(fish ~ ., data=fish.data, prior = c(1,1,1,1,1)/5)

> fish.lda
Call:
lda(fish ~ ., data = fish.data, prior = c(1, 1, 1, 1, 1)/5)

Prior probabilities of groups:
 Bluegill Bowfin Carp Goldeye
 0.2 0.2 0.2 0.2
Largemouth_Bass
 0.2

Group means:
 length weight speed
Bluegill 19.25 0.5280 7.222587
Bowfin 53.57 2.1600 7.243531
Carp 52.26 1.7320 7.588852
Goldeye 31.87 0.4748 7.122371
Largemouth_Bass 40.11 1.2428 7.163396

Coefficients of linear discriminants:
 LD1 LD2 LD3
length 0.10121664 -0.067114012 0.003296811
weight 1.17216477 1.335393654 0.011024527
speed -0.02745768 -0.009936134 -0.555543270

Proportion of trace:
 LD1 LD2 LD3
0.9730 0.0256 0.0014

The lda() function returns the prior probability of each class ($prior), the
class-specific means for each covariate ($means), the coefficients for each linear
discriminant ($scaling), and the proportion of trace. You can also get the counts
for each class in the data with $counts and the singular values (svd) that gives the
ratio of the between and within-group standard deviations on the linear discriminant
variables with $svd.

> fish.lda$counts
 Bluegill Bowfin Carp
 50 50 50

Chapter 3

[127]

 Goldeye Largemouth_Bass
 50 50
> fish.lda$svd
[1] 16.1282733 2.6175620 0.6155127

Using the predict() function, we can return the classification and posterior
probabilities of a new dataset. As an example, let's use 100 samples from our
fish.data dataset to train and perform the LDA before predicting the classification
150 samples.

Select 100 samples from the data using the following code:

> set.seed(10)
> train100 <- sample(1:nrow(fish.data), 100)

The following code will show the sample distribution in a table:

> table(fish.data$fish[train100])

 Bluegill Bowfin Carp Goldeye
 18 25 16 20
Largemouth_Bass
 21

Now we can use the select argument to provide the indices to use from the fish.
data dataset for the LDA analysis as follows:

> fish100.lda <- lda(fish ~ ., data=fish.data, prior = c(1,1,1,1,1)/5,
subset = train100)

Note that using the prior argument, we specify that the probability
of belonging to any group is equal; otherwise, R would use the
proportions in the sample.

Now let's get information on the model using the predict() function to classify the
100 samples we used to create the LDA as follows:

> predict.fish100 <- predict(fish100.lda)
> table(fish.data$fish[train100], predict.fish100$class)

 Bluegill Bowfin Carp Goldeye Largemouth_Bass
 Bluegill 18 0 0 0 0
 Bowfin 0 15 9 0 1
 Carp 0 5 7 0 4
 Goldeye 1 0 0 19 0
 Largemouth_Bass 2 0 2 2 15

Linear Models

[128]

As you can see, it classified a couple of the samples in the wrong fish group. To help
visualize the implications of these findings, let's plot the results as follows:

> par(mfrow = c(1, 1))
> plot(predict.fish100$x,
 type="n",xlab="LD1", ylab="LD2",
 main="TrainingSetLDA Results(n=50)")
> text(predict.fish100$x,
 as.character(predict.fish100$class),
 col=as.numeric(fish.data$fish[train100]),cex=1.5)
> abline(h=0, col="gray")
> abline(v=0, col="gray")

The result is shown in the following plot:

Alternatively, we can plot the figure with the ggplot() function from the ggplot2
package as follows:

> library("ggplot2")

> p <- ggplot(as.data.frame(predict.fish100$x),
aes(x=LD1,y=LD2,col=fish.data$fish[train100])) + geom_point() + geom_
text(aes(label = as.character(predict.fish100$class)))

Chapter 3

[129]

> # Adjust legend size
> p <- p + theme(legend.title=element_blank(), legend.text = element_
text(size = 20, face = "bold"))

Adjust axis labels
> p <- p + theme(axis.title = element_text(face="bold", size=20),
 axis.text = element_text(size=18))

Display plot
> p

The result is shown in the following plot:

Now let's use predict() to classify the remaining data as follows:

> predict.new <- predict(fish100.lda, newdata=fish.data[-train100,])

If you want to look at the classification ($class) and the posterior probability
($posterior) of each sample, you can enter predict.new$class and predict.
new$posterior. Alternatively, you might want to use a table to see how well it
classified the data. Let's take a look at this in the following lines of code:

> table(fish.data$fish[-train100], predict.new$class)

 Bluegill Bowfin Carp Goldeye Largemouth_Bass
 Bluegill 32 0 0 0 0
 Bowfin 0 11 13 0 1
 Carp 0 16 5 3 10

Linear Models

[130]

 Goldeye 0 0 0 30 0
 Largemouth_Bass 3 0 3 5 18

Now, let's calculate the misclassification rate as follows:

> TAB <- table(fish.data$fish[-train100], predict.new$class)
> mcrlda <- 1 - sum(diag(TAB))/sum(TAB)
> mcrlda
[1] 0.36

If these results were from a real experiment, we might want to consider taking
additional measurements to decrease the misclassification rate to better discriminate
between the different groups.

Principal component analysis
Principal component analysis (PCA) is another exploratory method you can use to
separate your samples into groups. PCA converts a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables called
principal components. PCA is widely used as a dimension reduction technique
to help visualize data. PCA is different from LDA because it doesn't rely on class
information to explore the relationship between the variable values and the
sample group numbers. For example, let's perform a PCA to explore our simulated
fish.data dataset. Before performing PCA, it is important to remember that the
magnitude of the variables and any skews in the data will influence the resulting
principal components. So, we need to scale and transform our data.

First, we recommend you to log transform the data (if necessary). Then, run PCA
using the prcomp() function as follows:

> fish.data.mx <- as.matrix(fish.data[, 1:3])
> fish.data.log <- log(fish.data.mx)
> fish.log.pca <- prcomp(fish.data.log, scale=T, center=T)
> summary(fish.log.pca)
Importance of components:
 PC1 PC2 PC3
Standard deviation 1.2563 0.9953 0.6566
Proportion of Variance 0.5261 0.3302 0.1437
Cumulative Proportion 0.5261 0.8563 1.0000

Instead of the summary, you might want to see the standard deviation of each
principal component, and their rotation (or loadings), which are the coefficients of
the linear combinations of the continuous variables. To get this information, we can
use the print() function as follows:

> print(fish.log.pca)
Standard deviations:

Chapter 3

[131]

[1] 1.2563128 0.9952860 0.6565698

Rotation:
 PC1 PC2 PC3
length 0.7012316 -0.09252202 0.70690444
weight 0.7016076 -0.08648088 -0.70729617
speed 0.1265742 0.99194795 0.00427102

We can also plot the variance associated with each principal component as follows:

> plot(fish.log.pca, ylim=c(0, 2)) #plot not shown

Now let's visualize the loadings on the first principal component with the qplot()
function from the ggplot2 package as follows:

> library("ggplot2")
> loadings <- as.data.frame(fish.log.pca$rotation)

> # Add a column with the name of each variable to the loadings data
frame.
> loadings$variables <- colnames(fish.data[,1:3])

> # Plot figure with qplot()
> q <- qplot(x = variables, y = PC1, data = loadings, geom = "bar",
stat="identity")

> # Adjust axis label sizes
> q + theme(axis.title = element_text(face="bold", size=20), axis.text
= element_text(size=18))

The result is shown in the following plot:

Linear Models

[132]

We can also plot the score from our PCA results as follows:

> scores <- as.data.frame(fish.log.pca$x)
> q2 <- qplot(x = PC1, y = PC2, data = scores, geom = "point", col =
fish.data$fish)
> q2 <- q2 + theme(legend.title=element_blank(), legend.text =
element_text(size = 20, face = "bold"))
> q2 <- q2 + theme(axis.title = element_text(face="bold", size=20),
axis.text = element_text(size=18))
> q2

The result is shown in the following plot:

We can also view the PCA results with the biplot() function. A biplot allows us to
visualize two sets of variables at the same time. It's representation is similar to the
last plot we just generated with the qplot() function except that it also represents
the variables as vectors. Let's take a look at the following biplot() function:

> biplot(fish.log.pca)

Chapter 3

[133]

The result is shown in the following plot:

As you can see, in this case, the samples are shown as points and the variables
(speed, length, and width) are shown as vectors.

Linear Models

[134]

You may also want to take advantage of the ggbiplot() function as part of the
ggbiplot package (available at https://github.com/vqv/ggbiplot) to produce
a better figure as follows:

> library("devtools")
> install_github("ggbiplot", "vqv")
> library("ggbiplot")

> fish.class <- fish.data$fish
> g <- ggbiplot(fish.log.pca, obs.scale = 1, var.scale = 1, groups =
fish.class, ellipse = TRUE, circle = TRUE)
> g <- g + scale_color_discrete(name = '')
> g <- g + theme(legend.direction = 'horizontal',
 legend.position = 'top')
> g <- g + theme(legend.title=element_blank(), legend.text = element_
text(size = 20, face = "bold"))
> g <- g + theme(axis.title = element_text(face="bold", size=20),
axis.text = element_text(size=18))
> g

The result is shown in the following plot:

https://github.com/vqv/ggbiplot

Chapter 3

[135]

We can also create a three-dimensional view of the principal components with the
plot3d() function available in the rgl package. The plot3d() function creates an
interactive 3D scatter plot. So you can move around the plot to have a better idea
of the separation between the principal components. Let's take a look at the
following code:

> library(rgl)
> fish.pca.col=c("red", "blue", "green", "magenta", "black")
> plot3d(fish.log.pca$x[,1:3], col=fish.pca.col[sort(rep(1:5, 50))])

To save an image, we use the rgl.snapshot() function as follows:

> rgl.snapshot("PCAfigure1.png")

Linear Models

[136]

Clustering
An alternative approach to PCA is k-means (unsupervised) clustering, which partitions
the data into k clusters in which each observation belongs to the cluster with the
nearest mean, serving as a prototype of the cluster. We can perform k-means clustering
with the kmeans() function and plot the results with plot3d() as follows:

> set.seed(44)
> cl <- kmeans(fish.data[,1:3],5)
> fish.data$cluster <- as.factor(cl$cluster)
> plot3d(fish.log.pca$x[,1:3], col=fish.data$cluster, main="k-means
clusters")

The color scheme used for the groups is different from the 3D plot of
the PCA results. However, the overall distribution of the groups is
similar.

Chapter 3

[137]

Let's now evaluate how well it categorizes the data with a table as follows:

> with(fish.data, table(cluster, fish))
 fish
cluster Bluegill Bowfin Carp Goldeye Largemouth_Bass
 1 0 0 14 39 18
 2 0 27 12 0 22
 3 0 23 13 0 2
 4 0 0 11 0 0
 5 50 0 0 11 8

As you can see, it nicely groups all the Bluegill fish together but had a much harder
time placing the other fish in the right group.

To help improve the classification of the fish into the five groups, we can perform
hierarchical clustering as follows:

> di <- dist(fish.data[,1:3], method="euclidean")
> tree <- hclust(di, method="ward")

> fish.data$hcluster <- as.factor((cutree(tree, k=5)-2) %% 3 +1)
> plot(tree, xlab="", cex=0.2)

Let's add a red box around the five hierarchical clusters as follows:

> rect.hclust(tree, k=5, border="red")

The result is shown in the following plot:

Linear Models

[138]

Now, let's create a table to determine how well we can group the fish based on the
hierarchical clustering as follows:

> with(fish.data, table(hcluster, fish))
 fish
hcluster Bluegill Bowfin Carp Goldeye Largemouth_Bass
 -1 50 0 0 0 4
 0 0 35 8 0 20
 1 0 15 23 0 0
 2 0 0 10 9 14
 3 0 0 9 41 12

As you can see, hierarchical clustering didn't drastically improve the classification of
the fish. Therefore, you might consider collecting additional measurements to help
classify the fish since the information provided by the length, weight, and speed is
insufficient.

Summary
In this chapter, we began with an overview of statistical modeling and how to write
model formulas in R. Then, we also saw how to fit our data using linear methods.
More specifically, we showed you how to use linear regression, generalized linear
models, and generalized additive models to model your data and use statistical
methods to assess the fit of your model to help choose the best one. Next, we showed
you how to use analysis of variance to fit your data to a linear model when all the
explanatory variables are categorical. Finally, we also saw how to use exploratory
methods such as linear discriminant analysis, principal component analysis, and
hierarchical clustering to separate your data into groups. While linear models are the
most commonly used statistical models in scientific computing, there are times when
nonlinear methods are preferable. Now that you know how to use linear methods to
model your data, you will move on to nonlinear methods in the next chapter, where
you will find out how to use non-parametric regression for exploratory analysis.

References:

Crawley, Michael J. 2005. Statistics: An Introduction Using R. Chinchester: John Wiley
& Sons. Ltd.

Nonlinear Methods
In the previous chapter, we looked at using R for the estimation of linear models,
the groundwork upon which most data analysis is built. However, what is one
supposed to do if the relationship between two variables is not linear? For this,
we must use nonlinear methods, a topic to which this chapter is devoted.

We will start with extensions to linear regression and then move on to nonparametric
regression. In this chapter, we'll cover the following topics:

•	 Polynomial regression
•	 Spline regression
•	 General regression framework
•	 Point-wise regression
•	 Kernel density regression
•	 Local polynomial regression

Nonparametric and parametric models
The exact role of nonlinear methods in statistics is perhaps still a bit contentious.
They are largely used for the purposes of exploratory analyses as visual tools, and
for this reason data visualization and nonlinear statistical methods are closely tied
together. The question is whether or not nonlinear methods can also be used to truly
develop statistical models.

Nonlinear Methods

[140]

Broadly speaking, nonlinear models might be grouped into nonparametric (or semi-
parametric) and parametric models. The term "parametric" here has a very different
meaning than it does in statistical methods, used in testing for differences between
groups. Parametric tests of statistically significant differences are concerned with a
parameterization of the sample distribution. For example, the t-test does not actually
test for differences in observed data but tests for differences in distributions whose
parameters were computed based on observed data. This is to say, that we only need
to know the parameters of the t-distribution for a given sample to do a t-test;
we don't actually need the original sample values to perform a t-test if we know
these parameters.

The term parametric when applied to regression is concerned not with the
distribution of the sample being studied but with the statistical model being
developed. As such, a parametric regression model is so called because it can
be described completely with a few model parameters. For example, in linear
regression, once we know that the model is linear, we only need to know two
parameters: one is the intercept and the other is the slope of the model to recreate
the entire line. Alternatively, if we regress a curve of unknown algebraic form on to
a cloud of data points, then we need to know the x and y values of each point on that
curve to recreate it, making it a nonparametric model. A nonparametric regression
model can in fact make distributional assumptions about the sample.

There are a number of advantages that parametric regression models have over their
nonparametric counterparts. They can be easily interpreted and used to advance a
general theory from the model, which is not always possible with nonparametric
regression models. The proportion of variance explained can give a convenient
summary of how well a parametric model explains data, whereas, a similar statistic
is not so readily available for nonparametric models. Finally, parametric models are
excellent for use in smaller datasets or datasets with a low signal-to-noise ratio, since
the strong assumption about the algebraic form of the model will have a tempering
effect on model parameter sensitivity to only a few observations. The disadvantage
of parametric models is that they require an assumption about the algebraic form of
the relationship between two or more variables. It is also worth noting that nonlinear
parametric regression models, like polynomial regression, can be thought of as linear
regression onto nonlinear transformations of the predictor variables, and as such,
it is possible to make all of the same assumptions of linear regression. As such, the
term "nonlinear regression" is sometimes used strictly to refer to nonparametric
regression models, though in this book, we will use nonlinear regression to refer to
both parametric and nonparametric models.

Chapter 4

[141]

Before getting into either the theory or the practical execution of these methods in
R, it is important to first place these methods in context and address the question:
What are such statistical methods useful for? There are two potential answers to
this question, which have practical implications for how one might use R to execute
these methods:

•	 Nonparametric statistical models are simply exploratory tools and can be
used to get an overall sense of how variables relate to one another (that is,
they are not really models).

•	 Nonparametric statistical models are powerful generalizations of linear models
that allow us to model the relationships between two or more variables with
high fidelity and without being bound to the equation for a line

The adsorption and body measures
datasets
In this section, we will use two datasets:

•	 The adsorption dataset (adsorption.txt) is available for download at
http://scholar.harvard.edu/gerrard/mastering-scientific-
computation-r. This data is designed to represent the proportion of a solid
surface to which gas is bound at 50 different pressure readings. It contains
four variables:

°° P is the pressure at which measurements were taken
°° T1, T2, and T3 are the proportions of the solid covered in gas at

temperatures 1, 2, and 3

•	 Anthropometric data obtained from the Centers for Disease Control's
National Health and Nutrition Examination Survey, 2011-2012, provided as
a comma-separated values (CSV) file is available for download at http://
scholar.harvard.edu/gerrard/mastering-scientific-computation-r.
This dataset has been cleaned and processed for use and contains 8,602
individuals and four variables:

°° Gender (1 is for male, 2 is for female)
°° Age
°° Height
°° Weight

http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r

Nonlinear Methods

[142]

Theory-driven nonlinear regression
While opinions vary as to how theory-driven data analysis should be in science,
nearly all scientists agree that a well thought out theoretical model applied to real
data is typically ideal. The clearest use for nonlinear regression is when you know
how two or more variables relate to one another theoretically, and your theory tells
you that they are not linearly related. An example of this is a classical model of gas
adsorption, known as the Langmuir adsorption model (other adsorption models
also exist).

Adsorption is the phenomenon in which gases tend to concentrate near the surface
of a material. Practically speaking, this has applications in engineering for gas
separations. We will not delve into the theory of how the Langmuir model was
derived but will give its equation, which is as follows:

1
P

P
α
α

Θ =
+

In the preceding formula, Θ is a proportion of the surface covered by gas. α is a
constant for a given gas interacting with a given solid at a given temperature and
P is pressure.

As can be seen from this equation, the relationship between pressure and coverage of
the solid is nonlinear. A common task in chemical engineering is to estimate
the constant α , based on observations of the proportion of the surface covered
at given pressures.

Experimentally, what is done is that a gas cylinder containing a very
sensitive scale weighing a solid is maintained at a consistent temperature
and the solid sample is weighed at varying pressures. To stay focused on
the data analysis and to make this book applicable to non-engineers, we
will not delve into the practical details of physical measurement.

Perform the following steps:

1.	 First, load the dataset using the following code:
adsorption <- read.csv('adsorption.txt')

Chapter 4

[143]

2.	 The simplest way to fit this equation in R is via the nls command, which fits
a user specified algebraic model to a set of data. The adsorption data frame
has three different sets of theta values for three different temperatures: T1,
T2, and T3. We can use the estimate, α, in the Langmuir equation for each
temperature, as follows:
langmuir.T1 <- 'T1 ~ (alpha.1 * P) / (1 + alpha.1 * P)'
langmuir.T2 <- 'T2 ~ (alpha.2 * P) / (1 + alpha.2 * P)'
langmuir.T3 <- 'T3 ~ (alpha.3 * P) / (1 + alpha.3 * P)'
fit.T1 <- nls(langmuir.T1, start = list(alpha.1 = 1), data =
adsorption)
fit.T2 <- nls(langmuir.T2, start = list(alpha.2 = 1), data =
adsorption)
fit.T3 <- nls(langmuir.T3, start = list(alpha.3 = 1), data =
adsorption)

3.	 The previous functions define three different nonlinear regressions (one for
each temperature) based on the equation for the Langmuir adsorption model.
Simply calling the objects fit by the nls function will return estimates of α for
each temperature, while the summary command will also give the standard
errors of the estimates:

fit.T1
fit.T2
fit.T3

An important note of caution is that starting values can be important
and starting values that are way off might not converge. Therefore,
it is often advisable to use multiple starting values and compare the
final values.

Visually exploring nonlinear relationships
Let's say that we want to understand the relationship between height, weight, age,
and gender. We probably have some preconceived notions about how these variables
relate to one another (for example, taller people probably tend to weigh more). Let's
perform the following steps:

1.	 Firstly, load the data and attach the data frame using the following code:
body.measures <- read.csv('nhanes_body.txt')
attach(body.measures)

Nonlinear Methods

[144]

2.	 Now, let's just look at the data visually, as shown in the following
diagram, an important first step in most analyses. Let's have a look
at the following function:

plot(age, height, xlab = 'Age', ylab = 'Height', main = 'Height vs
Age')

The previous dataset has thousands of data points, so a simple plot with default
graphics options looks messy but it is clear that this is not a linear relationship.
However, even the previous plot shows us some features about the relationship
between age and height. The most obvious feature is that the relationship between
height and age is not linear but it does have segments that might be successfully
modeled as linear. As expected, those who are relatively young are shorter than
those who have reached adulthood. It also looks like there is a slight trend towards
decreasing height as adults get older.

Chapter 4

[145]

Are there data visualization tools in R for examining high density
data?
To examine high density data, there are a number of packages
available for visualization in R, including hexbin and ggplot2.
These packages are also helpful for creating publication-quality plots.

The following three packages display high density data on two-dimensional plots
and shading plot areas to give a visual representation of number of observations.

Using hexbin, as shown in the following code:

library(hexbin)
bin<-hexbin(age, height)
plot(bin, xlab = 'Age', ylab = 'Height', main = 'Height vs Age')

Using ggplot2, as shown in the following code:

library(ggplot2)
qplot(age, height, data = body.measures, geom="hex", xlim = c(0, 80),
ylim = c(80, 200), binwidth = c(5, 5))

Using graphics, as shown in the following code:

smoothScatter(height ~ age, xlab = 'Age', ylab = 'Height', main =
'Height vs Age')

If we wish to try to make sense of an overall pattern using visualization, we can
simply use the scatter.smooth command. This is not a sophisticated command
with many options but it gives a quick view of the relationships between two
variables with minimal code. It is generally helpful to set the color of the data
points to a light color so that the smoothed line is visible. The plot is probably not
publication ready and we might want to try to develop a better statistical model,
as the one given by the following code, rather than the one provided by this curve,
but this is a quick and dirty method to visualize data:

scatter.smooth(age, height, xlab = 'Age', ylab = 'Height', main =
'Height vs Age', col = 'gray', pch = 16)

Nonlinear Methods

[146]

The plot is shown in the following graph:

As we cover the next few sections, we will be making many judgments about how
sensitive we wish to be to individual data points, which is tantamount to deciding
whether we wish to be optimally sensitive to small quirks in the data or whether we
wish to minimize our modeling of sample-specific random error in the data. One
will come at the cost of the other. If we expect that there will be large changes in one
variable with respect to another, and that these changes truly represent a phenomenon
worth modeling, then we believe that there is a large signal-to-noise ratio, and we will
use methods that are very sensitive to changes in the data. Alternatively, if we believe
that there will be only relatively small changes in one variable with respect to another
and that large fluctuations are the effect of random errors, then we will be best served
by methods that are relatively insensitive to fluctuations.

We will further discuss nonparametric data used to create these plots but first, we
will stop and discuss extensions of the linear model to nonlinear relationships.

Extending the linear framework
As discussed in the previous chapter, the basic idea underlying linear regression is that
some variables' values can be predicted by the following equation describing a line:

1 1 2 2 3 3Y B X B X B Xα= + + + +K

Chapter 4

[147]

Here, the dependent variable Y has a linear relationship with a set of X values
(that is, X values that are all raised to the power of 1). Of course, the various X
values themselves can be nonlinear functions of other predictor variables; thus, by
performing linear regression on nonlinear transformations of predictor variables we
will be able to model nonlinear relationships in between variables.

Polynomial regression
The simplest way to extend the linear framework to nonlinear relationships is
through polynomial regression. The idea here is that some of the predictor variables
are squared or cubed, and the squares or cubes of these predictor variables are
themselves treated as distinct predictors. For example, let's say that we want to fit a
second degree polynomial, as shown by the equation:

2
1 1 2 2 3 2Y B X B X B Xα= + + +

This is not a linear regression formula but we can make it one by declaring a new
variable B3 and setting it equal to

2
2X , as shown in the following equation:

1 1 2 2 3 3Y B X B X B Xα= + + +

In the preceding equation,

2
3 2X X=

This way, we simply solve α , B1, B2, and B3 as we would in typical least squares
linear regression.

Performing a polynomial regression in R
As can be visually seen in the previous plots, the relationship between height and
age is clearly nonlinear. For starters, we just fit a line to the data to see what we get:

fit.linear <- lm(height ~ age)
summary(fit.linear)

Based on the R-squared value of 0.304, it might at first appear that a linear model
fits the data well. We know that this is not true because visual inspection of the
data, prior to model fitting, showed nonlinear data. The line fit to our dataset clearly
misses the key features of the change in height in youth followed by a tapering of
height in older age. Thus, it is a poor height versus age model, shown by:

Nonlinear Methods

[148]

plot(age, height, pch = 16, col = 'gray', xlab = 'Age', ylab =
'Height', main = 'Height vs Age')
points(age, fit.linear$fitted, pch = 16, cex = 0.1)

The result is shown in the following plot:

This can also be seen using visual methods for regression diagnostics. Here, we will
focus on the residuals versus fitted plots, which we will compare subsequent models
against, as shown in the following code:

plot(fit.linear, which = 1)

Chapter 4

[149]

Here, we see large residuals for the fitted values with a clear pattern of very negative,
then very positive followed by somewhat negative residuals.

How can we then fit a model in the absence of a theoretical formula relating these
two variables? The answer is polynomial regression. This is in fact a kind of linear
regression but the regression is performed on a combination of basis functions of x,
where each basis function raises X to a higher level power.

Unfortunately, we don't actually know what kind of polynomial is required, so we
will start with low order polynomials and advance. We use the function I() to tell R
that the contents inside the parentheses are a mathematical function that should be
interpreted independently and passed to the regression formula, as follows:

fit.quadratic <- lm(height ~ age + I(age^2))
plot(fit.quadratic, which = 1)
fit.cubic <- lm(height ~ age + I(age^2)+ I(age^3))
plot(fit.cubic, which = 1)

Nonlinear Methods

[150]

fit.quartic <- lm(height ~ age + I(age^2)+ I(age^3)+ I(age^4))
plot(fit.quartic, which = 1)
fit.quintic <- lm(height ~ age + I(age^2)+ I(age^3)+ I(age^4)+
I(age^5))
plot(fit.quintic, which = 1)
fit.sextic <- lm(height ~ age + I(age^2)+ I(age^3)+ I(age^4)+
I(age^5)+ I(age^6))
plot(fit.sextic, which = 1)
fit.septic <- lm(height ~ age + age + I(age^2)+ I(age^3)+ I(age^4)+
I(age^5) + I(age^6)+ I(age^7))
plot(fit.septic, which = 1)

For the sake of saving space, we don't show all of the plots; however, as can be seen
in the following diagram, with each higher order polynomial, the residuals versus
fitted plot improves:

The approach of fitting high order polynomials might seem difficult to many
readers to stomach for a variety of reasons. To begin with, it might just intuitively
seem ridiculous. Additionally, once you get to a fourth order polynomial, it is
not clear whether higher order polynomials are any better. However, we still had
to get to a fourth order polynomial in our data modeling exercise. It is generally
recommended to use polynomials of no more than cubic order to avoid the problem
of nonconvergence.

Chapter 4

[151]

Nonconvergence is a problem in many estimation algorithms, and a problem of high
order polynomials in particular. Practically speaking, this problem can result in a
polynomial that produces wildly fluctuating interpolated values. This can generally
be avoided if no term in the polynomial is raised to a power higher than three.
The problem lies in the distribution of interpolation points. Try the following code
illustrating Runge's phenomenon (a prototypical example of the noncovergence
problem), as an example:

Using data that has equally spaced interpolation points, as shown in the
following code:

runge <- function(x) {return(1/(1+x^2))}
x<-seq(-5,5, 0.5)
y <- runge(x)
plot(y~x)
fit.runge <- lm(y~x+I(x^2)+I(x^3)+I(x^4)+I(x^5)+I(x^6))
lines(fit.runge$fitted ~ x)

The circles represent the actual points of the function, which one's intuition might
suggest is a simple bell-shaped curve but the polynomial curve fit to these points
oscillates wildly at the edges.

We can reduce this fluctuation by giving more interpolation points at the extremes
of the interpolation interval using data with a high density of points at the extremes
and a few points in the middle, as follows:

x2<-c(seq(-5,-4.05, 0.05),seq(-4, 4, 1), seq(4.05, 5, 0.05))
y2 <- runge(x2)
fit.runge.2 <- lm(y2~x2+I(x2^2)+I(x2^3)+I(x2^4)+I(x2^5)+I(x2^6))
lines(fit.runge.2$fitted ~ x2, col = 'red')

This technique helps to deal with noncovergence in made-up data, in which we get
to choose interpolation points. Unfortunately, with real data, we don't get to choose
where our interpolation points lie, so this solution can't be used.

The truth is that the relationship that we graphically see does not look like any
common polynomial, and as such, it is really a bit unfair to apply polynomial
regression to height versus age for all ages. A better approach might be to
acknowledge that there are likely to be two distinct regimes; one in which people are
growing and maturing and the other in which their growth has leveled off and might
be declining. Let's start by breaking the sample into two age groups:

•	 Those up to the age of 18, whom we expect to be growing
•	 Those over the age of 18, for whom we expect growth has completed

Nonlinear Methods

[152]

The following code is used to break the samples:

detach(body.measures)
youths <- which(body.measures$age %in% c(2:18))
adults <- which(body.measures$age %in% c(19:80))
body.measures.youths <- body.measures[youths,]
body.measures.adults <- body.measures[adults,]
attach(body.measures.youths)
plot(height ~ age)

The result is shown in the following plot:

We can understand from the previous plot that there is a curvilinear relationship
between age and height. Furthermore, a visual inspection shows that this sort of
curve looks like the kind that might be amenable to polynomial modeling. Let's have
a look at the following code:

fit.cubic.youths <- lm(height ~ age + I(age^2)+ I(age^3))
plot(fit.cubic.youths, which = 1)

Chapter 4

[153]

Here, we see a nice plot of residuals versus fitted, with residuals simply showing
random errors rather than an organized pattern of misfit. Let's look at how the
predicted model looks in comparison to the data:

plot(age, height, pch = 16, col = 'gray', xlab = 'Age', ylab =
'Height', main = 'Height vs Age (in youths)')
points(fit.cubic.youths$fitted ~ age, pch = 16, cex = 1)

The result is shown in the following code:

We can also look at the standard model parameters and the proportion of variance
explained, which suggests that this cubic spline has an R-squared of 0.93 (excellent
value. We can use the same summary command as we did in linear regression
(explained in Chapter 3, Linear Models):

summary(fit.cubic.youths)

Nonlinear Methods

[154]

We could then repeat the same procedure for those aged 19 and above:

detach(body.measures.youths)
attach(body.measures.adults)
fit.cubic.adults <- lm(height ~ age + I(age^2)+ I(age^3))
plot(age, height, pch = 16, col = 'gray', xlab = 'Age', ylab =
'Height', main = 'Height vs Age (in adults)')
points(fit.cubic.adults$fitted ~ age, pch = 16, cex = 1)

The result is shown in the following plot:

We have, in effect, created two different functions for predicting height: one for those
aged 18 and under and one for those aged 19 and older. This regression approach is
the basic idea of splines.

Chapter 4

[155]

Spline regression
To fit curve relationships without high degree polynomials, we can use splines. A
spline is essentially a piece-wise function in which the regression formula changes
based on the X value. There are a large number of approaches to splines and
fortunately R has more sophisticated approaches than our previous approach.

Each point where there is a break in the regression function is called a "knot".
Our previous approach had a single knot located at 18 to 19 years. In our piece-
wise regression, the value at 18 and the estimated value at 19 could be completely
different. True splines stipulate that there can be a continuous function at each knot.

As hinted at the beginning of this chapter, the role of nonlinear methods is debatable
and as we progressed, we started to use models in a lesser theory-driven fashion and
more in an exploratory manner. In line with this progression, splines make use of a
parametric framework but they break the data into pieces to do this, so it takes more
than just a few parameters to summarize a function.

One of the most straightforward functions for fitting splines in R is the smooth.
spline function available in the R base. To demonstrate this, we will go back to the
full dataset, as follows:

detach(body.measures.adults)
attach(body.measures)
fit.spline.smooth <- smooth.spline(height ~ age, nknots = 4)
plot(age, height, pch = 16, col = 'gray', xlab = 'Age', ylab =
'Height', main = 'Height vs Age')
lines(fit.spline.smooth, pch = 16)

Nonlinear Methods

[156]

The result is shown in the following plot:

This gives us a smooth representation of the plot that appears to fit the quirks in the
data. However, it does not tell us anything about the mathematical properties of the
data, making it most well suited for exploratory analyses.

Nonparametric nonlinear methods
We will begin by taking a moment to consider linear models in a very general
context, since, many nonlinear models can be seen as a generalization of their
linear counterparts.

We traditionally see the linear model expressed as an equation giving a variable
Y in terms of a linear prediction terms BX, as follows:

Y BXα= +

Chapter 4

[157]

The equation is the classic algebraic formula describing a line. However, we can
describe regression, linear or otherwise, in a more general framework. What if we
don't actually know the formula to relate Y and X to one another? We can still predict
Y value for a given X value without any idea about the algebraic relationship between
Y and X, so long as we simply rely on the observed X and Y values for predictions of Y
given X, by taking the mean of observed Y values for any given X value:

() ()
1

1ˆ
xn

x i
ix

m x E Y Y
n =

= = ∑

The previous formula is a kind of point-wise regression, specifically point-wise mean

regression. We define an ()m̂ x function, which is equal to the expected value of Y for a
given value of X and this expected value is equal to the mean of all observed Y values
for that particular value of X. The estimated value of Y for one particular X value is
completely independent of the estimated value of Y for all other X values. We can
implement a function to do this kind of regression in R relatively easily, as follows:

pointwise.regression <- function(x, y) {
..X <- c(min(x):max(x))
..Y <- vector('numeric', length(X))
..for (i in X) {
....Y[i-min(x)+1] <- mean(y[x == i])
..}
..return.frame <- data.frame(X, Y)
..return(return.frame)
}

This function takes two vectors of variables as inputs: x and y; extracts the mean
value of y for each unique value of x and returns a data frame with each x and its
corresponding mean y values. (Note the capitalization of x versus X and y versus
Y in the function.)

There are a number of ways to use loops in R to iteratively construct
data objects with multiple members (for example, vectors, data
frames, or matrices). In general, the slowest way to do this is to
lengthen the data object in each iteration, because this method requires
reallocating the data object in the system memory with each iteration to
accommodate the larger sized object. A much faster method is to simply
create a data object of the required length and insert the appropriate
values into their positions in the data object.

Nonlinear Methods

[158]

Using our point-wise regression function, we can create a plot of the mean expected
height for each age value. By plotting lines based on these data points, R will connect
each of the estimated points with a short straight line segment and we will, in a
sense, have a nonparametric curve describing the trend in the data, as follows:

expected.height <- pointwise.regression(age, height)
plot(age, height, pch = 16, col = 'gray', xlab = 'Age', ylab =
'Height', main = 'Height vs Age')
lines(expected.height)

The result is shown in the following plot:

We can, of course, easily extend our point-wise regression function to put out a data
frame with 95 percent confidence intervals of the estimated Y values based on the
t-distribution or distribution of our choice:

pointwise.confint <- function(x, y) {
X <- c(min(x):max(x))
Y.list <- list('numeric', length(X))
for (i in X) {
t.temp <- t.test(y[x == i])
Y.list[[(i-min(x)+1)]] <- c(t.temp$estimate[[1]], t.temp$conf.int[1],
t.temp$conf.int[2])
}

Chapter 4

[159]

Y.mat <- do.call('rbind', Y.list)
return.frame <- data.frame(cbind(X, Y.mat))
names(return.frame) <- c('X', 'Y', 'Lower.Y', 'Upper.Y')
return(return.frame)
}

We will further discuss that there are other, often more useful, methods to model
nonlinear relationships in data but the pointwise.confint function is useful
because it is easily extensible; the elements of Y.list can be filled with any set of
functions that the user would like.

Point-wise regression is a term that is not often used within data analysis but it is quite
commonly used as a visual tool, going under names such as "box and whisker plots"
or "candlestick charts". R contains a base function for doing box and whisker plots:

boxplot(height ~ age, xlab = 'Age', ylab = 'Height', main = 'Height vs
Age')

The result is shown in the following plot:

Nonlinear Methods

[160]

The box and whisker plots have a rectangular box at each X value. The line through
the middle of that box is the median, and the bottom and top of the box are the
values of the first and third quartiles respectively. The whiskers, by default, extend
out 1.5 times the interquartile range (that is, 1.5 times the length of the box), and the
individual points represent outliers.

The boxplot command in R can take the add = TRUE argument,
which will add the boxplot command to an already existing plot.
However, the boxplot command will not line up with the existing plot
unless X values for the pre-existing plot have started at one. If they have
started at some other value, then the at argument must be passed to
boxplot, as follows:

plot(height ~ age, col = 'gray', pch = 16, xlim = c(2,
80), xlab = '', ylab = '', xaxt = 'n')
boxplot(height ~ age, xlab = 'Age', ylab = 'Height',
main = 'Height vs Age', add = TRUE, at = c(2:80))

The most notable feature of this point-wise approach to value estimation or the
use of box and whisker plots is that it treats estimated Y values for each X value as
completely independent of all Y values for all other X values. Of course, this is likely
to ignore important information—a 50 year old male who is 5 feet tall today might
have been 5'1" last year but he was likely not 6 feet tall. As such, it makes sense
to model the Y value at any given X as having some relationship with adjacent X
values as well. We do this by assuming a function, w, to describe the relationship
between the observed data points. This adds an additional assumption to the model
by requiring that the estimated Y value for each X value be tied somehow to the
estimated Y value for other X values.

()
1

ˆ
n

i
i

m x w Y
=

= ⋅∑

If we define w as follows (note the variance term in the denominator), we get a line:

()
()2

1

i
n

ii

x x x
w

n x x
=

−
=

⋅ −∑

Chapter 4

[161]

In the next sections, we will discuss the use of weighting functions that relate Y at a
given X to neighboring X values as well.

Point-wise regression will capture every kink in the direction of the relationship
between two variables. This is good if we think every kink is important but more
often than not, these kinks reflect sample-specific errors, which is why weighting
functions are useful.

Kernel regression
Kernel smoothing regression is a flexible method to fit a smooth curve to nonlinear
data. Instead of estimating the expected Y value at each X value as a function of that
particular X alone, it uses a weighted distribution of surrounding points. How these
surrounding points are weighted is determined by the particular kernel chosen.

As discussed in the earlier section on theory, regression can be thought of as a
function of the sum of observed Y values multiplied by a w function. In the case of
kernel density regression, the formula for the Nadaraya-Watson kernel regression
formula can be expressed, as follows:

()
1

1

ˆ

n i
ii

n i
i

x xK y
hm x

x xK
h

=

=

− 
 
 =

− 
 
 

∑

∑

In the preceding formula, K is a kernel function, and h is the bandwidth (that is,
the smoothing parameter). For example, to apply Gaussian kernel smoothing, we
use the probability density function for the normal distribution to describe K. The
bandwidth can be either fixed or based on the nearest neighbors. A fixed bandwidth
uses all points within the defined range while a nearest neighbor's bandwidth uses
a proportion of the sample closest to the point of interest to create estimates. For
example, if we used a kernel that weighted all values equally on the height versus
age data, then a fixed bandwidth of 10 would be tantamount to estimating the height
at a given age as the mean height for all ages within 10 years of the age of interest.
Alternatively, if we applied the same kernel to a nearest neighbor's bandwidth of
0.25, then we would be estimating the height of someone at a given age as the mean
height of the 25 percent of the sample closest the age of interest.

Nonlinear Methods

[162]

To apply kernel regression based on the Nadaraya-Watson formula in R, the
simplest method is to use the built-in R function ksmooth, which uses fixed window
bandwidths. This might be thought of as a variant of point-wise regression in an
earlier section, in which the estimated Y value is not estimated based on a single
point but on a group of adjacent points:

smooth.height <- ksmooth(age, height, bandwidth = 10, kernel =
'normal')

There are two notable arguments that we explicitly define here in addition to the
arguments referencing the data, the bandwidth (h in the previous equation) and the
kernel function (K in the previous equation). The bandwidth argument tells R how
wide the "local" area is over which we want to regress data points. The ksmooth
function requires manually declaring this bandwidth; larger bandwidths mean
smoother curves and less chance of modeling noise, while smaller bandwidths
can result in rougher curves. The choice of appropriate bandwidth is obviously an
important concern. Here, a bandwidth of 10 has been arbitrarily chosen but methods
for creating "optimal" bandwidths have been described and have implementations in
R, which we will discuss shortly.

The kernel argument here is declared as "normal". The other kernel option is "box"
(often called a "rectangular" kernel elsewhere). A normal kernel means that R
samples the data with weights in a Gaussian distribution, while a box kernel means
that R samples all points in the bandwidth with the same weight and all points
outside of the bandwidth with a weight of zero.

Let's take a look at how a curve generated with kernel density regression fits the
data. We will also ensure that the second plot looks a little cleaner, so that we can
actually see the curve:

plot(age, height, xlab = 'Age', ylab = 'Height', main = 'Height vs Age
in Males', col = 'gray', pch = 16)
lines(smooth.height, col = 'red')

Chapter 4

[163]

The result is as shown in the following plot:

The curve in the previous diagram appears to fit the data relatively well but it
might not completely meet our needs. As indicated earlier, one of the reasons to use
nonlinear methods is because a better fit to the data is required than what a linear
model can provide, and while this curve fits the data relatively well, it appears to
over-estimate height for those close to the minimum age. This is caused by excess
smoothing, which we can ameliorate by decreasing the bandwidth:

plot(age, height, xlab = 'Age', ylab = 'Height', main = 'Height vs
Age', col = 'gray', pch = 16)
smooth.height <- ksmooth(age, height, bandwidth = 2, kernel =
'normal')
lines(smooth.height, col = 'red')

Nonlinear Methods

[164]

The result is as shown in the following plot:

After a few tries, it looks like a bandwidth of about two seems to match the data
better, but now it appears to model noise in the data as well. The small decline in
height that we previously saw in those of an advanced age is not so evident even
now. Before discussing what can be done about this, it is worth taking a moment to
think about what we are doing.

We know that children start out at a low height, grow until the end of puberty,
and then remain the same height for most of their adult lives with perhaps a small
loss of height as they reach advanced ages. We are trying to match a curve to our
a-priori expectations about height and age. Notably, we have some expectations
about the relationship between these two variables in general, but we also have some
expectations about how the relationship between these two variables behaves within
very narrow windows. The ksmooth function, unfortunately, only allows us to adjust
the overall behavior of the kernel density estimator, which means that we are forced
to choose between matching the curve to our general expectations or our very local
expectations, however, we are unable to do both.

Chapter 4

[165]

Kernel weighted local polynomial fitting
We previously discussed the R command ksmooth, which implements the Nadaraya-
Watson kernel density regression function; it is a fast and simple way to identify
trends in data with no a-priori knowledge or assumptions about the algebraic
form of those trends. However, if we wish to do kernel smoothing regression that
allows us to incorporate specific expectations about the relationship between the
two variables for particular ranges of values, we will need to turn to the locpoly
command in the KernSmooth package.

The locpoly command extends traditional kernel regression; rather than simply
using a weighted mean of values as it is done in ksmooth, it uses kernel density
weighted local polynomial regression. We will discuss polynomial regression
further in this chapter but for now, we will point out that polynomial regression is
basically like linear regression, except that you fit a curve with quadratic, cubic, or
higher power terms. Typically, quadratic polynomials are used in kernel weighted
regression but we could use linear terms or even zero-order terms, which would be
identical to the traditional Nadaraya-Watson estimator.

A practical advantage that locpoly provides is that it allows us to assign
bandwidths locally along the range of values of the variables that we are examining.
In essence, we wish to be sensitive to height differences between years in the first
two decades of life because we think that height differences here represent a real
phenomenon, and we wish to be insensitive to differences in height between people
of various ages for those beyond 20 years because we suspect that this largely
reflects random errors. In kernel density estimation, this is achieved by adjusting the
bandwidth, so we need a way to assign different bandwidths to different ages, which
we can do with the locpoly command, which also uses fixed window bandwidths.
This is shown by the following code:

library(KernSmooth)
plot(age, height, xlab = 'Age', ylab = 'Height', main = 'Height vs
Age', col = 'gray', pch = 16)
bandwidth.vals <- c(rep(1, 20), rep(5, 30))
smooth.height <- locpoly(age, height, gridsize = 50, bandwidth =
bandwidth.vals)
lines(smooth.height, col = 'red')

Nonlinear Methods

[166]

The locpoly command takes a few additional arguments that are not used in
ksmooth, which we take advantage of here. In particular, we no longer specify a
single bandwidth to be used over the entire range of x values but can now declare
bandwidths to be as wide or narrow as we would like over the range of x values. The
gridsize argument tells R how many equally spaced points the kernel estimation
will be performed at; we must have a vector of bandwidths with the same length as
the gridsize argument, in this case 50. We set the bandwidth of the first 20 points as
one, and the bandwidth of the last 30 points as zero, effectively being very sensitive
to changes in height at early ages and relatively insensitive at later ages. The curve
that this gives us is still a little jagged but overall it appears to capture what we
would likely regard as the salient features of the dataset: an increasing height in the
first 15 to 20 years of life, followed by a rapid plateau in height, and a slight loss of
height in later years.

A wider bandwidth effectively increases the sample size for kernel
estimation at any given point. Therefore, it is also worth examining
the number of individuals at each point, as can be done with the
hexbin command, mentioned in the tip given prior to setting local
bandwidths. In this case, the density of individuals represented
on the left-hand side of the plot is relatively high but if there were
relatively few individuals, it is not clear whether this would have
worked as well.

Optimal bandwidth selection
So far, we have been tinkering with bandwidth values to get a desired curve—a
perfectly reasonable approach to exploring relationships in data but an approach that
hardly seems scientific. While this approach to understanding relationships in data is
more often used in science than many researchers would care to admit, it is still nice
to have a more systematic method to choose an optimal bandwidth.

There have been a number of bandwidth selection methods described over the past
few decades, one of which currently is a plug-in bandwidth estimator, which seeks to
minimize the mean squared error. The KernSmooth package contains a function for
providing an optimal bandwidth based on the plug-in estimator, which can be done
with the dpill function. This function allows us to estimate either a single optimal
bandwidth for the entire region for which regression is being done or different
bandwidths for different regions. An alternative approach to select the optimal
bandwidth is based on cross-validation, which can be done using the npregbw
function in the np package.

Chapter 4

[167]

Using dpill from the KernSmooth package, as follows:

h <- dpill(age, height, gridsize = 80)
plot(age, height, xlab = 'Age', ylab = 'Height', main = 'Height vs
Age', col = 'gray', pch = 16)
smooth.height <- locpoly(age, height, bandwidth = h, gridsize = 80,
kernel = 'normal')
lines(smooth.height, col = 'red')

The result is shown in the following plot:

This does not give a perfectly smooth line but appears to adequately capture the
trends in the data that we would expect to see, and it took no tinkering on our part to
constrain the data to our preconceived notions.

Using cross-validation to select the optimal bandwidth is much more
computationally intensive. As such, we will demonstrate it on a smaller subsample
of this dataset in a subsequent section.

Nonlinear Methods

[168]

A practical scientific application of kernel
regression
Thus far, we have used kernel smoothing regression only to visually explore and
describe data rather than to address any specific scientific questions. Some might
argue that this is how kernel smoothing is designed to be used, but nevertheless
we will attempt to use kernel density regression to answer a particular question:
At what age does growth slow down?

Operationally, this question is a matter of the second derivative of the function
of height versus age. The first derivative of this function is the velocity of growth
(for example, how much a person grows each year), and the second derivative is
the acceleration in growth. What we are interested in is the age at which growth is
decelerating the most. Since we know that men and women tend to hit puberty at
different ages, we should probably separate them out and check if the growth of
women slows down at a younger age than the growth of men. Luckily, the locpoly
command supports this operation. We specify with the drv argument that we are
interested in the second derivative (that is, acceleration):

> smooth.height.2.males <- locpoly(age[gender ==1], height[gender ==
1], drv = 2, bandwidth = h, gridsize = 80, kernel = 'normal')
> smooth.height.2.males$x[smooth.height.2.males$y == min(smooth.
height.2.males$y)]
[1] 13.8481
> smooth.height.2.females <- locpoly(age[gender ==2], height[gender ==
2], drv = 2, bandwidth = h, gridsize = 80, kernel = 'normal')
> smooth.height.2.females$x[smooth.height.2.females$y == min(smooth.
height.2.females$y)]
[1] 11.87342

These results suggest that women do, in fact, have their growth slow down at a
younger age than men, as we expected.

Like point-wise regression, weighted regression can be used for exploratory
analyses, albeit with a weighting function that allows some smoothing of the noise in
the data. The addition of this weighting function also allows us to gain some insights
into the relationship in the data beyond simple plotting.

Chapter 4

[169]

Locally weighted polynomial regression and
the loess function
In the previous section, we discussed methods to fit nonlinear data but the methods
that we discussed are applicable only in cases in which we wish to model the
relationship between two variables. In real data analysis, we often wish to model the
relationship between a larger number of variables or model an outcome as a function
of a number of predictors. For this, the ksmooth() and locpoly() functions simply
won't do as they are limited to comparing only two variables. However, as we will
see, R has a built-in function, loess, which is able to support kernel regression in
multiple dimensions.

The loess command has a number of distinct differences between the kernel
smoothing methods described earlier. Chiefly, loess uses a bandwidth based
on nearest neighbors rather than a fixed bandwidth.

While we focus here on the loess command, R also contains a similar
function, lowess, which is the predecessor to loess and does not
support multiple predictor variables. The loess command can model
up to four predictor variables and handle a Guaussian or rectangular
kernel. Alternatively, lowess can only handle a single predictor
variable and only supports a tricubic kernel.

We can model weight as a function of height and age. We will do this modeling here
in the same manner as we declare a linear regression model (in this case only on
males), as follows:

male.weight <- weight[gender == 1]
male.age <- age[gender == 1]
male.height <- height[gender == 1]
weight.fit <- loess(male.weight ~ male.age * male.height, span = 1,
family = 'gaussian')

Nonlinear Methods

[170]

We can then use the model named weight.fit, which we created to estimate the
expected weight of a person for a given age and height. However, unlike linear
regression, which gives us a simple formula that we can compute by hand, knowing
only a few coefficients, we will have to rely on the software to give us predictions
for a potentially highly nonlinear model. To do this, we use the predict command
and then plot the surface created but before we can do this, we must give new values
to predict for use. By looking at the fit.vals object, we can get the raw estimated
values for each age and height, as follows:

age.vals <- seq(from = 2, to = 85, by = 1)
height.vals <- seq(from =80, to = 200, by = 1)
predicted.weight <- predict(weight.fit, newdata = expand.grid(male.age
= age.vals, male.height = height.vals))
persp(age.vals, height.vals, predicted.weight, theta = 40, xlab =
'Age', ylab = 'Height', zlab = 'Weight')

The result is as shown in the following plot:

We can adjust the view on the plot to see the effects of multiple dimensions by
changing the theta argument of the persp command. In this case, a value of 40 seems
to work well.

Generally, in science, we want to know more than the estimate of a value; we also
want to have a confidence interval telling us the potential range of values within a
given probability window (often 95 percent). The loess command is not able to do
this with multiple predictors but the npreg command from the np package does have
this capability.

Chapter 4

[171]

Nonparametric methods with the np
package
A very powerful R package, which is able to perform most of the functions mentioned
earlier plus some others, has been developed and titled np. This package offers many
powerful functions but some users might find it inconvenient to use because of the
computationally intensive nature of many of the functions contained within it.

Nonlinear quantile regression
We have so far attempted to fit a curve or surface to data points to either understand
the basic trend in the data or come up with a general estimate of a dependent variable
based on one or two independent variables. However, what if we want to create
regression curves to figure out where a member of the population ranks in comparison
to others within the population? This kind of task is routinely carried out with height
and weight data in the form of pediatric growth charts that are used to monitor
development during routine visits to the pediatrician. The basic idea is that instead of
fitting one curve to a dataset, multiple curves, each representing a particular quantile,
can be fit. We will use the npqreg command from the np package to do this.

First, we will create a data frame of only those within a certain age (from age 2 to 10
in this case) and place them in a new data frame, as follows:

detach(body.measures)
juveniles <- which(body.measures$age %in% c(2:10))
body.measures.juveniles.1 <- body.measures[juveniles,]

The npqreg command works best with data that has been ordered, so we will sort
the data frame by year of age and store this in a new data frame, which we will use
for the data analysis.

attach(body.measures.juveniles.1)
body.measures.juveniles.2 <- body.measures.juveniles.1[order(age),]
detach(body.measures.juveniles.1)
attach(body.measures.juveniles.2)

Now, we can use the body measures from this data frame to generate quantile
curves for the 10th, 25th, 50th, 75th, and 90th percentiles and plot them. First, we
will calculate the optimal bandwidth and then compute the quantile curves. These
steps can be computationally intensive, which is why for this demonstration, we are
restricting the age to those from two to ten:

library(np)
bw.est <- npcdistbw(formula=height~age)

Nonlinear Methods

[172]

qreg.10th <- npqreg(bws=bw.est, tau=0.1)
qreg.25th <- npqreg(bws=bw.est, tau=0.25)
qreg.50th <- npqreg(bws=bw.est, tau=0.5)
qreg.75th <- npqreg(bws=bw.est, tau=0.75)
qreg.90th <- npqreg(bws=bw.est, tau=0.9)

We can now plot the results, as follows:

plot(height ~ age, type = 'n', xlab = 'Age', ylab = 'Height', main =
'Quantiles of Age for Height',xaxp = c(2,10,(10-2)), yaxp = c(80,160,
(160-80)/10))
abline(h=seq(80,160, 10), v=2:10, col='gray', lty=3)
lines(qreg.10th$quantile ~ age)
lines(qreg.25th$quantile ~ age)
lines(qreg.50th$quantile ~ age)
lines(qreg.75th$quantile ~ age)
lines(qreg.90th$quantile ~ age)

The result is as shown in the following plot:

The previous diagram shows the curves representing the 10th, 25th, 50th, 75th, and
90th percentiles of height at each year of age. This could be repeated for a larger
range of ages for a picture that highlights the nonlinear nature of this relationship at
the cost of significantly increased computational intensity.

Chapter 4

[173]

Summary
In this chapter, we reviewed applications of nonlinear methods in R using
parametric and nonparametric methods for both theory-driven and exploratory
analyses. As we reviewed, R has many excellent built-in functions for this, namely,
nls, lm, ksmooth, and loess. There are additional functions available in a number of
packages including KernSmooth and np. The np package is possibly the most capable
of all packages discussed in this chapter but it offers this flexibility at the cost of
high computational (and syntactic) resources, limiting its use in quickly exploring
relationships in data.

In the subsequent chapters, we will focus on linear methods, first by reviewing linear
algebra. This will be followed by two chapters on topics which make heavy use of
linear algebra for model-based statistical analysis.

Linear Algebra
Linear algebra has been described as the mathematics of computer science, and
this chapter will be a bit different from prior chapters. Prior chapters discussed
topics such as regression and statistical significance tests, and techniques that can
directly be applied to a dataset to produce a solution of interest. A single linear
algebra technique in isolation rarely provides a solution of interest to a substantive
researcher. However, many numerical analysis techniques rely on linear algebra
and matrix operations, making them an important part of scientific computing.

In this chapter, we will discuss the following topics:

•	 Matrix properties
•	 Mathematical operations on matrices
•	 Matrix inversion
•	 Solving linear systems
•	 Eigenvalues and eigenvectors
•	 LU decomposition
•	 Singular value decomposition of a matrix
•	 Choleski decomposition of a matrix
•	 Outer products
•	 Applications of linear algebra using R

Linear Algebra

[176]

Matrices and linear algebra
In mathematics, matrices are simply an organized table of numbers. The reason they
are used is because scientists and mathematicians have found that some numerical
problems (generally systems of equations) can be solved algorithmically when the
data placed into the problem is organized this way. In mathematics, a row or column
of a matrix is termed a "vector", though R has a vector data structure that is not the
same thing as the row or column of a matrix. The numbers characterizing a vector in
mathematics are thought of as the endpoint of that vector with vector's origin at the
origin of the coordinate system (this is what we term a "vector" mathematically, but
it is really a point).

While the term "matrix" is often used to refer to a rectangular arrangement for string
data (that is, a table), we must be much more cautious with our use of the term in
numeric computation since R has more than one way to store composite variables.

Matrices in R
While data analysts often load a dataset from an external file into a data frame,
which looks like a matrix at first glance, a matrix has a number of defining features,
mentioned as follows:

•	 Matrices can store the data of only a single data type (for example, we can't
mix floating point numbers and categorical data in a single matrix)

•	 Matrices are more memory-efficient in R
•	 Data frames allow us to call values by the name of the variable, but they

are a special instance of the list rather than a matrix
•	 Matrix operations tend to require a matrix as input and do not allow

data frames
•	 R's matrix operations are often one hundred times faster than data

frame operations

To convert a data frame into a matrix, we use the as.matrix function,
which will require that all data elements be of the same data type.

Vectors in R
A vector data structure in R means something slightly different than a vector data
structure in mathematics. In mathematics, a vector can either be a column vector
or a row vector, but in R, a vector has no dimensions. Let's take a look at the
following examples:

> a <- c(1,2,3,4)

Chapter 5

[177]

> b <- matrix(a, nrow = 1)
> a
[1] 1 2 3 4
> b
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4

As we can see, both a and b store the same values, but R recognizes columns and
rows for b, something that it does not do for a. However, if we were to apply a in
a linear algebraic operation, R would treat it as a column vector.

Matrix notation
We typically refer to a matrix as an m x n data structure with m rows and n columns.
There a few different kinds of matrices that we will define, as follows:

•	 Rectangular: Arguably, all matrices are some type of a rectangular matrix.
The matrix command defines a square matrix with the number of specified
rows and columns. To create a two-row matrix filled with the numbers 1 to
24, we will use the following code:
matrix(c(1:24), nrow = 2)

Alternatively, we can also specify the number of columns as follows:

matrix(c(1:24), ncol = 12)

•	 Square: This is a rectangular matrix in which m is equal to n. Many
commonly used matrix operations can only be done on a square matrix.

•	 Diagonal: This is a square matrix in which all elements are zero, except for
the elements along the diagonal. R has a special function to create diagonal
matrices, in which we specify the values to the diagonal, and the number
of rows and columns. R will apply this command even if column and row
dimensions do not match, as follows:
diag(c(1:3), 3, 3)

•	 Triangular: The elements either above the diagonal or below the diagonal
(but not necessarily including the diagonal) are all equal to zero. There are
upper and lower triangular matrices that refer to whether the non-zero side
is the upper or lower side, respectively. We will cover triangular matrices in
detail in the Triangular matrices section in this chapter, shortly.

•	 Symmetric: This is a matrix in which each (m, n) element is equal to the
corresponding (n, m) element (that is, reversing the rows and columns of
the matrix will yield the same matrix).

Linear Algebra

[178]

•	 Identity: This is a diagonal matrix in which the diagonal is filled with 1s.
Any matrix multiplied by its identity matrix will be equal to the original
matrix (that is, multiplying a matrix by its identity matrix is like multiplying
a number by 1). An identity matrix can be easily created in R, using the
diag() function and passing only the dimensions to it as follows:
diag(5)

•	 Vector: Mathematically speaking, this is a matrix with either a width of one
or a height of one, termed column matrix and row matrix, respectively. In R,
a vector can be created either as a one-dimensional matrix or using the R's
c() function, which will coerce all elements to be of the same data type.

•	 Sparse matrix: This term refers to a matrix that is mostly composed of zeros.
Alternatively, a dense matrix is mostly filled with values. These matrices are
commonly used as design matrices for mathematical functions, which will
be explained in further detail in the following sections.

The physical functioning dataset
This chapter will use data from the National Health and Nutrition Examination
Survey (NHANES). This survey collects data in two year cycles for about 10,000
civilian community-dwelling Americans and is available on the CDC website at
http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm. The cleaned
dataset that we will use in this chapter is available on the Internet at http://
scholar.harvard.edu/gerrard/mastering-scientific-computation-r.
Please see the terms of use at the CDC's website. We will start by loading the
dataset and creating a matrix from the data frame:

phys.func <- read.csv('phys_func.txt')[,c(-1)]
phys.func.mat <- as.matrix(phys.func)

This dataset includes cleaned data from the years 2003 to 2010 with all missing
values removed. Answers that were not missing but answered as unknown or
refused have also been removed. Survey respondents are asked how much difficulty
they have with the following 20 items (questions are paraphrased here):

•	 Managing money
•	 Walking for a quarter of a mile
•	 Walking up 10 steps
•	 Stooping, crouching, or kneeling
•	 Lifting or carrying 10 pounds
•	 Doing chores around the house

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r

Chapter 5

[179]

•	 Preparing meals
•	 Walking from one room to another
•	 Standing up from a chair
•	 Getting in or out of bed
•	 Eating
•	 Dressing
•	 Standing for two hours
•	 Sitting for two hours
•	 Reaching up overhead
•	 Grasping small objects
•	 Going out to spectator events
•	 Participating in social activities
•	 Relaxing at home
•	 Pushing or pulling large objects

Respondents give an answer between 1 and 5, with higher responses indicating
more difficulty. As expected, most Americans expressed no difficulty in performing
these activities.

Basic matrix operations
It is important to first point out that computational operations can be done on both
whole matrices, termed "matrixwise operations", and on the individual elements of
a matrix, termed "element-wise operations". Matrix addition or subtraction is simply
a matter of the addition of, or subtraction from, each individual value in a matrix
to the value in the corresponding location in another matrix, so matrixwise and
element-wise operations are the same. However, matrix multiplication is different
from element-wise multiplication of elements within a matrix.

Let's start by creating a correlation matrix of our physical functioning data and
creating an abbreviated raw data matrix:

cor.mat <- matrix(cor(phys.func), ncol = 20)
phys.brief.mat <- as.matrix(phys.func[c(1:30),])

This dataset is categorical rather than ordinal and is far from being normally
distributed, but as we will discuss in this chapter, on the common factor model,
this may still be a legitimate way to handle the data.

Linear Algebra

[180]

We will now go over a few basic matrix operations with the two matrices stored as
cor.mat and phys.mat, which are the correlation matrix and the first 10 observations
in the raw data (stored as a matrix rather than a data frame), respectively. It is worth
noting that cor.mat has the same height and width of 20, so it is a square matrix,
while phys.mat has a height of 30 and width of 20, making it a rectangular matrix.

Element-wise matrix operations
The topics that will be covered in this section are matrix subtraction, matrix addition,
and matrix sweep.

Matrix subtraction
Matrix addition is element-wise subtraction. We can use a simple operator to transform
the values of a matrix by adding to each element individually. We can subtract the
same value to or from each element of the matrix as follows:

phys.brief.mat 1

Matrix addition
We can add each element of the matrix to the corresponding element of a
different matrix:

phys.brief.mat + matrix(rnorm(600), ncol = 20)

We can also divide (or multiply) a matrix by the standard deviation of the
entire matrix:

phys.brief.mat / sd(phys.brief.mat)

Matrix sweep
What if we want to divide each column by the column standard deviation and
subtract the respective column mean from each individual element? To do this, we
either need to do some coding to perform operations on individual columns or use
R's built-in functions.

Chapter 5

[181]

R's sweep function will "sweep out" a value or summary statistic from a matrix.
This particular function can be confusing, but in summary, we will tell R about the
matrix we want to do the sweeping on; whether we want to apply the sweep to
columns or rows, the statistic or value we want to sweep out, and how we want
to sweep things out. For example, if we want to sweep out the mean of each
column by subtracting the column mean from each element of a matrix, we
will do the following:

mean.phys <- apply(phys.brief.mat, 2, mean)
phys.sweep.1 <- sweep(phys.brief.mat, 2, mean.phys, '-')

We can then divide each element in each column by the standard deviation of
the column:

sd.phys <- apply(phys.sweep.1, 2, sd)
phys.sweep.2 <- sweep(phys.sweep.1, 2, sd.phys, '/')
#The zeroes will give one variable NaN responses

We actually did things the hard way here. This type of rescaling of matrices is done
so often that R has actually a built-in command:

phys.scaled <- scale(phys.brief.mat, center = TRUE, scale = TRUE)

Likewise, column means can be calculated with the built-in function:

colMeans(phys.brief.mat)

We can see that this gives us essentially the exact same answer as the two-step sweep
process we did previously, by performing an element-wise division (a number
divided by itself is 1):

phys.sweep.2 / phys.scaled

Basic matrixwise operations
In the previous section, we reviewed how to apply an operation individually to each
element of the matrix as if the matrix elements existed outside it. Here, we will go
over the operations that involve the matrix as a whole.

Linear Algebra

[182]

Transposition
One of the simplest matrix operations is transposition, which switches columns and
rows of a matrix, as follows:

transpose
a d

a b c
b e

d e f
c f

 
    =         

This can be easily performed in R using the following code:

t(phys.mat)

The transposition of a matrix A is often denoted as AT or as A'.

Matrix multiplication
To perform matrix multiplication with two matrices A and B, we multiply each
element of each row in matrix A by each element of each column in matrix B, yielding
a matrix with a height equal to matrix A's height and width equal to matrix B's
width. The number of rows in A must match the number of columns in B. Unlike
multiplication of two numbers, matrix multiplication is not commutative. The
importance of this is that matrix multiplication allows us to decompose systems
of linear equations into matrices.

Suppose, we have a system of three equations as follows:

1 2 3

1 2 3

1 2 3

0
0
0

ax bx cx
dx ex fx
gx hx ix

+ + =

+ + =
+ + =

Then, we could rewrite this as the product of two matrices as follows:

1

2

3

0
a b c x
d e f x
g h i x

   
    =   
      

Chapter 5

[183]

To perform matrix multiplication, we use the special matrix multiplier binary
operator %*%. A toy example to demonstrate the non-commutativity of matrix
multiplication is as follows:

A <- matrix(c(rep(2,3), rep(5,3)), ncol = 2, byrow = FALSE)
B <- matrix(c(1:16), nrow = 2, byrow = TRUE)
C <- matrix(1, ncol = 2, nrow =3 , byrow = FALSE)
A %*% B
B %*% A
C %*% A
A %*% t(C)

The second and third multiplication should give errors because A has more columns
than B has rows. Matrix C, which is a perfectly valid matrix, cannot be multiplied by
matrix A either because of the mismatch between rows and columns. This mismatch
between rows and columns is called non-conformable arguments in R. The final
multiplication does work because of the transposition of matrix C.

Multiplying square matrices for social networks
Let's say that we have a social networking site where some members follow others
(and nobody follows themselves). We can represent this network as a matrix, with a
value of one in the position where a person follows another person. For example, in
the matrix describing six people in the following figure, we would say that person 1
is followed by persons 2, 3, and 5 because there is a 1 in the second, third, and fifth
columns of the first row. We would say that person 2 is only followed by person 1
and follows everyone else except person 3:

We can recreate this matrix in R as follows:

small.network <- matrix(c(0,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1, 0, 1,
0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0), nrow = 6, byrow =
TRUE)

Linear Algebra

[184]

We can take the sum of individual rows to figure out who is the most influential in this
network because a sum of rows is simply the total number of followers a person has:

apply(small.network, 1, sum)

This suggests that persons 1 and 3 are equally influential, both with total counts of
three, and persons 2, 5, and 6 are all equally influential with counts of two. However,
we must consider that a person in a social network may be influential if they have
second degree followers (that is their followers are followed). Conveniently, to
determine how many second degree followers a person has, we simply have to
multiply the matrix by itself:

> apply((small.network %*% small.network), 1, sum)
[1] 7 6 7 4 4 4

This tells us that person 2 is actually more influential than persons 5 and 6 when
second degree relationships are considered. If we simply add the original matrix
to the squared matrix, we can get the total number of first or second degree
relationships:

apply((small.network %*% small.network + small.network), 1, sum)

Real social networks, of course, have much larger graphs. Just to demonstrate that
R can handle much larger matrices, we will use a bigger example with 1,000 people
(for which we will simulate some data):

set.seed(51)
social.network.mat <- matrix(sample(c(0,1), 1000000, replace = TRUE,
prob = c(0.7, 0.3)), ncol = 1000)
diag(social.network.mat)<-0

When simulating random data, is there a way to make R give the
same results each time?
The set.seed function allows the same result to be displayed each
time random data is simulated. R will then generate pseudorandom
data based on the given seed. If the same seed is used, the same
pseudorandom data will be produced.

Next, determine first degree relationships:

influence.1 <- apply(social.network.mat, 1, sum)

Compute the matrix of second degree relationships:

second.degree.mat <- social.network.mat %*% social.network.mat
influence.2 <- apply(second.degree.mat, 1, sum)

Chapter 5

[185]

Compute the total influence in first or second degree relationships:

influence.1.2 <- apply(social.network.mat + second.degree.mat, 1, sum)

Many online social networks will have millions of people making these graphs much
larger, but even on my modest laptop, R handles these computations in seconds.
Additionally, to find third degree relationships, we simply have to raise the matrix
to the third power.

Can we make our R code look more like the matrix formulas that we are likely to
encounter in journals and textbooks?

We use the apply command with the sum function, which many R users are likely
familiar with, but this is not a standard mathematical notation. We can use matrix
multiplication to sum the rows as well, which is typically how this operation is
expressed in the quantitative literature. Let's take a look at the following example:

11 1 11

1 1

1

1

j ij

i ij i ij

a a a a

a a a a

   ∑ 
     =    
     ∑    

L L

M O M M M

L L

We simply need to create a vector of ones with as many rows as our matrix has
columns and post multiply the matrix by this vector:

(social.network.mat + second.degree.mat) %*% rep(1, 1000)

Outer products
In linear algebra, the outer product is classically applied to two vectors and produces
a matrix with as many rows as the length of the first vector and as many columns
as the length of the second vector. The elements in the matrix are produced by
multiplying the corresponding elements in the two vectors together. The outer
product is defined as follows:

[]
1 1 1 1

1

1

n

n

m m m n

x x y x y
y y

x x y x y

   
   =   
      

L

M L M O M

L

Linear Algebra

[186]

For example, if we have two vectors, we can compute outer products in R using the
outer() command:

x<- c(1:3)
y<- c(4:6)
outer(x, y)

Alternatively, we can also compute the outer product as follows:

x %o% y

However, the outer command is actually much more flexible than this. It does not
simply apply the multiplication operator but can actually apply any function to the
elements of the vectors. The outer product in R is defined as follows:

[] ()
() ()

() ()

1 1 1 1

1

1

Outer , , f
n

n

m m m n

x f x y f x y
y y z

x f x y f x y

    
     =    
        

L

M L M O M

L

To apply this, we simply have to pass a function rather than let R default to
multiplication:

outer(x, y, FUN = '+')

Using sparse matrices in matrix multiplication
We can use matrix multiplication to transform datasets as follows:

> M <- matrix(rep(1, 9), nrow = 3)
> N <- diag(c(1:3), nrow = 3)
> P <- matrix(rep(c(1:3),3), nrow = 3)
> Q <- matrix(1, nrow = 3)
> M
 [,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
> N
 [,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3
> P
 [,1] [,2] [,3]
[1,] 1 1 1

Chapter 5

[187]

[2,] 2 2 2
[3,] 3 3 3
> Q
 [,1]
[1,] 1
[2,] 1
[3,] 1

Postmultiplying a matrix M by a diagonal matrix N is equivalent to multiplying the
values in each column of M, by the corresponding value along the diagonal of N:

M %*% N

Premultiplying a matrix M by a diagonal matrix N is equivalent to multiplying the
values in each row of M by the corresponding value along the diagonal of N:

N %*% M

Postmultiplying a matrix by a column vector of 1s yields the sum of each row:

P %*% Q

We can obtain the total score of each person on our physical functioning index
using matrix multiplication. First, we will create a matrix of all of our physical
functioning observations:

phys.func.mat <- as.matrix(phys.func)

The following code will give us the total score for each person on the entire
physical functioning measure:

total.scores <- phys.func.mat %*% matrix(rep(1, 20), nrow = 20)

If we look at the items on this physical function, they appear to cover different kinds
of activities. Some are concerned with mobility while others are concerned with
cognition. Let's say that this measure, which consists of three different domains,
is composed of the following items (previously published research actually does
suggest this):

•	 Cognition or social function: This contains items A, Q, R, and S (columns 1,
17, 18, and 19)

•	 Lower extremity (leg or mobility) activities: This contains items B, C, D, H,
I, J, M, and N (columns 2, 3, 4, 8, 9, 10, 13, and 14)

•	 Upper extremity (arm and hand) activities: This contains items E, F, G, K, L,
O, P, and T (columns 5, 6, 7, 11, 12, 15, 16, and 20)

Linear Algebra

[188]

We want to create a new matrix with three columns, each of which has the score of a
particular domain. To do this, we simply multiply the raw data matrix, phys.func.
mat (which has 20 columns), by a design matrix. This design matrix will be a sparse
matrix that will have three columns (one for each domain) and 20 rows (one for each
item). Each row will contain a 1 in the column corresponding to the domain in which
that item belongs:

design.matrix <- matrix(rep(0, 60), nrow = 20)
#Place 1s for the cognitive domain
design.matrix[c(1,17,18,19), 1] <- 1
Place 1s for the lower extremity domain
design.matrix[c(2,3,4,8,9,10,13,14), 2] <- 1
Place 1s for the upper extremity domain
design.matrix[c(5, 6, 7, 11, 12, 15, 16, 20), 3] <- 1
total.scores <- phys.func.mat %*% design.matrix
summary(total.scores)

The notion of a design matrix is frequently used in linear algebra to assign
group membership.

Matrix inversion
There is no such thing as matrix division, but matrix inversion is something close to
it. Only square matrices can be inverted, and not all square matrices can be inverted.
When a matrix is multiplied by its inverse, it produces an identity matrix; hence, the
analogy for division.

Inversion is defined as follows:

()

1 1

1

1

1

A

A Inverse

1 0
AA

0 1

i j

i ii

a a

a a

A−

−

 
 =  
  
=

 
 
 
  

L

M O M

L

L

M O M

L

Chapter 5

[189]

To invert a matrix in R, we simply use the solve() command (we will see a more
general use for this command in the following sections):

solve(cor.mat)
cor.mat %*% solve(cor.mat)

Solving systems of linear equations
We can use R to solve a large system of linear equations with linear algebra. For
example, say that we have the following set of linear equations:

1 2 1

1 2 1

1 2 1

12 41 46 0 1
49 45 85 0 2

73 84 8 0 10

x x x
x x x

x x x

+ + + =
+ + + =

+ + + =

L

L

M

L

This involves 10 unknowns and 10 equations. While this is solvable by hand, it is
quite tedious. Instead, we can solve it in R by decomposing the system of equations
into three matrices: C, X, and Y:

1 1

10 10

12 46
C X Y

73 8

x y

x y

     
     = = =     
          

L

M O M M M

L

CX = Y

If we simply divide Y by C, we can get the matrix of X values. However, since there
is no matrix division, we will instead have to rely on multiplication by the inverse
of C:

X = C-1Y

The coefficients to be placed in matrix C are available in the coefficients_matrix.
txt file, in which columns 2 to 11 give the coefficients, and column 12 gives the Y
values:

Y <- as.matrix(read.csv('coefficients_matrix.csv')[,12])
C <- as.matrix(read.csv('coefficients_matrix.csv')[,c(2:11)])
X <- solve(C) %*% Y
X

Linear Algebra

[190]

In fact, R automates this process for us by passing two arguments to the
solve command:

solve(C, Y)

For those who wish to experiment, we can simulate coefficients for very large
systems of equations with many (for example, 1,000) unknowns. As can be
seen, R can do these computations extremely quickly:

C.2 <- matrix(sample(c(1:100), 1000000, replace = TRUE), nrow = 1000)
Y.2 <- matrix(sample(c(1:1000), 1000, replace = TRUE), nrow = 1000)
solve(C.2, Y.2)

Determinants
Only square matrices have a determinant. This can be used to test whether the
vectors in the matrix are linearly independent of one another, which means that no
vector can be written as a combination of other vectors. If the vectors are linearly
dependent then there are two important consequences:

•	 There is redundancy of information
•	 The matrix cannot be inverted

The determinant of a matrix in R can be found with the det() function:

det(cor.mat)

The fact that a determinant is not equal to zero implies that the 20 vectors in the cor.
mat matrix are linearly independent (and therefore this matrix can be inverted).

Triangular matrices
The tri.mat function in R can be used to create a triangular matrix. This function
returns a matrix of true or false values, corresponding to the upper or lower triangle.
The following commands return a lower triangular matrix of the cor.mat matrix:

triangle.matrix <- cor.mat
triangle.mat[upper.tri(triangle.matrix)] <-
triangle.matrix

Here, we use upper.tri to identify the elements of the matrix that we wish to set to
NA. In the case of this correlation matrix, the upper and lower triangles are identical,
so retaining only half of the matrix makes sense.

We will also further discuss the decomposition of a square matrix into an upper and
lower triangular matrix.

Chapter 5

[191]

Matrix decomposition
Matrix decomposition is the matrix equivalent to algebraic factorization. In this section,
we will discuss methods that break a single matrix into the product of two or more
smaller matrices.

QR decomposition
QR decomposition is a decomposition that breaks a matrix M into two different
matrices, Q and R, such that M is equal to QR. Q is an orthogonal matrix (a matrix
in which the inverse of the matrix is equal to its transposition), and R is an upper
triangular matrix. Here, we demonstrate QR factorization in R on R's internal trees
dataset using the qr command:

> data(trees)
> head(trees)
 Girth Height Volume
1 8.3 70 10.3
2 8.6 65 10.3
3 8.8 63 10.2
4 10.5 72 16.4
5 10.7 81 18.8
6 10.8 83 19.7

> trees.qr <- qr(trees[,c(2:3)])

We recover the Q and R matrices with the qr.Q and qr.R commands, respectively.
If we multiply these together, we see that we get our starting dataset as follows:

> Q <- qr.Q(trees.qr)
> R <- qr.R(trees.qr)
> head(Q%*%R)
 Height Volume
[1,] 70 10.3
[2,] 65 10.3
[3,] 63 10.2
[4,] 72 16.4
[5,] 81 18.8
[6,] 83 19.7

The most common use of QR factorization is to find numerically stable solutions to
linear least squares regression. Let's say that we have a matrix of linear predictors
X, and a vector of predicted data Y, to which we wish to fit a linear regression with
regression coefficients stored in a vector B.

Linear Algebra

[192]

In fact, R's lm function uses QR factorization, as we demonstrate in the following
code, and stores the results in an object called qr from which we can retrieve an R
and a Q matrix as mentioned previously:

> trees.lm <- lm(trees$Volume ~ trees$Girth + trees$Height)
> names(trees.lm)
 [1] "coefficients" "residuals" "effects" "rank"
"fitted.values" "assign" "qr" "df.residual"
 [9] "xlevels" "call" "terms" "model"
> Q.2 <- qr.Q(trees.lm$qr)
> R.2 <- qr.R(trees.lm$qr)

Notably, this QR decomposition was only done on a matrix with values containing
trees$Girth and trees$Height; whereas previously, our QR decomposition was
done on the entire matrix. To get our regression coefficients, we can apply the formula:

B = R-1QTY

In R, using the previous formula, we can develop the following code:

> solve(R.2) %*% t(Q.2) %*% trees$Volume
 [,1]
(Intercept) -57.9876589
trees$Girth 4.7081605
trees$Height 0.3392512

Calling the regression coefficients directly can be achieved as follows:

> trees.lm
Call:
lm(formula = trees$Volume ~ trees$Girth + trees$Height)
Coefficients:
 (Intercept) trees$Girth trees$Height
 -57.9877 4.7082 0.3393

As we can see, they match. It might be interesting to look at the matrix that we get
when multiplying our Q and R matrices, as follows:

> head(Q.2%*%R.2)
 (Intercept) trees$Girth trees$Height
[1,] 1 8.3 70
[2,] 1 8.6 65
[3,] 1 8.8 63
[4,] 1 10.5 72
[5,] 1 10.7 81
[6,] 1 10.8 83

Chapter 5

[193]

We see that instead of having the expected two columns, it has three. This is because
the first column filled with 1s was added by R prior to doing the QR decomposition.
The coefficient for this column of 1s is the intercept term in the regression.

Eigenvalue decomposition
An eigenvalue decomposition can only be done on a square matrix. This
decomposition yields a matrix in which each column is termed an eigenvector
and each eigenvector has a corresponding eigenvalue.

The eigenvalue decomposition of a matrix decomposes a matrix into the product
of three other matrices:

•	 A matrix of so-called "eigenvectors", a matrix defined as V, in which each
column is one eigenvector

•	 A diagonal matrix of the eigenvalues corresponding to each eigenvector,
a matrix denoted as L2

•	 The transpose of the matrix of eigenvalues, denoted VT

Expressed mathematically for a given matrix A as follows:

A = VL2VT

These eigenvectors have important properties that make them relevant:

•	 These eigenvectors are orthogonal to one another (that is, at 90 degrees
or uncorrelated).

•	 The original matrix postmultiplied by one of its eigenvectors is equal to
that eigenvector premultiplied by its corresponding eigenvalue. Stated in
another way, postmultiplying a matrix by one of its eigenvectors rescales
that eigenvector, changing its length but not its direction. The magnitude
of this rescaling is the eigenvalue. Because of this directional invariance,
eigenvectors are often referred to as "characteristic roots".

To find eigenvectors and eigenvalues in R, we can use the eigen() function. This
function returns a list with a vector containing the eigenvalues ordered from the
highest to lowest and a matrix containing the eigenvectors corresponding to each
eigenvalue. For example, we can find the eigenvalues and eigenvectors of the
correlation matrix for the physical functioning data:

eigen(cor.mat)$values
eigen(cor.mat)$vectors

Linear Algebra

[194]

We can demonstrate the property that a matrix postmultiplied by one of its
eigenvalues yields a scalar transformation of that eigenvalue. Here, we use the
largest eigenvalue and its corresponding eigenvector:

cor.mat %*% eigen(cor.mat)$vectors[,1]
eigen(cor.mat)$values[1] * eigen(cor.mat)$vectors[,1]

These two vectors should have the same values. Note that one of these commands
uses element-wise rather than matrixwise multiplication.

Lower upper decomposition
The lower upper decomposition is also termed LU decomposition. The idea of
LU decomposition is to factor a matrix A into two triangle matrices, a lower (L)
and an upper (U) triangle matrix:

A = LU

By breaking a matrix into two triangular matrices, we can reduce the computational
demands of many numerical problems. However, finding the LU decomposition
itself comes at a computational cost. As such, this can be used in iterative or repeated
computational procedures in which A does not change, such as finding the inverse of
a matrix or solving a system of linear equations repeatedly, in which the coefficients
of the equations do not change between repetitions In such cases, we incur the cost of
the LU decomposition only once, but reap the benefits of the computationally easier
operation on the decomposed products repeatedly.

To perform LU decomposition in R, we can use the lu() function in the Matrix
package. This does not only perform a simple LU decomposition, but may also
rearrange (termed "permuting") the entries of the matrix to avoid zero entries.
Applying lu() to a matrix will return an object that is not very useable by itself but
can be passed to the expand() function to provide both the upper and lower matrix.

An example with matrix C is given in the following code:

library(Matrix)
lu.mat <- expand(lu(C))
lower.mat <- lu.mat$L
upper.mat <- lu.mat$U
p.mat <- lu.mat$P

To get the original matrix C, we perform matrix multiplication on the P, L, and U
matrices, where P is the permutation matrix:

p.mat %*% lower.mat %*% upper.mat

Chapter 5

[195]

If we do not include the permutation matrix, then we would arrive at a matrix with
the same elements as our original matrix but ordered differently.

Cholesky decomposition
Cholesky decomposition is another matrix factorization that can only be computed
on square matrices. The basic idea is once again to decompose a matrix M into the
product of two triangle matrices—one upper triangle matrix U and the transposition
of this upper triangle matrix, UT. Similar to the LU decomposition, the use of this
method is typically to reduce the computational burden of solving large systems
of equations.

In R, this is done with the chol() function, which returns only the upper
triangle matrix:

chol(cor.mat)

To reconstruct the original matrix, simply premultiply the result of the chol()
function by its transpose:

t(chol(cor.mat)) %*% chol(cor.mat)

Singular value decomposition
Singular value decomposition can be performed on square or rectangular matrices.
The idea is to decompose a matrix M, with n columns into n "blocks" of information.
Each block is composed of a matrix U, the transpose of a matrix V, and one of the n
singular values d:

1 1 1
T T

n n nM U d V U d V= + +L

When the singular value decomposition is done in R, the result returned is the matrix
U, the matrix V, the individual values of d, and the singular values.

The practical use in this is that we can look at the size of each singular value, and if
a particular singular value is negligible, then data can be summarized leaving out the
block containing that singular value. This can be used as a data compression method
or as a noise reduction method. In Chapter 6, Principal Component Analysis and the
Common Factor Model, we will discuss singular value decomposition on covariance
matrices as a data reduction tool.

Linear Algebra

[196]

Let's see how singular value decomposition can be used as a data compression
method. Let's create a matrix that represents the picture of a cross composed of zeros
and ones. A picture could be converted to a matrix as follows, but there is a file format
known as "portable bitmap format" that does use text file representation as given in
the following code:

cross.mat <- matrix(
 c(
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0
),
byrow = TRUE, nrow = 10)

We can then apply the singular value decomposition, which will give us eight
"blocks" represented as eight column vectors in the U and V matrices and eight
values in the d vector:

cross.svd <- svd(cross.mat)

To inspect the size of each singular value, we look at d:

cross.svd$d

As we can see, the last six singular values are negligible, so we will recreate the
image from the first two singular values and first two column vectors of U and V:

cross.svd$u[,c(1,2)] %*% diag(cross.svd$d[c(1,2)]) %*% t(cross.svd$v[,
c(1,2)])

This gives us the recreated cross from compressed data. The previous code gives
us something that looks like a mess because we estimate the original matrix rather
than reproducing exactly. However, if we round up to an integer value, then we
reproduce the original matrix:

round(cross.svd$u[,c(1,2)] %*% diag(cross.svd$d[c(1,2)]) %*% t(cross.
svd$v[, c(1,2)]), 0)

Chapter 5

[197]

The original cross.mat had 80 (8*10) data points. Our compressed data based on
singular value decomposition contained 20 values from matrix u, 20 values from
matrix v, and 2 values from vector d or a total of 42 values ((2*10)+(2*10)+2). Thus,
we were able to compress the data to something nearly half as large.

If we are working with an image with only two colors, we can recreate
the original image exactly by rounding to an integer value. However,
if our matrix represented a gray scale image where the numeric value
represented the color intensity of the gray, then we would get a close
but not completely faithful recreation of the original image.

What if we wanted to clean up the image? Let's create a new cross with a speck
of dust on the picture as follows:

cross.mat <- matrix(
 c(
 0, 0, 0, 1, 1, 0, 0, 0,
 1, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1,
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0,
 0, 0, 0, 1, 1, 0, 0, 0
)
,byrow = TRUE, nrow = 10)

Notice the value of 1 at position (2, 1) in the previous code, which is our speck of
dust. Next, we recreate our cross based on the same idea:

cross.svd <- svd(cross.mat)
round(cross.svd.2$u[,c(1,2)] %*% diag(cross.svd.2$d[c(1,2)]) %*%
t(cross.svd.2$v[, c(1,2)]), 0)

Voila! The speck of dust is gone.

Applications
We have shown some uses of linear algebra in this chapter, but for the most part, linear
algebra techniques derive practical use from the ways in which they are combined
both with each other and other functions. As such, this section is included to show
how linear algebra and matrix operations can be applied for substantive use.

Linear Algebra

[198]

Rasch analysis using linear algebra and a
paired comparisons matrix
In recent decades, a statistical technique termed "Rasch analysis" has become
increasingly popular in psychology, education, and healthcare. This is attributed to
the Danish statistician, Georg Rasch, who published it in the 1960s. The basic idea
is that a scale (for example, an academic test, a measure of a psychological trait, or a
physical functioning measure) represents a one-dimensional latent trait, which can
be represented as a number line with an arbitrary zero point. We can plot individuals
along this line based on their ability. Individuals with higher abilities on the latent trait
are plotted at higher values. We can also plot items on this line ordered by difficulty,
with more difficult items placed at high-valued locations on the line. A formula based
on logistic regression tells us the probability of a person with given ability giving an
affirmative answer (or a getting a correct answer) to an item with a given difficulty.

The probability of a person with a particular ability giving an affirmative response
is given as follows:

1

b

b

eP
e

θ

θ

−

−=
+

In this formula, P is the probability of an affirmative response to the item, e is the
base of the natural logarithm, θ is the person's ability, and b is the item's difficulty.

The difficulty of an item is equal to the ability level of a person who has a 50 percent
chance of giving an affirmative answer to the item. Both the person's ability θ and
the item's difficulty b are not directly observed but must be estimated based on the
data obtained from responses on the scale.

A tremendous amount has been written both in textbooks and psychometrics
journals, but generally speaking, the question that people wish to answer with
Rasch analysis is what the difficulty of each item is.

We will transform our physical functioning data into binary data to indicate some
difficulty versus no difficulty and apply Rasch analysis to figure out which items
are the most difficult. We will perform Rasch analysis on the lower extremity
domain only.

We will begin by using matrix multiplication to create a new matrix with just the
lower extremity items:

lower.extremity.mat <- phys.func.mat[,c(2,3,4,8,9,10,13,14)]

Chapter 5

[199]

We will then convert this matrix of ordinal data to a matrix of binary data as follows:

lower.extremity.binary <- replace(lower.extremity.mat, which(lower.
extremity.mat %in% c(2:5)), 0)

In lower.extremity.binary, individuals who have no difficulty doing a task are
given a value of 1 and individuals who have difficulty are given a value of 0.

In the original data, higher scores meant more difficulty, but in this
binary data frame, we have coded the data to be the opposite for the
purpose of easily interpreting the results.

Thus, the latent trait that we are interested in now is the ability to perform tasks
using the lower extremities without difficulty.

There are many ways to statistically estimate the item difficulties in the Rasch
model, but the method that we will use here is based on a paired comparison's
matrix. The overall scheme is as follows:

1.	 Count the number of individuals able to perform an item without difficulty
and compare that to the number of individuals able to do the other seen
items without difficulty. Populate a matrix R of raw comparison data:

11 1

1

R
j

i ij

r r

r r

 
 =  
  

L

M O M

L

In the preceding diagram, rij is the number of people who score a 1 on
item i and 0 on item j.
The R code to create the paired comparisons matrix is as follows:

create.paired.comparisons <- function (input.matrix) {
 n.items <- ncol(input.matrix)
 output.matrix <- matrix(0, nrow = n.items, ncol = n.items)
 for (i in 1:n.items) {
 for (j in 1:n.items) {
 output.matrix[i, j] <- length(which(input.matrix[,i] -
input.matrix[,j] > 0))
 }
 }
 return(output.matrix)
}
R <- create.paired.comparisons(lower.extremity.binary)
R

Linear Algebra

[200]

2.	 Create a matrix D as follows:

ji
ij

ij

r
d

r
=

3.	 The corresponding R code is as follows:
D <- t(R) / R
diag(D) <- rep(1, 8)
D

4.	 Take the natural logarithm of each element in D:
ln.D <- log(D, exp(1))

5.	 Find the mean of each row as follows:

(ln.D %*% matrix(rep(1, 8), nrow = 8)) / 8

The final command shows us that the locations for each item are as follows:

No. Item Location
B Walking for a quarter mile 0.854
C Walking up 10 steps -0.169
D Stooping, crouching, kneeling 2.076
H Walking from one room to another -3.561
I Standing up from a chair -0.440
J Getting in or out of bed -0.761
M Standing for 2 hours 1.936
N Sitting for 2 hours 0.065

These results suggest that the easiest mobility item on this scale is item B, and
the most difficult is item D. Thus, if a person has only a little difficulty with use of
their legs (due to arthritis or other impairments), they might report problems with
stooping, crouching, or kneeling, but if they report problems with simply walking
between rooms, we would expect that they have a high degree of impairment and
are likely to have difficulty with every other item on this scale.

There are a number of other methods to estimate the parameters of the Rasch model
with implementations of them in various R packages. The eRm package is one of the
numerous available packages, which offer a full suite of functions for both applying
the Rasch model and testing model fit. The answers obtained in the previous example
can be compared to those obtained from the RM() command in the eRM package:

Chapter 5

[201]

library(eRM)
RM(lower.extremity.binary)

The units in which these difficulties are expressed are often called "logits". They
have no meaning outside of the scale to which they are being applied, and the zero
point is arbitrary, so it is perfectly acceptable to add or subtract (but not multiply or
divide) any number to them.

Calculating Cronbach's alpha
Earlier, we went over the Rasch analysis, which is a part of a psychometric approach
termed item response theory (IRT). However, long before there was IRT, there was
classical test theory (CTT), which was concerned with estimating or measuring "true
scores". The underlying idea of CTT posited that on a test is Observed Score = True
Score + Error.

Therefore, much of the classical test theory is concerned with determining how
much of a person's observed score is due to the true score. One important metric
for this that is still in heavy use today (in spite of arguments that it has outlived
its usefulness) is Cronbach's coefficient alpha. The basic idea underlying internal
consistency reliability (and CTT in general) is that the score on a subgroup of items
should be correlated with the score on the rest of the test. In the case of alpha, the
subgroups of items that are examined are split halves, such that alpha is equal to the
average split-half reliability for all possible splits of items. Conveniently, an algebraic
formula to compute alpha has been developed so that analysts do not actually have
to determine all split half correlations and average them.

The formula for Cronbach's alpha is:

2

21
1

i

t

sk
k s

α
 ∑

= − −  

In the preceding formula, α is a Cronbach's alpha, k is the number of items, 2ts is a
variance of item i, and 2is is a variance of total test scores.

Here, we will use matrix operations in R to compute alpha for the correlation matrix
of the NHANES physical functioning measure.

1.	 First, compute the total score for each domain for each person as follows:
domain.totals <- phys.func.mat %*% design.matrix

The total score variance for any domain is the diagonal of the covariance
matrix of total scores:

tot.score.var <- diag(cov(domain.totals))

Linear Algebra

[202]

2.	 We then find the sum variance of each item for each scale and convert it to a
row vector:
item.var <- diag(cov(phys.func.mat))
item.var <- matrix(item.var, ncol = 20)

3.	 We then post multiply it by our design matrix to obtain total item variances
on each domain:
item.var.tot <- item.var %*% design.matrix

4.	 We can calculate the number of items in each domain using our design
matrix:
n <- matrix(1, ncol = 20) %*% design.matrix

5.	 Finally, we put everything in the formula for alpha:

alpha <- (n / (n-1)) * (1 - (item.var.tot / tot.score.var))
alpha

This is the raw alpha. The standardized alpha can be obtained by performing these
operations on the correlations rather than covariances.

Image compression using direct cosine
transform
Earlier, we saw how SVD can be used to compress a matrix that is representative of
data. Here, we will use another decomposition method to decompose an image into
spectral features, which we can use for image compression. We will do this with
the discrete cosine transform (DCT) of a square matrix. The DCT is one of a variety
of transformation functions that transforms a signal expressed in terms of location
to one expressed in terms of frequency. In the case of the DCT, this is done by
decomposing a set of discrete values into a series of cosine functions.

Importing an image into R
Before we can start working with an image, we have to import the image, which we
will do using the png package. We will import the picture as an array and examine
its dimensions as follows:

> library(png)
> picture <- readPNG('landscape.png')
> dim(picture)
[1] 1536 2048 3

Chapter 5

[203]

The first two dimensions give the pixel dimensions of the image, and the third
dimension gives the number of color layers. This array has two important features in
its dimensions. The first is that the third dimension is three, which indicates that even
though this is a picture of a landscape that has been converted to shades of gray, it is
still stored as a three-color PNG file, with a red, green, and blue layer. However, each
color layer has identical values in this matrix. The second notable feature is that the
pixel dimensions of the image are divisible by eight. This is important because we will
base our image compression example on the JPEG standard for image compression in
the following section, which decomposes an image into 8 pixel squares; image padding
is needed if the number of pixels on a side is not divisible by eight.

Here, we create an array composed of just the first color layer and then use R's image
command to view the array as a graphic. We transpose the array and reverse the
counting of rows to place the image in the correct orientation. We also tell it to plot
intensity values using grayscale rather than color, as shown in the following code:

picture.1 <- picture[,,1]
image(t(picture.1)[,nrow(picture.1):1], col = gray(seq(0,1, length.out
= 256)))

We can see the following screenshot imported into R plotted on a graphics device:

Linear Algebra

[204]

The compression technique
We will start with describing the basic image compression technique and show
the corresponding R code further. The following are the basic steps in our image
compression:

1.	 Break an image into 64 (8*8) block of pixels, which in our case means 8*8
submatrices or subarrays.

2.	 Convert each 8*8 block into an 8*8 block of frequencies (that is, coefficients
for cosine terms). This is done using a transformation matrix T, which we
will see further.

3.	 Discard the frequencies of least importance in each 8*8 block and keep only
those of the most importance, which we do with a quantization matrix Q.

Decompression is simply a reversal of the first two steps (we can't undiscard lost
data). In the end, we will lose some of the data but hopefully not enough to be
visually noticeable, which is similar to what we did with SVD previously.

Creating the transformation and quantization matrices
To perform the DCT, we will first need to compute a transformation matrix T, which
we will later use in the actual image transformation. More detailed treatment of the
underlying theory is present in many signal processing textbooks but here, we will
skip to presenting the needed formulas. We will assume that T is a square matrix
with N rows and columns, denoted by i and j, respectively, with the numbering of i
and j starting at 0. The formula is shown as follows:

()

1 0

22 cos 0
2

if i
N

T
j i i

if i
N N

π

 = 
 =  +  >    

The quantization matrix Q will be based on a predeveloped quantization table, which
in this case will be a quantization table provided by the independent JPEG group. This
is the most commonly used table, but others are available, and some companies have
patented methods for the ad hoc creation of quantization tables based on the image
being compressed. The basic quantization table is shown as follows:

16 11 10 16 24 40 51 60
12 12 14 19 26 58 60 55

Chapter 5

[205]

14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 59 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

A quality level between 0 and 100 can be created, and the matrix shown in the previous
table produces a compression at a quality level of 50. Additional quantization matrices
can be created as scalar multiples of the quantization table based on the image quality
desired with higher levels corresponding to higher quality. This table has smaller
values at the top-left corner and larger values towards the bottom-right corner. As
we will see in a moment, this is an important part of compression.

Putting the matrices together for image compression
To transform the original 8*8 matrix R to the discrete cosine transformed matrix D,
we simply use matrix multiplication:

D = TRT'

Here, T' is the transposition of T.

The compressed matrix C is created by the element-wise division of D, by Q rounded
to the nearest integer value:

Ci,j = Di,j / Qi,j

The most important frequencies in the matrix tend to congregate towards the top-left
corner of D. Since Q has small values in the top-left corner and large values in the
bottom-right corner, the division followed by rounding will mean that those values
in the top-left corner will be retained as integers while those in the bottom-right
corner will be rounded to zero and discarded.

To reverse the quantization of the image, we perform element-wise multiplication of
C by Q:

Di,j = Ci,j / Qi,j

Since we rounded some of the values of C in the compression process, this D matrix
will be slightly different than the D matrix we started with.

Linear Algebra

[206]

We then perform the opposite matrix multiplication to get R:

R = T'DT

DCT in R
We will now implement the procedures described earlier in R code. The first thing
that we will do is convert our array of pixel values from 0 to 1 to an array of 256
integer pixel values from -128 to 127, as shown in the following code:

picture.1.256 <- round(picture.1 * 255 -128)

Our compression method relies on rounding to integer values, so some type of
transformation to integer values is crucial.

Then, we will write a function that can calculate the values of the matrix T, for any
desired size:

create.dct.matrix <- function(n) {
 output.matrix <- matrix(0, nrow = n, ncol = n)
 for (i in 1:n) {
 for (j in 1:n) {
 if (i == 1) {output.matrix[i,j] <- 1/sqrt(n)}
 if (i > 1) {
 output.matrix[i,j] <-
 sqrt(2 / n) * cos((2*(j-1) +1)*(i-1)*pi / (2* n))
 }
 }
 }
 return(output.matrix)
}

The formula to compute the elements of the quantization matrix assumes that matrix
rows and columns are numbered starting with 0, but R numbers start with 1, which
we must account for in our code.

We will simply define the basic quantization matrix as follows:

quant.matrix <- matrix(
 c(
 16,11,10,16,24,40,51,60,
 12,12,14,19,26,58,60,55,
 14,13,16,24,40,57,69,56,
 14,17,22,29,51,87,80,62,

Chapter 5

[207]

 18,22,37,59,68,109,103,77,
 24,35,55,64,81,104,113,92,
 49,64,78,87,103,121,120,101,
 72,92,95,98,112,100,103,99
),
 byrow = TRUE,
 nrow = 8, ncol = 8
)

We will then give R a compression ratio for the desired quality as follows:

compression.ratio <- 50

Now, we will compute the Q matrix as a scalar multiple of the basic quantization
table based on our desired compression ratio, and we will create a matrix T for n
equal to 8, as shown:

Q <- round(quant.matrix * (100-compression.ratio)/50)
T <- create.dct.matrix(8)

Finally, we will create the function that breaks the original image into 8*8 subimages,
performs the DCT, and does the compression:

dct.compress <- function(input.matrix) {
 input.row <- nrow(input.matrix)
 input.col <- ncol(input.matrix)
 output.matrix <- matrix(0, nrow = input.row, ncol = input.col)
 working.row <- c(1:8)
 while (max(working.row) <= input.row) {
 working.col <- c(1:8)
 while (max(working.col) <= input.col) {
 output.matrix[working.row, working.col] <-
 (T %*% input.matrix[working.row, working.col] %*% t(T))/Q
 working.col <- working.col + 8
 }
 working.row <- working.row + 8
 }
 return(output.matrix)
}

Now, let's actually compress our image using the following function:

picture.compressed <- dct.compress(picture.1.256)

Linear Algebra

[208]

This is transformed and compressed image (if appropriately encoded, the abundance
of zeros will require less storage space). If we want to see what the image looks like,
we can plot it using the following code:

image(t(picture.compressed)[,nrow(picture.compressed):1], col =
gray(seq(1,0, length.out = 2)))

Now, this compression technique is useless if we can't recreate the original image,
so we will create a function to reverse what our compression function did:

decompress.image <- function(input.matrix) {
 input.row <- nrow(input.matrix)
 input.col <- ncol(input.matrix)
 output.matrix <- matrix(0, nrow = input.row, ncol = input.col)
 working.row <- c(1:8)
 while (max(working.row) <= input.row) {
 working.col	 <- c(1:8)
 while (max(working.col) <= input.col) {

Chapter 5

[209]

 output.matrix[working.row, working.col] <-
 (t(T) %*% (Q * input.matrix[working.row, working.col]) %*% T)
 working.col <- working.col + 8
 }
 working.row <- working.row + 8
 }
 return(output.matrix)
}

Let's now apply our decompression function and plot the result to see how faithfully
our original image was recreated:

picture.decompressed <- decompress.image(picture.compressed)
image(t(picture.decompressed)[,nrow(picture.decompressed):1], col =
gray(seq(0,1, length.out = 256)))

The result of the function is as shown in the following figure:

We see that the original image is pretty well preserved. It may be interesting to try
lower values for a compression ratio other than 50 to see how well the original image
is preserved with more and more compression.

Linear Algebra

[210]

Summary
In this chapter, we covered linear algebra techniques in R. Unlike many of the prior
chapters, many of the methods covered in this chapter do not produce an interesting
result that has a substantive interpretation. Rather, these methods can be used to
build numerical algorithms as shown in the final two examples. We covered linear
algebra operations, including transposition, inversion, matrix multiplication, and a
number of matrix transformations. We then went on to explore how these methods
can be applied in Rasch analysis, internal consistency, and image compression. The
subsequent chapters will focus on linear algebra's use in dealing with covariance
matrices to perform principal component analysis, factor analysis, and structural
equation modeling.

Principal Component
Analysis and the Common

Factor Model
The previous chapter explored linear algebra and matrix operations. This chapter
can best be characterized as concerned with the linear algebra of covariance and
correlation matrices. Principal component analysis (PCA) and factor analysis (FA)
are two classic methods of identifying structures in the correlations of datasets.
Despite the fact that they are concerned with covariances and correlations, many
statisticians have very limited experience with these methods, because they make
heavy use not only of statistics, but also of linear algebra; therefore, they straddle
the realms of both statistics and engineering.

In this chapter, the following topics will be discussed:

•	 A primer on correlation and covariance structures
•	 Principle component analysis
•	 Basic exploratory factor analysis
•	 Advanced exploratory factor analysis

Principal Component Analysis and the Common Factor Model

[212]

A primer on correlation and covariance
structures
In the case of both PCA and FA, it is worth taking a moment to review some basic
mathematical properties of covariances and correlations. Covariance is a measure
of the linear codependence of two variables. Correlation is the covariance divided
by the product of the standard deviation of the two variables. Thus, the correlation
is a scaled covariance. In this chapter, we will be placing these covariances or
correlations into matrices, called covariance matrices or correlation matrices.

The correlation matrix is a square matrix that has as many rows (and as many
columns) as there are variables. Each element of the matrix represents the correlation
between two variables. For example, in a dataset with three variables, A, B, and C,
the correlation matrix would be as follows:

() ()
() ()
() ()

1 cor , cor ,C

cor , 1 cor ,

cor , cor , 1

A B A

B A B C

C A C B

 
 
 
 
 

The diagonals are all 1 because the correlation of a variable with itself is 1. In a
covariance matrix, the variances of the variables fall along the diagonal.

Datasets used in this chapter
We will use a few datasets in this chapter, which will cover a wide range of topics.
What they have in common is that they are all multidimensional; as a result, the
techniques of this chapter are easy to implement. For convenience, all datasets
are available online at http://scholar.harvard.edu/gerrard/mastering-
scientific-computation-r. The following are some of the datasets:

•	 Red wine: This is a dataset of red wine properties. This dataset contains
the chemical properties of the wine as well as the wine quality score. This
dataset comes from the paper P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and
J. Reis. Modeling wine preferences by data mining from physicochemical properties.
In Decision Support Systems, Elsevier, 47(4):547-553, 2009. It was downloaded
from the University of California Irvine Machine Learning Repository at
http://archive.ics.uci.edu/ml/.

http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://scholar.harvard.edu/gerrard/mastering-scientific-computation-r
http://archive.ics.uci.edu/ml/

Chapter 6

[213]

•	 Abalone: This is a dataset of abalone measurements. The measurements are
concerned largely with sizes and weights of various parts of the abalone. This
dataset comes from the University of California Irvine Machine Learning
Repository available at http://archive.ics.uci.edu/ml/.

•	 Physical functioning: We used this dataset in the previous chapter. For
full details, refer to Chapter 5, Linear Algebra. To summarize, the survey
respondents are asked how much difficulty they have with 20 items related
to functional independence.

All UC Irvine Machine Learning Repository datasets come from Kevin Bache
and Moshe Lichman (2013). The UCI Machine Learning Repository is available
at http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School
of Information and Computer Science.

Principal component analysis and total
variance
Simply put, PCA is a tool that enables dimension reduction of data. While this
sounds simple enough, let's discuss in a bit more detail. If we start with a dataset that
has a large number of variables, say 100, then the question may arise as to whether
we really need all 100 variables or if there is some redundancy in the data such that
it can be summarized with fewer variables. In this case, redundancy does not mean
complete duplication of a measurement but rather a significant amount of overlap.

We will get to some real data in a moment, but for now, let's assume the voting
results from senate bills in the United States. Each bill gets voted on by up to 100
senators (some may abstain), and we want to get an idea of how each bill was
received by the voting members of the senate. There are two political parties in the
United States, Democratic and Republican, and there may be a lot of redundancy
in voting. In fact, ample research shows that in general, members of Congress tend
to vote with the rest of their party, suggesting that such redundancy does exist. If
this is the case, then we can keep only a small portion of the data and be mostly
accurate (though sometimes wrong) at figuring out how a bill was received by
members of Congress.

There are a number of dimension reduction techniques, but PCA is one of the most
commonly used techniques.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml

Principal Component Analysis and the Common Factor Model

[214]

Understanding the basics of PCA
The basic idea of PCA is to figure out whether the data represented in multiple
dimensions can be effectively modeled with fewer dimensions. PCA actually returns
the same number of dimensions that we started with, but it tells us whether most
of the information is loading along the first few dimensions with a little additional
information provided by recording data for additional dimensions. This is probably
best explained with an example using simulated data.

First, simulate data for two variables, such that one variable is strongly related
to the other:

set.seed(20)
x <- sample(c(0:100), replace = TRUE, 1000)
y <- x + sample(c(-10:10), replace = TRUE, 1000)
plot(y ~ x)

The result is shown in the following plot:

Chapter 6

[215]

As can be seen in the preceding plot, we have actually plotted a fuzzy line. We are
using two dimensions to locate points on this line, but if we reduced this to only
a single dimension by rotating our axes, we would not lose much information
regarding where on the line each point is located. The trick is figuring out the
rotation that gives us only one dimension, something that is simple in this two-
dimensional, well-behaved dataset, but more difficult in multidimensional and less
well-behaved data. This is where PCA comes in; it rotates the axes giving us a new
set of axes with just as many dimensions, but it captures as much of the variance
as possible on the first dimension, as much of the remaining variance as possible
on the second dimension, and so on. In this way, the first few of our newly created
dimensions will explain as much of the data as possible. If they explain enough,
then perhaps the following dimensions are not needed.

Mathematically, PCA works by taking an eigenvalue decomposition (see Chapter
5, Linear Algebra) of the covariance or the correlation matrix, where the eigenvalues
represent the total variance explained by the corresponding eigenvector (or principal
component), or by performing a singular value decomposition on the raw data. It
does matter whether correlations or covariances are used in the eigenvalue method,
and we may need to scale the data prior to performing an SVD-based PCA. We will
discuss this further in the section Scaled versus unscaled PCA.

What is the difference between princomp and prcomp in R?
There are two R functions (in the base R software) for performing
PCA: prcomp and princomp. They differ particularly in how they
go about performing PCA. Where princomp does an eigenvalue
decomposition on the covariance (or correlation) matrix, prcomp
performs a singular value decomposition on the raw data. These two
commands differ slightly in output, and prcomp is considered to
provide a better numerical estimate.

We can apply R's prcomp function, which performs PCA and summarizes the results
as follows:

>pca.sample <- prcomp(matrix(c(x,y), ncol =2))
>summary(pca.sample)

Importance of components:
 PC1 PC2
Standard deviation 42.3675 4.31650
Proportion of Variance 0.9897 0.01027
Cumulative Proportion 0.9897 1.00000

This shows that almost 99 percent of the variance is explained by the first newly
created dimension (called a principal component).

Principal Component Analysis and the Common Factor Model

[216]

As indicated earlier, PCA just rotates the axes. This suggests that we should be able
to use the results of a PCA to see how our data can be plotted on this new set of axes,
and in fact this can be done easily. The object returned by prcomp contains a matrix
of loadings:

pca.sample$rotation
> pca.sample$rotation
 PC1 PC2
[1,] -0.6983965 0.7157111
[2,] -0.7157111 -0.6983965
> pca.sample <- prcomp(matrix(c(x,y), ncol =2))
> rotation.matrix <- -pca.sample$rotation

In this case, the loadings are mostly negative, which is completely arbitrary, so we
reverse the sign before saving it into a new matrix, the name of which hints at what
can be done with it. We now multiply it with the rotation matrix, and we get a new
set of coordinates, which represent how each value in the original data matrix can
be projected onto our new coordinate system:

rotated.data <- matrix(c(x,y), ncol = 2) %*% rotation.matrix

Now, if we plot this rotated data, we will see something that looks a lot like our
original plot of the data; only here, we have rotated the axes as shown in the
following plot:

plot(rotated.data[,1], rotated.data[,2], xlim = c(0, 150), ylim = c(-
75, 75))

Chapter 6

[217]

Compare the previous plot with the one before it to see that this is simply a rotation of
the original data onto new axes. Notice that the new horizontal axis has points from 0
to almost 150, whereas the old horizontal axis only went as high as 100. This is because
the new horizontal axis is really a hypotenuse passing through the cloud of data
points, and the hypotenuse of a right triangle with two legs of length 100 is about 141.

How does PCA relate to SVD?
As we discussed in Chapter 5, Linear Algebra, a singular value decomposition
decomposes a matrix M into two matrices U and V, and a vector of singular values D
(see Chapter 5, Linear Algebra, for further elaboration):

M=UDVT

Multiplying just the upper matrix U by the diagonal matrix D, for which the
diagonal values are given by the vector of the singular value D, will project the data
onto the new coordinates in the same way as multiplying the original data with the
rotation matrix. For example, we could perform the rotation that we achieved with
R's prcomp command the following way with the svd command:

svd.sample <- svd(matrix(c(x,y), ncol = 2))
manual.rotation <- svd.sample$u %*% -diag(svd.sample$d)
plot(manual.rotation[,1], manual.rotation[,2], xlim = c(0, 150), ylim
= c(-75, 75))

The result is shown in the following plot:

Principal Component Analysis and the Common Factor Model

[218]

Scaled versus unscaled PCA
Previously, we have discussed the fact that a correlation is a scaled covariance. It
is important to point out here that scaling of the data can make a big difference.
Both eigenvalue decomposition and SVD attempt to tell us the direction of data of
a matrix point. We will encounter a problem in datasets that have variables placed
on different scales. In such data sets, eigenvalue decomposition on the covariances
or SVD on the raw data will tend to give the illusion that the data is aligned in the
direction of the variables with largest values. This is a problem if some variables
have large values only because they are expressed in small units (for example,
expressing a length in millimeters rather than meters will multiply a length value by
1,000). These large values mean large variances, and PCA attempts to rotate the first
component in the direction of the largest variance. Thus, if variables are measured on
very different scales, then it is necessary to somehow scale the variables (typically to
a variance of one). This is best seen with some examples.

Let's load the wine dataset, as follows:

red.wine <- read.csv('winequality-red.txt')

Now, we will take an eigenvalue decomposition of the covariance matrix ignoring
the last variable, followed by an eigenvalue decomposition of the correlation matrix
(this is close to what R does in the princomp command):

wine.eigen.cov <- eigen(cov(red.wine[,-12]))
wine.eigen.cor <- eigen(cor(red.wine[,-12]))

Now, let's look at the proportion of variance explained by each principal component
in the two different eigenvalue decompositions. We will compute the proportion of
variance explained by dividing each eigenvalue by the sum of eigenvalues:

> wine.eigen.cov$values / sum(wine.eigen.cov$values)
 [1] 9.465770e-01 4.836830e-02 2.589172e-03 1.518968e-03
 [5] 8.735540e-04 3.456072e-05 1.936276e-05 9.472781e-06
 [9] 8.413766e-06 1.214728e-06 4.687628e-10
> wine.eigen.cor$values / sum(wine.eigen.cor$values)
 [1] 0.281739313 0.175082699 0.140958499 0.110293866 0.087208370
 [6] 0.059964388 0.053071929 0.038450609 0.031331102 0.016484833
[11] 0.005414392

It can be seen that there is a stark difference between the two datasets. Based on the
covariance matrix, the first principal component explains almost 95 percent of the
variance, whereas using the correlation matrix method, the first principal component
does not even explain 30 percent of the variance. The reason is because some
variables (for example, those related to sulfur dioxide) are expressed in units that
provide much bigger numbers than the other variables.

Chapter 6

[219]

This can be a problem when using R's prcomp command if we are not careful:

wine.prcomp <- prcomp(red.wine[,-12])
wine.prcomp.scaled <- prcomp(red.wine[,-12], scale = TRUE)
summary(wine.prcomp)
summary(wine.prcomp.scaled)

The output is as shown in the following screenshot:

The unscaled version of this PCA gives us a misleading result because one particular
variable, sulfur dioxide, has a very large absolute variance, which is a consequence of
the units it is measured in. PC1 is essentially the sulfur dioxide variable. This is akin
to measuring most variables in meters and one variable in centimeters; centimeters
are smaller than meters, so variances expressed in terms of centimeters will be
numerically larger. By adding the scale = TRUE argument, we are telling R to
rescale all variables to unit variance. If variables are not expressed on the same or at
least similar scales, rescaling is needed.

Principal Component Analysis and the Common Factor Model

[220]

There are a number of key points to keep in mind with PCA:

•	 PCA retains the same number of dimensions in the data but rotates
the axes in the direction of the data

•	 PCA attempts to account for all of the variance in variables
•	 Variables on very different scales may need to be rescaled
•	 The principle components created in PCA do not have to mean

anything substantive

PCA for dimension reduction
Thus far, we have discussed the mathematical properties of PCA but not actually
discussed how it can be used. In short, PCA is a technique that allows us to interpret
observations from a multidimensional dataset in terms of fewer dimensions. Here,
we will use a dataset examining the chemical properties of red wine to demonstrate
PCA in R. We will use commands from R's FactoMineR package, which is based on
SVD and has numerous utilities for interpreting the results of PCA.

While PCA has been described as a dimension reduction technique, an application
for it may not be immediately obvious. To demonstrate its use, let's look at the
abalone dataset that consists of a variety of measurements on abalone:

abalone <- read.csv('abalone.txt')
library(FactoMineR)
abalone.pca <- PCA(abalone[, c(-1)])

The PCA command produces a variables factor map that plots as vectors to show
how each original variable falls on the rotated axes produced by PCA, as shown in
the following diagram:

Chapter 6

[221]

The preceding figure only shows two dimensions; so it is of limited use when
many dimensions are retained but very useful in cases where one or two
dimensions capture most of the variance. It appears that nearly all of the individual
measurements of an abalone can be captured on a single dimension. From a practical
standpoint, this suggests that most of these abalone traits are really just slight
variants of a single underlying trait—size, which as we can see captures nearly
84 percent of the variance in all of the measurements.

PCA to summarize wine properties
The abalone example demonstrates how PCA can arrive at a nice and simple
solution for a dataset. Unfortunately, most real-world datasets are not so
conveniently categorized. Let's return to the red wine dataset for an example of
this. First, let's just look at the correlation matrix of the red wine data, usually a
good first step before engaging in PCA. R's cor command applied to a data frame
will give a correlation matrix:

cor(red.wine)

Principal Component Analysis and the Common Factor Model

[222]

We won't get into the details of wine chemistry and oenology here, but some high
correlations are expected. For example, citric acid is one of the fixed acids in wine,
so we would expect a high correlation here. However, we see a mix of high and low
correlations, which means that there may be some structure to this data consisting of
more than one dimension, but fewer than the total number of wine measurements.
Let's perform a PCA on this dataset now:

wine.pca <- PCA(red.wine, quanti.sup = 12)

By declaring quanti.sup = 12, we are telling the PCA command not to use the
12th variable, which is quality in the construction of the new dimensions. However,
we are asking the PCA command to estimate the parameters for this variable on the
newly created dimensions, which is shown in the following figure:

The preceding graphic produced gives us a hint of what we are getting into with our
attempts at dimension reduction, and this is much more representative of common
datasets seen in the real world. Let's dig into the wine.pca object to try to make
sense of things:

summary(wine.pca)

Chapter 6

[223]

Let's have a look at the following screenshot:

The preceding screenshot summarizes the eigenvalue decomposition, shows how
to plot the individual wines on the rotated axes, and provides a summary of the
variables. We will discuss each of these individually here.

The eigenvalues are from an eigenvalue decomposition of a correlation matrix
(although SVD was actually used). The sum of these eigenvalues will be the total
number of variables, in this case 11. The proportion of variance explained by a
particular principal component (that is, rotated new dimension) is simply the ratio
of that eigenvalue to the total number of variables. The importance of this is that
once an eigenvalue is less than one, the principal component associated with that
eigenvalue explains less of the variance than a single original variable. We will
discuss this in a bit more detail in the next section.

Principal Component Analysis and the Common Factor Model

[224]

The individual information and variable information simply provides the data to
plot individual and original variables along the new rotated axes. By default, this
data is provided for only the first three principal components. There are a number
of columns shown in the preceding screenshot. The first column denoted by Dim
refers to the coordinate of each variable on each principal component. The second
column denoted by ctr provides the contribution of that coordinate to the creation
of that dimension. The quality variable has no contribution column, because it did
not contribute to the creation of the principal components. The final column, named
cos2, provides the squared cosine. The closer the squared cosine is to 1 (or the greater
it is), the better that variable is projected onto the axis and the closer that variable is
linked to that principal component.

Choosing the number of principal
components to retain
As we discussed earlier, PCA (regardless of which R command is used) simply
rotates the axes in the direction of the data, but there are as many principal
components as there are original variables. The question then is how PCA can
be used as a dimension reduction technique if it returns the same number of
dimensions that we started with. As we have already touched upon here, the
key is to choose only as many principal components as are important and ignore
the rest. This then leaves the question as to how we decide on how many principal
components are important.

There are a number of possible ways to go about choosing the number of principal
components to retain. Qualitative methods include choosing based on theory (for
example, we are interested in only a given number of dimensions apriori), or based
on looking at the principal components and keeping those that we can substantively
find meaning in. The two most commonly used quantitative methods include the
Kaiser-Guttman rule and the Screen test.

The Kaiser-Guttman rule simply states that principal components with an eigenvalue
greater than one should be retained. The rationale for this is that principal
components with eigenvalues less than one explain less of the total variance than
a single original variable does on average. Based on this rule, we should keep four
principal components in the PCA of the red wine data. The screen test simply
plots the eigenvalues (or the proportion of variance) as a function of principal
components. If there is a leveling off in the plot, then those principal components are
regarded as unnecessary. The code to plot the graph is shown as follows:

plot(wine.pcaeigeigenvalue, type = 'b', xlab = 'Principal
Component', ylab = 'Eigenvalue', main = 'Eigenvalues of Principal
Components')

Chapter 6

[225]

The result is as shown in the following plot:

As can be seen in the preceding plot, the leveling off is not nice, so by scree criteria
we would not really be able to determine an appropriate threshold of principal
components to include for the red wine dataset. In comparison, let's look at what
the scree plot shows for the abalone PCA:

plot(abalone.pcaeigeigenvalue, type = 'b', xlab = 'Principal
Component', ylab = 'Eigenvalue', main = 'Eigenvalues of Principal
Components')

Principal Component Analysis and the Common Factor Model

[226]

The result is shown in the following scree plot:

In the preceding figure, the scree plot for abalone largely levels off starting at the
second principal component and definitely by the third. As such, by scree plot criteria,
we would keep one or at most two dimensions in the PCA of the abalone dataset.

An important limitation of the Kaiser-Guttman rule is related to the
fact that the components in PCA do not necessarily have to have any
meaning. For example, if we apply PCA to 20 simulated uncorrelated
random variables, the Kaiser-Guttman rule will probably reveal that
we should retain a large number of components, despite the fact that
no meaningful correlation structure actually exists. Run the following
R code to see a demonstration of this:

simulated.data <- matrix(sample(1:100, 20000, replace
= TRUE), ncol = 20)
summary(PCA(simulated.data))

Chapter 6

[227]

Let's return to the wine PCA to discuss an interpretation of the PCA results. We
will attempt to make sense of four dimensions, explaining nearly 71 percent of the
variance. So, we will print the summary of the PCA results again telling R that we
want the coordinates, contribution, and squared cosine for four dimensions rather
than the default three:

summary(wine.pca, ncp = 4,)

The results are shown in the following screenshot:

There is no guarantee of substantive meaning in these four components, but by
examination of the loadings and contribution of the variables to each, a convention
to describe them can be (and this is very subjective):

•	 Complexity (something that acids are thought to impact)
•	 Sulfite burden
•	 Yeastiness
•	 Grapiness

Principal Component Analysis and the Common Factor Model

[228]

Bear in mind that the complexity dimension by the very nature of PCA will capture
more variance than any subsequent components, so this interpretation also implies
that complexity is the foremost aspect of wine to consider, followed by sulfite
burden, yeastiness, and finally grapiness. An important consideration is whether
this classification scheme makes sense.

It is critical to remember that both the selection of the number
of components to be retained as well as the interpretation of the
components are not strictly matters of quantitative analysis; instead,
they require some substantive understanding of the topic at hand
and sometimes, subjective judgment of the researcher.

Now, the ultimate question is: How good is the wine? There was the wine quality
variable, which we included as a supplementary variable, and as we can see in the
output, it has a low-squared cosine with all four principal components. Thus, while
our four principal components explain slightly more than 70 percent of the variance,
quality is not strongly tied to any one of them. Maybe there really is something
artistic and magical about wine not explained in simple chemistry.

Formative constructs using PCA
Let's delve into another example using PCA that will be instructive when compared to
factor analysis later on in the Exploratory factor analysis and reflective constructs section.
We will return to the physical functioning dataset used earlier in this book. Here
we will discuss the notions of formative and reflective constructs. See the following
diagram (paying close attention to the arrow directions) for a visual representation of
the differences. A formative construct is one in which a general trait is composed of a
number of very specific traits as shown in the diagram. The arrows pointing towards
the construct indicate that the construct is derived from the traits.

Formative_Construct

Var1 Var2 Var3 Var4 Var5

Chapter 6

[229]

Alternately, a reflexive construct is one in which a general trait is thought to underlie
and cause specific traits, as shown in the following diagram. The arrows pointing
away from the construct are designed to reflect the fact that the construct drives the
traits, and the specific traits are merely manifestations of this construct:

Reflective Construct

Var1 Var2 Var3 Var4 Var5

PCA is often considered a method of modeling formative constructs. Later on in this
chapter, we will discuss factor analysis, which models reflective constructs.

The physical functioning dataset collects data on the ability of individuals to engage
in 20 ADLs and IADLs. Taken together, we would expect that the way a person
scores on this would be some sort of a measure of functional independence with
ADLs and IADLs. Unfortunately, reporting the scores for all 20 items for each
individual is tedious, so we wish to use some sort of a summed score or multiple
summed scores to summarize a person's functional status. The question is whether
this can legitimately be done. Does it make sense to add standing to walking? There
is one more question: What are we trying to achieve by creating summary scores?
The answer to this question lies in what we seek to measure with this scale. If we
assume that a person should be able to do these 20 things independently to be truly
independent, then we are assuming that functional independence is in some sense
defined by the abilities to perform these 20 items, and we have a formative construct.
Alternately, if we assume that the abilities to perform these 20 items simply serve
as manifestations of an underlying trait of functional independence, then we have a
reflective construct in mind. Statistically, this is the difference between a fixed effects
and random effects model, respectively.

Principal Component Analysis and the Common Factor Model

[230]

We will start here with the idea that we are attempting to use these 20 items to model
a formative construct, and we will use PCA for this. We will apply PCA on the
physical functioning dataset and look at the variance explained in the PCA:

> phys.func <- read.csv('phys_func.txt')[,c(-1)]
> phys.func.pca <- PCA(phys.func)
> summary(phys.func.pca)

Call:
PCA(phys.func)

Eigenvalues
 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Variance 6.423 1.574 1.286 1.094 0.988
% of var. 32.113 7.869 6.428 5.470 4.939
Cumulative % of var. 32.113 39.983 46.410 51.880 56.818
 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10
Variance 0.865 0.800 0.738 0.699 0.657
% of var. 4.323 4.001 3.689 3.494 3.287
Cumulative % of var. 61.142 65.143 68.832 72.326 75.613
 Dim.11 Dim.12 Dim.13 Dim.14 Dim.15
Variance 0.643 0.560 0.523 0.510 0.485
% of var. 3.213 2.802 2.613 2.552 2.425
Cumulative % of var. 78.826 81.628 84.241 86.793 89.218
 Dim.16 Dim.17 Dim.18 Dim.19 Dim.20
Variance 0.467 0.454 0.440 0.416 0.380
% of var. 2.333 2.271 2.200 2.080 1.899
Cumulative % of var. 91.551 93.821 96.021 98.101 100.000

We can see that the first component explains more than four times as much of the
variance as any other single component, and four components are needed to explain
the majority of the variance. This suggests that there may be a more simple summary
interpretation than inspecting all 20 variables for each subject.

We can also plot the results of the scree plot as follows:

plot(phys.func.pcaeigeigenvalue, type = 'b', xlab = 'Principal
Component', ylab = 'Eigenvalue', main = 'Eigenvalues of Principal
Components')

Chapter 6

[231]

The result is as shown in the following scree plot:

The first question is whether we should simply treat physical functioning as a
uni-dimensional scale (that is, reduce 20 dimensions to one) or whether we should
treat physical functioning as being multidimensional. Based on the Kaiser-Guttman
rule, we should retain four components. Based on the screenshot, it is less clear how
many components are worth retaining. Looking very closely at the preceding graph,
it appears that there are two plateaus: one that starts after the third component
and another that starts after the sixth component. Thus, we should probably retain
three components based on scree criteria. However, there is also the problem of
the interpretation of the components. Let's try to make sense of a three to four
component model by looking at the squared cosines. Remember that these reflect
how well a variable is projected onto an axis, so if it is not well projected, then it
is not helpful to use that axis to measure the variable:

Principal Component Analysis and the Common Factor Model

[232]

> phys.func.cos <- phys.func.pcavarcos2
> phys.func.cos[phys.func.cos < 0.2] <- NA
> phys.func.cos
 Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
PFQ061A NA NA 0.2180148 NA NA
PFQ061B 0.3425603 NA NA NA NA
PFQ061C 0.3197294 NA NA NA NA
PFQ061D 0.3846285 NA NA NA NA
PFQ061E 0.4029381 NA NA NA NA
PFQ061F 0.3407052 NA NA NA NA
PFQ061G NA NA 0.3237579 NA NA
PFQ061H 0.2748247 NA NA NA 0.2984617
PFQ061I 0.4465091 NA NA NA NA
PFQ061J 0.4352429 NA NA NA NA
PFQ061K NA 0.2953024 NA NA NA
PFQ061L 0.3623138 NA NA NA NA
PFQ061M 0.4776348 NA NA NA NA
PFQ061N 0.3667740 NA NA NA NA
PFQ061O 0.3354625 NA NA NA NA
PFQ061P 0.2383867 NA NA NA NA
PFQ061Q 0.3746035 NA NA NA NA
PFQ061R 0.3054978 NA NA NA NA
PFQ061S NA NA NA 0.2773378 NA
PFQ061T 0.4540454 NA NA NA NA

We have set a relatively low threshold of 0.2 for a squared cosine, and we see that most
of the variables meet this criterion for the first component, but most fail to meet this
criterion for subsequent components. All items meet this criterion for one component
when we include four components, but two components have only a single item. As
we can see, the items that have a low projection on the first component do not really
relate to mobility, whereas those that meet our 0.2 criterion do. Based on this data, we
may simply want to consider this outcome measure as being composed of a single
dimension that is concerned with physical mobility and exclude the five items from
our scoring of the test that do not project well onto this dimension.

In the following sections, we will revisit this as a reflective construct yielding more
interpretable results.

Chapter 6

[233]

What kind of commonly encountered constructs are regarded as
formative?
The analysis that we did begins to touch on concepts of psychometrics,
which is a field that rarely models formative constructs since it
is usually concerned with observable manifestations of invisible
psychological processes (for example, reflective constructs). Socio-
economic status is one of the few well accepted formative constructs in
the psychological and social science canon.

Exploratory factor analysis and reflective
constructs
The PCA method that we have discussed so far models all of the variance of the
variables to which it is applied. An alternative approach, which is often confused
with PCA, is to model only the common variance: an approach called factor analysis
(FA). In this chapter, we will discuss exploratory factor analysis (EFA).

Familiarizing yourself with the basic terms
The following are the basic terminologies that you need to be aware of:

•	 Latent trait or common factor: This is an unobserved variable that explains
some or all of the variance in observed variables.

•	 Path coefficient: This is the correlation coefficient between a latent trait and
an observed variable.

•	 Communality: This refers to the square of a path coefficient in a single
factor model.

•	 Uniqueness: Computationally, this is simply one minus the communality of
an observed variable. (If a covariance matrix is used, it is equal to variance
minus one.)

•	 Observed: This is used to describe matrices and values that are obtained by
direct measure or calculations on directly observed values.

•	 Implied: This is used to describe matrices and values that are not observed
but estimated to be consistent with other values.

Principal Component Analysis and the Common Factor Model

[234]

•	 Orthogonal factor structure: We have already seen that PCA treats all of
the original variables as being plotted on dimensions at 90 degrees to one
another (that is, uncorrelated dimensions) and attempts to account for
correlations that really do exist by rotating the coordinate space. Factor
analysis that treats the factors as being represented by coordinates at 90
degrees to one another yields an orthogonal factor solution.

•	 Oblique factor structure: This refers to a factor analysis solution in which
the factors can be thought of as axes that are not perpendicular to one
another and are actually correlated.

Matrices of interest
The following is a list of the matrices that you should familiarize yourself with:

•	 Reduced correlation matrix: This is represented here as Rr; this is the
correlation matrix of observed variables with the "1s" along the diagonal
replaced by the communalities corresponding to the observed variables.

•	 Implied correlation matrix: This is represented here as Rimp; this is the
correlation matrix implied by the factor analysis solution.

•	 Residual correlation matrix: This is denoted as Rresid. This is the matrix
obtained when the implied correlation matrix is subtracted from the
observed correlation matrix. The diagonal of this matrix contains the
uniqueness values.

•	 Factor pattern matrix: This is represented as P. This is a matrix in which
factors are represented as columns and observed variables as rows. There
should be more observed variables than factors, so this matrix should be
taller than it is wide. Each element in the matrix is the path coefficient
corresponding to the respective factor and observed variable.

•	 Factor correlation matrix: This is represented as F. This is the correlation
matrix of the factors with each other. In the case of a single factor model,
this is simply a single value "1". In the case of an orthogonal factor structure,
this is a diagonal matrix of "1s".

•	 Uniqueness matrix: This is a diagonal matrix, represented as U, with
individual uniqueness values of each observed variable.

Chapter 6

[235]

Expressing factor analysis in a matrix model
In matrix representation terms, we can relate the previously mentioned matrices
as follows (P' is the transposition of P):

Rr = PFP'

Rimp = PFP' + UU

Arriving at a factor analysis solution is then a matter of solving for the elements
of these matrices.

Basic EFA and concepts of covariance
algebra
EFA assumes that the observed variables can be explained by some unobserved
variables, also called latent variables, which are statistically modeled as a source
of common variance.

If we look at the following diagram, it depicts a Trait that is a common source
of variance to five observed variables, A through E. In this diagram, the arrows
represent correlations between the observed variables and the latent trait as well
as the path coefficients:

Trait

A B C D E

The rules of covariance algebra give us the following formula:

cov(A, B) = cov(A, Trait) × cov(B, Trait)

cov(A, C) = cov(A, Trait) × cov(C, Trait)

Based on these rules, EFA tries to estimate the path coefficients using some type
of statistical estimation method that achieves the best fit, since we are not able to
directly calculate these correlations.

Principal Component Analysis and the Common Factor Model

[236]

Concepts of EFA estimation
To understand the basic idea of how this can be done for a single factor and introduce
some concepts, we will start with a very old method of factor estimation, known as
the centroid method. This method has largely been supplanted by new computerized
methods but serves well to demonstrate the basic idea of factor analysis.

For the single factor model, we will call the path coefficients by the small letter
version of the capital representing the observed trait (for example, cor(A, trait) = a).
Let's assume that we can place the products of all path coefficients with each other
into a square matrix, which is called the reduced correlation matrix Rr:

2

2

2

2

2

r

aea ab ac ad
beba b bc bd
ceR ca cb c cd
deda db dc d

ea eb ec eed

 
 
 
 =
 
 
 
 

We do not know the values of the path coefficients a, b, c, d, or e. (After all, it is these
values that we are trying to estimate.) However, because of the rules of covariance
algebra, we know:

ab = cor(A,B)

Thus, while we do not know the values of any of the path coefficients, we are able
to estimate the product of these coefficients simply by calculating the correlations
between the observed variables associated with these path correlations. It is only the
communalities along the diagonal that we are unable to calculate and must come up
with some initial estimates.

There are a number of possible methods to generate initial communality estimates:

•	 Just use "1s".
•	 Use the highest value off of the diagonal in the same row (or column).
•	 Use squared multiple correlations (SMCs). These are found by inverting the

correlation matrix and subtracting the reciprocals of the values along the
diagonal from one. This is the most computationally intensive of the three
methods, but generally the best of the three as well.

Chapter 6

[237]

The greater the number of variables involved, the lesser the importance of the initial
estimates of the communalities. This is because when there are more observed
variables, the size of the matrix increases dramatically, and the larger a matrix is,
the smaller the proportion of elements that fall on the diagonal.

The centroid method
To give the mathematical background of the centroid method, we start with the
reduced correlation matrix. To emphasize that the diagonal has merely initial
estimates of communalities, we use the 0 subscript, as shown in the following matrix:

2
0

2
0

2
0

2
0

2
0

r

aea ab ac ad
beba b bc bd
ceR ca cb c cd
deda db dc d
eea eb ec ed

 
 
 
 =
 
 
 
 

We then sum each row (or each column, since this is a symmetric matrix) to get the
following matrix. Here we achieve the sum of rows by post-multiplying the reduced
correlation matrix by a column matrix of 1s as shown in the following matrix:

2
0

2
0

2
0

2
0

2
0

1
1
1
1
1

a

b

c

d

e

aea ab ac ad row
beba b bc bd row
ceca cb c cd row
de rowda db dc d

roweea eb ec ed

  ∑  
     ∑    
     = ∑
     ∑    
     ∑    

We then sum all elements of this matrix of row sums to get the sum of all elements in
the reduced correlation matrix, and we take the square root of the total as shown in
the following formula:

Total

a

b

c

d

e

row
row
row
row
row

∑ 
 ∑ 
 = ∑ ∑
 ∑ 
 ∑ 

Principal Component Analysis and the Common Factor Model

[238]

We then divide the sum of each row by the square root of the total to create path
coefficient estimates:

1
Total

a

b

c

d

e

rowa
rowb

P rowc
rowd
rowe

∑  
   ∑  
  = = ∑
   ∑  
   ∑   

If we wish to obtain better path coefficient estimates, we repeat this procedure
multiple times by substituting the squared path coefficient estimates for the initial
communality estimates.

Since this is a single factor, the matrix F is simply a 1. Using these solutions, we can
now solve for U:

Rimp – PFP' = UU

And for the residual correlation matrix:

Robs – Rimp = Rresid

Now, we will execute the same steps using R. We start with a single factor model
from the physical functioning dataset, and pick just the items that we think are
related to the leg function:

le.matrix <- as.matrix(phys.func[,c(2,3,4,8,9,10,13,14)])

When coming up with a numerical solution, we need initial estimates for the
communalities. We then use the simplest possible reduced correlation matrix. We
will use "1" for simplicity as initial estimates for communalities (that is, we use the
observed correlation matrix as the reduced correlation matrix) as depicted in the
following funtion:

le.cor <- cor(le.matrix)
le.cor.reduced <- le.cor

Chapter 6

[239]

Following this step, we sum the rows (or the columns), and from these row sums,
we create a sum of all values in the matrix. Path coefficient estimates are equal to the
row sums divided by the square root of the total sum of all values in the matrix:

row.sums <- le.cor.reduced %*% matrix(rep(1, 8), nrow = 8)
total.sum <- sum(row.sums)
sqrt.total <- sqrt(total.sum)

row.sums / sqrt.total

Now, if we recall, our initial communality estimates were just "1". The communalities
are simply the path coefficients squared. Therefore, if we like, we can use our
solutions for path estimates to create a new reduced correlation matrix, and submit
this new reduced correlation matrix to the centroid method all over again. We could
do this repeatedly until the path coefficient estimates change minimally with each
additional iteration.

An important limitation of the centroid method is that it assumes that all observed
variables are correlated in the same direction (for example, all positive) with the
latent trait.

Multiple actors
Earlier in this chapter, we went through the basic idea of estimating a path coefficient
for a single common factor, but EFA is used not for a single factor but for multiple
underlying factors, as depicted in the following figure:

Trait

A B C D E

Trait

F

Here we see that there are two traits and six observed variables with both
unobserved traits assuming to have some (potentially almost zero) correlation with
each of the observed variables and with each other (arrows not shown for this). Here
we will use a small letter followed by a number to indicate the path. For example, a1
is the path coefficient from Trait-1 to A.

Principal Component Analysis and the Common Factor Model

[240]

The centroid method described earlier only extracts a single factor. If we want to
extract multiple factors, we have to do this one at a time, subjecting residual matrices
to the centroid method repeatedly. Since this is not a typically used method with
modern computers, we will not go through this tedious exercise, but rather skip to
a commonly used method that can extract multiple factors.

Direct factor extraction by principal axis factoring
Rather than iteratively factoring out residual matrices, we can directly extract the
desired number of factors using principal axis factoring (PAF).

We start with our reduced correlation matrix. We then perform an eigenvalue
decomposition of the reduced correlation matrix, yielding eigenvalues, L, rank
ordered from small to large, and a matrix of corresponding eigenvalues, V. If we
wish to compute a two-factor solution, we post-multiply the matrix of the first
two eigenvectors by a diagonal matrix containing the first two eigvenvalues.

Performing principal axis factoring in R
We will now go through the basic steps of how PAF can be performed in R. We
will be demonstrating this with multiple factors, so we will use the full physical
functioning dataset. First, we obtain the correlation matrix using the following code:

phys.cor <- cor(phys.func)

Then, we create a reduced correlation matrix using squared multiple correlations:

reduce.cor.mat <- function(cor.mat) {
 inverted.cor.mat <- solve(cor.mat)
 reduced.cor.mat <- cor.mat
 diag(reduced.cor.mat) <- 1 - (1/diag(inverted.cor.mat))

 return(reduced.cor.mat)
}

phys.cor.reduced <- reduce.cor.mat(phys.cor)

Chapter 6

[241]

Finally, we perform the PAF:

paf.method <- function(reduced.matrix, nfactor) {
 row.count <- nrow(reduced.matrix)
 eigen.r <- eigen(reduced.matrix, symmetric = TRUE)
 V <- eigen.r$vectors[,c(1:nfactor)]
 L <- diag(sqrt(eigen.r$values[c(1:nfactor)]), nrow = nfactor)

 return((V %*% L))
}

path.coef <- paf.method(phys.cor.reduced, 3)

You may find that all loadings on a factor are negative. There is nothing wrong
with reversing the sign on a factor loading so long as the relative signs of factors
remain consistent (that is, the sign reversal has to be applied consistently to path
coefficients). It is important to note that all observed variables have a loading on all
extracted factors.

Depending on our goals, this can be the end of our factor analysis, but generally
researchers seek to find a simpler structure by rotating the factor structure in a
similar manner as PCA rotates axes.

Other factor extraction methods
Principal axis factoring is likely the oldest commonly used method of factor
extraction, and it is probably still the most commonly used. It does not make
distributional assumptions, and in the case of normally distributed data gives pretty
similar estimates as methods that do make distributional assumptions. Maximum
likelihood estimation is being used increasingly and is considered numerically
superior on datasets that are close to multivariate normally distributed. This method
assumes that the dataset is normally distributed and maximizes the (usually log)
likelihood function based on a normal distribution. It is relatively robust to mild or
moderate deviations from this assumption. Minimum residual factoring seeks to
minimize the residual correlations off the diagonal and gives similar estimates as
maximum likelihood, while being robust to poorly behaved matrices.

Principal Component Analysis and the Common Factor Model

[242]

Factor rotation
The final step in most factor analyses is factor rotation. The goal of this step is
to determine whether the cloud of data can be represented by a simpler set of
coordinates by rotating the axes of the factors. Rotation should increase the number
of near zero coefficients in the factor pattern matrix. All observed variables will still
have a loading on all of the factors, but ideally, observed variables will show
substantially higher loadings on a single particular factor than on other factors
once this is completed.

Broadly speaking, there are two approaches to factor rotation: orthogonal and
oblique. Orthogonal rotations are still the most commonly used methods, and many
regard them as producing easier to interpret solutions. However, oblique rotations
are thought to provide more of a real-world estimate. It is also worth noting that
single factor models cannot be rotated.

There are many different factor analysis methods, but here we will delve into just
four: two orthogonal and two oblique rotations.

Orthogonal factor rotation methods
In this section, we will discuss the commonly used orthogonal factor rotation
methods. These rotation methods produce factors that have no correlation, which
is why they are thought to be easier to interpret. The downside is that many of the
constructs we think of in the real world are in fact correlated.

Quartimax rotation
Quartimax rotation attempts to satisfy the criteria of maximizing the sum of all
values in the factor pattern matrix raised to the fourth power:

4

1 1
max

f v

ij
j i

p
= =

=∑∑

Here, Pij is the element in ith row and jth column of the factor pattern matrix P (in
which variables are represented by rows and factors by columns). The number of
variables is denoted by v which is also the number of rows in P. The number of
factors is denoted by f, which is also the number of columns in P.

Chapter 6

[243]

Raising a number to the fourth power has the effect of exaggerating the differences
between large and small numbers, so the quartimax criterion will be better met in
a factor loading matrix with very large loadings and very small loadings than in
one with many moderate-sized loadings. Notably, this rotation simply maximizes
this very simple criterion without regard for whether the higher loadings are well
distributed among factors or all load onto a single factor.

Varimax rotation
The varimax rotation subtracts a term summing over squared elements of rows and
columns. Its criterion is to find a rotation fitting the following formula:

2
4 4

1 1 1 1

1max
f fv v

ij ij
j i j i

p p
v= = = =

 = −  
 

∑∑ ∑ ∑

The effect of this is to favor rotations in which large loadings are distributed over
those with large loadings falling on a single (or relatively few) factors.

Varimax is probably the most widely used factor rotation method.

Oblique rotations
We saw that orthogonal transformations attempt to maximize a transformation of the
sums of factor loadings. Oblique rotations do the opposite; they minimize such sums.

Oblimin rotation
Oblimin rotation seeks to minimize the following criteria:

2 2 2 2
,

1 1 1
min

v v v

x y x yx y
i i i

p p p p
= = =

 =  
 

∑ ∑ ∑ ∑

Here, (x,y) represents a pair of variables, and the summation is done for all
variable pairs.

Principal Component Analysis and the Common Factor Model

[244]

Promax rotation
Promax is an oblique rotation that starts with varimax and then rotates the varimax
to an oblique solution. It takes the factor loadings in the promax solution, raises them
to a high power to bring small loadings close to zero, and then attempts a rotation
that makes the closest loadings to zero equal to zero.

Factor rotation in R
A package that fits many different rotations has been developed, known as GPA
rotation. It is available in languages outside of R as well. Notably, it uses a method
that can be applied to almost any rotation criterion, so the package offers functions
of not only common rotations but some obscure ones as well. For example:

> library(GPArotation)
> rotated.structure <- oblimin(path.coef)
> rotated.structure
Oblique rotation method Oblimin Quartimin converged.
Loadings:
 [,1] [,2] [,3]
 [1,] -0.0013 0.06999 3.58e-01
 [2,] -0.6804 -0.10073 4.18e-02
 [3,] -0.6434 -0.04880 -1.12e-02
 [4,] -0.6764 0.06330 -1.20e-01
 [5,] -0.4324 0.11336 2.17e-01
 [6,] -0.2496 0.06544 4.82e-01
 [7,] 0.0446 0.06167 5.50e-01
 [8,] -0.2300 0.31230 5.50e-02
 [9,] -0.4410 0.34663 -6.06e-02
[10,] -0.4072 0.41199 -1.13e-01
[11,] 0.1783 0.58615 1.36e-01
[12,] -0.0698 0.56071 1.03e-01
[13,] -0.6842 -0.01633 1.11e-01
[14,] -0.4586 0.20304 -6.44e-03
[15,] -0.2744 0.37031 -9.65e-05
[16,] 0.0308 0.60407 7.37e-03
[17,] -0.2598 0.22145 2.99e-01
[18,] -0.1519 0.29464 2.58e-01
[19,] -0.0840 0.38490 2.30e-02
[20,] -0.5786 0.00746 2.10e-01

Chapter 6

[245]

Rotating matrix:
 [,1] [,2] [,3]
[1,] 0.627 -0.397 -0.202
[2,] 1.017 0.855 0.414
[3,] -0.025 -0.748 1.001

Phi:
 [,1] [,2] [,3]
[1,] 1.000 -0.519 -0.356
[2,] -0.519 1.000 0.374
[3,] -0.356 0.374 1.000

The object produced by this command has a number of important matrices including
the new factor loading matrix produced by the rotation, the correlation matrix of
the factors, and the rotation matrix (post-multiplication of the original factor pattern
matrix with any of the previously mentioned matrices gives the new factor loading
matrix).

The question then is how to interpret these factors. The factor loading matrix
shows that all 20 observed items load on all three factors (as is typical of EFA), but
the loadings are pretty low on some factors. As such, we can interpret what each
factor means by those items that load sufficiently heavily on it. What constitutes
"sufficiently heavy" loading is far from clear. One of the most commonly used criteria
is that the item should have a loading of at least 0.4. However, other criteria exist that
require that an item load substantially more on a single factor than any other factor.
In general, it is probably best to use some judgment rather than rigid criteria.

Here, we will reprint the loading matrix replacing all those values less than 0.3 with
NA for ease of examination:

> loading.matrix <- rotated.structure$loadings
> loading.matrix[abs(loading.matrix) < 0.3] <- NA
> loading.matrix
 [,1] [,2] [,3]
 [1,] NA NA 0.3582315
 [2,] -0.6804255 NA NA
 [3,] -0.6434025 NA NA
 [4,] -0.6763837 NA NA
 [5,] -0.4324032 NA NA
 [6,] NA NA 0.4824759
 [7,] NA NA 0.5499046
 [8,] NA 0.3123046 NA
 [9,] -0.4410473 0.3466325 NA
[10,] -0.4071513 0.4119939 NA

Principal Component Analysis and the Common Factor Model

[246]

[11,] NA 0.5861508 NA
[12,] NA 0.5607121 NA
[13,] -0.6842129 NA NA
[14,] -0.4585589 NA NA
[15,] NA 0.3703143 NA
[16,] NA 0.6040669 NA
[17,] NA NA NA
[18,] NA NA NA
[19,] NA 0.3848953 NA
[20,] -0.5785879 NA NA
>

Based on these results, it appears that we have a first factor dealing with gross motor
function, a second factor dealing mostly with fine motor function, and a third factor
concerned with household management. The two items concerned with recreation
(rows 18 and 19) fall on none of these factors. Appropriately, the factor correlation
matrix suggests that the factors we interpret as fine and gross motor are more highly
correlated with each other than with the household management factor.

Advanced EFA with the psych package
We have gone through the basic conceptual and computational ideas underlying
EFA in R. As we discussed earlier, to get good estimates, multiple iterations
of these computations are needed until some criteria indicating that an optimal
solution has been achieved. An excellent package that bundles much of the work
we have done earlier into convenient commands is the psych package. We will now
go over how to use this package, including calling some of the advanced features
that it offers.

We will continue to use the physical functioning dataset here. Our question at hand
is whether a few common sources of variance are able to explain the responses to the
20 items. We saw that a three-factor solution is likely most appropriate (or maybe a
four-factor solution, but we will stick with three here). For serious exploratory work,
it is often ideal to split off a development and validation dataset, but we will skip
that step here.

We also do one more thing here. We are working with ordinal data and treating
it like it is continuous. Now we will explicitly account for the fact that it is ordinal
rather than continuous. We will use polychoric correlations here to create our
correlation matrix. The polychoric correlation assumes that the data is ordinal
but represents some continuous underlying phenomena that have simply been
binned into discrete ordered categories. The polychoric correlation attempts to
estimate a correlation with this assumption and calculate the threshold at which the
discretization occurs.

Chapter 6

[247]

Let's start by finding the polychoric correlations:

library(psych)
fit.efa.prep <- polychoric(phys.func, polycor = TRUE)

We then take the correlation matrix from these polychoric correlations and place it
into our factor analysis:

> fit.efa.3 <- fa(fit.efa.prep$rho, nfac = 3, rotate = 'promax')
> fit.efa.3
Factor Analysis using method = minres
Call: fa(r = fit.efa.prep$rho, nfactors = 3, rotate = "promax")
Standardized loadings (pattern matrix) based upon correlation matrix
 MR1 MR3 MR2 h2 u2 com
PFQ061A -0.13 0.72 -0.09 0.33 0.67 1.1
PFQ061B 0.88 0.09 -0.27 0.62 0.38 1.2
PFQ061C 0.88 0.00 -0.19 0.59 0.41 1.1
PFQ061D 0.96 -0.27 0.03 0.65 0.35 1.2
PFQ061E 0.49 0.22 0.10 0.55 0.45 1.5
PFQ061F 0.35 0.46 0.04 0.62 0.38 1.9
PFQ061G -0.23 0.81 0.10 0.54 0.46 1.2
PFQ061H 0.52 0.31 0.05 0.67 0.33 1.7
PFQ061I 0.64 0.03 0.20 0.65 0.35 1.2
PFQ061J 0.60 0.01 0.28 0.66 0.34 1.4
PFQ061K -0.24 0.08 0.98 0.78 0.22 1.1
PFQ061L 0.17 0.17 0.56 0.67 0.33 1.4
PFQ061M 0.77 0.09 -0.06 0.63 0.37 1.0
PFQ061N 0.58 0.13 0.05 0.51 0.49 1.1
PFQ061O 0.38 0.01 0.40 0.52 0.48 2.0
PFQ061P 0.01 -0.07 0.85 0.65 0.35 1.0
PFQ061Q 0.26 0.69 -0.04 0.74 0.26 1.3
PFQ061R 0.13 0.74 -0.01 0.69 0.31 1.1
PFQ061S 0.12 0.51 0.14 0.49 0.51 1.3
PFQ061T 0.66 0.16 -0.01 0.60 0.40 1.1

 MR1 MR3 MR2
SS loadings 6.09 3.55 2.57
Proportion Var 0.30 0.18 0.13
Cumulative Var 0.30 0.48 0.61
Proportion Explained 0.50 0.29 0.21
Cumulative Proportion 0.50 0.79 1.00

 With factor correlations of
 MR1 MR3 MR2

Principal Component Analysis and the Common Factor Model

[248]

MR1 1.00 0.71 0.67
MR3 0.71 1.00 0.68
MR2 0.67 0.68 1.00

Mean item complexity = 1.3
Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 190 and the objective
function was 15.46
The degrees of freedom for the model are 133 and the objective
function was 2.09

The root mean square of the residuals (RMSR) is 0.04
The df corrected root mean square of the residuals is 0.05

Fit based upon off diagonal values = 0.99
Measures of factor score adequacy
 MR1 MR3 MR2
Correlation of scores with factors 0.97 0.95 0.95
Multiple R square of scores with factors 0.94 0.90 0.90
Minimum correlation of possible factor scores 0.89 0.80 0.81

There are a number of matrices that we can see in the fit.efa.3 object. The first is
the factor pattern matrix, which contains the factor loadings. To the right of this are
two columns, namely h2 and u2, the communality and uniqueness estimates for each
item respectively. The two values should sum to one. The greater the communality,
the more the total variance of an item is explained by the common factors. The next
matrix informs us how much of the variance is explained both by the individual
factors and by the whole EFA model. Then there is the matrix with the correlations
between the common factors, which is not present for orthogonal solutions.

Let's start by looking at the communalities in the h2 column. Low communalities
suggest that the latent variables do not explain the data well. The communality is
computed as the sum of the squared factor loadings of the unrotated factor solution.
They tell us how much of the variance of each observed variable is explained by all
factors. The communalities are relatively high with the exception of item A, so we
are a little suspicious of how well this item is explained even by all three factors
together, but for now we will keep all items.

Let's now look at the loadings. Remember that these loadings indicate how these
items relate to some underlying unobserved variables that are causing the observed
data. However, we have to try to make sense of what these unobserved factors
actually are.

Chapter 6

[249]

Item A (concerned with money management) loads heavily on MR3. Items Q, R, and S
also load heavily on this factor. These items appear to be concerned with cognition
and social engagement, requiring a few physical demands. Items B, C, D, E, H, I, and T
all load heavily on MR1. These items require leg use and are concerned with mobility.
Items K, L, O, and P load fairly heavily onto MR2. These are items that tend to require
hand use, suggesting that this is an arm or hand function factor. It is worth pointing
out that item O loads almost as heavily on MR1, suggesting that some component
of mobility is needed to reach overhead. This may be because reaching overhead
requires good torso control, which is also needed to walk around and do basic
mobility skills. Let me emphasize that this interpretation of the results is made based
on a researcher's substantive understanding of the items rather than the statistical
analysis alone.

There is some additional information provided, but I will bring your attention to
the fit measures in particular. These are a bigger deal in confirmatory factor analysis
(discussed in the next chapter), but in summary, these give us some sense of how
well the model explains the data. There is more disagreement than agreement on
which fit measures for use and how to interpret it. However, three of the commonly
used measures are Root Mean Square Residual (RMSR), Root Mean Square Error
of Approximation (RMSEA), and the Tucker-Lewis Index (TLI). We would see all
three of these if we did not use polychoric correlations, but in this case we see only
RMSR. An acceptable fit is usually thought to be indicated by an RMSR less than
0.08, RMSEA less than 0.06, and TLI greater than 0.95 (some would accept greater
than 0.90 as adequate).

Now that we have made sense of the factors and the model fit, let's look at the
internal consistency reliability. The basic idea of internal consistency is to look at the
proportion of variance in scale scores accounted for by the latent variables. In the
previous chapter, we touched on this topic discussing how to calculate Cronbach's
alpha. Coefficient alpha is the most widely used measure of internal consistency,
but for multidimensional scales, McDonald's Omega (of which there are a few) is
generally considered better. Let's use psych's omega function to examine internal
consistency reliability:

omega(fit.efa.prep$rho, nfac = 3, rotate = 'promax')

Omega
Call: omega(m = fit.efa.prep$rho, nfactors = 3, rotate = "promax")
Alpha: 0.95
G.6: 0.97
Omega Hierarchical: 0.83
Omega H asymptotic: 0.86
Omega Total 0.96

Principal Component Analysis and the Common Factor Model

[250]

We simply show the beginning of the output from this function, which shows a
number of internal consistency reliability coefficients including Cronbach's alpha,
Guttman's lambda 6, omega hierarchical, omega asymptotic, and omega total.
Cronbach's alpha is the classic split half reliability (discussed in further detail
under the applications section of Chapter 5, Linear Algebra). Guttman's lambda 6,
while rarely used nowadays, is the squared multiple correlation of the item with the
other items.

We will focus on omega hierarchical, omega asymptotic, and omega total here.
Omega assumes that a multifactor scale has both specific factors onto which only
some items load and a general factor onto which all items load. Omega hierarchical
gives us the proportion of variance in scaled scores explained by the general factor.
Omega asymptotic is the estimated omega hierarchical for a test with the same
structure and infinite length (reliability tends to increase with test length). Omega
total is the total reliability of a test including that attributable to both the general
factor and the factors onto which not all items load.

Before we look at these reliability coefficients, it may be worth looking back at the
results of the fa function. We see that there are sizeable correlations between the
factors, 0.67 to 0.71. If these correlations were low (for example, 0.2), then it would be
questionable as to whether omega hierarchical should even be examined given that
low correlations between the factors would suggest the non-existence of a general
factor that explains scores well.

We can see from these results that omega hierarchical is relatively good (0.83),
suggesting that a general factor explains a large proportion of the variance in the
scale scores.

Summary
In this chapter, we have reviewed the application of linear algebra to covariance
and correlation matrices. We have shown in R how to use PCA to account for total
variance in a set of variables and how to use EFA to model common variance among
these variables. We have also discussed how these methods relate to formative
and reflective constructs. Notably, EFA refers to a set of numerical methods,
rather than referring to an analysis intent; but as we have shown here, EFA has
significant applicability in exploratory analyses. In the next chapter, we will delve
into confirmatory factor analysis (CFA), which models covariance or correlation
structures without rotations.

Structural Equation
Modeling and Confirmatory

Factor Analysis
In this chapter, we will discuss the fundamental ideas underlying structural equation
modeling, which are often overlooked in other books discussing structural equation
modeling (SEM) in R, and then delve into how SEM is done in R. We will then
discuss two R packages, OpenMx and lavaan. We can directly apply our discussion
of the linear algebra underlying SEM using OpenMx. Because of this, we will go over
OpenMx first. We will then discuss lavaan, which is probably more user friendly
because it sweeps the matrices and linear algebra representations under the rug so
that they are invisible unless the user really goes looking for them. Both packages
continue to be developed and there will always be some features better supported in
one of these packages than in the other.

The previous chapter introduced quantitative techniques that apply linear algebra
to correlation or covariance matrices to gain some insight into the correlation
or covariance structure of a large dataset. This chapter will continue this theme,
discussing SEM and a common application of SEM, Confirmatory Factor
Analysis (CFA).

In this chapter, we will discuss the following topics:

•	 The basic ideas of SEM
•	 The matrix representation of structural equation models
•	 Model fitting and estimation methods
•	 OpenMx
•	 Lavaan

Structural Equation Modeling and Confirmatory Factor Analysis

[252]

Datasets
We will use three datasets in this chapter, which are discussed in the following
sections to give you an idea of their content.

Political democracy
This is a dataset included in the lavaan package. This is a classic dataset for use
in SEM. It contains variables concerned with political freedom movements and
economic development in 1960 and 1965, as follows:

•	 x1: This variable is for per capita gross national product in 1960
•	 x2: This variable is for per per capita energy consumption in 1960
•	 x3: This variable is for proportion of the labor force in the industry in 1960
•	 y1: This variable is for ratings of the freedom of the press in 1960
•	 y2: This variable is for freedom of political opposition in 1960
•	 y3: This variable is for fairness of elections in 1960
•	 y4: This variable is for legislature effectiveness in 1960
•	 y5: This variable is for freedom of political opposition in 1965
•	 y6: This variable is for freedom of political opposition in 1965
•	 y7: This variable is for fairness of elections in 1965
•	 y8: This variable is for legislature effectiveness in 1965

Physical functioning dataset
This is the National Health and Nutrition Examination Survey (NHANES) physical
functioning dataset used in prior chapters. For the purpose of this chapter, it is worth
noting that this is a dataset of complete data that has 20 ordinal categorical items
concerned with how much difficulty a person faces during basic self-care tasks.

Holzinger-Swineford 1939 dataset
This is another classic dataset of structural equation modeling. We will use the
data from the lavaan package (though other packages in R contain the same dataset).
It has basic demographic data on students and nine items concerned with
mental abilities.

Chapter 7

[253]

We will simply look at the following variables from this dataset:

•	 x1: This variable is for visual perception
•	 x2: This variable is for cubes
•	 x3: This variable is for lozenges
•	 x4: This variable is for paragraph comprehension
•	 x5: This variable is for sentence completion
•	 x6: This variable is for word meaning
•	 x7: This variable is for speeding addition
•	 x8: This variable is for speeding counting of dots
•	 x9: This variable is for speeding discrimination between straight

and curved capitals

It is hypothesized that three domains of intellectual function, visual, textual, and
speed, account for the responses of individuals to the nine items. We will apply
such a model here.

The basic ideas of SEM
In the previous chapter, we went over the concepts of path coefficients and
covariance algebra. In reality, these terms, though used for exploratory factor
analysis, come from the tradition of SEM. Exploratory factor analysis (EFA) simply
attempted to model covariance structure based on identifying common sources
of variance. Alternatively, SEM attempts to use covariance to model many, very
explicit relationships between variables. Like EFA, SEM can incorporate both
observed and unobserved variables, but unlike EFA, SEM does not necessarily need
to have unobserved variables. In SEM, the relationships between variables can be
represented as a series of paths, whether those variables are observed or latent. The
correlation between any two variables is a path coefficient. Each observed variable
will also have some residual correlation, and residual correlations may be correlated
with one another, something that is not allowed in EFA.

Structural Equation Modeling and Confirmatory Factor Analysis

[254]

Components of an SEM model
The following is a list of the components of an SEM model:

•	 Observed variable: This is a variable for which we directly collect data that
goes into model estimation.

•	 Latent variable: This is a variable that we do not observe but theorize to
exist and behave in a certain way. We use observed data and theorized
model constraints to estimate quantitative relationships between observed
and unobserved variables, and possibly relationships among unobserved
variables themselves.

•	 Path: This is a theorized relationship between two variables. Paths are
thought of as going from a causal variable to a caused variable. In some
cases, a path can go in both the directions.

•	 Residual: This is the portion of the data not explained by the causal paths in
the model.

•	 Covariance algebra: These are a set of mathematical tricks describing how
covariances behave algebraically. They are as follows:

1Cov(Constant,) 0X =

1 2 1 2Cov(Constant ,) Constant Cov(,)X X X X∗ = ∗

1 2 3 1 3 2 3Cov(,) Cov (,) Cov (,)X X X X X X X+ = +

In the previous chapter, we described the common factor that the model has relying
on the relationship in the following figure:

1 2 1 2Cov(,) Cov (,) Cov (,)X X X F X F= ∗

In the preceding formula, F is a common underlying factor. This is a really special
case. SEM allows for an extension of this basic idea to more complex models in
which the observed variables can themselves be connected as we will see further in
this chapter. This also calls for different estimation methods.

Chapter 7

[255]

Path diagram
The most typical method to represent an SEM model is with a path diagram. These
diagrams use boxes and arrows to represent proposed causal relationships and a set
of standard graphical elements have been proposed to represent models.

•	 Observed variable: This is represented with a rectangular box.
•	 Latent variable: This is represented with an elliptical box.
•	 Causal path: This is represented with a straight arrow. The arrow points

from causal to effect. A double-headed arrow is also allowed.
•	 Residual or correlation: This is represented with a two-headed curved

arrow. If both arrow heads point to the same variable, it is a residual
variance. If they point to two different variables, they show a correlated error
term. See the figures related to the political economy of SEM as an example
in the next sections.

Matrix representation of SEM
We saw path diagrams that allow for a conceptual representation of causal effects.
However, to allow for computational solutions to SEM models based on data, a
number of statisticians have developed different matrix representations of SEM
models. There are numerous such representations, the most common of which are
the LISREL model or the simple reticular action model (RAM). We will discuss two
SEM packages in R here: the lavaan package and OpenMx. There is an older package
called "sem", which was the first R package available on CRAN to perform SEM,
which we will not actually discuss.

The lavaan package does not use any of the common matrix representations (though
it uses something close to LISREL). OpenMx uses the RAM by default in its internal
representation of path diagrams, but OpenMx also allows the user to customize a
matrix representation. Various matrix representations largely achieve the same thing
but differ in how they must be multiplied or added together to achieve this. We will
review the RAM model here for its simplicity, but other matrix representations can
also be used. The exercise of looking at matrix representations is not just academic,
but will highlight what is meant by some of the ways that structural equation
modelers describe as relationships in models.

Structural Equation Modeling and Confirmatory Factor Analysis

[256]

The reticular action model (RAM)
All SEM models are trying to solve an implied covariance matrix, C. Each of the
linear algebra representations of an SEM model expresses an implied covariance
matrix in terms of matrices with model coefficients. The RAM expresses this implied
covariance matrix in terms of three matrices, which we will call A, S, and F. The three
matrices are described as follows:

•	 A: This is an asymmetric square matrix of paths. It has as many rows (and
columns) as there are variables in the model. Model paths are represented
as moving from the variable corresponding to the column to the variable
corresponding to the row. When a path does not lead from one variable to
another, it has a value of 0 in the matrix.

•	 S: This is a symmetric matrix that contains covariances (or correlations) and
residual variances. This is also a square matrix with the same dimensions
as A. Along the diagonal are the residual variances of variables. If there are
covariances between variables not explained by the causal paths (given in A),
then these are, in essence, residual covariances and are expressed in
off-diagonal elements. The residual variance terms on the diagonal are
special cases of residual covariance (covariance of a variable with itself).
Since covariance works both ways, if the i*j element of a matrix is filled,
then the j*i element must be filled too. If a correlation (that is standardized
covariance) matrix is used, then both of these values will be the same.

•	 F: This is a matrix that "filters" out the observed variables. This is a variant of
the identity matrix. This matrix has as many columns as there are variables
in the model and as many rows as there are observed variables. A value of 1
occupies the corresponding row and column for the observed variables, and
a value of 0 for all other terms in the matrix. Thus, there should be exactly
one "1" in every row and exactly one "1" in each column that corresponds to
an observed variable.

A final important matrix is an identity matrix I, which has as many rows and
columns as total variables.

The McArdle McDonald equation shown in the following figure relates the earlier
mentioned matrices to the implied covariance matrix:

-1 -1C = F(I-A) S(I-A) F′

Here, the superscript -1 denotes matrix inversion, and the ` denotes matrix
transposition. (See Chapter 5, Linear Algebra, for matrix operations.)

Chapter 7

[257]

The goal of SEM software is to solve unconstrained parameters in these matrices. We
will discuss this in a bit more detail in the next section coupled with an example.

An example of SEM specification
A classic set of data to demonstrate SEM is a model of political democracy. In
essence, this model attempts to relate the economic functioning of a country
to the democratic functioning of its government. Conceptually, the idea of this
model is that economic development at a particular time (whatever that means)
drives democratic functioning of a government at the same time. Both economic
development and democratic effectiveness at a particular time drive democratic
effectiveness at a later point in time. Now, economic development and democratic
functioning are not something that can be measured, so we must figure out some
good manifestations that we can measure, such as employment rates or perceptions
of freedom (which even if subjective, can at least be measured via a survey).

The following figure, taken from http://www.jstatsoft.org/v48/i02/paper,
displays the theorized manner underlying the relationships of the variables:

x1 x2 x3y1

y2

y3

y4

y5

y6

y7

y8

ind60dem60

dem65

The preceding figure uses the classic notation of circles for latent (unobserved)
variables and rectangles for observed variables. Democratic functioning and
economic functioning are modeled as latent variables, each with a number of
observed variables, which are manifestations of the underlying latent variable.

http://www.jstatsoft.org/v48/i02/paper

Structural Equation Modeling and Confirmatory Factor Analysis

[258]

The following figure has been marked with three rectangles and one ellipse:

x1 x2 x3y1

y2

y3

y4

y5

y6

y7

y8

ind60dem60

dem65

q

rs

h

i

j

k

d

e

f

g

a
a

c

These rectangles and ellipse break the model into measurement components and
structural components, respectively. In the previous model, x1, x2, and x3 are
manifestations of economic independence in 1960, while y1, y2, y3, and y4, and
y5, y6, y7, and y8 are manifestations of democratic functioning in 1960 and 1965,
respectively. The paths have also been labeled with letters so as to make matrix
representation straightforward. (Letters m, n, o, and p have been deliberately
excluded.) We should also point out that while it is not explicitly shown, there are
residual (that is not explained by causal paths) variances for all variables. There are
some paths with curved arrows that indicate a correlation between these residual
terms (that is residual covariance).

It is considered important to assess the validity of a measurement model of a latent
variable prior to studying the relationships between the latent variables (that is the
structural component of the model).

Chapter 7

[259]

We will now move on to place the previous model in matrices of the RAM model.
Rows and columns have been named with their respective variables in the model
for ease of following the matrix. The first matrix is the implied covariance matrix,
as shown in the following matrix:

()
()

()
()

1 2 7 8

1 1 1 2 1 7 1 8

2 2 1 2 2 7 2 8

7 7 1 7 2 7 7 8

8 8 1 8 2 8 7 8

Var Cov(,) Cov(,) Cov(,)
Cov(,) Var Cov(,) Cov(,)

C
Cov(,) Cov(,) Var Cov(,)
Cov(,) Cov(,) Cov(,) Var

x x y y

x x x x x y x y
x x x x x y x y

y y x y x y y y
y y x y x y y y

 
 
 
 =
 
 
 
 

L

L

M M O M

L

The next matrix is the matrix of causal paths A, which is shown in the
following figure:

1 2 10 60 60 65

1

2

3

1

2

10

60

60

65

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

A

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0
0 0 0 0

x x y ind dem dem
x a
x b
x c
y d
y e

y
ind
dem q
dem r s

 
 
 
 
 
 
 

=  
 
 
 
 
 
  
 

L

L

L

L

L

L

M M M M M M M

L

L

L

L

To avoid an excessively large (13 x 13) matrix, not all paths are illustrated. As can
be seen in the preceding matrix, path A going from ind60 to x1 is placed in the
appropriate column and row.

Structural Equation Modeling and Confirmatory Factor Analysis

[260]

Then, we move on to the residual variances and covariance matrix S, which is given
in the following figure:

1 2 3 1 2 5 6 65

1 1

2 2

3 3

1 1 5, 1

2 2 6, 2

5 1, 5 5

6 2, 6 6

65 65

00 0 0 0 0 0
00 0 0 0 0 0
00 0 0 0 0 0
00 0 0 0 0 0
00 0 0 0 0 0

00 0 0 0 0 0
00 0 0 0 0 0

0 0
0 0 0 0 0 0 0 0

x

x

x

y y y

y y y

y y y

y y y

dem

x x x y y y y dem
x a
x b
x c
y
y

S

y
y

dem

δ
δ

δ
δ δ

δ δ

δ δ
δ δ

 






=






 ∈

L L

L

L

L

L

L

M MM M M M M O M M O

L

L

M MM M M M M L O

L

















Here, the letter is used to denote a residual (that is unexplained by the causal
paths) covariance for observed variables. The letter is used to denote residual
covariances among latent variables. Along the diagonal are the residual covariances
of a variable with itself (that is the residual variance).

Finally, the filter of observed variables F is shown in the following figure:

1 2 3 1 2 10 60 60 65

1

2

3

1

2

10

1 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

x x x y y y ind dem dem
x
x
x
y
y

y

 
 
 
 
 

=  
 
 
 
 
 

L

L

L

L

L

L

M M M M M M O M M M M

L

In the preceding matrix, there are 1s along the diagonal of only those variables that
are observed (hence, the 0s for the last three latent variables).

Chapter 7

[261]

Something to note here is that the RAM matrix representation does not separate
the measurement model from the structural model. By looking at the matrices, one
can tell what the measurement and structural models are from a combination of the
filter matrix and the matrix of causal paths, but this takes some work and is far from
obvious without the path diagram. The LISREL matrix instead uses a few additional
matrices and separates out the measurement and structural models.

Something to note is that this matrix representation with explicit modeling of
variances and covariances allows us to do some things not feasible in exploratory
factor analysis. The first thing is that we can define a particular structural model.
This is in stark contrast to EFA, which simply assumes that all latent variables are
either correlated or uncorrelated. Additionally, we can constrain path coefficients
to be equal. For example, if we wanted to test a model where the causal paths from
ind60 to x1, x2, and x3 were equal, we would simply substitute a single variable
representing each of these paths in the A matrix. Finally, we can allow variables to
be correlated, something not allowed in typical EFA techniques. A final, somewhat
obvious difference, is that CFA requires us to prioritize explicitly define which
variables have paths between them. However, this is actually not quite as defining
a distinction as one might think; EFA has a type of rotation in which paths are
prioritize described, known as target rotation.

An example in R
We went over the matrix representation of SEM models in theory. Now, we will
show how this can be practically done in R using the RAM matrix specifications
mentioned earlier. We will use the political democracy dataset available in the
lavaan package for this example. Notably, this dataset is ordered such that the
first eight columns are the y variables and the last three are the x variables. Let's
take a look at the following example:

library(lavaan)
data(PoliticalDemocracy)

We will create the covariance matrix of this dataset, as follows:

pd.cov <- cov(PoliticalDemocracy)

Now, we will create each of our matrices A, S, F, and I. In a real SEM example, we
would iteratively create new A and S matrices in an attempt to find the best values to
match the implied to the observed covariance matrix. Think of this as starting values
for the matrices. In this case, we will choose starting values that pretty closely match
a final solution, so that we do not have to iterate through dozens of times to find a
good solution. Remember that we have 11 observed and three unobserved variables
for a total of 14 variables.

Structural Equation Modeling and Confirmatory Factor Analysis

[262]

First, let's take a look at the A matrix of paths, which is a matrix of 14*14:

mat.A <- matrix(
 c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,1.5,0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0.5,0.5,0
), nrow = 14, byrow = TRUE
)

Then, let's take a look at the S matrix of residual variances or covariances, which is
also a matrix of 14*14:

mat.S <- matrix(
 c(2, 0, 0, 0,.5, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 7, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 1, 0, 3, 0, 0, 0,.5, 0, 0, 0, 0, 0, 0,
 .5, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 2, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0,.5, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,.1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0,.1, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,.5, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,.5, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,.2
), nrow = 14, byrow = TRUE
)

Chapter 7

[263]

Next, let's take a look at the filter matrix, which selects the observed variables is a
matrix of 11*14:

mat.F <- matrix(
 c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
), nrow = 11, byrow = TRUE
)
Finally the 14 x 14 identity matrix:
mat.I <- diag(rep(1, 14), nrow = 14)

We can write a function that will perform all of the matrix operations of the McArdle
McDonald equation (variables have a 0 in the name), as follows:

RAM.implied.covariance <- function(A.0, S.0, F.0, I.0) {
 implied.covariance <- F.0 %*% solve(I.0-A.0) %*% S.0 %*%
t(solve(I.0-A.0)) %*% t(F.0)
 return(implied.covariance)
}

And, finally, we can estimate an implied covariance matrix based on our starting A
and S matrices, which is shown in the following matrix rounded to 2 decimal places:

> round(RAM.implied.covariance(mat.A, mat.S, mat.F, mat.I), 2)
 [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
 [1,] 7.12 5.12 5.12 5.12 3.44 2.94 2.94 2.94 0.75 1.50 1.50
 [2,] 5.12 12.12 5.12 6.12 2.94 4.94 2.94 2.94 0.75 1.50 1.50
 [3,] 5.12 5.12 10.12 5.12 2.94 2.94 3.94 2.94 0.75 1.50 1.50
 [4,] 5.12 6.12 5.12 8.12 2.94 2.94 2.94 3.44 0.75 1.50 1.50
 [5,] 3.44 2.94 2.94 2.94 3.98 1.98 1.98 1.98 0.63 1.25 1.25
 [6,] 2.94 4.94 2.94 2.94 1.98 6.98 1.98 2.98 0.63 1.25 1.25
 [7,] 2.94 2.94 3.94 2.94 1.98 1.98 4.98 1.98 0.63 1.25 1.25
 [8,] 2.94 2.94 2.94 3.44 1.98 2.98 1.98 4.98 0.63 1.25 1.25
 [9,] 0.75 0.75 0.75 0.75 0.63 0.63 0.63 0.63 0.60 1.00 1.00
[10,] 1.50 1.50 1.50 1.50 1.25 1.25 1.25 1.25 1.00 2.10 2.00
[11,] 1.50 1.50 1.50 1.50 1.25 1.25 1.25 1.25 1.00 2.00 2.50

Structural Equation Modeling and Confirmatory Factor Analysis

[264]

Compare the preceding matrix to the observed covariance matrix as follows:

> round(pd.cov, 2)
 y1 y2 y3 y4 y5 y6 y7 y8 x1 x2 x3
y1 6.88 6.25 5.84 6.09 5.06 5.75 5.81 5.67 0.73 1.27 0.91
y2 6.25 15.58 5.84 9.51 5.60 9.39 7.54 7.76 0.62 1.49 1.17
y3 5.84 5.84 10.76 6.69 4.94 4.73 7.01 5.64 0.79 1.55 1.04
y4 6.09 9.51 6.69 11.22 5.70 7.44 7.49 8.01 1.15 2.24 1.84
y5 5.06 5.60 4.94 5.70 6.83 4.98 5.82 5.34 1.08 2.06 1.58
y6 5.75 9.39 4.73 7.44 4.98 11.38 6.75 8.25 0.85 1.81 1.57
y7 5.81 7.54 7.01 7.49 5.82 6.75 10.80 7.59 0.94 2.00 1.63
y8 5.67 7.76 5.64 8.01 5.34 8.25 7.59 10.53 1.10 2.23 1.69
x1 0.73 0.62 0.79 1.15 1.08 0.85 0.94 1.10 0.54 0.99 0.82
x2 1.27 1.49 1.55 2.24 2.06 1.81 2.00 2.23 0.99 2.28 1.81
x3 0.91 1.17 1.04 1.84 1.58 1.57 1.63 1.69 0.82 1.81 1.98

As we can see, it is pretty close. Can we improve it? Yes, but it will take some trial
and error with new values in the A (and subsequently the S) matrix. This is what
optimizers do in statistical software, and the R packages that we described here do
just that. Notably, there are actually an infinite number of possible solutions for
many SEM models, so some constraining of values is often needed. In this case, we
would want to constrain a few particular path values. In this case, constraining one
path going from each of the latent variables to a manifest variable will do the trick.

How important are the starting values that I choose?
The choice of starting values is a bit of a problem. In SEM software,
poor starting values can fail to converge to good solutions; a
problem that you will likely run into as you do more and more SEM.
Additionally, search routines that seek to optimize or fit the object
can get stuck in local maxima and minima. Even SEM programs
that choose the starting values for you also occasionally suffer from
this problem. When you obtain SEM results that don't make sense,
choosing new starting values can often yield a much better solution.

A couple of other points worth noting here are that these matrices are relatively
large. There is the key step of matrix inversion, which will become more
computationally intensive as more variables are included in the SEM model.

Chapter 7

[265]

SEM model fitting and estimation
methods
In an earlier section, we mentioned that to ultimately find a good solution, software
has to use trial and error to come up with an implied covariance matrix that matches
the observed covariance matrix as well as possible. The question is what does "as
well as possible" mean? The answer to this is that the software must try to minimize
some particular criterion, usually some sort of discrepancy function. Just what that
criterion is depends on the estimation method used. The most commonly used
estimation methods in SEM include:

•	 Ordinary least squares (OLS) also called unweighted least squares
•	 Generalized least squares (GLS)
•	 Maximum likelihood (ML)

There are a number of other estimation methods as well, some of which can be
done in R, but here we will stick with describing the most common ones. In general,
OLS is the simplest and computationally cheapest estimation method. GLS is
computationally more demanding, and ML is computationally more intensive. We
will see why this is, as we discuss the details of these estimation methods.

Any SEM estimation method seeks to estimate model parameters that recreate the
observed covariance matrix as well as possible. To evaluate how closely an implied
covariance matrix matches an observed covariance matrix, we need a discrepancy
function. If we assume multivariate normality of the observed variables, the
following function can be used to assess discrepancy:

21Discrepancy tr ((R - C)V)
2

=

In the preceding figure, R is the observed covariance matrix, C is the implied
covariance matrix, and V is a weight matrix.

The tr function refers to the trace function, which sums the elements of the main
diagonal.

The choice of V varies based on the SEM estimation method:

•	 For OLS, V = I
•	 For GLS, V = R-1

Structural Equation Modeling and Confirmatory Factor Analysis

[266]

In the case of an ML estimation, we seek to minimize one of a number of similar
criteria to describe ML, as follows:

1In C - In R +trRC -n-

In the preceding figure, n is the number of variables.

There are a couple of points worth noting here. GLS estimation inverts the observed
correlation matrix, something computationally demanding with large matrices, but
something that must only be done once. Alternatively, ML requires inversion of the
implied covariance matrix, which changes with each iteration. Thus, each iteration
requires the computationally demanding step of matrix inversion. With modern fast
computers, this difference may not be noticeable, but with large SEM models, this
might start to be quite time-consuming.

Assessing SEM model fit
The final question in an SEM model is how well the model explains the data. This
is answered with the use of SEM measures of fit. Most of these measures are based
on a chi-squared distribution. The fit criteria for GLS and ML (as well as a number
of other estimation procedures such as asymptotic distribution-free methods)
multiplied by N-1 is approximately chi-square distributed. Here, the capital N
represents the number of observations in the dataset, as opposed to lower case
n, which gives the number of variables. We compute degrees of freedom as the
difference between the number of estimated parameters and the number of known
covariances (that is, the total number of values in one triangle of an observed
covariance matrix).

This gives way to the first test statistic for SEM models, a chi-squared significance
level comparing our chi-square value to some minimum chi-square threshold to
achieve statistical significance.

As with conventional chi-square testing, a chi-square value that is higher than
some minimal threshold will reject the null hypothesis. Most experimental science
features such as rejection supports the hypothesis of the experiment. This is not the
case in SEM, where the null hypothesis is that the model fits the data. Thus, a non-
significant chi-square is an indicator of model fit, whereas a significant chi-square
rejects model fit. A notable limitation of this is that a greater sample size, greater
N, will increase the chi-square value and will therefore increase the power to reject
model fit. Thus, using conventional chi-squared testing will tend to support models
developed in small samples and reject models developed in large samples.

Chapter 7

[267]

The choice an interpretation of fit measures is a contentious one in SEM literature.
However, as can be seen, chi-square has limitations. As such, other model fit criteria
were developed that do not penalize models that fit in large samples (some may
penalize models fit to small samples though). There are over a dozen indices, but the
most common fit indices and interpretation information are as follows:

•	 Comparative fit index: In this index, a higher value is better. Conventionally,
a value of greater than 0.9 was considered an indicator of good model fit,
but some might argue that a value of at least 0.95 is needed. This is relatively
sample size insensitive.

•	 Root mean square error of approximation: A value of under 0.08 (smaller
is better) is often considered necessary to achieve model fit. However, this
fit measure is quite sample size sensitive, penalizing small sample studies.

•	 Tucker-Lewis index (Non-normed fit index): This is interpreted in a
similar manner as the comparative fit index. Also, this is not very sample
size sensitive.

•	 Standardized root mean square residual: In this index, a lower value is
better. A value of 0.06 or less is considered needed for model fit. Also,
this may penalize small samples.

In the next section, we will show you how to actually fit SEM models in R and
how to evaluate fit using fit measures.

Using OpenMx and matrix specification of an
SEM
We went through the basic principles of SEM and discussed the basic computational
approach by which this can be achieved. SEM remains an active area of research
(with an entire journal devoted to it, Structural Equation Modeling), so there are many
additional peculiarities, but rather than delving into all of them, we will start by
delving into actually fitting an SEM model in R.

OpenMx is not in the CRAN repository, but it is easily obtainable from the OpenMx
website, by typing the following in R:

source('http://openmx.psyc.virginia.edu/getOpenMx.R')"

Structural Equation Modeling and Confirmatory Factor Analysis

[268]

Summarizing the OpenMx approach
In this example, we will use OpenMx by specifying matrices as mentioned earlier.
To fit an OpenMx model, we need to first specify the model and then tell the
software to attempt to fit the model. Model specification involves four components:

•	 Specifying the model matrices; this has two parts:
°° Declare starting values for the estimation
°° Declaring which values can be estimated and which are fixed

•	 Telling OpenMx the algebraic relationship of the matrices that should
produce an implied covariance matrix

•	 Giving an instruction for the model fitting criterion
•	 Providing a source of data

The R commands that correspond to each of these steps are:

•	 mxMatrix

•	 mxAlgebra

•	 mxMLObjective

•	 mxData

We will then pass the objects created with each of these commands to create an
SEM model using mxModel.

Explaining an entire example
First, to make things simple, we will store the FALSE and TRUE logical values in single
letter variables, which will be convenient when we have matrices full of TRUE and
FALSE values as follows:

F <- FALSE
T <- TRUE

Chapter 7

[269]

Specifying the model matrices
Specifying matrices is done with the mxMatrix function, which returns an MxMatrix
object. (Note that the object starts with a capital "M" while the function starts with a
lowercase "m.") Specifying an MxMatrix is much like specifying a regular R matrix, but
MxMatrices has some additional components. The most notable difference is that there
are actually two different matrices used to create an MxMatrix. The first is a matrix of
starting values, and the second is a matrix that tells which starting values are free to be
estimated and which are not. If a starting value is not freely estimable, then it is a fixed
constant. Since the actual starting values that we choose do not really matter too much
in this case, we will just pick one as a starting value for all parameters that we would
like to be estimated. Let's take a look at the following example:

mx.A <- mxMatrix(
 type = "Full",
 nrow=14,
 ncol=14,

 #Provide the Starting Values
 values = c(
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0
),

Structural Equation Modeling and Confirmatory Factor Analysis

[270]

 #Tell R which values are free to be estimated	
 free = c(
 F, F, F, F, F, F, F, F, F, F, F, F, F, F,
 F, F, F, F, F, F, F, F, F, F, F, F, T, F,
 F, F, F, F, F, F, F, F, F, F, F, F, T, F,
 F, F, F, F, F, F, F, F, F, F, F, F, T, F,
 F, F, F, F, F, F, F, F, F, F, F, F, F, F,
 F, F, F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, F, F,
 F, F, F, F, F, F, F, F, F, F, F, T, F, F,
 F, F, F, F, F, F, F, F, F, F, F, T, F, F,
 F, F, F, F, F, F, F, F, F, F, F, F, F, F,
 F, F, F, F, F, F, F, F, F, F, F, T, F, F,
 F, F, F, F, F, F, F, F, F, F, F, T, T, F
),
 byrow=TRUE,

 #Provide a matrix name that will be used in model fitting
 name="A",
)

We will now apply this same technique to the S matrix. Here, we will create two S
matrices, S1 and S2. They differ simply in the starting values that they supply. We
will later try to fit an SEM model using one matrix, and then the other to address
problems with the first one. The difference is that S1 uses starting variances of 1 in
the diagonal, and S2 uses starting variances of 5. Here, we will use the "symm" matrix
type, which is a symmetric matrix. We could use the "full" matrix type, but by
using "symm", we are saved from typing all of the symmetric values in the upper half
of the matrix. Let's take a look at the following matrix:

mx.S1 <- mxMatrix("Symm", nrow=14, ncol=14,
 values = c(
 1,
 0, 1,
 0, 0, 1,
 0, 1, 0, 1,
 1, 0, 0, 0, 1,
 0, 1, 0, 0, 0, 1,
 0, 0, 1, 0, 0, 0, 1,
 0, 0, 0, 1, 0, 1, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

Chapter 7

[271]

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
),

 	free = c(
 T,
 F, T,
 F, F, T,
 F, T, F, T,
 T, F, F, F, T,
 F, T, F, F, F, T,
 F, F, T, F, F, F, T,
 F, F, F, T, F, T, F, T,
 F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, F, T
),
 byrow=TRUE,
 name="S"
)

#The alternative, S2 matrix:
mx.S2 <- mxMatrix("Symm", nrow=14, ncol=14,
 values = c(
 5,
 0, 5,
 0, 0, 5,
 0, 1, 0, 5,
 1, 0, 0, 0, 5,
 0, 1, 0, 0, 0, 5,
 0, 0, 1, 0, 0, 0, 5,
 0, 0, 0, 1, 0, 1, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5
),

Structural Equation Modeling and Confirmatory Factor Analysis

[272]

 free = c(
 T,
 F, T,
 F, F, T,
 F, T, F, T,
 T, F, F, F, T,
 F, T, F, F, F, T,
 F, F, T, F, F, F, T,
 F, F, F, T, F, T, F, T,
 F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, T,
 F, F, F, F, F, F, F, F, F, F, F, F, F, T
),
 byrow=TRUE,
 name="S"
)
mx.Filter <- mxMatrix("Full", nrow=11, ncol=14,
 values= c(
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
),
 free=FALSE,
 name="Filter",
 byrow = TRUE
)

Chapter 7

[273]

And finally, we will create our identity and filter matrices the same way, as follows:

mx.I <- mxMatrix("Full", nrow=14, ncol=14,
 values= c(
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
),
 free=FALSE,
 byrow = TRUE,
 name="I"
)

Fitting the model
Now, it is time to declare the model that we would like to fit using the mxModel
command. This part includes steps 2 through step 4 mentioned earlier. Here, we will
tell mxModel which matrices to use. We will then use the mxAlgegra command to tell
R how the matrices should be combined to reproduce the implied covariance matrix.
We will tell R to use ML estimation with the mxMLObjective command, and we will
tell it to apply the estimation to a particular matrix algebra, which we named "C".
This is simply the right-hand side of the McArdle McDonald equation. Finally, we
will tell R where to get the data to use in model fitting using the following code:

factorModel.1 <- mxModel("Political Democracy Model",

 #Model Matrices
 mx.A,
 mx.S1,
 mx.Filter,
 mx.I,

Structural Equation Modeling and Confirmatory Factor Analysis

[274]

 #Model Fitting Instructions
mxAlgebra(Filter %*% solve(I-A) %*% S %*% t(solve(I - A)) %*%
t(Filter), name="C"),
 mxMLObjective("C", dimnames = names(PoliticalDemocracy)),

 #Data to fit
 mxData(cov(PoliticalDemocracy), type="cov", numObs=75)
)

Now, let's tell R to fit the model and summarize the results using mxRun, as follows:

summary(mxRun(factorModel.1))
Running Political Democracy Model
Error in summary(mxRun(factorModel.1)) :
 error in evaluating the argument 'object' in selecting a method for
function 'summary': Error: The job for model 'Political Democracy
Model' exited abnormally with the error message: Expected covariance
matrix is non-positive-definite.

Uh oh! We got an error message telling us that the expected covariance matrix is not
positive definite. Our observed covariance matrix is positive definite but the implied
covariance matrix (at least at first) is not. This is an effect of the fact that if we
multiply our starting value matrices together as specified by the McArdle McDonald
equation, we get a starting implied covariance matrix. If we perform an eigenvalue
decomposition of this starting implied covariance matrix, then we will find that the
last eigenvalue is negative. This means a negative variance does not make much
sense, and this is what "not positive definite" refers to. The good news is that this
is simply our starting values, so we can fix this if we modify our starting values. In
this case, we can choose values of five along the diagonal of the S matrix, and get
a positive definite starting implied covariance matrix. We can rerun this using the
mx.S2 matrix specified earlier and the software will proceed as follows:

#Rerun with a positive definite matrix

factorModel.2 <- mxModel("Political Democracy Model",

 #Model Matrices
 mx.A,
 mx.S2,
 mx.Filter,
 mx.I,

 #Model Fitting Instructions
 mxAlgebra(Filter %*% solve(I-A) %*% S %*% t(solve(I - A)) %*%
t(Filter), name="C"),

Chapter 7

[275]

 mxMLObjective("C", dimnames = names(PoliticalDemocracy)),

 #Data to fit
 mxData(cov(PoliticalDemocracy), type="cov", numObs=75)
)

summary(mxRun(factorModel.2))

This should provide a solution. As can be seen from the previous code, the
parameters solved in the model are returned as matrix components. Just like we had
to figure out how to go from paths to matrices, we now have to figure out how to go
from matrices to paths (the reverse problem). In the following screenshot, we show
just the first few free parameters:

The preceding screenshot tells us that the parameter estimated in the position of the
tenth row and twelfth column in the matrix A is 2.18. This corresponds to a path
from the twelfth variable in the A matrix ind60, to the 10th variable in the matrix x2.
Thus, the path coefficient from ind60 to x2 is 2.18.

Structural Equation Modeling and Confirmatory Factor Analysis

[276]

There are a few other pieces of information here. The first one tells us that the model
has not converged but is "Mx status Green." This means that the model was still
converging when it stopped running (that is, it did not converge), but an optimal
solution was still found and therefore, the results are likely reliable. Model fit
information is also provided suggesting a pretty good model fit with CFI of 0.99 and
RMSEA of 0.032.

This was a fair amount of work, and creating model matrices by hand from path
diagrams can be quite tedious. For this reason, SEM fitting programs have generally
adopted the ability to fit SEM by declaring paths rather than model matrices.
OpenMx has the ability to allow declaration by paths, but applying model matrices
has a few advantages. Principally, we get under the hood of SEM fitting. If we
step back, we can see that OpenMx actually did very little for us that is specific to
SEM. We told OpenMx how we wanted matrices multiplied together and which
parameters of the matrix were free to be estimated. Instead of using the RAM
specification, we could have passed the matrices of the LISREL or Bentler-Weeks
models with the corresponding algebra methods to recreate an implied covariance
matrix. This means that if we are trying to come up with our matrix specification,
reproduce prior research, or apply a new SEM matrix specification method published
in the literature, OpenMx gives us the power to do it. Also, for educators wishing to
teach the underlying mathematical ideas of SEM, OpenMx is a very powerful tool.

Fitting SEM models using lavaan
If we were to describe OpenMx as the SEM equivalent of having a well-stocked
pantry and full kitchen to create whatever you want, and you have the time and
know how to do it, we might regard lavaan as a large freezer full of prepackaged
microwavable dinners. It does not allow quite as much flexibility as OpenMx because
it sweeps much of the work that we did by hand in OpenMx under the rug. Lavaan
does use an internal matrix representation, but the user never has to see it. It is this
sweeping under the rug that makes lavaan generally much easier to use. It is worth
adding that the list of prepackaged features that are built into lavaan with minimal
additional programming challenge many commercial SEM packages.

The lavaan syntax
The key to describing lavaan models is the model syntax, as follows:

•	 X =~ Y: Y is a manifestation of the latent variable X
•	 Y ~ X: Y is regressed on X
•	 Y ~~ X: The covariance between Y and X can be estimated

Chapter 7

[277]

•	 Y ~ 1: This estimates the intercept for Y (implicitly requires mean structure)
•	 Y | a*t1 + b*t2: Y has two thresholds that is a and b
•	 Y ~ a * X: Y is regressed on X with coefficient a
•	 Y ~ start(a) * X: Y is regressed on X; the starting value used for

estimation is a

It may not be evident at first, but this model description language actually makes
lavaan quite powerful. Wherever you have seen a or b in the previous examples, a
variable or constant can be used in their place. The beauty of this is that multiple
parameters can be constrained to be equal simply by assigning a single parameter
name to them.

Using lavaan, we can fit a factor analysis model to our physical functioning dataset
with only a few lines of code. We will use the physical functioning dataset described
in the previous chapter, as follows:

phys.func.data <- read.csv('phys_func.csv')[-1]
names(phys.func.data) <- LETTERS[1:20]

R has a built-in vector named LETTERS, which contains all of the capital letters of the
English alphabet. The lower case vector letters contains the lowercase alphabet.

We will then describe our model using the lavaan syntax. Here, we have a model of
three latent variables, our factors, and each of them has manifest variables. Let's take
a look at the following example:

model.definition.1 <- '
 #Factors
 Cognitive =~ A + Q + R + S
 Legs =~ B + C + D + H + I + J + M + N
 Arms =~ E + F+ G + K +L + O + P + T

 #Correlations Between Factors
 Cognitive ~~ Legs
 Cognitive ~~ Arms
 Legs ~~ Arms
'

We then tell lavaan to fit the model as follows:

fit.phys.func <- cfa(model.definition.1, data=phys.func.data, ordered
= c('A','B', 'C','D', 'E','F','G', 'H','I','J', 'K', 'L','M','N',
'O','P','Q','R', 'S', 'T'))

Structural Equation Modeling and Confirmatory Factor Analysis

[278]

In the previous code, we add an ordered = argument, which tells lavaan that some
variables are ordinal in nature. In response, lavaan estimates polychoric correlations
for these variables. Polychoric correlations assume that we binned a continuous
variable into discrete categories, and attempts to explicitly model correlations
assuming that there is some continuous underlying variable. Part of this requires
finding thresholds (placed on an arbitrary scale) between each categorical response.
(for example, threshold 1 falls between the response of 1 and 2, and so on). By telling
lavaan to treat some variables as categorical, lavaan will also know to use a special
estimation method. Lavaan will use diagonally weighted least squares, which does
not assume normality and uses the diagonals of the polychoric correlation matrix for
weights in the discrepancy function.

With five response options, it is questionable as to whether polychoric correlations
are truly needed. Some analysts might argue that with many response options,
the data can be treated as continuous, but here we use this method to show off
lavaan's capabilities.

All SEM models in lavaan use the lavaan command. Here, we use the cfa
command, which is one of a number of wrapper functions for the lavaan command.
Others include sem and growth. These commands differ in the default options
passed to the lavaan command. (For full details, see the package documentation.)

Summarizing the data, we can see the loadings of each item on the factor as well as
the factor intercorrelations. We can also see the thresholds between each category
from the polychoric correlations as follows:

summary(fit.phys.func)

We can also assess things such as model fit using the fitMeasures command, which
has most of the popularly used fit measures and even a few obscure ones. Here, we
tell lavaan to simply extract three measures of model fit as follows:

fitMeasures(fit.phys.func, c('rmsea', 'cfi', 'srmr'))

Collectively, these measures suggest adequate model fit. It is worth noting here
that the interpretation of fit measures largely comes from studies using maximum
likelihood estimation, and there is some debate as to how well these generalize other
fitting methods.

The lavaan package also has the capability to use other estimators that treat the data
as truly continuous in nature. For this, a particular dataset is far from multivariate
normal distributed, so an estimator such as ML is appropriate to use. However,
if we wanted to do so, the syntax would be as follows:

fit.phys.func.ML <- cfa(model.definition.1, data=phys.func.data,
estimator = 'ML')

Chapter 7

[279]

Comparing OpenMx to lavaan
It can be seen that lavaan has a much simpler syntax that allows to rapidly model
basic SEM models. However, we were a bit unfair to OpenMx because we used a
path model specification for lavaan and a matrix specification for OpenMx. The truth
is that OpenMx is still probably a bit wordier than lavaan, but let's apply a path
model specification in each to do a fair head-to-head comparison.

We will use the famous Holzinger-Swineford 1939 dataset here from the lavaan
package to do our modeling, as follows:

hs.dat <- HolzingerSwineford1939

We will create a new dataset with a shorter name so that we don't have to keep
typing HozlingerSwineford1939.

Explaining an example in lavaan
We will learn to fit the Holzinger-Swineford model in this section. We will start
by specifying the SEM model using the lavaan model syntax:

hs.model.lavaan <- '
 visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9

 visual ~~ textual
 visual ~~ speed
 textual ~~ speed
'

fit.hs.lavaan <- cfa(hs.model.lavaan, data=hs.dat, std.lv = TRUE)
summary(fit.hs.lavaan)

Here, we add the std.lv argument to the fit function, which fixes the variance of
the latent variables to 1. We do this instead of constraining the first factor loading
on each variable to 1.

Structural Equation Modeling and Confirmatory Factor Analysis

[280]

Only the model coefficients are included for ease of viewing in this book. The result
is shown in the following model:

> summary(fit.hs.lavaan)
…

 Estimate Std.err Z-value P(>|z|)
Latent variables:
 visual =~
 x1 0.900 0.081 11.127 0.000
 x2 0.498 0.077 6.429 0.000
 x3 0.656 0.074 8.817 0.000
 textual =~
 x4 0.990 0.057 17.474 0.000
 x5 1.102 0.063 17.576 0.000
 x6 0.917 0.054 17.082 0.000
 speed =~
 x7 0.619 0.070 8.903 0.000
 x8 0.731 0.066 11.090 0.000
 x9 0.670 0.065 10.305 0.000

Covariances:
 visual ~~
 textual 0.459 0.064 7.189 0.000
 speed 0.471 0.073 6.461 0.000
 textual ~~
 speed 0.283 0.069 4.117 0.000

Let's compare these results with a model fit in OpenMx using the same dataset and
SEM model.

Explaining an example in OpenMx
The OpenMx syntax for path specification is substantially longer and more explicit.
Let's take a look at the following model:

hs.model.open.mx <- mxModel("Holzinger Swineford",
 type="RAM",
 manifestVars = names(hs.dat)[7:15],
 latentVars = c('visual', 'textual', 'speed'),

Chapter 7

[281]

 # Create paths from latent to observed variables
 mxPath(
 from = 'visual',
 to = c('x1', 'x2', 'x3'),
 free = c(TRUE, TRUE, TRUE),
 values = 1
),

 mxPath(
 from = 'textual',
 to = c('x4', 'x5', 'x6'),
 free = c(TRUE, TRUE, TRUE),
 values = 1
),

 mxPath(
 from = 'speed',
 to = c('x7', 'x8', 'x9'),
 free = c(TRUE, TRUE, TRUE),
 values = 1
),

 # Create covariances among latent variables
 mxPath(
 from = 'visual',
 to = 'textual',
 arrows=2,
 free=TRUE
),

 mxPath(
 from = 'visual',
 to = 'speed',
 arrows=2,
 free=TRUE
),

 mxPath(
 from = 'textual',
 to = 'speed',
 arrows=2,
 free=TRUE
),

Structural Equation Modeling and Confirmatory Factor Analysis

[282]

 #Create residual variance terms for the latent variables
 mxPath(
 from= c('visual', 'textual', 'speed'),
 arrows=2,

 #Here we are fixing the latent variances to 1
 #These two lines are like st.lv = TRUE in lavaan
 free=c(FALSE,FALSE,FALSE),
 values=1
),

 #Create residual variance terms
 mxPath(
from= c('x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9'),
 arrows=2,
),

 mxData(
 observed=cov(hs.dat[,c(7:15)]),
 type="cov",
 numObs=301
)
)

fit.hs.open.mx <- mxRun(hs.model.open.mx)
summary(fit.hs.open.mx)

Here are the results of the OpenMx model fit, which look very similar to lavaan's.
This gives a long output. For ease of viewing, only the most relevant parts of the
output are included in the following model (the last column that R prints giving
the standard error of estimates is also not shown here):

> summary(fit.hs.open.mx)
…

free parameters:
 name matrix row col Estimate Std.
Error
1 Holzinger Swineford.A[1,10] A x1 visual 0.9011177
2 Holzinger Swineford.A[2,10] A x2 visual 0.4987688
3 Holzinger Swineford.A[3,10] A x3 visual 0.6572487
4 Holzinger Swineford.A[4,11] A x4 textual 0.9913408

Chapter 7

[283]

5 Holzinger Swineford.A[5,11] A x5 textual 1.1034381
6 Holzinger Swineford.A[6,11] A x6 textual 0.9181265
7 Holzinger Swineford.A[7,12] A x7 speed 0.6205055
8 Holzinger Swineford.A[8,12] A x8 speed 0.7321655
9 Holzinger Swineford.A[9,12] A x9 speed 0.6710954
10 Holzinger Swineford.S[1,1] S x1 x1 0.5508846
11 Holzinger Swineford.S[2,2] S x2 x2 1.1376195
12 Holzinger Swineford.S[3,3] S x3 x3 0.8471385
13 Holzinger Swineford.S[4,4] S x4 x4 0.3724102
14 Holzinger Swineford.S[5,5] S x5 x5 0.4477426
15 Holzinger Swineford.S[6,6] S x6 x6 0.3573899
16 Holzinger Swineford.S[7,7] S x7 x7 0.8020562
17 Holzinger Swineford.S[8,8] S x8 x8 0.4893230
18 Holzinger Swineford.S[9,9] S x9 x9 0.5680182
19 Holzinger Swineford.S[10,11] S visual textual 0.4585093
20 Holzinger Swineford.S[10,12] S visual speed 0.4705348
21 Holzinger Swineford.S[11,12] S textual speed 0.2829848

In summary, the results agree quite closely. For example, looking at the coefficient
for the path going from the latent variable visual to the observed variable x1, lavaan
gives an estimate of 0.900 while OpenMx computes a value of 0.901.

Summary
The lavaan package is user friendly, pretty powerful, and constantly adding new
features. Alternatively, OpenMx has a steeper learning curve but tremendous
flexibility in what it can do. Thus, lavaan is a bit like a large freezer full of
prepackaged microwavable dinners, whereas OpenMx is like a well-stocked pantry
with no prepared foods but a full kitchen that will let you prepare it if you have the
time and the know-how. To run a quick analysis, it is tough to beat the simplicity
of lavaan, especially given its wide range of capabilities. For large complex models,
OpenMx may be a better choice. The methods covered here are useful to analyze
statistical relationships when one has all of the data from events that have already
occurred. In the next chapter, we will cover an entirely different set of approaches
that are focused on modeling what can occur.

Simulations
Simulations are often used in advanced scientific modeling to make predictions and
even to simulate the experimental design of an experiment. So this chapter will show
you how to perform basic sample simulations and how to use simulations to answer
statistical problems. You will also learn how to use R to generate random numbers,
and how to simulate random variables from several common probability distributions.
Then, we will show you how simulations can be used to evaluate integrals.

In this chapter, we will cover the following topics:

•	 Basic sample simulations in R
•	 Pseudorandom numbers
•	 Monte Carlo simulation
•	 Monte Carlo integration
•	 Rejection sampling
•	 Importance sampling
•	 Simulating physical systems

Basic sample simulations in R
We already showed you the basics of generating random variables from common
probability distributions in Chapter 2, Statistical Methods with R. For example, to
simulate four numbers from a normal distribution with a mean of 10 and standard
deviation of 3, we use the rnorm() function with the mean and sd arguments
set to 10 and 3, respectively:

> rnorm(4, mean=10, sd=3)
[1] 9.546714 8.600795 14.344557 11.669767

Simulations

[286]

Similarly, we can simulate 10 numbers from a Poisson distribution with a lambda
of 3 with rpois(10, lambda=3). A table showing the function names for the most
common distributions is available in Chapter 2, Statistical Methods with R.

We can also select random variables from a predetermined vector using the
sample() function. This function allows you to randomly select a specified number
of elements with the size argument from a vector, with or without replacing the
values taken with the replace argument set to TRUE or FALSE, respectively. For
example, if we wanted to obtain five random numbers from 1 to 100 without any
duplicates, we would use the sample() function with the replace argument set to
FALSE. Let's take a look at the following example:

> sample(1:100, size=5, replace=FALSE)
[1] 83 79 3 11 55

Now let's say that we wanted to simulate data from throwing a dice six times. We
could use the sample() function with size equal to 6, and set replace to TRUE
because it is possible to draw the same number more than once, as follows:

> sample(1:6, size=6, replace=TRUE)
[1] 6 2 1 4 5 2

We can also use the sample function with character vectors as we saw in Chapter 3,
Linear Models.

> fruits <- c("apple", "orange", "strawberry", "lemon", "clementine")
> sample(fruits, size=2, replace=T)
[1] "orange" "apple"

Pseudorandom numbers
Now, we will show you how to simulate random numbers, or more accurately
called pseudorandom numbers, because as you will see, unlike true random
numbers, which truly can't be predicted, these numbers can be predicted using
random number generator algorithms. Let's review how to generate a series of
pseudorandom numbers from 0 to 1. One of the simplest methods is to simulate
independent uniform random variables using a multiplicative congruential
pseudorandom number generator. Since there are many different methods used to
generate pseudorandom numbers, let's consider the following example of a simple
multiplicative congruential pseudorandom number generator that can be used to
simulate random variables. Let m be a large prime integer and k be another integer
less than 10, preferably close to the square root of m. We can generate pseudorandom
numbers by applying the following formula:

()1i ix kx mod m+ =

Chapter 8

[287]

In the preceding formula, i = 0, 1, 2, 3, … , n.

Now let's apply the previous formula to generate six pseudorandom numbers. Before
we begin, we need to set the seed, which in this equation corresponds to ix when
i = 0. Ideally, we should set the seed 0x to any value between 1 and m. Then, once
the seed has been chosen, we can generate each pseudorandom number with the
previous equation. To translate this mathematical equation into a function, we can
run the getRandomNbs() function that we write in R as follows:

> getRandomNbs <- function(n, m, seed){
create a numeric vector to store the numbers
pseudorandom.numbers <- numeric(n)

set k near square root of m
k = round(sqrt(m)) -2

use a for loop to generate the numbers
for(i in 1:n){
seed <- (k*seed) %% m
pseudorandom.numbers[i] <-seed/m
}
return(pseudorandom.numbers)
}

Now let's use our function to generate five pseudorandom variables, as shown in
the following code, with the seed set to 27000 and 334753 as our large prime integer.
You can verify that 334,753 is a prime number at http://www.onlineconversion.
com/prime.htm.

> getRandomNbs(5, 334753, 27000)
[1] 0.5387913 0.8825731 0.2446909 0.1866272 0.6838684

When writing your own pseudorandom number generator, it is important to make
sure that the numbers generated follow a uniform distribution and that these
values are independent of each other. We can test that the pseudorandom numbers
generated with the getRandomNbs(5, 334753, 27000) function follow a uniform
distribution using a Chi-square test. Instead of the chisq.test() function available
in R, we will use the rng.chisq() function that was specifically written to test
random number generators for uniformity. To add this function to your R session,
enter the following code:

> rng.chisq <- function(x, m) {
Obs <- trunc(m*x)/m
 Obs <- table(Obs)
 p <- rep(1,m)/m

http://www.onlineconversion.com/prime.htm
http://www.onlineconversion.com/prime.htm

Simulations

[288]

 Exp <- length(x)*p
 chisq <- sum((Obs-Exp)^2/Exp)
 pvalue <- 1-pchisq(chisq, m-1)
 results <- list(test.statistic=chisq, p.value=pvalue, df=m-1)
 return(results)
}

In the rng.chisq() function, x is the output from a pseudorandom number
generator, where the output is in the [0, 1] interval and m is the number of
subintervals to use for the Chi-square test. To test our random number generator
for uniformity, we will use our getRandomNb() function to simulate 1,000
pseudorandom variables, and use the rng.chisq() function to test for uniformity
using five subintervals for the test. Let's take a look at this in the following lines
of code:

> v <- getRandomNbs(1000, 334753, 27000)
> rng.chisq(v, m=5)
$test.statistic
[1] 2.9

$p.value
[1] 0.5746972

$df
[1] 4

Since our p value is large, we don't have sufficient evidence to reject the null
hypothesis that our random variables follow a uniform distribution. Next, we
want to make sure that the pseudorandom numbers generated are independent of
each other. A simple way we can test whether the values we generated are truly
random is to plot a lag plot with the lag.plot() function. Random data should
not show any underlying structure in the lag plot. To inspect our random numbers
for independency, let's plot the lag plot for the 1,000 pseudorandom numbers we
generated with the getRandomNb() function as follows:

> lag.plot(v)

Chapter 8

[289]

The result is shown in the following plot:

Overall, the data looks randomly distributed. There are more formal ways to test
for independence that are beyond the scope of this book, but if you are interested
in learning more on the topic, we suggest you read about Spectral Tests at http://
en.wikipedia.org/wiki/Spectral_test.

The runif() function
Instead of generating your own pseudorandom number generator, you can use the
runif() function to generate random numbers from the uniform distribution that
lies between the intervals a and b, where min = a and max = b. The runif() function
selects a seed internally and uses a different formula than the one we used in our
getRandomNbs() function to generate pseudorandom numbers. Let's take a look at
this in the following example:

> runif(n=5, min=0, max=1)
[1] 0.4562942 0.1861085 0.4779453 0.6313259 0.9768385

http://en.wikipedia.org/wiki/Spectral_test
http://en.wikipedia.org/wiki/Spectral_test

Simulations

[290]

Each time you run the runif() function, R will select a different seed. So if you
would like to use a specific seed throughout your session, then you can set the seed
using the set.seed() function. By setting the seed, you will be able to generate a
sequence of numbers that look random, but you will be able to reproduce them when
you call the set.seed() function with the same seed. Here is an example to illustrate
this point.

First, let's generate three pseudorandom numbers without setting the seed
as follows:

> runif(3)
[1] 0.9744210 0.4709912 0.1204069

Now generate three pseudorandom numbers after setting the seed to 27000
as follows:

> set.seed(27000)
> runif(3)
[1] 0.5522500 0.5538553 0.4528518

Now generate three more random numbers as follows:

> runif(3)
[1] 0.6177212 0.4572295 0.4544682

Notice you do not get the same numbers from the previous run. To get the same
three numbers from the time you set the seed to 27000, you will need to rerun the
set.seed(27000) function before entering runif(3) as follows:

> set.seed(27000)
> runif(3)
[1] 0.5522500 0.5538553 0.4528518

Let's generate five random numbers, as follows:

> runif(5)
[1] 0.6177212 0.4572295 0.4544682 0.9808293 0.5509730

You will also notice that the next string of numbers has the same first three numbers
after the second command following the set.seed() from above. Now, say we
wanted to continue from the three numbers that were initially generated after setting
the seed to 27000. All we need to do is enter set.seed(27000) and then runif(5)
as follows:

> set.seed(27000)
> runif(5)
[1] 0.5522500 0.5538553 0.4528518 0.6177212 0.4572295

Chapter 8

[291]

As you can see, we get the same first three numbers as we got when we ran runif(3)
after setting the seed to 27000 because, similar to the getRandomNbs() function
that we wrote, the runif() function uses a random number generation algorithm.
Therefore, by setting the seed, you will obtain a predefined sequence of numbers.
Hence, we refer to these values as pseudorandom numbers because they can be
predicted using a specific algorithm, though they appear random to the untrained eye.

We just showed you how to generate random numbers using predefined set seeds so
that you can regenerate the same random numbers in a latter session to make your
script reproducible for others. However, what if you don't want to use a preselected
seed in your script but you still want to be able to reproduce the data in a later
session? You can save the state of the random number generator of your session
stored in the global environment variable .Random.seed in a new object that you use
to reset the .Random.seed variable at a later point in your script. Let's go through an
example to illustrate this point.

First, we generate five random numbers to create the .Random.seed variable because
when you start a new session, this variable doesn't exist until you generate random
numbers for the first time. Let's take a look at this in the following code:

> runif(5)
[1] 0.49442371 0.48252765 0.44946379 0.96708434 0.04600508

Next, we save the state of the current random number generator in a separate object,
as shown in the following code. This will allow us to save the seeds used for the
subsequent simulations:

> saved.seed <- .Random.seed

Now, we can simulate other numbers as follows:

> runif(5)
[1] 0.41319284 0.57805579 0.11691655 0.09548216 0.75445132
> runif(2)
[1] 0.04699241 0.82974142

Now, say we want to regenerate the same numbers after the first time we saved the
state of the random number generator. All we need to do is update the .Random.
seed variable with the saved.seed variable, as shown in the following code, and
rerun the commands that we ran earlier:

>.Random.seed <- saved.seed

Rerun the commands from earlier
> runif(5)
[1] 0.41319284 0.57805579 0.11691655 0.09548216 0.75445132
> runif(2)
[1] 0.04699241 0.82974142

Simulations

[292]

As you can see, you get the same values you obtained earlier because R reuses the
same sequence of seeds saved in the original .Random.seed variable. However, it
is important to specify that the same data will be resimulated in the same R session,
but since the seed was not set with the set.seed() function before we saved the
.Random.seed variable, you will not get the same values if you were to run the code
in a new R session. This is because the starting seed will be taken from that session,
which is different each time you start a new R session. Therefore, a better way to
save the state of the random number generator would be to set the seed first with
the set.seed() function. This way, the pseudorandom numbers you generate will
be reproducible in other R sessions as follows:

> set.seed(245)
> .Random.seed <- saved.seed
> runif(5)
[1] 0.92701730 0.48499598 0.23385692 0.67666045 0.02424925
> runif(2)
[1] 0.2860802 0.9330553
> .Random.seed <- saved.seed
> runif(5)
[1] 0.92701730 0.48499598 0.23385692 0.67666045 0.02424925
> runif(2)
[1] 0.2860802 0.9330553

When writing a function to check or restore seed values to the .Random.seed
variable, it is important to remember that we need to inspect or change the variable
in the global environment and not just the local variable. To retrieve and assign
values to global environment variables in R, we need to use the get() and assign()
functions. For example, let's write a function that will return 10 random numbers
using a user-defined seed, and then reset the state of the random number generator
by restoring the .Random.seed variable to its original value set in the global
environment. Let's take a look at this in the following example:

returnRandomNbs <- function(n, a, b){

By default we assume the .Random.seed variable was not set in the
global environment
seed.found <- FALSE
if (exists(".Random.seed")) {
saved.seed <- get(".Random.seed", .GlobalEnv)
seed.found <- TRUE
}
v <- runif(n, min=a, max=b)
if(seed.found) {
assign(".Random.seed", saved.seed, .GlobalEnv)
}

Chapter 8

[293]

return(v)

}

Now we can set the seed and run our function as follows:

> set.seed(753)
> returnRandomNbs(10, 0, 2)
 [1] 1.0074840 1.7143867 1.0060674 1.0500559 0.6218600 0.3472834
0.7659655 1.1762890 0.7091655 0.6026619
> returnRandomNbs(10, 0, 2)
 [1] 1.0074840 1.7143867 1.0060674 1.0500559 0.6218600 0.3472834
0.7659655 1.1762890 0.7091655 0.6026619
> returnRandomNbs(10, 0, 2)
 [1] 1.0074840 1.7143867 1.0060674 1.0500559 0.6218600 0.3472834
0.7659655 1.1762890 0.7091655 0.6026619

Notice that our function will always return the same values because the seed is
always reset to the initial random number generator state, which is set.seed(753):

> runif(10, 0, 2)
 [1] 1.0074840 1.7143867 1.0060674 1.0500559 0.6218600 0.3472834
0.7659655 1.1762890 0.7091655 0.6026619

Now the next time we run the runif() function, a different seed will be used
as follows:

> runif(10, 0, 2)
 [1] 1.7727796 0.1779565 0.4772016 0.3180717 0.7163699 0.1385670
0.3976083 1.1769520 1.5818106 0.8082054
> runif(10, 0, 2)
 [1] 0.4378311 0.5187945 0.6013744 1.5483450 1.0333229 1.2363457
1.8626718 0.5275801 0.2906055 0.8752832

Bernoulli random variables
We can also simulate other random variables such as Bernoulli random variables. A
Bernoulli trial has only two possible outcomes, that is, pass or fail. We can simulate
guessing the right answer on a test using the runif() function. For example, let's
simulate what score a high school student would get if he guessed all 30 questions on
the test when the probability of getting the answer right answer is 0.25. Let's take a
look at this in the following function:

> set.seed(23457)

Simulations

[294]

Since each question can be considered as an independent Bernoulli trial, we can use
the runif() function to simulate the student's answer to each question as follows:

> guessed.correctly <- runif(30)

If the number is less than 0.25, the student guesses correctly because the probability
that a uniform random variable is less than 0.25 is exactly 0.25. Let's take a look at the
results in the following code:

> table(guessed.correctly < 0.25)

FALSE TRUE
 24 6

As you can see, the simulated high school student score would be 6 divided by 30,
or 20 percent.

Alternatively, we could use the rbern() function to simulate the number of questions
the student would answer correctly by using the p argument to specify the probability
of success, or in this case, that he guesses the correct answer. The rbern() function
returns 1 for success with the probability (p) defined by the p argument, and 0 for
failure with the probability of 1 - p. Therefore, a value of 1 means he answered
correctly, and 0 means he did not. Let's take a look at the following code:

> set.seed(23457)
> guessed.correctly <- rbern(n=30, p=.25)
> guessed.correctly
 [1] 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0

Now, we can total the number of correctly answered questions as follows:

> sum(guessed.correctly)
[1] 6

Binomial random variables
We can also use the rbinom() function to simulate Binomial random variables. The
Bernoulli distribution is the success of one trial, whereas the Binomial distribution
represents the sum of all the successes of repeated Bernoulli trials. For example, we
could have used the rbinom() function to simulate the number of questions the
student guessed correctly by setting the size argument to 1 to specify one trial,
as follows:

> set.seed(23457)
> rbinom(n=30, size=1, p=.25)
 [1] 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0

Chapter 8

[295]

Now let's simulate the number of cracked beer bottles per hour in a manufacturing
plant that produces 100 bottles an hour if the probability that a bottle cracks is 0.05. If
the plant is open 10 hours a day, we can simulate the number of cracked beer bottles
each hour with the rbinom() function as follows:

> set.seed(23457)
> rbinom(n=10, size=100, p=0.05)
 [1] 7 4 6 4 5 1 6 8 5 5

Poisson random variables
Poisson random variables are often used to model count data that occurs in an
interval of time by simulating the total number of counts. For example, we could
simulate the number of shower-related injuries in the United States for the next 15
years using the rpois() function. We will assume there are approximately 43,600
cases per year. Let's take a look at the following function:

> rpois(15, 43600)
 [1] 43700 43476 43770 43928 43546 43443 43512 43627 43637 43795 43778
43799 43400 43959 43870

Exponential random variables
Exponential random variables are often used to simulate situations that model the
time until something happens. For example, if we assume the mean time to failure
of a computer is 6 years, we can simulate the lifetime of 25 computers in a classroom
using the rexp() function. In this case, we would set the rate argument to 1/6,
where rate = 1/mean time to failure. Let's take a look at the following function:

> set.seed(453)
> computer.lifetime <- rexp(25, 1/6)

We can plot a histogram of these results with a theoretical density curve using the
dexp() function as follows:

> hist(computer.lifetime, probability=TRUE, col="gray",
main="Exponential curve for computers with a mean time to failure of 6
years", cex.lab=1.5, cex.main=1.5)

We can add the theoretical density curve to the histogram plot with the curve
function, with the add argument set to TRUE, as follows:

> curve(dexp(x, 1/6), add=T)

Simulations

[296]

The result is shown in the following plot:

Monte Carlo simulations
An important part of statistical analysis is to be able to evaluate expectations of
random variables. However, under certain circumstances, it is not feasible to
apply a deterministic algorithm or difficult to obtain a closed-form expression. In
other words, it is difficult or impossible to express the relationship between the
explanatory and response variables under analytical terms using a finite number
of elementary functions such as constants, exponents, n roots, and logarithms. A
practical way to solve these problems is to use Monte Carlo methods, which are a
broad class of computational algorithms that rely on repeated random sampling of
quantities to approximate the distribution of an unknown probability distribution.

Chapter 8

[297]

Methods based on Monte Carlo are used to approximate the properties of random
variables. For example, to estimate mean = E(X) of a distribution using the Monte
Carlo method, we generate m independent and identically distributed copies of X,
namely X1, ..., Xm, and use the sample means iXm = (1 / m) X∑ as an estimate for
the true mean. This is because for large m values, the sample mean Xm gives a good
approximation for E(X) in accordance with the law of large numbers. The law of
large numbers predicts that as the sample size approaches infinity, the center of the
Xm distribution becomes very close to the population mean. Therefore, as m grows

larger, the average of the results from a large number of trials will be close to the
expected value. The law of large numbers also tells us that the density histogram of
many independent samples is close to the density of the underlying distribution.

Central limit theorem
The central limit theorem tells us that, as the sample size tends to approach infinity,
the distribution of Xm resembles a normal distribution. This is also true for any type
of random variables. For example, we will simulate 10,000 random samples from an
exponential distribution with a rate of 0.4 as follows:

> set.seed(983)
> x.exp <- rexp(10000, rate=0.4)
> hist(x.exp, probability=TRUE, col=gray(0.8), main="", cex.axis=1.2,
cex.lab=1.5)

Now let's calculate the mean and standard deviation of this sample distribution
using the following function:

> mean(x.exp)
[1] 2.518002
> sd(x.exp)
[1] 2.492727

Simulations

[298]

The result is shown in the following plot:

As expected, the distribution of the actual random variables is not normal, but let's
see what happens when we plot the mean of 500 sample distributions from 100
random exponential variables with a rate of 0.4.

First, we will generate a numeric vector to store the 500 sample means as follows:

> x.exp.means <- numeric(500)

Then, we will use a for loop to calculate the mean for each simulation as follows:

> for (i in 1:500) {
 x.exp.means[i] <- mean(rexp(100, 0.4))
}

Now let's plot the distribution of the means as follows:

> hist(x.exp.means, probability=TRUE, col=gray(0.8), main="", cex.
axis=1.2, cex.lab=1.5)

Chapter 8

[299]

The result is shown in the following plot:

Notice how the distribution more closely resembles a normal distribution. From
the central limit theorem, we also know that the standard deviation (mσ) of the
approximately normally distributed sample means is related to the standard
deviation of the population (σ) by the following equation:

/m nσ σ=

Now, let's calculate the mean and standard deviation of the sample distribution
of the x.exp.means attribute, as follows:

> mean(x.exp.means)
[1] 2.486572
> sd(x.exp.means)
[1] 0.2389426

In this example, the population mean and standard deviation for the distribution
is 2.5. We can calculate mσ by applying the equation in R as follows:

> 2.5/sqrt(100)
[1] 0.25

Simulations

[300]

So from our example, you can see that our sample mean and standard deviation we
calculated using a Monte Carlo method is very similar to the theoretical values. You
could apply this method to random variables from any other distribution.

Now let's use this Monte Carlo method to solve an actual problem. For example,
let's assume a desktop will fail if either the motherboard or hard drive fails. The
mean time to failure of the motherboard is 8 years and the hard drive is 4 years.
We can estimate the mean and variance of the time to failure by simulating random
exponential variables for the time to failure for each component and applying the
central limit theory.

First, let's simulate the time for the motherboard and hard drive to fail for 10,000
computers as follows:

> motherboard.fail <- rexp(10000, rate=1/8)
> hard.drive.fail <- rexp(10000, rate=1/6)

Then, let's plot the results as follows:

> par(mfrow=c(1,2))

> hist(motherboard.fail, probability=TRUE, col=gray(0.8),
main="Simulated motherboard time to failure", cex.axis=1.2, cex.
lab=1.5)

> hist(hard.drive.fail, probability=TRUE, col=gray(0.8),
main="Simulated hard drive time to failure", cex.axis=1.2, cex.
lab=1.5)

The result is shown in the following plot:

Chapter 8

[301]

Since each index of the motherboard.fail and hard.drive.fail vectors contains
the time to failure for each component of the same computer in our simulation, we
can determine the number of times the computer failed by taking the time to failure
of the first component that failed by taking the index of that component. Let's take a
look at this in the following code:

The ind object stores the index of the computers where the
motherboards failed first.

> ind <- (hard.drive.fail - motherboard.fail) > 0

Now we can get the number of times each computer failed by applying the index
information as follows:

!ind tells us the index of the computers in which the hard drive
failed first

> computer.fail <- c(motherboard.fail[ind], hard.drive.fail[!ind])

Next, we can estimate the mean and variance of the time for each computer to fail
as follows:

> mean(computer.fail)
[1] 3.411752
> var(computer.fail)
[1] 12.00455

Therefore, from our preceding example, we can say that the average time for a
computer to fail is 3.4 years with a variance of 12.0.

Using the mc2d package
You may also want to consider using the mc2d package for Monte Carlo simulations.
The package allows you to perform one-dimensional and two-dimensional Monte
Carlo simulations. This package was originally designed for quantitative risk
analysis in the food domain, but the methods and functions can be applied to a
variety of situations. For more general information about the package, you can
consult the CRAN page available at http://cran.at.r-project.org/web/
packages/mc2d/index.html. You can also download the package at this website or
install it directly in R using the install.packages() function, as follows:

> install.packages("mc2d")

Briefly, we will go through some examples based on the mc2d documentation to
illustrate how to use the functions available in this package to perform Monte Carlo
simulations. For more details, go to http://cran.r-project.org/web/packages/
mc2d/vignettes/docmcEnglish.pdf.

http://cran.at.r-project.org/web/packages/mc2d/index.html
http://cran.at.r-project.org/web/packages/mc2d/index.html
http://cran.r-project.org/web/packages/mc2d/vignettes/docmcEnglish.pdf
http://cran.r-project.org/web/packages/mc2d/vignettes/docmcEnglish.pdf

Simulations

[302]

One-dimensional Monte Carlo simulation
One-dimensional (or first-order) Monte Carlo simulation is a sampling method that
uses a set of random numbers as inputs to evaluate how random variations in the
parameters affect the sensitivity, performance, or reliability of the system that is
being modeled. For example, let's consider the following model to assess the risk
of getting cancer from drinking water contaminated with high levels of arsenic after
excess dumping from agricultural and industrial practices in a town. Here are the
assumptions we make to model the data:

•	 The mean concentration of arsenic in the drinking water of this town is 12
parts per billion (ppb) instead of the maximum recommended dose 10 ppb

•	 The inhabitants that exclusively drink tap water represent 43.2 percent,
inhabitants who drink a mixture of tap and bottled spring water represent
22.6 percent, and those who only drink bottled spring water represent
34.2 percent

•	 An individual will reduce their exposure to arsenic to one third if they
drink a mixture of tap and bottled water, and one fifth if they drink
bottled water exclusively

•	 The variability in the amount of water an individual drinks can be described
by an inverse Gaussian distribution with a mean equal to 6 and shape equal
to 6

•	 The arsenic ingested follows a Poisson distribution
•	 The overall probability of getting cancer (P) from ingesting arsenic is a dose-

response relationship described by a one-hit model, where the probability
of getting cancer each time the individual consumes arsenic is 0.0013

•	 There are no uncertainties in our model

This information can be summarized as follows:

arsenic.conc = 12

drinking.habit = empirical.distribution ({1, 1/3, 1/5}, {0.432, 0.226, 0.342})

tap.water.drank = invgauss.distribution (mean=6, shape=60)

arsenic.consumed = Poisson.distribution(arsenic.conc × arsenic.exposure × arsenic.consumed)

prob.per.hit = 0.0013

P = 1 − (1 − prob.per.hit)n

Chapter 8

[303]

Now that we've laid out the problem and the variables needed to model the situation,
we can use Monte Carlo simulation to determine the risk of developing cancer due
to increased arsenic levels in the water supply of this town. We will use the mc2d
package to perform the Monte Carlo simulations needed to help solve this problem.

Load the packages for the analysis using the following function:

> library("statmod")
> library("mc2d")

Set the default number of simulations as follows:

> ndvar(1001)
[1] 1001
> arsenic.conc <- 12

Use the rempiricalD() function to generate random numbers that will constitute
the empirical distribution for the water drinking habits of the 1,001 individuals. We
use the mcstoc() function to generate the Monte Carlo node (mcnode) associated
with the variable needed to create the Monte Carlo (mc) object later. Let's take a look
at the following code:

> drinking.habit <- mcstoc(func=rempiricalD, values=c(1,1/3,1/5),
prob=c(0.432, 0.226, 0.342))

Use the rinvgauss() function as part of the statmod library to generate the random
numbers from the inverse Gaussian distribution to model the amount of water drank
as follows:

> tap.water.drank <- mcstoc(rinvgauss, mean=6, shape=60)

Calculate the arsenic exposure for each simulated individual as follows:

> arsenic.exposure <- arsenic.conc * drinking.habit * tap.water.drank

Use the rpois() function to generate random numbers using the simulated mean
arsenic exposures (lambda), as follows:

> arsenic.dose <- mcstoc(rpois, lambda=arsenic.exposure)

Calculate the risk from the overall probability of getting cancer from ingesting
arsenic as follows:

> prob.per.hit <- 0.0013
> risk <- 1 - (1 - prob.per.hit)^arsenic.dose

Simulations

[304]

Finally, we use the mc() function to combine all the mcnode objects into a single
(Monte Carlo) mc object to analyze the Monte Carlo simulation results as follows:

> As1 <- mc(drinking.habit, tap.water.drank, arsenic.exposure,
arsenic.dose, risk)

> summary(As1)
drinking.habit :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.583 0.373 0.2 0.2 0.2 0.333 1 1 1 1001 0

tap.water.drank :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 6.03 1.9 2.38 3.17 4.67 5.76 7.02 10.4 16.9 1001 0

arsenic.exposure :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 42.2 31 6.03 8.82 15.7 28.8 65.2 110 203 1001 0

arsenic.dose :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 42.2 31.7 3 7 16 30 64 109 220 1001 0

risk :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max
nsv Na's
NoUnc 0.0526 0.0383 0.00389 0.00906 0.0206 0.0383 0.0799 0.132 0.249
1001 0

The risk summary (the last row of the previous code) informs us that the probability
of getting cancer from arsenic exposure in this town is 0.0526 or 5 percent.

Chapter 8

[305]

Two-dimensional Monte Carlo simulation
In the previous example, we assumed that there were no uncertainties in our model.
However, that might not always be the case. To take into account the variability
in the model, we can apply a two-dimensional (or second-order) Monte Carlo
simulation. It is considered a two-dimensional simulation because it uses one
dimension to account for the variability and the other for the uncertainty in the
parameters used for the evaluation. In this case, the variability and uncertainty
distributions are simulated separately. To implement the 2D Monte Carlo method,
the mc2d package uses the mcnode objects, which are arrays of nsv × nsu × nvariates
dimensions, where nsv represents the dimensions of variability, nsu represents the
dimensions of uncertainty, and nvariates represents the number of variates. Each
mcnode is associated with a particular variable, as we saw earlier when we used
the mcstoc() function to generate the drinking.habit, tap.water.drank, and
arsenic.dose objects. There are four types of nodes that we can create, which are
given in the following code:

•	 V for variability, which are arrays of nsv × 1 × nvariates dimensions
•	 U for uncertainty, which are arrays of 1 × nsu × nvariates dimensions
•	 VU for variability and uncertainty, which are arrays of nsv × nsu × nvariates

dimensions
•	 0 for neither variability nor uncertainty, which are arrays of 1 × 1 × nvariates

dimensions

We can specify the type of node to be built using the type argument in the
mcstoc() function. By default, this argument was set to "V" in our one-dimensional
Monte Carlo simulation. You can find more details on the mcnode object using the
help(mcnode) function.

Simulations

[306]

Now, let's go back to our previous example and apply the two-dimensional Monte
Carlo simulation method to estimate the risk of getting cancer after ingesting
arsenic from the town's tap water, if we can't make the assumption that there are
no uncertainties in our models. For example, let's say we don't know the exact
concentration of arsenic in the town's drinking water but know that the uncertainty
of the estimate can be represented by a normal distribution with a mean equal to
2 and standard deviation of 0, and that the probability of getting cancer each time
the individual consumes arsenic is not exactly 0.0013, but can be represented by a
uniform distribution between 0.00001 and 0.0017. Using this information, we can
make the following modifications to our model:

arsenic.conc ~ normal.distribution(12, mean=2, sd=0.5)

drinking.habit ~ empirical.distribution({1, 1/3, 1/5}, {0.432, 0.226, 0.342})

tap.water.drank ~ invgauss.distribution(mean=6, shape=60)

arsenic.consumed ~ Poisson.distribution(arsenic.conc × arsenic.exposure × arsenic.
consumed)

prob.per.hit ~ uniform.distribution(min=0.00001, max=0.0017)

P = 1 − (1 − prob.per.hit)n

In the revised model, arsenic.conc and prob.per.hit objects are represented
by uncertainty distributions, and drinking.habit and tap.water.drank are
represented by variability distributions.

Let's go over the steps to estimate the risk of developing cancer due to increased
arsenic levels in the town's water supply, as follows:

> set.seed(223)

First, we set the number of iterations in the uncertainty and variability dimension
with the ndunc() and ndvar() functions, respectively, as follows:

> ndunc(101)
[1] 101
> ndvar(1001)
[1] 1001

Chapter 8

[307]

Then, we use the rnorm() function to generate the random variables to model the
uncertainty associated with the arsenic concentration. We use the mcstoc() function
to generate the mcnode object with type="U", since the distribution represents
uncertainty in the arsenic.conc parameter, as follows:

> arsenic.conc <- mcstoc(rnorm, type="U", mean=2, sd=0.5)

Now, we can repeat the same steps as before with the exception that we also
specify the mcnode type.

Since the drinking.habit and tap.water.drank parameters are associated
with variability only, we set the type to variability, or V, in the mcstoc() function
as follows:

> drinking.habit <- mcstoc(func=rempiricalD,type ="V",
values=c(1,1/3,1/5), prob=c(0.432, 0.226, 0.342))

> tap.water.drank <- mcstoc(rinvgauss, type ="V", mean=6, shape=60)

Then, we calculate the arsenic exposure for each simulated individual as follows:

> arsenic.exposure <- arsenic.conc * drinking.habit * tap.water.drank

Since arsenic.consumed is a function of arsenic.conc, drinking.habit, and
tap.water.drank, we need to take into account both the variability (in the first
dimension) and uncertainty (in the second dimension) of this parameter. Hence,
we set the type to variability and uncertainty, or "VU", in the mcstoc() function
as follows:

> arsenic.dose <- mcstoc(rpois, type="VU", lambda=arsenic.exposure)

Since the prob.per.hit parameter is associated with uncertainty, we set the type
to uncertainty, or "U", in the mcstoc() function as follows:

> prob.per.hit <- mcstoc(runif, type="U", min=0.00001, max=0.0017)

Calculate the risk from the overall probability of getting cancer from ingesting
arsenic as follows:

> risk <- 1 - (1 - prob.per.hit)^arsenic.dose

Finally, we create an mc object to analyze the results as follows:

> As1 <- mc(arsenic.conc, drinking.habit, tap.water.drank, arsenic.
exposure, arsenic.dose, prob.per.hit, risk)

Simulations

[308]

We can use the print() function to summarize the results and conditions used to
build the mcnode object as follows:

We use digits=2 to specify the number of minimum significant digits

> print(As1, digits=2) #output truncated, outm removed
 node mode nsv nsu nva variate min mean
median max Nas type
1 arsenic.conc numeric 1 101 1 1 5.41e-01 2.034117
2.090518 3.2362 0 U
2 drinking.habit numeric 1001 1 1 1 2.00e-01 0.568165
0.333333 1.0000 0 V
3 tap.water.drank numeric 1001 1 1 1 2.08e+00 5.959144
5.648943 16.5622 0 V
4 arsenic.exposure numeric 1001 101 1 1 2.24e-01 6.979608
4.463318 47.0704 0 VU
5 arsenic.dose numeric 1001 101 1 1 0.00e+00 6.983324
5.000000 53.0000 0 VU
6 prob.per.hit numeric 1 101 1 1 1.21e-05 0.000923
0.000977 0.0017 0 U
7 risk numeric 1001 101 1 1 0.00e+00 0.006373
0.003651 0.0739 0 VU

We can get additional statistical information for each variable using the summary()
function as follows:

> summary(As1)
arsenic.conc :
 NoVar
median 2.091
mean 2.034
2.5% 0.918
97.5% 2.857

drinking.habit :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.568 0.37 0.2 0.2 0.2 0.333 1 1 1 1001 0

tap.water.drank :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 5.96 1.87 2.08 3.17 4.62 5.65 6.99 10.2 16.6 1001 0

arsenic.exposure :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's

Chapter 8

[309]

median 7.17 5.51 0.868 1.499 2.72 4.49 11.03 19.40 30.4 1001 0
mean 6.98 5.36 0.844 1.458 2.65 4.37 10.73 18.88 29.6 1001 0
2.5% 3.15 2.42 0.381 0.658 1.19 1.97 4.84 8.52 13.4 1001 0
97.5% 9.80 7.52 1.186 2.048 3.72 6.14 15.07 26.52 41.6 1001 0

arsenic.dose :
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 7.17 6.16 0 0.000 2.00 5.00 11.0 22.0 36.0 1001 0
mean 6.98 5.99 0 0.139 2.35 4.88 10.7 21.4 34.9 1001 0
2.5% 3.13 3.02 0 0.000 1.00 2.00 5.0 11.0 18.0 1001 0
97.5% 9.97 8.29 0 1.000 3.50 7.00 15.5 29.5 51.0 1001 0

prob.per.hit :
 NoVar
median 9.77e-04
mean 9.23e-04
2.5% 6.15e-05
97.5% 1.66e-03

risk :
 mean sd Min 2.5% 25% 50% 75%
97.5% Max nsv Na's
median 0.005865 0.004900 0 0.000000 0.001972 0.003932 0.008702
0.01733 0.02974 1001 0
mean 0.006373 0.005441 0 0.000124 0.002158 0.004504 0.009719
0.01944 0.03168 1001 0
2.5% 0.000484 0.000405 0 0.000000 0.000108 0.000331 0.000723
0.00144 0.00226 1001 0
97.5% 0.013516 0.011443 0 0.001396 0.004754 0.009488 0.020378
0.04084 0.06840 1001 0

As you can see, when taking into account the uncertainty in certain parameters of the
model, the risk of getting cancer from the arsenic levels in this town's water supply
decreases to 0.006373 or 0.6 percent. As you can see, in this model, the uncertainty
is taken into account, since the confidence interval of the mean [0.04 percent, 1.3
percent] is much lower than the precedent case, which makes sense as the expected
value for prob.per.hit is much lower than in the deterministic case.

Simulations

[310]

Additional mc2d functions
The mc2d package has a lot of other useful functions to help perform and analyze
Monte Carlo simulations in R. We will highlight a few here, but I deeply encourage
you to read more about the package and its features in the mc2d documentation at
http://cran.r-project.org/web/packages/mc2d/vignettes/docmcEnglish.pdf.

The mcprobtree() function
The mcprobtree() function allows you to build an mcnode object of a mixture
distribution of variability and/or uncertainty. For example, suppose we were 85
percent sure that the mean concentration of the arsenic concentration in the town's
water supply followed a normal distribution with a mean equal to 12 and standard
deviation equal to 0.5, and the other 15 percent sure that the mean concentration
followed a uniform distribution with a minimum value of 10 and maximum value of
12.7. In this case, we could simulate each possibility separately and then combine the
two using the mcprobtree() function.

We create two separate mcnode objects representing the uncertainty associated with
the arsenic concentration, as follows:

> arsenic.conc1 <- mcstoc(rnorm, type="U", mean=12, sd=0.5)
> arsenic.conc2 <- mcstoc(runif, type="U", min=10, max=12.7)

Since we know the probability that the mean arsenic concentration will fall under
arsenic.conc1 85 percent of the time and under arsenic.conc2 15 percent of
the time, we can determine when it falls in either distribution using the rbern()
function to simulate random Bernoulli variables if we assume that a value of "1"
means the concentration came from arsenic.conc1 and "0" means it came from
arsenic.conc2. Then, use the mcprobtree() function to create the mcnode object for
the arsenic.conc parameter, as follows:

> arsenic.distr <- mcstoc(rbern, type="U", prob=0.85)

> arsenic.conc <- mcprobtree(arsenic.distr, list("0"=arsenic.
conc1,"1"=arsenic.conc2), type="U")

The cornode() function
The cornode() function is used to specify a correlation between two or more
variables. More specifically, it builds a rank correlation structure between the mcnode
objects using the Iman and Connover method. For example, suppose there was
a study that showed that there is 50 percent correlation between an individual's
water drinking habit and the amount of water he consumes. We can include
this relationship in our risk estimation with the cornode() function by setting
target=0.5, as follows:

http://cran.r-project.org/web/packages/mc2d/vignettes/docmcEnglish.pdf

Chapter 8

[311]

> cornode(drinking.habit, tap.water.drank, target=0.5, result=TRUE,
seed=223)

output Rank Correlation per variates
variates: 1
[1] 1.0000000 0.4728949 0.4728949 1.0000000
$drinking.habit
 node mode nsv nsu nva variate min mean median max Nas type outm
1 x numeric 1001 1 1 1 0.2 0.568 0.333 1 0 V each

$tap.water.drank
 node mode nsv nsu nva variate min mean median max Nas type
outm
1 x numeric 1001 1 1 1 2.08 5.96 5.65 16.6 0 V
each

Note that the result argument allows us to include the output rank
correlation per variates in the printed output.

The mcmodel() function
Instead of going through all the steps we went through to generate our As1 model in
our two-dimensional Monte Carlo simulation example, we could have done it all in
one step using the mcmodel() function as follows:

modelAs1 <- mcmodel({
arsenic.conc <- mcstoc(rnorm, type="U", mean=2, sd=0.5)

drinking.habit <- mcstoc(func=rempiricalD,type ="V",
values=c(1,1/3,1/5), prob=c(0.432, 0.226, 0.342))

tap.water.drank <- mcstoc(rinvgauss, type ="V", mean=6, shape=60)

arsenic.exposure <- arsenic.conc * drinking.habit * tap.water.drank

arsenic.dose <- mcstoc(rpois, type="VU", lambda=arsenic.exposure)

prob.per.hit <- mcstoc(runif, type="U", min=0.00001, max=0.0017)

risk <- 1 - (1 - prob.per.hit)^arsenic.dose
mc(arsenic.conc, drinking.habit, tap.water.drank, arsenic.exposure,
arsenic.dose, prob.per.hit, risk)

})

Simulations

[312]

Note that our code must be written within the {} brackets and end
with an mc() function.

The evalmcmod() function
Once we have generated our mcmodel object with the mcmodel() function, we can
evaluate our model with the evalmcmod() function. We specify the number of
simulations for the variability dimension with the nsv argument and the number of
simulations in the uncertainty dimension with the nsu argument. We can also specify
the seed with the seed argument as follows:

> As1 <- evalmcmod(modelAs1, nsv=1001, nsu=101, seed=223)
> print(As1)
 node mode nsv nsu nva variate min mean
median max Nas type outm
1 arsenic.conc numeric 1 101 1 1 5.41e-01 2.034117
2.090518 3.2362 0 U each
2 drinking.habit numeric 1001 1 1 1 2.00e-01 0.568165
0.333333 1.0000 0 V each
3 tap.water.drank numeric 1001 1 1 1 2.08e+00 5.959144
5.648943 16.5622 0 V each
4 arsenic.exposure numeric 1001 101 1 1 2.24e-01 6.979608
4.463318 47.0704 0 VU each
5 arsenic.dose numeric 1001 101 1 1 0.00e+00 6.983324
5.000000 53.0000 0 VU each
6 prob.per.hit numeric 1 101 1 1 1.21e-05 0.000923
0.000977 0.0017 0 U each
7 risk numeric 1001 101 1 1 0.00e+00 0.006373
0.003651 0.0739 0 VU each

This is also useful in cases where we want to try a different number of simulations
in the dimensions of variability and uncertainty. Just bear in mind that the more
simulations you run in both dimensions, the longer it will take for your program
to run. So, for your first test, you might want to limit nsv to 1000 and nsu to 100 to
have an idea of what the results look like before running nsv and nsu at much higher
numbers, as given in the following code:

> As2 <- evalmcmod(modelAs1, nsv=100, nsu=10, seed=223)
> As3 <- evalmcmod(modelAs1, nsv=1000, nsu=100, seed=223)
> As4 <- evalmcmod(modelAs1, nsv=10000, nsu=1000, seed=223)

Chapter 8

[313]

Data visualization
You can use the hist() function to visualize the histograms for the different
parameters that make up an mc object as follows:

> hist(As1)

The result is shown in the following plot:

Simulations

[314]

Note that in the most recent version (0.1-15) of the mc2d package, the
uncertainty and variability distributions are collapsed for "VU" type
mcnode objects.

You can also use the plot() function to visualize the cumulative empirical
distribution for your results as follows:

> plot(As1)

The result is shown in the following plot:

Chapter 8

[315]

You can also use the hist() and plot() functions for individual mcnode objects.
For example, we could plot a histogram of the prob.per.hit object as given in the
following code:

> hist(prob.per.hit)

The result is shown in the following plot:

We could also plot the risk mcnode object using the plot() function as follows:

> plot(risk)

Simulations

[316]

The result is shown in the following plot:

Multivariate nodes
If you go back to our example estimating the risk of developing cancer due to
increased arsenic levels in the town's water supply, you will realize that all the
variables in our model were univariates. However, the mc2d package also allows us
to perform Monte Carlo simulation on multivariate data by specifying the number
of variates with nvariates in the mcstoc() function. This is particularly useful
for multivariate distributions including Dirichlet distribution and multinomial or
multivariate normal distribution. Let's take a look at the following code:

> parameter1 <- mcstoc(rdirichlet, type="VU", nvariates=4,
alpha=c(1,4,5,7))

> parameter1
 node mode nsv nsu nva variate min mean median max Nas
type outm
1 x numeric 1001 101 4 1 4.08e-07 0.0586 0.0423 0.530 0
VU each
2 x numeric 1001 101 4 2 8.53e-03 0.2351 0.2244 0.758 0
VU each

Chapter 8

[317]

3 x numeric 1001 101 4 3 2.13e-02 0.2943 0.2858 0.805 0
VU each
4 x numeric 1001 101 4 4 4.64e-02 0.4120 0.4081 0.869 0
VU each

> mcstoc(rmultinomial,type="VU", nvariates=4, size=100,
prob=parameter1)
 node mode nsv nsu nva variate min mean median max Nas type outm
1 x numeric 1001 101 4 1 0 5.88 4 55 0 VU each
2 x numeric 1001 101 4 2 0 23.59 22 80 0 VU each
3 x numeric 1001 101 4 3 0 29.36 28 86 0 VU each
4 x numeric 1001 101 4 4 2 41.17 41 91 0 VU each

You may also require multivariate nodes when you want to test two separate
situations. Going back to the example of assessing the risk of developing cancer
due to increased arsenic levels in the town's water supply, let's say we want to test
both models for the uncertainty associated with the mean arsenic concentration
separately. We will use the arsenic.conc1 and arsenic.conc2 mcnode objects
we created earlier in the The mcprobtree() function section.

To create a bivariate mcnode for the arsenic concentration, we will use the mcdata()
function that is similar to the mcstoc() function, except that it allows you to create
a mcnode object from vectors, arrays, or mcnodes instead of random variable
generating functions. Let's take a look at this in the following code:

> arsenic.conc <- mcdata(c(arsenic.conc1, arsenic.conc2), type="U",
nvariates=2)

Let's use the mcmodel() function to create the mc object to assess the risk of getting
cancer from ingesting arsenic from the town's water supply in both situations,
bearing in mind that the arsenic.conc parameter should be written in the same
way as the previous code. Let's take a look at this in the following code:

> modelAs1.Bivariate <- mcmodel({

arsenic.conc <- mcdata(c(arsenic.conc1, arsenic.conc2), type="U",
nvariates=2)

drinking.habit <- mcstoc(func=rempiricalD,type ="V",
values=c(1,1/3,1/5), prob=c(0.432, 0.226, 0.342))

tap.water.drank <- mcstoc(rinvgauss, type ="V", mean=6, shape=60)

arsenic.exposure <- arsenic.conc * drinking.habit * tap.water.drank

Simulations

[318]

arsenic.dose <- mcstoc(rpois, type="VU", lambda=arsenic.exposure,
nvariates=2)

prob.per.hit <- mcstoc(runif, type="U", min=0.00001, max=0.0017)

risk <- 1 - (1 - prob.per.hit)^arsenic.dose

mc(arsenic.conc, arsenic.dose, risk)

})

> As1.Bivariate <- evalmcmod(modelAs1.Bivariate, nsv=1001, nsu=101,
seed=223)

> print(As1.Bivariate)
 node mode nsv nsu nva variate min mean median
max Nas type outm
1 arsenic.conc numeric 1 101 2 1 11.2 12.0821 12.0505
13.423 0 U each
2 arsenic.conc numeric 1 101 2 2 10.0 11.3572 11.2740
12.632 0 U each
3 arsenic.dose numeric 1001 101 2 1 0.0 41.2056 27.0000
214.000 0 VU each
4 arsenic.dose numeric 1001 101 2 2 0.0 38.7404 26.0000
204.000 0 VU each
5 risk numeric 1001 101 2 1 0.0 0.0344 0.0210
0.303 0 VU each
6 risk numeric 1001 101 2 2 0.0 0.0323 0.0196
0.272 0 VU each

> summary(As1.Bivariate)

arsenic.conc :
[[1]]
 NoVar
median 12.1
mean 12.1
2.5% 11.3
97.5% 12.9

[[2]]
 NoVar
median 11.3
mean 11.4
2.5% 10.1

Chapter 8

[319]

97.5% 12.5

arsenic.dose :
[[1]]
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 41.2 31.9 3.0 7.00 15.0 27.0 64.0 116 181 1001 0
mean 41.2 32.0 2.6 6.97 15.6 27.3 63.7 116 181 1001 0
2.5% 38.6 29.9 0.5 6.00 14.5 26.0 59.5 109 164 1001 0
97.5% 44.0 34.0 4.0 8.00 17.0 29.5 68.0 124 206 1001 0

[[2]]
 mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 38.5 30.0 2.00 6.00 14.0 26.0 60 109 169 1001 0
mean 38.7 30.1 2.13 6.41 14.6 25.8 60 109 169 1001 0
2.5% 34.2 26.7 0.00 5.00 13.0 23.0 53 98 142 1001 0
97.5% 42.9 33.2 4.00 8.00 16.0 29.0 67 121 198 1001 0

risk :
[[1]]
 mean sd Min 2.5% 25% 50% 75%
97.5% Max nsv Na's
median 0.03352 0.0253 1.84e-03 0.005909 0.01286 0.02258 0.05185
0.09198 0.1477 1001 0
mean 0.03437 0.0259 2.22e-03 0.006047 0.01336 0.02329 0.05323
0.09407 0.1422 1001 0
2.5% 0.00269 0.0021 1.71e-05 0.000438 0.00101 0.00179 0.00411
0.00765 0.0112 1001 0
97.5% 0.06503 0.0485 5.88e-03 0.011723 0.02519 0.04428 0.10102
0.17740 0.2706 1001 0

[[2]]
 mean sd Min 2.5% 25% 50% 75%
97.5% Max nsv Na's
median 0.03396 0.02557 0.00162 0.005210 0.013199 0.02265 0.05255
0.09183 0.1345 1001 0
mean 0.03229 0.02439 0.00184 0.005484 0.012487 0.02199 0.05009
0.08863 0.1328 1001 0
2.5% 0.00252 0.00196 0.00000 0.000426 0.000949 0.00167 0.00392
0.00716 0.0112 1001 0
97.5% 0.06178 0.04635 0.00490 0.011360 0.023585 0.04270 0.09702
0.16840 0.2488 1001 0

Simulations

[320]

Using this approach, we can easily evaluate the effects of both situations for
the uncertainty associated with the estimate for the mean arsenic concentration
present in the town's water supply. As you can see, the risk associated with the
situation represented by arsenic.conc1 is 0.03437 with a confidence interval of
[0.00269, 0.06503], and the situation represented by arsenic.conc2 is 0.03229 with
a confidence interval of [0.00252, 0.06503]. As you can see, the values are quite
close with over-lapping confidence intervals, and so the estimated risk does not
significantly differ between the two situations tested.

Monte Carlo integration
Solving integrals is an important mathematical concept related to areas and other
quantities modeled by a function. Informally, a definite integral is defined as the
signed area of the region outlined by the function f of a real variable x between a
and b. Let's consider a simple function that is integrable between the interval [a, b]
defined by the integral:

() ()
x

a
F x f t dt= ∫

The Monte Carlo integration method relies on the law of large numbers to
approximate the integral using the Mean Value theorem for integrals. If f(x) is
continuous on the [a, b] interval, then there must exist a value u in [a, b] such that
we can apply the following formula:

() () ()F b F a
F u

b a
−

′=
−

This formula can be rewritten as follows:

() () ()()F b F a F c b a′− = −

Since the fundamental theorem of calculus implies F'(x) = f(x), we can rewrite the
equation as follows:

() ()()
b

a
f t dt f c b a= −∫

Chapter 8

[321]

The preceding formula is the first mean value theorem, where f(c) is the average
value of f(x) on the [a, b] interval. Since we can use Monte Carlo simulation to
obtain the average value of f(x) on the [a, b] interval, we can write the sample
mean as follows:

() () 1b

i a
E f U f u du

b a
=   −∫

In the preceding formula, ()iE f U   is the sample mean of the simulated
distribution of independent uniform random variables U1, U2, …, Un on the
interval [a, b]. This formula can be rewritten as follows:

() () ()
b

ia
f u du b a E f U= − ∗   ∫

Therefore, the integer can be approximated by b – a times the sample mean of
our simulated distribution on the [a, b] interval. Now, let's apply this method to

approximate the integral for
4 2

0
x dx∫ as follows:

> u <- runif(100000, min=0, max=4)
> mean(u^2)*(4-0)
[1] 21.34383

Let's check the solution using the integrate() function in R. The integrate
function allows us to calculate the integral by adaptive quadrature of functions
of one variable over a finite or infinite interval. To use this function, we must first
define f(x) and save it in the integrand object as follows:

> integrand <- function(x) {x^2}

Then, we use the integrate() function with our integrand function and set the
interval [a, b] and lower and upper limit with the lower and upper arguments,
respectively, as follows:

> integrate(integrand, lower = 0, upper = 4)
21.33333 with absolute error < 2.4e-13

When we solve the integral, the exact answer is as follows:

() 2f x x=

()
3

3
xf x dx =∫

Simulations

[322]

()
34

0

4 64 21.33333
3 3

f x dx = = =∫

Now, let's solve the integral ()
6

3
cos x dx∫ using both methods.

Using the Monte Carlo method, we can write the following code:

> u <- runif(100000, min=3, max=6)
> mean(cos(u))*(6-3)
[1] -0.4214223

Using the integrate() function, we can write the following code:

> integrand <- function(x) {cos(x)}
> integrate(integrand, lower=3, upper=6)
-0.4205355 with absolute error < 2.1e-14

The exact solution is given in the following formula:

() ()cosf x x=

() ()sinf x dx x=∫

() () ()
6

3
sin 6 sin 3 0.4205355f x dx = − = −∫

As you can see, the solution we obtained using the Monte Carlo method (-0.4214223)
is quite close to those obtained using the integrate() function and by solving the
integral by hand (-0.4205355).

Multiple integration
We can also use the Monte Carlo method to find the approximate solution to
multiple integrals. Multiple integrals are the generalization of definite integrals
of two or more real variables. For example, we could approximate the value of
a double integral as follows:

()
1 1

0 0
,f x y dxdy∫ ∫

Chapter 8

[323]

Using Monte Carlo simulation, we can create a large set of independent uniform
random variables, with x defined as U1, U2, …, Un and y defined as V1, V2, …, Vn,
and then take the average of the two sample means; since the law of large numbers
implies the following formula:

() ()
1 1

0 0
1

,
lim ,

n
i i

n i

f U V
f x y dxdy

n→∞
=

=∑ ∫ ∫

For example, let's approximate the integral for ()
1 1

0 0
sin x y+∫ ∫ :

#By default min=0 and max=1 in the runif()
> U <- runif(100000)
> V <- runif(100000)
> mean(sin(U + V))
[1] 0.7723399

Now let's adapt this approach to approximate the integral of ()
7 5

3 1
sin x y dxdy+∫ ∫

as follows:

> U <- runif(100000, min=3, max=7)
> V <- runif(100000, min=1, max=5)
> UV.mean <- mean(sin(U+V))

Next, we need to compensate for the joint density of U and V by multiplying with
(7 – 3)(5 – 1) or 16, as follows:

> UV.mean*16
[1] 3.235

More generally, we could say for (),
b d

a c
f x y dxdy∫ ∫ , we need to multiply the

average of the sample means by (b – a)(d – c).
Let's test our solution using the adaptIntegrate() function from the cubature
package, which is an extension of the basic integrate() function in R. You can
install the package as follows:

> install.packages("cubature")

Load the library using the following function:

> library("cubature")

Simulations

[324]

To define the separate variables such as x and y, the adaptIntegrate() function
requires that you use a vector, in this case x, and specify a separate index for each
variable as follows:

> f <- function(x) { sin(x[1]+ x[2]) }
> adaptIntegrate(f, lowerLimit = c(3, 1), upperLimit = c(7, 5))
$integral
[1] 3.272092

$error
[1] 3.16107e-05

full output truncated

As you can see, the estimate we got by applying the Monte Carlo method (3.235) was
very close to the value we obtained using the adaptIntegrate() function (3.272092).

Other density functions
So far, we have showed you how to estimate integrals by simulating independent
random variables from the uniform distribution. We used the uniform density

defined as f(u) = 1/(b – a) to estimate our integrals. To approximate
4 2

0
x dx∫ , we run

the following lines of code:

> u <- runif(100000, min=0, max=4)
> mean(u^2)*(4-0)
[1] 21.34182

However, if the density of X is h(x), then we can also write the sample mean
as follows:

()
()

()
() () ()f X f x

E h x dx f x dx
h X h x
   

= =   
   

∫ ∫

Therefore, we can approximate the integral by the sample averages of ()
()

f X
h X

. So we
can also estimate the integral as follows:

> mean(u^2/dunif(u, min=0, max=4))
[1] 21.34182

Chapter 8

[325]

Now let's apply this method to estimate the integral
1

xe dx
π

∫ :

> u <- runif(100000, min=1, max=pi)
> mean(exp(u)/dunif(u, min=1, max=pi))
[1] 20.42738

Instead of using the uniform distribution for Monte Carlo integration, we can also

use other distributions. For example, let's estimate the integral 1

xe dx
∞

∫ using the
rexp() function to simulate random variables from the exponential distribution.

First, we need to rewrite the integral in a form so that we can use the default settings
for the rexp() function as follows:

()1

1 1

xxe dx e dx
∞ ∞ − +− =∫ ∫

Let's take a look at this in the following lines of code:

> u <- rexp(10000)
> mean(exp(-(u+1))/dexp(u))
[1] 0.3678794

Now let's check the solution with the integrate() function as follows:

> f <- function(x) { exp(-x) }
> integrate(f, lower=1, upper=Inf)
0.3678794 with absolute error < 2.1e-05

Monte Carlo integration is only successful when the ratio of () ()/f X h X
converges. So try to pick h(x), which will keep the ratio roughly constant and avoid
situations where () ()/g x f x can be arbitrarily large.

Rejection sampling
So far, we have showed you how to simulate data from well-defined distributions.
However, you may also wish to simulate data from an unknown distribution. The
first method we will show you to simulate random variables is through rejection
sampling. This method is based on the idea that if you want to sample a random
variable from a target distribution, you just have to sample the region under the
curve of its density function. For example, let's consider a triangle distribution
defined by the following density function:

() 2 2f x x x= < −

Simulations

[326]

First, let's plot the function in R by creating a triangle() function, as follows:

> triangle <- function(x) {(abs(x) < 2) * (2 - abs(x))}

Now, let's create a vector x to contain the x values and plot the values as follows:

> x<-seq(from=-3,to=3,by=0.001)
> plot(x, triangle(x), type = "l", ylim = c(0,2), ylab =
as.character("f(x)=(|x < 2|)(2-|x|)"), cex.lab=1.3)

The result is shown in the following plot:

Now if we would like to generate pseudorandom variables from this triangular
function, we just have to select points that fall below the curve. To simplify the
process, we could draw a rectangle in which the triangle will be fully contained in
that rectangle. To illustrate this point, let's write a rectangle() function and plot
a rectangle onto our triangle distribution as follows:

> rectangle <- function(x) {(abs(x) < 2) * 2 }
> lines(x, rectangle(x), lty = 2)

Chapter 8

[327]

The result is shown in the following plot:

The preceding plot shows us that a subset of uniformly distributed points in this
rectangle will be uniformly distributed in the triangle density region. We can
simulate values from this rectangle by considering it as a uniform continuous
distribution on the interval [-2, 2]. Therefore, a strategy to get random variables from
the triangular region is to simulate random variables from the rectangular region
using the uniform distribution runif() function and then reject values that are not
part of the triangular region. Let's plot the region from which we want to reject the
value using the following code:

#To produce shaded dark gray area on the curve
> y1 <- triangle(x)
> y2 <- rectangle(x)
> polygon(c(x,rev(x)),c(y2,rev(y1)),col="darkgray")

Simulations

[328]

The result is shown in the following plot:

Since the triangular region occupies half the area of the rectangle, we expect
50 percent of the values simulated in the rectangular region to be present in
the triangular region. So let's first simulate points in the rectangle where the
coordinates will be (Rect1[i], Rect2[i]):

For the x coordinates, which are between -2 and 2
> Rect1 <- runif(100000, min=-2, max=2)

 # For the y coordinates, which are between 0 and 2
> Rect2 <- runif(100000, min=0, max=2)

Now let's remove all points that are part of the shaded area and store the remaining
values in tri.random, as follows:

tri.random <- Rect1[Rect2 < (abs(Rect1) < 2) * (2 - abs(Rect1)))

Chapter 8

[329]

The tri.random code contains the x values for all the points present in the triangular
region. We can check our assumption that 50 percent of our simulated points were
maintained by checking the length of tri.random using the length() function.
Since we simulated 100,000 points, we expect 50,000 points to remain:

> length(tri.random)
[1] 50176

As expected, we retained approximately 50.2 percent of the points.

Essentially, we use the density g of a well-characterized distribution to generate
random variables from the unknown distribution with density f so long as f(x) ≤
kg(x) for all values of x, where k is a normalizing constant. Therefore, we can obtain a
sample X from f by:

•	 Generating a sample Y from g using the density function g(x)
•	 Generating a random number U from the uniform distribution on [0, 1]
•	 If U ≤ f(Y)/cg(Y), we accept the value of Y as a sample X from f

We can rewrite the conditional statement in the last point as U*c*g(Y) ≤ f(Y). Hence,
when g(x) is uniform, we can simplify the if statement to cU < f(Y) because the
density of the uniform distribution on [1, 0] is 1.

To illustrate these steps, let's apply rejection sampling to simulate values from a beta
distribution with shape1=2 and shape2=2.

First, let's plot the beta distribution using the following code to have an idea of what
it looks like:

> curve(dbeta(x, shape1=2, shape2=2), cex.lab=1.4)

Simulations

[330]

The result is shown in the following plot:

Since the values on the y-axis of our beta distribution function don't go over 1.5, we
will set our constant to 1.5 as follows:

> c <- 1.5

Now we will simulate values from g(x), which in this case is a uniform distribution,
as follows:

> Y <- runif(300,min=0,max=1)

Then, we will simulate U values for the uniform distribution on the interval [0, 1] as
given in the following code:

> u <- runif(300,min=0,max=1)

We determine which points are below our region of interest defined by our beta
distribution by testing if U*c*g(Y) ≤ f(Y) as follows:

> below <- which(c*u*dunif(Y,min=0,max=1) <= dbeta(Y,2,2))

Chapter 8

[331]

Since our density function is uniform, we can also write the function as follows:

below <- which(M*u <= dbeta(r,2,2))

We finish by plotting the beta curve with the points we simulated. The points we
accepted are marked as "+" and those we rejected are marked as "-", as given in the
following code:

> curve(dbeta(x,2,2),from=0,to=1,ylim=c(0,c), cex.lab=1.4)
> points(Y[below],c*u[below],pch="+")
> points(Y[-below],c*u[-below],pch="-")

The result is shown in the following plot:

Alternatively, you could plot a histogram of Y[below] with the hist() function
as follows:

> hist(Y[below])
#Plot not shown

Simulations

[332]

Importance sampling
Importance sampling is a method to study one distribution while sampling from
another. Essentially, it performs biased sampling to generate pseudorandom
numbers more sparingly. For example, instead of taking the points from a uniform
distribution, the points are chosen from a distribution that concentrates the points
in the region of interest of the function being integrated, thus focusing on the most
important samples. The formula for the integrand can be written as follows:

() () () () ()
b b b

a a a

f ff x dx x g x dx x dG x
g g

= =∫ ∫ ∫

To perform importance sampling, we need to do the following:

•	 Generate n random numbers (x1, x2, …, xi) approximately g(x)
•	 Introduce weights f(x)/g(x) and estimate the integrand as

() () ()
()

b

a

f xf x g x dx E
g g x

 
=  

 
∫ , where x is approximately equal to g

•	 Compute the Monte Carlo estimate for the integrand as follows:

()
() 1 2

1

1 , , , ,
n

n
i

f x
where X X X g

n g x=

∼∑ …

For example, let's estimate the integral
1

0

xe∫ using this method.

Using the truncated exponential sampling distribution (λ = 0.65) truncated at T = 1,
we can write:

() (), 0,1
1

x

T

eg x where x
e

λ

λ

λ −

−= ∈
−

() xf x e−=

Hence, ()
()

f x
g x

 becomes ()0.65 1 0.650.7 / 1

x

x

e
e e

−

− − ∗−
 and the integral can be estimated

as
()
()1

1 n

i

f x
n g x=∑ .

Chapter 8

[333]

Now implement this in R as follows:

> set.seed(23564)
> n <- 100000
> T <- 1
> lambda <- 0.65
> Rand.num <- runif(n,0,1)*(1-exp(-T*lambda))
> x = -log(1-Rand.num)/lambda
> f<-exp(-x)
> g<-lambda*exp(-lambda*x)/(1-exp(-T*lambda))
> fg<-f/g
> sum(fg)/n
[1] 0.6320664

Now let's see what we get using the standard Monte Carlo integration:

> set.seed(23564)
> X <- runif(100000, 0, 1)
> Y <- exp(-X)
> mean(Y)
[1] 0.6319162

Although both methods produce similar results, the estimate using the importance
method is much closer to the true value of 11 0.63212e−− ≈ . Let's compare the
variance of the two sample distributions using the following lines of code:

Importance Sampling
> var(fg)
[1] 0.003894969
#Standard Monte Carlo Integration
> var(Y)
[1] 0.03267516

As you can see, we achieve a much better estimation using the importance sampling
method; we obtain 8.4 times less variance than with simple Monte Carlo integration.

Simulations

[334]

Simulating physical systems
As a brief introduction to simulating physical systems, we will show you how to
simulate Brownian motion in R. In physics, Brownian motion is defined as the
random movement of particles suspended in liquid or gas caused by the collision
of these particles in its surrounding medium. As a result, Brownian motion can be
seen as a stochastic process continuous in time. We can simulate this process by
successively adding random variables from a normal distribution, where the total
number of normal random variables to be simulated represents the total number of
discrete time intervals. For example, let's plot Brownian motion in one dimension
using 10,000 discrete time intervals as follows:

> motion <- rnorm(10000, 0, 1)
> motion <- cumsum(motion)

> plot(motion, type="l", main="Brownian Motion in 1-Dimension",
xlab="time", ylab="displacement")

The result is shown in the following plot:

Chapter 8

[335]

Alternatively, we could plot simple Brownian motion in two dimensions by
simulating the distance for each coordinate separately, as follows:

> x.dist <- rnorm(10000, 0, 1)
> y.dist <- rnorm(10000, 0, 1)
> x.dist <- cumsum(x.dist)
> y.dist <- cumsum(y.dist)

> plot(x.dist, y.dist, type="l", main="Brownian Motion in
2-Dimensions", xlab="time", ylab="displacement")

The result is shown in the following plot:

These are just two simple examples, but it does show you how simulating
random variables from well-characterized distributions can be used to
model physical systems.

Simulations

[336]

Summary
In this chapter, you learned how to perform basic simulations. We showed you
how to generate pseudorandom numbers from a variety of common probability
distributions. We also showed you how to perform Monte Carlo simulations
including an overview of the mc2d package, and how it can be used to perform
one- and two-dimensional Monte Carlo simulations in risk analysis. We also
showed you how Monte Carlo methods can be applied to estimate integrals. Next,
we demonstrated how importance sampling can be used to improve integral
estimates. Then, we showed you how to generate random variables from unknown
distributions using the rejection sampling method. Finally, we briefly showed you
how simulation can be used to model physical systems by looking at Brownian
motion in one- and two-dimensions. Now that you are familiar with the generation
of random variables and Monte Carlo simulations, we are ready to move on to the
next chapter, where we will show you how to perform numerical optimization.

Optimization
Often, in scientific computing, we are required to find the value of x for which a
function f(x) will attain a maximum or minimum value. In other words, we want to
maximize or minimize f(x). This process is termed as numerical optimization and
can be summarized as follows:

() ()
()

0,
min

0,nx

zi x i N
f x subject to

zi x i M∈

= ∈
 ≥ ∈�

In the preceding formula, x represents a vector of variables also known as the
unknowns or parameters, f is the function of x we want to maximize or minimize
known as the objective function, zi is the constraint functions that x must fulfill,
and N and M are sets of indices. Optimization problems are used in mathematics,
finance, and computer science to find the best solution from all feasible solutions.
We can simplify maximization optimization problems to minimization problems by
remembering that the maximum of f(x) is essentially the minimum of -f(x). Therefore,
to maximize the function f, we simply need to minimize f. In this chapter, you will
learn different methods and functions used to perform numerical optimization in R.

In this chapter, we will cover the following topics:

•	 The golden section search method
•	 The Newton-Raphson method
•	 The Nelder-Mead simplex method
•	 Other methods with the optim() function
•	 Linear programming
•	 Integer-restricted optimization
•	 Unrestricted variables with the lp() function
•	 Quadratic programming

Optimization

[338]

Let's start by minimizing the following function:

() ()22.5 1f x x x= − + −

In the preceding example, the function f has no constraints, so we can select variables
within its full range freely. To solve this problem, we will apply the golden section
search method, which is a one-dimensional unconstrained optimization method.

One-dimensional optimization
One-dimensional unconstrained optimization is used to minimize the function of
the type () minf x x→ ∈� . The golden section search method is a zero-line search
method used to solve functions of the type () minf x a x b→ ≤ ≤ . This method
uses the values of the objective function f and not their derivatives, making this type

of solution best applicable to minimize the () ()22.5 1f x x x= − + − function since
f(x) is not differentiable at x = 2.5.

The golden section search method
The golden section search method uses an interval reduction strategy independent
of the number of iterations, where the ratio between the sizes of two consecutive
intervals is constant and makes use of the golden ratio φ . The golden ratio is defined
algebraically as follows:

0a b a with a b
a b

φ+
= = > >

Here,
1 5

2
φ +
= .

Basically, it is an iterative method that minimizes the function by:

•	 Defining an interval [a, b] that contains the minimizer.
•	 Shrinking the interval into progressively smaller intervals [a', b'] that still

contain the minimizer.
•	 Repeating the second step until the difference between b' – a' is small enough

based on a pre-set tolerance.
•	 Using the midpoint of that interval as an estimate for the true minimizer,

which is calculated as (a' + b')/2. The maximum error for this minimizer
becomes (b' – a')/2.

Chapter 9

[339]

Let's take a look at the following steps to perform the Golden search method to
initialize f(x):

1.	 To apply the previous points to minimize the function, we will write a
function that will pick two points on the [a, b] interval defined as x1 and x2,
where x1 < x2.

2.	 Then, we calculate f(x1) and f(x2). If f(x1) > f(x2), then the minimizer must be
to the right of x1. Conversely, if f(x1) < f(x2), then the minimizer must be to
the left of x2.

3.	 Consequently, the minimizer will be in the interval [x1, b] if the former is true
and in the interval [a, x2] if the latter is true.

4.	 To take advantage of certain properties of the golden ratio, we will set x1 and
x2 as follows:

()
()

1

2

/
/

x b b a
x a b a

φ
φ

= − −
= + −

5.	 Here is how we justify the equation for x2. After the first iteration of
the golden search method, a will be replaced with a' = x1 and the next
value for x1 will be x1':

1

1
1

b ax b

b xx b

φ

φ

′−′ = −

−′ = −

6.	 Now we can replace x1 in the formula by () /b b a φ− − , which yields the
following formula:

1 2

b ax b
φ
−′ = −

7.	 One of the properties of the golden ratio is as follows:

2

1 11
φ φ

= −

Optimization

[340]

8.	 So we can substitute
2

1
φ

 by 11
φ

− , and by applying simple algebra,
we can write:

()

()

() ()

1 2

1

1

1

1

1

11

x b b a

x b b a

b a
x b b a

b ax b b a

b ax a

φ

φ

φ

φ

φ

 ′ = − −  
 
 ′ = − − − 
 

− 
′ = − − − 

 
−′ = − + +

−′ = +

Since 1 2x x′ = , we can write ()2 /x a b a φ= + − .

9.	 Now, to translate these steps into an R function, we can use the following
function to find the minimizer:

() ()22.5 1f x x x= − + −

10.	 We start by defining our function, which we will call golden.method(),
and set arguments to specify the pre-set the tolerance and initial values for
a and b. By default, let's set the tolerance value to 0.000001 as given in the
following code:
golden.method <- function(f, a, b, tolerance=0.000001){

 # store the golden ratio in the object psi
 psi <- (1 + sqrt(5))/2

 #Calculate value for x1 and x2 using the formulas we defined
 x1 <- b - (b - a)/psi
 x2 <- a + (b - a)/psi

 #Find the value for f(x1) and f(x2)

Chapter 9

[341]

 fx1 <- f(x1)
 fx2 <- f(x2)

Repeat test for the minimizer while the absolute difference
between b and a is greater than the set threshold

 while(abs(b-a) > tolerance){

 # Use an if statement to test if the minimizer is to the
 # left of x2 else it is to the right of x1

 if(fx2 > fx1){

 # Since the minimizer is to the left of x2, we can re-
 # use x2 for b' (defined b in loop)

 b <- x2

 # We can reuse x1 for x2 for the next iteration of loop

 x2 <- x1

 # Since we re-use x1 for x2 we can use the value stored
 # in fx1 for fx2

 fx2 <- fx1

 # Now we calculate a new value for x1 and f(x1) to test
 # in the next iteration of the loop

 x1 <- b - (b - a)/psi

 fx1 <- f(x1)

 } else {

 # Similarly, since the minimizer is to the right of x1,
 # we can re-use the value x1 for a

 a <- x1

 # We can re-use x2 for x1 in the next iteration of the loop

 x1 <- x2

Optimization

[342]

 fx1 <- fx2

 # We calculate a new value for x2 and f(x2) to test in
 # the next iteration of the loop

 x2 <- a + (b - a)/psi
 fx2 <- f(x2)

 }
 }

 # When the absolute difference between b and a is below our
 # set threshold, we can use the midpoint of the final
 # [a', b'] interval as an estimate for the true minimize

 minimizer <- (a + b)/2
 max.error <- (b - a)/2

 #return the minimizer and the maximum error in a list

 results <- list(minimizer=minimizer, maximum.error=max.error)

 return(results)
}

Now let's give our golden.method() function a try with () ()22.5 1f x x x= − + − .

First, let's take a look at the curve for f(x) using the curve() function to help determine
the best [a, b] interval to start from in our golden.method() function, as follows:

Define the function f
> f <- function(x) {
 abs(x - 2.5) + (x - 1)^2
}

#Plot the curve
> curve(f, from=0, to=5)

Chapter 9

[343]

The result is shown in the following plot:

From the previous plot, it seems that the minimizer is located between 1 and 3, so we
will set a=1 and b=3 in our golden.method() function, as follows:

> golden.method(f, a=1, b=3)
$minimizer
[1] 1.5

$maximum.error
[1] 3.321874e-07

You can also add the minimizer to the graph as follows:

> curve(f, from=0, to=5, cex.lab=1.5)
> res <- golden.method(f, a=1, b=3)
> points(res$minimizer,f(res$minimizer))

Optimization

[344]

The result is shown in the following plot:

Now let's use the golden.method() function to maximize
() 2.5 1 0.5g x x x x= − − − − − using the following lines of code:

Define the function f
> g <- function(x) {
 abs(x-2.5) - abs(x -1) - abs(x -0.5)
}

#Plot the curve
> curve(g, from=-10, to=10)

Chapter 9

[345]

The result is shown in the following plot:

Now, to maximize g(x), we simply need to minimize –g(x) by creating a function to
calculate negative g and use it as input into our golden.method() function. Let's
take a look at this in the following lines of code:

> h <- function(x) {
 -g(x)
}

We know from the curve the minimizer is between [-5, 5]
> golden.method(h, a=-5, b=5)
$minimizer
[1] 0.4999999

$maximum.error
[1] 3.92094e-07

In the previous example, we had to write a new function that calculates
–g(x), because if we write golden.method(-g, a=-5, b=5), we will
get Error in -g : invalid argument to unary operator.

Optimization

[346]

The optimize() function
Instead of using the golden.method() function we defined, we could also use the
built-in optimize() function. This function uses a combination of the golden search
method and successive parabolic interpolation, which we will not go into detail
about here. Nevertheless, we will show you how to use the function to minimize

our first example, () ()22.5 1f x x x= − + − , with the optimize() function. Let's
take a look at this in following lines of code:

> f <- function(x) {

abs(x - 2.5) + (x - 1)^2
}

Then, we use the optimize function using the interval argument to define a and b
and the tol argument to set the tolerance. Let's take a look at this in the following
lines of code:

> optimize(f, interval=c(1, 3), tol=0.000001)
$minimum
[1] 1.5

$objective
[1] 1.25

As you can see, we get the same answer as before, that is, 1.5. The function also returns
$objective, which corresponds to the value of f(x) at that point. We could have also
defined the interval with the lower and upper arguments instead as follows:

> optimize(f, lower=1, upper=3, tol=0.000001)
$minimum
[1] 1.5

$objective
[1] 1.25

Another useful feature of the optimize() function is its ability to directly
maximize a function without the user needing to specify the negative of the
function, like we did earlier. Instead, you just need to specify maximum=TRUE when
you use the optimize function. Let's use the optimize function to maximize

 from our earlier example. Let's take a look at this in
the following lines of code:

> g <- function(x) {
 abs(x-2.5) - abs(x -1) - abs(x -0.5)
 }

Chapter 9

[347]

> optimize(g, lower=-5, upper=5, tol=0.000001, maximum=TRUE)
$maximum
[1] 0.5

$objective
[1] 1.5

The Newton-Raphson method
The Newton-Raphson method is a derivative-based numerical method used to solve
one-dimensional optimization problems. By using an initial point and the derivative
information of the objective function, you can obtain the minimum for f(x). It uses
linear approximation to solve the root of the equation. Given that f(x) is a convex
function, otherwise known as a "well-behaved" function, and r is the root of the
equation f(x) = 0, we can estimate the true root r with x0, where r = x0 + h and h is
the measure of how far x0 is from r. If h is very small and near 0, we can use a Taylor
series approximation to solve the equation as follows:

() () () ()
()
()

0 0 0

0

0

0 f r f x h f x hf x
f x

h
f x

′= = + ≈ +

≈ −
′

Therefore, r = x0 + h can be approximated as follows:

()
()

0
0

0

f x
r x

f x
≈ −

′

This approximation can be done with a potentially better estimate for r being x1
defined as follows:

()
()

0
1 0

0

f x
x x

f x
= −

′

If we repeat this process multiple times, the subsequent estimates for r will be
defined as follows:

()
()1

n
n n

n

f x
x x

f x+ = −
′

Optimization

[348]

This process will be repeated until ()nf x is near 0 or a pre-set tolerance ε such that
()nf x ε< . Therefore, as long as the minimizer for f(x) is in the interval [a, b] and

not a or b and satisfies f'(x) = 0, we can find the minimizer of f(x) using this approach
by using the following formula:

()
()1

n
n n

n

f x
x x

f x+

′
= −

′′

However, we must also check that the value we find is actually a minimizer of the
function and not just a maximizer or a point of inflection. So, to guarantee that our
solution is a minimizer, we check whether () 0f x′′ > .

Now let's use the Newton-Raphson method to minimize the function

() 2 3xf x e x−= + .

The first derivative of f(x) is as follows:

() ()() 223 2 xd f x
f x x xe

dx
−′ = = −

The second derivative of f(x) is as follows:

() ()() 2 2
2

2
2 4 2 6x xd f x

f x x e e x
dx

− −′′ = = − +

Before we begin, we will plot the function to determine the best initial estimate for
x0. Let's take a look at this in the following lines of code:

> f <- function(x) {
 exp(-x^2) + x^3
 }
> curve(f, from=-1, to=4)

Chapter 9

[349]

The result is shown in the following plot:

From the curve, a reasonable estimate for x0 is 1. Now, we will write a function to
implement the Newton-Raphson method to minimize the function.

We include the N argument to define the maximum number of iterations we should
run, which we default to 100, as follows:

 newton.method <- function(f, ff, fff, x0, tol=0.000001, N=100){

 # We start the counter at 1

 i <- 1

 # We create a vector to store the estimates and values for
 # f(x), f'(x) and f''(x)

 estimates <- numeric(N)
 fvalue <- numeric(N)
 ffvalue <- numeric(N)

Optimization

[350]

 fffvalue <- numeric(N)

 while(i <= N){

 # We use the Newton-Raphson formula to estimate the
 # minimizer

 x1 <- x0 - ff(x0)/fff(x0)

 # We store the estimates and values for f(x), f'(x) and
 # f''(x)

 estimates[i] <- x1
 fvalue[i] <- f(x1)
 ffvalue[i] <- ff(x1)
 fffvalue[i] <- fff(x1)

 # We update the counter

 i <- i + 1

 # We break from the loop if we reach below our pre-set
 # tolerance

 if(abs(x0 - x1) < tol) break

 # Before the next iteration of the loop we replace x0 with
 # the value x1

 x0 <- x1

 }

 # We return a dataframe of all the estimates and values for
 # the first & second derivative

 estimates <- estimates[1:(i-1)]
 fvalue <- fvalue[1:(i-1)]
 ffvalue <- ffvalue[1:(i-1)]
 fffvalue <- fffvalue[1:(i-1)]

 df <- as.data.frame(cbind(estimates, fvalue, ffvalue, fffvalue))

 return(df)

 }

Chapter 9

[351]

Now, let's use the function we wrote to minimize our function stored in f. First,
we need to create a function for ()f x′ and ()f x′′ , which we will store in fp and
fpp, respectively.

For the first derivative () 223 2 xf x x xe−′ = − , we use the following lines of code:

fp <- function(x) {
 3*x^2 - 2*x*exp(-x^2)
}

For the second derivative () 2 224 2 6x xf x x e e x− −′′ = − + , we use the following lines
of code:

fpp <- function(x) {
 4*x^2*exp(-x^2)- 2*exp(-x^2)+ 6*x
}

Next, we use the newton.method() function with x0=1 using f, fp, and fpp,
as follows:

> newton.method(f, fp, fpp, x0=1)
 estimates fvalue ffvalue fffvalue
1 0.6638477 0.9361433 4.675900e-01 3.830410
2 0.5417746 0.9046560 7.262741e-02 2.634812
3 0.5142100 0.9036205 3.761765e-03 2.361857
4 0.5126173 0.9036175 1.255900e-05 2.346086
5 0.5126120 0.9036175 1.418679e-10 2.346033
6 0.5126120 0.9036175 -1.110223e-16 2.346033

From the output, we can see that our minimum is 0.5126120, and since ()f x′′ is
positive, we can conclude that it is a local minimum. We can check our solution
with the optimize() function in the [0, 2] interval as follows:

> optimize(f, interval=c(0, 2), tol=0.000001)
$minimum
[1] 0.5126119

$objective
[1] 0.9036175

As you can see, we get a pretty close value of 0.5126120 compared to 0.5126119
using the optimize() function.

Optimization

[352]

There is also a Newton-Raphson function, (), which is part of the spuRs package.
Let's use it to minimize the function as follows:

> install.packages("spuRs")
> library("spuRs")

To be able to use the newtonraphson() function to minimize our equation, we need
to create a function that will return the value for ()f x′ and ()f x′′ in a vector as the
fftn argument.

Since we need to apply the Newton-Raphson method on the ()f x′ and ()f x′′
function, we store these values in separate variables that we will combine in a
results vector to return to the newtonraphson() function. Let's write the ftn
argument function and call it minimizer.ftn() as follows:

minimizer.ftn <- function(x){
 ffvalue <- 3*x^2 - 2*x*exp(-x^2)
 fffvalue <- 4*x^2*exp(-x^2)- 2*exp(-x^2)+ 6*x
 results <- c(ffvalue, fffvalue)
 return(results)

}

Now we run the analysis setting x0=1 for our initial estimate and tol=0.000001 for
our pre-set tolerance as follows:

> newtonraphson(minimizer.ftn, x0=1, tol=0.000001)
At iteration 1 value of x is: 0.6638477
At iteration 2 value of x is: 0.5417746
At iteration 3 value of x is: 0.51421
At iteration 4 value of x is: 0.5126173
At iteration 5 value of x is: 0.512612
Algorithm converged
[1] 0.512612

We get almost the same answer as with our newton.method() function.

Chapter 9

[353]

The Nelder-Mead simplex method
An alternative derivative-free approach to the Newton-Raphson method is the
Nelder-Mead simplex method. It is a nonlinear optimization technique to minimize
an objective function in multiple dimensions. By default, the optim() function,
which is part of the basic functions in R, uses the Nelder-Mead simplex method to
minimize your function of choice. Let's use the optim() function with its default
settings to solve () 2 3xf x e x−= + . To set the initial estimate x0 in the optim()
function, we use the par argument. In this case, we set par to 1 as follows:

> f <- function(x) {
 exp(-x^2) + x^3
 }

> optim(par=1, fn=f)
$par
[1] 0.5126953

$value
[1] 0.9036175

$counts
function gradient
 26 NA

$convergence
[1] 0

$message
NULL

Warning message:
In optim(1, f) : one-dimensional optimization by Nelder-Mead is
unreliable:
use "Brent" or optimize() directly

From the output, you will notice that the minimizer is given in $par. You will also
notice that there is a warning message to use the Brent method or optimize()
function directly since it yields more accurate results. We can apply the Brent
method directly by specifying method="Brent" and the [a, b] interval with the
upper and lower arguments, as follows:

> optim(1, f, method="Brent", lower=0, upper=2)
$par
[1] 0.512612

$value

Optimization

[354]

[1] 0.9036175

$counts
function gradient
 NA NA

$convergence
[1] 0

$message
NULL

As you can see, we get the same value we found earlier with the Brent method
compared to the Nelder-Mead method. However, it is worth mentioning that the
Nelder-Mead approach is a heuristic search method that is preferentially used to
solve problems that can't easily be solved with other methods.

The Nelder-Mead method is also used to solve multidimensional problems. For
example, let's minimize the rosenbrock function, which is defined as follows:

() () ()22 2, 1 100f x y x y x= − + −

First, we store the function in an object called rosenbrock.f, as follows:

> rosenbrock.f <- function(x1,y1) {
 (1-x1)^2 + 100*(y1 - x1^2)^2
 }

Then, we can plot the function as follows:

1.	 First, we define the x and y values to plot:
> x <- seq(-3, 3, by=0.2)
> y <- seq(-2, 3, by=0.2)

2.	 Then, we obtain the outer product of the x and y vectors using the outer()
function as follows:
> z <- outer(x, y, rosenbrock.f)

3.	 Next, we plot the function using the persp() function as follows:
>persp(x,y,z,phi=40,theta=40,col="turquoise",shade=.000001,ticktyp
e="detailed", cex.lab=1.5, zlab="")

Chapter 9

[355]

The result is shown in the following plot:

One of the properties of the Rosenbrock function is that it is always positive except
when 2y x= and 1x = , where it is 0; so, (1, 1) is a minimum for this function. Let's
see how close we get to the minimum using the Nelder-Mead method with the
optim() function.

To be able to use the optim() function, we need to rewrite rosenbrock.f so that x and
y are respectively stored in the first and second index of a single vector x as follows:

> rosenbrock.f2 <- function(x) {
 (1-x[1])^2 + 100*(x[2]-x[1]^2)^2
}

Now we can use the optim() function to minimize the Rosenbrock function. This
time, we must specify coordinates (x0, y0) for the initial estimate of the minimizer
using a vector for the $par argument. In this case, we will guess (0.7, 0.7) for
the initial values of the parameters to be optimized as follows:

> optim(par=c(0.7,0.7), rosenbrock.f2)
$par
[1] 1.000065 1.000120

$value

Optimization

[356]

[1] 1.499038e-08

$counts
function gradient
 71 NA

$convergence
[1] 0

$message
NULL

As you can see, we get values pretty close to (1, 1). If we set the initial parameters
to (1.5, 1.5), we get similar results as follows:

> optim(par=c(1.5,1.5), rosenbrock.f2)
$par
[1] 0.9995667 0.9991578

$value
[1] 2.463013e-07
Output truncated here

It is also recommended that you check out the neldermead package if you are
interested in applying variants of the Nelder-Mead method for your optimization
problems. The neldermead package provides you with the opportunity to manage
settings specific to the Nelder-Mead method such as the method to compute the
initial simplex, that is, the specific termination criteria. The neldermead package
also allows you to apply the fixed shape simplex method of Spendley, Hext, and
Himsworth, the variable shape simplex method of Nelder and Mead, and the Box
complex method. You can read more on this package at http://cran.r-project.
org/web/packages/neldermead/vignettes/neldermead_manual.pdf.

More optim() features
The optim() function allows you to use a variety of methods to minimize functions,
which are given in the following table:

The optim() function method name Full method name
"Nelder-Mead" Nelder and Mead
"BFGS" Broyden, Fletcher, Goldfarb, and Shanno
"CG" Conjugate gradient

http://cran.r-project.org/web/packages/neldermead/vignettes/neldermead_manual.pdf
http://cran.r-project.org/web/packages/neldermead/vignettes/neldermead_manual.pdf

Chapter 9

[357]

The optim() function method name Full method name
"L-BFGS-B" Limited-memory BFGS
"SANN" Simulated annealing
"Brent" Brent

For example, we could minimize the Rosenbrock function using the simulated
annealing method by setting method="SANN". The simulated annealing method is
a stochastic global optimization method that can also be used for non-differentiable
functions. It performs random jumps around the starting point to explore its vicinity
and progressively narrows the jumps around a point until it finds the minimum.
Since its output depends on the random number generator, you will get slightly
different values each time you run the method, unless you set the seed first to
reproduce the data at a later point. Let's take a look at the following lines of code:

> set.seed(267)

> optim(par=c(0.7,0.7), rosenbrock.f2, method="SANN")
$par
[1] 1.019317 1.039894

$value
[1] 0.000451745

#Output truncated

The optim() function also allows you to apply quasi-Newton methods to solve your
optimization problems. For example, let's use the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm method to solve () () ()2 22 1f x x y= − + − .

First, let's plot the function using the lattice package instead of the persp()
function as follows:

We store the function f(x, y) in h using the first index
for x and the second index for y

h <- function(x){
 (x[1]-2)^2 + (x[2] -1)^2
}

We get values for x[1] and x[2] and store them in separate vectors

> x1 <- seq(-4, 4, by=0.5)

Optimization

[358]

> x2 <- seq(-4, 4, by=0.5)

#We use the expand.grid() to create a matrix from all combinations of
both vectors

> mat <- as.matrix(expand.grid(x1, x2))

We rename the columns to x1 and x2
> colnames(mat) <- c(«x1», «x2»)

Calculate f(x, y) and store in z by applying the function
h on the matrix by row

> z <- apply(mat, 1, h)

We create a date frame containing x1, x2 and z

> df <- data.frame(mat, z)

We load the lattice package and use wireframe function to plot

> library(lattice)
> wireframe(z ~ x1 * x2 , data=df, shade = TRUE, scales = list(arrows
= FALSE), screen = list(z = -35, x = -50))

The result is shown in the following plot:

Chapter 9

[359]

If you prefer to plot the function using the persp() function, use the following lines
of code:

Script to use to plot f(x, y) with the persp() function
> hfn <- function(x, y){
 (x-2)^2 + (y -1)^2
 }
> x <- seq(-5, 5, by=0.2)
> y <- seq(-5, 5, by=0.2)
> z <- outer(x, y, hfn)

> persp(x,y,z,phi=35,theta=50,col="purple",shade=.00000001,
ticktype="detailed")

Plot not shown

From this plot, we can use (0, 0) for the initial parameters in the optim() function.
This method does not require that the Hessian matrix of second derivatives be
calculated directly. Instead, the Hessian matrix is approximated using rank-one
updates obtained from approximate gradient evaluations. The optim() function
allows us to return a numerically differentiated Hessian matrix with hessian=TRUE
and supply a function to return the gradient with gr. For simplicity, we will leave
the default setting gr=NULL, which uses a finite-difference approximation for the
gradient. Let's apply these conditions to minimize the function as follows:

> optim(par=c(0,0), h, method="BFGS", hessian = T)
$par
[1] 2 1

$value
[1] 6.357135e-26

$counts
function gradient
 9 3

$convergence
[1] 0

$message
NULL

$hessian
 [,1] [,2]
[1,] 2 0
[2,] 0 2

Optimization

[360]

As expected, the minimizer is (2, 1).

Linear programming
Linear programming is used to minimize or maximize a function subject to
constraints when both the objective function and the constraints can be expressed as
linear equations or inequalities. More generally, these optimization problems can be
expressed as follows:

()
2

1 1 2 2, ,...,
min

i n
n nx x x

L x c x c x c x= + +

The preceding formula is subject to the following constraints:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + + ≥
+ + + ≥
+ + + ≥

�
�
�

It is also subject to the non-negativity constraint 1 0x ≥ , 2 0x ≥ , …, 0nx ≥ .
In other words, we are interested in finding the values for the decision variables

1 2, ,..., nx x x , which minimize the objective function L(x) subject to the constraints
and non-negative conditions. The opposite of this is also true to maximize a linear
program, as follows:

()
2

1 1 2 2, ,...,
max

i n
n nx x x

L x c x c x c x= + +

The preceding formula is subject to the following constraints:

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

m m mn n m

a x a x a x b
a x a x a x b

a x a x a x b

+ + ≤
+ + + ≤
+ + + ≤

�
�
�

Chapter 9

[361]

It is also subject to the non-negativity constraint 1 0x ≥ , 2 0x ≥ , …, 0nx ≥ .

R has a few packages and functions available to help solve linear programming
problems. We will go over a few examples to show you how to use these functions
to set up and solve linear programs. Let's start by solving the following problem:

1 2min 4 7L x x= +

The preceding equation is subject to the following constraints:

1 2

1 2

1

2

4
2 6

0
0

x x
x x

x
x

+ ≥
+ ≥
≥
≥

Firstly, we will plot and solve this problem using the lpSolveAPI package as follows:

> install.packages("lpSolveAPI")
> library("lpSolveAPI")

Next, we will create an lpSolve linear program model object with two constraints
and two decision variables with the make.lp() function as follows:

> lp1 <- make.lp(2, 2)

Then, we will build the model column-wise using the set.column() function for
each decision variable using a vector with 11a to 1ma for 1x (column 1) and 12a to

2ma for 2x (column 2) as given in the following lines of code:

> set.column(lp1, 1, c(1, 1))
> set.column(lp1, 2, c(1, 2))

Now let's set the objective function using the set.objfn() function and a vector
with 1c and 2c , and the constraint type with the set.constr.type() function for
each inequality in a vector as follows:

> set.objfn(lp1, c(4, 7))
> set.constr.type(lp1, rep(">=", 2))

Optimization

[362]

Lastly, we set the values to the right-hand side of the constraint inequalities using the
set.rhs() function, as given in the following code, using a vector with 1b and 2b :

> set.rhs(lp1, c(4, 6))

We can see an overview of our model by entering lp1 as follows:

> lp1
Model name:
 C1 C2
Minimize 4 7
R1 1 1 >= 4
R2 1 2 >= 6
Kind Std Std
Type Real Real
Upper Inf Inf
Lower 0 0

As you can see, the upper and lower bounds are automatically set to ∞ and 0 by
default, so we are ready to solve the problem. We will show you how to change the
default settings later. We can plot the model using the plot() function as follows:

> plot(lp1)

The result is shown in the following plot:

Chapter 9

[363]

The plot() function only plots linear program models with real,
non-negative decision variables that do not have a finite upper
bound. See ?plot.lpExtPtr for more information.

In the previous plot, the region in gray shows the values for when neither constraints
are satisfied. It seems like the solution to our problem is (2, 2), but let's go through
the necessary steps to validate the solution. First, we can double-check our linear
program that we entered by saving the model to a file that we will call model1.lp
with the write.lp() function as follows:

> write.lp(lp1,'model1.lp',type='lp')

If you open the file in a text editor, you will see the following lines:

/* Objective function */
min: +4 C1 +7 C2;

/* Constraints */
+C1 +C2 >= 4;
+C1 +2 C2 >= 6;

The preceding lines match our objective function 1 2min 4 7L x x= + and inequalities
as follows:

1 2

1 2

4
2 6

x x
x x
+ ≥
+ ≥

Next, we check whether an optimal solution has been found for our linear program
with the solve() function as follows:

> solve(lp1)
[1] 0

Since this is a generic function in R, we need to go to the help page with ?solve.
lpExtPtr to be able to know what 0 means, as follows:

> ?solve.lpExtPtr
[…]
Status Codes

0: "optimal solution found"

Optimization

[364]

1: "the model is sub-optimal"
2: "the model is infeasible"
3: "the model is unbounded"
4: "the model is degenerate"
5: "numerical failure encountered"
6: "process aborted"
7: "timeout"
9: "the model was solved by presolve"
10: "the branch and bound routine failed"
11: "the branch and bound was stopped because of a break-at-first or
break-at-value"
12: "a feasible branch and bound solution was found"
13: "no feasible branch and bound solution was found"
Output truncated

We can get the values for and with the get.variables() function and the
minimum value of the objective function with the get.objective() function as
follows:

> get.variables(lp1)
[1] 2 2
> get.objective(lp1)
[1] 22

Alternatively, we could have used the lp() function from the lpSolve package as
follows:

> install.packages("lpSolve")
> library(lpSolve)
> lp.ex1 <- lp(objective.in=c(4, 7), const.mat=matrix(c(1,1,1,2),
nrow=2), const.rhs=c(4, 6), const.dir=rep(">=", 2))

As you will notice, we specify the and values for the objective function with the
objective.in argument, the values for the columns as a matrix with the const.mat
argument, the constants to the right-hand side of the constraint formulas with the
const.rhs argument, and the constraint types with the const.dir argument.

To check whether the problem is solved, we simply need to enter the model lp.ex1
object generated from the lp() function in R as follows:

> lp.ex1
Success: the objective function is 22

Chapter 9

[365]

The lp.ex1 object is actually a list of multiple elements including the $solution
numeric vector containing the values for and , which we access with
lp.ex1$solution as follows:

> lp.ex1$solution
[1] 2 2

Integer-restricted optimization
We can also solve integer-restricted linear programs with the lpSolveAPI and
lpSolve packages. Consider the following example; a company produces laptops
and tablets. The profit for the laptops is 52 dollars per laptop and 82 dollars per
tablet. Due to production capacity, no more than 100 laptops and 170 tablets can be
made per day. The company has a private contract that requires them to produce at
least 65 laptops and 92 tablets. If the company only wants to make at most 200 units
per day, how many laptops and tablets should they produce to maximize profits?
Let's set up the problem as an objective function and inequalities.

Let x1 be the number of laptops to be produced and x2 be the number of tablets to be
produced. We will use the following formula to solve this problem:

1 2max 50 82L x x= +

The constraints are as follows:

1 2

1

2

200
65 100
92 170

x x
x
x

+ ≤
≤ ≤
≤ ≤

These inequalities can be entered into a lpSolveAPI model as follows:

> lp2 <- make.lp(1, 2)

> set.column(lp2, 1, c(1))
> set.column(lp2, 2, c(1))

> set.objfn(lp2, c(50, 82))
> set.constr.type(lp2, c("<="))

> set.rhs(lp2, c(200))

Optimization

[366]

Set the boundaries for both decision variables as follows:

> set.bounds(lp2, lower = c(65, 92), columns = c(1, 2))
> set.bounds(lp2, upper = c(100, 170), columns = c(1, 2))

Since and are necessary integers, we need to set the type to "integer" as
follows:

> set.type(lp2, 1, "integer")
> set.type(lp2, 2, "integer")

You can also set the type to "binary" for binary decision
variables, which will automatically set the type to integer
with lower=0 and upper=1.

We can view a summary of the model by entering lp2 as follows:

> lp2
Model name:
 C1 C2
Minimize 50 82
R1 1 1 <= 200
Kind Std Std
Type Int Int
Upper 100 170
Lower 65 0

Since we want to maximize the objective function, we need to set the objective
direction with the lp.control() function and the sense argument as follows:

> lp.control(lp2,sense='max')

Output not shown

We can check our model by saving lp2 in a file that we can view in a text editor
as follows:

> write.lp(lp2,'model2.lp',type='lp')

/* Objective function */
max: +50 C1 +82 C2;

/* Constraints */
+C1 +C2 <= 200;

/* Variable bounds */

Chapter 9

[367]

65 <= C1 <= 100;
92 <= C2 <= 170;

/* Integer definitions */
int C1,C2;

As you can see, everything is in order and the objective function direction is set to
max. Now, to check whether we can solve the linear program with solve(lp2):

> solve(lp2)
[1] 0

Since we can solve the problem, we can print the values for the decision variable and
the maximum value as follows:

> get.variables(lp2)
[1] 65 135
> get.objective(lp2)
[1] 14320

Similarly, we can solve this linear program using the lp() function including the
direction argument set to "max" and specifying the integer-restricted decision
variables in a vector with the int.vec argument. To more easily conceptualize the
const.mat argument, we will rewrite the constraint inequalities as follows:

1 2

1 2

1 2

1 2

1 2

200
0 65
0 100

0 92
0 170

x x
x x
x x

x x
x x

+ ≤
+ ≥
+ ≤
+ ≥
+ ≤

So, const.mat will be matrix(c(1,1,1,0,0,1,0,0,1,1), nrow=5) as follows:

> lp.ex2 <- lp(objective.in=c(50, 82), const.mat=matrix
(c(1,1,1,0,0,1,0,0,1,1), nrow=5), const.rhs=c(200, 65, 100, 92, 170),
const.dir=c("<=", ">=", "<=", ">=", "<="), direction="max", int.
vec=c(1, 2))

Optimization

[368]

We can get the optimal solution as follows:

> lp.ex2
Success: the objective function is 14320

> lp.ex2$solution
[1] 65 135

Unrestricted variables
The lp() function is set up to solve linear programs for decision variables that satisfy
the non-negativity constraints 1 0x ≥ , 2 0x ≥ , …, 0nx ≥ . One way to overcome this
limitation is to replace the unrestricted decision variables zx with the difference
between two non-negative decision variables 1z n nx x x += − .

For example, let's minimize the following linear program:

1 2min 3 4L x x= +

The preceding equation is subject to the following constraints:

1 2

1 2

1 2

1

2 14
3 0

2
0

x x
x x
x x

x

+ ≤
− ≥
− ≤
≥

However, 2x is unrestricted in sign. To solve this problem, we will replace 2x with
3 4x x− , where 3 0x ≥ and 4 0x ≥ , and rewrite the objective function and constraint

inequalities as follows:

1 3 4

1 3 4

1 3 4

1 3 4

min 3 4 4
2 2 14

3 0
2

L x x x
x x x

x x x
x x x

= + −
+ − ≤
− + ≥
− + ≤

Chapter 9

[369]

We can now solve the problem as follows:

> lp.ex3 <- lp(objective.in=c(3, 4, -4), const.mat=matrix
(c(1,3,1,2,-1,-1,-2,1,1), nrow=3), const.rhs=c(14, 0, 2), const.
dir=c("<=", ">=", "<="), direction="min")

> lp.ex3
Success: the objective function is -8

> lp.ex3$solution
[1] 0 0 2

The optimal solution is therefore 3 4x x− and 2 3 4x x x= − , which means that
2 0 2 2x = − = − .

Quadratic programming
Quadratic programming is an optimization problem where the objective function is
quadratic and the constraint functions are linear. We can solve quadratic programs in
R using the solve.QP() function part of the quadprog package. Quadratic programs
are often expressed in the form of the following equation:

1min
2

T TG d
β

β β β−

The preceding equation is subject to the following constraints:

,

,

T
i i
T
i

A b i N
A b i M
β

β

= ∈

≥ ∈

However, the solve.QP() function requires that your quadratic program be written
in the standard form:

1min
2

T TG d
β

β β β−

The preceding equation is subject to the following constraint:

TA bβ ≥

Optimization

[370]

In the preceding constraint, T is the mathematical symbol for transpose (matrix A,
but with its rows swapped for columns), β is a vector of p unknowns, G is a positive
definite symmetric p p× matrix, d is a vector of length p, A is a p c× matrix, and b
is a vector with the length of the number of constraints c. For example, let's solve the
following quadratic program:

2 2 2
1 2 3 1 2 3min 2 5x x x x x x+ + − − +

The preceding equation is subject to the following constraints:

1 3

1

2

1
5
0

x x
x
x

+ ≤
≥
≤

First, we install the package and load it as follows:

> install.packages("quadprog")
> library("quadprog")

To view a list of the arguments for the solve.QP() function, we can consult the help
page as follows:

> help(solve.QP)

Briefly, the function and arguments are solve.QP(Dmat, dvec, Amat, bvec,
meq=0, and factorized=FALSE).

For the data matrix in the quadratic function to be minimized, we will create a QP
object as follows:

> QP <- 2*diag(c(1, 2, 4))
> QP
 [,1] [,2] [,3]
[1,] 2 0 0
[2,] 0 4 0
[3,] 0 0 8

For the d vector appearing in the quadratic function to be minimized, we will create
an object d as follows:

> d <- c(-1, -1, 5)

Chapter 9

[371]

For the matrix A defining the constraints, we will create an A object, which we will
transpose later with the t() function. To better see how we create the matrix, we can
rewrite the constraint inequalities as follows:

1 2 3

1 2 3

1 2 3

0 1
0 0 5

0 0 0

x x x
x x x
x x x

− + − ≥ −
+ + ≥
− + ≥

Let's take a look at the following lines of code:

> A <- matrix(c(-1, 1, 0, 0, 0, -1, -1, 0, 0), nrow=3)
> A
 [,1] [,2] [,3]
[1,] -1 0 -1
[2,] 1 0 0
[3,] 0 -1 0

Lastly, we will create the b vector for the values on the right-hand side of the
constraint inequalities as follows:

> b <- c(-1, 5, 0)

We can now use the solve.QP() function to solve the quadratic program and print
the solution as follows:

> qp1 <- solve.QP(QP, -d, t(A), b)

> qp1$solution
[1] 5 0 -4

We can also print the value of the quadratic function at the solution with $value
as follows:

> qp1$value
[1] 64

Optimization

[372]

General non-linear optimization
You may be interested in solving general non-linear optimization problems where
the constraints are not linear. The solnp() function from the Rsolnp package allows
you to solve general non-linear programming problems. For example, say we wanted
to minimize the (), 4 2f x y x y= − function subject to the constraint 2 2 41x y+ = .

First, we install and load the package as follows:

> install.packages("Rsolnp")
> library("Rsolnp")

We also suggest taking a look at the help page for the function
arguments and restriction
> help(solnp)

Then, we store our function to minimize f as follows:

> f <- function(x){
 4*x[1] - 2*x[2]
 }

We need to store our constraint function in a separate object as follows:

> ctr <- function(x){
 x[1]^2 + x[2]^2
 }

Next, we store the value on the right-hand side of the constraint equation in a
separate object as follows:

> constraints <- c(41)

Then, we store the initial parameters for 0x and 0y in x0 as follows:

> x0 <- c(1, 1)

We are ready to solve the problem with the solnp() function. We use eqfun for the
constraint function and eqB for the constraint as follows:

> gnlp1 <- solnp(x0, fun = f, eqfun = ctr, eqB = constraints)

Iter: 1 fn: 4.8490 Pars: 7.97483 13.52517
Iter: 2 fn: -89.3900 Pars: -13.15464 18.38573
Iter: 3 fn: -75.5164 Pars: -17.70654 2.34511

Chapter 9

[373]

Iter: 4 fn: -50.6915 Pars: -9.26314 6.81945
Iter: 5 fn: -34.8293 Pars: -7.33659 2.74148
Iter: 6 fn: -29.4963 Pars: -5.79341 3.16135
Iter: 7 fn: -28.6698 Pars: -5.74107 2.85273
Iter: 8 fn: -28.6358 Pars: -5.72713 2.86361
Iter: 9 fn: -28.6356 Pars: -5.72713 2.86356
Iter: 10 fn: -28.6356 Pars: -5.72713 2.86356
solnp--> Completed in 10 iterations

We can obtain the values for x and y that minimize the function with $par as follows:

> gnlp1$par
[1] -5.727129 2.863564

Now let's say we wanted to minimize (), 4 2f x y x y= − subject to the constraint
2 2 45x y+ ≤ . All we need to do is use ineqfun for the constraint function and

set the ineqLB argument's lower boundary to 0 and the ineqUB argument to 45 in
the solnp() function. For simplicity, we will set the initial parameters to (-5, 5)
as follows:

> x0 <- c(-5, -5)
> gnlp2 <- solnp(x0, fun = f, ineqfun = ctr, ineqLB = c(0),
ineqUB=c(45))

Iter: 1 fn: -13.6535 Pars: -5.44225 -4.05775
Iter: 2 fn: -19.9098 Pars: -6.33853 -2.72215
Iter: 3 fn: -27.9987 Pars: -7.16312 -0.32691
Iter: 4 fn: -32.6786 Pars: -6.85051 2.63826
Iter: 5 fn: -30.2915 Pars: -6.02704 3.09169
Iter: 6 fn: -30.0031 Pars: -6.00113 2.99927
Iter: 7 fn: -30.0000 Pars: -6.00000 3.00000
Iter: 8 fn: -30.0000 Pars: -6.00000 3.00000
Iter: 9 fn: -30.0000 Pars: -6.00000 3.00000
solnp--> Completed in 9 iterations
> gnlp2$par
[1] -6 3

Optimization

[374]

Other optimization packages
There are a lot more packages available to solve optimization problems in R. Here is
a short table summary of the packages or functions that will help you pick the best
package and/or function for your optimization problem:

Linear
Objective

Quadratic
Objective

Non-linear
Objective

Heuristic
Approachs

No contraints, Box
constraints

optim
optimize
nlminb

DEoptim
rgenoud
NMOF

Linear constraints quadprog
LowRankQP

constrOptim

Linear, integer
constraints

Boot lpSolve
lpSolveAPI
linprog
limSolve

Quadratic constraints Rcplex
Rmosek

Semi-definite Rcsdp
Non-linear constraints Rsolnp

You can also go to http://cran.rproject.org/web/views/
Optimization.html to visit the Optimization and Mathematical
Programming web page for a more complete and up-to-date list of
the packages available to solve optimization problems.

Summary
Hopefully, throughout this chapter, you learned a variety of methods and
techniques to optimize a variety of functions. We covered how to use a wide range
of R packages and functions to set up, solve, and visualize different optimization
problems, so you should be ready to give your own minimization and maximization
problems a try. Now that you are much more familiar with R and its packages for
scientific computing, we are ready to move on to our last chapter, which will teach
you to clean up and manage your data for efficient programming and analysis in R.

http://cran.rproject.org/web/views/Optimization.html
http://cran.rproject.org/web/views/Optimization.html

Advanced Data Management
When we discuss data analysis, we usually think of the operations performed on
data that yield new insights about whatever phenomena the data reflect. However,
as a prelude to doing such operations, it is better to clean up the data that we start
with and wrangle it into an analyzable form. Unfortunately, such wrangling typically
occupies at least as much time as (if not more than) the actual analysis in most real
world projects. Thus, data management is probably one of the most useful skills in
data analysis, and it is given ample coverage in books on database programming, but
little coverage in most texts on R.

Data wrangling is a term that is applied to activities that make data more usable
by changing their form, but not their meaning. Data wrangling may involve
reformatting data, mapping data from one data model to another, or converting
data into more consumable forms. Such data wrangling activities make it easier to
submit data to a database or repository, load data into analysis software, publish it
to the Internet, compare datasets, or otherwise make data more accessible, usable,
and shareable in different settings.

In this chapter, we will discuss the following topics:

•	 Cleaning up datasets
•	 Pattern matching
•	 Floating point operations and numerical data types
•	 Memory management
•	 Missing data and multiple imputation

We will focus on data types, data structures, and messy data in this chapter. While
this is usually not considered the exciting part of data analysis, this is where most
data analysts will likely spend the majority of their time, unless they are fortunate
to have extremely well curated datasets to work with.

Advanced Data Management

[376]

Cleaning datasets in R
The first step in any data analysis is preparing the data for the analysis. The rest
of this chapter will mostly deal with this topic, but here we will review some basic
considerations and R techniques. The most important part of any data analysis is to
know the dataset and to have some idea of how each of the variables in the dataset
was created.

For a basic overview, we will use the pumpkin dataset, which is short and artificial.
Have a look at all of the following data in it:

pumpkins <- read.csv('messy_pumpkins.txt', stringsAsFactors = FALSE)
> pumpkins
 weight location
1 2.3 europe
2 2.4kg Europee
3 3.1 kg USA
4 2700 grams United States
5 24 U.S.

When loading data frames, R's default behavior is to treat strings as
categorical factors rather than as literal strings. This is usually the desired
behavior of a dataset with consistently denoted factors but a problem
if the same factors have been denoted with different strings. If we wish
to treat the strings as strings, we can pass the stringsAsFactors =
FALSE command in the read.csv command.

As can be seen from the previous data, the weights are written in different ways and
in different units. The locations don't have consistency, and there is misspelling. This
is hopefully messier than most datasets that you will have to work with, but this is
the kind of problem that is frequently encountered in large datasets, especially when
good efforts are not made to ensure high quality data entry up front.

Notably, the 24 seen in the fifth row is a very different number than the rest of the
values, and has no units attached. Do we assume it is kilograms and someone left out
the decimal point when entering the data? Do we ignore it as completely unreliable?
This is not a statistical question but a substantive one. Here we will assume that a
decimal point was actually ignored and it is in kilograms.

Chapter 10

[377]

String processing and pattern matching
Pattern matching is concerned with identifying patterns of characters in strings, and
has a long history in computer programming outside of its use in R. The simplest
kind of pattern matching would be to ask whether a given character is equal to a
value or a group of values, which would be a simple program to write in nearly
any language, but it would also have very limited functionality. A bigger problem
is dealing with patterns of characters; for example, uppercase alphabet characters,
numerals, and so on. A language for describing patterns of string characters has been
identified and adopted in many languages including R, called regular expressions,
which the grep family of R functions is based on. We will first discuss these
functions and then delve into using regular expressions.

The grep family of functions includes a number of similar functions for identifying
and replacing patterns of text. The most commonly used functions are as follows:

•	 grep: This function is used to find strings that match a given character
pattern. It takes a vector of strings as input and produces a vector of indices
of those strings in the vector that match the given pattern.

•	 grepl: This function is used to find strings that match a given character
pattern, but differs from grep in the output. This function takes a vector
of strings as input and produces a vector of logical values telling which
elements of the original vector match the pattern.

•	 sub: This function searches for a character pattern in a string and then
replaces it with another string of text. It only makes this replacement
in the first matching pattern it finds.

•	 gsub: This function searches for a character pattern in a string and then
replaces it with another string of text. As opposed to sub, this function
makes the replacement in all available matches.

There is one more function that is potentially quite useful that does not require
strict pattern matching:

•	 agrep: This function tells which elements of a vector of strings closely match
a given pattern. It takes as input a vector of strings and returns a vector
of indices reporting which elements of the input vector match the pattern.
Rather than using strict matching, it will allow for close matches. Closeness
is determined by the number of insertions, deletions, or substations that have
to be made to achieve a perfect match.

Advanced Data Management

[378]

Regular expressions
Regular expressions can contain literal characters or symbolic representations of
characters, but what makes them powerful are metacharacters, character classes,
and sequences.

For letters or words, we can just use the literal string representation. For example,
locate the letter "k" in the following code:

> pumpkins$weight[grep(pattern = "k", pumpkins$weight)]
[1] "2.4kg" "3.1 kg"

To find particular letter sequences, we can simply use their literal string
representation, but for those characters that have a symbolic meaning in regular
expressions, we have to escape them with the \\ prefix.

Most punctuation marks cannot be used as literal characters, because regular
expressions have a particular meaning to these. If we try to find cells with a "."
without keeping this in mind, things go astray:

> pumpkins$weight[grep(pattern = ".", pumpkins$weight)]
[1] "2.3" "2.4kg" "3.1 kg" "2700 grams" "24"

The cell containing "2700 grams" has no "." yet gets included.

If we want to search for a ".", we need to escape "." with "\\". The correct way to
do this would be as follows:

> pumpkins$weight[grep(pattern = "\\.", pumpkins$weight)]
[1] "2.3" "2.4kg" "3.1 kg"

It is also worth mentioning that some characters that would normally be interpreted
literally are given a special meaning by adding "\\" in front of them. For example,
"d" would be literally interpreted in a regular expression as "d", but "\\d" would be
interpreted as a digit.

There are multiple standards for regular expressions, and different
languages may handle regular expressions slightly differently. Perl
regular expressions are allowed in R in many commands by passing
the perl = TRUE argument to most functions in the grep family.

Chapter 10

[379]

The following table gives the meaning of metacharacters and sequences. This is not a
comprehensive list, and regular expressions can differ depending on context and the
language being used. Some commonly used regular expressions in R are shown in
the following table, though the list is not comprehensive:

Metacharacters Match meaning

. This character means any character.

$ This character means end of line.

? This character means zero or one of the previous character.

* This character means zero or more of the previous character.

+ This character means one or more of the previous character.

^ This character means line beginning if it is outside of the []
operator, and if it is inside the [] operator, then it means negate
the following character class.

| This character means an or operator.

[] This character means character class described within brackets.

{ } This character means number of times the preceding pattern
should be present for a positive match. (The ?, *, and +
metacharacters mentioned previously are shortcuts for this
expression.)

\\d This character means a digit.

\\D This character means a non-digit character.

\\s This character means a space character.

\\S This character means a non-space character.

\\w This character means an alphanumeric character.

\\W This character means a non-alphanumeric character.

Now, let's look at how some of these can be used. We already saw an example of the
"." metacharacter earlier in this chapter.

Advanced Data Management

[380]

To look for at least one zero, we can use the following code:

> pumpkins$weight[grep(pattern = "0+", pumpkins$weight)]
[1] "2700 grams"

To look for those cases where someone recorded non-digit characters (which leaves
out the final observation), use the following code:

> pumpkins$weight[grep(pattern = "\\D", pumpkins$weight)]
[1] "2.3" "2.4kg" "3.1 kg" "2700 grams"

What if we want to look for cases where units were not recorded? We can look for a
digit followed by an end of the string as shown in the following code:

> pumpkins$weight[grep(pattern = "\\d$", pumpkins$weight)]
[1] "2.3" "24"

The final thing we will introduce here are character classes, which really make
regular expressions very powerful. As an example, instead of telling R to search
a string for any of the following elements: a, b, c, d, e, and so on, we can use the
regular expression [[:letters:]]. A table of character classes recognized in R is
shown in the following table:

Character class Meaning

[aeiou] This character means a lowercase vowel.

[AEIOU] This character means an uppercase vowel.

[0-9] This character means a digit.

[a-z] This character means a lowercase letter.

[A-Z] This character means an uppercase letter.

[a-zA-Z0-9] This character means a letter (either upper or lowercase)
or a digit.

[^0-9] This character means anything except a digit.

[[:alpha:]] This character means an upper or lowercase letter.

[[:punct:]] This character means a punctuation character.

[[:print:]] This character means a printable character.

[[:digit:]] This character means a digit character.

Chapter 10

[381]

The last four character classes are examples of the POSIX character classes, which
is a UNIX standard compatible with many other languages. There are other POSIX
complaint expressions with significant overlap with other regular expressions in R.

We will use pattern matching to clean up the previous dataset. Now, in this example,
we have only five observations, so we could clean it up by hand, but we will try to
come up with some general rules that can be used to yield a data frame with one
column of numbers using the same units and one column of strings using the same
naming convention. As we will see, cleaning up datasets is often not a matter of
statistical or mathematical decision making, but a series of decisions as to how data
entry can go wrong and how to interpret this.

Firstly, there are a few ways where data entry can go wrong, such as:

•	 Record the units (rather than just the number), as illustrated in the pumpkin
dataset earlier in this chapter.

•	 Record the data in the wrong units (we want kilograms not other units).
•	 Record the data in error in a manner we can't be sure about. An example of

this is the fifth entry in the pumpkins dataset. Is this an accurate weight in
the right units? Is it missing a decimal point? Is it just a complete error?

If data entry goes wrong in the first or second way, we can figure out exactly how to
correct it easily, and we will write some R code to do this. If data entry goes wrong
the third way, it is a bit of a problem, and we have to ask ourselves if we want to
guess where things went wrong, or if we want to just call those observations missing.
Any time that manual data entry is involved, the third type of problem is usually
present. For example, if looking at human temperature in degrees Fahrenheit, a
temperature of 999 is not right, but it may be 99 with a third digit accidentally typed
or 99.9, which we are not sure about.

There are many ways to do this. Here, our general approach will be to first clean the
text out of all weight entries. Then we will identify those entries recorded in grams
instead of kilograms. We will then come up with a consistent naming paradigm for
the locations. Once this is done, we will create a new cleaned data frame. Finally, we
will get rid of elements of the data frame where the weights don't make sense.

Firstly, let's get rid of the text from the weights column. Here we just substitute
alphabetical characters with nothing and coerce these to numbers. Let's have a look
at the following example:

corrected.data <- as.numeric(gsub(pattern = "[[:alpha:]]", "",
pumpkins$weight))

Advanced Data Management

[382]

We then identify those cells where the units are in grams based on the number of
digits, assuming that a series of four digits represents something measured in grams
rather than in kilograms, and we divide these measurements by 1000. If there were
other units measured in pounds or ounces, we would need to figure this out ahead
of time and add another statement. The number of digits is passed using the {4}
argument. In general, this is the technique used to identify the number of consecutive
instances of the character class that one is seeking. Let's have a look at the following
example:

units.error.grams <- grep(pattern = "[[:digit:]]{4}", pumpkins$weight)
corrected.data[units.error.grams] <- corrected.data[units.error.grams]
/ 1000

We then fix the locations. Here we will use approximate pattern matching, because
there are many ways to misspell "Europe", and we don't want to think of all of
them. We will use the agrep function here, which looks for approximate matches.
In order to look for an approximate match, agrep needs to know what the true
match looks like, given by the pattern argument. Since we are doing approximate
pattern matching, we also need to figure out what we consider as an approximate
representation of the pattern versus something that is not a representation of the
pattern at all. We will do this with the max.dist argument, which tells agrep how
far off from the pattern a string of text can be and still be considered an approximate
representation of the pattern. We tell agrep how many single character insertions,
deletions, and substitutions are allowed. Let's have a look at the following example:

european <- agrep(pattern = "europe", pumpkins$location, ignore.case =
TRUE, max.dist = list(insertions = c(1), deletions = c(2)))
american <- agrep(pattern = "us", pumpkins$location, ignore.case =
TRUE, max.dist = list(insertions = 0, deletions = 2, substitutions =
0))
corrected.location <- pumpkins$location
corrected.data[european] <- "europe"
corrected.data[american] <- "US"

Finally, we create a new data frame with the consistent data as shown in the
following code, and review what our new data looks like. Let's have a look at the
following example:

> cleaned.pumpkins <- data.frame(corrected.data, corrected.location)
> names(cleaned.pumpkins) <- c('weight', 'location')
> cleaned.pumpkins
 weight location
1 2.3 europe
2 2.4 europe

Chapter 10

[383]

3 3.1 US
4 2.7 US
5 24.0 US
> summary(cleaned.pumpkins)
 weight location
 Min. : 2.3 europe:2
 1st Qu.: 2.4 US :3
 Median : 2.7
 Mean : 6.9
 3rd Qu.: 3.1
 Max. :24.0

Uh oh! The median weight is 2.7 kg with a mean of 6.9 kg, and a maximum of 24 kg.
Clearly, there is an error here. Any pumpkin with a weight over 10 kg (two digits)
is likely to be an error, so we get rid of these. (This is not a statistical question, but a
judgment on the part of the researcher based on non-statistical knowledge of what is
an implausible value.) We can either create a new data frame or fill it in as missing
data.

Create a new dataset using the following code:

cleaned.pumpkins.2 <- cleaned.pumpkins[cleaned.pumpkins$weight <= 10,]

Fill in nonsensical values with missing values as follows:

cleaned.pumpkins[cleaned.pumpkins$weight >= 10,1] <- NA

Floating point operations and numerical
data types
From the standpoint of mathematical operations, we usually think of numbers as just
that. However, a computer takes a more broken down approach to numbers. Most
of the time this doesn't matter, but when we have to deal with large datasets and are
concerned about either memory or speed, it can make a big difference. R essentially
has two numeric data types; integer and double precision (also called numeric). The
integer data type handles exact values denoted as integers. As per the IEEE floating
point standard, the double precision type handles values as rounded decimals. R has
no single data type as is used in languages like C.

Advanced Data Management

[384]

Here, we will create two vectors of integers, x and y, and divide one by the other.
Mathematically (but not computationally), we get whole number results. Let's look
at the following code:

> x <- as.integer(seq(1, 10, by = 1))
> y <- as.integer(seq(2, 20, by = 2))
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> y
 [1] 2 4 6 8 10 12 14 16 18 20
> y/x
 [1] 2 2 2 2 2 2 2 2 2 2

The y/x vector has 10 members that look like integers (and all single digit integers).
It should supposedly be the same size as x and y, but when we look at the size, it
isn't. It's almost twice the size in memory. Let's have a look at the following code:

> object.size(x)
88 bytes
> object.size(y)
88 bytes
> object.size(y/x)
168 bytes

The reason is because the division operator has coerced the results of y/x to be a
double precision data type, as we can see in the following code:

> typeof(x)
[1] "integer"
> typeof(y)
[1] "integer"
> typeof(y/x)
[1] "double"
>

Keeping values that are integers in integer form in memory can save a substantial
amount of memory. As shown in the earlier code, the as.integer command is a
generic command that can accomplish this.

The command for creating a sequence, seq, by default returns
the type integer. So the as.integer command was not strictly
necessary in the previous code.

Chapter 10

[385]

Memory management in R
One of R's classic weaknesses is its difficulty in handling very large datasets, which is
because R, by default, handles data by loading the full datasets in memory.

Using data analysis tools designed for large datasets, such as CERN's Root (available
online at http://root.cern.ch), is one obvious solution to this problem. Root is a
completely different data analysis software, and it is not easy to switch to a new data
analysis platform if one has already built tools for another environment.

Some third-party R builds, including Revolution R or Renjin, have been built with
memory management in mind to get around this problem. Revolution has the
disadvantage of costing money to commercial users (contact Revolution about
academic use). Renjin runs on the Java virtual machine, but it has the disadvantage
of not being fully compatible with all R packages. For users who routinely work with
very large datasets (that is a few gigabytes) and want to do it in R, it is probably best
to use an R implementation that can handle this and deal with the out-of-pocket
costs or the occasional compatibility problems.

For users who simply want to be able to deal with occasional large datasets that
come their way, there are a couple of things to keep in mind. The first is that R is
actually much more capable than it used to be. While 32-bit versions of R could
only handle up to 3 GB of memory, 64-bit versions of R can handle up to 8 TB of
RAM. With RAM becoming relatively inexpensive nowadays, simply upgrading
the amount of RAM in your computer and running a 64-bit version of R on a 64-bit
operating system is probably an upgrade that any data analyst should be making,
if data size is an issue.

Basic R memory commands
The amount of memory available to R can be obtained with the memory.limit
command. This command can also be used to increase the memory available by
telling R to use a certain amount of virtual memory. Here, we see about 6 GB of
memory available (the amount of RAM in the computer) and tell R to use up to
8 GB, as follows:

> memory.limit()
[1] 5999
> memory.limit(8000)
[1] 8000
> memory.limit()
[1] 8000

http://root.cern.ch

Advanced Data Management

[386]

If we close the R session and then reopen it, R will reset its memory limit to the
default of the total available RAM, and will no longer have this virtual memory
available to it.

Using virtual memory can significantly slow down R, so if memory use is a concern,
it is best to do a couple of other things before resorting to this.

When performing large computations, the first thing to do is delete all unnecessary
objects in memory with the rm() command. We can remove a particular element or
all elements.

First, we create three reasonably large vectors and then tell R to delete one of them,
as follows:

> A <- c(1:2E8)
> B <- c(1:2E8)
> C <- c(1:2E8)
> ls()
[1] "A" "B" "C"
> rm(A)
> ls()
[1] "B" "C"

If we want to clear all objects from memory, we can use the following code:

rm(list=ls())

Some people will point out that not all objects have really been deleted from
memory, because garbage collection still has to happen. R will do this on its own, but
if the user wants to force R's garbage collection to happen, this can be done with the
gc() command.

If we want to look at the size of memory used already, we can call R's memory.size
command. Here, we recreate the same two objects and examine the amount of size
occupied. Let's have a look at the following code:

> A <- c(1:2E8)
> B <- c(1:2E8)
> memory.size()
[1] 2333.96

Chapter 10

[387]

Handling R objects in memory
Regardless of dataset size, one easy mistake to make in R that will slow down the
handling of even relatively small datasets is constantly recreating the object. This is
in effect what is done with object resizing, and this is often what is responsible for
slowing down R's notoriously slow loops so much.

For example, if we want to look at the NHANES data and don't want all five
ordinal responses, but want to condense things to binary responses, we can do this
in a relatively straightforward manner in R. We will go through three different
looping functions that do this in the following sections. The first and third functions
dynamically resize the vector of interest. The second function creates a vector of the
appropriate size, and then it simply replaces it with the appropriate values.

Quite possibly one of the worst ways to create a vector in R is as shown in the
following code:

physical.data <- read.csv('phys_func.txt')[-1]
condense.to.binary <- function(input.vector) {
 output.vector <- c()
 a <- 0

 for (i in 1:length(input.vector)) {
 if (input.vector[i] == 1) {a <- 0}
 if (input.vector[i] > 1){a <- 1}

 output.vector <- c(output.vector, a)
 }

 return(output.vector)
}

Here, we create the vector and fill it with some arbitrary values early on, then simply
change a value of the vector with each iteration of the loop. No copying of the vector
or resizing is needed, as shown in the following code:

condense.to.binary.2 <- function(input.vector) {
 output.vector <- rep(NA, length(input.vector))
 a <- 0

Advanced Data Management

[388]

 for (i in 1:length(input.vector)) {
 if (input.vector[i] == 1) {a <- 0}
 if (input.vector[i] > 1){a <- 1}

 output.vector[i] <- a
 }

 return(output.vector)
}

In the preceding example, we declare the vector early on and use R's index method
to grow it implicitly. Since the vector is still growing with each iteration, this requires
dynamic resizing and will still run slowly, as shown in the following code:

condense.to.binary.3 <- function(input.vector) {
 output.vector <- c()
 a <- 0

 for (i in 1:length(input.vector)) {
 if (input.vector[i] == 1) {a <- 0}
 if (input.vector[i] > 1){a <- 1}

 output.vector[i] <- a
 }

 return(output.vector)
}

We can use the system.time command to compare performances. As we can see,
the second method runs much faster than the other two. Here, we use a vector that
repeats the first variable of the data frame 20 times just to exaggerate the impact of
the difference in coding styles, as shown in the following screenshot:

Chapter 10

[389]

Dynamically resizing objects in R is a major bottleneck in code performance, because
it requires memory reallocation of the entire vector in each iteration. Sometimes, it
has to be done, but it should be done as rarely as possible.

Missing data
One of the biggest problems in real-world data is missing data. In carefully planned
experiments on inanimate chemicals, small samples of rats, or highly mechanized
factories, missing data may not be such a problem. However, whenever a dataset
gets large enough, or starts to involve humans, missing data is almost a certainty.
Let's begin by pointing out that if you have missing data, then you have a missing
data problem, and you have to do something with that missing data; the question
is, what? The answer lies in what kind of bias you are dealing with as a result of
missing data.

Computational aspects of missing data in R
Before we delve into the statistical aspects of missing data, we need to review the
computational ones. There are at least two different kinds of data missing in R, and
they are NA and Null. NA is a missing value, but there are multiple types of NA,
and R will automatically coerce missing values to be what it thinks is the appropriate
type. For example, in the cleaned.pumpkins data frame, we would expect NA to be
of numeric type, because the column was coerced to a numeric vector type when we
created it. Let's have a look at the following code:

> cleaned.pumpkins
 weight location
1 2.3 europe
2 2.4 europe
3 3.1 US
4 2.7 US
5 NA US
> cleaned.pumpkins[5,1]
[1] NA
> typeof(cleaned.pumpkins[5,1])
[1] "double"

Advanced Data Management

[390]

We can see here that R keeps in mind that the NA values in the first column are still
of double data type. Let's compare this with a nonexistent value. Let's select the
first row and third column (notice that the cleaned pumpkins dataset has no third
column), and let's assign it to a variable, as follows:

> b <- cleaned.pumpkins[1,3]
> b
NULL
> typeof(b)
[1] "NULL"

We can see here that b does not contain an NA but rather contains a NULL value, and
this NULL value has no type other than NULL itself. Programs in R that are designed
to handle missing data with imputation operate on the NA operator rather than the
NULL operator.

Statistical considerations of missing data
We speak of a particular variable in a dataset being missing, and there can be three
kinds of missingness in that variable, as follows:

•	 Missing completely at random (MCAR): This missingness has nothing to
do with any variable relevant to the entire dataset.

•	 Missing at random (MAR): This does not mean what it sounds like. The
missingness is not due to the particular variable, but may be due to other
variables in the dataset.

•	 Missing not at random (MNAR): The missingness is due to the variable
itself.

Data that is MCAR has no bias. For example, let's say you are carrying a stack of
papers that describe survey responses in your study and drop them, then the wind
blows half of them away. Which half? It is completely random—we would expect the
half that remains to resemble the half that blew away, so there is no bias introduced
by the mechanism of missingness.

Data that is MAR will have bias. For example, let's say that we have a study of age
and income. Let's say that younger people simply ignore the survey in the mail—
then we have missing income data, and this is missing at random (a terrible name),
because it is an income data that is missing based on age and not on income, once
age is controlled for. As you can imagine, this may introduce bias.

Chapter 10

[391]

In our age and income study, if those with higher incomes opted not to report
incomes, then it would be data that is MNAR. In this case, the missing income data
is an effect of the income value. This will surely introduce bias, because in general
income, estimates will be lower because of the missing data.

We can try to deal with missing data in one of two ways, as mentioned below:

•	 Leave it out of our study and pretend it never existed (called deletion)
•	 Make up some values that we think would be present if the data were not

missing (called imputation)

If our data is MCAR, then the first option is the better option because ignoring
missing data only gives us a smaller sample with no bias. Unfortunately, data is
rarely MCAR, and choosing the first option may introduce bias. Believe it or not,
if the data is MAR or even MNAR, then it is better to make up some values than
to simply ignore missing values. However, imputation itself can introduce its own
biases, so sometimes deletion is the only viable fallback option.

Deletion methods
If we are going to rely on ignoring missing values, then there are a number of
different approaches to deletion that we can use. These include listwise and
pairwise deletion.

Listwise deletion or complete case analysis
The simplest approach to handling missing data in R is listwise deletion, and this
is often the fallback method for handling missing data. Listwise deletion is simply
leaving out all individuals who do not have all relevant data elements available. This
is probably the simplest and most common method for dealing with missing data.
As stated earlier, this can cause biased data, and may decrease one's sample size
significantly if a large number of individuals have only a single data element missing.

Listwise deletion can be accomplished in R with the complete.cases command
as follows:

> library(mice)
> data(nhanes2)
> complete.cases(nhanes2)
 [1] FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
FALSE
[13] TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
FALSE
[25] TRUE

Advanced Data Management

[392]

Pairwise deletion
Pairwise deletion ignores missing data like listwise deletion, but rather than outright
excluding members who lack complete data on all variables, it makes use of the
data that is observed for each member. For example, if in many statistical analyses,
the computer creates a covariance matrix (for example, regression methods), each
element in the covariance matrix comes from the covariance of two of the variables.
Thus, with pairwise deletion, all available data for any of the two variables is used
to compute their covariance. This helps to preserve sample sizes, but it has other
problems. It may create bias as listwise deletion, and this means that the sample used
to compute each element of a pairwise computation method can be slightly different,
which can lead to problems like not being positive definite covariance matrices.
Many R functions (or functions available in packages) offer a choice of listwise or
pairwise deletion.

When is it appropriate to use deletion as a method of dealing with
missing data?
While deletion is usually not the preferred method, in some cases it
is. If less than five percent of your data is missing, this is probably an
acceptable method (some might even say 10 percent). Likewise, if more
than half of your data is missing, you may just want to acknowledge
the bias created by ignoring missing values and do a complete case
analysis so as to avoid analyzing a dataset that is mostly synthetic data.

Visualizing missing data
Let's start by loading the nhanes2 dataset from the mice package and summarizing
the dataset.

This tells us that we certainly have missing values (denoted by NA), but what if we
want to know a little more about the patterns of missingness? For example, what
if we want to know what proportion of the sample has complete data, is missing
data variables, and so on? The VIM package has convenient tools for this, such as
an aggregation plot, as follows:

library(VIM)
aggr(nhanes2, numbers = TRUE, col = c('black', 'gray'))

Chapter 10

[393]

The result is shown in the following plot:

The preceding plot gives the proportion of missingness in each variable on the left, and
then combinations of missing values on the right. In the previous example, black cells
indicate complete data, and gray cells indicate missing data. The bottom row tells us
that 52 percent of the sample has no missing data. The second to last row tells us that
28 percent of the population has a recorded age (as noted in black), but is missing the
other three variables (as indicated in gray). The remaining eight percent of the sample
has a missingness pattern given in the top two rows. Thus, if we were to do a complete
case analysis, we would lose 28 percent of our (already small) sample.

The mi package contains the mp.plot function for missing data
visualization, which displays a graphic. The mice packages contain
the md.pattern function, which returns a table with the same data
as is contained in the right panel of VIM's aggr function.

Advanced Data Management

[394]

An overview of multiple imputation
Multiple imputation is the method of creating new data to fill in missing values,
which we alluded to as an alternative to case deletion earlier. Here we will give a
big picture discussion of imputation before delving into how it can be done in R.

Imputation basic principles
The alternative to ignoring missing data is to fill in the missing data with some
educated guesses. As indicated previously, this is quite frankly making up data, a fact
important to keep in mind. The success of imputation relies on our ability to make
up data that informs the data analyst, rather than leading them astray. The general
approach to imputation is to assume that there is some other information available in
the data that can tell us what a missing value would have been if it were not missing.

The simplest imputation method is to fill in each missing data value with a single
replacement value, a method called single imputation. With the advent of fast
personal computers and statistical advances over the past few decades, this has
largely been replaced by multiple imputation, in which each missing value is replaced
by multiple substitutes, effectively yielding multiple datasets. The problem with
single imputation is that it replaces an unknown value with a single certain value.
Of course, we don't actually know the value of the missing data element, so it is a bit
unfair to pretend that we know it with certainty, and as such single imputation will
tend to minimize the variability of the real data. Multiple imputation replaces the
single unknown value with a distribution of known values, retaining the appropriate
uncertainty or variance in the dataset. (At least this is how the theory goes.)

Approaches to imputation
Imputation is active area of statistical research for which new methods are constantly
being developed, and older methods improved upon. There are not necessarily
universal rules for imputation, and the type of imputation chosen may depend on
the type of analysis one wishes to do.

Broadly speaking, the two main approaches to imputation that have been used
are a multivariate normally distributed approach and an imputation by chained
equations approach. We will first go over the Amelia package, which assumes
multivariate normality, and then the mice package based on chained equations
with an imputation method designed for non-normal data.

Chapter 10

[395]

The Amelia package
Amelia is probably the newest multiple imputation package to be given to the
R community. Amelia makes the assumption of multivariate normality, and in a
moment we will see where this matters in terms of its use in R.

How important is the assumption of multivariate normality in
imputation?
Many of the datasets we deal with in real life are not multivariate
normally distributed, which might at first seem like a serious limitation
to such an assumption. However, as the creators of Amelia point
out, violations to this assumption usually don't make any practical
difference. If this does bother an analyst, possible solutions include
using the mice package that does not make this assumption or
transforming the variables under study to be normally distributed.

We multiply impute data with the amelia command, which takes a number of
arguments including the number of imputations to compute and descriptors for
which variables are not continuous. By default, Amelia computes five imputations,
but the optimal number is debatable. In general, the more missing data you are
dealing with, the more imputations you will probably need to create. Traditionally,
five imputations are considered adequate, but if there is a large amount of missing
data, then 20 or even 50 imputations may be desirable. More imputations will create
a significant computing burden later on, since analyses done on imputed datasets
will have to be done separately on each imputed dataset.

In the following example, we impute data for the physical function dataset with
missing values:

phys.imp <- amelia(phys.func.rm, ords = c(1:20))
summary(phys.imp$imputations)

We apply the ords = argument to tell Amelia which variables are ordinal in nature.
Amelia will constrain imputations to take ordered integer values for imputations
done for these variables, but it is questionable whether this is optimal. Leaving this
command out will give continuous value estimates based on a multivariate normal
assumption. While a value of 1.5 does not make sense as a person's response on a
scale, which has only integer answers, it has a clear substantive interpretation and
can be statistically analyzed.

Advanced Data Management

[396]

As we discussed earlier, multiple imputation relies on making up data using some
assumptions. So an important question is, "How can we test our imputed data?".
A commonly used method is plotting observed versus imputed distributions of
variables; if the missing at random assumption is true, then the two distributions
should be similar.

Amelia provides the built-in plot.amelia command, which does just this. In the
following code, we get such a plot for the second variable in the dataset:

plot(phys.imp, which.vars = 2)

The plot is shown in the following diagram:

As shown in the preceding plot, the imputed values are in red, while the observed
values are in black. The two distributions look sort of similar, so the imputation of
this variable may be adequate. However, the imputed values seem to have a greater
portion of responses of one, and a smaller proportion of the other responses.

Chapter 10

[397]

Amelia also comes with a second imputation diagnostic approach, which was
developed by its authors, called over-imputation. The idea of this method is to apply
our imputation procedure to data that is not missing. If we impute non-missing
data, then we can compare our imputed data to the observed values that these over-
imputations are filling in for. If the two are drastically different, then there may be a
problem with our imputation approach. This is done with the overimpute command.
This command produces a multi-colored plot on its own, but we will store the data
generated from this command and create our own plots. (As often happens with plots
of large datasets, individual points with important information may be lost in a plot
that tries to show too much.) Let's have a look at the following example:

B.ov.imp <- overimpute(phys.imp, var = 'PFQ061B')
summary(B.ov.imp)

The result is shown in the following screenshot:

In the preceding screenshot, we overimpute the data and then examine the matrix
contained within the object returned by overimputing.

Advanced Data Management

[398]

Let's just start by creating boxplot of the overimputed data (third column) verses
the original data (first column) and adding a diagonal line, along which a perfect
match between imputed and observed values would fall as follows:

boxplot(B.ov.imp[,3] ~ B.ov.imp[,2], xlab = 'Observed', ylab =
'Imputed', main = 'Overimputed vs Observed Values')

As we can see in the plot, overimputations for observed values of 3, 4, and 5 come
nowhere near the diagonal line, indicating that the overimputations for these values
systematically underestimate them. Why might this be? Let's examine the observed
variables using a single sample t-test as follows:

> t.test(phys.func.rm$PFQ061B)

 One Sample t-test

Chapter 10

[399]

data: phys.func.rm$PFQ061B
t = 106.1534, df = 3612, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 1.395550 1.448071
sample estimates:
mean of x
 1.42181

We can see here that the mean of the observed data is 1.42, and the 95 percent
confidence interval assuming a normal distribution is 1.39 to 1.45. This data is
actually quite far from normally distributed, and high values are quite rare. As such,
Amelia ends up imputing values much closer to the most commonly observed value,
which is 1. Does this matter? When we look at the mean overimputed values and the
mean observed values, there is practically no difference, so it may not matter.

Getting estimates from multiply imputed
datasets
After going through the previous code, we have successfully completed a multiple
imputation procedure, which we will accept as sufficient. However, instead of a
single dataset, we have multiple datasets and still no new answers to any analytical
questions. How do we actually get estimates out of the multiple new datasets? The
answer is with Rubin's rules, which we will go through in the following sections.
Here, the number of imputations is denoted by m, and the scalar quantity that we
wish to estimate is Q. We will walk through Rubin's rules with the mean.

Extracting the mean
The mean of the multiply imputed data is simply the mean of the means of each of
the m datasets (and Q is the mean), as shown in the following formula:

1

m
ii

Q
Q

m
== ∑

If we wish to find the mean value of each of the 20 items in the multiply imputed
physical functioning dataset, we first need to find the mean of each imputation and
then calculate the mean of these means, which we can do with the following code:

imputation.means <- sapply(phys.imp$imputations, colMeans)
rowMeans(imputation.means)

Advanced Data Management

[400]

The result is shown in the following screenshot:

Lists are the most versatile data structures in R, but the most demanding to perform
operations on, if we wish to apply a function to more than one element of a list. The
lapply command conveniently applies a function to all elements of the list, but it
returns yet another list. The sapply command returns a vector, matrix, or an array
instead, which are usually easier data structures to work with than lists.

Extracting the standard error of the mean
To get the total variance of the multiply imputed datasets, we need to do a little
more. Firstly, we find the average within imputation variance (the mean of the
variance of each dataset), using the following formula:

1
within

Variance
Variance

m
ii

m
== ∑

Chapter 10

[401]

We then calculate the variance between each dataset using the following formula:

2
1

between

(Mean Mean)
Variance

1

m
ii

m
=

−
=

−
∑

We can then compute the total variance using the following formula:

t w b
1Var =Var + 1+ Var
m

 
 
 

The square root of the total variance approximates the standard error of the sample.

We can implement this in R easily. We start by creating a function that does for
variance what the built-in colMeans function dose for means, after which the following
code looks very similar to the code for imputed means in the previous code:

colVars <- function(input.frame) {
 return(diag(var(input.frame)))
}

imputation.vars.within <- sapply(phys.imp$imputations, colVars)
imputation.vars.within
avg.within.var <- rowMeans(imputation.vars.within)

We then calculate the between imputation variance, as follows:

between.var <- colVars(t(imputation.means))

Finally, we calculate total variance, and take the square root of this value to estimate
the standard error, as follows:

total.var <- avg.within.var + (1+1/5)*between.var

This same approach will work for any other statistic we wish to estimate (for
example, regression coefficients). Conveniently, the mitools package has
implemented Rubin's rules so that we don't have to go through the tedium of writing
fresh code for each function that we wish to write. Here we will use the nhanes2
dataset from the mice package. We will start with our imputation (describing
the appropriate columns as ordinal and nominal). We will then extract the actual
imputed datasets and place them in an imputation list object, which will be used
for further analysis. We will then apply regression to each dataset, using the with.
imputationList command, the application of the with command to an object of
imputationList type.

Advanced Data Management

[402]

Finally, we will combine the results to get coefficient estimates from the multiple
regression models on multiple imputations using the MIcombine command
as follows:

library(mitools)
data(nhanes2)
nhanes2.imp <- amelia(nhanes2, ord = 1, noms = 3)
nhanes2.implist <- imputationList(nhanes2.imp[[1]])
lm.nhanes2 <- with(nhanes2.implist, lm(chl ~ age + bmi))
MIcombine(lm.nhanes2)

The preceding code gives the following output:

Multiple imputation results:
 with(nhanes2.implist, lm(chl ~ age + bmi))
 MIcombine.default(lm.nhanes2)
 results se
(Intercept) -12.63903 79.719185
age40-59 49.77736 22.478038
age60-99 92.71007 49.483384
bmi 6.51795 2.494955

We will now go through multiple imputations using a different approach.

The mice package
The mice package provides an alternative approach to imputation, being based on
a Bayesian procedure without assuming multivariate normality. The approach used
by mice relies upon a procedure known as "chained equations". The basic operation
goes as follows:

1.	 Some preliminary starting imputation values are filled in for all missing data.
2.	 The imputation starts for some particular variable, which we will call X.

Starting imputation values are removed from X and missing data in X is,
once again, treated as missing. Preliminary imputations are left in place of
all other variables. Observed elements of X are regressed on, or somehow
matched to the other variables (values of these other variables may be
observed or imputed). Based on this regression or matching, the missing
values of X are filled in.

3.	 Step 2 is then repeated for the next variable in line Y. Step 2 is then
repeated for variable Z, and this goes on until the imputation has been
done for all variables.

Chapter 10

[403]

4.	 Steps 2 and 3 are then repeated over and over again. The imputed values
at the end of step 2 are tracked with each imputation, and once they are no
longer changing much, the imputation is thought to have converged.

An important note here is that many different functions can be used in
step 2 to perform the regression or matching, and the user must select
which function he or she wishes to use.

Imputation functions in mice
The mice command in the mice package supports a large range of imputation
methods, many of which do not assume normality. For categorical data, mice
uses logistic regression or multinomial logistic regression. The default method for
handling numeric data in mice is with predictive mean matching, which relies on
filling in missing data with donated values from observed data. The donor values
are selected based on the closest match from linear regression. The advantage of
this approach over a simple regression-based approach is that it is less sensitive to
violations of normality, and since it borrows observed values to fill in missing data,
nonsensical imputed data is less of a concern.

The mice command also supports a range of other imputation functions, which the
user can specify.

Before we go on, we will rename the variables with their respective letters for
simplicity, as follows:

names(phys.func.rm) <- LETTERS[c(1:20)]

The mice command allows us to specify which variables will be used in the
imputation of other variables as a matrix. Typically, we try to use all of the relevant
variables to perform imputations. This consideration is especially important if the
dataset has a large number of variables. This means, for instance, a variable like
hair color would not be used to impute something like age. Here, we demonstrate
the use of the predictor matrix in the physical functioning dataset, which has only
20 variables. In the prior section, we discussed the possibility that some of these
variables relate to social engagement and cognition, some relate to leg function, and
some relate to arm function. We will use this grouping for imputation prediction.

Advanced Data Management

[404]

We create a square matrix. Each row represents the variable to be imputed (for
example, the first row is A, the second row is B, and so on). Each column represents
the variable being used as a predictor. Let's have a look at the following matrix:

predictor.matrix <- matrix(
 c(
 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,
 0,0,1,1,0,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,
 0,1,0,1,0,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,
 0,1,1,0,0,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,
 0,0,0,0,0,1,1,0,0,0,1,1,0,0,1,1,0,0,0,1,
 0,0,0,0,1,0,1,0,0,0,1,1,0,0,1,1,0,0,0,1,
 0,0,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,0,0,1,
 0,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,
 0,1,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,
 0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,
 0,0,0,0,1,1,1,0,0,0,0,1,0,0,1,1,0,0,0,1,
 0,0,0,0,1,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,
 0,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0,
 0,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,
 0,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,0,0,0,1,
 0,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0,0,1,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,
 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,
 0,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0,0,0
),
 nrow = 20,
 byrow = TRUE
)

We will then impute the missing values obtaining five imputations, and allowing up
to six iterations to obtain the imputations, as follows:

imputed.phys.func <- mice(phys.func.rm, predictorMatrix = predictor.
matrix, m = 5, seed = 10, maxit = 6)

Once again, we now have five imputed datasets, but we have not found any new
results. What if we want to ask whether the total leg function score is predicted by
the total arm function score? We can use the with command to apply a regression
model to each individual dataset as follows:

legs.v.arms.models <- with(imputed.phys.func, lm(I(B+C+D+H+I+J+M+N) ~
I(E+F+G+K+L+O+P+T)))

Chapter 10

[405]

We can then pool the results to get estimates as follows:

leg.v.arm.pool <- pool(legs.v.arms.models)

The summary function on a mipo object (returned by pool) will give additional
interesting information, as follows:

summary(leg.v.arm.pool)

Let's have a look at the following screenshot:

We get the estimation of the intercept and slope for the regression model in addition
to the standard error and typical regression model statistics. However, we also get
the fraction of information missing (column fmi) and the variance attributable to
missing data (column lambda). As we can see here, a little over a fifth of variability is
attributable to missing data.

Summary
This chapter has gone through techniques for data handling. Prior to data analysis,
it is important to get the data into a consistently structured format, which string
processing and pattern matching are helpful in doing. We have also gone through
some basic memory management considerations. Finally, we discussed how to
handle missing data using deletion, and two imputation approaches. The techniques
of this chapter yield no new scientific insights or information about relationships in
the data, yet they are often crucial preliminary steps prior to descriptive or inferential
analyses. For large-scale projects, additional technologies designed just for data
management, such as database platforms, will be important adjuncts to R by itself.

Index
A
abline() function 100
adsorption 142
adsorption dataset

about 141
URL 141

agrep function 377
Akaike information criterion (AIC) value 74
amelia command 395
Amelia package

about 395-398
estimates, obtaining from multiply imputed

datasets 399
Analysis of variance (Anova) 107-111
anova() function 111
aov() function 107
apply() function 44
array() function 22
atomic vectors

about 10-13
operations 14, 15

attributes 19, 20
Augmented Dickey-Fuller (ADF) 87

B
basic plots

creating 33-42
Bernoulli random variables 293, 294
binomial exact test 83, 84
Binomial random variables 294
biplot() function 132
body measures dataset 141
bootstrap approach 80

boxplot command 160
break statement 47
Brownian motion 334
browser() function 53

C
CDC

URL 178
central limit theorem 297-301
centroid method 237-239
character classes, R

[^0-9] 380
[0-9] 380
[[:alpha:]] 380
[[:digit:]] 380
[[:print:]] 380
[[:punct:]] 380
[aeiou] 380
[AEIOU] 380
[a-z] 380
[A-Z] 380
[a-zA-Z0-9] 380

chartSeries() function 91
cholesky decomposition 195
class() function 19
classical test theory (CTT) 201
clustering 136-138
comma-separated values (CSV) file

URL 141
complete case analysis 391
confidence intervals (CI) 62
Confirmatory Factor Analysis (CFA) 251
cornode() function 310
correlation matrices 212

[408]

covariance matrices 212
CRAN distributions page

URL 63
CRAN page

URL 301
CRAN R project Time Series Analysis

website
URL 94

Cronbach's alpha
calculating 201, 202

D
data

loading, in R 28-30, 57
data frames

about 25-27
saving 31-33

dataset
about 178, 179, 212, 213, 252
cleaning, in R 376
Holzinger-Swineford 1939 dataset 252, 253
physical functioning 213
physical functioning dataset 252
political democracy 252
red wine 212

data structures, in R
about 10
atomic vectors 10-13
attributes 19, 20
data frames 25-27
Factors 21
heterogeneous 10
homogeneous 10
lists 15, 17
multidimensional arrays 22

data variability
about 61, 62
confidence intervals (CI) 62

data visualization 313-315
data wrangling 375
DCT

in R 206-209
debugging tools 52-54

deletion methods
about 391
complete case analysis 391
listwise deletion 391
pairwise deletion 392

density functions 324, 325
descriptive statistics

about 59, 60
data variability 61, 62

diagonal matrix 177
dimension reduction

PCA for 220, 221
dim() function 19
distributions

fitting, statistical tests used 73
dnorm() function 64

E
EFA

about 233
advanced EFA, with psych

package 246-250
centroid method 237-239
communality 233
covariance algebra 235
direct factor extraction, by principal

axis factoring 240
estimation 236
extraction methods 241
factor rotation 242
implied 233
in matrix model 235
latent trait or common factor 233
multiple actors 239, 240
oblique factor structure 234
observed 233
orthogonal factor structure 234
path coefficient 233
principal axis factoring, performing

in R 240, 241
uniqueness 233

effective degrees of freedom (edf) 118
eigenvalue decomposition 193-195

[409]

elementwise matrix operations
about 180
matrix addition 180
matrix subtraction 180
matrix sweep 180

error structure, canonical link functions 112
estimates

obtaining, from multiply
imputed datasets 399

evalmcmod() function 312
example, in R 261-264
example, lavaan

defining 279, 280
example, OpenMx

defining 280-283
example, SEM specification 257-261
exploratory factor analysis. See EFA
exponential random variables 295
expression() function 76

F
factor analysis (FA) 211
factor correlation matrix 234
factor pattern matrix 234
factor rotation

about 242
in R 244-246

factor rotation, methods
Oblimin rotation 243
Oblique rotations 243
Promax rotation 244
Quartimax rotation 242
Varimax rotation 243

fitting distributions
about 68-71
higher order moments,

of distribution 71, 72
statistical tests, for fitting distributions 73

floating point operations 383, 384
flow control

about 43
break statement 47
for() loop 43
if() statement 46
repeat{} statement 47
while() loop 46, 47

for() loop
about 43
apply() function 44

formative constructs
PCA used 228-232

functions
about 48-52
used, for fitting distributions 73

G
generalized additive

models (GAMs) 117-121
generalized linear model (GLM) 111-116
general non-linear optimization 372, 373
getwd() function 88
ggbiplot package

URL 134
ggplot2 package 33-42
glm() function 111
golden section search method 338-345
grep function 377
grepl function 377
gridsize argument 166
gsub function 377

H
Holzinger-Swineford 1939 dataset 252, 253
hypothesis testing

about 79-82
proportion tests 83, 84
two sample hypothesis tests 85-87
unit root tests 87-94

I
identity matrix 178
image

importing, to R 202
image compression

about 204
direct cosine transform used 202
image, importing into R 202, 203
matrices, putting together for 205, 206

implied correlation matrix 234
importance sampling 332, 333

[410]

imputation
approaches to 394

imputation functions, in MICE 403-405
integer-restricted optimization 365-367
intercept, as parameter 1

about 98
model, updating 99

item response theory (IRT) 201

K
Kaiser Guttman rule 224
kernel regression

about 161-164
scientific application 168

kernel weighted local polynomial fitting
about 165, 166
optimal bandwidth selection 166, 167
scientific application, of kernel

regression 168
ksmooth function 162, 164

L
Langmuir adsorption model 142
lavaan

example, defining 279, 280
OpenMx, comparing to 279
used, for fitting SEM models 276

lavaan command 278
lavaan syntax 276-278
lda() function 126
length() function 24
linear algebra

about 175
used, for Rasch analysis 198-201

Linear discriminant
analysis (LDA) 122-130

linear framework
extending 146
polynomial regression 147
polynomial regression, performing

in R 147-154
spline regression 155, 156

linear programming
about 360-364
integer-restricted optimization 365-367
unrestricted variables 368

linear regression
about 99
slope, plotting 99-107

lists 15-18
listwise deletion 391
load() function 57
locally weighted polynomial

regression 169, 170
locpoly command 165, 166
loess command 169
loess function 169, 170
lp() function 368

M
matrix

A 256
about 23-25, 176
addition 180
diagonal 177
F 256
factor correlation matrix 234
factor pattern matrix 234
identity 178
implied correlation matrix 234
in R 176
multiplication 182, 183
rectangular 177
reduced correlation matrix 234
residual correlation matrix 234
S 256
sparse matrix 178
square 177
subtraction 180
sweep 180
symmetric 177
triangular 177
uniqueness matrix 234
vector 178

matrix decomposition
about 191
cholesky decomposition 195
eigenvalue decomposition 193, 194
lower upper decomposition 194, 195
QR decomposition 191-193
singular value decomposition 195-197

[411]

matrix inversion
about 188
linear equations, systems solving 189, 190

matrix multiplication
about 182, 183
outer products 185, 186
sparse matrices using 186-188
square matrices, multiplying for social

networks 183-185
matrix operations

about 179, 180
elementwise matrix operations 180
matrixwise operations 181

matrix representation, SEM
about 255
example, in R 261-264
reticular action model (RAM) 256, 257

matrix specification
using 267

matrixwise operations, basic
about 181
determinants 190
matrix inversion 188
matrix multiplication 182, 183
transposition 182

mc2d documentation
URL 310

mc2d functions
about 310
cornode() function 310
data visualization 313-315
evalmcmod() function 312
mcmodel() function 311
mcprobtree() function 310

mc2d package
multivariate nodes 316-320
one-dimensional Monte Carlo

simulation 302-304
two-dimensional Monte Carlo

simulation 305-309
using 301

mcmodel() function 311
mcprobtree() function 310
mean

extracting 399, 400
mean() function 61

memory
R objects, handling in 387-389

memory management, in R
about 385
R memory commands 385, 386
R objects, handling in memory 387-389

mice command 403
MICE package

about 402
imputation functions 403, 404

missing data
about 389
computational aspects, in R 389, 390
dealing with 391
deletion methods 391
multiple imputation 394
statistical considerations 390, 391
visualizing 392, 393

model
fitting 273-276
updating 99

model formulas, statistical modeling 96, 97
model matrices

model, fitting 273-276
specifying 269-273

Monte Carlo integration
about 320-322
density functions 324, 325
multiple integration 322-324

Monte Carlo simulations
about 296, 297
central limit theorem 297-301
mc2d package, using 301
URL 301

multidimensional arrays
about 22
matrices 23-25

multiple error terms, statistical modeling 98
multiple imputation

about 394
principle 394

multiple integration 322-324
multiply imputed datasets

estimates, obtaining from 399
mean, extracting 399, 400
standard error of mean, extracting 400, 401

multivariate nodes 316-320

[412]

N
Nelder-Mead simplex method

about 353-356
URL 356

Newton-Raphson method 347-352
nls command 143
nonconvergence

problems 151
nonlinear quantile regression 171, 172
nonlinear relationships

exploring, visually 143-146
nonparametric methods, with np package

about 171
nonlinear quantile regression 171, 172

nonparametric model 139-141
nonparametric nonlinear methods

about 156-161
kernel regression 161-164
kernel weighted local polynomial

fitting 165, 166
locally weighted polynomial

regression 169, 170
loess function 169, 170

npqreg command 171
numerical data types 383, 384
numerical optimization 337

O
Oblimin rotation 243
Oblique rotation 243
one-dimensional Monte Carlo

simulation 302-304
one-dimensional optimization

about 338
golden section search method 338-345
Nelder-Mead simplex method 353-356
Newton-Raphson method 347-352
optim() function 356-359
optimize() function 346

OpenMx
comparing, to lavaan 279
defining 268
example, defining 280, 282
using 267

optimal bandwidth selection 166, 167

optim() function 356, 357, 359
optimization packages

about 374
URL 374

optimize() function 346
overimpute command 397

P
pairwise deletion 392
parametric model 139-141
parametric regression models

advantages 140
disadvantages 140

paste() function 67
path diagram

about 255
causal path 255
correlation 255
latent variable 255
observed variable 255
residual 255

pattern matching 377
PCA

about 130-135, 211-213
basics 214-217
for dimension reduction 220, 221
for summarizing wine properties 221-224
number of principal components to retain,

selecting 224-228
relating, to SVD 217
scaled, versus unscaled PCA 218-220
used, for formative constructs 228-232

physical functioning dataset 252
physical systems

simulating 334, 335
plot3d() function 135
plot() function 65, 89, 363
Poisson random variables 295
political democracy 252
polynomial regression

about 147
performing, in R 147-154

prcomp
and princomp 215

prcomp() function 130
predict() function 127

[413]

principal axis factoring (PAF)
about 240
in R 240, 241

principal component
about 215
selecting 224-228

Principal component analysis. See PCA
princomp

and prcomp 215
print() function 308
probability distributions 63-67
programming tools 52-54
Promax rotation 244
propagate() function 74, 77
propagate package 74- 78
proportion tests 83, 84
pseudorandom numbers

about 286-289
Bernoulli random variables 293, 294
Binomial random variables 294
exponential random variables 295
Poisson random variables 295
runif() function 289-293

Q
QR decomposition 191-193
qt() function 62
quadratic programming 369-371
Quantile-Quantile plot (Q-Q plot) 68
quantization matrix

creating 204, 205
Quartimax rotation 242

R
R

about 7
computational aspects, of missing

data 389, 390
data, loading into 28-30, 57
datasets, cleaning in 376
DCT 206-209
image, importing into 203
matrices 176
polynomial regression,

performing in 147-154
vectors 176, 177

Rasch analysis
linear algebra used 198-201

rbern() function 294
R data structures

URL 8
rectangular matrix 177
Reduced correlation matrix 234
regular expressions 378-383
rejection sampling 325-330
Reticular action model (RAM)

about 255-257
example, SEM specification 257-261

R memory commands 385, 386
R objects

handling, in memory 387-389
Root Mean Square Error of Approximation

(RMSEA) 249
Root Mean Square Residual (RMSR) 249
runif() function 289-293

S
sample() function 286
sapply command 400
scaled PCA

versus unscaled PCA 218-220
scientific computing 7
Screen test 224
SEM model

components 254
covariance algebra 254
estimation methods 265
example 268
fitting 265
fitting, lavaan used 276
latent variable 254
lavaan syntax 276-278
matrix specification, using 267
model matrices, specifying 269-273
observed variable 254
OpenMx, defining 268
OpenMx, using 267
path 254
path diagram 255
residual 254
SEM model fit, assessing 266, 267

[414]

SEM model fit
assessing 266, 267
indices 267

simulations, R 285, 286
single imputation 394
singular value decomposition 195-197
skewness() function 71
slope, linear regression

plotting 99-107
solnp() function 372
sparse matrices

about 178
using, in matrix multiplication 186-188

Spectral Tests
URL 289

spline regression 155, 156
sqrt() function 62
square matrix 177
standard deviation 62
standard error of mean

extracting 400, 401
statistical considerations, missing data

about 390, 391
missing at random (MAR) 390
missing completely at random (MCAR) 390
missing not at random (MNAR) 390

statistical modeling
about 95, 96
intercept, as parameter 1 98
model formulas 96, 97
multiple error terms 98
variables, interaction between 98

statistical tests
propagate package 74-78
used, for fitting distributions 73

SVD
PCA, relating to 217

symbols, statistical modeling
- 96
* 96
/ 96
| 97
: 97
I 97

symmetric matrix 177
system.time command 388

T
theory-driven nonlinear regression 142, 143
transformation matrix

about 205
creating 204

triangular matrices 177, 190
two-dimensional Monte Carlo

simulation 305-309
two sample hypothesis tests 85-87

U
uniqueness matrix 234
unit root tests 87-94
unrestricted variables 368
unscaled PCA

versus scaled PCA 218-220

V
variables

interactions between 98
varimax rotation 243
vector matrix 178
vectors

about 176
in R 176, 177

W
while() loop 46, 47
Wilcoxon signed-rank test 79
wilcox.test() function 79
with command 404
with.imputationList command 401

Z
Z-test 83

Thank you for buying
Mastering Scientific Computing with R

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

R Object-oriented Programming
ISBN: 978-1-78398-668-2 Paperback: 190 pages

A practical guide to help you learn and understand
the programming techniques necessary to exploit
the full power of R

1.	 Learn and understand the programming
techniques necessary to solve specific problems
and speed up development processes for
statistical models and applications.

2.	 Explore the fundamentals of building objects
and how they program individual aspects of
larger data designs.

3.	 A step-by-step guide to understand how OOP
can be applied to applications and data models
within R.

Instant R Starter
ISBN: 978-1-78216-350-3 Paperback: 54 pages

Jump into the R programming language and go
beyond "Hello World!"

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Basic concepts of the R language.

3.	 Discover tips and tricks for working with R.

4.	 Learn manipulation of R objects to easily
customize your code.

Please check www.PacktPub.com for information on our titles

Instant Heat Maps in R How-to
ISBN: 978-1-78216-564-4 Paperback: 72 pages

Learn how to design heat maps in R to enhance your
data analysis

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Create heat maps in R using different file
formats.

3.	 Learn how to make choropleth maps and
contour plots.

4.	 Generate your own customized heat maps and
add interactivity for displaying on the Web.

Social Media Mining with R
ISBN: 978-1-78328-177-0 Paperback: 122 pages

Deploy cutting-edge sentiment analysis techniques to
real-world social media data using R

1.	 Learn how to face the challenges of analyzing
social media data.

2.	 Get hands-on experience with the most
common, up-to-date sentiment analysis tools
and apply them to data collected from social
media websites through a series of in-depth
case studies, which includes how to mine
Twitter data.

3.	 A focused guide to help you achieve practical
results when interpreting social media data.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Programming with R
	Data structures in R
	Atomic vectors
	Operations on vectors

	Lists
	Attributes
	Factors
	Multidimensional arrays
	Matrices

	Data frames

	Loading data into R
	Saving data frames

	Basic plots and the ggplot2 package
	Flow control
	The for() loop
	The apply() function

	The if() statement
	The while() loop
	The repeat{} and break statement

	Functions
	General programming and debugging tools
	Summary

	Chapter 2: Statistical Methods with R
	Descriptive statistics
	Data variability
	Confidence intervals

	Probability distributions
	Fitting distributions
	Higher order moments of a distribution
	Other statistical tests to fit distributions
	The propagate package

	Hypothesis testing
	Proportion tests
	Two sample hypothesis tests
	Unit root tests

	Summary

	Chapter 3: Linear Models
	An overview of statistical modeling
	Model formulas
	Explanatory variables interactions
	Error terms
	The intercept as parameter 1
	Updating a model

	Linear regression
	Plotting a slope

	Analysis of variance
	Generalized linear models
	Generalized additive models
	Linear discriminant analysis
	Principal component analysis
	Clustering
	Summary

	Chapter 4: Nonlinear Methods
	Nonparametric and parametric models
	The adsorption and body measures datasets
	Theory-driven nonlinear regression
	Visually exploring nonlinear relationships
	Extending the linear framework
	Polynomial regression
	Performing a polynomial regression in R
	Spline regression

	Nonparametric nonlinear methods
	Kernel regression
	Kernel weighted local polynomial fitting
	Optimal bandwidth selection
	A practical scientific application of kernel regression

	Locally weighted polynomial regression and the loess function

	Nonparametric methods with the np package
	Nonlinear quantile regression

	Summary

	Chapter 5: Linear Algebra
	Matrices and linear algebra
	Matrices in R
	Vectors in R
	Matrix notation

	The physical functioning dataset
	Basic matrix operations
	Element-wise matrix operations
	Matrix subtraction
	Matrix addition
	Matrix sweep

	Basic matrix-wise operations
	Transposition
	Matrix multiplication
	Matrix inversion
	Determinants

	Triangular matrices
	Matrix decomposition
	QR decomposition
	Eigenvalue decomposition
	Lower upper decomposition
	Cholesky decomposition
	Singular value decomposition

	Applications
	Rasch analysis using linear algebra and a paired comparisons matrix
	Calculating Cronbach's alpha
	Image compression using direct cosine transform
	Importing an image into R
	The compression technique
	DCT in R

	Summary

	Chapter 6: Principal Component
Analysis and the Common Factor Model
	A primer on correlation and covariance structures
	Datasets used in this chapter
	Principal component analysis and total variance
	Understanding the basics of PCA
	How does PCA relate to SVD?

	Scaled versus unscaled PCA
	PCA for dimension reduction
	PCA for summarizing wine properties

	Choosing the number of principal components to retain

	Formative constructs using PCA
	Exploratory factor analysis and reflective constructs
	Familiarizing yourself with the basic terms
	Matrices of interest
	Expressing factor analysis in a matrix model

	Basic EFA and concepts of covariance algebra
	Concepts of EFA estimation
	Direct factor extraction by principal axis factoring
	Performing principal axis factoring in R
	Other factor extraction methods
	Factor rotation

	Advanced EFA with the psych package

	Summary

	Chapter 7: Structural Equation
Modeling and Confirmatory Factor Analysis
	Datasets
	Political democracy
	Physical functioning dataset
	Holzinger-Swineford 1939 dataset

	The basic ideas of SEM
	Components of an SEM model
	Path diagram

	Matrix representation of SEM
	The reticular action model (REM)
	An example of SEM specification

	An example in R

	SEM model fitting and estimation methods
	Assessing SEM model fit
	Using OpenMx and matrix specification of an SEM
	Summarizing the OpenMx approach
	Explaining an entire example
	Specifying the model matrices
	Fitting the model

	Fitting SEM models using lavaan
	The lavaan syntax

	Comparing OpenMx to lavaan
	Explaining an example in lavaan
	Explaining an example in OpenMx

	Summary

	Chapter 8: Simulations
	Basic sample simulations in R
	Pseudorandom numbers
	The runif() function
	Bernoulli random variables
	Binomial random variables
	Poisson random variables
	Exponential random variables

	Monte Carlo simulations
	Central limit theorem
	Using the mc2d package
	One-dimensional Monte Carlo simulation
	Two-dimensional Monte Carlo simulation
	Additional mc2d functions
	Multivariate nodes

	Monte Carlo integration
	Multiple integration
	Other density functions

	Rejection sampling
	Importance sampling
	Simulating physical systems
	Summary

	Chapter 9: Optimization
	One-dimensional optimization
	The golden section search method
	The optimize() function
	The Newton-Raphson method
	The Nelder-Mead simplex method
	More optim() features

	Linear programming
	Integer-restricted optimization
	Unrestricted variables

	Quadratic programming
	General non-linear optimization
	Other optimization packages
	Summary

	Chapter 10: Advanced Data Management
	Cleaning datasets in R
	String processing and pattern matching
	Regular expressions

	Floating point operations and numerical data types
	Memory management in R
	Basic R memory commands
	Handling R objects in memory

	Missing data
	Computational aspects of missing data in R
	Statistical considerations of missing data
	Deletion methods
	Listwise deletion or complete case analysis
	Pairwise deletion

	Visualizing missing data
	An overview of multiple imputation
	Imputation basic principles
	Approaches to imputation

	The Amelia package
	Getting estimates from multiply imputed datasets
	Extracting the mean
	Extracting the standard error of the mean

	The mice package
	Imputation functions in mice

	Summary

	Index
	B03528_Re-wrk eBook.pdf
	Preface
	Programming with R
	Data structures in R
	Atomic vectors
	Operations on vectors

	Lists
	Attributes
	Factors
	Multidimensional arrays
	Matrices

	Data frames

	Loading data into R
	Saving data frames

	Basic plots and the ggplot2 package
	Flow control
	The for() loop
	The apply() function

	The if() statement
	The while() loop
	The repeat{} and break statement

	Functions
	General programming and debugging tools
	Summary

	Statistical Methods with R
	Descriptive statistics
	Data variability
	Confidence intervals

	Probability distributions
	Fitting distributions
	Higher order moments of a distribution
	Other statistical tests to fit distributions
	The propagate package

	Hypothesis testing
	Proportion tests
	Two sample hypothesis tests
	Unit root tests

	Summary

	Linear Models
	An overview of statistical modeling
	Model formulas
	Explanatory variables interactions
	Error terms
	The intercept as parameter 1
	Updating a model

	Linear regression
	Plotting a slope

	Analysis of variance
	Generalized linear models
	Generalized additive models
	Linear discriminant analysis
	Principal component analysis
	Clustering
	Summary

	Nonlinear Methods
	Nonparametric and parametric models
	The adsorption and body measures datasets
	Theory-driven nonlinear regression
	Visually exploring nonlinear relationships
	Extending the linear framework
	Polynomial regression
	Performing a polynomial regression in R
	Spline regression

	Nonparametric nonlinear methods
	Kernel regression
	Kernel weighted local polynomial fitting
	Optimal bandwidth selection
	A practical scientific application of kernel regression

	Locally weighted polynomial regression and the loess function

	Nonparametric methods with the np package
	Nonlinear quantile regression

	Summary

	Linear Algebra
	Matrices and linear algebra
	Matrices in R
	Vectors in R
	Matrix notation

	The physical functioning dataset
	Basic matrix operations
	Element-wise matrix operations
	Matrix subtraction
	Matrix addition
	Matrix sweep

	Basic matrix-wise operations
	Transposition
	Matrix multiplication
	Matrix inversion
	Determinants

	Triangular matrices
	Matrix decomposition
	QR decomposition
	Eigenvalue decomposition
	Lower upper decomposition
	Cholesky decomposition
	Singular value decomposition

	Applications
	Rasch analysis using linear algebra and a paired comparisons matrix
	Calculating Cronbach's alpha
	Image compression using direct cosine transform
	Importing an image into R
	The compression technique
	DCT in R

	Summary

	Principal Component
Analysis and the Common Factor Model
	A primer on correlation and covariance structures
	Datasets used in this chapter
	Principal component analysis and total variance
	Understanding the basics of PCA
	How does PCA relate to SVD?

	Scaled versus unscaled PCA
	PCA for dimension reduction
	PCA for summarizing wine properties

	Choosing the number of principal components to retain

	Formative constructs using PCA
	Exploratory factor analysis and reflective constructs
	Familiarizing yourself with the basic terms
	Matrices of interest
	Expressing factor analysis in a matrix model

	Basic EFA and concepts of covariance algebra
	Concepts of EFA estimation
	Direct factor extraction by principal axis factoring
	Performing principal axis factoring in R
	Other factor extraction methods
	Factor rotation

	Advanced EFA with the psych package

	Summary

	Structural Equation
Modeling and Confirmatory Factor Analysis
	Datasets
	Political democracy
	Physical functioning dataset
	Holzinger-Swineford 1939 dataset

	The basic ideas of SEM
	Components of an SEM model
	Path diagram

	Matrix representation of SEM
	The reticular action model (REM)
	An example of SEM specification

	An example in R

	SEM model fitting and estimation methods
	Assessing SEM model fit
	Using OpenMx and matrix specification of an SEM
	Summarizing the OpenMx approach
	Explaining an entire example
	Specifying the model matrices
	Fitting the model

	Fitting SEM models using lavaan
	The lavaan syntax

	Comparing OpenMx to lavaan
	Explaining an example in lavaan
	Explaining an example in OpenMx

	Summary

	Simulations
	Basic sample simulations in R
	Pseudorandom numbers
	The runif() function
	Bernoulli random variables
	Binomial random variables
	Poisson random variables
	Exponential random variables

	Monte Carlo simulations
	Central limit theorem
	Using the mc2d package
	One-dimensional Monte Carlo simulation
	Two-dimensional Monte Carlo simulation
	Additional mc2d functions
	Multivariate nodes

	Monte Carlo integration
	Multiple integration
	Other density functions

	Rejection sampling
	Importance sampling
	Simulating physical systems
	Summary

	Optimization
	One-dimensional optimization
	The golden section search method
	The optimize() function
	The Newton-Raphson method
	The Nelder-Mead simplex method
	More optim() features

	Linear programming
	Integer-restricted optimization
	Unrestricted variables

	Quadratic programming
	General non-linear optimization
	Other optimization packages
	Summary

	Advanced Data Management
	Cleaning datasets in R
	String processing and pattern matching
	Regular expressions

	Floating point operations and numerical data types
	Memory management in R
	Basic R memory commands
	Handling R objects in memory

	Missing data
	Computational aspects of missing data in R
	Statistical considerations of missing data
	Deletion methods
	Listwise deletion or complete case analysis
	Pairwise deletion

	Visualizing missing data
	An overview of multiple imputation
	Imputation basic principles
	Approaches to imputation

	The Amelia package
	Getting estimates from multiply imputed datasets
	Extracting the mean
	Extracting the standard error of the mean

	The mice package
	Imputation functions in mice

	Summary

	Index
	_GoBack
	_GoBack
	_GoBack
	_GoBack

