
www.allitebooks.com

http:///
http://www.allitebooks.org

Learning NServiceBus Sagas

Discover how to design, build, and test sagas and

messaging with NServiceBus

Rich Helton

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http:///
http://www.allitebooks.org

Learning NServiceBus Sagas

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1240115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-349-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http:///
http://www.allitebooks.org

Credits

Author

Rich Helton

Reviewers

Neil Bourgeois

Prashant Brall

Mark Huber

Commissioning Editor

Usha Iyer

Acquisition Editor

Kevin Colaco

Content Development Editors

Akshay Nair

Priya Singh

Technical Editor

Edwin Moses

Copy Editors

Sarang Chari

Puja Lalwani

Veena Mukundan

Project Coordinator

Mary Alex

Proofreaders

Samuel Redman Birch

Maria Gould

Bernadette Watkins

Indexer

Monica Ajmera Mehta

Graphics

Valentina D'silva

Production Coordinator

Nilesh R. Mohite

Cover Work

Arvindkumar Gupta

Nilesh R. Mohite

www.allitebooks.com

http:///
http://www.allitebooks.org

About the Author

Rich Helton, as a principal software engineer, builds and reviews large-scale
systems and trains hundreds of developers as well.

Rich has spent over 2 decades in designing and building systems. During this
time, he has built, architected, and designed multiple systems, as well as managed
many different technical teams. He has built many large-scale enterprise solutions
using the most popular C# and Java frameworks and has expertise in the inancial,
aeronautical, and security domains.

Rich's passion for designing and teaching HTML5, ESBs, ORM's test-driven
development, NoSQL, iOS, IoCs, and cloud and iPad development was discovered
while training developers and architects. He freely shares some of the slides from
these trainings on http://www.slideshare.net/rhelton_1.

I would like to thank my wife, Johennie, and my daughters, Ashley
and Courtney, for their ongoing support.

www.allitebooks.com

http://www.slideshare.net/rhelton_1
http:///
http://www.allitebooks.org

About the Reviewers

Neil Bourgeois is a software engineer at Pentair Technical Solutions, where he
leads the Engineering Software team. Solutions he has architected and implemented
include a high-volume metering and billing system for the utilities industry and
an industry-leading 3D engineering tool for the industrial heat-tracing ield. He
applies the discipline of Agile software development to his work and believes
that great software comes from great team cultures. He strives to lead his teams
to great cultures.

Prashant Brall is a principal consultant and senior software architect/developer who
uses Microsoft technologies. He works for Veritec Pty Ltd (www.veritec.com.au) in
Canberra, Australia, and has been developing software for the past 18 years. He enjoys
writing about his experiences on his blog at https://prashantbrall.wordpress.com.

Prashant has also reviewed the book Instant AutoMapper, Packt Publishing.

In his leisure time, he enjoys watching movies with his wife and playing
musical instruments.

I would like to thank my fantastic wife, Jhumur, for being my best
friend and for all the love and support she has given me. I would
also like to thank my parents Mr. Hem Brall and Mrs. Prabha Brall
for all the guidance, love, and care they have given me.

www.allitebooks.com

www.veritec.com.au
https://prashantbrall.wordpress.com
http:///
http://www.allitebooks.org

Mark Huber is a developer, team manager, and general-purpose tech enthusiast
who lives and works in Dallas, Texas. In the last several years, he has focused on
specializing in large-scale web platforms in the automotive market. He has spent
the majority of his time in the .NET environment, but believes the key to mastering
your preferred domain is expanding beyond traditional boundaries to look at
how other languages and technologies approach the same problems. He has been
an avid researcher of other platforms including Java, Ruby, Python, and others.
He is also a strong advocate of interweaving .NET projects with supporting open
source technologies not traditionally considered with a .NET platform, such as
ElasticSearch, Redis, RabbitMQ, Memcached, and others.

Mark is currently a software development manager working at Dealer.com, a
Dealertrack technology solution. He is privileged to work with a team of developers,
QA, DevOps, product owners, and many others, who truly live the principles and
values of the Agile Manifesto (http://agilemanifesto.org/) as well as view their
work through the lens of the Software Craftsmanship Manifesto (http://manifesto.
softwarecraftsmanship.org/).

I would like to extend a heartfelt thank you to my colleagues,
mentors, friends, and most importantly my family, who have been
an unending stream of support and growth over the years. Without
them, I would not be where I am today.

"Perfecting oneself is as much unlearning as it is learning."

- Edsgar Dijkstra

www.allitebooks.com

http://agilemanifesto.org/
http://manifesto.softwarecraftsmanship.org/
http://manifesto.softwarecraftsmanship.org/
http:///
http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers, and more
For support iles and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub iles available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print, and bookmark content

•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

Preface 1

Chapter 1: Introduction to Sagas 9

A brief introduction to ESBs 10
Event-driven jobs 14

Additional SOA patterns 15

The publish-subscribe pattern 15

The request-reply pattern 17

The gateway pattern 18
The source code 19

The DataBus pattern 21

Timeout patterns 22

Message mutation patterns 28
The source code 29

Message encryption patterns 30
The source code 30

The ScaleOut pattern 32

The saga design pattern 32

Sagas – what are they good for? 34

Summary 37

Chapter 2: NServiceBus Saga Architecture 39
Upgrading from NSB version 4 to 5 39
The saga worklow 41

Message low 48
Deployment 55
ServiceInsight 56
Summary 58

www.allitebooks.com

http:///
http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: The Particular Service Platform 59
Introducing NSB components 59
Understanding ServicePulse and its function 61

Understanding ServiceControl and its function 62

Understanding ServiceInsight and its function 66
Creating a ServiceMatrix solution 69

Sagas through ServiceMatrix 84

Introducing CustomChecks for ServicePulse 88
Summary 91

Chapter 4: Saga Development 93

A brief overview of ASP.NET MVC 94

Sagas and web services 96
The source code 96

Creating a WCF server 97

Adding messages 100

Adding the message handler 102

Adding the coniguration 103
Adding tracing 106

Viewing the web service 110
Considerations when deploying 110

Creating a WCF client 111

Adding the service reference 112
Calling the service reference 114

Revisiting the design 116
The source code 118

Adding NServiceBus to MVC 120
Message handler unit testing 123

Saga handler unit testing 128

Integration tests with MVC 130

RabbitMQ for NSB 135
The source code 137

Changing the endpoints 137

ActiveMQ in NSB 139
The source code 139

Summary 143

Chapter 5: Saga Snippets 145
Source code overview 146
Sample e-mail saga notiication 146

Using XAML 148

The saga project 150

Testing the solution 155

http:///

Table of Contents

[iii]

Sample SFTP saga 158
Using XAML 160

Changing the process of messaging 160

Setting up an SFTP test environment 161

Saga deployment 165
ActiveMQ 168

The source code 168

Summary 172

Chapter 6: Using NServiceBus in the Cloud 173
Introducing the cloud and NSB 173
Introducing PaaS, IaaS, and SaaS 175
Using Microsoft Azure 177

Introducing Azure Storage Services 178

Azure Service Bus and Storage Queues 180

Azure Storage Queues and NSB 181

Azure Service Bus in NSB 185

Summary 193

Index 195

http:///

http:///

Preface
NServiceBus (NSB) is the most popular Enterprise Service Bus (ESB) in C#. It
complements many of the other C# frameworks by providing an end-to-end
ESB framework solution to work with services and messaging. The website,
http://particular.net/, has many tools to assist in building endpoints, services,
and messaging in Visual Studio. Visit http://particular.net/downloads for more
details. There are also production tools to check on heartbeats of running endpoints
and provide deep insights into running endpoints, services, and messages. NSB
provides rapid development to allow integration into many different endpoints and
services, for instance, e-mail, Secure File Transfer Protocol (SFTP), and the Windows
Communication Foundation (WCF) protocol for web services.

Let's discuss using NHibernate, an object-oriented mapper (ORM) that maps
objects to SQL databases, such as MySQL and SQL Server. As a developer, you
will need to provide the mapping interface, usually an hbm.xml interface. While
creating endpoints and sending messages NSB takes care of the mapping interface.
This includes the creation of tables, logging, message durability, message retries,
encryption, and many more components that help ensure high quality of software
with the use of NSB. NSB provides many components, unique to NSB, needed for
automation. NSB provides the following advantages:

• Separation of duties: There is separation of duties from the frontend to the
backend, allowing the frontend to ire a message to a service and continue in
its processing, not worrying about the results until it needs an update. Also,
the separation of worklow responsibility exists through separating out NSB
services. One service could be used to send payments to a bank, and another
service could be used to provide feedback of the current status of the payment
to the MVC-EF database, so that a user may see their payment status.

• Message durability: Messages are saved to queues between services so that
if services are stopped, it can start from the messages in the queues when it
restarts, and the messages will persist until told otherwise.

http://particular.net/
http://particular.net/downloads
http:///

Preface

[2]

• Worklow retries: Messages, or endpoints, can be told to retry a number of
times until they completely fail and send an error. The error is automated
to return to an error queue. For instance, a web service message can be sent
to a bank, and it can be set to retry the web service every 5 minutes for 20
minutes before giving up completely. This is useful during any network or
server issues.

• Monitoring: NSB ServicePulse can keep a inger on the pulse of its services.
Other monitoring can easily be done on the NSB queues to report on the
number of messages.

• Encryption: Messages between services and endpoints can be easily
encrypted.

• High availability: Multiple services or subscribers could be processing the
same or similar messages from various services that are living on different
servers. When one server, or service, goes down, others could be made
available to take over those that are already running. Sagas are at the heart of
the NServiceBus (NSB) worklow. Sagas save the message state in the form
of saga data. They can retrieve the data as it is related to a message to update
the message or data. This allows the NSB worklow to control the low of
data and messaging from end to end and correlate saved data to messages in
the saga.

Messages are the means to transfer interaction and data between services in a
service-oriented architecture (SOA). Sagas correlate, save, route, and manage
processes that are started by these messages between services. Sagas even provide
timeouts to ensure that messages do not live forever in a system.

Sagas provide decoupling between frontend websites and backend processes. It
allows worklow to transfer so that a website can continue to do its work without
having to wait for processes to return, such as the dreaded message "Please do not
refresh this website as we bill your credit card".

NSB doesn't stop at development on Windows servers and desktops, but plays a
big part in cloud development, for example with Microsoft Azure and the Microsoft
cloud. NSB uses Service Bus as well as storage queues, SQL Server, and other storage
containers. As the cloud is used more and more, NSB plays a key part in Software as
a Service, as it is the premier framework for ESB in the C# clouds.

Even if your cloud solution doesn't end up being a C# compatible cloud, as many
might hide the software running behind the cloud as being preparatory, NSB is a
component for those that will do hybrid solutions, such as keeping data resident
on-site. The connection to the cloud then will likely be via web services, and NSB
sagas might likely provide the worklow to those web services.

http:///

Preface

[3]

From this book, you will discover the many features and characteristics of NSB, as
follows:

• Sagas handle messages. A saga is started, or updated, by a message and
passes it through its message handler. As messages are passed into the saga,
the saga updates its sagas data from these messages through a message
handler. The message logic doesn't normally end at the saga, but the saga
creates a new one and passes it on to the next service. The saga may also
respond back to the originating client. The saga routes messages while saving
state and may be routing based on the previous state.

• Sagas contain long-lived transactions (LLTs) that contain database
information for the messages for relatively long periods of time. An LLT is
used when conditions such as short-lived transactions are not adequate. A
short-lived transaction occurs when a call to a database, or MSMQ, performs
a straightforward rollback or commit. For queues, NServiceBus performs
second-level retries (SLRs) to try to commit a message a number of times
before performing a rollback. In LLTs, there can be multiple conditions and
multiple actions that need to take place for a message to be fully completed,
or else operations execute the message from the beginning.

The message is changed from one type of message into another, as one is
handled by the saga, and the saga may create a new one with the same
ID to pass to another service. Even though the message is different, it is a
continuation of the low of the original message that is considered a single
transaction. The transaction is the accumulation of messages as they low
from one end to another end with the same message ID so that it represents
the same transaction. The messages may be a different message type as it
passes through different services. For instance, it may be an order message
for an order service. The transaction can take seconds, days, hours, or longer,
as the services take responsibility for acting upon it.

• Sagas contain timeouts for timing out messages and states. Because messages
can be long-lived, services are responsible for retrieving and moving them.
Sagas can have timers set on messages and data so that it doesn't live forever
or the timer could be part of the business logic; for example, a customer has
30 seconds to enter a pin for their debit card. Sagas contain state information.
Sagas save saga data to the database based on the message's data. The saga
data is initially started with a message, and it is also updated with messages
that are passed in with the same identiication information. When a message
passes between different services, saving the state information before the
next service is wise, as there might be a business requirement to revert to its
original state.

http:///

Preface

[4]

NServiceBus is the C# platform of choice for those that require worklows. In sagas,
high availability, high performance, monitoring, encryption, rapid deployment,
and many more features can only be found in this framework when building
C# solutions.

What this book covers
Chapter 1, Introduction to Sagas, discusses NServiceBus and a basic design pattern that
it uses, known as sagas, which is used to save states of messages. We will discuss the
beneits of sagas and what it brings to the table with regard to software design.

Chapter 2, NServiceBus Saga Architecture, expands on the uses of sagas for persistence,
timeouts, message durability, and message handling. We will discuss various
message exchange patterns through examples to include gateway and cluster
managing. These are important concepts as they drive the high availability and high
performance that NSB brings to the table.

Chapter 3, The Particular Service Platform, is an overview of the Particular
website-associated tools for NServiceBus. We will discuss building sagas through
the ServiceMatrix tool, which is a Visual Studio extension tool for visually designing
NSB endpoints, messages, and services. The other tools that we will discuss at length
as they apply to sagas are the ServicePulse to monitor the endpoint availability
during production, and ServiceInsight to take a deep dive into the functionality and
properties of endpoints, services, and messages as they execute.

Chapter 4, Saga Development, focuses on various useful constructions of sagas and
message handlers. The purpose of sagas will be discussed as the discussion goes
into the need for extending and coordinating transactional integrity using sagas.
The chapter then morphs into a discussion of NServiceBus, using integrated
pre-built WCF bridges. While some might consider it unusual to discuss WCF in a
saga chapter, sagas become an intermediate for coordinating WCF and NServiceBus
work. We can decouple the worklow from the frontend for interaction with backend
processes through message handling. Sagas provide the means to persist the state
information of the messages. This discussion will also handle other queuing sources
as well to include RabbitMQ and ActiveMQ.

http:///

Preface

[5]

Chapter 5, Saga Snippets, discusses two primary saga examples, one using an
e-mail, and one using the Secure File Transfer Protocol (SFTP). These samples sill
demonstrate the saga worklow and the use of timeouts more in depth. The saga
code will be a mediator between a frontend Windows Presentation Framework
(WPF) and a backend client executing either an e-mail or SFTP. Using a saga as a
mediator between frontend and backend code that will interface into an external
server, there will be many added beneits and features. The external server interface,
such as an e-mail server or SFTP server, is usually beyond our control and is in the
control of external operations or organizations, such as a bank. So, the interface
into these servers is all that we have to work with, and as business, software and
operational needs increase, we need a framework that is robust enough to meet these
demands. Thus, we have NSB and sagas.

Chapter 6, Using NServiceBus in the Cloud, gives an introduction to the cloud with
a deeper dive into the Microsoft Azure cloud. The Azure Storage containers and
Service Bus will be discussed at length. An Azure Storage example will be discussed,
which will work on-premise using the Azure SDK and Azure Storage Emulator.
Another example will be given with NSB sagas as it works through Service Bus in
the Azure cloud.

What you need for this book
We will discuss and build many examples in this book using Visual Studio 2012.
Visual Studio Express could be used to walk through the samples as well. The user is
expected to have a very basic understanding of C# and Visual Studio as we examine
the use of NServiceBus.

All of the examples were originally built in the Windows Server 2008 operating
system, and tested in both Windows 8.1 and Windows Server 2012.

For many of the database pieces, SQL Server Express, version 2008, was used.
NServiceBus and many Particular tools will have to be installed from http://
particular.net/downloads. When installing NSB, DTC, MSMQ, and RavenDB,
performance counters will have to be installed. This book will walk you through
those steps.

http://particular.net/downloads
http://particular.net/downloads
http:///

Preface

[6]

Who this book is for
This book is for the beginner or intermediate C# developer who wants to learn how
to develop with NServiceBus and explore the NSB sagas, which is the worklow
heart of NSB. Many beginning pieces will be discussed with a deep dive into sagas
using many different Microsoft frameworks, which will also provide some basic
knowledge of using WPF, WCF, ASP.NET MVC, and Entity Frameworks.

Conventions
In this book, you will ind a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The RequestTimeout() function could take seconds, minutes, hours, days, or could
be executed at a speciic time of day."

A block of code is set as follows:

using System;

using System.IO;

using ServiceControl.Plugin.CustomChecks;

using ServiceControl.Plugin.CustomChecks.Messages;

using ServiceControl.Plugin.CustomChecks.Internal;

namespace PaymentEngine.ECommerce

{

public class MyCustomCheck : CustomCheck

{

public MyCustomCheck()

: base("ECommerce SubmitPayment check", "ECommerce")

{

ReportPass();

}

}}

Any command-line input or output is written as follows:

PM> Get-NserviceBusLocalMachineSettings

http:///

Preface

[7]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "When
the TimerSubmit process receives the reply message, it will pop a Timer in Seconds
window as follows."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code iles from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the iles e-mailed directly to you.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http:///
http://www.allitebooks.org

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you ind a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you ind any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are veriied, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search ield. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http:///

Introduction to Sagas
In this chapter, we will discuss an introduction to sagas. Sagas are just one of the
many design patterns supported by NServiceBus (NSB). NSB is an Enterprise
Service Bus (ESB) that brings many design features and beneits to the end-to-end
enterprise. We will briely look at these features and enter into a brief discussion of
some of the design patterns that NSB supports. From this point, we will introduce
the saga design pattern and provide a brief introduction to its purpose. The rest of
the book will lead into a drill-down of the saga pattern and its use, as well as discuss
many more of the features of NSB.

In this chapter, we will study the following:

• A brief introduction to ESBs

• Additional patterns

 ° The publish-subscribe pattern

 ° The request-reply pattern

 ° The DataBus pattern

 ° Timeout patterns

 ° Message mutation patterns

 ° Message encryption patterns

 ° The ScaleOut pattern

 ° The saga design pattern

• Sagas – what are they good for?

http:///

Introduction to Sagas

[10]

A brief introduction to ESBs
NServiceBus is an Enterprise Service Bus. An ESB, a software architecture model, is
usually a framework that is used for designing and implementing the end-to-end
pieces of service-oriented architecture (SOA). SOA is a software architecture model
based on distinct pieces of software, called services, providing application functionality
as services to other applications. ESBs are common methods for designing SOAs. NSB
is the most popular C# ESB. An ESB is a bus that brings a common communication
mechanism together between services. Services are an abstract concept of a
managed, self-contained process with messaging used to talk to the loosely-coupled,
asynchronous, message-exchanging, monitored, managed, scalable, reliable, durable,
and standard services.

SOA principles are widely implemented in the industry in the form of web services
as web service messaging, usually across HTTPS sending XML-like messaging
deined in Web Service Deinition Language (WSDL). ESBs, implementing SOAs,
decouple the frontend services from backend services. Some of the beneits of
decoupling services include the ability to work on the services dependently and
separately, which includes adding updates to one without affecting the others. The
interfaces between the services are messages, usually in XML, that deine the data
to be exchanged between messages. An example of how decoupling is useful is:
updating interfaces of banks and accounting systems may need to be performed,
and during these updates, the working of frontend is totally autonomous to the
services that are affected. Decoupling expedites testing, maintenance, reduction of
coding side-effects, and assists in breaking down business logic into discrete pieces
as services.

ESBs extend the use of SOAs, as they provide a common communication medium,
known as a bus, to transmit messages in a managed form that is centrally monitored.
Unlike a Service Broker, the ESB ensures message integrity so that the message
arrives correctly and the transaction is centrally managed. ESBs can use multiple
means to communicate messages, even in the form of web services, but they use a
common framework to monitor the endpoints, messaging, and services. Otherwise,
the pieces are more desperate and cannot be used collectively. Depending on the ESB
used, it may collectively manage these pieces. ESBs are also event driven and rely on
message queuing, so that when the bus receives a message from a service, it routes it
to the next appropriate service to process the business logic. Here's a common bus in
an ESB, managing messages to different endpoints:

http:///

Chapter 1

[11]

The preceding diagram show very high-level interfaces, so we can drill down into
the protocols of the services themselves.

http:///

Introduction to Sagas

[12]

By using NSB, we can rapidly develop end-to-end applications in Visual Studio.
There are also tools to deploy services, monitor all endpoints, and check the integrity
of messages from end to end to ensure proper SOA. ESBs have many pieces of
cross-cutting functionality that improve the quality of software.

The purpose of the cross-cutting quality of software is to ensure maintainability,
security, high availability, reporting, alerting, scalability, performance, and other
operational integrity features. An ESB such as NSB helps by sharing the common
framework for a service bus. For instance, I may want to encrypt only the SSN of
a message from end to end. By using the same base code and framework, we can
encrypt and decrypt at various endpoints' SSN pieces with the same codebase.

By using a framework such as NSB, we achieve unity in cross-cutting functionality.
The use of NSB's service bus technology can bring many disparate communication
protocols to act with a common methodology and worklow to use all the beneits
of NSB, for the use of endpoint protocols such as the Secure File Transfer Protocol
(SFTP), Microsoft Web stack for more Restful Web APIs, and Microsoft's WCF for web
services. The queuing mechanisms, which are also endpoints, consist of Azure Services
Bus or Azure Storage Queues, communicating through SQL queuing, Microsoft
Message Queuing (MSMQ), ActiveMQ™, and RabbitMQi. There are many endpoints,
from queuing services to third-party vendors, which can be used in NSB.

Another instance of cross-cutting functionality is using the same code. Here are some
of the beneits of using an ESB, such as NSB:

• Message durability and error handling: Messages are guaranteed to be
delivered. If an error occurs during message delivery, it can roll back and
place the message in the error queue. There are irst-level and second-level
retries to get the message to work successfully.

• Message queuing and fault tolerance: Messages persist in a queue until
they are handled. If there is something wrong with the service, the message
will remain in a persisted queue until the service is working successfully. No
message will ever be lost.

• High availability and high performance: Services can be cloned and
clustered as needed to ensure bandwidth utilization of messages and
services. These clones can be coded and conigured based on meeting the
service-level agreements (SLAs).

http:///

Chapter 1

[13]

• Extremely conigurable: NSB is conigured using the Configure.
With() function that can easily change the persistence from RavenDB to
the NHibernate ORM framework, or queuing from MSMQ, RabbitMQ,
ActiveMQ, or SQL Queuing. Most of the code, if not all, except some
conigurations, will work the same regardless of the persistence and queuing
models, as NSB takes care of the endpoint provisioning and mapping.

• Service hosting: NSB takes care of the management and hosting of services
using the NServiceBus.Host.exe ile.

• Central production monitoring: Particular's ServicePulse can monitor the
production endpoint, message reporting, and service reporting.

• ServiceInsight: Particular's ServiceInsight can provide a deep insight
through visual canvases, endpoint views, message views, and a deeper
understanding of saga's messages, endpoints, and services.

• Rapid development: Particular's ServiceMatrix is a development studio
extension for Visual Studio to provide rapid development through graphical
canvases that generate C# code.

Let's look at a couple of practical needs for ESB designs.

• Payment engine to a bank: A C# programmer could use the Microsoft
Windows Communication Foundation (WCF) or Microsoft Web APIs to
perform web services for an external bank to debit a credit card. There are
many pieces that WCF will not perform to support cross-cutting concerns,
such as retries and failures. NSB can host the service and provide durable
messaging in MSMQ that performs message retries on the WCF interface.
NSB will persist with messages if there is an interruption of web services to
third-party services, such as a bank. This includes keeping track of message
reporting and even the encryption of messages. So, while WCF can implement
the web service piece, there are many pieces outside of the realm of WCF that
only a product like NSB can provide cross-cutting functionality for.

• An online ordering system: When ordering a product, you may be greeted
with a page that spins and states Do not refresh, processing order. This is
clearly a design where the website is tightly coupled to the ordering site,
including the processing of the credit card. There are many automated
processes that may disturb a web browser, or there may be some disconnect
on the server side that may start the process over again. An ESB will always
ensure that if you have to place your order again or had an interruption, your
messaging is transactional and durable, ensuring integrity when charging for
your order.

http:///

Introduction to Sagas

[14]

For a website that is loosely coupled with an NSB design, the website
could just send a message to the service queue without interrupting the
web low. A site that doesn't allow refreshing when processing an order
depends on backend processes to inish, where the web low may be
interrupted. An NSB design can still give the user feedback on the status
of their order without any interruption to the website.

Event-driven jobs
For scheduling jobs on Windows, the Windows Task Scheduler can do the job
(see http://en.wikipedia.org/wiki/Windows_Task_Scheduler). However,
depending on the complexity of the job, the Windows Task Scheduler may not
be enough to deal with it. For instance, if a holiday schedule needs to be checked
before starting the job and if the job has dependencies on other events and services
happening before it runs, you may run into limitations with the task scheduler. The
Windows Task Scheduler is a great tool, but it is not event driven, as is an ESB. With
ESBs, time is an event.

Even though a job may be easily done by Task Manager, you will not get the global
management of services, the messaging of events, commands, and messages, and the
feedback of the processing from a managed perspective, unless you use a framework
such as NSB.

NSB extends the design to allow many facets of event-driven designing where
building a simple website, scheduling a daily job, or sending payments can easily
grow into something much larger in order to have, monitor, manage, extend, secure,
and maintain great software quality. It is not uncommon that when these simple
designs become complex, a rewrite is warranted. That is simply because software
quality and extending the design were not taken into consideration ahead of time.

The ESB is an architectural software design pattern and framework for designing
SOA architectures. However, there are many additional software design patterns
that an ESB can bring to the table as well. These will be software design patterns that
NSB supports, but not all ESBs support these patterns.

http://en.wikipedia.org/wiki/Windows_Task_Scheduler
http:///

Chapter 1

[15]

Additional SOA patterns
There are many additional software design and messaging patterns that NSB supports.
Many such patterns can be found at http://www.enterpriseintegrationpatterns.
com. The purpose of design patterns is to provide reusable frameworks that have
been hardened through reuse in the industry, to rapidly deploy what's been designed
before. NSB has several design patterns that are popular in any robust and solid
ESB solution.

The publish-subscribe pattern
One of the biggest beneits of using ESB technology is the availability of the publish-
subscribe message pattern (for more details, see http://en.wikipedia.org/wiki/
Publish-subscribe_pattern). The publish-subscribe pattern has been around for a
very long time, and its simplicity is the cornerstone of many, many systems.

The pattern makes use of message queues, and NSB stores its messages through the
use of queues, be it MSMQ, SQL queues, RabbitMQ, Azure queues, or ActiveMQ.
The basic premise is that a message is published to a queue; in NSB, it uses the Bus.
Publish(message) function that places an event message in a queue that does
not need to be sent to speciic receivers. There can be multiple output channels
called subscribers listening in on the publisher. The beneit is that the services do
not depend on any relationship with each other except the message, and can act
independently of each other. This is a service which is decoupled. This means that
dependencies are separated from each other.

Of course, normal NSB features still apply. For instance, the message will stay in the
queue until the subscribers pull the message off the queue to handle it. For NSB, this
means that the machine can be rebooted and the message will still be available in
the queue until the subscribers process the message, which ensures that a message is
never lost.

The subscribers will process the message, and there could be one or many
subscribers. For instance, the publisher may put 10 different types of messages in its
queue, and there could be a subscriber for each type of message.

http://www.enterpriseintegrationpatterns.com
http://www.enterpriseintegrationpatterns.com
http://en.wikipedia.org/wiki/Publish-subscribe_pattern
http://en.wikipedia.org/wiki/Publish-subscribe_pattern
http:///

Introduction to Sagas

[16]

The NSB framework has plugins for Windows Performance Monitor. In Service
Level Agreement (SLA) code of the endpoint, we can specify that new services will
be created or alerts will be sent if the service does not meet performance criteria. So
if one of the subscribers is not performing well, it will force the other subscribers to
take over, as they are performing better across multiple machines. Because of this,
NSB is a highly available, durable-messaging, high-performance ESB engine that
can be developed in a multitude of ways. A design of the publish-subscribe pattern
appears as follows:

In NSB, there are special types of messages used speciically for publish-subscribe,
called events. This forces the code to handle the message in a publish-subscribe
scenario, and not in a request-reply scenario.

The publisher-subscriber mappings are done through the application coniguration
ile. This will deine the type of messages from the publisher queue that it will
subscribe to, to handle the messages. When these programs execute, the subscription
mappings will be further saved into a local database. By default, they are saved
in RavenDB.

http:///

Chapter 1

[17]

The request-reply pattern
The request-reply pattern is different from the publish-subscribe pattern as it sends a
message to a directed endpoint.

Please see http://en.wikipedia.org/wiki/Request-
response.

The NSB framework will use the Bus.Send(message) function for request-reply.
The message remains durable as it is still queued. The sender may or may not be
available to handle the response, and the replier may not send a response, but the
functionality in NSB is available to have these components easily added to handle
the request-reply on their endpoints. The sender could easily be a website and the
replier could send a response to update the website, for instance, when a credit
card has been processed. The request-response pattern doesn't require subscription
information to be stored, but it does require the endpoints to be deined along with
the message types in the application coniguration ile. Sagas automatically store the
sender's original information and reply directly to the requester, without storing
extra information.

This pattern still has high availability and high performance, and still uses a
multitude of topologies with message durability. Please see the scale out pattern in
this chapter on how request-reply will cluster across machines.

www.allitebooks.com

http://en.wikipedia.org/wiki/Request-response
http://en.wikipedia.org/wiki/Request-response
http:///
http://www.allitebooks.org

Introduction to Sagas

[18]

The gateway pattern
There are cases when services may be partly stored on one part of an organization's
LAN, and other services are stored on another LAN, and the only transport to each
other is an HTTP or HTTPS tunnel to pass messages to NSB.

The main purpose of the gateway is to allow you to do the same durable ire-and-
forget messaging that you are accustomed to with NServiceBus across physically
separated sites, where sites are locations in which you run IT infrastructure and
not websites.

The gateway only comes into play where you can't use normal LAN-to-LAN VPN
tunnels or use internal LAN servers to communicate MSMQ to MSMQ. The purpose
of the gateway is to create messages that communicate through HTTP, but it would
be preferable to use HTTPS to ensure that messages are secured. The following
architecture diagram represents a gateway built using the NSB:

http:///

Chapter 1

[19]

The source code
In this section, we will be using the following gateway solutions:

• Headquarter.Messages: This refers to the common messages for
Headquarters, SiteA, and SiteB.

• Headquarter: This will receive messages from http://localhost:25899/
Headquarter/ and http://localhost:25899/Headquarter2/, and
send messages to http://localhost:25899/SiteA/ and http://
localhost:25899/SiteB/.

• SiteA: This is a project that will receive updated price information from
Headquarters across http://localhost:25899/SiteA/ and respond
that it was successful to Headquarters across http://localhost:25899/
Headquarter2/.

• SiteB: This is a project that will receive updated price information from
Headquarters across http://localhost:25899/SiteB/.

• WebClient: This will have an Index.htm page to send a JSON script to
http://localhost:25899/Headquarter/.

The preceding code solution is built using Visual Studio 2012 in Windows Server
2012, with MSMQ, DTC, NServiceBus references, and SQL Server 2012 Express
LocalDB installed.

In a gateway, there are incoming channels and deined site keys to send outgoing
messages to their sites. We can see in the application coniguration ile of the
headquarters that the receiving channels for the headquarters are http://
localhost:25899/Headquarter/ and http://localhost:25899/Headquarter2/.

There will be a set of site keys for sending sites that make up SiteA and SiteB.

 <GatewayConfig>

 <Sites>

 <Site Key="SiteA" Address="http://localhost:25899/SiteA/"
 ChannelType="Http" />

 <Site Key="SiteB" Address="http://localhost:25899/SiteB/"
 ChannelType="Http" LegacyMode="false" />

 </Sites>

 <Channels>

 <Channel Address="http://localhost:25899/Headquarter/"
 ChannelType="Http" />

 <Channel Address="http://localhost:25899/Headquarter2/"
 ChannelType="Http" Default="true" />

 </Channels>

 </GatewayConfig>

http:///

Introduction to Sagas

[20]

The Bus.SendToSites(new[] { "SiteA", "SiteB}) allows you to send messages
to multiple sites as you can see in the preceding conigurations. For instance, the
parameter of SiteA will send the message to http://localhost:25899/SiteA/.

Going across alternate channels such as HTTP means that you lose the MSMQ safety
guarantee of exactly one message. This means that communication errors resulting
in retry can lead to receiving the same message more than once. To avoid burdening
you with de-duplication, the NServiceBus gateway supports this out of the box.
You just need to store the message IDs of all received messages so it can detect
potential duplicates. De-duplication tables can be stored on the SQL Server using the
NHibernate persistence coniguration. This will be conigured on the IBus using the
.UseNHibernateGatewayDeduplication() method. Of course, settings always need
to be applied in the App.config ile to deine the database connection. Here, we are
connecting to the local SQLExpress instance.

 <connectionStrings><add name="NServiceBus/Transport"
 connectionString="cacheSendConnection=true"/>

 <add name="NServiceBus/Persistence" connectionString="Data
 Source=.\SQLEXPRESS;Initial Catalog=nservicebus;Integrated
 Security=True"/>

 </connectionStrings>

 <!-- specify the other needed NHibernate settings like below in
 appSettings:-->

 <appSettings>

 <!-- dialect is defaulted to MsSql2008Dialect, if needed
 change accordingly -->

 <add key="NServiceBus/Persistence/NHibernate/dialect"
 value="NHibernate.Dialect.MsSql2008Dialect"/>

 <!-- other optional settings examples -->

 <add key=
 "NServiceBus/Persistence/NHibernate/connection.provider"
 value="NHibernate.Connection.DriverConnectionProvider"/>

 <add key=
 "NServiceBus/Persistence/NHibernate/connection.driver_class"
 value="NHibernate.Driver.Sql2008ClientDriver"/>

 </appSettings>

This gateway pattern allows us to pass messages through HTTP/HTTPS to allow
queuing across outside systems from the local LAN. Normally web services run
through HTTP/HTTPS, but with NSB, the queuing process can also run through
HTTP/HTTPS to outside servers, where all ports are blocked and only HTTP/
HTTPS can be used.

http:///

Chapter 1

[21]

The DataBus pattern
The DataBus is used to send large chunks of data or iles across as an attachment
because MSMQ is limited to 4 MB. For this reason, a reference can be passed on a
local ile to transfer data using the databus method. The message will provide a
reference to a larger data ile to be accessed that exceeds the message queue size due
to size constraints.

In this section, we will use the gateway solution.

The path of the data bus has to be set in the coniguration of the endpoint. We will be
using a relative path to where the gateway project is running. Both SiteA and SiteB
will also have relative paths. There will be a relative path to the binary ile with a
data bus subdirectory containing the iles that will have a lot of data. The following
is the code:

http:///

Introduction to Sagas

[22]

When we execute the gateway project, we can mock the SomeLargeString variable
to simulate data larger than 4 MB, as shown in the following code:

If we execute the gateway project, it will create a message to the relative path of its
binary ile, save the message under data bus, and use it as a reference to send to
SiteA and SiteB. Here, we see the message saved to the local relative path.

The data bus is very useful for processing iles or chunks of data that are too large
for MSMQ.

Timeout patterns
In ESB systems, the need for timers and timeouts cannot be underestimated. Many
developers use the Microsoft Task Scheduler. The Microsoft Task Scheduler looks
like this:

http:///

Chapter 1

[23]

In NSB, we have the ability to use event-driven timer messages. This is the ability
of a saga to start a function, run a command, or perform many other tasks, based
on its timer. In the event-driven timer function, we can set a timeout for any time
in the day, from seconds after the process starts, to minutes, hours, days, and even
use a holiday table for the process. By having a managed service, the usage of timers
can be more complex, for instance, adding holiday tables, not executing timers on
weekends, and more business functions that task schedulers cannot handle. Also
included in NSB, is the installation and management of the service itself. Time saved
just in deploying services and having NSB set up DTC for the administrator may
already pay for the NSB licenses.

The source code in this section will be in NSB Version 5.0 in the TimerSaga – v5
directory. Here we have the following projects:

• AppCommon: This contains the ViewModel and context for the
Windows forms.

• TimerSubmit: This is a project that submits a timer message to the saga
between 1-100 seconds.

• TimerMessages: This contains common messages for the projects.

http:///

Introduction to Sagas

[24]

• TimerSaga: This saga will perform the timeout and respond back to
the TimerSubmit project. This could easily start a cron job, execute a
program, or direct other services just as easily as responding back to the
submitting program.

In this solution, we have a Windows form, where we enter a variable from 1 to 100,
based on which the TimerSubmit project will generate a message to the Timer saga
to create a timeout for those seconds. After those seconds expire, the Timer saga will
handle the timeout message and respond back to the TimerSubmit window saying
that the timer has expired. This is a simple exercise in an event-driven timer that
could have many uses.

The program will start by submitting the number of seconds between 1-100 to
TimerSubmit as shown in the following screenshot:

http:///

Chapter 1

[25]

When we add a value between 1 and 100 seconds, the message will be sent to the
queue of TimerSaga with the number of seconds and a RequestId to keep track of
the message ID, as shown in the following screenshot:

The message's RequestId is used to map the message to the saga data. The saga is
started by SubmitRequestCommand with the number of seconds in it. It will save the
saga data in the TimerRequestData object, which will allow the original client data
to respond to it. The number of seconds will be set in the timeout, and when the
timeout expires, it will execute a TimeoutMessage instance that will be handled by
the saga. The saga's object class deinition that deines this mapping appears
as follows:

http:///

Introduction to Sagas

[26]

The starting message SubmitRequestCommand will be handled by the saga's message
handler in the following code:

This code will set the timer that will send a TimeoutMessage instance with the
message's RequestId. All the messages that are part of the same starting message
will have the same RequestId. This will keep track of which message started the
next message, as well as map the saga data to save and retrieve it from the saga. The
RequestId is handled like a primary key to the saga data that NSB will use to map
the data to the messages. NSB handles the mapping, but we must deine the unique
identiiers and keep processing them in the messages. If this seems complicated,
keep reading, as it is broken down in subsequent chapters.

When the timeout that we passed to the RequestTimeout<>() code is reached, an
instance of a timeout message is passed back to the saga. If it was set for 10 seconds,
after 10 seconds have passed, the following message handler in the saga is called to
process the timeout message that we set in the timer. The Timeout message handler
appears as follows:

http:///

Chapter 1

[27]

This code will process the TimeoutMessage instance that we called state.
We had mapped the RequestId in the version 5.0 Saga mapper code,
ConfigureHowToFindSaga(SagaPropertyMapper<TimerRequestData> mapper)
to map the message's RequestId to the data, so the state.RequestId will be the
same as the Data.RequestId data instance of saga. The RequestId is checked to
ensure that when we execute MarkAsComplete(), the correct saga store is deleted.

This can be broken down into simple steps:

1. A message is sent to the saga with a timeout value.

2. The saga values are stored and the timeout message is created, all using the
same RequestId.

3. The timeout expires.

4. A timeout message is handled by the saga.

The saga data is deleted, and a message is sent to the originator saying
that the timeout has been completed. In this message handler, we create a
SubmitRequestReplyMessage instance with the RequestId, which will be the same
RequestId as the message that started this process. We reply to the originator, which
will send this message to the original TimerSubmit program.

www.allitebooks.com

http:///
http://www.allitebooks.org

Introduction to Sagas

[28]

When the TimerSubmit process receives the reply message, it will pop a Timer in
Seconds window as follows:

This code has all the pieces of a simple saga. The code could be created with a
combination of other frameworks as well, such as Quartz for the timer and TopShelf
to create services, but NSB is a complete framework that provides end-to-end pieces
of architecture and many patterns that have all the pieces.

The end message that showed the Timed status in the Windows form could easily
be the execution of a job, another program, an e-mail of system status, a report of the
system status, and many more timed tasks. The number of seconds used earlier was
just a demonstration. The RequestTimeout() function could take seconds, minutes,
hours, days, or could be executed at a speciic time of day. We could execute the
function with a weekend and holiday calendar and extend the functionality further.
We could create a centralized saga timer to literally schedule all the tasks like Microsoft
Task Scheduler, but create a managed service that can be monitored, managed,
perform reporting, and improve functionality in a much further detailed solution.

Message mutation patterns
Message mutators allow you to change messages by plugging custom logic into a
couple of simple interfaces. For instance, you can encrypt a part or all of a message.
The encryption message mutator is part of the NServiceBus library, and can be
used at any time. You can intercept the incoming message and then mutate it before
sending it as an outgoing message. This is the process of changing messages as they
leave a client and enter a server.

http:///

Chapter 1

[29]

The source code
In this section, we will be using the MessageMutators solution with the
following projects:

• Client: The client will send messages to the server.

• Server: This will receive the mutated message.

• Messages: This is the message format being passed between client
and server.

• MessageMutators: This project will contain the mutation code to compress
and decompress the messages in TransportMessageCompressionMutator.
cs and validate the message annotation in ValidateMessageMutator.cs.

The client and server needs to be running. The client will prompt to send a good or
bad message. The good message is compressed so that it will pass the 4 MB MSMQ
buffer size, as shown in the following screenshot:

The queue's data will be validated and compressed from the client before processing
it in the MSMQ. This is shown in the following diagram:

Then, the server will receive the message from MSMQ, but before processing it,
this will decompress and validate the message. It will restore the message that the
client mutated. This is shown in the following diagram:

This is just a simple compression and data annotation validation to ensure that
MSMQ will process the message. One of the reasons for mutating the message may
be the encryption of a credit card within a payment message.

http:///

Introduction to Sagas

[30]

Message encryption patterns
NSB supports the AES (Rijndael) encryption algorithm. AES stands for Advanced
Encryption Standard. This is a symmetric key algorithm, so both the program
encrypting data and decrypting data must share a secret key for their functioning.
Visit http://en.wikipedia.org/wiki/Advanced_Encryption_Standard for more
information on AES.

Encrypting data will depend on the needs of the organization, but common items
include passwords, inancial information, or personal customer identiication
information. AES is the strongest symmetric encryption algorithm, and most
languages, such as Java and C#, have API support for its use.

We know that part of the coniguration on both sides will be a secret key.

The source code
In this section, we will be using the Encryption solution with the following projects:

• Client: This will send an encrypted credit card message to the server

• Server: This will receive the credit card message and decrypt it

• Messages: This is the message format being passed between client and server

Both, the client and server must be running. The client will have a prompt to send
messages to the server, as shown in the following screenshot:

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http:///

Chapter 1

[31]

After pressing Enter, we see that the message is encrypted on the server queue:

When running the server, NSB will decrypt the message before passing it to the
server's message handler.

All that is really needed is to enable both ends for AES in the IBus by the
coniguration .RijindaelEncryptionService();. We set the part of the message
that we want to encrypt by the public WireEncryptionString Secret {
get;set; } where WireEncryptionString deines that the string will be encrypted.
Also, the secret key has to be in the App.config ile of both the client and server. The
following screenshot shows the code:

http:///

Introduction to Sagas

[32]

The ScaleOut pattern
As mentioned earlier, one of the many beneits of using NSB is that you can
distribute the load or the NSB services or processes. This is commonly known as
scaling out the services. The idea is that you can deploy the same service across a
farm or multiple servers. This is used to create an environment of high availability.

This model is a form of round-robin clustering, where a handler can distribute its
workload to additional workers doing exactly the same work. A distributor is used
with MSMQ. If an endpoint has a critical time set for performance and requires more
processing help, this clustering is used to spawn off work to the same services living
on other machines to share the load. If the machine processing the message crashes,
the message rolls back to the queue and other machines can then process it.

Worker services send messages through a control queue saying that they are ready
for work. The distributor stores these messages, and when it receives messages, it
fetches them out of the available queues. All pending work stays in the distributor's
queue so that messages can be timed for performance.

The saga design pattern
The saga design pattern starts with a message to the saga service. The saga service
requires several components, as follows:

• IAmStartedByMessages<IMessage>: The saga's actions are started by an
incoming message. This message initializes the saga data object and creates
the irst elements, which needs to include a primary key from this message
for subsequent lookups. The saga data elements are created in the message
handler. This is shown in the following screenshot:

http:///

Chapter 1

[33]

• Saga<IContainSagaData>: The saga data is the data that is persisted.
This data contains default values to be set by NSB for an ID, originator,
and OriginalMessageId instance. Also, a unique ID should be used for
the mapping of the message to data, and vice versa. This is shown in the
following screenshot:

http:///

Introduction to Sagas

[34]

• IHandleMessages<IMessage>: The saga doesn't do much unless it is
handling messages. It can retrieve the saved data of a message that is
mapped by the coniguration. NSB handles the mapping of the data to
the message by the unique ID, in this case, RequestId, that is deined in
ConfigureHowToFindSaga().

• ConfigureHowToFindSaga(): This function of the saga pattern is used to
map the data to the messages. Usually, the mapping can be performance
from a GUID or ID, but it must be a unique data type that can be stored as a
primary key in a database. The messages that are mapped contain the same
key, and when it passes in the saga, the data is found that matches the key.
This function is called when the saga object is instanced.

Sagas – what are they good for?
Sagas play a critical role in worklow management. Without the ability to map data
to persistent data, worklow among messages cannot be achieved. Saga's purpose is
to persist saga data objects, which are iles with data from selected content, directed
from messages in the message handler. The following are some of the things that
sagas are good for:

• Saving message state/session information: When a message is started, the
message handler will create the saga data instance that will be saved at the
end of the message handler. It is up to the message handler data to set data
into an instance of the object. NSB handles the mapping. The following
screenshot displays the code for handling messages:

http:///

Chapter 1

[35]

• Changing message state/session information: During a message handler,
the ConfigureHowToFindSaga() function has mapped a way for NSB to
retrieve the correct saga data object, based on the message's unique ID. In the
initial message that started the saga, the initial data and ID is set to the saga
data row. Subsequent messages will either update this row of data, retrieve
it, or delete it. This data is the worklow used to store the state between
messages.

• Responding to originator/original client of changes: The saga can respond
to the original client with the ReplyToOriginator() function. This can
complete the path of the original message with a success or error message
to complete the end-to-end trip of the message. The MarkAsComplete()
function states that the data object is no longer needed and can be deleted.

• Providing timeouts: Sagas have the ability to provide timeouts. There
could be many reasons for timeouts, but the most obvious one is not
having a message running that has associated saga data to run forever. The
RequestTimeout() function can be a daily timeout, a one-time timeout,
a timeout based on seconds, minutes, or hours, and other variations
involving time. Other uses of timeouts could be an execution of jobs to run,
more messages to send based on time, performing a timeout to update the
originator of a status, and many more uses.

http:///

Introduction to Sagas

[36]

In this scenario, we give the message three hours to perform its operations
before timing it out. The following screenshot displays the code for
providing timeouts:

Because the saga pattern has the ability to persist the message's state data, the
messages become connectionless pieces of separate messages and provide a means
to connect multiple messages to each other to perform end-to-end low. Thus, the
saga becomes the focal point of the interaction. The messages now have a behavioral
pattern as they have more meaning than a single instance. They now have a long
time to live, as when the individual message is no longer available, the saga data
representing data for the message will still live on, until it is marked to be destroyed.

http:///

Chapter 1

[37]

Summary
In this chapter, we introduced the need for the use of the saga design pattern as
it applies to NSB. We discussed some of the basic features and uses of NSB, as an
ESB framework for SOA development. It adds quality to software as a framework
standard, with many extensions for logging, security, reporting, and message
handling between services. The low of NSB is the automation of the backend and
the decoupling from the frontend, so that automation can occur with services that
have message low from end to end.

NSB supports many design patterns that make up the ESB. The saga pattern provides
the means to persist message data, which allows for end-to-end worklow. It can
easily respond to the originator of the message, thereby updating the status of an
end-to-end low. The saga data object saves the state of the message to allow services
to change the state as the message changes when it lows from end to end in the NSB.
NSB solves many design issues, including the need for high availability and behavior
changes based on messages for the low of the end-to-end design. We also discussed
many more patterns.

In the next chapter, we will discuss saga architecture.

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

NServiceBus

Saga Architecture
We have briely touched upon sagas in the previous chapter, and in this chapter, we
will go into more detail. We will discuss timeouts, message handling, and persistence
for sagas. In this chapter, we will cover:

• Transition from NServiceBus (NSB) version 4 to version 5

• Message low
• Deployment

• Insight

Upgrading from NSB version 4 to 5
In the later part of September 2014, NServiceBus introduced version 5.0, an upgrade
from version 4.x. NSB version 5.0 requires different coding techniques. Currently,
NSB is in version 5.02, which offers many features. These are as follows:

• Non-DTC operations: These support durable messaging in cloud queues
and other queuing systems, such as RabbitMQ, which do not support local
transaction management. Version 5 has been modiied to provide additional
support for integration into Windows Azure queues.

• ISendOnlyBus: This simpliies the ability to create a coniguration just for the
purpose of sending messages only to the bus. The function used will look like
this: var bus = Bus.CreateSendOnly(configuration).

• Bus.Create(new BusConfiguration()): The bus coniguration in version
5.0 is different from version 4 as it supports the bus coniguration object
that is passed around through functions, as there can be different bus
conigurations used for different reasons.

http:///

NServiceBus Saga Architecture

[40]

• Move to .Net 4.5: Version 5.0 requires .NET 4.5 as a minimum requirement,
which will ensure that NSB works best with packages that are supported
in Visual Studio 2012 and above. This ensures that integration into Visual
Studio 2012 packages and tools is optimized.

Thus, the minimum requirement for version 5.0 is Visual Studio 2012. The new
minimum requirement for the server operating system (OS) is 2008 and the desktop
OS is Vista SP2.

There are many more beneits of using NSB 5.0 over 4.0. However, the code used
in version 4.0 will require changes to work properly with version 5.0. This is due
to the coniguration of the bus being instantiated and passed through some of
the functions, as the bus is a more conigurable object than a static element in the
program. For a list of the features available during the upgrade, please see
http://docs.particular.net/nservicebus/upgradeguides/4to5. For example,
we can see the following code that was done in NSB version 4.0:

The following is an example of a similar code done in NSB version 5.0:

http://docs.particular.net/nservicebus/upgradeguides/4to5
http:///

Chapter 2

[41]

These examples show that in version 5.0, the bus coniguration is created as an
object and coniguration values are added to the instance of the object. The bus
coniguration can be passed to functions as a coniguration to be utilized over and
over for reuse of the bus coniguration.

Other features that have been extended in NServiceBus in the newer versions
also include the addition of NSB packages. One such package is NServiceBus.
NLog, which is speciic to using NLog in NSB version 5.0 and above. This is used
to extend the logging capabilities of NSB to log further information as it applies to
endpoints, messages, and services. Working with the NServiceBus.NLog package
has been detailed in http://docs.particular.net/nservicebus/logging-in-
nservicebus. We will demonstrate the code's use further in this chapter.

The saga worklow
The purpose of the saga is to provide worklow. It provides the persistence of the
saga data so that a message can return to the saga and have a point of reference to
the original messages.

The source code in this section is in the CreditCardApproval – v5 section. It was
compiled in Visual Studio 2012 using NSB Version 5.0. The projects will
appear as the following:

Here we have the following projects:

• AppCommon: This contains the ViewModel and Context for the
Windows forms.

• AppForAccountingDept: This receives a purchase order number related to
the approval of the credit card.

• CreditCardApproval: This approves the credit card.

• CreditCardSubmit: This submits the credit card for approval.

http://docs.particular.net/nservicebus/logging-in-nservicebus
http://docs.particular.net/nservicebus/logging-in-nservicebus
http:///

NServiceBus Saga Architecture

[42]

• CreditCardMessages: This contains the common messages for the projects.

• CreditCardSaga: This is the credit card saga that directs the worklow and
message routing by using message handling and saga data.

The low of the messages, which does all the work (thus, worklow), will start
with the CreditCardSubmit project. This form will submit a credit card to the
saga, which will save its state and forward it to the CreditCardApproval project.
The CreditCardApproval form will either approve or deny the card and send
the response back to the saga. The saga will retrieve the previous message and
pass it back to the CreditCardSubmit form, and if approved, will send it to the
AppForAccountingDept project. The message low will appear as follows:

This is a very simplistic worklow as it keeps track of whether a credit card is
approved or not. By making the saga data persistent, it allows the persistence of
the saga data state to route the messages and manage the message information
at a single point. The saga data will contain the required ID, originator, and
OriginalMessageId, to ensure a response to the original client. These ields ensure
that the return is always available. We see these ields in the following diagram:

http:///

Chapter 2

[43]

Save message information,

must include ID, originator,

originator ID, to always find

the client.

Start Message

Send Message

Response Response

Can look up

Message state from ID

Saga Data

The saga data is stored by using the IContainSagaData interface. Even if the three
ields are not explicitly deined, the IContainSagaData interface will deine them
in storage. Do not modify these ields as NServiceBus uses them. The primary key
is another ield that is used in all sagas to look up the saga data from the message.
In this case, we use the RequestId that will always contain a unique value from the
[Unique] annotation. We can see this in the following code:

http:///

NServiceBus Saga Architecture

[44]

This saga data will be long-lived transactional data that will live in the database
until the saga does a MarkAsComplete() function on it to designate that it is no
longer required. If we use InMemoryPersistence, the data will only live in memory
during the lifetime of the application, and not persist in a database. In version 5.0,
all the persistence can be set with a single function call, busConfiguration.UsePer
sistence<InMemoryPersistence>();. It can still be pieced out for Saga, Timeout,
Gateways, and Subscriptions by using extended references in this function as
busConfiguration.UsePersistence<InMemoryPersistence>().For(Storage.

Sagas);. These storage types can be found in the NServiceBus.Persistence
namespace as seen in the following code:

Another way to use the MarkAsComplete() function is by way of the timeout in
the saga service.

The saga service can provide timeouts to give the message a limited life. This is a
very useful function for many purposes; for example, when there is an error and
the message is taking forever, for instance, in processing a credit card, and the bank
received the message but never provided a response.

http:///

Chapter 2

[45]

The timeout could also be used to schedule daily tasks for the saga to complete
in its cleanup and maintenance pieces. For instance, we can send a daily e-mail to
operations reporting how many messages the saga processed for the day and if it had
any messages reported in the error queue. Here, we give the credit card approver 60
seconds to approve. The following screenshot displays the code for this:

The saga's purpose is to manage the worklow of the messages by the state of the
saga data. The saga will be started by a message, or many messages, deined in
IAmStartedByMessages<>. Subsequent messages are deined in IHandleMessages< >.
The timeout has a special message handler called IHandleTimeouts<>. We can observe
this in the following class diagram:

http:///

NServiceBus Saga Architecture

[46]

In order to save the saga data, the data needs to be mapped to a message. NSB
will do most of the mapping, but it requires the deinition of the message ID
that will be used to map the data to the message. In our saga data, we are using
the RequestId instance as the message's data primary key. In version 4.0, we
mapped this functionality to use the RequestId instance to map the messages
ApproveRequestCommand and DenyRequestCommand, as shown in the following
code, using ConfigureHowToFindSaga():

In version 5.0, we mapped this functionality to use the RequestId instance to map
the messages ApproveRequestCommand and DenyRequestCommand, as shown in the
following code, using ConfigureHowToFindSaga(SagaPropertyMapper< > mapper):

These messages are handled by message handlers, such as the Handle(
DenyRequestCommand message). The saga data will pull the record matching the
message's RequestId from NSB. NSB just needs the mapping deinition, and it
handles the record that is maintaining persistence and the mapping, as shown in
the following code:

http:///

Chapter 2

[47]

In this function, the ReplyToOriginator(message) function will send the message
to the original instance of the client. The MarkAsComplete() function will tell the
persistence that the saga's data record matching the message's RequestId instance
can now be deleted.

For NLog, we set the NSB NLog as follows:

The coniguration has to be set for the logging levels and the location where the log
iles will be saved in the App.config ile, as shown here:

This will log the lower-level messages in NSB, as we can see in the
following screenshot:

www.allitebooks.com

http:///
http://www.allitebooks.org

NServiceBus Saga Architecture

[48]

Message low
The originating client that starts the process will be CreditCardSubmit. This client
could easily be a website or another means of starting the messaging process. The
SubmitRequestCommand project is the starting message for the saga and the message
is sent from the CreditCardSubmit project. It is deined in the App.config ile of the
CreditCardSubmit project to send to the saga in the following code:

We can view the messages being sent in MSMQ, but if the saga was running, the
messages would process too fast to observe. We can see the message in the saga
without running all the services to take a snapshot in time, as we see in the
following screenshot

Once the saga starts, it handles the SubmitRequestMessage message. The saga will
populate the data with defaults and message information. Notice that RequestId
is set in the saga data to match the message's RequestId instance. This is to map
the saga data to the other messages that the saga handles, but in order for this
RequestId instance to match, this key must be set in each message that the saga
needs to map. The code for this is shown in the following screenshot:

http:///

Chapter 2

[49]

After we save the saga data, we will create a SolicitApprovalFromLevel1Command
message and send it from the bus, as shown in the following code:

Downloading the example code

You can download the example code iles for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
iles e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http:///

NServiceBus Saga Architecture

[50]

The bus knows which MSMQ to place from the App.config ile onto the
CreditCardApproval queue. The App.config ile of the saga will show the
queue names that it will send to, based on the message type. We see that the
CreditCardApproval queue will get the SolicitApprovalFromLevel1Command
message as follows:

We can also observe the MSMQ queue with a message, which helps in tracking
visual reporting on the message low as it happens:

Once the message is in the CreditCardApproval queue, the CreditCardApproval
program can handle the message. The program will deine what types of messages
it will handle, and in this case, the NSB message handler will populate the Windows
forms to allow us to approve or deny the card. Instead of a simple Windows form
manual approval, the approval could have easily been a credit card approval sent to
a bank, made through an internal business process, sent to a mainframe, or through
any other scenario. NSB is built to develop ESBs in C# and interface into many
different types of systems. So, instead of migrating an entire system, it is easier to use
legacy bits and pieces, until migration is necessary. Here's the message handler that
loads the Windows forms:

http:///

Chapter 2

[51]

Also note that in a production system, credit cards would be encrypted. As we have
discussed in the previous chapter, NSB easily handles the encryption of data and
messages. This will load the selection for approval or denial as follows:

http:///

NServiceBus Saga Architecture

[52]

If we click on the Approve button, an ApprovalRequestCommand message will
be sent back to the saga. If we click on the Deny button, a DenyRequestCommand
message will be sent back to the saga. This is shown in the following screenshot:

The messages will be placed back on the saga queue for processing using the
message handler. Notice that the messages have the same RequestId instance as the
original message so that the saga data can be retrieved from the previous message.
This is shown in the following screenshot:

http:///

Chapter 2

[53]

The saga's message handlers will process the approval or denial message and
reply back to the originating client, which is the CreditCardSubmit application,
as shown here:

If approved, the saga will send the message to the accounting department to generate
a purchase order, and respond to the saga with the Purchase Order, as shown here:

http:///

NServiceBus Saga Architecture

[54]

The saga will read and handle the message from the accounting department of the
type, RecordEncumbranceReplyMessage. The saga will respond to the original client,
CreditCardSubmit so that it can be updated with the Purchase Order number and
status. We can see this in the saga message handler code in the following screenshot:

The originating client will receive the Purchase Order, via the saga from the
accounting department application, as shown here:

After the original requester receives the Purchase Order, the message is complete.
For denial and errors, the message low will be similar.

One may ask why there is so much work in a message low. NSB is doing almost all
the work for the message low and mapping. Many organizations save data for the
purpose of handling errors. The saga has a lot of basic error handling mechanisms
for handling errors throughout messages, endpoints, and services. We have already
put in code for timeouts so that the messages occur within a speciic period of time.

http:///

Chapter 2

[55]

Sagas assist in providing various kinds of reporting for error handling. We know for
sure that the message is always durable in MSMQ; the machine could be restarted
and the message will still reside in MSMQ if it is supposed to persist. We know
that the saga data would normally reside in the database. We only use InMemory
persistence during debugging. What we have shown is that we can study the minute
details of how message lows, endpoints, and services react with NSB, and how we
can use the ESB to provide feedback on how all the pieces work as a unit to bring
end-to-end worklow through the use of saga. We have also observed that in any
message, endpoint, and service, we can extend feedback to the originating client of
any condition, such as network or server condition, to recover the original intent
of the message and recover the functionality. NSB has shown to be a robust and
durable framework for any message or data that we pass through it. We can truly see
its value in end-to-end worklows.

Deployment
All applications are executable, except the saga, which we developed as a DLL
because of the use of NServiceBus.Host.exe. This is a program and package from
NSB to provide hosted deployment from NSB, in which we can install the DLL
as a managed service and add endpoints and many other features that NSB hosts
bring to the table. When we debug the program, we start the saga DLL using the
NServiceBus.Host.exe program. See the following project properties:

http:///

NServiceBus Saga Architecture

[56]

To run the program as a console application, we could simply use NServiceBus.
Host.exe CreditCardSaga.dll as shown in the following screenshot:

We could also use the NServiceBus.Host.exe\install to install the program as
an NSB-managed service. For more details on NSB hosting, please visit
http://docs.particular.net/nservicebus/the-nservicebus-host.
Next, let's look at the insight.

ServiceInsight
We covered the topic of architecture using some basic tools to view the MSMQ as
the messages were lowing. NSB offers ServiceInsight that can offer much more
insight to the low and execution of messages, endpoints, and services. In order to
view the messages, we have to install ServiceInsight on the machine along with
ServiceControl, and add the ServiceControl debugging and saga packages to the
saga project. We will need to add service control to the other projects if we wish
to view them as well. In this instance, we will just add service control debug and
saga to CreditCardSaga. We will add references through NuGet to appear as in the
following screenshot:

http://docs.particular.net/nservicebus/the-nservicebus-host
http:///

Chapter 2

[57]

After adding service control to the project, which we will call CreditCardApprove
- v5 – ServiceInsight, we can get detailed information on the saga and its
messages through ServiceInsight, which will look similar to what is seen in the
following screenshot:

www.allitebooks.com

http:///
http://www.allitebooks.org

NServiceBus Saga Architecture

[58]

Summary
We have discussed moving sagas from version 4.0 to version 5.0. Version 5.0
has many more tools and packages that are geared towards Windows Azure,
Visual Studio 2012, and .NET 4.5. This enables greater compatibility with Azure
development and testing, as well as using Azure SDK tools, and the many tools that
Visual Studio 2012 provides. This is deinitely a positive sign in the evolution of a
saga with Windows cloud computing.

We discussed a credit card approval sample using a saga service and saga data. This
example could be used in multiple scenarios: from using the WCF service of a bank
to deduct from a credit card to ordering from a catalog. The messages, endpoints,
and services are managed by NSB as it maps the state of the messages and ensures
their durability. The message low is an important concept as messages can be sent
to different business divisions for their business applications, or handled as separate
processes, just as we used an accounting department application. The messaging
is viewed and reported through multiple means. One of those means includes
NServiceBus tools, such as ServiceInsight, which will be discussed in further detail in
the next chapter.

There are also multiple ways to deploy the application, depending on whether
the NServiceBus.Host executable is used or not. The reason for the use of the
NServiceBus.Host executable and framework is to have NSB manage the services,
endpoints, and messages more as a managed service. NSB is a complete end-to-end
ESB that provides many beneits beyond just an ESB in creating, developing, testing,
and deploying applications in a Windows C# environment.

http:///

The Particular

Service Platform
In this chapter, we will be focusing on the Particular Service Platform, which
includes ServicePulse, ServiceControl, ServiceInsight, and ServiceMatrix. We can use
ServicePulse to get a pulse of NServiceBus (NSB) endpoints, messages, sagas, and
services. This is more of a production monitoring product, for operations to check for
running NSB components.

ServiceInsight is the product to use to get into the details of NSB endpoints, messages,
sagas, and services, to drill down into issues, and to verify proper operations in detail.
ServiceMatrix is the graphical developer interface that extends into a Visual Studio
canvas for code generation of NSB endpoints, services, and messages.

In this chapter, we will cover:

• ServicePulse

• ServiceControl

• ServiceInsight

• ServiceMatrix

• Publish-subscribe through ServiceMatrix

• Sagas through ServiceMatrix

• Introducing custom checks for ServicePulse

Introducing NSB components
There are many tools that can be licensed from http://particular.net/ which aid
in developing and monitoring NSB components. NSB components include endpoints,
messages, and services. Components include any of the conigured items on the IBus.

http://particular.net/
http:///

The Particular Service Platform

[60]

ServiceMatrix is an extension plugin that can be installed into Visual Studio 2012.
This plugin creates an NSB canvas that creates various NSB components through
wizards, which will generate C# code to be used for the ESB. ServiceMatrix
simpliies and standardizes the development lifecycle by generating code to
match diagrams designed in the NSB Canvas, and helps developers create NSB-
standardized code from the NSB Visual Studio wizard. NSB wizards assist in
learning how different pieces make up an NSB application from end to end.
ServiceMatrix also creates skeleton pieces and associate generated C# code to run an
end-to-end NSB solution with less effort from the developer.

ServiceControl is a controller that is a management extension to NSB. Its code
can be downloaded from https://github.com/Particular/ServiceControl.
ServiceControl is a Windows service that collects endpoints, messages, and service
information, and stores it in a local RavenDB. This is done so that other products
such as ServicePulse and ServiceInsight can access the information to report on
the heartbeats of services and give detailed information regarding messages.
ServicePulse checks for heartbeats on NSB applications with the heartbeat plugin,
and provides custom checks as well. It has a dashboard that shows which NSB
applications are up and running for production. ServiceInsight provides details of
messages, endpoints, and services. It shows a detailed graphical low of messages
and properties of messages that includes endpoints and service information,
timeouts, payloads, and more. ServiceInsight allows a deep-dive into messaging.
These tools can be found from the download page, http://particular.net/
downloads. While it is possible to monitor, maintain, and build NSB applications
without these tools, there is a lot of work and effort that has gone into these tools
to help the developer understand, build, and maintain NSB applications, to get a
product that is better built and is made available to the market faster.

We will walk through setting up ServicePulse, then ServiceInsight, and then build
some applications with ServiceMatrix to be examined by both, ServicePulse and
ServiceInsight. ServiceControl is an install that both ServicePulse and ServiceInsight
will need to use to gather its information. We will start with ServicePulse to show
us a dashboard as it is the most basic of these tools. To run any of the applications
in this chapter, ServiceControl, ServicePulse, ServiceMatirx, and ServiceInsight
must be installed. You can download these by going to http://particular.net/
downloads and clicking on the Download Now button to select all the products
through a Platform Installer, which will work on Windows 8.1 and other desktop
machines. For some servers such as Windows Server 2008, this button may not work,
and individual downloads from this page may have to be installed separately. This
chapter assumes that all these products are installed.

https://github.com/Particular/ServiceControl
http://particular.net/downloads
http://particular.net/downloads
http://particular.net/downloads
http://particular.net/downloads
http:///

Chapter 3

[61]

Understanding ServicePulse and its

function
ServicePulse is an operational monitoring tool for applications in NSB. It has three
main functions: monitoring heartbeats, monitoring errors, and retrying extensibility
for custom checks.

We can get a dashboard of failed messages, endpoint heartbeats, successful
messages, and custom checks as shown in the following screenshot:

Besides the dashboard, we can get endpoint overviews, failed messages, custom
checks, and conigurations as shown in the following screenshot:

http:///

The Particular Service Platform

[62]

ServicePulse is an important tool as it can tell us which endpoints are running.
In order for ServicePulse to be running at all, ServiceControl will have to be installed.
It is important to have ServiceControl operational to run ServicePulse
and ServiceInsight.

Understanding ServiceControl and its

function
As mentioned before, for ServicePulse to work, ServiceControl has to be installed.
ServiceControl can be downloaded from http://particular.net/downloads.

ServiceControl is a service that is used for auditing and monitoring NSB endpoints,
messages, and applications, and saves it in a local instance of RavenDB. It also grants
access to these gathered audited messages forwarded by NSB endpoints through
an exposed JavaScript Object Notation (JSON) HTTP API, which provides data
and functionality services for ServiceInsight and ServicePulse. Since RavenDB uses
JSON through an HTTP API by default, ServiceControl acts as a collection service to
gather the information that is important for NSB tools. ServiceControl coniguration
and troubleshooting instructions can be found at http://docs.particular.net/
servicecontrol/.

When installing ServiceControl as a separate package, a window similar to the
following screenshot will appear on your screen:

http://particular.net/downloads
http://docs.particular.net/servicecontrol/
http://docs.particular.net/servicecontrol/
http:///

Chapter 3

[63]

ServiceControl will use http://localhost:33333/api by default. The ports are
conigurable as we see in the previous screenshot. ServiceControl supports other
queuing types, such as SQL Server queues, Azure, and RabbitMQ. You will ind
instructions on this at http://docs.particular.net/servicecontrol/multi-
transport-support.

ServiceControl normally runs through the URL at http://localhost:33333/api.
If the ServiceControl screen does not come up correctly, you may want to check
if the Particular ServiceControl Windows service has started. ServiceInsight and
ServicePulse will be looking to read the endpoint information from this port. We can
see this API start in this screenshot:

Notice that this is the programmatic API for monitoring the IBus. This is your
natural hook point into monitoring systems and other integrations. You can develop
your own operation automation that reacts to the state of the bus. This is a JSON
messaging system through HTTP where you can walk down the different endpoints,
messages, and further information gathered by ServiceControl. More on (JSON) can
be found at http://www.json.org.

What does this mean? We can start walking down the JSON data at this starting
point. We can view all the messages by calling http://localhost:33333/api/
messages/ and all the endpoints by viewing http://localhost:33333/api/
endpoints/. We can then start creating our own GUI in C# by calling the JSON API,
and viewing a particular endpoint by passing in the endpoint name.

http://docs.particular.net/servicecontrol/multi-transport-support
http://docs.particular.net/servicecontrol/multi-transport-support
http://www.json.org
http:///

The Particular Service Platform

[64]

ServicePulse will know how to call this starting point of the JSON API by its setting
when ServicePulse is installed. Please see the following screenshot to see where we
set the ServiceControl API instance:

Let's look at a simple example. We can start with the publish-subscribe MSMQ
example from https://github.com/Particular/NServiceBus.Msmq.Samples/
tree/master/PubSub.

We will need to add ServiceControl plugins through NuGet to generate
ServiceControl endpoints for monitoring purposes, otherwise there will be nothing
to monitor ServiceControl. The following plugins are currently available:

• ServiceControl.Plugin.DebugSession: This is found at https://www.
nuget.org/packages/ServiceControl.Plugin.Nsb4.DebugSession/
for version 4.x and https://www.nuget.org/packages/ServiceControl.
Plugin.Nsb5.DebugSession/ for version 5.x. When deployed, the debug
session plugin adds a speciied debug session identiier to the header of each
message sent by the endpoint. This allows messages sent by debugging or
a test run within Visual Studio to be correlated, iltered, and highlighted
within ServiceInsight.

https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://github.com/Particular/NServiceBus.Msmq.Samples/tree/master/PubSub
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.DebugSession/
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.DebugSession/
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.DebugSession/
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.DebugSession/
http:///

Chapter 3

[65]

• ServiceControl.Plugin.CustomChecks: This is found at https://www.
nuget.org/packages/ServiceControl.Plugin.Nsb4.CustomChecks/
and for version 4.x and at https://www.nuget.org/packages/

ServiceControl.Plugin.Nsb5.CustomChecks/ for version 5.x.
The result of a custom check is either a success or a failure (with a detailed
description deined by the developer). This result is sent as a message to the
ServiceControl queue.

• ServiceControl.Plugin.Heartbeat: This is found at https://www.nuget.
org/packages/ServiceControl.Plugin.Heartbeat. The heartbeat plugin
sends heartbeat messages from the endpoint to the ServiceControl queue.
These messages are sent every 10 seconds by default.

ServiceControl.Plugin.SagaAudit: This is found at https://www.nuget.org/
packages/ServiceControl.Plugin.Nsb4.Heartbeat/ for version 4.x and at
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.Heartbeat/

for version 5.x. The Saga Audit plugin collects the activity information of a saga
runtime. This information enables the display of detailed saga data, behaviors, and
the current status in ServiceInsight Saga View. The plugin sends the relevant saga
state information as messages to the ServiceControl queue whenever a saga
state changes.

To add the plugins, perform the following steps:

1. We will add the ServiceControl plugins for heartbeats and custom checks
through NuGet:

https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.CustomChecks/ and for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.CustomChecks/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.CustomChecks/ and for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.CustomChecks/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.CustomChecks/ and for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.CustomChecks/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.CustomChecks/ and for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.CustomChecks/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.Heartbeat
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.Heartbeat/ for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.Heartbeat/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.Heartbeat/ for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.Heartbeat/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.Heartbeat/ for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.Heartbeat/ for version 5.x
https://www.nuget.org/packages/ServiceControl.Plugin.Nsb4.Heartbeat/ for version 4.x and at https://www.nuget.org/packages/ServiceControl.Plugin.Nsb5.Heartbeat/ for version 5.x
http:///

The Particular Service Platform

[66]

2. Then, we can check heartbeats in ServicePulse to validate that the
applications are giving heartbeats that indicate availability. We monitor
ServicePulse through the URL, http://localhost:9090. This can be seen in
the following screenshot for ServicePlus

3. If there are issues with the services, always check that ServiceControl and
ServicePulse are running. The following screenshot shows these running:

Understanding ServiceInsight and its

function
ServiceInsight provides detailed insights into a speciic message. It provides detail
low, timing, and error handling and the ability to retry the message, sort the
message, look at its header, look at its sagas, copy the header, copy the message,
and more.

We will explore this more with the ServiceMatrix examples that we will be building,
but we need to familiarize ourselves with the functions of ServiceInsight. You may
opt to not use some of these tools in your development, but the purpose of this
chapter is to discuss these tools.

http:///

Chapter 3

[67]

We have the Endpoint Explorer, which gives us details about a message, and a
Message Properties window to drill down into the details of the message. We also
have a Flow Diagram window to give us a graphical overview of the message
and endpoint. Please see the following screenshot to view the Messages, Message
Properties, and a Saga low view:

This low view is very important. Here is the graphical picture of what the NSB
application thinks it is behaving like. ServiceControl puts together different message
properties and endpoint information from ServiceControl to derive the low view.

http:///

The Particular Service Platform

[68]

The Endpoint Explorer window gives a list of the available endpoints that have been
captured in ServiceControl. This list can be used to ilter all of the available messages
so that you may view just the messages on an endpoint. The following is an example
of an Endpoint Explorer tree:

However, it is not a requirement to use ServiceMatrix to build NSB components, as an
NSB solution can be created from programming C# code. ServiceMatrix will generate
the skeleton pieces of C# code and ensure that the programmer uses the generated
code in a standard NSB format that will match the NSB tools in Visual Studio.

A step-by-step guide to use ServiceMatrix can be found at http://docs.
particular.net/servicematrix/getting-started-with-servicematrix-2.0.
A guide to using code without ServiceMatrix can be found at http://particular.
net/articles/NServiceBus-Step-by-Step-Guide.

We will walk through our own solution from start to inish in order to create a
solution for a Payment Engine in a request-response message low, in a directory
called PaymentEngine – Start. This solution will be the end result of this section
and it will contain ServiceControl plugins to monitor it through ServicePulse and
ServiceInsight.

http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://docs.particular.net/servicematrix/getting-started-with-servicematrix-2.0
http://particular.net/articles/NServiceBus-Step-by-Step-Guide
http://particular.net/articles/NServiceBus-Step-by-Step-Guide
http:///

Chapter 3

[69]

Through in the next sections of this chapter on ServiceMatrix, we will take this
request-response solution in the PaymentEngine – Start directory and extend it to
a publish-subscribe message low, with the addition of sagas. The inal result will be
that publish-subscribe and sagas will be in the PaymentEngine – Sagas directory.
In Windows 8.1, you may have to run Visual Studio 2012 as the administrator. When
running Visual Studio 2012 on Windows Server 2008 and Windows Server 2012, you
may not have to run Visual Studio 2012 as the administrator.

Creating a ServiceMatrix solution
We will install ServiceMatrix in Visual Studio by navigating to Tools | Extensions
and Updates. You will be presented with the following screen:

http:///

The Particular Service Platform

[70]

We can create an NSB project by navigating to Files | New | Project. Here, we will
create a Payment Engine example. Let's start by creating a ServiceMatrix solution
called PaymentEngine in Visual Studio 2012, as in the following screenshot. Please
note that it starts out as a solution type of the NSB System.

Normally, there are three different areas for the standard development environment.
There is Solution Builder on the left, NServiceBus Canvas in the center, and
Solution Explorer on the right. This is shown in the following screenshot:

http:///

Chapter 3

[71]

We will create another endpoint called PaymentProcessing that will be an NSB Host
program. The NSB host streamlines service development and deployment, allows
you to change technologies without code, and is administrator-friendly when setting
permissions and accounts. Visit http://docs.particular.net/nservicebus/the-
nservicebus-host for more information.

We can select the Solution Builder or click on New endpoint in NServiceBus Canvas
and type in the name. The ServiceMatrix will then generate the code to create the
new endpoint, as shown in the following screenshot:

The Solution Builder contains four main sections:

• Infrastructure: This is used to create and manage NSB authentication
and auditing

• Libraries: This is used to create and manage NSB reusable libraries

• Endpoints: This is used to create and manage NServiceBus endpoints

• Services: This is used to create and manage NServiceBus services

http://docs.particular.net/nservicebus/the-nservicebus-host
http://docs.particular.net/nservicebus/the-nservicebus-host
http:///

The Particular Service Platform

[72]

By right-clicking on the elements of these sections, we can add or change properties,
as shown in the following screenshot:

We can accomplish similar tasks in NServiceBus Canvas. The difference is that this
is a visual graph showing the low instead of a tree directory hierarchy. Right-click
on the graphical information as shown in the following screenshot:

The Solutions Explorer pane will display the resultant generated code. Some of
the code will be stubs that are created to add more detail during development.
An event can be created through Publish Event... and a command message can be
created through Send Command.... We can create a send command message. We
will name the service Payments for the SubmitPayment command message as in the
following screenshot:

http:///

Chapter 3

[73]

The Contracts section will contain NSB events, and the Internal section will contain
NSB commands. Notice that a SubmitOrder.cs ile was created when we created the
SubmitPayment command. Here is where we will ind the C# code ile:

We can see the code that would normally contain your command message, at
this point, is but a code stub. Here, we add string ield call data to pass through
the message.

http:///

The Particular Service Platform

[74]

At this point, the code will not compile because the message only has one endpoint.
We need to deploy the other endpoint with the Deploy Component... command, as
shown here:

We can select the available endpoints. In this case, we have the ability to create
new endpoints graphically, just as we did for the PaymentProcessing endpoint, as
shown in the following screenshot:

http:///

Chapter 3

[75]

Then, we will have two endpoints with a command message being sent from
ECommerce, an MVC controller, to PaymentProcessing, an NSB Host. These
endpoints will be command consoles or service applications depending on the
deployment. In the following screenshot, we can see the two endpoints with the
message in between:

The SubmitPaymentSender function will send the message, and the
SubmitPaymentHandler function will receive the message, as seen in the preceding
diagram. These functions have already been created from ServiceMatrix and can be
extended. Looking at SubmitPaymentHandler, we can extend the function to print
the data ield.

http:///

The Particular Service Platform

[76]

By running the project without adding any further code, we get a web-based
interface to send the data in the message.

After sending the message, we receive the data that was sent in PaymentProcessing:

Let's add the plugins to ServiceMatrix. If we open up ServicePulse at
http://localhost:9090/#/dashboard, we can see that the message appears at
the two endpoints, but we need to install the plugin to monitor the endpoint. So we
have basic endpoint messaging, but to provide more detail for the messages and
endpoints, a plugin needs to be installed from ServiceControl. Here's some basic
endpoint information in ServicePulse from this exercise:

We will install the plugins for ServiceControl. After installing the plugins, if
ServiceControl is not installed, you will receive an exception for ServiceControl.
We can use the Package Manager Console to install the plugins as shown in the
following screenshot:

http:///

Chapter 3

[77]

There are four ServiceControl plugins that can be installed, which we have
mentioned so far:

• ServiceControl plugin for CustomChecks: The CustomChecks plugin
allows the developer of an NSB endpoint to deine a set of conditions that are
checked on endpoint startup, or periodically.

• ServiceControl plugin for DebugSessions: DebugSessions is a dedicated
plugin that enables integration between ServiceMatrix and ServiceInsight.

• ServiceControl plugin for heartbeats: The Heartbeat plugin sends heartbeat
messages from the endpoint to the ServiceControl queue. These messages are
sent every 10 seconds by default.

• ServiceControl plugin for SagaAudits: The Saga Audit plugin collects saga
runtime activity information. This information enables the display of detailed
saga data, behavior, and current status in the ServiceInsight saga view.

By installing the Heartbeat plugin into the ECommerce and PaymentProcessing
projects, ServicePulse will now give heartbeat information on the uptime of these
services, as shown here:

http:///

The Particular Service Platform

[78]

We can also run ServiceInsight to see the low of the E-Commerce MVC sending the
SubmitPayment to PaymentProcessing.

We can walk down the message and drill down for further information and insight
into the performance and operation of the messages and endpoints.

As you may notice, there are a few different times that are listed in the message
properties, and they include the following:

• Critical time: The amount of time the message spends in transition from the
sending to the processing endpoint.

• Delivery time: This is like the critical time, but includes waiting and
processing time in the queue.

• Processing time: The amount of time it takes to actually process the message.
This is done by the message processing handler method.

At this point, we should have a solution built in the PaymentEngine – Start
directory that does basic request-response for a payment engine and publish-
subscribe through ServiceMatrix.

The publish-subscribe messaging pattern is where the senders of messages,
called publishers, will send messages without direct receivers. Instead, receivers
of the messages and subscribers subscribe to the messages that they are interested
in receiving.

Our wish is to end with the product having both publish-subscribe message low
and sagas. Also, these should end up with the solution in the PaymentEngine –
Saga directory. NServiceBus, ServiceMatrix, ServiceControl, ServicePulse, and
ServiceInsight were installed to walk through these scenarios.

http:///

Chapter 3

[79]

The Publish Event... option is used to create the message that will be published, as
shown in the following screenshot:

We will name the publisher event message PaymentAccepted from the
PaymentProcessing host, as shown here:

http:///

The Particular Service Platform

[80]

A code-convenient window will be created to review the code before deployment:

This is so that you can review the code before copying it into the message handler
that you are publishing from. Here is the code:

 public partial class SubmitPaymentHandler

 {

 partial void HandleImplementation(SubmitPayment message)

 {

 // TODO: SubmitPaymentHandler: Add code to handle the
 SubmitPayment message.

 Console.WriteLine("Payments received " +
 message.GetType().Name);

 Console.WriteLine("Data " + message.data);

 var paymentAccepted = new
 PaymentEngine.Contracts.Payments.PaymentAccepted();

 Bus.Publish(paymentAccepted);

 }

 }

http:///

Chapter 3

[81]

To add a subscriber to the publisher, simply use the Add Subscriber... command as
shown in the following screenshot:

We can then add the subscriber to a new service. Let's call it Paying.

http:///

The Particular Service Platform

[82]

We will also have to deploy the PaymentAcceptedHandler component as an
endpoint. In this scenario, we called it Paying as well. After these changes, we
should see the following:

The Properties window of the solution will deine the error and audit queues:

http:///

Chapter 3

[83]

The Properties window will also show the various types of queues that can be used:

When running the solution and rerunning ServicePulse, we can see the additional
Paying endpoint created, which hasn't had the plugins installed:

If we review the low in ServiceInsight, we can see the new lows:

http:///

The Particular Service Platform

[84]

Sagas through ServiceMatrix
Not only can we develop endpoints for command messages and publish-subscribe
messages, we can also develop sagas in ServiceMatrix. We will start by creating a
new PaymentNotification command message:

The following is the code for this piece:

 public partial class PaymentAcceptedHandler

 {

 partial void HandleImplementation(PaymentAccepted message)

 {

 // TODO: PaymentAcceptedHandler: Add code to handle
 the PaymentAccepted message.

 Console.WriteLine("Paying received " +
 message.GetType().Name);

 var paymentNotification = new PaymentEngine.
 Internal.Commands.Paying.PaymentNotification();

 Bus.Send(paymentNotification);

 }

 }

http:///

Chapter 3

[85]

We will deploy the receiving endpoint to a new endpoint called NotifyProcessing.

This is what we should have so far:

http:///

The Particular Service Platform

[86]

To start the saga process, we will use the Reply with Message... option, as follows:

This will allow us to convert the PaymentAcceptedHandler component into a saga.

After the saga is created, we can run the code from Visual Studio. Looking at
ServiceInsight, we can see the updated low diagram that contains all the
endpoint components:

http:///

Chapter 3

[87]

The ServiceInsight can display the low of the various saga components. We can
see the overall PaymentAcceptedHandler service to include which message will
initialize the saga and which message will update the saga. Here we see the saga
initiated with PaymentAccepted, saving PaymentNotification data, and updating
the PaymentNotificationResponse message. This low is displayed in the
following screenshot:

http:///

The Particular Service Platform

[88]

Now, we have a solution that we saw while processing within ServiceInsight, which
we could examine in the saga low. We now have our solution in the PaymentEngine
– Saga directory. NServiceBus, ServiceMatrix, ServiceControl, ServicePulse, and
ServiceInsight were installed to walk through these scenarios. Because of the
Particular NSB development tools, very little coding was needed to develop this
application. However, we could examine the details of what was built in low,
message details, and have a graphical view in Visual Studio of the inal solution.

Introducing CustomChecks for

ServicePulse
With the ServiceControl.Plugin.CustomChecks plugin installed, we can perform
several checks. In this section, we will be using the PubSub--ReportFailure
solution—the MyPublisher project reports a failure check that will be reported in
ServicePulse. This solution shows custom checks. In this section, we will also be
using the PubSub--ReportPass solution—the MyPublisher project reports a pass
check that will be reported in ServicePulse.

The following two functions can be used in the CustomCheck class using the
ServiceControl.Plugin.CustomChecks plugin to generate a failure or pass
condition to the ServicePulse dashboard:

• ReportPass: This will report that the custom check has passed.

• ReportFailed: This will report that a custom check has failed, passing in the
string as the reason for the failure.

Here, we will create the code for a CustomCheck object that can be called
when we submit a payment as an additional check. It is a simple constructor
in a MyCustomCheck class that will pass information through its base class of
CustomCheck. We called this class when we sent the SubmitPayment command from
the ECommerce project using MyCustomCheck myCheck = new MyCustomCheck();.
Here is the code:

using System;

using System.IO;

using ServiceControl.Plugin.CustomChecks;

using ServiceControl.Plugin.CustomChecks.Messages;

using ServiceControl.Plugin.CustomChecks.Internal;

namespace PaymentEngine.ECommerce

{

 public class MyCustomCheck : CustomCheck

http:///

Chapter 3

[89]

 {

 public MyCustomCheck()

 : base("ECommerce SubmitPayment check", "ECommerce")

 {

 ReportPass();

 }

 }

}

So that when a submit payment is sent, we can get an additional
 message on ServicePulse.

We can use conditional statements to check for iles that are present, other messages,
and a number of conditions that can be reported as passing or failing while giving
status to ServicePulse for operations to take action.

In the CustomChecks class, we can also set a timer to periodically check using
the PeriodicCheck interface. This will set a timer to call back the class and send the
condition to ServicePulse. It operates differently from ReportPass, as it is timer based
in order to report the condition. When the new class references the PeriodicCheck
interface, it requires a PerformCheck() function that will perform the custom check.
In our function, we are using the NSB CheckResult

namespace PaymentEngine.PaymentProcessing

{

 class CheckHealth : PeriodicCheck

 {

 public CheckHealth()

 : base("PaymentProcessing Healthcheck",
 "PaymentProcessing", TimeSpan.FromMinutes(2))

 {

 }

 public override CheckResult PerformCheck()

 {

 // Fake a failure once in a while

 if (DateTime.Now.Second % 2 == 0)

 {

http:///

The Particular Service Platform

[90]

 return CheckResult.Failed("PaymentProcessing fake
failure");

 }

 return CheckResult.Pass;

 }

 }

}

This screenshot will demonstrate a failure condition in a custom check in
ServicePulse:

This screenshot will demonstrate a pass condition in a custom check in ServicePulse:

There are many uses of custom checks in ServicePulse to give operations and the
business the internal operations of the services, endpoints, and messages in NSB.
Examples of custom checks include returning a failure or pass to determine if an
e-mail server is running, an SFTP server is responding, a directory exists for saving
iles, a logging directory exists, and many more conditions. It would be good to
report to ServicePulse so that operations are aware that a condition of the application
will either pass or fail. We called this class when we passed messages to the
MyPublisher queue using MyCustomCheck myCheck = new MyCustomCheck();.

We can then put in conditional statements to check for conditions and report a fail
or pass. We can show how we pass a message to ServicePulse to report a pass.
We can report a failure by replacing the report pass with a report failure, such
as ReportFailed("Testing"). It will then log the failures in ServicePulse, as
shown here:

http:///

Chapter 3

[91]

ServicePulse provides a visual interface to show the history of the heartbeats,
failures, and custom checks when it is running, and we can conigure which
available endpoints to check.

Summary
In this chapter, we looked at the various tools in the Particular Service Platform,
which include ServiceMatrix, ServicePulse, and ServiceInsight. We had a very
brief introduction of SeviceMatrix as we walked through building an E-Commerce
MVC solution that works with request-reply messages using the send command.
This was followed by publish-subscribe messages showing the ServicePulse and
ServiceInsight results. ServiceInsight gives detailed information on each endpoint,
message, and service, as well as a graphical low to show the whole end-to-end low.
Of course, none of this could be done without ServiceControl, which is the service
that is installed to collect the data to be sent to ServicePulse and ServiceInsight.

In the next chapter, we will discuss saga development. There will be a discussion as
we look at saga development with web services using WCF, and using MVC as a
frontend to read the various entries.

http:///

http:///

Saga Development
In this chapter, we will be focusing on the various useful constructions of sagas and
message handlers. The purpose of sagas will be discussed when the need to extend
and coordinate transactional integrity by using sagas is discussed. This chapter
will then morph into a discussion of NServiceBus using integrated, pre-built WCF
bridges. Some might consider it unusual to discuss WCF in a saga chapter, but sagas
become an intermediary for coordinating WCF and NServiceBus worklows. We can
decouple the worklow from the frontend for interaction to the backend processes
through message handling. Sagas provide the means to persist the state information
of the messages.

We will start with unit testing saga handlers and message handlers as we are
constructing them, and how NServiceBus brings rules into testing them through
Visual Studio. We will briely discuss building our own tools and then move on to
changing the transport mechanics from MSMQ into RabbitMQ. The goal is to know
enough about developing sagas and message handlers so as to start building and
testing our own sagas, and to have enough of an introduction to MVC, MSMQ, and
EF at this point in order to start constructing and testing different business scenarios.

In this chapter, we will cover the following:

• A brief overview of MVC

• Sagas and web services

• Creating a WCF server

 ° Messaging

 ° Configuration tracing

http:///

Saga Development

[94]

• Creating a WCF client

 ° Adding the service reference

 ° Calling the reference

• Revisiting the design

• Adding the service reference

 ° Calling the reference

• Adding NServiceBus to MVC

 ° Message handler unit testing

 ° Saga handler unit testing

• RabbitMQ for NSB

• ActiveMQ for NSB

A brief overview of ASP.NET MVC
Model-View-Controller (MVC) is the most common design pattern for implementing
user interfaces. ASP.NET MVC is the Microsoft framework to implement the MVC
software design pattern in ASP.NET. Developing by reusing known design patterns
and frameworks that have been justiied and tested by others brings a lot of reusability
of known quantities into any application.

By breaking up the logic into controllers, which have the session, request, and
response helper functions, while passing the models, which are the View Models
which have the information which we want to present into the view, it moves most
of the logic and exposure away from the browser where APIs can be exposed. We
will also use Microsoft Entity Framework (EF) for many of the model objects.

Microsoft recommends using Language Integrated Query (LINQ) and EF to prevent
traditional SQL injection attacks. The web page at https://msdn.microsoft.com/
en-in/library/bb308959.aspx also discusses other security measures that can
be done in EF. EF does not mitigate all injection attacks (such as EF injections) but,
using a combination of EF and LINQ correctly, it will mitigate many common SQL
injection attacks. The reasoning here is that the injection can now only occur through
LINQ and the EF objects rather than any open SQL commands, thus narrowing
the attack surface from a wide range of commands to an object, and through a
collection that may only be accessed through a controller in MVC. There are many
scripting tools running on the Internet, such as SQLNinja. Visit http://sqlninja.
sourceforge.net/ to ind any insecure SQL command.

https://msdn.microsoft.com/en-in/library/bb308959.aspx
https://msdn.microsoft.com/en-in/library/bb308959.aspx
http://sqlninja.sourceforge.net/
http://sqlninja.sourceforge.net/
http:///

Chapter 4

[95]

However, most tools are not built to signal EF attack vectors. Please visit http://
www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks for
more information on this.

There are many more reasons to use an object-relationship mapper (ORM), such as
EF, as we can see in http://karwin.blogspot.com/2009/01/why-should-you-
use-orm.html. Some of these reasons include the following:

• Generating boilerplate code: EF generates objects from the SQL Server
databases and tables, thus creating boilerplate code that can be used to
create, update, read, and delete the ields in the tables.

• Supporting OO: EF objects support common object-oriented programming
design and methodology that is easy as PIE (polymorphism-encapsulation-
inheritance), and to include reusability.

• Speeding development: Generating code from a database and using it
in an application can be signiicantly faster than creating custom code
from scratch. We can see the interaction of the MVC components in the
following diagram:

So, why is this discussion on MVC-EF in an NSB book? That's because most of the
oficial NSB examples are using MVC. We will be looking at some examples that we
have extended in MVC to include Microsoft's best practices of EF and WCF.

In order to view tables and queues related to tables, we use the Kendo grids.
Packt publishing offers many books on Kendo, such as Kendo UI Grid (http://
www.packtpub.com/kendo-ui-grid/book). Some of the Kendo examples are also
extended from iles available at http://www.codeproject.com/Articles/606682/
Kendo-Grid-In-Action.

http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://www.slideshare.net/rhelton_1/sql-injection-amp-entity-frameworks
http://karwin.blogspot.com/2009/01/why-should-you-use-orm.html
http://karwin.blogspot.com/2009/01/why-should-you-use-orm.html
http://www.packtpub.com/kendo-ui-grid/book
http://www.packtpub.com/kendo-ui-grid/book
http://www.codeproject.com/Articles/606682/Kendo-Grid-In-Action
http://www.codeproject.com/Articles/606682/Kendo-Grid-In-Action
http:///

Saga Development

[96]

Sagas and web services
One of the many endpoints that NSB provide integration into is the Windows
Communication Foundation (WCF) endpoint. Visit http://en.wikipedia.org/
wiki/Windows_Communication_Foundation for more information.

WCF is part of the .NET Framework ecosystem which provides a runtime and a
set of APIs for building connected, service-oriented applications. In the Simple
Object Access Protocol (SOAP) binding, it makes use of Web Services Description
Languages (WSDL), which deines the interface between a web service and a web
service client. Based on a WSDL, the XML is created on the WSDL speciication
so that the client and server can exchange information irrespective of their
programming languages and platforms. It is sent between the server and the client
as the protocol is normally HTTP or HTTPS. There are multiple binding types; we
will discuss mostly SOAP binding in this book, but for more binding types, you can
visit http://msdn.microsoft.com/en-us/library/ms731092%28v=vs.110%29.
aspx. For example, if using a WCF client and service that are both built-in C#, we
may consider using a NetTcpBinding class as it provides high performance between
.NET WCF applications. Visit http://msdn.microsoft.com/en-us/library/
ms731092%28v=vs.110%29.aspx for more information.

For simplicity's sake, we are only going to work with a SOAP web service in WCF
in this chapter.

WCF is a highly extensible framework and allows easy integration into NServiceBus.
More information on NSB WCF sample integration can be found at https://
github.com/Particular/NServiceBus/tree/develop/IntegrationTests/

WcfIntegration and http://docs.particular.net/NServiceBus/how-do-i-
expose-an-nservicebus-endpoint-as-a-web-wcf-service.

While Microsoft's WCF is considered a framework for implementing pieces of
service-oriented architecture (SOA) guidelines, it is not an ESB. This WCF does not
contain all the features and design patterns (like sagas), persistence, or other out-of-
the-box features to implement an end-to-end solution for SOA guidelines. On the
other hand, using NServiceBus as an ESB with the web services of WCF brings a lot
to the table that WCF and other web service frameworks do not offer.

The source code
The directory for the code is under the Payment_WCFService directory. The
WCFService is used to test the client by being the WCF service.

http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://en.wikipedia.org/wiki/Windows_Communication_Foundation
http://msdn.microsoft.com/en-us/library/ms731092%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms731092%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms731092%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms731092%28v=vs.110%29.aspx
https://github.com/Particular/NServiceBus/tree/develop/IntegrationTests/WcfIntegration
https://github.com/Particular/NServiceBus/tree/develop/IntegrationTests/WcfIntegration
https://github.com/Particular/NServiceBus/tree/develop/IntegrationTests/WcfIntegration
http://docs.particular.net/NServiceBus/how-do-i-expose-an-nservicebus-endpoint-as-a-web-wcf-service
http://docs.particular.net/NServiceBus/how-do-i-expose-an-nservicebus-endpoint-as-a-web-wcf-service
http:///

Chapter 4

[97]

The solution is then run in Visual Studio 2012 in Windows Server 2012 with MSMQ,
DTC, RavenDB, NServiceBus Version 4.0 references, and SQL Server 2012 Express
LocalDB installed.

The WCFService must irst be running for the client, Payment_WCFService, to send
it messages.

Creating a WCF server
We will start by creating a WCFServer project in Visual Studio, as the server needs
to be running before it can communicate with the client. By adding the reference
NServiceBus.Host from NuGet or Package Manager Console, several NSB default
settings will be created in the App.config ile for the project, an EndpointConfig.
cs ile with AsA_Server will be created, and the project will be set to run with
an NServiceBus.Host.exe executable. We can see the creation of the iles by the
reference in the following screenshot:

http:///

Saga Development

[98]

When we add an NServiceBus.Host reference, through either NuGet or Package
Manager, into the project, many other items will be added into the project as well.
These other items are as follows:

• An EndpointConfig.cs ile will be created in the project with the default
settings to add endpoints.

• The project will be set to run as a DLL, being executed by an NServiceBus.
Host.exe executable when run from the debugger.

• Several default settings for creating a generic AsA_Server endpoint will be
added to the App.config ile.

We can see from the following screenshot that when we add the NServiceBus.Host
reference, this sets the project to run as a DLL using the NServiceBus.Host.exe
executable:

We will use NSB WCF Integration to save a lot of work on our part. In order
to use this integration, we will need a few pieces related to both NSB and WCF.
These are as follows:

• A web service: This is used with the NServiceBus.WcfService<TRequest,
TResponse> class where we deine a request and response on the web
service. We will show here that the service called PayService will receive the
PaymentMessage message as the request and respond with ErrorCodes. This
is shown in the following line of code:

public class PayService : WcfService<PaymentMessage, ErrorCodes>

• A message handler: This is required to handle the message from the
web service and to process it in the integration. We will call this
handler PayHandler.

• The request and response message structures: This is required for the
PaymentMessages project.

• The coniguration for NSB with WCF: This is required in the
App.conig ile.

http:///

Chapter 4

[99]

Using NSB with WCF integration is similar but different from using straight WCF.
In WCF, there are four basic steps that can be extended. Visit http://www.c-
sharpcorner.com/UploadFile/dhananjaycoder/four-steps-to-create-first-

wcf-service-for-beginners/ for more information.

These steps to create a WCF server are as follows:

1. Create a service contract. This deines the available functions between the
WCF client and the WCF server through interfaces.

2. Expose endpoints with metadata—through either App.config or Web.
config. We expose the endpoints through the coniguration to include
how the exchange of data will occur.

3. Implement the service. That is, we add functionality and data objects to
the interfaces.

4. Consume the service. Or, in other words, expose the service to be imported
into a WCF client.

In using NSB with NHibernate, NSB takes care of the mapping of NHibernate
with the messages, endpoints, and services. In WCF integration, NSB also takes
care of many of the service contracts with the use of the message handler and the
message format.

We can observe these features pieces in the following screenshot and we will discuss
them further:

We will add the messages next.

http://www.c-sharpcorner.com/UploadFile/dhananjaycoder/four-steps-to-create-first-wcf-service-for-beginners/
http://www.c-sharpcorner.com/UploadFile/dhananjaycoder/four-steps-to-create-first-wcf-service-for-beginners/
http://www.c-sharpcorner.com/UploadFile/dhananjaycoder/four-steps-to-create-first-wcf-service-for-beginners/
http:///

Saga Development

[100]

Adding messages
We will now create a PaymentMessages project inside the solution, as shown in the
following screenshot:

We will be using the PaymentMessage request message, which the request needs to
be NServiceBus IMessage Interface having two classes, a Guid method for a unique
ID per message, and a PaymentReq class:

 public class PaymentMessage : IMessage

 {

 public Guid EventId { get; set; }

 public PaymentReq paymentReq { get; set; }

 }

http:///

Chapter 4

[101]

The PaymentReq class will have many ields which are necessary for a normal
payment to a bank, including items like bank routing number, bank account number
and many more items to identify a payment (as shown in the following diagram):

The ErrrorCodes are just an Enum class that either returns None (for no error) or
Fail, as shown in the following screenshot:

Now that we have a message, and we also have a WCF service (called PayService),
let's start a message handler to handle the message by using the message to receive it
from the client.

Just to give an overview, PayService will get a message from the web service
client and, in turn, place the message in the MSMQ by default (that is, a queue
called wcfservice) for the message handler to process it, and then respond back to
the web service.

http:///

Saga Development

[102]

Adding the message handler
We will now create a message handler to handle the message (PaymentMessage).
Here, we are just printing out the EventId instance to the console window. Further,
we may add subscription processing for handling the payment as a bank may
handle it. The service will return an ErrorCode with the value of None. We are
conducting very simplistic tests at the moment. This is the WCF service project under
BasicWCF1:

namespace WCFServer.Handlers

{

 public class PayHandlers : IHandleMessages<PaymentMessage>

 {

 private readonly IBus bus;

 public PayHandlers(IBus bus)

 {

 this.bus = bus;

 }

 public void Handle(PayMessage message)

 {Console.WriteLine("======================================
 ================================");

 Console.WriteLine(message.EventId);
 Console.WriteLine("===================================
 ===================================");

 bus.Return((int)ErrorCodes.None);

 }

 }

}

We will then create the WCF client for the web service call. The client will simply
deine the messages to send to the web service for handling the request and
response. The PayMessage instance will be the request going from the client to the
service. The reply from the service will be the ErrorCodes. We will perform these
steps after we explore more about the coniguration and tracing of the WCF service.

http:///

Chapter 4

[103]

Adding the coniguration
The task of coniguring the App.config ile for the web service still remains. This
step is similar to exposing the endpoint with metadata that we mentioned earlier.

The App.config ile will deine several characteristics of the web service, such as
the listening port and URL, the security of the service, and the binding type for the
service. The binding type deines the communication mechanism of the endpoint,
be it basic HTTP, MSMQ, or any other. A list, as well as more information on
WCF binding, can be found at http://msdn.microsoft.com/en-us/library/
ms730879(v=vs.110).aspx.

We could conigure the App.config ile by manually editing it, or by using the WCF
Service Coniguration Editor that comes as part of Visual Studio.

More information on the Coniguration Editor can be found here:

http://msdn.microsoft.com/en-us/library/ms732009(v=vs.110).aspx

We will now open the App.config ile through the Coniguration Editor to do
the following:

• Establish a server URL, including port number, to be available for the client
WCF as the WCF endpoint

• Establish the binding parameters that will expose the WCF service endpoints
in a variety of different ways

• Set up tracing and logging to review the transmissions and services as
they happen

http://msdn.microsoft.com/en-us/library/ms730879(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms730879(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms732009(v=vs.110).aspx
http:///

Saga Development

[104]

We start by opening the project's App.config ile and setting up the URL and ports
that the web service will be listening with to start coniguring the endpoint—as
shown in the following screenshot:

http:///

Chapter 4

[105]

Next we set the binding types. We will be using the WCF server endpoint to be set at
a particular port, as shown in the following example:

We used mex binding here, which is metadata exchange binding. This is useful
if data needs to change over time and the update of client information through
discovery. In other words, we are adding metadata to the endpoint to expose the
metadata of the service so that the WCF client can easily create a proxy.

http:///

Saga Development

[106]

Please visit http://msdn.microsoft.com/en-us/library/ms731734(v=vs.110).
aspx to review the WCF coniguration schema. We can edit the binding through the
service endpoint as shown here:

Adding tracing
There may be some debate as to whether this section is required or not, as this
section is speciic to WCF but not related to sagas or NSB. However, if your WCF
communication is not working between a WCF client and a WCF server, the issue
could be related to the message structure, the network, the WSDL, or any other
factor. And in order to trace the issues in WCF, the tracing feature needs to be
enabled and set up. This also allows us to see the reaction of the communication.
However, if your WCF is functional and no troubleshooting is required, feel free to
skip this section.

http://msdn.microsoft.com/en-us/library/ms731734(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms731734(v=vs.110).aspx
http:///

Chapter 4

[107]

There are service tracing utilities within WCF to view graphs, messages, network
calls, exceptions, and activities of WCF web services and web clients. Please refer
to http://msdn.microsoft.com/en-us/library/ms732023(v=vs.110).aspx for
more information on Microsoft Service Trace Viewer.

We can capture the messages between a client and a server by setting the diagnostic
sections (given as <diagnostics/>) in the App.config ile to capture these
messages, and also by setting the listeners and sources, which will be associated with
the libraries, to log events in the App.config ile, as shown here:

http://msdn.microsoft.com/en-us/library/ms732023(v=vs.110).aspx
http:///

Saga Development

[108]

The following screenshot represents how we can conigure message logging and
what kind of trace listener we are going to use to write the logs:

We can view the messages being sent between the client and the server by opening
the svclog ile in Service Trace Viewer. As shown in the following screenshot, we
can see the SOAP message, including the header and the body, which is what the
WCF server was receiving.

http:///

Chapter 4

[109]

Not only can we see the SOAP information, but the HTTP information as well. By
adding a System.Net listener, we can trace the network socket calls for opening and
closing sockets as they happen, as well as the sessions in between. For additional
information on how to conigure network tracing for WCF, please refer to the
following links:

• http://msdn.microsoft.com/en-us/library/ty48b824%28v=vs.110%29.

aspx

• http://msdn.microsoft.com/en-us/library/ms733025%28v=vs.110%29.

aspx

So, why discuss web service tracing? In many web services, such as those connecting
to banks to process credit cards, we may only see one side of the WCF service.
Sometimes, the other side may end up being a Java web service or other types
of services that a third party develops; it may even be using CICS legacy code.
Consequently, we may have very little control over some of the web services that we
will be integrating into. And sometimes, there is very little documentation as well.
So, tracing becomes a necessity for many web services to debug and log functionality
as messages go in between systems.

http://msdn.microsoft.com/en-us/library/ty48b824%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ty48b824%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms733025%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms733025%28v=vs.110%29.aspx
http:///

Saga Development

[110]

Viewing the web service
Running the web service in Visual Studio 2012, we can view the web service through
the browser at http://localhost:9009/services/paymessage. It will provide some
simple instructions for the WCF client, as we can see in the following screenshot:

And we can also see the WSDL by accessing the page from
http://localhost:9009/services/paymessage?singleWsdl:

Considerations when deploying
Please note that for most production systems, it is always recommended to install
digital certiicates when using web services to encrypt the pipeline and verify the
identity of the client and the server.

For a real-life production system, all the communication between the WCF client and
WCF server must be secure using SSL, and you should look into your web services
using WS-Security-based applications.

http:///

Chapter 4

[111]

Creating a WCF client
In this section, we will create an MVCApp solution that will be under the
BasicPayClient directory. It will contain several projects as follows:

• MVCApp: This contains MVCs, Kendo grids, and the WCF client for a
browser user interface to send messages to the WCF service. It will read
ive XML iles to load as messages.

• MyMessages: This contains IMessages of NServiceBus for the building
of messages.

• WriteXMLFiles: This is a utility to write ive XML iles to a C:\temp\
directory for the MVCApp project to load. This application saves messages in
the form of XML iles, which in turn are loaded through MVCApp to be sent
from the WCF client to the WCF service. These are for testing purposes only,
but using iles in the form of messages makes it quick to change the data for
various tests in the communications and endpoints. The messages are read
from a C:\temp\ directory as ive XML iles saved in a format that works
with the WCF messaging service. The iles can be created in the C:\temp\
directory by running the C:\temp WriteXMLFiles project. These iles are
simply test messages and are saved to a disk so that they can be modiied
and tested easily.

Next, we need to design the client. We will have an MVC ASP.NET web interface
that reads the XML iles and displays them. We can select an individual message and
send it to the WCF service as a request to get a response.

As a further exercise in this chapter, we will add a saga and a message in-between
the MVC application and the WCF client to show how the worklow will assist us.

We already have instructions in the display of the WCF service, as given here:

To test this service, you will need to create a client and use it to call the service.
You can do this using the svcutil.exe tool from the command line with the
following syntax:

svcutil.exe http://localhost:9009/services/paymessage?wsdl

You can also access the service description as a single ile:

http://localhost:9009/services/paymessage?singlewsdl

http:///

Saga Development

[112]

In order to verify if the service is up and running, just browse to your
service at the following link:

http://localhost:9009/services/paymessage

Adding the service reference
First, we will run the WPayment WCF service from Visual Studio. We can check to
see whether it is running by just seeing whether we can view the web service in a
browser. This is a self-hosted solution since we can use NSB to deploy the service
as it is contained in an NSB package. However, WCF can be IIS-hosted as well. To
see a comparison of some of the Windows hosted solutions, visit http://msdn.
microsoft.com/en-us/library/ms730158.aspx.

http://msdn.microsoft.com/en-us/library/ms730158.aspx
http://msdn.microsoft.com/en-us/library/ms730158.aspx
http:///

Chapter 4

[113]

We will now add a service reference from the available WSDL to the web service
client. Visit http://msdn.microsoft.com/en-us/library/bb628652.aspx for
more information. The following screenshot shows how the Add Service Reference
window appears:

http://msdn.microsoft.com/en-us/library/bb628652.aspx
http:///

Saga Development

[114]

We will use the advanced settings to reuse the MyMessages packages of messages
that we are using in this chapter's projects. The following image shows how your
screen would look:

Calling the service reference
We will create an index.html ile on the Kendo grid which will be a link on View
which, when clicked, will load the XML iles. When a particular XML PayMessage
instance is selected to be sent to the WCF service, it will call the service reference,
which was imported as ServiceReference1, to create a client and pass the selected
PayMessage into it to be processed and sent to the WCF service. We will create this
code in the MVC controller function, SendWCF, and pass it the ID of the message that
we are sending to the WCF service. The code is shown in the following screenshot:

http:///

Chapter 4

[115]

This will be the Kendo grid in the browser that offers a selection to be sent to the
WCF service. Upon browsing the page, the grid will populate with the following
data and an option to send the message to the WCF service, as shown in the
following table:

The Kendo grid scripting inside the SendWCFPay.cshtml ile will look like the
following:

<h2>Send Payment Message to WCF</h2>

 <script type="text/javascript">

 $(document).ready(function () {

 var modelData = @Html.Raw(Json.Encode(Model))

 $("#grid").kendoGrid({

 pageable: true

 , sortable: true

 , silectable: true

http:///

Saga Development

[116]

 , selectable: true

 , columns: [

 { field: "Id", title: "Id" }

 , { field: "EventId", title: "Event Id" }

 , { title: "Action", template: '<a href=
 "/user/sendwcf/#=Id#">Call_Payment_Service' }

]

 , dataSource: { pageSize: 10, data:modelData }

 });

 });

</script>

If the PayMessage was processed successfully, it will have no errors when we view
the details of that request, as shown here:

Revisiting the design
In the code, as an example, we have built a Payment WCF Service solution as a WCF
Integration solution into NSB. We have also built an MVC frontend to the WCF client
solution that we can use for testing the Payment WCF Service.

The frontend is a basic MVC application with some basic WCF client interfaces for
a PayMessage. PayMessage has a GUID, an address, and basic information
for payment.

http:///

Chapter 4

[117]

For simplicity, the MVC controller is just reading XML iles (that were created in
a folder in C:\temp\) to be displayed in the frontend and selected to be sent to
the Payment WCF service. Using XML iles in this method is not recommended
for production, as normally these iles would be illed in by a frontend payment
interface to the customer for the customer information. We chose this method to
solidify the interfaces and test them. And designing customer interfaces to populate
the messages was not part of this effort. Using XML iles in this type of testing can be
advantageous, as we could extend this example to send hundreds of messages, both
in order to check performance as well as to populate individual messages through a
customer interface without relying on the frontend.

What we basically have is a very common design, where we have an MVC frontend
calling a WCF client to interact with a WCF server. This design is also common to see
at some ordering sites. For instance, at, let's say a pizza site, is a pop-up saying order
being sent, do not refresh. Because there is no decoupling to the backend worklow
in this example as well, if this were to become a solution without decoupling through
NSB, we may likely have to add payment being sent, do not refresh. Many things can
go wrong in the event of during the need for a page refresh, just because a customer
may not be refreshing their page, it does not mean that something else isn't doing a
page refresh.

Our current architecture is as follows:

http:///

Saga Development

[118]

Let's build some saga processing into the preceding solution to decouple the MVC
frontend from the WCF client. NSB will act as a mediator for the interaction between
these two components pieces.

Why a saga? It routes messages, performs timeouts, and persists a state.

The preceding screenshot represents the new worklow using the NServiceBus saga.
It seems a bit overwhelming, but NServiceBus handles all the complexity behind the
scenes. For the controller, it just ires and forgets. If it needs to know the state of the
message, it just executes an EF query on the DB. But it still sends the message off,
and allows NSB to handle it.

The source code
The directory for the code is under the SagaPaymentClient directory.

The MVCApp – WCF is used to send WCF messages as a client using a saga.

The solution was built using Visual Studio 2012 in Windows Server 2012, and
also tested with VS 2012 running in Windows 8.1, with MSMQ, DTC, RavenDB,
NServiceBus Version 4.0 references, and SQL Server 2012 Express LocalDB installed.

Here's what the new project will look like with the saga:

The difference now is that the MVC application will interface with the saga, which
is MySaga, and the saga will communicate with the WCF client and the MVC
application. This will decouple the frontend from the WCF client, as well as have the
MVC receive feedback of the status directly from the saga message.

http:///

Chapter 4

[119]

The interaction will look like the following:

Wow! It looks like a lot, but most of the diagram is similar to the previous MVC
application, and we are familiar with most of the orchestration represented in the
preceding diagram. However, all the new pieces of orchestration are handled by
the NSB saga. The WCF client and server remain the same, but the WCF client is
encapsulated in a message handler that receives and responds to the saga. Before
refactoring with NSB, the WCF client updates the MVC application with the status
of the WCF by updating a database about the fact that the message was processed
successfully from the WCF server. Now, after NSB, the MVC application has a
message handler. It will still update the database, but now the MVC application
can be event driven from the saga as well, whenever the user needs to be notiied
immediately. Has the saga refactoring process increased the quality of software? If
a message is interrupted, the power is shut off, the user refreshes their page, and a
thousand other things could happen. However, the payment will not be lost. Also, a
page refresh will not affect the payment either.

As part of this refactoring into NSB, the saga handles all the complexity around the
service calls, and we have a nice separation of concerns between the controller and
the orchestration.

http:///

Saga Development

[120]

Adding NServiceBus to MVC
We will next be extending our BasicPaymentClient folder and projects into a
SagaPaymentClient folder and projects with the addition of the bus. The differences
will be as follows:

• We will refactor the WCF client out of the MVC controller and move it into a
new message handler.

• We will create a database that keeps track of the state of the message. The
saga data will be saved in the nservicebus table. Ensure that it is created
when running the saga code.

• We will create a new message handler and put the WCF client code in it. This
code from the WCF client to the WCF server will be kept separate from the
frontend code as far as possible, to keep the PayMessage class completely
separate from the frontend.

• We will create a new message handler in the MVC that will update the DB
with the message state as it receives the new state from the endpoints. We
will look at the code for the message and saga handlers as we test them in the
next section.

• NServiceBus.Testing offers testing by sending messages through message
handlers and sagas. This includes anything that a message handler and saga
can do, including header manipulation and dependency injection. Refer to
http://docs.particular.net/NServiceBus/unit-testing for some
basic examples. For the source code of NServiceBus.Testing, go to
https://github.com/Particular/NServiceBus/tree/develop/src/.

The very basis of starting unit testing is to create a unit testing project in
Visual Studio by adding a new unit testing project to an existing solution. Visit
http://msdn.microsoft.com/en-us/library/hh598957.aspx and hyperlink
it. The Add New Project window is as shown here:

http://docs.particular.net/NServiceBus/unit-testing
https://github.com/Particular/NServiceBus/tree/develop/src/
http://msdn.microsoft.com/en-us/library/hh598957.aspx
http:///

Chapter 4

[121]

We will add the NserviceBus.Testing project from NuGet (http://www.nuget.
org/packages/NServiceBus.Testing/). Your screen should look similar to what is
shown in the following screenshot:

http://www.nuget.org/packages/NServiceBus.Testing/
http://www.nuget.org/packages/NServiceBus.Testing/
http:///

Saga Development

[122]

In the NServiceBus.Testing projects, all the tests are initialized with the Test.
Initialize() method. A test will originate with the Test.Handler<HandlerName>()
or Test.Saga<SagaName>() methods. This is shown here:

When a test is built, we can run it or debug it. The test indicators will tell us if
anything failed or succeeded. As part of following test-driven development (TDD),
we must follow the AAA rule. These rules incorporate the Arrange-Act-Assert
(AAA) pattern to verify whether a test fails or passes. Visit http://c2.com/cgi/
wiki?ArrangeActAssert for more information.

We can also put in rules and assertions where, if the correct response does not
happen, it will fail the test. This is a great feature of Visual Studio, and there are
many samples at http://msdn.microsoft.com/en-us/library/ms243176.
aspx and http://www.visualstudio.com/en-us/get-started/create-and-
run-unit-tests-vs.aspx. There are extensions available as well at http://www.
codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions.

http://c2.com/cgi/wiki?ArrangeActAssert
http://c2.com/cgi/wiki?ArrangeActAssert
http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://msdn.microsoft.com/en-us/library/ms243176.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.visualstudio.com/en-us/get-started/create-and-run-unit-tests-vs.aspx
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions
http://www.codeproject.com/Articles/22358/Visual-Studio-Unit-Testing-Extensions
http:///

Chapter 4

[123]

Message handler unit testing
The message handler code will be in the unit test itself. From our project,
UnitTestHandlers, in which we have various unit tests, we will walk through
EventMessageHandler. EventMessageHandler receives a SendCommand object from
the MVCApp, via the saga, as shown here:

We will proceed with creating a UnitTestHandler2.cs ile, and then add the header
information and [TestMethod]. This will be under SagaPaymentClient in the
UnitTestHandlers project.

http:///

Saga Development

[124]

After the base of the ile is created, we will create a normal message, SendCommand,
with a GUID and state where the message should be at before reaching the message
handler, called command. The code is as follows:

We see that the command message is passed into the .OnMessage<SendMessage>(c
ommand) method and a ResponseMessage object in the Reply method, with the state
being set to CompleteMyWCFClient. When calling the unit test in Debug, we can
even pass this message in the handler and see how it behaves, as shown here:

http:///

Chapter 4

[125]

This allows us to design and debug the handler functionality in the unit test code
through TDD. There are many rules that can be used when testing the handler or
saga. For instance, ExpectNotReply is used to expect that the handler does not reply
with a speciic message.

To get information on what is available in NServiceBus.Testing, we can execute
the following steps:

1. Try to enter something and hover over IntelliSense.

http:///

Saga Development

[126]

2. Read the documentation at http://www.nudoq.org/#!/Packages/
NServiceBus.Testing/Handler%28T%29. The following screenshot
shows the documentation:

3. Read the code in GitHub at https://github.com/Particular/
NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs:

So, there are many possibilities for testing to test the code. For the message handler,
it will get the command with the GUID and state, read the XML iles to get a
matching message, and send it to the WCF service, which will respond back to the
saga. The saga keeps track of the message routing and states, and will respond to
the MVCApp. The MVCApp will consequently update its state in the table. There
could normally be multiple Views that could read the state – maybe an admin utility
to check on the state of the messages, the customer service rep (CSR) talking to the
customer, telling them if the payment has been processed, or a conirmation form
or e-mail to the customer telling them that the payment succeeded, or many other
scenarios.

http://www.nudoq.org/#!/Packages/NServiceBus.Testing/Handler%28T%29
http://www.nudoq.org/#!/Packages/NServiceBus.Testing/Handler%28T%29
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs
https://github.com/Particular/NServiceBus/blob/develop/src/NServiceBus.Testing/Handler.cs
http:///

Chapter 4

[127]

Besides a couple of functions to read the XML ile for the message, which is just used
for testing, there could be a number of scenarios added, but the majority of the code
to do this is simply the following. Simple enough!

 /****

 * The message handler

 * Matches an XML message GUID from a file and the command
 sent

 * to it from MVC via the Saga

 * If found, sends it to the WCF Server and responds

 * with the state of what happened.

 * The WCF Service must be running to complete.

 *

 * ****/

 public class EventMessageHandler :
 IHandleMessages<SendCommand>

 {

 public IBus Bus { get; set; }

 public void Handle(SendCommand message)

 { ServiceReference1.WcfServiceOf_PayMessage_
 ErrorCodesClient client1 =

 new ServiceReference1.WcfServiceOf_
 PayMessage_ErrorCodesClient();

 // Create the response message

 ResponseCommand command = new ResponseCommand();

 command.RequestId = message.RequestId;

 /****

 * Get the XML messages from the temp directory.

 * Find a match from the GUID

 * ****/

 List<PayMessage> list =
 EventMessageHandler.GetMessages();

 PayMessage payMessage = null;

 foreach (var temp_message in list)

 {

 if (message.RequestId == temp_message.EventId)

 {

 payMessage = temp_message;

 }

 }

 ErrorCodes returnCode =
 client1.Process(payMessage);

http:///

Saga Development

[128]

 if (returnCode == ErrorCodes.None)

 {

 command.state =
 StateCodes.CompleteMyWCFClient;

 }

 else

 {

 command.state =
 StateCodes.MyWCFClientFail;

 }

 Bus.Reply(command);

 Console.WriteLine("Success");

 }

What happens if the XML ile does not exist? The following is the code used then:

 // if no XML, just fail

 if (payMessage == null)

 {

 command.state = StateCodes.MyWCFClientFailXML;

 Bus.Reply(command);

 Console.WriteLine("No XML Found");

 }

 else

 {

 … normal path }

After testing this code, we could use the tested code to create a class into a new
project, barring the unit testing, and start using it as a message handler. It saves
time by developing the code in a unit test and putting the tested product into the
application's project. The unit test project also serves as a backup for knowing what
it looked like during a good test.

Saga handler unit testing
Let's start testing saga code from the previous section in the message handler:

// The Test code

Test.Handler<EventMessageHandler>()

 .ExpectReply<ResponseCommand>(m => m.state ==
 PaymentMessages.MessageParts.StateCodes.
 CompleteMyWCFClient)

 .OnMessage<SendCommand>(command);

http:///

Chapter 4

[129]

As we can see, the NServiceBus testing API makes use of a Fluent API speciication
style testing pattern as opposed to the more traditional assertion style that most
people would normally use that are part of nunit or other xunit type frameworks.

We will now start testing the saga code from the UnitTestHandlers project and the
UnitTestSaga2.cs ile.

One thing to note is that if a saga entity object is deleted in different function calls,
with the MarkAsComplete() method, these should be tested separately. This is
because once we delete the object, we cannot delete it again. For example, in our
tests, we will use the following:

http:///

Saga Development

[130]

In this snippet, we are testing the message handler with two separate conditions. The
irst test case is the normal condition of a saga start where we are testing the IHandle
Messages<ResponseCommand> message handler.

The second test case is the timeout condition where we are testing the
IHandleTimeouts<SendCommand> handler. These two test cases were used in the
same ile as they reused some of the same pieces.

The saga handler itself will act as a mediator between MVCApp and the WCF client.
This is needed to act as a timeout after three hours in case there is no response from
the WCF service.

Integration tests with MVC
Normally, when putting a bus in MVC, we wish to create the bus only once, and then
reuse it over and over again from different controllers to send messages. In order to
do this, we will be putting the code in the Global.asax.cs ile under ..\MVCApp –
WCF\MVCApp\.

However, we will perform integration tests to ensure that all the pieces are working.
Performing tests outside of the MVC application itself can assist in isolating
databases and endpoints that are not deployed and are needed for the application
to process. The integration test can be found in the MVCToNSBTests.cs ile under
..\MVCApp – WCF\IntegrationTests\\. There are two items that we have added
to the MVC application: an endpoint to send messages to the saga and an MVCApp
database with Entity Framework connections to store the payment messages in the
PayMessage table.

In order to create this table, the MVCApp database must be created; in this case,
.\SQLExpress. After the database is created, we can create the table structure by
clicking on the Generate Database from Model... option, and then executing the
SQL script that was created from this execution, as shown here:

http:///

Chapter 4

[131]

Now that the database portion has been created, we need to create the mysaga
endpoint in MSMQ. This is done by simply executing the MySaga solution as follows:

http:///

Saga Development

[132]

We can view in the MSMQ Commander window that the endpoint was created, as
shown here:

If the tests run successfully, then the mysaga endpoint is present and working.
We can see the test program working as follows:

http:///

Chapter 4

[133]

We can see the test program in Test Explorer working as follows:

Now, we can copy this code into the Application_Start() function in the Global.
asax ile to be called at the startup of the MVC and use it as the bus for the MVC.

We create a controller to use this bus to send the command by ID; it can be selected
from the MVC view as follows:

http:///

Saga Development

[134]

We will send the message to the saga by the methods in the MVC controller. The
controller will be selected by ID, and a lookup in the table for the correct message
will be made from the PayMessage table. The lookup will be done in an Entity
Framework connecting the data access layer (DAL) of the code. The sending to the
saga appears as follows:

The DAL will read the database table called PayMessage, which is conigured as
an entity model object from the Model1.edmx ile that does the ORM mapping. The
connection string pointing towards the table and database is deined in the Web.
config ile. The PayMessageModel.edmx ile was generated from the database to
provide the mapping to the objects. So irst, we need to build a database table to
contain the PayMessage table that looks like the following with GUIDs and state.
This is used to update the state from the messages for the MVCApp.

http:///

Chapter 4

[135]

The database table, <PayMessage>, has the following properties, as shown here:

RabbitMQ for NSB
RabbitMQ is a cross-platform messaging framework, like MSMQ, that can run on
both Linux and Windows operating systems.

RabbitMQ has many more features than MSMQ, such as routing, virtual hosts, and
a powerful admin toolset. It can run on Linux and scales out very well. For large
enterprise systems (especially in heterogeneous network environments), you should
really consider RabbitMQ. RabbitMQ can easily be changed for the MSMQ queuing
system in the NSB coniguration.

For administrating RabbitMQ, a web admin interface can easily be installed.
However, if the command-line interface is required, then the Python language will
need to be installed.

To revisit some of the references in the earlier chapters, take a look at the following:

• Local host management site: This can be found at
http://localhost15672/#/.

• Documentation: This can be found at http://www.rabbitmq.com/
documentation.html.

• Windows installation: This can be found at https://www.rabbitmq.com/
install-windows.html.

• NServiceBus samples: These can be found at https://github.com/
Particular/NServiceBus.RabbitMQ.Samples.

• Development tools site for RabbitMQ: This can be found at
http://www.rabbitmq.com/devtools.html.

• NSeviceBus.RabbitMQ source code: This can be found at
https://github.com/Particular/NServiceBus.RabbitMQ.

• NServiceBus RabbitMQ hands-on lab: This can be found at
http://particular.net/HandsOnLabs.

http://www.rabbitmq.com/documentation.html
http://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/install-windows.html
https://www.rabbitmq.com/install-windows.html
https://github.com/Particular/NServiceBus.RabbitMQ.Samples
https://github.com/Particular/NServiceBus.RabbitMQ.Samples
http://www.rabbitmq.com/devtools.html
https://github.com/Particular/NServiceBus.RabbitMQ
http://particular.net/HandsOnLabs
http:///

Saga Development

[136]

After installing RabbitMQ, we can set the management plugin using the rabbitmq
plugins to enable rabbitmq_management. This is to view the queues using the
web management http://localhost:15672/#/queues, as shown in the
following screenshot:

We can get a list of queues by entering rabbitmqctl list_queues in the RabbitMQ
command prompt, as shown here:

http:///

Chapter 4

[137]

We can delete all the queues by running the following:

rabbitmqctl stop_app

rabbitmqctl reset

rabbitmqctl start_app

The source code
The directory for the code is under the RabbitMQ directory. There are two solutions,
which are as follows:

• MVCApp – WCF: This is used to send WCF messages as a client using a saga.
But instead of MSMQ, RabbitMQ is used for queuing.

• WCFService: This is used as the WCF service.

The solution was built in VS 2012 in several operating systems, including Windows
Server 2012, Windows Server 2008, and Windows 8.1, with MSMQ, DTC, RavenDB,
NServiceBus Version 4.0 references, and SQL Server 2012 Express LocalDB installed.

Changing the endpoints
There are going to be subtle differences in setting up the endpoint conigurations.
These are the three basic steps:

1. Add the NServiceBus.RabbitMQ reference.

2. Change the NServiceBus transport mechanism from <MSMQ> to <RabbitMQ>.

3. Set the RabbitMQ transport coniguration in the App.config ile.

In the MySaga project, we will be making changes to the App.config and
EndpointConfig.cs iles.

http:///

Saga Development

[138]

The NServiceBus.RabbitMQ package will have to be installed into each project to
support RabbitMQ. It will be added via NuGet. Go to http://www.nuget.org/
packages/NServiceBus.RabbitMQ/ for more information.

The .UseTransport<> method that is defaulted to MSMQ will have to be switched
to RabbitMQ, as shown here:

We will have to set the transport mechanism to the local host as this is where the
RabbitMQ service is residing. This is shown in the screenshot here:

Beyond the changes discussed, there are only very little changes needed to move to
different queuing systems. The saga and message handlers work in the same way;
we are only changing the endpoint transportation mechanisms.

We can see that queues were created and run from this example in a previous screen
from the queues screenshot, which is shown at http://localhost:15672/#/queues.

http://www.nuget.org/packages/NServiceBus.RabbitMQ/
http://www.nuget.org/packages/NServiceBus.RabbitMQ/
http:///

Chapter 4

[139]

ActiveMQ in NSB
Apache Active Message Queue (ActiveMQ) is a JAVA open source framework from
the Apache foundation based on the Java Message Service (JMS). Visit http://
en.wikipedia.org/wiki/Apache_ActiveMQ and https://activemq.apache.org
for more information. It will run on a machine, be it Windows or Linux, in a Java
Runtime Environment (JRE). JAVA has to be operational on the machine and have
the environment path for JAVA_HOME conigured to point at the root folder of the
JRE. The installation instructions for ActiveMQ can be found at https://activemq.
apache.org/getting-started#GettingStarted%20-Download.

The source code
In this section, we will be using the ActiveMQ solution. This solution is similar to
RabbitMQ, except ActiveMQ is used instead of RabbitMQ.

There will be three basic steps:

1. Add the NServiceBuActiveMQ reference.

2. Change the NServiceBus transport mechanism from <MSMQ> to <ActiveMQ>.

3. Set the ActiveMQ transport coniguration in the App.config ile.

Once downloaded on the Windows OS, we unzipped the Window's binary iles
into the c:\activemq\ directory. Running the activemq.bat batch ile from the
command prompt, in c:\activemq\bin\, will display a series of commands to show
that the ActiveMQ is running. This is shown in the following screenshot:

http://en.wikipedia.org/wiki/Apache_ActiveMQ
http://en.wikipedia.org/wiki/Apache_ActiveMQ
https://activemq.apache.org
https://activemq.apache.org/getting-started#GettingStarted%20-Download
https://activemq.apache.org/getting-started#GettingStarted%20-Download
http:///

Saga Development

[140]

An alternative is to install ActiveMQ as a Windows service in which installation
scripts exist for both Win32 and Win64 machines. For a 64-bit Windows Server, we
can use InstallService.bat in c:\activemq\bin\win64\.

Ensure that RabbitMQ is not running as a Windows Service in the background, as
they utilize the same network ports. Also, Microsoft ServiceBus for Windows Servers
will share the same JMX ports as well, which will be port 5672. ActiveMQ's default
port is 61616. Checking the ports can be done with Micrsoft's TcpView, which can be
found at http://technet.microsoft.com/en-us/sysinternals/bb897437.

To ensure that ActiveMQ is running, you may access the admin console in the
browser by using http://localhost:8161/admin. The default user ID and
password are admin and admin respectively. Please visit http://activemq.apache.
org/getting-started.html to have a look at the documentation. When accessing
the admin console, you should get something that looks like the screenshot here:

http://technet.microsoft.com/en-us/sysinternals/bb897437
http://activemq.apache.org/getting-started.html
http://activemq.apache.org/getting-started.html
http:///

Chapter 4

[141]

To use ActiveMQ for NServiceBus in Visual Studio projects, the NuGet version
of NServiceBus.ActiveMQ has to be installed. Go to https://www.nuget.org/
packages/NServiceBus.ActiveMQ/1.0.5 to look at installing PM> Install-
Package NServiceBus.ActiveMQ into the projects. Ensure that the coniguration for
the IBus is set for ActiveMQ, as shown here:

Ensure that the App.Config or Web.Config ile have the appropriate connection
string for the NServiceBus/Transport string to point at the correct instance of the
ActiveMQ queues:

<connectionStrings>

<add name="NServiceBus/Transport"
 connectionString="ServerUrl=activemq:tcp://localhost:61616"/>

</connectionStrings>

https://www.nuget.org/packages/NServiceBus.ActiveMQ/1.0.5
https://www.nuget.org/packages/NServiceBus.ActiveMQ/1.0.5
http:///

Saga Development

[142]

Some of the EndpointConfig.cs iles may not explicitly call the IBus.Configure()
method. So make sure that the ActiveMQ using transport call is explicitly called in
the EndpointConfig class:

When we start the MVC application and associated saga code, we can see that the
queues are created in ActiveMQ by looking through the admin console of ActiveMQ
at http://localhost:8161/admin/queues.jsp. Notice that the queues were
created matching these programs. When we execute this example, we should have
queues created in the ActiveMQ administration tool as shown here:

At this point, we see that the queues are working for ActiveMQ, and we have a
program that we can now start extending to use ActiveMQ with an MVC frontend,
using Entity Frameworks, into saga data and user tables. This example will be the
ActiveMQ solution.

http:///

Chapter 4

[143]

There were not many changes needed in the code to change it from the RabbitMQ
queues to the ActiveMQ queues. We can see the queuing in the Windows consoles as
they run in the screenshot here:

Summary
In this chapter, we have discussed about building a WCF server application. Then
we looked at building an MVC application that interfaces into a WCF client to
communicate with the WCF server.

We extended the MVC-WCF example by constructing sagas and message handlers
in a unit testing environment. We then moved onto led into unit testing sagas
and message handlers as we discussed testing using the NServiceBus.Testing
framework.

We took a deep dive into our example after adding WCF, and later added the bus
to decouple the browser from services like WCF so as to enable the user to continue
in the browser. This chapter also took into account the errors that could occur in
web services.

http:///

Saga Development

[144]

We then took the example and changed the transport mechanism from MSMQ to
RabbitMQ with minor changes. We discussed in testing how we can change sagas
and message handlers to be similar, and also discussed how we can change them
enough to enhance their use. We also briely discussed the many NServiceBus testing
rules to build the handlers in the unit testing environment, without worrying about
the endpoints until later.

We will continue in the upcoming chapters to go through more snippets and
scenarios. We will also go into greater detail about using handlers for transactional
and error handling needs. We will also talk further about using tools in these
upcoming discussions.

http:///

Saga Snippets
In this chapter, we will be focusing on snippets in sagas. We will discuss an e-mail
and Secure File Transfer Protocol (SFTP) example that will be set to timeout by
a daily timer in saga code. The saga code will be a mediator between a frontend
Windows Presentation Framework (WPF) and a backend client executing either
e-mail or SFTP. Using a saga as a mediator between frontend and backend code that
will interface into an external server will offer many added beneits and features.
The external server interface, such as an e-mail server or SFTP server, is usually
beyond our control and is in the control of external operations or organizations, such
as a bank. So, the interface into these servers is all that we have to work with, and
as business, software, and operational needs increase, we need a framework robust
enough to meet these demands. Thus, we have NSB and sagas.

We will also walk through changing this application to support ActiveMQ. We will
briely discuss ActiveMQ and how to set it up to perform these operations.

In this chapter, we will cover:

• Sample e-mail saga notiication
• Sample SFTP saga

• Saga deployment

• ActiveMQ

http:///

Saga Snippets

[146]

Source code overview
In this chapter, there will be three directories of source code:

• A directory of the solution will be found in the EmailSagaTest directory.
This program is a timer-based program using an NSB saga to send a daily
e-mail containing information regarding MSMQ. This solution was designed
to send a daily e-mail to operations of a system status.

• A directory of the solution will be found in the SFTPSagaTest directory. This
program is a timer-based program using an NSB saga to send SFTP iles to an
SFTP server. This solution was designed to send iles to banks.

• A directory of the solution found will be in the MVCApp - ActiveMQ
directory.

This program shows the use of ActiveMQ.

All source code was built with Visual Studio 2012, and used in Windows 8.1,
Windows Server 2008, and Windows Server 2012. All programs were built with
NServiceBus and require NServiceBus to be installed using MSMQ.

Sample e-mail saga notiication
We mentioned earlier that normal production is illed with notiications checking
queues, tables, processes, tasks, and more. We will create an NSB saga program that
is based on a timeout to send a message to operations or to ourselves as developers.

The frontend of the application will use Windows Presentation Framework (WPF),
using the Extensible Application Markup Language (XAML). An introduction
to XAML can be found at http://msdn.microsoft.com/en-us/library/
ms752059(v=vs.110).aspx.

The controller piece in the middle of the application is used to apply the timeout,
route the messaging, and persist the state in the saga. The piece that the controller
will communicate with to send the e-mail is the email client, which will have a
message handler to communicate with the saga. This interaction has been depicted in
the following diagram:

http://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms752059(v=vs.110).aspx
http:///

Chapter 5

[147]

The requirement of this application is that we set a timer through a GUI. This GUI
will also allow some e-mail variables to be set as well, such as the email server,
and the To and From addresses. The timer will set a time in the saga to send a daily
e-mail. The daily e-mail will be a simple e-mail to send to operations the available
MSMQ queues. We do not wish to hardcode the timer or any of the e-mail variables.
We also do not wish to use the Windows Task Manager as that will require more
operational support. This exercise will be handled easily in NSB.

Separating the frontend GUI from the backend email client through a saga that is
acting as a persistence and message mediator provides several beneits:

• Separation of duties: If the frontend has issues, the saga does not necessarily
propagate those issues to the email client, as long as the messaging is correct.

• Message durability: Depending on the coniguration, the messages,
endpoints, and saga data is persisted to the point where the server can crash,
but the data is still recoverable.

http:///

Saga Snippets

[148]

• Retries: If a message fails, it will retry several times based on
the coniguration.

• Monitoring: There are many tools and depending on the persistence and
queuing conigurations, many ways to check the endpoints, messages,
and services.

• High availability: NSB is a high-availability framework, meaning that there
are multiple connections, endpoints, and server and messaging scenarios for
coniguration to ensure that services are always running in the background
and receiving information in a high-performance environment.

Many of these topics have been covered, but as requirements are discussed for this
sample application, these features will be added by just using NSB.

Using XAML
XAML is a declarative XML-based language developed by Microsoft that is used for
initializing structured values and objects for graphical presentation. It is particular
to .NET. By using XAML, you can separate the graphical designer code created
in XAML from the code that deines logic created in C#. For instance, in XAML, a
button can be designed, and in C#, the logic of what happens when the button is
clicked can be decided.

We will be extending the WPF sample of a timer found at http://www.
codeproject.com/Articles/237011/CREATING-A-CUSTOM-TIMEPICKER-CONTROL-

IN-WPF. Not only can XAML be built with the toolbox that is enclosed with Visual
Studio in a visual designer, but XAML interfaces are designed to be graphically built
in Microsoft Blend as well.

Microsoft Blend for Visual Studio is a Microsoft-developed user interface design tool
for creating interfaces for both, the web and the desktop. It is meant to blend the two
types of applications. Here's a look at the timer test example in Blend:

http://www.codeproject.com/Articles/237011/CREATING-A-CUSTOM-TIMEPICKER-CONTROL-IN-WPF
http://www.codeproject.com/Articles/237011/CREATING-A-CUSTOM-TIMEPICKER-CONTROL-IN-WPF
http://www.codeproject.com/Articles/237011/CREATING-A-CUSTOM-TIMEPICKER-CONTROL-IN-WPF
http:///

Chapter 5

[149]

Microsoft Blend has a wide range of tools for building user interfaces in a What
You See Is What You Get (WYSIWYG) visual editor, an example of which has been
provided in the following screenshot:

http:///

Saga Snippets

[150]

While these are some of the beneits of using XAML and WPF, for our simple
purposes, in the TimerPickerTest project, we will be using the toolbox that is
enclosed with Visual Studio 2012 to do our graphics to match the following:

This GUI is to set several variables: the Email Server, which by default is set as the
localhost, and the To and From addresses, which are both set by default as test@
google.com.

The saga project
The saga project in this solution will be called TimerSaga. It will be dependent on
the messages found in the TimerMessages project that will contain the available
NSB messages.

http:///

Chapter 5

[151]

This project will look like the typical saga projects that we have built thus far,
as follows:

We see that we are referencing the NServiceBus.Host reference, which in turn created
the EndpointConfig.cs ile to contain the code for the bus coniguration. We also
know that it must have set the NServiceBus.Host.exe ile to debug this project as a
DLL through NSB. An App.config ile was also created with the NSB host reference to
include the unicast and other settings for the EndpointConfig.cs ile.

The App.config ile will contain the setting to send SendTime, the message with
timing information, and EmailMessage, the message with the e-mail information,
to the EmailClient endpoint, which will have a message handler to send the
operational e-mail. This setting will be as follows:

http:///

Saga Snippets

[152]

The saga will mostly be made of the saga class, with the various sagas and message
handler functions, and the saga data. The saga class will be called TimerSaga. The
saga data class will be called TimerSagaData. The TimerSagaData class will store
saga unique information and the timer information normally in the form of hour
text, minute text, and second text. The data will also store e-mail information, such as
details of the email server and the To and From address information.

The TimerSaga class will have its starting message, in this case, SendTime. There
will be two message handlers: the ResponseCommand from the EmailClient, and the
TimeoutMessage for when the timer is timed out. The setDateTime function will
calculate if we are looking at the timer for today or tomorrow. When the timeout is
called, it will need to set the timer for tomorrow as well. The diagram of TimerSaga
class appears as follows:

http:///

Chapter 5

[153]

When TimerSaga will receive its starting message—in this case, SendTime—it will
save the saga data and set the timer. It sends a message to the e-mail handler just to
check if it is functional. The code will appear as follows:

 /*

 * SendTime Handler

 * */

 public void Handle(SendTime message)

 {

 Data.RequestId = message.RequestId;

 TimeoutMessage tmMessage = new TimeoutMessage();

 tmMessage.RequestId = message.RequestId;

 DateTime toSet = (DateTime)setDateTime(message);

 /**

 * Save Email Info

 * */

 Data.emailServer = message.emailServer;

 Data.toAddress = message.toAddress;

 Data.fromAddress = message.fromAddress;

 /**

 * Save Timer Info

 * */

 Data.HrTxt = message.HrTxt;

 Data.MinTxt = message.MinTxt;

http:///

Saga Snippets

[154]

 Data.SecTxt = message.SecTxt;

 Data.AmPmTxt = message.AmPmTxt;

 RequestTimeout(toSet, tmMessage);

 Bus.Send(message);

 }

When the saga times out after the daily time is hit, it will send the e-mail information
to the e-mail handler to process the e-mail, and set the timer for the next execution
as follows:

 /*

 * Timeout

 * */

 public void Timeout(TimeoutMessage message)

 {

 /**

 * Retrieve Email Info

 * */

 EmailMessage emailMessage = new EmailMessage();

 emailMessage.emailServer = Data.emailServer;

 emailMessage.fromAddress = Data.fromAddress;

 emailMessage.toAddress = Data.toAddress;

 /**

 * Get Timer Info

 * */

 SendTime timeMessage = new SendTime();

 timeMessage.AmPmTxt = Data.AmPmTxt;

 timeMessage.HrTxt = Data.HrTxt;

 timeMessage.MinTxt = Data.MinTxt;

 timeMessage.SecTxt = Data.SecTxt;

 /**

 *

 * Reset the Timer

 *

 **/

 TimeoutMessage tmMessage = new TimeoutMessage();

 DateTime toSet = (DateTime)setDateTime(timeMessage);

http:///

Chapter 5

[155]

 RequestTimeout(toSet, tmMessage);

 Bus.Send(emailMessage);

 }

Testing the solution
Before testing the application from the WPF GUI, we will create a console application
to send different parameters through the message to the saga to see if it behaves as
expected. This console application will be found under the ConsoleEmailSagaTest
directory. This code will appear as follows for sending the saga a sample e-mail and
timer information, where the timer is set for 7:50:00 PM:

 class Program

 {

 private static IBus _bus;

 static void Main(string[] args)

 {

 Configure.ScaleOut(s => s.UseSingleBrokerQueue());

 _bus = Configure.With()

 .DefaultBuilder()

 .UseTransport<Msmq>()

 .UnicastBus()

 .CreateBus();

 Configure.Instance.ForInstallationOn<Windows>().Install();

 SendTime s_Time = new SendTime();

 /*

 * Email Info

 * */

 s_Time.toAddress = "test@google.com";

 s_Time.fromAddress = "test@google.com";

 s_Time.emailServer = "localhost";

 /*

 * Timer Info

 * */

 s_Time.HrTxt = "7";

 s_Time.MinTxt = "50";

http:///

Saga Snippets

[156]

 s_Time.SecTxt = "00";

 s_Time.AmPmTxt = "PM";

 _bus.Send(s_Time);

 }

 }

To test the e-mail, here is a Simple Mail Transfer Protocol (SMTP) listener that
will intercept the e-mails locally on port 25 for viewing, to test your e-mail sending
scenarios. It can be found at http://smtp4dev.codeplex.com/. When the e-mail is
sent to the localhost, it will be recorded for review in the smtp4dev software.

If all works well and we receive our message from the email client, we should be
getting an e-mail that looks similar to the following screenshot:

http://smtp4dev.codeplex.com/
http:///

Chapter 5

[157]

We just walked through a simple solution using a GUI to conigure an email client
to send us a daily operational e-mail about MSMQ. This example could be easily
extended to provide a daily report of SQL Server tables, the number of messages
in an audit or error queue, and many other items to check the operational status
of a system.

Another daily example, especially for anyone dealing with payment engines sending
iles to banks or for third-party transmissions, is the use of SFTP to send iles. With
the usage of SFTP, e-mail, and WCF in the previous chapter, many enterprise
scenarios can be solved.

http:///

Saga Snippets

[158]

Sample SFTP saga
In many enterprises, you may ind the need to use SSH File Transfer Protocol
(SFTP) to move iles securely into remote environments or even to share iles across
multiple clients using cloud ile storage systems. SFTP is a means to upload and
download iles across a secure network pipe. For further information, see http://
en.wikipedia.org/wiki/SSH_File_Transfer_Protocol.

In this section, we will be discussing the code found in the SFTPSagaTest directory.
The requirements will be similar to the previous example on the e-mail timer; except
now we will be sending a ile through SFTP.

We will use the same basic design, where the frontend GUI will be WPF XAML. It
will call TimerSaga to set the timer. TimerSaga will send the SFTPMessage to the
SFTP client, which will handle the message by the SFTPMessageHandler to establish
an SFTP connection and upload a ile to the SFTP server. It will work as in the
following diagram:

http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http:///

Chapter 5

[159]

The requirement of this application is that we set a timer through a GUI. This GUI
will also allow some SFTP variables to be set, such as the SFTP server, username,
password, and local text ile location.

The timer will set a daily time in the saga to upload a daily text ile, which will
be given a unique name based on date and time into the SFTP server. This avoids
overwriting the same ilename.

The daily upload will be a simple example of uploading a ile using saga interaction
to a remote SFTP server, such as a bank, for batch payments. We do not wish to
hardcode the timer or some of the SFTP variables. We also do not wish to use the
Windows Task Manager as that will require more operational support. This exercise
will be handled easily in NSB.

Separating the frontend GUI from the backend email client through a saga that is
acting as a persistence and message mediator offers several beneits:

• Separation of duties: If the frontend has issues, it does not necessarily
propagate those issues to the email client, as long as the messaging is correct.

SFTP may have issues logging in on occasion due to password resets, or
network or even server issues. By not having the frontend directly tied to the
SFTP client, we can avoid the frontend crashing on SFTP issues.

• Message durability: Depending on the coniguration, the messages,
endpoints, and saga data are persisted to the point that the server can crash,
but the data is still recoverable.

• Retries: If a message fails, it will retry several times based on the
coniguration.
This may allow us to try the SFTP client-to-server connections multiple times
if there are errors within the SFTP connection.

• Monitoring: There are many tools, and depending on the persistence and
queuing conigurations, many ways to check the endpoints, messages, and
services.

This may allow us to monitor the SFTP client as well as the information being
passed into it to validate if it is correct for an SFTP connection.

• High availability: NSB is a high-availability framework, meaning that there
are multiple connections, endpoints, and server and messaging scenarios for
coniguration to ensure that services are always running in the background
and receiving information in a high-performance environment.

Many of these topics have been covered, but as different requirements are discussed
for this sample application, these features will be added by just using NSB.

http:///

Saga Snippets

[160]

Using XAML
We will be using XAML as a declarative XML-based language that we had
developed in the previous e-mail example. The difference is that we incorporated
some SFTP ields instead of e-mail ields to provide the SFTP server, username,
password, and local text ilename as variables, depicted as follows:

Changing the process of messaging
In the e-mail example, we used the values in EmailMessage to pass the information
from the saga to the email client. It looked like the following diagram:

http:///

Chapter 5

[161]

For the SFTP, we will be using SFTPMessage instead with SFTP variables for
uploading a ile as shown in the following diagram:

Notice that the variable matches almost exactly with the input variables for the SFTP
portion of the frontend GUI. Code can be reused when creating services. In this
sample, we also use the message ID, called RequestId, as a primary key to look up
for the saga data.

The saga code will function in a similar manner to the email timer saga and email
message handler to execute the email client. However, now we will be passing
SFTP information from the frontend to the saga and the message handler. Instead of
accessing the email client, we will be executing an SFTP client. Despite these message
changes and using SFTP instead of e-mail, much of the code will remain the same.

Setting up an SFTP test environment
For testing, we will need an SFTP server and client. We have developed an SFTP
client in the saga code, but we need an SFTP server to establish the connection and
upload the ile.

http:///

Saga Snippets

[162]

We will start by setting up a test SFTP server from http://www.freesshd.com.
After simply running the installation, we will set up a user and the default directory
into which the user can upload and download the iles.

Before testing the entire solution that we have created using a saga, let's perform a
simple test to ensure that the connectivity for the SFTP server is set correctly. We will
write a simple console program to test out this connectivity and to see the code to put
a ile on the SFTP server. This sample code can be found in the ConsoleTestSFTP
directory and will look like the following:

namespace ConsoleTestSFTP

{

 class Program

 {

 static void Main(string[] args)

http://www.freesshd.com
http:///

Chapter 5

[163]

 {

 /**

 * Connect to the SFTP

 * and put file

 * */

 try

 {

 Sftp Sftpclient = new Sftp("localhost", "tester",
 "password1");

 Sftpclient.Connect();

 string newFileName = string.Format("text-{
 0:yyyy-MM-dd_hh-mm-ss-tt}.txt",

 DateTime.Now);

 Sftpclient.Put(".\\TextFiles\\TextTemp.txt",
 newFileName);

 }

 catch (Exception ex)

 {

 Console.Out.WriteLine(ex.Message);

 }

 }

 }

}

In order for this code to work, we need to add SFTP framework references. We will
include the DiffieHellman reference, the Org.Mentalis.Security reference, and
the Tamir.SharpSSH reference. We can see them appear in the following screenshot:

http:///

Saga Snippets

[164]

When running the sample SFTP client program, we should get no exception message.
However, we should also check that the ile has been uploaded correctly on the SFTP
server. In order to do that, we need to look into a couple of items in freeSSHd. The
irst is to see where the upload directory has been set, and check the local server
directory for the presence of the ile. We will look in the freeSSHd GUI for the local
directory as follows:

We can look in the associated \SFTPDir directory under C: and see that the ile was
uploaded at the time we had tested:

An alternative to checking if the ile is uploaded via freeSSHd by looking at the
ile itself is to check the freeSSHD logs. We can check the Logging section of the
freeSSHd GUI to see where the log resides or even click on the Open button to
review it from the freeSSHd itself, as depicted in the following screenshot:

http:///

Chapter 5

[165]

Viewing the log, we can see that the ile was uploaded successfully with
more details:

Saga deployment
In the SFTP and e-mail examples, we executed many of the pieces from the
Visual Studio solutions as DLLs. NServiceBus hosts these assemblies and with its
underlying pipeline will instantiate and execute a speciic module. NServiceBus
hosts these projects when installing the NServiceBus.Host reference; in turn, it will
execute the associated DLL with the NServiceBus.Host.exe executable.

These DLLs are run by the executable NServiceBus.Host.exe. The NServiceBus.
Host.exe ile is a utility program to not only run NServiceBus host programs in a
console program, but also install the DLLs as Windows Services. This executable
makes use of the TopShelf framework, and just as TopShelf has code conigurations
for Windows Services, so does NServiceBus.Host.exe.

Moreover, it is TopShelf capability to run a console program as a console application
while debugging, and run it as a Windows service when the program is installed.
This is the main reason TopShelf is so popular; otherwise, if you create a Windows
service using .NET and Visual Studio, you have to create separate projects to debug
or to run as a Windows service.

NServiceBus installers are effective ways to plug in your bootstrapping code like
creating queues, folders, databases, and so on. The following code shows how to
invoke the installers manually:

 _bus = Configure.With()

 .DefaultBuilder()

 .UseTransport<Msmq>()

 .UnicastBus()

 .CreateBus();

 Configure.Instance.ForInstallationOn<Windows>().Install();

 See http://docs.particular.net/NServiceBus/
 nservicebus-installers

http:///

Saga Snippets

[166]

This can be done by adding the NServiceBus conigure .Start(() => Configure.
Instance.ForInstallationOn<NServiceBus.Installation.Environment.

Windows>().Install()); in code or adding it in the NServiceBus.Host.exe \
install script. This is commonly known as self-hosting.

In order to write your own installer and manually conigure it with NServiceBus, just
implement a class which implements the INeedToInstallSomething<T> interface as
shown in the following code:

public interface INeedToInstallSomething<T> : IneedToInstallSomething
where T: Ienvironment

{

 void Install(string identity);

}

We can run NServiceBus.Host.exe MySFTPClient.dll from the command
prompt to start the host program.

Or we can install the service using NServiceBus.Host.exe /install
MySFTPClient.dll, and uninstall the service using NServiceBus.Host.exe /
uninstall MySFTPClient.dll.

http:///

Chapter 5

[167]

To ind out more on the available commands that can be scripted from
NServiceBus.Host.exe, please see http://docs.particular.net/NServiceBus/
the-nservicebus-host/, or run NserviceBus.Host.exe.

We currently have the choice to have Windows services always running and to
execute NServiceBus.exe based on a set time deined in the message to the saga.

An alternative is to use the Windows Task Scheduler to run a console application
every 10 minutes, hourly, daily, monthly, and more. However, SFTP iles could be
sent to the server between 10 AM until 4 PM, for instance, based on a precondition
that a message is sent to verify that the SFTP ile has been validated. Business
requirements can be based upon a variety of conditions, and by using NSB directly,
we have taken many possible requirements into account to easily add enhancements,
such as encryption without rewriting the original functionality.

Another piece of advice is to explore the Quartz framework which exists in both C#
and Java, which is used to schedule cron jobs in code. Credit goes to Mark Huber,
who is the author of TopShelf. Quartz integrates Quartz into the TopShelf DSL.

The C# version can be found at http://www.quartz-scheduler.net/.

http://docs.particular.net/NServiceBus/the-nservicebus-host/
http://docs.particular.net/NServiceBus/the-nservicebus-host/
http://www.quartz-scheduler.net/
http:///

Saga Snippets

[168]

In the following snippet, a service is constantly running but it runs a scheduled job at
9 AM every morning:

The cron job is scheduled using a notation for 9 AM as 0 0 9 1/1 * ? *. To
understand the shortcut of cron scheduled notation, there are many websites that can
help, such as http://www.cronmaker.com/. However, we must be careful here, as
Quartz adds the unit of seconds making it slightly different from standard cron.

ActiveMQ
Apache Active Message Queue (ActiveMQ) is a Java open source framework from
the Apache foundation based on the Java Message Service (JMS). See http://
en.wikipedia.org/wiki/Apache_ActiveMQ and https://activemq.apache.org
for more information. It will run on a machine, be it Windows or Linux, in a Java
Runtime Environment (JRE). Java has to be operational on the machine and have
the environment path for the JAVA_HOME conigured to point at the root folder of the
JRE. The installation instructions for ActiveMQ can be found at https://activemq.
apache.org/getting-started#GettingStarted%20-Download.

The source code
In this section, we will be using the ActiveMQ solution; this solution is similar to
RabbitMQ, except ActiveMQ is used instead of RabbitMQ.

Once downloaded on the Windows OS, unzip the Window's binary iles into the
c:\activemq\ directory. Running the activemq.bat batch ile from the command
prompt, having the path as c:\activemq\bin\, will display a series of commands to
show that the ActiveMQ is running.

http://www.cronmaker.com/
https://activemq.apache.org
https://activemq.apache.org/getting-started#GettingStarted%20-Download
https://activemq.apache.org/getting-started#GettingStarted%20-Download
http:///

Chapter 5

[169]

Ensure that RabbitMQ is not running as a Windows service in the background
as it utilizes the same network ports as ActiveMQ. To ensure that ActiveMQ is
running, you may access the admin console in the browser by using http://
localhost:8161/admin. The default user ID and password is admin and admin
respectively. Please visit http://activemq.apache.org/getting-started.html
for more information. It will appear as in the following screenshot:

http://activemq.apache.org/getting-started.html
http:///

Saga Snippets

[170]

To use ActiveMQ for NServiceBus in Visual Studio projects, the NuGet version
of NServiceBus.ActiveMQ has to be installed. Visit https://www.nuget.org/
packages/NServiceBus.ActiveMQ/1.0.5 on installing PM> Install-Package
NServiceBus.ActiveMQ into the projects. Ensure that the coniguration for the
IBus is set to ActiveMQ.

Ensure that the App.Config or Web.Config ile have the appropriate connection
string for NServiceBus/Transport to point at the correct instance of the
ActiveMQ queues.

<connectionStrings>

<add name="NServiceBus/Transport" connectionString="ServerUrl=activemq
:tcp://localhost:61616"/>

</connectionStrings>

Some of the EndpointConfig.cs iles may not explicitly call the IBus.Configure()
method, so make sure that the ActiveMQ using the transport call is explicitly called
in the EndpointConfig class.

https://www.nuget.org/packages/NServiceBus.ActiveMQ/1.0.5
https://www.nuget.org/packages/NServiceBus.ActiveMQ/1.0.5
http:///

Chapter 5

[171]

When we start the MVC application and associated saga code, we can see that the
queues are created in ActiveMQ by looking through the admin console of ActiveMQ
at http://localhost:8161/admin/queues.jsp. Notice that the queues were
created matching these programs. When we execute this example, we should have
queues created in the ActiveMQ administration tool as follows:

At this point, we see that queues are working for ActiveMQ and we have a
program that we can now start extending to use ActiveMQ with an MVC
frontend using Entity Frameworks into saga data and user tables. This example
will be MVCApp – ActiveMQ.

http:///

Saga Snippets

[172]

Summary
In this chapter, we took a deeper dive into an example that uses an email client to
send a message to an email server, and used the NServiceBus saga to handle a lot of
the message routing. We extended the example to use an SFTP client as well to test
into an SFTP server.

We discussed many associated pieces that can assist working with enterprise
development and sagas, which include checking the queues and sending notices
through an e-mail, as well as checking the status of iles on drives. While this
chapter may be using older technologies, such as e-mail, ile operations, and SFTP,
there are many environments that rely on e-mails for notiications, SFTP for sending
and receiving iles, and ile operations throughout the environment. C# provides
many frameworks and greater ability to access the lower-level APIs for logging
and monitoring.

In the next chapter, we will discuss integration of NServiceBus into more modern
environments and the ability to use NServiceBus in conjunction with more modern
technology as the world approaches Software as a Service (SAAS).

http:///

Using NServiceBus in

the Cloud
In this chapter, we will be focusing on snippets in NServiceBus in the cloud after a
very brief introduction to the cloud and some of its services. While NServiceBus has
support as a service bus for the Microsoft Azure cloud, it is also a beneicial tool to
integrate into other cloud technologies, as all clouds have support for third-party
integration to pass data through web services.

In this chapter, we will cover:

• Introducing the cloud and NSB

• Introducing PaaS, IaaS, and SaaS

• Using Microsoft Azure

 ° Introducing Azure Storage services

 ° Azure Service Bus and Storage Queues

 ° Azure Storage Queues and NSB

 ° Azure Service Bus in NSB

Introducing the cloud and NSB
As this book is being written, NSB Version 5.0 for Azure is in the beta stage, and
many updates have been made to NSB for cloud computing.

Instead of using a local SQL Server, RavenDB, or MSMQ queuing system, all the
subscription data, saga persistence, timeout persistence, and queuing messages can
be used in Azure Storage, as well as a message be put in the Azure Service Bus. In
many cases, there is one-to-one mapping to storage tables and the data information
as keys are used to retrieve data instead of SQL schemas.

http:///

Using NServiceBus in the Cloud

[174]

NSB tools are adapting as well. ServiceInsight is growing to handle more details
with sequence diagrams for debugging outside of Visual Studio and MSMQ
environments. The tools are moving from being integrated locally into a physical
server to being integrated into a remote server where many of the details of the
server itself may be less important as servers are virtualized offsite. For instance,
the future of ServiceInsight will add Saga Sequence diagrams to add more detail
than the current low diagrams. Here's what is coming soon for ServiceInsight as a
sequence diagram:

However, distributed transactions are not supported in many cloud technology
queues. Other queuing platforms, such as RabbitMQ, also do not support distributed
transactions. NSB Version 5.0 has the added functionality to compensate for not
having distributed transactions by establishing tables that keep track of the status of
transactions as they occur. This functionality allows transactional integrity where it
may not exist natively.

http:///

Chapter 6

[175]

Introducing PaaS, IaaS, and SaaS
Cloud computing services are provided using three fundamental models:

• SaaS: This stands for Software as a Service. This facilitates pay-per-use
managed software services for consumption. Our responsibility is
the coniguration of these services that are managed by the cloud vendor.
An example would be Google mail. This offers abstraction of the
business software.

• PaaS: This stands for Platform as a Service. This refers to pay-as-you-go
generic services for consumption. These are services such as queuing, web
servers, and other services that still require business software to be built. Our
responsibility includes building the business software. This offers abstraction
of the services that can run business software.

• IaaS: This stands for Infrastructure as a Service. Providers of IaaS offer
generic storage, networks, and servers for consumption. These are services
such as storage that still require services and business software that has to be
built. Our responsibility includes building the business software and creating
services for the business software. This offers abstraction of the infrastructure
that is running the platform services.

PaaS is a cloud computing service that provides a computing platform and a solution
stack as a service. In PaaS, the cloud computing provider provides the operating
systems, databases, web servers, development tools, and other services that are
required to host the consumer's application.

IaaS is a level below PaaS, as it provides the virtual (as well as physical) machines,
servers, storage options, load balancers, networks, and more basic components.

http:///

Using NServiceBus in the Cloud

[176]

SaaS is a level higher than PaaS, as it is the software distribution model in which the
applications themselves are hosted by a vendor or service provider and are made
available to customers over a network, typically the Internet. Here is a look at how
Windows Azure supports IaaS and PaaS:

Depending on the cloud vendor, some of these terminologies may be termed slightly
differently. While all cloud vendors support these components, they differ on the level
of abstraction of these components. For example, Windows Azure will allow you to
conigure a virtual machine (VM) in the cloud, while others only offer SaaS models.
The cloud vendor as well as licensing that are selected will dictate the limitations
of your resources. In Windows Azure, you could create a free website which will
require no running cost; however, your application may be shared with other websites
running on that box. But if you are willing to pay more, you could have a dedicated
VM with your own web server running your website. It all depends on what services
you choose. In the cloud world, consumption of resources and transactions is based on
licensing. There are many resources available by all cloud vendors for development in
their cloud; there is also a lot of help available as their goal is to get you to utilize their
cloud as much as possible, as that is their revenue stream.

http:///

Chapter 6

[177]

Using Microsoft Azure
One of the beneits of Azure is that it can be used in Microsoft data centers around
the world and developed and tested on premises before deployment using the
Microsoft Azure Software Development Kit (SDK). Microsoft Azure is the only
cloud vendor that has an SDK to emulate all the pieces in Visual Studio 2012. The
SDK allows you to even develop pieces on-site and pieces in the cloud to create
hybrid solutions. The Windows Azure SDK from Microsoft is considered open
source. Some important links are:

• https://github.com/Azure: This is the GitHub open source location

• https://github.com/Azure/azure-sdk-tools: This contains Microsoft
Azure PowerShell tools

• http://research.microsoft.com/en-us/projects/azure/windows-

azure-for-linux-and-mac-users.pdf: This provides Azure command-line
tools for Linux and Mac operating systems

• https://azure.microsoft.com/en-us/: This contains Getting Started
tutorials

• https://manage.windowsazure.com/: This is the Azure cloud portal

• http://azure.microsoft.com/en-us/develop/net/samples/: This
contains Azure samples

• http://azure.microsoft.com/en-us/gallery/store/: This is the Azure
store for add-ons

• http://azure.microsoft.com/en-us/pricing/calculator/: This
provides the Azure cost calculator

The beneits of Microsoft Azure include the following:

• Creation of virtual machines, which include both Microsoft and Linux
operating systems, for those who still wish to manage operating system
functionality in IaaS.

• Ability to develop applications locally in Visual Studio using Microsoft
Azure SDK tools that will work both on-site and in the cloud. This includes
the ability to develop and test the functionality locally and deploy only what
you wish to deploy to the cloud.

• Ability to create hybrid solutions where parts can be managed on-site and in
the cloud. This comes in handy if cloud prices change and you wish to move
pieces back to a premise.

https://github.com/Azure
https://github.com/Azure/azure-sdk-tools
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
http://research.microsoft.com/en-us/projects/azure/windows-azure-for-linux-and-mac-users.pdf
https://azure.microsoft.com/en-us/
https://manage.windowsazure.com/
http://azure.microsoft.com/en-us/develop/net/samples/
http://azure.microsoft.com/en-us/gallery/store/
http://azure.microsoft.com/en-us/pricing/calculator/
http:///

Using NServiceBus in the Cloud

[178]

• Availability of an assortment of common on-premise tools and services that
work both on-site and in the cloud; for instance, using queuing and a
SQL server that works locally and in the cloud.

• Development of websites quickly in the cloud through multiple tools,
such as WebMatrix.

• Availability of on-demand services in using only what you need,
and Microsoft tools to help report your resources and utilization for
billing veriication.

• Ability to move to other cloud services as your software model progresses
and your needs change. Many business software applications that are
developed in Azure can be used in other cloud services.

• Availability of simple data storage models in reporting and coniguration
of large data resources.

All of these features sum up that Microsoft allows you to develop systems on-premise
or in the cloud using Microsoft tools. It does not force you to stay in the cloud or
develop locally, but allows you to develop the pieces in the cloud that you see it, and
remove them from the cloud when you see it. Many other cloud vendors may force
you to use specialized tools to create solutions, which when you take them out of the
cloud, will have to be completely rewritten to put into a different cloud service.

Introducing Azure Storage Services
For data management, we can create a SQL Azure database in the cloud or a SQL
server on-premise, or a hybrid thereof. An easier method to keep SQL servers out
of the equation is simply to call Storage Services directly, which provides rows that
directly map to data. Azure Storage Services can be used both on-site through the
use of the Azure SDK, and in the Azure cloud.

Azure Storage can be used to store saga data in the tables, timeout persistence
in the tables, subscription information in the tables, and to transport messages
in the queues.

Other than providing SQL Azure for storing data in the cloud, Azure also provides
the following other types of storage, of which there are three basic types:

• Tables: This is based on a key-value NoSQL table format.

• Binary Large Object (BLOB): This is used for binary storage, such as
video iles.

• Queues: This is used for storing messages.

http:///

Chapter 6

[179]

• A table is a NoSQL solution instead of the relational SQL database. It can
store data across multiple machines. Each table can contain partitions across
multiple machines. These tables have entities with partitions and row keys
to access the entity. It is a key-value store to store the data. These tables do
not enforce a schema. By not using a schema, speed is enhanced and the
tables are loosely coupled with the objects as they are managed by keys. The
limitation is not being able to execute SQL queries, but in most cases, it can
take less storage, thus less cost for the data. For tables, there is a partition
key, row key, and timestamp.

• A partition key: This is a unique key associated with partition as a collection
of all associated rows. This is used to deine which partition to access; for
example, the name of the table.

• A row key: This is a unique key to identify the row in the partition,
usually a unique ID.

• Timestamp: This is the time at which the row is updated by Azure.

A BLOB is a group to the containers, which is just unstructured data, such as a video
or audio ile stored as binary storage in a data store.

The Queue storage is very similar to storing messages in MSMQ, except that the
management tools are in the Azure cloud. Just as many of the Azure cloud items can
be managed through the Azure SDK and Visual Studio, storage queues can also be
managed through Visual Studio. We see timeout states, saga data, and subscription
data in Visual Studio as shown in the following screenshot:

Besides using Visual Studio, there are many open source tools such as the Azure
Storage Explorer found at the following:

http://azurestorageexplorer.codeplex.com/

http://azurestorageexplorer.codeplex.com/
http:///

Using NServiceBus in the Cloud

[180]

The Azure Storage Explorer is shown in the following screenshot:

Azure Service Bus and Storage Queues
NSB supports queuing in both Azure Storage Queues and the Azure Service
Bus Queues.

Please note that there are many differences between using Azure Storage Queues
and Azure Service Bus Queues.

Note the different names in this example. Service Bus Queues
have more features for management such as guaranteed
FIFO, while Azure Queues have less manageability built in.
Visit http://msdn.microsoft.com/en-us/library/
hh767287.aspx for more information.

http://msdn.microsoft.com/en-us/library/hh767287.aspx
http://msdn.microsoft.com/en-us/library/hh767287.aspx
http:///

Chapter 6

[181]

The advantages of using Azure Storage Queues are:

• They are constructed in the storage system

• They utilize HTTP(S)

• Their capacity limit is 500 TB

• They are very cheap

The advantages of using Azure Service Bus Queues are:

• High reliability

• No limit for time to live (TTL)

• Support for queues, topics, and subscription

• More management tools

• TCP support for Advanced Message Queuing Protocol (AMQP) and Service
Bus Messaging Protocol (SBMP)

• Certain limitations of using Azure are as follows:

 ° 5 GB capacity limit

 ° More expensive

Azure Storage Queues and NSB
NSB has full support for implementing Azure Queue storage on-premise or in the
cloud. In this example, the solution will be in the SagaPaymentClient – AzureSQ
directory in which we will be adding Azure Storage functionality from the previous
SagaPaymentClient example in Chapter 4, Saga Development.

In our example, we will be using the Azure storage emulator to run the Storage
queues locally in the Windows operating system.

We will set up the environment to run the Azure storage emulator in the
following manner:

1. The emulator can be installed through a standalone package found at
http://www.microsoft.com/en-us/download/details.aspx?id=42317
or from the Microsoft Azure SDK. The Azure SDK can be installed by using
the Web Platform installer found at http://www.microsoft.com/web/
downloads/platform.aspx.

http://www.microsoft.com/en-us/download/details.aspx?id=42317
http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx
http:///

Using NServiceBus in the Cloud

[182]

The following screenshot displays the Web Platform Installer 5.0 window:

2. Start the Azure storage emulator from the tool that was installed: Windows
Azure Storage Emulator, as shown in the following screenshot:

We will set up the NSB to run Azure Storage Queues in the following manner:

1. Install the reference from either NuGet or the package manager for the
project for NServiceBus using PM> Install-Package NServiceBus.Azure.
Transports.WindowsAzureStorageQueues and install the NServiceBus.
Azure reference PM> Install-Package NServiceBus.Azure.

2. Ensure that you have the correct versions of the Windows Azure Storage by
using Install-Package WindowsAzure.Storage.

http:///

Chapter 6

[183]

3. Set up the coniguration on the IBus conigurations. In the MySaga project,
we will use Azure for the saga, the queue, the timeout, and the subscription
as follows:

4. We will then set the App.config settings which include the
AzureSagaPersisterConfig, http://AzureTimeoutPersisterConfig,
AzureSubscriptionStorageConfig, and NServiceBus/Transport as we
set it to UseDevelopmentStorage=true to use the Storage Emulator. The
code is shown in the following screenshot:

We will have to repeat each of these steps for each project as needed.

We have set up the functionality to use the Azure storage queues. When running
the application, you should have the solution in the Payment_WCFService directory
running as this is the client with the saga to send messages to the WCF service.

http:///

Using NServiceBus in the Cloud

[184]

When we run the client, we will get the MVCApp website to send a message to the
WCF client through a saga to the WCF server. It will appear as follows:

We will also have the MySaga and WCF client running as well to create queues and
persistence in the Azure emulator. In Visual Studio 2012, by going to View | Server
Explorer | Azure | Storage, we can view the queues and messages as they are
running, as follows:

http:///

Chapter 6

[185]

We can also examine the tables as well as the persistent saga data as follows:

So we have Azure storage queues running in the emulator in a local development
using NServiceBus with very little effort. Again, NSB handles most of the work as we
focus on the business logic and conigurations.

Azure Service Bus in NSB
The Windows Azure Service Bus provides a hosted, secure, and widely available
infrastructure for widespread communication between different messaging
endpoints to include web services. The Service Bus communicates via three methods:

• Queues: These deal with one-to-one messaging through queues

• Topics: These deal with one-to-many publish-subscribe messages from one
publishing endpoint to many subscriber endpoints

• Relays: These deal with one-to-one relationships between requests and
replies that talk directly to the endpoints

http:///

Using NServiceBus in the Cloud

[186]

The Azure Service Bus can be created in the Azure portal by irst creating the Service
Bus namespace as shown in the following screenshot:

We can create the Service Bus Queues, Topics, and Relays in the Azure portal, and
we can also manage the Service Bus through Visual Studio after it is initially created
in the Azure portal. The Service Bus will use a primary key and connection string to
be accessed, not too dissimilar to a connection string to SQL database.

http:///

Chapter 6

[187]

When creating an Azure Service Bus queue, we can see the additional coniguration
settings that are offered in this creation and not offered in Storage queues as shown
in the following screenshot:

http:///

Using NServiceBus in the Cloud

[188]

There are additional tools for exploring the Azure Service Bus, such as the Server Bus
Explorer found at http://code.msdn.microsoft.com/windowsazure/Service-
Bus-Explorer-f2abca5a.

We will start with our example, which can either be developed on-site or in
the cloud. We will do this one in the cloud. We will use the previous example
SagaPaymentClient and have a new directory with the Service Bus example called
SagaPaymentClient - AzureServiceBus. The example will work in a similar
manner, except that we will be sending the queues across the Azure Service Bus in
the cloud. We will be testing our queuing namespace in the cloud.

http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http://code.msdn.microsoft.com/windowsazure/Service-Bus-Explorer-f2abca5a
http:///

Chapter 6

[189]

For examples, we can also use the NServiceBus example for the Azure Cloud Service
Bus queues from:

https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/

VideoStore.AzureServiceBus.Cloud

We will set up the NSB to run Azure storage queues in the following manner:

1. Install the reference from either NuGet or the package manager for the
project for NServiceBus using PM> Install-Package NServiceBus.Azure.
Transports.WindowsAzureServiceBus.

You may need to match the compatible versions of NServiceBus
core versions with the corresponding NServiceBus Azure versions.
One thought is to uninstall the current NServiceBus references,
and let the NServiceBus Azure references install the required
NServiceBus core references.

2. Set up the coniguration on the IBus conigurations. In the MySaga project
and EndpointConfig.cs ile, we use the AzureServiceBus for the queue
as follows:

https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud
https://github.com/Particular/NServiceBus.Azure.Samples/tree/master/VideoStore.AzureServiceBus.Cloud
http:///

Using NServiceBus in the Cloud

[190]

3. We will then set the App.config or Web.config ile depending on the type
of project. We need to get the Service Bus connection string settings.

We can retrieve the Azure Service Bus connection string from the tab
shown in the following screenshot by clicking on the CONNECTION
INFORMATION as shown below:

We copy and then store the connection information in the app or web coniguration
ile depending on what kind of application we are building into NserviceBus/
Transport and Microsoft.ServiceBus.ConnectionString as we see in
the following:

http:///

Chapter 6

[191]

We also set the AzureSagaPersisterConfig,
AzureTimeoutPersisterConfig,
AzureSubscriptionStorageConfig conigurations to still
use the Azure Storage for the database settings. We added the
AzureSubscriptionStorageConfig coniguration to all the projects.

We will have to repair the settings to the projects as needed to set the transport to
AzureServiceBus.

We now have the coniguration changes moved to use AzureServiceBus. When
we run the application we can view all the queues from the Azure management
portal as follows:

http:///

Using NServiceBus in the Cloud

[192]

We can see that MySaga has a message that we sent it from the MVCApp client
as follows:

Instead of using the Azure Management Portal, we can also view the messages from
the Visual Studio Server Explorer as we add a connection to match the connection
string to the queue:

http:///

Chapter 6

[193]

We view the connections in the Visual Studio Server Explorer:

There are topics, the publish-subscribe messaging, and
queues that are one-to-one messages.

We now have a running Azure Service Bus in NSB.

Summary
In this chapter, we took a deeper dive into Software as a Service (SaaS) and how
NServiceBus ties into cloud computing. We had a very brief introduction to the
cloud and some of its services. We discussed the Azure Storage Services and Azure
Service Bus as they apply to providing persistence and message queues. Visual
Studio has many tools for building applications both on-premise and in the Azure
cloud. We walked through a sample in each, where we stored all the timeouts, saga,
and subscription information in Azure.

http:///

http:///

Index

A

ActiveMQ
about 139, 168
source code 139-142, 168-171
using, in NSB 141

Advanced Encryption Standard (AES)
URL 30

Apache Active Message Queue. See
ActiveMQ

ASP.NET MVC
about 94
overview 94, 95

Azure cloud portal
URL 177

Azure command-line tools
URL 177

Azure cost calculator
URL 177

Azure samples
URL 177

Azure SDK
Relays 181

Azure Service Bus
in NSB 185-193
Queues 185
Relays 185
Topics 185

Azure Service Bus Queues
advantages 181

Azure storage emulator
Relays 181

Azure Storage Explorer
URL 179

Azure Storage Queues
about 180

advantages 181
and NSB 181-185

Azure Storage Services
about 178, 179
Binary Large Object (BLOB) 178
partition key 179
queues 178
row key 179
tables 178
timestamp 179

Azure store
for add-ons, URL 177

B
Binary Large Object (BLOB) 178

C

cloud
and NSB 173, 174

CustomChecks
for ServicePulse 88-91

D

DataBus pattern 21, 22
deployment 55, 56

E

e-mail saga notiication, sample
about 146-148
saga project 150-154
solution, testing 155-157
XAML, using 148-150

Enterprise Service Bus (ESB) 10-12

http:///

[196]

ESB 10-12
ESB designs

practical needs 13
event-driven jobs 14
Extensible Application Markup

Language (XAML)
URL 146

Extensible Application Markup Language
(XAML), using

for e-mail saga notiication 148-150
for SFTP saga 160

G

gateway pattern
about 18
source code 19

I

Infrastructure as a Service (IAAS) 175

J

Java Message Service (JMS) 139, 168
Java Runtime Environment (JRE) 139
JavaScript Object Notation (JSON) 62

L

Language Integrated Query (LINQ) 94

M

message
low 48-55

message encryption patterns
about 30
source code 30, 31

message mutation patterns
about 28
source code 29

Microsoft Azure
about 177, 178
features 177, 178

Microsoft Azure PowerShell tools
URL 177

Microsoft Entity Framework (EF) 94
Microsoft Message Queuing (MSMQ) 12

Microsoft Task Scheduler 22
Model-View-Controller (MVC) 94

N

NSB
about 9
and Azure Storage Queues 181-185
and cloud 173, 174
Azure Service Bus 185-193
beneits 12
components 59
host, URL 71

NSB hosting
URL 56

NSB version 4
to 5, upgradation 39
to 5, upgradation from 39, 41

NSB version 5
features 39-41

NServiceBus. See NSB
NServiceBus, adding to MVC

about 120-122
integration tests, performing 130-134
message handler unit testing 123-125
saga handler unit testing 128-130

NServiceBus.RabbitMQ package 138

O

object-relationship mapper (ORM) 95
boilerplate code, generating 95
development, speeding 95
OO supporting 95

P

PaaS 175
patterns

DataBus pattern 21, 22
gateway pattern 18
message encryption patterns 30
message mutation patterns 28
publish-subscribe pattern 15, 16
request-reply pattern 17
saga design pattern 32
ScaleOut pattern 32
timeout patterns 22-28

http:///

[197]

Platform as a Service. See PaaS
publish-subscribe pattern 15, 16

R

RabbitMQ
about 135
administrating 135
endpoints, changing 137, 138
source code 137
URL, for development tools 135
URL, for documentation 135
URL, for NServiceBus RabbitMQ

hands-on lab 135
URL, for NServiceBus samples 135
URL, for NSeviceBus.RabbitMQ

source code 135
URL, for Windows installation 135

request-reply pattern 17
requisites, NSB WCF Integration

coniguration for NSB with WCF 98
message handler 98
request message structure 98
response message structure 98
web service 98

S

SaaS 175, 176
saga

advantages 34-36
deployment 165, 166
e-mail saga notiication, sample 146-148
SFTP saga, sample 158, 159
source code 146
through ServiceMatrix 84-88
worklow 41-47

saga design pattern
about 32
ConigureHowToFindSaga() 34
IAmStartedByMessages<IMessage> 32
IHandleMessages<IMessage> 34
Saga<IContainSagaData> 33

saga development
web services 96

ScaleOut pattern 32

Secure File Transfer Protocol. See SFTP

Service Broker 10
ServiceControl

about 62, 63
plugins, adding 65, 66
ServiceControl.Plugin.CustomChecks 65
ServiceControl.Plugin.DebugSession 64
ServiceControl.Plugin.Heartbeat 65
ServiceControl.Plugin.SagaAudit 65
URL 60, 62

ServiceControl plugins
for CustomChecks 77
for DebugSessions 77
for heartbeats 77
for SagaAudits 77

ServiceInsight
about 56-69
endpoints 71
infrastructure 71
libraries 71
services 71
solution, creating 69-74
URL 60

ServiceMatrix
about 59, 60
sagas through 84-88
URL 68

service-oriented architecture (SOA) 10, 96
ServicePulse

about 60, 61
CustomChecks for 88-91

SFTP
about 12, 145
URL 158

SFTP saga, sample
about 158, 159
features 159
messaging process, changing 160, 161
SFTP test environment, setting up 161-165
XAML, using 160

Simple Object Access Protocol (SOAP)
binding 96

SOA patterns 15

Software as a Service. See SaaS
Software Development Kit (SDK) 177
SQLNinja

URL 94

http:///

[198]

T

timeout patterns 22-28

V

virtual machine (VM) 176

W

WCF
about 96
source code 96

WCF client
creating 111
design, revisiting 116-118
service reference, adding 112-114
service reference, calling 114-116
source code 118, 119

WCF server
coniguration, adding 103-105
considerations, for deployment 110
creating 97-99
message handler, adding 102
messages, adding 100, 101
tracing, adding 106-109
web service, viewing 110

Web Service Deinition
Language (WSDL) 10

Web Services Description
Languages (WSDL) 96

Windows Communication
Foundation (WCF) 13

Windows Presentation
Framework (WPF) 145, 146

Windows Task Scheduler 14

http:///

Thank you for buying

Learning NServiceBus Sagas

About Packt Publishing
Packt, pronounced 'packed', published its irst book Mastering phpMyAdmin for Effective MySQL
Management in April 2004 and subsequently continued to specialize in publishing highly
focused books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more speciic and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it irst before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com
http:///

Learning NServiceBus
ISBN: 978-1-78216-634-4 Paperback: 136 pages

Build reliable and scalable distributed software
systems using the industry leading .NET Enterprise
Service Bus

1. Replace batch jobs with a reliable process.

2. Create applications that compensate for
system failures.

3. Build message-driven systems.

Multithreading in C# 5.0
Cookbook
ISBN: 978-1-84969-764-4 Paperback: 268 pages

Over 70 recipes to help you learn asynchronous
and parallel programming with C# 5.0 quickly
and eficiently

1. Delve deep into the .NET threading
infrastructure and use Task Parallel Library
for asynchronous programming.

2. Scale out your server applications effectively.

3. Master C# 5.0 asynchronous operations
language support.

Please check www.PacktPub.com for information on our titles

http:///

CryENGINE Game Programming

with C++, C#, and Lua
ISBN: 978-1-84969-590-9 Paperback: 276 pages

Get to grips with the essential tools for developing
games with the awesome and powerful CryENGINE

1. Dive into the various CryENGINE subsystems
to quickly learn how to master the engine.

2. Create your very own game using C++, C#, or
Lua in CryENGINE.

3. Understand the structure and design of
the engine.

Enterprise Integration with

WSO2 ESB
ISBN: 978-1-78328-019-3 Paperback: 92 pages

Over 15 recipes to calibrate seamless modularity
to SOA and address commonly-faced enterprise
integration challenges with a zero-code approach

1. Learn how to implement the mostly-used
Enterprise Integration Patterns with WSO2 ESB.

2. Discover how to integrate WSO2 ESB with FIX,
HL7, and SAP gateways.

3. Understand the key concepts behind WSO2
ESB, and ind optimized recommendations for
deploying WSO2 ESB in a production setup.

Please check www.PacktPub.com for information on our titles

http:///

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Sagas
	A brief introduction to ESBs
	Event-driven jobs
	Additional SOA patterns
	The publish-subscribe pattern
	The request-reply pattern
	The gateway pattern
	The source code

	The DataBus pattern
	Timeout patterns
	Message mutation patterns
	The source code

	Message encryption patterns
	The source code

	The ScaleOut pattern
	The saga design pattern

	Sagas – what are they good for?
	Summary

	Chapter 2: NServiceBus
Saga Architecture
	Upgrading from NSB version 4 to 5
	The saga workflow
	Message flow

	Deployment
	ServiceInsight
	Summary

	Chapter 3: Particular Service Platform
	Introducing NSB components
	Understanding ServicePulse and its function
	Understanding ServiceControl and its function

	Understanding ServiceInsight and its function
	Creating a ServiceMatrix solution
	Sagas through ServiceMatrix

	Introducing CustomChecks for ServicePulse
	Summary

	Chapter 4: Saga Development
	A brief overview of ASP.NET MVC
	Sagas and web services
	The source code

	Creating a WCF server
	Adding the messages
	Adding the message handler
	Adding the configuration
	Adding tracing
	Viewing the web service
	Considerations when deploying

	Creating a WCF client
	Adding the service reference
	Calling the service reference

	Revisiting the design
	The source code

	Adding NServiceBus to MVC
	Message handler unit testing
	Saga handler unit testing
	Integration tests with MVC

	RabbitMQ for NSB
	The source code
	Changing the endpoints

	ActiveMQ in NSB
	The source code

	Summary

	Chapter 5: Saga Snippets
	Source code overview
	Sample e-mail saga notification
	Using XAML
	The saga project
	Testing the solution

	Sample SFTP saga
	Using XAML
	Changing the process of messaging
	Setting up an SFTP test environment

	Saga deployment
	ActiveMQ
	The source code

	Summary

	Chapter 6: Using NServiceBus in
the Cloud
	Introducing the cloud and NSB
	Introducing PaaS, IaaS, and SaaS
	Using Microsoft Azure
	Introducing Azure Storage Services
	Azure Service Bus and Storage Queues
	Azure Storage Queues and NSB
	Azure Service Bus in NSB

	Summary

	Index

