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Preface
This book will take you on a hands-on exploration of the wonderful world that is 
Hadoop 2 and its rapidly growing ecosystem. Building on the solid foundation 
from the earlier versions of the platform, Hadoop 2 allows multiple data processing 
frameworks to be executed on a single Hadoop cluster.

To give an understanding of this significant evolution, we will explore both how 
these new models work and also show their applications in processing large data 
volumes with batch, iterative, and near-real-time algorithms.

What this book covers
Chapter 1, Introduction, gives the background to Hadoop and the Big Data  
problems it looks to solve. We also highlight the areas in which Hadoop 1 had  
room for improvement.

Chapter 2, Storage, delves into the Hadoop Distributed File System, where most data 
processed by Hadoop is stored. We examine the particular characteristics of HDFS, 
show how to use it, and discuss how it has improved in Hadoop 2. We also introduce 
ZooKeeper, another storage system within Hadoop, upon which many of its  
high-availability features rely.

Chapter 3, Processing – MapReduce and Beyond, first discusses the traditional 
Hadoop processing model and how it is used. We then discuss how Hadoop 2 
has generalized the platform to use multiple computational models, of which 
MapReduce is merely one.
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Chapter 4, Real-time Computation with Samza, takes a deeper look at one of these 
alternative processing models enabled by Hadoop 2. In particular, we look at how  
to process real-time streaming data with Apache Samza.

Chapter 5, Iterative Computation with Spark, delves into a very different alternative 
processing model. In this chapter, we look at how Apache Spark provides the means 
to do iterative processing.

Chapter 6, Data Analysis with Pig, demonstrates how Apache Pig makes the traditional 
computational model of MapReduce easier to use by providing a language to 
describe data flows.

Chapter 7, Hadoop and SQL, looks at how the familiar SQL language has been 
implemented atop data stored in Hadoop. Through the use of Apache Hive and 
describing alternatives such as Cloudera Impala, we show how Big Data processing 
can be made possible using existing skills and tools.

Chapter 8, Data Lifecycle Management, takes a look at the bigger picture of just how 
to manage all that data that is to be processed in Hadoop. Using Apache Oozie, we 
show how to build up workflows to ingest, process, and manage data.

Chapter 9, Making Development Easier, focuses on a selection of tools aimed at 
helping a developer get results quickly. Through the use of Hadoop streaming, 
Apache Crunch and Kite, we show how the use of the right tool can speed up the 
development loop or provide new APIs with richer semantics and less boilerplate.

Chapter 10, Running a Hadoop Cluster, takes a look at the operational side of Hadoop. 
By focusing on the areas of interest to developers, such as cluster management, 
monitoring, and security, this chapter should help you to work better with your 
operations staff.

Chapter 11, Where to Go Next, takes you on a whirlwind tour through a number of other 
projects and tools that we feel are useful, but could not cover in detail in the book due 
to space constraints. We also give some pointers on where to find additional sources of 
information and how to engage with the various open source communities.

What you need for this book
Because most people don't have a large number of spare machines sitting around,  
we use the Cloudera QuickStart virtual machine for most of the examples in this 
book. This is a single machine image with all the components of a full Hadoop 
cluster pre-installed. It can be run on any host machine supporting either the 
VMware or the VirtualBox virtualization technology.
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We also explore Amazon Web Services and how some of the Hadoop technologies 
can be run on the AWS Elastic MapReduce service. The AWS services can be 
managed through a web browser or a Linux command-line interface.

Who this book is for
This book is primarily aimed at application and system developers interested in 
learning how to solve practical problems using the Hadoop framework and related 
components. Although we show examples in a few programming languages, a 
strong foundation in Java is the main prerequisite.

Data engineers and architects might also find the material concerning data life cycle, 
file formats, and computational models useful.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"If Avro dependencies are not present in the classpath, we need to add the Avro 
MapReduce.jar file to our environment before accessing individual fields."

A block of code is set as follows:

topic_edges_grouped = FOREACH topic_edges_grouped {
  GENERATE
    group.topic_id as topic,
    group.source_id as source,
    topic_edges.(destination_id,w) as edges;
}

Any command-line input or output is written as follows:

$ hdfs dfs -put target/elephant-bird-pig-4.5.jar hdfs:///jar/

$ hdfs dfs –put target/elephant-bird-hadoop-compat-4.5.jar hdfs:///jar/

$ hdfs dfs –put elephant-bird-core-4.5.jar hdfs:///jar/ 
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New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes, appear in the text like this: "Once the form is  
filled in, we need to review and accept the terms of service and click on the  
Create Application button in the bottom-left corner of the page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
The source code for this book can be found on GitHub at https://github.com/
learninghadoop2/book-examples. The authors will be applying any errata to 
this code and keeping it up to date as the technologies evolve. In addition you can 
download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Introduction
This book will teach you how to build amazing systems using the latest release of 
Hadoop. Before you change the world though, we need to do some groundwork, 
which is where this chapter comes in.

In this introductory chapter, we will cover the following topics:

•	 A brief refresher on the background to Hadoop
•	 A walk-through of Hadoop's evolution
•	 The key elements in Hadoop 2 
•	 The Hadoop distributions we'll use in this book
•	 The dataset we'll use for examples

A note on versioning
In Hadoop 1, the version history was somewhat convoluted with multiple forked 
branches in the 0.2x range, leading to odd situations, where a 1.x version could, in 
some situations, have fewer features than a 0.23 release. In the version 2 codebase, 
this is fortunately much more straightforward, but it's important to clarify exactly 
which version we will use in this book.

Hadoop 2.0 was released in alpha and beta versions, and along the way, several 
incompatible changes were introduced. There was, in particular, a major API 
stabilization effort between the beta and final release stages.
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Hadoop 2.2.0 was the first general availability (GA) release of the Hadoop 2 
codebase, and its interfaces are now declared stable and forward compatible. We 
will therefore use the 2.2 product and interfaces in this book. Though the principles 
will be usable on a 2.0 beta, in particular, there will be API incompatibilities in the 
beta. This is particularly important as MapReduce v2 was back-ported to Hadoop 
1 by several distribution vendors, but these products were based on the beta and 
not the GA APIs. If you are using such a product, then you will encounter these 
incompatible changes. It is recommended that a release based upon Hadoop 2.2 
or later is used for both the development and the production deployments of any 
Hadoop 2 workloads.

The background of Hadoop
We're assuming that most readers will have a little familiarity with Hadoop, or at the 
very least, with big data-processing systems. Consequently, we won't give a detailed 
background as to why Hadoop is successful or the types of problem it helps to 
solve in this book. However, particularly because of some aspects of Hadoop 2 and 
the other products we will use in later chapters, it is useful to give a sketch of how 
we see Hadoop fitting into the technology landscape and which are the particular 
problem areas where we believe it gives the most benefit.

In ancient times, before the term "big data" came into the picture (which equates to 
maybe a decade ago), there were few options to process datasets of sizes in terabytes 
and beyond. Some commercial databases could, with very specific and expensive 
hardware setups, be scaled to this level, but the expertise and capital expenditure 
required made it an option for only the largest organizations. Alternatively, one 
could build a custom system aimed at the specific problem at hand. This suffered 
from some of the same problems (expertise and cost) and added the risk inherent 
in any cutting-edge system. On the other hand, if a system was successfully 
constructed, it was likely a very good fit to the need.

Few small- to mid-size companies even worried about this space, not only because 
the solutions were out of their reach, but they generally also didn't have anything 
close to the data volumes that required such solutions. As the ability to generate  
very large datasets became more common, so did the need to process that data.
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Even though large data became more democratized and was no longer the domain of 
the privileged few, major architectural changes were required if the data-processing 
systems could be made affordable to smaller companies. The first big change was 
to reduce the required upfront capital expenditure on the system; that means no 
high-end hardware or expensive software licenses. Previously, high-end hardware 
would have been utilized most commonly in a relatively small number of very 
large servers and storage systems, each of which had multiple approaches to avoid 
hardware failures. Though very impressive, such systems are hugely expensive, 
and moving to a larger number of lower-end servers would be the quickest way 
to dramatically reduce the hardware cost of a new system. Moving more toward 
commodity hardware instead of the traditional enterprise-grade equipment would 
also mean a reduction in capabilities in the area of resilience and fault tolerance. 
Those responsibilities would need to be taken up by the software layer. Smarter 
software, dumber hardware.

Google started the change that would eventually be known as Hadoop, when 
in 2003, and in 2004, they released two academic papers describing the Google 
File System (GFS) (http://research.google.com/archive/gfs.html) and 
MapReduce (http://research.google.com/archive/mapreduce.html). The two 
together provided a platform for very large-scale data processing in a highly efficient 
manner. Google had taken the build-it-yourself approach, but instead of constructing 
something aimed at one specific problem or dataset, they instead created a platform 
on which multiple processing applications could be implemented. In particular, 
they utilized large numbers of commodity servers and built GFS and MapReduce 
in a way that assumed hardware failures would be commonplace and were simply 
something that the software needed to deal with.

At the same time, Doug Cutting was working on the Nutch open source web 
crawler. He was working on elements within the system that resonated strongly once 
the Google GFS and MapReduce papers were published. Doug started work on open 
source implementations of these Google ideas, and Hadoop was soon born, firstly, 
as a subproject of Lucene, and then as its own top-level project within the Apache 
Software Foundation.

Yahoo! hired Doug Cutting in 2006 and quickly became one of the most prominent 
supporters of the Hadoop project. In addition to often publicizing some of the largest 
Hadoop deployments in the world, Yahoo! allowed Doug and other engineers to 
contribute to Hadoop while employed by the company, not to mention contributing 
back some of its own internally developed Hadoop improvements and extensions.
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Components of Hadoop
The broad Hadoop umbrella project has many component subprojects, and we'll 
discuss several of them in this book. At its core, Hadoop provides two services: 
storage and computation. A typical Hadoop workflow consists of loading data into 
the Hadoop Distributed File System (HDFS) and processing using the MapReduce 
API or several tools that rely on MapReduce as an execution framework.

Applications (Hive, Pig, Crunch, Cascading, etc...)

Computation (MapReduce)

Storage (HDFS)

Hadoop 1: HDFS and MapReduce

Both layers are direct implementations of Google's own GFS and MapReduce 
technologies.

Common building blocks
Both HDFS and MapReduce exhibit several of the architectural principles described 
in the previous section. In particular, the common principles are as follows:

•	 Both are designed to run on clusters of commodity (that is, low to medium 
specification) servers

•	 Both scale their capacity by adding more servers (scale-out) as opposed to the 
previous models of using larger hardware (scale-up)

•	 Both have mechanisms to identify and work around failures
•	 Both provide most of their services transparently, allowing the user to 

concentrate on the problem at hand
•	 Both have an architecture where a software cluster sits on the physical servers 

and manages aspects such as application load balancing and fault tolerance, 
without relying on high-end hardware to deliver these capabilities
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Storage
HDFS is a filesystem, though not a POSIX-compliant one. This basically means that it 
does not display the same characteristics as that of a regular filesystem. In particular, 
the characteristics are as follows:

•	 HDFS stores files in blocks that are typically at least 64 MB or  
(more commonly now) 128 MB in size, much larger than the 4-32 KB  
seen in most filesystems

•	 HDFS is optimized for throughput over latency; it is very efficient at 
streaming reads of large files but poor when seeking for many small ones

•	 HDFS is optimized for workloads that are generally write-once and  
read-many

•	 Instead of handling disk failures by having physical redundancies in disk 
arrays or similar strategies, HDFS uses replication. Each of the blocks 
comprising a file is stored on multiple nodes within the cluster, and a service 
called the NameNode constantly monitors to ensure that failures have not 
dropped any block below the desired replication factor. If this does happen, 
then it schedules the making of another copy within the cluster.

Computation
MapReduce is an API, an execution engine, and a processing paradigm; it provides a 
series of transformations from a source into a result dataset. In the simplest case, the 
input data is fed through a map function and the resultant temporary data is then 
fed through a reduce function.

MapReduce works best on semistructured or unstructured data. Instead of data 
conforming to rigid schemas, the requirement is instead that the data can be 
provided to the map function as a series of key-value pairs. The output of the 
map function is a set of other key-value pairs, and the reduce function performs 
aggregation to collect the final set of results.

www.allitebooks.com
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Hadoop provides a standard specification (that is, interface) for the map and reduce 
phases, and the implementation of these are often referred to as mappers and reducers. 
A typical MapReduce application will comprise a number of mappers and reducers, 
and it's not unusual for several of these to be extremely simple. The developer focuses 
on expressing the transformation between the source and the resultant data, and the 
Hadoop framework manages all aspects of job execution and coordination.

Better together
It is possible to appreciate the individual merits of HDFS and MapReduce, but they 
are even more powerful when combined. They can be used individually, but when 
they are together, they bring out the best in each other, and this close interworking 
was a major factor in the success and acceptance of Hadoop 1.

When a MapReduce job is being planned, Hadoop needs to decide on which host to 
execute the code in order to process the dataset most efficiently. If the MapReduce 
cluster hosts are all pulling their data from a single storage host or array, then this 
largely doesn't matter as the storage system is a shared resource that will cause 
contention. If the storage system was more transparent and allowed MapReduce to 
manipulate its data more directly, then there would be an opportunity to perform the 
processing closer to the data, building on the principle of it being less expensive to 
move processing than data.

The most common deployment model for Hadoop sees the HDFS and MapReduce 
clusters deployed on the same set of servers. Each host that contains data and the 
HDFS component to manage the data also hosts a MapReduce component that can 
schedule and execute data processing. When a job is submitted to Hadoop, it can use 
the locality optimization to schedule data on the hosts where data resides as much as 
possible, thus minimizing network traffic and maximizing performance.

Hadoop 2 – what's the big deal?
If we look at the two main components of the core Hadoop distribution, storage and 
computation, we see that Hadoop 2 has a very different impact on each of them. 
Whereas the HDFS found in Hadoop 2 is mostly a much more feature-rich and 
resilient product than the HDFS in Hadoop 1, for MapReduce, the changes are much 
more profound and have, in fact, altered how Hadoop is perceived as a processing 
platform in general. Let's look at HDFS in Hadoop 2 first.
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Storage in Hadoop 2
We'll discuss the HDFS architecture in more detail in Chapter 2, Storage, but for now, 
it's sufficient to think of a master-slave model. The slave nodes (called DataNodes) 
hold the actual filesystem data. In particular, each host running a DataNode will 
typically have one or more disks onto which files containing the data for each  
HDFS block are written. The DataNode itself has no understanding of the overall 
filesystem; its role is to store, serve, and ensure the integrity of the data for  
which it is responsible.

The master node (called the NameNode) is responsible for knowing which of the 
DataNodes holds which block and how these blocks are structured to form the 
filesystem. When a client looks at the filesystem and wishes to retrieve a file,  
it's via a request to the NameNode that the list of required blocks is retrieved.

This model works well and has been scaled to clusters with tens of thousands of 
nodes at companies such as Yahoo! So, though it is scalable, there is a resiliency risk; 
if the NameNode becomes unavailable, then the entire cluster is rendered effectively 
useless. No HDFS operations can be performed, and since the vast majority of 
installations use HDFS as the storage layer for services, such as MapReduce, they 
also become unavailable even if they are still running without problems.

More catastrophically, the NameNode stores the filesystem metadata to a persistent 
file on its local filesystem. If the NameNode host crashes in a way that this data is not 
recoverable, then all data on the cluster is effectively lost forever. The data will still 
exist on the various DataNodes, but the mapping of which blocks comprise which 
files is lost. This is why, in Hadoop 1, the best practice was to have the NameNode 
synchronously write its filesystem metadata to both local disks and at least one 
remote network volume (typically via NFS).

Several NameNode high-availability (HA) solutions have been made available by 
third-party suppliers, but the core Hadoop product did not offer such resilience in 
Version 1. Given this architectural single point of failure and the risk of data loss, it 
won't be a surprise to hear that NameNode HA is one of the major features of HDFS 
in Hadoop 2 and is something we'll discuss in detail in later chapters. The feature 
provides both a standby NameNode that can be automatically promoted to service 
all requests should the active NameNode fail, but also builds additional resilience for 
the critical filesystem metadata atop this mechanism.



Introduction

[ 14 ]

HDFS in Hadoop 2 is still a non-POSIX filesystem; it still has a very large block 
size and it still trades latency for throughput. However, it does now have a few 
capabilities that can make it look a little more like a traditional filesystem. In 
particular, the core HDFS in Hadoop 2 now can be remotely mounted as an NFS 
volume. This is another feature that was previously offered as a proprietary 
capability by third-party suppliers but is now in the main Apache codebase.

Overall, the HDFS in Hadoop 2 is more resilient and can be more easily integrated 
into existing workflows and processes. It's a strong evolution of the product found  
in Hadoop 1.

Computation in Hadoop 2
The work on HDFS 2 was started before a direction for MapReduce crystallized. 
This was likely due to the fact that features such as NameNode HA were such an 
obvious path that the community knew the most critical areas to address. However, 
MapReduce didn't really have a similar list of areas of improvement, and that's why, 
when the MRv2 initiative started, it wasn't completely clear where it would lead.

Perhaps the most frequent criticism of MapReduce in Hadoop 1 was how its batch 
processing model was ill-suited to problem domains where faster response times 
were required. Hive, for example, which we'll discuss in Chapter 7, Hadoop and SQL, 
provides a SQL-like interface onto HDFS data, but, behind the scenes, the statements 
are converted into MapReduce jobs that are then executed like any other. A number 
of other products and tools took a similar approach, providing a specific user-facing 
interface that hid a MapReduce translation layer.

Though this approach has been very successful, and some amazing products have 
been built, the fact remains that in many cases, there is a mismatch as all of these 
interfaces, some of which expect a certain type of responsiveness, are behind the 
scenes, being executed on a batch-processing platform. When looking to enhance 
MapReduce, improvements could be made to make it a better fit to these use cases, 
but the fundamental mismatch would remain. This situation led to a significant 
change of focus of the MRv2 initiative; perhaps MapReduce itself didn't need change, 
but the real need was to enable different processing models on the Hadoop platform. 
Thus was born Yet Another Resource Negotiator (YARN).

Looking at MapReduce in Hadoop 1, the product actually did two quite different 
things; it provided the processing framework to execute MapReduce computations, 
but it also managed the allocation of this computation across the cluster. Not 
only did it direct data to and between the specific map and reduce tasks, but it 
also determined where each task would run, and managed the full job life cycle, 
monitoring the health of each task and node, rescheduling if any failed, and so on.
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This is not a trivial task, and the automated parallelization of workloads has always 
been one of the main benefits of Hadoop. If we look at MapReduce in Hadoop 
1, we see that after the user defines the key criteria for the job, everything else 
is the responsibility of the system. Critically, from a scale perspective, the same 
MapReduce job can be applied to datasets of any volume hosted on clusters of any 
size. If the data is 1 GB in size and on a single host, then Hadoop will schedule the 
processing accordingly. If the data is instead 1 PB in size and hosted across 1,000 
machines, then it does likewise. From the user's perspective, the actual scale of the 
data and cluster is transparent, and aside from affecting the time taken to process the 
job, it does not change the interface with which to interact with the system.

In Hadoop 2, this role of job scheduling and resource management is separated from 
that of executing the actual application, and is implemented by YARN.

YARN is responsible for managing the cluster resources, and so MapReduce exists 
as an application that runs atop the YARN framework. The MapReduce interface in 
Hadoop 2 is completely compatible with that in Hadoop 1, both semantically and 
practically. However, under the covers, MapReduce has become a hosted application 
on the YARN framework.

The significance of this split is that other applications can be written that provide 
processing models more focused on the actual problem domain and can offload 
all the resource management and scheduling responsibilities to YARN. The latest 
versions of many different execution engines have been ported onto YARN, either 
in a production-ready or experimental state, and it has shown that the approach can 
allow a single Hadoop cluster to run everything from batch-oriented MapReduce 
jobs through fast-response SQL queries to continuous data streaming and even to 
implement models such as graph processing and the Message Passing Interface 
(MPI) from the High Performance Computing (HPC) world. The following diagram 
shows the architecture of Hadoop 2:

Applications (Hive, Pig, Crunch, Cascading, etc...)

Resource Management (YARN)

HDFS

Streaming
(storm, spark,

samza)

Batch
(MapReduce)

In memory
(spark)

Interactive
(Tez)

HPC
(MPI)

Graph
(giraph)

Hadoop 2
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This is why much of the attention and excitement around Hadoop 2 has been focused 
on YARN and frameworks that sit on top of it, such as Apache Tez and Apache 
Spark. With YARN, the Hadoop cluster is no longer just a batch-processing engine; it 
is the single platform on which a vast array of processing techniques can be applied 
to the enormous data volumes stored in HDFS. Moreover, applications can build on 
these computation paradigms and execution models.

The analogy that is achieving some traction is to think of YARN as the processing 
kernel upon which other domain-specific applications can be built. We'll discuss 
YARN in more detail in this book, particularly in Chapter 3, Processing – MapReduce 
and Beyond, Chapter 4, Real-time Computation with Samza, and Chapter 5, Iterative 
Computation with Spark.

Distributions of Apache Hadoop
In the very early days of Hadoop, the burden of installing (often building from 
source) and managing each component and its dependencies fell on the user. As the 
system became more popular and the ecosystem of third-party tools and libraries 
started to grow, the complexity of installing and managing a Hadoop deployment 
increased dramatically to the point where providing a coherent offer of software 
packages, documentation, and training built around the core Apache Hadoop has 
become a business model. Enter the world of distributions for Apache Hadoop.

Hadoop distributions are conceptually similar to how Linux distributions provide a 
set of integrated software around a common core. They take the burden of bundling 
and packaging software themselves and provide the user with an easy way to install, 
manage, and deploy Apache Hadoop and a selected number of third-party libraries. 
In particular, the distribution releases deliver a series of product versions that are 
certified to be mutually compatible. Historically, putting together a Hadoop-based 
platform was often greatly complicated by the various version interdependencies.

Cloudera (http://www.cloudera.com), Hortonworks (http://www.hortonworks.
com), and MapR (http://www.mapr.com) are amongst the first to have reached the 
market, each characterized by different approaches and selling points. Hortonworks 
positions itself as the open source player; Cloudera is also committed to open source 
but adds proprietary bits for configuring and managing Hadoop; MapR provides a 
hybrid open source/proprietary Hadoop distribution characterized by a proprietary 
NFS layer instead of HDFS and a focus on providing services.

Another strong player in the distributions ecosystem is Amazon, which offers a 
version of Hadoop called Elastic MapReduce (EMR) on top of the Amazon Web 
Services (AWS) infrastructure.
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With the advent of Hadoop 2, the number of available distributions for Hadoop has 
increased dramatically, far in excess of the four we mentioned. A possibly incomplete 
list of software offerings that includes Apache Hadoop can be found at http://wiki.
apache.org/hadoop/Distributions%20and%20Commercial%20Support.

A dual approach
In this book, we will discuss both the building and the management of local Hadoop 
clusters in addition to showing how to push the processing into the cloud via EMR.

The reason for this is twofold: firstly, though EMR makes Hadoop much more 
accessible, there are aspects of the technology that only become apparent when 
manually administering the cluster. Although it is also possible to use EMR in a more 
manual mode, we'll generally use a local cluster for such explorations. Secondly, 
though it isn't necessarily an either/or decision, many organizations use a mixture 
of in-house and cloud-hosted capacities, sometimes due to a concern of over reliance 
on a single external provider, but practically speaking, it's often convenient to do 
development and small-scale tests on local capacity and then deploy at production 
scale into the cloud.

In a few of the later chapters, where we discuss additional products that integrate 
with Hadoop, we'll mostly give examples of local clusters, as there is no difference 
between how the products work regardless of where they are deployed.

AWS – infrastructure on demand from 
Amazon
AWS is a set of cloud-computing services offered by Amazon. We will use several of 
these services in this book.

Simple Storage Service (S3)
Amazon's Simple Storage Service (S3), found at http://aws.amazon.com/s3/,  
is a storage service that provides a simple key-value storage model. Using web, 
command-line, or programmatic interfaces to create objects, which can be anything 
from text files to images to MP3s, you can store and retrieve your data based on 
a hierarchical model. In this model, you create buckets that contain objects. Each 
bucket has a unique identifier, and within each bucket, every object is uniquely 
named. This simple strategy enables an extremely powerful service for which 
Amazon takes complete responsibility (for service scaling, in addition to reliability 
and availability of data).
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Elastic MapReduce (EMR)
Amazon's Elastic MapReduce, found at http://aws.amazon.com/
elasticmapreduce/, is basically Hadoop in the cloud. Using any of the multiple 
interfaces (web console, CLI, or API), a Hadoop workflow is defined with attributes 
such as the number of Hadoop hosts required and the location of the source data. 
The Hadoop code implementing the MapReduce jobs is provided, and the virtual  
Go button is pressed.

In its most impressive mode, EMR can pull source data from S3, process it on a 
Hadoop cluster it creates on Amazon's virtual host on-demand service EC2, push the 
results back into S3, and terminate the Hadoop cluster and the EC2 virtual machines 
hosting it. Naturally, each of these services has a cost (usually on per GB stored and 
server-time usage basis), but the ability to access such powerful data-processing 
capabilities with no need for dedicated hardware is a powerful one.

Getting started
We will now describe the two environments we will use throughout the book: 
Cloudera's QuickStart virtual machine will be our reference system on which we 
will show all examples, but we will additionally demonstrate some examples on 
Amazon's EMR when there is some particularly valuable aspect to running the 
example in the on-demand service.

Although the examples and code provided are aimed at being as general-purpose 
and portable as possible, our reference setup, when talking about a local cluster,  
will be Cloudera running atop CentOS Linux.

For the most part, we will show examples that make use of, or are executed from, 
a terminal prompt. Although Hadoop's graphical interfaces have improved 
significantly over the years (for example, the excellent HUE and Cloudera Manager), 
when it comes to development, automation, and programmatic access to the system, 
the command line is still the most powerful tool for the job.

All examples and source code presented in this book can be downloaded from 
https://github.com/learninghadoop2/book-examples. In addition, we have 
a home page for the book where we will publish updates and related material at 
http://learninghadoop2.com.
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Cloudera QuickStart VM
One of the advantages of Hadoop distributions is that they give access to  
easy-to-install, packaged software. Cloudera takes this one step further and  
provides a freely downloadable Virtual Machine instance of its latest distribution, 
known as the CDH QuickStart VM, deployed on top of CentOS Linux.

In the remaining parts of this book, we will use the CDH5.0.0 VM as the reference 
and baseline system to run examples and source code. Images of the VM are 
available for VMware (http://www.vmware.com/nl/products/player/), KVM 
(http://www.linux-kvm.org/page/Main_Page), and VirtualBox (https://www.
virtualbox.org/) virtualization systems.

Amazon EMR
Before using Elastic MapReduce, we need to set up an AWS account and register it 
with the necessary services.

Creating an AWS account
Amazon has integrated its general accounts with AWS, which means that, if you 
already have an account for any of the Amazon retail websites, this is the only 
account you will need to use AWS services.

Note that AWS services have a cost; you will need an active credit 
card associated with the account to which charges can be made.

If you require a new Amazon account, go to http://aws.amazon.com, select  
Create a new AWS account, and follow the prompts. Amazon has added a free tier 
for some services, so you might find that in the early days of testing and exploration, 
you are keeping many of your activities within the noncharged tier. The scope of the 
free tier has been expanding, so make sure you know what you will and won't be 
charged for.
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Signing up for the necessary services
Once you have an Amazon account, you will need to register it for use with the 
required AWS services, that is, Simple Storage Service (S3), Elastic Compute  
Cloud (EC2), and Elastic MapReduce. There is no cost to simply sign up to  
any AWS service; the process just makes the service available to your account.

Go to the S3, EC2, and EMR pages linked from http://aws.amazon.com, click on 
the Sign up button on each page, and then follow the prompts.

Using Elastic MapReduce
Having created an account with AWS and registered all the required services, we can 
proceed to configure programmatic access to EMR.

Getting Hadoop up and running

Caution! This costs real money!

Before going any further, it is critical to understand that use of AWS services will incur 
charges that will appear on the credit card associated with your Amazon account. 
Most of the charges are quite small and increase with the amount of infrastructure 
consumed; storing 10 GB of data in S3 costs 10 times more than 1 GB, and running 
20 EC2 instances costs 20 times as much as a single one. There are tiered cost models, 
so the actual costs tend to have smaller marginal increases at higher levels. But you 
should read carefully through the pricing sections for each service before using any 
of them. Note also that currently data transfer out of AWS services, such as EC2 and 
S3, is chargeable, but data transfer between services is not. This means it is often most 
cost-effective to carefully design your use of AWS to keep data within AWS through 
as much of the data processing as possible. For information regarding AWS and EMR, 
consult http://aws.amazon.com/elasticmapreduce/#pricing.

How to use EMR
Amazon provides both web and command-line interfaces to EMR. Both interfaces 
are just a frontend to the very same system; a cluster created with the command-line 
interface can be inspected and managed with the web tools and vice-versa.

For the most part, we will be using the command-line tools to create and manage 
clusters programmatically and will fall back on the web interface cases where it 
makes sense to do so.
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AWS credentials
Before using either programmatic or command-line tools, we need to look at how an 
account holder authenticates to AWS to make such requests.

Each AWS account has several identifiers, such as the following, that are used when 
accessing the various services:

•	 Account ID: each AWS account has a numeric ID.
•	 Access key: the associated access key is used to identify the account making 

the request.
•	 Secret access key: the partner to the access key is the secret access key.  

The access key is not a secret and could be exposed in service requests,  
but the secret access key is what you use to validate yourself as the  
account owner. Treat it like your credit card.

•	 Key pairs: these are the key pairs used to log in to EC2 hosts. It is possible to 
either generate public/private key pairs within EC2 or to import externally 
generated keys into the system.

User credentials and permissions are managed via a web service called Identity  
and Access Management (IAM), which you need to sign up to in order to obtain 
access and secret keys.

If this sounds confusing, it's because it is, at least at first. When using a tool to 
access an AWS service, there's usually the single, upfront step of adding the right 
credentials to a configured file, and then everything just works. However, if you do 
decide to explore programmatic or command-line tools, it will be worth investing 
a little time to read the documentation for each service to understand how its 
security works. More information on creating an AWS account and obtaining access 
credentials can be found at http://docs.aws.amazon.com/iam.

The AWS command-line interface
Each AWS service historically had its own set of command-line tools. Recently 
though, Amazon has created a single, unified command-line tool that allows access 
to most services. The Amazon CLI can be found at http://aws.amazon.com/cli.

It can be installed from a tarball or via the pip or easy_install package managers.

On the CDH QuickStart VM, we can install awscli using the following command:

$ pip install awscli

www.allitebooks.com
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In order to access the API, we need to configure the software to authenticate to AWS 
using our access and secret keys.

This is also a good moment to set up an EC2 key pair by following the instructions 
provided at https://console.aws.amazon.com/ec2/home?region=us-east-
1#c=EC2&s=KeyPairs.

Although a key pair is not strictly necessary to run an EMR cluster, it will give us  
the capability to remotely log in to the master node and gain low-level access to  
the cluster.

The following command will guide you through a series of configuration steps  
and store the resulting configuration in the .aws/credential file:

$ aws configure

Once the CLI is configured, we can query AWS with aws <service> <arguments>. 
To create and query an S3 bucket use something like the following command. Note 
that S3 buckets need to be globally unique across all AWS accounts, so most common 
names, such as s3://mybucket, will not be available:

$ aws s3 mb s3://learninghadoop2

$ aws s3 ls

We can provision an EMR cluster with five m1.xlarge nodes using the  
following commands:

$ aws emr create-cluster --name "EMR cluster" \

--ami-version 3.2.0 \

--instance-type m1.xlarge  \

--instance-count 5 \

--log-uri s3://learninghadoop2/emr-logs

Where --ami-version is the ID of an Amazon Machine Image template  
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html),  
and --log-uri instructs EMR to collect logs and store them in the  
learninghadoop2 S3 bucket.

If you did not specify a default region when setting up the AWS CLI, 
then you will also have to add one to most EMR commands in the AWS 
CLI using the --region argument; for example, --region eu-west-1 
is run to use the EU Ireland region. You can find details of all available 
AWS regions at http://docs.aws.amazon.com/general/
latest/gr/rande.html.
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We can submit workflows by adding steps to a running cluster using the  
following command:

$ aws emr add-steps --cluster-id <cluster> --steps <steps> 

To terminate the cluster, use the following command line:

$ aws emr terminate-clusters --cluster-id <cluster>

In later chapters, we will show you how to add steps to execute MapReduce jobs  
and Pig scripts.

More information on using the AWS CLI can be found at http://docs.aws.
amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage.html.

Running the examples
The source code of all examples is available at https://github.com/
learninghadoop2/book-examples.

Gradle (http://www.gradle.org/) scripts and configurations are provided to 
compile most of the Java code. The gradlew script included with the example will 
bootstrap Gradle and use it to fetch dependencies and compile code.

JAR files can be created by invoking the jar task via a gradlew script, as follows:

./gradlew jar

Jobs are usually executed by submitting a JAR file using the hadoop jar command, 
as follows:

$ hadoop jar example.jar <MainClass> [-libjars $LIBJARS] arg1 arg2 … argN

The optional -libjars parameter specifies runtime third-party dependencies to  
ship to remote nodes.

Some of the frameworks we will work with, such as Apache 
Spark, come with their own build and package management 
tools. Additional information and resources will be provided 
for these particular cases.

The copyJar Gradle task can be used to download third-party dependencies into 
build/libjars/<example>/lib, as follows:

./gradlew copyJar
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For convenience, we provide a fatJar Gradle task that bundles the example  
classes and their dependencies into a single JAR file. Although this approach  
is discouraged in favor of using –libjar, it might come in handy when dealing  
with dependency issues.

The following command will generate build/libs/<example>-all.jar:

$ ./gradlew fatJar

Data processing with Hadoop
In the remaining chapters of this book, we will introduce the core components of  
the Hadoop ecosystem as well as a number of third-party tools and libraries that  
will make writing robust, distributed code an accessible and hopefully enjoyable 
task. While reading this book, you will learn how to collect, process, store, and 
extract information from large amounts of structured and unstructured data.

We will use a dataset generated from Twitter's (http://www.twitter.com) real-time 
fire hose. This approach will allow us to experiment with relatively small datasets 
locally and, once ready, scale the examples up to production-level data sizes.

Why Twitter?
Thanks to its programmatic APIs, Twitter provides an easy way to generate datasets 
of arbitrary size and inject them into our local- or cloud-based Hadoop clusters. 
Other than the sheer size, the dataset that we will use has a number of properties  
that fit several interesting data modeling and processing use cases.

Twitter data possesses the following properties:

•	 Unstructured: each status update is a text message that can contain 
references to media content such as URLs and images

•	 Structured: tweets are timestamped, sequential records
•	 Graph: relationships such as replies and mentions can be modeled as a 

network of interactions
•	 Geolocated: the location where a tweet was posted or where a user resides
•	 Real time: all data generated on Twitter  is available via a real-time fire hose

These properties will be reflected in the type of application that we can build  
with Hadoop. These include examples of sentiment analysis, social network,  
and trend analysis.
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Building our first dataset
Twitter's terms of service prohibit redistribution of user-generated data in any form; 
for this reason, we cannot make available a common dataset. Instead, we will use 
a Python script to programmatically access the platform and create a dump of user 
tweets collected from a live stream.

One service, multiple APIs
Twitter users share more than 200 million tweets, also known as status updates, a 
day. The platform offers access to this corpus of data via four types of APIs, each 
of which represents a facet of Twitter and aims at satisfying specific use cases, such 
as linking and interacting with twitter content from third-party sources (Twitter 
for Products), programmatic access to specific users' or sites' content (REST), search 
capabilities across users' or sites' timelines (Search), and access to all content created 
on the Twitter network in real time (Streaming).

The Streaming API allows direct access to the Twitter stream, tracking keywords, 
retrieving geotagged tweets from a certain region, and much more. In this book, we 
will make use of this API as a data source to illustrate both the batch and real-time 
capabilities of Hadoop. We will not, however, interact with the API itself; rather, we 
will make use of third-party libraries to offload chores such as authentication and 
connection management.

Anatomy of a Tweet
Each tweet object returned by a call to the real-time APIs is represented as a 
serialized JSON string that contains a set of attributes and metadata in addition to 
a textual message. This additional content includes a numerical ID that uniquely 
identifies the tweet, the location where the tweet was shared, the user who shared  
it (user object), whether it was republished by other users (retweeted) and how  
many times (retweet count), the machine-detected language of its text, whether the 
tweet was posted in reply to someone and, if so, the user and tweet IDs it replied to, 
and so on.

The structure of a Tweet, and any other object exposed by the API, is constantly 
evolving. An up-to-date reference can be found at https://dev.twitter.com/
docs/platform-objects/tweets.
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Twitter credentials
Twitter makes use of the OAuth protocol to authenticate and authorize access from 
third-party software to its platform.

The application obtains through an external channel, for instance a web form, the 
following pair of credentials:

•	 Consumer key
•	 Consumer secret

The consumer secret is never directly transmitted to the third party as it is used to 
sign each request.

The user authorizes the application to access the service via a three-way process that, 
once completed, grants the application a token consisting of the following:

•	 Access token
•	 Access secret

Similarly, to the consumer, the access secret is never directly transmitted to the third 
party, and it is used to sign each request.

In order to use the Streaming API, we will first need to register an application 
and grant it programmatic access to the system. If you require a new Twitter 
account, proceed to the signup page at https://twitter.com/signup, and fill 
in the required information. Once this step is completed, we need to create a 
sample application that will access the API on our behalf and grant it the proper 
authorization rights. We will do so using the web form found at https://dev.
twitter.com/apps.
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When creating a new app, we are asked to give it a name, a description, and a 
URL. The following screenshot shows the settings of a sample application named 
Learning Hadoop 2 Book Dataset. For the purpose of this book, we do not need  
to specify a valid URL, so we used a placeholder instead.

Once the form is filled in, we need to review and accept the terms of service and click 
on the Create Application button in the bottom-left corner of the page.

We are now presented with a page that summarizes our application details as seen 
in the following screenshot; the authentication and authorization credentials can be 
found under the OAuth Tool tab. 
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We are finally ready to generate our very first Twitter dataset.

Programmatic access with Python
In this section, we will use Python and the tweepy library, found at  
https://github.com/tweepy/tweepy, to collect Twitter's data. The stream.py  
file found in the ch1 directory of the book code archive instantiates a listener  
to the real-time fire hose, grabs a data sample, and echoes each tweet's text to 
standard output.

The tweepy library can be installed using either the easy_install or pip package 
managers or by cloning the repository at https://github.com/tweepy/tweepy.

On the CDH QuickStart VM, we can install tweepy using the following  
command line:

$ pip install tweepy
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When invoked with the -j parameter, the script will output a JSON tweet to 
standard output; -t extracts and prints the text field. We specify how many  
tweets to print with–n <num tweets>. When –n is not specified, the script  
will run indefinitely. Execution can be terminated by pressing Ctrl + C.

The script expects OAuth credentials to be stored as shell environment variables;  
the following credentials will have to be set in the terminal session from where 
stream.py will be executed.

$ export TWITTER_CONSUMER_KEY="your_consumer_key"

$ export TWITTER_CONSUMER_SECRET="your_consumer_secret"

$ export TWITTER_ACCESS_KEY="your_access_key"

$ export TWITTER_ACCESS_SECRET="your_access_secret"

Once the required dependency has been installed and the OAuth data in the shell 
environment has been set, we can run the program as follows:

$ python stream.py –t –n 1000 > tweets.txt

We are relying on Linux's shell I/O to redirect the output with the > operator  
of stream.py to a file called tweets.txt. If everything was executed correctly,  
you should see a wall of text, where each line is a tweet.

Notice that in this example, we did not make use of Hadoop at all. In the next 
chapters, we will show how to import a dataset generated from the Streaming  
API into Hadoop and analyze its content on the local cluster and Amazon EMR.

For now, let's take a look at the source code of stream.py, which can be found at 
https://github.com/learninghadoop2/book-examples/blob/master/ch1/
stream.py:

import tweepy
import os
import json
import argparse

consumer_key = os.environ['TWITTER_CONSUMER_KEY']
consumer_secret = os.environ['TWITTER_CONSUMER_SECRET']
access_key = os.environ['TWITTER_ACCESS_KEY']
access_secret = os.environ['TWITTER_ACCESS_SECRET']

class EchoStreamListener(tweepy.StreamListener):
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    def __init__(self, api, dump_json=False, numtweets=0):
        self.api = api
        self.dump_json = dump_json
        self.count = 0
        self.limit = int(numtweets)
        super(tweepy.StreamListener, self).__init__()

    def on_data(self, tweet):
        tweet_data = json.loads(tweet)
        if 'text' in tweet_data:
            if self.dump_json:
                print tweet.rstrip()
            else:
                print tweet_data['text'].encode("utf-8").rstrip()

            self.count = self.count+1
            return False if self.count == self.limit else True

    def on_error(self, status_code):
        return True

    def on_timeout(self):
        return True
…
if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()

    auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
    auth.set_access_token(access_key, access_secret)
    api = tweepy.API(auth)
    sapi = tweepy.streaming.Stream(
        auth, EchoStreamListener(
            api=api, 
            dump_json=args.json, 
            numtweets=args.numtweets))
    sapi.sample()

First, we import three dependencies: tweepy, and the os and json modules,  
which come with the Python interpreter version 2.6 or greater.

We then define a class, EchoStreamListener, that inherits and extends 
StreamListener from tweepy. As the name suggests, StreamListener listens  
for events and tweets being published on the real-time stream and performs  
actions accordingly.
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Whenever a new event is detected, it triggers a call to on_data(). In this method,  
we extract the text field from a tweet object and print it to standard output with 
UTF-8 encoding. Alternatively, if the script is invoked with -j, we print the whole 
JSON tweet. When the script is executed, we instantiate a tweepy.OAuthHandler 
object with the OAuth credentials that identify our Twitter account, and then we  
use this object to authenticate with the application access and secret key. We then  
use the auth object to create an instance of the tweepy.API class (api)

Upon successful authentication, we tell Python to listen for events on the real-time 
stream using EchoStreamListener.

An http GET request to the statuses/sample endpoint is performed by sample(). 
The request returns a random sample of all public statuses. 

Beware! By default, sample() will run indefinitely. Remember to 
explicitly terminate the method call by pressing Ctrl + C.

Summary
This chapter gave a whirlwind tour of where Hadoop came from, its evolution,  
and why the version 2 release is such a major milestone. We also described the 
emerging market in Hadoop distributions and how we will use a combination  
of local and cloud distributions in the book.

Finally, we described how to set up the needed software, accounts, and 
environments required in subsequent chapters and demonstrated how to  
pull data from the Twitter stream that we will use for examples.

With this background out of the way, we will now move on to a detailed 
examination of the storage layer within Hadoop.

www.allitebooks.com

http://www.allitebooks.org




Storage
After the overview of Hadoop in the previous chapter, we will now start looking at 
its various component parts in more detail. We will start at the conceptual bottom of 
the stack in this chapter: the means and mechanisms for storing data within Hadoop. 
In particular, we will discuss the following topics:

•	 Describe the architecture of the Hadoop Distributed File System (HDFS)
•	 Show what enhancements to HDFS have been made in Hadoop 2
•	 Explore how to access HDFS using command-line tools and the Java API
•	 Give a brief description of ZooKeeper—another (sort of) filesystem  

within Hadoop
•	 Survey considerations for storing data in Hadoop and the available  

file formats

In Chapter 3, Processing – MapReduce and Beyond, we will describe how  
Hadoop provides the framework to allow data to be processed.

The inner workings of HDFS
In Chapter 1, Introduction, we gave a very high-level overview of HDFS; we will 
now explore it in a little more detail. As mentioned in that chapter, HDFS can be 
viewed as a filesystem, though one with very specific performance characteristics 
and semantics. It's implemented with two main server processes: the NameNode 
and the DataNodes, configured in a master/slave setup. If you view the NameNode 
as holding all the filesystem metadata and the DataNodes as holding the actual 
filesystem data (blocks), then this is a good starting point. Every file placed onto 
HDFS will be split into multiple blocks that might reside on numerous DataNodes, 
and it's the NameNode that understands how these blocks can be combined to 
construct the files.
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Cluster startup
Let's explore the various responsibilities of these nodes and the communication 
between them by assuming we have an HDFS cluster that was previously shut  
down and then examining the startup behavior.

NameNode startup
We'll firstly consider the startup of the NameNode (though there is no actual 
ordering requirement for this and we are doing it for narrative reasons alone).  
The NameNode actually stores two types of data about the filesystem:

•	 The structure of the filesystem, that is, directory names, filenames, locations, 
and attributes

•	 The blocks that comprise each file on the filesystem

This data is stored in files that the NameNode reads at startup. Note that the 
NameNode does not persistently store the mapping of the blocks that are stored on 
particular DataNodes; we'll see how that information is communicated shortly.

Because the NameNode relies on this in-memory representation of the filesystem,  
it tends to have quite different hardware requirements compared to the DataNodes. 
We'll explore hardware selection in more detail in Chapter 10, Running a Hadoop 
Cluster; for now, just remember that the NameNode tends to be quite memory 
hungry. This is particularly true on very large clusters with many (millions or more) 
files, particularly if these files have very long names. This scaling limitation on  
the NameNode has also led to an additional Hadoop 2 feature that we will not 
explore in much detail: NameNode federation, whereby multiple NameNodes  
(or NameNode HA pairs) work collaboratively to provide the overall metadata  
for the full filesystem.

The main file written by the NameNode is called fsimage; this is the single most 
important piece of data in the entire cluster, as without it, the knowledge of how to 
reconstruct all the data blocks into the usable filesystem is lost. This file is read into 
memory and all future modifications to the filesystem are applied to this in-memory 
representation of the filesystem. The NameNode does not write out new versions 
of fsimage as new changes are applied after it is run; instead, it writes another file 
called edits, which is a list of the changes that have been made since the last version 
of fsimage was written.
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The NameNode startup process is to first read the fsimage file, then to read the 
edits file, and apply all the changes stored in the edits file to the in-memory copy 
of fsimage. It then writes to disk a new up-to-date version of the fsimage file and is 
ready to receive client requests.

DataNode startup
When the DataNodes start up, they first catalog the blocks for which they hold 
copies. Typically, these blocks will be written simply as files on the local DataNode 
filesystem. The DataNode will perform some block consistency checking and then 
report to the NameNode the list of blocks for which it has valid copies. This is how 
the NameNode constructs the final mapping it requires—by learning which blocks 
are stored on which DataNodes. Once the DataNode has registered itself with 
the NameNode, an ongoing series of heartbeat requests will be sent between the 
nodes to allow the NameNode to detect DataNodes that have shut down, become 
unreachable, or have newly entered the cluster.

Block replication
HDFS replicates each block onto multiple DataNodes; the default replication factor  
is 3, but this is configurable on a per-file level. HDFS can also be configured to be able 
to determine whether given DataNodes are in the same physical hardware rack or not. 
Given smart block placement and this knowledge of the cluster topology, HDFS will 
attempt to place the second replica on a different host but in the same equipment rack 
as the first and the third on a host outside the rack. In this way, the system can survive 
the failure of as much as a full rack of equipment and still have at least one live replica 
for each block. As we'll see in Chapter 3, Processing – MapReduce and Beyond, knowledge 
of block placement also allows Hadoop to schedule processing as near as possible to a 
replica of each block, which can greatly improve performance.

Remember that replication is a strategy for resilience but is not a backup mechanism; 
if you have data mastered in HDFS that is critical, then you need to consider backup 
or other approaches that give protection for errors, such as accidentally deleted files, 
against which replication will not defend.

When the NameNode starts up and is receiving the block reports from the 
DataNodes, it will remain in safe mode until a configurable threshold of blocks  
(the default is 99.9 percent) have been reported as live. While in safe mode,  
clients cannot make any modifications to the filesystem.
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Command-line access to the HDFS 
filesystem
Within the Hadoop distribution, there is a command-line utility called hdfs,  
which is the primary way to interact with the filesystem from the command line.  
Run this without any arguments to see the various subcommands available.  
There are many, though; several are used to do things like starting or stopping 
various HDFS components. The general form of the hdfs command is:

hdfs <sub-command> <command> [arguments]

The two main subcommands we will use in this book are:

•	 dfs: This is used for general filesystem access and manipulation,  
including reading/writing and accessing files and directories

•	 dfsadmin: This is used for administration and maintenance of the filesystem. 
We will not cover this command in detail, though. Have a look at the 
-report command, which gives a listing of the state of the filesystem  
and all DataNodes:

$ hdfs dfsadmin -report

Note that the dfs and dfsadmin commands can also be used with the 
main Hadoop command-line utility, for example, hadoop fs -ls 
/. This was the approach in earlier versions of Hadoop but is now 
deprecated in favor of the hdfs command.

Exploring the HDFS filesystem
Run the following to get a list of the available commands provided by the  
dfs subcommand:

$ hdfs dfs

As will be seen from the output of the preceding command, many of these look 
similar to standard Unix filesystem commands and, not surprisingly, they work  
as would be expected. In our test VM, we have a user account called cloudera. 
Using this user, we can list the root of the filesystem as follows:

$ hdfs dfs -ls /

Found 7 items
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drwxr-xr-x   - hbase hbase               0 2014-04-04 15:18 /hbase

drwxr-xr-x   - hdfs  supergroup          0 2014-10-21 13:16 /jar

drwxr-xr-x   - hdfs  supergroup          0 2014-10-15 15:26 /schema

drwxr-xr-x   - solr  solr                0 2014-04-04 15:16 /solr

drwxrwxrwt   - hdfs  supergroup          0 2014-11-12 11:29 /tmp

drwxr-xr-x   - hdfs  supergroup          0 2014-07-13 09:05 /user

drwxr-xr-x   - hdfs  supergroup          0 2014-04-04 15:15 /var

The output is very similar to the Unix ls command. The file attributes work the  
same as the user/group/world attributes on a Unix filesystem (including the t 
sticky bit as can be seen) plus details of the owner, group, and modification time of 
the directories. The column between the group name and the modified date is the 
size; this is 0 for directories but will have a value for files as we'll see in the code 
following the next information box:

If relative paths are used, they are taken from the home directory of the 
user. If there is no home directory, we can create it using the following 
commands:
$ sudo -u hdfs hdfs dfs –mkdir /user/cloudera

$ sudo -u hdfs hdfs dfs –chown cloudera:cloudera /user/
cloudera

The mkdir and chown steps require superuser privileges  
(sudo -u hdfs).

$ hdfs dfs -mkdir testdir

$ hdfs dfs -ls

Found 1 items

drwxr-xr-x   - cloudera cloudera     0 2014-11-13 11:21 testdir

Then, we can create a file, copy it to HDFS, and read its contents directly from its 
location on HDFS, as follows:

$ echo "Hello world" > testfile.txt

$ hdfs dfs -put testfile.txt testdir

Note that there is an older command called -copyFromLocal, which works in the 
same way as -put; you might see it in older documentation online. Now, run the 
following command and check the output:

$ hdfs dfs -ls testdir

Found 1 items

-rw-r--r--   3 cloudera cloudera         12 2014-11-13 11:21 testdir/
testfile.txt
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Note the new column between the file attributes and the owner; this is the replication 
factor of the file. Now, finally, run the following command:

$ hdfs dfs -tail testdir/testfile.txt

Hello world

Much of the rest of the dfs subcommands are pretty intuitive; play around.  
We'll explore snapshots and programmatic access to HDFS later in this chapter.

Protecting the filesystem metadata
Because the fsimage file is so critical to the filesystem, its loss is a catastrophic 
failure. In Hadoop 1, where the NameNode was a single point of failure, the best 
practice was to configure the NameNode to synchronously write the fsimage and 
edits files to both local storage plus at least one other location on a remote filesystem 
(often NFS). In the event of NameNode failure, a replacement NameNode could be 
started using this up-to-date copy of the filesystem metadata. The process would 
require non-trivial manual intervention, however, and would result in a period of 
complete cluster unavailability.

Secondary NameNode not to the rescue
The most unfortunately named component in all of Hadoop 1 was the Secondary 
NameNode, which, not unreasonably, many people expect to be some sort of backup 
or standby NameNode. It is not; instead, the Secondary NameNode was responsible 
only for periodically reading the latest version of the fsimage and edits file and 
creating a new up-to-date fsimage with the outstanding edits applied. On a busy 
cluster, this checkpoint could significantly speed up the restart of the NameNode by 
reducing the number of edits it had to apply before being able to service clients.

In Hadoop 2, the naming is more clear; there are Checkpoint nodes, which do the 
role previously performed by the Secondary NameNode, plus Backup NameNodes, 
which keep a local up-to-date copy of the filesystem metadata even though the 
process to promote a Backup node to be the primary NameNode is still a multistage 
manual process.

Hadoop 2 NameNode HA
In most production Hadoop 2 clusters, however, it makes more sense to use the full 
High Availability (HA) solution instead of relying on Checkpoint and Backup nodes. 
It is actually an error to try to combine NameNode HA with the Checkpoint and 
Backup node mechanisms.
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The core idea is for a pair (currently no more than two are supported) of NameNodes 
configured in an active/passive cluster. One NameNode acts as the live master that 
services all client requests, and the second remains ready to take over should the 
primary fail. In particular, Hadoop 2 HDFS enables this HA through two mechanisms:

•	 Providing a means for both NameNodes to have consistent views of  
the filesystem

•	 Providing a means for clients to always connect to the master NameNode

Keeping the HA NameNodes in sync
There are actually two mechanisms by which the active and standby NameNodes 
keep their views of the filesystem consistent; use of an NFS share or Quorum 
Journal Manager (QJM).

In the NFS case, there is an obvious requirement on an external remote NFS file 
share—note that as use of NFS was best practice in Hadoop 1 for a second copy of 
filesystem metadata many clusters already have one. If high availability is a concern, 
though it should be borne in mind that making NFS highly available often requires 
high-end and expensive hardware. In Hadoop 2, HA uses NFS; however, the NFS 
location becomes the primary location for the filesystem metadata. As the active 
NameNode writes all filesystem changes to the NFS share, the standby node detects 
these changes and updates its copy of the filesystem metadata accordingly.

The QJM mechanism uses an external service (the Journal Managers) instead of a 
filesystem. The Journal Manager cluster is an odd number of services (3, 5, and 7 are 
the most common) running on that number of hosts. All changes to the filesystem 
are submitted to the QJM service, and a change is treated as committed only when 
a majority of the QJM nodes have committed the change. The standby NameNode 
receives change updates from the QJM service and uses this information to keep its 
copy of the filesystem metadata up to date.

The QJM mechanism does not require additional hardware as the Checkpoint  
nodes are lightweight and can be co-located with other services. There is also no 
single point of failure in the model. Consequently, the QJM HA is usually the 
preferred option.

In either case, both in NFS-based HA and QJM-based HA, the DataNodes send block 
status reports to both NameNodes to ensure that both have up-to-date information 
of the mapping of blocks to DataNodes. Remember that this block assignment 
information is not held in the fsimage/edits data.
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Client configuration
The clients to the HDFS cluster remain mostly unaware of the fact that NameNode 
HA is being used. The configuration files need to include the details of both 
NameNodes, but the mechanisms for determining which is the active NameNode—
and when to switch to the standby—are fully encapsulated in the client libraries.  
The fundamental concept though is that instead of referring to an explicit 
NameNode host as in Hadoop 1, HDFS in Hadoop 2 identifies a nameservice ID for 
the NameNode within which multiple individual NameNodes (each with its own 
NameNode ID) are defined for HA. Note that the concept of nameservice ID is also 
used by NameNode federation, which we briefly mentioned earlier.

How a failover works
Failover can be either manual or automatic. A manual failover requires an 
administrator to trigger the switch that promotes the standby to the currently active 
NameNode. Though automatic failover has the greatest impact on maintaining 
system availability, there might be conditions in which this is not always desirable. 
Triggering a manual failover requires running only a few commands and, therefore, 
even in this mode, the failover is significantly easier than in the case of Hadoop 1 or 
with Hadoop 2 Backup nodes, where the transition to a new NameNode requires 
substantial manual effort.

Regardless of whether the failover is triggered manually or automatically, it has two 
main phases: confirmation that the previous master is no longer serving requests and 
the promotion of the standby to be the master.

The greatest risk in a failover is to have a period in which both NameNodes are 
servicing requests. In such a situation, it is possible that conflicting changes might be 
made to the filesystem on the two NameNodes or that they might become out of sync. 
Even though this should not be possible if the QJM is being used (it only ever accepts 
connections from a single client), out-of-date information might be served to clients, 
who might then try to make incorrect decisions based on this stale metadata. This is, of 
course, particularly likely if the previous master NameNode is behaving incorrectly in 
some way, which is why the need for the failover is identified in the first place.

To ensure only one NameNode is active at any time, a fencing mechanism is used 
to validate that the existing NameNode master has been shut down. The simplest 
included mechanism will try to ssh into the NameNode host and actively kill the 
process though a custom script can also be executed, so the mechanism is flexible. 
The failover will not continue until the fencing is successful and the system has 
confirmed that the previous master NameNode is now dead and has released any 
required resources.



Chapter 2

[ 41 ]

Once fencing succeeds, the standby NameNode becomes the master and will start 
writing to the NFS-mounted fsimage and edits logs if NFS is being used for HA  
or will become the single client to the QJM if that is the HA mechanism.

Before discussing automatic failover, we need a slight segue to introduce another 
Apache project that is used to enable this feature.

Apache ZooKeeper – a different type of 
filesystem
Within Hadoop, we will mostly talk about HDFS when discussing filesystems 
and data storage. But, inside almost all Hadoop 2 installations, there is another 
service that looks somewhat like a filesystem, but which provides significant 
capability crucial to the proper functioning of distributed systems. This service is 
Apache ZooKeeper (http://zookeeper.apache.org) and, as it is a key part of the 
implementation of HDFS HA, we will introduce it in this chapter. It is, however, also 
used by multiple other Hadoop components and related projects, so we will touch on 
it several more times throughout the book.

ZooKeeper started out as a subcomponent of HBase and was used to enable several 
operational capabilities of the service. When any complex distributed system is 
built, there are a series of activities that are almost always required and which are 
always difficult to get right. These activities include things such as handling shared 
locks, detecting component failure, and supporting leader election within a group of 
collaborating services. ZooKeeper was created as the coordination service that would 
provide a series of primitive operations upon which HBase could implement these 
types of operationally critical features. Note that ZooKeeper also takes inspiration 
from the Google Chubby system described at http://research.google.com/
archive/chubby-osdi06.pdf.

ZooKeeper runs as a cluster of instances referred to as an ensemble. The ensemble 
provides a data structure, which is somewhat analogous to a filesystem. Each 
location in the structure is called a ZNode and can have children as if it were a 
directory but can also have content as if it were a file. Note that ZooKeeper is not 
a suitable place to store very large amounts of data, and by default, the maximum 
amount of data in a ZNode is 1 MB. At any point in time, one server in the ensemble 
is the master and makes all decisions about client requests. There are very well-
defined rules around the responsibilities of the master, including that it has to ensure 
that a request is only committed when a majority of the ensemble have committed 
the change, and that once committed any conflicting change is rejected.

www.allitebooks.com
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You should have ZooKeeper installed within your Cloudera Virtual Machine.  
If not, use Cloudera Manager to install it as a single node on the host. In production 
systems, ZooKeeper has very specific semantics around absolute majority voting,  
so some of the logic only makes sense in a larger ensemble (3, 5, or 7 nodes are the 
most common sizes).

There is a command-line client to ZooKeeper called zookeeper-client in the 
Cloudera VM; note that in the vanilla ZooKeeper distribution it is called zkCli.sh.  
If you run it with no arguments, it will connect to the ZooKeeper server running on  
the local machine. From here, you can type help to get a list of commands.

The most immediately interesting commands will be create, ls, and get.  
As the names suggest, these create a ZNode, list the ZNodes at a particular point  
in the filesystem, and get the data stored at a particular ZNode. Here are some 
examples of usage.

•	 Create a ZNode with no data:
$ create /zk-test '' 

•	 Create a child of the first ZNode and store some text in it:
$ create /zk-test/child1 'sampledata'

•	 Retrieve the data associated with a particular ZNode:
$ get /zk-test/child1 

The client can also register a watcher on a given ZNode—this will raise an alert if the 
ZNode in question changes, either its data or children being modified.

This might not sound very useful, but ZNodes can additionally be created as both 
sequential and ephemeral nodes, and this is where the magic starts.

Implementing a distributed lock with 
sequential ZNodes
If a ZNode is created within the CLI with the -s option, it will be created as a 
sequential node. ZooKeeper will suffix the supplied name with a 10-digit integer 
guaranteed to be unique and greater than any other sequential children of the same 
ZNode. We can use this mechanism to create a distributed lock. ZooKeeper itself is 
not holding the actual lock; the client needs to understand what particular states in 
ZooKeeper mean in terms of their mapping to the application locks in question.
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If we create a (non-sequential) ZNode at /zk-lock, then any client wishing to hold 
the lock will create a sequential child node. For example, the create -s /zk-lock/
locknode command might create the node, /zk-lock/locknode-0000000001, in 
the first case, with increasing integer suffixes for subsequent calls. When a client 
creates a ZNode under the lock, it will then check if its sequential node has the 
lowest integer suffix. If it does, then it is treated as having the lock. If not, then it will 
need to wait until the node holding the lock is deleted. The client will usually put a 
watch on the node with the next lowest suffix and then be alerted when that node is 
deleted, indicating that it now holds the lock.

Implementing group membership and leader 
election using ephemeral ZNodes
Any ZooKeeper client will send heartbeats to the server throughout the session, 
showing that it is alive. For the ZNodes we have discussed until now, we can say 
that they are persistent and will survive across sessions. We can, however, create a 
ZNode as ephemeral, meaning it will disappear once the client that created it either 
disconnects or is detected as being dead by the ZooKeeper server. Within the CLI an 
ephemeral ZNode is created by adding the -e flag to the create command.

Ephemeral ZNodes are a good mechanism to implement group membership 
discovery within a distributed system. For any system where nodes can fail, join, and 
leave without notice, knowing which nodes are alive at any point in time is often 
a difficult task. Within ZooKeeper, we can provide the basis for such discovery by 
having each node create an ephemeral ZNode at a certain location in the ZooKeeper 
filesystem. The ZNodes can hold data about the service nodes, such as host name, 
IP address, port number, and so on. To get a list of live nodes, we can simply list the 
child nodes of the parent group ZNode. Because of the nature of ephemeral nodes, 
we can have confidence that the list of live nodes retrieved at any time is up to date.

If we have each service node create ZNode children that are not just ephemeral but 
also sequential, then we can also build a mechanism for leader election for services 
that need to have a single master node at any one time. The mechanism is the same 
for locks; the client service node creates the sequential and ephemeral ZNode and 
then checks if it has the lowest sequence number. If so, then it is the master. If not, 
then it will register a watcher on the next lowest sequence node to be alerted when it 
might become the master.
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Java API
The org.apache.zookeeper.ZooKeeper class is the main programmatic client to 
access a ZooKeeper ensemble. Refer to the javadocs for the full details, but the basic 
interface is relatively straightforward with obvious one-to-one correspondence to 
commands in the CLI. For example:

•	 create: is equivalent to CLI create
•	 getChildren: is equivalent to CLI ls
•	 getData: is equivalent to CLI get

Building blocks
As can be seen, ZooKeeper provides a small number of well-defined operations  
with very strong semantic guarantees that can be built into higher-level services, 
such as the locks, group membership, and leader election we discussed earlier.  
It's best to think of ZooKeeper as a toolkit of well-engineered and reliable functions 
critical to distributed systems that can be built upon without having to worry about 
the intricacies of their implementation. The provided ZooKeeper interface is quite 
low-level though, and there are a few higher-level interfaces emerging that provide 
more of the mapping of the low-level primitives into application-level logic. The 
Curator project (http://curator.apache.org/) is a good example of this.

ZooKeeper was used sparingly within Hadoop 1, but it's now quite ubiquitous. It's 
used by both MapReduce and HDFS for the high availability of their JobTracker and 
NameNode components. Hive and Impala, which we will explore later, use it to 
place locks on data tables that are being accessed by multiple concurrent jobs. Kafka, 
which we'll discuss in the context of Samza, uses ZooKeeper for node (broker in 
Kafka terminology), leader election, and state management.

Further reading
We have not described ZooKeeper in much detail and have completely omitted 
aspects such as its ability to apply quotas and access control lists to ZNodes within 
the filesystem and the mechanisms to build callbacks. Our purpose here was to give 
enough of the details so that you would have some idea of how it was being used 
within the Hadoop services we explore in this book. For more information, consult 
the project home page.
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Automatic NameNode failover
Now that we have introduced ZooKeeper, we can show how it is used to enable 
automatic NameNode failover.

Automatic NameNode failover introduces two new components to the system, a 
ZooKeeper quorum, and the ZooKeeper Failover Controller (ZKFC), which runs 
on each NameNode host. The ZKFC creates an ephemeral ZNode in ZooKeeper 
and holds this ZNode for as long as it detects the local NameNode to be alive and 
functioning correctly. It determines this by continuously sending simple health-
check requests to the NameNode, and if the NameNode fails to respond correctly 
over a short period of time the ZKFC will assume the NameNode has failed. If a 
NameNode machine crashes or otherwise fails, the ZKFC session in ZooKeeper will 
be closed and the ephemeral ZNode will also be automatically removed.

The ZKFC processes are also monitoring the ZNodes of the other NameNodes in the 
cluster. If the ZKFC on the standby NameNode host sees the existing master ZNode 
disappear, it will assume the master has failed and will attempt a failover. It does 
this by trying to acquire the lock for the NameNode (through the protocol described 
in the ZooKeeper section) and if successful will initiate a failover through the same 
fencing/promotion mechanism described earlier.

HDFS snapshots
We mentioned earlier that HDFS replication alone is not a suitable backup strategy. 
In the Hadoop 2 filesystem, snapshots have been added, which brings another level 
of data protection to HDFS.

Filesystem snapshots have been used for some time across a variety of technologies. 
The basic idea is that it becomes possible to view the exact state of the filesystem  
at particular points in time. This is achieved by taking a copy of the filesystem 
metadata at the point the snapshot is made and making this available to be  
viewed in the future.

As changes to the filesystem are made, any change that would affect the snapshot 
is treated specially. For example, if a file that exists in the snapshot is deleted then, 
even though it will be removed from the current state of the filesystem, its metadata 
will remain in the snapshot, and the blocks associated with its data will remain  
on the filesystem though not accessible through any view of the system other  
than the snapshot.
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An example might illustrate this point. Say, you have a filesystem containing the 
following files:

/data1 (5 blocks)
/data2 (10 blocks)

You take a snapshot and then delete the file /data2. If you view the current state of 
the filesystem, then only /data1 will be visible. If you examine the snapshot, you 
will see both files. Behind the scenes, all 15 blocks still exist, but only those associated 
with the un-deleted file /data1 are part of the current filesystem. The blocks for the 
file /data2 will be released only when the snapshot is itself removed—snapshots are 
read-only views.

Snapshots in Hadoop 2 can be applied at either the full filesystem level or only  
on particular paths. A path needs to be set as snapshottable, and note that you  
cannot have a path snapshottable if any of its children or parent paths are  
themselves snapshottable.

Let's take a simple example based on the directory we created earlier to illustrate  
the use of snapshots. The commands we are going to illustrate need to be executed 
with superuser privileges, which can be obtained with sudo -u hdfs.

First, use the dfsadmin subcommand of the hdfs CLI utility to enable snapshots  
of a directory, as follows:

$ sudo -u hdfs hdfs dfsadmin -allowSnapshot \

/user/cloudera/testdir

Allowing snapshot on testdir succeeded

Now, we create the snapshot and examine it; snapshots are available through the 
.snapshot subdirectory of the snapshottable directory. Note that the .snapshot 
directory will not be visible in a normal listing of the directory. Here's how we  
create a snapshot and examine it:

$ sudo -u hdfs hdfs dfs -createSnapshot \

/user/cloudera/testdir sn1

Created snapshot /user/cloudera/testdir/.snapshot/sn1

$ sudo -u hdfs hdfs dfs -ls \

/user/cloudera/testdir/.snapshot/sn1

Found 1 items -rw-r--r--   1 cloudera cloudera         12 2014-11-13 
11:21 /user/cloudera/testdir/.snapshot/sn1/testfile.txt
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Now, we remove the test file from the main directory and verify that it is now empty:

$ sudo -u hdfs hdfs dfs -rm \

/user/cloudera/testdir/testfile.txt

14/11/13 13:13:51 INFO fs.TrashPolicyDefault: Namenode trash 
configuration: Deletion interval = 1440 minutes, Emptier interval = 0 
minutes. Moved: 'hdfs://localhost.localdomain:8020/user/cloudera/testdir/
testfile.txt' to trash at: hdfs://localhost.localdomain:8020/user/hdfs/.
Trash/Current

$ hdfs dfs -ls /user/cloudera/testdir

$

Note the mention of trash directories; by default, HDFS will copy any deleted files 
into a .Trash directory in the user's home directory, which helps to defend against 
slipping fingers. These files can be removed through hdfs dfs -expunge or will be 
automatically purged in 7 days by default.

Now, we examine the snapshot where the now-deleted file is still available:

$ hdfs dfs -ls testdir/.snapshot/sn1

Found 1 items drwxr-xr-x   - cloudera cloudera          0 2014-11-13 
13:12 testdir/.snapshot/sn1

$ hdfs dfs -tail testdir/.snapshot/sn1/testfile.txt

Hello world

Then, we can delete the snapshot, freeing up any blocks held by it, as follows:

$ sudo -u hdfs hdfs dfs -deleteSnapshot \

/user/cloudera/testdir sn1 

$ hdfs dfs -ls testdir/.snapshot

$

As can be seen, the files within a snapshot are fully available to be read and copied, 
providing access to the historical state of the filesystem at the point when the 
snapshot was made. Each directory can have up to 65,535 snapshots, and HDFS 
manages snapshots in such a way that they are quite efficient in terms of impact on 
normal filesystem operations. They are a great mechanism to use prior to any activity 
that might have adverse effects, such as trying a new version of an application 
that accesses the filesystem. If the new software corrupts files, the old state of the 
directory can be restored. If after a period of validation the software is accepted,  
then the snapshot can instead be deleted.
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Hadoop filesystems
Until now, we referred to HDFS as the Hadoop filesystem. In reality, Hadoop has a 
rather abstract notion of filesystem. HDFS is only one of several implementations 
of the org.apache.hadoop.fs.FileSystem Java abstract class. A list of available 
filesystems can be found at https://hadoop.apache.org/docs/r2.5.0/api/
org/apache/hadoop/fs/FileSystem.html. The following table summarizes 
some of these filesystems, along with the corresponding URI scheme and Java 
implementation class.

Filesystem URI 
scheme

Java implementation

Local file org.apache.hadoop.fs.LocalFileSystem

HDFS hdfs org.apache.hadoop.hdfs.DistributedFileSystem

S3 (native) s3n org.apache.hadoop.fs.s3native.NativeS3FileSystem

S3 (block-
based)

s3 org.apache.hadoop.fs.s3.S3FileSystem

There exist two implementations of the S3 filesystem. Native—s3n—is used to 
read and write regular files. Data stored using s3n can be accessed by any tool and 
conversely can be used to read data generated by other S3 tools. s3n cannot handle 
files larger than 5TB or rename operations.

Much like HDFS, the block-based S3 filesystem stores files in blocks and requires an 
S3 bucket to be dedicated to the filesystem. Files stored in an S3 filesystem can be 
larger than 5 TB, but they will not be interoperable with other S3 tools. Additionally 
block-based S3 supports rename operations.

Hadoop interfaces
Hadoop is written in Java, and not surprisingly, all interaction with the system 
happens via the Java API. The command-line interface we used through the hdfs 
command in previous examples is a Java application that uses the FileSystem class 
to carry out input/output operations on the available filesystems.

Java FileSystem API
The Java API, provided by the org.apache.hadoop.fs package, exposes Apache 
Hadoop filesystems.

org.apache.hadoop.fs.FileSystem is the abstract class each filesystem implements 
and provides a general interface to interact with data in Hadoop. All code that uses 
HDFS should be written with the capability of handling a FileSystem object.
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Libhdfs
Libhdfs is a C library that, despite its name, can be used to access any Hadoop 
filesystem and not just HDFS. It is written using the Java Native Interface (JNI)  
and mimics the Java FileSystem class.

Thrift 
Apache Thrift (http://thrift.apache.org) is a framework for building  
cross-language software through data serialization and remote method invocation 
mechanisms. The Hadoop Thrift API, available in contrib, exposes Hadoop 
filesystems as a Thrift service. This interface makes it easy for non-Java code to  
access data stored in a Hadoop filesystem.

Other than the aforementioned interfaces, there exist other interfaces that allow 
access to Hadoop filesystems via HTTP and FTP—these for HDFS only—as well  
as WebDAV.

Managing and serializing data
Having a filesystem is all well and good, but we also need mechanisms to represent 
data and store it on the filesystems. We will explore some of these mechanisms now.

The Writable interface
It is useful, to us as developers, if we can manipulate higher-level data types and have 
Hadoop look after the processes required to serialize them into bytes to write to a file 
system and reconstruct from a stream of bytes when it is read from the file system.

The org.apache.hadoop.io package contains the Writable interface, which 
provides this mechanism and is specified as follows: 

   public interface Writable
   {
   void write(DataOutput out) throws IOException ;
   void readFields(DataInput in) throws IOException ;
   }

The main purpose of this interface is to provide mechanisms for the serialization  
and deserialization of data as it is passed across the network or read and written 
from the disk.
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When we explore processing frameworks on Hadoop in later chapters, we will 
often see instances where the requirement is for a data argument to be of the type 
Writable. If we use data structures that provide a suitable implementation of this 
interface, then the Hadoop machinery can automatically manage the serialization 
and deserialization of the data type without knowing anything about what it 
represents or how it is used.

Introducing the wrapper classes 
Fortunately, you don't have to start from scratch and build Writable variants  
of all the data types you will use. Hadoop provides classes that wrap the Java 
primitive types and implement the Writable interface. They are provided in the  
org.apache.hadoop.io package.

These classes are conceptually similar to the primitive wrapper classes, such as 
Integer and Long, found in java.lang. They hold a single primitive value that  
can be set either at construction or via a setter method. They are as follows:

•	 BooleanWritable

•	 ByteWritable

•	 DoubleWritable

•	 FloatWritable

•	 IntWritable

•	 LongWritable

•	 VIntWritable: a variable length integer type 
•	 VLongWritable: a variable length long type 
•	 There is also Text, which wraps java.lang.String.

Array wrapper classes 
Hadoop also provides some collection-based wrapper classes. These classes provide 
Writable wrappers for arrays of other Writable objects. For example, an instance 
could either hold an array of IntWritable or DoubleWritable, but not arrays of 
the raw int or float types. A specific subclass for the required Writable class will be 
required. They are as follows: 

ArrayWritable
TwoDArrayWritable
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The Comparable and WritableComparable 
interfaces
We were slightly inaccurate when we said that the wrapper classes 
implement Writable; they actually implement a composite interface called 
WritableComparable in the org.apache.hadoop.io package that combines 
Writable with the standard java.lang.Comparable interface:

   public interface WritableComparable extends Writable, Comparable
   {}

The need for Comparable will only become apparent when we explore  
MapReduce in the next chapter, but for now, just remember that the wrapper  
classes provide mechanisms for them to be both serialized and sorted by Hadoop  
or any of its frameworks.

Storing data
Until now, we introduced the architecture of HDFS and how to programmatically 
store and retrieve data using the command-line tools and the Java API. In the 
examples seen until now, we have implicitly assumed that our data was stored as a 
text file. In reality, some applications and datasets will require ad hoc data structures 
to hold the file's contents. Over the years, file formats have been created to address 
both the requirements of MapReduce processing—for instance, we want data to be 
splittable—and to satisfy the need to model both structured and unstructured  
data. Currently, a lot of focus has been dedicated to better capture the use  
cases of relational data storage and modeling. In the remainder of this chapter,  
we will introduce some of the popular file format choices available within the 
Hadoop ecosystem.

Serialization and Containers
When talking about file formats, we are assuming two types of scenarios,  
which are as follows:

•	 Serialization: we want to encode data structures generated and manipulated 
at processing time to a format we can store to a file, transmit, and at a later 
stage, retrieve and translate back for further manipulation

•	 Containers: once data is serialized to files, containers provide means to 
group multiple files together and add additional metadata
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Compression
When working with data, file compression can often lead to significant savings both 
in terms of the space necessary to store files as well as on the data I/O across the 
network and from/to local disks.

In broad terms, when using a processing framework, compression can occur at three 
points in the processing pipeline:

•	 input files to be processed
•	 output files that result after processing is completed
•	 intermediate/temporary files produced internally within the pipeline

When we add compression at any of these stages, we have an opportunity to 
dramatically reduce the amount of data to be read or written to the disk or across the 
network. This is particularly useful with frameworks such as MapReduce that can, 
for example, produce volumes of temporary data that are larger than either the input 
or output datasets.

Apache Hadoop comes with a number of compression codecs: gzip, bzip2, LZO, 
snappy—each with its own tradeoffs. Picking a codec is an educated choice that 
should consider both the kind of data being processed as well as the nature of the 
processing framework itself.

Other than the general space/time tradeoff, where the largest space savings come  
at the expense of compression and decompression speed (and vice versa), we need  
to take into account that data stored in HDFS will be accessed by parallel, distributed 
software; some of this software will also add its own particular requirements on file 
formats. MapReduce, for example, is most efficient on files that can be split into  
valid subfiles.

This can complicate decisions, such as the choice of whether to compress and  
which codec to use if so, as most compression codecs (such as gzip) do not support 
splittable files, whereas a few (such as LZO) do.

General-purpose file formats
The first class of file formats are those general-purpose ones that can be applied to any 
application domain and make no assumptions on data structure or access patterns.

•	 Text: the simplest approach to storing data on HDFS is to use flat files.  
Text files can be used both to hold unstructured data—a web page or a 
tweet—as well as structured data—a CSV file that is a few million rows 
long. Text files are splittable, though one needs to consider how to handle 
boundaries between multiple elements (for example, lines) in the file.
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•	 SequenceFile: a SequenceFile is a flat data structure consisting of  
binary key/value pairs, introduced to address specific requirements of 
MapReduce-based processing. It is still extensively used in MapReduce as  
an input/output format. As we will see in Chapter 3, Processing – MapReduce 
and Beyond, internally, the temporary outputs of maps are stored  
using SequenceFile.

SequenceFile provides Writer, Reader, and Sorter classes to write, read, and,  
sort data, respectively.

Depending on the compression mechanism in use, three variations of SequenceFile 
can be distinguished:

•	 Uncompressed key/value records.
•	 Record compressed key/value records. Only 'values' are compressed.
•	 Block compressed key/value records. Keys and values are collected in  

blocks of arbitrary size and compressed separately.

In each case, however, the SequenceFile remains splittable, which is one of its  
biggest strengths.

Column-oriented data formats
In the relational database world, column-oriented data stores organize and store 
tables based on the columns; generally speaking, the data for each column will 
be stored together. This is a significantly different approach compared to most 
relational DBMS that organize data per row. Column-oriented storage has significant 
performance advantages; for example, if a query needs to read only two columns 
from a very wide table containing hundreds of columns, then only the required 
column data files are accessed. A traditional row-oriented database would have to 
read all columns for each row for which data was required. This has the greatest 
impact on workloads where aggregate functions are computed over large numbers 
of similar items, such as with OLAP workloads typical of data warehouse systems.

In Chapter 7, Hadoop and SQL, we will see how Hadoop is becoming a SQL backend 
for the data warehouse world thanks to projects such as Apache Hive and Cloudera 
Impala. As part of the expansion into this domain, a number of file formats have been 
developed to account for both relational modeling and data warehousing needs.

RCFile, ORC, and Parquet are three state-of-the-art column-oriented file formats 
developed with these use cases in mind.
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RCFile
Row Columnar File (RCFile) was originally developed by Facebook to be used  
as the backend storage for their Hive data warehouse system that was the first 
mainstream SQL-on-Hadoop system available as open source.

RCFile aims to provide the following:

•	 fast data loading
•	 fast query processing
•	 efficient storage utilization
•	 adaptability to dynamic workloads 

More information on RCFile can be found at http://www.cse.ohio-state.edu/
hpcs/WWW/HTML/publications/abs11-4.html.

ORC
The Optimized Row Columnar file format (ORC) aims to combine the performance 
of the RCFile with the flexibility of Avro. It is primarily intended to work with 
Apache Hive and has been initially developed by Hortonworks to overcome the 
perceived limitations of other available file formats.

More details can be found at http://docs.hortonworks.com/HDPDocuments/
HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html.

Parquet
Parquet, found at http://parquet.incubator.apache.org, was originally a joint 
effort of Cloudera, Twitter, and Criteo, and now has been donated to the Apache 
Software Foundation. The goals of Parquet are to provide a modern, performant, 
columnar file format to be used with Cloudera Impala. As with Impala, Parquet 
has been inspired by the Dremel paper (http://research.google.com/pubs/
pub36632.html). It allows complex, nested data structures and allows efficient 
encoding on a per-column level.

Avro
Apache Avro (http://avro.apache.org) is a schema-oriented binary data 
serialization format and file container. Avro will be our preferred binary data format 
throughout this book. It is both splittable and compressible, making it an efficient 
format for data processing with frameworks such as MapReduce. 
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Numerous other projects also have built-in specific Avro support and integration, 
however, so it is very widely applicable. When data is stored in an Avro file, its 
schema—defined as a JSON object—is stored with it. A file can be later processed  
by a third party with no a priori notion of how data is encoded. This makes data  
self-describing and facilitates use with dynamic and scripting languages. The 
schema-on-read model also helps Avro records to be efficient to store as there is  
no need for the individual fields to be tagged.

In later chapters, you will see how these properties can make data life cycle 
management easier and allow non-trivial operations such as schema migrations.

Using the Java API
We'll now demonstrate the use of the Java API to parse Avro schemas, read and 
write Avro files, and use Avro's code generation facilities. Note that the format is 
intrinsically language independent; there are APIs for most languages, and files 
created by Java will seamlessly be read from any other language.

Avro schemas are described as JSON documents and represented by the  
org.apache.avro.Schema class. To demonstrate the API for manipulating Avro 
documents, we'll look ahead to an Avro specification we use for a Hive table in 
Chapter 7, Hadoop and SQL. The following code can be found at https://github.
com/learninghadoop2/book-examples/blob/master/ch2/src/main/java/com/
learninghadoop2/avro/AvroParse.java.

In the following code, we will use the Avro Java API to create an Avro file containing 
a tweet record and then re-read the file, using the schema in the file to extract the 
details of the stored records:

    public static void testGenericRecord() {
        try {
            Schema schema = new Schema.Parser()
   .parse(new File("tweets_avro.avsc"));
            GenericRecord tweet = new GenericData
   .Record(schema);

            tweet.put("text", "The generic tweet text");

            File file = new File("tweets.avro");
            DatumWriter<GenericRecord> datumWriter = 
               new GenericDatumWriter<>(schema);
            DataFileWriter<GenericRecord> fileWriter = 
               new DataFileWriter<>( datumWriter );
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            fileWriter.create(schema, file);
            fileWriter.append(tweet);
            fileWriter.close();

            DatumReader<GenericRecord> datumReader = 
                new GenericDatumReader<>(schema);
            DataFileReader<GenericRecord> fileReader = 
                new DataFileReader(file, datumReader);
            GenericRecord genericTweet = null;

            while (fileReader.hasNext()) {
                genericTweet = (GenericRecord) fileReader
                    .next(genericTweet);

                for (Schema.Field field : 
                    genericTweet.getSchema().getFields()) {
                    Object val = genericTweet.get(field.name());

                    if (val != null) {
                        System.out.println(val);
                    }
                }

            }
        } catch (IOException ie) {
            System.out.println("Error parsing or writing file.");
        }
    }

The tweets_avro.avsc schema, found at https://github.com/learninghadoop2/
book-examples/blob/master/ch2/tweets_avro.avsc, describes a tweet with 
multiple fields. To create an Avro object of this type, we first parse the schema file.  
We then use Avro's concept of a GenericRecord to build an Avro document that 
complies with this schema. In this case, we only set a single attribute—the tweet  
text itself.

To write this Avro file—containing a single object—we then use Avro's I/O 
capabilities. To read the file, we do not need to start with the schema, as we can 
extract this from the GenericRecord we read from the file. We then walk through 
the schema structure and dynamically process the document based on the discovered 
fields. This is particularly powerful, as it is the key enabler of clients remaining 
independent of the Avro schema and how it evolves over time.
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If we have the schema file in advance, however, we can use Avro code generation  
to create a customized class that makes manipulating Avro records much easier.  
To generate the code, we will use the compile class in the avro-tools.jar, passing 
it the name of the schema file and the desired output directory:

$ java -jar /opt/cloudera/parcels/CDH-5.0.0-1.cdh5.0.0.p0.47/lib/avro/
avro-tools.jar compile schema tweets_avro.avsc src/main/java

The class will be placed in a directory structure based on any namespace defined in 
the schema. Since we created this schema in the com.learninghadoop2.avrotables 
namespace, we see the following:

$ ls src/main/java/com/learninghadoop2/avrotables/tweets_avro.java

With this class, let's revisit the creation and the act of reading and writing Avro 
objects, as follows:

    public static void testGeneratedCode() {
        tweets_avro tweet = new tweets_avro();
        tweet.setText("The code generated tweet text");

        try {
            File file = new File("tweets.avro");
            DatumWriter<tweets_avro> datumWriter = 
                new SpecificDatumWriter<>(tweets_avro.class);
            DataFileWriter<tweets_avro> fileWriter = 
                new DataFileWriter<>(datumWriter);

            fileWriter.create(tweet.getSchema(), file);
            fileWriter.append(tweet);
            fileWriter.close();

            DatumReader<tweets_avro> datumReader = 
                new SpecificDatumReader<>(tweets_avro.class);
            DataFileReader<tweets_avro> fileReader = 
                new DataFileReader<>(file, datumReader);

            while (fileReader.hasNext()) {
                tweet = fileReader.next(tweet);
                System.out.println(tweet.getText());
            }
        } catch (IOException ie) {
            System.out.println("Error in parsing or writing 
                files.");
        }
    }
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Because we used code generation, we now use the Avro SpecificRecord 
mechanism alongside the generated class that represents the object in our domain 
model. Consequently, we can directly instantiate the object and access its attributes 
through familiar get/set methods.

Writing the file is similar to the action performed before, except that we use specific 
classes and also retrieve the schema directly from the tweet object when needed. 
Reading is similarly eased through the ability to create instances of a specific class 
and use get/set methods.

Summary
This chapter has given a whistle-stop tour through storage on a Hadoop cluster.  
In particular, we covered:

•	 The high-level architecture of HDFS, the main filesystem used in Hadoop
•	 How HDFS works under the covers and, in particular, its approach  

to reliability
•	 How Hadoop 2 has added significantly to HDFS, particularly in the form  

of NameNode HA and filesystem snapshots
•	 What ZooKeeper is and how it is used by Hadoop to enable features such  

as NameNode automatic failover
•	 An overview of the command-line tools used to access HDFS
•	 The API for filesystems in Hadoop and how at a code level HDFS is just  

one implementation of a more flexible filesystem abstraction
•	 How data can be serialized onto a Hadoop filesystem and some of the 

support provided in the core classes
•	 The various file formats available in which data is most frequently stored  

in Hadoop and some of their particular use cases

In the next chapter, we will look in detail at how Hadoop provides processing 
frameworks that can be used to process the data stored within it.



Processing – MapReduce 
and Beyond

In Hadoop 1, the platform had two clear components: HDFS for data storage and 
MapReduce for data processing. The previous chapter described the evolution of 
HDFS in Hadoop 2 and in this chapter we'll discuss data processing.

The picture with processing in Hadoop 2 has changed more significantly than has 
storage, and Hadoop now supports multiple processing models as first-class citizens. 
In this chapter we'll explore both MapReduce and other computational models in 
Hadoop2. In particular, we'll cover:

•	 What MapReduce is and the Java API required to write applications for it
•	 How MapReduce is implemented in practice
•	 How Hadoop reads data into and out of its processing jobs
•	 YARN, the Hadoop2 component that allows processing beyond MapReduce 

on the platform
•	 An introduction to several computational models implemented on YARN

MapReduce
MapReduce is the primary processing model supported in Hadoop 1. It follows 
a divide and conquer model for processing data made popular by a 2006 paper 
by Google (http://research.google.com/archive/mapreduce.html) and has 
foundations both in functional programming and database research. The name  
itself refers to two distinct steps applied to all input data, a map function and a 
reduce function. 
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Every MapReduce application is a sequence of jobs that build atop this very simple 
model. Sometimes, the overall application may require multiple jobs, where the 
output of the reduce stage from one is the input to the map stage of another, and 
sometimes there might be multiple map or reduce functions, but the core concepts 
remain the same.

We will introduce the MapReduce model by looking at the nature of the map and 
reduce functions and then describe the Java API required to build implementations 
of the functions. After showing some examples, we will walk through a MapReduce 
execution to give more insight into how the actual MapReduce framework executes 
code at runtime.

Learning the MapReduce model can be a little counter-intuitive; it's often difficult 
to appreciate how very simple functions can, when combined, provide very rich 
processing on enormous datasets. But it does work, trust us!

As we explore the nature of the map and reduce functions, think of them as being 
applied to a stream of records being retrieved from the source dataset. We'll describe 
how that happens later; for now, think of the source data being sliced into smaller 
chunks, each of which gets fed to a dedicated instance of the map function. Each 
record has the map function applied, producing a set of intermediary data. Records 
are retrieved from this temporary dataset and all associated records are fed together 
through the reduce function. The final output of the reduce function for all the sets 
of records is the overall result for the complete job.

From a functional perspective, MapReduce transforms data structures from one list 
of (key, value) pairs into another. During the Map phase, data is loaded from HDFS, 
and a function is applied in parallel to every input (key, value) and a new list of  
(key, value) pairs is the output:

map(k1,v1) -> list(k2,v2)

The framework then collects all pairs with the same key from all lists and groups 
them together, creating one group for each key. A Reduce function is applied in 
parallel to each group, which in turn produces a list of values:

reduce(k2, list (v2)) → k3,list(v3)
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The output is then written back to HDFS in the following manner:

Reduce

Map

Map and Reduce phases

Java API to MapReduce
The Java API to MapReduce is exposed by the org.apache.hadoop.mapreduce 
package. Writing a MapReduce program, at its core, is a matter of subclassing 
Hadoop-provided Mapper and Reducer base classes, and overriding the map()  
and reduce() methods with our own implementation.

The Mapper class
For our own Mapper implementations, we will subclass the Mapper base class and 
override the map() method, as follows:

   class Mapper<K1, V1, K2, V2>
   {
         void map(K1 key, V1 value Mapper.Context context)
               throws IOException, InterruptedException
         ...
   }

The class is defined in terms of the key/value input and output types, and  
then the map method takes an input key/value pair as its parameter. The other 
parameter is an instance of the Context class that provides various mechanisms  
to communicate with the Hadoop framework, one of which is to output the results  
of a map or reduce method.
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Notice that the map method only refers to a single instance of K1 and V1 key/value 
pairs. This is a critical aspect of the MapReduce paradigm in which you write classes 
that process single records, and the framework is responsible for all the work required 
to turn an enormous dataset into a stream of key/value pairs. You will never have to 
write map or reduce classes that try to deal with the full dataset. Hadoop also provides 
mechanisms through its InputFormat and OutputFormat classes that provide 
implementations of common file formats and likewise remove the need for having to 
write file parsers for any but custom file types.

There are three additional methods that sometimes may be required to  
be overridden:.

   protected void setup( Mapper.Context context)
         throws IOException, InterruptedException

This method is called once before any key/value pairs are presented to the map 
method. The default implementation does nothing:

   protected void cleanup( Mapper.Context context)
         throws IOException, InterruptedException

This method is called once after all key/value pairs have been presented to the map 
method. The default implementation does nothing:

   protected void run( Mapper.Context context)
         throws IOException, InterruptedException

This method controls the overall flow of task processing within a JVM. The default 
implementation calls the setup method once before repeatedly calling the map method 
for each key/value pair in the split and then finally calls the cleanup method.

The Reducer class
The Reducer base class works very similarly to the Mapper class and usually  
requires only subclasses to override a single reduce() method. Here is the  
cut-down class definition:

   public class Reducer<K2, V2, K3, V3>
   {
      void reduce(K2 key, Iterable<V2> values,
         Reducer.Context context)
           throws IOException, InterruptedException
      ...
   }
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Again, notice the class definition in terms of the broader data flow (the reduce 
method accepts K2/V2 as input and provides K3/V3 as output), while the actual 
reduce method takes only a single key and its associated list of values. The Context 
object is again the mechanism to output the result of the method.

This class also has the setup, run and cleanup methods with similar default 
implementations as with the Mapper class that can optionally be overridden:

protected void setup(Reducer.Context context)
throws IOException, InterruptedException

The setup() method is called once before any key/lists of values are presented to 
the reduce method. The default implementation does nothing:

protected void cleanup(Reducer.Context context)
throws IOException, InterruptedException

The cleanup() method is called once after all key/lists of values have been 
presented to the reduce method. The default implementation does nothing:

protected void run(Reducer.Context context)
throws IOException, InterruptedException

The run() method controls the overall flow of processing the task within the JVM. 
The default implementation calls the setup method before repeatedly and potentially 
concurrently calling the reduce method for as many key/value pairs provided to the 
Reducer class, and then finally calls the cleanup method.

The Driver class
The Driver class communicates with the Hadoop framework and specifies the 
configuration elements needed to run a MapReduce job. This involves aspects such 
as telling Hadoop which Mapper and Reducer classes to use, where to find the input 
data and in what format, and where to place the output data and how to format it.

The driver logic usually exists in the main method of the class written to encapsulate 
a MapReduce job. There is no default parent Driver class to subclass:

public class ExampleDriver extends Configured implements Tool
   {
   ...
   public static void run(String[] args) throws Exception
   {
      // Create a Configuration object that is used to set other 
options
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      Configuration conf = getConf();

      // Get command line arguments
      args = new GenericOptionsParser(conf, args)
      .getRemainingArgs();

      // Create the object representing the job
      Job job = new Job(conf, "ExampleJob");

      // Set the name of the main class in the job jarfile
      job.setJarByClass(ExampleDriver.class);
      // Set the mapper class
      job.setMapperClass(ExampleMapper.class);

      // Set the reducer class
      job.setReducerClass(ExampleReducer.class);

      // Set the types for the final output key and value
      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class);

      // Set input and output file paths
      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      // Execute the job and wait for it to complete
      System.exit(job.waitForCompletion(true) ? 0 : 1);
   }

   public static void main(String[] args) throws Exception
   {
      int exitCode = ToolRunner.run(new ExampleDriver(), args);
      System.exit(exitCode);
    }
}

In the preceding lines of code, org.apache.hadoop.util.Tool is an interface for 
handling command-line options. The actual handling is delegated to ToolRunner.
run, which runs Tool with the given Configuration used to get and set a job's 
configuration options. By subclassing org.apache.hadoop.conf.Configured, 
we can set the Configuration object directly from command-line options via 
GenericOptionsParser.
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Given our previous talk of jobs, it's not surprising that much of the setup involves 
operations on a job object. This includes setting the job name and specifying which 
classes are to be used for the mapper and reducer implementations.

Certain input/output configurations are set and, finally, the arguments passed to the 
main method are used to specify the input and output locations for the job. This is a 
very common model that you will see often.

There are a number of default values for configuration options, and we are implicitly 
using some of them in the preceding class. Most notably, we don't say anything 
about the format of the input files or how the output files are to be written. These are 
defined through the InputFormat and OutputFormat classes mentioned earlier; we 
will explore them in detail later. The default input and output formats are text files 
that suit our examples. There are multiple ways of expressing the format within text 
files in addition to particularly optimized binary formats.

A common model for less complex MapReduce jobs is to have the Mapper and 
Reducer classes as inner classes within the driver. This allows everything to be  
kept in a single file, which simplifies the code distribution.

Combiner
Hadoop allows the use of a combiner class to perform some early sorting of the 
output from the map method before it's retrieved by the reducer.

Much of Hadoop's design is predicated on reducing the expensive parts of a job that 
usually equate to disk and network I/O. The output of the mapper is often large; it's 
not infrequent to see it many times the size of the original input. Hadoop does allow 
configuration options to help reduce the impact of the reducers transferring such 
large chunks of data across the network. The combiner takes a different approach 
where it's possible to perform early aggregation to require less data to be transferred 
in the first place.

The combiner does not have its own interface; a combiner must have the same 
signature as the reducer, and hence also subclasses the Reduce class from the org.
apache.hadoop.mapreduce package. The effect of this is to basically perform a mini-
reduce on the mapper for the output destined for each reducer.

Hadoop does not guarantee whether the combiner will be executed. Sometimes, it 
may not be executed at all, while at other times it may be used once, twice, or more 
times depending on the size and number of output files generated by the mapper for 
each reducer.
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Partitioning
One of the implicit guarantees of the Reduce interface is that a single reducer  
will be given all the values associated with a given key. With multiple reduce  
tasks running across a cluster, each mapper output must be partitioned into the 
separate outputs destined for each reducer. These partitioned files are stored on  
the local node filesystem.

The number of reduce tasks across the cluster is not as dynamic as that of mappers, 
and indeed we can specify the value as part of our job submission. Hadoop therefore, 
knows how many reducers will be needed to complete the job, and from this, it 
knows into how many partitions the mapper output should be split.

The optional partition function
Within the org.apache.hadoop.mapreduce package is the Partitioner class,  
an abstract class with the following signature:

public abstract class Partitioner<Key, Value>
{
  public abstract int getPartition(Key key, Value value,  
    int numPartitions);
}

By default, Hadoop will use a strategy that hashes the output key to perform the 
partitioning. This functionality is provided by the HashPartitioner class within 
the org.apache.hadoop.mapreduce.lib.partition package, but it's necessary in 
some cases to provide a custom subclass of Partitioner with application-specific 
partitioning logic. Notice that the getPartition function takes the key, value, 
and number of partitions as parameters, any of which can be used by the custom 
partitioning logic.

A custom partitioning strategy would be particularly necessary if, for example, the 
data provided a very uneven distribution when the standard hash function was 
applied. Uneven partitioning can result in some tasks having to perform significantly 
more work than others, leading to much longer overall job execution time.
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Hadoop-provided mapper and reducer 
implementations
We don't always have to write our own Mapper and Reducer classes from scratch. 
Hadoop provides several common Mapper and Reducer implementations that can be 
used in our jobs. If we don't override any of the methods in the Mapper and Reducer 
classes, the default implementations are the identity Mapper and Reducer classes, 
which simply output the input unchanged.

The mappers are found at org.apache.hadoop.mapreduce.lib.mapper and 
include the following:

•	 InverseMapper: returns (value, key) as an output, that is, the input key is 
output as the value and the input value is output as the key

•	 TokenCounterMapper: counts the number of discrete tokens in each line  
of input

•	 IdentityMapper: implements the identity function, mapping inputs directly 
to outputs

The reducers are found at org.apache.hadoop.mapreduce.lib.reduce and 
currently include the following:

•	 IntSumReducer: outputs the sum of the list of integer values per key
•	 LongSumReducer: outputs the sum of the list of long values per key
•	 IdentityReducer: implements the identity function, mapping inputs 

directly to outputs

Sharing reference data
Occasionally, we might want to share data across tasks. For instance, if we need to 
perform a lookup operation on an ID-to-string translation table, we might want such 
a data source to be accessible by the mapper or reducer. A straightforward approach 
is to store the data we want to access on HDFS and use the FileSystem API to query 
it as part of the Map or Reduce steps.

Hadoop gives us an alternative mechanism to achieve the goal of sharing reference 
data across all tasks in the job, the Distributed Cache defined by the org.apache.
hadoop.mapreduce.filecache.DistributedCache class. This can be used to 
efficiently make available common read-only files that are used by the map or reduce 
tasks to all nodes. 



Processing – MapReduce and Beyond

[ 68 ]

The files can be text data as in this case, but could also be additional JARs, binary 
data, or archives; anything is possible. The files to be distributed are placed on HDFS 
and added to the DistributedCache within the job driver. Hadoop copies the files 
onto the local filesystem of each node prior to job execution, meaning every task has 
local access to the files.

An alternative is to bundle needed files into the job JAR submitted to Hadoop.  
This does tie the data to the job JAR, making it more difficult to share across jobs  
and requires the JAR to be rebuilt if the data changes.

Writing MapReduce programs
In this chapter, we will be focusing on batch workloads; given a set of historical data, 
we will look at properties of that dataset. In Chapter 4, Real-time Computation with 
Samza, and Chapter 5, Iterative Computation with Spark, we will show how a similar 
type of analysis can be performed over a stream of text collected in real time.

Getting started
In the following examples, we will assume a dataset generated by collecting 1,000 
tweets using the stream.py script, as shown in Chapter 1, Introduction:

$ python stream.py –t –n 1000 > tweets.txt

We can then copy the dataset into HDFS with:

$ hdfs dfs -put tweets.txt <destination>

Note that until now we have been working only with the text of tweets. 
In the remainder of this book, we'll extend stream.py to output 
additional tweet metadata in JSON format. Keep this in mind before 
dumping terabytes of messages with stream.py.

Our first MapReduce program will be the canonical WordCount example. A variation 
of this program will be used to determine trending topics. We will then analyze text 
associated with topics to determine whether it expresses a "positive" or "negative" 
sentiment. Finally, we will make use of a MapReduce pattern—ChainMapper—to pull 
things together and present a data pipeline to clean and prepare the textual data we'll 
feed to the trending topic and sentiment analysis model.
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Running the examples
The full source code of the examples described in this section can be found at 
https://github.com/learninghadoop2/book-examples/tree/master/ch3.

Before we run our job in Hadoop, we must compile our code and collect the required 
class files into a single JAR file that we will submit to the system. Using Gradle, you 
can build the needed JAR file with:

$ ./gradlew jar

Local cluster
Jobs are executed on Hadoop using the JAR option to the Hadoop command-line 
utility. To use this, we specify the name of the JAR file, the main class within it,  
and any arguments that will be passed to the main class, as shown in the  
following command:

$ hadoop jar <job jarfile> <main class> <argument 1> … <argument 2>

Elastic MapReduce
Recall from Chapter 1, Introduction, that Elastic MapReduce expects the job JAR file 
and its input data to be located in an S3 bucket and conversely will dump its output 
back into S3.

Be careful: this will cost money! For this example, we will use 
the smallest possible cluster configuration available for EMR,  
a single-node cluster

First of all, we will copy the tweet dataset and the list of positive and negative  
words to S3 using the aws command-line utility:

$ aws s3 put tweets.txt s3://<bucket>/input

$ aws s3 put job.jar s3://<bucket>

We can execute a job using the EMR command-line tool as follows by uploading  
the JAR file to s3://<bucket> and adding CUSTOM_JAR steps with the aws CLI:

$ aws emr add-steps --cluster-id <cluster-id> --steps \

Type=CUSTOM_JAR,\
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Name=CustomJAR,\

Jar=s3://<bucket>/job.jar,\

MainClass=<class name>,\

Args=arg1,arg2,…argN

Here, cluster-id is the ID of a running EMR cluster, <class name> is the fully 
qualified name of the main class, and arg1,arg2,…,argN are the job arguments.

WordCount, the Hello World of MapReduce
WordCount counts word occurrences in a dataset. The source code of this example 
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch3/src/main/java/com/learninghadoop2/mapreduce/WordCount.java. 
Consider the following block of code for example:

public class WordCount extends Configured implements Tool
{
    public static class WordCountMapper
            extends Mapper<Object, Text, Text, IntWritable>
    {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
        public void map(Object key, Text value, Context context
        ) throws IOException, InterruptedException {
            String[] words = value.toString().split(" ") ;
            for (String str: words)
            {
                word.set(str);
                context.write(word, one);
            }
        }
    }
    public static class WordCountReducer
            extends Reducer<Text,IntWritable,Text,IntWritable> {
        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
        ) throws IOException, InterruptedException {
            int total = 0;
            for (IntWritable val : values) {
                total++ ;
            }
            context.write(key, new IntWritable(total));
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        }
    }

    public int run(String[] args) throws Exception {
        Configuration conf = getConf();

        args = new GenericOptionsParser(conf, args)
        .getRemainingArgs();

        Job job = Job.getInstance(conf);

        job.setJarByClass(WordCount.class);
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new WordCount(), args);
        System.exit(exitCode);
    }
}

This is our first complete MapReduce job. Look at the structure, and you should 
recognize the elements we have previously discussed: the overall Job class 
with the driver configuration in its main method and the Mapper and Reducer 
implementations defined as static nested classes.

We'll do a more detailed walkthrough of the mechanics of MapReduce in the next 
section, but for now, let's look at the preceding code and think of how it realizes the 
key/value transformations we discussed earlier.

The input to the Mapper class is arguably the hardest to understand, as the key is 
not actually used. The job specifies TextInputFormat as the format of the input data 
and, by default, this delivers to the mapper data where the key is the byte offset in 
the file and the value is the text of that line. In reality, you may never actually see a 
mapper that uses that byte offset key, but it's provided.
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The mapper is executed once for each line of text in the input source, and every time 
it takes the line and breaks it into words. It then uses the Context object to output 
(more commonly known as emitting) each new key/value of the form (word, 1). 
These are our K2/V2 values.

We said before that the input to the reducer is a key and a corresponding list of values, 
and there is some magic that happens between the map and reduce methods to collect 
the values for each key that facilitates this—called the shuffle stage, which we won't 
describe right now. Hadoop executes the reducer once for each key, and the preceding 
reducer implementation simply counts the numbers in the Iterable object and gives 
output for each word in the form of (word, count). These are our K3/V3 values.

Take a look at the signatures of our mapper and reducer classes: the 
WordCountMapper class accepts IntWritable and Text as input and provides 
Text and IntWritable as output. The WordCountReducer class has Text and 
IntWritable accepted as both input and output. This is again quite a common 
pattern, where the map method performs an inversion on the key and values, and 
instead emits a series of data pairs on which the reducer performs aggregation.

The driver is more meaningful here, as we have real values for the parameters.  
We use arguments passed to the class to specify the input and output locations.

Run the job with:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.WordCount \

 twitter.txt output

Examine the output with a command such as the following; the actual filename 
might be different, so just look inside the directory called output in your home 
directory on HDFS:

$ hdfs dfs -cat output/part-r-00000

Word co-occurrences
Words occurring together are likely to be phrases and common—frequently 
occurring—phrases are likely to be important. In Natural Language Processing, a list 
of co-occurring terms is called an N-Gram. N-Grams are the foundation of several 
statistical methods for text analytics. We will give an example of the special case of 
an N-Gram—and a metric often encountered in analytics applications—composed of 
two terms (a bigram). 
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A naïve implementation in MapReduce would be an extension of WordCount that 
emits a multi-field key composed of two tab-separated words.

public class BiGramCount extends Configured implements Tool
{
   public static class BiGramMapper
           extends Mapper<Object, Text, Text, IntWritable> {
       private final static IntWritable one = new IntWritable(1);
       private Text word = new Text();

       public void map(Object key, Text value, Context context
       ) throws IOException, InterruptedException {
           String[] words = value.toString().split(" ");

           Text bigram = new Text();
           String prev = null;

           for (String s : words) {
               if (prev != null) {
                   bigram.set(prev + "\t+\t" + s);
                   context.write(bigram, one);
               }

               prev = s;
           }
       }
   }

    @Override
    public int run(String[] args) throws Exception {
         Configuration conf = getConf();

         args = new GenericOptionsParser(conf, args).
getRemainingArgs();
         Job job = Job.getInstance(conf);
         job.setJarByClass(BiGramCount.class);
         job.setMapperClass(BiGramMapper.class);
         job.setReducerClass(IntSumReducer.class);
         job.setOutputKeyClass(Text.class);
         job.setOutputValueClass(IntWritable.class);
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         FileInputFormat.addInputPath(job, new Path(args[0]));
         FileOutputFormat.setOutputPath(job, new Path(args[1]));
         return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new BiGramCount(), args);
        System.exit(exitCode);
    }
}

In this job, we replace WordCountReducer with org.apache.hadoop.mapreduce.
lib.reduce.IntSumReducer, which implements the same logic. The source code 
of this example can be found at https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/
BiGramCount.java.

Trending topics
The # symbol, called a hashtag, is used to mark keywords or topics in a tweet. It was 
created organically by Twitter users as a way to categorize messages. Twitter Search 
(found at https://twitter.com/search-home) popularized the use of hashtags 
as a method to connect and find content related to specific topics as well as the 
people talking about such topics. By counting the frequency with which a hashtag is 
mentioned over a given time period, we can determine which topics are trending in 
the social network.

public class HashTagCount extends Configured implements Tool
{
    public static class HashTagCountMapper
            extends Mapper<Object, Text, Text, IntWritable>
    {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        private String hashtagRegExp =
"(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)";
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        public void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            String[] words = value.toString().split(" ") ;

            for (String str: words)
            {
                if (str.matches(hashtagRegExp)) {
                    word.set(str);
                    context.write(word, one);
                }
            }
        }
    }

    public int run(String[] args) throws Exception {
        Configuration conf = getConf();

        args = new GenericOptionsParser(conf, args)
        .getRemainingArgs();

        Job job = Job.getInstance(conf);

        job.setJarByClass(HashTagCount.class);
        job.setMapperClass(HashTagCountMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new HashTagCount(), args);
        System.exit(exitCode);
    }
}
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As in the WordCount example, we tokenize text in the Mapper. We use a regular 
expression— hashtagRegExp—to detect the presence of a hashtag in Twitter's 
text and emit the hashtag and the number 1 when a hashtag is found. In the 
Reducer step, we then count the total number of emitted hashtag occurrences using 
IntSumReducer.

The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagCount.java.

This compiled class will be in the JAR file we built with Gradle earlier, so now we 
execute HashTagCount with the following command:

$ hadoop jar build/libs/mapreduce-example.jar \

com.learninghadoop2.mapreduce.HashTagCount twitter.txt output

Let's examine the output as before:

$ hdfs dfs -cat output/part-r-00000

You should see output similar to the following:

#whey         1

#willpower    1

#win          2

#winterblues  1

#winterstorm  1

#wipolitics   1

#women        6

#woodgrain    1

Each line is composed of a hashtag and the number of times it appears in the tweets 
dataset. As you can see, the MapReduce job orders results by key. If we want to 
find the most mentioned topics, we need to order the result set. The naïve approach 
would be to perform a total order of the aggregated values and selecting the top 10.

If the output dataset is small, we can pipe it to standard output and sort it using the 
sort utility:

$ hdfs dfs -cat output/part-r-00000 | sort -k2 -n -r | head -n 10
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Another solution would be to write another MapReduce job to traverse the whole 
result set and sort by value. When data becomes large, this type of global sorting can 
become quite expensive. In the following section, we will illustrate an efficient design 
pattern to sort aggregated data

The Top N pattern
In the Top N pattern, we keep data sorted in a local data structure. Each mapper 
calculates a list of the top N records in its split and sends its list to the reducer.  
A single reducer task finds the top N global records.

We will apply this design pattern to implement a TopTenHashTag job that finds the 
top ten topics in our dataset. The job takes as input the output data generated by 
HashTagCount and returns a list of the ten most frequently mentioned hashtags.

In TopTenMapper we use TreeMap to keep a sorted list—in ascending order—of 
hashtags. The key of this map is the number of occurrences; the value is a  
tab-separated string of hashtags and their frequency. In map(), for each value, we 
update the topN map. When topN has more than ten items, we remove the smallest:

public static class TopTenMapper extends Mapper<Object, Text, 
  NullWritable, Text> {

  private TreeMap<Integer, Text> topN = new TreeMap<Integer, Text>();
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
  public void map(Object key, Text value, Context context) throws 
    IOException, InterruptedException {

  String[] words = value.toString().split("\t") ;
  if (words.length < 2) {
    return;
  }
  topN.put(Integer.parseInt(words[1]), new Text(value));
  if (topN.size() > 10) {
    topN.remove(topN.firstKey());
  }
}
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       @Override
       protected void cleanup(Context context) throws IOException,  
         InterruptedException {
            for (Text t : topN.values()) {
                context.write(NullWritable.get(), t);
            }
        }
    }

We don't emit any key/value in the map function. We implement a cleanup() 
method that, once the mapper has consumed all its input, emits the (hashtag, count) 
values in topN. We use a NullWritable key because we want all values to be 
associated with the same key so that we can perform a global order over all mappers' 
top n lists. This implies that our job will execute only one reducer.

The reducer implements logic similar to what we have in map(). We instantiate 
TreeMap and use it to keep an ordered list of the top 10 values:

    public static class TopTenReducer extends
            Reducer<NullWritable, Text, NullWritable, Text> {

        private TreeMap<Integer, Text> topN = new TreeMap<Integer,  
          Text>();

        @Override
        public void reduce(NullWritable key, Iterable<Text> values,  
          Context context) throws IOException, InterruptedException {
            for (Text value : values) {
                String[] words = value.toString().split("\t") ;

                topN.put(Integer.parseInt(words[1]),
                    new Text(value));

                if (topN.size() > 10) {
                    topN.remove(topN.firstKey());
                }
            }
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            for (Text word : topN.descendingMap().values()) {
                context.write(NullWritable.get(), word);
            }
        }
    }

Finally, we traverse topN in descending order to generate the list of trending topics.

Note that in this implementation, we override hashtags that have a 
frequency value already present in TreeMap when calling topN.
put(). Depending on the use case, it's advised to use a different 
data structure—such as the ones offered by the Guava library 
(https://code.google.com/p/guava-libraries/)—or 
adjust the updating strategy.

In the driver, we enforce a single reducer by setting job.setNumReduceTasks(1):

$ hadoop jar build/libs/mapreduce-example.jar \

com.learninghadoop2.mapreduce.TopTenHashTag \

output/part-r-00000 \

top-ten

We can inspect the top ten to list trending topics:

$ hdfs dfs -cat top-ten/part-r-00000

#Stalker48      150

#gameinsight    55

#12M    52

#KCA    46

#LORDJASONJEROME        29

#Valencia       19

#LesAnges6      16

#VoteLuan       15

#hadoop2    12

#Gameinsight    11

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/TopTenHashTag.java.
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Sentiment of hashtags
The process of identifying subjective information in a data source is commonly 
referred to as sentiment analysis. In the previous example, we show how to detect 
trending topics in a social network; we'll now analyze the text shared around those 
topics to determine whether they express a mostly positive or negative sentiment.

A list of positive and negative words for the English language—a so-called opinion 
lexicon—can be found at http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-
English.rar.

These resources—and many more—have been collected by Prof. Bing 
Liu's group at the University of Illinois at Chicago and have been used, 
among others, in Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion 
Observer: Analyzing and Comparing Opinions on the Web." Proceedings  
of the 14th International World Wide Web conference (WWW-2005),  
May 10-14, 2005, Chiba, Japan.

In this example, we'll present a bag-of-words method that, although simplistic in 
nature, can be used as a baseline to mine opinion in text. For each tweet and each 
hashtag, we will count the number of times a positive or a negative word appears 
and normalize this count by the text length.

The bag-of-words model is an approach used in Natural 
Language Processing and Information Retrieval to represent 
textual documents. In this model, text is represented as the set or 
bag—with multiplicity—of its words, disregarding grammar and 
morphological properties and even word order.

Uncompress the archive and place the word lists into HDFS with the following 
command line:

$ hdfs dfs –put positive-words.txt <destination>

$ hdfs dfs –put negative-words.txt <destination>

In the Mapper class, we define two objects that will hold the word lists: 
positiveWords and negativeWords as Set<String>:

private Set<String> positiveWords =  null;
private Set<String> negativeWords = null;
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We override the default setup() method of the Mapper so that a list of positive and 
negative words—specified by two configuration properties: job.positivewords.
path and job.negativewords.path—is read from HDFS using the filesystem API 
we discussed in the previous chapter. We could have also used DistributedCache to 
share this data across the cluster. The helper method, parseWordsList, reads a list of 
word lists, strips out comments, and loads words into HashSet<String>:

private HashSet<String> parseWordsList(FileSystem fs, Path 
wordsListPath)
{
    HashSet<String> words = new HashSet<String>();
    try {

        if (fs.exists(wordsListPath)) {
            FSDataInputStream fi = fs.open(wordsListPath);

            BufferedReader br =
new BufferedReader(new InputStreamReader(fi));
            String line = null;
            while ((line = br.readLine()) != null) {
                if (line.length() > 0 && !line.startsWith(BEGIN_
COMMENT)) {
                    words.add(line);
                }
            }

            fi.close();
        }
    }
    catch (IOException e) {
        e.printStackTrace();
    }

    return words;
}  

In the Mapper step, we emit for each hashtag in the tweet the overall sentiment of 
the tweet (simply the positive word count minus the negative word count) and the 
length of the tweet. 
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We'll use these in the reducer to calculate an overall sentiment ratio weighted by  
the length of the tweets to estimate the sentiment expressed by a tweet on a hashtag, 
as follows:

        public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
            String[] words = value.toString().split(" ") ;
            Integer positiveCount = new Integer(0);
            Integer negativeCount = new Integer(0);

            Integer wordsCount = new Integer(0);

            for (String str: words)
            {
                if (str.matches(HASHTAG_PATTERN)) {
                    hashtags.add(str);
                }

                if (positiveWords.contains(str)) {
                    positiveCount += 1;
                } else if (negativeWords.contains(str)) {
                    negativeCount += 1;
                }

                wordsCount += 1;
            }

            Integer sentimentDifference = 0;
            if (wordsCount > 0) {
              sentimentDifference = positiveCount - negativeCount;
            }

            String stats ;
            for (String hashtag : hashtags) {
                word.set(hashtag);
                stats = String.format("%d %d", sentimentDifference,  
                  wordsCount);
                context.write(word, new Text(stats));
            }
        }
    }
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In the Reducer step, we add together the sentiment scores given to each instance of 
the hashtag and divide by the total size of all the tweets in which it occurred:

public static class HashTagSentimentReducer
            extends Reducer<Text,Text,Text,DoubleWritable> {
        public void reduce(Text key, Iterable<Text> values,
                           Context context
        ) throws IOException, InterruptedException {
            double totalDifference = 0;
            double totalWords = 0;
            for (Text val : values) {
                String[] parts = val.toString().split(" ") ;
                totalDifference += Double.parseDouble(parts[0]) ;
                totalWords += Double.parseDouble(parts[1]) ;
            }
            context.write(key,
new DoubleWritable(totalDifference/totalWords));
        }
    }

The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagSentiment.java.

After running the preceding code, execute HashTagSentiment with the  
following command:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.HashTagSentiment twitter.txt output-sentiment <positive words> 
<negative words>

You can examine the output with the following command:

$ hdfs dfs -cat output-sentiment/part-r-00000

You should see an output similar to the following:

#1068   0.011861271213042056

#10YearsOfLove  0.012285135487494233

#11     0.011941109121333999

#12     0.011938693593171155

#12F    0.012339242266249566

#12M    0.011864286953783268

#12MCalleEnPazYaTeVasNicolas
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In the preceding output, each line is composed of a hashtag and the sentiment 
polarity associated with it. This number is a heuristic that tells us whether a  
hashtag is associated mostly with positive (polarity > 0) or negative (polarity < 0) 
sentiment and the magnitude of such a sentiment—the higher or lower the number, 
the stronger the sentiment.

Text cleanup using chain mapper
In the examples presented until now, we ignored a key step of essentially every 
application built around text processing, which is the normalization and cleanup  
of the input data. Three common components of this normalization step are:

•	 Changing the letter case to either lower or upper
•	 Removal of stopwords
•	 Stemming

In this section, we will show how the ChainMapper class—found at org.apache.
hadoop.mapreduce.lib.chain.ChainMapper—allows us to sequentially combine  
a series of Mappers to put together as the first step of a data cleanup pipeline. 
Mappers are added to the configured job using the following:

ChainMapper.addMapper(
JobConf job,
Class<? extends Mapper<K1,V1,K2,V2>> klass,
Class<? extends K1> inputKeyClass,
Class<? extends V1> inputValueClass,
Class<? extends K2> outputKeyClass,
Class<? extends V2> outputValueClass, JobConf mapperConf)

The static method, addMapper, requires the following arguments to be passed:

•	 job: JobConf to add the Mapper class
•	 class: Mapper class to add
•	 inputKeyClass: mapper input key class
•	 inputValueClass: mapper input value class
•	 outputKeyClass: mapper output key class
•	 outputValueClass: mapper output value class
•	 mapperConf: a JobConf with the configuration for the Mapper class
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In this example, we will take care of the first item listed above: before computing the 
sentiment of each tweet, we will convert to lowercase each word present in its text. 
This will allow us to more accurately ascertain the sentiment of hashtags by ignoring 
differences in capitalization across tweets.

First of all, we define a new Mapper—LowerCaseMapper—whose map() function 
calls Java String's toLowerCase() method on its input value and emits the lower 
cased text:

public class LowerCaseMapper extends Mapper<LongWritable, Text, 
IntWritable, Text> {
    private Text lowercased = new Text();
    public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
        lowercased.set(value.toString().toLowerCase());
        context.write(new IntWritable(1), lowercased);
    }
}

In the HashTagSentimentChain driver, we configure the Job object so that both 
Mappers will be chained together and executed:

public class HashTagSentimentChain
extends Configured implements Tool
{

    public int run(String[] args) throws Exception {
        Configuration conf = getConf();
        args = new GenericOptionsParser(conf,args). 
            getRemainingArgs();

        // location (on hdfs) of the positive words list
        conf.set("job.positivewords.path", args[2]);
        conf.set("job.negativewords.path", args[3]);

        Job job = Job.getInstance(conf);
        job.setJarByClass(HashTagSentimentChain.class);

        Configuration lowerCaseMapperConf = new  
            Configuration(false);
        ChainMapper.addMapper(job,
                LowerCaseMapper.class,
                LongWritable.class, Text.class,
                IntWritable.class, Text.class,



Processing – MapReduce and Beyond

[ 86 ]

                lowerCaseMapperConf);

        Configuration hashTagSentimentConf = new  
            Configuration(false);
        ChainMapper.addMapper(job,
                HashTagSentiment.HashTagSentimentMapper.class,
                IntWritable.class,
                Text.class, Text.class,
                Text.class,
                hashTagSentimentConf);
        job.setReducerClass(HashTagSentiment. 
            HashTagSentimentReducer.class);

        job.setInputFormatClass(TextInputFormat.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));

        job.setOutputFormatClass(TextOutputFormat.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        return (job.waitForCompletion(true) ? 0 : 1);
    }

    public static void main (String[] args) throws Exception {
        int exitCode = ToolRunner.run(
new HashTagSentimentChain(), args);
        System.exit(exitCode);
    }
}

The LowerCaseMapper and HashTagSentimentMapper classes are invoked  
in a pipeline, where the output of the first becomes the input of the second.  
The output of the last Mapper will be written to the task's output. An immediate 
benefit of this design is a reduction of disk I/O operations. Mappers do not need to 
be aware that they are chained. It's therefore possible to reuse specialized Mappers 
that can be combined within a single task. Note that this pattern assumes that all 
Mappers—and the Reduce—use matching output and input (key, value) pairs.  
No casting or conversion is done by ChainMapper itself.

Finally, notice that the addMapper call for the last mapper in the chain specifies  
the output key/value classes applicable to the whole mapper pipeline when used  
as a composite.
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The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagSentimentChain.java.

Execute HashTagSentimentChain with the command:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.HashTagSentimentChain twitter.txt output <positive words> 
<negative words>

You should see an output similar to the previous example. Notice that this time,  
the hashtag in each line is lowercased.

Walking through a run of a MapReduce 
job
To explore the relationship between mapper and reducer in more detail, and to 
expose some of Hadoop's inner workings, we'll now go through how a MapReduce 
job is executed. This applies to both MapReduce in Hadoop 1 and Hadoop 2 even 
though the latter is implemented very differently using YARN, which we'll discuss 
later in this chapter. Additional information on the services described in this section, 
as well as suggestions for troubleshooting MapReduce applications, can be found in 
Chapter 10, Running a Hadoop Cluster.

Startup
The driver is the only piece of code that runs on our local machine, and the call to 
Job.waitForCompletion() starts the communication with the JobTracker, which 
is the master node in the MapReduce system. The JobTracker is responsible for all 
aspects of job scheduling and execution, so it becomes our primary interface when 
performing any task related to job management.

To share resources on the cluster the JobTracker can use one of several scheduling 
approaches to handle incoming jobs. The general model is to have a number of 
queues to which jobs can be submitted along with policies to assign resources  
across the queues. The most commonly used implementations for these policies  
are Capacity and Fair Scheduler.

The JobTracker communicates with the NameNode on our behalf and manages all 
interactions relating to the data stored on HDFS.
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Splitting the input
The first of these interactions happens when the JobTracker looks at the input data 
and determines how to assign it to map tasks. Recall that HDFS files are usually split 
into blocks of at least 64 MB and the JobTracker will assign each block to one map 
task. Our WordCount example, of course, used a trivial amount of data that was well 
within a single block. Picture a much larger input file measured in terabytes, and 
the split model makes more sense. Each segment of the file—or split, in MapReduce 
terminology—is processed uniquely by one map task. Once it has computed the 
splits, the JobTracker places them and the JAR file containing the Mapper and 
Reducer classes into a job-specific directory on HDFS, whose path will be passed to 
each task as it starts.

Task assignment
The TaskTracker service is responsible for allocating resources, executing and 
tracking the status of map and reduce tasks running on a node. Once the JobTracker 
has determined how many map tasks will be needed, it looks at the number of 
hosts in the cluster, how many TaskTrackers are working, and how many map 
tasks each can concurrently execute (a user-definable configuration variable). The 
JobTracker also looks to see where the various input data blocks are located across 
the cluster and attempts to define an execution plan that maximizes the cases when 
the TaskTracker processes a split/block located on the same physical host, or, 
failing that, it processes at least one in the same hardware rack. This data locality 
optimization is a huge reason behind Hadoop's ability to efficiently process such 
large datasets. Recall also that, by default, each block is replicated across three 
different hosts, so the likelihood of producing a task/host plan that sees most blocks 
processed locally is higher than it might seem at first.

Task startup
Each TaskTracker then starts up a separate Java virtual machine to execute the tasks. 
This does add a startup time penalty, but it isolates the TaskTracker from problems 
caused by misbehaving map or reduce tasks, and it can be configured to be shared 
between subsequently executed tasks.

If the cluster has enough capacity to execute all the map tasks at once, they will all 
be started and given a reference to the split they are to process and the job JAR file. 
If there are more tasks than the cluster capacity, the JobTracker will keep a queue of 
pending tasks and assign them to nodes as they complete their initially assigned  
map tasks.
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We are now ready to see the executed data of map tasks. If all this sounds like  
a lot of work, it is; it explains why, when running any MapReduce job, there is  
always a non-trivial amount of time taken as the system gets started and performs  
all these steps.

Ongoing JobTracker monitoring
The JobTracker doesn't just stop work now and wait for the TaskTrackers to  
execute all the mappers and reducers. It's constantly exchanging heartbeat and  
status messages with the TaskTrackers, looking for evidence of progress or problems. 
It also collects metrics from the tasks throughout the job execution, some provided 
by Hadoop and others specified by the developer of the map and reduce tasks, 
although we don't use any in this example.

Mapper input
The driver class specifies the format and structure of the input file using 
TextInputFormat, and from this, Hadoop knows to treat this as text with the  
byte offset as the key and line contents as the value. Assume that our dataset 
contains the following text:

This is a test
Yes it is

The two invocations of the mapper will therefore be given the following output:

1 This is a test
2 Yes it is

Mapper execution
The key/value pairs received by the mapper are the offset in the file of the line 
and the line contents, respectively, because of how the job is configured. Our 
implementation of the map method in WordCountMapper discards the key, as 
we do not care where each line occurred in the file, and splits the provided 
value into words using the split method on the standard Java String class. Note 
that better tokenization could be provided by use of regular expressions or the 
StringTokenizer class, but for our purposes this simple approach will suffice. For 
each individual word, the mapper then emits a key comprised of the actual word 
itself, and a value of 1.
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Mapper output and reducer input
The output of the mapper is a series of pairs of the form (word, 1); in our example, 
these will be:

(This,1), (is, 1), (a, 1), (test, 1), (Yes, 1), (it, 1), (is, 1)

These output pairs from the mapper are not passed directly to the reducer.  
Between mapping and reducing is the shuffle stage, where much of the magic  
of MapReduce occurs.

Reducer input
The reducer TaskTracker receives updates from the JobTracker that tell it which 
nodes in the cluster hold map output partitions that need to be processed by its local 
reduce task. It then retrieves these from the various nodes and merges them into a 
single file that will be fed to the reduce task.

Reducer execution
Our WordCountReducer class is very simple; for each word, it simply counts the 
number of elements in the array and emits the final (word, count) output for each 
word. For our invocation of WordCount on our sample input, all but one word has 
only one value in the list of values; is has two.

Reducer output
The final set of reducer output for our example is therefore:

(This, 1), (is, 2), (a, 1), (test, 1), (Yes, 1), (it, 1)

This data will be output to partition files within the output directory specified in 
the driver that will be formatted using the specified OutputFormat implementation. 
Each reduce task writes to a single file with the filename part-r-nnnnn, where 
nnnnn starts at 00000 and is incremented.

Shutdown
Once all tasks have completed successfully, the JobTracker outputs the final state of 
the job to the client, along with the final aggregates of some of the more important 
counters that it has been aggregating along the way. The full job and task history is 
available in the log directory on each node or, more accessibly, via the JobTracker 
web UI; point your browser to port 50030 on the JobTracker node.



Chapter 3

[ 91 ]

Input/Output
We have talked about files being broken into splits as part of the job startup and the 
data in a split being sent to the mapper implementation. However, this overlooks 
two aspects: how the data is stored in the file and how the individual keys and 
values are passed to the mapper structure.

InputFormat and RecordReader
Hadoop has the concept of InputFormat for the first of these responsibilities.  
The InputFormat abstract class in the org.apache.hadoop.mapreduce package 
provides two methods as shown in the following code:

public abstract class InputFormat<K, V>
{
    public abstract List<InputSplit> getSplits( JobContext context);
    RecordReader<K, V> createRecordReader(InputSplit split,
        TaskAttemptContext context) ;
}

These methods display the two responsibilities of the InputFormat class:

•	 To provide details on how to divide an input file into the splits required for 
map processing

•	 To create a RecordReader that will generate the series of key/value pairs 
from a split

The RecordReader class is also an abstract class within the org.apache.hadoop.
mapreduce package:

public abstract class RecordReader<Key, Value> implements Closeable
{
  public abstract void initialize(InputSplit split,
    TaskAttemptContext  context);
  public abstract boolean nextKeyValue()
    throws IOException, InterruptedException;
  public abstract Key getCurrentKey()
    throws IOException, InterruptedException;
  public abstract Value getCurrentValue()
    throws IOException, InterruptedException;
  public abstract float getProgress()
    throws IOException, InterruptedException;
  public abstract close() throws IOException;
}
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A RecordReader instance is created for each split and calls getNextKeyValue to 
return a Boolean indicating whether another key/value pair is available, and, if so, 
the getKey and getValue methods are used to access the key and value respectively.

The combination of the InputFormat and RecordReader classes therefore are all 
that is required to bridge between any kind of input data and the key/value pairs 
required by MapReduce.

Hadoop-provided InputFormat
There are some Hadoop-provided InputFormat implementations within the  
org.apache.hadoop.mapreduce.lib.input package:

•	 FileInputFormat: is an abstract base class that can be the parent of any  
file-based input.

•	 SequenceFileInputFormat: is an efficient binary file format that will be 
discussed in an upcoming section.

•	 TextInputFormat: is used for plain text files.
•	 KeyValueTextInputFormat: is used for plain text files. Each line is divided 

into key and value parts by a separator byte.

Note that input formats are not restricted to reading from files; FileInputFormat 
is itself a subclass of InputFormat. It's possible to have Hadoop use data that is 
not based on files as the input to MapReduce jobs; common sources are relational 
databases or column-oriented databases, such as Amazon DynamoDB or HBase.

Hadoop-provided RecordReader
Hadoop provides a few common RecordReader implementations, which are also 
present within the org.apache.hadoop.mapreduce.lib.input package:

•	 LineRecordReader: implementation is the default RecordReader class 
for text files that presents the byte offset in the file as the key and the line 
contents as the value

•	 SequenceFileRecordReader: implementation reads the key/value from the 
binary SequenceFile container
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OutputFormat and RecordWriter
There is a similar pattern for writing the output of a job coordinated by subclasses 
of OutputFormat and RecordWriter from the org.apache.hadoop.mapreduce 
package. We won't explore these in any detail here, but the general approach is 
similar, although OutputFormat does have a more involved API, as it has methods 
for tasks such as validation of the output specification.

It's this step that causes a job to fail if a specified output directory already exists.  
If you wanted different behavior, it would require a subclass of OutputFormat  
that overrides this method.

Hadoop-provided OutputFormat
The following output formats are provided in the org.apache.hadoop.mapreduce.
output package:

•	 FileOutputFormat: is the base class for all file-based OutputFormats
•	 NullOutputFormat: is a dummy implementation that discards the output 

and writes nothing to the file
•	 SequenceFileOutputFormat: writes to the binary SequenceFile format
•	 TextOutputFormat: writes a plain text file

Note that these classes define their required RecordWriter implementations as static 
nested classes, so there are no separately provided RecordWriter implementations.

Sequence files
The SequenceFile class within the org.apache.hadoop.io package provides an 
efficient binary file format that is often useful as an output from a MapReduce job. 
This is especially true if the output from the job is processed as the input of another 
job. Sequence files have several advantages, as follows:

•	 As binary files, they are intrinsically more compact than text files
•	 They additionally support optional compression, which can also be applied 

at different levels, that is, they compress each record or an entire split
•	 They can be split and processed in parallel
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This last characteristic is important as most binary formats—particularly those 
that are compressed or encrypted—cannot be split and must be read as a single 
linear stream of data. Using such files as input to a MapReduce job means that a 
single mapper will be used to process the entire file, causing a potentially large 
performance hit. In such a situation, it's preferable to use a splittable format, such 
as SequenceFile, or, if you cannot avoid receiving the file in another format, do a 
preprocessing step that converts it into a splittable format. This will be a tradeoff, 
as the conversion will take time, but in many cases—especially with complex map 
tasks—this will be outweighed by the time saved through increased parallelism.

YARN
YARN started out as part of the MapReduce v2 (MRv2) initiative but is now an 
independent sub-project within Hadoop (that is, it's at the same level as MapReduce). 
It grew out of a realization that MapReduce in Hadoop 1 conflated two related but 
distinct responsibilities: resource management and application execution.

Although it has enabled previously unimagined processing on enormous datasets, 
the MapReduce model at a conceptual level has an impact on performance and 
scalability. Implicit in the MapReduce model is that any application can only be 
composed of a series of largely linear MapReduce jobs, each of which follows a 
model of one or more maps followed by one or more reduces. This model is a great 
fit for some applications, but not all. In particular, it's a poor fit for workloads 
requiring very low-latency response times; the MapReduce startup times and 
sometimes lengthy job chains often greatly exceed the tolerance for a user-facing 
process. The model has also been found to be very inefficient for jobs that would 
more naturally be represented as a directed acyclic graph (DAG) of tasks where the 
nodes on the graph are processing steps, and the edges are data flows. If analyzed 
and executed as a DAG then the application may be performed in one step with high 
parallelism across the processing steps, but when viewed through the MapReduce 
lens, the result is usually an inefficient series of interdependent MapReduce jobs.

Numerous projects have built different types of processing atop MapReduce and 
although many are wildly successful (Apache Hive and Pig are two standout 
examples), the close coupling of MapReduce as a processing paradigm with the job 
scheduling mechanism in Hadoop1 made it very difficult for any new project to 
tailor either of these areas to its specific needs.

The result is Yet Another Resource Negotiator (YARN), which provides a highly 
capable job scheduling mechanism within Hadoop and the well-defined interfaces 
for different processing models to be implemented within it.
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YARN architecture
To understand how YARN works, it's important to stop thinking about MapReduce 
and how it processes data. YARN itself says nothing about the nature of the 
applications that run atop it, rather it's focused on providing the machinery for 
the scheduling and execution of these jobs. As we'll see, YARN is just as capable of 
hosting long-running stream processing or low-latency, user-facing workloads as it 
is capable of hosting batch-processing workloads, such as MapReduce.

The components of YARN
YARN is comprised of two main components, the ResourceManager (RM), 
which manages resources across the cluster, and the NodeManager (NM), which 
runs on each host and manages the resources on the individual machine. The 
ResourceManager and NodeManagers deal with the scheduling and management of 
containers, an abstract notion of the memory, CPU, and I/O that will be dedicated 
to run a particular piece of application code. Using MapReduce as an example, 
when running atop YARN, the JobTracker and each TaskTracker all run in their own 
dedicated containers. Note though, that in YARN, each MapReduce job has its own 
dedicated JobTracker; there is no single instance that manages all jobs, as in Hadoop 1.

YARN itself is responsible only for the scheduling of tasks across the cluster; all 
notions of application-level progress, monitoring, and fault tolerance are handled 
in the application code. This is a very explicit design decision; by making YARN 
as independent as possible, it has a very clear set of responsibilities and does not 
artificially constrain the types of application that can be implemented on YARN.

As the arbiter of all cluster resources, YARN has the ability to efficiently manage 
the cluster as a whole and not focus on application-level resource requirements. It 
has a pluggable scheduling policy with the provided implementations similar to 
the existing Hadoop Capacity and Fair Scheduler. YARN also treats all application 
code as inherently untrusted and all application management and control tasks are 
performed in user space.

Anatomy of a YARN application
A submitted YARN application has two components: the ApplicationMaster (AM), 
which coordinates the overall application flow, and the specification of the code 
that will run on the worker nodes. For MapReduce atop YARN, the JobTracker 
implements the ApplicationMaster functionality and TaskTrackers are the 
application custom code deployed on the worker nodes.
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As mentioned in the previous section, the responsibilities of application 
management, progress monitoring and fault tolerance are pushed to the application 
level in YARN. It's the ApplicationMaster that performs these tasks; YARN itself says 
nothing about the mechanisms for communication between the ApplicationMaster 
and the code running in the worker containers, for example.

This genericity allows YARN applications to not be tied to Java classes. The 
ApplicationManager can instead request a NodeManager to execute shell scripts, 
native applications, or any other type of processing that is made available on  
each node.

Life cycle of a YARN application
As with MapReduce jobs in Hadoop 1, YARN applications are submitted to the 
cluster by a client. When a YARN application is started, the client first calls the 
ResourceManager (more specifically the ApplicationManager  portion of the 
ResourceManager) and requests the initial container within which to execute 
the ApplicationMaster. In most cases the ApplicationMaster will run from a 
hosted container in the cluster, just as will the rest of the application code. The 
ApplicationManager communicates with the other main component of the 
ResourceManager, the scheduler itself, which has the ultimate responsibility  
of managing all resources across the cluster.

The ApplicationMaster starts up in the provided container, registers itself with the 
ResourceManager, and begins the process of negotiating its required resources. 
The ApplicationMaster communicates with the ResourceManager and requests the 
containers it requires. The specification of the containers requested can also include 
additional information, such as desired placement within the cluster and concrete 
resource requirements, such as a particular amount of memory or CPU.

The ResourceManager provides the ApplicationMaster with the details of the 
containers it has been allocated, and the ApplicationMaster then communicates  
with the NodeManagers to start the application-specific task for each container.  
This is done by providing the NodeManager with the specification of the application 
to be executed, which as mentioned may be a JAR file, a script, a path to a local 
executable, or anything else that the NodeManager can invoke. Each NodeManager 
instantiates the container for the application code and starts the application based  
on the provided specification.
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Fault tolerance and monitoring
From this point onward, the behavior is largely application specific. YARN will 
not manage application progress but does perform a number of ongoing tasks. The 
AMLivelinessMonitor within the ResourceManager receives heartbeats from all 
ApplicationMasters, and if it determines that an ApplicationMaster has failed or 
stopped working, it will de-register the failed ApplicationMaster and release all its 
allocated containers. The ResourceManager will then reschedule the application a 
configurable number of times.

Alongside this process the NMLivelinessMonitor within the ResourceManager 
receives heartbeats from the NodeManagers and keeps track of the health of each 
NodeManager in the cluster. Similar to the monitoring of ApplicationMaster health, 
a NodeManager will be marked as dead after receiving no heartbeats for a default  
time of 10 minutes, after which all allocated containers are marked as dead, and  
the node is excluded from future resource allocation.

At the same time, the NodeManager will actively monitor resource utilization of 
each allocated container and, for those resources not constrained by hard limits,  
will kill containers that exceed their resource allocation.

At a higher level, the YARN scheduler will always be looking to maximize the  
cluster utilization within the constraints of the sharing policy being employed. As  
with Hadoop 1, this will allow low-priority applications to use more cluster resources 
if contention is low, but the scheduler will then preempt these additional containers  
(that is, request them to be terminated) if higher-priority applications are submitted.

The rest of the responsibility for application-level fault tolerance and progress 
monitoring must be implemented within the application code. For MapReduce on 
YARN, for example, all the management of task scheduling and retries is provided  
at the application level and is not in any way delivered by YARN.

Thinking in layers
These last statements may suggest that writing applications to run on YARN is a lot 
of work, and this is true. The YARN API is quite low-level and likely intimidating  
for most developers who just want to run some processing tasks on their data. If  
all we had was YARN and every new Hadoop application had to have its own  
ApplicationMaster implemented, then YARN would not look quite as interesting  
as it does.
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What makes the picture better is that, in general, the requirement isn't to implement 
each and every application on YARN, but instead use it for a smaller number of 
processing frameworks that provide much friendlier interfaces to be implemented. 
The first of these was MapReduce; with it hosted on YARN, the developer writes to 
the usual map and reduce interfaces and is largely unaware of the YARN mechanics.

But on the same cluster, another developer may be running a job that uses a different 
framework with significantly different processing characteristics, and YARN will 
manage both at the same time.

We'll give some more detail on several YARN processing models currently available, 
but they run the gamut from batch processing through low-latency queries to stream 
and graph processing and beyond.

As the YARN experience grows, however, there are a number of initiatives to 
make the development of these processing frameworks easier. On the one hand 
there are higher-level interfaces, such as Cloudera Kitten (https://github.com/
cloudera/kitten) or Apache Twill (http://twill.incubator.apache.org/), 
that give friendlier abstractions above the YARN APIs. Perhaps a more significant 
development model, though, is the emergence of frameworks that provide richer  
tools to more easily construct applications with a common general class of 
performance characteristics.

Execution models
We have mentioned different YARN applications having distinct processing 
characteristics, but an emerging pattern has seen their execution models in general 
being a source of differentiation. By this, we refer to how the YARN application life 
cycle is managed, and we identify three main types: per-job application, per-session, 
and always-on.

Batch processing, such as MapReduce on YARN, sees the life cycle of the MapReduce 
framework tied to that of the submitted application. If we submit a MapReduce job, 
then the JobTracker and TaskTrackers that execute it are created specifically for the 
job and are terminated when the job completes. This works well for batch, but if we 
wish to provide a more interactive model then the startup overhead of establishing 
the YARN application and all its resource allocations will severely impact the user 
experience if every command issued suffers this penalty. A more interactive, or 
session-based, life cycle will see the YARN application start and then be available 
to service a number of submitted requests/commands. The YARN application 
terminates only when the session is exited.
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Finally, we have the concept of long-running applications that process continuous 
data streams independent of any interactive input. For these it makes most sense 
for the YARN application to start and continuously process data that is retrieved 
through some external mechanism. The application will only exit when explicitly 
shut down or if an abnormal situation occurs.

YARN in the real world – Computation 
beyond MapReduce
The previous discussions have been a little abstract, so in this section, we will  
explore a few existing YARN applications to see just how they use the framework 
and how they provide a breadth of processing capability. Of particular interest is 
how the YARN frameworks take very different approaches to resource management, 
I/O pipelining, and fault tolerance.

The problem with MapReduce
Until now, we have looked at MapReduce in terms of API. MapReduce in Hadoop is 
more than that; up until Hadoop 2, it was the default execution engine for a number of 
tools, among which were Hive and Pig, which we will discuss in more detail later in 
this book. We have seen how MapReduce applications are, in fact, chains of jobs. This 
very aspect is one the biggest pain points and constraining factors of the frameworks. 
MapReduce checkpoints data to HDFS for intra-process communication:

HDFS

HDFS

Job 1
Map

Reduce

Job 2

Job 3

Job 4

Map

Reduce

Map

Reduce

Map

Reduce

A chain of MapReduce jobs
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At the end of each reduce phase, output is written to disk so that it can then be 
loaded by the mappers of the next job and used as its input. This I/O overhead 
introduces latency, especially when we have applications that require multiple 
passes on a dataset (hence multiple writes). Unfortunately, this type of iterative 
computation is at the core of many analytics applications.

Apache Tez and Apache Spark are two frameworks that address this problem 
by generalizing the MapReduce paradigm. We will briefly discuss them in the 
remainder of this section, next to Apache Samza, a framework that takes an  
entirely different approach to real-time processing.

Tez
Tez (http://tez.apache.org) is a low-level API and execution engine  
focused on providing low-latency processing, and is being used as the basis of  
the latest evolution of Hive, Pig and several other frameworks that implement 
standard join, filter, merge and group operations. Tez is an implementation 
and evolution of a programming model presented by Microsoft in the 2009 
Dryad paper (http://research.microsoft.com/en-us/projects/dryad/). 
Tez is a generalization of MapReduce as dataflow that strives to achieve fast, 
interactive computing by pipelining I/O operations over a queue for intra-process 
communication. This avoids the expensive writes to disks that affect MapReduce. 
The API provides primitives expressing dependencies between jobs as a DAG. The 
full DAG is then submitted to a planner that can optimize the execution flow. The 
same application depicted in the preceding diagram would be executed in Tez as a 
single job, with I/O pipelined from reducers to reducers without HDFS writes and 
subsequent reads by mappers. An example can be seen in the following diagram:.

Job

Map

Reduce

Reduce

Reduce

Reduce

Map

A Tez DAG is a generalization of MapReduce
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The canonical WordCount example can be found at https://github.com/apache/
incubator-tez/blob/master/tez-mapreduce-examples/src/main/java/org/
apache/tez/mapreduce/examples/WordCount.java.

DAG dag = new DAG("WordCount");
dag.addVertex(tokenizerVertex)
.addVertex(summerVertex)
.addEdge(new Edge(tokenizerVertex, summerVertex,
edgeConf.createDefaultEdgeProperty()));

Even though the graph topology dag can be expressed with a few lines of code, the 
boilerplate required to execute the job is considerable. This code handles many of the 
low-level scheduling and execution responsibilities, including fault tolerance. When 
Tez detects a failed task, it walks back up the processing graph to find the point from 
which to re-execute the failed tasks.

Hive-on-tez
Hive 0.13 is the first high-profile project to use Tez as its execution engine.  
We'll discuss Hive in a lot more detail in Chapter 7, Hadoop and SQL, but for  
now we will just touch on how it's implemented on YARN.

Hive (http://hive.apache.org) is an engine for querying data stored on HDFS 
through standard SQL syntax. It has been enormously successful, as this type of 
capability greatly reduces the barriers to start analytic exploration of data in Hadoop.

In Hadoop 1, Hive had no choice, but to implement its SQL statements as a series 
of MapReduce jobs. When SQL is submitted to Hive, it generates the required 
MapReduce jobs behind the scenes and executes these on the cluster. This approach 
has two main drawbacks: there is a non-trivial startup penalty each time, and the 
constrained MapReduce model means that seemingly simple SQL statements are 
often translated into a lengthy series of multiple dependent MapReduce jobs. This 
is an example of the type of processing more naturally conceptualized as a DAG of 
tasks, as described earlier in this chapter.

Although some benefits are achieved when Hive executes within MapReduce, within 
YARN, the major benefits come in Hive 0.13 when the project is fully re-implemented 
using Tez. By exploiting the Tez APIs, which are focused on providing low-latency 
processing, Hive gains even more performance while making its codebase simpler.

Since Tez treats its workloads as the DAGs which provide a much better fit to 
translated SQL queries, Hive on Tez can perform any SQL statement as a single job 
with maximized parallelism.
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Tez helps Hive support interactive queries by providing an always-running service 
instead of requiring the application to be instantiated from scratch for each SQL 
submission. This is important because, even though queries that process huge data 
volumes will simply take some time, the goal is for Hive to become less of a batch 
tool and instead move to be as much of an interactive tool as possible.

Apache Spark
Spark (http://spark.apache.org) is a processing framework that excels at iterative 
and near real-time processing. Created at UC Berkeley, it has been donated as an 
Apache project. Spark provides an abstraction that allows data in Hadoop to be 
viewed as a distributed data structure upon which a series of operations can be 
performed. The framework is based on the same concepts Tez draws inspiration from 
(Dryad), but excels with jobs that allow data to be held and processed in memory, and 
it can very efficiently schedule processing on the in-memory dataset across the cluster. 
Spark automatically controls replication of data across the cluster, ensuring that each 
element of the distributed dataset is held in memory on at least two machines, and 
provides replication-based fault tolerance somewhat akin to HDFS.

Spark started as a standalone system, but was ported to also run on YARN as of its 0.8 
release. Spark is particularly interesting because, although its classic processing model 
is batch-oriented, with the Spark shell it provides an interactive frontend and with 
the Spark Streaming sub-project also offers near real-time processing of data streams. 
Spark is different things to different people; it's both a high-level API and an execution 
engine. At the time of writing, ports of Hive and Pig to Spark are in progress.

Apache Samza
Samza (http://samza.apache.org) is a stream-processing framework developed 
at LinkedIn and donated to the Apache Software Foundation. Samza processes 
conceptually infinite streams of data, which are seen by the application as a series  
of messages.

Samza currently integrates most tightly with Apache Kafka (http://kafka.apache.
org) although it does have a pluggable architecture. Kafka itself is a messaging 
system that excels at large data volumes and provides a topic-based abstraction 
similar to most other messaging platforms, such as RabbitMQ. Publishers send 
messages to topics and interested clients consume messages from the topics as they 
arrive. Kafka has multiple aspects that set it apart from other messaging platforms, 
but for this discussion, the most interesting one is that Kafka stores messages 
for a period of time, which allows messages in topics to be replayed. Topics are 
partitioned across multiple hosts and partitions can be replicated across hosts to 
protect from node failure.
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Samza builds its processing flow on its concept of streams, which when using Kafka 
map directly to Kafka partitions. A typical Samza job may listen to one topic for 
incoming messages, perform some transformations, and then write the output to a 
different topic. Multiple Samza jobs can then be composed to provide more complex 
processing structures.

As a YARN application, the Samza ApplicationMaster monitors the health of all 
running Samza tasks. If a task fails, then a replacement task is instantiated in a new 
container. Samza achieves fault tolerance by having each task write its progress to 
a new stream (again modeled as a Kafka topic), so any replacement task just needs 
to read the latest task state from this checkpoint topic and then replay the main 
message topic from the last processed position. Samza additionally offers support  
for local task state, which can be very useful for join and aggregation type 
workloads. This local state is again built atop the stream abstraction and hence  
is intrinsically resilient to host failure.

YARN-independent frameworks
An interesting point to note is that two of the preceding projects (Samza and Spark) 
run atop YARN but are not specific to YARN. Spark started out as a standalone 
service and has implementations for other schedulers, such as Apache Mesos or 
to run on Amazon EC2. Though Samza runs only on YARN today, its architecture 
explicitly is not YARN-specific, and there are discussions about providing 
realizations on other platforms.

If the YARN model of pushing as much as possible into the application has its 
downsides through implementation complexity, then this decoupling is one of 
its major benefits. An application written to use YARN need not be tied to it; by 
definition, all the functionality for the actual application logic and management is 
encapsulated within the application code and is independent of YARN or another 
framework. This is, of course, not saying that designing a scheduler-independent 
application is a trivial task, but it's now a tractable task; this was absolutely not the 
case pre-YARN.

YARN today and beyond
Though YARN has been used in production (at Yahoo! in particular) for some time, 
the final GA version was not released until late 2012. The interfaces to YARN were 
also somewhat fluid until quite late in the development cycle. Consequently, the 
fully forward compatible YARN as of Hadoop 2.2 is still relatively new.



Processing – MapReduce and Beyond

[ 104 ]

YARN is fully functional today, and the future direction will see extensions to its 
current capabilities. Perhaps most notable among these will be the ability to specify 
and control container resources on more dimensions. Currently, only location, 
memory and CPU specifications are possible, and this will be expanded  
into areas such as storage and network I/O.

In addition, the ApplicationMaster  currently has little control over the management 
of how containers are co-located or not. Finer-grained control here will allow the 
ApplicationMaster to specify policies around when containers may or may not be 
scheduled on the same node. In addition, the current resource allocation model is 
quite static, and it will be useful to allow an application to dynamically change the 
resources allocated to a running container.

Summary
This chapter explored how to process those large volumes of data that we discussed 
so much in the previous chapter. In particular we covered:

•	 How MapReduce was the only processing model available in Hadoop 1  
and its conceptual model

•	 The Java API to MapReduce, and how to use this to build some examples, 
from a word count to sentiment analysis of Twitter hashtags

•	 The details of how MapReduce is implemented in practice, and we walked 
through the execution of a MapReduce job

•	 How Hadoop stores data and the classes involved to represent input and 
output formats and record readers and writers

•	 The limitations of MapReduce that led to the development of YARN,  
opening the door to multiple computational models on the Hadoop platform

•	 The YARN architecture and how applications are built atop it

In the next two chapters, we will move away from strictly batch processing and 
delve into the world of near real-time and iterative processing, using two of the 
YARN-hosted frameworks we introduced in this chapter, namely Samza and Spark.



Real-time Computation  
with Samza

The previous chapter discussed YARN, and frequently mentioned the breadth of 
computational models and processing frameworks outside of traditional batch-based 
MapReduce that it enables on the Hadoop platform. In this chapter and the next, we 
will explore two such projects in some depth, namely Apache Samza and Apache 
Spark. We chose these frameworks as they demonstrate the usage of stream and 
iterative processing and also provide interesting mechanisms to combine processing 
paradigms. In this chapter we will explore Samza and cover the following topics:

•	 What Samza is and how it integrates with YARN and other projects such as 
Apache Kafka

•	 How Samza provides a simple callback-based interface for stream processing
•	 How Samza composes multiple stream processing jobs into more complex 

workflows
•	 How Samza supports persistent local state within tasks and how this greatly 

enriches what it can enable

Stream processing with Samza
To explore a pure stream-processing platform, we will use Samza, which is available 
at https://samza.apache.org. The code shown here was tested with the current 
0.8 release and we'll keep the GitHub repository updated as the project continues  
to evolve.



Real-time Computation with Samza

[ 106 ]

Samza was built at LinkedIn and donated to the Apache Software Foundation in 
September 2013. Over the years, LinkedIn has built a model that conceptualizes much 
of their data as streams, and from this they saw the need for a framework that can 
provide a developer-friendly mechanism to process these ubiquitous data streams.

The team at LinkedIn realized that when it came to data processing, much of the 
attention went to the extreme ends of the spectrum, for example, RPC workloads are 
usually implemented as synchronous systems with very low latency requirements or 
batch systems where the periodicity of jobs is often measured in hours. The ground 
in between has been relatively poorly supported and this is the area that Samza 
is targeted at; most of its jobs expect response times ranging from milliseconds to 
minutes. They also assume that data arrives in a theoretically infinite stream of 
continuous messages.

How Samza works
There are numerous stream-processing systems such as Storm (http://storm.
apache.org), in the open source world, and many other (mostly commercial) tools 
such as complex event processing (CEP) systems that also target processing on 
continuous message streams. These systems have many similarities but also some 
major differences.

For Samza, perhaps the most significant difference is its assumptions about message 
delivery. Many systems work very hard to reduce the latency of each message, 
sometimes with an assumption that the goal is to get the message into and out of 
the system as fast as possible. Samza assumes almost the opposite; its streams are 
persistent and resilient and any message written to a stream can be re-read for a 
period of time after its first arrival. As we will see, this gives significant capability 
around fault tolerance. Samza also builds on this model to allow each of its tasks to 
hold resilient local state.

Samza is mostly implemented in Scala even though its public APIs are written in 
Java. We'll show Java examples in this chapter, but any JVM language can be used 
to implement Samza applications. We'll discuss Scala when we explore Spark in the 
next chapter.
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Samza high-level architecture
Samza views the world as having three main layers or components: the streaming, 
execution, and processing layers.

Samza API

YARN Kafka

Samza architecture

The streaming layer provides access to the data streams, both for consumption and 
publication. The execution layer provides the means by which Samza applications 
can be run, have resources such as CPU and memory allocated, and have their life 
cycles managed. The processing layer is the actual Samza framework itself, and its 
interfaces allow per-message functionality.

Samza provides pluggable interfaces to support the first two layers though the  
current main implementations use Kafka for streaming and YARN for execution. 
We'll discuss these further in the following sections.

Samza's best friend – Apache Kafka
Samza itself does not implement the actual message stream. Instead, it provides an 
interface for a message system with which it then integrates. The default stream 
implementation is built upon Apache Kafka (http://kafka.apache.org), a 
messaging system also built at LinkedIn but now a successful and widely adopted 
open source project.

Kafka can be viewed as a message broker akin to something like RabbitMQ or 
ActiveMQ, but as mentioned earlier, it writes all messages to disk and scales  
out across multiple hosts as a core part of its design. Kafka uses the concept of a 
publish/subscribe model through named topics to which producers write messages 
and from which consumers read messages. These work much like topics in any other 
messaging system.
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Because Kafka writes all messages to disk, it might not have the same ultra-low 
latency message throughput as other messaging systems, which focus on getting 
the message processed as fast as possible and don't aim to store the message long 
term. Kafka can, however, scale exceptionally well and its ability to replay a message 
stream can be extremely useful. For example, if a consuming client fails, then it can 
re-read messages from a known good point in time, or if a downstream algorithm 
changes, then traffic can be replayed to utilize the new functionality.

When scaling across hosts, Kafka partitions topics and supports partition 
replication for fault tolerance. Each Kafka message has a key associated with the 
message and this is used to decide to which partition a given message is sent. This 
allows semantically useful partitioning, for example, if the key is a user ID in the 
system, then all messages for a given user will be sent to the same partition. Kafka 
guarantees ordered delivery within each partition so that any client reading a 
partition can know that they are receiving all messages for each key in that partition 
in the order in which they are written by the producer.

Samza periodically writes out checkpoints of the position upto which it has read in 
all the streams it is consuming. These checkpoint messages are themselves written to 
a Kafka topic. Thus, when a Samza job starts up, each task can reread its checkpoint 
stream to know from which position in the stream to start processing messages. 
This means that in effect Kafka also acts as a buffer; if a Samza job crashes or is 
taken down for upgrade, no messages will be lost. Instead, the job will just restart 
from the last checkpointed position when it restarts. This buffer functionality is also 
important, as it makes it easier for multiple Samza jobs to run as part of a complex 
workflow. When Kafka topics are the points of coordination between the jobs, one 
job might consume a topic being written to by another; in such cases, Kafka can 
help smooth out issues caused due to any given job running slower than others. 
Traditionally, the back pressure caused by a slow running job can be a real issue in 
a system comprised of multiple job stages, but Kafka as the resilient buffer allows 
each job to read and write at its own rate. Note that this is analogous to how multiple 
coordinating MapReduce jobs will use HDFS for similar purposes.

Kafka provides at-least once message delivery semantics, that is to say that any 
message written to Kafka will be guaranteed to be available to a client of the 
particular partition. Messages might be processed between checkpoints however;  
it is possible for duplicate messages to be received by the client. There are 
application-specific mechanisms to mitigate this, and both Kafka and Samza have 
exactly-once semantics on their roadmaps, but for now it is something you should 
take into consideration when designing jobs.

We won't explain Kafka further beyond what we need to demonstrate Samza.  
If you are interested, check out its website and wiki; there is a lot of good 
information, including some excellent papers and presentations.
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YARN integration
As mentioned earlier, just as Samza utilizes Kafka for its streaming layer 
implementation, it uses YARN for the execution layer. Just like any YARN application 
described in Chapter 3, Processing – MapReduce and Beyond, Samza provides an 
implementation of both an ApplicationMaster, which controls the life cycle of the 
overall job, plus implementations of Samza-specific functionality (called tasks) that are 
executed in each container. Just as Kafka partitions its topics, tasks are the mechanism 
by which Samza partitions its processing. Each Kafka partition will be read by a single 
Samza task. If a Samza job consumes multiple streams, then a given task will be the 
only consumer within the job for every stream partition assigned to it.

The Samza framework is told by each job configuration about the Kafka streams that 
are of interest to the job, and Samza continuously polls these streams to determine if 
any new messages have arrived. When a new message is available, the Samza task 
invokes a user-defined callback to process the message, a model that shouldn't look 
too alien to MapReduce developers. This method is defined in an interface called 
StreamTask and has the following signature:

public void process(IncomingMessageEnvelope envelope,
 MessageCollector collector, 
 TaskCoordinator coordinator)

This is the core of each Samza task and defines the functionality to be applied 
to received messages. The received message that is to be processed is wrapped 
in the IncomingMessageEnvelope; output messages can be written to the 
MessageCollector, and task management (such as Shutdown) can be performed  
via the TaskCoordinator.

As mentioned, Samza creates one task instance for each partition in the underlying 
Kafka topic. Each YARN container will manage one or more of these tasks. The 
overall model then is of the Samza Application Master coordinating multiple 
containers, each of which is responsible for one or more StreamTask instances.

An independent model
Though we will talk exclusively of Kafka and YARN as the providers of Samza's 
streaming and execution layers in this chapter, it is important to remember that the 
core Samza system uses well-defined interfaces for both the stream and execution 
systems. There are implementations of multiple stream sources (we'll see one in the 
next section) and alongside the YARN support, Samza ships with a LocalJobRunner 
class. This alternative method of running tasks can execute StreamTask instances  
in-process on the JVM instead of requiring a full YARN cluster, which can sometimes 
be a useful testing and debugging tool. There is also a discussion of Samza 
implementations on top of other cluster manager or virtualization frameworks.
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Hello Samza!
Since not everyone already has ZooKeeper, Kafka, and YARN clusters ready to be 
used, the Samza team has created a wonderful way to get started with the product. 
Instead of just having a Hello world! program, there is a repository called Hello 
Samza, which is available by cloning the repository at git://git.apache.org/
samza-hello-samza.git.

This will download and install dedicated instances of ZooKeeper, Kafka, and YARN 
(the 3 major prerequisites for Samza), creating a full stack upon which you can 
submit Samza jobs.

There are also a number of example Samza jobs that process data from Wikipedia 
edit notifications. Take a look at the page at http://samza.apache.org/startup/
hello-samza/0.8/ and follow the instructions given there. (At the time of 
writing, Samza is still a relatively young project and we'd rather not include direct 
information about the examples, which might be subject to change).

For the remainder of the Samza examples in this chapter, we'll assume you are  
either using the Hello Samza package to provide the necessary components 
(ZooKeeper/Kafka/YARN) or you have integrated with other instances of each.

This example has three different Samza jobs that build upon each other. The first 
reads the Wikipedia edits, the second parses these records, and the third produces 
statistics based on the processed records. We'll build our own multistream  
workflow shortly.

One interesting point is the WikipediaFeed example here; it uses Wikipedia as its 
message source instead of Kafka. Specifically, it provides another implementation 
of the Samza SystemConsumer interface to allow Samza to read messages from an 
external system. As mentioned earlier, Samza is not tied to Kafka and, as this example 
shows, building a new stream implementation does not have to be against a generic 
infrastructure component; it can be quite job-specific, as the work required is not huge.

Note that the default configuration for both ZooKeeper and Kafka will 
write system data to directories under /tmp, which will be what you 
have set if you use Hello Samza. Be careful if you are using a Linux 
distribution that purges the contents of this directory on a reboot. If you 
plan to carry out any significant testing, then it's best to reconfigure these 
components to use less ephemeral locations. Change the relevant config 
files for each service; they are located in the service directory under the 
hello-samza/deploy directory.
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Building a tweet parsing job
Let's build our own simple job implementation to show the full code required. We'll 
use parsing of the Twitter stream as the examples in this chapter and will later set up 
a pipe from our client consuming messages from the Twitter API into a Kafka topic. 
So, we need a Samza task that will read the stream of JSON messages, extract the 
actual tweet text, and write these to a topic of tweets.

Here is the main code from TwitterParseStreamTask.java, available at  
https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/
main/java/com/learninghadoop2/samza/tasks/TwitterParseStreamTask.java:

package com.learninghadoop2.samza.tasks;
public class TwitterParseStreamTask implements StreamTask {
    @Override
    public void process(IncomingMessageEnvelope envelope,  
        MessageCollector collector, TaskCoordinator coordinator) {
        String msg = ((String) envelope.getMessage());

        try {
            JSONParser parser  = new JSONParser();
            Object     obj     = parser.parse(msg);
            JSONObject jsonObj = (JSONObject) obj;
            String     text    = (String) jsonObj.get("text");

            collector.send(new OutgoingMessageEnvelope(new  
                SystemStream("kafka", "tweets-parsed"), text));
        } catch (ParseException pe) {}
    }
  }
}

The code is largely self-explanatory, but there are a few points of interest. We use 
JSON Simple (http://code.google.com/p/json-simple/) for our relatively 
straightforward JSON parsing requirements; we'll also use it later in this book.

The IncomingMessageEnvelope and its corresponding OutputMessageEnvelope are 
the main structures concerned with the actual message data. Along with the message 
payload, the envelope will also have data concerning the system, topic name, and 
(optionally) partition number in addition to other metadata. For our purposes, we 
just extract the message body from the incoming message and send the tweet text 
we extract from it via a new OutgoingMessageEnvelope to a topic called tweets-
parsed within a system called kafka. Note the lower case name—we'll explain this 
in a moment.



Real-time Computation with Samza

[ 112 ]

The type of message in the IncomingMessageEnvelope is java.lang.Object. 
Samza does not currently enforce a data model and hence does not have  
strongly-typed message bodies. Therefore, when extracting the message contents, an 
explicit cast is usually required. Since each task needs to know the expected message 
format of the streams it processes, this is not the oddity that it may appear to be.

The configuration file
There was nothing in the previous code that said where the messages came from; 
the framework just presents them to the StreamTask implementation, but obviously 
Samza needs to know from where to fetch messages. There is a configuration file for 
each job that defines this and more. The following can be found as twitter-parse.
properties at https://github.com/learninghadoop2/book-examples/blob/
master/ch4/src/main/resources/twitter-parser.properties:

# Job
job.factory.class=org.apache.samza.job.yarn.YarnJobFactory
job.name=twitter-parser

# YARN
yarn.package.path=file:///home/gturkington/samza/build/distributions/
learninghadoop2-0.1.tar.gz

# Task
task.class=com.learninghadoop2.samza.tasks.TwitterParseStreamTask
task.inputs=kafka.tweets
task.checkpoint.factory=org.apache.samza.checkpoint.kafka.
KafkaCheckpointManagerFactory
task.checkpoint.system=kafka

# Normally, this would be 3, but we have only one broker.
task.checkpoint.replication.factor=1

# Serializers
serializers.registry.string.class=org.apache.samza.serializers.
StringSerdeFactory

# Systems
systems.kafka.samza.factory=org.apache.samza.system.kafka.
KafkaSystemFactory
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systems.kafka.streams.tweets.samza.msg.serde=string
systems.kafka.streams.tweets-parsed.samza.msg.serde=string
systems.kafka.consumer.zookeeper.connect=localhost:2181/
systems.kafka.consumer.auto.offset.reset=largest
systems.kafka.producer.metadata.broker.list=localhost:9092
systems.kafka.producer.producer.type=sync
systems.kafka.producer.batch.num.messages=1

This may look like a lot, but for now we'll just consider the high-level structure  
and some key settings. The job section sets YARN as the execution framework  
(as opposed to the local job runner class) and gives the job a name. If we were to  
run multiple copies of this same job, we would also give each copy a unique ID.  
The task section specifies the implementation class of our task and also the name of 
the streams for which it should receive messages. Serializers tell Samza how to read 
and write messages to and from the stream and the system section defines systems 
by name and associates implementation classes with them.

In our case, we define only one system called kafka and we refer to this system 
when sending our message in the preceding task. Note that this name is arbitrary 
and we could call it whatever we want. Obviously, for clarity it makes sense to call 
the Kafka system by the same name but this is only a convention. In particular, 
sometimes you will need to give different names when dealing with multiple 
systems that are similar to each other, or sometimes even when treating the same 
system differently in different parts of a configuration file.

In this section, we will also specify the SerDe to be associated with the streams  
used by the task. Recall that Kafka messages have a body and an optional key that is 
used to determine to which partition the message is sent. Samza needs to know how 
to treat the contents of the keys and messages for these streams. Samza has support 
to treat these as raw bytes or specific types such as string, integer, and JSON, as 
mentioned earlier.

The rest of the configuration will be mostly unchanged from job to job, as it includes 
things such as the location of the ZooKeeper ensemble and Kafka clusters, and 
specifies how streams are to be checkpointed. Samza allows a wide variety of 
customizations and the full configuration options are detailed at http://samza.
apache.org/learn/documentation/0.8/jobs/configuration-table.html.
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Getting Twitter data into Kafka
Before we run the job, we do need to get some tweets into Kafka. Let's create a new 
Kafka topic called tweets to which we'll write the tweets.

To perform this and other Kafka-related operations, we'll use command-line tools 
located within the bin directory of the Kafka distribution. If you are running a job 
from within the stack created as part of the Hello Samza application; this will be 
deploy/kafka/bin.

kafka-topics.sh is a general-purpose tool that can be used to create, update, and 
describe topics. Most of its usages require arguments to specify the location of the 
local ZooKeeper cluster, where Kafka brokers store their details, and the name of the 
topic to be operated upon. To create a new topic, run the following command:

$ kafka-topics.sh  --zookeeper localhost:2181 --create –topic tweets 
--partitions 1 --replication-factor 1

This creates a topic called tweets and explicitly sets its number of partitions and 
replication factor to 1. This is suitable if you are running Kafka within a local test 
VM, but clearly production deployments will have more partitions to scale out the 
load across multiple brokers and a replication factor of at least 2 to provide fault 
tolerance.

Use the list option of the kafka-topics.sh tool to simply show the topics in the 
system, or use describe to get more detailed information on specific topics:

$ kafka-topics.sh  --zookeeper localhost:2181 --describe --topic tweets

Topic:tweets    PartitionCount:1    ReplicationFactor:1    Configs:

    Topic: tweets  Partition: 0    Leader: 0    Replicas: 0    Isr: 0

The multiple 0s are possibly confusing as these are labels and not counts. Each 
broker in the system has an ID that usually starts from 0, as do the partitions within 
each topic. The preceding output is telling us that the topic called tweets has a single 
partition with ID 0, the broker acting as the leader for that partition is broker 0, and 
the set of in-sync replicas (ISR) for this partition is again only broker 0. This last 
value is particularly important when dealing with replication.
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We'll use our Python utility from previous chapters to pull JSON tweets from the 
Twitter feed, and then use a Kafka CLI message producer to write the messages to 
a Kafka topic. This isn't a terribly efficient way of doing things, but it is suitable for 
illustration purposes. Assuming our Python script is in our home directory, run the 
following command from within the Kafka bin directory:

$ python ~/stream.py –j | ./kafka-console-producer.sh  --broker-list 
localhost:9092 --topic tweets

This will run indefinitely so be careful not to leave it running overnight on a test VM 
with small disk space, not that the authors have ever done such a thing.

Running a Samza job
To run a Samza job, we need our code to be packaged along with the Samza 
components required to execute it into a .tar.gz archive that will be read by 
the YARN NodeManager. This is the file referred to by the yarn.file.package 
property in the Samza task configuration file.

When using the single node Hello Samza we can just use an absolute path on the 
filesystem, as seen in the previous configuration example. For jobs on larger YARN 
grids, the easiest way is to put the package onto HDFS and refer to it by an hdfs:// 
URI or on a web server (Samza provides a mechanism to allow YARN to read the file 
via HTTP).

Because Samza has multiple subcomponents and each subcomponent has its own 
dependencies, the full YARN package can end up containing a lot of JAR files  
(over 100!). In addition, you need to include your custom code for the Samza task 
as well as some scripts from within the Samza distribution. It's not something to be 
done by hand. In the sample code for this chapter, found at https://github.com/
learninghadoop2/book-examples/tree/master/ch4, we have set up a sample 
structure to hold the code and config files and provided some automation via  
Gradle to build the necessary task archive and start the tasks.

When in the root of the Samza example code directory for this book, perform the 
following command to build a single file archive containing all the classes of this 
chapter compiled together and bundled with all the other required files:

$ ./gradlew targz

This Gradle task will not only create the necessary .tar.gz archive in the  
build/distributions directory, but will also store an expanded version of the 
archive under build/samza-package. This will be useful, as we will use Samza 
scripts stored in the bin directory of the archive to actually submit the task to YARN.
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So now, let's run our job. We need to have file paths for two things: the Samza  
run-job.sh script to submit a job to YARN and the configuration file for our job. 
Since our created job package has all the compiled tasks bundled together, it is by 
using a different configuration file that specifies a specific task implementation class 
in the task.class property that we tell Samza which task to run. To actually run the 
task, we can run the following command from within the exploded project archive 
under build/samza-archives:

$ bin/run-job.sh  --config-factory=org.apache.samza.config.factories.
PropertiesConfigFactory --config-path=]config/twitter-parser.properties

For convenience, we added a Gradle task to run this job:

$ ./gradlew runTwitterParser

To see the output of the job, we'll use the Kafka CLI client to consume messages:

$ ./kafka-console-consumer.sh –zookeeper localhost:2181 –topic tweets-
parsed

You should see a continuous stream of tweets appearing on the client.

Note that we did not explicitly create the topic called tweets-parsed. 
Kafka can allow topics to be created dynamically when either a 
producer or consumer tries to use the topic. In many situations, 
though the default partitioning and replication values may not be 
suitable, and explicit topic creation will be required to ensure these 
critical topic attributes are correctly defined.

Samza and HDFS
You may have noticed that we just mentioned HDFS for the first time in our 
discussion of Samza. Though Samza integrates tightly with YARN, it has no direct 
integration with HDFS. At a logical level, Samza's stream-implementing systems 
(such as Kafka) are providing the storage layer that is usually provided by HDFS 
for traditional Hadoop workloads. In the terminology of Samza's architecture, as 
described earlier, YARN is the execution layer in both models, whereas Samza uses a 
streaming layer for its source and destination data, frameworks such as MapReduce 
use HDFS. This is a good example of how YARN enables alternative computational 
models that not only process data very differently than batch-oriented MapReduce, 
but that can also use entirely different storage systems for their source data.
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Windowing functions
It's frequently useful to generate some data based on the messages received on 
a stream over a certain time window. An example of this may be to record the 
top n attribute values measured every minute. Samza supports this through 
the WindowableTask interface, which has the following single method to be 
implemented:

  public void window(MessageCollector collector, TaskCoordinator  
  coordinator);

This should look similar to the process method in the StreamTask interface. 
However, because the method is called on a time schedule, its invocation is not 
associated with a received message. The MessageCollector and TaskCoordinator 
parameters are still there, however, as most windowable tasks will produce output 
messages and may also wish to perform some task management actions.

Let's take our previous task and add a window function that will output the  
number of tweets received in each windowed time period. This is the main  
class implementation of TwitterStatisticsStreamTask.java found at  
https://github.com/learninghadoop2/book-examples/blob/
master/ch4/src/main/java/com/learninghadoop2/samza/tasks/
TwitterStatisticsStreamTask.java:

public class TwitterStatisticsStreamTask implements StreamTask, 
WindowableTask {
    private int tweets = 0;

    @Override
    public void process(IncomingMessageEnvelope envelope, 
MessageCollector collector, TaskCoordinator coordinator) {
        tweets++;
    }

    @Override
    public void window(MessageCollector collector, TaskCoordinator  
      coordinator) {
        collector.send(new OutgoingMessageEnvelope(new  
          SystemStream("kafka", "tweet-stats"), "" + tweets));

        // Reset counts after windowing.
        tweets = 0;
    }
}
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The TwitterStatisticsStreamTask class has a private member variable called 
tweets that is initialized to 0 and is incremented in every call to the process 
method. We therefore know that this variable will be incremented for each message 
passed to the task from the underlying stream implementation. Each Samza 
container has a single thread running in a loop that executes the process and window 
methods on all the tasks within the container. This means that we do not need to 
guard instance variables against concurrent modifications; only one method on each 
task within a container will be executing simultaneously.

In our window method, we send a message to a new topic we call tweet-stats and 
then reset the tweets variable. This is pretty straightforward and the only missing 
piece is how Samza will know when to call the window method. We specify this in 
the configuration file: 

task.window.ms=5000

This tells Samza to call the window method on each task instance every 5 seconds.  
To run the window task, there is a Gradle task:

$ ./gradlew runTwitterStatistics

If we use kafka-console-consumer.sh to listen on the tweet-stats stream now, 
we will see the following output:

Number of tweets: 5012

Number of tweets: 5398

Note that the term window in this context refers to Samza conceptually 
slicing the stream of messages into time ranges and providing a 
mechanism to perform processing at each range boundary. Samza 
does not directly provide an implementation of the other use of the 
term with regards to sliding windows, where a series of values is held 
and processed over time. However, the windowable task interface 
does provide the plumbing to implement such sliding windows.

Multijob workflows
As we saw with the Hello Samza examples, some of the real power of Samza 
comes from composition of multiple jobs and we'll use a text cleanup job to start 
demonstrating this capability. 
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In the following section, we'll perform tweet sentiment analysis by comparing tweets 
with a set of English positive and negative words. Simply applying this to the raw 
Twitter feed will have very patchy results, however, given how richly multilingual 
the Twitter stream is. We also need to consider things such as text cleanup, 
capitalization, frequent contractions, and so on. As anyone who has worked with 
any non-trivial dataset knows, the act of making the data fit for processing is usually 
where a large amount of effort (often the majority!) goes.

So before we try and detect tweet sentiments, let's do some simple text cleanup; in 
particular, we'll select only English language tweets and we will force their text to be 
lower case before sending them to a new output stream.

Language detection is a difficult problem and for this we'll use a feature of the 
Apache Tika library (http://tika.apache.org). Tika provides a wide array 
of functionality to extract text from various sources and then to extract further 
information from that text. If using our Gradle scripts, the Tika dependency is 
already specified and will automatically be included in the generated job package. 
If building through another mechanism, you will need to download the Tika JAR 
file from the home page and add it to your YARN job package. The following 
code can be found as TextCleanupStreamTask.java at https://github.com/
learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/
learninghadoop2/samza/tasks/TextCleanupStreamTask.java:

public class TextCleanupStreamTask implements StreamTask {
    @Override
    public void process(IncomingMessageEnvelope envelope, 
MessageCollector collector, TaskCoordinator coordinator) {
        String rawtext = ((String) envelope.getMessage());

        if ("en".equals(detectLanguage(rawtext))) {
            collector.send(new OutgoingMessageEnvelope(new 
SystemStream("kafka", "english-tweets"),
                    rawtext.toLowerCase()));
        }
    }

    private String detectLanguage(String text) {
        LanguageIdentifier li = new LanguageIdentifier(text);

        return li.getLanguage();
    }
}
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This task is quite straightforward thanks to the heavy lifting performed by  
Tika. We create a utility method that wraps the creation and use of a Tika, 
LanguageDetector, and then we call this method on the message body of each 
incoming message in the process method. We only write to the output stream if the 
result of applying this utility method is "en", that is, the two-letter code for English.

The configuration file for this task is similar to that of our previous task, with the 
specific values for the task name and implementing class. It is in the repository as 
textcleanup.properties at https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/resources/textcleanup.properties. 
We also need to specify the input stream:

task.inputs=kafka.tweets-parsed

This is important because we need this task to parse the tweet text that was  
extracted in the earlier task and avoid duplicating the JSON parsing logic that is  
best encapsulated in one place. We can run this task with the following command:

$ ./gradlew runTextCleanup

Now, we can run all three tasks together; TwitterParseStreamTask and 
TwitterStatisticsStreamTask will consume the raw tweet stream, while 
TextCleanupStreamTask will consume the output from TwitterParseStreamTask.

TwitterStatisticsStreamTask

TwitterParseStreamTask

raw tweet stream

output stream TextCleanupStreamTask

Data processing on streams

Tweet sentiment analysis
We'll now implement a task to perform tweet sentiment analysis similar to what 
we did using MapReduce in the previous chapter. This will also show us a useful 
mechanism offered by Samza: bootstrap streams.
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Bootstrap streams
Generally speaking, most stream-processing jobs (in Samza or another framework) 
will start processing messages that arrive after they start up and generally ignore 
historical messages. Because of its concept of replayable streams, Samza doesn't have 
this limitation.

In our sentiment analysis job, we had two sets of reference terms: positive and 
negative words. Though we've not shown it so far, Samza can consume messages 
from multiple streams and the underlying machinery will poll all named streams 
and provide their messages, one at a time, to the process method. We can therefore 
create streams for the positive and negative words and push the datasets onto those 
streams. At first glance, we could plan to rewind these two streams to the earliest 
point and read tweets as they arrive. The problem is that Samza won't guarantee 
ordering of messages from multiple streams, and even though there is a mechanism 
to give streams higher priority, we can't assume that all negative and positive words 
will be processed before the first tweet arrives.

For such types of scenarios, Samza has the concept of bootstrap streams. If a task has 
any bootstrap streams defined, then it will read these streams from the earliest offset 
until they are fully processed (technically, it will read the streams till they get caught 
up, so that any new words sent to either stream will be treated without priority and 
will arrive interleaved between tweets).

We'll now create a new job called TweetSentimentStreamTask that reads two 
bootstrap streams, collects their contents into HashMaps, gathers running counts for 
sentiment trends, and uses a window function to output this data at intervals. This 
code can be found at https://github.com/learninghadoop2/book-examples/
blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/
TwitterSentimentStreamTask.java:

public class TwitterSentimentStreamTask implements StreamTask,  
    WindowableTask {
    private Set<String>          positiveWords  = new  
        HashSet<String>();
    private Set<String>          negativeWords  = new  
        HashSet<String>();
    private int                  tweets         = 0;
    private int                  positiveTweets = 0;
    private int                  negativeTweets = 0;
    private int                  maxPositive    = 0;
    private int                  maxNegative    = 0;
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    @Override
    public void process(IncomingMessageEnvelope envelope,  
        MessageCollector collector, TaskCoordinator coordinator) {
        if ("positive-words".equals(envelope.
getSystemStreamPartition(). 
            getStream())) {
            positiveWords.add(((String) envelope.getMessage()));
        } else if ("negative-words".equals(envelope.
getSystemStreamPartition().getStream())) {
            negativeWords.add(((String) envelope.getMessage()));
        } else if ("english-tweets".equals(envelope.
getSystemStreamPartition().getStream())) {
            tweets++;

            int    positive = 0;
            int    negative = 0;
            String words    = ((String) envelope.getMessage());

            for (String word : words.split(" ")) {
                if (positiveWords.contains(word)) {
                    positive++;
                } else if (negativeWords.contains(word)) {
                    negative++;
                }
            }

            if (positive > negative) {
                positiveTweets++;
            }

            if (negative > positive) {
                negativeTweets++;
            }

            if (positive > maxPositive) {
                maxPositive = positive;
            }

            if (negative > maxNegative) {
                maxNegative = negative;
            }
        }
    }
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    @Override
    public void window(MessageCollector collector, TaskCoordinator  
      coordinator) {
        String msg = String.format("Tweets: %d Positive: %d Negative:  
          %d MaxPositive: %d MinPositive: %d", tweets, positiveTweets,  
            negativeTweets, maxPositive, maxNegative);

        collector.send(new OutgoingMessageEnvelope(new  
          SystemStream("kafka", "tweet-sentiment-stats"), msg));

        // Reset counts after windowing.
        tweets         = 0;
        positiveTweets = 0;
        negativeTweets = 0;
        maxPositive    = 0;
        maxNegative    = 0;
    }

}

In this task, we add a number of private member variables that we will use to keep 
a running count of the number of overall tweets, how many were positive and 
negative, and the maximum positive and negative counts seen in a single tweet.

This task consumes from three Kafka topics. Even though we will configure two to 
be used as bootstrap streams, they are all still exactly the same type of Kafka topic 
from which messages are received; the only difference with bootstrap streams is that 
we tell Samza to use Kafka's rewinding capabilities to fully re-read each message 
in the stream. For the other stream of tweets, we just start reading new messages as 
they arrive.

As hinted earlier, if a task subscribes to multiple streams, the same process 
method will receive messages from each stream. That is why we use envelope.
getSystemStreamPartition().getStream() to extract the stream name for 
each given message and then act accordingly. If the message is from either of the 
bootstrapped streams, we add its contents to the appropriate hashmap. We break 
a tweet message into its constituent words, test each word for positive or negative 
sentiment, and then update counts accordingly. As you can see, this task doesn't 
output the received tweets to another topic. 
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Since we don't perform any direct processing, there is no point in doing so; any other 
task that wishes to consume messages can just subscribe directly to the incoming 
tweets stream. However, a possible modification could be to write positive and 
negative sentiment tweets to dedicated streams for each.

The window method outputs a series of counts and then resets the variables (as it did 
before). Note that Samza does have support to directly expose metrics through JMX, 
which could possibly be a better fit for such simple windowing examples. However, 
we won't have space to cover that aspect of the project in this book.

To run this job, we need to modify the configuration file by setting the job and task 
names as usual, but we also need to specify multiple input streams now:

task.inputs=kafka.english-tweets,kafka.positive-words,kafka.negative-
words

Then, we need to specify that two of our streams are bootstrap streams that should 
be read from the earliest offset. Specifically, we set three properties for the streams. 
We say they are to be bootstrapped, that is, fully read before other streams, and this 
is achieved by specifying that the offset on each stream needs to be reset to the oldest 
(first) position:

systems.kafka.streams.positive-words.samza.bootstrap=true
systems.kafka.streams.positive-words.samza.reset.offset=true
systems.kafka.streams.positive-words.samza.offset.default=oldest

systems.kafka.streams.negative-words.samza.bootstrap=true
systems.kafka.streams.negative-words.samza.reset.offset=true
systems.kafka.streams.negative-words.samza.offset.default=oldest

We can run this job with the following command:

$ ./gradlew runTwitterSentiment

After starting the job, look at the output of the messages on the tweet-sentiment-
stats topic.

The sentiment detection job will bootstrap the positive and negative word streams 
before reading any of our newly detected lower-case English tweets.
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With the sentiment detection job, we can now visualize our four collaborating jobs as 
shown in the following diagram:

TwitterStatisticsStreamTask

TwitterParseStreamTask

raw tweet stream

output stream TextCleanupStreamTask

positive words

bootstrap stream

TweetSentimentStreamTask

negative words

bootstrap stream
sentiment output stream

English tweets stream

Bootstrap streams and collaborating tasks

To correctly run the jobs, it may seem necessary to start the JSON 
parser job followed by the cleanup job before finally starting the 
sentiment job, but this is not the case. Any unread messages remain 
buffered in Kafka, so it doesn't matter in which order the jobs of a 
multi-job workflow are started. Of course, the sentiment job will output 
counts of 0 tweets until it starts receiving data, but nothing will break if 
a stream job starts before those it depends on.

Stateful tasks
The final aspect of Samza that we will explore is how it allows the tasks processing 
stream partitions to have persistent local state. In the previous example, we used 
private variables to keep a track of running totals, but sometimes it is useful for a 
task to have richer local state. An example could be the act of performing a logical 
join on two streams, where it is useful to build up a state model from one stream  
and compare this with the other.
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Note that Samza can utilize its concept of partitioned streams to 
greatly optimize the act of joining streams. If each stream to be joined 
uses the same partition key (for example, a user ID), then each task 
consuming these streams will receive all messages associated with 
each ID across all the streams.

Samza has another abstraction similar to its notion of the framework to manage 
its jobs and that which implements its tasks. It defines an abstract key-value store 
that can have multiple concrete implementations. Samza uses existing open source 
projects for the on-disk implementations and used LevelDB as of v0.7 and added 
RocksDB as of v0.8. There is also an in-memory store that does not persist the  
key-value data but that may be useful in testing or potentially very specific 
production workloads.

Each task can write to this key-value store and Samza manages its persistence to  
the local implementation. To support persistent states, the store is also modeled as a 
stream and all writes to the store are also pushed into a stream. If a task fails, then on 
restart, it can recover the state of its local key-value store by replaying the messages 
in the backing topic. An obvious concern here will be the number of messages that 
need to be replayed; however, when using Kafka, for example, it compacts messages 
with the same key so that only the latest update remains in the topic. 

We'll modify our previous tweet sentiment example to add a lifetime count of the 
maximum positive and negative sentiment seen in any tweet. The following code 
can be found as TwitterStatefulSentimentStateTask.java at https://github.
com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/
learninghadoop2/samza/tasks/TwitterStatefulSentimentStreamTask.java. 
Note that the process method is the same as TwitterSentimentStateTask.java,  
so we have omitted it here for space reasons:

public class TwitterStatefulSentimentStreamTask implements StreamTask, 
WindowableTask, InitableTask {
    private Set<String> positiveWords  = new HashSet<String>();
    private Set<String> negativeWords  = new HashSet<String>();
    private int tweets = 0;
    private int positiveTweets = 0;
    private int negativeTweets = 0;
    private int maxPositive = 0;
    private int maxNegative = 0;
    private KeyValueStore<String, Integer> store;



Chapter 4

[ 127 ]

    @SuppressWarnings("unchecked")
    @Override
    public void init(Config config, TaskContext context) {
        this.store = (KeyValueStore<String, Integer>) context.
getStore("tweet-store");
    }

    @Override
    public void process(IncomingMessageEnvelope envelope, 
MessageCollector collector, TaskCoordinator coordinator) {
...
    }

    @Override
    public void window(MessageCollector collector, TaskCoordinator 
coordinator) {
        Integer lifetimeMaxPositive = store.
get("lifetimeMaxPositive");
        Integer lifetimeMaxNegative = store.
get("lifetimeMaxNegative");

        if ((lifetimeMaxPositive == null) || (maxPositive > 
lifetimeMaxPositive)) {
            lifetimeMaxPositive = maxPositive;
            store.put("lifetimeMaxPositive", lifetimeMaxPositive);
        }

        if ((lifetimeMaxNegative == null) || (maxNegative > 
lifetimeMaxNegative)) {
            lifetimeMaxNegative = maxNegative;
            store.put("lifetimeMaxNegative", lifetimeMaxNegative);
        }

        String msg =
            String.format(
                "Tweets: %d Positive: %d Negative: %d MaxPositive: %d 
MaxNegative: %d LifetimeMaxPositive: %d LifetimeMaxNegative: %d",
                tweets, positiveTweets, negativeTweets, maxPositive, 
maxNegative, lifetimeMaxPositive,
                lifetimeMaxNegative);

        collector.send(new OutgoingMessageEnvelope(new 
SystemStream("kafka", "tweet-stateful-sentiment-stats"), msg));
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        // Reset counts after windowing.
        tweets         = 0;
        positiveTweets = 0;
        negativeTweets = 0;
        maxPositive    = 0;
        maxNegative    = 0;
    }
}

This class implements a new interface called InitableTask. This has a single 
method called init and is used when a task needs to configure aspects of its 
configuration before it begins execution. We use the init() method here to create  
an instance of the KeyValueStore class and store it in a private member variable. 

KeyValueStore, as the name suggests, provides a familiar put/get type interface.  
In this case, we specify that the keys are of the type String and the values are 
Integers. In our window method, we retrieve any previously stored values for the 
maximum positive and negative sentiment and if the count in the current window is 
higher, update the store accordingly. Then, we just output the results of the window 
method as before.

As you can see, the user does not need to deal with the details of either the local or 
remote persistence of the KeyValueStore instance; this is all handled by Samza. The 
efficiency of the mechanism also makes it tractable for tasks to hold sizeable amount 
of local state, which can be particularly valuable in cases such as long-running 
aggregations or stream joins.

The configuration file for the job can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch4/src/main/resources/
twitter-stateful-sentiment.properties. It needs to have a few entries added, 
which are as follows:

stores.tweet-store.factory=org.apache.samza.storage.
kv.KeyValueStorageEngineFactory
stores.tweet-store.changelog=kafka.twitter-stats-state
stores.tweet-store.key.serde=string
stores.tweet-store.msg.serde=integer

The first line specifies the implementation class for the store, the second line specifies 
the Kafka topic to be used for persistent state, and the last two lines specify the type 
of the store key and value.

To run this job, use the following command:

$ ./gradlew runTwitterStatefulSentiment
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For convenience, the following command will start up four jobs: the JSON parser, the 
text cleanup, the statistics job and the stateful sentiment jobs:

$ ./gradlew runTasks

Samza is a pure stream-processing system that provides pluggable implementations 
of its storage and execution layers. The most commonly used plugins are YARN and 
Kafka, and these demonstrate how Samza can integrate tightly with Hadoop YARN 
while using a completely different storage layer. Samza is still a relatively new project 
and the current features are only a subset of what is envisaged. It is recommended to 
consult its webpage to get the latest information on its current status.

Summary
This chapter focused much more on what can be done on Hadoop 2, and in 
particular YARN, than the details of Hadoop internals. This is almost certainly  
a good thing, as it demonstrates that Hadoop is realizing its goal of becoming a  
much more flexible and generic data processing platform that is no longer tied  
to batch processing. In particular, we highlighted how Samza shows that the 
processing frameworks that can be implemented on YARN can innovate and  
enable functionality vastly different from that available in Hadoop 1.

In particular, we saw how Samza goes to the opposite end of the latency spectrum 
from batch processing and enables per-message processing of individual messages  
as they arrive.

We also saw how Samza provides a callback mechanism that MapReduce  
developers will be familiar with, but uses it for a very different processing  
model. We also discussed the ways in which Samza utilizes YARN as its main 
execution framework and how it implements the model described in Chapter 3, 
Processing – MapReduce and Beyond.

In the next chapter, we will switch gears and explore Apache Spark. Though it has 
a very different data model than Samza, we'll see that it does also have an extension 
that supports processing of real time data streams, including the option of Kafka 
integration. However, both projects are so different that they are complimentary 
more than in competition.





Iterative Computation  
with Spark

In the previous chapter, we saw how Samza can enable near real-time stream  
data processing within Hadoop. This is quite a step away from the traditional  
batch processing model of MapReduce, but still keeps with the model of providing  
a well-defined interface against which business logic tasks can be implemented. 
In this chapter we will explore Apache Spark, which can be viewed both as a 
framework on which applications can be built as well as a processing framework in 
its own right. Not only are applications being built on Spark, but entire components 
within the Hadoop ecosystem are also being reimplemented to use Spark as their 
underlying processing framework. In particular, we will cover the following topics:

•	 What Spark is and how its core system can run on YARN
•	 The data model provided by Spark that enables hugely scalable and highly 

efficient data processing
•	 The breadth of additional Spark components and related projects

It's important to note upfront that although Spark has its own mechanism to process 
streaming data, this is but one part of what Spark has to offer. It's best to think of it 
as a much broader initiative.
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Apache Spark
Apache Spark (https://spark.apache.org/) is a data processing framework based 
on a generalization of MapReduce. It was originally developed by the AMPLab at UC 
Berkeley (https://amplab.cs.berkeley.edu/). Like Tez, Spark acts as an execution 
engine that models data transformations as DAGs and strives to eliminate the I/O 
overhead of MapReduce in order to perform iterative computation at scale. While 
Tez's main goal was to provide a faster execution engine for MapReduce on Hadoop, 
Spark has been designed both as a standalone framework and an API for application 
development. The system is designed to perform general-purpose in-memory data 
processing, stream workflows, as well as interactive and iterative computation.

Spark is implemented in Scala, which is a statically typed programming language 
for the Java VM and exposes native programming interfaces for Java and Python 
in addition to Scala itself. Note that though Java code can call the Scala interface 
directly, there are some aspects of the type system that make such code pretty 
unwieldy, and hence we use the native Java API.

Scala ships with an interactive shell similar to that of Ruby and Python; this allows 
users to run Spark interactively from the interpreter to query any dataset.

The Scala interpreter operates by compiling a class for each line typed by the user, 
loading it into the JVM, and invoking a function on it. This class includes a singleton 
object that contains the variables or functions on that line and runs the line's code 
in an initialize method. In addition to its rich programming interfaces, Spark is 
becoming established as an execution engine, with popular tools of the Hadoop 
ecosystem (such as Pig and Hive) being ported to the framework.

Cluster computing with working sets
Spark's architecture is centered around the concept of Resilient Distributed 
Datasets (RDDs), which is a read-only collection of Scala objects partitioned across 
a set of machines that can persist in memory. This abstraction was proposed in a 
2012 research paper, Resilient Distributed Datasets: A Fault-Tolerant Abstraction for 
In-Memory Cluster Computing, which can be found at https://www.cs.berkeley.
edu/~matei/papers/2012/nsdi_spark.pdf.
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A Spark application consists of a driver program that executes parallel operations 
on a cluster of workers and long-lived processes that can store data partitions 
in memory by dispatching functions that run as parallel tasks, as shown in the 
following diagram:

Worker Node

Executor Cache

TaskTask

Worker Node

Executor Cache

TaskTask

SparkContext

Driver Program

Cluster Manager

Spark cluster architecture

Processes are coordinated via a SparkContext instance. SparkContext connects to a 
resource manager (such as YARN), requests executors on worker nodes, and sends 
tasks to be executed. Executors are responsible for running tasks and managing 
memory locally.

Spark allows you to share variables between tasks, or between tasks and the  
driver, using an abstraction known as shared variables. Spark supports two types  
of shared variables: broadcast variables, which can be used to cache a value in 
memory on all nodes, and accumulators, which are additive variables such as 
counters and sums.

Resilient Distributed Datasets (RDDs)
An RDD is stored in memory, shared across machines and is used in  
MapReduce-like parallel operations. Fault tolerance is achieved through the  
notion of lineage: if a partition of an RDD is lost, the RDD has enough information 
about how it was derived from other RDDs to be able to rebuild just that partition. 
An RDD can be built in four ways:

•	 By reading data from a file stored in HDFS
•	 By dividing – parallelizing – a Scala collection into a number of partitions 

that are sent to workers
•	 By transforming an existing RDD using parallel operators
•	 By changing the persistence of an existing RDD
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Spark shines when RDDs can fit in memory and can be cached across operations.  
The API exposes methods to persist RDDs and allows for several persistence 
strategies and storage levels, allowing for spill to disk as well as space-efficient 
binary serialization.

Actions
Operations are invoked by passing functions to Spark. The system deals with variables 
and side effects according to the functional programming paradigm. Closures can 
refer to variables in the scope where they are created. Examples of actions are count 
(returns the number of elements in the dataset), and save (outputs the dataset to 
storage). Other parallel operations on RDDs include the following:

•	 map: applies a function to each element of the dataset
•	 filter: selects elements from a dataset based on user-provided criteria
•	 reduce: combines dataset elements using an associative function
•	 collect: sends all elements of the dataset to the driver program
•	 foreach: passes each element through a user-provided function
•	 groupByKey: groups items together by a provided key
•	 sortByKey: sorts items by key

Deployment
Spark can run both in local mode, similar to a Hadoop single-node setup, or atop a 
resource manager. Currently supported resource managers include:

•	 Spark Standalone Cluster Mode
•	 YARN
•	 Apache Mesos

Spark on YARN
An ad-hoc-consolidated JAR needs to be built in order to deploy Spark on 
YARN. Spark launches an instance of the standalone deployed cluster within the 
ResourceManager. Cloudera and MapR both ship with Spark on YARN as part of  
their software distribution. At the time of writing, Spark is available for Hortonworks's 
HDP as a technology preview (http://hortonworks.com/hadoop/spark/).
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Spark on EC2
Spark comes with a deployment script, spark-ec2, located in the ec2 directory.  
This script automatically sets up Spark and HDFS on a cluster of EC2 instances.  
In order to launch a Spark cluster on the Amazon cloud, go to the ec2 directory  
and run the following command:

./spark-ec2 -k <keypair> -i <key-file> -s <num-slaves> launch <cluster-
name>

Here, <keypair> is the name of your EC2 key pair, <key-file> is the private key 
file for the key pair, <num-slaves> is the number of slave nodes to be launched, and 
<cluster-name> is the name to be given to your cluster. See Chapter 1, Introduction, 
for more details regarding the setup of key pairs, and verify that the cluster 
scheduler is up and sees all the slaves by going to its web UI, the address of which 
will be printed once the script completes.

You can specify a path in S3 as the input through a URI of the form 
s3n://<bucket>/path. You will also need to set your Amazon security  
credentials, either by setting the environment variables AWS_ACCESS_KEY_ID 
and AWS_SECRET_ACCESS_KEY before your program is executed, or through 
SparkContext.hadoopConfiguration.

Getting started with Spark
Spark binaries and source code are available on the project website at  
http://spark.apache.org/. The examples in the following section have been 
tested using Spark 1.1.0 built from source on the Cloudera CDH 5.0 QuickStart VM.

Download and uncompress the gzip archive with the following commands:

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-1.1.0.tgz 

$ tar xvzf spark-1.1.0.tgz

$ cd spark-1.1.0

Spark is built on Scala 2.10 and uses sbt (https://github.com/sbt/sbt) to build 
the source core and related examples:

$ ./sbt/sbt -Dhadoop.version=2.2.0  -Pyarn  assembly

With the -Dhadoop.version=2.2.0 and -Pyarn options, we instruct sbt to build 
against Hadoop versions 2.2.0 or higher and enable YARN support.

Start Spark in standalone mode with the following command:

$ ./sbin/start-all.sh 
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This command will launch a local master instance at spark://localhost:7077  
as well as a worker node.

A web interface to the master node can be accessed at http://localhost:8080/ 
and can be seen in the following screenshot:

Master node web interface

Spark can run interactively through spark-shell, which is a modified version of the 
Scala shell. As a first example, we will implement a word count of the Twitter dataset 
we used in Chapter 3, Processing - MapReduce and Beyond, using the Scala API.

Start an interactive spark-shell session by running the following command:

$ ./bin/spark-shell

The shell instantiates a SparkContext object, sc, that is responsible for handling 
driver connections to workers. We will describe its semantics later in this chapter.

To make things a bit easier, let's create a sample textual dataset that contains one 
status update per line:

$ stream.py -t -n 1000 > sample.txt

Then, copy it to HDFS:

$ hdfs dfs -put sample.txt /tmp

Within spark-shell, we first create an RDD - file - from the sample data:

val file = sc.textFile("/tmp/sample.txt")
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Then, we apply a series of transformations to count the word occurrences in the file. 
Note that the output of the transformation chain - counts - is still an RDD:

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((m, n) => m + n)  

This chain of transformations corresponds to the map and reduce phases that we are 
familiar with. In the map phase, we load each line of the dataset (flatMap), tokenize 
each tweet into a sequence of words, count the occurrence of each word (map), and 
emit (key, value) pairs. In the reduce phase, we group by key (word) and sum 
values (m, n) together to obtain word counts.

Finally, we print the first ten elements, counts.take(10), to the console:

counts.take(10).foreach(println)

Writing and running standalone applications
Spark allows standalone applications to be written using three APIs: Scala,  
Java, and Python.

Scala API
The first thing a Spark driver must do is to create a SparkContext object, which tells 
Spark how to access a cluster. After importing classes and implicit conversions into a 
program, as in the following:

import org.apache.spark.SparkContext 
import org.apache.spark.SparkContext._

The SparkContext object can be created with the following constructor:

new SparkContext(master, appName, [sparkHome]) 

It can also be created through SparkContext(conf), which takes a SparkConf object.

The master parameter is a string that specifies a cluster URI to connect to (such as 
spark://localhost:7077) or a local string to run in local mode. The appName 
term is the application name that will be shown in the cluster web UI.
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It is not possible to override the default SparkContext class, nor is it possible to 
create a new one within a running Spark shell. It is however possible to specify 
which master the context connects to using the MASTER environment variable.  
For example, to run spark-shell on four cores, use the following:

$ MASTER=local[4] ./bin/spark-shell 

Java API
The org.apache.spark.api.java package exposes all the Spark features available 
in the Scala version to Java. The Java API has a JavaSparkContext class that returns 
instances of org.apache.spark.api.java.JavaRDD and works with Java collections 
instead of Scala ones.

There are a few key differences between the Java and Scala APIs:

•	 Java 7 does not support anonymous or first-class functions; therefore, 
functions must be implemented by extending the org.apache.spark.
api.java.function.Function, Function2, and other classes. As of Spark 
version 1.0 the API has been refactored to support Java 8 lambda expressions. 
With Java 8, Function classes can be replaced with inline expressions that act 
as a shorthand for anonymous functions.

•	 The RDD methods return Java collections
•	 Key-value pairs, which are simply written as (key, value) in Scala, are 

represented by the scala.Tuple2 class.
•	 To maintain type safety, some RDD and function methods, such as those that 

handle key pairs and doubles, are implemented as specialized classes.

WordCount in Java
An example of WordCount in Java is included with the Spark source code 
distribution at examples/src/main/java/org/apache/spark/examples/
JavaWordCount.java.

First of all, we create a context using the JavaSparkContext class:

   JavaSparkContext sc = new JavaSparkContext(master, "JavaWordCount",
     System.getenv("SPARK_HOME"), JavaSparkContext.
jarOfClass(JavaWordCount.class));

    JavaRDD<String> data = sc.textFile(infile, 1);
    JavaRDD<String> words = data.flatMap(new FlatMapFunction<String, 
String>() {
      @Override
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      public Iterable<String> call(String s) {
        return Arrays.asList(s.split(" "));
      }
    });

    JavaPairRDD<String, Integer> ones = words.map(new 
PairFunction<String, String, Integer>() {
      @Override
      public Tuple2<String, Integer> call(String s) {
        return new Tuple2<String, Integer>(s, 1);
      }
    });
    
    JavaPairRDD<String, Integer> counts = ones.reduceByKey(new 
Function2<Integer, Integer, Integer>() {
      @Override
      public Integer call(Integer i1, Integer i2) {
        return i1 + i2;
      }
    });
 

We then build an RDD from the HDFS location infile. In the first step of the 
transformation chain, we tokenize each tweet in the dataset and return a list of 
words. We use an instance of JavaPairRDD<String, Integer> to count occurrences 
of each word. Finally, we reduce the RDD to a new JavaPairRDD<String, 
Integer> instance that contains a list of tuples, each representing a word  
and the number of times it was found in the dataset.

Python API
PySpark requires Python version 2.6 or higher. RDDs support the same methods 
as their Scala counterparts but take Python functions and return Python collection 
types. Lambda syntax (https://docs.python.org/2/reference/expressions.
html) is used to pass functions to RDDs.

The word count in pyspark is relatively similar to its Scala counterpart:

tweets = sc.textFile("/tmp/sample.txt")
counts = tweets.flatMap(lambda tweet: tweet.split(' ')) \
                  .map(lambda word: (word, 1)) \
                  .reduceByKey(lambda m,n:m+n)
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The lambda construct creates anonymous functions at runtime. lambda tweet: 
tweet.split(' ') creates a function that takes a string tweet as the input and 
outputs a list of strings split by whitespace. Spark's flatMap applies this function to 
each line of the tweets dataset. In the map phase, for each word token, lambda word: 
(word, 1) returns (word, 1) tuples that indicate the occurrence of a word in the 
dataset. In reduceByKey, we group these tuples by key - word - and sum the values 
together to obtain the word count with lambda m,n:m+n.

The Spark ecosystem
Apache Spark powers a number of tools, both as a library and as an execution engine.

Spark Streaming
Spark Streaming (found at http://spark.apache.org/docs/latest/streaming-
programming-guide.html) is an extension of the Scala API that allows data 
ingestion from streams such as Kafka, Flume, Twitter, ZeroMQ, and TCP sockets.

Spark Streaming receives live input data streams and divides the data into batches 
(arbitrarily sized time windows), which are then processed by the Spark core 
engine to generate the final stream of results in batches. This high-level abstraction 
is called DStream (org.apache.spark.streaming.dstream.DStreams) and is 
implemented as a sequence of RDDs. DStream allows for two kinds of operations: 
transformations and output operations. Transformations work on one or more DStreams 
to create new DStreams. As part of a chain of transformations, data can be persisted 
either to a storage layer (HDFS) or an output channel. Spark Streaming allows for 
transformations over a sliding window of data. A window-based operation needs 
to specify two parameters: the window length, the duration of the window and the 
slide interval,  the interval at which the window-based operation is performed.

GraphX
GraphX (found at https://spark.apache.org/docs/latest/graphx-
programming-guide.html) is an API for graph computation that exposes a set of 
operators and algorithms for graph-oriented computation as well as an optimized 
variant of Pregel.
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MLlib
MLlib (found at http://spark.apache.org/docs/latest/mllib-guide.html) 
provides common Machine Learning (ML) functionality, including tests and data 
generators. MLlib currently supports four types of algorithms: binary classification, 
regression, clustering, and collaborative filtering.

Spark SQL
Spark SQL is derived from Shark, which is an implementation of the Hive data 
warehousing system that uses Spark as an execution engine. We will discuss Hive 
in Chapter 7, Hadoop and SQL. With Spark SQL, it is possible to mix SQL-like queries 
with Scala or Python code. The result sets returned by a query are themselves RDDs, 
and as such, they can be manipulated by Spark core methods or MLlib and GraphX.

Processing data with Apache Spark
In this section, we will implement the examples from Chapter 3, Processing – MapReduce 
and Beyond, using the Scala API. We will consider both the batch and real-time 
processing scenarios. We will show you how Spark Streaming can be used to  
compute statistics on the live Twitter stream.

Building and running the examples
Scala source code for the examples can be found at https://github.com/
learninghadoop2/book-examples/tree/master/ch5. We will be using sbt  
to build, manage, and execute code.

The build.sbt file controls the codebase metadata and software dependencies;  
these include the version of the Scala interpreter that Spark links to, a link to 
the Akka package repository used to resolve implicit dependencies, as well as 
dependencies on Spark and Hadoop libraries.

The source code for all examples can be compiled with:

$ sbt compile
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Or, it can be packaged into a JAR file with:

$ sbt package

A helper script to execute compiled classes can be generated with:

$ sbt add-start-script-tasks

$ sbt start-script

The helper can be invoked as follows:

$ target/start <class name> <master> <param1> … <param n>

Here, <master> is the URI of the master node. An interactive Scala session can be 
invoked via sbt with the following command:

$ sbt console

This console is not the same as the Spark interactive shell; rather, it is an alternative 
way to execute code. In order to run Spark code in it we will need to manually import 
and instantiate a SparkContext object. All examples presented in this section expect 
a twitter4j.properties file containing the consumer key and secret and the access 
tokens to be present in the same directory where sbt or spark-shell is being invoked:

oauth.consumerKey=
oauth.consumerSecret=
oauth.accessToken=
oauth.accessTokenSecret=

Running the examples on YARN
To run the examples on a YARN grid, we first build a JAR file using:

$ sbt package

Then, we ship it to the resource manager using the spark-submit command:

./bin/spark-submit --class application.to.execute --master yarn-cluster 
[options] target/scala-2.10/chapter-4_2.10-1.0.jar [<param1> … <param n>]

Unlike the standalone mode, we don't need to specify a <master> URI. In YARN, 
the ResourceManager is selected from the cluster configuration. More information 
on launching spark in YARN can be found at http://spark.apache.org/docs/
latest/running-on-yarn.html.
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Finding popular topics
Unlike the earlier examples with the Spark shell we initialize a SparkContext as part 
of the program. We pass three arguments to the SparkContext constructor: the type 
of scheduler we want to use, a name for the application, and the directory where 
Spark is installed:

import org.apache.spark.SparkContext._
import org.apache.spark.SparkContext
import scala.util.matching.Regex

object HashtagCount {
  def main(args: Array[String]) {
[…]
  val sc = new SparkContext(master, 
"HashtagCount", 
System.getenv("SPARK_HOME"))

    val file = sc.textFile(inputFile)
    val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")
    
    val counts = file.flatMap(line => 
      (pattern findAllIn line).toList)
        .map(word => (word, 1))
        .reduceByKey((m, n) => m + n)  
    
    counts.saveAsTextFile(outputPath)
  }
}

We create an initial RDD from a dataset stored in HDFS - inputFile - and apply  
logic that is similar to the WordCount example.

For each tweet in the dataset, we extract an array of strings that match the  
hashtag pattern (pattern findAllIn line).toArray, and we count an occurrence 
of each string using the map operator. This generates a new RDD as a list of tuples in 
the form:

(word, 1), (word2, 1), (word, 1) 

Finally, we combine together elements of this RDD using the reduceByKey() method. 
We store the RDD generated by this last step back into HDFS with saveAsTextFile.

The code for the standalone driver can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/HashTagCount.scala.
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Assigning a sentiment to topics 
The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/HashTagSentiment.scala, and the code is as follows:

import org.apache.spark.SparkContext._
import org.apache.spark.SparkContext
import scala.util.matching.Regex
import scala.io.Source
    
object HashtagSentiment {
  def main(args: Array[String]) {
   […]
    val sc = new SparkContext(master, 
"HashtagSentiment", 
System.getenv("SPARK_HOME"))

    val file = sc.textFile(inputFile)

    val positive = Source.fromFile(positiveWordsPath)
      .getLines
      .filterNot(_ startsWith ";")
      .toSet
    val negative = Source.fromFile(negativeWordsPath)
      .getLines
      .filterNot(_ startsWith ";")
      .toSet

    val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")
    val counts = file.flatMap(line => (pattern findAllIn line).map({
    word => (word, sentimentScore(line, positive, negative)) 
    })).reduceByKey({ (m, n) => (m._1 + n._1, m._2 + n._2) })

    val sentiment = counts.map({hashtagScore =>
    val hashtag = hashtagScore._1
    val score = hashtagScore._2
    val normalizedScore = score._1 / score._2
    (hashtag, normalizedScore)
    })

    sentiment.saveAsTextFile(outputPath)
  }
}

First, we read a list of positive and negative words into Scala Set objects and filter 
out comments (strings beginning with ;).
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When a hashtag is found, we call a function - sentimentScore - to estimate the 
sentiment expressed by that given text. This function implements the same logic we 
used in Chapter 3, Processing – MapReduce and Beyond, to estimate the sentiment of 
a tweet. It takes as input parameters the tweet's text, str, and a list of positive and 
negative words as Set[String] objects. The return value is the difference between 
the positive and negative scores and the number of words in the tweets. In Spark,  
we represent this return value as a pair of Double and Integer objects:

def sentimentScore(str: String, positive: Set[String], 
         negative: Set[String]): (Double, Int) = {
   var positiveScore = 0; var negativeScore = 0;
    str.split("""\s+""").foreach { w =>
      if (positive.contains(w)) { positiveScore+=1; }
      if (negative.contains(w)) { negativeScore+=1; }
    } 
    ((positiveScore - negativeScore).toDouble, 
           str.split("""\s+""").length)
}

We reduce the map output by aggregating by the key (the hashtag). In this phase,  
we emit a triple made of the hashtag, the sum of the difference between positive and 
negative scores, and the number of words per tweet. We use an additional map step 
to normalize the sentiment score and store the resulting list of hashtag and sentiment 
pairs to HDFS.

Data processing on streams
The previous example can be easily adjusted to work on a real-time stream of data. 
In this and the following section, we will use spark-streaming-twitter to perform 
some simple analytics tasks on the real-time firehose:

  val window = 10
  val ssc = new StreamingContext(master, "TwitterStreamEcho",     
Seconds(window), System.getenv("SPARK_HOME"))

  val stream = TwitterUtils.createStream(ssc, auth)

  val tweets = stream.map(tweet => (tweet.getText()))
  tweets.print()

  ssc.start()
  ssc.awaitTermination()
}   
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The Scala source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/TwitterStreamEcho.scala.

The two key packages we need to import are:

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.twitter._

We initialize a new StreamingContext ssc on a local cluster using a 10-second 
window and use this context to create a DStream of tweets whose text we print.

Upon successful execution, Twitter's real-time firehose will be echoed in the terminal 
in batches of 10 seconds worth of data. Notice that the computation will continue 
indefinitely but can be interrupted at any moment by pressing Ctrl + C.

The TwitterUtils object is a wrapper to the Twitter4j library (http://twitter4j.
org/en/index.html) that ships with spark-streaming-twitter. A successful 
call to TwitterUtils.createStream will return a DStream of Twitter4j objects 
(TwitterInputDStream). In the preceding example, we used the getText() method 
to extract the tweet text; however, notice that the twitter4j object exposes the full 
Twitter API. For instance, we can print a stream of users with the following call:

val users = stream.map(tweet => (tweet.getUser().getId(),  
tweet.getUser().getName()))
users.print()

State management
Spark Streaming provides an ad hoc DStream to keep the state of each key in an 
RDD and the updateStateByKey method to mutate state.

We can reuse the code of the batch example to assign and update sentiment scores  
on streams:

object StreamingHashTagSentiment {
[…]
    
    val counts = text.flatMap(line => (pattern findAllIn line)
      .toList
      .map(word => (word, sentimentScore(line, positive, negative))))
      .reduceByKey({ (m, n) => (m._1 + n._1, m._2 + n._2) })

    val sentiment = counts.map({hashtagScore =>
        val hashtag = hashtagScore._1
        val score = hashtagScore._2
        val normalizedScore = score._1 / score._2
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        (hashtag, normalizedScore)
    })
    
    val stateDstream = sentiment
         .updateStateByKey[Double](updateFunc)
 
    stateDstream.print

    ssc.checkpoint("/tmp/checkpoint")
    ssc.start()
}

A state DStream is created by calling hashtagSentiment.updateStateByKey.

The updateFunc function implements the state mutation logic, which is a cumulative 
sum of sentiment scores over a period of time:

    val updateFunc = (values: Seq[Double], state: Option[Double]) => {
      val currentScore = values.sum

      val previousScore = state.getOrElse(0.0)

      Some( (currentScore + previousScore) * decayFactor)
    }   

decayFactor is a constant value, less than or equal to zero, that we use to 
proportionally decrease the score over time. Intuitively, this will fade hashtags  
if they are not trending anymore. Spark Streaming writes intermediate data for 
stateful operations to HDFS, so we need to checkpoint the Streaming context  
with ssc.checkpoint.

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/StreamingHashTagSentiment.scala.

Data analysis with Spark SQL
Spark SQL can ease the task of representing and manipulating structured data. 
We will load a JSON file into a temporary table and calculate simple statistics by 
blending SQL statements and Scala code:

object SparkJson {
   […]
   val file = sc.textFile(inputFile)
   
   val sqlContext = new org.apache.spark.sql.SQLContext(sc)
   import sqlContext._
   



Iterative Computation with Spark

[ 148 ]

   val tweets = sqlContext.jsonFile(inFile)
   tweets.printSchema()
   
   // Register the SchemaRDD as a table
   tweets.registerTempTable("tweets")
   val text = sqlContext.sql("SELECT text, user.id FROM tweets")
   
   // Find the ten most popular hashtags
   val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")
    
   val counts = text.flatMap(sqlRow => (pattern findAllIn  
   sqlRow(0).toString).toList)
            .map(word => (word, 1))
            .reduceByKey( (m, n) => m+n)
   counts.registerTempTable("hashtag_frequency")

counts.printSchema

val top10 = sqlContext.sql("SELECT _1 as hashtag, _2 as frequency  
FROM hashtag_frequency order by frequency desc limit 10")

top10.foreach(println)
}

As with previous examples, we instantiate a SparkContext sc and load the dataset 
of JSON tweets. We then create an instance of org.apache.spark.sql.SQLContext 
based on the existing sc. The import sqlContext._ gives access to all functions 
and implicit conventions for sqlContext. We load the tweets' JSON dataset using 
sqlContext.jsonFile. The resulting tweets object is an instance of SchemaRDD, 
which is a new type of RDD introduced by Spark SQL. The SchemaRDD class is 
conceptually similar to a table in a relational database; it is composed of Row objects 
and a schema that describes the content in each Row. We can see the schema for a 
tweet by calling tweets.printSchema(). Before we're able to manipulate tweets 
with SQL statements, we need to register SchemaRDD as a table in the SQLContext. 
We then extract the text field of a JSON tweet with an SQL query. Note that the 
output of sqlContext.sql is an RDD again. As such, we can manipulate it using 
Spark core methods. In our case, we reuse the logic used in previous examples to 
extract hashtags and count their occurrences. Finally, we register the resulting RDD 
as a table, hashtag_frequency, and order hashtags by frequency with a SQL query.

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/SparkJson.scala.
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SQL on data streams
At the time of writing, a SQLContext cannot be directly instantiated from a 
StreamingContext object. It is, however, possible to query a DStream by  
registering a SchemaRDD for each RDD in a given stream:

object SqlOnStream {
[…]

    val ssc = new StreamingContext(sc, Seconds(window))

    val gson = new Gson()

    val dstream = TwitterUtils
   .createStream(ssc, auth)
   .map(gson.toJson(_))

    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext._

   dstream.foreachRDD( rdd => {
      rdd.foreach(println)
        val jsonRDD = sqlContext.jsonRDD(rdd)
        jsonRDD.registerTempTable("tweets")
        jsonRDD.printSchema 

         sqlContext.sql(query)
    })

    ssc.checkpoint("/tmp/checkpoint")
    ssc.start() 
    ssc.awaitTermination() 
}

In order to get the two working together, we first create a SparkContext sc that we 
use to initialize both a StreamingContext ssc and a sqlContext. As in previous 
examples, we use TwitterUtils.createStream to create a DStream RDD dstream. 
In this example, we use Google's Gson JSON parser to serialize each twitter4j 
object to a JSON string. To execute Spark SQL queries on the stream, we register a 
SchemaRDD jsonRDD within a dstream.foreachRDD loop. We use the sqlContext.
jsonRDD method to create an RDD from a batch of JSON tweets. At this point, we can 
query the SchemaRDD using the sqlContext.sql method.

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/SqlOnStream.scala.
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Comparing Samza and Spark Streaming
It is useful to compare Samza and Spark Streaming to help identify the areas in 
which each can best be applied. As it has been hopefully made clear in this book, 
these technologies are very much complimentary. Even though Spark Streaming 
might appear competitive with Samza, we feel both products offer compelling 
advantages in certain areas.

Samza shines when the input data is truly a stream of discrete events and you 
wish to build processing that operates on this type of input. Samza jobs running on 
Kafka can have latencies in the order of milliseconds. This provides a programming 
model focused on the individual messages and is the better fit for true near real-
time processing applications. Though it lacks support to build topologies of 
collaborating jobs, its simple model allows similar constructs to be built and, perhaps 
more importantly, be easily reasoned about. Its model of partitioning and scaling 
also focuses on simplicity, which again makes a Samza application very easy to 
understand and gives it a significant advantage when dealing with something as 
intrinsically complex as real-time data.

Spark is much more than a streaming product. Its support for building distributed 
data structures from existing datasets and using powerful primitives to manipulate 
these gives it the ability to process large datasets at a higher level of granularity. 
Other products in the Spark ecosystem build additional interfaces or abstractions 
upon this common batch processing core. This is very much a different focus to  
the message stream model of Samza.

This batch model is also demonstrated when we look at Spark Streaming; instead  
of a per-message processing model, it slices the message stream into a series  
of RDDs. With a fast execution engine, this means latencies as low as 1 second 
(http://www.cs.berkeley.edu/~matei/papers/2012/hotcloud_spark_
streaming.pdf). For workloads that wish to analyze the stream in such a way,  
this will be a better fit than Samza's per-message model, which requires additional 
logic to provide such windowing.
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Summary
This chapter explored Spark and showed you how it adds iterative processing as a 
new rich framework upon which applications can be built atop YARN. In particular, 
we highlighted:

•	 The distributed data-structure-based processing model of Spark and how it 
allows very efficient in-memory data processing

•	 The broader Spark ecosystem and how multiple additional projects are built 
atop it to specialize the computational model even further

In the next chapter we will explore Apache Pig and its programming language, 
Pig Latin. We will see how this tool can greatly simplify software development for 
Hadoop by abstracting away some of the MapReduce and Spark complexity.





Data Analysis with  
Apache Pig

In the previous chapters, we explored a number of APIs for data processing. 
MapReduce, Spark, Tez and Samza are rather low-level, and writing non-trivial 
business logic with them often requires significant Java development. Moreover, 
different users will have different needs. It might be impractical for an analyst 
to write MapReduce code or build a DAG of inputs and outputs to answer some 
simple queries. At the same time, a software engineer or a researcher might want to 
prototype ideas and algorithms using high-level abstractions before jumping into 
low-level implementation details.

In this chapter and the following one, we will explore some tools that provide a way 
to process data on HDFS using higher-level abstractions. In this chapter we will 
explore Apache Pig, and, in particular, we will cover the following topics:

•	 What Apache Pig is and the dataflow model it provides
•	 Pig Latin's data types and functions
•	 How Pig can be easily enhanced using custom user code
•	 How we can use Pig to analyze the Twitter stream

An overview of Pig
Historically, the Pig toolkit consisted of a compiler that generated MapReduce 
programs, bundled their dependencies, and executed them on Hadoop. Pig jobs 
are written in a language called Pig Latin and can be executed in both interactive 
and batch fashions. Furthermore, Pig Latin can be extended using User Defined 
Functions (UDFs) written in Java, Python, Ruby, Groovy, or JavaScript.
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Pig use cases include the following:

•	 Data processing
•	 Ad hoc analytical queries
•	 Rapid prototyping of algorithms
•	 Extract Transform Load pipelines

Following a trend we have seen in previous chapters, Pig is moving towards a  
general-purpose computing architecture. As of version 0.13 the ExecutionEngine 
interface (org.apache.pig.backend.executionengine) acts as a bridge between 
the frontend and the backend of Pig, allowing Pig Latin scripts to be compiled 
and executed on frameworks other than MapReduce. At the time of writing, 
version 0.13 ships with MRExecutionEngine (org.apache.pig.backend.
hadoop.executionengine.mapReduceLayer.MRExecutionEngine) and work 
on a low-latency backend based on Tez (org.apache.pig.backend.hadoop.
executionengine.tez.*) is expected to be included in version 0.14 (see https://
issues.apache.org/jira/browse/PIG-3446). Work on integrating Spark is 
currently in progress in the development branch (see https://issues.apache.
org/jira/browse/PIG-4059).

Pig 0.13 comes with a number of performance enhancements for the MapReduce 
backend, in particular two features to reduce latency of small jobs: direct HDFS  
access (https://issues.apache.org/jira/browse/PIG-3642) and auto local  
mode (https://issues.apache.org/jira/browse/PIG-3463). Direct HDFS,  
the opt.fetch property, is turned on by default. When doing a DUMP in a simple 
(map-only) script that contains only LIMIT, FILTER, UNION, STREAM, or FOREACH 
operators, input data is fetched from HDFS, and the query is executed directly  
in Pig, bypassing MapReduce. With auto local, the pig.auto.local.enabled 
property, Pig will run a query in the Hadoop local mode when the data size is 
smaller than pig.auto.local.input.maxbytes. Auto local is off by default.

Pig will launch MapReduce jobs if both modes are off or if the query is not  
eligible for either. If both modes are on, Pig will check whether the query is  
eligible for direct access and, if not, fall back to auto local. Failing that, it will  
execute the query on MapReduce.

Getting started
We will use the stream.py script options to extract JSON data and retrieve a specific 
number of tweets; we can run this with a command such as the following:

$ python stream.py -j -n 10000 > tweets.json
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The tweets.json file will contain one JSON string on each line representing a tweet.

Remember that the Twitter API credentials need to be made available as 
environment variables or hardcoded in the script itself.

Running Pig
Pig is a tool that translates statements written in Pig Latin and executes them 
either on a single machine in standalone mode or on a full Hadoop cluster when in 
distributed mode. Even in the latter, Pig's role is to translate Pig Latin statements 
into MapReduce jobs and therefore it doesn't require the installation of additional 
services or daemons. It is used as a command-line tool with its associated libraries.

Cloudera CDH ships with Apache Pig version 0.12. Alternatively, the Pig source 
code and binary distributions can be obtained at https://pig.apache.org/
releases.html.

As can be expected, the MapReduce mode requires access to a Hadoop cluster and 
HDFS installation. MapReduce mode is the default mode executed when running 
the Pig command at the command-line prompt. Scripts can be executed with the 
following command:

$ pig -f <script>

Parameters can be passed via the command line using -param <param>=<val>,  
as follows:

$ pig –param input=tweets.txt

Parameters can also be specified in a param file that can be passed to Pig using 
the -param_file <file> option. Multiple files can be specified. If a parameter is 
present multiple times in the file, the last value will be used and a warning will 
be displayed. A parameter file contains one parameter per line. Empty lines and 
comments (specified by starting a line with #) are allowed. Within a Pig script, 
parameters are in the form $<parameter>. The default value can be assigned using 
the default statement: %default input tweets.json'. The default command 
will not work within a Grunt session; we'll discuss Grunt in the next section.

In local mode, all files are installed and run using the local host and filesystem. 
Specify local mode using the -x flag:

$ pig -x local

In both execution modes, Pig programs can be run either in an interactive shell or in 
batch mode.
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Grunt – the Pig interactive shell
Pig can run in an interactive mode using the Grunt shell, which is invoked when 
we use the pig command at the terminal prompt. In the rest of this chapter, we will 
assume that examples are executed within a Grunt session. Other than executing Pig 
Latin statements, Grunt offers a number of utilities and access to shell commands:

•	 fs: allows users to manipulate Hadoop filesystem objects and has the same 
semantics as the Hadoop CLI

•	 sh: executes commands via the operating system shell
•	 exec: launches a Pig script within an interactive Grunt session
•	 kill: kills a MapReduce job
•	 help: prints a list of all available commands

Elastic MapReduce
Pig scripts can be executed on EMR by creating a cluster with --applications 
Name=Pig,Args=--version,<version>, as follows:

$ aws emr create-cluster \

--name "Pig cluster" \

--ami-version <ami version> \

--instance-type <EC2 instance> \

--instance-count <number of nodes> \

--applications Name=Pig,Args=--version,<version>\

--log-uri <S3 bucket> \

--steps Type=PIG,\ 

Name="Pig script",\

Args=[-f,s3://<script location>,\

-p,input=<input param>,\

-p,output=<output param>]

The preceding command will provision a new EMR cluster and execute 
s3://<script location>. Notice that the scripts to be executed and the input  
(-p input) and output (-p output) paths are expected to be located on S3.
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As an alternative to creating a new EMR cluster, it is possible to add Pig steps  
to an already-instantiated EMR cluster using the following command:

$ aws emr add-steps \

--cluster-id <cluster id>\

--steps Type=PIG,\ 

Name= "Other Pig script",\

Args=[-f,s3://<script location>,\

-p,input=<input param>,\

-p,output=<output param>]

In the preceding command, <cluster id> is the ID of the instantiated cluster.

It is also possible to ssh into the master node and run Pig Latin statements within a 
Grunt session with the following command:

$ aws emr ssh --cluster-id <cluster id> --key-pair-file <key pair>

Fundamentals of Apache Pig
The primary interface to program Apache Pig is Pig Latin, a procedural language 
that implements ideas of the dataflow paradigm.

Pig Latin programs are generally organized as follows:

•	 A LOAD statement reads data from HDFS
•	  A series of statements aggregates and manipulates data
•	 A STORE statement writes output to the filesystem
•	 Alternatively, a DUMP statement displays the output to the terminal

The following example shows a sequence of statements that outputs the top 10 
hashtags ordered by the frequency, extracted from the dataset of tweets:

tweets = LOAD 'tweets.json' 
  USING JsonLoader('created_at:chararray, 
    id:long, 
    id_str:chararray, 
    text:chararray');

hashtags = FOREACH tweets {
  GENERATE FLATTEN(
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    REGEX_EXTRACT(
      text, 
      '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)', 1)
    ) as tag;
}

hashtags_grpd = GROUP hashtags BY tag;
hashtags_count = FOREACH hashtags_grpd {
  GENERATE 
    group, 
    COUNT(hashtags) as occurrencies; 
}
hashtags_count_sorted = ORDER hashtags_count BY occurrencies DESC;
top_10_hashtags = LIMIT hashtags_count_sorted 10;
DUMP top_10_hashtags;

First, we load the tweets.json dataset from HDFS, de-serialize the JSON file,  
and map it to a four-column schema that contains a tweet's creation time, its ID  
in numerical and string form, and the text. For each tweet, we extract hashtags  
from its text using a regular expression. We aggregate on hashtag, count the number  
of occurrences, and order by frequency. Finally, we limit the ordered records to  
the top 10 most frequent hashtags.

A series of statements like the previous one is picked up by the Pig compiler, 
transformed into MapReduce jobs, and executed on a Hadoop cluster. The planner 
and optimizer will resolve dependencies on input and output relations and 
parallelize the execution of statements wherever possible.

Statements are the building blocks of processing data with Pig. They take a relation  
as input and produce another relation as output. In Pig Latin terms, a relation  
can be defined as a bag of tuples, two data types we will use throughout the 
remainder of this chapter.

Users experienced with SQL and the relational data model might find Pig Latin's 
syntax somewhat familiar. While there are indeed similarities in the syntax itself, Pig 
Latin implements an entirely different computational model. Pig Latin is procedural, 
it specifies the actual data transforms to be performed, whereas SQL is declarative 
and describes the nature of the problem but does not specify the actual runtime 
processing. In terms of organizing data, a relation can be thought of as a table in a 
relational database, where tuples in a bag correspond to the rows in a table. Relations 
are unordered and therefore easily parallelizable, and they are less constrained 
than relational tables. Pig relations can contain tuples with different numbers of 
fields, and those with the same field count can have fields of different types in 
corresponding positions.
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A key difference between SQL and the dataflow model adopted by Pig Latin lies 
in how splits in a data pipeline are managed. In the relational world, a declarative 
language such as SQL implements and executes queries that will generate a single 
result. The dataflow model sees data transformations as a graph where input and 
output are nodes connected by an operator. For instance, intermediate steps of a query 
might require the input to be grouped by a number of keys and result in multiple 
outputs (GROUP BY). Pig has built-in mechanisms to manage multiple data flows 
in such a graph by executing operators as soon as inputs are readily available and 
potentially apply different operators to each flow. For instance, Pig's implementation 
of the GROUP BY operator uses the parallel feature (http://pig.apache.org/docs/
r0.12.0/perf.html#parallel) to allow a user to increase the number of reduce tasks 
for the MapReduce jobs generated and hence increases concurrency. An additional 
side effect of this property is that when multiple operators can be executed in parallel 
in the same program, Pig does so (more details on Pig's multi-query implementation 
can be found at http://pig.apache.org/docs/r0.12.0/perf.html#multi-query-
execution). Another consequence of Pig Latin's approach to computation is that it 
allows the persistence of data at any point in the pipeline. It allows the developer 
to select specific operator implementations and execution plans when necessary, 
effectively overriding the optimizer.

Pig Latin allows and even encourages developers to insert their own code almost 
anywhere in a pipeline by means of User Defined Functions (UDFs) as well as by 
utilizing Hadoop streaming. UDFs allow users to specify custom business logic on 
how data is loaded, how it is stored, and how it is processed, whereas streaming 
allows users to launch executables at any point in the data flow.

Programming Pig
Pig Latin comes with a number of built-in functions (the eval, load/store, math, 
string, bag, and tuple functions) and a number of scalar and complex data types. 
Additionally, Pig allows function and data-type extension by means of UDFs and 
dynamic invocation of Java methods.

Pig data types
Pig supports the following scalar data types:

•	 int: a signed 32-bit integer
•	 long: a signed 64-bit integer
•	 float: a 32-bit floating point
•	 double: a 64-bit floating point
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•	 chararray: a character array (string) in Unicode UTF-8 format
•	 bytearray: a byte array (blob)
•	 boolean: a boolean
•	 datetime: a datetime
•	 biginteger: a Java BigInteger
•	 bigdecimal: a Java BigDecimal

Pig supports the following complex data types:

•	 map: an associative array enclosed by [], with the key and value  
separated by #, and items separated by ,

•	 tuple: an ordered list of data, where elements can be of any scalar  
or complex type enclosed by (), with items separated by ,

•	 bag: an unordered collection of tuples enclosed by {} and separated by ,

By default, Pig treats data as untyped. The user can declare the types of data at load 
time or manually cast it when necessary. If a data type is not declared, but a script 
implicitly treats a value as a certain type, Pig will assume it is of that type and cast it 
accordingly. The fields of a bag or tuple can be referred to by the name tuple.field 
or by the position $<index>. Pig counts from 0 and hence the first element will be 
denoted as $0.

Pig functions
Built-in functions are implemented in Java, and they try to follow standard  
Java conventions. There are however a number of differences to keep in mind,  
which are as follows:

•	 Function names are case sensitive and uppercase
•	 If the result value is null, empty, or not a number (NaN), Pig returns null
•	 If Pig is unable to process the expression, it returns an exception

A list of all built-in functions can be found at http://pig.apache.org/docs/
r0.12.0/func.html.
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Load/store
Load/store functions determine how data goes into and comes out of Pig. The 
PigStorage, TextLoader, and BinStorage functions can be used to read and 
write UTF-8 delimited, unstructured text, and binary data respectively. Support 
for compression is determined by the load/store function. The PigStorage and 
TextLoader functions support gzip and bzip2 compression for both read (load)  
and write (store). The BinStorage function does not support compression.

As of version 0.12, Pig includes built-in support for loading and storing Avro and 
JSON data via the AvroStorage (load/store), JsonStorage (store), and JsonLoader 
(load). At the time of writing, JSON support is still somewhat limited. In particular, 
Pig expects a schema for the data to be provided as an argument to JsonLoader/
JsonStorage, or it assumes that .pig_schema (produced by JsonStorage) is 
present in the directory containing the input data. In practice,  
this makes it difficult to work with JSON dumps not generated by Pig itself.

As seen in our following example, we can load the JSON dataset with JsonLoader:

tweets = LOAD 'tweets.json' USING JsonLoader(
'created_at:chararray,  
id:long, 
id_str:chararray, 
text:chararray,
source:chararray');

We provide a schema so that the first five elements of a JSON object created_id, id, 
id_str, text, and source are mapped. We can look at the schema of tweets by using 
describe tweets, which returns the following:

 tweets: {created_at: chararray,id: long,id_str: chararray,text: 
chararray,source: chararray} 

Eval
Eval functions implement a set of operations to be applied on an expression that 
returns a bag or map data type. The expression result is evaluated within the 
function context.

•	 AVG(expression): computes the average of the numeric values in a single-
column bag

•	 COUNT(expression): counts all elements with non-null values in the first 
position in a bag
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•	 COUNT_STAR(expression): counts all elements in a bag
•	 IsEmpty(expression): checks whether a bag or map is empty
•	 MAX(expression), MIN(expression), and SUM(expression): return the 

max, min, or the sum of elements in a bag
•	 TOKENIZE(expression): splits a string and outputs a bag of words

The tuple, bag, and map functions
These functions allow conversion from and to the bag, tuple, and map types.  
They include the following:

•	 TOTUPLE(expression), TOMAP(expression), and TOBAG(expression): 
These coerce expression to a tuple, map, or bag

•	 TOP(n, column, relation): This returns the top n tuples from a bag  
of tuples

The math, string, and datetime functions
Pig exposes a number of functions provided by the java.lang.Math, java.lang.
String, java.util.Date, and Joda-Time DateTime class (found at http://www.
joda.org/joda-time/).

Dynamic invokers
Dynamic invokers allow the execution of Java functions without having to wrap 
them in a UDF. They can be used for any static function that:

•	 accepts no arguments or accepts a combination of string, int, long, double, 
float, or array with these same types

•	 returns a string, int, long, double, or float value

Only primitives can be used for numbers and Java boxed classes (such as Integer) 
cannot be used as arguments. Depending on the return type, a specific kind of invoker 
must be used: InvokeForString, InvokeForInt, InvokeForLong, InvokeForDouble, 
or InvokeForFloat. More details regarding dynamic invokers can be found at 
http://pig.apache.org/docs/r0.12.0/func.html#dynamic-invokers.
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Macros
As of version 0.9, Pig Latin's preprocessor supports macro expansion. Macros are 
defined using the DEFINE statement:

DEFINE macro_name(param1, ..., paramN) RETURNS output_bag { 
  pig_latin_statements 
};

The macro is expanded inline, and its parameters are referenced in the Pig Latin 
block within { }.

The macro output relation is given in the RETURNS statements (output_bag).  
RETURNS void is used for a macro with no output relation.

We can define a macro to count the number of rows in a relation, as follows:

DEFINE count_rows(X) RETURNS cnt { 
  grpd = group $X all; 
  $cnt = foreach grpd generate COUNT($X); 
};

We can use it in a Pig script or Grunt session to count the number of tweets:

tweets_count = count_rows(tweets);
DUMP tweets_count;

Macros allow us to make scripts modular by housing code in separate files and 
importing them where needed. For example, we can save count_rows in a file  
called count_rows.macro and later on import it with the command import  
'count_rows.macro'.

Macros have a number of limitations; in particular, only Pig Latin statements are 
allowed inside a macro. It is not possible to use REGISTER statements and shell 
commands, UDFs are not allowed, and parameter substitution inside the macro  
is not supported.

Working with data
Pig Latin provides a number of relational operators to combine functions and 
apply transformations on data. Typical operations in a data pipeline consist of 
filtering relations (FILTER), aggregating inputs based on keys (GROUP), generating 
transformations based on columns of data (FOREACH), and joining relations (JOIN) 
based on shared keys.

In the following sections, we will illustrate such operators on a dataset of tweets 
generated by loading JSON data.
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Filtering
The FILTER operator selects tuples from a relation based on an expression,  
as follows:

relation = FILTER relation BY expression;

We can use this operator to filter tweets whose text matches the hashtag regular 
expression, as follows:

tweets_with_tag = FILTER tweets BY 
    (text 
       MATCHES '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)'
);

Aggregation
The GROUP operator groups together data in one or more relations based on an 
expression or a key, as follows:

relation = GROUP relation BY expression;

We can group tweets by the source field into a new relation grpd, as follows:

grpd = GROUP tweets BY source;

It is possible to group on multiple dimensions by specifying a tuple as the key,  
as follows:

grpd = GROUP tweets BY (created_at, source);

The result of a GROUP operation is a relation that includes one tuple per unique value 
of the group expression. This tuple contains two fields. The first field is named group 
and is of the same type as the group key. The second field takes the name of the 
original relation and is of the type bag. The names of both fields are generated by  
the system.

Using the ALL keyword, Pig will aggregate across the whole relation. The GROUP 
tweets ALL scheme will aggregate all tuples in the same group.

As previously mentioned, Pig allows explicit handling of the concurrency level  
of the GROUP operator using the PARALLEL operator:

grpd = GROUP tweets BY (created_at, id) PARALLEL 10;
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In the preceding example, the MapReduce job generated by the compiler will run 
10 concurrent reduce tasks. Pig has a heuristic estimate of how many reducers to 
use. Another way of globally enforcing the number of reduce tasks is to use the set 
default_parallel <n> command.

Foreach
The FOREACH operator applies functions on columns, as follows:

relation = FOREACH relation GENERATE transformation;

The output of FOREACH depends on the transformation applied.

We can use the operator to project the text of all tweets that contain a hashtag,  
as follows:

 t = FOREACH tweets_with_tag GENERATE text;

We can also apply a function to the projected columns. For instance, we can use the 
REGEX_TOKENIZE function to split each tweet into words, as follows:

t = FOREACH tweets_with_tag GENERATE FLATTEN(TOKENIZE(text)) as word;

The FLATTEN modifier further un-nests the bag generated by TOKENIZE into a tuple  
of words.

Join
The JOIN operator performs an inner join of two or more relations based on common 
field values. Its syntax is as follows:

relation = JOIN relation1 BY expression1, relation2 BY expression2;

We can use a join operation to detect tweets that contain positive words, as follows:

positive = LOAD 'positive-words.txt' USING PigStorage() as 
(w:chararray);

Filter out the comments, as follows:

positive_words = FILTER positive BY NOT w MATCHES '^;.*';
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positive_words is a bag of tuples, each containing a word. We then tokenize the 
tweets' text and create a new bag of (id_str, word) tuples as follows:

id_words = FOREACH tweets {
   GENERATE 
      id_str, 
      FLATTEN(TOKENIZE(text)) as word;
}

We join the two relations on the word field and obtain a relation of all tweets that 
contain one or more positive words, as follows:

positive_tweets = JOIN positive_words BY w, id_words BY word;

In this statement, we join positive_words and id_words on the condition that  
id_words.word is a positive word. The positive_tweets operator is a bag in the 
form of {w:chararray,id_str:chararray, word:chararray} that contains all 
elements of positive_words and id_words that match the join condition.

We can combine the GROUP and FOREACH operator to calculate the number of  
positive words per tweet (with at least one positive word). First, we group the 
relation of positive tweets by the tweet ID, and then we count the number of 
occurrences of each ID in the relation, as follows:

grpd = GROUP positive_tweets BY id_str;
score = FOREACH grpd GENERATE FLATTEN(group), COUNT(positive_tweets);

The JOIN operator can make use of the parallelize feature as well, as follows:

positive_tweets = JOIN positive_words BY w, id_words BY word PARALLEL 
10

The preceding command will execute the join with 10 reducer tasks.

It is possible to specify the operator's behavior with the USING keyword followed by 
the ID of a specialized join. More details can be found at http://pig.apache.org/
docs/r0.12.0/perf.html#specialized-joins.
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Extending Pig (UDFs)
Functions can be a part of almost every operator in Pig. There are two main 
differences between UDFs and built-in functions. First, UDFs need to be registered 
using the REGISTER keyword in order to make them available to Pig. Secondly, they 
need to be qualified when used. Pig UDFs can currently be implemented in Java, 
Python, Ruby, JavaScript, and Groovy. The most extensive support is provided 
for Java functions, which allow you to customize all parts of the process including 
data load/store, transformation, and aggregation. Additionally, Java functions are 
also more efficient because they are implemented in the same language as Pig and 
because additional interfaces are supported, such as the Algebraic and Accumulator 
interfaces. On the other hand, Ruby and Python APIs allow more rapid prototyping.

The integration of UDFs with the Pig environment is mainly managed by the 
following two statements REGISTER and DEFINE:

•	 REGISTER registers a JAR file so that the UDFs in the file can be used,  
as follows:
REGISTER 'piggybank.jar'

•	 DEFINE creates an alias to a function or a streaming command, as follows:

DEFINE MyFunction my.package.uri.MyFunction

The version 0.12 of Pig introduced the streaming of UDFs as a mechanism for writing 
functions using languages with no JVM implementation.

Contributed UDFs
Pig's code base hosts a UDF repository called Piggybank. Other popular contributed 
repositories are Twitter's Elephant Bird (found at https://github.com/
kevinweil/elephant-bird/) and Apache DataFu (found at http://datafu.
incubator.apache.org/).
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Piggybank
Piggybank is a place for Pig users to share their functions. Shared code is located in 
the official Pig Subversion repository found at http://svn.apache.org/viewvc/
pig/trunk/contrib/piggybank/java/src/main/java/org/apache/pig/
piggybank/. The API documentation can be found at http://pig.apache.org/
docs/r0.12.0/api/ under the contrib section. Piggybank UDFs can be obtained by 
checking out and compiling the sources from the Subversion repository or by using 
the JAR file that ships with binary releases of Pig. In Cloudera CDH, piggybank.jar 
is available at /opt/cloudera/parcels/CDH/lib/pig/piggybank.jar.

Elephant Bird
Elephant Bird is an open source library of all things Hadoop used in production 
at Twitter. This library contains a number of serialization tools, custom input and 
output formats, writables, Pig load/store functions, and more miscellanea.

Elephant Bird ships with an extremely flexible JSON loader function, which at the 
time of writing, is the go-to resource for manipulating JSON data in Pig.

Apache DataFu
Apache DataFu Pig collects a number of analytical functions developed and 
contributed by LinkedIn. These include statistical and estimation functions,  
bag and set operations, sampling, hashing, and link analysis.

Analyzing the Twitter stream
In the following examples, we will use the implementation of JsonLoader provided 
by Elephant Bird to load and manipulate JSON data. We will use Pig to explore tweet 
metadata and analyze trends in the dataset. Finally, we will model the interaction 
between users as a graph and use Apache DataFu to analyze this social network.
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Prerequisites
Download the elephant-bird-pig (http://central.maven.org/maven2/com/
twitter/elephantbird/elephant-bird-pig/4.5/elephant-bird-pig-4.5.jar), 
elephant-bird-hadoop-compat (http://central.maven.org/maven2/com/
twitter/elephantbird/elephant-bird-hadoop-compat/4.5/elephant-bird-
hadoop-compat-4.5.jar), and elephant-bird-core (http://central.maven.
org/maven2/com/twitter/elephantbird/elephant-bird-core/4.5/elephant-
bird-core-4.5.jar) JAR files from the Maven central repository and copy them 
onto HDFS using the following command:

$ hdfs dfs -put target/elephant-bird-pig-4.5.jar hdfs:///jar/

$ hdfs dfs –put target/elephant-bird-hadoop-compat-4.5.jar hdfs:///jar/

$ hdfs dfs –put elephant-bird-core-4.5.jar hdfs:///jar/ 

Dataset exploration
Before diving deeper into the dataset, we need to register the dependencies to 
Elephant Bird and DataFu, as follows:

REGISTER /opt/cloudera/parcels/CDH/lib/pig/datafu-1.1.0-cdh5.0.0.jar
REGISTER /opt/cloudera/parcels/CDH/lib/pig/lib/json-simple-1.1.jar
REGISTER hdfs:///jar/elephant-bird-pig-4.5.jar
REGISTER hdfs:///jar/elephant-bird-hadoop-compat-4.5.jar
REGISTER hdfs:///jar/elephant-bird-core-4.5.jar

Then, load the JSON dataset of tweets using com.twitter.elephantbird.pig.
load.JsonLoader, as follows:

tweets = LOAD 'tweets.json' using  com.twitter.elephantbird.pig.load.
JsonLoader('-nestedLoad');

com.twitter.elephantbird.pig.load.JsonLoader decodes each line of the  
input file to JSON and passes the resulting map of values to Pig as a single-element 
tuple. This enables access to elements of the JSON object without having to specify  
a schema upfront. The –nestedLoad argument instructs the class to load nested  
data structures.
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Tweet metadata
In the remainder of the chapter, we will use metadata from the JSON dataset to model 
the tweet stream. One example of metadata attached to a tweet is the Place object, 
which contains geographical information about the user's location. Place contains 
fields that describe its name, ID, country, country code, and more. A full description 
can be found at https://dev.twitter.com/docs/platform-objects/places.

place = FOREACH tweets GENERATE (chararray)$0#'place' as place;

Entities give information such as structured data from tweets, URLs, hashtags, and 
mentions, without having to extract them from text. A description of entities can be 
found at https://dev.twitter.com/docs/entities. The hashtag entity is an array 
of tags extracted from a tweet. Each entity has the following two attributes:

•	 Text: is the hashtag text
•	 Indices: is the character position from which the hashtag was extracted

The following code uses entities:

hashtags_bag = FOREACH tweets {
    GENERATE 
      FLATTEN($0#'entities'#'hashtags') as tag;
}

We then flatten hashtags_bag to extract each hashtag's text:

hashtags = FOREACH hashtags_bag GENERATE tag#'text' as topic;

Entities for user objects contain information that appears in the user profile and 
description fields. We can extract the tweet author's ID via the user field in the  
tweet map:

users = FOREACH tweets GENERATE $0#'user'#'id' as id;

Data preparation
The SAMPLE built-in operator selects a set of n tuples with probability p out of the 
dataset, as follows:

sampled = SAMPLE tweets 0.01;
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The preceding command will select approximately 1 percent of the dataset.  
Given that SAMPLE is probabilistic (http://en.wikipedia.org/wiki/Bernoulli_
sampling), there is no guarantee that the sample size will be exact. Moreover the 
function samples with replacement, which means that each item might appear more 
than once.

Apache DataFu implements a number of sampling methods for cases where  
having an exact sample size and no replacement is desired (SimpleRandomSampling), 
sampling with replacement (SimpleRandomSampleWithReplacementVote and 
SimpleRandomSampleWithReplacementElect), when we want to account for 
sample bias (WeightedRandomSampling), or to sample across multiple relations 
(SampleByKey).

We can create a sample of exactly 1 percent of the dataset, with each item having  
the same probability of being selected, using SimpleRandomSample.

The actual guarantee is a sample of size ceil (p*n) with a probability 
of at least 99 percent.

First, we pass a sampling probability 0.01 to the UDF constructor:

DEFINE SRS datafu.pig.sampling.SimpleRandomSample('0.01');

and the bag, created with (GROUP tweets ALL), to be sampled:

sampled = FOREACH (GROUP tweets ALL) GENERATE FLATTEN(SRS(tweets));

The SimpleRandomSample UDF selects without replacement, which means that each 
item will appear only once.

Which sampling method to use depends both on the data we are 
working with, assumptions on how items are distributed, the size 
of the dataset, and what we practically want to achieve. In general, 
when we want to explore a dataset to formulate hypotheses, 
SimpleRandomSample can be a good choice. However, in several 
analytics applications, it is common to use methods that assume 
replacement (for example, bootstrapping).
Note that when working with very large datasets, sampling with 
replacement and sampling without replacement tend to behave 
similarly. The probability of an item being selected twice out of a 
population of billions of items will be low.
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Top n statistics
One of the first questions we might want to ask is how frequent certain things are. 
For instance, we might want to create a histogram of the top 10 topics by the number 
of mentions. Similarly, we might want to find the top 50 countries or the top 10 users. 
Before looking at tweets data, we will define a macro so that we can apply the same 
selection logic to different collections of items:

DEFINE top_n(rel, col, n) 
  RETURNS top_n_items {
    grpd = GROUP $rel BY $col;
    cnt_items = FOREACH grpd 
        GENERATE FLATTEN(group), COUNT($rel) AS cnt;
    cnt_items_sorted = ORDER cnt_items BY cnt DESC;
    $top_n_items = LIMIT cnt_items_sorted $n;
  }

The top_n method takes a relation rel, the column col we want to count, and the 
number of items to return n as parameters. In the Pig Latin block, we first group  
rel by items in col, count the number of occurrences of each item, sort them, and 
select the most frequent n.

To find the top 10 English hashtags, we filter them by language, and extract  
their text:

tweets_en = FILTER tweets by $0#'lang' == 'en';
hashtags_bag = FOREACH tweets { 
    GENERATE
        FLATTEN($0#'entities'#'hashtags') AS tag;
}
hashtags = FOREACH hashtags_bag GENERATE tag#'text' AS tag;

And apply the top_n macro:

top_10_hashtags = top_n(hashtags, tag, 10);

In order to better characterize what is trending and make this information more 
relevant to users, we can drill down into the dataset and look at hashtags per 
geographic location. 

First, we generate bag of (place, hashtag) tuples, as follows:

hashtags_country_bag = FOREACH tweets generate {
    0#'place' as place, 
    FLATTEN($0#'entities'#'hashtags') as tag;
}
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And then, we extract the country code and hashtag text, as follows:

hashtags_country = FOREACH hashtags_country_bag {
  GENERATE 
    place#'country_code' as co, 
    tag#'text' as tag;
}

Then, we count how many times each country code and hashtag appear together,  
as follows:

hashtags_country_frequency = FOREACH (GROUP hashtags_country ALL) {
  GENERATE 
    FLATTEN(group), 
    COUNT(hashtags_country) as count;
}

Finally, we count the top 10 countries per hashtag with the TOP function, as follows:

hashtags_country_regrouped= GROUP hashtags_country_frequency BY cnt; 
top_results = FOREACH hashtags_country_regrouped {
    result = TOP(10, 1, hashtags_country_frequency);
    GENERATE FLATTEN(result);
} 

TOP's parameters are the number of tuples to return, the column to compare, and the 
relation containing said column:

top_results = FOREACH D {
  result = TOP(10, 1, C);
  GENERATE FLATTEN(result);
}

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch6/topn.pig.

Datetime manipulation
The created_at field in the JSON tweets gives us time-stamped information about 
when the tweet was posted. Unfortunately, its format is not compatible with Pig's 
built-in datetime type.

Piggybank comes to the rescue with a number of time manipulation UDFs contained 
in org.apache.pig.piggybank.evaluation.datetime.convert. One of them is 
CustomFormatToISO, which converts an arbitrarily formatted timestamp into an ISO 
8601 datetime string.
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In order to access these UDFs, we first need to register the piggybank.jar file,  
as follows:

REGISTER /opt/cloudera/parcels/CDH/lib/pig/piggybank.jar

To make our code less verbose, we create an alias for the CustomFormatToISO  
class's fully qualified Java name:

DEFINE CustomFormatToISO org.apache.pig.piggybank.evaluation.datetime.
convert.CustomFormatToISO();

By knowing how to manipulate timestamps, we can calculate statistics at different time 
intervals. For instance, we can look at how many tweets are created per hour. Pig has a 
built-in GetHour function that extracts the hour out of a datetime type. To use this, we 
first convert the timestamp string to ISO 8601 with CustomFormatToISO and then the 
resulting chararray to datetime using the built-in ToDate function, as follows:

hourly_tweets = FOREACH tweets {
  GENERATE 
    GetHour(
      ToDate(
      CustomFormatToISO(
$0#'created_at', 'EEE MMMM d HH:mm:ss Z y')
      )
    ) as hour;
}

Now, it is just a matter of grouping hourly_tweets by hour and then generating a 
count of tweets per group, as follows:

hourly_tweets_count =  FOREACH (GROUP hourly_tweets BY hour) { 
  GENERATE FLATTEN(group), COUNT(hourly_tweets);
}

Sessions
DataFu's Sessionize class can help us to better capture user activity over time.  
A session represents the activity of a user within a given period of time. For instance, 
we can look at each user's tweet stream at intervals of 15 minutes and measure these 
sessions to determine both network volumes as well as user activity:

DEFINE Sessionize datafu.pig.sessions.Sessionize('15m');
users_activity = FOREACH tweets {
      GENERATE 
        CustomFormatToISO($0#'created_at', 
                      'EEE MMMM d HH:mm:ss Z y') AS dt,
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        (chararray)$0#'user'#'id' as user_id;
}
users_activity_sessionized = FOREACH 
    (GROUP users_activity BY user_id) {
    ordered = ORDER users_activity BY dt;
    GENERATE FLATTEN(Sessionize(ordered)) 
                    AS (dt, user_id, session_id);
}

user_activity simply records the time dt a given user_id posted a status update.

Sessionize takes the session timeout and a bag as input. The first element of the 
input bag is an ISO 8601 timestamp, and the bag must be sorted by this timestamp. 
Events that are within 15 minutes from each other will belong to the same session.

It returns the input bag with a new field, session_id, that uniquely identifies 
a session. With this data, we can calculate the session's length and some other 
statistics. More examples of Sessionize usage can be found at http://datafu.
incubator.apache.org/docs/datafu/guide/sessions.html.

Capturing user interactions
In the remainder of the chapter, we will look at how to capture patterns from  
user interactions. As a first step in this direction, we will create a dataset suitable to 
model a social network. This dataset will contain a timestamp, the ID of the tweet, 
the user who posted the tweet, the user and tweet she's replying to, and the hashtag 
in the tweet.

Twitter considers as a reply (in_reply_to_status_id_str) any message beginning 
with the @ character. Such tweets are interpreted as a direct message to that person. 
Placing an @ character anywhere else in the tweet is interpreted as a mention 
('entities'#'user_mentions') and not a reply. The difference is that mentions are 
immediately broadcast to a person's followers, whereas replies are not. Replies are, 
however, considered as mentions.

When working with personally identifiable information, it is a good idea to 
anonymize if not remove entirely sensitive data such as IP addresses, names, and 
user IDs. A commonly used technique involves a hash function that takes as input 
the data we want to anonymize, concatenated with additional random data called 
salt. The following code shows an example of such anonymization:

DEFINE SHA datafu.pig.hash.SHA();
from_to_bag = FOREACH tweets {
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  dt = $0#'created_at';
  user_id = (chararray)$0#'user'#'id';
  tweet_id = (chararray)$0#'id_str';
  reply_to_tweet = (chararray)$0#'in_reply_to_status_id_str';
  reply_to = (chararray)$0#'in_reply_to_user_id_str';
  place = $0#'place';
  topics = $0#'entities'#'hashtags';

  GENERATE
    CustomFormatToISO(dt, 'EEE MMMM d HH:mm:ss Z y') AS dt,
    SHA((chararray)CONCAT('SALT', user_id)) AS source,  
    SHA(((chararray)CONCAT('SALT', tweet_id))) AS tweet_id,
    ((reply_to_tweet IS NULL) 
         ? NULL 
         : SHA((chararray)CONCAT('SALT', reply_to_tweet))) 
               AS  reply_to_tweet_id,
    ((reply_to IS NULL) 
         ? NULL 
         : SHA((chararray)CONCAT('SALT', reply_to))) 
                AS destination,
    (chararray)place#'country_code' as country,
    FLATTEN(topics) AS topic;
}

-- extract the hashtag text
from_to = FOREACH from_to_bag { 
  GENERATE 
    dt, 
    tweet_id, 
    reply_to_tweet_id, 
    source, 
    destination, 
    country,
    (chararray)topic#'text' AS topic;
}

In this example, we use CONCAT to append a (not so random) salt string to personal 
data. We then generate a hash of the salted IDs with DataFu's SHA function. The SHA 
function requires its input parameters to be non null. We enforce this condition using 
if-then-else statements. In Pig Latin, this is expressed as <condition is true> 
? <true branch> : <false branch> . If the string is null, we return NULL, and if 
not, we return the salted hash. To make code more readable, we use aliases for the 
tweet JSON fields and reference them in the GENERATE block.
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Link analysis
We can redefine our approach to determine trending topics to include users' 
reactions. A first, naïve, approach could be to consider a topic as important if it 
caused a number of replies larger than a threshold value.

A problem with this approach is that tweets generate relatively few replies, so the 
volume of the resulting dataset will be low. Hence, it requires a very large amount of 
data to contain tweets being replied to and produce any result. In practice, we would 
likely want to combine this metric with other ones (for example, mentions) in order 
to perform more meaningful analyses.

To satisfy this query, we will create a new dataset that includes the hashtags 
extracted from both the tweet and the one a user is replying to:

tweet_hashtag = FOREACH from_to GENERATE tweet_id, topic;
from_to_self_joined = JOIN from_to BY reply_to_tweet_id LEFT, 
tweet_hashtag BY tweet_id;

twitter_graph = FOREACH from_to_self_joined  { 
    GENERATE
        from_to::dt AS dt,
        from_to::tweet_id AS tweet_id,
        from_to::reply_to_tweet_id AS reply_to_tweet_id,
        from_to::source AS source,
        from_to::destination AS destination,
        from_to::topic AS topic,
        from_to::country AS country,
        tweet_hashtag::topic AS topic_replied;
}

Note that Pig does not allow a cross join on the same relation, hence we have to 
create tweet_hashtag for the right-hand side of the join. Here, we use the :: 
operator to disambiguate from which relation and column we want to select records.

Once again, we can look for the top 10 topics by number of replies using the  
top_n macro:

top_10_topics = top_n(twitter_graph, topic_replied, 10);

Counting things will only take us so far. We can compute more descriptive  
statistics on this dataset with DataFu. Using the Quantile function, we can  
calculate the median, the 90th, 95th, and the 99th percentiles of the number of 
hashtag reactions, as follows:

DEFINE Quantile datafu.pig.stats.Quantile('0.5','0.90','0.95','0.99');
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Since the UDF expects an ordered bag of integer values as input, we first count the 
frequency of each topic_replied entry, as follows. 

topics_with_replies_grpd = GROUP twitter_graph BY topic_replied;
topics_with_replies_cnt = FOREACH topics_with_replies_grpd {
  GENERATE
COUNT(twitter_graph) as cnt;
}

Then, we apply Quantile on the bag of frequencies, as follows:

quantiles = FOREACH (GROUP topics_with_replies_cnt ALL) {
    sorted = ORDER topics_with_replies_cnt BY cnt;
    GENERATE Quantile(sorted);
}

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch6/graph.pig.

Influential users
We will use PageRank, an algorithm developed by Google to rank web pages 
(http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf), to identify  
influential users in the Twitter graph we generated in the previous section.

This type of analysis has a number of use cases, such as targeted and contextual 
advertisement, recommendation systems, spam detection, and obviously  
measuring the importance of web pages. A similar approach, used by Twitter to 
implement the Who to Follow feature, is described in the research paper WTF:  
The Who to Follow service at Twitter found at http://stanford.edu/~rezab/papers/
wtf_overview.pdf.

Informally, PageRank determines the importance of a page based on the importance 
of other pages linking to it and assigns it a score between 0 and 1. A high PageRank 
score indicates that a lot of pages point to it. Intuitively, being linked by pages with 
a high PageRank is a quality endorsement. In terms of the Twitter graph, we assume 
that users receiving a lot of replies are important or influential within the social 
network. In Twitter's case, we consider an extended definition of PageRank, where 
the link between two users is given by a direct reply and labeled by any eventual 
hashtag present in the message. Heuristically, we want to identify influential users 
on a given topic.
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In DataFu's implementation, each graph is represented as a bag of (source, edges) 
tuples. The source tuple is an integer ID representing the source node. The edges are 
a bag of (destination, weight) tuples. destination is an integer ID representing 
the destination node. weight is a double representing how much the edge should be 
weighted. The output of the UDF is a bag of (source, rank) pairs, where rank is the 
PageRank value for the source user in the graph. Notice that we talked about nodes, 
edges, and graphs as abstract concepts. In Google's case, nodes are web pages, edges 
are links from one page to the other, and graphs are groups of pages connected directly 
and indirectly.

In our case, nodes represent users, edges represent in_reply_to_user_id_str 
mentions, and edges are labeled by hashtags in tweets. The output of PageRank should 
suggest which users are influential on a given topic given their interaction patterns.

In this section, we will write a pipeline to:

•	 Represent data as a graph where each node is a user and a hashtag labels  
the edge

•	 Map IDs and hashtags to integers so that they can be consumed by PageRank
•	 Apply PageRank
•	 Store the results into HDFS in an interoperable format (Avro)

We represent the graph as a bag of tuples in the form (source, destination, 
topic), where each tuple represents the interaction between nodes. The source  
code for this example can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch6/pagerank.pig.

We will map users' and hashtags' text to numerical IDs. We use the Java String 
hashCode() method to perform this conversion step and wrap the logic in an  
Eval UDF.

The size of an integer is effectively the upper bound for the number of 
nodes and edges in the graph. For production code, it is recommended 
that you use a more robust hash function.

The StringToInt class takes a string as input, calls the hashCode() method, 
and returns the method output to Pig. The UDF code can be found at https://
github.com/learninghadoop2/book-examples/blob/master/ch6/udf/com/
learninghadoop2/pig/udf/StringToInt.java.

package com.learninghadoop2.pig.udf;
import java.io.IOException;
import org.apache.pig.EvalFunc;
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import org.apache.pig.data.Tuple;

public class StringToInt extends EvalFunc<Integer> {
    public Integer exec(Tuple input) throws IOException {
        if (input == null || input.size() == 0)
            return null;
        try {
            String str = (String) input.get(0);
            return str.hashCode();
        } catch(Exception e) {
          throw 
             new IOException("Cannot convert String to Int", e);
        }
    }
}

We extend org.apache.pig.EvalFunc and override the exec method to return  
str.hashCode() on the function input. The EvalFunc<Integer> class is 
parameterized with the return type of the UDF (Integer).

Next, we compile the class and archive it into a JAR, as follows:

$ javac -classpath /opt/cloudera/parcels/CDH/lib/pig/pig.jar:$(hadoop 
classpath) com/learninghadoop2/pig/udf/StringToInt.java
$ jar cvf myudfs-pig.jar com/learninghadoop2/pig/udf/StringToInt.class

We can now register the UDF in Pig and create an alias to StringToInt, as follows:

REGISTER myudfs-pig.jar
DEFINE StringToInt com.learninghadoop2.pig.udf.StringToInt();

We filter out tweets with no destination and no topic, as follows:

tweets_graph_filtered = FILTER twitter_graph by 
(destination IS NOT NULL) AND 
(topic IS NOT null);

Then, we convert the source, destination, and topic to integer IDs:

from_to = foreach tweets_graph_filtered {
  GENERATE 
    StringToInt(source) as source_id, 
    StringToInt(destination) as destination_id, 
    StringToInt(topic) as topic_id;
}
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Once data is in the appropriate format, we can reuse the implementation of PageRank 
and the example code (found at https://github.com/apache/incubator-datafu/
blob/master/datafu-pig/src/main/java/datafu/pig/linkanalysis/PageRank.
java) provided by DataFu, as shown in the following code:

DEFINE PageRank datafu.pig.linkanalysis.PageRank('dangling_
nodes','true');

We begin by creating a bag of (source_id, destination_id, topic_id) tuples, 
as follows:

reply_to = group from_to by (source_id, destination_id, topic_id); 

We count the occurrences of each tuple, that is, how many times two people talked 
about a topic, as follows:

topic_edges = foreach reply_to {
  GENERATE flatten(group), ((double)COUNT(from_to.topic_id)) as w;
}

Remember that topic is the edge of our graph; we begin by creating an association 
between the source node and the topic edge, as follows:

topic_edges_grouped = GROUP topic_edges by (topic_id, source_id);

Then we regroup it with the purpose of adding a destination node and the edge 
weight, as follows:

topic_edges_grouped = FOREACH topic_edges_grouped {
  GENERATE
    group.topic_id as topic,
    group.source_id as source,
    topic_edges.(destination_id,w) as edges;
}

Once we create the Twitter graph, we calculate the PageRank of all users  
(source_id):

topic_rank = FOREACH (GROUP topic_edges_grouped BY topic) {
  GENERATE
    group as topic,
    FLATTEN(PageRank(topic_edges_grouped.(source,edges))) as 
(source,rank);
}
topic_rank = FOREACH topic_rank GENERATE topic, source, rank;
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We store the result in HDFS in Avro format. If Avro dependencies are not present in 
the classpath, we need to add the Avro MapReduce jar file to our environment before 
accessing individual fields. Within Pig, for example, on the Cloudera CDH5 VM:

REGISTER /opt/cloudera/parcels/CDH/lib/avro/avro.jar
REGISTER /opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar 
STORE topic_rank INTO 'replies-pagerank' using AvroStorage();    

In these last two sections, we made a number of implicit assumptions 
on what a Twitter graph might look like and what the concepts of 
topic and user interaction mean. Given the constraints that we posed, 
the resulting social network we analyzed will be relatively small and 
not necessarily representative of the entire Twitter social network. 
Extrapolating results from this dataset is discouraged. In practice, 
there are many other factors that should be taken into account to 
generate a robust model of social interaction.

Summary
In this chapter, we introduced Apache Pig, a platform for large-scale data analysis  
on Hadoop. In particular, we covered the following topics:

•	 The goals of Pig as a way of providing a dataflow-like abstraction that  
does not require hands-on MapReduce development

•	 How Pig's approach to processing data compares to SQL, where  
Pig is procedural while SQL is declarative

•	 Getting started with Pig — an easy task, as it is a library that generates  
custom code and doesn't require additional services

•	 An overview of the data types, core functions, and extension mechanisms 
provided by Pig

•	 Examples of applying Pig to analyze the Twitter dataset in detail,  
which demonstrated its ability to express complex concepts in a very  
concise fashion

•	 How libraries such as Piggybank, Elephant Bird, and DataFu provide 
repositories for numerous useful prewritten Pig functions

•	 In the next chapter, we will revisit the SQL comparison by exploring tools 
that expose a SQL-like abstraction over data stored in HDFS
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MapReduce is a powerful paradigm that enables complex data processing that can 
reveal valuable insights. As discussed in earlier chapters however, it does require 
a different mindset and some training and experience on the model of breaking 
processing analytics into a series of map and reduce steps. There are several products 
that are built atop Hadoop to provide higher-level or more familiar views of the data 
held within HDFS, and Pig is a very popular one. This chapter will explore the other 
most common abstraction implemented atop Hadoop: SQL.

In this chapter, we will cover the following topics:

•	 What the use cases for SQL on Hadoop are and why it is so popular
•	 HiveQL, the SQL dialect introduced by Apache Hive
•	 Using HiveQL to perform SQL-like analysis of the Twitter dataset
•	 How HiveQL can approximate common features of relational databases  

such as joins and views
•	 How HiveQL allows the incorporation of user-defined functions into  

its queries
•	 How SQL on Hadoop complements Pig
•	 Other SQL-on-Hadoop products such as Impala and how they differ  

from Hive
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Why SQL on Hadoop
So far we have seen how to write Hadoop programs using the MapReduce APIs 
and how Pig Latin provides a scripting abstraction and a wrapper for custom 
business logic by means of UDFs. Pig is a very powerful tool, but its dataflow-based 
programming model is not familiar to most developers or business analysts. The 
traditional tool of choice for such people to explore data is SQL.

Back in 2008 Facebook released Hive, the first widely used implementation of  
SQL on Hadoop.

Instead of providing a way of more quickly developing map and reduce tasks, Hive 
offers an implementation of HiveQL, a query language based on SQL. Hive takes 
HiveQL statements and immediately and automatically translates the queries into 
one or more MapReduce jobs. It then executes the overall MapReduce program and 
returns the results to the user.

This interface to Hadoop not only reduces the time required to produce results  
from data analysis, it also significantly widens the net as to who can use Hadoop. 
Instead of requiring software development skills, anyone who's familiar with  
SQL can use Hive.

The combination of these attributes is that HiveQL is often used as a tool for business 
and data analysts to perform ad hoc queries on the data stored on HDFS. With Hive, 
the data analyst can work on refining queries without the involvement of a software 
developer. Just as with Pig, Hive also allows HiveQL to be extended by means 
of User Defined Functions, enabling the base SQL dialect to be customized with 
business-specific functionality.

Other SQL-on-Hadoop solutions
Though Hive was the first product to introduce and support HiveQL, it is no longer 
the only one. Later in this chapter, we will also discuss Impala, released in 2013 and 
already a very popular tool, particularly for low-latency queries. There are others, 
but we will mostly discuss Hive and Impala as they have been the most successful.

While introducing the core features and capabilities of SQL on Hadoop however, 
we will give examples using Hive; even though Hive and Impala share many SQL 
features, they also have numerous differences. We don't want to constantly have 
to caveat each new feature with exactly how it is supported in Hive compared to 
Impala. We'll generally be looking at aspects of the feature set that are common to 
both, but if you use both products, it's important to read the latest release notes to 
understand the differences.



Chapter 7

[ 185 ]

Prerequisites
Before diving into specific technologies, let's generate some data that we'll use in the 
examples throughout this chapter. We'll create a modified version of a former Pig 
script as the main functionality for this. The script in this chapter assumes that the 
Elephant Bird JARs used previously are available in the /jar directory on HDFS.  
The full source code is at https://github.com/learninghadoop2/book-examples/
blob/master/ch7/extract_for_hive.pig, but the core of extract_for_hive.pig 
is as follows:

-- load JSON data
tweets = load '$inputDir' using  com.twitter.elephantbird.pig.load.
JsonLoader('-nestedLoad');
-- Tweets
tweets_tsv = foreach tweets {
generate 
    (chararray)CustomFormatToISO($0#'created_at', 
'EEE MMMM d HH:mm:ss Z y') as dt, 
    (chararray)$0#'id_str', 
(chararray)$0#'text' as text, 
    (chararray)$0#'in_reply_to', 
(boolean)$0#'retweeted' as is_retweeted, 
(chararray)$0#'user'#'id_str' as user_id, (chararray)$0#'place'#'id' 
as place_id;
}
store tweets_tsv into '$outputDir/tweets' 
using PigStorage('\u0001');
-- Places
needed_fields = foreach tweets {
   generate 
(chararray)CustomFormatToISO($0#'created_at', 
'EEE MMMM d HH:mm:ss Z y') as dt, 
     (chararray)$0#'id_str' as id_str, 
$0#'place' as place;
}
place_fields = foreach needed_fields {
generate 
    (chararray)place#'id' as place_id, 
    (chararray)place#'country_code' as co, 
    (chararray)place#'country' as country, 
    (chararray)place#'name' as place_name, 
    (chararray)place#'full_name' as place_full_name, 
    (chararray)place#'place_type' as place_type;
}
filtered_places = filter place_fields by co != '';
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unique_places = distinct filtered_places;
store unique_places into '$outputDir/places' 
using PigStorage('\u0001');

-- Users
users = foreach tweets {
   generate 
(chararray)CustomFormatToISO($0#'created_at', 
'EEE MMMM d HH:mm:ss Z y') as dt, 
(chararray)$0#'id_str' as id_str, 
$0#'user' as user;
}
user_fields = foreach users {
   generate 
    (chararray)CustomFormatToISO(user#'created_at', 
'EEE MMMM d HH:mm:ss Z y') as dt,
  (chararray)user#'id_str' as user_id, 
  (chararray)user#'location' as user_location, 
  (chararray)user#'name' as user_name, 
  (chararray)user#'description' as user_description, 
  (int)user#'followers_count' as followers_count, 
  (int)user#'friends_count' as friends_count, 
  (int)user#'favourites_count' as favourites_count, 
  (chararray)user#'screen_name' as screen_name, 
  (int)user#'listed_count' as listed_count;

}
unique_users = distinct user_fields;
store unique_users into '$outputDir/users' 
using PigStorage('\u0001');

Run this script as follows:

$ pig –f extract_for_hive.pig –param inputDir=<json input> -param 
outputDir=<output path>

The preceding code writes data into three separate TSV files for the tweet, user, and 
place information. Notice that in the store command, we pass an argument when 
calling PigStorage. This single argument changes the default field separator from a 
tab character to unicode value U0001, or you can also use Ctrl +C + A. This is often 
used as a separator in Hive tables and will be particularly useful to us as our tweet 
data could contain tabs in other fields.
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Overview of Hive
We will now show how you can import data into Hive and run a query against the 
table abstraction Hive provides over the data. In this example, and in the remainder 
of the chapter, we will assume that queries are typed into the shell that can be 
invoked by executing the hive command.

Recently a client called Beeline also became available and will likely be the preferred 
CLI client in the near future.

When importing any new data into Hive, there is generally a three-stage process:

•	 Create the specification of the table into which the data is to be imported
•	 Import the data into the created table
•	 Execute HiveQL queries against the table

Most of the HiveQL statements are direct analogues to similarly named statements in 
standard SQL. We assume only a passing knowledge of SQL throughout this chapter, 
but if you need a refresher, there are numerous good online learning resources.

Hive gives a structured query view of our data, and to enable that, we must first 
define the specification of the table's columns and import the data into the table 
before we can execute any queries. A table specification is generated using a CREATE 
statement that specifies the table name, the name and types of its columns, and some 
metadata about how the table is stored:

CREATE table tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

The statement creates a new table tweets defined by a list of names for columns  
in the dataset and their data type. We specify that fields are delimited by the  
Unicode U0001 character  and that the format used to store data is TEXTFILE.
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Data can be imported from a location in HDFS tweets/ using the LOAD DATA 
statement:

LOAD DATA INPATH 'tweets' OVERWRITE INTO TABLE tweets;

By default, data for Hive tables is stored on HDFS under /user/hive/warehouse. 
If a LOAD statement is given a path to data on HDFS, it will not simply copy the data 
into /user/hive/warehouse, but will move it there instead. If you want to analyze 
data on HDFS that is used by other applications, then either create a copy or use the 
EXTERNAL mechanism that will be described later.

Once data has been imported into Hive, we can run queries against it. For instance:

SELECT COUNT(*) FROM tweets;

The preceding code will return the total number of tweets present in the dataset. 
HiveQL, like SQL, is not case sensitive in terms of keywords, columns, or table 
names. By convention, SQL statements use uppercase for SQL language keywords, 
and we will generally follow this when using HiveQL within files, as will be shown 
later. However, when typing interactive commands, we will frequently take the line 
of least resistance and use lowercase.

If you look closely at the time taken by the various commands in the preceding 
example, you'll notice that loading data into a table takes about as long as creating 
the table specification, but even the simple count of all rows takes significantly 
longer. The output also shows that table creation and the loading of data do not 
actually cause MapReduce jobs to be executed, which explains the very short 
execution times.

The nature of Hive tables
Although Hive copies the data file into its working directory, it does not actually 
process the input data into rows at that point. 

Both the CREATE TABLE and LOAD DATA statements do not truly create concrete 
table data as such; instead, they produce the metadata that will be used when Hive  
generates MapReduce jobs to access the data conceptually stored in the table but 
actually residing on HDFS. Even though the HiveQL statements refer to a specific 
table structure, it is Hive's responsibility to generate code that correctly maps this to 
the actual on-disk format in which the data files are stored.
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This might seem to suggest that Hive isn't a real database; this is true, it isn't. 
Whereas a relational database will require a table schema to be defined before data 
is ingested and then ingest only data that conforms to that specification, Hive is 
much more flexible. The less concrete nature of Hive tables means that schemas can 
be defined based on the data as it has already arrived and not on some assumption 
of how the data should be, which might prove to be wrong. Though changeable 
data formats are troublesome regardless of technology, the Hive model provides an 
additional degree of freedom in handling the problem when, not if, it arises.

Hive architecture
Until version 2, Hadoop was primarily a batch system. As we saw in previous 
chapters, MapReduce jobs tend to have high latency and overhead derived from 
submission and scheduling. Internally, Hive compiles HiveQL statements into 
MapReduce jobs. Hive queries have traditionally been characterized by high latency. 
This has changed with the Stinger initiative and the improvements introduced in 
Hive 0.13 that we will discuss later.

Hive runs as a client application that processes HiveQL queries, converts them  
into MapReduce jobs, and submits these to a Hadoop cluster either to native 
MapReduce in Hadoop 1 or to the MapReduce Application Master running on  
YARN in Hadoop 2.

Regardless of the model, Hive uses a component called the metastore, in which it 
holds all its metadata about the tables defined in the system. Ironically, this is stored 
in a relational database dedicated to Hive's usage. In the earliest versions of Hive, all 
clients communicated directly with the metastore, but this meant that every user of 
the Hive CLI tool needed to know the metastore username and password.

HiveServer was created to act as a point of entry for remote clients, which could also 
act as a single access-control point and which controlled all access to the underlying 
metastore. Because of limitations in HiveServer, the newest way to access Hive is 
through the multi-client HiveServer2.

HiveServer2 introduces a number of improvements over its 
predecessor, including user authentication and support for multiple 
connections from the same client. More information can be found at 
https://cwiki.apache.org/confluence/display/Hive/
Setting+Up+HiveServer2.
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Instances of HiveServer and HiveServer2 can be manually executed with the hive 
--service hiveserver and hive --service hiveserver2 commands, respectively.

In the examples we saw before and in the remainder of this chapter, we implicitly 
use HiveServer to submit queries via the Hive command-line tool. HiveServer2 
comes with Beeline. For compatibility and maturity reasons, Beeline being relatively 
new, both tools are available on Cloudera and most other major distributions. The 
Beeline client is part of the core Apache Hive distribution and so is also fully open 
source. Beeline can be executed in embedded version with the following command:

$ beeline -u jdbc:hive2://

Data types
HiveQL supports many of the common data types provided by standard database 
systems. These include primitive types, such as float, double, int, and string, 
through to structured collection types that provide the SQL analogues to types such 
as arrays, structs, and unions (structs with options for some fields). Since Hive 
is implemented in Java, primitive types will behave like their Java counterparts. We 
can distinguish Hive data types into the following five broad categories:

•	 Numeric: tinyint, smallint, int, bigint, float, double, and decimal
•	 Date and time: timestamp and date
•	 String: string, varchar, and char
•	 Collections: array, map, struct, and uniontype
•	 Misc: boolean, binary, and NULL

DDL statements
HiveQL provides a number of statements to create, delete, and alter databases, 
tables, and views. The CREATE DATABASE <name> statement creates a new database 
with the given name. A database represents a namespace where table and view 
metadata is contained. If multiple databases are present, the USE <database name> 
statement specifies which one to use to query tables or create new metadata. If no 
database is explicitly specified, Hive will run all statements against the default 
database. SHOW [DATABASES, TABLES, VIEWS] displays the databases currently 
available within a data warehouse and which table and view metadata is present 
within the database currently in use:

CREATE DATABASE twitter;
SHOW databases;
USE twitter;
SHOW TABLES;
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The CREATE TABLE [IF NOT EXISTS] <name> statement creates a table with the 
given name. As alluded to earlier, what is really created is the metadata representing 
the table and its mapping to files on HDFS as well as a directory in which to store the 
data files. If a table or view with the same name already exists, Hive will raise  
an exception.

Both table and column names are case insensitive. In older versions of Hive (0.12 
and earlier), only alphanumeric and underscore characters were allowed in table and 
column names. As of Hive 0.13, the system supports unicode characters in column 
names. Reserved words, such as load and create, need to be escaped by backticks 
(the ` character) to be treated literally.

The EXTERNAL keyword specifies that the table exists in resources out of Hive's 
control, which can be a useful mechanism to extract data from another source at the 
beginning of a Hadoop-based Extract-Transform-Load (ETL) pipeline. The LOCATION 
clause specifies where the source file (or directory) is to be found. The EXTERNAL 
keyword and LOCATION clause have been used in the following code:

CREATE EXTERNAL TABLE tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/tweets';

This table will be created in the metastore but the data will not be copied into  
the /user/hive/warehouse directory.

Note that Hive has no concept of primary key or unique identifier. 
Uniqueness and data normalization are aspects to be addressed 
before loading data into the data warehouse.
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The CREATE VIEW <view name> … AS SELECT statement creates a view with 
the given name. For example, we can create a view to isolate retweets from other 
messages, as follows:

CREATE VIEW retweets 
COMMENT 'Tweets that have been retweeted'
AS SELECT * FROM tweets WHERE retweeted = true;

Unless otherwise specified, column names are derived from the defining SELECT 
statement. Hive does not currently support materialized views.

The DROP TABLE and DROP VIEW statements remove both metadata and data for a 
given table or view. When dropping an EXTERNAL table or a view, only metadata will 
be removed and the actual data files will not be affected.

Hive allows table metadata to be altered via the ALTER TABLE statement, which 
can be used to change a column type, name, position, and comment or to add and 
replace columns.

When adding columns, it is important to remember that only metadata will be 
changed and not the dataset itself. This means that if we were to add a column in the 
middle of the table which didn't exist in older files, then while selecting from older 
data, we might get wrong values in the wrong columns. This is because we would be 
looking at old files with a new format. We will discuss data and schema migrations 
in Chapter 8, Data Lifecycle Management, when discussing Avro.

Similarly, ALTER VIEW <view name> AS <select statement> changes the 
definition of an existing view.

File formats and storage
The data files underlying a Hive table are no different from any other file on HDFS. 
Users can directly read the HDFS files in the Hive tables using other tools. They 
can also use other tools to write to HDFS files that can be loaded into Hive through 
CREATE EXTERNAL TABLE or through LOAD DATA INPATH.

Hive uses the Serializer and Deserializer classes, SerDe, as well as FileFormat 
to read and write table rows. A native SerDe is used if ROW FORMAT is not specified or 
ROW FORMAT DELIMITED is specified in a CREATE TABLE statement. The DELIMITED 
clause instructs the system to read delimited files. Delimiter characters can be 
escaped using the ESCAPED BY clause.
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Hive currently uses the following FileFormat classes to read and write HDFS files:

•	 TextInputFormat and HiveIgnoreKeyTextOutputFormat: will read/write 
data in plain text file format

•	 SequenceFileInputFormat and SequenceFileOutputFormat: classes  
read/write data in the Hadoop SequenceFile format

Additionally, the following SerDe classes can be used to serialize and  
deserialize data:

•	 MetadataTypedColumnsetSerDe: will read/write delimited records such as 
CSV or tab-separated records

•	 ThriftSerDe, and DynamicSerDe: will read/write Thrift objects

JSON
As of version 0.13, Hive ships with the native org.apache.hive.hcatalog.data.
JsonSerDe. For older versions of Hive, Hive-JSON-Serde (found at https://
github.com/rcongiu/Hive-JSON-Serde) is arguably one of the most feature-rich 
JSON serialization/deserialization modules.

We can use either module to load JSON tweets without any need for preprocessing 
and just define a Hive schema that matches the content of a JSON document. In the 
following example, we use Hive-JSON-Serde.

As with any third-party module, we load the SerDe JARs into Hive with the 
following code:

ADD JAR JAR json-serde-1.3-jar-with-dependencies.jar;

Then, we issue the usual CREATE statement, as follows:

CREATE EXTERNAL TABLE tweets (
   contributors string,
   coordinates struct <
      coordinates: array <float>,
      type: string>,
   created_at string,
   entities struct <
      hashtags: array <struct <
            indices: array <tinyint>,
            text: string>>,
…
)
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ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
STORED AS TEXTFILE
LOCATION 'tweets';  

With this SerDe, we can map nested documents (such as entities or users) to the 
struct or map types. We tell Hive that the data stored at LOCATION 'tweets' is text 
(STORED AS TEXTFILE) and that each row is a JSON object (ROW FORMAT SERDE 'org.
openx.data.jsonserde.JsonSerDe'). In Hive 0.13 and later, we can express this 
property as ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'.

Manually specifying the schema for complex documents can be a tedious and 
error-prone process. The hive-json module (found at https://github.com/
hortonworks/hive-json) is a handy utility to analyze large documents and 
generate an appropriate Hive schema. Depending on the document collection, 
further refinement might be necessary.

In our example, we used a schema generated with hive-json that maps the tweets 
JSON to a number of struct data types. This allows us to query the data using a 
handy dot notation. For instance, we can extract the screen name and description 
fields of a user object with the following code:

SELECT user.screen_name, user.description FROM tweets_json LIMIT 10;

Avro
AvroSerde (https://cwiki.apache.org/confluence/display/Hive/AvroSerDe) 
allows us to read and write data in Avro format. Starting from 0.14, Avro-backed 
tables can be created using the STORED AS AVRO statement, and Hive will take care 
of creating an appropriate Avro schema for the table. Prior versions of Hive are a bit 
more verbose.

As an example, let's load into Hive the PageRank dataset we generated in  
Chapter 6, Data Analysis with Apache Pig. This dataset was created using Pig's 
AvroStorage class, and has the following schema:

{
  "type":"record",
  "name":"record",
  "fields": [
    {"name":"topic","type":["null","int"]},
    {"name":"source","type":["null","int"]},
    {"name":"rank","type":["null","float"]}
  ]
}  
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The table structure is captured in an Avro record, which contains header information 
(a name and optional namespace to qualify the name) and an array of the fields. Each 
field is specified with its name and type as well as an optional documentation string.

For a few of the fields, the type is not a single value, but instead a pair of values, one 
of which is null. This is an Avro union, and this is the idiomatic way of handling 
columns that might have a null value. Avro specifies null as a concrete type, and 
any location where another type might have a null value needs to be specified in this 
way. This will be handled transparently for us when we use the following schema.

With this definition, we can now create a Hive table that uses this schema for its table 
specification, as follows:

CREATE EXTERNAL TABLE tweets_pagerank
ROW FORMAT SERDE
  'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES ('avro.schema.literal'='{
    "type":"record",
    "name":"record",
    "fields": [
        {"name":"topic","type":["null","int"]},
        {"name":"source","type":["null","int"]},
        {"name":"rank","type":["null","float"]}
    ]
}')
STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '${data}/ch5-pagerank';

Then, look at the following table definition from within Hive (note also that 
HCatalog, which we'll introduce in Chapter 8, Data Life Cycle Management, also 
supports such definitions):

DESCRIBE tweets_pagerank;
OK
topic                 int                   from deserializer   
source                int                   from deserializer   
rank                  float                 from deserializer  
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In the DDL, we told Hive that data is stored in Avro format using 
AvroContainerInputFormat and AvroContainerOutputFormat. Each row needs 
to be serialized and deserialized using org.apache.hadoop.hive.serde2.avro.
AvroSerDe. The table schema is inferred by Hive from the Avro schema embedded 
in avro.schema.literal.

Alternatively, we can store a schema on HDFS and have Hive read it to determine 
the table structure. Create the preceding schema in a file called pagerank.avsc—this 
is the standard file extension for Avro schemas. Then place it on HDFS; we prefer to 
have a common location for schema files such as /schema/avro. Finally, define the 
table using the avro.schema.url SerDe property WITH SERDEPROPERTIES ('avro.
schema.url'='hdfs://<namenode>/schema/avro/pagerank.avsc').

If Avro dependencies are not present in the classpath, we need to add the Avro 
MapReduce JAR to our environment before accessing individual fields. Within  
Hive, on the Cloudera CDH5 VM:

ADD JAR /opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar; 

We can also use this table like any other. For instance, we can query the data to select 
the user and topic pairs with a high PageRank:

SELECT source, topic from tweets_pagerank WHERE rank >= 0.9;

In Chapter 8, Data Lifecycle Management, we will see how Avro and avro.schema.url 
play an instrumental role in enabling schema migrations.

Columnar stores
Hive can also take advantage of columnar storage via the ORC (https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+ORC) and Parquet 
(https://cwiki.apache.org/confluence/display/Hive/Parquet) formats.

If a table is defined with very many columns, it is not unusual for any given query 
to only process a small subset of these columns. But even in a SequenceFile each full 
row and all its columns will be read from disk, decompressed, and processed. This 
consumes a lot of system resources for data that we know in advance is not of interest.

Traditional relational databases also store data on a row basis, and a type of database 
called columnar changed this to be column-focused. In the simplest model, instead 
of one file for each table, there would be one file for each column in the table. If a 
query only needed to access five columns in a table with 100 columns in total, then 
only the files for those five columns will be read. Both ORC and Parquet use this 
principle as well as other optimizations to enable much faster queries.
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Queries
Tables can be queried using the familiar SELECT … FROM statement. The WHERE 
statement allows the specification of filtering conditions, GROUP BY aggregates 
records, ORDER BY specifies sorting criteria, and LIMIT specifies the number of 
records to retrieve. Aggregate functions, such as count and sum, can be applied  
to aggregated records. For instance, the following code returns the top 10 most 
prolific users in the dataset:

SELECT user_id, COUNT(*) AS cnt FROM tweets GROUP BY user_id ORDER BY 
cnt DESC LIMIT 10

This returns the top 10 most prolific users in the dataset:

2263949659 4

1332188053  4

959468857  3

1367752118  3

362562944  3

58646041  3

2375296688  3

1468188529  3

37114209  3

2385040940  3

We can improve the readability of the hive output by setting the following:

SET hive.cli.print.header=true;

This will instruct hive, though not beeline, to print column names as part of  
the output.

You can add the command to the .hiverc file usually found in the 
root of the executing user's home directory to have it apply to all 
hive CLI sessions.
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HiveQL implements a JOIN operator that enables us to combine tables together. 
In the Prerequisites section, we generated separate datasets for the user and place 
objects. Let's now load them into hive using external tables.

We first create a user table to store user data, as follows:

CREATE EXTERNAL TABLE user (
created_at string,
user_id string,
`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/users';

We then create a place table to store location data, as follows:

CREATE EXTERNAL TABLE place (
place_id string,
country_code string,
country string,
`name` string,
full_name string,
place_type string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/places';

We can use the JOIN operator to display the names of the 10 most prolific users,  
as follows:

SELECT tweets.user_id, user.name, COUNT(tweets.user_id) AS cnt 
FROM tweets 
JOIN user ON user.user_id  = tweets.user_id
GROUP BY tweets.user_id, user.user_id, user.name 
ORDER BY cnt DESC LIMIT 10; 
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Only equality, outer, and left (semi) joins are supported 
in Hive.

Notice that there might be multiple entries with a given user ID but different  
values for the followers_count, friends_count, and favourites_count columns. 
To avoid duplicate entries, we count only user_id from the tweets table.

We can rewrite the previous query as follows:

SELECT tweets.user_id, u.name, COUNT(*) AS cnt 
FROM tweets 
join (SELECT user_id, name FROM user GROUP BY user_id, name) u
ON u.user_id = tweets.user_id
GROUP BY tweets.user_id, u.name 
ORDER BY cnt DESC LIMIT 10;   

Instead of directly joining the user table, we execute a subquery, as follows:

SELECT user_id, name FROM user GROUP BY user_id, name;

The subquery extracts unique user IDs and names. Note that Hive has limited 
support for subqueries, historically only permitting a subquery in the FROM clause of 
a SELECT statement. Hive 0.13 has added limited support for subqueries within the 
WHERE clause also.

HiveQL is an ever-evolving rich language, a full exposition of which is beyond the 
scope of this chapter. A description of its query and ddl capabilities can be found at 
https://cwiki.apache.org/confluence/display/Hive/LanguageManual.

Structuring Hive tables for given workloads
Often Hive isn't used in isolation, instead tables are created with particular 
workloads in mind or needs invoked in ways that are suitable for inclusion in 
automated processes. We'll now explore some of these scenarios.

Partitioning a table
With columnar file formats, we explained the benefits of excluding unneeded data as 
early as possible when processing a query. A similar concept has been used in SQL 
for some time: table partitioning.
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When creating a partitioned table, a column is specified as the partition key.  
All values with that key are then stored together. In Hive's case, different 
subdirectories for each partition key are created under the table directory in  
the warehouse location on HDFS.

It's important to understand the cardinality of the partition column. With too few 
distinct values, the benefits are reduced as the files are still very large. If there are  
too many values, then queries might need a large number of files to be scanned to 
access all the required data. Perhaps the most common partition key is one based 
on date. We could, for example, partition our user table from earlier based on the 
created_at column, that is, the date the user was first registered. Note that since 
partitioning a table by definition affects its file structure, we create this table now  
as a non-external one, as follows:

CREATE TABLE partitioned_user (
created_at string,
user_id string,
`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
)  PARTITIONED BY (created_at_date string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

To load data into a partition, we can explicitly give a value for the partition into 
which to insert the data, as follows:

INSERT INTO TABLE partitioned_user
PARTITION( created_at_date = '2014-01-01')
SELECT 
created_at,
user_id,
location,
name,
description,
followers_count,
friends_count,
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favourites_count,
screen_name,
listed_count
FROM user;

This is at best verbose, as we need a statement for each partition key value; if a single 
LOAD or INSERT statement contains data for multiple partitions, it just won't work. 
Hive also has a feature called dynamic partitioning, which can help us here. We set 
the following three variables:

SET hive.exec.dynamic.partition = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.exec.max.dynamic.partitions.pernode=5000;

The first two statements enable all partitions (nonstrict option) to be dynamic.  
The third one allows 5,000 distinct partitions to be created on each mapper and 
reducer node.

We can then simply use the name of the column to be used as the partition key,  
and Hive will insert data into partitions depending on the value of the key for a 
given row:

INSERT INTO TABLE partitioned_user
PARTITION( created_at_date )
SELECT 
created_at,
user_id,
location,
name,
description,
followers_count,
friends_count,
favourites_count,
screen_name,
listed_count,
to_date(created_at) as created_at_date
FROM user;

Even though we use only a single partition column here, we can partition a table by 
multiple column keys; just have them as a comma-separated list in the PARTITIONED 
BY clause.
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Note that the partition key columns need to be included as the last columns in  
any statement being used to insert into a partitioned table. In the preceding code we 
use Hive's to_date function to convert the created_at timestamp to a YYYY-MM-DD 
formatted string.

Partitioned data is stored in HDFS as /path/to/warehouse/<database>/<table>/
key=<value>. In our example, the partitioned_user table structure will look like  
/user/hive/warehouse/default/partitioned_user/created_at=2014-04-01.

If data is added directly to the filesystem, for instance by some third-party 
processing tool or by hadoop fs -put, the metastore won't automatically detect the 
new partitions. The user will need to manually run an ALTER TABLE statement such 
as the following for each newly added partition:

ALTER TABLE <table_name> ADD PARTITION <location>;

To add metadata for all partitions not currently present in the metastore we can  
use: MSCK REPAIR TABLE <table_name>; statement. On EMR, this is equivalent  
to executing the following statement:

ALTER TABLE <table_name> RECOVER PARTITIONS; 

Notice that both statements will work also with EXTERNAL tables. In the following 
chapter, we will see how this pattern can be exploited to create flexible and 
interoperable pipelines.

Overwriting and updating data
Partitioning is also useful when we need to update a portion of a table. Normally a 
statement of the following form will replace all the data for the destination table:

INSERT OVERWRITE INTO <table>…

If OVERWRITE is omitted, then each INSERT statement will add additional data to the 
table. Sometimes, this is desirable, but often, the source data being ingested into a Hive 
table is intended to fully update a subset of the data and keep the rest untouched.

If we perform an INSERT OVERWRITE statement (or a LOAD OVERWRITE statement) 
into a partition of a table, then only the specified partition will be affected. Thus, if 
we were inserting user data and only wanted to affect the partitions with data in the 
source file, we could achieve this by adding the OVERWRITE keyword to our previous 
INSERT statement.
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We can also add caveats to the SELECT statement. Say, for example, we only wanted 
to update data for a certain month:

INSERT INTO TABLE partitioned_user
PARTITION (created_at_date)
SELECT created_at ,
user_id,
location,
name,
description,
followers_count,
friends_count,
favourites_count,
screen_name,
listed_count,
to_date(created_at) as created_at_date
FROM user 
WHERE to_date(created_at) BETWEEN '2014-03-01' and '2014-03-31';

Bucketing and sorting
Partitioning a table is a construct that you take explicit advantage of by using the 
partition column (or columns) in the WHERE clause of queries against the tables. There 
is another mechanism called bucketing that can further segment how a table is stored 
and does so in a way that allows Hive itself to optimize its internal query plans to 
take advantage of the structure.

Let's create bucketed versions of our tweets and user tables; note the following 
additional CLUSTER BY and SORT BY statements in the CREATE TABLE statements:

CREATE table bucketed_tweets (
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
)  PARTITIONED BY (created_at string)
CLUSTERED BY(user_ID) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

CREATE TABLE bucketed_user (
user_id string,
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`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
)  PARTITIONED BY (created_at string)
CLUSTERED BY(user_ID) SORTED BY(name) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

Note that we changed the tweets table to also be partitioned; you can only bucket a 
table that is partitioned.

Just as we need to specify a partition column when inserting into a partitioned table, 
we must also take care to ensure that data inserted into a bucketed table is correctly 
clustered. We do this by setting the following flag before inserting the data into  
the table:

SET hive.enforce.bucketing=true;

Just as with partitioned tables, you cannot apply the bucketing function when using 
the LOAD DATA statement; if you wish to load external data into a bucketed table, first 
insert it into a temporary table, and then use the INSERT…SELECT… syntax to populate 
the bucketed table.

When data is inserted into a bucketed table, rows are allocated to a bucket based on the 
result of a hash function applied to the column specified in the CLUSTERED BY clause.

One of the greatest advantages of bucketing a table comes when we need to join two 
tables that are similarly bucketed, as in the previous example. So, for example, any 
query of the following form would be vastly improved:

SET hive.optimize.bucketmapjoin=true;
SELECT …
FROM bucketed_user u JOIN bucketed_tweet t
ON u.user_id = t.user_id;



Chapter 7

[ 205 ]

With the join being performed on the column used to bucket the table, Hive can 
optimize the amount of processing as it knows that each bucket contains the same set 
of user_id columns in both tables. While determining which rows against which to 
match, only those in the bucket need to be compared against, and not the whole table. 
This does require that the tables are both clustered on the same column and that the 
bucket numbers are either identical or one is a multiple of the other. In the latter case, 
with say one table clustered into 32 buckets and another into 64, the nature of the 
default hash function used to allocate data to a bucket means that the IDs in bucket 3 in 
the first table will cover those in both buckets 3 and 35 in the second.

Sampling data
Bucketing a table can also help while using Hive's ability to sample data in a table. 
Sampling allows a query to gather only a specified subset of the overall rows in 
the table. This is useful when you have an extremely large table with moderately 
consistent data patterns. In such a case, applying a query to a small fraction of the 
data will be much faster and will still give a broadly representative result. Note, of 
course, that this only applies to queries where you are looking to determine table 
characteristics, such as pattern ranges in the data; if you are trying to count anything, 
then the result needs to be scaled to the full table size.

For a non-bucketed table, you can sample in a mechanism similar to what we saw 
earlier by specifying that the query should only be applied to a certain subset of  
the table:

SELECT max(friends_count)
FROM user TABLESAMPLE(BUCKET 2 OUT OF 64 ON name);

In this query, Hive will effectively hash the rows in the table into 64 buckets based 
on the name column. It will then only use the second bucket for the query. Multiple 
buckets can be specified, and if RAND() is given as the ON clause, then the entire row 
is used by the bucketing function.

Though successful, this is highly inefficient as the full table needs to be scanned to 
generate the required subset of data. If we sample on a bucketed table and ensure the 
number of buckets sampled is equal to or a multiple of the buckets in the table, then 
Hive will only read the buckets in question. For example:

SELECT MAX(friends_count)
FROM bucketed_user TABLESAMPLE(BUCKET 2 OUT OF 32 on user_id);
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In the preceding query against the bucketed_user table, which is created with  
64 buckets on the user_id column, the sampling, since it is using the same column, 
will only read the required buckets. In this case, these will be buckets 2 and 34 from 
each partition.

A final form of sampling is block sampling. In this case, we can specify the 
required amount of the table to be sampled, and Hive will use an approximation 
of this by only reading enough source data blocks on HDFS to meet the required 
size. Currently, the data size can be specified as either a percentage of the table, 
as an absolute data size, or as a number of rows (in each block). The syntax for 
TABLESAMPLE is as follows, which will sample 0.5 percent of the table, 1 GB of  
data or 100 rows per split, respectively:

TABLESAMPLE(0.5 PERCENT)
TABLESAMPLE(1G)
TABLESAMPLE(100 ROWS)

If these latter forms of sampling are of interest, then consult the documentation,  
as there are some specific limitations on the input format and file formats that  
are supported.

Writing scripts
We can place Hive commands in a file and run them with the -f option in the hive 
CLI utility:

$ cat show_tables.hql

show tables;

$ hive -f show_tables.hql  

We can parameterize HiveQL statements by means of the hiveconf mechanism.  
This allows us to specify an environment variable name at the point it is used rather 
than at the point of invocation. For example:

$ cat show_tables2.hql

show tables like '${hiveconf:TABLENAME}';

$ hive -hiveconf TABLENAME=user -f show_tables2.hql

The variable can also be set within the Hive script or an interactive session:

SET TABLE_NAME='user';



Chapter 7

[ 207 ]

The preceding hiveconf argument will add any new variables in the same 
namespace as the Hive configuration options. As of Hive 0.8, there is a similar  
option called hivevar that adds any user variables into a distinct namespace.  
Using hivevar, the preceding command would be as follows:

$ cat show_tables3.hql

show tables like '${hivevar:TABLENAME}';

$ hive -hivevar TABLENAME=user –f show_tables3.hql

Or we can write the command interactively:

SET hivevar:TABLE_NAME='user';

Hive and Amazon Web Services
With Elastic MapReduce as the AWS Hadoop-on-demand service, it is of course 
possible to run Hive on an EMR cluster. But it is also possible to use Amazon storage 
services, particularly S3, from any Hadoop cluster be it within EMR or your own 
local cluster.

Hive and S3
As mentioned in Chapter 2, Storage, it is possible to specify a default filesystem other 
than HDFS for Hadoop and S3 is one option. But, it doesn't have to be an all-or-
nothing thing; it is possible to have specific tables stored in S3. The data for these 
tables will be retrieved into the cluster to be processed, and any resulting data can 
either be written to a different S3 location (the same table cannot be the source and 
destination of a single query) or onto HDFS.

We can take a file of our tweet data and place it onto a location in S3 with a 
command such as the following:

$ aws s3 put tweets.tsv s3://<bucket-name>/tweets/

We firstly need to specify the access key and secret access key that can access the 
bucket. This can be done in three ways:

•	 Set fs.s3n.awsAccessKeyId and fs.s3n.awsSecretAccessKey to the 
appropriate values in the Hive CLI

•	 Set the same values in hive-site.xml though note this limits use of S3 to a 
single set of credentials

•	 Specify the table location explicitly in the table URL, that is, s3n://<access 
key>:<secret access key>@<bucket>/<path>
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Then we can create a table referencing this data, as follows:

CREATE table remote_tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
)  CLUSTERED BY(user_ID) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LOCATION 's3n://<bucket-name>/tweets'

This can be an incredibly effective way of pulling S3 data into a local Hadoop cluster 
for processing.

In order to use AWS credentials in the URI of an S3 location regardless 
of how the parameters are passed, the secret and access keys must not 
contain /, +, =, or \ characters. If necessary, a new set of credentials 
can be generated from the IAM console at https://console.aws.
amazon.com/iam/.

In theory, you can just leave the data in the external table and refer to it when  
needed to avoid WAN data transfer latencies (and costs), even though it often makes 
sense to pull the data into a local table and do future processing from there. If the 
table is partitioned, then you might find yourself retrieving a new partition each day, 
for example.

Hive on Elastic MapReduce
On one level, using Hive within Amazon Elastic MapReduce is just the same as 
everything discussed in this chapter. You can create a persistent cluster, log in to the 
master node, and use the Hive CLI to create tables and submit queries. Doing all this 
will use the local storage on the EC2 instances for the table data.

Not surprisingly, jobs on EMR clusters can also refer to tables whose data is stored 
on S3 (or DynamoDB). And also not surprisingly, Amazon has made extensions to its 
version of Hive to make all this very seamless. It is quite simple from within an EMR 
job to pull data from a table stored in S3, process it, write any intermediate data to 
the EMR local storage, and then write the output results into S3, DynamoDB, or one 
of a growing list of other AWS services.
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The pattern mentioned earlier where new data is added to a new partition directory 
for a table each day has proved very effective in S3; it is often the storage location 
of choice for large and incrementally growing datasets. There is a syntax difference 
when using EMR; instead of the MSCK command mentioned earlier, the command 
to update a Hive table with new data added to a partition directory is as follows:

ALTER TABLE <table-name> RECOVER PARTITIONS;

Consult the EMR documentation for the latest enhancements at http://docs.
aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hive-
additional-features.html. Also, consult the broader EMR documentation. In 
particular, the integration points with other AWS services is an area of rapid growth.

Extending HiveQL
The HiveQL language can be extended by means of plugins and third-party 
functions. In Hive, there are three types of functions characterized by the number  
of rows they take as input and produce as output:

•	 User Defined Functions (UDFs): are simpler functions that act on one row  
at a time.

•	 User Defined Aggregate Functions (UDAFs): take multiple rows as input 
and generate multiple rows as output. These are aggregate functions to be 
used in conjunction with a GROUP BY statement (similar to COUNT(), AVG(), 
MIN(), MAX(), and so on).

•	 User Defined Table Functions (UDTFs): take multiple rows as input and 
generate a logical table comprised of multiple rows that can be used in  
join expressions.

These APIs are provided only in Java. For other languages, it is 
possible to stream data through a user-defined script using the 
TRANSFORM, MAP, and REDUCE clauses that act as a frontend to 
Hadoop's streaming capabilities.
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Two APIs are available to write UDFs. A simple API org.apache.hadoop.hive.
ql.exec.UDF can be used for functions that take and return basic writable types. A 
richer API, which provides support for data types other than writable is available in 
the org.apache.hadoop.hive.ql.udf.generic.GenericUDF package. We'll now 
illustrate how org.apache.hadoop.hive.ql.exec.UDF can be used to implement 
a string to ID function similar to the one we used in Chapter 5, Iterative Computation 
with Spark, to map hashtags to integers in Pig. Building a UDF with this API only 
requires extending the UDF class and writing an evaluate() method,  
as follows:

public class StringToInt extends UDF {
    public Integer evaluate(Text input) {
        if (input == null)
            return null;

         String str = input.toString();
         return str.hashCode();
    }
}

The function takes a Text object as input and maps it to an integer value  
with the hashCode() method. The source code of this function can be found  
at https://github.com/learninghadoop2/book-examples/blob/master/ch7/
udf/com/learninghadoop2/hive/udf/StringToInt.java.

As noted in Chapter 6, Data Analysis with Apache Pig, a more robust 
hash function should be used in production.

We compile the class and archive it into a JAR file, as follows:

$ javac -classpath $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/
hive/lib/* com/learninghadoop2/hive/udf/StringToInt.java 

$ jar cvf myudfs-hive.jar com/learninghadoop2/hive/udf/StringToInt.class

Before being able to use it, a UDF must be registered in Hive with the  
following commands:

ADD JAR myudfs-hive.jar;
CREATE TEMPORARY FUNCTION string_to_int AS 'com.learninghadoop2.hive.
udf.StringToInt'; 
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The ADD JAR statement adds a JAR file to the distributed cache. The CREATE 
TEMPORARY FUNCTION <function> AS <class> statement registers a function in 
Hive that implements a given Java class. The function will be dropped once the Hive 
session is closed. As of Hive 0.13, it is possible to create permanent functions whose 
definition is kept in the metastore using CREATE FUNCTION … .

Once registered, StringToInt can be used in a query just like any other function. 
In the following example, we first extract a list of hashtags from the tweet's text 
by applying regexp_extract. Then, we use string_to_int to map each tag to a 
numerical ID:

SELECT unique_hashtags.hashtag, string_to_int(unique_hashtags.hashtag) 
AS tag_id FROM
    (
        SELECT regexp_extract(text, 
            '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)') as hashtag  
        FROM tweets 
        GROUP BY regexp_extract(text, 
        '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')
) unique_hashtags GROUP BY unique_hashtags.hashtag, string_to_
int(unique_hashtags.hashtag);

Just as we did in the previous chapter, we can use the preceding query to create a 
lookup table:

CREATE TABLE lookuptable (tag string, tag_id bigint);
INSERT OVERWRITE TABLE lookuptable 
SELECT unique_hashtags.hashtag, 
    string_to_int(unique_hashtags.hashtag) as tag_id
FROM 
  (
    SELECT regexp_extract(text, 
        '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)') AS hashtag  
         FROM tweets 
         GROUP BY regexp_extract(text, 
            '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')
   ) unique_hashtags 
GROUP BY unique_hashtags.hashtag, string_to_int(unique_hashtags.
hashtag);
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Programmatic interfaces
In addition to the hive and beeline command-line tools, it is possible to submit 
HiveQL queries to the system via the JDBC and Thrift programmatic interfaces. 
Support for ODBC was bundled in older versions of Hive, but as of Hive 0.12,  
it needs to be built from scratch. More information on this process can be found  
at https://cwiki.apache.org/confluence/display/Hive/HiveODBC.

JDBC
A Hive client written using JDBC APIs looks exactly the same as a client program 
written for other database systems (for example MySQL). The following is a sample 
Hive client program using JDBC APIs. The source code for this example can be 
found at https://github.com/learninghadoop2/book-examples/blob/master/
ch7/clients/com/learninghadoop2/hive/client/HiveJdbcClient.java.

public class HiveJdbcClient {
     private static String driverName = " org.apache.hive.jdbc.
HiveDriver";
     
     // connection string
     public static String URL = "jdbc:hive2://localhost:10000";

     // Show all tables in the default database
     public static String QUERY = "show tables";

     public static void main(String[] args) throws SQLException {
          try {
               Class.forName (driverName);
          } 
          catch (ClassNotFoundException e) {
               e.printStackTrace();
               System.exit(1);
          }
          Connection con = DriverManager.getConnection (URL);
          Statement stmt = con.createStatement();
          
          ResultSet resultSet = stmt.executeQuery(QUERY);
          while (resultSet.next()) {
               System.out.println(resultSet.getString(1));
          }
    }
}
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The URL part is the JDBC URI that describes the connection end point. The format 
for establishing a remote connection is jdbc:hive2:<host>:<port>/<database>. 
Connections in embedded mode can be established by not specifying a host or  
port, like jdbc:hive2://.

hive and hive2 are the drivers to be used when connecting to HiveServer and 
HiveServer2. QUERY contains the HiveQL query to be executed.

Hive's JDBC interface exposes only the default database. In order to 
access other databases, you need to reference them explicitly in the 
underlying queries using the <database>.<table> notation.

First we load the HiveServer2 JDBC driver org.apache.hive.jdbc.HiveDriver.

Use org.apache.hadoop.hive.jdbc.HiveDriver to 
connect to HiveServer.

Then, like with any other JDBC program, we establish a connection to URL and use it 
to instantiate a Statement class. We execute QUERY, with no authentication, and store 
the output dataset into the ResultSet object. Finally, we scan resultSet and print 
its content to the command line.

Compile and execute the example with the following commands:

$ javac HiveJdbcClient.java

$ java -cp $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*:/
opt/cloudera/parcels/CDH/lib/hive/lib/hive-jdbc.jar: com.learninghadoop2.
hive.client.HiveJdbcClient

Thrift
Thrift provides lower-level access to Hive and has a number of advantages over 
the JDBC implementation of HiveServer. Primarily, it allows multiple connections 
from the same client, and it allows programming languages other than Java to be 
used with ease. With HiveServer2, it is a less commonly used option but still worth 
mentioning for compatibility. A sample Thrift client implemented using the Java API 
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch7/clients/com/learninghadoop2/hive/client/HiveThriftClient.
java. This client can be used to connect to HiveServer, but due to protocol 
differences, the client won't work with HiveServer2.
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In the example we define a getClient() method that takes as input the host  
and port of a HiveServer service and returns an instance of org.apache.hadoop.
hive.service.ThriftHive.Client.

A client is obtained by first instantiating a socket connection, org.apache.thrift.
transport.TSocket, to the HiveServer service, and by specifying a protocol,  
org.apache.thrift.protocol.TBinaryProtocol, to serialize and transmit data,  
as follows:

        TSocket transport = new TSocket(host, port);
        transport.setTimeout(TIMEOUT);
        transport.open();
        TBinaryProtocol protocol = new TBinaryProtocol(transport);
        client = new ThriftHive.Client(protocol);

We call getClient() from the main method and use the client to execute a query 
against an instance of HiveServer running on localhost on port 11111, as follows:

     public static void main(String[] args) throws Exception {
          Client client = getClient("localhost", 11111);
          client.execute("show tables");
          List<String> results = client.fetchAll();           
for (String result : results) {
System.out.println(result);           
} 
     }

Make sure that HiveServer is running on port 11111, and if not, start an instance 
with the following command:

$ sudo hive --service hiveserver -p 11111

Compile and execute the HiveThriftClient.java example with:

$ javac $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/* com/
learninghadoop2/hive/client/HiveThriftClient.java

$ java -cp $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*: 
com.learninghadoop2.hive.client.HiveThriftClient
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Stinger initiative
Hive has remained very successful and capable since its earliest releases, particularly 
in its ability to provide SQL-like processing on enormous datasets. But other 
technologies did not stand still, and Hive acquired a reputation of being relatively 
slow, particularly in regard to lengthy startup times on large jobs and its inability to 
give quick responses to conceptually simple queries.

These perceived limitations were less due to Hive itself and more a consequence 
of how translation of SQL queries into the MapReduce model has much built-in 
inefficiency when compared to other ways of implementing a SQL query. Particularly 
in regard to very large datasets, MapReduce saw lots of I/O (and consequently time) 
spent writing out the results of one MapReduce job just to have them read by another. 
As discussed in Chapter 3, Processing – MapReduce and Beyond, this is a major driver in 
the design of Tez, which can schedule jobs on a Hadoop cluster as a graph of tasks that 
does not require inefficient writes and reads between them.

The following is a query on the MapReduce framework versus Tez:

SELECT a.country, COUNT(b.place_id) FROM place a JOIN tweets b ON (a. 
place_id = b.place_id) GROUP BY a.country;

The following figure contrasts the execution plan for the preceding query on the 
MapReduce framework versus Tez:
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In plain MapReduce, two jobs are created for the GROUP BY and JOIN clauses. The 
first job is composed of a set of MapReduce tasks that read data from the disk to 
carry out grouping. The reducers write intermediate results to the disk so that output 
can be synchronized. The mappers in the second job read the intermediate results 
from the disk as well as data from table b. The combined dataset is then passed to the 
reducer where shared keys are joined. Were we to execute an ORDER BY statement, 
this would have resulted in a third job and further MapReduce passes. The same 
query is executed on Tez as a single job by a single set of Map tasks that read data 
from the disk. I/O grouping and joining are pipelined across reducers.

Alongside these architectural limitations, there were quite a few areas around 
SQL language support that could also provide better efficiency, and in early 2013, 
the Stinger initiative was launched with an explicit goal of making Hive over 100 
times as fast and with much richer SQL support. Hive 0.13 has all the features 
of the three phases of Stinger, resulting in a much more complete SQL dialect. 
Also, Tez is offered as an execution framework in addition to a MapReduce-based 
implementation atop YARN which is more efficient than previous implementations 
on Hadoop 1 MapReduce.

With Tez as the execution engine, Hive is no longer limited to a series of linear 
MapReduce jobs and can instead build a processing graph where any given step  
can, for example, stream results to multiple sub-steps.

To take advantage of the Tez framework, there is a new hive variable setting:

set hive.execution.engine=tez;

This setting relies on Tez being installed on the cluster; it is available in source form 
from http://tez.apache.org or in several distributions, though at the time of 
writing, not Cloudera.

The alternative value is mr, which uses the classic MapReduce model (atop YARN), 
so it is possible in a single installation to compare with the performance of Hive 
using Tez.

Impala
Hive is not the only product providing SQL-on-Hadoop capability. The second 
most widely used is likely Impala, announced in late 2012 and released in spring 
2013. Though originally developed internally within Cloudera, its source code 
is periodically pushed to an open source Git repository (https://github.com/
cloudera/impala).

Impala was created out of the same perception of Hive's weaknesses that led to the 
Stinger initiative.
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Impala also took some inspiration from Google Dremel (http://static.
googleusercontent.com/media/research.google.com/en//pubs/
archive/36632.pdf) which was first openly described by a paper published in 2009. 
Dremel was built at Google to address the gap between the need for very fast queries 
on very large datasets and the high latency inherent in the existing MapReduce 
model underpinning Hive at the time. Dremel was a sophisticated approach 
to this problem that, rather than building mitigations atop MapReduce such as 
implemented by Hive, instead created a new service that accessed the same data 
stored in HDFS. Dremel also benefited from significant work to optimize the storage 
format of the data in a way that made it more amenable to very fast analytic queries.

The architecture of Impala
The basic architecture has three main components; the Impala daemons, the state 
store, and the clients. Recent versions have added additional components that 
improve the service, but we'll focus on the high-level architecture.

The Impala daemon (impalad) should be run on each host where a DataNode 
process is managing HDFS data. Note that impalad does not access the filesystem 
blocks through the full HDFS FileSystem API; instead, it uses a feature called short-
circuit reads to make data access more efficient.

When a client submits a query, it can do so to any of the running impalad processes, 
and this one will become the coordinator for the execution of that query. The key 
aspect of Impala's performance is that for each query, it generates custom native 
code, which is then pushed to and executed by all the impalad processes on the 
system. This highly optimized code performs the query on the local data, and each 
impalad then returns its subset of the result set to the coordinator node, which 
performs the final data consolidation to produce the final result. This type of 
architecture should be familiar to anyone who has worked with any of the (usually 
commercial and expensive) Massively Parallel Processing (MPP) (the term used for 
this type of shared scale-out architecture) data warehouse solutions available today. 
As the cluster runs, the state store daemon ensures that each impalad process is 
aware of all the others and provides a view of the overall cluster health.

Co-existing with Hive
Impala, as a newer product, tends to have a more restricted set of SQL data  
types and supports a more constrained dialect of SQL than Hive. It is, however, 
expanding this support with each new release. Refer to the Impala documentation 
(http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/
latest/Impala/impala.html) to get an overview of the current level of support.
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Impala supports the Hive metastore mechanism used by Hive to persistently store 
the metadata surrounding its table structure and storage. This means that on a 
cluster with an existing Hive setup, it should be immediately possible to use Impala 
as it will access the same metastore and therefore provide access to the same tables 
available in Hive.

But be warned that the differences in SQL dialect and data types might cause 
unexpected results when working in a combined Hive and Impala environment. 
Some queries might work on one but not the other, they might show very different 
performance characteristics (more on this later), or they might actually give different 
results. This last point might become apparent when using data types such as float 
and double that are simply treated differently in the underlying systems (Hive is 
implemented on Java while Impala is written in C++).

As of version 1.2, it supports UDFs written both in C++ and Java, although C++ 
is strongly recommended as a much faster solution. Keep this in mind if you are 
looking to share custom functions between Hive and Impala.

A different philosophy
When Impala was first released, its greatest benefit was in how it truly enabled 
what is often called speed of thought analysis. Queries could be returned sufficiently 
fast that an analyst could explore a thread of analysis in a completely interactive 
fashion without having to wait for minutes at a time for each query to complete. It's 
fair to say that most adopters of Impala were at times stunned by its performance, 
especially when compared to the version of Hive shipping at the time.

The Impala focus has remained mostly on these shorter queries, and this does 
impose some limitations on the system. Impala tends to be quite memory-heavy 
as it relies on in-memory processing to achieve much of its performance. If a query 
requires a dataset to be held in memory rather than being available on the executing 
node, then that query will simply fail in versions of Impala before 2.0.

Comparing the work on Stinger to Impala, it could be argued that Impala has a much 
stronger focus on excelling in the shorter (and arguably more common) queries that 
support interactive data analysis. Many business intelligence tools and services are 
now certified to directly run on Impala. The Stinger initiative has put less effort into 
making Hive just as fast in the area where Impala excels but has instead improved 
Hive (to varying degrees) for all workloads. Impala is still developing at a fast 
pace and Stinger has put additional momentum into Hive, so it is most likely wise 
to consider both products and determine which best meets the performance and 
functionality requirements of your projects and workflows.
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It should also be kept in mind that there are competitive commercial pressures 
shaping the direction of Impala and Hive. Impala was created and is still driven by 
Cloudera, the most popular vendor of Hadoop distributions. The Stinger initiative, 
though contributed to by many companies as diverse as Microsoft (yes, really!) and 
Intel, was lead by Hortonworks, probably the second largest vendor of Hadoop 
distributions. The fact is that if you are using the Cloudera distribution of Hadoop, 
then some of the core features of Hive might be slower to arrive, whereas Impala will 
always be up-to-date. Conversely, if you use another distribution, you might get the 
latest Hive release, but that might either have an older Impala or, as is currently the 
case, you might have to download and install it yourself.

A similar situation has arisen with the Parquet and ORC file formats mentioned 
earlier. Parquet is preferred by Impala and developed by a group of companies led 
by Cloudera, while ORC is preferred by Hive and is championed by Hortonworks.

Unfortunately, the reality is that Parquet support is often very quick to arrive in the 
Cloudera distribution but less so in say the Hortonworks distribution, where the 
ORC file format is preferred.

These themes are a little concerning since, although competition in this space is a 
good thing, and arguably the announcement of Impala helped energize the Hive 
community, there is a greater risk that your choice of distribution might have a larger 
impact on the tools and file formats that will be fully supported, unlike in the past. 
Hopefully, the current situation is just an artifact of where we are in the development 
cycles of all these new and improved technologies, but do consider your choice of 
distribution carefully in relation to your SQL-on-Hadoop needs.

Drill, Tajo, and beyond
You should also consider that SQL on Hadoop no longer only refers to Hive or 
Impala. Apache Drill (http://drill.apache.org) is a fuller implementation of the 
Dremel model first described by Google. Although Impala implements the Dremel 
architecture across HDFS data, Drill looks to provide similar functionality across 
multiple data sources. It is still in its early stages, but if your needs are broader than 
what Hive or Impala provides, it might be worth considering.

Tajo (http://tajo.apache.org) is another Apache project that seeks to be a full 
data warehouse system on Hadoop data. With an architecture similar to that of 
Impala, it offers a much richer system with components such as multiple optimizers 
and ETL tools that are commonplace in traditional data warehouses but less 
frequently bundled in the Hadoop world. It has a much smaller user base but has 
been used by certain companies very successfully for a significant length of time,  
and might be worth considering if you need a fuller data warehousing solution.
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Other products are also emerging in this space, and it's a good idea to do some 
research. Hive and Impala are awesome tools, but if you find that they don't meet 
your needs, then look around—something else might.

Summary
In its early days, Hadoop was sometimes erroneously seen as the latest supposed 
relational database killer. Over time, it has become more apparent that the more 
sensible approach is to view it as a complement to RDBMS technologies and that,  
in fact, the RDBMS community has developed tools such as SQL that are also 
valuable in the Hadoop world.

HiveQL is an implementation of SQL on Hadoop and was the primary focus of  
this chapter. In regard to HiveQL and its implementations, we covered the  
following topics:

•	 How HiveQL provides a logical model atop data stored in HDFS in contrast 
to relational databases where the table structure is enforced in advance

•	 How HiveQL supports many standard SQL data types and commands 
including joins and views

•	 The ETL-like features offered by HiveQL, including the ability to import  
data into tables and optimize the table structure through partitioning and 
similar mechanisms

•	 How HiveQL offers the ability to extend its core set of operators with  
user-defined code and how this contrasts to the Pig UDF mechanism

•	 The recent history of Hive developments, such as the Stinger initiative, that 
have seen Hive transition to an updated implementation that uses Tez

•	 The broader ecosystem around HiveQL that now includes products such 
as Impala, Tajo and Drill and how each of these focuses on specific areas in 
which to excel

With Pig and Hive, we've introduced alternative models to process MapReduce  
data, but so far we've not looked at another question: what approaches and tools  
are required to actually allow this massive dataset being collected in Hadoop to 
remain useful and manageable over time? In the next chapter, we'll take a slight 
step up the abstraction hierarchy and look at how to manage the life cycle of this 
enormous data asset.



Data Lifecycle Management
Our previous chapters were quite technology focused, describing particular tools or 
techniques and how they can be used. In this and the next chapter, we are going to 
take a more top-down approach whereby we will describe a problem space you are 
likely to encounter and then explore how to address it. In particular, we'll cover the 
following topics:

•	 What we mean by the term data life cycle management
•	 Why data life cycle management is something to think about
•	 The categories of tools that can be used to address the problem
•	 How to use these tools to build the first half of a Twitter sentiment  

analysis pipeline

What data lifecycle management is
Data doesn't exist only at a point in time. Particularly for long-running production 
workflows, you are likely to acquire a significant quantity of data in a Hadoop 
cluster. Requirements rarely stay static for long, so alongside new logic you might 
also see the format of that data change or require multiple data sources to be used 
to provide the dataset processed in your application. We use the term data lifecycle 
management to describe an approach to handling the collection, storage, and 
transformation of data that ensures that data is where it needs to be, in the format it 
needs to be in, in a way that allows data and system evolution over time.
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Importance of data lifecycle management
If you build data processing applications, you are by definition reliant on the data 
that is processed. Just as we consider the reliability of applications and systems, it 
becomes necessary to ensure that the data is also production-ready.

Data at some point needs to be ingested into Hadoop. It is one part of an enterprise 
and often has multiple points of integration with external systems. If the ingest 
of data coming from those systems is not reliable, then the impact on the jobs 
that process that data is often as disruptive as a major system failure. Data ingest 
becomes a critical component in its own right. And when we say the ingest needs 
to be reliable, we don't just mean that data is arriving; it also has to be arriving in a 
format that is usable and through a mechanism that can handle evolution over time.

The problem with many of these issues is that they do not arise in a significant 
fashion until the flows are large, the system is critical, and the business impact of any 
problems is non-trivial. Ad hoc approaches that worked for a less critical dataflow 
often will simply not scale, but will be very painful to replace on a live system.

Tools to help
But don't panic! There are a number of categories of tools that can help with the data 
life cycle management problem. We'll give examples of the following three broad 
categories in this chapter:

•	 Orchestration services: building an ingest pipeline usually has multiple 
discrete stages, and we will use an orchestration tool to allow these to be 
described, executed, and managed

•	 Connectors: given the importance of integration with external systems,  
we will look at how we can use connectors to simplify the abstractions 
provided by Hadoop storage

•	 File formats: how we store the data impacts how we manage format 
evolution over time, and several rich storage formats have ways of 
supporting this
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Building a tweet analysis capability
In earlier chapters, we used various implementations of Twitter data analysis to 
describe several concepts. We will take this capability to a deeper level and approach 
it as a major case study.

In this chapter, we will build a data ingest pipeline, constructing a production-ready 
dataflow that is designed with reliability and future evolution in mind. 

We'll build out the pipeline incrementally throughout the chapter. At each stage, 
we'll highlight what has changed but can't include full listings at each stage without 
trebling the size of the chapter. The source code for this chapter, however, has every 
iteration in its full glory.

Getting the tweet data
The first thing we need to do is get the actual tweet data. As in previous examples, 
we can pass the -j and -n arguments to stream.py to dump JSON tweets to stdout:

$ stream.py -j -n 10000 > tweets.json

Since we have this tool that can create a batch of sample tweets on demand, we could 
start our ingest pipeline by having this job run on a periodic basis. But how?

Introducing Oozie
We could, of course, bang rocks together and use something like cron for simple job 
scheduling, but recall that we want an ingest pipeline that is built with reliability 
in mind. So, we really want a scheduling tool that we can use to detect failures and 
otherwise respond to exceptional situations.

The tool we will use here is Oozie (http://oozie.apache.org), a workflow engine 
and scheduler built with a focus on the Hadoop ecosystem.

Oozie provides a means to define a workflow as a series of nodes with configurable 
parameters and controlled transition from one node to the next. It is installed as 
part of the Cloudera QuickStart VM, and the main command-line client is, not 
surprisingly, called oozie.
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We've tested the workflows in this chapter against version 5.0 of the 
Cloudera QuickStart VM, and at the time of writing Oozie in the latest 
version, 5.1, has some issues. There's nothing particularly version-specific 
in our workflows, however, so they should be compatible with any 
correctly working Oozie v4 implementation.

Though powerful and flexible, Oozie can take a little getting used to, so we'll give 
some examples and describe what we are doing along the way.

The most common node in an Oozie workflow is an action. It is within action 
nodes that the steps of the workflow are actually executed; the other node types 
handle management of the workflow in terms of decisions, parallelism, and failure 
detection. Oozie has multiple types of actions that it can perform. One of these is 
the shell action, which can be used to execute any command on the system, such as 
native binaries, shell scripts, or any other command-line utility. Let's create a script 
to generate a file of tweets and copy this to HDFS:

set -e
source twitter.keys
python stream.py -j -n 500 > /tmp/tweets.out
hdfs dfs -put /tmp/tweets.out /tmp/tweets/tweets.out
rm -f /tmp/tweets.out

Note that the first line will cause the entire script to fail should any of the included 
commands fail. We use an environment file to provide the Twitter keys to our script 
in twitter.keys, which is of the following form:

export TWITTER_CONSUMER_KEY=<value>
export TWITTER_CONSUMER_SECRET=<value>
export TWITTER_ACCESS_KEY=<value> 
export TWITTER_ACCESS_SECRET=<value>

Oozie uses XML to describe its workflows, usually stored in a file called workflow.
xml. Let's walk through the definition for an Oozie workflow that calls a  
shell command.

The schema for an Oozie workflow is called workflow-app, and we can give the 
workflow a specific name. This is useful when viewing job history in the CLI or 
Oozie web UI. In the examples in this book, we'll use an increasing version number 
to allow us to more easily separate the iterations within the source repository.  
This is how we give the workflow-app a specific name:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="v1">
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Oozie workflows are made up of a series of connected nodes, each of which 
represents a step in the process, and which are represented by XML nodes in the 
workflow definition. Oozie has a number of nodes that deal with the transition of the 
workflow from one step to the next. The first of these is the start node, which simply 
states the name of the first node to be executed as part of the workflow, as follows:

    <start to="fs-node"/>

We then have the definition for the named start node. In this case, it is an action 
node, which is the generic node type for most Oozie nodes that actually perform 
some processing, as follows:

    <action name="fs-node">

Action is a broad category of nodes, and we will typically then specialize it with the 
particular processing for this given node. In this case, we are using the fs node type, 
which allows us to perform filesystem operations:

    <fs>

We want to ensure that the directory on HDFS to which we wish to copy the file of 
tweet data, exists, is empty, and has suitable permissions. We do this by trying to 
delete the directory if it exists, then creating it, and finally applying the required 
permissions, as follows:

    <delete path="${nameNode}/tmp/tweets"/>
    <mkdir path="${nameNode}/tmp/tweets"/>
    <chmod path="${nameNode}/tmp/tweets" permissions="777"/>
    </fs>

We'll see an alternative way of setting up directories later. After performing the 
functionality of the node, Oozie needs know how to proceed with the workflow. 
In most cases, this will comprise moving to another action node if this node was 
successful and aborting the workflow otherwise. This is specified by the next 
elements. The ok node gives the name of the node to which to transition if the 
execution was successful; the error node names the destination node for failure 
scenarios. Here's how the ok and fail nodes are used:

    <ok to="shell-node"/>
    <error to="fail"/>
    </action>
    <action name="shell-node">
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The second action node is again specialized with its specific processing type; in this 
case, we have a shell node:

<shell xmlns="uri:oozie:shell-action:0.2">

The shell action then has the Hadoop JobTracker and NameNode locations specified. 
Note that the actual values are given by variables; we'll explain where they come 
from later. The JobTracker and NameNode are specified as follows:

            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>

As mentioned in Chapter 3, Processing – MapReduce and Beyond, MapReduce  
uses multiple queues to provide support for different approaches to resource 
scheduling. The next element specifies the MapReduce queue to which the  
workflow should be submitted:

             <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
             </configuration>

Now that the shell node is fully configured, we can specify the command to invoke, 
again via a variable, as follows:

              <exec>${EXEC}</exec>

The various steps of Oozie workflows are executed as MapReduce jobs. This 
shell action will, therefore, be executed as a specific task instance on a particular 
TaskTracker. We, therefore, need to specify which files need to be copied to the local 
working directory on the TaskTracker machine before the action can be performed. 
In this case, we need to copy the main shell script, the Python tweet generator, and 
the Twitter config file, as follows:

<file>${workflowRoot}/${EXEC}</file>
<file>${workflowRoot}/twitter.keys</file>
<file>${workflowRoot}/stream.py</file>
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After closing the shell element, we again specify what to do depending on whether 
the action completed successfully or not. Because MapReduce is used for job 
execution, the majority of node types by definition have built-in retry and recovery 
logic, though this is not the case for shell nodes:

       </shell>
      <ok to="end"/>
      <error to="fail"/>
</action>

If the workflow fails, let's just kill it in this case. The kill node type does exactly 
that— terminate the workflow from proceeding to any further steps, usually logging 
error messages along the way. Here's how the kill node type is used:

<kill name="fail">
   <message>Shell action failed, error  
     message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>

The end node on the other hand simply halts the workflow and logs it as a successful 
completion within Oozie:

   <end name="end"/>
</workflow-app>

The obvious question is what the preceding variables represent and from where 
they get their concrete values. The preceding variables are examples of the Oozie 
Expression Language often referred to as EL.

Alongside the workflow definition file (workflow.xml), which describes the steps in 
the flow, we also need to create a configuration file that gives the specific values for a 
given execution of the workflow. This separation of functionality and configuration 
allows us to write workflows that can be used on different clusters, on different file 
locations, or with different variable values without having to recreate the workflow 
itself. By convention, this file is usually named job.properties. For the preceding 
workflow, here's a sample job.properties file.
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Firstly, we specify the location of the JobTracker, the NameNode, and the 
MapReduce queue to which to submit the workflow. The following should work on 
the Cloudera 5.0 QuickStart VM, though in v 5.1 the hostname has been changed to 
quickstart.cloudera. The important thing is that the specified NameNode and 
JobTracker addresses need to be in the Oozie whitelist—the local services on the  
VM are added automatically:

jobTracker=localhost.localdomain:8032
nameNode=hdfs://localhost.localdomain:8020
queueName=default

Next, we set some values for where the workflow definitions and associated files 
can be found on the HDFS filesystem. Note the use of a variable representing the 
username running the job. This allows a single workflow to be applied to different 
paths depending on the submitting user, as follows:

tasksRoot=book
workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v1
oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/
v1

Next, we name the command to be executed in the workflow as ${EXEC}:

EXEC=gettweets.sh

More complex workflows will require additional entries in the job.properties file; 
the preceding workflow is as simple as it gets.

The oozie command-line tool needs to know where the Oozie server is running.  
This can be added as an argument to every Oozie shell command, but that gets 
unwieldy very quickly. Instead, you can set the shell environment variable, as follows:

$ export OOZIE_URL='http://localhost:11000/oozie'

After all that work, we can now actually run an Oozie workflow. Create a directory 
on HDFS as specified in the values in the job.properties file. In the preceding 
command, we'd be creating this as book/v1 under our home directory on HDFS. 
Copy the stream.py, gettweets.sh and twitter.properties files to that 
directory; these are the files required to perform the actual execution of the shell 
command. Then, add the workflow.xml file to the same directory.

To run the workflow then, we do the following:

$ oozie job -run -config <path-to-job.properties>
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If submitted successfully, Oozie will print the job name to the screen. You can see the 
current status of this workflow with:

$ oozie job -info <job-id>

You can also check the logs for the job:

$ oozie job -log <job-id>  

In addition, all current and recent jobs can be viewed with:

$ oozie jobs  

A note on HDFS file permissions
There is a subtle aspect in the shell command that can catch the unwary. As an 
alternative to having the fs node, we could instead include a preparation element 
within the shell node to create the directory we need on the filesystem. It would look 
like the following:

<prepare>
     <mkdir path="${nameNode}/tmp/tweets"/>
</prepare>

The prepare stage is executed by the user who submitted the workflow, but since 
the actual script execution is performed on YARN, it is usually executed as the yarn 
user. You might hit a problem where the script generates the tweets, the /tmp/
tweets directory is created on HDFS, but the script then fails to have permission to 
write to that directory. You can either resolve this through assigning permissions 
more precisely or, as shown earlier, you add a filesystem node to encapsulate 
the needed operations. We'll use a mixture of both techniques in this chapter; for 
non-shell nodes, we'll use prepare elements, particularly if the needed directory is 
manipulated only by that node. For cases where a shell node is involved or where 
the created directories will be used across multiple nodes, we'll be safe and use the 
more explicit fs node.
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Making development a little easier
It can sometimes get awkward to manage the files and resources for an Oozie job 
during development. Some need to be on HDFS, while some need to be local, and 
changes to some files require changes to others. The easiest approach is often to 
develop or make changes in a complete clone of the workflow directory on the local 
filesystem and push changes from there to the similarly named directory in HDFS, 
not forgetting, of course, to ensure that all changes are under revision control! For 
operational execution of the workflow, the job.properties file is the only thing that 
needs to be on the local filesystem and, conversely, all the other files need to be on 
HDFS. Always remember this: it's all too easy to make changes to a local copy of a 
workflow, forget to push the changes to HDFS, and then be confused as to why the 
workflow isn't reflecting the changes.

Extracting data and ingesting into Hive
With our data on HDFS, we can now extract the separate datasets for tweets and 
users, and place data as in previous chapters. We can reuse extract_for_hive.pig 
to parse the raw tweet JSON into separate files, store them again on HDFS, and then 
follow up with a Hive step that ingests these new files into Hive tables for tweets, 
users, and places.

To do this within Oozie, we'll need to add two new nodes to our workflow, a Pig 
action for the first step and a Hive action for the second.

For our Hive action, we'll just create three external tables that point to the files 
generated by Pig. This would then allow us to follow our previously described 
model of ingesting into temporary or external tables and using HiveQL INSERT 
statements from there to insert into the operational, and often partitioned, tables. 
This create.hql script can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch8/v2/hive/create.hql but is simply of the 
following form:

CREATE DATABASE IF NOT EXISTS twttr ;
USE twttr;
DROP TABLE IF EXISTS tweets;
CREATE EXTERNAL TABLE tweets (
...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/tweets';

DROP TABLE IF EXISTS user;
CREATE EXTERNAL TABLE user (
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...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/users';

DROP TABLE IF EXISTS place;
CREATE EXTERNAL TABLE place (
...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/places';

Note that the file separator on each table is also explicitly set to match what we are 
outputting from Pig. In addition to this, locations in both scripts are specified by 
variables for which we will provide concrete values in our job.properties file.

With the preceding statements, we can create the Pig node for our workflow found in 
the source code as v2 of the pipeline. Much of the node definition looks similar to the 
shell node used previously, as we set the same configuration elements; also notice 
our use of the prepare element to create the needed output directory. We can create 
the Pig node for our workflow as shown in the following action:

<action name="pig-node">
   <pig>
       <job-tracker>${jobTracker}</job-tracker>
       <name-node>${nameNode}</name-node>
       <prepare>
           <delete path="${nameNode}/${outputDir}"/>
           <mkdir path="${nameNode}/${outputDir}"/>
       </prepare>
       <configuration>
           <property>
               <name>mapred.job.queue.name</name>
               <value>${queueName}</value>
           </property>
       </configuration>

Similarly as with the shell command, we need to tell the Pig action the location of the 
actual Pig script. This is specified in the following script element:

          <script>${workflowRoot}/pig/extract_for_hive.pig</script>
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We also need to modify the command line used to invoke the Pig script to add 
several parameters. The following elements do this; note the construction pattern 
wherein one element adds the actual parameter name and the next its value  
(we'll see an alternative mechanism for passing arguments in the next section):

       <argument>-param</argument>
       <argument>inputDir=${inputDir}</argument>
       <argument>-param</argument>
       <argument>outputDir=${outputDir}</argument>
  </pig>

Because we want to move from this step to the Hive node, we need to set the 
following elements appropriately:

       <ok to="hive-node"/>
       <error to="fail"/>
   </action>

The Hive action itself is a little different than the previous nodes; even though it 
starts in a similar fashion, it specifies the Hive action-specific namespace, as follows:

<action name="hive-node">
       <hive xmlns="uri:oozie:hive-action:0.2">
        <job-tracker>${jobTracker}</job-tracker>
        <name-node>${nameNode}</name-node>

The Hive action needs many of the configuration elements used by Hive itself and,  
in most cases, we copy the hive-site.xml file into the workflow directory and 
specify its location, as shown in the following xml; note that this mechanism is not 
Hive-specific and can also be used for custom actions:

        <job-xml>${workflowRoot}/hive-site.xml</job-xml>

In addition, we might need to override some MapReduce default configuration 
properties, as shown in the following xml, where we specify that intermediate 
compression should be used for our job:

        <configuration>
             <property>
                 <name>mapred.compress.map.output</name>
                 <value>true</value>
             </property>
        </configuration>
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After configuring the Hive environment, we now specify the location of the  
Hive script:

        <script>${workflowRoot}/hive/create.hql</script>

We also have to provide the mechanism to pass arguments to the Hive script. 
But instead of building out the command line one component at a time, we'll add 
the param elements that map the name of a configuration element in the job.
properties file to variables specified in the Hive script; this mechanism is also 
supported with Pig actions:

        <param>dbName=${dbName}</param>
        <param>ingestDir=${ingestDir}</param>
   </hive>

The Hive node then closes as the others, as follows:

     <ok to="end"/>
     <error to="fail"/>
</action>

We now need to put all this together to run the multistage workflow in Oozie.  
The full workflow.xml file can be found at https://github.com/learninghadoop2/
book-examples/tree/master/ch8/v2 and the workflow is visualized in the 
following diagram:

Extract with PigPrepare Collect Tweets Load in Hive

end

fs-node shell-node pig-node hive-node

Data ingestion workflow v2

This workflow performs all the steps discussed before; it generates tweet data, 
extracts subsets of data via Pig, and then ingests these into Hive.
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A note on workflow directory structure
We now have quite a few files in our workflow directory and it is best to adopt some 
structure and naming conventions. For the current workflow, our directory on HDFS 
looks like the following:

/hive/
/hive/create.hql
/lib/
/pig/
/pig/extract_for_hive.pig
/scripts/
/scripts/gettweets.sh
/scripts/stream-json-batch.py
/scripts/twitter-keys
/hive-site.xml
/job.properties
/workflow.xml

The model we follow is to keep configuration files in the top-level directory but to 
keep files related to a given action type in dedicated subdirectories. Note that it is 
useful to have a lib directory even if empty, as some node types look for it.

With the preceding structure, the job.properties file for our combined job is now 
the following:

jobTracker=localhost.localdomain:8032
nameNode=hdfs://localhost.localdomain:8020
queueName=default
tasksRoot=book

workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v2
oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/
v2
oozie.use.system.libpath=true
EXEC=gettweets.sh
inputDir=/tmp/tweets
outputDir=/tmp/tweetdata
ingestDir=/tmp/tweetdata
dbName=twttr

In the preceding code, we've fully updated the workflow.xml definition to include 
all the steps described so far—including an initial fs node to create the required 
directory without worrying about user permissions.
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Introducing HCatalog
If we look at our current workflow, there is inefficiency in how we use HDFS as the 
interface between Pig and Hive. We need to output the result of our Pig script onto 
HDFS, where the Hive script can then use it as the location of some new tables. What 
this highlights is that it is often very useful to have data stored in Hive, but this is 
limited, as few tools (primarily Hive) can access the Hive metastore and hence read 
and write such data. If we think about it, Hive has two main layers: its tools for 
accessing and manipulating its data plus the execution framework to run queries on 
that data.

The HCatalog subproject of Hive effectively provides an independent implementation 
of the first of these layers—the means to access and manipulate data in the Hive 
metastore. HCatalog provides mechanisms for other tools, such as Pig and 
MapReduce, to natively read and write table-structured data that is stored on HDFS.

Remember, of course, that the data is stored on HDFS in one format or another. The 
Hive metastore provides the models to abstract these files into the relational table 
structure familiar from Hive. So when we say we are storing data in HCatalog, what 
we really mean is that we are storing data on HDFS in such a way that this data can 
then be exposed by table structures specified within the Hive metastore. Conversely, 
when we refer to Hive data, what we really mean is data whose metadata is stored in 
the Hive metastore, and which can be accessed by any metastore-aware tool, such  
as HCatalog.

Using HCatalog
The HCatalog command-line tool is called hcat and will be preinstalled on the 
Cloudera QuickStart VM—it is installed, in fact, with any version of Hive later than 
0.11 inclusive.

The hcat utility doesn't have an interactive mode, so generally you will use it with 
explicit command-line arguments or by pointing it at a file of commands, as follows:

$ hcat –e "use default; show tables"

$ hcat –f commands.hql

Though the hcat tool is useful and can be incorporated into scripts, the more 
interesting element of HCatalog for our purposes here is its integration with 
Pig. HCatalog defines a new Pig loader called HCatLoader and a storer called 
HCatStorer. As the names suggest, these allow Pig scripts to read from or write to 
Hive tables directly. We can use this mechanism to replace our previous Pig and 
Hive actions in our Oozie workflow with a single HCatalog-based Pig action that 
writes the output of the Pig job directly into our tables in Hive.
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For clarity, we'll create new tables named tweets_hcat, places_hcat, and  
users_hcat into which we'll insert this data; note that these are no longer  
external tables:

CREATE TABLE tweets_hcat… 
CREATE TABLE places_hcat …
CREATE TABLE users_hcat …

Note that if we had these commands in a script file, we could use the hcat CLI  
tool to execute them, as follows:

$ hcat –f create.hql

The HCat CLI tool does not, however, offer an interactive shell akin to the Hive CLI. 
We can now use our previous Pig script and need to only change the store commands, 
replacing the use of PigStorage with HCatStorer. Our updated Pig script,  
extract_to_hcat.pig, therefore includes store commands such as the following:

store tweets_tsv into 'twttr.tweets_hcat' using org.apache.hive.
hcatalog.pig.HCatStorer();

Note that the package name for the HCatStorer class has the org.apache.hive.
hcatalog prefix; when HCatalog was in the Apache incubator, it used org.apache.
hcatalog for its package prefix. This older form is now deprecated, and the new 
form that explicitly shows HCatalog as a subproject of Hive should be used instead.

With this new Pig script, we can now replace our previous Pig and Hive action 
with an updated Pig action using HCatalog. This also requires the first usage of the 
Oozie sharelib, which we'll discuss in the next section. In our workflow definition, 
the pig element of this action will be defined as shown in the following xml and can 
be found as v3 of the pipeline in the source bundle; in v3, we've also added a utility 
Hive node to run before the Pig node to ensure that all necessary tables exist before 
the Pig script that requires them is executed.

<pig>
   <job-tracker>${jobTracker}</job-tracker>
   <name-node>${nameNode}</name-node>
   <job-xml>${workflowRoot}/hive-site.xml</job-xml>
    <configuration>
          <property>
              <name>mapred.job.queue.name</name>
              <value>${queueName}</value>
          </property>
          <property>
             <name>oozie.action.sharelib.for.pig</name>
             <value>pig,hcatalog</value>
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          </property>
    </configuration>
    <script>${workflowRoot}/pig/extract_to_hcat.pig
    </script>
    <argument>-param</argument>
    <argument>inputDir=${inputDir}</argument>
</pig>

The two changes of note are the addition of the explicit reference to the  
hive-site.xml file; this is required by HCatalog, and the new configuration  
element that tells Oozie to include the required HCatalog JARs.

The Oozie sharelib
That last addition touched on an important aspect of Oozie we've not mentioned 
thus far: the Oozie sharelib. When Oozie runs all its various action types, it requires 
multiple JARs to access Hadoop and to invoke various tools, such as Hive and Pig. As 
part of the Oozie installation, a large number of dependent JARs have been placed on 
HDFS to be used by Oozie and its various action types: this is the Oozie sharelib.

For most usages of Oozie, it's enough to know the sharelib exists, usually under  
/user/oozie/share/lib on HDFS, and when, as in the previous example, some 
explicit configuration values need to be added. When using a Pig action, the Pig 
JARs will automatically get picked up, but when the Pig script uses something like 
HCatalog, then this dependency will not be explicitly known to Oozie.

The Oozie CLI allows manipulation of the sharelib, though the scenarios where this 
will be required are outside of the scope of this book. The following command can be 
useful though to see which components are included in the Oozie sharelib:

$ oozie admin -shareliblist

The following command is useful to see the individual JARs comprising a particular 
component within the sharelib, in this case HCatalog:

$ oozie admin -shareliblist hcat

These commands can be useful to verify that the required JARs are being included 
and to see which specific versions are being used.
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HCatalog and partitioned tables
If you rerun the previous workflow a second time, it will fail; dig into the logs, 
and you will see HCatalog complaining that it cannot write to a table that already 
contains data. This is a current limitation of HCatalog; it views tables and partitions 
within tables as immutable by default. Hive, on the other hand, will add new data to 
a table or partition; its default view of a table is that it is mutable.

Upcoming changes to Hive and HCatalog will see the support of a new table 
property that will control this behavior in either tool; for example, the following 
added to a table definition would allow table appends as supported in Hive today:

TBLPROPERTIES("immutable"="false")

This is currently not available in the shipping version of Hive and HCatalog, 
however. For us to have a workflow that adds more and more data into our tables, 
we therefore need to create a new partition for each new run of the workflow. We've 
made these changes in v4 of our pipeline, where we first recreate the tables with an 
integer partition key, as follows:

CREATE  TABLE tweets_hcat (
…)
PARTITIONED BY (partition_key int)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE;

CREATE  TABLE `places_hcat`(
… )
partitioned by(partition_key int)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE
TBLPROPERTIES("immutable"="false") ;

CREATE  TABLE `users_hcat`(
…)
partitioned by(partition_key int)
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE
TBLPROPERTIES("immutable"="false") ;
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The Pig HCatStorer takes an optional partition definition and we modify the store 
statements in our Pig script accordingly; for example:

store tweets_tsv into 'twttr.tweets_hcat' 
using org.apache.hive.hcatalog.pig.HCatStorer(
'partition_key=$partitionKey');

We then modify our Pig action in the workflow.xml file to include this  
additional parameter:

<script>${workflowRoot}/pig/extract_to_hcat.pig</script>
          <param>inputDir=${inputDir}</param>
          <param>partitionKey=${partitionKey}</param>

The question is then how we pass this partition key to the workflow. We could 
specify it in the job.properties file, but by doing so we would hit the same 
problem with trying to write to an existing partition on the next re-run.

Create tablesPrepare Collect Tweets Extract & Load

with Pig

end

fs-node shell-node pig-nodehive-node

Ingestion workflow v4

For now, we'll pass this as an explicit argument to the invocation of the Oozie CLI 
and explore better ways to do this later:

$ oozie job –run –config v4/job.properties –DpartitionKey=12345
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Note that a consequence of this behavior is that rerunning an HCat 
workflow with the same arguments will fail. Be aware of this when 
testing workflows or playing with the sample code from this book.

Producing derived data
Now that we have our main data pipeline established, there is most likely a series  
of actions that we wish to take after we add each new additional dataset. As a simple 
example, note that with our previous mechanism of adding each set of user data  
to a separate partition, the users_hcat table will contain users multiple times.  
Let's create a new table for unique users and regenerate this each time we add  
new user data.

Note that given the aforementioned limitations of HCatalog, we'll use a Hive action 
for this purpose, as we need to replace the data in a table.

First, we'll create a new table for unique user information, as follows:

CREATE TABLE IF NOT EXISTS `unique_users`(
  `user_id` string ,
  `name` string ,
  `description` string ,
  `screen_name` string )
ROW FORMAT DELIMITED
  FIELDS TERMINATED BY '\t'
STORED AS sequencefile ;

In this table, we'll only store the attributes of a user that either never change (ID) 
or change rarely (the screen name, and so on). We can then write a simple Hive 
statement to populate this table from the full users_hcat table:

USE twttr;
INSERT OVERWRITE TABLE unique_users
SELECT DISTINCT user_id, name, description, screen_name
FROM users_hcat;
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We can then add an additional Hive action node that comes after our previous Pig 
node in the workflow. When doing this, we discover that our pattern of simply 
giving nodes names such as hive-node is a really bad idea, as we now have two 
Hive-based nodes. In v5 of the workflow, we add this new node and also change our 
nodes to have more descriptive names:

Create tablesPrepare Collect Tweets Extract & Load

with Pig

fs-node gettweets-node heat-ingest-nodecreate-tables-node

Transform

end

derived-data-node

Ingestion workflow v5

Performing multiple actions in parallel
Our workflow has two types of activity: initial setup with the nodes that initialize the 
filesystem and Hive tables, and the functional nodes that perform actual processing. 
If we look at the two setup nodes we have been using, it is obvious that they are 
quite distinct and not interdependent. We can therefore take advantage of an Oozie 
feature called fork and join nodes to execute these actions in parallel. The start of 
our workflow.xml file now becomes:

 <start to="setup-fork-node"/>

The Oozie fork node contains a number of path elements, each of which specifies a 
starting node. Each of these will be launched in parallel:

<fork name="setup-fork-node">
   <path start="setup-filesystem-node" />
   <path start="create-tables-node" />
</fork>
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Each of the specified action nodes is no different from any we have used previously. 
An action node can link to a series of other nodes; the only requirement is that each 
parallel series of actions must end with a transition to the join node associated with 
the fork node, as follows:

    <action name="setup-filesystem-node">
…
        <ok to="setup-join-node"/>
        <error to="fail"/>
    </action>
    <action name="create-tables-node">
…
        <ok to="setup-join-node"/>
        <error to="fail"/>
    </action>

The join node itself acts as the point of coordination; any workflow that has 
completed will wait until all the paths specified in the fork node reach this point.  
At that point, the workflow continues at the node specified within the join node. 
Here's how the join node is used:

<join name="create-join-node" to="gettweets-node"/>

In the preceding code we omitted the action definitions for space purposes, but the 
full workflow definition is in v6:

setup-filesystem-node

end

Collect Tweets Extract & Load

with Pig

Transform

Prepare

Prepare
derived-data-nodehcat-ingest-nodegettweets-nodecreate-join-node

create-tables-node

setup-fork-node

Ingestion workflow v6
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Calling a subworkflow
Though the fork/join mechanism makes the process of parallel actions more 
efficient, it does still add significant verbosity if we include it in our main workflow.
xml definition. Conceptually, we have a series of actions that are performing related 
tasks required by our workflow but not necessarily part of it. For this and similar 
cases, Oozie offers the ability to invoke a subworkflow. The parent workflow will 
execute the child and wait for it to complete, with the ability to pass configuration 
elements from one workflow to the other.

The child workflow will be a full workflow in its own right, usually stored in a 
directory on HDFS with all the usual structure we expect for a workflow, the main 
workflow.xml file, and any required Hive, Pig, or similar files.

We can create a new directory on HDFS called setup-workflow, and in this create the 
files required only for our filesystem and Hive creation actions. The subworkflow 
configuration file will look like the following:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="create-workflow">
    <start to="setup-fork-node"/>
    <fork name="setup-fork-node">
          <path start="setup-filesystem-node" />
      <path start="create-tables-node" />
    </fork>
    <action name="setup-filesystem-node">
    …
    </action>
    <action name="create-tables-node">
    …
    </action>
    <join name="create-join-node" to="end"/>
    <kill name="fail">
        <message>Action failed, error  
          message[${wf:errorMessage(wf:lastErrorNode())}]</message>
    </kill>
    <end name="end"/>
</workflow-app>
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With this subworkflow defined, we then modify the first nodes of our main 
workflow to use a subworkflow node, as in the following:

    <start to="create-subworkflow-node"/>
    <action name="create-subworkflow-node">
        <sub-workflow>
            <app-path>${subWorkflowRoot}</app-path>
            <propagate-configuration/>
        </sub-workflow>
        <ok to="gettweets-node"/>
        <error to="fail"/>
    </action>

We will specify the subWorkflowPath in the job.properties of our parent 
workflow, and the propagate-configuration element will pass the configuration 
of the parent workflow to the child.

Adding global settings
By extracting utility nodes into subworkflows, we can significantly reduce clutter 
and complexity in our main workflow definition. In v7 of our ingest pipeline, we'll 
make one additional simplification and add a global configuration section, as in  
the following:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="v7">
    <global>
            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>
            <job-xml>${workflowRoot}/hive-site.xml</job-xml>
            <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
            </configuration>
</global>
<start to="create-subworkflow-node"/>

By adding this global configuration section, we remove the need to specify any of 
these values in the Hive and Pig nodes in the remaining workflow (note that currently 
the shell node does not support the global configuration mechanism). This can 
dramatically simplify some of our nodes; for example, our Pig node is now as follows:

<action name="hcat-ingest-node">
   <pig>
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     <configuration>
       <property>
         <name>oozie.action.sharelib.for.pig</name>
         <value>pig,hcatalog</value>
         </property>
       </configuration>
       <script>${workflowRoot}/pig/extract_to_hcat.pig</script>
          <param>inputDir=${inputDir}</param>
          <param>dbName=${dbName}</param>
          <param>partitionKey=${partitionKey}</param>
   </pig>
   <ok to="derived-data-node"/>
   <error to="fail"/>
</action>

As can be seen, we can add additional configuration elements, or indeed override 
those specified in the global section, resulting in a much clearer action definition that 
focuses only on the information specific to the action in question. Our workflow v7 
has had both a global section added as well as the addition of the subworkflow, and 
this makes a significant improvement in the workflow readability:

setup-filesystem-node

end

Collect Tweets Extract & Load

with Pig

Transform

Prepare

Prepare
derived-data-nodehcat-ingest-nodegettweets-nodecreate-join-node

create-tables-node

setup-fork-node

create-subworkflow-node

Ingestion workflow v7
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Challenges of external data
When we rely on external data to drive our application, we are implicitly dependent 
on the quality and stability of that data. This is, of course, true for any data, but when 
the data is generated by an external source over which we do not have control, the 
risks are most likely higher. Regardless, when building what we expect to be reliable 
applications on top of such data feeds, and especially when our data volumes grow, 
we need to think about how to mitigate these risks.

Data validation
We use the general term data validation to refer to the act of ensuring that incoming 
data complies with our expectations and potentially applying normalization to 
modify it accordingly or to even delete malformed or corrupt input. What this 
actually involves will be very application-specific. In some cases, the important 
thing is ensuring the system only ingests data that conforms to a given definition of 
accurate or clean. For our tweet data, we don't care about every single record and 
could very easily adopt a policy such as dropping records that don't have values 
in particular fields we care about. For other applications, however, it is imperative 
to capture every input record, and this might drive the implementation of logic to 
reformat every record to make sure it complies with the requirements. In yet other 
cases, only correct records will be ingested, but the rest, instead of being discarded, 
might be stored elsewhere for later analysis.

The bottom line is that trying to define a generic approach to data validation is vastly 
beyond the scope of this chapter.

However, we can offer some thoughts on where in the pipeline to incorporate 
various types of validation logic.

Validation actions
Logic to do any necessary validation or cleanup can be incorporated directly into 
other actions. A shell node running a script to gather data can have commands 
added to handle malformed records differently. Pig and Hive actions that load data 
into tables can either perform filtering on ingest (easier done in Pig) or add caveats 
when copying data from an ingest table to the operational store.
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There is an argument though for the addition of a validation node into the workflow, 
even if initially it performs no actual logic. This could, for instance, be a Pig action 
that reads the data, applies the validation, and writes the validated data to a new 
location to be read by follow-on nodes. The advantage here is that we can later 
update the validation logic without altering our other actions, which should reduce 
the risk of accidentally breaking the rest of the pipeline and also make nodes more 
cleanly defined in terms of responsibilities. The natural extension of this train of 
thought is that a new subworkflow for validation is most likely a good model 
as well, as it not only provides separation of responsibilities, but also makes the 
validation logic easier to test and update.

The obvious disadvantage of this approach is that it adds additional processing and 
another cycle of reading the data and writing it all again. This is, of course, directly 
working against one of the advantages we highlighted when considering the use of 
HCatalog from Pig.

In the end, it will come down to a trade-off of performance against workflow 
complexity and maintainability. When considering how to perform validation and 
just what that means for your workflow, take all these elements into account before 
deciding on an implementation.

Handling format changes
We can't declare victory just because we have data flowing into our system and are 
confident the data is sufficiently validated. Particularly when the data comes from an 
external source we have to think about how the structure of the data might change 
over time.

Remember that systems such as Hive only apply the table schema when the data is 
being read. This is a huge benefit in enabling flexible data storage and ingest, but  
can lead to user-facing queries or workloads failing suddenly when the ingested  
data no longer matches the queries being executed against it. A relational database, 
which applies schemas on write, would not even allow such data to be ingested  
into the system.

The obvious approach to handling changes made to the data format would be to 
reprocess existing data into the new format. Though this is tractable on smaller 
datasets, it quickly becomes infeasible on the sort of volumes seen in large  
Hadoop clusters.
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Handling schema evolution with Avro
Avro has some features with respect to its integration with Hive that help us with 
this problem. If we take our table for tweets data, we could represent the structure  
of a tweet record by the following Avro schema:

{
 "namespace": "com.learninghadoop2.avrotables",
 "type":"record",
 "name":"tweets_avro",
 "fields":[
   {"name": "created_at", "type": ["null" ,"string"]},
   {"name": "tweet_id_str", "type": ["null","string"]},
   {"name": "text","type":["null","string"]},
   {"name": "in_reply_to", "type": ["null","string"]},
   {"name": "is_retweeted", "type": ["null","string"]},
   {"name": "user_id", "type": ["null","string"]},
  {"name": "place_id", "type": ["null","string"]}
  ]
}

Create the preceding schema in a file called tweets_avro.avsc—this is the standard 
file extension for Avro schemas. Then, place it on HDFS; we like to have a common 
location for schema files such as /schema/avro.

With this definition, we can now create a Hive table that uses this schema for its table 
specification, as follows:

CREATE TABLE tweets_avro
PARTITIONED BY ( `partition_key` int)
ROW FORMAT SERDE
  'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES (
'avro.schema.url'='hdfs://localhost.localdomain:8020/schema/avro/
tweets_avro.avsc'
)
STORED AS INPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
  'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';
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Then, look at the table definition from within Hive (or HCatalog, which also 
supports such definitions):

describe tweets_avro
OK
created_at              string                  from deserializer
tweet_id_str            string                  from deserializer
text                    string                  from deserializer
in_reply_to             string                  from deserializer
is_retweeted            string                  from deserializer
user_id                 string                  from deserializer
place_id                string                  from deserializer
partition_key           int                   None

We can also use this table like any other, for example, to copy the data from partition 
3 from the non-Avro table into the Avro table, as follows:

SET hive.exec.dynamic.partition.mode=nonstrict
INSERT INTO TABLE tweets_avro
PARTITION (partition_key)
SELECT  FROM tweets_hcat

Just as in previous examples, if Avro dependencies are not present 
in the classpath, we need to add the Avro MapReduce JAR to our 
environment before being able to select from the table.

We now have a new tweets table specified by an Avro schema; so far it just looks like 
other tables. But the real benefits for our purposes in this chapter are in how we can 
use the Avro mechanism to handle schema evolution. Let's add a new field to our 
table schema, as follows:

{
 "namespace": "com.learninghadoop2.avrotables",
 "type":"record",
 "name":"tweets_avro",
 "fields":[
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   {"name": "created_at", "type": ["null" ,"string"]},
   {"name": "tweet_id_str", "type": ["null","string"]},
   {"name": "text","type":["null","string"]},
   {"name": "in_reply_to", "type": ["null","string"]},
   {"name": "is_retweeted", "type": ["null","string"]},
   {"name": "user_id", "type": ["null","string"]},
  {"name": "place_id", "type": ["null","string"]},
  {"name": "new_feature", "type": "string", "default": "wow!"}
  ]
}

With this new schema in place, we can validate that the table definition has also been 
updated, as follows:

describe tweets_avro;
OK
created_at              string                  from deserializer
tweet_id_str            string                  from deserializer
text                    string                  from deserializer
in_reply_to             string                  from deserializer
is_retweeted            string                  from deserializer
user_id                 string                  from deserializer
place_id                string                  from deserializer
new_feature             string                  from deserializer
partition_key           int                     None

Without adding any new data, we can run queries on the new field that will return 
the default value for our existing data, as follows:

SELECT new_feature FROM tweets_avro LIMIT 5;
...
OK
wow!
wow!
wow!
wow!
wow!

Even more impressive is the fact that the new column doesn't need to be added 
at the end; it can be anywhere in the record. With this mechanism, we can now 
update our Avro schemas to represent the new data structure and see these changes 
automatically reflected in our Hive table definitions. Any queries that refer to the 
new column will retrieve the default value for all our existing data that does not 
have that field present.
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Note that the default mechanism we are using here is core to Avro and is not specific 
to Hive. Avro is a very powerful and flexible format that has applications in many 
areas and is definitely worth deeper examination than we are giving it here.

Technically, what this provides us with is forward compatibility. We can make 
changes to our table schema and have all our existing data remain automatically 
compliant with the new structure we can't, however, continue to ingest data of  
the old format into the updated tables since the mechanism does not provide 
backward compatibility:

INSERT INTO TABLE tweets_avro 
PARTITION (partition_key)
SELECT * FROM tweets_hcat;
FAILED: SemanticException [Error 10044]: Line 1:18 Cannot insert into 
target table because column number/types are different 'tweets_avro': 
Table insclause-0 has 8 columns, but query has 7 columns.

Supporting schema evolution with Avro allows data changes to be something that 
is handled as part of normal business instead of the firefighting emergency they 
all too often turn into. But plainly, it's not for free; there is still a need to make the 
changes in the pipeline and roll these into production. Having Hive tables that 
provide forward compatibility does, however, allow the process to be performed in 
more manageable steps; otherwise, you would need to synchronize changes across 
every stage of the pipeline. If the changes are made from ingest up to the point 
they are inserted into Avro-backed Hive tables, then all users of those tables can 
remain unchanged (as long as they don't do things like select *, which is usually 
a terrible idea anyway) and continue to run existing queries against the new data. 
These applications can then be changed on a different timetable to the ingestion 
mechanism. In our v8 of the ingest pipeline, we show how to fully use Avro tables 
for all of our existing functionality.

Note that Hive 0.14, currently unreleased at the time of writing this, will 
likely include more built-in support for Avro that might simplify the 
process of schema evolution even further. If Hive 0.14 is available when 
you read this, then do check out the final implementation.

Final thoughts on using Avro schema evolution
With this discussion of Avro, we have touched on some aspects of much broader 
topics, in particular of data management on a broader scale and policies around data 
versioning and retention. Much of this area becomes very specific to an organization, 
but here are a few parting thoughts that we feel are more broadly applicable.
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Only make additive changes
We discussed adding columns in the preceding example. Sometimes, though more 
rarely, your source data drops columns or you discover you no longer need a new 
column. Avro doesn't really provide tools to help with this, and we feel it is often 
undesirable. Instead of dropping old columns, we tend to maintain the old data and 
simply do not use the empty columns in all the new data. This is much easier to 
manage if you control the data format; if you are ingesting external sources, then to 
follow this approach you will either need to reprocess data to remove the old column 
or change the ingest mechanism to add a default value for all new data.

Manage schema versions explicitly
In the preceding examples, we had a single schema file to which we made changes 
directly. This is likely a very bad idea, as it removes our ability to track schema 
changes over time. In addition to treating schemas as artifacts to be kept under 
version control (your schemas are in Git too, aren't they?) it is often useful to tag 
each schema with an explicit version. This is particularly useful when the incoming 
data is also explicitly versioned. Then, instead of overwriting the existing schema 
file, you can add the new file and use an ALTER TABLE statement to point the Hive 
table definition at the new schema. We are, of course, assuming here that you don't 
have the option of using a different query for the old data with the different format. 
Though there is no automatic mechanism for Hive to select schema, there might be 
cases where you can control this manually and sidestep the evolution question.

Think about schema distribution
When using a schema file, think about how it will be distributed to the clients. 
If, as in the previous example, the file is on HDFS, then it likely makes sense to 
give it a high replication factor. The file will be retrieved by each mapper in every 
MapReduce job that queries the table.

The Avro URL can also be specified as a local filesystem location (file://), which 
is useful for development and also as a web resource (http://). Though the latter is 
very useful as it is a convenient mechanism to distribute the schema to non-Hadoop 
clients, remember that the load on the web server might be high. With modern 
hardware and efficient web servers, this is most likely not a huge concern, but if 
you have a cluster of thousands of machines running many parallel jobs where each 
mapper needs to hit the web server, then be careful.
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Collecting additional data
Many data processing systems don't have a single data ingest source; often, one 
primary source is enriched by other secondary sources. We will now look at how to 
incorporate the retrieval of such reference data into our data warehouse.

At a high level, the problem isn't very different from our retrieval of the raw tweet 
data, as we wish to pull data from an external source, possibly do some processing on 
it, and store it somewhere where it can be used later. But this does highlight an aspect 
we need to consider; do we really want to retrieve this data every time we ingest new 
tweets? The answer is certainly no. The reference data changes very rarely, and we 
could easily fetch it much less frequently than new tweet data. This raises a question 
we've skirted until now: just how do we schedule Oozie workflows?

Scheduling workflows
Until now, we've run all our Oozie workflows on demand from the CLI. Oozie 
also has a scheduler that allows jobs to be started either on a timed basis or when 
external criteria such as data appearing in HDFS are met. It would be a good fit for 
our workflows to have our main tweet pipeline run, say, every 10 minutes but the 
reference data only refreshed daily.

Regardless of when data is retrieved, think carefully how to handle 
datasets that perform a delete/replace operation. In particular, don't 
do the delete before retrieving and validating the new data; otherwise, 
any jobs that require the reference data will fail until the next run of the 
retrieval succeeds. It could be a good option to include the destructive 
operations in a subworkflow that is only triggered after successful 
completion of the retrieval steps.

Oozie actually defines two types of applications that it can run: workflows such as 
we've used so far and coordinators, which schedule workflows to be executed based 
on various criteria. A coordinator job is conceptually similar to our other workflows; 
we push an XML configuration file onto HDFS and use a parameterized properties 
file to configure it at runtime. In addition, coordinator jobs have the facility to receive 
additional parameterization from the events that trigger their execution.
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This is possibly best described by an example. Let's say, we wish to do as previously 
mentioned and create a coordinator that executes v7 of our ingest workflow every 
10 minutes. Here's the coordinator.xml file (the standard name for the coordinator 
XML definition):

<coordinator-app name="tweets-10min-coordinator"  frequency="${freq}" 
start="${startTime}" end="${endTime}"  timezone="UTC" xmlns="uri:oozie
:coordinator:0.2">

The main action node in a coordinator is the workflow, for which we need to specify 
its root location on HDFS and all required properties, as follows:

    <action>
        <workflow>
           <app-path>${workflowPath}</app-path>
                <configuration>
                     <property>
                        <name>workflowRoot</name>
                        <value>${workflowRoot}</value>
                    </property>
…

We also need to include any properties required by any action in the workflow or 
by any subworkflow it triggers; in effect, this means that any user-defined variables 
present in any of the workflows to be triggered need to be included here, as follows:

                    <property>
                        <name>dbName</name>
                        <value>${dbName}</value>
                   </property>
                   <property>
                        <name>partitionKey</name> 
                    <value>${coord:formatTime(coord:nominalTime(),  
                      'yyyyMMddhhmm')}
                        </value>
                   </property>
                   <property>
                        <name>exec</name>
                        <value>gettweets.sh</value>
                   </property>
                   <property>
                        <name>inputDir</name>
                        <value>/tmp/tweets</value>
                   </property>
                   <property>
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                        <name>subWorkflowRoot</name>
                        <value>${subWorkflowRoot}</value>
                   </property>
             </configuration>
          </workflow>
      </action>
</coordinator-app>

We used a few coordinator-specific features in the preceding xml. Note the 
specification of the starting and ending time of the coordinator and also its frequency 
(in minutes). We are using the simplest form here; Oozie also has a set of functions to 
allow quite rich specifications of the frequency.

We use coordinator EL functions in our definition of the partitionKey variable. 
Earlier, when running workflows from the CLI, we specified these explicitly but 
mentioned there was a better way—this is it. The following expression generates a 
formatted output containing the year, month, day, hour, and minute:

${coord:formatTime(coord:nominalTime(), 'yyyyMMddhhmm')}

If we then use this as the value for our partition key, we can ensure that each 
invocation of the workflow correctly creates a unique partition in our HCatalog tables.

The corresponding job.properties for the coordinator job looks much like our 
previous config files with the usual entries for the NameNode and similar variables 
as well as having values for the application-specific variables, such as dbName. In 
addition, we need to specify the root of the coordinator location on HDFS, as follows:

oozie.coord.application.path=${nameNode}/user/${user.
name}/${tasksRoot}/tweets_10min

Note the oozie.coord namespace prefix instead of the previously used oozie.wf. 
With the coordinator definition on HDFS, we can submit the file to Oozie just as 
with the previous jobs. But in this case, the job will only run for a given time period. 
Specifically, it will run every five minutes (the frequency is variable) when the 
system clock is between startTime and endTime.

We've included the full configuration in the tweets_10min directory in the source 
code for this chapter.
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Other Oozie triggers
The preceding coordinator has a very simple trigger; it starts periodically within a 
specified time range. Oozie has an additional capability called datasets, where it can 
be triggered by the availability of new data.

This isn't a great fit for how we've defined our pipeline until now, but imagine 
that, instead of our workflow collecting tweets as its first step, an external system 
was pushing new files of tweets onto HDFS on a continuous basis. Oozie can be 
configured to either look for the presence of new data based on a directory pattern or 
to specifically trigger when a ready file appears on HDFS. This latter configuration 
provides a very convenient mechanism with which to integrate the output of 
MapReduce jobs, which by default, write a _SUCCESS file into their output directory.

Oozie datasets are arguably one of the most powerful parts of the whole system, and 
we cannot do them justice here for space reasons. But we do strongly recommend 
that you consult the Oozie home page for more information.

Pulling it all together
Let's review what we've discussed until now and how we can use Oozie to build 
a sophisticated series of workflows that implement an approach to data life cycle 
management by putting together all the discussed techniques.

First, it's important to define clear responsibilities and implement parts of the system 
using good design and separation of concern principles. By applying this, we end up 
with several different workflows:

•	 A subworkflow to ensure the environment (mainly HDFS and Hive 
metadata) is correctly configured

•	 A subworkflow to perform data validation
•	 The main workflow that triggers both the preceding subworkflows and then 

pulls new data through a multistep ingest pipeline
•	 A coordinator that executes the preceding workflows every 10 minutes
•	 A second coordinator that ingests reference data that will be useful to the 

application pipeline

We also define all our tables with Avro schemas and use them wherever possible to 
help manage schema evolution and changing data formats over time.

We present the full source code of these components in the final version of the 
workflow in the source code of this chapter.
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Other tools to help
Though Oozie is a very powerful tool, sometimes it can be somewhat difficult 
to correctly write workflow definition files. As pipelines get sizeable, managing 
complexity becomes a challenge even with good functional partitioning into multiple 
workflows. At a simpler level, XML is just never fun for a human to write! There are 
a few tools that can help. Hue, the tool calling itself the Hadoop UI (http://gethue.
com/), provides some graphical tools to help compose, execute, and manage Oozie 
workflows. Though powerful, Hue is not a beginner tool; we'll mention it a little 
more in Chapter 11, Where to Go Next.

A new Apache project called Falcon (http://falcon.incubator.apache.org) might 
also be of interest. Falcon uses Oozie to build a range of much higher-level data flows 
and actions. For example, Falcon provides recipes to enable and ensure cross-site 
replication across multiple Hadoop clusters. The Falcon team is working on much 
better interfaces to build their workflows, so the project might well be worth watching.

Summary
Hopefully, this chapter presented the topic of data life cycle management as 
something other than a dry abstract concept. We covered a lot, particularly:

•	 The definition of data life cycle management and how it covers a number  
of issues and techniques that usually become important with large  
data volumes

•	 The concept of building a data ingest pipeline along good data life  
cycle management principles that can then be utilized by higher-level 
analytic tools

•	 Oozie as a Hadoop-focused workflow manager and how we can use it  
to compose a series of actions into a unified workflow

•	 Various Oozie tools, such as subworkflows, parallel action execution,  
and global variables, that allow us to apply true design principles to  
our workflows

•	 HCatalog and how it provides the means for tools other than Hive to read 
and write table-structured data; we showed its great promise and integration 
with tools such as Pig but also highlighted some current weaknesses

•	 Avro as our tool of choice to handle schema evolution over time
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•	 Using Oozie coordinators to build scheduled workflows based either  
on time intervals or data availability to drive the execution of multiple  
ingest pipelines

•	 Some other tools that can make these tasks easier, namely, Hue and Falcon

In the next chapter, we'll look at several of the higher-level analytic tools and 
frameworks that can build sophisticated application logic upon the data collected in 
an ingest pipeline.



Making Development Easier
In this chapter, we will look at how, depending on use cases and end goals, 
application development in Hadoop can be simplified using a number of abstractions 
and frameworks built on top of the Java APIs. In particular, we will learn about the 
following topics:

•	 How the streaming API allows us to write MapReduce jobs using dynamic 
languages such as Python and Ruby

•	 How frameworks such as Apache Crunch and Kite Morphlines allow us to 
express data transformation pipelines using higher-level abstractions

•	 How Kite Data, a promising framework developed by Cloudera, provides us 
with the ability to apply design patterns and boilerplate to ease integration 
and interoperability of different components within the Hadoop ecosystem

Choosing a framework
In the previous chapters, we looked at the MapReduce and Spark programming  
APIs to write distributed applications. Although very powerful and flexible, these 
APIs come with a certain level of complexity and possibly require significant 
development time.

In an effort to reduce verbosity, we introduced the Pig and Hive frameworks, 
which compile domain-specific languages, Pig Latin and Hive QL, into a number 
of MapReduce jobs or Spark DAGs, effectively abstracting the APIs away. Both 
languages can be extended with UDFs, which is a way of mapping complex logic to 
the Pig and Hive data models.
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At times when we need a certain degree of flexibility and modularity, things can 
get tricky. Depending on the use case and developer needs, the Hadoop ecosystem 
presents a vast choice of APIs, frameworks, and libraries. In this chapter, we identify 
four categories of users and match them with the following relevant tools:

•	 Developers that want to avoid Java in favor of scripting MapReduce jobs 
using dynamic languages, or use languages not implemented on the JVM.  
A typical use case would be upfront analysis and rapid prototyping:  
Hadoop streaming

•	 Java developers that need to integrate components of the Hadoop ecosystem 
and could benefit from codified design patterns and boilerplate: Kite Data

•	 Java developers who want to write modular data pipelines using a familiar 
API: Apache Crunch

•	 Developers who would rather configure chains of data transformations. 
For instance, a data engineer that wants to embed existing code in an ETL 
pipeline: Kite Morphlines

Hadoop streaming
We have mentioned previously that MapReduce programs don't have to be written 
in Java. There are several reasons why you might want or need to write your map 
and reduce tasks in another language. Perhaps you have existing code to leverage  
or need to use third-party binaries—the reasons are varied and valid.

Hadoop provides a number of mechanisms to aid non-Java development, primary 
amongst which are Hadoop pipes that provide a native C++ interface and Hadoop 
streaming that allows any program that uses standard input and output to be used 
for map and reduce tasks. With the MapReduce Java API, both map and reduce  
tasks provide implementations for methods that contain the task functionality.  
These methods receive the input to the task as method arguments and then output 
results via the Context object. This is a clear and type-safe interface, but it is by 
definition Java-specific.

Hadoop streaming takes a different approach. With streaming, you write a map task 
that reads its input from standard input, one line at a time, and gives the output of 
its results to standard output. The reduce task then does the same, again using only 
standard input and output for its data flow.
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Any program that reads and writes from standard input and output can be used 
in streaming, such as compiled binaries, Unix shell scripts, or programs written in 
a dynamic language such as Python or Ruby. The biggest advantage to streaming 
is that it can allow you to try ideas and iterate them more quickly than using Java. 
Instead of a compile/JAR/submit cycle, you just write the scripts and pass them as 
arguments to the streaming JAR file. Especially when doing initial analysis on a new 
dataset or trying out new ideas, this can significantly speed up development.

The classic debate regarding dynamic versus static languages balances the benefits of 
swift development against runtime performance and type checking. These dynamic 
downsides also apply when using streaming. Consequently, we favor the use of 
streaming for upfront analysis and Java for the implementation of jobs that will be 
executed on the production cluster.

Streaming word count in Python
We'll demonstrate Hadoop streaming by re-implementing our familiar word  
count example using Python. First, we create a script that will be our mapper.  
It consumes UTF-8 encoded rows of text from standard input with a for loop,  
splits this into words, and uses the print function to write each word to standard 
output, as follows:

#!/bin/env python
import sys

for line in sys.stdin:
    # skip empty lines
    if line == '\n':
        continue

    # preserve utf-8 encoding
    try:
        line = line.encode('utf-8')
    except UnicodeDecodeError:
        continue
    # newline characters can appear within the text
    line = line.replace('\n', '')

    # lowercase and tokenize
    line = line.lower().split()
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    for term in line:
        if not term:
          continue
        try:
            print(
                u"%s" % (
                    term.decode('utf-8')))
        except UnicodeEncodeError:
            continue

The reducer counts the number of occurrences of each word from standard input, 
and gives the output as the final value to standard output, as follows:

#!/bin/env python
import sys

count = 1
current = None

for word in sys.stdin:
    word = word.strip()

    if word == current:
        count += 1
    else:
        if current:
            print "%s\t%s" % (current.decode('utf-8'), count)
        current = word
        count = 1
if current == word:
    print "%s\t%s" % (current.decode('utf-8'), count)

In both cases, we are implicitly using Hadoop input and output formats 
discussed in the earlier chapters. It is the TextInputFormat that 
processes the source file and provides each line one at a time to the 
map script. Conversely, the TextOutputFormat will ensure that the 
output of reduce tasks is also correctly written as text.

Copy map.py and reduce.py to HDFS, and execute the scripts as a streaming job 
using the sample data from the previous chapters, as follows:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-
streaming.jar \

-file map.py \
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-mapper "python map.py" \

-file reduce.py \

-reducer "python reduce.py" \

-input sample.txt \

-output output.txt 

Tweets are UTF-8 encoded. Make sure that PYTHONIOENCODING 
is set accordingly in order to pipe data in a UNIX terminal:
$ export PYTHONIOENCODING='UTF-8'

The same code can be executed from the command-line prompt:

$ cat sample.txt | python map.py| python reduce.py > out.txt

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/wc/python/
map.py.

Differences in jobs when using streaming
In Java, we know that our map() method will be invoked once for each input  
key/value pair and our reduce() method will be invoked for each key and its  
set of values.

With streaming, we don't have the concept of the map or reduce methods anymore; 
instead we have written scripts that process streams of received data. This changes 
how we need to write our reducer. In Java, the grouping of values to each key was 
performed by Hadoop; each invocation of the reduce method would receive a single, 
tab separated key and all its values. In streaming, each instance of the reduce task is 
given the individual ungathered values one at a time.

Hadoop streaming does sort the keys, for example, if a mapper emitted the  
following data:

First 1

Word 1

Word 1

A 1

First 1
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The streaming reducer would receive it in the following order:

A 1

First 1

First 1

Word 1

Word 1

Hadoop still collects the values for each key and ensures that each key is passed 
only to a single reducer. In other words, a reducer gets all the values for a number of 
keys, and they are grouped together; however, they are not packaged into individual 
executions of the reducer, that is, one per key, as with the Java API. Since Hadoop 
streaming uses the stdin and stdout channels to exchange data between tasks, 
debug and error messages should not be printed to standard output. In the following 
example, we will use the Python logging (https://docs.python.org/2/library/
logging.html) package to log warning statements to a file.

Finding important words in text
We will now implement a metric, Term Frequency-Inverse Document Frequency 
(TF-IDF), that will help us to determine the importance of words based on how 
frequently they appear across a set of documents (tweets, in our case).

Intuitively, if a word appears frequently in a document it is important and should 
be given a high score. However, if a word appears in many documents, we should 
penalize it with a lower score, as it is a common word and its frequency is not unique 
to this document.

Therefore, common words such as the, and for, which appear in many documents, 
will be scaled down. Words that appear frequently in a single tweet will be scaled 
up. Uses of TF-IDF, often in combination with other metrics and techniques, include 
stop word removal and text classification. Note that this technique will have 
shortcomings when dealing with short documents, such as tweets. In such cases, the 
term frequency component will tend to become one. Conversely, one could exploit 
this property to detect outliers.

The definition of TF-IDF we will use in our example is the following:

tf = # of times term appears in a document (raw frequency)
idf = 1+log(#  of documents / # documents with term in it)
tf-idf = tf * idf
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We will implement the algorithm in Python using three MapReduce jobs:

•	 The first one calculates term frequency
•	 The second one calculates document frequency (the denominator of IDF)
•	 The third one calculates per-tweet TF-IDF

Calculate term frequency
The term frequency part is very similar to the word count example. The main 
difference is that we will be using a multi-field, tab-separated, key to keep track of 
co-occurrences of terms and document IDs. For each tweet—in JSON format—the 
mapper extracts the id_str and text fields, tokenizes text, and emits a term,  
doc_id tuple:

for tweet in sys.stdin:
    # skip empty lines
    if tweet == '\n':
        continue
    try:
        tweet = json.loads(tweet)
    except:
        logger.warn("Invalid input %s " % tweet)
        continue
    # In our example one tweet corresponds to one document.
    doc_id = tweet['id_str']
    if not doc_id:
        continue

    # preserve utf-8 encoding
    text = tweet['text'].encode('utf-8')
    # newline characters can appear within the text
    text = text.replace('\n', '')

    # lowercase and tokenize
    text = text.lower().split()

    for term in text:
        try:
            print(
                u"%s\t%s" % (
                    term.decode('utf-8'), doc_id.decode('utf-8'))
                )
        except UnicodeEncodeError:
            logger.warn("Invalid term %s " % term)
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In the reducer, we emit the frequency of each term in a document as a  
tab-separated string:

freq = 1
cur_term, cur_doc_id = sys.stdin.readline().split()
for line in sys.stdin:
    line = line.strip()
    try:
        term, doc_id = line.split('\t')
    except:
        logger.warn("Invalid record %s " % line)

    # the key is a (doc_id, term) pair
    if (doc_id == cur_doc_id) and (term == cur_term):
        freq += 1

    else:
        print(
            u"%s\t%s\t%s" % (
                cur_term.decode('utf-8'), cur_doc_id.decode('utf-8'), 
freq))
        cur_doc_id = doc_id
        cur_term = term
        freq = 1

print(
    u"%s\t%s\t%s" % (
        cur_term.decode('utf-8'), cur_doc_id.decode('utf-8'), freq))

For this implementation to work, it is crucial that the reducer input is sorted by term. 
We can test both scripts from the command line with the following pipe:

$ cat tweets.json  |  python map-tf.py  | sort -k1,2  | \

python reduce-tf.py

Whereas at the command line we use the sort utility, in MapReduce we will use  
org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator. This comparator 
implements a subset of features provided by the sort command. In particular, 
ordering by field can be specified with the –k<position> option. To filter by 
term, the first field of our key, we set -D mapreduce.text.key.comparator.
options=-k1:
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/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D map.output.key.field.separator=\t \

-D stream.num.map.output.key.fields=2 \

-Dmapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator \

-D mapreduce.text.key.comparator.options=-k1,2 \

-input tweets.json \

-output /tmp/tf-out.tsv \

-file map-tf.py \

-mapper "python map-tf.py" \

-file reduce-tf.py \

-reducer "python reduce-tf.py" 

We specify which fields belong to the key (for shuffling) in the 
comparator options.

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/
python/map-tf.py.

Calculate document frequency
The main logic to calculate document frequency is in the reducer, while the mapper 
is just an identity function that loads and pipes the (ordered by term) output of the 
TF job. In the reducer, for each term, we count how many times it occurs across all 
documents. For each term, we keep a buffer key_cache of (term, doc_id, tf) tuples, 
and when a new term is found we flush the buffer to standard output, together with 
the accumulated document frequency df:

# Cache the (term,doc_id, tf) tuple. 
key_cache = []

line = sys.stdin.readline().strip()
cur_term, cur_doc_id, cur_tf = line.split('\t')
cur_tf = int(cur_tf)
cur_df = 1
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for line in sys.stdin:
    line = line.strip()

    try:
        term, doc_id, tf = line.strip().split('\t')
        tf = int(tf)
    except:
        logger.warn("Invalid record: %s " % line)
        continue

    # term is the only key for this input
    if (term == cur_term):
        # increment document frequency
        cur_df += 1

        key_cache.append(
            u"%s\t%s\t%s" % (term.decode('utf-8'), doc_
id.decode('utf-8'), tf))

    else:
        for key in key_cache:
            print("%s\t%s" % (key, cur_df))

        print (
            u"%s\t%s\t%s\t%s" % (
                cur_term.decode('utf-8'),
                cur_doc_id.decode('utf-8'),
                cur_tf, cur_df)
            )

        # flush the cache
        key_cache = []
        cur_doc_id = doc_id
        cur_term = term
        cur_tf = tf
        cur_df = 1

for key in key_cache:
    print(u"%s\t%s" % (key.decode('utf-8'), cur_df))
print(
    u"%s\t%s\t%s\t%s\n" % (
        cur_term.decode('utf-8'),
        cur_doc_id.decode('utf-8'),
        cur_tf, cur_df))
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We can test the scripts from the command line with:

$ cat /tmp/tf-out.tsv  |  python map-df.py  | python reduce-df.py > /tmp/
df-out.tsv

And we can test the scripts on Hadoop streaming with:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D map.output.key.field.separator=\t \

-D stream.num.map.output.key.fields=3 \

-D mapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator \

-D mapreduce.text.key.comparator.options=-k1 \

-input /tmp/tf-out.tsv/part-00000 \

-output /tmp/df-out.tsv \

-mapper org.apache.hadoop.mapred.lib.IdentityMapper \

-file reduce-df.py \

-reducer "python reduce-df.py"

On Hadoop we use org.apache.hadoop.mapred.lib.IdentityMapper, which 
provides the same logic as the map-df.py script.

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/
python/map-df.py.

Putting it all together – TF-IDF
To calculate TF-IDF, we only need a mapper that consumes the output of the 
previous step:

num_doc = sys.argv[1]

for line in sys.stdin:
    line = line.strip()

    try:
        term, doc_id, tf, df = line.split('\t')

        tf = float(tf)
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        df = float(df)
        num_doc = float(num_doc)
    except:
        logger.warn("Invalid record %s" % line)

    # idf = num_doc / df
    tf_idf = tf * (1+math.log(num_doc / df))
    print("%s\t%s\t%s" % (term, doc_id, tf_idf))

The number of documents in the collection is passed as a parameter to tf-idf.py:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D mapreduce.reduce.tasks=0 \

-input /tmp/df-out.tsv/part-00000 \

-output /tmp/tf-idf.out \

-file tf-idf.py \

-mapper "python tf-idf.py 15578"

To calculate the total number of tweets, we can use the cat and wc Unix utilities in 
combination with Hadoop streaming:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-input tweets.json \

-output tweets.cnt \

-mapper /bin/cat \

-reducer /usr/bin/wc

The mapper source code can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch9/streaming/tf-idf/python/tf-idf.py.

Kite Data
The Kite SDK (http://www.kitesdk.org) is a collection of classes, command-line 
tools, and examples that aims at easing the process of building applications on top  
of Hadoop.

In this section we will look at how Kite Data, a subproject of Kite, can ease 
integration with several components of a Hadoop data warehouse. Kite examples 
can be found at https://github.com/kite-sdk/kite-examples.
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On Cloudera's QuickStart VM, Kite JARs can be found at /opt/cloudera/parcels/
CDH/lib/kite/.

Kite Data is organized in a number of subprojects, some of which we'll describe in 
the following sections.

Data Core
As the name suggests, the core is the building block for all capabilities provided in 
the Data module. Its principal abstractions are datasets and repositories.

The org.kitesdk.data.Dataset interface is used to represent an immutable set  
of data:

@Immutable
public interface Dataset<E> extends RefinableView<E> {
  String getName();
  DatasetDescriptor getDescriptor();
  Dataset<E> getPartition(PartitionKey key, boolean autoCreate);
  void dropPartition(PartitionKey key);
  Iterable<Dataset<E>> getPartitions();
  URI getUri();
}

Each dataset is identified by a name and an instance of the org.kitesdk.data.
DatasetDescriptor interface, that is the structural description of a dataset and 
provides its schema (org.apache.avro.Schema) and partitioning strategy.

Implementations of the Reader<E> interface are used to read data from an underlying 
storage system and produce deserialized entities of type E. The newReader() method 
can be used to get an appropriate implementation for a given dataset:

public interface DatasetReader<E> extends Iterator<E>, Iterable<E>, 
Closeable {
  void open();

  boolean hasNext();
 
  E next();
    void remove();
    void close();
    boolean isOpen();
}
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An instance of DatasetReader will provide methods to read and iterate over streams 
of data. Similarly, org.kitesdk.data.DatasetWriter provides an interface to write 
streams of data to the Dataset objects:

public interface DatasetWriter<E> extends Flushable, Closeable {
  void open();
  void write(E entity);
  void flush();
  void close();
  boolean isOpen();
}

Like readers, writers are use-once objects. They serialize instances of entities of type E 
and write them to the underlying storage system. Writers are usually not instantiated 
directly; rather, an appropriate implementation can be created by the newWriter() 
factory method. Implementations of DatasetWriter will hold resources until 
close() is called and expect the caller to invoke close() in a finally block when 
the writer is no longer in use. Finally, note that implementations of DatasetWriter 
are typically not thread-safe. The behavior of a writer being accessed from multiple 
threads is undefined.

A particular case of a dataset is the View interface, which is as follows:

public interface View<E> {
   Dataset<E> getDataset();
   DatasetReader<E> newReader();
   DatasetWriter<E> newWriter();
   boolean includes(E entity);
   public boolean deleteAll();
}

Views carry subsets of the keys and partitions of an existing dataset; they are 
conceptually similar to the notion of "view" in the relational model.

A View interface can be created from ranges of data, or ranges of keys, or as a union 
between other views.

Data HCatalog
Data HCatalog is a module that enables the accessing of HCatalog repositories. 
The core abstractions of this module are org.kitesdk.data.hcatalog.
HCatalogAbstractDatasetRepository and its concrete implementation, org.
kitesdk.data.hcatalog.HCatalogDatasetRepository. 
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They describe a DatasetRepository that uses HCatalog to manage metadata and 
HDFS for storage, as follows:

public class HCatalogDatasetRepository extends 
HCatalogAbstractDatasetRepository {
   HCatalogDatasetRepository(Configuration conf) {
    super(conf, new HCatalogManagedMetadataProvider(conf));
  }
   HCatalogDatasetRepository(Configuration conf, MetadataProvider 
provider) {
    super(conf, provider);
  }
   public <E> Dataset<E> create(String name, DatasetDescriptor 
descriptor) {
    getMetadataProvider().create(name, descriptor);
    return load(name);
  }
   public boolean delete(String name) {
    return getMetadataProvider().delete(name);
  }
   public static class Builder {
   …
  }
}

As of Kite 0.17, Data HCatalog is deprecated in favor of the new 
Data Hive module.

The location of the data directory is either chosen by Hive/HCatalog (so-called 
"managed tables"), or specified when creating an instance of this class by providing  
a filesystem and a root directory in the constructor (external tables).

Data Hive
The kite-data-module  exposes Hive schemas via the Dataset interface. As of Kite 
0.17, this package supersedes Data HCatalog.

Data MapReduce
The org.kitesdk.data.mapreduce package provides interfaces to read and write 
data to and from a Dataset with MapReduce.
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Data Spark
The org.kitesdk.data.spark package provides interfaces for reading and writing 
data to and from a Dataset with Apache Spark.

Data Crunch
The org.kitesdk.data.crunch.CrunchDatasets package is a helper class to 
expose datasets and views as Crunch ReadableSource or Target classes:

public class CrunchDatasets {
public static <E> ReadableSource<E> asSource(View<E> view, Class<E> 
type) {
    return new DatasetSourceTarget<E>(view, type);
  }
public static <E> ReadableSource<E> asSource(URI uri, Class<E> type) {
    return new DatasetSourceTarget<E>(uri, type);
  }
public static <E> ReadableSource<E> asSource(String uri, Class<E> 
type) {
    return asSource(URI.create(uri), type);
  }

public static <E> Target asTarget(View<E> view) {
    return new DatasetTarget<E>(view);
  }
 public static Target asTarget(String uri) {
    return asTarget(URI.create(uri));
  }
public static Target asTarget(URI uri) {
    return new DatasetTarget<Object>(uri);
  }
}

Apache Crunch
Apache Crunch (http://crunch.apache.org) is a Java and Scala library to create 
pipelines of MapReduce jobs. It is based on Google's FlumeJava (http://dl.acm.
org/citation.cfm?id=1806638) paper and library. The project goal is to make 
the task of writing MapReduce jobs as straightforward as possible for anybody 
familiar with the Java programming language by exposing a number of patterns that 
implement operations such as aggregating, joining, filtering, and sorting records. 
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Similar to tools such as Pig, Crunch pipelines are created by composing immutable, 
distributed data structures and running all processing operations on such structures; 
they are expressed and implemented as user-defined functions. Pipelines are 
compiled into a DAG of MapReduce jobs, whose execution is managed by the 
library's planner. Crunch allows us to write iterative code and abstracts away the 
complexity of thinking in terms of map and reduce operations, while at the same 
time avoiding the need of an ad hoc programming language such as PigLatin. In 
addition, Crunch offers a highly customizable type system that allows us to work 
with, and mix, Hadoop Writables, HBase, and Avro serialized objects.

FlumeJava's main assumption is that MapReduce is the wrong level of abstraction 
for several classes of problems, where computations are often made up of multiple, 
chained jobs. Frequently, we need to compose logically independent operations (for 
example, filtering, projecting, grouping, and other transformations) into a single 
physical MapReduce job for performance reasons. This aspect also has implications 
for code testability. Although we won't cover this aspect in this chapter, the reader is 
encouraged to look further into it by consulting Crunch's documentation.

Getting started
Crunch JARs are already installed on the QuickStart VM. By default, the JARs are 
found in /opt/cloudera/parcels/CDH/lib/crunch.

Alternatively, recent Crunch libraries can be downloaded from https://crunch.
apache.org/download.html, from Maven Central or Cloudera-specific repositories.

Concepts
Crunch pipelines are created by composing two abstractions: PCollection  
and PTable.

The PCollection<T> interface is a distributed, immutable collection of objects of 
type T. The PTable<Key, Value> interface is a distributed, immutable hashtable—a 
sub-interface of PCollection—of keys of the Key type and values of the Value type 
that exposes methods to work with the key-value pairs.

These two abstractions support the following four primitive operations:

•	 parallelDo: applies a user-defined function, DoFn, to a given PCollection 
and returns a new PCollection

•	 union: merges two or more PCollections into a single virtual PCollection
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•	 groupByKey: sorts and groups the elements of a PTable by their keys
•	 combineValues: aggregates the values from a groupByKey operation

The https://github.com/learninghadoop2/book-examples/blob/master/ch9/
crunch/src/main/java/com/learninghadoop2/crunch/HashtagCount.java  
implements a Crunch MapReduce pipeline that counts hashtag occurrences:

Pipeline pipeline = new MRPipeline(HashtagCount.class, getConf());

pipeline.enableDebug();

PCollection<String> lines = pipeline.readTextFile(args[0]);

PCollection<String> words = lines.parallelDo(new DoFn<String, 
String>() {
  public void process(String line, Emitter<String> emitter) {
    for (String word : line.split("\\s+")) {
        if (word.matches("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")) {
            emitter.emit(word);
        }
    }
  }
}, Writables.strings());

PTable<String, Long> counts = words.count();

pipeline.writeTextFile(counts, args[1]);
// Execute the pipeline as a MapReduce.
pipeline.done();

In this example, we first create a MRPipeline pipeline and use it to first read the 
content of sample.txt created with stream.py -t into a collection of strings, where 
each element of the collection represents a tweet. We tokenize each tweet into words 
with tweet.split("\\s+"), and we emit each word that matches the hashtag 
regular expression, serialized as Writable. Note that the tokenizing and filtering 
operations are executed in parallel by MapReduce jobs created by the parallelDo 
call. We create a PTable that associates each hashtag, represented as a string, with 
the number of times it occurred in the datasets. Finally, we write the PTable counts 
into HDFS as a textfile. The pipeline is executed with pipeline.done().
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To compile and execute the pipeline, we can use Gradle to manage the needed 
dependencies, as follows:

$ ./gradlew jar

$ ./gradlew copyJars

Add the Crunch and Avro dependencies downloaded with copyJars to the LIBJARS 
environment variable:

$ export CRUNCH_DEPS=build/libjars/crunch-example/lib

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-
cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-
mapred-1.7.5-cdh5.0.3-hadoop2.jar

Then, run the example on Hadoop:

$ hadoop jar build/libs/crunch-example.jar \

com.learninghadoop2.crunch.HashtagCount \

tweets.json count-out \

-libjars $LIBJARS

Data serialization
One of the framework's goals is to make it easy to process complex records 
containing nested and repeated data structures, such as protocol buffers and  
Thrift records.

The org.apache.crunch.types.PType interface defines the mapping between a 
data type that is used in a Crunch pipeline and a serialization and storage format 
that is used to read/write data from/to HDFS. Every PCollection has an associated 
PType that tells Crunch how to read/write data.

The org.apache.crunch.types.PTypeFamily interface provides an abstract factory 
to implement instances of PType that share the same serialization format. Currently, 
Crunch supports two type families: one based on the Writable interface and the other 
on Apache Avro.

Although Crunch permits mixing and matching PCollection 
interfaces that use different instances of PType in the same pipeline, 
each PCollection interfaces's PType must belong to a unique family. 
For instance, it is not possible to have a PTable with a key serialized 
as Writable and its value serialized using Avro.
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Both type families support a common set of primitive types (strings, longs, integers, 
floats, doubles, booleans, and bytes) as well as more complex PType interfaces that 
can be constructed out of other PTypes. These include tuples and collections of other 
PType. A particularly important, complex, PType is tableOf, which determines 
whether the return type of paralleDo will be a PCollection or PTable.

New PTypes can be created by inheriting and extending the built-ins of the Avro 
and Writable families. This requires implementing input MapFn<S, T> and output 
MapFn<T, S> classes. We are implementing PType for instances where S is the 
original type and T is the new type .

Derived PTypes can be found in the PTypes class. These include serialization 
support for protocol buffers, Thrift records, Java Enums, BigInteger, and UUIDs. 
The Elephant Bird library we discussed in Chapter 6, Data Analysis with Apache Pig, 
contains additional examples.

Data processing patterns
org.apache.crunch.lib implements a number of design patterns for common data 
manipulation operations.

Aggregation and sorting
Most of the data processing patterns provided by org.apache.crunch.lib rely on 
the PTable's groupByKey method. The method has three different overloaded forms:

•	 groupByKey(): lets the planner determine the number of partitions
•	 groupByKey(int numPartitions): is used to set the number of partitions 

specified by the developer
•	 groupByKey(GroupingOptions options): allows us to specify custom 

partitions and comparators for shuffling

The org.apache.crunch.GroupingOptions class takes instances of Hadoop's 
Partitioner and RawComparator classes to implement custom partitioning and 
sorting operations.

The groupByKey method returns an instance of PGroupedTable, Crunch's 
representation of a grouped table. It corresponds to the output of the shuffle phase of 
a MapReduce job and allows values to be combined with the combineValue method.
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The org.apache.crunch.lib.Aggregate package exposes methods to perform 
simple aggregations (count, max, top, and length) on the PCollection instances.

Sort provides an API to sort PCollection and PTable instances whose contents 
implement the Comparable interface.

By default, Crunch sorts data using one reducer. This behavior can be modified by 
passing the number of partitions required to the sort method. The Sort.Order 
method signals the order in which a sort should be done.

The following are how different sort options can be specified for collections:

public static <T> PCollection<T> sort(PCollection<T> collection)
public static <T> PCollection<T> sort(PCollection<T> collection,                                       
Sort.Order order)
public static <T> PCollection<T> sort(PCollection<T> collection,                                       
int numReducers,                                       Sort.Order 
order)

The following are how different sort options can be specified for tables:

public static <K,V> PTable<K,V> sort(PTable<K,V> table)

public static <K,V> PTable<K,V> sort(PTable<K,V> table,                                      
Sort.Order key)
public static <K,V> PTable<K,V> sort(PTable<K,V> table,                                      
int numReducers, Sort.Order key)

Finally, sortPairs sorts the PCollection of pairs using the specified column order 
in Sort.ColumnOrder:

sortPairs(PCollection<Pair<U,V>> collection,                                                      
Sort.ColumnOrder... columnOrders)

Joining data
The org.apache.crunch.lib.Join package is an API to join PTables based on a 
common key. The following four join operations are supported:

•	 fullJoin

•	 join (defaults to innerJoin)
•	 leftJoin

•	 rightJoin
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The methods have a common return type and signature. For reference, we will 
describe the commonly used join method that implements an inner join:

public static <K,U,V> PTable<K,Pair<U,V>> join(PTable<K,U> left,                                                
PTable<K,V> right)

The org.apache.crunch.lib.Join.JoinStrategy package provides an interface to 
define custom join strategies. Crunch's default strategy (defaultStrategy) is to join 
data reduce-side.

Pipelines implementation and execution
Crunch comes with three implementations of the pipeline interface. The oldest one, 
implicitly used in this chapter, is org.apache.crunch.impl.mr.MRPipeline, which 
uses Hadoop's MapReduce as its execution engine. org.apache.crunch.impl.mem.
MemPipeline allows all operations to be performed in memory, with no serialization 
to disk performed. Crunch 0.10 introduced org.apache.crunch.impl.spark.
SparkPipeline which compiles and runs a DAG of PCollections to Apache Spark.

SparkPipeline
With SparkPipeline, Crunch delegates much of the execution to Spark and does 
relatively little of the planning tasks, with the following exceptions:

•	 Multiple inputs
•	 Multiple outputs
•	 Data serialization
•	 Checkpointing

At the time of writing, SparkPipeline is still heavily under development and  
might not handle all of the use cases of a standard MRPipeline. The Crunch 
community is actively working to ensure complete compatibility between the  
two implementations.

MemPipeline
MemPipeline executes in-memory on a client. Unlike MRPipeline, MemPipeline 
is not explicitly created but referenced by calling the static method MemPipeline.
getInstance(). All operations are in memory, and the use of PTypes is minimal.
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Crunch examples
We will now use Apache Crunch to reimplement some of the MapReduce code 
written so far in a more modular fashion.

Word co-occurrence
In Chapter 3, Processing – MapReduce and Beyond, we showed a MapReduce job, 
BiGramCount, to count co-occurrences of words in tweets. That same logic can be 
implemented as a DoFn. Instead of emitting a multi-field key and having to parse it  
at a later stage, with Crunch we can use a complex type Pair<String, String>,  
as follows:

class BiGram extends DoFn<String, Pair<String, String>> {
    @Override
    public void process(String tweet, 
Emitter<Pair<String, String>> emitter) {
        String[] words = tweet.split(" ") ;
                
        Text bigram = new Text();
        String prev = null;
                 
        for (String s : words) {
          if (prev != null) {
              emitter.emit(Pair.of(prev, s));
            }       
            prev = s;
        }
    }   
}       

Notice how, compared to MapReduce, the BiGram Crunch implementation is a 
standalone class, easily reusable in any other codebase. The code for this example 
is included in https://github.com/learninghadoop2/book-examples/
blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/
DataPreparationPipeline.java.

TF-IDF
We can implement the TF-IDF chain of jobs with a MRPipeline, as follows:

public class CrunchTermFrequencyInvertedDocumentFrequency 
         extends Configured implements Tool, Serializable {
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   private Long numDocs;
   
   @SuppressWarnings("deprecation")
   
   public static class TF {
        String term;
        String docId;
        int frequency;

        public TF() {}

        public TF(String term, 
               String docId, Integer frequency) {
           this.term = term;
           this.docId = docId;
           this.frequency = (int) frequency;
           
        }
   }

   public int run(String[] args) throws Exception {
       if(args.length != 2) {
         System.err.println();
         System.err.println("Usage: " + this.getClass().getName() + " 
[generic options] input output");

         return 1;
       }
       // Create an object to coordinate pipeline creation and 
execution.
       Pipeline pipeline = 
new MRPipeline(TermFrequencyInvertedDocumentFrequency.class, 
getConf());
            
       // enable debug options
       pipeline.enableDebug();
       
       // Reference a given text file as a collection of Strings.
       PCollection<String> tweets = pipeline.readTextFile(args[0]);
       numDocs = tweets.length().getValue();
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       // We use Avro reflections to map the TF POJO to avsc 
       PTable<String, TF> tf = tweets.parallelDo(new 
TermFrequencyAvro(), Avros.tableOf(Avros.strings(), Avros.reflects(TF.
class)));
       
       // Calculate DF
       PTable<String, Long> df = Aggregate.count(tf.parallelDo( new 
DocumentFrequencyString(), Avros.strings()));
       
       
       // Finally we calculate TF-IDF 
       PTable<String, Pair<TF, Long>> tfDf = Join.join(tf, df);
       PCollection<Tuple3<String, String, Double>> tfIdf =  
tfDf.parallelDo(new TermFrequencyInvertedDocumentFrequency(),
                Avros.triples(
                      Avros.strings(), 
                      Avros.strings(), 
                      Avros.doubles()));
  

       // Serialize as avro 
       tfIdf.write(To.avroFile(args[1]));
       
       // Execute the pipeline as a MapReduce.
       PipelineResult result = pipeline.done();
       return result.succeeded() ? 0 : 1;
   }
   …
}

The approach that we follow here has a number of advantages compared to 
streaming. First of all, we don't need to manually chain MapReduce jobs using  
a separate script. This task is Crunch's main purpose. Secondly, we can express  
each component of the metric as a distinct class, making it easier to reuse in  
future applications.

To implement term frequency, we create a DoFn class that takes as input a tweet and 
emits Pair<String, TF>. The first element is a term, and the second is an instance 
of the POJO class that will be serialized using Avro. The TF part contains three 
variables: term, documentId, and frequency. In the reference implementation, we 
expect input data to be a JSON string that we deserialize and parse. We also include 
tokenizing as a subtask of the process method. 



Making Development Easier

[ 284 ]

Depending on the use cases, we could abstract both operations in separate DoFns,  
as follows:

class TermFrequencyAvro extends DoFn<String,Pair<String, TF>> {
    public void process(String JSONTweet, 
Emitter<Pair <String, TF>> emitter) {
        Map<String, Integer> termCount = new HashMap<>();

        String tweet;
        String docId;

        JSONParser parser = new JSONParser();

        try {
            Object obj = parser.parse(JSONTweet);

            JSONObject jsonObject = (JSONObject) obj;

            tweet = (String) jsonObject.get("text");
            docId = (String) jsonObject.get("id_str");
        
            for (String term : tweet.split("\\s+")) {
                if (termCount.containsKey(term.toLowerCase())) {
                    termCount.put(term, 
termCount.get(term.toLowerCase()) + 1);
                } else {
                    termCount.put(term.toLowerCase(), 1);
                }
            }
        
            for (Entry<String, Integer> entry : termCount.entrySet()) 
{
                emitter.emit(Pair.of(entry.getKey(), new TF(entry.
getKey(), docId, entry.getValue())));
            }
        } catch (ParseException e) {
            e.printStackTrace();
        }
    }
  }
}
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Document frequency is straightforward. For each Pair<String, TF> generated 
in the term frequency step, we emit the term—the first element of the pair. We 
aggregate and count the resulting PCollection of terms to obtain document 
frequency, as follows:

class DocumentFrequencyString extends DoFn<Pair<String, TF>, String> {
@Override
   public void process(Pair<String, TF> tfAvro,
      Emitter<String> emitter) {
      emitter.emit(tfAvro.first());
   }
}

We finally join the PTable TF with the PTable DF on the shared key 
(term) and feed the resulting Pair<String, Pair<TF, Long>> object to 
TermFrequencyInvertedDocumentFrequency.

For each term and document, we calculate TF-IDF and return a term, docIf, and 
tfIdf triple:

   class TermFrequencyInvertedDocumentFrequency extends 
MapFn<Pair<String, Pair<TF, Long>>, Tuple3<String, String, Double> >  
{      
      @Override
      public Tuple3<String, String, Double> map(
            Pair<String, Pair<TF, Long>> input) {

         Pair<TF, Long> tfDf = input.second();
         Long df = tfDf.second();
         
         TF tf = tfDf.first();
         double idf = 1.0+Math.log(numDocs / df);
         double tfIdf = idf * tf.frequency;
         
         return  Tuple3.of(tf.term, tf.docId, tfIdf);
      }
      
   }   

We use MapFn because we are going to output one record for each input. The source 
code for this example can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch9/crunch/src/main/java/com/
learninghadoop2/crunch/CrunchTermFrequencyInvertedDocumentFrequency.
java.
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The example can be compiled and executed with the following commands:

$ ./gradlew jar

$ ./gradlew copyJars

If not already done, add the Crunch and Avro dependencies downloaded with 
copyJars to the LIBJARS environment variable, as follows:

$ export CRUNCH_DEPS=build/libjars/crunch-example/lib

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-
cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-
mapred-1.7.5-cdh5.0.3-hadoop2.jar

Furthermore, add the json-simple JAR to LIBJARS:

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/json-simple-1.1.1.jar

Finally, run CrunchTermFrequencyInvertedDocumentFrequency as a MapReduce 
job, as follows:

$ hadoop jar build/libs/crunch-example.jar \

com.learninghadoop2.crunch.CrunchTermFrequencyInvertedDocumentFrequency  
\

-libjars ${LIBJARS} \

tweets.json tweets.avro-out

Kite Morphlines
Kite Morphlines is a data transformation library, inspired by Unix pipes, originally 
developed as part of Cloudera Search. A morphline is an in-memory chain of 
transformation commands that relies on a plugin structure to tap heterogeneous 
data sources. It uses declarative commands to carry out ETL operations on records. 
Commands are defined in a configuration file, which is later fed to a driver class.

The goal is to make embedding ETL logic into any Java codebase a trivial task by 
providing a library that allows developers to replace programming with a series of 
configuration settings.
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Concepts
Morphlines are built around two abstractions: Command and Record.

Records are implementations of the org.kitesdk.morphline.api.Record interface:

public final class Record {  
  private ArrayListMultimap<String, Object> fields;  
…
    private Record(ArrayListMultimap<String, Object> fields) {…}
  public ListMultimap<String, Object> getFields() {…}
  public List get(String key) {…}
  public void put(String key, Object value) {…}
   …
}

A record is a set of named fields, where each field has a list of one or more 
values. A Record is implemented on top of Google Guava's ListMultimap and 
ArrayListMultimap classes. Note that a value can be any Java object, fields can  
be multivalued, and two records don't need to use common field names. A record 
can contain an _attachment_body field that can be a java.io.InputStream or a 
byte array.

Commands implement the org.kitesdk.morphline.api.Command interface:

public interface Command {
   void notify(Record notification);
   boolean process(Record record);
   Command getParent();
}

A command transforms a record into zero or more records. Commands can call the 
methods on the Record instance provided for read and write operations as well as 
for adding or removing fields.

Commands are chained together, and at each step of a morphline the parent 
command sends records to its child, which in turn processes them. Information 
between parents and children is exchanged using two communication channels 
(planes); notifications are sent via a control plane, and records are sent over a data 
plane. Records are processed by the process() method, which returns a Boolean 
value to indicate whether a morphline should proceed or not. 
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Commands are not instantiated directly, but via an implementation of the  
org.kitesdk.morphline.api.CommandBuilder interface:

public interface CommandBuilder {
   Collection<String> getNames();
   Command build(Config config, 
      Command parent, 
      Command child, 
      MorphlineContext context);
}

The getNames method returns the names with which the command can be invoked. 
Multiple names are supported to allow backwards compatible name changes. The 
build() method creates and returns a command rooted at the given morphline 
configuration.

The org.kitesdk.morphline.api.MorphlineContext interface allows additional 
parameters to be passed to all morphline commands.

The data model of morphlines is structured following a source-pipe-sink pattern, 
where data is captured from a source, piped through a number of processing steps, 
and its output is then delivered into a sink.

Morphline commands
Kite Morphlines comes with a number of default commands that implement data 
transformations on common serialization formats (plaintext, Avro, JSON). Currently 
available commands are organized as subprojects of morphlines and include:

•	 kite-morphlines-core-stdio: will read data from binary large objects 
(BLOBs) and text

•	 kite-morphlines-core-stdlib: wraps around Java data types for data 
manipulation and representation

•	 kite-morphlines-avro: is used for serialization into and deserialization 
from data in the Avro format

•	 kite-morphlines-json: will serialize and deserialize data in  
JSON format

•	 kite-morphlines-hadoop-core: is used to access HDFS
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•	 kite-morphlines-hadoop-parquet-avro: is used to serialize and 
deserialize data in the Parquet format

•	 kite-morphlines-hadoop-sequencefile: is used to serialize and 
deserialize data in the Sequencefile format

•	 kite-morphlines-hadoop-rcfile: is used to serialize and deserialize data 
in RCfile format

A list of all available commands can be found at http://kitesdk.org/
docs/0.17.0/kite-morphlines/morphlinesReferenceGuide.html.

Commands are defined by declaring a chain of transformations in a configuration 
file, morphline.conf, which is then compiled and executed by a driver program. 
For instance, we can specify a read_tweets morphline that will load tweets stored 
as JSON data, serialize and deserialize them using Jackson, and print the first 10, 
by combining the default readJson and head commands contained in the org.
kitesdk.morphline package, as follows:

morphlines : [{
  id : read_tweets
  importCommands : ["org.kitesdk.morphline.**"]
    
  commands : [{
    readJson {
      outputClass : com.fasterxml.jackson.databind.JsonNode
    }}
    {
      head { 
      limit : 10
    }}
  ]
}]

We will now show how this morphline can be executed both from a standalone Java 
program as well as from MapReduce.

MorphlineDriver.java shows how to use the library embedded into a host system. 
The first step that we carry out in the main method is to load morphline's JSON 
configuration, build a MorphlineContext object, and compile it into an instance 
of Command that acts as the starting node of the morphline. Note that Compiler.
compile() takes a finalChild parameter; in this case, it is RecordEmitter. We 
use RecordEmitter to act as a sink for the morphline, by either printing a record 
to stdout or storing it into HDFS. In the MorphlineDriver example, we use org.
kitesdk.morphline.base.Notifications to manage and monitor the morphline 
life cycle in a transactional fashion.
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A call to Notifications.notifyStartSession(morphline) starts the 
transformation chain within a transaction defined by calling Notifications.
notifyBeginTransaction. Upon success, we terminate the pipeline with 
Notifications.notifyShutdown(morphline). In the event of failure, we roll  
back the transaction, Notifications.notifyRollbackTransaction(morphline), 
and pass an exception handler from the morphline context to the calling Java code:

public class MorphlineDriver {
    private static final class RecordEmitter implements Command {
       private final Text line = new Text();

      @Override
      public Command getParent() {
         return null;
      }

      @Override
      public void notify(Record record) {
         
      }

      @Override
      public boolean process(Record record) {
         line.set(record.get("_attachment_body").toString());
         
         System.out.println(line);
         
         return true;
      }
       }  
    
   public static void main(String[] args) throws IOException {
       /* load a morphline conf and set it up */
       File morphlineFile = new File(args[0]);
       String morphlineId = args[1];
       MorphlineContext morphlineContext = new MorphlineContext.
Builder().build();
       Command morphline = new Compiler().compile(morphlineFile, 
morphlineId, morphlineContext, new RecordEmitter());
          
       /* Prepare the morphline for execution
        * 
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        * Notifications are sent through the communication channel  
        * */
       
       Notifications.notifyBeginTransaction(morphline);
       
       /* Note that we are using the local filesystem, not hdfs*/
       InputStream in = new BufferedInputStream(new 
FileInputStream(args[2]));
       
       /* fill in a record and pass  it over */
       Record record = new Record();
       record.put(Fields.ATTACHMENT_BODY, in); 
       
       try {

            Notifications.notifyStartSession(morphline);
            boolean success = morphline.process(record);
            if (!success) {
              System.out.println("Morphline failed to process record: 
" + record);
            }
        /* Commit the morphline */
       } catch (RuntimeException e) {
           Notifications.notifyRollbackTransaction(morphline);
           morphlineContext.getExceptionHandler().handleException(e, 
null);
         }
       finally {
            in.close();
        }
       
        /* shut it down */
        Notifications.notifyShutdown(morphline);     
    }
}

In this example, we load data in JSON format from the local filesystem into 
an InputStream object and use it to initialize a new Record instance. The 
RecordEmitter class contains the last processed record instance of the chain, 
on which we extract _attachment_body and print it to standard output. The 
source code for MorphlineDriver can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/kite/src/main/java/com/
learninghadoop2/kite/morphlines/MorphlineDriver.java.
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Using the same morphline from a MapReduce job is straightforward. During the 
setup phase of the Mapper, we build a context that contains the instantiation logic, 
while the map method sets the Record object up and fires off the processing logic,  
as follows:

public static class ReadTweets
        extends Mapper<Object, Text, Text, NullWritable> {
    private final Record record = new Record();
    private Command morphline;

    @Override
    protected void setup(Context context)
            throws IOException, InterruptedException {
        File morphlineConf = new File(context.getConfiguration()
                .get(MORPHLINE_CONF));
        String morphlineId = context.getConfiguration()
                .get(MORPHLINE_ID);
        MorphlineContext morphlineContext = 
new MorphlineContext.Builder()
                .build();

        morphline = new org.kitesdk.morphline.base.Compiler()
                .compile(morphlineConf,
                        morphlineId,
                        morphlineContext,
                        new RecordEmitter(context));
    }

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
        record.put(Fields.ATTACHMENT_BODY,
                new ByteArrayInputStream(
value.toString().getBytes("UTF8")));
        if (!morphline.process(record)) {
              System.out.println(
"Morphline failed to process record: " + record);
        }

        record.removeAll(Fields.ATTACHMENT_BODY);
    }
}
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In the MapReduce code we modify RecordEmitter to extract the Fields payload 
from post-processed records and store it into context. This allows us to write data 
into HDFS by specifying a FileOutputFormat in the MapReduce configuration 
boilerplate:

private static final class RecordEmitter implements Command {
    private final Text line = new Text();
    private final Mapper.Context context;

    private RecordEmitter(Mapper.Context context) {
        this.context = context;
    }

    @Override
    public void notify(Record notification) {
    }

    @Override
    public Command getParent() {
        return null;
    }

    @Override
    public boolean process(Record record) {
        line.set(record.get(Fields.ATTACHMENT_BODY).toString());
        try {
            context.write(line, null);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
        return true;
    }
}   

Notice that we can now change the processing pipeline behavior and add further 
data transformations by modifying morphline.conf without the explicit need to 
alter the instantiation and processing logic. The MapReduce driver source code 
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/
MorphlineDriverMapReduce.java.
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Both examples can be compiled from ch9/kite/ with the following commands:

$ ./gradlew jar

$ ./gradlew copyJar

We add the runtime dependencies to LIBJARS, as follows

$ export KITE_DEPS=/home/cloudera/review/hadoop2book-private-reviews-
gabriele-ch8/src/ch8/kite/build/libjars/kite-example/lib

export LIBJARS=${LIBJARS},${KITE_DEPS}/kite-morphlines-core-
0.17.0.jar,${KITE_DEPS}/kite-morphlines-json-0.17.0.jar,${KITE_
DEPS}/metrics-core-3.0.2.jar,${KITE_DEPS}/metrics-healthchecks-
3.0.2.jar,${KITE_DEPS}/config-1.0.2.jar,${KITE_DEPS}/jackson-databind-
2.3.1.jar,${KITE_DEPS}/jackson-core-2.3.1.jar,${KITE_DEPS}/jackson-
annotations-2.3.0.jar

We can run the MapReduce driver with the following:

$ hadoop jar build/libs/kite-example.jar \

com.learninghadoop2.kite.morphlines.MorphlineDriverMapReduce \

-libjars ${LIBJARS} \

morphline.conf \

read_tweets \

tweets.json \

morphlines-out

The Java standalone driver can be executed with the following command:

$ export CLASSPATH=${CLASSPATH}:${KITE_DEPS}/kite-morphlines-core-
0.17.0.jar:${KITE_DEPS}/kite-morphlines-json-0.17.0.jar:${KITE_
DEPS}/metrics-core-3.0.2.jar:${KITE_DEPS}/metrics-healthchecks-
3.0.2.jar:${KITE_DEPS}/config-1.0.2.jar:${KITE_DEPS}/jackson-databind-
2.3.1.jar:${KITE_DEPS}/jackson-core-2.3.1.jar:${KITE_DEPS}/jackson-
annotations-2.3.0.jar:${KITE_DEPS}/slf4j-api-1.7.5.jar:${KITE_DEPS}/
guava-11.0.2.jar:${KITE_DEPS}/hadoop-common-2.3.0-cdh5.0.3.jar

$ java -cp $CLASSPATH:./build/libs/kite-example.jar \

com.learninghadoop2.kite.morphlines.MorphlineDriver \

morphline.conf \

read_tweets tweets.json \

morphlines-out
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Summary
In this chapter, we introduced four tools to ease development on Hadoop.  
In particular, we covered:

•	 How Hadoop streaming allows the writing of MapReduce jobs using 
dynamic languages

•	 How Kite Data simplifies interfacing with heterogeneous data sources
•	 How Apache Crunch provides a high-level abstraction to write pipelines  

of Spark and MapReduce jobs that implement common design patterns
•	 How Morphlines allows us to declare chains of commands and data 

transformations that can then be embedded in any Java codebase

In Chapter 10, Running a Hadoop 2 Cluster, we will shift our focus from the domain 
of software development to system administration. We will discuss how to set up, 
manage, and scale a Hadoop cluster, while taking aspects such as monitoring and 
security into consideration.





Running a Hadoop Cluster
In this chapter, we will change our focus a little and look at some of the 
considerations you will face when running an operational Hadoop cluster.  
In particular, we will cover the following topics:

•	 Why a developer should care about operations and why Hadoop  
operations are different

•	 More detail on Cloudera Manager and its capabilities and limitations
•	 Designing a cluster for use on both physical hardware and EMR
•	 Securing a Hadoop cluster
•	 Hadoop monitoring
•	 Troubleshooting problems with an application running on Hadoop

I'm a developer – I don't care about 
operations!
Before going any further, we need to explain why we are putting a chapter about 
systems operations in a book squarely aimed at developers. For anyone who 
has developed for more traditional platforms (for example, web apps, database 
programming, and so on) then the norm might well have been for a very clear 
delineation between development and operations. The first group builds the code 
and packages it up, and the second group controls and operates the environment in 
which it runs.

In recent years, the DevOps movement has gained momentum with a belief that it 
is best for everyone if these silos are removed and that the teams work more closely 
together. When it comes to running systems and services based on Hadoop, we 
believe this is absolutely essential.
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Hadoop and DevOps practices
Even though a developer can conceptually build an application ready to be dropped 
into YARN and forgotten about, the reality is often more nuanced. How many 
resources are allocated to the application at runtime is most likely something the 
developer wishes to influence. Once the application is running, the operations staff 
likely want some insight into the application when they are trying to optimize the 
cluster. There really isn't the same clear-cut split of responsibilities seen in traditional 
enterprise IT. And that's likely a really good thing.

In other words, developers need to be more aware of the operations aspects, and the 
operations staff need to be more aware of what the developers are doing. So consider 
this chapter our contribution to help you have those discussions with your operations 
staff. We don't intend to make you an expert Hadoop administrator by the end of this 
chapter; that really is emerging as a dedicated role and skillset in itself. Instead, we will 
give a whistle-stop tour of issues you do need some awareness of and that will make 
your life easier once your applications are running on live clusters.

By the nature of this coverage, we will be touching on a lot of topics and going into 
them only lightly; if any are of deeper interest, then we provide links for further 
investigation. Just make sure you keep your operations staff involved!

Cloudera Manager
In this book, we used as the most common platform the Cloudera Hadoop 
Distribution (CDH) with its convenient QuickStart virtual machine and the 
powerful Cloudera Manager application. With a Cloudera-based cluster, Cloudera 
Manager will become (at least initially) your primary interface into the system to 
manage and monitor the cluster, so let's explore it a little.

Note that Cloudera Manager has extensive and high-quality online documentation. 
We won't duplicate this documentation here; instead we'll attempt to highlight 
where Cloudera Manager fits into your development and operational workflows and 
how it might or might not be something you want to embrace. Documentation for 
the latest and previous versions of Cloudera Manager can be accessed via the main 
Cloudera documentation page at http://www.cloudera.com/content/support/
en/documentation.html.
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To pay or not to pay
Before getting all excited about Cloudera Manager, it's important to consult the 
current documentation concerning what features are available in the free version and 
which ones require subscription to a paid-for Cloudera offering. If you absolutely 
want some of the features offered only in the paid-for version but either can't or 
don't wish to pay for subscription services, then Cloudera Manager, and possibly the 
entire Cloudera distribution, might not be a good fit for you. We'll return to this topic 
in Chapter 11, Where to Go Next.

Cluster management using Cloudera Manager
Using the QuickStart VM, it won't be obvious, but Cloudera Manager is the primary 
tool to be used for management of all services in the cluster. If you want to enable  
a new service, you'll use Cloudera Manager. To change a configuration, you will 
need Cloudera Manager. To upgrade to the latest release, you will again require 
Cloudera Manager.

Even if the primary management of the cluster is handled by operational staff, as 
a developer you'll likely still want to become familiar with the Cloudera Manager 
interface just to look to see exactly how the cluster is configured. If your jobs are 
running slowly, then looking into Cloudera Manager to see just how things are 
currently configured will likely be your first start. The default port for the Cloudera 
Manager web interface is 7180, so the home page will usually be connected to via  
a URL such as http://<hostname>:7180/cmf/home, and can be seen in the 
following screenshot:

Cloudera Manager home page
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It's worth poking around the interface; however, if you are connecting with a user 
account with admin privileges, be careful!

Click on the Clusters link, and this will expand to give a list of the clusters currently 
managed by this instance of Cloudera Manager. This should tell you that a single 
Cloudera Manager instance can manage multiple clusters. This is very useful, 
especially if you have many clusters spread across development and production.

For each expanded cluster, there will be a list of the services currently running on 
the cluster. Click on a service, and then you will see a list of additional choices. Select 
Configuration, and you can start browsing the detailed configuration of that particular 
service. Click on Actions, and you will get some service-specific options; this will 
usually include stopping, starting, restarting, and otherwise managing the service.

Click on the Hosts option instead of Clusters, and you can start drilling down 
into the servers managed by Cloudera Manager, and from there, see which service 
components are deployed on each.

Cloudera Manager and other management tools
That last comment might raise a question: how does Cloudera Manager integrate 
with other systems management tools? Given our earlier comments regarding 
the importance of DevOps philosophies, how well does it integrate with the tools 
favored in DevOps environments?

The honest answer: not always very well. Though the main Cloudera Manager 
server can itself be managed by automation tools, such as Puppet or Chef, there 
is an explicit assumption that Cloudera Manager will control the installation and 
configuration of all the software Cloudera Manager needs on all the hosts that will 
be included in its clusters. To some administrators, this makes the hardware behind 
Cloudera Manager look like a big, black box; they might control the installation of 
the base operating system, but the management of the configuration baseline going 
forward is entirely managed by Cloudera Manager. There's nothing much to be done 
here; it is what it is—to get the benefits of Cloudera Manager, it will add itself as a 
new management system in your infrastructure, and how well that fits in with your 
broader environment will be determined on a case-by-case basis.

Monitoring with Cloudera Manager
A similar point can be made regarding systems monitoring as Cloudera Manager  
is also conceptually a point of duplication here. But start clicking around the 
interface, and it will become apparent very quickly that Cloudera Manager  
provides an exceptionally rich set of tools to assess the health and performance  
of managed clusters. 
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From graphing the relative performance of Impala queries through showing the 
job status for YARN applications and giving low-level data on the blocks stored 
on HDFS, it is all there in a single interface. We'll discuss later in this chapter how 
troubleshooting on Hadoop can be challenging, but the single point of visibility 
provided by Cloudera Manager is a great tool when looking to assess cluster health  
or performance. We'll discuss monitoring in a little more detail later in this chapter.

Finding configuration files
One of the first confusions faced when running a cluster managed by Cloudera 
Manager is trying to find the configuration files used by the cluster. In the vanilla 
Apache releases of products, such as the core Hadoop, there would be files typically 
stored in /etc/hadoop, similarly /etc/hive for Hive, /etc/oozie for Oozie,  
and so on.

In a Cloudera Manager managed cluster, however, the config files are regenerated 
each time a service is restarted, and instead of sitting in the /etc locations on the 
filesystem, will be found at /var/run/cloudera-scm-agent-process/<pid>-<task 
name>/, where the last directory might have a name such as 7007-yarn-NODEMANAGER. 
This might seem odd to anyone used to working on earlier Hadoop clusters or other 
distributions that don't do such a thing. But in a Cloudera Manager-controlled cluster, 
it might often be easier to use the web interface to browse the configuration instead 
of looking for the underlying config files. Which approach is best? This is a little 
philosophical, and each team needs to decide which works best for them.

Cloudera Manager API
We've only given the highest level of overview of Cloudera Manager, and in 
doing so, have completely ignored one area that might be very useful for some 
organizations: Cloudera Manager offers an API that allows integration of its 
capabilities into other systems and tools. Consult the documentation if this might  
be of interest to you.

Cloudera Manager lock-in
This brings us to the point that is implicit in the whole discussion around Cloudera 
Manager: it does cause a degree of lock-in to Cloudera and their distribution. That 
lock-in might only exist in certain ways; code, for example, should be portable across 
clusters modulo the usual caveats about different underlying versions—but the 
cluster itself might not easily be reconfigured to use a different distribution. Assume 
that switching distributions would be a complete remove/reformat/reinstall activity.
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We aren't saying don't use it, rather that you need to be aware of the lock-in that 
comes with the use of Cloudera Manager. For small teams with little dedicated 
operations support or existing infrastructure, the impact of such a lock-in is likely 
outweighed by the significant capabilities that Cloudera Manager gives you.

For larger teams or ones working in an environment where integration with  
existing tools and processes has more weight, the decision might be less clear.  
Look at Cloudera Manager, discuss with your operations people, and determine 
what is right for you.

Note that it is possible to manually download and install the various components 
of the Cloudera distribution without using Cloudera Manager to manage the 
cluster and its hosts. This might be an attractive middle ground for some users 
as the Cloudera software can be used, but deployment and management can be 
built into the existing deployment and management tools. This is also potentially a 
way of avoiding the additional expense of the paid-for levels of Cloudera support 
mentioned earlier.

Ambari – the open source alternative
Ambari is an Apache project (http://ambari.apache.org), which in theory, 
provides an open source alternative to Cloudera Manager. It is the administration 
console for the Hortonworks distribution. At the time of writing Hortonworks 
employees are also the vast majority of the project contributors.

Ambari, as one would expect given its open source nature, relies on other open 
source products, such as Puppet and Nagios, to provide the management and 
monitoring of its managed clusters. It also has high-level functionality similar 
to Cloudera Manager, that is, the installation, configuration, management, and 
monitoring of a Hadoop cluster, and the component services within it.

It is good to be aware of the Ambari project as the choice is not just between full 
lock-in to Cloudera and Cloudera Manager or a manually managed cluster. Ambari 
provides a graphical tool that might be worth consideration, or indeed involvement, 
as it matures. On an HDP cluster, the Ambari UI equivalent to the Cloudera Manager 
home page shown earlier can be reached at http://<hostname>:8080/#/main/
dashboard and looks like the following screenshot:
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Ambari

Operations in the Hadoop 2 world
As mentioned in Chapter 2, Storage, some of the most significant changes made to 
HDFS in Hadoop 2 involve its fault tolerance and better integration with external 
systems. This is not just a curiosity, but the NameNode High Availability features, 
in particular, have made a massive difference in the management of clusters since 
Hadoop 1. In the bad old days of 2012 or so, a significant part of the operational 
preparedness of a Hadoop cluster was built around mitigations for, and restoration 
processes around failure of the NameNode. If the NameNode died in Hadoop 1, and 
you didn't have a backup of the HDFS fsimage metadata file, then you basically lost 
access to all your data. If the metadata was permanently lost, then so was the data.
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Hadoop 2 has added the in-built NameNode HA and the machinery to make  
it work. In addition, there are components such as the NFS gateway into HDFS,  
which make it a much more flexible system. But this additional capability does come 
at the expense of more moving parts. To enable NameNode HA, there are additional 
components in the JournalManager and FailoverController, and the NFS gateway 
requires Hadoop-specific implementations of the portmap and nfsd services.

Hadoop 2 also now has extensive other integration points with external services 
as well as a much broader selection of applications and services that run atop it. 
Consequently, it might be useful to view Hadoop 2 in terms of operations as having 
traded the simplicity of Hadoop 1 for additional complexity, which delivers a 
substantially more capable platform.

Sharing resources
In Hadoop 1, the only time one had to consider resource sharing was in considering 
which scheduler to use for the MapReduce JobTracker. Since all jobs were eventually 
translated into MapReduce code having  a policy for resource sharing at the 
MapReduce level was usually sufficient to manage cluster workloads in the large.

Hadoop 2 and YARN changed this picture. As well as running many MapReduce 
jobs, a cluster might also be running many other applications atop other YARN 
ApplicationMasters. Tez and Spark are frameworks in their own right that run 
additional applications atop their provided interfaces.

If everything runs on YARN, then it provides ways of configuring the maximum 
resource allocation (in terms of CPU, memory, and soon I/O) consumed by each 
container allocated to an application. The primary goal here is to ensure that enough 
resources are allocated to keep the hardware fully utilized without either having 
unused capacity or overloading it.

Things get somewhat more interesting when non-YARN applications, such as 
Impala, are running on the cluster and want to grab allocated slices of capacity 
(particularly memory in the case of Impala). This could also happen if, say, you 
were running Spark on the same hosts in its non-YARN mode or indeed any other 
distributed application that might benefit from co-location on the Hadoop machines.

Basically, in Hadoop 2, you need to think of the cluster as much more of a  
multi-tenancy environment that requires more attention given to the allocation  
of resources to the various tenants.
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There really is no silver bullet recommendation here; the right configuration will be 
entirely dependent on the services co-located and the workloads they are running. 
This is another example where you want to work closely with your operations 
team to do a series of load tests with thresholds to determine just what the resource 
requirements of the various clients are and which approach will give the maximum 
utilization and performance. The following blog post from Cloudera engineers 
gives a good overview of how they approach this very issue in having Impala and 
MapReduce coexist effectively: http://blog.cloudera.com/blog/2013/06/
configuring-impala-and-mapreduce-for-multi-tenant-performance/.

Building a physical cluster
There is one minor requirement before thinking about allocation of hardware 
resources: defining and selecting the hardware used for your cluster. In this section, 
we'll discuss a physical cluster and move on to Amazon EMR in the next.

Any specific hardware advice will be out of date the moment it is written. We advise 
perusing the websites of the various Hadoop distribution vendors as they regularly 
write new articles on the currently recommended configurations.

Instead of telling you how many cores or GB of memory you need, we'll look at 
hardware selection at a slightly higher level. The first thing to realize is that the hosts 
running your Hadoop cluster will most likely look very different from the rest of 
your enterprise. Hadoop is optimized for low(er) cost hardware, so instead of seeing 
a small number of very large servers, expect to see a larger number of machines with 
fewer enterprise reliability features. But don't think that Hadoop will run great on 
any junk you have lying around. It might, but recently the profile of typical Hadoop 
servers has been moving away from the bottom-end of the market, and instead, the 
sweet spot would seem to be in mid-range servers where the maximum cores/disks/
memory can be achieved at a price point.

You should also expect to have different resource requirements for the hosts running 
services such as the HDFS NameNode or the YARN ResourceManager, as opposed 
to the worker nodes storing data and executing the application logic. For the former, 
there is usually much less requirement for lots of storage, but frequently, a need for 
more memory and possibly faster disks.

For Hadoop worker nodes, the ratio between the three main hardware categories of 
cores, memory, and I/O is often the most important thing to get right. And this will 
directly inform the decisions you make regarding workload and resource allocation.
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For example, many workloads tend to become I/O bound and having many times 
as many containers allocated on a host than there are physical disks might actually 
cause an overall slowdown due to contention for the spinning disks. At the time 
of writing, current recommendations here are for the number of YARN containers 
to be no more than 1.8 times the number of disks. If you have workloads that are 
I/O bound, then you will most likely get much better performance by adding more 
hosts to the cluster instead of trying to get more containers running or indeed faster 
processors or more memory on the current hosts.

Conversely, if you expect to run lots of concurrent Impala, Spark, and other 
memory-hungry jobs, then memory might quickly become the resource most under 
pressure. This is why even though you can get current hardware recommendations 
for general-purpose clusters from the distribution vendors, you still need to 
validate against your expected workloads and tailor accordingly. There is really no 
substitute for benchmarking on a small test cluster or indeed on EMR, which can 
be a great platform to explore the resource requirements of multiple applications 
that can inform hardware acquisition decisions. Perhaps EMR might be your main 
environment; if so, we'll discuss that in a later section.

Physical layout
If you do use a physical cluster, there are a few things you will need to consider that 
are largely transparent on EMR.

Rack awareness
The first of these aspects for clusters large enough to consume more than one rack 
of data center space is building rack awareness. As mentioned in Chapter 2, Storage, 
when HDFS places replicas of new files, it attempts to place the second replica on 
a different host than the first, and the third in a different rack of equipment in a 
multi-rack system. This heuristic is aimed at maximizing resilience; there will be at 
least one replica available even if an entire rack of equipment fails. MapReduce uses 
similar logic to attempt to get a better-balanced task spread.

If you do nothing, then each host will be specified as being in the single default rack. 
But, if the cluster grows beyond this point, you will need to update the rack name.

Under the covers, Hadoop discovers a node's rack by executing a user-supplied script 
that maps node hostname to rack names. Cloudera Manager allows rack names to be 
set on a given host, and this is then retrieved when its rack awareness scripts are called 
by Hadoop. To set the rack for a host, click on Hosts-><hostname>->Assign Rack, and 
then assign the rack from the Cloudera Manager home page.
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Service layout
As mentioned earlier, you are likely to have two types of hardware in your cluster: 
the machines running the workers and those running the servers. When deploying a 
physical cluster, you will need to decide which services and which subcomponents 
of the services run on which physical machines.

For the workers, this is usually pretty straightforward; most, though not all, services 
have a model of a worker agent on all worker hosts. But, for the master/server 
components, it requires a little thought. If you have three master nodes, then how do 
you spread your primary and backup NameNodes: the YARN ResourceManager, 
maybe Hue, a few Hive servers, and an Oozie manager? Some of these features are 
highly available, while others are not. As you add more and more services to your 
cluster, you'll also see this list of master services grow substantially.

In an ideal world, you might have a host per service master but that is only tractable 
for very large clusters; in smaller installations it is prohibitively expensive. Plus it 
might always be a little wasteful. There are no hard-and-fast rules here either, but 
do look at your available hardware, and try to spread the services across the nodes 
as much as possible. Don't, for example, have two nodes for the two NameNodes 
and then put everything else on a third. Think about the impact of a single host 
failure and manage the layout to minimize it. As the cluster grows across multiple 
racks of equipment, the considerations will also need to consider how to survive 
single-rack failures. Hadoop itself helps with this since HDFS will attempt to ensure 
each block of data has replicas across at least two racks. But, this type of resilience is 
undermined if, for example, all the master nodes reside in a single rack.

Upgrading a service
Upgrading Hadoop has historically been a time-consuming and somewhat risky 
task. This remains the case on a manually deployed cluster, that is, one not managed 
by a tool such as Cloudera Manager.

If you are using Cloudera Manager, then it takes the time-consuming part out of the 
activity, but not necessarily the risk. Any upgrade should always be viewed as an 
activity with a high chance of unexpected issues, and you should arrange enough 
cluster downtime to account for this surprise excitement. There's really no substitute 
for doing a test upgrade on a test cluster, which underlines the importance of 
thinking about Hadoop as a component of your environment that needs to be treated 
with a deployment life cycle like any other.
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Sometimes an upgrade requires modification to the HDFS metadata or might 
otherwise affect the filesystem. This is, of course, where the real risks lie. In addition 
to running a test upgrade, be aware of the ability to set HDFS in upgrade mode, 
which effectively makes a snapshot of the filesystem state prior to the upgrade and 
which will be retained until the upgrade is finalized. This can be really helpful as 
even an upgrade that goes badly wrong and corrupts data can potentially be fully 
rolled back.

Building a cluster on EMR
Elastic MapReduce is a flexible solution that, depending on requirements and 
workloads, can sit next to, or replace, a physical Hadoop cluster. As we've seen  
so far, EMR provides clusters preloaded and configured with Hive, Streaming,  
and Pig as well as with custom JAR clusters that allow the execution of  
MapReduce applications.

A second distinction to make is between transient and long-running life cycles. 
A transient EMR cluster is generated on demand; data is loaded in S3 or HDFS, 
some processing workflow is executed, output results are stored, and the cluster is 
automatically shut down. A long-running cluster is kept alive once the workflow 
terminates, and the cluster remains available for new data to be copied over and new 
workflows to be executed. Long-running clusters are typically well-suited for data 
warehousing or working with datasets large enough that loading and processing 
data would be inefficient compared to a transient instance.

In a must-read white paper for prospective users (found at https://media.
amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf), Amazon  
gives a heuristic to estimate which cluster type is a better fit as follows:

If number of jobs per day * (time to setup cluster including Amazon S3 data load 
time if using Amazon S3 + data processing time) < 24 hours, consider transient 
Amazon EMR clusters or physical instances. Long-running instances are 
instantiated by passing the –alive argument to the ElasticMapreduce command, 
which enables the Keep Alive option and disables auto termination.

Note that transient and long-running clusters share the same properties  
and limitations; in particular, data on HDFS is not persisted once the cluster  
is shut down.
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Considerations about filesystems
In our examples so far we assumed data to be available in S3. In this case, a bucket 
is mounted in EMR as an s3n filesystem, and it is used as input source as well as a 
temporary filesystem to store intermediate data in computations. With S3 we introduce 
potential I/O overhead, operations such as reads and writes fire off GET and PUT  
HTTP requests.

Note that EMR does not support S3 block storage. The s3 URI 
maps to s3n.

Another option would be to load data into the cluster HDFS and run processing 
from there. In this case, we do have faster I/O and data locality, but we would 
lose persistence. When the cluster is shut down, our data disappears. As a rule 
of thumb, if you are running a transient cluster, it makes sense to use S3 as a 
backend. In practice, one should monitor and take decisions based on the workflow 
characteristics. Iterative, multi-pass MapReduce jobs would greatly benefit from 
HDFS; one could argue that for those types of workflows, an execution engine like 
Tez or Spark would be more appropriate.

Getting data into EMR
When copying data from HDFS to S3, it is recommended to use s3distcp  
(http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
UsingEMR_s3distcp.html) instead of Apache distcp or Hadoop distcp. This 
approach is suitable also to transfer data within EMR and from S3 to HDFS. To 
move very large amounts of data from the local disk into S3, Amazon recommends 
parallelizing the workload using Jets3t or GNU Parallel. In general, it's important  
to be aware that PUT requests to S3 are capped at 5 GB per file. To upload larger 
files, one needs to rely on Multipart Upload (https://aws.amazon.com/about-
aws/whats-new/2010/11/10/Amazon-S3-Introducing-Multipart-Upload/),  
an API that allows splitting large files into smaller parts and reassembles them when 
uploaded. Files can also be copied with tools such as the AWS CLI or the popular 
S3CMD utility, but these do not have the parallelism advantages of as s3distcp.
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EC2 instances and tuning
The size of an EMR cluster depends on the dataset size, the number of files and 
blocks (determines the number of splits) and the type of workload (try to avoid 
spilling to disk when a task runs out of memory). As a rule of thumb, a good size is 
one that maximizes parallelism. The number of mappers and reducers per instance 
as well as heap size per JVM daemon is generally configured by EMR when the 
cluster is provisioned and tuned in the event of changes in the available resources.

Cluster tuning
In addition to the previous comments specific to a cluster run on EMR, there are 
some general thoughts to keep in mind when running workloads on any type of 
cluster. This will, of course, be more explicit when running outside of EMR as it  
often abstracts some of the details.

JVM considerations
You should be running the 64-bit version of a JVM and using the server mode. 
This can take longer to produce optimized code, but it also uses more aggressive 
strategies and will re-optimize code over time. This makes it a much better fit for 
long-running services, such as Hadoop processes.

Ensure that you allocate enough memory to the JVM to prevent overly-frequent 
Garbage Collection (GC) pauses. The concurrent mark-and-sweep collector is 
currently the most tested and recommended for Hadoop. The Garbage First (G1) 
collector has become the GC option of choice in numerous other workloads since 
its introduction with JDK7, so it's worth monitoring recommended best practice as 
it evolves. These options can be configured as custom Java arguments within each 
service's configuration section of Cloudera Manager.

The small files problem
Heap allocation to Java processes on worker nodes will be something you consider 
when thinking about service co-location. But there is a particular situation regarding 
the NameNode you should be aware of: the small files problem.

Hadoop is optimized for very large files with large block sizes. But sometimes 
particular workloads or data sources push many small files onto HDFS. This is most 
likely suboptimal as it suggests each task processing a block at a time will read only 
a small amount of data before completing, causing inefficiency. 
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Having many small files also consumes more NameNode memory; it holds in-memory 
the mapping from files to blocks and consequently holds metadata for each file and 
block. If the number of files and hence blocks increases quickly, then so will the 
NameNode memory usage. This is likely to only hit a subset of systems as, at the time 
of writing this, 1 GB of memory can support 2 million files or blocks, but with a default 
heap size of 2 or 4 GB, this limit can easily be reached. If the NameNode needs to start 
very aggressively running garbage collection or eventually runs out of memory, then 
your cluster will be very unhealthy. The mitigation is to assign more heap to the JVM; 
the longer-term approach is to combine many small files into a smaller number of 
larger ones. Ideally, compressed with a splittable compression codec.

Map and reduce optimizations
Mappers and reducers both provide areas for optimizing performance; here are a 
few pointers to consider:

•	 The number of mappers depends on the number of splits. When files are 
smaller than the default block size or compressed using a non splittable 
format, the number of mappers will equal the number of files. Otherwise,  
the number of mappers is given by the total size of each file divided by  
the block size.

•	 Compress mappers output to reduce writes to disk and increase I/O.  
LZO is a good format for this task.

•	 Avoid spill to disk: the mappers should have enough memory to retain as 
much data as possible.

•	 Number of Reducers: it is recommended that you use fewer reducers than 
the total reducer capacity (this avoids execution waits).

Security
Once you built a cluster, the first thing you thought about was how to secure it, 
right? Don't worry, most people don't. But, as Hadoop has moved on from being 
something running in-house analysis in the research department to directly driving 
critical systems, it's not something to ignore for too long.

Securing Hadoop is not something to be done on a whim or without significant testing. 
We cannot give detailed advice on this topic and cannot stress strongly enough the 
need to take this topic seriously and do it properly. It might consume time, it might 
cost money, but weigh this against the cost of having your cluster compromised.
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Security is also a much bigger topic than just the Hadoop cluster. We'll explore  
some of the security features available in Hadoop, but you do need a coherent 
security strategy into which these discrete components fit.

Evolution of the Hadoop security model
In Hadoop 1, there was effectively no security protection as the provided security 
model had obvious attack vectors. The Unix user ID with which you connected to the 
cluster was assumed to be valid, and you had all the privileges of that user. Plainly, 
this meant that anyone with administrative access on a host that could access the 
cluster could effectively impersonate any other user.

This led to the development of the so-called "head node" access model, whereby the 
Hadoop cluster was firewalled off from every host except one, the head node, and all 
access to the cluster was mediated through this centrally-controlled node. This was 
an effective mitigation for the lack of a real security model and can still be useful in 
situations even when richer security schemes are utilized.

Beyond basic authorization
Core Hadoop has had additional security features added, which address the 
previous concerns. In particular, they address the following:

•	 A cluster can require a user to authenticate via Kerberos and prove they are 
who they say they are.

•	 In secure mode, the cluster can also use Kerberos for all node-node 
communications, ensuring that all communicating nodes are authenticated 
and preventing malicious nodes from attempting to join the cluster.

•	 To ease management, users can be collected into groups against which  
data-access privileges can be defined. This is called Role Based Access 
Control (RBAC) and is a prerequisite for a secure cluster with more than a 
handful of users. The user-group mappings can be retrieved from corporate 
systems, such as LDAP or active directory.

•	 HDFS can apply ACLs to replace the current Unix-inspired owner/group/
world model.

These capabilities give Hadoop a significantly stronger security posture than in the 
past, but the community is moving fast and additional dedicated Apache projects 
have emerged to address specific areas of security.
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Apache Sentry https://sentry.incubator.apache.org is a system to provide 
much finer-grained authorization to Hadoop data and services. Other services build 
Sentry mappings, and this allows, for example, specific restrictions to be placed not 
only on particular HDFS directories, but also on entities such as Hive tables.

Whereas Sentry focuses on providing much richer tools for the internal, fine-grained 
aspects of Hadoop security, Apache Knox (http://knox.apache.org) provides 
a secure gateway to Hadoop that integrates with external identity management 
systems and provides access control mechanisms to allow or disallow access to 
specific Hadoop services and operations. It does this by presenting a REST-only 
interface to Hadoop and securing all calls to this API.

The future of Hadoop security
There are many other developments happening in the Hadoop world. Core Hadoop 
2.5 added extended file attributes to HDFS, which can be used as the basis of 
additional access control mechanisms. Future versions will incorporate capabilities 
for better support of encryption for data in transit as well as at rest, and the Project 
Rhino initiative led by Intel (https://github.com/intel-hadoop/project-
rhino/) is building out richer support for filesystem cryptographic modules, a 
secure filesystem, and, at some point, a fuller key-management infrastructure.

The Hadoop distribution vendors are moving fast to add these capabilities to 
their releases, so if you care about security (you do, don't you!), then consult the 
documentation for the latest release of your distribution. New security features are 
being added even in point updates and aren't being delayed until major upgrades.

Consequences of using a secured cluster
After teasing you with all the security goodness that is now available and that  
which is coming, it's only fair to give some words of warning. Security is often  
hard to do correctly, and often the feeling of security wrongly employed with a  
buggy deployment is worse than knowing you have no security.

However, even if you do it right, there are consequences to running a secure cluster. 
It makes things harder for the administrators certainly and often the users, so there is 
definitely an overhead. Specific Hadoop tools and services will also work differently 
depending on what security is employed on a cluster.
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Oozie, which we discussed in Chapter 8, Data Lifecycle Management, uses its own 
delegation tokens behind the scenes. This allows the oozie user to submit jobs that 
are then executed on behalf of the originally submitting user. In a cluster using only 
the basic authorization mechanism, this is very easily configured, but using Oozie in 
a secure cluster will require additional logic to be added to the workflow definitions 
and the general Oozie configuration. This isn't a problem with Hadoop or Oozie; 
however, similarly as with the additional complexity resulting from the much better 
HA features of HDFS in Hadoop 2, better security mechanisms will simply have 
costs and consequences that you need take into consideration.

Monitoring
Earlier in this chapter, we discussed Cloudera Manager as a visual monitoring tool 
and hinted that it could also be programmatically integrated with other monitoring 
systems. But before plugging Hadoop into any monitoring framework, it's worth 
considering just what it means to operationally monitor a Hadoop cluster.

Hadoop – where failures don't matter
Traditional systems monitoring tends to be quite a binary tool; generally speaking, 
either something is working or it isn't. A host is alive or dead, and a web server 
is responding or it isn't. But in the Hadoop world, things are a little different; the 
important thing is service availability, and this can still be treated as live even if 
particular pieces of hardware or software have failed. No Hadoop cluster should be 
in trouble if a single worker node fails. As of Hadoop 2, even the failure of the server 
processes, such as the NameNode shouldn't really be a concern if HA is configured. 
So, any monitoring of Hadoop needs to take into account the service health and not 
that of specific host machines, which should be unimportant. Operations people on 
24/7 pager are not going to be happy getting paged at 3 AM to discover that one 
worker node in a cluster of 10,000 has failed. Indeed, once the scale of the cluster 
increases beyond a certain point, the failure of individual pieces of hardware 
becomes an almost commonplace occurrence.

Monitoring integration
You won't be building your own monitoring tools; instead, you might likely  
want to integrate with existing tools and frameworks. For popular open source 
monitoring tools, such as Nagios and Zabbix, there are multiple sample templates to 
integrate Hadoop's service-wide and node-specific metrics. 
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This can give the sort of separation hinted previously; the failure of the YARN 
ResourceManager would be a high-criticality event that should most likely cause 
alerts to be sent to operations staff, but a high load on specific hosts should only 
be captured and not cause alerts to be fired. This then provides the duality of 
firing alerts when bad things happen in addition to capturing and providing the 
information needed to delve into system data over time to do trend analysis.

Cloudera Manager provides a REST interface, which is another point of integration 
against which tools such as Nagios can integrate and pull the Cloudera  
Manager-defined service-level metrics instead of having to define its own.

For heavier-weight enterprise-monitoring infrastructure built on frameworks,  
such as IBM Tivoli or HP OpenView, Cloudera Manager can also deliver events  
via SNMP traps that will be collected by these systems.

Application-level metrics
At times, you might also want your applications to gather metrics that can be 
centrally captured within the system. The mechanisms for this will differ from 
one computational model to another, but the most well-known are the application 
counters available within MapReduce.

When a MapReduce job completes, it outputs a number of counters, gathered  
by the system throughout the job execution, that deal with metrics such as the 
number of map tasks, bytes written, failed tasks, and so on. You can also write 
application-specific metrics that will be available alongside the system counters  
and which are automatically aggregated across the map/reduce execution.  
First define a Java enum, and name your desired metrics within it, as follows:

public enum AppMetrics{
  MAX_SEEN,
  MIN_SEEN,
  BAD_RECORDS 
};

Then, within the map, reduce, setup, and cleanup methods of your Map or Reduce 
implementations, you can do something like the following to increment a counter  
by one:

Context.getCounter(AppMetrics.BAD_RECORDS).increment(1);

Refer to the JavaDoc of the org.apache.hadoop.mapreduce.Counter interface for 
more details of this mechanism.
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Troubleshooting
Monitoring and logging counters or additional information is all well and good, but 
it can be intimidating to know how to actually find the information you need when 
troubleshooting a problem with an application. In this section, we will look at how 
Hadoop stores logs and system information. We can distinguish three typologies of 
logs, as follows:

•	 YARN applications, including MapReduce jobs
•	 Daemon logs (NameNode and ResourceManager)
•	 Services that log non-distributed workloads, for example, HiveServer2 

logging to /var/log

Next to these log typologies, Hadoop exposes a number of metrics at filesystem  
(the storage availability, replication factor, and number of blocks) and system level. 
As mentioned, both Apache Ambari and Cloudera Manager, which centralize access 
to debug information, do a nice job as the frontend. However, under the hood, each 
service logs to either HDFS or the single-node filesystem. Furthermore, YARN, 
MapReduce, and HDFS expose their logfiles and metrics via web interfaces and 
programmatic APIs.

Logging levels
Hadoop logs messages to Log4j by default. Log4j is configured via log4j.
properties in the classpath. This file defines what is logged and with which layout:

log4j.rootLogger=${root.logger}
root.logger=INFO,console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} 
%p %c{2}: %m%n

The default root logger is INFO,console, which logs all messages at the level INFO 
and above to the console's stderr. Single applications deployed on Hadoop can ship 
their own log4j.properties and set the level and other properties of their emitted 
logs as required.
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Hadoop daemons have a web page to get and set the log level for any  
Log4j property. This interface is exposed by the /LogLevel endpoint in each  
service web UI. To enable debug logging for the ResourceManager class, we will 
visit http://resourcemanagerhost:8088/LogLevel, and the screenshot can be 
seen as follows:

Getting and setting the log level on ResourceManager

Alternatively, the YARN daemonlog <host:port> command interfaces with the 
service /LogLevel endpoint. We can inspect the level associated with mapreduce.
map.log.level for the ResourceManager class using the –getlevel <property> 
parameter, as follows:

$ hadoop daemonlog -getlevel localhost.localdomain:8088  mapreduce.map.
log.level 

Connecting to http://localhost.localdomain:8088/logLevel?log=mapreduce.
map.log.level Submitted Log Name: mapreduce.map.log.level Log Class: org.
apache.commons.logging.impl.Log4JLogger Effective level: INFO 

The effective level can be modified using the -setlevel <property> <level> 
option:

$ hadoop daemonlog -setlevel localhost.localdomain:8088  mapreduce.map.
log.level  DEBUG

Connecting to http://localhost.localdomain:8088/logLevel?log=mapreduce.
map.log.level&level=DEBUG
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Submitted Log Name: mapreduce.map.log.level

Log Class: org.apache.commons.logging.impl.Log4JLogger

Submitted Level: DEBUG

Setting Level to DEBUG ...

Effective level: DEBUG

Note that this setting will affect all logs produced by the ResourceManager class. 
This includes system-generated entries as well as the ones generated by applications 
running on YARN.

Access to logfiles
Logfile locations and naming conventions are likely to differ based on the 
distribution. Apache Ambari and Cloudera Manager centralize access to logfiles, 
both for services and single applications. On Cloudera's QuickStart VM, an overview 
of the currently running processes and links to their logfiles, the stderr and stdout 
channels can be found at http://localhost.localdomain:7180/cmf/hardware/
hosts/1/processes, and the screenshot can be seen as follows:

Access to log resources in Cloudera Manager
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Ambari provides a similar overview via the Services dashboard found at 
http://127.0.0.1:8080/#/main/services on the HDP Sandbox, and the 
screenshot can be seen as follows:

Access to log resources on Apache Ambari

Non-distributed logs are usually found under /var/log/<service> on each cluster 
node. YARN containers and MRv2 logs locations also depend on the distribution.  
On CDH5 these resources are available in HDFS under /tmp/logs/<user>.

The standard modality to access distributed logs is either via command-line tools or 
using services web UIs.

For instance, the command is as follows:

$ yarn application -list -appStates ALL 
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The preceding command will list all running and retried YARN applications.  
The URL in the task column points to a web interface that exposes the task log,  
as follows:

14/08/03 14:44:38 INFO client.RMProxy: Connecting to ResourceManager 
at localhost.localdomain/127.0.0.1:8032 Total number of applications 
(application-types: [] and states: [NEW, NEW_SAVING, SUBMITTED, ACCEPTED, 
RUNNING, FINISHED, FAILED, KILLED]):4                 Application-
Id      Application-Name      Application-Type        User       
Queue               State         Final-State         Progress                         
Tracking-URL application_1405630696162_0002  PigLatin:DefaultJobNa
me             MAPREDUCE    cloudera  root.cloudera            FINISHED           
SUCCEEDED             100%  http://localhost.localdomain:19888/
jobhistory/job/job_1405630696162_0002 application_1405630696162_0004  
PigLatin:DefaultJobName             MAPREDUCE    cloudera  root.
cloudera            FINISHED           SUCCEEDED             100%  
http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0004 
application_1405630696162_0003  PigLatin:DefaultJobNa
me             MAPREDUCE    cloudera  root.cloudera            FINISHED           
SUCCEEDED             100%  http://localhost.localdomain:19888/
jobhistory/job/job_1405630696162_0003 application_1405630696162_0005  Pi
gLatin:DefaultJobName             MAPREDUCE    cloudera  root.cloudera            
FINISHED           SUCCEEDED             100%  http://localhost.
localdomain:19888/jobhistory/job/job_1405630696162_0005 

For instance, http://localhost.localdomain:19888/jobhistory/job/
job_1405630696162_0002, a link to a task belonging to user cloudera, is a 
frontend to the content stored under hdfs:///tmp/logs/cloudera/logs/
application_1405630696162_0002/.

In the following sections, we will give an overview of the available UIs for  
different services.

Provisioning an EMR cluster with the –log-uri 
s3://<bucket> option will ensure that Hadoop logs are  
copied into the s3://<bucket> location.
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ResourceManager, NodeManager, and 
Application Manager
On YARN the ResourceManager web UI provides information and general job 
statistics of the Hadoop cluster, running/completed/failed jobs, and a job history 
logfile. By default, the UI is exposed at http://<resourcemanagerhost>:8088/  
and can be seen in the following screenshot:

Resource Manager

Applications
On the left-hand sidebar, it is possible to review the application status of interest: 
NEW, SUBMITTED, ACCEPTED, RUNNING, FINISHING, FINISHED, FAILED, or KILLED. 
Depending on the application status, the following information is available:

•	 The application ID
•	 The submitting user
•	 The application name
•	 The scheduler queue in which the application is placed
•	 Start/finish times and state
•	 Link to the Tracking UI for application history
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In addition, the Cluster Metrics view gives you information on the following:

•	 Overall application status
•	 Number of running containers
•	 Memory usage
•	 Node status

Nodes
The Nodes view is a frontend to the NodeManager service menu, which shows  
health and location information on the node's running applications, as follows:

Nodes status

Each individual node of the cluster exposes further information and statistics at host 
level via its own UI. These include which version of Hadoop is running on the node, 
how much memory is available on the node, the node status, and a list of running 
applications and containers, as shown in the following screenshot:

Single node info
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Scheduler
The following screenshot shows the Scheduler window:

Scheduler

MapReduce
Though the same information and logging details are available in MapReduce v1  
and MapReduce v2, the access modality is slightly different.

MapReduce v1
The following screenshot shows the MapReduce JobTracker UI:

The Job Tracker UI
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The Job Tracker UI, available by default at http://<jobtracker>:50070, exposes 
information on all currently running as well as retired MapReduce jobs, a summary 
of the cluster resources and health, as well as scheduling information and completion 
percentage, as shown in the following screenshot:

Job details

For each running and retired job, details are available, including its ID, owner, 
priority, task assignment, and task launch for the mapper. Clicking on a jobid link 
will lead to a job details page—the same URL exposed by the mapred job –list 
command. This resource gives details about both the map and reduce tasks as well as 
general counter statistics at the job, filesystem, and MapReduce levels; these include 
the memory used, number of read/write operations, and the number of bytes read 
and written. 
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For each Map and Reduce operation, the JobTracker exposes the total, pending, 
running, completed, and failed tasks, as shown in the following screenshot:

Job tasks overview

Clicking on the links in the Job table will lead to a further overview at the task and 
task-attempt levels, as shown in the following screenshot:

Task attempts
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From this last page, we can access the logs of each task attempt, both for successful 
and failed/killed tasks on each individual TaskTracker host. This log contains 
the most granular information about the status of the MapReduce job, including 
the output of Log4j appenders as well as output piped to the stdout and stderr 
channels and syslog, as shown in the following screenshot:

TaskTracker logs

MapReduce v2 (YARN)
As we have seen in Chapter 3, Processing – MapReduce and Beyond, with YARN, 
MapReduce is only one of many processing frameworks that can be deployed. Recall 
from previous chapters that the JobTracker and TaskTracker services have been 
replaced by the ResourceManager and NodeManager, respectively. As such, both the 
service UIs and the logfiles from YARN are more generic than MapReduce v1. 
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The application_1405630696162_0002 name shown in Resource Manager 
corresponds to a MapReduce job with the job_1405630696162_0002 ID. That 
application ID belongs to the task running inside the container, and clicking on  
it will reveal an overview of the MapReduce job and allow a drill-down to the 
individual tasks from either phase until the single-task log is reached, as shown  
in the following screenshot:

A YARN application containing a MapReduce job

JobHistory Server
YARN ships with a JobHistory REST service that exposes details on finished 
applications. Currently, it only supports MapReduce and provides information on 
finished jobs. This includes the job final status SUCCESSFUL or FAILED, who submitted 
the job, the total number of map and reduce tasks, and timing information. 
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A UI is available at http://<jobhistoryhost>:19888/jobhistory, as shown in 
the following screenshot:

JobHistory UI

Clicking on each job ID will lead to the MapReduce job UI shown in the YARN 
application screenshot.

NameNode and DataNode
The web interface for the Hadoop Distributed File System (HDFS) shows 
information about the NameNode itself as well as the filesystem generally. 
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By default, it is located at http://<namenodehost>:50070/, as shown in the 
following screenshot:

NameNode UI

The Overview menu exposes NameNode information about DFS capacity and 
usage and the block pool status, and it gives a summary of the status of DataNode 
health and availability. The information contained in this page is for the most part 
equivalent to what is shown at the command-line prompt:

$ hdfs dfsadmin –report
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The DataNodes menu gives more detailed information about the status of each 
node and offers a drill-down at the single-host level, both for available and 
decommissioned nodes, as shown in the following screenshot:

Datanode UI

Summary
This has been quite a whistle-stop tour around the considerations of running an 
operational Hadoop cluster. We didn't try to turn developers into administrators,  
but hopefully, the broader perspective will help you to help your operations staff.  
In particular, we covered the following topics:

•	 How Hadoop is a natural fit for DevOps approaches as its multilayered 
complexity means it's not possible or desirable to have substantial knowledge 
gaps between development and operations staff

•	 Cloudera Manager, and how it can be a great management and monitoring 
tool; it might cause integration problems though, if you have other enterprise 
tools, and it comes with a vendor lock-in risk

•	 Ambari, the Apache open source alternative to Cloudera Manager, and how 
it is used in the Hortonworks distribution

•	 How to think about selecting hardware for a physical Hadoop cluster, and 
how this naturally fits into the considerations of how the multiple workloads 
possible in the world of Hadoop 2 can peacefully coexist on shared resources

•	 The different considerations for firing up and using EMR clusters and how 
this can be both an adjunct to, as well as an alternative to, a physical cluster
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•	 The Hadoop security ecosystem, how it is a very fast moving area, and how 
the features available today are vastly better than some years ago and there is 
still much around the corner

•	 Monitoring of a Hadoop cluster, considering what events are important in  
the Hadoop model of embracing failure, and how these alerts and metrics 
can be integrated into other enterprise-monitoring frameworks

•	 How to troubleshoot issues with a Hadoop cluster, both in terms of  
what might have happened and how to find the information to  
inform your analysis

•	 A quick tour of the various web UIs provided by Hadoop, which can  
give very good overviews of happenings within various components in  
the system

This concludes our treatment of Hadoop in depth. In the final chapter, we will 
express some thoughts on the broader Hadoop ecosystem, give some pointers for 
useful and interesting tools and products that we didn't have a chance to cover in  
the book, and suggest how to get involved with the community.





Where to Go Next
In the previous chapters we have examined many parts of Hadoop 2 and the 
ecosystem around it. However, we have necessarily been limited by page count; 
some areas we didn't get into as much depth as was possible, other areas we  
referred to only in passing or did not mention at all.

The Hadoop ecosystem, with distributions, Apache and non-Apache projects, is an 
incredibly vibrant and healthy place to be right now. In this chapter, we hope to 
complement the previously discussed more detailed material with a travel guide, 
if you will, for other interesting destinations. In this chapter, we will discuss the 
following topics:

•	 Hadoop distributions
•	 Other significant Apache and non-Apache projects
•	 Sources of information and help

Of course, note that any overview of the ecosystem is both skewed by our interests 
and preferences, and is outdated the moment it is written. In other words, don't for a 
moment think this is all that's available, consider it instead a whetting of the appetite.

Alternative distributions
We've generally used the Cloudera distribution for Hadoop in this book, but have 
attempted to keep the coverage distribution independent as much as possible.  
We've also mentioned the Hortonworks Data Platform (HDP) throughout this  
book but these are certainly not the only distribution choices available to you.
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Before taking a look around, let's consider whether you need a distribution at all. It is 
completely possible to go to the Apache website, download the source tarballs of the 
projects in which you are interested, then work to build them all together. However, 
given version dependencies, this is likely to consume more time than you would 
expect. Potentially, vastly more so. In addition, the end product will likely lack some 
polish in terms of tools or scripts for operational deployment and management. For 
most users, these areas are why employing an existing Hadoop distribution is the 
natural choice.

A note on free and commercial extensions—being an open source project with a quite 
liberal license, distribution creators are also free to enhance Hadoop with proprietary 
extensions that are made available either as free open source or commercial products.

This can be a controversial issue as some open source advocates dislike any 
commercialization of successful open source projects; to them, it appears that the 
commercial entity is freeloading by taking the fruits of the open source community 
without having to build it for themselves. Others see this as a healthy aspect of the 
flexible Apache license; the base product will always be free, and individuals and 
companies can choose whether to go with commercial extensions or not. We don't 
give judgment either way, but be aware that this is another of the controversies you 
will almost certainly encounter.

So you need to decide if you need a distribution and if so for what reasons, which 
specific aspects will benefit you most above rolling your own? Do you wish for  
a fully open source product or are you willing to pay for commercial extensions? 
With these questions in mind, let's look at a few of the main distributions.

Cloudera Distribution for Hadoop
You will be familiar with the Cloudera distribution (http://www.cloudera.com) as 
it has been used throughout this book. CDH was the first widely available alternative 
distribution and its breadth of available software, proven level of quality, and its free 
cost has made it a very popular choice.

Recently, Cloudera has been actively extending the products it adds to its 
distribution beyond the core Hadoop projects. In addition to Cloudera Manager and 
Impala (both Cloudera-developed products), it has also added other tools such as 
Cloudera Search (based on Apache Solr) and Cloudera Navigator (a data governance 
solution). While CDH versions prior to 5 were focused more on the integration 
benefits of a distribution, version 5 (and presumably beyond) is adding more and 
more capability atop the base Apache Hadoop projects.

Cloudera also offers commercial support for its products in addition to training and 
consultancy services. Details can be found on the company web page.
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Hortonworks Data Platform
In 2011, the Yahoo! division responsible for so much of the development of 
Hadoop was spun off into a new company called Hortonworks. They have also 
produced their own pre-integrated Hadoop distribution called the Hortonworks 
Data Platform (HDP), available at http://hortonworks.com/products/
hortonworksdataplatform/.

HDP is conceptually similar to CDH but both products have differences in their 
focus. Hortonworks makes much of the fact HDP is fully open source, including 
the management tool Ambari, which we discussed briefly in Chapter 10, Running a 
Hadoop Cluster. They have also positioned HDP as a key integration platform through 
its support for tools such as Talend Open Studio. Hortonworks does not offer 
proprietary software; its business model focuses instead on offering professional 
services and support for the platform.

Both Cloudera and Hortonworks are venture-backed companies with significant 
engineering expertise; both companies employ many of the most prolific contributors 
to Hadoop. The underlying technology is, however, comprised of the same Apache 
projects; the distinguishing factors are how they are packaged, the versions 
employed, and the additional value-added offerings provided by the companies.

MapR
A different type of distribution is offered by MapR Technologies, although the 
company and distribution are usually referred to simply as MapR. The distribution 
available from http://www.mapr.com is based on Hadoop, but has added a number 
of changes and enhancements.

The focus of the MapR distribution is on performance and availability. For example, 
it was the first distribution to offer a high-availability solution for the Hadoop 
NameNode and JobTracker, which you will remember from Chapter 2, Storage, was 
a significant weakness in core Hadoop 1. It also offered native integration with NFS 
filesystems long before Hadoop 2, which makes processing of existing data much 
easier. To achieve these features, MapR replaced HDFS with a full POSIX compliant 
filesystem that also features no NameNode, resulting in a true distributed system 
with no master, and a claim of much better hardware utilization than Apache HDFS.

MapR provides both a community and enterprise edition of its distribution;  
not all the extensions are available in the free product. The company also offers 
support services as part of the enterprise product subscription in addition to  
training and consultancy.
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And the rest…
Hadoop distributions are not just the territory of young start-ups, nor are they a 
static marketplace. Intel had its own distribution until early 2014 when it decided 
to fold its changes into CDH instead. IBM has its own distribution called IBM 
Infosphere Big Insights available in both free and commercial editions. There are also 
various stories of numerous large enterprises rolling their own distributions, some of 
which are made openly available while others are not. You will have no shortage of 
options with so many high-quality distributions available.

Choosing a distribution
This raises the question: how to choose a distribution? As can be seen, the available 
distributions (and we didn't cover them all) range from convenient packaging and 
integration of fully open source products through to entire bespoke integration  
and analysis layers atop them. There is no overall best distribution; think carefully 
about your requirements and consider the alternatives. Since all these offer a free 
download of at least a basic version, it's good to simply play and experience the 
options for yourself.

Other computational frameworks
We've frequently discussed the myriad possibilities brought to the Hadoop  
platform by YARN. We went into details of two new models, Samza and Spark. 
Additionally, other more established frameworks such as Pig are also being ported  
to the framework.

To give a view of the much bigger picture in this section, we will illustrate the 
breadth of processing possible using YARN by presenting a set of computational 
models that are currently being ported to Hadoop on top of YARN.

Apache Storm
Storm (http://storm.apache.org) is a distributed computation framework written 
(mainly) in the Clojure programming language. It uses custom-created spouts 
and bolts to define information sources and manipulations to allow distributed 
processing of streaming data. A Storm application is designed as a topology of 
interfaces that creates a stream of transformations. It provides similar functionality 
to a MapReduce job with the exception that the topology will theoretically run 
indefinitely until it is manually terminated.

Though initially built distinct from Hadoop, a YARN port is being developed by 
Yahoo! and can be found at https://github.com/yahoo/storm-yarn.
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Apache Giraph
Giraph originated as the open source implementation of Google's Pregel paper 
(which can be found at http://kowshik.github.io/JPregel/pregel_paper.pdf). 
Both Giraph and Pregel are inspired by the Bulk Synchronous Parallel (BSP) model 
of distributed computation introduced by Valiant in 1990. Giraph adds several 
features including master computation, sharded aggregators, edge-oriented input, 
and out-of-core computation. The YARN port can be found at https://issues.
apache.org/jira/browse/GIRAPH-13.

Apache HAMA
Hama is a top-level Apache project that aims, like other methods we've encountered  
so far, to address the weakness of MapReduce with regard to iterative programming. 
Similar to the aforementioned Giraph, Hama implements the BSP techniques and  
has been heavily inspired by the Pregel paper. The YARN port can be found at 
https://issues.apache.org/jira/browse/HAMA-431.

Other interesting projects
Whether you use a bundled distribution or stick with the base Apache Hadoop 
download, you will encounter many references to other related projects. We've 
covered several of these such as Hive, Samza, and Crunch in this book; we'll now 
highlight some of the others.

Note that this coverage seeks to point out the highlights (from the authors' 
perspective) as well as give a taste of the breadth of types of projects available. As 
mentioned earlier, keep looking out, as there will be new ones launching all the time.

HBase
Perhaps the most popular Apache Hadoop-related project that we didn't cover in 
this book is HBase (http://hbase.apache.org). Based on the BigTable model of 
data storage publicized by Google in an academic paper (sound familiar?), HBase  
is a nonrelational data store sitting atop HDFS.

While both MapReduce and Hive focus on batch-like data access patterns, HBase 
instead seeks to provide very low-latency access to data. Consequently HBase can, 
unlike the aforementioned technologies, directly support user-facing services.
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The HBase data model is not the relational approach that was used in Hive and all 
other RDBMSs, nor does it offer the full ACID guarantees that are taken for granted 
with relational stores. Instead, it is a key-value schema-less solution that takes a 
column-oriented view of data; columns can be added at runtime and depend on the 
values inserted into HBase. Each lookup operation is then very fast, as it is effectively 
a key-value mapping from the row key to the desired column. HBase also treats 
timestamps as another dimension on the data so one can directly retrieve data from a 
point in time.

The data model is very powerful but does not suit all use cases just as the relational 
model isn't universally applicable. But if you have a requirement for structured 
low-latency views on large-scale data stored in Hadoop, then HBase is absolutely 
something you should look at.

Sqoop
In Chapter 7, Hadoop and SQL, we looked at tools for presenting a relational-like 
interface to data stored on HDFS. Often, such data either needs to be retrieved from 
an existing relational database or the output of its processing needs to be stored back.

Apache Sqoop (http://sqoop.apache.org) provides a mechanism for declaratively 
specifying data movement between relational databases and Hadoop. It takes a task 
definition and from this generates MapReduce jobs to execute the required data 
retrieval or storage. It will also generate code to help manipulate relational records 
with custom Java classes. In addition, it can integrate with HBase and Hcatalog/
Hive and it provides a very rich set of integration possibilities.

At the time of writing, Sqoop is slightly in flux. Its original version, Sqoop 1, was a 
pure client-side application. Much like the original Hive command-line tool, Sqoop 
1 has no server and generates all code on the client. This unfortunately means that 
each client needs to know a lot of details about physical data sources, including exact 
host names as well as authentication credentials.

Sqoop 2 provides a centralized Sqoop server that encapsulates all these details and 
offers the various configured data sources to the connecting clients. It is a superior 
model but at the time of writing, the general community recommendation is to stick 
with Sqoop 1 until the new version evolves further. Check on the current status if 
you are interested in this type of tool.
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Whir
When looking to use cloud services such as Amazon AWS for Hadoop deployments, 
it is usually a lot easier to use a higher level service such as Elastic MapReduce as 
opposed to setting up your own cluster on EC2. Though there are scripts to help, the 
fact is that the overhead of Hadoop-based deployments on cloud infrastructures can 
be involved. That's where Apache Whir (https://whirr.apache.org/) comes in.

Whir isn't focused on Hadoop; it's about supplier-independent instantiation of cloud 
services of which Hadoop is a single example. Whir aims to provide a programmatic 
way of specifying and creating Hadoop-based deployments on cloud infrastructures 
in a way that handles all the underlying service aspects for you. It does this in a 
provider-independent fashion so that once you've launched on say EC2 then you 
can use the same code to create the identical setup on another provider such as 
Rightscale or Eucalyptus. This makes vendor lock-in, often a concern with cloud 
deployments, less of an issue.

Whir isn't quite there yet. Today, it is limited in services it can create and providers 
it supports, however, if you are interested in cloud deployment with less pain then 
it's worth watching its progress.

If you are building out your full infrastructure on Amazon Web 
Services then you might find cloud formation gives much of the same 
ability to define application requirements, though obviously in an 
AWS-specific fashion.

Mahout
Apache Mahout (http://mahout.apache.org/) is a collection of distributed 
algorithms, Java classes, and tools for performing advanced analytics on top 
of Hadoop. Similar to Spark's MLLib briefly mentioned in Chapter 5, Iterative 
Computation with Spark, Mahout ships with a number of algorithms for common use 
cases: recommendation, clustering, regression, and feature engineering. Although 
the system is focused on natural language processing and text-mining tasks, its 
building blocks (linear algebra operations) are suitable to be applied to a number 
of domains. As of Version 0.9, the project is being decoupled from the MapReduce 
framework in favor of richer programming models such as Spark. The community 
end goal is to obtain a platform-independent library based on a Scala DSL.
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Hue
Initially developed by Cloudera and marketed as the "User Interface for Hadoop", 
Hue (http://gethue.com/) is a collection of applications, bundled together under 
a common web interface, that act as clients for core services and a number of 
components of the Hadoop ecosystem:

The Hue Query Editor for Hive

Hue leverages many of the tools we discussed in previous chapters and provides an 
integrated interface for analyzing and visualizing data. There are two components 
that are remarkably interesting. On one hand, there is a query editor that allows 
the user to create and save Hive (or Impala) queries, export the result set in CSV or 
Microsoft Office Excel format as well as plot it in the browser. The editor features 
the capability of sharing both HiveQL and result sets, thus facilitating collaboration 
within an organization. On the other hand, there is an Oozie workflow and 
coordinator editor that allows a user to create and deploy Oozie jobs manually, 
automating the generation of XML configurations and boilerplate.
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Both Cloudera and Hortonworks distributions ship with Hue and typically include 
the following:

•	 A file manager for HDFS
•	 A Job Browser for YARN (MapReduce)
•	 An Apache HBase browser
•	 A Hive metastore explorer
•	 Query editors for Hive and Impala
•	 A script editor for Pig
•	 A job editor for MapReduce and Spark
•	 An editor for Sqoop 2 jobs
•	 An Oozie workflow editor and dashboard
•	 An Apache ZooKeeper browser

On top of this, Hue is a framework with an SDK that contains a number of web 
assets, APIs, and patterns for developing third-party applications that interact  
with Hadoop.

Other programming abstractions
Hadoop isn't just extended by additional functionality, there are tools to provide 
entirely different paradigms for writing the code used to process your data  
within Hadoop.

Cascading
Developed by Concurrent, and open sourced under an Apache license,  
Cascading (http://www.cascading.org/) is a popular framework that abstracts  
the complexity of MapReduce away and allows us to create complex workflows on 
top of Hadoop. Cascading jobs can compile to, and be executed on, MapReduce, Tez, 
and Spark. Conceptually, the framework is similar to Apache Crunch, covered in 
Chapter 9, Making Development Easier, though practically there are differences in  
terms of data abstractions and end goals. Cascading adopts a tuple data model 
(similar to Pig) rather than arbitrary objects, and encourages the user to rely on  
a higher level DSL, powerful built-in types, and tools to manipulate data.
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Put in simple terms, Cascading is to PigLatin and HiveQL what Crunch is to a  
user-defined function.

Like Morphlines, which we also saw in Chapter 9, Making Development Easier, the 
Cascading data model follows a source-pipe-sink approach, where data is captured 
from a source, piped through a number of processing steps, and its output is then 
delivered into a sink, ready to be picked up by another application.

Cascading encourages developers to write code in a number of JVM languages.  
Ports of the framework exist for Python (PyCascading), JRuby (Cascading.jruby), 
Clojure (Cascalog), and Scala (Scalding). Cascalog and Scalding in particular have 
gained a lot of traction and spawned off their very own ecosystems.

An area where Cascading excels is documentation. The project provides 
comprehensive javadocs of the API, extensive tutorials (http://www.cascading.
org/documentation/tutorials/) and an interactive exercise-based learning 
environment (https://github.com/Cascading/Impatient).

Another strong selling point of Cascading is its integration with third-party 
environments. Amazon EMR supports Cascading as a first-class processing 
framework and allows us to launch Cascading clusters both with the command 
line and web interfaces (http://docs.aws.amazon.com/ElasticMapReduce/
latest/DeveloperGuide/CreateCascading.html). Plugins for the SDK exist for 
both the IntelliJ IDEA and Eclipse integrated development environments. One of 
the framework's top projects, Cascading Patterns, a collection of machine-learning 
algorithms, features a utility for translating Predictive Model Markup Language 
(PMML) documents into applications on Apache Hadoop, thus facilitating 
interoperability with popular statistical environments and scientific tools such  
as R (http://cran.r-project.org/web/packages/pmml/index.html).

AWS resources
Many Hadoop technologies can be deployed on AWS as part of a self-managed 
cluster. However, just as Amazon offers support for Elastic MapReduce, which 
handles Hadoop as a managed service, there are a few other services that are  
worth mentioning.
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SimpleDB and DynamoDB
For some time, AWS has offered SimpleDB as a hosted service providing an  
HBase-like data model.

It has, however, largely been superseded by a more recent service from AWS, 
DynamoDB, located at http://aws.amazon.com/dynamodb. Though its data model 
is very similar to that of SimpleDB and HBase, it is aimed at a very different type of 
application. Where SimpleDB has quite a rich search API but is very limited in terms 
of size, DynamoDB provides a more constrained though constantly evolving API, 
but with a service guarantee of near-unlimited scalability.

The DynamoDB pricing model is particularly interesting; instead of paying for a 
certain number of servers hosting the service, you allocate a certain capacity for 
read-and-write operations, and DynamoDB manages the resources required to meet 
this provisioned capacity. This is an interesting development as it is a more pure 
service model, where the mechanism of delivering the desired performance is kept 
completely opaque to the service user. Have a look at DynamoDB but if you need 
a much larger scale of data store than SimpleDB can offer; however, do consider 
the pricing model carefully as provisioning too much capacity can become very 
expensive very quickly. Amazon provides some good best practices for DynamoDB 
at the following URL that illustrate that minimizing the service costs can result 
in additional application-layer complexity: http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/BestPractices.html.

Of course the discussion of DynamoDB and SimpleDB assumes a 
non-relational data model; there is the Amazon Relational Database 
Service (Amazon RDS) for a relational database in the cloud service.

Kinesis
Just as EMR is hosted Hadoop and DynamoDB has similarities to a hosted HBase,  
it wasn’t surprising to see AWS announce Kinesis, a hosted streaming data service in 
2013. This can be found at http://aws.amazon.com/kinesis and it has very similar 
conceptual building blocks to the stack of Samza atop Kafka. Kinesis provides a 
partitioned view of messages as a stream of data and an API to have callbacks that 
execute when messages arrive. As with most AWS services, there is tight integration 
with other services making it easy to get data into and out of locations such as S3.
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Data Pipeline
The final AWS service that we'll mention is Data Pipeline, which can be found at 
http://aws.amazon.com/datapipeline. As the name suggests, it is a framework 
for building up data-processing jobs that involve multiple steps, data movements, 
and transformations. It has quite a conceptual overlap with Oozie, but with a few 
twists. Firstly, Data Pipeline has the expected deep integration with many other 
AWS services, enabling easy definition of data workflows that incorporate diverse 
repositories such as RDS, S3, and DynamoDB. In addition however, Data Pipeline 
does have the ability to integrate agents installed on local infrastructure, providing 
an interesting avenue for building workflows that span across the AWS and  
on-premises environments.

Sources of information
You don't just need new technologies and tools—even if they are cool. Sometimes, a 
little help from a more experienced source can pull you out of a hole. In this regard, 
you are well covered, as the Hadoop community is extremely strong in many areas.

Source code
It's sometimes easy to overlook, but Hadoop and all the other Apache projects are 
after all fully open source. The actual source code is the ultimate source (pardon the 
pun) of information about how the system works. Becoming familiar with the source 
and tracing through some of the functionality can be hugely informative. Not to 
mention helpful when you are hitting unexpected behavior.

Mailing lists and forums
Almost all the projects and services listed in this chapter have their own mailing lists 
and/or forums; check out the home pages for the specific links. Most distributions 
also have their own forums and other mechanisms to share knowledge and get (non-
commercial) help from the community. Additionally, if using AWS, make sure to 
check out the AWS developer forums at https://forums.aws.amazon.com.

Always remember to read posting guidelines carefully and understand the expected 
etiquette. These are tremendous sources of information; the lists and forums are 
often frequently visited by the developers of the particular project. Expect to see the 
core Hadoop developers on the Hadoop lists, Hive developers on the Hive list, EMR 
developers on the EMR forums, and so on.
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LinkedIn groups
There are a number of Hadoop and related groups on the professional social network 
LinkedIn. Do a search for your particular areas of interest, but a good starting point 
might be the general Hadoop users' group at http://www.linkedin.com/groups/
Hadoop-Users-988957.

HUGs
If you want more face-to-face interaction then look for a Hadoop User Group (HUG) 
in your area, most of which will be listed at http://wiki.apache.org/hadoop/
HadoopUserGroups. These tend to arrange semi-regular get-togethers that combine 
things such as quality presentations, the ability to discuss technology with like-
minded individuals, and often pizza and drinks.

No HUG near where you live? Consider starting one.

Conferences
Though some industries take decades to build up a conference circuit, Hadoop 
already has some significant conference action involving the open source, academic, 
and commercial worlds. Events such as the Hadoop Summit and Strata are pretty 
big; these and some other are linked from http://wiki.apache.org/hadoop/
Conferences.

Summary
In this chapter, we took a quick gallop around the broader Hadoop ecosystem, 
looking at the following topics:

•	 Why alternative Hadoop distributions exist and some of the more  
popular ones

•	 Other projects that provide capabilities, extensions, or Hadoop  
supporting tools

•	 Alternative ways of writing or creating Hadoop jobs
•	 Sources of information and how to connect with other enthusiasts

Now, go have fun and build something amazing!
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data analysis, with Spark SQL  147, 148
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about  25
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Data Spark  274
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Drill
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URL  219
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about  162
reference link  162

DynamoDB
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URL  343

E
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Elastic MapReduce

Hive, using with  208, 209
Elastic MapReduce (EMR)
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cluster, building on  308
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URL, for documentation  209
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using  20
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URL  257
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TextInputFormat  193

file format, Hive
about  192
JSON  193, 194

filesystem metadata, HDFS
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Hadoop 2 NameNode HA  38
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FILTER operator  164
FlumeJava

reference link  274
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functions, Pig
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kill command  156
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H
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data processing  24
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MapReduce

about  67
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Hadoop-provided RecordReader,  
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source code  87
reference link, for HashTagSentiment 

source code  83
reference link, for TopTenHashTag source 

code  79
social network topics  74-77
text cleanup, chain mapper used  84-86
Top N pattern  77-79
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Q
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architecture  107
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SerDe classes, Hive
DynamicSerDe  193
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Spark SQL
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stream processing
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text attribute, entity  170
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