
www.allitebooks.com

http://www.allitebooks.org

Learning Hadoop 2

Design and implement data processing, lifecycle
management, and analytic workflows with the
cutting-edge toolbox of Hadoop 2

Garry Turkington

Gabriele Modena

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Hadoop 2

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1060215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-551-8

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Garry Turkington

Gabriele Modena

Reviewers
Atdhe Buja

Amit Gurdasani

Jakob Homan

James Lampton

Davide Setti

Valerie Parham-Thompson

Commissioning Editor
Edward Gordon

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Vaibhav Pawar

Technical Editors
Indrajit A. Das

Menza Mathew

Copy Editors
Roshni Banerjee

Sarang Chari

Pranjali Chury

Project Coordinator
Kranti Berde

Proofreaders
Simran Bhogal

Martin Diver

Lawrence A. Herman

Paul Hindle

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Garry Turkington has over 15 years of industry experience, most of which has
been focused on the design and implementation of large-scale distributed systems.
In his current role as the CTO at Improve Digital, he is primarily responsible for
the realization of systems that store, process, and extract value from the company's
large data volumes. Before joining Improve Digital, he spent time at Amazon.co.uk,
where he led several software development teams, building systems that process the
Amazon catalog data for every item worldwide. Prior to this, he spent a decade in
various government positions in both the UK and the USA.

He has BSc and PhD degrees in Computer Science from Queens University Belfast in
Northern Ireland, and a Master's degree in Engineering in Systems Engineering from
Stevens Institute of Technology in the USA. He is the author of Hadoop Beginners Guide,
published by Packt Publishing in 2013, and is a committer on the Apache Samza project.

I would like to thank my wife Lea and mother Sarah for their
support and patience through the writing of another book and my
daughter Maya for frequently cheering me up and asking me hard
questions. I would also like to thank Gabriele for being such an
amazing co-author on this project.

www.allitebooks.com

http://www.allitebooks.org

Gabriele Modena is a data scientist at Improve Digital. In his current position, he
uses Hadoop to manage, process, and analyze behavioral and machine-generated
data. Gabriele enjoys using statistical and computational methods to look for
patterns in large amounts of data. Prior to his current job in ad tech he held a number
of positions in Academia and Industry where he did research in machine learning
and artificial intelligence.

He holds a BSc degree in Computer Science from the University of Trento, Italy
and a Research MSc degree in Artificial Intelligence: Learning Systems, from the
University of Amsterdam in the Netherlands.

First and foremost, I want to thank Laura for her support, constant
encouragement and endless patience putting up with far too many
"can't do, I'm working on the Hadoop book". She is my rock and
I dedicate this book to her.

A special thank you goes to Amit, Atdhe, Davide, Jakob, James
and Valerie, whose invaluable feedback and commentary made
this work possible.

Finally, I'd like to thank my co-author, Garry, for bringing me on
board with this project; it has been a pleasure working together.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Atdhe Buja is a certified ethical hacker, DBA (MCITP, OCA11g), and
developer with good management skills. He is a DBA at the Agency for Information
Society / Ministry of Public Administration, where he also manages some projects
of e-governance and has more than 10 years' experience working on SQL Server.

Atdhe is a regular columnist for UBT News. Currently, he holds an MSc degree in
computer science and engineering and has a bachelor's degree in management and
information. He specializes in and is certified in many technologies, such as SQL
Server (all versions), Oracle 11g, CEH, Windows Server, MS Project, SCOM 2012 R2,
BizTalk, and integration business processes.

He was the reviewer of the book, Microsoft SQL Server 2012 with Hadoop, published
by Packt Publishing. His capabilities go beyond the aforementioned knowledge!

I thank Donika and my family for all the encouragement and support.

Amit Gurdasani is a software engineer at Amazon. He architects distributed
systems to process product catalogue data. Prior to building high-throughput
systems at Amazon, he was working on the entire software stack, both as a
systems-level developer at Ericsson and IBM as well as an application developer
at Manhattan Associates. He maintains a strong interest in bulk data processing,
data streaming, and service-oriented software architectures.

www.allitebooks.com

http://www.allitebooks.org

Jakob Homan has been involved with big data and the Apache Hadoop ecosystem
for more than 5 years. He is a Hadoop committer as well as a committer for the
Apache Giraph, Spark, Kafka, and Tajo projects, and is a PMC member. He has
worked in bringing all these systems to scale at Yahoo! and LinkedIn.

James Lampton is a seasoned practitioner of all things data (big or small) with
10 years of hands-on experience in building and using large-scale data storage and
processing platforms. He is a believer in holistic approaches to solving problems
using the right tool for the right job. His favorite tools include Python, Java, Hadoop,
Pig, Storm, and SQL (which sometimes I like and sometimes I don't). He has recently
completed his PhD from the University of Maryland with the release of Pig Squeal:
a mechanism for running Pig scripts on Storm.

I would like to thank my spouse, Andrea, and my son, Henry, for
giving me time to read work-related things at home. I would also
like to thank Garry, Gabriele, and the folks at Packt Publishing for
the opportunity to review this manuscript and for their patience
and understanding, as my free time was consumed when writing
my dissertation.

Davide Setti, after graduating in physics from the University of Trento, joined the
SoNet research unit at the Fondazione Bruno Kessler in Trento, where he applied
large-scale data analysis techniques to understand people's behaviors in social
networks and large collaborative projects such as Wikipedia.

In 2010, Davide moved to Fondazione, where he led the development of data analytic
tools to support research on civic media, citizen journalism, and digital media.

In 2013, Davide became the CTO of SpazioDati, where he leads the development
of tools to perform semantic analysis of massive amounts of data in the business
information sector.

When not solving hard problems, Davide enjoys taking care of his family vineyard
and playing with his two children.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction	 7

A note on versioning	 7
The background of Hadoop	 8
Components of Hadoop	 10

Common building blocks	 10
Storage	 11
Computation	 11
Better together	 12

Hadoop 2 – what's the big deal?	 12
Storage in Hadoop 2	 13
Computation in Hadoop 2	 14

Distributions of Apache Hadoop	 16
A dual approach	 17
AWS – infrastructure on demand from Amazon	 17

Simple Storage Service (S3)	 17
Elastic MapReduce (EMR)	 18

Getting started	 18
Cloudera QuickStart VM	 19
Amazon EMR	 19

Creating an AWS account	 19
Signing up for the necessary services	 20

Using Elastic MapReduce	 20
Getting Hadoop up and running	 20

How to use EMR	 20
AWS credentials	 21

The AWS command-line interface	 21
Running the examples	 23

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Data processing with Hadoop	 24
Why Twitter?	 24
Building our first dataset	 25

One service, multiple APIs	 25
Anatomy of a Tweet	 25
Twitter credentials	 26

Programmatic access with Python	 28
Summary	 31

Chapter 2: Storage	 33
The inner workings of HDFS	 33

Cluster startup	 34
NameNode startup	 34
DataNode startup	 35

Block replication	 35
Command-line access to the HDFS filesystem	 36

Exploring the HDFS filesystem	 36
Protecting the filesystem metadata	 38

Secondary NameNode not to the rescue	 38
Hadoop 2 NameNode HA	 38

Keeping the HA NameNodes in sync	 39
Client configuration	 40
How a failover works	 40

Apache ZooKeeper – a different type of filesystem	 41
Implementing a distributed lock with sequential ZNodes	 42
Implementing group membership and leader election using
ephemeral ZNodes	 43
Java API	 44
Building blocks	 44
Further reading	 44

Automatic NameNode failover	 45
HDFS snapshots	 45
Hadoop filesystems	 48

Hadoop interfaces	 48
Java FileSystem API	 48
Libhdfs	 49
Thrift 	 49

Managing and serializing data	 49
The Writable interface	 49
Introducing the wrapper classes 	 50
Array wrapper classes 	 50
The Comparable and WritableComparable interfaces	 51

Table of Contents

[iii]

Storing data	 51
Serialization and Containers	 51
Compression	 52
General-purpose file formats	 52
Column-oriented data formats	 53

RCFile	 54
ORC	 54
Parquet	 54
Avro	 54
Using the Java API	 55

Summary	 58
Chapter 3: Processing – MapReduce and Beyond	 59

MapReduce	 59
Java API to MapReduce	 61

The Mapper class	 61
The Reducer class	 62
The Driver class	 63
Combiner	 65
Partitioning	 66

The optional partition function	 66
Hadoop-provided mapper and reducer implementations	 67
Sharing reference data	 67

Writing MapReduce programs	 68
Getting started	 68
Running the examples	 69

Local cluster	 69
Elastic MapReduce	 69

WordCount, the Hello World of MapReduce	 70
Word co-occurrences	 72
Trending topics	 74

The Top N pattern	 77
Sentiment of hashtags	 80
Text cleanup using chain mapper	 84

Walking through a run of a MapReduce job	 87
Startup	 87
Splitting the input	 88
Task assignment	 88
Task startup	 88
Ongoing JobTracker monitoring	 89
Mapper input	 89
Mapper execution	 89
Mapper output and reducer input	 90

Table of Contents

[iv]

Reducer input	 90
Reducer execution	 90
Reducer output	 90
Shutdown	 90
Input/Output	 91
InputFormat and RecordReader	 91
Hadoop-provided InputFormat	 92
Hadoop-provided RecordReader	 92
OutputFormat and RecordWriter	 93
Hadoop-provided OutputFormat	 93
Sequence files	 93

YARN	 94
YARN architecture	 95

The components of YARN	 95
Anatomy of a YARN application	 95

Life cycle of a YARN application	 96
Fault tolerance and monitoring	 97

Thinking in layers	 97
Execution models	 98

YARN in the real world – Computation beyond MapReduce	 99
The problem with MapReduce	 99
Tez	 100

Hive-on-tez	 101
Apache Spark	 102
Apache Samza	 102

YARN-independent frameworks	 103
YARN today and beyond	 103

Summary	 104
Chapter 4: Real-time Computation with Samza	 105

Stream processing with Samza	 105
How Samza works	 106
Samza high-level architecture	 107
Samza's best friend – Apache Kafka	 107
YARN integration	 109
An independent model	 109
Hello Samza!	 110
Building a tweet parsing job	 111
The configuration file	 112
Getting Twitter data into Kafka	 114
Running a Samza job	 115
Samza and HDFS	 116

Table of Contents

[v]

Windowing functions	 117
Multijob workflows	 118
Tweet sentiment analysis	 120

Bootstrap streams	 121
Stateful tasks	 125

Summary	 129
Chapter 5: Iterative Computation with Spark	 131

Apache Spark	 132
Cluster computing with working sets	 132

Resilient Distributed Datasets (RDDs)	 133
Actions	 134

Deployment	 134
Spark on YARN	 134
Spark on EC2	 135

Getting started with Spark	 135
Writing and running standalone applications	 137

Scala API	 137
Java API	 138
WordCount in Java	 138
Python API	 139

The Spark ecosystem	 140
Spark Streaming	 140
GraphX	 140
MLlib	 141
Spark SQL	 141

Processing data with Apache Spark	 141
Building and running the examples	 141

Running the examples on YARN	 142
Finding popular topics	 143
Assigning a sentiment to topics 	 144

Data processing on streams	 145
State management	 146

Data analysis with Spark SQL	 147
SQL on data streams	 149

Comparing Samza and Spark Streaming	 150
Summary	 151

Chapter 6: Data Analysis with Apache Pig	 153
An overview of Pig	 153
Getting started	 154
Running Pig	 155

Grunt – the Pig interactive shell	 156
Elastic MapReduce	 156

Table of Contents

[vi]

Fundamentals of Apache Pig	 157
Programming Pig	 159

Pig data types	 159
Pig functions	 160

Load/store	 161
Eval	 161
The tuple, bag, and map functions	 162
The math, string, and datetime functions	 162
Dynamic invokers	 162
Macros	 163

Working with data	 163
Filtering	 164
Aggregation	 164
Foreach	 165
Join	 165

Extending Pig (UDFs)	 167
Contributed UDFs	 167

Piggybank	 168
Elephant Bird	 168
Apache DataFu	 168

Analyzing the Twitter stream	 168
Prerequisites	 169
Dataset exploration	 169
Tweet metadata	 170
Data preparation	 170
Top n statistics	 172
Datetime manipulation	 173

Sessions	 174
Capturing user interactions	 175
Link analysis	 177
Influential users	 178

Summary	 182
Chapter 7: Hadoop and SQL	 183

Why SQL on Hadoop	 184
Other SQL-on-Hadoop solutions	 184

Prerequisites	 185
Overview of Hive	 187
The nature of Hive tables	 188

Hive architecture	 189
Data types	 190
DDL statements	 190
File formats and storage	 192

JSON	 193

Table of Contents

[vii]

Avro	 194
Columnar stores	 196

Queries	 197
Structuring Hive tables for given workloads	 199
Partitioning a table	 199

Overwriting and updating data	 202
Bucketing and sorting	 203
Sampling data	 205

Writing scripts	 206
Hive and Amazon Web Services	 207

Hive and S3	 207
Hive on Elastic MapReduce	 208

Extending HiveQL	 209
Programmatic interfaces	 212

JDBC	 212
Thrift	 213

Stinger initiative	 215
Impala	 216

The architecture of Impala	 217
Co-existing with Hive	 217
A different philosophy	 218
Drill, Tajo, and beyond	 219

Summary	 220
Chapter 8: Data Lifecycle Management	 221

What data lifecycle management is	 221
Importance of data lifecycle management	 222
Tools to help	 222

Building a tweet analysis capability	 223
Getting the tweet data	 223
Introducing Oozie	 223

A note on HDFS file permissions	 229
Making development a little easier	 230
Extracting data and ingesting into Hive	 230
A note on workflow directory structure	 234
Introducing HCatalog	 235
The Oozie sharelib	 237
HCatalog and partitioned tables	 238

Producing derived data	 240
Performing multiple actions in parallel	 241
Calling a subworkflow	 243
Adding global settings	 244

Challenges of external data	 246
Data validation	 246

Table of Contents

[viii]

Validation actions	 246
Handling format changes	 247
Handling schema evolution with Avro	 248

Final thoughts on using Avro schema evolution	 251
Collecting additional data	 253

Scheduling workflows	 253
Other Oozie triggers	 256

Pulling it all together	 256
Other tools to help	 257

Summary	 257
Chapter 9: Making Development Easier	 259

Choosing a framework	 259
Hadoop streaming	 260

Streaming word count in Python	 261
Differences in jobs when using streaming	 263
Finding important words in text	 264

Calculate term frequency	 265
Calculate document frequency	 267
Putting it all together – TF-IDF	 269

Kite Data	 270
Data Core	 271
Data HCatalog	 272
Data Hive	 273
Data MapReduce	 273
Data Spark	 274
Data Crunch	 274

Apache Crunch	 274
Getting started	 275
Concepts	 275
Data serialization	 277
Data processing patterns	 278

Aggregation and sorting	 278
Joining data	 279

Pipelines implementation and execution	 280
SparkPipeline	 280
MemPipeline	 280

Crunch examples	 281
Word co-occurrence	 281
TF-IDF	 281

Kite Morphlines	 286
Concepts	 287
Morphline commands	 288

Summary	 295

Table of Contents

[ix]

Chapter 10: Running a Hadoop Cluster	 297
I'm a developer – I don't care about operations!	 297

Hadoop and DevOps practices	 298
Cloudera Manager	 298

To pay or not to pay	 299
Cluster management using Cloudera Manager	 299

Cloudera Manager and other management tools	 300
Monitoring with Cloudera Manager	 300

Finding configuration files	 301
Cloudera Manager API	 301
Cloudera Manager lock-in	 301

Ambari – the open source alternative	 302
Operations in the Hadoop 2 world	 303
Sharing resources	 304
Building a physical cluster	 305

Physical layout	 306
Rack awareness	 306
Service layout	 307
Upgrading a service	 307

Building a cluster on EMR	 308
Considerations about filesystems	 309
Getting data into EMR	 309
EC2 instances and tuning	 310

Cluster tuning	 310
JVM considerations	 310

The small files problem	 310
Map and reduce optimizations	 311

Security	 311
Evolution of the Hadoop security model	 312
Beyond basic authorization	 312
The future of Hadoop security	 313
Consequences of using a secured cluster	 313

Monitoring	 314
Hadoop – where failures don't matter	 314
Monitoring integration	 314
Application-level metrics	 315

Troubleshooting	 316
Logging levels	 316
Access to logfiles	 318
ResourceManager, NodeManager, and Application Manager	 321

Applications	 321
Nodes	 322

Table of Contents

[x]

Scheduler	 323
MapReduce	 323
MapReduce v1	 323
MapReduce v2 (YARN)	 326
JobHistory Server	 327

NameNode and DataNode	 328
Summary	 330

Chapter 11: Where to Go Next	 333
Alternative distributions	 333

Cloudera Distribution for Hadoop	 334
Hortonworks Data Platform	 335
MapR	 335
And the rest…	 336
Choosing a distribution	 336

Other computational frameworks	 336
Apache Storm	 336
Apache Giraph	 337
Apache HAMA	 337

Other interesting projects	 337
HBase	 337
Sqoop	 338
Whir	 339
Mahout	 339
Hue	 340

Other programming abstractions	 341
Cascading	 341

AWS resources	 342
SimpleDB and DynamoDB	 343
Kinesis	 343
Data Pipeline	 344

Sources of information	 344
Source code	 344
Mailing lists and forums	 344
LinkedIn groups	 345
HUGs	 345
Conferences	 345

Summary	 345
Index	 347

Preface
This book will take you on a hands-on exploration of the wonderful world that is
Hadoop 2 and its rapidly growing ecosystem. Building on the solid foundation
from the earlier versions of the platform, Hadoop 2 allows multiple data processing
frameworks to be executed on a single Hadoop cluster.

To give an understanding of this significant evolution, we will explore both how
these new models work and also show their applications in processing large data
volumes with batch, iterative, and near-real-time algorithms.

What this book covers
Chapter 1, Introduction, gives the background to Hadoop and the Big Data
problems it looks to solve. We also highlight the areas in which Hadoop 1 had
room for improvement.

Chapter 2, Storage, delves into the Hadoop Distributed File System, where most data
processed by Hadoop is stored. We examine the particular characteristics of HDFS,
show how to use it, and discuss how it has improved in Hadoop 2. We also introduce
ZooKeeper, another storage system within Hadoop, upon which many of its
high-availability features rely.

Chapter 3, Processing – MapReduce and Beyond, first discusses the traditional
Hadoop processing model and how it is used. We then discuss how Hadoop 2
has generalized the platform to use multiple computational models, of which
MapReduce is merely one.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 4, Real-time Computation with Samza, takes a deeper look at one of these
alternative processing models enabled by Hadoop 2. In particular, we look at how
to process real-time streaming data with Apache Samza.

Chapter 5, Iterative Computation with Spark, delves into a very different alternative
processing model. In this chapter, we look at how Apache Spark provides the means
to do iterative processing.

Chapter 6, Data Analysis with Pig, demonstrates how Apache Pig makes the traditional
computational model of MapReduce easier to use by providing a language to
describe data flows.

Chapter 7, Hadoop and SQL, looks at how the familiar SQL language has been
implemented atop data stored in Hadoop. Through the use of Apache Hive and
describing alternatives such as Cloudera Impala, we show how Big Data processing
can be made possible using existing skills and tools.

Chapter 8, Data Lifecycle Management, takes a look at the bigger picture of just how
to manage all that data that is to be processed in Hadoop. Using Apache Oozie, we
show how to build up workflows to ingest, process, and manage data.

Chapter 9, Making Development Easier, focuses on a selection of tools aimed at
helping a developer get results quickly. Through the use of Hadoop streaming,
Apache Crunch and Kite, we show how the use of the right tool can speed up the
development loop or provide new APIs with richer semantics and less boilerplate.

Chapter 10, Running a Hadoop Cluster, takes a look at the operational side of Hadoop.
By focusing on the areas of interest to developers, such as cluster management,
monitoring, and security, this chapter should help you to work better with your
operations staff.

Chapter 11, Where to Go Next, takes you on a whirlwind tour through a number of other
projects and tools that we feel are useful, but could not cover in detail in the book due
to space constraints. We also give some pointers on where to find additional sources of
information and how to engage with the various open source communities.

What you need for this book
Because most people don't have a large number of spare machines sitting around,
we use the Cloudera QuickStart virtual machine for most of the examples in this
book. This is a single machine image with all the components of a full Hadoop
cluster pre-installed. It can be run on any host machine supporting either the
VMware or the VirtualBox virtualization technology.

Preface

[3]

We also explore Amazon Web Services and how some of the Hadoop technologies
can be run on the AWS Elastic MapReduce service. The AWS services can be
managed through a web browser or a Linux command-line interface.

Who this book is for
This book is primarily aimed at application and system developers interested in
learning how to solve practical problems using the Hadoop framework and related
components. Although we show examples in a few programming languages, a
strong foundation in Java is the main prerequisite.

Data engineers and architects might also find the material concerning data life cycle,
file formats, and computational models useful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"If Avro dependencies are not present in the classpath, we need to add the Avro
MapReduce.jar file to our environment before accessing individual fields."

A block of code is set as follows:

topic_edges_grouped = FOREACH topic_edges_grouped {
 GENERATE
 group.topic_id as topic,
 group.source_id as source,
 topic_edges.(destination_id,w) as edges;
}

Any command-line input or output is written as follows:

$ hdfs dfs -put target/elephant-bird-pig-4.5.jar hdfs:///jar/

$ hdfs dfs –put target/elephant-bird-hadoop-compat-4.5.jar hdfs:///jar/

$ hdfs dfs –put elephant-bird-core-4.5.jar hdfs:///jar/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, appear in the text like this: "Once the form is
filled in, we need to review and accept the terms of service and click on the
Create Application button in the bottom-left corner of the page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
The source code for this book can be found on GitHub at https://github.com/
learninghadoop2/book-examples. The authors will be applying any errata to
this code and keeping it up to date as the technologies evolve. In addition you can
download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction
This book will teach you how to build amazing systems using the latest release of
Hadoop. Before you change the world though, we need to do some groundwork,
which is where this chapter comes in.

In this introductory chapter, we will cover the following topics:

•	 A brief refresher on the background to Hadoop
•	 A walk-through of Hadoop's evolution
•	 The key elements in Hadoop 2
•	 The Hadoop distributions we'll use in this book
•	 The dataset we'll use for examples

A note on versioning
In Hadoop 1, the version history was somewhat convoluted with multiple forked
branches in the 0.2x range, leading to odd situations, where a 1.x version could, in
some situations, have fewer features than a 0.23 release. In the version 2 codebase,
this is fortunately much more straightforward, but it's important to clarify exactly
which version we will use in this book.

Hadoop 2.0 was released in alpha and beta versions, and along the way, several
incompatible changes were introduced. There was, in particular, a major API
stabilization effort between the beta and final release stages.

Introduction

[8]

Hadoop 2.2.0 was the first general availability (GA) release of the Hadoop 2
codebase, and its interfaces are now declared stable and forward compatible. We
will therefore use the 2.2 product and interfaces in this book. Though the principles
will be usable on a 2.0 beta, in particular, there will be API incompatibilities in the
beta. This is particularly important as MapReduce v2 was back-ported to Hadoop
1 by several distribution vendors, but these products were based on the beta and
not the GA APIs. If you are using such a product, then you will encounter these
incompatible changes. It is recommended that a release based upon Hadoop 2.2
or later is used for both the development and the production deployments of any
Hadoop 2 workloads.

The background of Hadoop
We're assuming that most readers will have a little familiarity with Hadoop, or at the
very least, with big data-processing systems. Consequently, we won't give a detailed
background as to why Hadoop is successful or the types of problem it helps to
solve in this book. However, particularly because of some aspects of Hadoop 2 and
the other products we will use in later chapters, it is useful to give a sketch of how
we see Hadoop fitting into the technology landscape and which are the particular
problem areas where we believe it gives the most benefit.

In ancient times, before the term "big data" came into the picture (which equates to
maybe a decade ago), there were few options to process datasets of sizes in terabytes
and beyond. Some commercial databases could, with very specific and expensive
hardware setups, be scaled to this level, but the expertise and capital expenditure
required made it an option for only the largest organizations. Alternatively, one
could build a custom system aimed at the specific problem at hand. This suffered
from some of the same problems (expertise and cost) and added the risk inherent
in any cutting-edge system. On the other hand, if a system was successfully
constructed, it was likely a very good fit to the need.

Few small- to mid-size companies even worried about this space, not only because
the solutions were out of their reach, but they generally also didn't have anything
close to the data volumes that required such solutions. As the ability to generate
very large datasets became more common, so did the need to process that data.

Chapter 1

[9]

Even though large data became more democratized and was no longer the domain of
the privileged few, major architectural changes were required if the data-processing
systems could be made affordable to smaller companies. The first big change was
to reduce the required upfront capital expenditure on the system; that means no
high-end hardware or expensive software licenses. Previously, high-end hardware
would have been utilized most commonly in a relatively small number of very
large servers and storage systems, each of which had multiple approaches to avoid
hardware failures. Though very impressive, such systems are hugely expensive,
and moving to a larger number of lower-end servers would be the quickest way
to dramatically reduce the hardware cost of a new system. Moving more toward
commodity hardware instead of the traditional enterprise-grade equipment would
also mean a reduction in capabilities in the area of resilience and fault tolerance.
Those responsibilities would need to be taken up by the software layer. Smarter
software, dumber hardware.

Google started the change that would eventually be known as Hadoop, when
in 2003, and in 2004, they released two academic papers describing the Google
File System (GFS) (http://research.google.com/archive/gfs.html) and
MapReduce (http://research.google.com/archive/mapreduce.html). The two
together provided a platform for very large-scale data processing in a highly efficient
manner. Google had taken the build-it-yourself approach, but instead of constructing
something aimed at one specific problem or dataset, they instead created a platform
on which multiple processing applications could be implemented. In particular,
they utilized large numbers of commodity servers and built GFS and MapReduce
in a way that assumed hardware failures would be commonplace and were simply
something that the software needed to deal with.

At the same time, Doug Cutting was working on the Nutch open source web
crawler. He was working on elements within the system that resonated strongly once
the Google GFS and MapReduce papers were published. Doug started work on open
source implementations of these Google ideas, and Hadoop was soon born, firstly,
as a subproject of Lucene, and then as its own top-level project within the Apache
Software Foundation.

Yahoo! hired Doug Cutting in 2006 and quickly became one of the most prominent
supporters of the Hadoop project. In addition to often publicizing some of the largest
Hadoop deployments in the world, Yahoo! allowed Doug and other engineers to
contribute to Hadoop while employed by the company, not to mention contributing
back some of its own internally developed Hadoop improvements and extensions.

Introduction

[10]

Components of Hadoop
The broad Hadoop umbrella project has many component subprojects, and we'll
discuss several of them in this book. At its core, Hadoop provides two services:
storage and computation. A typical Hadoop workflow consists of loading data into
the Hadoop Distributed File System (HDFS) and processing using the MapReduce
API or several tools that rely on MapReduce as an execution framework.

Applications (Hive, Pig, Crunch, Cascading, etc...)

Computation (MapReduce)

Storage (HDFS)

Hadoop 1: HDFS and MapReduce

Both layers are direct implementations of Google's own GFS and MapReduce
technologies.

Common building blocks
Both HDFS and MapReduce exhibit several of the architectural principles described
in the previous section. In particular, the common principles are as follows:

•	 Both are designed to run on clusters of commodity (that is, low to medium
specification) servers

•	 Both scale their capacity by adding more servers (scale-out) as opposed to the
previous models of using larger hardware (scale-up)

•	 Both have mechanisms to identify and work around failures
•	 Both provide most of their services transparently, allowing the user to

concentrate on the problem at hand
•	 Both have an architecture where a software cluster sits on the physical servers

and manages aspects such as application load balancing and fault tolerance,
without relying on high-end hardware to deliver these capabilities

Chapter 1

[11]

Storage
HDFS is a filesystem, though not a POSIX-compliant one. This basically means that it
does not display the same characteristics as that of a regular filesystem. In particular,
the characteristics are as follows:

•	 HDFS stores files in blocks that are typically at least 64 MB or
(more commonly now) 128 MB in size, much larger than the 4-32 KB
seen in most filesystems

•	 HDFS is optimized for throughput over latency; it is very efficient at
streaming reads of large files but poor when seeking for many small ones

•	 HDFS is optimized for workloads that are generally write-once and
read-many

•	 Instead of handling disk failures by having physical redundancies in disk
arrays or similar strategies, HDFS uses replication. Each of the blocks
comprising a file is stored on multiple nodes within the cluster, and a service
called the NameNode constantly monitors to ensure that failures have not
dropped any block below the desired replication factor. If this does happen,
then it schedules the making of another copy within the cluster.

Computation
MapReduce is an API, an execution engine, and a processing paradigm; it provides a
series of transformations from a source into a result dataset. In the simplest case, the
input data is fed through a map function and the resultant temporary data is then
fed through a reduce function.

MapReduce works best on semistructured or unstructured data. Instead of data
conforming to rigid schemas, the requirement is instead that the data can be
provided to the map function as a series of key-value pairs. The output of the
map function is a set of other key-value pairs, and the reduce function performs
aggregation to collect the final set of results.

www.allitebooks.com

http://www.allitebooks.org

Introduction

[12]

Hadoop provides a standard specification (that is, interface) for the map and reduce
phases, and the implementation of these are often referred to as mappers and reducers.
A typical MapReduce application will comprise a number of mappers and reducers,
and it's not unusual for several of these to be extremely simple. The developer focuses
on expressing the transformation between the source and the resultant data, and the
Hadoop framework manages all aspects of job execution and coordination.

Better together
It is possible to appreciate the individual merits of HDFS and MapReduce, but they
are even more powerful when combined. They can be used individually, but when
they are together, they bring out the best in each other, and this close interworking
was a major factor in the success and acceptance of Hadoop 1.

When a MapReduce job is being planned, Hadoop needs to decide on which host to
execute the code in order to process the dataset most efficiently. If the MapReduce
cluster hosts are all pulling their data from a single storage host or array, then this
largely doesn't matter as the storage system is a shared resource that will cause
contention. If the storage system was more transparent and allowed MapReduce to
manipulate its data more directly, then there would be an opportunity to perform the
processing closer to the data, building on the principle of it being less expensive to
move processing than data.

The most common deployment model for Hadoop sees the HDFS and MapReduce
clusters deployed on the same set of servers. Each host that contains data and the
HDFS component to manage the data also hosts a MapReduce component that can
schedule and execute data processing. When a job is submitted to Hadoop, it can use
the locality optimization to schedule data on the hosts where data resides as much as
possible, thus minimizing network traffic and maximizing performance.

Hadoop 2 – what's the big deal?
If we look at the two main components of the core Hadoop distribution, storage and
computation, we see that Hadoop 2 has a very different impact on each of them.
Whereas the HDFS found in Hadoop 2 is mostly a much more feature-rich and
resilient product than the HDFS in Hadoop 1, for MapReduce, the changes are much
more profound and have, in fact, altered how Hadoop is perceived as a processing
platform in general. Let's look at HDFS in Hadoop 2 first.

Chapter 1

[13]

Storage in Hadoop 2
We'll discuss the HDFS architecture in more detail in Chapter 2, Storage, but for now,
it's sufficient to think of a master-slave model. The slave nodes (called DataNodes)
hold the actual filesystem data. In particular, each host running a DataNode will
typically have one or more disks onto which files containing the data for each
HDFS block are written. The DataNode itself has no understanding of the overall
filesystem; its role is to store, serve, and ensure the integrity of the data for
which it is responsible.

The master node (called the NameNode) is responsible for knowing which of the
DataNodes holds which block and how these blocks are structured to form the
filesystem. When a client looks at the filesystem and wishes to retrieve a file,
it's via a request to the NameNode that the list of required blocks is retrieved.

This model works well and has been scaled to clusters with tens of thousands of
nodes at companies such as Yahoo! So, though it is scalable, there is a resiliency risk;
if the NameNode becomes unavailable, then the entire cluster is rendered effectively
useless. No HDFS operations can be performed, and since the vast majority of
installations use HDFS as the storage layer for services, such as MapReduce, they
also become unavailable even if they are still running without problems.

More catastrophically, the NameNode stores the filesystem metadata to a persistent
file on its local filesystem. If the NameNode host crashes in a way that this data is not
recoverable, then all data on the cluster is effectively lost forever. The data will still
exist on the various DataNodes, but the mapping of which blocks comprise which
files is lost. This is why, in Hadoop 1, the best practice was to have the NameNode
synchronously write its filesystem metadata to both local disks and at least one
remote network volume (typically via NFS).

Several NameNode high-availability (HA) solutions have been made available by
third-party suppliers, but the core Hadoop product did not offer such resilience in
Version 1. Given this architectural single point of failure and the risk of data loss, it
won't be a surprise to hear that NameNode HA is one of the major features of HDFS
in Hadoop 2 and is something we'll discuss in detail in later chapters. The feature
provides both a standby NameNode that can be automatically promoted to service
all requests should the active NameNode fail, but also builds additional resilience for
the critical filesystem metadata atop this mechanism.

Introduction

[14]

HDFS in Hadoop 2 is still a non-POSIX filesystem; it still has a very large block
size and it still trades latency for throughput. However, it does now have a few
capabilities that can make it look a little more like a traditional filesystem. In
particular, the core HDFS in Hadoop 2 now can be remotely mounted as an NFS
volume. This is another feature that was previously offered as a proprietary
capability by third-party suppliers but is now in the main Apache codebase.

Overall, the HDFS in Hadoop 2 is more resilient and can be more easily integrated
into existing workflows and processes. It's a strong evolution of the product found
in Hadoop 1.

Computation in Hadoop 2
The work on HDFS 2 was started before a direction for MapReduce crystallized.
This was likely due to the fact that features such as NameNode HA were such an
obvious path that the community knew the most critical areas to address. However,
MapReduce didn't really have a similar list of areas of improvement, and that's why,
when the MRv2 initiative started, it wasn't completely clear where it would lead.

Perhaps the most frequent criticism of MapReduce in Hadoop 1 was how its batch
processing model was ill-suited to problem domains where faster response times
were required. Hive, for example, which we'll discuss in Chapter 7, Hadoop and SQL,
provides a SQL-like interface onto HDFS data, but, behind the scenes, the statements
are converted into MapReduce jobs that are then executed like any other. A number
of other products and tools took a similar approach, providing a specific user-facing
interface that hid a MapReduce translation layer.

Though this approach has been very successful, and some amazing products have
been built, the fact remains that in many cases, there is a mismatch as all of these
interfaces, some of which expect a certain type of responsiveness, are behind the
scenes, being executed on a batch-processing platform. When looking to enhance
MapReduce, improvements could be made to make it a better fit to these use cases,
but the fundamental mismatch would remain. This situation led to a significant
change of focus of the MRv2 initiative; perhaps MapReduce itself didn't need change,
but the real need was to enable different processing models on the Hadoop platform.
Thus was born Yet Another Resource Negotiator (YARN).

Looking at MapReduce in Hadoop 1, the product actually did two quite different
things; it provided the processing framework to execute MapReduce computations,
but it also managed the allocation of this computation across the cluster. Not
only did it direct data to and between the specific map and reduce tasks, but it
also determined where each task would run, and managed the full job life cycle,
monitoring the health of each task and node, rescheduling if any failed, and so on.

Chapter 1

[15]

This is not a trivial task, and the automated parallelization of workloads has always
been one of the main benefits of Hadoop. If we look at MapReduce in Hadoop
1, we see that after the user defines the key criteria for the job, everything else
is the responsibility of the system. Critically, from a scale perspective, the same
MapReduce job can be applied to datasets of any volume hosted on clusters of any
size. If the data is 1 GB in size and on a single host, then Hadoop will schedule the
processing accordingly. If the data is instead 1 PB in size and hosted across 1,000
machines, then it does likewise. From the user's perspective, the actual scale of the
data and cluster is transparent, and aside from affecting the time taken to process the
job, it does not change the interface with which to interact with the system.

In Hadoop 2, this role of job scheduling and resource management is separated from
that of executing the actual application, and is implemented by YARN.

YARN is responsible for managing the cluster resources, and so MapReduce exists
as an application that runs atop the YARN framework. The MapReduce interface in
Hadoop 2 is completely compatible with that in Hadoop 1, both semantically and
practically. However, under the covers, MapReduce has become a hosted application
on the YARN framework.

The significance of this split is that other applications can be written that provide
processing models more focused on the actual problem domain and can offload
all the resource management and scheduling responsibilities to YARN. The latest
versions of many different execution engines have been ported onto YARN, either
in a production-ready or experimental state, and it has shown that the approach can
allow a single Hadoop cluster to run everything from batch-oriented MapReduce
jobs through fast-response SQL queries to continuous data streaming and even to
implement models such as graph processing and the Message Passing Interface
(MPI) from the High Performance Computing (HPC) world. The following diagram
shows the architecture of Hadoop 2:

Applications (Hive, Pig, Crunch, Cascading, etc...)

Resource Management (YARN)

HDFS

Streaming
(storm, spark,

samza)

Batch
(MapReduce)

In memory
(spark)

Interactive
(Tez)

HPC
(MPI)

Graph
(giraph)

Hadoop 2

Introduction

[16]

This is why much of the attention and excitement around Hadoop 2 has been focused
on YARN and frameworks that sit on top of it, such as Apache Tez and Apache
Spark. With YARN, the Hadoop cluster is no longer just a batch-processing engine; it
is the single platform on which a vast array of processing techniques can be applied
to the enormous data volumes stored in HDFS. Moreover, applications can build on
these computation paradigms and execution models.

The analogy that is achieving some traction is to think of YARN as the processing
kernel upon which other domain-specific applications can be built. We'll discuss
YARN in more detail in this book, particularly in Chapter 3, Processing – MapReduce
and Beyond, Chapter 4, Real-time Computation with Samza, and Chapter 5, Iterative
Computation with Spark.

Distributions of Apache Hadoop
In the very early days of Hadoop, the burden of installing (often building from
source) and managing each component and its dependencies fell on the user. As the
system became more popular and the ecosystem of third-party tools and libraries
started to grow, the complexity of installing and managing a Hadoop deployment
increased dramatically to the point where providing a coherent offer of software
packages, documentation, and training built around the core Apache Hadoop has
become a business model. Enter the world of distributions for Apache Hadoop.

Hadoop distributions are conceptually similar to how Linux distributions provide a
set of integrated software around a common core. They take the burden of bundling
and packaging software themselves and provide the user with an easy way to install,
manage, and deploy Apache Hadoop and a selected number of third-party libraries.
In particular, the distribution releases deliver a series of product versions that are
certified to be mutually compatible. Historically, putting together a Hadoop-based
platform was often greatly complicated by the various version interdependencies.

Cloudera (http://www.cloudera.com), Hortonworks (http://www.hortonworks.
com), and MapR (http://www.mapr.com) are amongst the first to have reached the
market, each characterized by different approaches and selling points. Hortonworks
positions itself as the open source player; Cloudera is also committed to open source
but adds proprietary bits for configuring and managing Hadoop; MapR provides a
hybrid open source/proprietary Hadoop distribution characterized by a proprietary
NFS layer instead of HDFS and a focus on providing services.

Another strong player in the distributions ecosystem is Amazon, which offers a
version of Hadoop called Elastic MapReduce (EMR) on top of the Amazon Web
Services (AWS) infrastructure.

Chapter 1

[17]

With the advent of Hadoop 2, the number of available distributions for Hadoop has
increased dramatically, far in excess of the four we mentioned. A possibly incomplete
list of software offerings that includes Apache Hadoop can be found at http://wiki.
apache.org/hadoop/Distributions%20and%20Commercial%20Support.

A dual approach
In this book, we will discuss both the building and the management of local Hadoop
clusters in addition to showing how to push the processing into the cloud via EMR.

The reason for this is twofold: firstly, though EMR makes Hadoop much more
accessible, there are aspects of the technology that only become apparent when
manually administering the cluster. Although it is also possible to use EMR in a more
manual mode, we'll generally use a local cluster for such explorations. Secondly,
though it isn't necessarily an either/or decision, many organizations use a mixture
of in-house and cloud-hosted capacities, sometimes due to a concern of over reliance
on a single external provider, but practically speaking, it's often convenient to do
development and small-scale tests on local capacity and then deploy at production
scale into the cloud.

In a few of the later chapters, where we discuss additional products that integrate
with Hadoop, we'll mostly give examples of local clusters, as there is no difference
between how the products work regardless of where they are deployed.

AWS – infrastructure on demand from
Amazon
AWS is a set of cloud-computing services offered by Amazon. We will use several of
these services in this book.

Simple Storage Service (S3)
Amazon's Simple Storage Service (S3), found at http://aws.amazon.com/s3/,
is a storage service that provides a simple key-value storage model. Using web,
command-line, or programmatic interfaces to create objects, which can be anything
from text files to images to MP3s, you can store and retrieve your data based on
a hierarchical model. In this model, you create buckets that contain objects. Each
bucket has a unique identifier, and within each bucket, every object is uniquely
named. This simple strategy enables an extremely powerful service for which
Amazon takes complete responsibility (for service scaling, in addition to reliability
and availability of data).

Introduction

[18]

Elastic MapReduce (EMR)
Amazon's Elastic MapReduce, found at http://aws.amazon.com/
elasticmapreduce/, is basically Hadoop in the cloud. Using any of the multiple
interfaces (web console, CLI, or API), a Hadoop workflow is defined with attributes
such as the number of Hadoop hosts required and the location of the source data.
The Hadoop code implementing the MapReduce jobs is provided, and the virtual
Go button is pressed.

In its most impressive mode, EMR can pull source data from S3, process it on a
Hadoop cluster it creates on Amazon's virtual host on-demand service EC2, push the
results back into S3, and terminate the Hadoop cluster and the EC2 virtual machines
hosting it. Naturally, each of these services has a cost (usually on per GB stored and
server-time usage basis), but the ability to access such powerful data-processing
capabilities with no need for dedicated hardware is a powerful one.

Getting started
We will now describe the two environments we will use throughout the book:
Cloudera's QuickStart virtual machine will be our reference system on which we
will show all examples, but we will additionally demonstrate some examples on
Amazon's EMR when there is some particularly valuable aspect to running the
example in the on-demand service.

Although the examples and code provided are aimed at being as general-purpose
and portable as possible, our reference setup, when talking about a local cluster,
will be Cloudera running atop CentOS Linux.

For the most part, we will show examples that make use of, or are executed from,
a terminal prompt. Although Hadoop's graphical interfaces have improved
significantly over the years (for example, the excellent HUE and Cloudera Manager),
when it comes to development, automation, and programmatic access to the system,
the command line is still the most powerful tool for the job.

All examples and source code presented in this book can be downloaded from
https://github.com/learninghadoop2/book-examples. In addition, we have
a home page for the book where we will publish updates and related material at
http://learninghadoop2.com.

Chapter 1

[19]

Cloudera QuickStart VM
One of the advantages of Hadoop distributions is that they give access to
easy-to-install, packaged software. Cloudera takes this one step further and
provides a freely downloadable Virtual Machine instance of its latest distribution,
known as the CDH QuickStart VM, deployed on top of CentOS Linux.

In the remaining parts of this book, we will use the CDH5.0.0 VM as the reference
and baseline system to run examples and source code. Images of the VM are
available for VMware (http://www.vmware.com/nl/products/player/), KVM
(http://www.linux-kvm.org/page/Main_Page), and VirtualBox (https://www.
virtualbox.org/) virtualization systems.

Amazon EMR
Before using Elastic MapReduce, we need to set up an AWS account and register it
with the necessary services.

Creating an AWS account
Amazon has integrated its general accounts with AWS, which means that, if you
already have an account for any of the Amazon retail websites, this is the only
account you will need to use AWS services.

Note that AWS services have a cost; you will need an active credit
card associated with the account to which charges can be made.

If you require a new Amazon account, go to http://aws.amazon.com, select
Create a new AWS account, and follow the prompts. Amazon has added a free tier
for some services, so you might find that in the early days of testing and exploration,
you are keeping many of your activities within the noncharged tier. The scope of the
free tier has been expanding, so make sure you know what you will and won't be
charged for.

Introduction

[20]

Signing up for the necessary services
Once you have an Amazon account, you will need to register it for use with the
required AWS services, that is, Simple Storage Service (S3), Elastic Compute
Cloud (EC2), and Elastic MapReduce. There is no cost to simply sign up to
any AWS service; the process just makes the service available to your account.

Go to the S3, EC2, and EMR pages linked from http://aws.amazon.com, click on
the Sign up button on each page, and then follow the prompts.

Using Elastic MapReduce
Having created an account with AWS and registered all the required services, we can
proceed to configure programmatic access to EMR.

Getting Hadoop up and running

Caution! This costs real money!

Before going any further, it is critical to understand that use of AWS services will incur
charges that will appear on the credit card associated with your Amazon account.
Most of the charges are quite small and increase with the amount of infrastructure
consumed; storing 10 GB of data in S3 costs 10 times more than 1 GB, and running
20 EC2 instances costs 20 times as much as a single one. There are tiered cost models,
so the actual costs tend to have smaller marginal increases at higher levels. But you
should read carefully through the pricing sections for each service before using any
of them. Note also that currently data transfer out of AWS services, such as EC2 and
S3, is chargeable, but data transfer between services is not. This means it is often most
cost-effective to carefully design your use of AWS to keep data within AWS through
as much of the data processing as possible. For information regarding AWS and EMR,
consult http://aws.amazon.com/elasticmapreduce/#pricing.

How to use EMR
Amazon provides both web and command-line interfaces to EMR. Both interfaces
are just a frontend to the very same system; a cluster created with the command-line
interface can be inspected and managed with the web tools and vice-versa.

For the most part, we will be using the command-line tools to create and manage
clusters programmatically and will fall back on the web interface cases where it
makes sense to do so.

Chapter 1

[21]

AWS credentials
Before using either programmatic or command-line tools, we need to look at how an
account holder authenticates to AWS to make such requests.

Each AWS account has several identifiers, such as the following, that are used when
accessing the various services:

•	 Account ID: each AWS account has a numeric ID.
•	 Access key: the associated access key is used to identify the account making

the request.
•	 Secret access key: the partner to the access key is the secret access key.

The access key is not a secret and could be exposed in service requests,
but the secret access key is what you use to validate yourself as the
account owner. Treat it like your credit card.

•	 Key pairs: these are the key pairs used to log in to EC2 hosts. It is possible to
either generate public/private key pairs within EC2 or to import externally
generated keys into the system.

User credentials and permissions are managed via a web service called Identity
and Access Management (IAM), which you need to sign up to in order to obtain
access and secret keys.

If this sounds confusing, it's because it is, at least at first. When using a tool to
access an AWS service, there's usually the single, upfront step of adding the right
credentials to a configured file, and then everything just works. However, if you do
decide to explore programmatic or command-line tools, it will be worth investing
a little time to read the documentation for each service to understand how its
security works. More information on creating an AWS account and obtaining access
credentials can be found at http://docs.aws.amazon.com/iam.

The AWS command-line interface
Each AWS service historically had its own set of command-line tools. Recently
though, Amazon has created a single, unified command-line tool that allows access
to most services. The Amazon CLI can be found at http://aws.amazon.com/cli.

It can be installed from a tarball or via the pip or easy_install package managers.

On the CDH QuickStart VM, we can install awscli using the following command:

$ pip install awscli

www.allitebooks.com

http://www.allitebooks.org

Introduction

[22]

In order to access the API, we need to configure the software to authenticate to AWS
using our access and secret keys.

This is also a good moment to set up an EC2 key pair by following the instructions
provided at https://console.aws.amazon.com/ec2/home?region=us-east-
1#c=EC2&s=KeyPairs.

Although a key pair is not strictly necessary to run an EMR cluster, it will give us
the capability to remotely log in to the master node and gain low-level access to
the cluster.

The following command will guide you through a series of configuration steps
and store the resulting configuration in the .aws/credential file:

$ aws configure

Once the CLI is configured, we can query AWS with aws <service> <arguments>.
To create and query an S3 bucket use something like the following command. Note
that S3 buckets need to be globally unique across all AWS accounts, so most common
names, such as s3://mybucket, will not be available:

$ aws s3 mb s3://learninghadoop2

$ aws s3 ls

We can provision an EMR cluster with five m1.xlarge nodes using the
following commands:

$ aws emr create-cluster --name "EMR cluster" \

--ami-version 3.2.0 \

--instance-type m1.xlarge \

--instance-count 5 \

--log-uri s3://learninghadoop2/emr-logs

Where --ami-version is the ID of an Amazon Machine Image template
(http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html),
and --log-uri instructs EMR to collect logs and store them in the
learninghadoop2 S3 bucket.

If you did not specify a default region when setting up the AWS CLI,
then you will also have to add one to most EMR commands in the AWS
CLI using the --region argument; for example, --region eu-west-1
is run to use the EU Ireland region. You can find details of all available
AWS regions at http://docs.aws.amazon.com/general/
latest/gr/rande.html.

Chapter 1

[23]

We can submit workflows by adding steps to a running cluster using the
following command:

$ aws emr add-steps --cluster-id <cluster> --steps <steps>

To terminate the cluster, use the following command line:

$ aws emr terminate-clusters --cluster-id <cluster>

In later chapters, we will show you how to add steps to execute MapReduce jobs
and Pig scripts.

More information on using the AWS CLI can be found at http://docs.aws.
amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-manage.html.

Running the examples
The source code of all examples is available at https://github.com/
learninghadoop2/book-examples.

Gradle (http://www.gradle.org/) scripts and configurations are provided to
compile most of the Java code. The gradlew script included with the example will
bootstrap Gradle and use it to fetch dependencies and compile code.

JAR files can be created by invoking the jar task via a gradlew script, as follows:

./gradlew jar

Jobs are usually executed by submitting a JAR file using the hadoop jar command,
as follows:

$ hadoop jar example.jar <MainClass> [-libjars $LIBJARS] arg1 arg2 … argN

The optional -libjars parameter specifies runtime third-party dependencies to
ship to remote nodes.

Some of the frameworks we will work with, such as Apache
Spark, come with their own build and package management
tools. Additional information and resources will be provided
for these particular cases.

The copyJar Gradle task can be used to download third-party dependencies into
build/libjars/<example>/lib, as follows:

./gradlew copyJar

Introduction

[24]

For convenience, we provide a fatJar Gradle task that bundles the example
classes and their dependencies into a single JAR file. Although this approach
is discouraged in favor of using –libjar, it might come in handy when dealing
with dependency issues.

The following command will generate build/libs/<example>-all.jar:

$./gradlew fatJar

Data processing with Hadoop
In the remaining chapters of this book, we will introduce the core components of
the Hadoop ecosystem as well as a number of third-party tools and libraries that
will make writing robust, distributed code an accessible and hopefully enjoyable
task. While reading this book, you will learn how to collect, process, store, and
extract information from large amounts of structured and unstructured data.

We will use a dataset generated from Twitter's (http://www.twitter.com) real-time
fire hose. This approach will allow us to experiment with relatively small datasets
locally and, once ready, scale the examples up to production-level data sizes.

Why Twitter?
Thanks to its programmatic APIs, Twitter provides an easy way to generate datasets
of arbitrary size and inject them into our local- or cloud-based Hadoop clusters.
Other than the sheer size, the dataset that we will use has a number of properties
that fit several interesting data modeling and processing use cases.

Twitter data possesses the following properties:

•	 Unstructured: each status update is a text message that can contain
references to media content such as URLs and images

•	 Structured: tweets are timestamped, sequential records
•	 Graph: relationships such as replies and mentions can be modeled as a

network of interactions
•	 Geolocated: the location where a tweet was posted or where a user resides
•	 Real time: all data generated on Twitter is available via a real-time fire hose

These properties will be reflected in the type of application that we can build
with Hadoop. These include examples of sentiment analysis, social network,
and trend analysis.

Chapter 1

[25]

Building our first dataset
Twitter's terms of service prohibit redistribution of user-generated data in any form;
for this reason, we cannot make available a common dataset. Instead, we will use
a Python script to programmatically access the platform and create a dump of user
tweets collected from a live stream.

One service, multiple APIs
Twitter users share more than 200 million tweets, also known as status updates, a
day. The platform offers access to this corpus of data via four types of APIs, each
of which represents a facet of Twitter and aims at satisfying specific use cases, such
as linking and interacting with twitter content from third-party sources (Twitter
for Products), programmatic access to specific users' or sites' content (REST), search
capabilities across users' or sites' timelines (Search), and access to all content created
on the Twitter network in real time (Streaming).

The Streaming API allows direct access to the Twitter stream, tracking keywords,
retrieving geotagged tweets from a certain region, and much more. In this book, we
will make use of this API as a data source to illustrate both the batch and real-time
capabilities of Hadoop. We will not, however, interact with the API itself; rather, we
will make use of third-party libraries to offload chores such as authentication and
connection management.

Anatomy of a Tweet
Each tweet object returned by a call to the real-time APIs is represented as a
serialized JSON string that contains a set of attributes and metadata in addition to
a textual message. This additional content includes a numerical ID that uniquely
identifies the tweet, the location where the tweet was shared, the user who shared
it (user object), whether it was republished by other users (retweeted) and how
many times (retweet count), the machine-detected language of its text, whether the
tweet was posted in reply to someone and, if so, the user and tweet IDs it replied to,
and so on.

The structure of a Tweet, and any other object exposed by the API, is constantly
evolving. An up-to-date reference can be found at https://dev.twitter.com/
docs/platform-objects/tweets.

Introduction

[26]

Twitter credentials
Twitter makes use of the OAuth protocol to authenticate and authorize access from
third-party software to its platform.

The application obtains through an external channel, for instance a web form, the
following pair of credentials:

•	 Consumer key
•	 Consumer secret

The consumer secret is never directly transmitted to the third party as it is used to
sign each request.

The user authorizes the application to access the service via a three-way process that,
once completed, grants the application a token consisting of the following:

•	 Access token
•	 Access secret

Similarly, to the consumer, the access secret is never directly transmitted to the third
party, and it is used to sign each request.

In order to use the Streaming API, we will first need to register an application
and grant it programmatic access to the system. If you require a new Twitter
account, proceed to the signup page at https://twitter.com/signup, and fill
in the required information. Once this step is completed, we need to create a
sample application that will access the API on our behalf and grant it the proper
authorization rights. We will do so using the web form found at https://dev.
twitter.com/apps.

Chapter 1

[27]

When creating a new app, we are asked to give it a name, a description, and a
URL. The following screenshot shows the settings of a sample application named
Learning Hadoop 2 Book Dataset. For the purpose of this book, we do not need
to specify a valid URL, so we used a placeholder instead.

Once the form is filled in, we need to review and accept the terms of service and click
on the Create Application button in the bottom-left corner of the page.

We are now presented with a page that summarizes our application details as seen
in the following screenshot; the authentication and authorization credentials can be
found under the OAuth Tool tab.

Introduction

[28]

We are finally ready to generate our very first Twitter dataset.

Programmatic access with Python
In this section, we will use Python and the tweepy library, found at
https://github.com/tweepy/tweepy, to collect Twitter's data. The stream.py
file found in the ch1 directory of the book code archive instantiates a listener
to the real-time fire hose, grabs a data sample, and echoes each tweet's text to
standard output.

The tweepy library can be installed using either the easy_install or pip package
managers or by cloning the repository at https://github.com/tweepy/tweepy.

On the CDH QuickStart VM, we can install tweepy using the following
command line:

$ pip install tweepy

Chapter 1

[29]

When invoked with the -j parameter, the script will output a JSON tweet to
standard output; -t extracts and prints the text field. We specify how many
tweets to print with–n <num tweets>. When –n is not specified, the script
will run indefinitely. Execution can be terminated by pressing Ctrl + C.

The script expects OAuth credentials to be stored as shell environment variables;
the following credentials will have to be set in the terminal session from where
stream.py will be executed.

$ export TWITTER_CONSUMER_KEY="your_consumer_key"

$ export TWITTER_CONSUMER_SECRET="your_consumer_secret"

$ export TWITTER_ACCESS_KEY="your_access_key"

$ export TWITTER_ACCESS_SECRET="your_access_secret"

Once the required dependency has been installed and the OAuth data in the shell
environment has been set, we can run the program as follows:

$ python stream.py –t –n 1000 > tweets.txt

We are relying on Linux's shell I/O to redirect the output with the > operator
of stream.py to a file called tweets.txt. If everything was executed correctly,
you should see a wall of text, where each line is a tweet.

Notice that in this example, we did not make use of Hadoop at all. In the next
chapters, we will show how to import a dataset generated from the Streaming
API into Hadoop and analyze its content on the local cluster and Amazon EMR.

For now, let's take a look at the source code of stream.py, which can be found at
https://github.com/learninghadoop2/book-examples/blob/master/ch1/
stream.py:

import tweepy
import os
import json
import argparse

consumer_key = os.environ['TWITTER_CONSUMER_KEY']
consumer_secret = os.environ['TWITTER_CONSUMER_SECRET']
access_key = os.environ['TWITTER_ACCESS_KEY']
access_secret = os.environ['TWITTER_ACCESS_SECRET']

class EchoStreamListener(tweepy.StreamListener):

Introduction

[30]

 def __init__(self, api, dump_json=False, numtweets=0):
 self.api = api
 self.dump_json = dump_json
 self.count = 0
 self.limit = int(numtweets)
 super(tweepy.StreamListener, self).__init__()

 def on_data(self, tweet):
 tweet_data = json.loads(tweet)
 if 'text' in tweet_data:
 if self.dump_json:
 print tweet.rstrip()
 else:
 print tweet_data['text'].encode("utf-8").rstrip()

 self.count = self.count+1
 return False if self.count == self.limit else True

 def on_error(self, status_code):
 return True

 def on_timeout(self):
 return True
…
if __name__ == '__main__':
 parser = get_parser()
 args = parser.parse_args()

 auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
 auth.set_access_token(access_key, access_secret)
 api = tweepy.API(auth)
 sapi = tweepy.streaming.Stream(
 auth, EchoStreamListener(
 api=api,
 dump_json=args.json,
 numtweets=args.numtweets))
 sapi.sample()

First, we import three dependencies: tweepy, and the os and json modules,
which come with the Python interpreter version 2.6 or greater.

We then define a class, EchoStreamListener, that inherits and extends
StreamListener from tweepy. As the name suggests, StreamListener listens
for events and tweets being published on the real-time stream and performs
actions accordingly.

Chapter 1

[31]

Whenever a new event is detected, it triggers a call to on_data(). In this method,
we extract the text field from a tweet object and print it to standard output with
UTF-8 encoding. Alternatively, if the script is invoked with -j, we print the whole
JSON tweet. When the script is executed, we instantiate a tweepy.OAuthHandler
object with the OAuth credentials that identify our Twitter account, and then we
use this object to authenticate with the application access and secret key. We then
use the auth object to create an instance of the tweepy.API class (api)

Upon successful authentication, we tell Python to listen for events on the real-time
stream using EchoStreamListener.

An http GET request to the statuses/sample endpoint is performed by sample().
The request returns a random sample of all public statuses.

Beware! By default, sample() will run indefinitely. Remember to
explicitly terminate the method call by pressing Ctrl + C.

Summary
This chapter gave a whirlwind tour of where Hadoop came from, its evolution,
and why the version 2 release is such a major milestone. We also described the
emerging market in Hadoop distributions and how we will use a combination
of local and cloud distributions in the book.

Finally, we described how to set up the needed software, accounts, and
environments required in subsequent chapters and demonstrated how to
pull data from the Twitter stream that we will use for examples.

With this background out of the way, we will now move on to a detailed
examination of the storage layer within Hadoop.

www.allitebooks.com

http://www.allitebooks.org

Storage
After the overview of Hadoop in the previous chapter, we will now start looking at
its various component parts in more detail. We will start at the conceptual bottom of
the stack in this chapter: the means and mechanisms for storing data within Hadoop.
In particular, we will discuss the following topics:

•	 Describe the architecture of the Hadoop Distributed File System (HDFS)
•	 Show what enhancements to HDFS have been made in Hadoop 2
•	 Explore how to access HDFS using command-line tools and the Java API
•	 Give a brief description of ZooKeeper—another (sort of) filesystem

within Hadoop
•	 Survey considerations for storing data in Hadoop and the available

file formats

In Chapter 3, Processing – MapReduce and Beyond, we will describe how
Hadoop provides the framework to allow data to be processed.

The inner workings of HDFS
In Chapter 1, Introduction, we gave a very high-level overview of HDFS; we will
now explore it in a little more detail. As mentioned in that chapter, HDFS can be
viewed as a filesystem, though one with very specific performance characteristics
and semantics. It's implemented with two main server processes: the NameNode
and the DataNodes, configured in a master/slave setup. If you view the NameNode
as holding all the filesystem metadata and the DataNodes as holding the actual
filesystem data (blocks), then this is a good starting point. Every file placed onto
HDFS will be split into multiple blocks that might reside on numerous DataNodes,
and it's the NameNode that understands how these blocks can be combined to
construct the files.

Storage

[34]

Cluster startup
Let's explore the various responsibilities of these nodes and the communication
between them by assuming we have an HDFS cluster that was previously shut
down and then examining the startup behavior.

NameNode startup
We'll firstly consider the startup of the NameNode (though there is no actual
ordering requirement for this and we are doing it for narrative reasons alone).
The NameNode actually stores two types of data about the filesystem:

•	 The structure of the filesystem, that is, directory names, filenames, locations,
and attributes

•	 The blocks that comprise each file on the filesystem

This data is stored in files that the NameNode reads at startup. Note that the
NameNode does not persistently store the mapping of the blocks that are stored on
particular DataNodes; we'll see how that information is communicated shortly.

Because the NameNode relies on this in-memory representation of the filesystem,
it tends to have quite different hardware requirements compared to the DataNodes.
We'll explore hardware selection in more detail in Chapter 10, Running a Hadoop
Cluster; for now, just remember that the NameNode tends to be quite memory
hungry. This is particularly true on very large clusters with many (millions or more)
files, particularly if these files have very long names. This scaling limitation on
the NameNode has also led to an additional Hadoop 2 feature that we will not
explore in much detail: NameNode federation, whereby multiple NameNodes
(or NameNode HA pairs) work collaboratively to provide the overall metadata
for the full filesystem.

The main file written by the NameNode is called fsimage; this is the single most
important piece of data in the entire cluster, as without it, the knowledge of how to
reconstruct all the data blocks into the usable filesystem is lost. This file is read into
memory and all future modifications to the filesystem are applied to this in-memory
representation of the filesystem. The NameNode does not write out new versions
of fsimage as new changes are applied after it is run; instead, it writes another file
called edits, which is a list of the changes that have been made since the last version
of fsimage was written.

Chapter 2

[35]

The NameNode startup process is to first read the fsimage file, then to read the
edits file, and apply all the changes stored in the edits file to the in-memory copy
of fsimage. It then writes to disk a new up-to-date version of the fsimage file and is
ready to receive client requests.

DataNode startup
When the DataNodes start up, they first catalog the blocks for which they hold
copies. Typically, these blocks will be written simply as files on the local DataNode
filesystem. The DataNode will perform some block consistency checking and then
report to the NameNode the list of blocks for which it has valid copies. This is how
the NameNode constructs the final mapping it requires—by learning which blocks
are stored on which DataNodes. Once the DataNode has registered itself with
the NameNode, an ongoing series of heartbeat requests will be sent between the
nodes to allow the NameNode to detect DataNodes that have shut down, become
unreachable, or have newly entered the cluster.

Block replication
HDFS replicates each block onto multiple DataNodes; the default replication factor
is 3, but this is configurable on a per-file level. HDFS can also be configured to be able
to determine whether given DataNodes are in the same physical hardware rack or not.
Given smart block placement and this knowledge of the cluster topology, HDFS will
attempt to place the second replica on a different host but in the same equipment rack
as the first and the third on a host outside the rack. In this way, the system can survive
the failure of as much as a full rack of equipment and still have at least one live replica
for each block. As we'll see in Chapter 3, Processing – MapReduce and Beyond, knowledge
of block placement also allows Hadoop to schedule processing as near as possible to a
replica of each block, which can greatly improve performance.

Remember that replication is a strategy for resilience but is not a backup mechanism;
if you have data mastered in HDFS that is critical, then you need to consider backup
or other approaches that give protection for errors, such as accidentally deleted files,
against which replication will not defend.

When the NameNode starts up and is receiving the block reports from the
DataNodes, it will remain in safe mode until a configurable threshold of blocks
(the default is 99.9 percent) have been reported as live. While in safe mode,
clients cannot make any modifications to the filesystem.

Storage

[36]

Command-line access to the HDFS
filesystem
Within the Hadoop distribution, there is a command-line utility called hdfs,
which is the primary way to interact with the filesystem from the command line.
Run this without any arguments to see the various subcommands available.
There are many, though; several are used to do things like starting or stopping
various HDFS components. The general form of the hdfs command is:

hdfs <sub-command> <command> [arguments]

The two main subcommands we will use in this book are:

•	 dfs: This is used for general filesystem access and manipulation,
including reading/writing and accessing files and directories

•	 dfsadmin: This is used for administration and maintenance of the filesystem.
We will not cover this command in detail, though. Have a look at the
-report command, which gives a listing of the state of the filesystem
and all DataNodes:

$ hdfs dfsadmin -report

Note that the dfs and dfsadmin commands can also be used with the
main Hadoop command-line utility, for example, hadoop fs -ls
/. This was the approach in earlier versions of Hadoop but is now
deprecated in favor of the hdfs command.

Exploring the HDFS filesystem
Run the following to get a list of the available commands provided by the
dfs subcommand:

$ hdfs dfs

As will be seen from the output of the preceding command, many of these look
similar to standard Unix filesystem commands and, not surprisingly, they work
as would be expected. In our test VM, we have a user account called cloudera.
Using this user, we can list the root of the filesystem as follows:

$ hdfs dfs -ls /

Found 7 items

Chapter 2

[37]

drwxr-xr-x - hbase hbase 0 2014-04-04 15:18 /hbase

drwxr-xr-x - hdfs supergroup 0 2014-10-21 13:16 /jar

drwxr-xr-x - hdfs supergroup 0 2014-10-15 15:26 /schema

drwxr-xr-x - solr solr 0 2014-04-04 15:16 /solr

drwxrwxrwt - hdfs supergroup 0 2014-11-12 11:29 /tmp

drwxr-xr-x - hdfs supergroup 0 2014-07-13 09:05 /user

drwxr-xr-x - hdfs supergroup 0 2014-04-04 15:15 /var

The output is very similar to the Unix ls command. The file attributes work the
same as the user/group/world attributes on a Unix filesystem (including the t
sticky bit as can be seen) plus details of the owner, group, and modification time of
the directories. The column between the group name and the modified date is the
size; this is 0 for directories but will have a value for files as we'll see in the code
following the next information box:

If relative paths are used, they are taken from the home directory of the
user. If there is no home directory, we can create it using the following
commands:
$ sudo -u hdfs hdfs dfs –mkdir /user/cloudera

$ sudo -u hdfs hdfs dfs –chown cloudera:cloudera /user/
cloudera

The mkdir and chown steps require superuser privileges
(sudo -u hdfs).

$ hdfs dfs -mkdir testdir

$ hdfs dfs -ls

Found 1 items

drwxr-xr-x - cloudera cloudera 0 2014-11-13 11:21 testdir

Then, we can create a file, copy it to HDFS, and read its contents directly from its
location on HDFS, as follows:

$ echo "Hello world" > testfile.txt

$ hdfs dfs -put testfile.txt testdir

Note that there is an older command called -copyFromLocal, which works in the
same way as -put; you might see it in older documentation online. Now, run the
following command and check the output:

$ hdfs dfs -ls testdir

Found 1 items

-rw-r--r-- 3 cloudera cloudera 12 2014-11-13 11:21 testdir/
testfile.txt

Storage

[38]

Note the new column between the file attributes and the owner; this is the replication
factor of the file. Now, finally, run the following command:

$ hdfs dfs -tail testdir/testfile.txt

Hello world

Much of the rest of the dfs subcommands are pretty intuitive; play around.
We'll explore snapshots and programmatic access to HDFS later in this chapter.

Protecting the filesystem metadata
Because the fsimage file is so critical to the filesystem, its loss is a catastrophic
failure. In Hadoop 1, where the NameNode was a single point of failure, the best
practice was to configure the NameNode to synchronously write the fsimage and
edits files to both local storage plus at least one other location on a remote filesystem
(often NFS). In the event of NameNode failure, a replacement NameNode could be
started using this up-to-date copy of the filesystem metadata. The process would
require non-trivial manual intervention, however, and would result in a period of
complete cluster unavailability.

Secondary NameNode not to the rescue
The most unfortunately named component in all of Hadoop 1 was the Secondary
NameNode, which, not unreasonably, many people expect to be some sort of backup
or standby NameNode. It is not; instead, the Secondary NameNode was responsible
only for periodically reading the latest version of the fsimage and edits file and
creating a new up-to-date fsimage with the outstanding edits applied. On a busy
cluster, this checkpoint could significantly speed up the restart of the NameNode by
reducing the number of edits it had to apply before being able to service clients.

In Hadoop 2, the naming is more clear; there are Checkpoint nodes, which do the
role previously performed by the Secondary NameNode, plus Backup NameNodes,
which keep a local up-to-date copy of the filesystem metadata even though the
process to promote a Backup node to be the primary NameNode is still a multistage
manual process.

Hadoop 2 NameNode HA
In most production Hadoop 2 clusters, however, it makes more sense to use the full
High Availability (HA) solution instead of relying on Checkpoint and Backup nodes.
It is actually an error to try to combine NameNode HA with the Checkpoint and
Backup node mechanisms.

Chapter 2

[39]

The core idea is for a pair (currently no more than two are supported) of NameNodes
configured in an active/passive cluster. One NameNode acts as the live master that
services all client requests, and the second remains ready to take over should the
primary fail. In particular, Hadoop 2 HDFS enables this HA through two mechanisms:

•	 Providing a means for both NameNodes to have consistent views of
the filesystem

•	 Providing a means for clients to always connect to the master NameNode

Keeping the HA NameNodes in sync
There are actually two mechanisms by which the active and standby NameNodes
keep their views of the filesystem consistent; use of an NFS share or Quorum
Journal Manager (QJM).

In the NFS case, there is an obvious requirement on an external remote NFS file
share—note that as use of NFS was best practice in Hadoop 1 for a second copy of
filesystem metadata many clusters already have one. If high availability is a concern,
though it should be borne in mind that making NFS highly available often requires
high-end and expensive hardware. In Hadoop 2, HA uses NFS; however, the NFS
location becomes the primary location for the filesystem metadata. As the active
NameNode writes all filesystem changes to the NFS share, the standby node detects
these changes and updates its copy of the filesystem metadata accordingly.

The QJM mechanism uses an external service (the Journal Managers) instead of a
filesystem. The Journal Manager cluster is an odd number of services (3, 5, and 7 are
the most common) running on that number of hosts. All changes to the filesystem
are submitted to the QJM service, and a change is treated as committed only when
a majority of the QJM nodes have committed the change. The standby NameNode
receives change updates from the QJM service and uses this information to keep its
copy of the filesystem metadata up to date.

The QJM mechanism does not require additional hardware as the Checkpoint
nodes are lightweight and can be co-located with other services. There is also no
single point of failure in the model. Consequently, the QJM HA is usually the
preferred option.

In either case, both in NFS-based HA and QJM-based HA, the DataNodes send block
status reports to both NameNodes to ensure that both have up-to-date information
of the mapping of blocks to DataNodes. Remember that this block assignment
information is not held in the fsimage/edits data.

Storage

[40]

Client configuration
The clients to the HDFS cluster remain mostly unaware of the fact that NameNode
HA is being used. The configuration files need to include the details of both
NameNodes, but the mechanisms for determining which is the active NameNode—
and when to switch to the standby—are fully encapsulated in the client libraries.
The fundamental concept though is that instead of referring to an explicit
NameNode host as in Hadoop 1, HDFS in Hadoop 2 identifies a nameservice ID for
the NameNode within which multiple individual NameNodes (each with its own
NameNode ID) are defined for HA. Note that the concept of nameservice ID is also
used by NameNode federation, which we briefly mentioned earlier.

How a failover works
Failover can be either manual or automatic. A manual failover requires an
administrator to trigger the switch that promotes the standby to the currently active
NameNode. Though automatic failover has the greatest impact on maintaining
system availability, there might be conditions in which this is not always desirable.
Triggering a manual failover requires running only a few commands and, therefore,
even in this mode, the failover is significantly easier than in the case of Hadoop 1 or
with Hadoop 2 Backup nodes, where the transition to a new NameNode requires
substantial manual effort.

Regardless of whether the failover is triggered manually or automatically, it has two
main phases: confirmation that the previous master is no longer serving requests and
the promotion of the standby to be the master.

The greatest risk in a failover is to have a period in which both NameNodes are
servicing requests. In such a situation, it is possible that conflicting changes might be
made to the filesystem on the two NameNodes or that they might become out of sync.
Even though this should not be possible if the QJM is being used (it only ever accepts
connections from a single client), out-of-date information might be served to clients,
who might then try to make incorrect decisions based on this stale metadata. This is, of
course, particularly likely if the previous master NameNode is behaving incorrectly in
some way, which is why the need for the failover is identified in the first place.

To ensure only one NameNode is active at any time, a fencing mechanism is used
to validate that the existing NameNode master has been shut down. The simplest
included mechanism will try to ssh into the NameNode host and actively kill the
process though a custom script can also be executed, so the mechanism is flexible.
The failover will not continue until the fencing is successful and the system has
confirmed that the previous master NameNode is now dead and has released any
required resources.

Chapter 2

[41]

Once fencing succeeds, the standby NameNode becomes the master and will start
writing to the NFS-mounted fsimage and edits logs if NFS is being used for HA
or will become the single client to the QJM if that is the HA mechanism.

Before discussing automatic failover, we need a slight segue to introduce another
Apache project that is used to enable this feature.

Apache ZooKeeper – a different type of
filesystem
Within Hadoop, we will mostly talk about HDFS when discussing filesystems
and data storage. But, inside almost all Hadoop 2 installations, there is another
service that looks somewhat like a filesystem, but which provides significant
capability crucial to the proper functioning of distributed systems. This service is
Apache ZooKeeper (http://zookeeper.apache.org) and, as it is a key part of the
implementation of HDFS HA, we will introduce it in this chapter. It is, however, also
used by multiple other Hadoop components and related projects, so we will touch on
it several more times throughout the book.

ZooKeeper started out as a subcomponent of HBase and was used to enable several
operational capabilities of the service. When any complex distributed system is
built, there are a series of activities that are almost always required and which are
always difficult to get right. These activities include things such as handling shared
locks, detecting component failure, and supporting leader election within a group of
collaborating services. ZooKeeper was created as the coordination service that would
provide a series of primitive operations upon which HBase could implement these
types of operationally critical features. Note that ZooKeeper also takes inspiration
from the Google Chubby system described at http://research.google.com/
archive/chubby-osdi06.pdf.

ZooKeeper runs as a cluster of instances referred to as an ensemble. The ensemble
provides a data structure, which is somewhat analogous to a filesystem. Each
location in the structure is called a ZNode and can have children as if it were a
directory but can also have content as if it were a file. Note that ZooKeeper is not
a suitable place to store very large amounts of data, and by default, the maximum
amount of data in a ZNode is 1 MB. At any point in time, one server in the ensemble
is the master and makes all decisions about client requests. There are very well-
defined rules around the responsibilities of the master, including that it has to ensure
that a request is only committed when a majority of the ensemble have committed
the change, and that once committed any conflicting change is rejected.

www.allitebooks.com

http://www.allitebooks.org

Storage

[42]

You should have ZooKeeper installed within your Cloudera Virtual Machine.
If not, use Cloudera Manager to install it as a single node on the host. In production
systems, ZooKeeper has very specific semantics around absolute majority voting,
so some of the logic only makes sense in a larger ensemble (3, 5, or 7 nodes are the
most common sizes).

There is a command-line client to ZooKeeper called zookeeper-client in the
Cloudera VM; note that in the vanilla ZooKeeper distribution it is called zkCli.sh.
If you run it with no arguments, it will connect to the ZooKeeper server running on
the local machine. From here, you can type help to get a list of commands.

The most immediately interesting commands will be create, ls, and get.
As the names suggest, these create a ZNode, list the ZNodes at a particular point
in the filesystem, and get the data stored at a particular ZNode. Here are some
examples of usage.

•	 Create a ZNode with no data:
$ create /zk-test ''

•	 Create a child of the first ZNode and store some text in it:
$ create /zk-test/child1 'sampledata'

•	 Retrieve the data associated with a particular ZNode:
$ get /zk-test/child1

The client can also register a watcher on a given ZNode—this will raise an alert if the
ZNode in question changes, either its data or children being modified.

This might not sound very useful, but ZNodes can additionally be created as both
sequential and ephemeral nodes, and this is where the magic starts.

Implementing a distributed lock with
sequential ZNodes
If a ZNode is created within the CLI with the -s option, it will be created as a
sequential node. ZooKeeper will suffix the supplied name with a 10-digit integer
guaranteed to be unique and greater than any other sequential children of the same
ZNode. We can use this mechanism to create a distributed lock. ZooKeeper itself is
not holding the actual lock; the client needs to understand what particular states in
ZooKeeper mean in terms of their mapping to the application locks in question.

Chapter 2

[43]

If we create a (non-sequential) ZNode at /zk-lock, then any client wishing to hold
the lock will create a sequential child node. For example, the create -s /zk-lock/
locknode command might create the node, /zk-lock/locknode-0000000001, in
the first case, with increasing integer suffixes for subsequent calls. When a client
creates a ZNode under the lock, it will then check if its sequential node has the
lowest integer suffix. If it does, then it is treated as having the lock. If not, then it will
need to wait until the node holding the lock is deleted. The client will usually put a
watch on the node with the next lowest suffix and then be alerted when that node is
deleted, indicating that it now holds the lock.

Implementing group membership and leader
election using ephemeral ZNodes
Any ZooKeeper client will send heartbeats to the server throughout the session,
showing that it is alive. For the ZNodes we have discussed until now, we can say
that they are persistent and will survive across sessions. We can, however, create a
ZNode as ephemeral, meaning it will disappear once the client that created it either
disconnects or is detected as being dead by the ZooKeeper server. Within the CLI an
ephemeral ZNode is created by adding the -e flag to the create command.

Ephemeral ZNodes are a good mechanism to implement group membership
discovery within a distributed system. For any system where nodes can fail, join, and
leave without notice, knowing which nodes are alive at any point in time is often
a difficult task. Within ZooKeeper, we can provide the basis for such discovery by
having each node create an ephemeral ZNode at a certain location in the ZooKeeper
filesystem. The ZNodes can hold data about the service nodes, such as host name,
IP address, port number, and so on. To get a list of live nodes, we can simply list the
child nodes of the parent group ZNode. Because of the nature of ephemeral nodes,
we can have confidence that the list of live nodes retrieved at any time is up to date.

If we have each service node create ZNode children that are not just ephemeral but
also sequential, then we can also build a mechanism for leader election for services
that need to have a single master node at any one time. The mechanism is the same
for locks; the client service node creates the sequential and ephemeral ZNode and
then checks if it has the lowest sequence number. If so, then it is the master. If not,
then it will register a watcher on the next lowest sequence node to be alerted when it
might become the master.

Storage

[44]

Java API
The org.apache.zookeeper.ZooKeeper class is the main programmatic client to
access a ZooKeeper ensemble. Refer to the javadocs for the full details, but the basic
interface is relatively straightforward with obvious one-to-one correspondence to
commands in the CLI. For example:

•	 create: is equivalent to CLI create
•	 getChildren: is equivalent to CLI ls
•	 getData: is equivalent to CLI get

Building blocks
As can be seen, ZooKeeper provides a small number of well-defined operations
with very strong semantic guarantees that can be built into higher-level services,
such as the locks, group membership, and leader election we discussed earlier.
It's best to think of ZooKeeper as a toolkit of well-engineered and reliable functions
critical to distributed systems that can be built upon without having to worry about
the intricacies of their implementation. The provided ZooKeeper interface is quite
low-level though, and there are a few higher-level interfaces emerging that provide
more of the mapping of the low-level primitives into application-level logic. The
Curator project (http://curator.apache.org/) is a good example of this.

ZooKeeper was used sparingly within Hadoop 1, but it's now quite ubiquitous. It's
used by both MapReduce and HDFS for the high availability of their JobTracker and
NameNode components. Hive and Impala, which we will explore later, use it to
place locks on data tables that are being accessed by multiple concurrent jobs. Kafka,
which we'll discuss in the context of Samza, uses ZooKeeper for node (broker in
Kafka terminology), leader election, and state management.

Further reading
We have not described ZooKeeper in much detail and have completely omitted
aspects such as its ability to apply quotas and access control lists to ZNodes within
the filesystem and the mechanisms to build callbacks. Our purpose here was to give
enough of the details so that you would have some idea of how it was being used
within the Hadoop services we explore in this book. For more information, consult
the project home page.

Chapter 2

[45]

Automatic NameNode failover
Now that we have introduced ZooKeeper, we can show how it is used to enable
automatic NameNode failover.

Automatic NameNode failover introduces two new components to the system, a
ZooKeeper quorum, and the ZooKeeper Failover Controller (ZKFC), which runs
on each NameNode host. The ZKFC creates an ephemeral ZNode in ZooKeeper
and holds this ZNode for as long as it detects the local NameNode to be alive and
functioning correctly. It determines this by continuously sending simple health-
check requests to the NameNode, and if the NameNode fails to respond correctly
over a short period of time the ZKFC will assume the NameNode has failed. If a
NameNode machine crashes or otherwise fails, the ZKFC session in ZooKeeper will
be closed and the ephemeral ZNode will also be automatically removed.

The ZKFC processes are also monitoring the ZNodes of the other NameNodes in the
cluster. If the ZKFC on the standby NameNode host sees the existing master ZNode
disappear, it will assume the master has failed and will attempt a failover. It does
this by trying to acquire the lock for the NameNode (through the protocol described
in the ZooKeeper section) and if successful will initiate a failover through the same
fencing/promotion mechanism described earlier.

HDFS snapshots
We mentioned earlier that HDFS replication alone is not a suitable backup strategy.
In the Hadoop 2 filesystem, snapshots have been added, which brings another level
of data protection to HDFS.

Filesystem snapshots have been used for some time across a variety of technologies.
The basic idea is that it becomes possible to view the exact state of the filesystem
at particular points in time. This is achieved by taking a copy of the filesystem
metadata at the point the snapshot is made and making this available to be
viewed in the future.

As changes to the filesystem are made, any change that would affect the snapshot
is treated specially. For example, if a file that exists in the snapshot is deleted then,
even though it will be removed from the current state of the filesystem, its metadata
will remain in the snapshot, and the blocks associated with its data will remain
on the filesystem though not accessible through any view of the system other
than the snapshot.

Storage

[46]

An example might illustrate this point. Say, you have a filesystem containing the
following files:

/data1 (5 blocks)
/data2 (10 blocks)

You take a snapshot and then delete the file /data2. If you view the current state of
the filesystem, then only /data1 will be visible. If you examine the snapshot, you
will see both files. Behind the scenes, all 15 blocks still exist, but only those associated
with the un-deleted file /data1 are part of the current filesystem. The blocks for the
file /data2 will be released only when the snapshot is itself removed—snapshots are
read-only views.

Snapshots in Hadoop 2 can be applied at either the full filesystem level or only
on particular paths. A path needs to be set as snapshottable, and note that you
cannot have a path snapshottable if any of its children or parent paths are
themselves snapshottable.

Let's take a simple example based on the directory we created earlier to illustrate
the use of snapshots. The commands we are going to illustrate need to be executed
with superuser privileges, which can be obtained with sudo -u hdfs.

First, use the dfsadmin subcommand of the hdfs CLI utility to enable snapshots
of a directory, as follows:

$ sudo -u hdfs hdfs dfsadmin -allowSnapshot \

/user/cloudera/testdir

Allowing snapshot on testdir succeeded

Now, we create the snapshot and examine it; snapshots are available through the
.snapshot subdirectory of the snapshottable directory. Note that the .snapshot
directory will not be visible in a normal listing of the directory. Here's how we
create a snapshot and examine it:

$ sudo -u hdfs hdfs dfs -createSnapshot \

/user/cloudera/testdir sn1

Created snapshot /user/cloudera/testdir/.snapshot/sn1

$ sudo -u hdfs hdfs dfs -ls \

/user/cloudera/testdir/.snapshot/sn1

Found 1 items -rw-r--r-- 1 cloudera cloudera 12 2014-11-13
11:21 /user/cloudera/testdir/.snapshot/sn1/testfile.txt

Chapter 2

[47]

Now, we remove the test file from the main directory and verify that it is now empty:

$ sudo -u hdfs hdfs dfs -rm \

/user/cloudera/testdir/testfile.txt

14/11/13 13:13:51 INFO fs.TrashPolicyDefault: Namenode trash
configuration: Deletion interval = 1440 minutes, Emptier interval = 0
minutes. Moved: 'hdfs://localhost.localdomain:8020/user/cloudera/testdir/
testfile.txt' to trash at: hdfs://localhost.localdomain:8020/user/hdfs/.
Trash/Current

$ hdfs dfs -ls /user/cloudera/testdir

$

Note the mention of trash directories; by default, HDFS will copy any deleted files
into a .Trash directory in the user's home directory, which helps to defend against
slipping fingers. These files can be removed through hdfs dfs -expunge or will be
automatically purged in 7 days by default.

Now, we examine the snapshot where the now-deleted file is still available:

$ hdfs dfs -ls testdir/.snapshot/sn1

Found 1 items drwxr-xr-x - cloudera cloudera 0 2014-11-13
13:12 testdir/.snapshot/sn1

$ hdfs dfs -tail testdir/.snapshot/sn1/testfile.txt

Hello world

Then, we can delete the snapshot, freeing up any blocks held by it, as follows:

$ sudo -u hdfs hdfs dfs -deleteSnapshot \

/user/cloudera/testdir sn1

$ hdfs dfs -ls testdir/.snapshot

$

As can be seen, the files within a snapshot are fully available to be read and copied,
providing access to the historical state of the filesystem at the point when the
snapshot was made. Each directory can have up to 65,535 snapshots, and HDFS
manages snapshots in such a way that they are quite efficient in terms of impact on
normal filesystem operations. They are a great mechanism to use prior to any activity
that might have adverse effects, such as trying a new version of an application
that accesses the filesystem. If the new software corrupts files, the old state of the
directory can be restored. If after a period of validation the software is accepted,
then the snapshot can instead be deleted.

Storage

[48]

Hadoop filesystems
Until now, we referred to HDFS as the Hadoop filesystem. In reality, Hadoop has a
rather abstract notion of filesystem. HDFS is only one of several implementations
of the org.apache.hadoop.fs.FileSystem Java abstract class. A list of available
filesystems can be found at https://hadoop.apache.org/docs/r2.5.0/api/
org/apache/hadoop/fs/FileSystem.html. The following table summarizes
some of these filesystems, along with the corresponding URI scheme and Java
implementation class.

Filesystem URI
scheme

Java implementation

Local file org.apache.hadoop.fs.LocalFileSystem

HDFS hdfs org.apache.hadoop.hdfs.DistributedFileSystem

S3 (native) s3n org.apache.hadoop.fs.s3native.NativeS3FileSystem

S3 (block-
based)

s3 org.apache.hadoop.fs.s3.S3FileSystem

There exist two implementations of the S3 filesystem. Native—s3n—is used to
read and write regular files. Data stored using s3n can be accessed by any tool and
conversely can be used to read data generated by other S3 tools. s3n cannot handle
files larger than 5TB or rename operations.

Much like HDFS, the block-based S3 filesystem stores files in blocks and requires an
S3 bucket to be dedicated to the filesystem. Files stored in an S3 filesystem can be
larger than 5 TB, but they will not be interoperable with other S3 tools. Additionally
block-based S3 supports rename operations.

Hadoop interfaces
Hadoop is written in Java, and not surprisingly, all interaction with the system
happens via the Java API. The command-line interface we used through the hdfs
command in previous examples is a Java application that uses the FileSystem class
to carry out input/output operations on the available filesystems.

Java FileSystem API
The Java API, provided by the org.apache.hadoop.fs package, exposes Apache
Hadoop filesystems.

org.apache.hadoop.fs.FileSystem is the abstract class each filesystem implements
and provides a general interface to interact with data in Hadoop. All code that uses
HDFS should be written with the capability of handling a FileSystem object.

Chapter 2

[49]

Libhdfs
Libhdfs is a C library that, despite its name, can be used to access any Hadoop
filesystem and not just HDFS. It is written using the Java Native Interface (JNI)
and mimics the Java FileSystem class.

Thrift
Apache Thrift (http://thrift.apache.org) is a framework for building
cross-language software through data serialization and remote method invocation
mechanisms. The Hadoop Thrift API, available in contrib, exposes Hadoop
filesystems as a Thrift service. This interface makes it easy for non-Java code to
access data stored in a Hadoop filesystem.

Other than the aforementioned interfaces, there exist other interfaces that allow
access to Hadoop filesystems via HTTP and FTP—these for HDFS only—as well
as WebDAV.

Managing and serializing data
Having a filesystem is all well and good, but we also need mechanisms to represent
data and store it on the filesystems. We will explore some of these mechanisms now.

The Writable interface
It is useful, to us as developers, if we can manipulate higher-level data types and have
Hadoop look after the processes required to serialize them into bytes to write to a file
system and reconstruct from a stream of bytes when it is read from the file system.

The org.apache.hadoop.io package contains the Writable interface, which
provides this mechanism and is specified as follows:

 public interface Writable
 {
 void write(DataOutput out) throws IOException ;
 void readFields(DataInput in) throws IOException ;
 }

The main purpose of this interface is to provide mechanisms for the serialization
and deserialization of data as it is passed across the network or read and written
from the disk.

Storage

[50]

When we explore processing frameworks on Hadoop in later chapters, we will
often see instances where the requirement is for a data argument to be of the type
Writable. If we use data structures that provide a suitable implementation of this
interface, then the Hadoop machinery can automatically manage the serialization
and deserialization of the data type without knowing anything about what it
represents or how it is used.

Introducing the wrapper classes
Fortunately, you don't have to start from scratch and build Writable variants
of all the data types you will use. Hadoop provides classes that wrap the Java
primitive types and implement the Writable interface. They are provided in the
org.apache.hadoop.io package.

These classes are conceptually similar to the primitive wrapper classes, such as
Integer and Long, found in java.lang. They hold a single primitive value that
can be set either at construction or via a setter method. They are as follows:

•	 BooleanWritable

•	 ByteWritable

•	 DoubleWritable

•	 FloatWritable

•	 IntWritable

•	 LongWritable

•	 VIntWritable: a variable length integer type
•	 VLongWritable: a variable length long type
•	 There is also Text, which wraps java.lang.String.

Array wrapper classes
Hadoop also provides some collection-based wrapper classes. These classes provide
Writable wrappers for arrays of other Writable objects. For example, an instance
could either hold an array of IntWritable or DoubleWritable, but not arrays of
the raw int or float types. A specific subclass for the required Writable class will be
required. They are as follows:

ArrayWritable
TwoDArrayWritable

Chapter 2

[51]

The Comparable and WritableComparable
interfaces
We were slightly inaccurate when we said that the wrapper classes
implement Writable; they actually implement a composite interface called
WritableComparable in the org.apache.hadoop.io package that combines
Writable with the standard java.lang.Comparable interface:

 public interface WritableComparable extends Writable, Comparable
 {}

The need for Comparable will only become apparent when we explore
MapReduce in the next chapter, but for now, just remember that the wrapper
classes provide mechanisms for them to be both serialized and sorted by Hadoop
or any of its frameworks.

Storing data
Until now, we introduced the architecture of HDFS and how to programmatically
store and retrieve data using the command-line tools and the Java API. In the
examples seen until now, we have implicitly assumed that our data was stored as a
text file. In reality, some applications and datasets will require ad hoc data structures
to hold the file's contents. Over the years, file formats have been created to address
both the requirements of MapReduce processing—for instance, we want data to be
splittable—and to satisfy the need to model both structured and unstructured
data. Currently, a lot of focus has been dedicated to better capture the use
cases of relational data storage and modeling. In the remainder of this chapter,
we will introduce some of the popular file format choices available within the
Hadoop ecosystem.

Serialization and Containers
When talking about file formats, we are assuming two types of scenarios,
which are as follows:

•	 Serialization: we want to encode data structures generated and manipulated
at processing time to a format we can store to a file, transmit, and at a later
stage, retrieve and translate back for further manipulation

•	 Containers: once data is serialized to files, containers provide means to
group multiple files together and add additional metadata

www.allitebooks.com

http://www.allitebooks.org

Storage

[52]

Compression
When working with data, file compression can often lead to significant savings both
in terms of the space necessary to store files as well as on the data I/O across the
network and from/to local disks.

In broad terms, when using a processing framework, compression can occur at three
points in the processing pipeline:

•	 input files to be processed
•	 output files that result after processing is completed
•	 intermediate/temporary files produced internally within the pipeline

When we add compression at any of these stages, we have an opportunity to
dramatically reduce the amount of data to be read or written to the disk or across the
network. This is particularly useful with frameworks such as MapReduce that can,
for example, produce volumes of temporary data that are larger than either the input
or output datasets.

Apache Hadoop comes with a number of compression codecs: gzip, bzip2, LZO,
snappy—each with its own tradeoffs. Picking a codec is an educated choice that
should consider both the kind of data being processed as well as the nature of the
processing framework itself.

Other than the general space/time tradeoff, where the largest space savings come
at the expense of compression and decompression speed (and vice versa), we need
to take into account that data stored in HDFS will be accessed by parallel, distributed
software; some of this software will also add its own particular requirements on file
formats. MapReduce, for example, is most efficient on files that can be split into
valid subfiles.

This can complicate decisions, such as the choice of whether to compress and
which codec to use if so, as most compression codecs (such as gzip) do not support
splittable files, whereas a few (such as LZO) do.

General-purpose file formats
The first class of file formats are those general-purpose ones that can be applied to any
application domain and make no assumptions on data structure or access patterns.

•	 Text: the simplest approach to storing data on HDFS is to use flat files.
Text files can be used both to hold unstructured data—a web page or a
tweet—as well as structured data—a CSV file that is a few million rows
long. Text files are splittable, though one needs to consider how to handle
boundaries between multiple elements (for example, lines) in the file.

Chapter 2

[53]

•	 SequenceFile: a SequenceFile is a flat data structure consisting of
binary key/value pairs, introduced to address specific requirements of
MapReduce-based processing. It is still extensively used in MapReduce as
an input/output format. As we will see in Chapter 3, Processing – MapReduce
and Beyond, internally, the temporary outputs of maps are stored
using SequenceFile.

SequenceFile provides Writer, Reader, and Sorter classes to write, read, and,
sort data, respectively.

Depending on the compression mechanism in use, three variations of SequenceFile
can be distinguished:

•	 Uncompressed key/value records.
•	 Record compressed key/value records. Only 'values' are compressed.
•	 Block compressed key/value records. Keys and values are collected in

blocks of arbitrary size and compressed separately.

In each case, however, the SequenceFile remains splittable, which is one of its
biggest strengths.

Column-oriented data formats
In the relational database world, column-oriented data stores organize and store
tables based on the columns; generally speaking, the data for each column will
be stored together. This is a significantly different approach compared to most
relational DBMS that organize data per row. Column-oriented storage has significant
performance advantages; for example, if a query needs to read only two columns
from a very wide table containing hundreds of columns, then only the required
column data files are accessed. A traditional row-oriented database would have to
read all columns for each row for which data was required. This has the greatest
impact on workloads where aggregate functions are computed over large numbers
of similar items, such as with OLAP workloads typical of data warehouse systems.

In Chapter 7, Hadoop and SQL, we will see how Hadoop is becoming a SQL backend
for the data warehouse world thanks to projects such as Apache Hive and Cloudera
Impala. As part of the expansion into this domain, a number of file formats have been
developed to account for both relational modeling and data warehousing needs.

RCFile, ORC, and Parquet are three state-of-the-art column-oriented file formats
developed with these use cases in mind.

Storage

[54]

RCFile
Row Columnar File (RCFile) was originally developed by Facebook to be used
as the backend storage for their Hive data warehouse system that was the first
mainstream SQL-on-Hadoop system available as open source.

RCFile aims to provide the following:

•	 fast data loading
•	 fast query processing
•	 efficient storage utilization
•	 adaptability to dynamic workloads

More information on RCFile can be found at http://www.cse.ohio-state.edu/
hpcs/WWW/HTML/publications/abs11-4.html.

ORC
The Optimized Row Columnar file format (ORC) aims to combine the performance
of the RCFile with the flexibility of Avro. It is primarily intended to work with
Apache Hive and has been initially developed by Hortonworks to overcome the
perceived limitations of other available file formats.

More details can be found at http://docs.hortonworks.com/HDPDocuments/
HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html.

Parquet
Parquet, found at http://parquet.incubator.apache.org, was originally a joint
effort of Cloudera, Twitter, and Criteo, and now has been donated to the Apache
Software Foundation. The goals of Parquet are to provide a modern, performant,
columnar file format to be used with Cloudera Impala. As with Impala, Parquet
has been inspired by the Dremel paper (http://research.google.com/pubs/
pub36632.html). It allows complex, nested data structures and allows efficient
encoding on a per-column level.

Avro
Apache Avro (http://avro.apache.org) is a schema-oriented binary data
serialization format and file container. Avro will be our preferred binary data format
throughout this book. It is both splittable and compressible, making it an efficient
format for data processing with frameworks such as MapReduce.

Chapter 2

[55]

Numerous other projects also have built-in specific Avro support and integration,
however, so it is very widely applicable. When data is stored in an Avro file, its
schema—defined as a JSON object—is stored with it. A file can be later processed
by a third party with no a priori notion of how data is encoded. This makes data
self-describing and facilitates use with dynamic and scripting languages. The
schema-on-read model also helps Avro records to be efficient to store as there is
no need for the individual fields to be tagged.

In later chapters, you will see how these properties can make data life cycle
management easier and allow non-trivial operations such as schema migrations.

Using the Java API
We'll now demonstrate the use of the Java API to parse Avro schemas, read and
write Avro files, and use Avro's code generation facilities. Note that the format is
intrinsically language independent; there are APIs for most languages, and files
created by Java will seamlessly be read from any other language.

Avro schemas are described as JSON documents and represented by the
org.apache.avro.Schema class. To demonstrate the API for manipulating Avro
documents, we'll look ahead to an Avro specification we use for a Hive table in
Chapter 7, Hadoop and SQL. The following code can be found at https://github.
com/learninghadoop2/book-examples/blob/master/ch2/src/main/java/com/
learninghadoop2/avro/AvroParse.java.

In the following code, we will use the Avro Java API to create an Avro file containing
a tweet record and then re-read the file, using the schema in the file to extract the
details of the stored records:

 public static void testGenericRecord() {
 try {
 Schema schema = new Schema.Parser()
 .parse(new File("tweets_avro.avsc"));
 GenericRecord tweet = new GenericData
 .Record(schema);

 tweet.put("text", "The generic tweet text");

 File file = new File("tweets.avro");
 DatumWriter<GenericRecord> datumWriter =
 new GenericDatumWriter<>(schema);
 DataFileWriter<GenericRecord> fileWriter =
 new DataFileWriter<>(datumWriter);

Storage

[56]

 fileWriter.create(schema, file);
 fileWriter.append(tweet);
 fileWriter.close();

 DatumReader<GenericRecord> datumReader =
 new GenericDatumReader<>(schema);
 DataFileReader<GenericRecord> fileReader =
 new DataFileReader(file, datumReader);
 GenericRecord genericTweet = null;

 while (fileReader.hasNext()) {
 genericTweet = (GenericRecord) fileReader
 .next(genericTweet);

 for (Schema.Field field :
 genericTweet.getSchema().getFields()) {
 Object val = genericTweet.get(field.name());

 if (val != null) {
 System.out.println(val);
 }
 }

 }
 } catch (IOException ie) {
 System.out.println("Error parsing or writing file.");
 }
 }

The tweets_avro.avsc schema, found at https://github.com/learninghadoop2/
book-examples/blob/master/ch2/tweets_avro.avsc, describes a tweet with
multiple fields. To create an Avro object of this type, we first parse the schema file.
We then use Avro's concept of a GenericRecord to build an Avro document that
complies with this schema. In this case, we only set a single attribute—the tweet
text itself.

To write this Avro file—containing a single object—we then use Avro's I/O
capabilities. To read the file, we do not need to start with the schema, as we can
extract this from the GenericRecord we read from the file. We then walk through
the schema structure and dynamically process the document based on the discovered
fields. This is particularly powerful, as it is the key enabler of clients remaining
independent of the Avro schema and how it evolves over time.

Chapter 2

[57]

If we have the schema file in advance, however, we can use Avro code generation
to create a customized class that makes manipulating Avro records much easier.
To generate the code, we will use the compile class in the avro-tools.jar, passing
it the name of the schema file and the desired output directory:

$ java -jar /opt/cloudera/parcels/CDH-5.0.0-1.cdh5.0.0.p0.47/lib/avro/
avro-tools.jar compile schema tweets_avro.avsc src/main/java

The class will be placed in a directory structure based on any namespace defined in
the schema. Since we created this schema in the com.learninghadoop2.avrotables
namespace, we see the following:

$ ls src/main/java/com/learninghadoop2/avrotables/tweets_avro.java

With this class, let's revisit the creation and the act of reading and writing Avro
objects, as follows:

 public static void testGeneratedCode() {
 tweets_avro tweet = new tweets_avro();
 tweet.setText("The code generated tweet text");

 try {
 File file = new File("tweets.avro");
 DatumWriter<tweets_avro> datumWriter =
 new SpecificDatumWriter<>(tweets_avro.class);
 DataFileWriter<tweets_avro> fileWriter =
 new DataFileWriter<>(datumWriter);

 fileWriter.create(tweet.getSchema(), file);
 fileWriter.append(tweet);
 fileWriter.close();

 DatumReader<tweets_avro> datumReader =
 new SpecificDatumReader<>(tweets_avro.class);
 DataFileReader<tweets_avro> fileReader =
 new DataFileReader<>(file, datumReader);

 while (fileReader.hasNext()) {
 tweet = fileReader.next(tweet);
 System.out.println(tweet.getText());
 }
 } catch (IOException ie) {
 System.out.println("Error in parsing or writing
 files.");
 }
 }

Storage

[58]

Because we used code generation, we now use the Avro SpecificRecord
mechanism alongside the generated class that represents the object in our domain
model. Consequently, we can directly instantiate the object and access its attributes
through familiar get/set methods.

Writing the file is similar to the action performed before, except that we use specific
classes and also retrieve the schema directly from the tweet object when needed.
Reading is similarly eased through the ability to create instances of a specific class
and use get/set methods.

Summary
This chapter has given a whistle-stop tour through storage on a Hadoop cluster.
In particular, we covered:

•	 The high-level architecture of HDFS, the main filesystem used in Hadoop
•	 How HDFS works under the covers and, in particular, its approach

to reliability
•	 How Hadoop 2 has added significantly to HDFS, particularly in the form

of NameNode HA and filesystem snapshots
•	 What ZooKeeper is and how it is used by Hadoop to enable features such

as NameNode automatic failover
•	 An overview of the command-line tools used to access HDFS
•	 The API for filesystems in Hadoop and how at a code level HDFS is just

one implementation of a more flexible filesystem abstraction
•	 How data can be serialized onto a Hadoop filesystem and some of the

support provided in the core classes
•	 The various file formats available in which data is most frequently stored

in Hadoop and some of their particular use cases

In the next chapter, we will look in detail at how Hadoop provides processing
frameworks that can be used to process the data stored within it.

Processing – MapReduce
and Beyond

In Hadoop 1, the platform had two clear components: HDFS for data storage and
MapReduce for data processing. The previous chapter described the evolution of
HDFS in Hadoop 2 and in this chapter we'll discuss data processing.

The picture with processing in Hadoop 2 has changed more significantly than has
storage, and Hadoop now supports multiple processing models as first-class citizens.
In this chapter we'll explore both MapReduce and other computational models in
Hadoop2. In particular, we'll cover:

•	 What MapReduce is and the Java API required to write applications for it
•	 How MapReduce is implemented in practice
•	 How Hadoop reads data into and out of its processing jobs
•	 YARN, the Hadoop2 component that allows processing beyond MapReduce

on the platform
•	 An introduction to several computational models implemented on YARN

MapReduce
MapReduce is the primary processing model supported in Hadoop 1. It follows
a divide and conquer model for processing data made popular by a 2006 paper
by Google (http://research.google.com/archive/mapreduce.html) and has
foundations both in functional programming and database research. The name
itself refers to two distinct steps applied to all input data, a map function and a
reduce function.

Processing – MapReduce and Beyond

[60]

Every MapReduce application is a sequence of jobs that build atop this very simple
model. Sometimes, the overall application may require multiple jobs, where the
output of the reduce stage from one is the input to the map stage of another, and
sometimes there might be multiple map or reduce functions, but the core concepts
remain the same.

We will introduce the MapReduce model by looking at the nature of the map and
reduce functions and then describe the Java API required to build implementations
of the functions. After showing some examples, we will walk through a MapReduce
execution to give more insight into how the actual MapReduce framework executes
code at runtime.

Learning the MapReduce model can be a little counter-intuitive; it's often difficult
to appreciate how very simple functions can, when combined, provide very rich
processing on enormous datasets. But it does work, trust us!

As we explore the nature of the map and reduce functions, think of them as being
applied to a stream of records being retrieved from the source dataset. We'll describe
how that happens later; for now, think of the source data being sliced into smaller
chunks, each of which gets fed to a dedicated instance of the map function. Each
record has the map function applied, producing a set of intermediary data. Records
are retrieved from this temporary dataset and all associated records are fed together
through the reduce function. The final output of the reduce function for all the sets
of records is the overall result for the complete job.

From a functional perspective, MapReduce transforms data structures from one list
of (key, value) pairs into another. During the Map phase, data is loaded from HDFS,
and a function is applied in parallel to every input (key, value) and a new list of
(key, value) pairs is the output:

map(k1,v1) -> list(k2,v2)

The framework then collects all pairs with the same key from all lists and groups
them together, creating one group for each key. A Reduce function is applied in
parallel to each group, which in turn produces a list of values:

reduce(k2, list (v2)) → k3,list(v3)

Chapter 3

[61]

The output is then written back to HDFS in the following manner:

Reduce

Map

Map and Reduce phases

Java API to MapReduce
The Java API to MapReduce is exposed by the org.apache.hadoop.mapreduce
package. Writing a MapReduce program, at its core, is a matter of subclassing
Hadoop-provided Mapper and Reducer base classes, and overriding the map()
and reduce() methods with our own implementation.

The Mapper class
For our own Mapper implementations, we will subclass the Mapper base class and
override the map() method, as follows:

 class Mapper<K1, V1, K2, V2>
 {
 void map(K1 key, V1 value Mapper.Context context)
 throws IOException, InterruptedException
 ...
 }

The class is defined in terms of the key/value input and output types, and
then the map method takes an input key/value pair as its parameter. The other
parameter is an instance of the Context class that provides various mechanisms
to communicate with the Hadoop framework, one of which is to output the results
of a map or reduce method.

Processing – MapReduce and Beyond

[62]

Notice that the map method only refers to a single instance of K1 and V1 key/value
pairs. This is a critical aspect of the MapReduce paradigm in which you write classes
that process single records, and the framework is responsible for all the work required
to turn an enormous dataset into a stream of key/value pairs. You will never have to
write map or reduce classes that try to deal with the full dataset. Hadoop also provides
mechanisms through its InputFormat and OutputFormat classes that provide
implementations of common file formats and likewise remove the need for having to
write file parsers for any but custom file types.

There are three additional methods that sometimes may be required to
be overridden:.

 protected void setup(Mapper.Context context)
 throws IOException, InterruptedException

This method is called once before any key/value pairs are presented to the map
method. The default implementation does nothing:

 protected void cleanup(Mapper.Context context)
 throws IOException, InterruptedException

This method is called once after all key/value pairs have been presented to the map
method. The default implementation does nothing:

 protected void run(Mapper.Context context)
 throws IOException, InterruptedException

This method controls the overall flow of task processing within a JVM. The default
implementation calls the setup method once before repeatedly calling the map method
for each key/value pair in the split and then finally calls the cleanup method.

The Reducer class
The Reducer base class works very similarly to the Mapper class and usually
requires only subclasses to override a single reduce() method. Here is the
cut-down class definition:

 public class Reducer<K2, V2, K3, V3>
 {
 void reduce(K2 key, Iterable<V2> values,
 Reducer.Context context)
 throws IOException, InterruptedException
 ...
 }

Chapter 3

[63]

Again, notice the class definition in terms of the broader data flow (the reduce
method accepts K2/V2 as input and provides K3/V3 as output), while the actual
reduce method takes only a single key and its associated list of values. The Context
object is again the mechanism to output the result of the method.

This class also has the setup, run and cleanup methods with similar default
implementations as with the Mapper class that can optionally be overridden:

protected void setup(Reducer.Context context)
throws IOException, InterruptedException

The setup() method is called once before any key/lists of values are presented to
the reduce method. The default implementation does nothing:

protected void cleanup(Reducer.Context context)
throws IOException, InterruptedException

The cleanup() method is called once after all key/lists of values have been
presented to the reduce method. The default implementation does nothing:

protected void run(Reducer.Context context)
throws IOException, InterruptedException

The run() method controls the overall flow of processing the task within the JVM.
The default implementation calls the setup method before repeatedly and potentially
concurrently calling the reduce method for as many key/value pairs provided to the
Reducer class, and then finally calls the cleanup method.

The Driver class
The Driver class communicates with the Hadoop framework and specifies the
configuration elements needed to run a MapReduce job. This involves aspects such
as telling Hadoop which Mapper and Reducer classes to use, where to find the input
data and in what format, and where to place the output data and how to format it.

The driver logic usually exists in the main method of the class written to encapsulate
a MapReduce job. There is no default parent Driver class to subclass:

public class ExampleDriver extends Configured implements Tool
 {
 ...
 public static void run(String[] args) throws Exception
 {
 // Create a Configuration object that is used to set other
options

Processing – MapReduce and Beyond

[64]

 Configuration conf = getConf();

 // Get command line arguments
 args = new GenericOptionsParser(conf, args)
 .getRemainingArgs();

 // Create the object representing the job
 Job job = new Job(conf, "ExampleJob");

 // Set the name of the main class in the job jarfile
 job.setJarByClass(ExampleDriver.class);
 // Set the mapper class
 job.setMapperClass(ExampleMapper.class);

 // Set the reducer class
 job.setReducerClass(ExampleReducer.class);

 // Set the types for the final output key and value
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 // Set input and output file paths
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // Execute the job and wait for it to complete
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main(String[] args) throws Exception
 {
 int exitCode = ToolRunner.run(new ExampleDriver(), args);
 System.exit(exitCode);
 }
}

In the preceding lines of code, org.apache.hadoop.util.Tool is an interface for
handling command-line options. The actual handling is delegated to ToolRunner.
run, which runs Tool with the given Configuration used to get and set a job's
configuration options. By subclassing org.apache.hadoop.conf.Configured,
we can set the Configuration object directly from command-line options via
GenericOptionsParser.

Chapter 3

[65]

Given our previous talk of jobs, it's not surprising that much of the setup involves
operations on a job object. This includes setting the job name and specifying which
classes are to be used for the mapper and reducer implementations.

Certain input/output configurations are set and, finally, the arguments passed to the
main method are used to specify the input and output locations for the job. This is a
very common model that you will see often.

There are a number of default values for configuration options, and we are implicitly
using some of them in the preceding class. Most notably, we don't say anything
about the format of the input files or how the output files are to be written. These are
defined through the InputFormat and OutputFormat classes mentioned earlier; we
will explore them in detail later. The default input and output formats are text files
that suit our examples. There are multiple ways of expressing the format within text
files in addition to particularly optimized binary formats.

A common model for less complex MapReduce jobs is to have the Mapper and
Reducer classes as inner classes within the driver. This allows everything to be
kept in a single file, which simplifies the code distribution.

Combiner
Hadoop allows the use of a combiner class to perform some early sorting of the
output from the map method before it's retrieved by the reducer.

Much of Hadoop's design is predicated on reducing the expensive parts of a job that
usually equate to disk and network I/O. The output of the mapper is often large; it's
not infrequent to see it many times the size of the original input. Hadoop does allow
configuration options to help reduce the impact of the reducers transferring such
large chunks of data across the network. The combiner takes a different approach
where it's possible to perform early aggregation to require less data to be transferred
in the first place.

The combiner does not have its own interface; a combiner must have the same
signature as the reducer, and hence also subclasses the Reduce class from the org.
apache.hadoop.mapreduce package. The effect of this is to basically perform a mini-
reduce on the mapper for the output destined for each reducer.

Hadoop does not guarantee whether the combiner will be executed. Sometimes, it
may not be executed at all, while at other times it may be used once, twice, or more
times depending on the size and number of output files generated by the mapper for
each reducer.

Processing – MapReduce and Beyond

[66]

Partitioning
One of the implicit guarantees of the Reduce interface is that a single reducer
will be given all the values associated with a given key. With multiple reduce
tasks running across a cluster, each mapper output must be partitioned into the
separate outputs destined for each reducer. These partitioned files are stored on
the local node filesystem.

The number of reduce tasks across the cluster is not as dynamic as that of mappers,
and indeed we can specify the value as part of our job submission. Hadoop therefore,
knows how many reducers will be needed to complete the job, and from this, it
knows into how many partitions the mapper output should be split.

The optional partition function
Within the org.apache.hadoop.mapreduce package is the Partitioner class,
an abstract class with the following signature:

public abstract class Partitioner<Key, Value>
{
 public abstract int getPartition(Key key, Value value,
 int numPartitions);
}

By default, Hadoop will use a strategy that hashes the output key to perform the
partitioning. This functionality is provided by the HashPartitioner class within
the org.apache.hadoop.mapreduce.lib.partition package, but it's necessary in
some cases to provide a custom subclass of Partitioner with application-specific
partitioning logic. Notice that the getPartition function takes the key, value,
and number of partitions as parameters, any of which can be used by the custom
partitioning logic.

A custom partitioning strategy would be particularly necessary if, for example, the
data provided a very uneven distribution when the standard hash function was
applied. Uneven partitioning can result in some tasks having to perform significantly
more work than others, leading to much longer overall job execution time.

Chapter 3

[67]

Hadoop-provided mapper and reducer
implementations
We don't always have to write our own Mapper and Reducer classes from scratch.
Hadoop provides several common Mapper and Reducer implementations that can be
used in our jobs. If we don't override any of the methods in the Mapper and Reducer
classes, the default implementations are the identity Mapper and Reducer classes,
which simply output the input unchanged.

The mappers are found at org.apache.hadoop.mapreduce.lib.mapper and
include the following:

•	 InverseMapper: returns (value, key) as an output, that is, the input key is
output as the value and the input value is output as the key

•	 TokenCounterMapper: counts the number of discrete tokens in each line
of input

•	 IdentityMapper: implements the identity function, mapping inputs directly
to outputs

The reducers are found at org.apache.hadoop.mapreduce.lib.reduce and
currently include the following:

•	 IntSumReducer: outputs the sum of the list of integer values per key
•	 LongSumReducer: outputs the sum of the list of long values per key
•	 IdentityReducer: implements the identity function, mapping inputs

directly to outputs

Sharing reference data
Occasionally, we might want to share data across tasks. For instance, if we need to
perform a lookup operation on an ID-to-string translation table, we might want such
a data source to be accessible by the mapper or reducer. A straightforward approach
is to store the data we want to access on HDFS and use the FileSystem API to query
it as part of the Map or Reduce steps.

Hadoop gives us an alternative mechanism to achieve the goal of sharing reference
data across all tasks in the job, the Distributed Cache defined by the org.apache.
hadoop.mapreduce.filecache.DistributedCache class. This can be used to
efficiently make available common read-only files that are used by the map or reduce
tasks to all nodes.

Processing – MapReduce and Beyond

[68]

The files can be text data as in this case, but could also be additional JARs, binary
data, or archives; anything is possible. The files to be distributed are placed on HDFS
and added to the DistributedCache within the job driver. Hadoop copies the files
onto the local filesystem of each node prior to job execution, meaning every task has
local access to the files.

An alternative is to bundle needed files into the job JAR submitted to Hadoop.
This does tie the data to the job JAR, making it more difficult to share across jobs
and requires the JAR to be rebuilt if the data changes.

Writing MapReduce programs
In this chapter, we will be focusing on batch workloads; given a set of historical data,
we will look at properties of that dataset. In Chapter 4, Real-time Computation with
Samza, and Chapter 5, Iterative Computation with Spark, we will show how a similar
type of analysis can be performed over a stream of text collected in real time.

Getting started
In the following examples, we will assume a dataset generated by collecting 1,000
tweets using the stream.py script, as shown in Chapter 1, Introduction:

$ python stream.py –t –n 1000 > tweets.txt

We can then copy the dataset into HDFS with:

$ hdfs dfs -put tweets.txt <destination>

Note that until now we have been working only with the text of tweets.
In the remainder of this book, we'll extend stream.py to output
additional tweet metadata in JSON format. Keep this in mind before
dumping terabytes of messages with stream.py.

Our first MapReduce program will be the canonical WordCount example. A variation
of this program will be used to determine trending topics. We will then analyze text
associated with topics to determine whether it expresses a "positive" or "negative"
sentiment. Finally, we will make use of a MapReduce pattern—ChainMapper—to pull
things together and present a data pipeline to clean and prepare the textual data we'll
feed to the trending topic and sentiment analysis model.

Chapter 3

[69]

Running the examples
The full source code of the examples described in this section can be found at
https://github.com/learninghadoop2/book-examples/tree/master/ch3.

Before we run our job in Hadoop, we must compile our code and collect the required
class files into a single JAR file that we will submit to the system. Using Gradle, you
can build the needed JAR file with:

$./gradlew jar

Local cluster
Jobs are executed on Hadoop using the JAR option to the Hadoop command-line
utility. To use this, we specify the name of the JAR file, the main class within it,
and any arguments that will be passed to the main class, as shown in the
following command:

$ hadoop jar <job jarfile> <main class> <argument 1> … <argument 2>

Elastic MapReduce
Recall from Chapter 1, Introduction, that Elastic MapReduce expects the job JAR file
and its input data to be located in an S3 bucket and conversely will dump its output
back into S3.

Be careful: this will cost money! For this example, we will use
the smallest possible cluster configuration available for EMR,
a single-node cluster

First of all, we will copy the tweet dataset and the list of positive and negative
words to S3 using the aws command-line utility:

$ aws s3 put tweets.txt s3://<bucket>/input

$ aws s3 put job.jar s3://<bucket>

We can execute a job using the EMR command-line tool as follows by uploading
the JAR file to s3://<bucket> and adding CUSTOM_JAR steps with the aws CLI:

$ aws emr add-steps --cluster-id <cluster-id> --steps \

Type=CUSTOM_JAR,\

Processing – MapReduce and Beyond

[70]

Name=CustomJAR,\

Jar=s3://<bucket>/job.jar,\

MainClass=<class name>,\

Args=arg1,arg2,…argN

Here, cluster-id is the ID of a running EMR cluster, <class name> is the fully
qualified name of the main class, and arg1,arg2,…,argN are the job arguments.

WordCount, the Hello World of MapReduce
WordCount counts word occurrences in a dataset. The source code of this example
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch3/src/main/java/com/learninghadoop2/mapreduce/WordCount.java.
Consider the following block of code for example:

public class WordCount extends Configured implements Tool
{
 public static class WordCountMapper
 extends Mapper<Object, Text, Text, IntWritable>
 {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 String[] words = value.toString().split(" ") ;
 for (String str: words)
 {
 word.set(str);
 context.write(word, one);
 }
 }
 }
 public static class WordCountReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context
) throws IOException, InterruptedException {
 int total = 0;
 for (IntWritable val : values) {
 total++ ;
 }
 context.write(key, new IntWritable(total));

Chapter 3

[71]

 }
 }

 public int run(String[] args) throws Exception {
 Configuration conf = getConf();

 args = new GenericOptionsParser(conf, args)
 .getRemainingArgs();

 Job job = Job.getInstance(conf);

 job.setJarByClass(WordCount.class);
 job.setMapperClass(WordCountMapper.class);
 job.setReducerClass(WordCountReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 return (job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new WordCount(), args);
 System.exit(exitCode);
 }
}

This is our first complete MapReduce job. Look at the structure, and you should
recognize the elements we have previously discussed: the overall Job class
with the driver configuration in its main method and the Mapper and Reducer
implementations defined as static nested classes.

We'll do a more detailed walkthrough of the mechanics of MapReduce in the next
section, but for now, let's look at the preceding code and think of how it realizes the
key/value transformations we discussed earlier.

The input to the Mapper class is arguably the hardest to understand, as the key is
not actually used. The job specifies TextInputFormat as the format of the input data
and, by default, this delivers to the mapper data where the key is the byte offset in
the file and the value is the text of that line. In reality, you may never actually see a
mapper that uses that byte offset key, but it's provided.

Processing – MapReduce and Beyond

[72]

The mapper is executed once for each line of text in the input source, and every time
it takes the line and breaks it into words. It then uses the Context object to output
(more commonly known as emitting) each new key/value of the form (word, 1).
These are our K2/V2 values.

We said before that the input to the reducer is a key and a corresponding list of values,
and there is some magic that happens between the map and reduce methods to collect
the values for each key that facilitates this—called the shuffle stage, which we won't
describe right now. Hadoop executes the reducer once for each key, and the preceding
reducer implementation simply counts the numbers in the Iterable object and gives
output for each word in the form of (word, count). These are our K3/V3 values.

Take a look at the signatures of our mapper and reducer classes: the
WordCountMapper class accepts IntWritable and Text as input and provides
Text and IntWritable as output. The WordCountReducer class has Text and
IntWritable accepted as both input and output. This is again quite a common
pattern, where the map method performs an inversion on the key and values, and
instead emits a series of data pairs on which the reducer performs aggregation.

The driver is more meaningful here, as we have real values for the parameters.
We use arguments passed to the class to specify the input and output locations.

Run the job with:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.WordCount \

 twitter.txt output

Examine the output with a command such as the following; the actual filename
might be different, so just look inside the directory called output in your home
directory on HDFS:

$ hdfs dfs -cat output/part-r-00000

Word co-occurrences
Words occurring together are likely to be phrases and common—frequently
occurring—phrases are likely to be important. In Natural Language Processing, a list
of co-occurring terms is called an N-Gram. N-Grams are the foundation of several
statistical methods for text analytics. We will give an example of the special case of
an N-Gram—and a metric often encountered in analytics applications—composed of
two terms (a bigram).

Chapter 3

[73]

A naïve implementation in MapReduce would be an extension of WordCount that
emits a multi-field key composed of two tab-separated words.

public class BiGramCount extends Configured implements Tool
{
 public static class BiGramMapper
 extends Mapper<Object, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 String[] words = value.toString().split(" ");

 Text bigram = new Text();
 String prev = null;

 for (String s : words) {
 if (prev != null) {
 bigram.set(prev + "\t+\t" + s);
 context.write(bigram, one);
 }

 prev = s;
 }
 }
 }

 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = getConf();

 args = new GenericOptionsParser(conf, args).
getRemainingArgs();
 Job job = Job.getInstance(conf);
 job.setJarByClass(BiGramCount.class);
 job.setMapperClass(BiGramMapper.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

Processing – MapReduce and Beyond

[74]

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 return (job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new BiGramCount(), args);
 System.exit(exitCode);
 }
}

In this job, we replace WordCountReducer with org.apache.hadoop.mapreduce.
lib.reduce.IntSumReducer, which implements the same logic. The source code
of this example can be found at https://github.com/learninghadoop2/book-
examples/blob/master/ch3/src/main/java/com/learninghadoop2/mapreduce/
BiGramCount.java.

Trending topics
The # symbol, called a hashtag, is used to mark keywords or topics in a tweet. It was
created organically by Twitter users as a way to categorize messages. Twitter Search
(found at https://twitter.com/search-home) popularized the use of hashtags
as a method to connect and find content related to specific topics as well as the
people talking about such topics. By counting the frequency with which a hashtag is
mentioned over a given time period, we can determine which topics are trending in
the social network.

public class HashTagCount extends Configured implements Tool
{
 public static class HashTagCountMapper
 extends Mapper<Object, Text, Text, IntWritable>
 {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 private String hashtagRegExp =
"(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)";

Chapter 3

[75]

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 String[] words = value.toString().split(" ") ;

 for (String str: words)
 {
 if (str.matches(hashtagRegExp)) {
 word.set(str);
 context.write(word, one);
 }
 }
 }
 }

 public int run(String[] args) throws Exception {
 Configuration conf = getConf();

 args = new GenericOptionsParser(conf, args)
 .getRemainingArgs();

 Job job = Job.getInstance(conf);

 job.setJarByClass(HashTagCount.class);
 job.setMapperClass(HashTagCountMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 return (job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new HashTagCount(), args);
 System.exit(exitCode);
 }
}

Processing – MapReduce and Beyond

[76]

As in the WordCount example, we tokenize text in the Mapper. We use a regular
expression— hashtagRegExp—to detect the presence of a hashtag in Twitter's
text and emit the hashtag and the number 1 when a hashtag is found. In the
Reducer step, we then count the total number of emitted hashtag occurrences using
IntSumReducer.

The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagCount.java.

This compiled class will be in the JAR file we built with Gradle earlier, so now we
execute HashTagCount with the following command:

$ hadoop jar build/libs/mapreduce-example.jar \

com.learninghadoop2.mapreduce.HashTagCount twitter.txt output

Let's examine the output as before:

$ hdfs dfs -cat output/part-r-00000

You should see output similar to the following:

#whey 1

#willpower 1

#win 2

#winterblues 1

#winterstorm 1

#wipolitics 1

#women 6

#woodgrain 1

Each line is composed of a hashtag and the number of times it appears in the tweets
dataset. As you can see, the MapReduce job orders results by key. If we want to
find the most mentioned topics, we need to order the result set. The naïve approach
would be to perform a total order of the aggregated values and selecting the top 10.

If the output dataset is small, we can pipe it to standard output and sort it using the
sort utility:

$ hdfs dfs -cat output/part-r-00000 | sort -k2 -n -r | head -n 10

Chapter 3

[77]

Another solution would be to write another MapReduce job to traverse the whole
result set and sort by value. When data becomes large, this type of global sorting can
become quite expensive. In the following section, we will illustrate an efficient design
pattern to sort aggregated data

The Top N pattern
In the Top N pattern, we keep data sorted in a local data structure. Each mapper
calculates a list of the top N records in its split and sends its list to the reducer.
A single reducer task finds the top N global records.

We will apply this design pattern to implement a TopTenHashTag job that finds the
top ten topics in our dataset. The job takes as input the output data generated by
HashTagCount and returns a list of the ten most frequently mentioned hashtags.

In TopTenMapper we use TreeMap to keep a sorted list—in ascending order—of
hashtags. The key of this map is the number of occurrences; the value is a
tab-separated string of hashtags and their frequency. In map(), for each value, we
update the topN map. When topN has more than ten items, we remove the smallest:

public static class TopTenMapper extends Mapper<Object, Text,
 NullWritable, Text> {

 private TreeMap<Integer, Text> topN = new TreeMap<Integer, Text>();
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context) throws
 IOException, InterruptedException {

 String[] words = value.toString().split("\t") ;
 if (words.length < 2) {
 return;
 }
 topN.put(Integer.parseInt(words[1]), new Text(value));
 if (topN.size() > 10) {
 topN.remove(topN.firstKey());
 }
}

Processing – MapReduce and Beyond

[78]

 @Override
 protected void cleanup(Context context) throws IOException,
 InterruptedException {
 for (Text t : topN.values()) {
 context.write(NullWritable.get(), t);
 }
 }
 }

We don't emit any key/value in the map function. We implement a cleanup()
method that, once the mapper has consumed all its input, emits the (hashtag, count)
values in topN. We use a NullWritable key because we want all values to be
associated with the same key so that we can perform a global order over all mappers'
top n lists. This implies that our job will execute only one reducer.

The reducer implements logic similar to what we have in map(). We instantiate
TreeMap and use it to keep an ordered list of the top 10 values:

 public static class TopTenReducer extends
 Reducer<NullWritable, Text, NullWritable, Text> {

 private TreeMap<Integer, Text> topN = new TreeMap<Integer,
 Text>();

 @Override
 public void reduce(NullWritable key, Iterable<Text> values,
 Context context) throws IOException, InterruptedException {
 for (Text value : values) {
 String[] words = value.toString().split("\t") ;

 topN.put(Integer.parseInt(words[1]),
 new Text(value));

 if (topN.size() > 10) {
 topN.remove(topN.firstKey());
 }
 }

Chapter 3

[79]

 for (Text word : topN.descendingMap().values()) {
 context.write(NullWritable.get(), word);
 }
 }
 }

Finally, we traverse topN in descending order to generate the list of trending topics.

Note that in this implementation, we override hashtags that have a
frequency value already present in TreeMap when calling topN.
put(). Depending on the use case, it's advised to use a different
data structure—such as the ones offered by the Guava library
(https://code.google.com/p/guava-libraries/)—or
adjust the updating strategy.

In the driver, we enforce a single reducer by setting job.setNumReduceTasks(1):

$ hadoop jar build/libs/mapreduce-example.jar \

com.learninghadoop2.mapreduce.TopTenHashTag \

output/part-r-00000 \

top-ten

We can inspect the top ten to list trending topics:

$ hdfs dfs -cat top-ten/part-r-00000

#Stalker48 150

#gameinsight 55

#12M 52

#KCA 46

#LORDJASONJEROME 29

#Valencia 19

#LesAnges6 16

#VoteLuan 15

#hadoop2 12

#Gameinsight 11

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/TopTenHashTag.java.

Processing – MapReduce and Beyond

[80]

Sentiment of hashtags
The process of identifying subjective information in a data source is commonly
referred to as sentiment analysis. In the previous example, we show how to detect
trending topics in a social network; we'll now analyze the text shared around those
topics to determine whether they express a mostly positive or negative sentiment.

A list of positive and negative words for the English language—a so-called opinion
lexicon—can be found at http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-
English.rar.

These resources—and many more—have been collected by Prof. Bing
Liu's group at the University of Illinois at Chicago and have been used,
among others, in Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion
Observer: Analyzing and Comparing Opinions on the Web." Proceedings
of the 14th International World Wide Web conference (WWW-2005),
May 10-14, 2005, Chiba, Japan.

In this example, we'll present a bag-of-words method that, although simplistic in
nature, can be used as a baseline to mine opinion in text. For each tweet and each
hashtag, we will count the number of times a positive or a negative word appears
and normalize this count by the text length.

The bag-of-words model is an approach used in Natural
Language Processing and Information Retrieval to represent
textual documents. In this model, text is represented as the set or
bag—with multiplicity—of its words, disregarding grammar and
morphological properties and even word order.

Uncompress the archive and place the word lists into HDFS with the following
command line:

$ hdfs dfs –put positive-words.txt <destination>

$ hdfs dfs –put negative-words.txt <destination>

In the Mapper class, we define two objects that will hold the word lists:
positiveWords and negativeWords as Set<String>:

private Set<String> positiveWords = null;
private Set<String> negativeWords = null;

Chapter 3

[81]

We override the default setup() method of the Mapper so that a list of positive and
negative words—specified by two configuration properties: job.positivewords.
path and job.negativewords.path—is read from HDFS using the filesystem API
we discussed in the previous chapter. We could have also used DistributedCache to
share this data across the cluster. The helper method, parseWordsList, reads a list of
word lists, strips out comments, and loads words into HashSet<String>:

private HashSet<String> parseWordsList(FileSystem fs, Path
wordsListPath)
{
 HashSet<String> words = new HashSet<String>();
 try {

 if (fs.exists(wordsListPath)) {
 FSDataInputStream fi = fs.open(wordsListPath);

 BufferedReader br =
new BufferedReader(new InputStreamReader(fi));
 String line = null;
 while ((line = br.readLine()) != null) {
 if (line.length() > 0 && !line.startsWith(BEGIN_
COMMENT)) {
 words.add(line);
 }
 }

 fi.close();
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }

 return words;
}

In the Mapper step, we emit for each hashtag in the tweet the overall sentiment of
the tweet (simply the positive word count minus the negative word count) and the
length of the tweet.

Processing – MapReduce and Beyond

[82]

We'll use these in the reducer to calculate an overall sentiment ratio weighted by
the length of the tweets to estimate the sentiment expressed by a tweet on a hashtag,
as follows:

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 String[] words = value.toString().split(" ") ;
 Integer positiveCount = new Integer(0);
 Integer negativeCount = new Integer(0);

 Integer wordsCount = new Integer(0);

 for (String str: words)
 {
 if (str.matches(HASHTAG_PATTERN)) {
 hashtags.add(str);
 }

 if (positiveWords.contains(str)) {
 positiveCount += 1;
 } else if (negativeWords.contains(str)) {
 negativeCount += 1;
 }

 wordsCount += 1;
 }

 Integer sentimentDifference = 0;
 if (wordsCount > 0) {
 sentimentDifference = positiveCount - negativeCount;
 }

 String stats ;
 for (String hashtag : hashtags) {
 word.set(hashtag);
 stats = String.format("%d %d", sentimentDifference,
 wordsCount);
 context.write(word, new Text(stats));
 }
 }
 }

Chapter 3

[83]

In the Reducer step, we add together the sentiment scores given to each instance of
the hashtag and divide by the total size of all the tweets in which it occurred:

public static class HashTagSentimentReducer
 extends Reducer<Text,Text,Text,DoubleWritable> {
 public void reduce(Text key, Iterable<Text> values,
 Context context
) throws IOException, InterruptedException {
 double totalDifference = 0;
 double totalWords = 0;
 for (Text val : values) {
 String[] parts = val.toString().split(" ") ;
 totalDifference += Double.parseDouble(parts[0]) ;
 totalWords += Double.parseDouble(parts[1]) ;
 }
 context.write(key,
new DoubleWritable(totalDifference/totalWords));
 }
 }

The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagSentiment.java.

After running the preceding code, execute HashTagSentiment with the
following command:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.HashTagSentiment twitter.txt output-sentiment <positive words>
<negative words>

You can examine the output with the following command:

$ hdfs dfs -cat output-sentiment/part-r-00000

You should see an output similar to the following:

#1068 0.011861271213042056

#10YearsOfLove 0.012285135487494233

#11 0.011941109121333999

#12 0.011938693593171155

#12F 0.012339242266249566

#12M 0.011864286953783268

#12MCalleEnPazYaTeVasNicolas

Processing – MapReduce and Beyond

[84]

In the preceding output, each line is composed of a hashtag and the sentiment
polarity associated with it. This number is a heuristic that tells us whether a
hashtag is associated mostly with positive (polarity > 0) or negative (polarity < 0)
sentiment and the magnitude of such a sentiment—the higher or lower the number,
the stronger the sentiment.

Text cleanup using chain mapper
In the examples presented until now, we ignored a key step of essentially every
application built around text processing, which is the normalization and cleanup
of the input data. Three common components of this normalization step are:

•	 Changing the letter case to either lower or upper
•	 Removal of stopwords
•	 Stemming

In this section, we will show how the ChainMapper class—found at org.apache.
hadoop.mapreduce.lib.chain.ChainMapper—allows us to sequentially combine
a series of Mappers to put together as the first step of a data cleanup pipeline.
Mappers are added to the configured job using the following:

ChainMapper.addMapper(
JobConf job,
Class<? extends Mapper<K1,V1,K2,V2>> klass,
Class<? extends K1> inputKeyClass,
Class<? extends V1> inputValueClass,
Class<? extends K2> outputKeyClass,
Class<? extends V2> outputValueClass, JobConf mapperConf)

The static method, addMapper, requires the following arguments to be passed:

•	 job: JobConf to add the Mapper class
•	 class: Mapper class to add
•	 inputKeyClass: mapper input key class
•	 inputValueClass: mapper input value class
•	 outputKeyClass: mapper output key class
•	 outputValueClass: mapper output value class
•	 mapperConf: a JobConf with the configuration for the Mapper class

Chapter 3

[85]

In this example, we will take care of the first item listed above: before computing the
sentiment of each tweet, we will convert to lowercase each word present in its text.
This will allow us to more accurately ascertain the sentiment of hashtags by ignoring
differences in capitalization across tweets.

First of all, we define a new Mapper—LowerCaseMapper—whose map() function
calls Java String's toLowerCase() method on its input value and emits the lower
cased text:

public class LowerCaseMapper extends Mapper<LongWritable, Text,
IntWritable, Text> {
 private Text lowercased = new Text();
 public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
 lowercased.set(value.toString().toLowerCase());
 context.write(new IntWritable(1), lowercased);
 }
}

In the HashTagSentimentChain driver, we configure the Job object so that both
Mappers will be chained together and executed:

public class HashTagSentimentChain
extends Configured implements Tool
{

 public int run(String[] args) throws Exception {
 Configuration conf = getConf();
 args = new GenericOptionsParser(conf,args).
 getRemainingArgs();

 // location (on hdfs) of the positive words list
 conf.set("job.positivewords.path", args[2]);
 conf.set("job.negativewords.path", args[3]);

 Job job = Job.getInstance(conf);
 job.setJarByClass(HashTagSentimentChain.class);

 Configuration lowerCaseMapperConf = new
 Configuration(false);
 ChainMapper.addMapper(job,
 LowerCaseMapper.class,
 LongWritable.class, Text.class,
 IntWritable.class, Text.class,

Processing – MapReduce and Beyond

[86]

 lowerCaseMapperConf);

 Configuration hashTagSentimentConf = new
 Configuration(false);
 ChainMapper.addMapper(job,
 HashTagSentiment.HashTagSentimentMapper.class,
 IntWritable.class,
 Text.class, Text.class,
 Text.class,
 hashTagSentimentConf);
 job.setReducerClass(HashTagSentiment.
 HashTagSentimentReducer.class);

 job.setInputFormatClass(TextInputFormat.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));

 job.setOutputFormatClass(TextOutputFormat.class);
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 return (job.waitForCompletion(true) ? 0 : 1);
 }

 public static void main (String[] args) throws Exception {
 int exitCode = ToolRunner.run(
new HashTagSentimentChain(), args);
 System.exit(exitCode);
 }
}

The LowerCaseMapper and HashTagSentimentMapper classes are invoked
in a pipeline, where the output of the first becomes the input of the second.
The output of the last Mapper will be written to the task's output. An immediate
benefit of this design is a reduction of disk I/O operations. Mappers do not need to
be aware that they are chained. It's therefore possible to reuse specialized Mappers
that can be combined within a single task. Note that this pattern assumes that all
Mappers—and the Reduce—use matching output and input (key, value) pairs.
No casting or conversion is done by ChainMapper itself.

Finally, notice that the addMapper call for the last mapper in the chain specifies
the output key/value classes applicable to the whole mapper pipeline when used
as a composite.

Chapter 3

[87]

The full source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch3/src/main/java/com/
learninghadoop2/mapreduce/HashTagSentimentChain.java.

Execute HashTagSentimentChain with the command:

$ hadoop jar build/libs/mapreduce-example.jar com.learninghadoop2.
mapreduce.HashTagSentimentChain twitter.txt output <positive words>
<negative words>

You should see an output similar to the previous example. Notice that this time,
the hashtag in each line is lowercased.

Walking through a run of a MapReduce
job
To explore the relationship between mapper and reducer in more detail, and to
expose some of Hadoop's inner workings, we'll now go through how a MapReduce
job is executed. This applies to both MapReduce in Hadoop 1 and Hadoop 2 even
though the latter is implemented very differently using YARN, which we'll discuss
later in this chapter. Additional information on the services described in this section,
as well as suggestions for troubleshooting MapReduce applications, can be found in
Chapter 10, Running a Hadoop Cluster.

Startup
The driver is the only piece of code that runs on our local machine, and the call to
Job.waitForCompletion() starts the communication with the JobTracker, which
is the master node in the MapReduce system. The JobTracker is responsible for all
aspects of job scheduling and execution, so it becomes our primary interface when
performing any task related to job management.

To share resources on the cluster the JobTracker can use one of several scheduling
approaches to handle incoming jobs. The general model is to have a number of
queues to which jobs can be submitted along with policies to assign resources
across the queues. The most commonly used implementations for these policies
are Capacity and Fair Scheduler.

The JobTracker communicates with the NameNode on our behalf and manages all
interactions relating to the data stored on HDFS.

Processing – MapReduce and Beyond

[88]

Splitting the input
The first of these interactions happens when the JobTracker looks at the input data
and determines how to assign it to map tasks. Recall that HDFS files are usually split
into blocks of at least 64 MB and the JobTracker will assign each block to one map
task. Our WordCount example, of course, used a trivial amount of data that was well
within a single block. Picture a much larger input file measured in terabytes, and
the split model makes more sense. Each segment of the file—or split, in MapReduce
terminology—is processed uniquely by one map task. Once it has computed the
splits, the JobTracker places them and the JAR file containing the Mapper and
Reducer classes into a job-specific directory on HDFS, whose path will be passed to
each task as it starts.

Task assignment
The TaskTracker service is responsible for allocating resources, executing and
tracking the status of map and reduce tasks running on a node. Once the JobTracker
has determined how many map tasks will be needed, it looks at the number of
hosts in the cluster, how many TaskTrackers are working, and how many map
tasks each can concurrently execute (a user-definable configuration variable). The
JobTracker also looks to see where the various input data blocks are located across
the cluster and attempts to define an execution plan that maximizes the cases when
the TaskTracker processes a split/block located on the same physical host, or,
failing that, it processes at least one in the same hardware rack. This data locality
optimization is a huge reason behind Hadoop's ability to efficiently process such
large datasets. Recall also that, by default, each block is replicated across three
different hosts, so the likelihood of producing a task/host plan that sees most blocks
processed locally is higher than it might seem at first.

Task startup
Each TaskTracker then starts up a separate Java virtual machine to execute the tasks.
This does add a startup time penalty, but it isolates the TaskTracker from problems
caused by misbehaving map or reduce tasks, and it can be configured to be shared
between subsequently executed tasks.

If the cluster has enough capacity to execute all the map tasks at once, they will all
be started and given a reference to the split they are to process and the job JAR file.
If there are more tasks than the cluster capacity, the JobTracker will keep a queue of
pending tasks and assign them to nodes as they complete their initially assigned
map tasks.

Chapter 3

[89]

We are now ready to see the executed data of map tasks. If all this sounds like
a lot of work, it is; it explains why, when running any MapReduce job, there is
always a non-trivial amount of time taken as the system gets started and performs
all these steps.

Ongoing JobTracker monitoring
The JobTracker doesn't just stop work now and wait for the TaskTrackers to
execute all the mappers and reducers. It's constantly exchanging heartbeat and
status messages with the TaskTrackers, looking for evidence of progress or problems.
It also collects metrics from the tasks throughout the job execution, some provided
by Hadoop and others specified by the developer of the map and reduce tasks,
although we don't use any in this example.

Mapper input
The driver class specifies the format and structure of the input file using
TextInputFormat, and from this, Hadoop knows to treat this as text with the
byte offset as the key and line contents as the value. Assume that our dataset
contains the following text:

This is a test
Yes it is

The two invocations of the mapper will therefore be given the following output:

1 This is a test
2 Yes it is

Mapper execution
The key/value pairs received by the mapper are the offset in the file of the line
and the line contents, respectively, because of how the job is configured. Our
implementation of the map method in WordCountMapper discards the key, as
we do not care where each line occurred in the file, and splits the provided
value into words using the split method on the standard Java String class. Note
that better tokenization could be provided by use of regular expressions or the
StringTokenizer class, but for our purposes this simple approach will suffice. For
each individual word, the mapper then emits a key comprised of the actual word
itself, and a value of 1.

Processing – MapReduce and Beyond

[90]

Mapper output and reducer input
The output of the mapper is a series of pairs of the form (word, 1); in our example,
these will be:

(This,1), (is, 1), (a, 1), (test, 1), (Yes, 1), (it, 1), (is, 1)

These output pairs from the mapper are not passed directly to the reducer.
Between mapping and reducing is the shuffle stage, where much of the magic
of MapReduce occurs.

Reducer input
The reducer TaskTracker receives updates from the JobTracker that tell it which
nodes in the cluster hold map output partitions that need to be processed by its local
reduce task. It then retrieves these from the various nodes and merges them into a
single file that will be fed to the reduce task.

Reducer execution
Our WordCountReducer class is very simple; for each word, it simply counts the
number of elements in the array and emits the final (word, count) output for each
word. For our invocation of WordCount on our sample input, all but one word has
only one value in the list of values; is has two.

Reducer output
The final set of reducer output for our example is therefore:

(This, 1), (is, 2), (a, 1), (test, 1), (Yes, 1), (it, 1)

This data will be output to partition files within the output directory specified in
the driver that will be formatted using the specified OutputFormat implementation.
Each reduce task writes to a single file with the filename part-r-nnnnn, where
nnnnn starts at 00000 and is incremented.

Shutdown
Once all tasks have completed successfully, the JobTracker outputs the final state of
the job to the client, along with the final aggregates of some of the more important
counters that it has been aggregating along the way. The full job and task history is
available in the log directory on each node or, more accessibly, via the JobTracker
web UI; point your browser to port 50030 on the JobTracker node.

Chapter 3

[91]

Input/Output
We have talked about files being broken into splits as part of the job startup and the
data in a split being sent to the mapper implementation. However, this overlooks
two aspects: how the data is stored in the file and how the individual keys and
values are passed to the mapper structure.

InputFormat and RecordReader
Hadoop has the concept of InputFormat for the first of these responsibilities.
The InputFormat abstract class in the org.apache.hadoop.mapreduce package
provides two methods as shown in the following code:

public abstract class InputFormat<K, V>
{
 public abstract List<InputSplit> getSplits(JobContext context);
 RecordReader<K, V> createRecordReader(InputSplit split,
 TaskAttemptContext context) ;
}

These methods display the two responsibilities of the InputFormat class:

•	 To provide details on how to divide an input file into the splits required for
map processing

•	 To create a RecordReader that will generate the series of key/value pairs
from a split

The RecordReader class is also an abstract class within the org.apache.hadoop.
mapreduce package:

public abstract class RecordReader<Key, Value> implements Closeable
{
 public abstract void initialize(InputSplit split,
 TaskAttemptContext context);
 public abstract boolean nextKeyValue()
 throws IOException, InterruptedException;
 public abstract Key getCurrentKey()
 throws IOException, InterruptedException;
 public abstract Value getCurrentValue()
 throws IOException, InterruptedException;
 public abstract float getProgress()
 throws IOException, InterruptedException;
 public abstract close() throws IOException;
}

Processing – MapReduce and Beyond

[92]

A RecordReader instance is created for each split and calls getNextKeyValue to
return a Boolean indicating whether another key/value pair is available, and, if so,
the getKey and getValue methods are used to access the key and value respectively.

The combination of the InputFormat and RecordReader classes therefore are all
that is required to bridge between any kind of input data and the key/value pairs
required by MapReduce.

Hadoop-provided InputFormat
There are some Hadoop-provided InputFormat implementations within the
org.apache.hadoop.mapreduce.lib.input package:

•	 FileInputFormat: is an abstract base class that can be the parent of any
file-based input.

•	 SequenceFileInputFormat: is an efficient binary file format that will be
discussed in an upcoming section.

•	 TextInputFormat: is used for plain text files.
•	 KeyValueTextInputFormat: is used for plain text files. Each line is divided

into key and value parts by a separator byte.

Note that input formats are not restricted to reading from files; FileInputFormat
is itself a subclass of InputFormat. It's possible to have Hadoop use data that is
not based on files as the input to MapReduce jobs; common sources are relational
databases or column-oriented databases, such as Amazon DynamoDB or HBase.

Hadoop-provided RecordReader
Hadoop provides a few common RecordReader implementations, which are also
present within the org.apache.hadoop.mapreduce.lib.input package:

•	 LineRecordReader: implementation is the default RecordReader class
for text files that presents the byte offset in the file as the key and the line
contents as the value

•	 SequenceFileRecordReader: implementation reads the key/value from the
binary SequenceFile container

Chapter 3

[93]

OutputFormat and RecordWriter
There is a similar pattern for writing the output of a job coordinated by subclasses
of OutputFormat and RecordWriter from the org.apache.hadoop.mapreduce
package. We won't explore these in any detail here, but the general approach is
similar, although OutputFormat does have a more involved API, as it has methods
for tasks such as validation of the output specification.

It's this step that causes a job to fail if a specified output directory already exists.
If you wanted different behavior, it would require a subclass of OutputFormat
that overrides this method.

Hadoop-provided OutputFormat
The following output formats are provided in the org.apache.hadoop.mapreduce.
output package:

•	 FileOutputFormat: is the base class for all file-based OutputFormats
•	 NullOutputFormat: is a dummy implementation that discards the output

and writes nothing to the file
•	 SequenceFileOutputFormat: writes to the binary SequenceFile format
•	 TextOutputFormat: writes a plain text file

Note that these classes define their required RecordWriter implementations as static
nested classes, so there are no separately provided RecordWriter implementations.

Sequence files
The SequenceFile class within the org.apache.hadoop.io package provides an
efficient binary file format that is often useful as an output from a MapReduce job.
This is especially true if the output from the job is processed as the input of another
job. Sequence files have several advantages, as follows:

•	 As binary files, they are intrinsically more compact than text files
•	 They additionally support optional compression, which can also be applied

at different levels, that is, they compress each record or an entire split
•	 They can be split and processed in parallel

Processing – MapReduce and Beyond

[94]

This last characteristic is important as most binary formats—particularly those
that are compressed or encrypted—cannot be split and must be read as a single
linear stream of data. Using such files as input to a MapReduce job means that a
single mapper will be used to process the entire file, causing a potentially large
performance hit. In such a situation, it's preferable to use a splittable format, such
as SequenceFile, or, if you cannot avoid receiving the file in another format, do a
preprocessing step that converts it into a splittable format. This will be a tradeoff,
as the conversion will take time, but in many cases—especially with complex map
tasks—this will be outweighed by the time saved through increased parallelism.

YARN
YARN started out as part of the MapReduce v2 (MRv2) initiative but is now an
independent sub-project within Hadoop (that is, it's at the same level as MapReduce).
It grew out of a realization that MapReduce in Hadoop 1 conflated two related but
distinct responsibilities: resource management and application execution.

Although it has enabled previously unimagined processing on enormous datasets,
the MapReduce model at a conceptual level has an impact on performance and
scalability. Implicit in the MapReduce model is that any application can only be
composed of a series of largely linear MapReduce jobs, each of which follows a
model of one or more maps followed by one or more reduces. This model is a great
fit for some applications, but not all. In particular, it's a poor fit for workloads
requiring very low-latency response times; the MapReduce startup times and
sometimes lengthy job chains often greatly exceed the tolerance for a user-facing
process. The model has also been found to be very inefficient for jobs that would
more naturally be represented as a directed acyclic graph (DAG) of tasks where the
nodes on the graph are processing steps, and the edges are data flows. If analyzed
and executed as a DAG then the application may be performed in one step with high
parallelism across the processing steps, but when viewed through the MapReduce
lens, the result is usually an inefficient series of interdependent MapReduce jobs.

Numerous projects have built different types of processing atop MapReduce and
although many are wildly successful (Apache Hive and Pig are two standout
examples), the close coupling of MapReduce as a processing paradigm with the job
scheduling mechanism in Hadoop1 made it very difficult for any new project to
tailor either of these areas to its specific needs.

The result is Yet Another Resource Negotiator (YARN), which provides a highly
capable job scheduling mechanism within Hadoop and the well-defined interfaces
for different processing models to be implemented within it.

Chapter 3

[95]

YARN architecture
To understand how YARN works, it's important to stop thinking about MapReduce
and how it processes data. YARN itself says nothing about the nature of the
applications that run atop it, rather it's focused on providing the machinery for
the scheduling and execution of these jobs. As we'll see, YARN is just as capable of
hosting long-running stream processing or low-latency, user-facing workloads as it
is capable of hosting batch-processing workloads, such as MapReduce.

The components of YARN
YARN is comprised of two main components, the ResourceManager (RM),
which manages resources across the cluster, and the NodeManager (NM), which
runs on each host and manages the resources on the individual machine. The
ResourceManager and NodeManagers deal with the scheduling and management of
containers, an abstract notion of the memory, CPU, and I/O that will be dedicated
to run a particular piece of application code. Using MapReduce as an example,
when running atop YARN, the JobTracker and each TaskTracker all run in their own
dedicated containers. Note though, that in YARN, each MapReduce job has its own
dedicated JobTracker; there is no single instance that manages all jobs, as in Hadoop 1.

YARN itself is responsible only for the scheduling of tasks across the cluster; all
notions of application-level progress, monitoring, and fault tolerance are handled
in the application code. This is a very explicit design decision; by making YARN
as independent as possible, it has a very clear set of responsibilities and does not
artificially constrain the types of application that can be implemented on YARN.

As the arbiter of all cluster resources, YARN has the ability to efficiently manage
the cluster as a whole and not focus on application-level resource requirements. It
has a pluggable scheduling policy with the provided implementations similar to
the existing Hadoop Capacity and Fair Scheduler. YARN also treats all application
code as inherently untrusted and all application management and control tasks are
performed in user space.

Anatomy of a YARN application
A submitted YARN application has two components: the ApplicationMaster (AM),
which coordinates the overall application flow, and the specification of the code
that will run on the worker nodes. For MapReduce atop YARN, the JobTracker
implements the ApplicationMaster functionality and TaskTrackers are the
application custom code deployed on the worker nodes.

Processing – MapReduce and Beyond

[96]

As mentioned in the previous section, the responsibilities of application
management, progress monitoring and fault tolerance are pushed to the application
level in YARN. It's the ApplicationMaster that performs these tasks; YARN itself says
nothing about the mechanisms for communication between the ApplicationMaster
and the code running in the worker containers, for example.

This genericity allows YARN applications to not be tied to Java classes. The
ApplicationManager can instead request a NodeManager to execute shell scripts,
native applications, or any other type of processing that is made available on
each node.

Life cycle of a YARN application
As with MapReduce jobs in Hadoop 1, YARN applications are submitted to the
cluster by a client. When a YARN application is started, the client first calls the
ResourceManager (more specifically the ApplicationManager portion of the
ResourceManager) and requests the initial container within which to execute
the ApplicationMaster. In most cases the ApplicationMaster will run from a
hosted container in the cluster, just as will the rest of the application code. The
ApplicationManager communicates with the other main component of the
ResourceManager, the scheduler itself, which has the ultimate responsibility
of managing all resources across the cluster.

The ApplicationMaster starts up in the provided container, registers itself with the
ResourceManager, and begins the process of negotiating its required resources.
The ApplicationMaster communicates with the ResourceManager and requests the
containers it requires. The specification of the containers requested can also include
additional information, such as desired placement within the cluster and concrete
resource requirements, such as a particular amount of memory or CPU.

The ResourceManager provides the ApplicationMaster with the details of the
containers it has been allocated, and the ApplicationMaster then communicates
with the NodeManagers to start the application-specific task for each container.
This is done by providing the NodeManager with the specification of the application
to be executed, which as mentioned may be a JAR file, a script, a path to a local
executable, or anything else that the NodeManager can invoke. Each NodeManager
instantiates the container for the application code and starts the application based
on the provided specification.

Chapter 3

[97]

Fault tolerance and monitoring
From this point onward, the behavior is largely application specific. YARN will
not manage application progress but does perform a number of ongoing tasks. The
AMLivelinessMonitor within the ResourceManager receives heartbeats from all
ApplicationMasters, and if it determines that an ApplicationMaster has failed or
stopped working, it will de-register the failed ApplicationMaster and release all its
allocated containers. The ResourceManager will then reschedule the application a
configurable number of times.

Alongside this process the NMLivelinessMonitor within the ResourceManager
receives heartbeats from the NodeManagers and keeps track of the health of each
NodeManager in the cluster. Similar to the monitoring of ApplicationMaster health,
a NodeManager will be marked as dead after receiving no heartbeats for a default
time of 10 minutes, after which all allocated containers are marked as dead, and
the node is excluded from future resource allocation.

At the same time, the NodeManager will actively monitor resource utilization of
each allocated container and, for those resources not constrained by hard limits,
will kill containers that exceed their resource allocation.

At a higher level, the YARN scheduler will always be looking to maximize the
cluster utilization within the constraints of the sharing policy being employed. As
with Hadoop 1, this will allow low-priority applications to use more cluster resources
if contention is low, but the scheduler will then preempt these additional containers
(that is, request them to be terminated) if higher-priority applications are submitted.

The rest of the responsibility for application-level fault tolerance and progress
monitoring must be implemented within the application code. For MapReduce on
YARN, for example, all the management of task scheduling and retries is provided
at the application level and is not in any way delivered by YARN.

Thinking in layers
These last statements may suggest that writing applications to run on YARN is a lot
of work, and this is true. The YARN API is quite low-level and likely intimidating
for most developers who just want to run some processing tasks on their data. If
all we had was YARN and every new Hadoop application had to have its own
ApplicationMaster implemented, then YARN would not look quite as interesting
as it does.

Processing – MapReduce and Beyond

[98]

What makes the picture better is that, in general, the requirement isn't to implement
each and every application on YARN, but instead use it for a smaller number of
processing frameworks that provide much friendlier interfaces to be implemented.
The first of these was MapReduce; with it hosted on YARN, the developer writes to
the usual map and reduce interfaces and is largely unaware of the YARN mechanics.

But on the same cluster, another developer may be running a job that uses a different
framework with significantly different processing characteristics, and YARN will
manage both at the same time.

We'll give some more detail on several YARN processing models currently available,
but they run the gamut from batch processing through low-latency queries to stream
and graph processing and beyond.

As the YARN experience grows, however, there are a number of initiatives to
make the development of these processing frameworks easier. On the one hand
there are higher-level interfaces, such as Cloudera Kitten (https://github.com/
cloudera/kitten) or Apache Twill (http://twill.incubator.apache.org/),
that give friendlier abstractions above the YARN APIs. Perhaps a more significant
development model, though, is the emergence of frameworks that provide richer
tools to more easily construct applications with a common general class of
performance characteristics.

Execution models
We have mentioned different YARN applications having distinct processing
characteristics, but an emerging pattern has seen their execution models in general
being a source of differentiation. By this, we refer to how the YARN application life
cycle is managed, and we identify three main types: per-job application, per-session,
and always-on.

Batch processing, such as MapReduce on YARN, sees the life cycle of the MapReduce
framework tied to that of the submitted application. If we submit a MapReduce job,
then the JobTracker and TaskTrackers that execute it are created specifically for the
job and are terminated when the job completes. This works well for batch, but if we
wish to provide a more interactive model then the startup overhead of establishing
the YARN application and all its resource allocations will severely impact the user
experience if every command issued suffers this penalty. A more interactive, or
session-based, life cycle will see the YARN application start and then be available
to service a number of submitted requests/commands. The YARN application
terminates only when the session is exited.

Chapter 3

[99]

Finally, we have the concept of long-running applications that process continuous
data streams independent of any interactive input. For these it makes most sense
for the YARN application to start and continuously process data that is retrieved
through some external mechanism. The application will only exit when explicitly
shut down or if an abnormal situation occurs.

YARN in the real world – Computation
beyond MapReduce
The previous discussions have been a little abstract, so in this section, we will
explore a few existing YARN applications to see just how they use the framework
and how they provide a breadth of processing capability. Of particular interest is
how the YARN frameworks take very different approaches to resource management,
I/O pipelining, and fault tolerance.

The problem with MapReduce
Until now, we have looked at MapReduce in terms of API. MapReduce in Hadoop is
more than that; up until Hadoop 2, it was the default execution engine for a number of
tools, among which were Hive and Pig, which we will discuss in more detail later in
this book. We have seen how MapReduce applications are, in fact, chains of jobs. This
very aspect is one the biggest pain points and constraining factors of the frameworks.
MapReduce checkpoints data to HDFS for intra-process communication:

HDFS

HDFS

Job 1
Map

Reduce

Job 2

Job 3

Job 4

Map

Reduce

Map

Reduce

Map

Reduce

A chain of MapReduce jobs

Processing – MapReduce and Beyond

[100]

At the end of each reduce phase, output is written to disk so that it can then be
loaded by the mappers of the next job and used as its input. This I/O overhead
introduces latency, especially when we have applications that require multiple
passes on a dataset (hence multiple writes). Unfortunately, this type of iterative
computation is at the core of many analytics applications.

Apache Tez and Apache Spark are two frameworks that address this problem
by generalizing the MapReduce paradigm. We will briefly discuss them in the
remainder of this section, next to Apache Samza, a framework that takes an
entirely different approach to real-time processing.

Tez
Tez (http://tez.apache.org) is a low-level API and execution engine
focused on providing low-latency processing, and is being used as the basis of
the latest evolution of Hive, Pig and several other frameworks that implement
standard join, filter, merge and group operations. Tez is an implementation
and evolution of a programming model presented by Microsoft in the 2009
Dryad paper (http://research.microsoft.com/en-us/projects/dryad/).
Tez is a generalization of MapReduce as dataflow that strives to achieve fast,
interactive computing by pipelining I/O operations over a queue for intra-process
communication. This avoids the expensive writes to disks that affect MapReduce.
The API provides primitives expressing dependencies between jobs as a DAG. The
full DAG is then submitted to a planner that can optimize the execution flow. The
same application depicted in the preceding diagram would be executed in Tez as a
single job, with I/O pipelined from reducers to reducers without HDFS writes and
subsequent reads by mappers. An example can be seen in the following diagram:.

Job

Map

Reduce

Reduce

Reduce

Reduce

Map

A Tez DAG is a generalization of MapReduce

Chapter 3

[101]

The canonical WordCount example can be found at https://github.com/apache/
incubator-tez/blob/master/tez-mapreduce-examples/src/main/java/org/
apache/tez/mapreduce/examples/WordCount.java.

DAG dag = new DAG("WordCount");
dag.addVertex(tokenizerVertex)
.addVertex(summerVertex)
.addEdge(new Edge(tokenizerVertex, summerVertex,
edgeConf.createDefaultEdgeProperty()));

Even though the graph topology dag can be expressed with a few lines of code, the
boilerplate required to execute the job is considerable. This code handles many of the
low-level scheduling and execution responsibilities, including fault tolerance. When
Tez detects a failed task, it walks back up the processing graph to find the point from
which to re-execute the failed tasks.

Hive-on-tez
Hive 0.13 is the first high-profile project to use Tez as its execution engine.
We'll discuss Hive in a lot more detail in Chapter 7, Hadoop and SQL, but for
now we will just touch on how it's implemented on YARN.

Hive (http://hive.apache.org) is an engine for querying data stored on HDFS
through standard SQL syntax. It has been enormously successful, as this type of
capability greatly reduces the barriers to start analytic exploration of data in Hadoop.

In Hadoop 1, Hive had no choice, but to implement its SQL statements as a series
of MapReduce jobs. When SQL is submitted to Hive, it generates the required
MapReduce jobs behind the scenes and executes these on the cluster. This approach
has two main drawbacks: there is a non-trivial startup penalty each time, and the
constrained MapReduce model means that seemingly simple SQL statements are
often translated into a lengthy series of multiple dependent MapReduce jobs. This
is an example of the type of processing more naturally conceptualized as a DAG of
tasks, as described earlier in this chapter.

Although some benefits are achieved when Hive executes within MapReduce, within
YARN, the major benefits come in Hive 0.13 when the project is fully re-implemented
using Tez. By exploiting the Tez APIs, which are focused on providing low-latency
processing, Hive gains even more performance while making its codebase simpler.

Since Tez treats its workloads as the DAGs which provide a much better fit to
translated SQL queries, Hive on Tez can perform any SQL statement as a single job
with maximized parallelism.

Processing – MapReduce and Beyond

[102]

Tez helps Hive support interactive queries by providing an always-running service
instead of requiring the application to be instantiated from scratch for each SQL
submission. This is important because, even though queries that process huge data
volumes will simply take some time, the goal is for Hive to become less of a batch
tool and instead move to be as much of an interactive tool as possible.

Apache Spark
Spark (http://spark.apache.org) is a processing framework that excels at iterative
and near real-time processing. Created at UC Berkeley, it has been donated as an
Apache project. Spark provides an abstraction that allows data in Hadoop to be
viewed as a distributed data structure upon which a series of operations can be
performed. The framework is based on the same concepts Tez draws inspiration from
(Dryad), but excels with jobs that allow data to be held and processed in memory, and
it can very efficiently schedule processing on the in-memory dataset across the cluster.
Spark automatically controls replication of data across the cluster, ensuring that each
element of the distributed dataset is held in memory on at least two machines, and
provides replication-based fault tolerance somewhat akin to HDFS.

Spark started as a standalone system, but was ported to also run on YARN as of its 0.8
release. Spark is particularly interesting because, although its classic processing model
is batch-oriented, with the Spark shell it provides an interactive frontend and with
the Spark Streaming sub-project also offers near real-time processing of data streams.
Spark is different things to different people; it's both a high-level API and an execution
engine. At the time of writing, ports of Hive and Pig to Spark are in progress.

Apache Samza
Samza (http://samza.apache.org) is a stream-processing framework developed
at LinkedIn and donated to the Apache Software Foundation. Samza processes
conceptually infinite streams of data, which are seen by the application as a series
of messages.

Samza currently integrates most tightly with Apache Kafka (http://kafka.apache.
org) although it does have a pluggable architecture. Kafka itself is a messaging
system that excels at large data volumes and provides a topic-based abstraction
similar to most other messaging platforms, such as RabbitMQ. Publishers send
messages to topics and interested clients consume messages from the topics as they
arrive. Kafka has multiple aspects that set it apart from other messaging platforms,
but for this discussion, the most interesting one is that Kafka stores messages
for a period of time, which allows messages in topics to be replayed. Topics are
partitioned across multiple hosts and partitions can be replicated across hosts to
protect from node failure.

Chapter 3

[103]

Samza builds its processing flow on its concept of streams, which when using Kafka
map directly to Kafka partitions. A typical Samza job may listen to one topic for
incoming messages, perform some transformations, and then write the output to a
different topic. Multiple Samza jobs can then be composed to provide more complex
processing structures.

As a YARN application, the Samza ApplicationMaster monitors the health of all
running Samza tasks. If a task fails, then a replacement task is instantiated in a new
container. Samza achieves fault tolerance by having each task write its progress to
a new stream (again modeled as a Kafka topic), so any replacement task just needs
to read the latest task state from this checkpoint topic and then replay the main
message topic from the last processed position. Samza additionally offers support
for local task state, which can be very useful for join and aggregation type
workloads. This local state is again built atop the stream abstraction and hence
is intrinsically resilient to host failure.

YARN-independent frameworks
An interesting point to note is that two of the preceding projects (Samza and Spark)
run atop YARN but are not specific to YARN. Spark started out as a standalone
service and has implementations for other schedulers, such as Apache Mesos or
to run on Amazon EC2. Though Samza runs only on YARN today, its architecture
explicitly is not YARN-specific, and there are discussions about providing
realizations on other platforms.

If the YARN model of pushing as much as possible into the application has its
downsides through implementation complexity, then this decoupling is one of
its major benefits. An application written to use YARN need not be tied to it; by
definition, all the functionality for the actual application logic and management is
encapsulated within the application code and is independent of YARN or another
framework. This is, of course, not saying that designing a scheduler-independent
application is a trivial task, but it's now a tractable task; this was absolutely not the
case pre-YARN.

YARN today and beyond
Though YARN has been used in production (at Yahoo! in particular) for some time,
the final GA version was not released until late 2012. The interfaces to YARN were
also somewhat fluid until quite late in the development cycle. Consequently, the
fully forward compatible YARN as of Hadoop 2.2 is still relatively new.

Processing – MapReduce and Beyond

[104]

YARN is fully functional today, and the future direction will see extensions to its
current capabilities. Perhaps most notable among these will be the ability to specify
and control container resources on more dimensions. Currently, only location,
memory and CPU specifications are possible, and this will be expanded
into areas such as storage and network I/O.

In addition, the ApplicationMaster currently has little control over the management
of how containers are co-located or not. Finer-grained control here will allow the
ApplicationMaster to specify policies around when containers may or may not be
scheduled on the same node. In addition, the current resource allocation model is
quite static, and it will be useful to allow an application to dynamically change the
resources allocated to a running container.

Summary
This chapter explored how to process those large volumes of data that we discussed
so much in the previous chapter. In particular we covered:

•	 How MapReduce was the only processing model available in Hadoop 1
and its conceptual model

•	 The Java API to MapReduce, and how to use this to build some examples,
from a word count to sentiment analysis of Twitter hashtags

•	 The details of how MapReduce is implemented in practice, and we walked
through the execution of a MapReduce job

•	 How Hadoop stores data and the classes involved to represent input and
output formats and record readers and writers

•	 The limitations of MapReduce that led to the development of YARN,
opening the door to multiple computational models on the Hadoop platform

•	 The YARN architecture and how applications are built atop it

In the next two chapters, we will move away from strictly batch processing and
delve into the world of near real-time and iterative processing, using two of the
YARN-hosted frameworks we introduced in this chapter, namely Samza and Spark.

Real-time Computation
with Samza

The previous chapter discussed YARN, and frequently mentioned the breadth of
computational models and processing frameworks outside of traditional batch-based
MapReduce that it enables on the Hadoop platform. In this chapter and the next, we
will explore two such projects in some depth, namely Apache Samza and Apache
Spark. We chose these frameworks as they demonstrate the usage of stream and
iterative processing and also provide interesting mechanisms to combine processing
paradigms. In this chapter we will explore Samza and cover the following topics:

•	 What Samza is and how it integrates with YARN and other projects such as
Apache Kafka

•	 How Samza provides a simple callback-based interface for stream processing
•	 How Samza composes multiple stream processing jobs into more complex

workflows
•	 How Samza supports persistent local state within tasks and how this greatly

enriches what it can enable

Stream processing with Samza
To explore a pure stream-processing platform, we will use Samza, which is available
at https://samza.apache.org. The code shown here was tested with the current
0.8 release and we'll keep the GitHub repository updated as the project continues
to evolve.

Real-time Computation with Samza

[106]

Samza was built at LinkedIn and donated to the Apache Software Foundation in
September 2013. Over the years, LinkedIn has built a model that conceptualizes much
of their data as streams, and from this they saw the need for a framework that can
provide a developer-friendly mechanism to process these ubiquitous data streams.

The team at LinkedIn realized that when it came to data processing, much of the
attention went to the extreme ends of the spectrum, for example, RPC workloads are
usually implemented as synchronous systems with very low latency requirements or
batch systems where the periodicity of jobs is often measured in hours. The ground
in between has been relatively poorly supported and this is the area that Samza
is targeted at; most of its jobs expect response times ranging from milliseconds to
minutes. They also assume that data arrives in a theoretically infinite stream of
continuous messages.

How Samza works
There are numerous stream-processing systems such as Storm (http://storm.
apache.org), in the open source world, and many other (mostly commercial) tools
such as complex event processing (CEP) systems that also target processing on
continuous message streams. These systems have many similarities but also some
major differences.

For Samza, perhaps the most significant difference is its assumptions about message
delivery. Many systems work very hard to reduce the latency of each message,
sometimes with an assumption that the goal is to get the message into and out of
the system as fast as possible. Samza assumes almost the opposite; its streams are
persistent and resilient and any message written to a stream can be re-read for a
period of time after its first arrival. As we will see, this gives significant capability
around fault tolerance. Samza also builds on this model to allow each of its tasks to
hold resilient local state.

Samza is mostly implemented in Scala even though its public APIs are written in
Java. We'll show Java examples in this chapter, but any JVM language can be used
to implement Samza applications. We'll discuss Scala when we explore Spark in the
next chapter.

Chapter 4

[107]

Samza high-level architecture
Samza views the world as having three main layers or components: the streaming,
execution, and processing layers.

Samza API

YARN Kafka

Samza architecture

The streaming layer provides access to the data streams, both for consumption and
publication. The execution layer provides the means by which Samza applications
can be run, have resources such as CPU and memory allocated, and have their life
cycles managed. The processing layer is the actual Samza framework itself, and its
interfaces allow per-message functionality.

Samza provides pluggable interfaces to support the first two layers though the
current main implementations use Kafka for streaming and YARN for execution.
We'll discuss these further in the following sections.

Samza's best friend – Apache Kafka
Samza itself does not implement the actual message stream. Instead, it provides an
interface for a message system with which it then integrates. The default stream
implementation is built upon Apache Kafka (http://kafka.apache.org), a
messaging system also built at LinkedIn but now a successful and widely adopted
open source project.

Kafka can be viewed as a message broker akin to something like RabbitMQ or
ActiveMQ, but as mentioned earlier, it writes all messages to disk and scales
out across multiple hosts as a core part of its design. Kafka uses the concept of a
publish/subscribe model through named topics to which producers write messages
and from which consumers read messages. These work much like topics in any other
messaging system.

Real-time Computation with Samza

[108]

Because Kafka writes all messages to disk, it might not have the same ultra-low
latency message throughput as other messaging systems, which focus on getting
the message processed as fast as possible and don't aim to store the message long
term. Kafka can, however, scale exceptionally well and its ability to replay a message
stream can be extremely useful. For example, if a consuming client fails, then it can
re-read messages from a known good point in time, or if a downstream algorithm
changes, then traffic can be replayed to utilize the new functionality.

When scaling across hosts, Kafka partitions topics and supports partition
replication for fault tolerance. Each Kafka message has a key associated with the
message and this is used to decide to which partition a given message is sent. This
allows semantically useful partitioning, for example, if the key is a user ID in the
system, then all messages for a given user will be sent to the same partition. Kafka
guarantees ordered delivery within each partition so that any client reading a
partition can know that they are receiving all messages for each key in that partition
in the order in which they are written by the producer.

Samza periodically writes out checkpoints of the position upto which it has read in
all the streams it is consuming. These checkpoint messages are themselves written to
a Kafka topic. Thus, when a Samza job starts up, each task can reread its checkpoint
stream to know from which position in the stream to start processing messages.
This means that in effect Kafka also acts as a buffer; if a Samza job crashes or is
taken down for upgrade, no messages will be lost. Instead, the job will just restart
from the last checkpointed position when it restarts. This buffer functionality is also
important, as it makes it easier for multiple Samza jobs to run as part of a complex
workflow. When Kafka topics are the points of coordination between the jobs, one
job might consume a topic being written to by another; in such cases, Kafka can
help smooth out issues caused due to any given job running slower than others.
Traditionally, the back pressure caused by a slow running job can be a real issue in
a system comprised of multiple job stages, but Kafka as the resilient buffer allows
each job to read and write at its own rate. Note that this is analogous to how multiple
coordinating MapReduce jobs will use HDFS for similar purposes.

Kafka provides at-least once message delivery semantics, that is to say that any
message written to Kafka will be guaranteed to be available to a client of the
particular partition. Messages might be processed between checkpoints however;
it is possible for duplicate messages to be received by the client. There are
application-specific mechanisms to mitigate this, and both Kafka and Samza have
exactly-once semantics on their roadmaps, but for now it is something you should
take into consideration when designing jobs.

We won't explain Kafka further beyond what we need to demonstrate Samza.
If you are interested, check out its website and wiki; there is a lot of good
information, including some excellent papers and presentations.

Chapter 4

[109]

YARN integration
As mentioned earlier, just as Samza utilizes Kafka for its streaming layer
implementation, it uses YARN for the execution layer. Just like any YARN application
described in Chapter 3, Processing – MapReduce and Beyond, Samza provides an
implementation of both an ApplicationMaster, which controls the life cycle of the
overall job, plus implementations of Samza-specific functionality (called tasks) that are
executed in each container. Just as Kafka partitions its topics, tasks are the mechanism
by which Samza partitions its processing. Each Kafka partition will be read by a single
Samza task. If a Samza job consumes multiple streams, then a given task will be the
only consumer within the job for every stream partition assigned to it.

The Samza framework is told by each job configuration about the Kafka streams that
are of interest to the job, and Samza continuously polls these streams to determine if
any new messages have arrived. When a new message is available, the Samza task
invokes a user-defined callback to process the message, a model that shouldn't look
too alien to MapReduce developers. This method is defined in an interface called
StreamTask and has the following signature:

public void process(IncomingMessageEnvelope envelope,
 MessageCollector collector,
 TaskCoordinator coordinator)

This is the core of each Samza task and defines the functionality to be applied
to received messages. The received message that is to be processed is wrapped
in the IncomingMessageEnvelope; output messages can be written to the
MessageCollector, and task management (such as Shutdown) can be performed
via the TaskCoordinator.

As mentioned, Samza creates one task instance for each partition in the underlying
Kafka topic. Each YARN container will manage one or more of these tasks. The
overall model then is of the Samza Application Master coordinating multiple
containers, each of which is responsible for one or more StreamTask instances.

An independent model
Though we will talk exclusively of Kafka and YARN as the providers of Samza's
streaming and execution layers in this chapter, it is important to remember that the
core Samza system uses well-defined interfaces for both the stream and execution
systems. There are implementations of multiple stream sources (we'll see one in the
next section) and alongside the YARN support, Samza ships with a LocalJobRunner
class. This alternative method of running tasks can execute StreamTask instances
in-process on the JVM instead of requiring a full YARN cluster, which can sometimes
be a useful testing and debugging tool. There is also a discussion of Samza
implementations on top of other cluster manager or virtualization frameworks.

Real-time Computation with Samza

[110]

Hello Samza!
Since not everyone already has ZooKeeper, Kafka, and YARN clusters ready to be
used, the Samza team has created a wonderful way to get started with the product.
Instead of just having a Hello world! program, there is a repository called Hello
Samza, which is available by cloning the repository at git://git.apache.org/
samza-hello-samza.git.

This will download and install dedicated instances of ZooKeeper, Kafka, and YARN
(the 3 major prerequisites for Samza), creating a full stack upon which you can
submit Samza jobs.

There are also a number of example Samza jobs that process data from Wikipedia
edit notifications. Take a look at the page at http://samza.apache.org/startup/
hello-samza/0.8/ and follow the instructions given there. (At the time of
writing, Samza is still a relatively young project and we'd rather not include direct
information about the examples, which might be subject to change).

For the remainder of the Samza examples in this chapter, we'll assume you are
either using the Hello Samza package to provide the necessary components
(ZooKeeper/Kafka/YARN) or you have integrated with other instances of each.

This example has three different Samza jobs that build upon each other. The first
reads the Wikipedia edits, the second parses these records, and the third produces
statistics based on the processed records. We'll build our own multistream
workflow shortly.

One interesting point is the WikipediaFeed example here; it uses Wikipedia as its
message source instead of Kafka. Specifically, it provides another implementation
of the Samza SystemConsumer interface to allow Samza to read messages from an
external system. As mentioned earlier, Samza is not tied to Kafka and, as this example
shows, building a new stream implementation does not have to be against a generic
infrastructure component; it can be quite job-specific, as the work required is not huge.

Note that the default configuration for both ZooKeeper and Kafka will
write system data to directories under /tmp, which will be what you
have set if you use Hello Samza. Be careful if you are using a Linux
distribution that purges the contents of this directory on a reboot. If you
plan to carry out any significant testing, then it's best to reconfigure these
components to use less ephemeral locations. Change the relevant config
files for each service; they are located in the service directory under the
hello-samza/deploy directory.

Chapter 4

[111]

Building a tweet parsing job
Let's build our own simple job implementation to show the full code required. We'll
use parsing of the Twitter stream as the examples in this chapter and will later set up
a pipe from our client consuming messages from the Twitter API into a Kafka topic.
So, we need a Samza task that will read the stream of JSON messages, extract the
actual tweet text, and write these to a topic of tweets.

Here is the main code from TwitterParseStreamTask.java, available at
https://github.com/learninghadoop2/book-examples/blob/master/ch4/src/
main/java/com/learninghadoop2/samza/tasks/TwitterParseStreamTask.java:

package com.learninghadoop2.samza.tasks;
public class TwitterParseStreamTask implements StreamTask {
 @Override
 public void process(IncomingMessageEnvelope envelope,
 MessageCollector collector, TaskCoordinator coordinator) {
 String msg = ((String) envelope.getMessage());

 try {
 JSONParser parser = new JSONParser();
 Object obj = parser.parse(msg);
 JSONObject jsonObj = (JSONObject) obj;
 String text = (String) jsonObj.get("text");

 collector.send(new OutgoingMessageEnvelope(new
 SystemStream("kafka", "tweets-parsed"), text));
 } catch (ParseException pe) {}
 }
 }
}

The code is largely self-explanatory, but there are a few points of interest. We use
JSON Simple (http://code.google.com/p/json-simple/) for our relatively
straightforward JSON parsing requirements; we'll also use it later in this book.

The IncomingMessageEnvelope and its corresponding OutputMessageEnvelope are
the main structures concerned with the actual message data. Along with the message
payload, the envelope will also have data concerning the system, topic name, and
(optionally) partition number in addition to other metadata. For our purposes, we
just extract the message body from the incoming message and send the tweet text
we extract from it via a new OutgoingMessageEnvelope to a topic called tweets-
parsed within a system called kafka. Note the lower case name—we'll explain this
in a moment.

Real-time Computation with Samza

[112]

The type of message in the IncomingMessageEnvelope is java.lang.Object.
Samza does not currently enforce a data model and hence does not have
strongly-typed message bodies. Therefore, when extracting the message contents, an
explicit cast is usually required. Since each task needs to know the expected message
format of the streams it processes, this is not the oddity that it may appear to be.

The configuration file
There was nothing in the previous code that said where the messages came from;
the framework just presents them to the StreamTask implementation, but obviously
Samza needs to know from where to fetch messages. There is a configuration file for
each job that defines this and more. The following can be found as twitter-parse.
properties at https://github.com/learninghadoop2/book-examples/blob/
master/ch4/src/main/resources/twitter-parser.properties:

Job
job.factory.class=org.apache.samza.job.yarn.YarnJobFactory
job.name=twitter-parser

YARN
yarn.package.path=file:///home/gturkington/samza/build/distributions/
learninghadoop2-0.1.tar.gz

Task
task.class=com.learninghadoop2.samza.tasks.TwitterParseStreamTask
task.inputs=kafka.tweets
task.checkpoint.factory=org.apache.samza.checkpoint.kafka.
KafkaCheckpointManagerFactory
task.checkpoint.system=kafka

Normally, this would be 3, but we have only one broker.
task.checkpoint.replication.factor=1

Serializers
serializers.registry.string.class=org.apache.samza.serializers.
StringSerdeFactory

Systems
systems.kafka.samza.factory=org.apache.samza.system.kafka.
KafkaSystemFactory

Chapter 4

[113]

systems.kafka.streams.tweets.samza.msg.serde=string
systems.kafka.streams.tweets-parsed.samza.msg.serde=string
systems.kafka.consumer.zookeeper.connect=localhost:2181/
systems.kafka.consumer.auto.offset.reset=largest
systems.kafka.producer.metadata.broker.list=localhost:9092
systems.kafka.producer.producer.type=sync
systems.kafka.producer.batch.num.messages=1

This may look like a lot, but for now we'll just consider the high-level structure
and some key settings. The job section sets YARN as the execution framework
(as opposed to the local job runner class) and gives the job a name. If we were to
run multiple copies of this same job, we would also give each copy a unique ID.
The task section specifies the implementation class of our task and also the name of
the streams for which it should receive messages. Serializers tell Samza how to read
and write messages to and from the stream and the system section defines systems
by name and associates implementation classes with them.

In our case, we define only one system called kafka and we refer to this system
when sending our message in the preceding task. Note that this name is arbitrary
and we could call it whatever we want. Obviously, for clarity it makes sense to call
the Kafka system by the same name but this is only a convention. In particular,
sometimes you will need to give different names when dealing with multiple
systems that are similar to each other, or sometimes even when treating the same
system differently in different parts of a configuration file.

In this section, we will also specify the SerDe to be associated with the streams
used by the task. Recall that Kafka messages have a body and an optional key that is
used to determine to which partition the message is sent. Samza needs to know how
to treat the contents of the keys and messages for these streams. Samza has support
to treat these as raw bytes or specific types such as string, integer, and JSON, as
mentioned earlier.

The rest of the configuration will be mostly unchanged from job to job, as it includes
things such as the location of the ZooKeeper ensemble and Kafka clusters, and
specifies how streams are to be checkpointed. Samza allows a wide variety of
customizations and the full configuration options are detailed at http://samza.
apache.org/learn/documentation/0.8/jobs/configuration-table.html.

Real-time Computation with Samza

[114]

Getting Twitter data into Kafka
Before we run the job, we do need to get some tweets into Kafka. Let's create a new
Kafka topic called tweets to which we'll write the tweets.

To perform this and other Kafka-related operations, we'll use command-line tools
located within the bin directory of the Kafka distribution. If you are running a job
from within the stack created as part of the Hello Samza application; this will be
deploy/kafka/bin.

kafka-topics.sh is a general-purpose tool that can be used to create, update, and
describe topics. Most of its usages require arguments to specify the location of the
local ZooKeeper cluster, where Kafka brokers store their details, and the name of the
topic to be operated upon. To create a new topic, run the following command:

$ kafka-topics.sh --zookeeper localhost:2181 --create –topic tweets
--partitions 1 --replication-factor 1

This creates a topic called tweets and explicitly sets its number of partitions and
replication factor to 1. This is suitable if you are running Kafka within a local test
VM, but clearly production deployments will have more partitions to scale out the
load across multiple brokers and a replication factor of at least 2 to provide fault
tolerance.

Use the list option of the kafka-topics.sh tool to simply show the topics in the
system, or use describe to get more detailed information on specific topics:

$ kafka-topics.sh --zookeeper localhost:2181 --describe --topic tweets

Topic:tweets PartitionCount:1 ReplicationFactor:1 Configs:

 Topic: tweets Partition: 0 Leader: 0 Replicas: 0 Isr: 0

The multiple 0s are possibly confusing as these are labels and not counts. Each
broker in the system has an ID that usually starts from 0, as do the partitions within
each topic. The preceding output is telling us that the topic called tweets has a single
partition with ID 0, the broker acting as the leader for that partition is broker 0, and
the set of in-sync replicas (ISR) for this partition is again only broker 0. This last
value is particularly important when dealing with replication.

Chapter 4

[115]

We'll use our Python utility from previous chapters to pull JSON tweets from the
Twitter feed, and then use a Kafka CLI message producer to write the messages to
a Kafka topic. This isn't a terribly efficient way of doing things, but it is suitable for
illustration purposes. Assuming our Python script is in our home directory, run the
following command from within the Kafka bin directory:

$ python ~/stream.py –j | ./kafka-console-producer.sh --broker-list
localhost:9092 --topic tweets

This will run indefinitely so be careful not to leave it running overnight on a test VM
with small disk space, not that the authors have ever done such a thing.

Running a Samza job
To run a Samza job, we need our code to be packaged along with the Samza
components required to execute it into a .tar.gz archive that will be read by
the YARN NodeManager. This is the file referred to by the yarn.file.package
property in the Samza task configuration file.

When using the single node Hello Samza we can just use an absolute path on the
filesystem, as seen in the previous configuration example. For jobs on larger YARN
grids, the easiest way is to put the package onto HDFS and refer to it by an hdfs://
URI or on a web server (Samza provides a mechanism to allow YARN to read the file
via HTTP).

Because Samza has multiple subcomponents and each subcomponent has its own
dependencies, the full YARN package can end up containing a lot of JAR files
(over 100!). In addition, you need to include your custom code for the Samza task
as well as some scripts from within the Samza distribution. It's not something to be
done by hand. In the sample code for this chapter, found at https://github.com/
learninghadoop2/book-examples/tree/master/ch4, we have set up a sample
structure to hold the code and config files and provided some automation via
Gradle to build the necessary task archive and start the tasks.

When in the root of the Samza example code directory for this book, perform the
following command to build a single file archive containing all the classes of this
chapter compiled together and bundled with all the other required files:

$./gradlew targz

This Gradle task will not only create the necessary .tar.gz archive in the
build/distributions directory, but will also store an expanded version of the
archive under build/samza-package. This will be useful, as we will use Samza
scripts stored in the bin directory of the archive to actually submit the task to YARN.

Real-time Computation with Samza

[116]

So now, let's run our job. We need to have file paths for two things: the Samza
run-job.sh script to submit a job to YARN and the configuration file for our job.
Since our created job package has all the compiled tasks bundled together, it is by
using a different configuration file that specifies a specific task implementation class
in the task.class property that we tell Samza which task to run. To actually run the
task, we can run the following command from within the exploded project archive
under build/samza-archives:

$ bin/run-job.sh --config-factory=org.apache.samza.config.factories.
PropertiesConfigFactory --config-path=]config/twitter-parser.properties

For convenience, we added a Gradle task to run this job:

$./gradlew runTwitterParser

To see the output of the job, we'll use the Kafka CLI client to consume messages:

$./kafka-console-consumer.sh –zookeeper localhost:2181 –topic tweets-
parsed

You should see a continuous stream of tweets appearing on the client.

Note that we did not explicitly create the topic called tweets-parsed.
Kafka can allow topics to be created dynamically when either a
producer or consumer tries to use the topic. In many situations,
though the default partitioning and replication values may not be
suitable, and explicit topic creation will be required to ensure these
critical topic attributes are correctly defined.

Samza and HDFS
You may have noticed that we just mentioned HDFS for the first time in our
discussion of Samza. Though Samza integrates tightly with YARN, it has no direct
integration with HDFS. At a logical level, Samza's stream-implementing systems
(such as Kafka) are providing the storage layer that is usually provided by HDFS
for traditional Hadoop workloads. In the terminology of Samza's architecture, as
described earlier, YARN is the execution layer in both models, whereas Samza uses a
streaming layer for its source and destination data, frameworks such as MapReduce
use HDFS. This is a good example of how YARN enables alternative computational
models that not only process data very differently than batch-oriented MapReduce,
but that can also use entirely different storage systems for their source data.

Chapter 4

[117]

Windowing functions
It's frequently useful to generate some data based on the messages received on
a stream over a certain time window. An example of this may be to record the
top n attribute values measured every minute. Samza supports this through
the WindowableTask interface, which has the following single method to be
implemented:

 public void window(MessageCollector collector, TaskCoordinator
 coordinator);

This should look similar to the process method in the StreamTask interface.
However, because the method is called on a time schedule, its invocation is not
associated with a received message. The MessageCollector and TaskCoordinator
parameters are still there, however, as most windowable tasks will produce output
messages and may also wish to perform some task management actions.

Let's take our previous task and add a window function that will output the
number of tweets received in each windowed time period. This is the main
class implementation of TwitterStatisticsStreamTask.java found at
https://github.com/learninghadoop2/book-examples/blob/
master/ch4/src/main/java/com/learninghadoop2/samza/tasks/
TwitterStatisticsStreamTask.java:

public class TwitterStatisticsStreamTask implements StreamTask,
WindowableTask {
 private int tweets = 0;

 @Override
 public void process(IncomingMessageEnvelope envelope,
MessageCollector collector, TaskCoordinator coordinator) {
 tweets++;
 }

 @Override
 public void window(MessageCollector collector, TaskCoordinator
 coordinator) {
 collector.send(new OutgoingMessageEnvelope(new
 SystemStream("kafka", "tweet-stats"), "" + tweets));

 // Reset counts after windowing.
 tweets = 0;
 }
}

Real-time Computation with Samza

[118]

The TwitterStatisticsStreamTask class has a private member variable called
tweets that is initialized to 0 and is incremented in every call to the process
method. We therefore know that this variable will be incremented for each message
passed to the task from the underlying stream implementation. Each Samza
container has a single thread running in a loop that executes the process and window
methods on all the tasks within the container. This means that we do not need to
guard instance variables against concurrent modifications; only one method on each
task within a container will be executing simultaneously.

In our window method, we send a message to a new topic we call tweet-stats and
then reset the tweets variable. This is pretty straightforward and the only missing
piece is how Samza will know when to call the window method. We specify this in
the configuration file:

task.window.ms=5000

This tells Samza to call the window method on each task instance every 5 seconds.
To run the window task, there is a Gradle task:

$./gradlew runTwitterStatistics

If we use kafka-console-consumer.sh to listen on the tweet-stats stream now,
we will see the following output:

Number of tweets: 5012

Number of tweets: 5398

Note that the term window in this context refers to Samza conceptually
slicing the stream of messages into time ranges and providing a
mechanism to perform processing at each range boundary. Samza
does not directly provide an implementation of the other use of the
term with regards to sliding windows, where a series of values is held
and processed over time. However, the windowable task interface
does provide the plumbing to implement such sliding windows.

Multijob workflows
As we saw with the Hello Samza examples, some of the real power of Samza
comes from composition of multiple jobs and we'll use a text cleanup job to start
demonstrating this capability.

Chapter 4

[119]

In the following section, we'll perform tweet sentiment analysis by comparing tweets
with a set of English positive and negative words. Simply applying this to the raw
Twitter feed will have very patchy results, however, given how richly multilingual
the Twitter stream is. We also need to consider things such as text cleanup,
capitalization, frequent contractions, and so on. As anyone who has worked with
any non-trivial dataset knows, the act of making the data fit for processing is usually
where a large amount of effort (often the majority!) goes.

So before we try and detect tweet sentiments, let's do some simple text cleanup; in
particular, we'll select only English language tweets and we will force their text to be
lower case before sending them to a new output stream.

Language detection is a difficult problem and for this we'll use a feature of the
Apache Tika library (http://tika.apache.org). Tika provides a wide array
of functionality to extract text from various sources and then to extract further
information from that text. If using our Gradle scripts, the Tika dependency is
already specified and will automatically be included in the generated job package.
If building through another mechanism, you will need to download the Tika JAR
file from the home page and add it to your YARN job package. The following
code can be found as TextCleanupStreamTask.java at https://github.com/
learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/
learninghadoop2/samza/tasks/TextCleanupStreamTask.java:

public class TextCleanupStreamTask implements StreamTask {
 @Override
 public void process(IncomingMessageEnvelope envelope,
MessageCollector collector, TaskCoordinator coordinator) {
 String rawtext = ((String) envelope.getMessage());

 if ("en".equals(detectLanguage(rawtext))) {
 collector.send(new OutgoingMessageEnvelope(new
SystemStream("kafka", "english-tweets"),
 rawtext.toLowerCase()));
 }
 }

 private String detectLanguage(String text) {
 LanguageIdentifier li = new LanguageIdentifier(text);

 return li.getLanguage();
 }
}

Real-time Computation with Samza

[120]

This task is quite straightforward thanks to the heavy lifting performed by
Tika. We create a utility method that wraps the creation and use of a Tika,
LanguageDetector, and then we call this method on the message body of each
incoming message in the process method. We only write to the output stream if the
result of applying this utility method is "en", that is, the two-letter code for English.

The configuration file for this task is similar to that of our previous task, with the
specific values for the task name and implementing class. It is in the repository as
textcleanup.properties at https://github.com/learninghadoop2/book-
examples/blob/master/ch4/src/main/resources/textcleanup.properties.
We also need to specify the input stream:

task.inputs=kafka.tweets-parsed

This is important because we need this task to parse the tweet text that was
extracted in the earlier task and avoid duplicating the JSON parsing logic that is
best encapsulated in one place. We can run this task with the following command:

$./gradlew runTextCleanup

Now, we can run all three tasks together; TwitterParseStreamTask and
TwitterStatisticsStreamTask will consume the raw tweet stream, while
TextCleanupStreamTask will consume the output from TwitterParseStreamTask.

TwitterStatisticsStreamTask

TwitterParseStreamTask

raw tweet stream

output stream TextCleanupStreamTask

Data processing on streams

Tweet sentiment analysis
We'll now implement a task to perform tweet sentiment analysis similar to what
we did using MapReduce in the previous chapter. This will also show us a useful
mechanism offered by Samza: bootstrap streams.

Chapter 4

[121]

Bootstrap streams
Generally speaking, most stream-processing jobs (in Samza or another framework)
will start processing messages that arrive after they start up and generally ignore
historical messages. Because of its concept of replayable streams, Samza doesn't have
this limitation.

In our sentiment analysis job, we had two sets of reference terms: positive and
negative words. Though we've not shown it so far, Samza can consume messages
from multiple streams and the underlying machinery will poll all named streams
and provide their messages, one at a time, to the process method. We can therefore
create streams for the positive and negative words and push the datasets onto those
streams. At first glance, we could plan to rewind these two streams to the earliest
point and read tweets as they arrive. The problem is that Samza won't guarantee
ordering of messages from multiple streams, and even though there is a mechanism
to give streams higher priority, we can't assume that all negative and positive words
will be processed before the first tweet arrives.

For such types of scenarios, Samza has the concept of bootstrap streams. If a task has
any bootstrap streams defined, then it will read these streams from the earliest offset
until they are fully processed (technically, it will read the streams till they get caught
up, so that any new words sent to either stream will be treated without priority and
will arrive interleaved between tweets).

We'll now create a new job called TweetSentimentStreamTask that reads two
bootstrap streams, collects their contents into HashMaps, gathers running counts for
sentiment trends, and uses a window function to output this data at intervals. This
code can be found at https://github.com/learninghadoop2/book-examples/
blob/master/ch4/src/main/java/com/learninghadoop2/samza/tasks/
TwitterSentimentStreamTask.java:

public class TwitterSentimentStreamTask implements StreamTask,
 WindowableTask {
 private Set<String> positiveWords = new
 HashSet<String>();
 private Set<String> negativeWords = new
 HashSet<String>();
 private int tweets = 0;
 private int positiveTweets = 0;
 private int negativeTweets = 0;
 private int maxPositive = 0;
 private int maxNegative = 0;

Real-time Computation with Samza

[122]

 @Override
 public void process(IncomingMessageEnvelope envelope,
 MessageCollector collector, TaskCoordinator coordinator) {
 if ("positive-words".equals(envelope.
getSystemStreamPartition().
 getStream())) {
 positiveWords.add(((String) envelope.getMessage()));
 } else if ("negative-words".equals(envelope.
getSystemStreamPartition().getStream())) {
 negativeWords.add(((String) envelope.getMessage()));
 } else if ("english-tweets".equals(envelope.
getSystemStreamPartition().getStream())) {
 tweets++;

 int positive = 0;
 int negative = 0;
 String words = ((String) envelope.getMessage());

 for (String word : words.split(" ")) {
 if (positiveWords.contains(word)) {
 positive++;
 } else if (negativeWords.contains(word)) {
 negative++;
 }
 }

 if (positive > negative) {
 positiveTweets++;
 }

 if (negative > positive) {
 negativeTweets++;
 }

 if (positive > maxPositive) {
 maxPositive = positive;
 }

 if (negative > maxNegative) {
 maxNegative = negative;
 }
 }
 }

Chapter 4

[123]

 @Override
 public void window(MessageCollector collector, TaskCoordinator
 coordinator) {
 String msg = String.format("Tweets: %d Positive: %d Negative:
 %d MaxPositive: %d MinPositive: %d", tweets, positiveTweets,
 negativeTweets, maxPositive, maxNegative);

 collector.send(new OutgoingMessageEnvelope(new
 SystemStream("kafka", "tweet-sentiment-stats"), msg));

 // Reset counts after windowing.
 tweets = 0;
 positiveTweets = 0;
 negativeTweets = 0;
 maxPositive = 0;
 maxNegative = 0;
 }

}

In this task, we add a number of private member variables that we will use to keep
a running count of the number of overall tweets, how many were positive and
negative, and the maximum positive and negative counts seen in a single tweet.

This task consumes from three Kafka topics. Even though we will configure two to
be used as bootstrap streams, they are all still exactly the same type of Kafka topic
from which messages are received; the only difference with bootstrap streams is that
we tell Samza to use Kafka's rewinding capabilities to fully re-read each message
in the stream. For the other stream of tweets, we just start reading new messages as
they arrive.

As hinted earlier, if a task subscribes to multiple streams, the same process
method will receive messages from each stream. That is why we use envelope.
getSystemStreamPartition().getStream() to extract the stream name for
each given message and then act accordingly. If the message is from either of the
bootstrapped streams, we add its contents to the appropriate hashmap. We break
a tweet message into its constituent words, test each word for positive or negative
sentiment, and then update counts accordingly. As you can see, this task doesn't
output the received tweets to another topic.

Real-time Computation with Samza

[124]

Since we don't perform any direct processing, there is no point in doing so; any other
task that wishes to consume messages can just subscribe directly to the incoming
tweets stream. However, a possible modification could be to write positive and
negative sentiment tweets to dedicated streams for each.

The window method outputs a series of counts and then resets the variables (as it did
before). Note that Samza does have support to directly expose metrics through JMX,
which could possibly be a better fit for such simple windowing examples. However,
we won't have space to cover that aspect of the project in this book.

To run this job, we need to modify the configuration file by setting the job and task
names as usual, but we also need to specify multiple input streams now:

task.inputs=kafka.english-tweets,kafka.positive-words,kafka.negative-
words

Then, we need to specify that two of our streams are bootstrap streams that should
be read from the earliest offset. Specifically, we set three properties for the streams.
We say they are to be bootstrapped, that is, fully read before other streams, and this
is achieved by specifying that the offset on each stream needs to be reset to the oldest
(first) position:

systems.kafka.streams.positive-words.samza.bootstrap=true
systems.kafka.streams.positive-words.samza.reset.offset=true
systems.kafka.streams.positive-words.samza.offset.default=oldest

systems.kafka.streams.negative-words.samza.bootstrap=true
systems.kafka.streams.negative-words.samza.reset.offset=true
systems.kafka.streams.negative-words.samza.offset.default=oldest

We can run this job with the following command:

$./gradlew runTwitterSentiment

After starting the job, look at the output of the messages on the tweet-sentiment-
stats topic.

The sentiment detection job will bootstrap the positive and negative word streams
before reading any of our newly detected lower-case English tweets.

Chapter 4

[125]

With the sentiment detection job, we can now visualize our four collaborating jobs as
shown in the following diagram:

TwitterStatisticsStreamTask

TwitterParseStreamTask

raw tweet stream

output stream TextCleanupStreamTask

positive words

bootstrap stream

TweetSentimentStreamTask

negative words

bootstrap stream
sentiment output stream

English tweets stream

Bootstrap streams and collaborating tasks

To correctly run the jobs, it may seem necessary to start the JSON
parser job followed by the cleanup job before finally starting the
sentiment job, but this is not the case. Any unread messages remain
buffered in Kafka, so it doesn't matter in which order the jobs of a
multi-job workflow are started. Of course, the sentiment job will output
counts of 0 tweets until it starts receiving data, but nothing will break if
a stream job starts before those it depends on.

Stateful tasks
The final aspect of Samza that we will explore is how it allows the tasks processing
stream partitions to have persistent local state. In the previous example, we used
private variables to keep a track of running totals, but sometimes it is useful for a
task to have richer local state. An example could be the act of performing a logical
join on two streams, where it is useful to build up a state model from one stream
and compare this with the other.

Real-time Computation with Samza

[126]

Note that Samza can utilize its concept of partitioned streams to
greatly optimize the act of joining streams. If each stream to be joined
uses the same partition key (for example, a user ID), then each task
consuming these streams will receive all messages associated with
each ID across all the streams.

Samza has another abstraction similar to its notion of the framework to manage
its jobs and that which implements its tasks. It defines an abstract key-value store
that can have multiple concrete implementations. Samza uses existing open source
projects for the on-disk implementations and used LevelDB as of v0.7 and added
RocksDB as of v0.8. There is also an in-memory store that does not persist the
key-value data but that may be useful in testing or potentially very specific
production workloads.

Each task can write to this key-value store and Samza manages its persistence to
the local implementation. To support persistent states, the store is also modeled as a
stream and all writes to the store are also pushed into a stream. If a task fails, then on
restart, it can recover the state of its local key-value store by replaying the messages
in the backing topic. An obvious concern here will be the number of messages that
need to be replayed; however, when using Kafka, for example, it compacts messages
with the same key so that only the latest update remains in the topic.

We'll modify our previous tweet sentiment example to add a lifetime count of the
maximum positive and negative sentiment seen in any tweet. The following code
can be found as TwitterStatefulSentimentStateTask.java at https://github.
com/learninghadoop2/book-examples/blob/master/ch4/src/main/java/com/
learninghadoop2/samza/tasks/TwitterStatefulSentimentStreamTask.java.
Note that the process method is the same as TwitterSentimentStateTask.java,
so we have omitted it here for space reasons:

public class TwitterStatefulSentimentStreamTask implements StreamTask,
WindowableTask, InitableTask {
 private Set<String> positiveWords = new HashSet<String>();
 private Set<String> negativeWords = new HashSet<String>();
 private int tweets = 0;
 private int positiveTweets = 0;
 private int negativeTweets = 0;
 private int maxPositive = 0;
 private int maxNegative = 0;
 private KeyValueStore<String, Integer> store;

Chapter 4

[127]

 @SuppressWarnings("unchecked")
 @Override
 public void init(Config config, TaskContext context) {
 this.store = (KeyValueStore<String, Integer>) context.
getStore("tweet-store");
 }

 @Override
 public void process(IncomingMessageEnvelope envelope,
MessageCollector collector, TaskCoordinator coordinator) {
...
 }

 @Override
 public void window(MessageCollector collector, TaskCoordinator
coordinator) {
 Integer lifetimeMaxPositive = store.
get("lifetimeMaxPositive");
 Integer lifetimeMaxNegative = store.
get("lifetimeMaxNegative");

 if ((lifetimeMaxPositive == null) || (maxPositive >
lifetimeMaxPositive)) {
 lifetimeMaxPositive = maxPositive;
 store.put("lifetimeMaxPositive", lifetimeMaxPositive);
 }

 if ((lifetimeMaxNegative == null) || (maxNegative >
lifetimeMaxNegative)) {
 lifetimeMaxNegative = maxNegative;
 store.put("lifetimeMaxNegative", lifetimeMaxNegative);
 }

 String msg =
 String.format(
 "Tweets: %d Positive: %d Negative: %d MaxPositive: %d
MaxNegative: %d LifetimeMaxPositive: %d LifetimeMaxNegative: %d",
 tweets, positiveTweets, negativeTweets, maxPositive,
maxNegative, lifetimeMaxPositive,
 lifetimeMaxNegative);

 collector.send(new OutgoingMessageEnvelope(new
SystemStream("kafka", "tweet-stateful-sentiment-stats"), msg));

Real-time Computation with Samza

[128]

 // Reset counts after windowing.
 tweets = 0;
 positiveTweets = 0;
 negativeTweets = 0;
 maxPositive = 0;
 maxNegative = 0;
 }
}

This class implements a new interface called InitableTask. This has a single
method called init and is used when a task needs to configure aspects of its
configuration before it begins execution. We use the init() method here to create
an instance of the KeyValueStore class and store it in a private member variable.

KeyValueStore, as the name suggests, provides a familiar put/get type interface.
In this case, we specify that the keys are of the type String and the values are
Integers. In our window method, we retrieve any previously stored values for the
maximum positive and negative sentiment and if the count in the current window is
higher, update the store accordingly. Then, we just output the results of the window
method as before.

As you can see, the user does not need to deal with the details of either the local or
remote persistence of the KeyValueStore instance; this is all handled by Samza. The
efficiency of the mechanism also makes it tractable for tasks to hold sizeable amount
of local state, which can be particularly valuable in cases such as long-running
aggregations or stream joins.

The configuration file for the job can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch4/src/main/resources/
twitter-stateful-sentiment.properties. It needs to have a few entries added,
which are as follows:

stores.tweet-store.factory=org.apache.samza.storage.
kv.KeyValueStorageEngineFactory
stores.tweet-store.changelog=kafka.twitter-stats-state
stores.tweet-store.key.serde=string
stores.tweet-store.msg.serde=integer

The first line specifies the implementation class for the store, the second line specifies
the Kafka topic to be used for persistent state, and the last two lines specify the type
of the store key and value.

To run this job, use the following command:

$./gradlew runTwitterStatefulSentiment

Chapter 4

[129]

For convenience, the following command will start up four jobs: the JSON parser, the
text cleanup, the statistics job and the stateful sentiment jobs:

$./gradlew runTasks

Samza is a pure stream-processing system that provides pluggable implementations
of its storage and execution layers. The most commonly used plugins are YARN and
Kafka, and these demonstrate how Samza can integrate tightly with Hadoop YARN
while using a completely different storage layer. Samza is still a relatively new project
and the current features are only a subset of what is envisaged. It is recommended to
consult its webpage to get the latest information on its current status.

Summary
This chapter focused much more on what can be done on Hadoop 2, and in
particular YARN, than the details of Hadoop internals. This is almost certainly
a good thing, as it demonstrates that Hadoop is realizing its goal of becoming a
much more flexible and generic data processing platform that is no longer tied
to batch processing. In particular, we highlighted how Samza shows that the
processing frameworks that can be implemented on YARN can innovate and
enable functionality vastly different from that available in Hadoop 1.

In particular, we saw how Samza goes to the opposite end of the latency spectrum
from batch processing and enables per-message processing of individual messages
as they arrive.

We also saw how Samza provides a callback mechanism that MapReduce
developers will be familiar with, but uses it for a very different processing
model. We also discussed the ways in which Samza utilizes YARN as its main
execution framework and how it implements the model described in Chapter 3,
Processing – MapReduce and Beyond.

In the next chapter, we will switch gears and explore Apache Spark. Though it has
a very different data model than Samza, we'll see that it does also have an extension
that supports processing of real time data streams, including the option of Kafka
integration. However, both projects are so different that they are complimentary
more than in competition.

Iterative Computation
with Spark

In the previous chapter, we saw how Samza can enable near real-time stream
data processing within Hadoop. This is quite a step away from the traditional
batch processing model of MapReduce, but still keeps with the model of providing
a well-defined interface against which business logic tasks can be implemented.
In this chapter we will explore Apache Spark, which can be viewed both as a
framework on which applications can be built as well as a processing framework in
its own right. Not only are applications being built on Spark, but entire components
within the Hadoop ecosystem are also being reimplemented to use Spark as their
underlying processing framework. In particular, we will cover the following topics:

•	 What Spark is and how its core system can run on YARN
•	 The data model provided by Spark that enables hugely scalable and highly

efficient data processing
•	 The breadth of additional Spark components and related projects

It's important to note upfront that although Spark has its own mechanism to process
streaming data, this is but one part of what Spark has to offer. It's best to think of it
as a much broader initiative.

Iterative Computation with Spark

[132]

Apache Spark
Apache Spark (https://spark.apache.org/) is a data processing framework based
on a generalization of MapReduce. It was originally developed by the AMPLab at UC
Berkeley (https://amplab.cs.berkeley.edu/). Like Tez, Spark acts as an execution
engine that models data transformations as DAGs and strives to eliminate the I/O
overhead of MapReduce in order to perform iterative computation at scale. While
Tez's main goal was to provide a faster execution engine for MapReduce on Hadoop,
Spark has been designed both as a standalone framework and an API for application
development. The system is designed to perform general-purpose in-memory data
processing, stream workflows, as well as interactive and iterative computation.

Spark is implemented in Scala, which is a statically typed programming language
for the Java VM and exposes native programming interfaces for Java and Python
in addition to Scala itself. Note that though Java code can call the Scala interface
directly, there are some aspects of the type system that make such code pretty
unwieldy, and hence we use the native Java API.

Scala ships with an interactive shell similar to that of Ruby and Python; this allows
users to run Spark interactively from the interpreter to query any dataset.

The Scala interpreter operates by compiling a class for each line typed by the user,
loading it into the JVM, and invoking a function on it. This class includes a singleton
object that contains the variables or functions on that line and runs the line's code
in an initialize method. In addition to its rich programming interfaces, Spark is
becoming established as an execution engine, with popular tools of the Hadoop
ecosystem (such as Pig and Hive) being ported to the framework.

Cluster computing with working sets
Spark's architecture is centered around the concept of Resilient Distributed
Datasets (RDDs), which is a read-only collection of Scala objects partitioned across
a set of machines that can persist in memory. This abstraction was proposed in a
2012 research paper, Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing, which can be found at https://www.cs.berkeley.
edu/~matei/papers/2012/nsdi_spark.pdf.

Chapter 5

[133]

A Spark application consists of a driver program that executes parallel operations
on a cluster of workers and long-lived processes that can store data partitions
in memory by dispatching functions that run as parallel tasks, as shown in the
following diagram:

Worker Node

Executor Cache

TaskTask

Worker Node

Executor Cache

TaskTask

SparkContext

Driver Program

Cluster Manager

Spark cluster architecture

Processes are coordinated via a SparkContext instance. SparkContext connects to a
resource manager (such as YARN), requests executors on worker nodes, and sends
tasks to be executed. Executors are responsible for running tasks and managing
memory locally.

Spark allows you to share variables between tasks, or between tasks and the
driver, using an abstraction known as shared variables. Spark supports two types
of shared variables: broadcast variables, which can be used to cache a value in
memory on all nodes, and accumulators, which are additive variables such as
counters and sums.

Resilient Distributed Datasets (RDDs)
An RDD is stored in memory, shared across machines and is used in
MapReduce-like parallel operations. Fault tolerance is achieved through the
notion of lineage: if a partition of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to be able to rebuild just that partition.
An RDD can be built in four ways:

•	 By reading data from a file stored in HDFS
•	 By dividing – parallelizing – a Scala collection into a number of partitions

that are sent to workers
•	 By transforming an existing RDD using parallel operators
•	 By changing the persistence of an existing RDD

Iterative Computation with Spark

[134]

Spark shines when RDDs can fit in memory and can be cached across operations.
The API exposes methods to persist RDDs and allows for several persistence
strategies and storage levels, allowing for spill to disk as well as space-efficient
binary serialization.

Actions
Operations are invoked by passing functions to Spark. The system deals with variables
and side effects according to the functional programming paradigm. Closures can
refer to variables in the scope where they are created. Examples of actions are count
(returns the number of elements in the dataset), and save (outputs the dataset to
storage). Other parallel operations on RDDs include the following:

•	 map: applies a function to each element of the dataset
•	 filter: selects elements from a dataset based on user-provided criteria
•	 reduce: combines dataset elements using an associative function
•	 collect: sends all elements of the dataset to the driver program
•	 foreach: passes each element through a user-provided function
•	 groupByKey: groups items together by a provided key
•	 sortByKey: sorts items by key

Deployment
Spark can run both in local mode, similar to a Hadoop single-node setup, or atop a
resource manager. Currently supported resource managers include:

•	 Spark Standalone Cluster Mode
•	 YARN
•	 Apache Mesos

Spark on YARN
An ad-hoc-consolidated JAR needs to be built in order to deploy Spark on
YARN. Spark launches an instance of the standalone deployed cluster within the
ResourceManager. Cloudera and MapR both ship with Spark on YARN as part of
their software distribution. At the time of writing, Spark is available for Hortonworks's
HDP as a technology preview (http://hortonworks.com/hadoop/spark/).

Chapter 5

[135]

Spark on EC2
Spark comes with a deployment script, spark-ec2, located in the ec2 directory.
This script automatically sets up Spark and HDFS on a cluster of EC2 instances.
In order to launch a Spark cluster on the Amazon cloud, go to the ec2 directory
and run the following command:

./spark-ec2 -k <keypair> -i <key-file> -s <num-slaves> launch <cluster-
name>

Here, <keypair> is the name of your EC2 key pair, <key-file> is the private key
file for the key pair, <num-slaves> is the number of slave nodes to be launched, and
<cluster-name> is the name to be given to your cluster. See Chapter 1, Introduction,
for more details regarding the setup of key pairs, and verify that the cluster
scheduler is up and sees all the slaves by going to its web UI, the address of which
will be printed once the script completes.

You can specify a path in S3 as the input through a URI of the form
s3n://<bucket>/path. You will also need to set your Amazon security
credentials, either by setting the environment variables AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY before your program is executed, or through
SparkContext.hadoopConfiguration.

Getting started with Spark
Spark binaries and source code are available on the project website at
http://spark.apache.org/. The examples in the following section have been
tested using Spark 1.1.0 built from source on the Cloudera CDH 5.0 QuickStart VM.

Download and uncompress the gzip archive with the following commands:

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-1.1.0.tgz

$ tar xvzf spark-1.1.0.tgz

$ cd spark-1.1.0

Spark is built on Scala 2.10 and uses sbt (https://github.com/sbt/sbt) to build
the source core and related examples:

$./sbt/sbt -Dhadoop.version=2.2.0 -Pyarn assembly

With the -Dhadoop.version=2.2.0 and -Pyarn options, we instruct sbt to build
against Hadoop versions 2.2.0 or higher and enable YARN support.

Start Spark in standalone mode with the following command:

$./sbin/start-all.sh

Iterative Computation with Spark

[136]

This command will launch a local master instance at spark://localhost:7077
as well as a worker node.

A web interface to the master node can be accessed at http://localhost:8080/
and can be seen in the following screenshot:

Master node web interface

Spark can run interactively through spark-shell, which is a modified version of the
Scala shell. As a first example, we will implement a word count of the Twitter dataset
we used in Chapter 3, Processing - MapReduce and Beyond, using the Scala API.

Start an interactive spark-shell session by running the following command:

$./bin/spark-shell

The shell instantiates a SparkContext object, sc, that is responsible for handling
driver connections to workers. We will describe its semantics later in this chapter.

To make things a bit easier, let's create a sample textual dataset that contains one
status update per line:

$ stream.py -t -n 1000 > sample.txt

Then, copy it to HDFS:

$ hdfs dfs -put sample.txt /tmp

Within spark-shell, we first create an RDD - file - from the sample data:

val file = sc.textFile("/tmp/sample.txt")

Chapter 5

[137]

Then, we apply a series of transformations to count the word occurrences in the file.
Note that the output of the transformation chain - counts - is still an RDD:

val counts = file.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey((m, n) => m + n)

This chain of transformations corresponds to the map and reduce phases that we are
familiar with. In the map phase, we load each line of the dataset (flatMap), tokenize
each tweet into a sequence of words, count the occurrence of each word (map), and
emit (key, value) pairs. In the reduce phase, we group by key (word) and sum
values (m, n) together to obtain word counts.

Finally, we print the first ten elements, counts.take(10), to the console:

counts.take(10).foreach(println)

Writing and running standalone applications
Spark allows standalone applications to be written using three APIs: Scala,
Java, and Python.

Scala API
The first thing a Spark driver must do is to create a SparkContext object, which tells
Spark how to access a cluster. After importing classes and implicit conversions into a
program, as in the following:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

The SparkContext object can be created with the following constructor:

new SparkContext(master, appName, [sparkHome])

It can also be created through SparkContext(conf), which takes a SparkConf object.

The master parameter is a string that specifies a cluster URI to connect to (such as
spark://localhost:7077) or a local string to run in local mode. The appName
term is the application name that will be shown in the cluster web UI.

Iterative Computation with Spark

[138]

It is not possible to override the default SparkContext class, nor is it possible to
create a new one within a running Spark shell. It is however possible to specify
which master the context connects to using the MASTER environment variable.
For example, to run spark-shell on four cores, use the following:

$ MASTER=local[4] ./bin/spark-shell

Java API
The org.apache.spark.api.java package exposes all the Spark features available
in the Scala version to Java. The Java API has a JavaSparkContext class that returns
instances of org.apache.spark.api.java.JavaRDD and works with Java collections
instead of Scala ones.

There are a few key differences between the Java and Scala APIs:

•	 Java 7 does not support anonymous or first-class functions; therefore,
functions must be implemented by extending the org.apache.spark.
api.java.function.Function, Function2, and other classes. As of Spark
version 1.0 the API has been refactored to support Java 8 lambda expressions.
With Java 8, Function classes can be replaced with inline expressions that act
as a shorthand for anonymous functions.

•	 The RDD methods return Java collections
•	 Key-value pairs, which are simply written as (key, value) in Scala, are

represented by the scala.Tuple2 class.
•	 To maintain type safety, some RDD and function methods, such as those that

handle key pairs and doubles, are implemented as specialized classes.

WordCount in Java
An example of WordCount in Java is included with the Spark source code
distribution at examples/src/main/java/org/apache/spark/examples/
JavaWordCount.java.

First of all, we create a context using the JavaSparkContext class:

 JavaSparkContext sc = new JavaSparkContext(master, "JavaWordCount",
 System.getenv("SPARK_HOME"), JavaSparkContext.
jarOfClass(JavaWordCount.class));

 JavaRDD<String> data = sc.textFile(infile, 1);
 JavaRDD<String> words = data.flatMap(new FlatMapFunction<String,
String>() {
 @Override

Chapter 5

[139]

 public Iterable<String> call(String s) {
 return Arrays.asList(s.split(" "));
 }
 });

 JavaPairRDD<String, Integer> ones = words.map(new
PairFunction<String, String, Integer>() {
 @Override
 public Tuple2<String, Integer> call(String s) {
 return new Tuple2<String, Integer>(s, 1);
 }
 });

 JavaPairRDD<String, Integer> counts = ones.reduceByKey(new
Function2<Integer, Integer, Integer>() {
 @Override
 public Integer call(Integer i1, Integer i2) {
 return i1 + i2;
 }
 });

We then build an RDD from the HDFS location infile. In the first step of the
transformation chain, we tokenize each tweet in the dataset and return a list of
words. We use an instance of JavaPairRDD<String, Integer> to count occurrences
of each word. Finally, we reduce the RDD to a new JavaPairRDD<String,
Integer> instance that contains a list of tuples, each representing a word
and the number of times it was found in the dataset.

Python API
PySpark requires Python version 2.6 or higher. RDDs support the same methods
as their Scala counterparts but take Python functions and return Python collection
types. Lambda syntax (https://docs.python.org/2/reference/expressions.
html) is used to pass functions to RDDs.

The word count in pyspark is relatively similar to its Scala counterpart:

tweets = sc.textFile("/tmp/sample.txt")
counts = tweets.flatMap(lambda tweet: tweet.split(' ')) \
 .map(lambda word: (word, 1)) \
 .reduceByKey(lambda m,n:m+n)

Iterative Computation with Spark

[140]

The lambda construct creates anonymous functions at runtime. lambda tweet:
tweet.split(' ') creates a function that takes a string tweet as the input and
outputs a list of strings split by whitespace. Spark's flatMap applies this function to
each line of the tweets dataset. In the map phase, for each word token, lambda word:
(word, 1) returns (word, 1) tuples that indicate the occurrence of a word in the
dataset. In reduceByKey, we group these tuples by key - word - and sum the values
together to obtain the word count with lambda m,n:m+n.

The Spark ecosystem
Apache Spark powers a number of tools, both as a library and as an execution engine.

Spark Streaming
Spark Streaming (found at http://spark.apache.org/docs/latest/streaming-
programming-guide.html) is an extension of the Scala API that allows data
ingestion from streams such as Kafka, Flume, Twitter, ZeroMQ, and TCP sockets.

Spark Streaming receives live input data streams and divides the data into batches
(arbitrarily sized time windows), which are then processed by the Spark core
engine to generate the final stream of results in batches. This high-level abstraction
is called DStream (org.apache.spark.streaming.dstream.DStreams) and is
implemented as a sequence of RDDs. DStream allows for two kinds of operations:
transformations and output operations. Transformations work on one or more DStreams
to create new DStreams. As part of a chain of transformations, data can be persisted
either to a storage layer (HDFS) or an output channel. Spark Streaming allows for
transformations over a sliding window of data. A window-based operation needs
to specify two parameters: the window length, the duration of the window and the
slide interval, the interval at which the window-based operation is performed.

GraphX
GraphX (found at https://spark.apache.org/docs/latest/graphx-
programming-guide.html) is an API for graph computation that exposes a set of
operators and algorithms for graph-oriented computation as well as an optimized
variant of Pregel.

Chapter 5

[141]

MLlib
MLlib (found at http://spark.apache.org/docs/latest/mllib-guide.html)
provides common Machine Learning (ML) functionality, including tests and data
generators. MLlib currently supports four types of algorithms: binary classification,
regression, clustering, and collaborative filtering.

Spark SQL
Spark SQL is derived from Shark, which is an implementation of the Hive data
warehousing system that uses Spark as an execution engine. We will discuss Hive
in Chapter 7, Hadoop and SQL. With Spark SQL, it is possible to mix SQL-like queries
with Scala or Python code. The result sets returned by a query are themselves RDDs,
and as such, they can be manipulated by Spark core methods or MLlib and GraphX.

Processing data with Apache Spark
In this section, we will implement the examples from Chapter 3, Processing – MapReduce
and Beyond, using the Scala API. We will consider both the batch and real-time
processing scenarios. We will show you how Spark Streaming can be used to
compute statistics on the live Twitter stream.

Building and running the examples
Scala source code for the examples can be found at https://github.com/
learninghadoop2/book-examples/tree/master/ch5. We will be using sbt
to build, manage, and execute code.

The build.sbt file controls the codebase metadata and software dependencies;
these include the version of the Scala interpreter that Spark links to, a link to
the Akka package repository used to resolve implicit dependencies, as well as
dependencies on Spark and Hadoop libraries.

The source code for all examples can be compiled with:

$ sbt compile

Iterative Computation with Spark

[142]

Or, it can be packaged into a JAR file with:

$ sbt package

A helper script to execute compiled classes can be generated with:

$ sbt add-start-script-tasks

$ sbt start-script

The helper can be invoked as follows:

$ target/start <class name> <master> <param1> … <param n>

Here, <master> is the URI of the master node. An interactive Scala session can be
invoked via sbt with the following command:

$ sbt console

This console is not the same as the Spark interactive shell; rather, it is an alternative
way to execute code. In order to run Spark code in it we will need to manually import
and instantiate a SparkContext object. All examples presented in this section expect
a twitter4j.properties file containing the consumer key and secret and the access
tokens to be present in the same directory where sbt or spark-shell is being invoked:

oauth.consumerKey=
oauth.consumerSecret=
oauth.accessToken=
oauth.accessTokenSecret=

Running the examples on YARN
To run the examples on a YARN grid, we first build a JAR file using:

$ sbt package

Then, we ship it to the resource manager using the spark-submit command:

./bin/spark-submit --class application.to.execute --master yarn-cluster
[options] target/scala-2.10/chapter-4_2.10-1.0.jar [<param1> … <param n>]

Unlike the standalone mode, we don't need to specify a <master> URI. In YARN,
the ResourceManager is selected from the cluster configuration. More information
on launching spark in YARN can be found at http://spark.apache.org/docs/
latest/running-on-yarn.html.

Chapter 5

[143]

Finding popular topics
Unlike the earlier examples with the Spark shell we initialize a SparkContext as part
of the program. We pass three arguments to the SparkContext constructor: the type
of scheduler we want to use, a name for the application, and the directory where
Spark is installed:

import org.apache.spark.SparkContext._
import org.apache.spark.SparkContext
import scala.util.matching.Regex

object HashtagCount {
 def main(args: Array[String]) {
[…]
 val sc = new SparkContext(master,
"HashtagCount",
System.getenv("SPARK_HOME"))

 val file = sc.textFile(inputFile)
 val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")

 val counts = file.flatMap(line =>
 (pattern findAllIn line).toList)
 .map(word => (word, 1))
 .reduceByKey((m, n) => m + n)

 counts.saveAsTextFile(outputPath)
 }
}

We create an initial RDD from a dataset stored in HDFS - inputFile - and apply
logic that is similar to the WordCount example.

For each tweet in the dataset, we extract an array of strings that match the
hashtag pattern (pattern findAllIn line).toArray, and we count an occurrence
of each string using the map operator. This generates a new RDD as a list of tuples in
the form:

(word, 1), (word2, 1), (word, 1)

Finally, we combine together elements of this RDD using the reduceByKey() method.
We store the RDD generated by this last step back into HDFS with saveAsTextFile.

The code for the standalone driver can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/HashTagCount.scala.

Iterative Computation with Spark

[144]

Assigning a sentiment to topics
The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/HashTagSentiment.scala, and the code is as follows:

import org.apache.spark.SparkContext._
import org.apache.spark.SparkContext
import scala.util.matching.Regex
import scala.io.Source

object HashtagSentiment {
 def main(args: Array[String]) {
 […]
 val sc = new SparkContext(master,
"HashtagSentiment",
System.getenv("SPARK_HOME"))

 val file = sc.textFile(inputFile)

 val positive = Source.fromFile(positiveWordsPath)
 .getLines
 .filterNot(_ startsWith ";")
 .toSet
 val negative = Source.fromFile(negativeWordsPath)
 .getLines
 .filterNot(_ startsWith ";")
 .toSet

 val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")
 val counts = file.flatMap(line => (pattern findAllIn line).map({
 word => (word, sentimentScore(line, positive, negative))
 })).reduceByKey({ (m, n) => (m._1 + n._1, m._2 + n._2) })

 val sentiment = counts.map({hashtagScore =>
 val hashtag = hashtagScore._1
 val score = hashtagScore._2
 val normalizedScore = score._1 / score._2
 (hashtag, normalizedScore)
 })

 sentiment.saveAsTextFile(outputPath)
 }
}

First, we read a list of positive and negative words into Scala Set objects and filter
out comments (strings beginning with ;).

Chapter 5

[145]

When a hashtag is found, we call a function - sentimentScore - to estimate the
sentiment expressed by that given text. This function implements the same logic we
used in Chapter 3, Processing – MapReduce and Beyond, to estimate the sentiment of
a tweet. It takes as input parameters the tweet's text, str, and a list of positive and
negative words as Set[String] objects. The return value is the difference between
the positive and negative scores and the number of words in the tweets. In Spark,
we represent this return value as a pair of Double and Integer objects:

def sentimentScore(str: String, positive: Set[String],
 negative: Set[String]): (Double, Int) = {
 var positiveScore = 0; var negativeScore = 0;
 str.split("""\s+""").foreach { w =>
 if (positive.contains(w)) { positiveScore+=1; }
 if (negative.contains(w)) { negativeScore+=1; }
 }
 ((positiveScore - negativeScore).toDouble,
 str.split("""\s+""").length)
}

We reduce the map output by aggregating by the key (the hashtag). In this phase,
we emit a triple made of the hashtag, the sum of the difference between positive and
negative scores, and the number of words per tweet. We use an additional map step
to normalize the sentiment score and store the resulting list of hashtag and sentiment
pairs to HDFS.

Data processing on streams
The previous example can be easily adjusted to work on a real-time stream of data.
In this and the following section, we will use spark-streaming-twitter to perform
some simple analytics tasks on the real-time firehose:

 val window = 10
 val ssc = new StreamingContext(master, "TwitterStreamEcho",
Seconds(window), System.getenv("SPARK_HOME"))

 val stream = TwitterUtils.createStream(ssc, auth)

 val tweets = stream.map(tweet => (tweet.getText()))
 tweets.print()

 ssc.start()
 ssc.awaitTermination()
}

Iterative Computation with Spark

[146]

The Scala source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/TwitterStreamEcho.scala.

The two key packages we need to import are:

import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.twitter._

We initialize a new StreamingContext ssc on a local cluster using a 10-second
window and use this context to create a DStream of tweets whose text we print.

Upon successful execution, Twitter's real-time firehose will be echoed in the terminal
in batches of 10 seconds worth of data. Notice that the computation will continue
indefinitely but can be interrupted at any moment by pressing Ctrl + C.

The TwitterUtils object is a wrapper to the Twitter4j library (http://twitter4j.
org/en/index.html) that ships with spark-streaming-twitter. A successful
call to TwitterUtils.createStream will return a DStream of Twitter4j objects
(TwitterInputDStream). In the preceding example, we used the getText() method
to extract the tweet text; however, notice that the twitter4j object exposes the full
Twitter API. For instance, we can print a stream of users with the following call:

val users = stream.map(tweet => (tweet.getUser().getId(),
tweet.getUser().getName()))
users.print()

State management
Spark Streaming provides an ad hoc DStream to keep the state of each key in an
RDD and the updateStateByKey method to mutate state.

We can reuse the code of the batch example to assign and update sentiment scores
on streams:

object StreamingHashTagSentiment {
[…]

 val counts = text.flatMap(line => (pattern findAllIn line)
 .toList
 .map(word => (word, sentimentScore(line, positive, negative))))
 .reduceByKey({ (m, n) => (m._1 + n._1, m._2 + n._2) })

 val sentiment = counts.map({hashtagScore =>
 val hashtag = hashtagScore._1
 val score = hashtagScore._2
 val normalizedScore = score._1 / score._2

Chapter 5

[147]

 (hashtag, normalizedScore)
 })

 val stateDstream = sentiment
 .updateStateByKey[Double](updateFunc)

 stateDstream.print

 ssc.checkpoint("/tmp/checkpoint")
 ssc.start()
}

A state DStream is created by calling hashtagSentiment.updateStateByKey.

The updateFunc function implements the state mutation logic, which is a cumulative
sum of sentiment scores over a period of time:

 val updateFunc = (values: Seq[Double], state: Option[Double]) => {
 val currentScore = values.sum

 val previousScore = state.getOrElse(0.0)

 Some((currentScore + previousScore) * decayFactor)
 }

decayFactor is a constant value, less than or equal to zero, that we use to
proportionally decrease the score over time. Intuitively, this will fade hashtags
if they are not trending anymore. Spark Streaming writes intermediate data for
stateful operations to HDFS, so we need to checkpoint the Streaming context
with ssc.checkpoint.

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/StreamingHashTagSentiment.scala.

Data analysis with Spark SQL
Spark SQL can ease the task of representing and manipulating structured data.
We will load a JSON file into a temporary table and calculate simple statistics by
blending SQL statements and Scala code:

object SparkJson {
 […]
 val file = sc.textFile(inputFile)

 val sqlContext = new org.apache.spark.sql.SQLContext(sc)
 import sqlContext._

Iterative Computation with Spark

[148]

 val tweets = sqlContext.jsonFile(inFile)
 tweets.printSchema()

 // Register the SchemaRDD as a table
 tweets.registerTempTable("tweets")
 val text = sqlContext.sql("SELECT text, user.id FROM tweets")

 // Find the ten most popular hashtags
 val pattern = new Regex("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")

 val counts = text.flatMap(sqlRow => (pattern findAllIn
 sqlRow(0).toString).toList)
 .map(word => (word, 1))
 .reduceByKey((m, n) => m+n)
 counts.registerTempTable("hashtag_frequency")

counts.printSchema

val top10 = sqlContext.sql("SELECT _1 as hashtag, _2 as frequency
FROM hashtag_frequency order by frequency desc limit 10")

top10.foreach(println)
}

As with previous examples, we instantiate a SparkContext sc and load the dataset
of JSON tweets. We then create an instance of org.apache.spark.sql.SQLContext
based on the existing sc. The import sqlContext._ gives access to all functions
and implicit conventions for sqlContext. We load the tweets' JSON dataset using
sqlContext.jsonFile. The resulting tweets object is an instance of SchemaRDD,
which is a new type of RDD introduced by Spark SQL. The SchemaRDD class is
conceptually similar to a table in a relational database; it is composed of Row objects
and a schema that describes the content in each Row. We can see the schema for a
tweet by calling tweets.printSchema(). Before we're able to manipulate tweets
with SQL statements, we need to register SchemaRDD as a table in the SQLContext.
We then extract the text field of a JSON tweet with an SQL query. Note that the
output of sqlContext.sql is an RDD again. As such, we can manipulate it using
Spark core methods. In our case, we reuse the logic used in previous examples to
extract hashtags and count their occurrences. Finally, we register the resulting RDD
as a table, hashtag_frequency, and order hashtags by frequency with a SQL query.

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/SparkJson.scala.

Chapter 5

[149]

SQL on data streams
At the time of writing, a SQLContext cannot be directly instantiated from a
StreamingContext object. It is, however, possible to query a DStream by
registering a SchemaRDD for each RDD in a given stream:

object SqlOnStream {
[…]

 val ssc = new StreamingContext(sc, Seconds(window))

 val gson = new Gson()

 val dstream = TwitterUtils
 .createStream(ssc, auth)
 .map(gson.toJson(_))

 val sqlContext = new org.apache.spark.sql.SQLContext(sc)
 import sqlContext._

 dstream.foreachRDD(rdd => {
 rdd.foreach(println)
 val jsonRDD = sqlContext.jsonRDD(rdd)
 jsonRDD.registerTempTable("tweets")
 jsonRDD.printSchema

 sqlContext.sql(query)
 })

 ssc.checkpoint("/tmp/checkpoint")
 ssc.start()
 ssc.awaitTermination()
}

In order to get the two working together, we first create a SparkContext sc that we
use to initialize both a StreamingContext ssc and a sqlContext. As in previous
examples, we use TwitterUtils.createStream to create a DStream RDD dstream.
In this example, we use Google's Gson JSON parser to serialize each twitter4j
object to a JSON string. To execute Spark SQL queries on the stream, we register a
SchemaRDD jsonRDD within a dstream.foreachRDD loop. We use the sqlContext.
jsonRDD method to create an RDD from a batch of JSON tweets. At this point, we can
query the SchemaRDD using the sqlContext.sql method.

The source code of this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch5/src/main/scala/com/
learninghadoop2/spark/SqlOnStream.scala.

Iterative Computation with Spark

[150]

Comparing Samza and Spark Streaming
It is useful to compare Samza and Spark Streaming to help identify the areas in
which each can best be applied. As it has been hopefully made clear in this book,
these technologies are very much complimentary. Even though Spark Streaming
might appear competitive with Samza, we feel both products offer compelling
advantages in certain areas.

Samza shines when the input data is truly a stream of discrete events and you
wish to build processing that operates on this type of input. Samza jobs running on
Kafka can have latencies in the order of milliseconds. This provides a programming
model focused on the individual messages and is the better fit for true near real-
time processing applications. Though it lacks support to build topologies of
collaborating jobs, its simple model allows similar constructs to be built and, perhaps
more importantly, be easily reasoned about. Its model of partitioning and scaling
also focuses on simplicity, which again makes a Samza application very easy to
understand and gives it a significant advantage when dealing with something as
intrinsically complex as real-time data.

Spark is much more than a streaming product. Its support for building distributed
data structures from existing datasets and using powerful primitives to manipulate
these gives it the ability to process large datasets at a higher level of granularity.
Other products in the Spark ecosystem build additional interfaces or abstractions
upon this common batch processing core. This is very much a different focus to
the message stream model of Samza.

This batch model is also demonstrated when we look at Spark Streaming; instead
of a per-message processing model, it slices the message stream into a series
of RDDs. With a fast execution engine, this means latencies as low as 1 second
(http://www.cs.berkeley.edu/~matei/papers/2012/hotcloud_spark_
streaming.pdf). For workloads that wish to analyze the stream in such a way,
this will be a better fit than Samza's per-message model, which requires additional
logic to provide such windowing.

Chapter 5

[151]

Summary
This chapter explored Spark and showed you how it adds iterative processing as a
new rich framework upon which applications can be built atop YARN. In particular,
we highlighted:

•	 The distributed data-structure-based processing model of Spark and how it
allows very efficient in-memory data processing

•	 The broader Spark ecosystem and how multiple additional projects are built
atop it to specialize the computational model even further

In the next chapter we will explore Apache Pig and its programming language,
Pig Latin. We will see how this tool can greatly simplify software development for
Hadoop by abstracting away some of the MapReduce and Spark complexity.

Data Analysis with
Apache Pig

In the previous chapters, we explored a number of APIs for data processing.
MapReduce, Spark, Tez and Samza are rather low-level, and writing non-trivial
business logic with them often requires significant Java development. Moreover,
different users will have different needs. It might be impractical for an analyst
to write MapReduce code or build a DAG of inputs and outputs to answer some
simple queries. At the same time, a software engineer or a researcher might want to
prototype ideas and algorithms using high-level abstractions before jumping into
low-level implementation details.

In this chapter and the following one, we will explore some tools that provide a way
to process data on HDFS using higher-level abstractions. In this chapter we will
explore Apache Pig, and, in particular, we will cover the following topics:

•	 What Apache Pig is and the dataflow model it provides
•	 Pig Latin's data types and functions
•	 How Pig can be easily enhanced using custom user code
•	 How we can use Pig to analyze the Twitter stream

An overview of Pig
Historically, the Pig toolkit consisted of a compiler that generated MapReduce
programs, bundled their dependencies, and executed them on Hadoop. Pig jobs
are written in a language called Pig Latin and can be executed in both interactive
and batch fashions. Furthermore, Pig Latin can be extended using User Defined
Functions (UDFs) written in Java, Python, Ruby, Groovy, or JavaScript.

Data Analysis with Apache Pig

[154]

Pig use cases include the following:

•	 Data processing
•	 Ad hoc analytical queries
•	 Rapid prototyping of algorithms
•	 Extract Transform Load pipelines

Following a trend we have seen in previous chapters, Pig is moving towards a
general-purpose computing architecture. As of version 0.13 the ExecutionEngine
interface (org.apache.pig.backend.executionengine) acts as a bridge between
the frontend and the backend of Pig, allowing Pig Latin scripts to be compiled
and executed on frameworks other than MapReduce. At the time of writing,
version 0.13 ships with MRExecutionEngine (org.apache.pig.backend.
hadoop.executionengine.mapReduceLayer.MRExecutionEngine) and work
on a low-latency backend based on Tez (org.apache.pig.backend.hadoop.
executionengine.tez.*) is expected to be included in version 0.14 (see https://
issues.apache.org/jira/browse/PIG-3446). Work on integrating Spark is
currently in progress in the development branch (see https://issues.apache.
org/jira/browse/PIG-4059).

Pig 0.13 comes with a number of performance enhancements for the MapReduce
backend, in particular two features to reduce latency of small jobs: direct HDFS
access (https://issues.apache.org/jira/browse/PIG-3642) and auto local
mode (https://issues.apache.org/jira/browse/PIG-3463). Direct HDFS,
the opt.fetch property, is turned on by default. When doing a DUMP in a simple
(map-only) script that contains only LIMIT, FILTER, UNION, STREAM, or FOREACH
operators, input data is fetched from HDFS, and the query is executed directly
in Pig, bypassing MapReduce. With auto local, the pig.auto.local.enabled
property, Pig will run a query in the Hadoop local mode when the data size is
smaller than pig.auto.local.input.maxbytes. Auto local is off by default.

Pig will launch MapReduce jobs if both modes are off or if the query is not
eligible for either. If both modes are on, Pig will check whether the query is
eligible for direct access and, if not, fall back to auto local. Failing that, it will
execute the query on MapReduce.

Getting started
We will use the stream.py script options to extract JSON data and retrieve a specific
number of tweets; we can run this with a command such as the following:

$ python stream.py -j -n 10000 > tweets.json

Chapter 6

[155]

The tweets.json file will contain one JSON string on each line representing a tweet.

Remember that the Twitter API credentials need to be made available as
environment variables or hardcoded in the script itself.

Running Pig
Pig is a tool that translates statements written in Pig Latin and executes them
either on a single machine in standalone mode or on a full Hadoop cluster when in
distributed mode. Even in the latter, Pig's role is to translate Pig Latin statements
into MapReduce jobs and therefore it doesn't require the installation of additional
services or daemons. It is used as a command-line tool with its associated libraries.

Cloudera CDH ships with Apache Pig version 0.12. Alternatively, the Pig source
code and binary distributions can be obtained at https://pig.apache.org/
releases.html.

As can be expected, the MapReduce mode requires access to a Hadoop cluster and
HDFS installation. MapReduce mode is the default mode executed when running
the Pig command at the command-line prompt. Scripts can be executed with the
following command:

$ pig -f <script>

Parameters can be passed via the command line using -param <param>=<val>,
as follows:

$ pig –param input=tweets.txt

Parameters can also be specified in a param file that can be passed to Pig using
the -param_file <file> option. Multiple files can be specified. If a parameter is
present multiple times in the file, the last value will be used and a warning will
be displayed. A parameter file contains one parameter per line. Empty lines and
comments (specified by starting a line with #) are allowed. Within a Pig script,
parameters are in the form $<parameter>. The default value can be assigned using
the default statement: %default input tweets.json'. The default command
will not work within a Grunt session; we'll discuss Grunt in the next section.

In local mode, all files are installed and run using the local host and filesystem.
Specify local mode using the -x flag:

$ pig -x local

In both execution modes, Pig programs can be run either in an interactive shell or in
batch mode.

Data Analysis with Apache Pig

[156]

Grunt – the Pig interactive shell
Pig can run in an interactive mode using the Grunt shell, which is invoked when
we use the pig command at the terminal prompt. In the rest of this chapter, we will
assume that examples are executed within a Grunt session. Other than executing Pig
Latin statements, Grunt offers a number of utilities and access to shell commands:

•	 fs: allows users to manipulate Hadoop filesystem objects and has the same
semantics as the Hadoop CLI

•	 sh: executes commands via the operating system shell
•	 exec: launches a Pig script within an interactive Grunt session
•	 kill: kills a MapReduce job
•	 help: prints a list of all available commands

Elastic MapReduce
Pig scripts can be executed on EMR by creating a cluster with --applications
Name=Pig,Args=--version,<version>, as follows:

$ aws emr create-cluster \

--name "Pig cluster" \

--ami-version <ami version> \

--instance-type <EC2 instance> \

--instance-count <number of nodes> \

--applications Name=Pig,Args=--version,<version>\

--log-uri <S3 bucket> \

--steps Type=PIG,\

Name="Pig script",\

Args=[-f,s3://<script location>,\

-p,input=<input param>,\

-p,output=<output param>]

The preceding command will provision a new EMR cluster and execute
s3://<script location>. Notice that the scripts to be executed and the input
(-p input) and output (-p output) paths are expected to be located on S3.

Chapter 6

[157]

As an alternative to creating a new EMR cluster, it is possible to add Pig steps
to an already-instantiated EMR cluster using the following command:

$ aws emr add-steps \

--cluster-id <cluster id>\

--steps Type=PIG,\

Name= "Other Pig script",\

Args=[-f,s3://<script location>,\

-p,input=<input param>,\

-p,output=<output param>]

In the preceding command, <cluster id> is the ID of the instantiated cluster.

It is also possible to ssh into the master node and run Pig Latin statements within a
Grunt session with the following command:

$ aws emr ssh --cluster-id <cluster id> --key-pair-file <key pair>

Fundamentals of Apache Pig
The primary interface to program Apache Pig is Pig Latin, a procedural language
that implements ideas of the dataflow paradigm.

Pig Latin programs are generally organized as follows:

•	 A LOAD statement reads data from HDFS
•	 A series of statements aggregates and manipulates data
•	 A STORE statement writes output to the filesystem
•	 Alternatively, a DUMP statement displays the output to the terminal

The following example shows a sequence of statements that outputs the top 10
hashtags ordered by the frequency, extracted from the dataset of tweets:

tweets = LOAD 'tweets.json'
 USING JsonLoader('created_at:chararray,
 id:long,
 id_str:chararray,
 text:chararray');

hashtags = FOREACH tweets {
 GENERATE FLATTEN(

Data Analysis with Apache Pig

[158]

 REGEX_EXTRACT(
 text,
 '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)', 1)
) as tag;
}

hashtags_grpd = GROUP hashtags BY tag;
hashtags_count = FOREACH hashtags_grpd {
 GENERATE
 group,
 COUNT(hashtags) as occurrencies;
}
hashtags_count_sorted = ORDER hashtags_count BY occurrencies DESC;
top_10_hashtags = LIMIT hashtags_count_sorted 10;
DUMP top_10_hashtags;

First, we load the tweets.json dataset from HDFS, de-serialize the JSON file,
and map it to a four-column schema that contains a tweet's creation time, its ID
in numerical and string form, and the text. For each tweet, we extract hashtags
from its text using a regular expression. We aggregate on hashtag, count the number
of occurrences, and order by frequency. Finally, we limit the ordered records to
the top 10 most frequent hashtags.

A series of statements like the previous one is picked up by the Pig compiler,
transformed into MapReduce jobs, and executed on a Hadoop cluster. The planner
and optimizer will resolve dependencies on input and output relations and
parallelize the execution of statements wherever possible.

Statements are the building blocks of processing data with Pig. They take a relation
as input and produce another relation as output. In Pig Latin terms, a relation
can be defined as a bag of tuples, two data types we will use throughout the
remainder of this chapter.

Users experienced with SQL and the relational data model might find Pig Latin's
syntax somewhat familiar. While there are indeed similarities in the syntax itself, Pig
Latin implements an entirely different computational model. Pig Latin is procedural,
it specifies the actual data transforms to be performed, whereas SQL is declarative
and describes the nature of the problem but does not specify the actual runtime
processing. In terms of organizing data, a relation can be thought of as a table in a
relational database, where tuples in a bag correspond to the rows in a table. Relations
are unordered and therefore easily parallelizable, and they are less constrained
than relational tables. Pig relations can contain tuples with different numbers of
fields, and those with the same field count can have fields of different types in
corresponding positions.

Chapter 6

[159]

A key difference between SQL and the dataflow model adopted by Pig Latin lies
in how splits in a data pipeline are managed. In the relational world, a declarative
language such as SQL implements and executes queries that will generate a single
result. The dataflow model sees data transformations as a graph where input and
output are nodes connected by an operator. For instance, intermediate steps of a query
might require the input to be grouped by a number of keys and result in multiple
outputs (GROUP BY). Pig has built-in mechanisms to manage multiple data flows
in such a graph by executing operators as soon as inputs are readily available and
potentially apply different operators to each flow. For instance, Pig's implementation
of the GROUP BY operator uses the parallel feature (http://pig.apache.org/docs/
r0.12.0/perf.html#parallel) to allow a user to increase the number of reduce tasks
for the MapReduce jobs generated and hence increases concurrency. An additional
side effect of this property is that when multiple operators can be executed in parallel
in the same program, Pig does so (more details on Pig's multi-query implementation
can be found at http://pig.apache.org/docs/r0.12.0/perf.html#multi-query-
execution). Another consequence of Pig Latin's approach to computation is that it
allows the persistence of data at any point in the pipeline. It allows the developer
to select specific operator implementations and execution plans when necessary,
effectively overriding the optimizer.

Pig Latin allows and even encourages developers to insert their own code almost
anywhere in a pipeline by means of User Defined Functions (UDFs) as well as by
utilizing Hadoop streaming. UDFs allow users to specify custom business logic on
how data is loaded, how it is stored, and how it is processed, whereas streaming
allows users to launch executables at any point in the data flow.

Programming Pig
Pig Latin comes with a number of built-in functions (the eval, load/store, math,
string, bag, and tuple functions) and a number of scalar and complex data types.
Additionally, Pig allows function and data-type extension by means of UDFs and
dynamic invocation of Java methods.

Pig data types
Pig supports the following scalar data types:

•	 int: a signed 32-bit integer
•	 long: a signed 64-bit integer
•	 float: a 32-bit floating point
•	 double: a 64-bit floating point

Data Analysis with Apache Pig

[160]

•	 chararray: a character array (string) in Unicode UTF-8 format
•	 bytearray: a byte array (blob)
•	 boolean: a boolean
•	 datetime: a datetime
•	 biginteger: a Java BigInteger
•	 bigdecimal: a Java BigDecimal

Pig supports the following complex data types:

•	 map: an associative array enclosed by [], with the key and value
separated by #, and items separated by ,

•	 tuple: an ordered list of data, where elements can be of any scalar
or complex type enclosed by (), with items separated by ,

•	 bag: an unordered collection of tuples enclosed by {} and separated by ,

By default, Pig treats data as untyped. The user can declare the types of data at load
time or manually cast it when necessary. If a data type is not declared, but a script
implicitly treats a value as a certain type, Pig will assume it is of that type and cast it
accordingly. The fields of a bag or tuple can be referred to by the name tuple.field
or by the position $<index>. Pig counts from 0 and hence the first element will be
denoted as $0.

Pig functions
Built-in functions are implemented in Java, and they try to follow standard
Java conventions. There are however a number of differences to keep in mind,
which are as follows:

•	 Function names are case sensitive and uppercase
•	 If the result value is null, empty, or not a number (NaN), Pig returns null
•	 If Pig is unable to process the expression, it returns an exception

A list of all built-in functions can be found at http://pig.apache.org/docs/
r0.12.0/func.html.

Chapter 6

[161]

Load/store
Load/store functions determine how data goes into and comes out of Pig. The
PigStorage, TextLoader, and BinStorage functions can be used to read and
write UTF-8 delimited, unstructured text, and binary data respectively. Support
for compression is determined by the load/store function. The PigStorage and
TextLoader functions support gzip and bzip2 compression for both read (load)
and write (store). The BinStorage function does not support compression.

As of version 0.12, Pig includes built-in support for loading and storing Avro and
JSON data via the AvroStorage (load/store), JsonStorage (store), and JsonLoader
(load). At the time of writing, JSON support is still somewhat limited. In particular,
Pig expects a schema for the data to be provided as an argument to JsonLoader/
JsonStorage, or it assumes that .pig_schema (produced by JsonStorage) is
present in the directory containing the input data. In practice,
this makes it difficult to work with JSON dumps not generated by Pig itself.

As seen in our following example, we can load the JSON dataset with JsonLoader:

tweets = LOAD 'tweets.json' USING JsonLoader(
'created_at:chararray,
id:long,
id_str:chararray,
text:chararray,
source:chararray');

We provide a schema so that the first five elements of a JSON object created_id, id,
id_str, text, and source are mapped. We can look at the schema of tweets by using
describe tweets, which returns the following:

 tweets: {created_at: chararray,id: long,id_str: chararray,text:
chararray,source: chararray}

Eval
Eval functions implement a set of operations to be applied on an expression that
returns a bag or map data type. The expression result is evaluated within the
function context.

•	 AVG(expression): computes the average of the numeric values in a single-
column bag

•	 COUNT(expression): counts all elements with non-null values in the first
position in a bag

Data Analysis with Apache Pig

[162]

•	 COUNT_STAR(expression): counts all elements in a bag
•	 IsEmpty(expression): checks whether a bag or map is empty
•	 MAX(expression), MIN(expression), and SUM(expression): return the

max, min, or the sum of elements in a bag
•	 TOKENIZE(expression): splits a string and outputs a bag of words

The tuple, bag, and map functions
These functions allow conversion from and to the bag, tuple, and map types.
They include the following:

•	 TOTUPLE(expression), TOMAP(expression), and TOBAG(expression):
These coerce expression to a tuple, map, or bag

•	 TOP(n, column, relation): This returns the top n tuples from a bag
of tuples

The math, string, and datetime functions
Pig exposes a number of functions provided by the java.lang.Math, java.lang.
String, java.util.Date, and Joda-Time DateTime class (found at http://www.
joda.org/joda-time/).

Dynamic invokers
Dynamic invokers allow the execution of Java functions without having to wrap
them in a UDF. They can be used for any static function that:

•	 accepts no arguments or accepts a combination of string, int, long, double,
float, or array with these same types

•	 returns a string, int, long, double, or float value

Only primitives can be used for numbers and Java boxed classes (such as Integer)
cannot be used as arguments. Depending on the return type, a specific kind of invoker
must be used: InvokeForString, InvokeForInt, InvokeForLong, InvokeForDouble,
or InvokeForFloat. More details regarding dynamic invokers can be found at
http://pig.apache.org/docs/r0.12.0/func.html#dynamic-invokers.

Chapter 6

[163]

Macros
As of version 0.9, Pig Latin's preprocessor supports macro expansion. Macros are
defined using the DEFINE statement:

DEFINE macro_name(param1, ..., paramN) RETURNS output_bag {
 pig_latin_statements
};

The macro is expanded inline, and its parameters are referenced in the Pig Latin
block within { }.

The macro output relation is given in the RETURNS statements (output_bag).
RETURNS void is used for a macro with no output relation.

We can define a macro to count the number of rows in a relation, as follows:

DEFINE count_rows(X) RETURNS cnt {
 grpd = group $X all;
 $cnt = foreach grpd generate COUNT($X);
};

We can use it in a Pig script or Grunt session to count the number of tweets:

tweets_count = count_rows(tweets);
DUMP tweets_count;

Macros allow us to make scripts modular by housing code in separate files and
importing them where needed. For example, we can save count_rows in a file
called count_rows.macro and later on import it with the command import
'count_rows.macro'.

Macros have a number of limitations; in particular, only Pig Latin statements are
allowed inside a macro. It is not possible to use REGISTER statements and shell
commands, UDFs are not allowed, and parameter substitution inside the macro
is not supported.

Working with data
Pig Latin provides a number of relational operators to combine functions and
apply transformations on data. Typical operations in a data pipeline consist of
filtering relations (FILTER), aggregating inputs based on keys (GROUP), generating
transformations based on columns of data (FOREACH), and joining relations (JOIN)
based on shared keys.

In the following sections, we will illustrate such operators on a dataset of tweets
generated by loading JSON data.

Data Analysis with Apache Pig

[164]

Filtering
The FILTER operator selects tuples from a relation based on an expression,
as follows:

relation = FILTER relation BY expression;

We can use this operator to filter tweets whose text matches the hashtag regular
expression, as follows:

tweets_with_tag = FILTER tweets BY
 (text
 MATCHES '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)'
);

Aggregation
The GROUP operator groups together data in one or more relations based on an
expression or a key, as follows:

relation = GROUP relation BY expression;

We can group tweets by the source field into a new relation grpd, as follows:

grpd = GROUP tweets BY source;

It is possible to group on multiple dimensions by specifying a tuple as the key,
as follows:

grpd = GROUP tweets BY (created_at, source);

The result of a GROUP operation is a relation that includes one tuple per unique value
of the group expression. This tuple contains two fields. The first field is named group
and is of the same type as the group key. The second field takes the name of the
original relation and is of the type bag. The names of both fields are generated by
the system.

Using the ALL keyword, Pig will aggregate across the whole relation. The GROUP
tweets ALL scheme will aggregate all tuples in the same group.

As previously mentioned, Pig allows explicit handling of the concurrency level
of the GROUP operator using the PARALLEL operator:

grpd = GROUP tweets BY (created_at, id) PARALLEL 10;

Chapter 6

[165]

In the preceding example, the MapReduce job generated by the compiler will run
10 concurrent reduce tasks. Pig has a heuristic estimate of how many reducers to
use. Another way of globally enforcing the number of reduce tasks is to use the set
default_parallel <n> command.

Foreach
The FOREACH operator applies functions on columns, as follows:

relation = FOREACH relation GENERATE transformation;

The output of FOREACH depends on the transformation applied.

We can use the operator to project the text of all tweets that contain a hashtag,
as follows:

 t = FOREACH tweets_with_tag GENERATE text;

We can also apply a function to the projected columns. For instance, we can use the
REGEX_TOKENIZE function to split each tweet into words, as follows:

t = FOREACH tweets_with_tag GENERATE FLATTEN(TOKENIZE(text)) as word;

The FLATTEN modifier further un-nests the bag generated by TOKENIZE into a tuple
of words.

Join
The JOIN operator performs an inner join of two or more relations based on common
field values. Its syntax is as follows:

relation = JOIN relation1 BY expression1, relation2 BY expression2;

We can use a join operation to detect tweets that contain positive words, as follows:

positive = LOAD 'positive-words.txt' USING PigStorage() as
(w:chararray);

Filter out the comments, as follows:

positive_words = FILTER positive BY NOT w MATCHES '^;.*';

Data Analysis with Apache Pig

[166]

positive_words is a bag of tuples, each containing a word. We then tokenize the
tweets' text and create a new bag of (id_str, word) tuples as follows:

id_words = FOREACH tweets {
 GENERATE
 id_str,
 FLATTEN(TOKENIZE(text)) as word;
}

We join the two relations on the word field and obtain a relation of all tweets that
contain one or more positive words, as follows:

positive_tweets = JOIN positive_words BY w, id_words BY word;

In this statement, we join positive_words and id_words on the condition that
id_words.word is a positive word. The positive_tweets operator is a bag in the
form of {w:chararray,id_str:chararray, word:chararray} that contains all
elements of positive_words and id_words that match the join condition.

We can combine the GROUP and FOREACH operator to calculate the number of
positive words per tweet (with at least one positive word). First, we group the
relation of positive tweets by the tweet ID, and then we count the number of
occurrences of each ID in the relation, as follows:

grpd = GROUP positive_tweets BY id_str;
score = FOREACH grpd GENERATE FLATTEN(group), COUNT(positive_tweets);

The JOIN operator can make use of the parallelize feature as well, as follows:

positive_tweets = JOIN positive_words BY w, id_words BY word PARALLEL
10

The preceding command will execute the join with 10 reducer tasks.

It is possible to specify the operator's behavior with the USING keyword followed by
the ID of a specialized join. More details can be found at http://pig.apache.org/
docs/r0.12.0/perf.html#specialized-joins.

Chapter 6

[167]

Extending Pig (UDFs)
Functions can be a part of almost every operator in Pig. There are two main
differences between UDFs and built-in functions. First, UDFs need to be registered
using the REGISTER keyword in order to make them available to Pig. Secondly, they
need to be qualified when used. Pig UDFs can currently be implemented in Java,
Python, Ruby, JavaScript, and Groovy. The most extensive support is provided
for Java functions, which allow you to customize all parts of the process including
data load/store, transformation, and aggregation. Additionally, Java functions are
also more efficient because they are implemented in the same language as Pig and
because additional interfaces are supported, such as the Algebraic and Accumulator
interfaces. On the other hand, Ruby and Python APIs allow more rapid prototyping.

The integration of UDFs with the Pig environment is mainly managed by the
following two statements REGISTER and DEFINE:

•	 REGISTER registers a JAR file so that the UDFs in the file can be used,
as follows:
REGISTER 'piggybank.jar'

•	 DEFINE creates an alias to a function or a streaming command, as follows:

DEFINE MyFunction my.package.uri.MyFunction

The version 0.12 of Pig introduced the streaming of UDFs as a mechanism for writing
functions using languages with no JVM implementation.

Contributed UDFs
Pig's code base hosts a UDF repository called Piggybank. Other popular contributed
repositories are Twitter's Elephant Bird (found at https://github.com/
kevinweil/elephant-bird/) and Apache DataFu (found at http://datafu.
incubator.apache.org/).

Data Analysis with Apache Pig

[168]

Piggybank
Piggybank is a place for Pig users to share their functions. Shared code is located in
the official Pig Subversion repository found at http://svn.apache.org/viewvc/
pig/trunk/contrib/piggybank/java/src/main/java/org/apache/pig/
piggybank/. The API documentation can be found at http://pig.apache.org/
docs/r0.12.0/api/ under the contrib section. Piggybank UDFs can be obtained by
checking out and compiling the sources from the Subversion repository or by using
the JAR file that ships with binary releases of Pig. In Cloudera CDH, piggybank.jar
is available at /opt/cloudera/parcels/CDH/lib/pig/piggybank.jar.

Elephant Bird
Elephant Bird is an open source library of all things Hadoop used in production
at Twitter. This library contains a number of serialization tools, custom input and
output formats, writables, Pig load/store functions, and more miscellanea.

Elephant Bird ships with an extremely flexible JSON loader function, which at the
time of writing, is the go-to resource for manipulating JSON data in Pig.

Apache DataFu
Apache DataFu Pig collects a number of analytical functions developed and
contributed by LinkedIn. These include statistical and estimation functions,
bag and set operations, sampling, hashing, and link analysis.

Analyzing the Twitter stream
In the following examples, we will use the implementation of JsonLoader provided
by Elephant Bird to load and manipulate JSON data. We will use Pig to explore tweet
metadata and analyze trends in the dataset. Finally, we will model the interaction
between users as a graph and use Apache DataFu to analyze this social network.

Chapter 6

[169]

Prerequisites
Download the elephant-bird-pig (http://central.maven.org/maven2/com/
twitter/elephantbird/elephant-bird-pig/4.5/elephant-bird-pig-4.5.jar),
elephant-bird-hadoop-compat (http://central.maven.org/maven2/com/
twitter/elephantbird/elephant-bird-hadoop-compat/4.5/elephant-bird-
hadoop-compat-4.5.jar), and elephant-bird-core (http://central.maven.
org/maven2/com/twitter/elephantbird/elephant-bird-core/4.5/elephant-
bird-core-4.5.jar) JAR files from the Maven central repository and copy them
onto HDFS using the following command:

$ hdfs dfs -put target/elephant-bird-pig-4.5.jar hdfs:///jar/

$ hdfs dfs –put target/elephant-bird-hadoop-compat-4.5.jar hdfs:///jar/

$ hdfs dfs –put elephant-bird-core-4.5.jar hdfs:///jar/

Dataset exploration
Before diving deeper into the dataset, we need to register the dependencies to
Elephant Bird and DataFu, as follows:

REGISTER /opt/cloudera/parcels/CDH/lib/pig/datafu-1.1.0-cdh5.0.0.jar
REGISTER /opt/cloudera/parcels/CDH/lib/pig/lib/json-simple-1.1.jar
REGISTER hdfs:///jar/elephant-bird-pig-4.5.jar
REGISTER hdfs:///jar/elephant-bird-hadoop-compat-4.5.jar
REGISTER hdfs:///jar/elephant-bird-core-4.5.jar

Then, load the JSON dataset of tweets using com.twitter.elephantbird.pig.
load.JsonLoader, as follows:

tweets = LOAD 'tweets.json' using com.twitter.elephantbird.pig.load.
JsonLoader('-nestedLoad');

com.twitter.elephantbird.pig.load.JsonLoader decodes each line of the
input file to JSON and passes the resulting map of values to Pig as a single-element
tuple. This enables access to elements of the JSON object without having to specify
a schema upfront. The –nestedLoad argument instructs the class to load nested
data structures.

Data Analysis with Apache Pig

[170]

Tweet metadata
In the remainder of the chapter, we will use metadata from the JSON dataset to model
the tweet stream. One example of metadata attached to a tweet is the Place object,
which contains geographical information about the user's location. Place contains
fields that describe its name, ID, country, country code, and more. A full description
can be found at https://dev.twitter.com/docs/platform-objects/places.

place = FOREACH tweets GENERATE (chararray)$0#'place' as place;

Entities give information such as structured data from tweets, URLs, hashtags, and
mentions, without having to extract them from text. A description of entities can be
found at https://dev.twitter.com/docs/entities. The hashtag entity is an array
of tags extracted from a tweet. Each entity has the following two attributes:

•	 Text: is the hashtag text
•	 Indices: is the character position from which the hashtag was extracted

The following code uses entities:

hashtags_bag = FOREACH tweets {
 GENERATE
 FLATTEN($0#'entities'#'hashtags') as tag;
}

We then flatten hashtags_bag to extract each hashtag's text:

hashtags = FOREACH hashtags_bag GENERATE tag#'text' as topic;

Entities for user objects contain information that appears in the user profile and
description fields. We can extract the tweet author's ID via the user field in the
tweet map:

users = FOREACH tweets GENERATE $0#'user'#'id' as id;

Data preparation
The SAMPLE built-in operator selects a set of n tuples with probability p out of the
dataset, as follows:

sampled = SAMPLE tweets 0.01;

Chapter 6

[171]

The preceding command will select approximately 1 percent of the dataset.
Given that SAMPLE is probabilistic (http://en.wikipedia.org/wiki/Bernoulli_
sampling), there is no guarantee that the sample size will be exact. Moreover the
function samples with replacement, which means that each item might appear more
than once.

Apache DataFu implements a number of sampling methods for cases where
having an exact sample size and no replacement is desired (SimpleRandomSampling),
sampling with replacement (SimpleRandomSampleWithReplacementVote and
SimpleRandomSampleWithReplacementElect), when we want to account for
sample bias (WeightedRandomSampling), or to sample across multiple relations
(SampleByKey).

We can create a sample of exactly 1 percent of the dataset, with each item having
the same probability of being selected, using SimpleRandomSample.

The actual guarantee is a sample of size ceil (p*n) with a probability
of at least 99 percent.

First, we pass a sampling probability 0.01 to the UDF constructor:

DEFINE SRS datafu.pig.sampling.SimpleRandomSample('0.01');

and the bag, created with (GROUP tweets ALL), to be sampled:

sampled = FOREACH (GROUP tweets ALL) GENERATE FLATTEN(SRS(tweets));

The SimpleRandomSample UDF selects without replacement, which means that each
item will appear only once.

Which sampling method to use depends both on the data we are
working with, assumptions on how items are distributed, the size
of the dataset, and what we practically want to achieve. In general,
when we want to explore a dataset to formulate hypotheses,
SimpleRandomSample can be a good choice. However, in several
analytics applications, it is common to use methods that assume
replacement (for example, bootstrapping).
Note that when working with very large datasets, sampling with
replacement and sampling without replacement tend to behave
similarly. The probability of an item being selected twice out of a
population of billions of items will be low.

Data Analysis with Apache Pig

[172]

Top n statistics
One of the first questions we might want to ask is how frequent certain things are.
For instance, we might want to create a histogram of the top 10 topics by the number
of mentions. Similarly, we might want to find the top 50 countries or the top 10 users.
Before looking at tweets data, we will define a macro so that we can apply the same
selection logic to different collections of items:

DEFINE top_n(rel, col, n)
 RETURNS top_n_items {
 grpd = GROUP $rel BY $col;
 cnt_items = FOREACH grpd
 GENERATE FLATTEN(group), COUNT($rel) AS cnt;
 cnt_items_sorted = ORDER cnt_items BY cnt DESC;
 $top_n_items = LIMIT cnt_items_sorted $n;
 }

The top_n method takes a relation rel, the column col we want to count, and the
number of items to return n as parameters. In the Pig Latin block, we first group
rel by items in col, count the number of occurrences of each item, sort them, and
select the most frequent n.

To find the top 10 English hashtags, we filter them by language, and extract
their text:

tweets_en = FILTER tweets by $0#'lang' == 'en';
hashtags_bag = FOREACH tweets {
 GENERATE
 FLATTEN($0#'entities'#'hashtags') AS tag;
}
hashtags = FOREACH hashtags_bag GENERATE tag#'text' AS tag;

And apply the top_n macro:

top_10_hashtags = top_n(hashtags, tag, 10);

In order to better characterize what is trending and make this information more
relevant to users, we can drill down into the dataset and look at hashtags per
geographic location.

First, we generate bag of (place, hashtag) tuples, as follows:

hashtags_country_bag = FOREACH tweets generate {
 0#'place' as place,
 FLATTEN($0#'entities'#'hashtags') as tag;
}

Chapter 6

[173]

And then, we extract the country code and hashtag text, as follows:

hashtags_country = FOREACH hashtags_country_bag {
 GENERATE
 place#'country_code' as co,
 tag#'text' as tag;
}

Then, we count how many times each country code and hashtag appear together,
as follows:

hashtags_country_frequency = FOREACH (GROUP hashtags_country ALL) {
 GENERATE
 FLATTEN(group),
 COUNT(hashtags_country) as count;
}

Finally, we count the top 10 countries per hashtag with the TOP function, as follows:

hashtags_country_regrouped= GROUP hashtags_country_frequency BY cnt;
top_results = FOREACH hashtags_country_regrouped {
 result = TOP(10, 1, hashtags_country_frequency);
 GENERATE FLATTEN(result);
}

TOP's parameters are the number of tuples to return, the column to compare, and the
relation containing said column:

top_results = FOREACH D {
 result = TOP(10, 1, C);
 GENERATE FLATTEN(result);
}

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch6/topn.pig.

Datetime manipulation
The created_at field in the JSON tweets gives us time-stamped information about
when the tweet was posted. Unfortunately, its format is not compatible with Pig's
built-in datetime type.

Piggybank comes to the rescue with a number of time manipulation UDFs contained
in org.apache.pig.piggybank.evaluation.datetime.convert. One of them is
CustomFormatToISO, which converts an arbitrarily formatted timestamp into an ISO
8601 datetime string.

Data Analysis with Apache Pig

[174]

In order to access these UDFs, we first need to register the piggybank.jar file,
as follows:

REGISTER /opt/cloudera/parcels/CDH/lib/pig/piggybank.jar

To make our code less verbose, we create an alias for the CustomFormatToISO
class's fully qualified Java name:

DEFINE CustomFormatToISO org.apache.pig.piggybank.evaluation.datetime.
convert.CustomFormatToISO();

By knowing how to manipulate timestamps, we can calculate statistics at different time
intervals. For instance, we can look at how many tweets are created per hour. Pig has a
built-in GetHour function that extracts the hour out of a datetime type. To use this, we
first convert the timestamp string to ISO 8601 with CustomFormatToISO and then the
resulting chararray to datetime using the built-in ToDate function, as follows:

hourly_tweets = FOREACH tweets {
 GENERATE
 GetHour(
 ToDate(
 CustomFormatToISO(
$0#'created_at', 'EEE MMMM d HH:mm:ss Z y')
)
) as hour;
}

Now, it is just a matter of grouping hourly_tweets by hour and then generating a
count of tweets per group, as follows:

hourly_tweets_count = FOREACH (GROUP hourly_tweets BY hour) {
 GENERATE FLATTEN(group), COUNT(hourly_tweets);
}

Sessions
DataFu's Sessionize class can help us to better capture user activity over time.
A session represents the activity of a user within a given period of time. For instance,
we can look at each user's tweet stream at intervals of 15 minutes and measure these
sessions to determine both network volumes as well as user activity:

DEFINE Sessionize datafu.pig.sessions.Sessionize('15m');
users_activity = FOREACH tweets {
 GENERATE
 CustomFormatToISO($0#'created_at',
 'EEE MMMM d HH:mm:ss Z y') AS dt,

Chapter 6

[175]

 (chararray)$0#'user'#'id' as user_id;
}
users_activity_sessionized = FOREACH
 (GROUP users_activity BY user_id) {
 ordered = ORDER users_activity BY dt;
 GENERATE FLATTEN(Sessionize(ordered))
 AS (dt, user_id, session_id);
}

user_activity simply records the time dt a given user_id posted a status update.

Sessionize takes the session timeout and a bag as input. The first element of the
input bag is an ISO 8601 timestamp, and the bag must be sorted by this timestamp.
Events that are within 15 minutes from each other will belong to the same session.

It returns the input bag with a new field, session_id, that uniquely identifies
a session. With this data, we can calculate the session's length and some other
statistics. More examples of Sessionize usage can be found at http://datafu.
incubator.apache.org/docs/datafu/guide/sessions.html.

Capturing user interactions
In the remainder of the chapter, we will look at how to capture patterns from
user interactions. As a first step in this direction, we will create a dataset suitable to
model a social network. This dataset will contain a timestamp, the ID of the tweet,
the user who posted the tweet, the user and tweet she's replying to, and the hashtag
in the tweet.

Twitter considers as a reply (in_reply_to_status_id_str) any message beginning
with the @ character. Such tweets are interpreted as a direct message to that person.
Placing an @ character anywhere else in the tweet is interpreted as a mention
('entities'#'user_mentions') and not a reply. The difference is that mentions are
immediately broadcast to a person's followers, whereas replies are not. Replies are,
however, considered as mentions.

When working with personally identifiable information, it is a good idea to
anonymize if not remove entirely sensitive data such as IP addresses, names, and
user IDs. A commonly used technique involves a hash function that takes as input
the data we want to anonymize, concatenated with additional random data called
salt. The following code shows an example of such anonymization:

DEFINE SHA datafu.pig.hash.SHA();
from_to_bag = FOREACH tweets {

Data Analysis with Apache Pig

[176]

 dt = $0#'created_at';
 user_id = (chararray)$0#'user'#'id';
 tweet_id = (chararray)$0#'id_str';
 reply_to_tweet = (chararray)$0#'in_reply_to_status_id_str';
 reply_to = (chararray)$0#'in_reply_to_user_id_str';
 place = $0#'place';
 topics = $0#'entities'#'hashtags';

 GENERATE
 CustomFormatToISO(dt, 'EEE MMMM d HH:mm:ss Z y') AS dt,
 SHA((chararray)CONCAT('SALT', user_id)) AS source,
 SHA(((chararray)CONCAT('SALT', tweet_id))) AS tweet_id,
 ((reply_to_tweet IS NULL)
 ? NULL
 : SHA((chararray)CONCAT('SALT', reply_to_tweet)))
 AS reply_to_tweet_id,
 ((reply_to IS NULL)
 ? NULL
 : SHA((chararray)CONCAT('SALT', reply_to)))
 AS destination,
 (chararray)place#'country_code' as country,
 FLATTEN(topics) AS topic;
}

-- extract the hashtag text
from_to = FOREACH from_to_bag {
 GENERATE
 dt,
 tweet_id,
 reply_to_tweet_id,
 source,
 destination,
 country,
 (chararray)topic#'text' AS topic;
}

In this example, we use CONCAT to append a (not so random) salt string to personal
data. We then generate a hash of the salted IDs with DataFu's SHA function. The SHA
function requires its input parameters to be non null. We enforce this condition using
if-then-else statements. In Pig Latin, this is expressed as <condition is true>
? <true branch> : <false branch> . If the string is null, we return NULL, and if
not, we return the salted hash. To make code more readable, we use aliases for the
tweet JSON fields and reference them in the GENERATE block.

Chapter 6

[177]

Link analysis
We can redefine our approach to determine trending topics to include users'
reactions. A first, naïve, approach could be to consider a topic as important if it
caused a number of replies larger than a threshold value.

A problem with this approach is that tweets generate relatively few replies, so the
volume of the resulting dataset will be low. Hence, it requires a very large amount of
data to contain tweets being replied to and produce any result. In practice, we would
likely want to combine this metric with other ones (for example, mentions) in order
to perform more meaningful analyses.

To satisfy this query, we will create a new dataset that includes the hashtags
extracted from both the tweet and the one a user is replying to:

tweet_hashtag = FOREACH from_to GENERATE tweet_id, topic;
from_to_self_joined = JOIN from_to BY reply_to_tweet_id LEFT,
tweet_hashtag BY tweet_id;

twitter_graph = FOREACH from_to_self_joined {
 GENERATE
 from_to::dt AS dt,
 from_to::tweet_id AS tweet_id,
 from_to::reply_to_tweet_id AS reply_to_tweet_id,
 from_to::source AS source,
 from_to::destination AS destination,
 from_to::topic AS topic,
 from_to::country AS country,
 tweet_hashtag::topic AS topic_replied;
}

Note that Pig does not allow a cross join on the same relation, hence we have to
create tweet_hashtag for the right-hand side of the join. Here, we use the ::
operator to disambiguate from which relation and column we want to select records.

Once again, we can look for the top 10 topics by number of replies using the
top_n macro:

top_10_topics = top_n(twitter_graph, topic_replied, 10);

Counting things will only take us so far. We can compute more descriptive
statistics on this dataset with DataFu. Using the Quantile function, we can
calculate the median, the 90th, 95th, and the 99th percentiles of the number of
hashtag reactions, as follows:

DEFINE Quantile datafu.pig.stats.Quantile('0.5','0.90','0.95','0.99');

Data Analysis with Apache Pig

[178]

Since the UDF expects an ordered bag of integer values as input, we first count the
frequency of each topic_replied entry, as follows.

topics_with_replies_grpd = GROUP twitter_graph BY topic_replied;
topics_with_replies_cnt = FOREACH topics_with_replies_grpd {
 GENERATE
COUNT(twitter_graph) as cnt;
}

Then, we apply Quantile on the bag of frequencies, as follows:

quantiles = FOREACH (GROUP topics_with_replies_cnt ALL) {
 sorted = ORDER topics_with_replies_cnt BY cnt;
 GENERATE Quantile(sorted);
}

The source code for this example can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch6/graph.pig.

Influential users
We will use PageRank, an algorithm developed by Google to rank web pages
(http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf), to identify
influential users in the Twitter graph we generated in the previous section.

This type of analysis has a number of use cases, such as targeted and contextual
advertisement, recommendation systems, spam detection, and obviously
measuring the importance of web pages. A similar approach, used by Twitter to
implement the Who to Follow feature, is described in the research paper WTF:
The Who to Follow service at Twitter found at http://stanford.edu/~rezab/papers/
wtf_overview.pdf.

Informally, PageRank determines the importance of a page based on the importance
of other pages linking to it and assigns it a score between 0 and 1. A high PageRank
score indicates that a lot of pages point to it. Intuitively, being linked by pages with
a high PageRank is a quality endorsement. In terms of the Twitter graph, we assume
that users receiving a lot of replies are important or influential within the social
network. In Twitter's case, we consider an extended definition of PageRank, where
the link between two users is given by a direct reply and labeled by any eventual
hashtag present in the message. Heuristically, we want to identify influential users
on a given topic.

Chapter 6

[179]

In DataFu's implementation, each graph is represented as a bag of (source, edges)
tuples. The source tuple is an integer ID representing the source node. The edges are
a bag of (destination, weight) tuples. destination is an integer ID representing
the destination node. weight is a double representing how much the edge should be
weighted. The output of the UDF is a bag of (source, rank) pairs, where rank is the
PageRank value for the source user in the graph. Notice that we talked about nodes,
edges, and graphs as abstract concepts. In Google's case, nodes are web pages, edges
are links from one page to the other, and graphs are groups of pages connected directly
and indirectly.

In our case, nodes represent users, edges represent in_reply_to_user_id_str
mentions, and edges are labeled by hashtags in tweets. The output of PageRank should
suggest which users are influential on a given topic given their interaction patterns.

In this section, we will write a pipeline to:

•	 Represent data as a graph where each node is a user and a hashtag labels
the edge

•	 Map IDs and hashtags to integers so that they can be consumed by PageRank
•	 Apply PageRank
•	 Store the results into HDFS in an interoperable format (Avro)

We represent the graph as a bag of tuples in the form (source, destination,
topic), where each tuple represents the interaction between nodes. The source
code for this example can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch6/pagerank.pig.

We will map users' and hashtags' text to numerical IDs. We use the Java String
hashCode() method to perform this conversion step and wrap the logic in an
Eval UDF.

The size of an integer is effectively the upper bound for the number of
nodes and edges in the graph. For production code, it is recommended
that you use a more robust hash function.

The StringToInt class takes a string as input, calls the hashCode() method,
and returns the method output to Pig. The UDF code can be found at https://
github.com/learninghadoop2/book-examples/blob/master/ch6/udf/com/
learninghadoop2/pig/udf/StringToInt.java.

package com.learninghadoop2.pig.udf;
import java.io.IOException;
import org.apache.pig.EvalFunc;

Data Analysis with Apache Pig

[180]

import org.apache.pig.data.Tuple;

public class StringToInt extends EvalFunc<Integer> {
 public Integer exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 try {
 String str = (String) input.get(0);
 return str.hashCode();
 } catch(Exception e) {
 throw
 new IOException("Cannot convert String to Int", e);
 }
 }
}

We extend org.apache.pig.EvalFunc and override the exec method to return
str.hashCode() on the function input. The EvalFunc<Integer> class is
parameterized with the return type of the UDF (Integer).

Next, we compile the class and archive it into a JAR, as follows:

$ javac -classpath /opt/cloudera/parcels/CDH/lib/pig/pig.jar:$(hadoop
classpath) com/learninghadoop2/pig/udf/StringToInt.java
$ jar cvf myudfs-pig.jar com/learninghadoop2/pig/udf/StringToInt.class

We can now register the UDF in Pig and create an alias to StringToInt, as follows:

REGISTER myudfs-pig.jar
DEFINE StringToInt com.learninghadoop2.pig.udf.StringToInt();

We filter out tweets with no destination and no topic, as follows:

tweets_graph_filtered = FILTER twitter_graph by
(destination IS NOT NULL) AND
(topic IS NOT null);

Then, we convert the source, destination, and topic to integer IDs:

from_to = foreach tweets_graph_filtered {
 GENERATE
 StringToInt(source) as source_id,
 StringToInt(destination) as destination_id,
 StringToInt(topic) as topic_id;
}

Chapter 6

[181]

Once data is in the appropriate format, we can reuse the implementation of PageRank
and the example code (found at https://github.com/apache/incubator-datafu/
blob/master/datafu-pig/src/main/java/datafu/pig/linkanalysis/PageRank.
java) provided by DataFu, as shown in the following code:

DEFINE PageRank datafu.pig.linkanalysis.PageRank('dangling_
nodes','true');

We begin by creating a bag of (source_id, destination_id, topic_id) tuples,
as follows:

reply_to = group from_to by (source_id, destination_id, topic_id);

We count the occurrences of each tuple, that is, how many times two people talked
about a topic, as follows:

topic_edges = foreach reply_to {
 GENERATE flatten(group), ((double)COUNT(from_to.topic_id)) as w;
}

Remember that topic is the edge of our graph; we begin by creating an association
between the source node and the topic edge, as follows:

topic_edges_grouped = GROUP topic_edges by (topic_id, source_id);

Then we regroup it with the purpose of adding a destination node and the edge
weight, as follows:

topic_edges_grouped = FOREACH topic_edges_grouped {
 GENERATE
 group.topic_id as topic,
 group.source_id as source,
 topic_edges.(destination_id,w) as edges;
}

Once we create the Twitter graph, we calculate the PageRank of all users
(source_id):

topic_rank = FOREACH (GROUP topic_edges_grouped BY topic) {
 GENERATE
 group as topic,
 FLATTEN(PageRank(topic_edges_grouped.(source,edges))) as
(source,rank);
}
topic_rank = FOREACH topic_rank GENERATE topic, source, rank;

Data Analysis with Apache Pig

[182]

We store the result in HDFS in Avro format. If Avro dependencies are not present in
the classpath, we need to add the Avro MapReduce jar file to our environment before
accessing individual fields. Within Pig, for example, on the Cloudera CDH5 VM:

REGISTER /opt/cloudera/parcels/CDH/lib/avro/avro.jar
REGISTER /opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar
STORE topic_rank INTO 'replies-pagerank' using AvroStorage();

In these last two sections, we made a number of implicit assumptions
on what a Twitter graph might look like and what the concepts of
topic and user interaction mean. Given the constraints that we posed,
the resulting social network we analyzed will be relatively small and
not necessarily representative of the entire Twitter social network.
Extrapolating results from this dataset is discouraged. In practice,
there are many other factors that should be taken into account to
generate a robust model of social interaction.

Summary
In this chapter, we introduced Apache Pig, a platform for large-scale data analysis
on Hadoop. In particular, we covered the following topics:

•	 The goals of Pig as a way of providing a dataflow-like abstraction that
does not require hands-on MapReduce development

•	 How Pig's approach to processing data compares to SQL, where
Pig is procedural while SQL is declarative

•	 Getting started with Pig — an easy task, as it is a library that generates
custom code and doesn't require additional services

•	 An overview of the data types, core functions, and extension mechanisms
provided by Pig

•	 Examples of applying Pig to analyze the Twitter dataset in detail,
which demonstrated its ability to express complex concepts in a very
concise fashion

•	 How libraries such as Piggybank, Elephant Bird, and DataFu provide
repositories for numerous useful prewritten Pig functions

•	 In the next chapter, we will revisit the SQL comparison by exploring tools
that expose a SQL-like abstraction over data stored in HDFS

Hadoop and SQL
MapReduce is a powerful paradigm that enables complex data processing that can
reveal valuable insights. As discussed in earlier chapters however, it does require
a different mindset and some training and experience on the model of breaking
processing analytics into a series of map and reduce steps. There are several products
that are built atop Hadoop to provide higher-level or more familiar views of the data
held within HDFS, and Pig is a very popular one. This chapter will explore the other
most common abstraction implemented atop Hadoop: SQL.

In this chapter, we will cover the following topics:

•	 What the use cases for SQL on Hadoop are and why it is so popular
•	 HiveQL, the SQL dialect introduced by Apache Hive
•	 Using HiveQL to perform SQL-like analysis of the Twitter dataset
•	 How HiveQL can approximate common features of relational databases

such as joins and views
•	 How HiveQL allows the incorporation of user-defined functions into

its queries
•	 How SQL on Hadoop complements Pig
•	 Other SQL-on-Hadoop products such as Impala and how they differ

from Hive

Hadoop and SQL

[184]

Why SQL on Hadoop
So far we have seen how to write Hadoop programs using the MapReduce APIs
and how Pig Latin provides a scripting abstraction and a wrapper for custom
business logic by means of UDFs. Pig is a very powerful tool, but its dataflow-based
programming model is not familiar to most developers or business analysts. The
traditional tool of choice for such people to explore data is SQL.

Back in 2008 Facebook released Hive, the first widely used implementation of
SQL on Hadoop.

Instead of providing a way of more quickly developing map and reduce tasks, Hive
offers an implementation of HiveQL, a query language based on SQL. Hive takes
HiveQL statements and immediately and automatically translates the queries into
one or more MapReduce jobs. It then executes the overall MapReduce program and
returns the results to the user.

This interface to Hadoop not only reduces the time required to produce results
from data analysis, it also significantly widens the net as to who can use Hadoop.
Instead of requiring software development skills, anyone who's familiar with
SQL can use Hive.

The combination of these attributes is that HiveQL is often used as a tool for business
and data analysts to perform ad hoc queries on the data stored on HDFS. With Hive,
the data analyst can work on refining queries without the involvement of a software
developer. Just as with Pig, Hive also allows HiveQL to be extended by means
of User Defined Functions, enabling the base SQL dialect to be customized with
business-specific functionality.

Other SQL-on-Hadoop solutions
Though Hive was the first product to introduce and support HiveQL, it is no longer
the only one. Later in this chapter, we will also discuss Impala, released in 2013 and
already a very popular tool, particularly for low-latency queries. There are others,
but we will mostly discuss Hive and Impala as they have been the most successful.

While introducing the core features and capabilities of SQL on Hadoop however,
we will give examples using Hive; even though Hive and Impala share many SQL
features, they also have numerous differences. We don't want to constantly have
to caveat each new feature with exactly how it is supported in Hive compared to
Impala. We'll generally be looking at aspects of the feature set that are common to
both, but if you use both products, it's important to read the latest release notes to
understand the differences.

Chapter 7

[185]

Prerequisites
Before diving into specific technologies, let's generate some data that we'll use in the
examples throughout this chapter. We'll create a modified version of a former Pig
script as the main functionality for this. The script in this chapter assumes that the
Elephant Bird JARs used previously are available in the /jar directory on HDFS.
The full source code is at https://github.com/learninghadoop2/book-examples/
blob/master/ch7/extract_for_hive.pig, but the core of extract_for_hive.pig
is as follows:

-- load JSON data
tweets = load '$inputDir' using com.twitter.elephantbird.pig.load.
JsonLoader('-nestedLoad');
-- Tweets
tweets_tsv = foreach tweets {
generate
 (chararray)CustomFormatToISO($0#'created_at',
'EEE MMMM d HH:mm:ss Z y') as dt,
 (chararray)$0#'id_str',
(chararray)$0#'text' as text,
 (chararray)$0#'in_reply_to',
(boolean)$0#'retweeted' as is_retweeted,
(chararray)$0#'user'#'id_str' as user_id, (chararray)$0#'place'#'id'
as place_id;
}
store tweets_tsv into '$outputDir/tweets'
using PigStorage('\u0001');
-- Places
needed_fields = foreach tweets {
 generate
(chararray)CustomFormatToISO($0#'created_at',
'EEE MMMM d HH:mm:ss Z y') as dt,
 (chararray)$0#'id_str' as id_str,
$0#'place' as place;
}
place_fields = foreach needed_fields {
generate
 (chararray)place#'id' as place_id,
 (chararray)place#'country_code' as co,
 (chararray)place#'country' as country,
 (chararray)place#'name' as place_name,
 (chararray)place#'full_name' as place_full_name,
 (chararray)place#'place_type' as place_type;
}
filtered_places = filter place_fields by co != '';

Hadoop and SQL

[186]

unique_places = distinct filtered_places;
store unique_places into '$outputDir/places'
using PigStorage('\u0001');

-- Users
users = foreach tweets {
 generate
(chararray)CustomFormatToISO($0#'created_at',
'EEE MMMM d HH:mm:ss Z y') as dt,
(chararray)$0#'id_str' as id_str,
$0#'user' as user;
}
user_fields = foreach users {
 generate
 (chararray)CustomFormatToISO(user#'created_at',
'EEE MMMM d HH:mm:ss Z y') as dt,
 (chararray)user#'id_str' as user_id,
 (chararray)user#'location' as user_location,
 (chararray)user#'name' as user_name,
 (chararray)user#'description' as user_description,
 (int)user#'followers_count' as followers_count,
 (int)user#'friends_count' as friends_count,
 (int)user#'favourites_count' as favourites_count,
 (chararray)user#'screen_name' as screen_name,
 (int)user#'listed_count' as listed_count;

}
unique_users = distinct user_fields;
store unique_users into '$outputDir/users'
using PigStorage('\u0001');

Run this script as follows:

$ pig –f extract_for_hive.pig –param inputDir=<json input> -param
outputDir=<output path>

The preceding code writes data into three separate TSV files for the tweet, user, and
place information. Notice that in the store command, we pass an argument when
calling PigStorage. This single argument changes the default field separator from a
tab character to unicode value U0001, or you can also use Ctrl +C + A. This is often
used as a separator in Hive tables and will be particularly useful to us as our tweet
data could contain tabs in other fields.

Chapter 7

[187]

Overview of Hive
We will now show how you can import data into Hive and run a query against the
table abstraction Hive provides over the data. In this example, and in the remainder
of the chapter, we will assume that queries are typed into the shell that can be
invoked by executing the hive command.

Recently a client called Beeline also became available and will likely be the preferred
CLI client in the near future.

When importing any new data into Hive, there is generally a three-stage process:

•	 Create the specification of the table into which the data is to be imported
•	 Import the data into the created table
•	 Execute HiveQL queries against the table

Most of the HiveQL statements are direct analogues to similarly named statements in
standard SQL. We assume only a passing knowledge of SQL throughout this chapter,
but if you need a refresher, there are numerous good online learning resources.

Hive gives a structured query view of our data, and to enable that, we must first
define the specification of the table's columns and import the data into the table
before we can execute any queries. A table specification is generated using a CREATE
statement that specifies the table name, the name and types of its columns, and some
metadata about how the table is stored:

CREATE table tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

The statement creates a new table tweets defined by a list of names for columns
in the dataset and their data type. We specify that fields are delimited by the
Unicode U0001 character and that the format used to store data is TEXTFILE.

Hadoop and SQL

[188]

Data can be imported from a location in HDFS tweets/ using the LOAD DATA
statement:

LOAD DATA INPATH 'tweets' OVERWRITE INTO TABLE tweets;

By default, data for Hive tables is stored on HDFS under /user/hive/warehouse.
If a LOAD statement is given a path to data on HDFS, it will not simply copy the data
into /user/hive/warehouse, but will move it there instead. If you want to analyze
data on HDFS that is used by other applications, then either create a copy or use the
EXTERNAL mechanism that will be described later.

Once data has been imported into Hive, we can run queries against it. For instance:

SELECT COUNT(*) FROM tweets;

The preceding code will return the total number of tweets present in the dataset.
HiveQL, like SQL, is not case sensitive in terms of keywords, columns, or table
names. By convention, SQL statements use uppercase for SQL language keywords,
and we will generally follow this when using HiveQL within files, as will be shown
later. However, when typing interactive commands, we will frequently take the line
of least resistance and use lowercase.

If you look closely at the time taken by the various commands in the preceding
example, you'll notice that loading data into a table takes about as long as creating
the table specification, but even the simple count of all rows takes significantly
longer. The output also shows that table creation and the loading of data do not
actually cause MapReduce jobs to be executed, which explains the very short
execution times.

The nature of Hive tables
Although Hive copies the data file into its working directory, it does not actually
process the input data into rows at that point.

Both the CREATE TABLE and LOAD DATA statements do not truly create concrete
table data as such; instead, they produce the metadata that will be used when Hive
generates MapReduce jobs to access the data conceptually stored in the table but
actually residing on HDFS. Even though the HiveQL statements refer to a specific
table structure, it is Hive's responsibility to generate code that correctly maps this to
the actual on-disk format in which the data files are stored.

Chapter 7

[189]

This might seem to suggest that Hive isn't a real database; this is true, it isn't.
Whereas a relational database will require a table schema to be defined before data
is ingested and then ingest only data that conforms to that specification, Hive is
much more flexible. The less concrete nature of Hive tables means that schemas can
be defined based on the data as it has already arrived and not on some assumption
of how the data should be, which might prove to be wrong. Though changeable
data formats are troublesome regardless of technology, the Hive model provides an
additional degree of freedom in handling the problem when, not if, it arises.

Hive architecture
Until version 2, Hadoop was primarily a batch system. As we saw in previous
chapters, MapReduce jobs tend to have high latency and overhead derived from
submission and scheduling. Internally, Hive compiles HiveQL statements into
MapReduce jobs. Hive queries have traditionally been characterized by high latency.
This has changed with the Stinger initiative and the improvements introduced in
Hive 0.13 that we will discuss later.

Hive runs as a client application that processes HiveQL queries, converts them
into MapReduce jobs, and submits these to a Hadoop cluster either to native
MapReduce in Hadoop 1 or to the MapReduce Application Master running on
YARN in Hadoop 2.

Regardless of the model, Hive uses a component called the metastore, in which it
holds all its metadata about the tables defined in the system. Ironically, this is stored
in a relational database dedicated to Hive's usage. In the earliest versions of Hive, all
clients communicated directly with the metastore, but this meant that every user of
the Hive CLI tool needed to know the metastore username and password.

HiveServer was created to act as a point of entry for remote clients, which could also
act as a single access-control point and which controlled all access to the underlying
metastore. Because of limitations in HiveServer, the newest way to access Hive is
through the multi-client HiveServer2.

HiveServer2 introduces a number of improvements over its
predecessor, including user authentication and support for multiple
connections from the same client. More information can be found at
https://cwiki.apache.org/confluence/display/Hive/
Setting+Up+HiveServer2.

Hadoop and SQL

[190]

Instances of HiveServer and HiveServer2 can be manually executed with the hive
--service hiveserver and hive --service hiveserver2 commands, respectively.

In the examples we saw before and in the remainder of this chapter, we implicitly
use HiveServer to submit queries via the Hive command-line tool. HiveServer2
comes with Beeline. For compatibility and maturity reasons, Beeline being relatively
new, both tools are available on Cloudera and most other major distributions. The
Beeline client is part of the core Apache Hive distribution and so is also fully open
source. Beeline can be executed in embedded version with the following command:

$ beeline -u jdbc:hive2://

Data types
HiveQL supports many of the common data types provided by standard database
systems. These include primitive types, such as float, double, int, and string,
through to structured collection types that provide the SQL analogues to types such
as arrays, structs, and unions (structs with options for some fields). Since Hive
is implemented in Java, primitive types will behave like their Java counterparts. We
can distinguish Hive data types into the following five broad categories:

•	 Numeric: tinyint, smallint, int, bigint, float, double, and decimal
•	 Date and time: timestamp and date
•	 String: string, varchar, and char
•	 Collections: array, map, struct, and uniontype
•	 Misc: boolean, binary, and NULL

DDL statements
HiveQL provides a number of statements to create, delete, and alter databases,
tables, and views. The CREATE DATABASE <name> statement creates a new database
with the given name. A database represents a namespace where table and view
metadata is contained. If multiple databases are present, the USE <database name>
statement specifies which one to use to query tables or create new metadata. If no
database is explicitly specified, Hive will run all statements against the default
database. SHOW [DATABASES, TABLES, VIEWS] displays the databases currently
available within a data warehouse and which table and view metadata is present
within the database currently in use:

CREATE DATABASE twitter;
SHOW databases;
USE twitter;
SHOW TABLES;

Chapter 7

[191]

The CREATE TABLE [IF NOT EXISTS] <name> statement creates a table with the
given name. As alluded to earlier, what is really created is the metadata representing
the table and its mapping to files on HDFS as well as a directory in which to store the
data files. If a table or view with the same name already exists, Hive will raise
an exception.

Both table and column names are case insensitive. In older versions of Hive (0.12
and earlier), only alphanumeric and underscore characters were allowed in table and
column names. As of Hive 0.13, the system supports unicode characters in column
names. Reserved words, such as load and create, need to be escaped by backticks
(the ` character) to be treated literally.

The EXTERNAL keyword specifies that the table exists in resources out of Hive's
control, which can be a useful mechanism to extract data from another source at the
beginning of a Hadoop-based Extract-Transform-Load (ETL) pipeline. The LOCATION
clause specifies where the source file (or directory) is to be found. The EXTERNAL
keyword and LOCATION clause have been used in the following code:

CREATE EXTERNAL TABLE tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/tweets';

This table will be created in the metastore but the data will not be copied into
the /user/hive/warehouse directory.

Note that Hive has no concept of primary key or unique identifier.
Uniqueness and data normalization are aspects to be addressed
before loading data into the data warehouse.

Hadoop and SQL

[192]

The CREATE VIEW <view name> … AS SELECT statement creates a view with
the given name. For example, we can create a view to isolate retweets from other
messages, as follows:

CREATE VIEW retweets
COMMENT 'Tweets that have been retweeted'
AS SELECT * FROM tweets WHERE retweeted = true;

Unless otherwise specified, column names are derived from the defining SELECT
statement. Hive does not currently support materialized views.

The DROP TABLE and DROP VIEW statements remove both metadata and data for a
given table or view. When dropping an EXTERNAL table or a view, only metadata will
be removed and the actual data files will not be affected.

Hive allows table metadata to be altered via the ALTER TABLE statement, which
can be used to change a column type, name, position, and comment or to add and
replace columns.

When adding columns, it is important to remember that only metadata will be
changed and not the dataset itself. This means that if we were to add a column in the
middle of the table which didn't exist in older files, then while selecting from older
data, we might get wrong values in the wrong columns. This is because we would be
looking at old files with a new format. We will discuss data and schema migrations
in Chapter 8, Data Lifecycle Management, when discussing Avro.

Similarly, ALTER VIEW <view name> AS <select statement> changes the
definition of an existing view.

File formats and storage
The data files underlying a Hive table are no different from any other file on HDFS.
Users can directly read the HDFS files in the Hive tables using other tools. They
can also use other tools to write to HDFS files that can be loaded into Hive through
CREATE EXTERNAL TABLE or through LOAD DATA INPATH.

Hive uses the Serializer and Deserializer classes, SerDe, as well as FileFormat
to read and write table rows. A native SerDe is used if ROW FORMAT is not specified or
ROW FORMAT DELIMITED is specified in a CREATE TABLE statement. The DELIMITED
clause instructs the system to read delimited files. Delimiter characters can be
escaped using the ESCAPED BY clause.

Chapter 7

[193]

Hive currently uses the following FileFormat classes to read and write HDFS files:

•	 TextInputFormat and HiveIgnoreKeyTextOutputFormat: will read/write
data in plain text file format

•	 SequenceFileInputFormat and SequenceFileOutputFormat: classes
read/write data in the Hadoop SequenceFile format

Additionally, the following SerDe classes can be used to serialize and
deserialize data:

•	 MetadataTypedColumnsetSerDe: will read/write delimited records such as
CSV or tab-separated records

•	 ThriftSerDe, and DynamicSerDe: will read/write Thrift objects

JSON
As of version 0.13, Hive ships with the native org.apache.hive.hcatalog.data.
JsonSerDe. For older versions of Hive, Hive-JSON-Serde (found at https://
github.com/rcongiu/Hive-JSON-Serde) is arguably one of the most feature-rich
JSON serialization/deserialization modules.

We can use either module to load JSON tweets without any need for preprocessing
and just define a Hive schema that matches the content of a JSON document. In the
following example, we use Hive-JSON-Serde.

As with any third-party module, we load the SerDe JARs into Hive with the
following code:

ADD JAR JAR json-serde-1.3-jar-with-dependencies.jar;

Then, we issue the usual CREATE statement, as follows:

CREATE EXTERNAL TABLE tweets (
 contributors string,
 coordinates struct <
 coordinates: array <float>,
 type: string>,
 created_at string,
 entities struct <
 hashtags: array <struct <
 indices: array <tinyint>,
 text: string>>,
…
)

Hadoop and SQL

[194]

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
STORED AS TEXTFILE
LOCATION 'tweets';

With this SerDe, we can map nested documents (such as entities or users) to the
struct or map types. We tell Hive that the data stored at LOCATION 'tweets' is text
(STORED AS TEXTFILE) and that each row is a JSON object (ROW FORMAT SERDE 'org.
openx.data.jsonserde.JsonSerDe'). In Hive 0.13 and later, we can express this
property as ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'.

Manually specifying the schema for complex documents can be a tedious and
error-prone process. The hive-json module (found at https://github.com/
hortonworks/hive-json) is a handy utility to analyze large documents and
generate an appropriate Hive schema. Depending on the document collection,
further refinement might be necessary.

In our example, we used a schema generated with hive-json that maps the tweets
JSON to a number of struct data types. This allows us to query the data using a
handy dot notation. For instance, we can extract the screen name and description
fields of a user object with the following code:

SELECT user.screen_name, user.description FROM tweets_json LIMIT 10;

Avro
AvroSerde (https://cwiki.apache.org/confluence/display/Hive/AvroSerDe)
allows us to read and write data in Avro format. Starting from 0.14, Avro-backed
tables can be created using the STORED AS AVRO statement, and Hive will take care
of creating an appropriate Avro schema for the table. Prior versions of Hive are a bit
more verbose.

As an example, let's load into Hive the PageRank dataset we generated in
Chapter 6, Data Analysis with Apache Pig. This dataset was created using Pig's
AvroStorage class, and has the following schema:

{
 "type":"record",
 "name":"record",
 "fields": [
 {"name":"topic","type":["null","int"]},
 {"name":"source","type":["null","int"]},
 {"name":"rank","type":["null","float"]}
]
}

Chapter 7

[195]

The table structure is captured in an Avro record, which contains header information
(a name and optional namespace to qualify the name) and an array of the fields. Each
field is specified with its name and type as well as an optional documentation string.

For a few of the fields, the type is not a single value, but instead a pair of values, one
of which is null. This is an Avro union, and this is the idiomatic way of handling
columns that might have a null value. Avro specifies null as a concrete type, and
any location where another type might have a null value needs to be specified in this
way. This will be handled transparently for us when we use the following schema.

With this definition, we can now create a Hive table that uses this schema for its table
specification, as follows:

CREATE EXTERNAL TABLE tweets_pagerank
ROW FORMAT SERDE
 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES ('avro.schema.literal'='{
 "type":"record",
 "name":"record",
 "fields": [
 {"name":"topic","type":["null","int"]},
 {"name":"source","type":["null","int"]},
 {"name":"rank","type":["null","float"]}
]
}')
STORED AS INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '${data}/ch5-pagerank';

Then, look at the following table definition from within Hive (note also that
HCatalog, which we'll introduce in Chapter 8, Data Life Cycle Management, also
supports such definitions):

DESCRIBE tweets_pagerank;
OK
topic int from deserializer
source int from deserializer
rank float from deserializer

Hadoop and SQL

[196]

In the DDL, we told Hive that data is stored in Avro format using
AvroContainerInputFormat and AvroContainerOutputFormat. Each row needs
to be serialized and deserialized using org.apache.hadoop.hive.serde2.avro.
AvroSerDe. The table schema is inferred by Hive from the Avro schema embedded
in avro.schema.literal.

Alternatively, we can store a schema on HDFS and have Hive read it to determine
the table structure. Create the preceding schema in a file called pagerank.avsc—this
is the standard file extension for Avro schemas. Then place it on HDFS; we prefer to
have a common location for schema files such as /schema/avro. Finally, define the
table using the avro.schema.url SerDe property WITH SERDEPROPERTIES ('avro.
schema.url'='hdfs://<namenode>/schema/avro/pagerank.avsc').

If Avro dependencies are not present in the classpath, we need to add the Avro
MapReduce JAR to our environment before accessing individual fields. Within
Hive, on the Cloudera CDH5 VM:

ADD JAR /opt/cloudera/parcels/CDH/lib/avro/avro-mapred-hadoop2.jar;

We can also use this table like any other. For instance, we can query the data to select
the user and topic pairs with a high PageRank:

SELECT source, topic from tweets_pagerank WHERE rank >= 0.9;

In Chapter 8, Data Lifecycle Management, we will see how Avro and avro.schema.url
play an instrumental role in enabling schema migrations.

Columnar stores
Hive can also take advantage of columnar storage via the ORC (https://cwiki.
apache.org/confluence/display/Hive/LanguageManual+ORC) and Parquet
(https://cwiki.apache.org/confluence/display/Hive/Parquet) formats.

If a table is defined with very many columns, it is not unusual for any given query
to only process a small subset of these columns. But even in a SequenceFile each full
row and all its columns will be read from disk, decompressed, and processed. This
consumes a lot of system resources for data that we know in advance is not of interest.

Traditional relational databases also store data on a row basis, and a type of database
called columnar changed this to be column-focused. In the simplest model, instead
of one file for each table, there would be one file for each column in the table. If a
query only needed to access five columns in a table with 100 columns in total, then
only the files for those five columns will be read. Both ORC and Parquet use this
principle as well as other optimizations to enable much faster queries.

Chapter 7

[197]

Queries
Tables can be queried using the familiar SELECT … FROM statement. The WHERE
statement allows the specification of filtering conditions, GROUP BY aggregates
records, ORDER BY specifies sorting criteria, and LIMIT specifies the number of
records to retrieve. Aggregate functions, such as count and sum, can be applied
to aggregated records. For instance, the following code returns the top 10 most
prolific users in the dataset:

SELECT user_id, COUNT(*) AS cnt FROM tweets GROUP BY user_id ORDER BY
cnt DESC LIMIT 10

This returns the top 10 most prolific users in the dataset:

2263949659 4

1332188053 4

959468857 3

1367752118 3

362562944 3

58646041 3

2375296688 3

1468188529 3

37114209 3

2385040940 3

We can improve the readability of the hive output by setting the following:

SET hive.cli.print.header=true;

This will instruct hive, though not beeline, to print column names as part of
the output.

You can add the command to the .hiverc file usually found in the
root of the executing user's home directory to have it apply to all
hive CLI sessions.

Hadoop and SQL

[198]

HiveQL implements a JOIN operator that enables us to combine tables together.
In the Prerequisites section, we generated separate datasets for the user and place
objects. Let's now load them into hive using external tables.

We first create a user table to store user data, as follows:

CREATE EXTERNAL TABLE user (
created_at string,
user_id string,
`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/users';

We then create a place table to store location data, as follows:

CREATE EXTERNAL TABLE place (
place_id string,
country_code string,
country string,
`name` string,
full_name string,
place_type string
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${input}/places';

We can use the JOIN operator to display the names of the 10 most prolific users,
as follows:

SELECT tweets.user_id, user.name, COUNT(tweets.user_id) AS cnt
FROM tweets
JOIN user ON user.user_id = tweets.user_id
GROUP BY tweets.user_id, user.user_id, user.name
ORDER BY cnt DESC LIMIT 10;

Chapter 7

[199]

Only equality, outer, and left (semi) joins are supported
in Hive.

Notice that there might be multiple entries with a given user ID but different
values for the followers_count, friends_count, and favourites_count columns.
To avoid duplicate entries, we count only user_id from the tweets table.

We can rewrite the previous query as follows:

SELECT tweets.user_id, u.name, COUNT(*) AS cnt
FROM tweets
join (SELECT user_id, name FROM user GROUP BY user_id, name) u
ON u.user_id = tweets.user_id
GROUP BY tweets.user_id, u.name
ORDER BY cnt DESC LIMIT 10;

Instead of directly joining the user table, we execute a subquery, as follows:

SELECT user_id, name FROM user GROUP BY user_id, name;

The subquery extracts unique user IDs and names. Note that Hive has limited
support for subqueries, historically only permitting a subquery in the FROM clause of
a SELECT statement. Hive 0.13 has added limited support for subqueries within the
WHERE clause also.

HiveQL is an ever-evolving rich language, a full exposition of which is beyond the
scope of this chapter. A description of its query and ddl capabilities can be found at
https://cwiki.apache.org/confluence/display/Hive/LanguageManual.

Structuring Hive tables for given workloads
Often Hive isn't used in isolation, instead tables are created with particular
workloads in mind or needs invoked in ways that are suitable for inclusion in
automated processes. We'll now explore some of these scenarios.

Partitioning a table
With columnar file formats, we explained the benefits of excluding unneeded data as
early as possible when processing a query. A similar concept has been used in SQL
for some time: table partitioning.

Hadoop and SQL

[200]

When creating a partitioned table, a column is specified as the partition key.
All values with that key are then stored together. In Hive's case, different
subdirectories for each partition key are created under the table directory in
the warehouse location on HDFS.

It's important to understand the cardinality of the partition column. With too few
distinct values, the benefits are reduced as the files are still very large. If there are
too many values, then queries might need a large number of files to be scanned to
access all the required data. Perhaps the most common partition key is one based
on date. We could, for example, partition our user table from earlier based on the
created_at column, that is, the date the user was first registered. Note that since
partitioning a table by definition affects its file structure, we create this table now
as a non-external one, as follows:

CREATE TABLE partitioned_user (
created_at string,
user_id string,
`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
) PARTITIONED BY (created_at_date string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

To load data into a partition, we can explicitly give a value for the partition into
which to insert the data, as follows:

INSERT INTO TABLE partitioned_user
PARTITION(created_at_date = '2014-01-01')
SELECT
created_at,
user_id,
location,
name,
description,
followers_count,
friends_count,

Chapter 7

[201]

favourites_count,
screen_name,
listed_count
FROM user;

This is at best verbose, as we need a statement for each partition key value; if a single
LOAD or INSERT statement contains data for multiple partitions, it just won't work.
Hive also has a feature called dynamic partitioning, which can help us here. We set
the following three variables:

SET hive.exec.dynamic.partition = true;
SET hive.exec.dynamic.partition.mode = nonstrict;
SET hive.exec.max.dynamic.partitions.pernode=5000;

The first two statements enable all partitions (nonstrict option) to be dynamic.
The third one allows 5,000 distinct partitions to be created on each mapper and
reducer node.

We can then simply use the name of the column to be used as the partition key,
and Hive will insert data into partitions depending on the value of the key for a
given row:

INSERT INTO TABLE partitioned_user
PARTITION(created_at_date)
SELECT
created_at,
user_id,
location,
name,
description,
followers_count,
friends_count,
favourites_count,
screen_name,
listed_count,
to_date(created_at) as created_at_date
FROM user;

Even though we use only a single partition column here, we can partition a table by
multiple column keys; just have them as a comma-separated list in the PARTITIONED
BY clause.

Hadoop and SQL

[202]

Note that the partition key columns need to be included as the last columns in
any statement being used to insert into a partitioned table. In the preceding code we
use Hive's to_date function to convert the created_at timestamp to a YYYY-MM-DD
formatted string.

Partitioned data is stored in HDFS as /path/to/warehouse/<database>/<table>/
key=<value>. In our example, the partitioned_user table structure will look like
/user/hive/warehouse/default/partitioned_user/created_at=2014-04-01.

If data is added directly to the filesystem, for instance by some third-party
processing tool or by hadoop fs -put, the metastore won't automatically detect the
new partitions. The user will need to manually run an ALTER TABLE statement such
as the following for each newly added partition:

ALTER TABLE <table_name> ADD PARTITION <location>;

To add metadata for all partitions not currently present in the metastore we can
use: MSCK REPAIR TABLE <table_name>; statement. On EMR, this is equivalent
to executing the following statement:

ALTER TABLE <table_name> RECOVER PARTITIONS;

Notice that both statements will work also with EXTERNAL tables. In the following
chapter, we will see how this pattern can be exploited to create flexible and
interoperable pipelines.

Overwriting and updating data
Partitioning is also useful when we need to update a portion of a table. Normally a
statement of the following form will replace all the data for the destination table:

INSERT OVERWRITE INTO <table>…

If OVERWRITE is omitted, then each INSERT statement will add additional data to the
table. Sometimes, this is desirable, but often, the source data being ingested into a Hive
table is intended to fully update a subset of the data and keep the rest untouched.

If we perform an INSERT OVERWRITE statement (or a LOAD OVERWRITE statement)
into a partition of a table, then only the specified partition will be affected. Thus, if
we were inserting user data and only wanted to affect the partitions with data in the
source file, we could achieve this by adding the OVERWRITE keyword to our previous
INSERT statement.

Chapter 7

[203]

We can also add caveats to the SELECT statement. Say, for example, we only wanted
to update data for a certain month:

INSERT INTO TABLE partitioned_user
PARTITION (created_at_date)
SELECT created_at ,
user_id,
location,
name,
description,
followers_count,
friends_count,
favourites_count,
screen_name,
listed_count,
to_date(created_at) as created_at_date
FROM user
WHERE to_date(created_at) BETWEEN '2014-03-01' and '2014-03-31';

Bucketing and sorting
Partitioning a table is a construct that you take explicit advantage of by using the
partition column (or columns) in the WHERE clause of queries against the tables. There
is another mechanism called bucketing that can further segment how a table is stored
and does so in a way that allows Hive itself to optimize its internal query plans to
take advantage of the structure.

Let's create bucketed versions of our tweets and user tables; note the following
additional CLUSTER BY and SORT BY statements in the CREATE TABLE statements:

CREATE table bucketed_tweets (
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) PARTITIONED BY (created_at string)
CLUSTERED BY(user_ID) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

CREATE TABLE bucketed_user (
user_id string,

Hadoop and SQL

[204]

`location` string,
name string,
description string,
followers_count bigint,
friends_count bigint,
favourites_count bigint,
screen_name string,
listed_count bigint
) PARTITIONED BY (created_at string)
CLUSTERED BY(user_ID) SORTED BY(name) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE;

Note that we changed the tweets table to also be partitioned; you can only bucket a
table that is partitioned.

Just as we need to specify a partition column when inserting into a partitioned table,
we must also take care to ensure that data inserted into a bucketed table is correctly
clustered. We do this by setting the following flag before inserting the data into
the table:

SET hive.enforce.bucketing=true;

Just as with partitioned tables, you cannot apply the bucketing function when using
the LOAD DATA statement; if you wish to load external data into a bucketed table, first
insert it into a temporary table, and then use the INSERT…SELECT… syntax to populate
the bucketed table.

When data is inserted into a bucketed table, rows are allocated to a bucket based on the
result of a hash function applied to the column specified in the CLUSTERED BY clause.

One of the greatest advantages of bucketing a table comes when we need to join two
tables that are similarly bucketed, as in the previous example. So, for example, any
query of the following form would be vastly improved:

SET hive.optimize.bucketmapjoin=true;
SELECT …
FROM bucketed_user u JOIN bucketed_tweet t
ON u.user_id = t.user_id;

Chapter 7

[205]

With the join being performed on the column used to bucket the table, Hive can
optimize the amount of processing as it knows that each bucket contains the same set
of user_id columns in both tables. While determining which rows against which to
match, only those in the bucket need to be compared against, and not the whole table.
This does require that the tables are both clustered on the same column and that the
bucket numbers are either identical or one is a multiple of the other. In the latter case,
with say one table clustered into 32 buckets and another into 64, the nature of the
default hash function used to allocate data to a bucket means that the IDs in bucket 3 in
the first table will cover those in both buckets 3 and 35 in the second.

Sampling data
Bucketing a table can also help while using Hive's ability to sample data in a table.
Sampling allows a query to gather only a specified subset of the overall rows in
the table. This is useful when you have an extremely large table with moderately
consistent data patterns. In such a case, applying a query to a small fraction of the
data will be much faster and will still give a broadly representative result. Note, of
course, that this only applies to queries where you are looking to determine table
characteristics, such as pattern ranges in the data; if you are trying to count anything,
then the result needs to be scaled to the full table size.

For a non-bucketed table, you can sample in a mechanism similar to what we saw
earlier by specifying that the query should only be applied to a certain subset of
the table:

SELECT max(friends_count)
FROM user TABLESAMPLE(BUCKET 2 OUT OF 64 ON name);

In this query, Hive will effectively hash the rows in the table into 64 buckets based
on the name column. It will then only use the second bucket for the query. Multiple
buckets can be specified, and if RAND() is given as the ON clause, then the entire row
is used by the bucketing function.

Though successful, this is highly inefficient as the full table needs to be scanned to
generate the required subset of data. If we sample on a bucketed table and ensure the
number of buckets sampled is equal to or a multiple of the buckets in the table, then
Hive will only read the buckets in question. For example:

SELECT MAX(friends_count)
FROM bucketed_user TABLESAMPLE(BUCKET 2 OUT OF 32 on user_id);

Hadoop and SQL

[206]

In the preceding query against the bucketed_user table, which is created with
64 buckets on the user_id column, the sampling, since it is using the same column,
will only read the required buckets. In this case, these will be buckets 2 and 34 from
each partition.

A final form of sampling is block sampling. In this case, we can specify the
required amount of the table to be sampled, and Hive will use an approximation
of this by only reading enough source data blocks on HDFS to meet the required
size. Currently, the data size can be specified as either a percentage of the table,
as an absolute data size, or as a number of rows (in each block). The syntax for
TABLESAMPLE is as follows, which will sample 0.5 percent of the table, 1 GB of
data or 100 rows per split, respectively:

TABLESAMPLE(0.5 PERCENT)
TABLESAMPLE(1G)
TABLESAMPLE(100 ROWS)

If these latter forms of sampling are of interest, then consult the documentation,
as there are some specific limitations on the input format and file formats that
are supported.

Writing scripts
We can place Hive commands in a file and run them with the -f option in the hive
CLI utility:

$ cat show_tables.hql

show tables;

$ hive -f show_tables.hql

We can parameterize HiveQL statements by means of the hiveconf mechanism.
This allows us to specify an environment variable name at the point it is used rather
than at the point of invocation. For example:

$ cat show_tables2.hql

show tables like '${hiveconf:TABLENAME}';

$ hive -hiveconf TABLENAME=user -f show_tables2.hql

The variable can also be set within the Hive script or an interactive session:

SET TABLE_NAME='user';

Chapter 7

[207]

The preceding hiveconf argument will add any new variables in the same
namespace as the Hive configuration options. As of Hive 0.8, there is a similar
option called hivevar that adds any user variables into a distinct namespace.
Using hivevar, the preceding command would be as follows:

$ cat show_tables3.hql

show tables like '${hivevar:TABLENAME}';

$ hive -hivevar TABLENAME=user –f show_tables3.hql

Or we can write the command interactively:

SET hivevar:TABLE_NAME='user';

Hive and Amazon Web Services
With Elastic MapReduce as the AWS Hadoop-on-demand service, it is of course
possible to run Hive on an EMR cluster. But it is also possible to use Amazon storage
services, particularly S3, from any Hadoop cluster be it within EMR or your own
local cluster.

Hive and S3
As mentioned in Chapter 2, Storage, it is possible to specify a default filesystem other
than HDFS for Hadoop and S3 is one option. But, it doesn't have to be an all-or-
nothing thing; it is possible to have specific tables stored in S3. The data for these
tables will be retrieved into the cluster to be processed, and any resulting data can
either be written to a different S3 location (the same table cannot be the source and
destination of a single query) or onto HDFS.

We can take a file of our tweet data and place it onto a location in S3 with a
command such as the following:

$ aws s3 put tweets.tsv s3://<bucket-name>/tweets/

We firstly need to specify the access key and secret access key that can access the
bucket. This can be done in three ways:

•	 Set fs.s3n.awsAccessKeyId and fs.s3n.awsSecretAccessKey to the
appropriate values in the Hive CLI

•	 Set the same values in hive-site.xml though note this limits use of S3 to a
single set of credentials

•	 Specify the table location explicitly in the table URL, that is, s3n://<access
key>:<secret access key>@<bucket>/<path>

Hadoop and SQL

[208]

Then we can create a table referencing this data, as follows:

CREATE table remote_tweets (
created_at string,
tweet_id string,
text string,
in_reply_to string,
retweeted boolean,
user_id string,
place_id string
) CLUSTERED BY(user_ID) into 64 BUCKETS
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LOCATION 's3n://<bucket-name>/tweets'

This can be an incredibly effective way of pulling S3 data into a local Hadoop cluster
for processing.

In order to use AWS credentials in the URI of an S3 location regardless
of how the parameters are passed, the secret and access keys must not
contain /, +, =, or \ characters. If necessary, a new set of credentials
can be generated from the IAM console at https://console.aws.
amazon.com/iam/.

In theory, you can just leave the data in the external table and refer to it when
needed to avoid WAN data transfer latencies (and costs), even though it often makes
sense to pull the data into a local table and do future processing from there. If the
table is partitioned, then you might find yourself retrieving a new partition each day,
for example.

Hive on Elastic MapReduce
On one level, using Hive within Amazon Elastic MapReduce is just the same as
everything discussed in this chapter. You can create a persistent cluster, log in to the
master node, and use the Hive CLI to create tables and submit queries. Doing all this
will use the local storage on the EC2 instances for the table data.

Not surprisingly, jobs on EMR clusters can also refer to tables whose data is stored
on S3 (or DynamoDB). And also not surprisingly, Amazon has made extensions to its
version of Hive to make all this very seamless. It is quite simple from within an EMR
job to pull data from a table stored in S3, process it, write any intermediate data to
the EMR local storage, and then write the output results into S3, DynamoDB, or one
of a growing list of other AWS services.

Chapter 7

[209]

The pattern mentioned earlier where new data is added to a new partition directory
for a table each day has proved very effective in S3; it is often the storage location
of choice for large and incrementally growing datasets. There is a syntax difference
when using EMR; instead of the MSCK command mentioned earlier, the command
to update a Hive table with new data added to a partition directory is as follows:

ALTER TABLE <table-name> RECOVER PARTITIONS;

Consult the EMR documentation for the latest enhancements at http://docs.
aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-hive-
additional-features.html. Also, consult the broader EMR documentation. In
particular, the integration points with other AWS services is an area of rapid growth.

Extending HiveQL
The HiveQL language can be extended by means of plugins and third-party
functions. In Hive, there are three types of functions characterized by the number
of rows they take as input and produce as output:

•	 User Defined Functions (UDFs): are simpler functions that act on one row
at a time.

•	 User Defined Aggregate Functions (UDAFs): take multiple rows as input
and generate multiple rows as output. These are aggregate functions to be
used in conjunction with a GROUP BY statement (similar to COUNT(), AVG(),
MIN(), MAX(), and so on).

•	 User Defined Table Functions (UDTFs): take multiple rows as input and
generate a logical table comprised of multiple rows that can be used in
join expressions.

These APIs are provided only in Java. For other languages, it is
possible to stream data through a user-defined script using the
TRANSFORM, MAP, and REDUCE clauses that act as a frontend to
Hadoop's streaming capabilities.

Hadoop and SQL

[210]

Two APIs are available to write UDFs. A simple API org.apache.hadoop.hive.
ql.exec.UDF can be used for functions that take and return basic writable types. A
richer API, which provides support for data types other than writable is available in
the org.apache.hadoop.hive.ql.udf.generic.GenericUDF package. We'll now
illustrate how org.apache.hadoop.hive.ql.exec.UDF can be used to implement
a string to ID function similar to the one we used in Chapter 5, Iterative Computation
with Spark, to map hashtags to integers in Pig. Building a UDF with this API only
requires extending the UDF class and writing an evaluate() method,
as follows:

public class StringToInt extends UDF {
 public Integer evaluate(Text input) {
 if (input == null)
 return null;

 String str = input.toString();
 return str.hashCode();
 }
}

The function takes a Text object as input and maps it to an integer value
with the hashCode() method. The source code of this function can be found
at https://github.com/learninghadoop2/book-examples/blob/master/ch7/
udf/com/learninghadoop2/hive/udf/StringToInt.java.

As noted in Chapter 6, Data Analysis with Apache Pig, a more robust
hash function should be used in production.

We compile the class and archive it into a JAR file, as follows:

$ javac -classpath $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/
hive/lib/* com/learninghadoop2/hive/udf/StringToInt.java

$ jar cvf myudfs-hive.jar com/learninghadoop2/hive/udf/StringToInt.class

Before being able to use it, a UDF must be registered in Hive with the
following commands:

ADD JAR myudfs-hive.jar;
CREATE TEMPORARY FUNCTION string_to_int AS 'com.learninghadoop2.hive.
udf.StringToInt';

Chapter 7

[211]

The ADD JAR statement adds a JAR file to the distributed cache. The CREATE
TEMPORARY FUNCTION <function> AS <class> statement registers a function in
Hive that implements a given Java class. The function will be dropped once the Hive
session is closed. As of Hive 0.13, it is possible to create permanent functions whose
definition is kept in the metastore using CREATE FUNCTION … .

Once registered, StringToInt can be used in a query just like any other function.
In the following example, we first extract a list of hashtags from the tweet's text
by applying regexp_extract. Then, we use string_to_int to map each tag to a
numerical ID:

SELECT unique_hashtags.hashtag, string_to_int(unique_hashtags.hashtag)
AS tag_id FROM
 (
 SELECT regexp_extract(text,
 '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)') as hashtag
 FROM tweets
 GROUP BY regexp_extract(text,
 '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')
) unique_hashtags GROUP BY unique_hashtags.hashtag, string_to_
int(unique_hashtags.hashtag);

Just as we did in the previous chapter, we can use the preceding query to create a
lookup table:

CREATE TABLE lookuptable (tag string, tag_id bigint);
INSERT OVERWRITE TABLE lookuptable
SELECT unique_hashtags.hashtag,
 string_to_int(unique_hashtags.hashtag) as tag_id
FROM
 (
 SELECT regexp_extract(text,
 '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)') AS hashtag
 FROM tweets
 GROUP BY regexp_extract(text,
 '(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)')
) unique_hashtags
GROUP BY unique_hashtags.hashtag, string_to_int(unique_hashtags.
hashtag);

Hadoop and SQL

[212]

Programmatic interfaces
In addition to the hive and beeline command-line tools, it is possible to submit
HiveQL queries to the system via the JDBC and Thrift programmatic interfaces.
Support for ODBC was bundled in older versions of Hive, but as of Hive 0.12,
it needs to be built from scratch. More information on this process can be found
at https://cwiki.apache.org/confluence/display/Hive/HiveODBC.

JDBC
A Hive client written using JDBC APIs looks exactly the same as a client program
written for other database systems (for example MySQL). The following is a sample
Hive client program using JDBC APIs. The source code for this example can be
found at https://github.com/learninghadoop2/book-examples/blob/master/
ch7/clients/com/learninghadoop2/hive/client/HiveJdbcClient.java.

public class HiveJdbcClient {
 private static String driverName = " org.apache.hive.jdbc.
HiveDriver";

 // connection string
 public static String URL = "jdbc:hive2://localhost:10000";

 // Show all tables in the default database
 public static String QUERY = "show tables";

 public static void main(String[] args) throws SQLException {
 try {
 Class.forName (driverName);
 }
 catch (ClassNotFoundException e) {
 e.printStackTrace();
 System.exit(1);
 }
 Connection con = DriverManager.getConnection (URL);
 Statement stmt = con.createStatement();

 ResultSet resultSet = stmt.executeQuery(QUERY);
 while (resultSet.next()) {
 System.out.println(resultSet.getString(1));
 }
 }
}

Chapter 7

[213]

The URL part is the JDBC URI that describes the connection end point. The format
for establishing a remote connection is jdbc:hive2:<host>:<port>/<database>.
Connections in embedded mode can be established by not specifying a host or
port, like jdbc:hive2://.

hive and hive2 are the drivers to be used when connecting to HiveServer and
HiveServer2. QUERY contains the HiveQL query to be executed.

Hive's JDBC interface exposes only the default database. In order to
access other databases, you need to reference them explicitly in the
underlying queries using the <database>.<table> notation.

First we load the HiveServer2 JDBC driver org.apache.hive.jdbc.HiveDriver.

Use org.apache.hadoop.hive.jdbc.HiveDriver to
connect to HiveServer.

Then, like with any other JDBC program, we establish a connection to URL and use it
to instantiate a Statement class. We execute QUERY, with no authentication, and store
the output dataset into the ResultSet object. Finally, we scan resultSet and print
its content to the command line.

Compile and execute the example with the following commands:

$ javac HiveJdbcClient.java

$ java -cp $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*:/
opt/cloudera/parcels/CDH/lib/hive/lib/hive-jdbc.jar: com.learninghadoop2.
hive.client.HiveJdbcClient

Thrift
Thrift provides lower-level access to Hive and has a number of advantages over
the JDBC implementation of HiveServer. Primarily, it allows multiple connections
from the same client, and it allows programming languages other than Java to be
used with ease. With HiveServer2, it is a less commonly used option but still worth
mentioning for compatibility. A sample Thrift client implemented using the Java API
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch7/clients/com/learninghadoop2/hive/client/HiveThriftClient.
java. This client can be used to connect to HiveServer, but due to protocol
differences, the client won't work with HiveServer2.

Hadoop and SQL

[214]

In the example we define a getClient() method that takes as input the host
and port of a HiveServer service and returns an instance of org.apache.hadoop.
hive.service.ThriftHive.Client.

A client is obtained by first instantiating a socket connection, org.apache.thrift.
transport.TSocket, to the HiveServer service, and by specifying a protocol,
org.apache.thrift.protocol.TBinaryProtocol, to serialize and transmit data,
as follows:

 TSocket transport = new TSocket(host, port);
 transport.setTimeout(TIMEOUT);
 transport.open();
 TBinaryProtocol protocol = new TBinaryProtocol(transport);
 client = new ThriftHive.Client(protocol);

We call getClient() from the main method and use the client to execute a query
against an instance of HiveServer running on localhost on port 11111, as follows:

 public static void main(String[] args) throws Exception {
 Client client = getClient("localhost", 11111);
 client.execute("show tables");
 List<String> results = client.fetchAll();
for (String result : results) {
System.out.println(result);
}
 }

Make sure that HiveServer is running on port 11111, and if not, start an instance
with the following command:

$ sudo hive --service hiveserver -p 11111

Compile and execute the HiveThriftClient.java example with:

$ javac $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/* com/
learninghadoop2/hive/client/HiveThriftClient.java

$ java -cp $(hadoop classpath):/opt/cloudera/parcels/CDH/lib/hive/lib/*:
com.learninghadoop2.hive.client.HiveThriftClient

Chapter 7

[215]

Stinger initiative
Hive has remained very successful and capable since its earliest releases, particularly
in its ability to provide SQL-like processing on enormous datasets. But other
technologies did not stand still, and Hive acquired a reputation of being relatively
slow, particularly in regard to lengthy startup times on large jobs and its inability to
give quick responses to conceptually simple queries.

These perceived limitations were less due to Hive itself and more a consequence
of how translation of SQL queries into the MapReduce model has much built-in
inefficiency when compared to other ways of implementing a SQL query. Particularly
in regard to very large datasets, MapReduce saw lots of I/O (and consequently time)
spent writing out the results of one MapReduce job just to have them read by another.
As discussed in Chapter 3, Processing – MapReduce and Beyond, this is a major driver in
the design of Tez, which can schedule jobs on a Hadoop cluster as a graph of tasks that
does not require inefficient writes and reads between them.

The following is a query on the MapReduce framework versus Tez:

SELECT a.country, COUNT(b.place_id) FROM place a JOIN tweets b ON (a.
place_id = b.place_id) GROUP BY a.country;

The following figure contrasts the execution plan for the preceding query on the
MapReduce framework versus Tez:

I/O Synchronization

Barrier

Job 1 - GROUP

table BY key
Map

Reduce

HDFS

Job 2 - JOIN

Map

Reduce

I/O Pipelining

GROUP BY and

JOIN I/O is

pipelined in a

reducer chain

Map

Reduce

Reduce

Single job

Hive - MR Hive - Tez

Hive on MapReduce versus Tez

Hadoop and SQL

[216]

In plain MapReduce, two jobs are created for the GROUP BY and JOIN clauses. The
first job is composed of a set of MapReduce tasks that read data from the disk to
carry out grouping. The reducers write intermediate results to the disk so that output
can be synchronized. The mappers in the second job read the intermediate results
from the disk as well as data from table b. The combined dataset is then passed to the
reducer where shared keys are joined. Were we to execute an ORDER BY statement,
this would have resulted in a third job and further MapReduce passes. The same
query is executed on Tez as a single job by a single set of Map tasks that read data
from the disk. I/O grouping and joining are pipelined across reducers.

Alongside these architectural limitations, there were quite a few areas around
SQL language support that could also provide better efficiency, and in early 2013,
the Stinger initiative was launched with an explicit goal of making Hive over 100
times as fast and with much richer SQL support. Hive 0.13 has all the features
of the three phases of Stinger, resulting in a much more complete SQL dialect.
Also, Tez is offered as an execution framework in addition to a MapReduce-based
implementation atop YARN which is more efficient than previous implementations
on Hadoop 1 MapReduce.

With Tez as the execution engine, Hive is no longer limited to a series of linear
MapReduce jobs and can instead build a processing graph where any given step
can, for example, stream results to multiple sub-steps.

To take advantage of the Tez framework, there is a new hive variable setting:

set hive.execution.engine=tez;

This setting relies on Tez being installed on the cluster; it is available in source form
from http://tez.apache.org or in several distributions, though at the time of
writing, not Cloudera.

The alternative value is mr, which uses the classic MapReduce model (atop YARN),
so it is possible in a single installation to compare with the performance of Hive
using Tez.

Impala
Hive is not the only product providing SQL-on-Hadoop capability. The second
most widely used is likely Impala, announced in late 2012 and released in spring
2013. Though originally developed internally within Cloudera, its source code
is periodically pushed to an open source Git repository (https://github.com/
cloudera/impala).

Impala was created out of the same perception of Hive's weaknesses that led to the
Stinger initiative.

Chapter 7

[217]

Impala also took some inspiration from Google Dremel (http://static.
googleusercontent.com/media/research.google.com/en//pubs/
archive/36632.pdf) which was first openly described by a paper published in 2009.
Dremel was built at Google to address the gap between the need for very fast queries
on very large datasets and the high latency inherent in the existing MapReduce
model underpinning Hive at the time. Dremel was a sophisticated approach
to this problem that, rather than building mitigations atop MapReduce such as
implemented by Hive, instead created a new service that accessed the same data
stored in HDFS. Dremel also benefited from significant work to optimize the storage
format of the data in a way that made it more amenable to very fast analytic queries.

The architecture of Impala
The basic architecture has three main components; the Impala daemons, the state
store, and the clients. Recent versions have added additional components that
improve the service, but we'll focus on the high-level architecture.

The Impala daemon (impalad) should be run on each host where a DataNode
process is managing HDFS data. Note that impalad does not access the filesystem
blocks through the full HDFS FileSystem API; instead, it uses a feature called short-
circuit reads to make data access more efficient.

When a client submits a query, it can do so to any of the running impalad processes,
and this one will become the coordinator for the execution of that query. The key
aspect of Impala's performance is that for each query, it generates custom native
code, which is then pushed to and executed by all the impalad processes on the
system. This highly optimized code performs the query on the local data, and each
impalad then returns its subset of the result set to the coordinator node, which
performs the final data consolidation to produce the final result. This type of
architecture should be familiar to anyone who has worked with any of the (usually
commercial and expensive) Massively Parallel Processing (MPP) (the term used for
this type of shared scale-out architecture) data warehouse solutions available today.
As the cluster runs, the state store daemon ensures that each impalad process is
aware of all the others and provides a view of the overall cluster health.

Co-existing with Hive
Impala, as a newer product, tends to have a more restricted set of SQL data
types and supports a more constrained dialect of SQL than Hive. It is, however,
expanding this support with each new release. Refer to the Impala documentation
(http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/
latest/Impala/impala.html) to get an overview of the current level of support.

Hadoop and SQL

[218]

Impala supports the Hive metastore mechanism used by Hive to persistently store
the metadata surrounding its table structure and storage. This means that on a
cluster with an existing Hive setup, it should be immediately possible to use Impala
as it will access the same metastore and therefore provide access to the same tables
available in Hive.

But be warned that the differences in SQL dialect and data types might cause
unexpected results when working in a combined Hive and Impala environment.
Some queries might work on one but not the other, they might show very different
performance characteristics (more on this later), or they might actually give different
results. This last point might become apparent when using data types such as float
and double that are simply treated differently in the underlying systems (Hive is
implemented on Java while Impala is written in C++).

As of version 1.2, it supports UDFs written both in C++ and Java, although C++
is strongly recommended as a much faster solution. Keep this in mind if you are
looking to share custom functions between Hive and Impala.

A different philosophy
When Impala was first released, its greatest benefit was in how it truly enabled
what is often called speed of thought analysis. Queries could be returned sufficiently
fast that an analyst could explore a thread of analysis in a completely interactive
fashion without having to wait for minutes at a time for each query to complete. It's
fair to say that most adopters of Impala were at times stunned by its performance,
especially when compared to the version of Hive shipping at the time.

The Impala focus has remained mostly on these shorter queries, and this does
impose some limitations on the system. Impala tends to be quite memory-heavy
as it relies on in-memory processing to achieve much of its performance. If a query
requires a dataset to be held in memory rather than being available on the executing
node, then that query will simply fail in versions of Impala before 2.0.

Comparing the work on Stinger to Impala, it could be argued that Impala has a much
stronger focus on excelling in the shorter (and arguably more common) queries that
support interactive data analysis. Many business intelligence tools and services are
now certified to directly run on Impala. The Stinger initiative has put less effort into
making Hive just as fast in the area where Impala excels but has instead improved
Hive (to varying degrees) for all workloads. Impala is still developing at a fast
pace and Stinger has put additional momentum into Hive, so it is most likely wise
to consider both products and determine which best meets the performance and
functionality requirements of your projects and workflows.

Chapter 7

[219]

It should also be kept in mind that there are competitive commercial pressures
shaping the direction of Impala and Hive. Impala was created and is still driven by
Cloudera, the most popular vendor of Hadoop distributions. The Stinger initiative,
though contributed to by many companies as diverse as Microsoft (yes, really!) and
Intel, was lead by Hortonworks, probably the second largest vendor of Hadoop
distributions. The fact is that if you are using the Cloudera distribution of Hadoop,
then some of the core features of Hive might be slower to arrive, whereas Impala will
always be up-to-date. Conversely, if you use another distribution, you might get the
latest Hive release, but that might either have an older Impala or, as is currently the
case, you might have to download and install it yourself.

A similar situation has arisen with the Parquet and ORC file formats mentioned
earlier. Parquet is preferred by Impala and developed by a group of companies led
by Cloudera, while ORC is preferred by Hive and is championed by Hortonworks.

Unfortunately, the reality is that Parquet support is often very quick to arrive in the
Cloudera distribution but less so in say the Hortonworks distribution, where the
ORC file format is preferred.

These themes are a little concerning since, although competition in this space is a
good thing, and arguably the announcement of Impala helped energize the Hive
community, there is a greater risk that your choice of distribution might have a larger
impact on the tools and file formats that will be fully supported, unlike in the past.
Hopefully, the current situation is just an artifact of where we are in the development
cycles of all these new and improved technologies, but do consider your choice of
distribution carefully in relation to your SQL-on-Hadoop needs.

Drill, Tajo, and beyond
You should also consider that SQL on Hadoop no longer only refers to Hive or
Impala. Apache Drill (http://drill.apache.org) is a fuller implementation of the
Dremel model first described by Google. Although Impala implements the Dremel
architecture across HDFS data, Drill looks to provide similar functionality across
multiple data sources. It is still in its early stages, but if your needs are broader than
what Hive or Impala provides, it might be worth considering.

Tajo (http://tajo.apache.org) is another Apache project that seeks to be a full
data warehouse system on Hadoop data. With an architecture similar to that of
Impala, it offers a much richer system with components such as multiple optimizers
and ETL tools that are commonplace in traditional data warehouses but less
frequently bundled in the Hadoop world. It has a much smaller user base but has
been used by certain companies very successfully for a significant length of time,
and might be worth considering if you need a fuller data warehousing solution.

Hadoop and SQL

[220]

Other products are also emerging in this space, and it's a good idea to do some
research. Hive and Impala are awesome tools, but if you find that they don't meet
your needs, then look around—something else might.

Summary
In its early days, Hadoop was sometimes erroneously seen as the latest supposed
relational database killer. Over time, it has become more apparent that the more
sensible approach is to view it as a complement to RDBMS technologies and that,
in fact, the RDBMS community has developed tools such as SQL that are also
valuable in the Hadoop world.

HiveQL is an implementation of SQL on Hadoop and was the primary focus of
this chapter. In regard to HiveQL and its implementations, we covered the
following topics:

•	 How HiveQL provides a logical model atop data stored in HDFS in contrast
to relational databases where the table structure is enforced in advance

•	 How HiveQL supports many standard SQL data types and commands
including joins and views

•	 The ETL-like features offered by HiveQL, including the ability to import
data into tables and optimize the table structure through partitioning and
similar mechanisms

•	 How HiveQL offers the ability to extend its core set of operators with
user-defined code and how this contrasts to the Pig UDF mechanism

•	 The recent history of Hive developments, such as the Stinger initiative, that
have seen Hive transition to an updated implementation that uses Tez

•	 The broader ecosystem around HiveQL that now includes products such
as Impala, Tajo and Drill and how each of these focuses on specific areas in
which to excel

With Pig and Hive, we've introduced alternative models to process MapReduce
data, but so far we've not looked at another question: what approaches and tools
are required to actually allow this massive dataset being collected in Hadoop to
remain useful and manageable over time? In the next chapter, we'll take a slight
step up the abstraction hierarchy and look at how to manage the life cycle of this
enormous data asset.

Data Lifecycle Management
Our previous chapters were quite technology focused, describing particular tools or
techniques and how they can be used. In this and the next chapter, we are going to
take a more top-down approach whereby we will describe a problem space you are
likely to encounter and then explore how to address it. In particular, we'll cover the
following topics:

•	 What we mean by the term data life cycle management
•	 Why data life cycle management is something to think about
•	 The categories of tools that can be used to address the problem
•	 How to use these tools to build the first half of a Twitter sentiment

analysis pipeline

What data lifecycle management is
Data doesn't exist only at a point in time. Particularly for long-running production
workflows, you are likely to acquire a significant quantity of data in a Hadoop
cluster. Requirements rarely stay static for long, so alongside new logic you might
also see the format of that data change or require multiple data sources to be used
to provide the dataset processed in your application. We use the term data lifecycle
management to describe an approach to handling the collection, storage, and
transformation of data that ensures that data is where it needs to be, in the format it
needs to be in, in a way that allows data and system evolution over time.

Data Lifecycle Management

[222]

Importance of data lifecycle management
If you build data processing applications, you are by definition reliant on the data
that is processed. Just as we consider the reliability of applications and systems, it
becomes necessary to ensure that the data is also production-ready.

Data at some point needs to be ingested into Hadoop. It is one part of an enterprise
and often has multiple points of integration with external systems. If the ingest
of data coming from those systems is not reliable, then the impact on the jobs
that process that data is often as disruptive as a major system failure. Data ingest
becomes a critical component in its own right. And when we say the ingest needs
to be reliable, we don't just mean that data is arriving; it also has to be arriving in a
format that is usable and through a mechanism that can handle evolution over time.

The problem with many of these issues is that they do not arise in a significant
fashion until the flows are large, the system is critical, and the business impact of any
problems is non-trivial. Ad hoc approaches that worked for a less critical dataflow
often will simply not scale, but will be very painful to replace on a live system.

Tools to help
But don't panic! There are a number of categories of tools that can help with the data
life cycle management problem. We'll give examples of the following three broad
categories in this chapter:

•	 Orchestration services: building an ingest pipeline usually has multiple
discrete stages, and we will use an orchestration tool to allow these to be
described, executed, and managed

•	 Connectors: given the importance of integration with external systems,
we will look at how we can use connectors to simplify the abstractions
provided by Hadoop storage

•	 File formats: how we store the data impacts how we manage format
evolution over time, and several rich storage formats have ways of
supporting this

Chapter 8

[223]

Building a tweet analysis capability
In earlier chapters, we used various implementations of Twitter data analysis to
describe several concepts. We will take this capability to a deeper level and approach
it as a major case study.

In this chapter, we will build a data ingest pipeline, constructing a production-ready
dataflow that is designed with reliability and future evolution in mind.

We'll build out the pipeline incrementally throughout the chapter. At each stage,
we'll highlight what has changed but can't include full listings at each stage without
trebling the size of the chapter. The source code for this chapter, however, has every
iteration in its full glory.

Getting the tweet data
The first thing we need to do is get the actual tweet data. As in previous examples,
we can pass the -j and -n arguments to stream.py to dump JSON tweets to stdout:

$ stream.py -j -n 10000 > tweets.json

Since we have this tool that can create a batch of sample tweets on demand, we could
start our ingest pipeline by having this job run on a periodic basis. But how?

Introducing Oozie
We could, of course, bang rocks together and use something like cron for simple job
scheduling, but recall that we want an ingest pipeline that is built with reliability
in mind. So, we really want a scheduling tool that we can use to detect failures and
otherwise respond to exceptional situations.

The tool we will use here is Oozie (http://oozie.apache.org), a workflow engine
and scheduler built with a focus on the Hadoop ecosystem.

Oozie provides a means to define a workflow as a series of nodes with configurable
parameters and controlled transition from one node to the next. It is installed as
part of the Cloudera QuickStart VM, and the main command-line client is, not
surprisingly, called oozie.

Data Lifecycle Management

[224]

We've tested the workflows in this chapter against version 5.0 of the
Cloudera QuickStart VM, and at the time of writing Oozie in the latest
version, 5.1, has some issues. There's nothing particularly version-specific
in our workflows, however, so they should be compatible with any
correctly working Oozie v4 implementation.

Though powerful and flexible, Oozie can take a little getting used to, so we'll give
some examples and describe what we are doing along the way.

The most common node in an Oozie workflow is an action. It is within action
nodes that the steps of the workflow are actually executed; the other node types
handle management of the workflow in terms of decisions, parallelism, and failure
detection. Oozie has multiple types of actions that it can perform. One of these is
the shell action, which can be used to execute any command on the system, such as
native binaries, shell scripts, or any other command-line utility. Let's create a script
to generate a file of tweets and copy this to HDFS:

set -e
source twitter.keys
python stream.py -j -n 500 > /tmp/tweets.out
hdfs dfs -put /tmp/tweets.out /tmp/tweets/tweets.out
rm -f /tmp/tweets.out

Note that the first line will cause the entire script to fail should any of the included
commands fail. We use an environment file to provide the Twitter keys to our script
in twitter.keys, which is of the following form:

export TWITTER_CONSUMER_KEY=<value>
export TWITTER_CONSUMER_SECRET=<value>
export TWITTER_ACCESS_KEY=<value>
export TWITTER_ACCESS_SECRET=<value>

Oozie uses XML to describe its workflows, usually stored in a file called workflow.
xml. Let's walk through the definition for an Oozie workflow that calls a
shell command.

The schema for an Oozie workflow is called workflow-app, and we can give the
workflow a specific name. This is useful when viewing job history in the CLI or
Oozie web UI. In the examples in this book, we'll use an increasing version number
to allow us to more easily separate the iterations within the source repository.
This is how we give the workflow-app a specific name:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="v1">

Chapter 8

[225]

Oozie workflows are made up of a series of connected nodes, each of which
represents a step in the process, and which are represented by XML nodes in the
workflow definition. Oozie has a number of nodes that deal with the transition of the
workflow from one step to the next. The first of these is the start node, which simply
states the name of the first node to be executed as part of the workflow, as follows:

 <start to="fs-node"/>

We then have the definition for the named start node. In this case, it is an action
node, which is the generic node type for most Oozie nodes that actually perform
some processing, as follows:

 <action name="fs-node">

Action is a broad category of nodes, and we will typically then specialize it with the
particular processing for this given node. In this case, we are using the fs node type,
which allows us to perform filesystem operations:

 <fs>

We want to ensure that the directory on HDFS to which we wish to copy the file of
tweet data, exists, is empty, and has suitable permissions. We do this by trying to
delete the directory if it exists, then creating it, and finally applying the required
permissions, as follows:

 <delete path="${nameNode}/tmp/tweets"/>
 <mkdir path="${nameNode}/tmp/tweets"/>
 <chmod path="${nameNode}/tmp/tweets" permissions="777"/>
 </fs>

We'll see an alternative way of setting up directories later. After performing the
functionality of the node, Oozie needs know how to proceed with the workflow.
In most cases, this will comprise moving to another action node if this node was
successful and aborting the workflow otherwise. This is specified by the next
elements. The ok node gives the name of the node to which to transition if the
execution was successful; the error node names the destination node for failure
scenarios. Here's how the ok and fail nodes are used:

 <ok to="shell-node"/>
 <error to="fail"/>
 </action>
 <action name="shell-node">

Data Lifecycle Management

[226]

The second action node is again specialized with its specific processing type; in this
case, we have a shell node:

<shell xmlns="uri:oozie:shell-action:0.2">

The shell action then has the Hadoop JobTracker and NameNode locations specified.
Note that the actual values are given by variables; we'll explain where they come
from later. The JobTracker and NameNode are specified as follows:

 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>

As mentioned in Chapter 3, Processing – MapReduce and Beyond, MapReduce
uses multiple queues to provide support for different approaches to resource
scheduling. The next element specifies the MapReduce queue to which the
workflow should be submitted:

 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 </configuration>

Now that the shell node is fully configured, we can specify the command to invoke,
again via a variable, as follows:

 <exec>${EXEC}</exec>

The various steps of Oozie workflows are executed as MapReduce jobs. This
shell action will, therefore, be executed as a specific task instance on a particular
TaskTracker. We, therefore, need to specify which files need to be copied to the local
working directory on the TaskTracker machine before the action can be performed.
In this case, we need to copy the main shell script, the Python tweet generator, and
the Twitter config file, as follows:

<file>${workflowRoot}/${EXEC}</file>
<file>${workflowRoot}/twitter.keys</file>
<file>${workflowRoot}/stream.py</file>

Chapter 8

[227]

After closing the shell element, we again specify what to do depending on whether
the action completed successfully or not. Because MapReduce is used for job
execution, the majority of node types by definition have built-in retry and recovery
logic, though this is not the case for shell nodes:

 </shell>
 <ok to="end"/>
 <error to="fail"/>
</action>

If the workflow fails, let's just kill it in this case. The kill node type does exactly
that— terminate the workflow from proceeding to any further steps, usually logging
error messages along the way. Here's how the kill node type is used:

<kill name="fail">
 <message>Shell action failed, error
 message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>

The end node on the other hand simply halts the workflow and logs it as a successful
completion within Oozie:

 <end name="end"/>
</workflow-app>

The obvious question is what the preceding variables represent and from where
they get their concrete values. The preceding variables are examples of the Oozie
Expression Language often referred to as EL.

Alongside the workflow definition file (workflow.xml), which describes the steps in
the flow, we also need to create a configuration file that gives the specific values for a
given execution of the workflow. This separation of functionality and configuration
allows us to write workflows that can be used on different clusters, on different file
locations, or with different variable values without having to recreate the workflow
itself. By convention, this file is usually named job.properties. For the preceding
workflow, here's a sample job.properties file.

Data Lifecycle Management

[228]

Firstly, we specify the location of the JobTracker, the NameNode, and the
MapReduce queue to which to submit the workflow. The following should work on
the Cloudera 5.0 QuickStart VM, though in v 5.1 the hostname has been changed to
quickstart.cloudera. The important thing is that the specified NameNode and
JobTracker addresses need to be in the Oozie whitelist—the local services on the
VM are added automatically:

jobTracker=localhost.localdomain:8032
nameNode=hdfs://localhost.localdomain:8020
queueName=default

Next, we set some values for where the workflow definitions and associated files
can be found on the HDFS filesystem. Note the use of a variable representing the
username running the job. This allows a single workflow to be applied to different
paths depending on the submitting user, as follows:

tasksRoot=book
workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v1
oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/
v1

Next, we name the command to be executed in the workflow as ${EXEC}:

EXEC=gettweets.sh

More complex workflows will require additional entries in the job.properties file;
the preceding workflow is as simple as it gets.

The oozie command-line tool needs to know where the Oozie server is running.
This can be added as an argument to every Oozie shell command, but that gets
unwieldy very quickly. Instead, you can set the shell environment variable, as follows:

$ export OOZIE_URL='http://localhost:11000/oozie'

After all that work, we can now actually run an Oozie workflow. Create a directory
on HDFS as specified in the values in the job.properties file. In the preceding
command, we'd be creating this as book/v1 under our home directory on HDFS.
Copy the stream.py, gettweets.sh and twitter.properties files to that
directory; these are the files required to perform the actual execution of the shell
command. Then, add the workflow.xml file to the same directory.

To run the workflow then, we do the following:

$ oozie job -run -config <path-to-job.properties>

Chapter 8

[229]

If submitted successfully, Oozie will print the job name to the screen. You can see the
current status of this workflow with:

$ oozie job -info <job-id>

You can also check the logs for the job:

$ oozie job -log <job-id>

In addition, all current and recent jobs can be viewed with:

$ oozie jobs

A note on HDFS file permissions
There is a subtle aspect in the shell command that can catch the unwary. As an
alternative to having the fs node, we could instead include a preparation element
within the shell node to create the directory we need on the filesystem. It would look
like the following:

<prepare>
 <mkdir path="${nameNode}/tmp/tweets"/>
</prepare>

The prepare stage is executed by the user who submitted the workflow, but since
the actual script execution is performed on YARN, it is usually executed as the yarn
user. You might hit a problem where the script generates the tweets, the /tmp/
tweets directory is created on HDFS, but the script then fails to have permission to
write to that directory. You can either resolve this through assigning permissions
more precisely or, as shown earlier, you add a filesystem node to encapsulate
the needed operations. We'll use a mixture of both techniques in this chapter; for
non-shell nodes, we'll use prepare elements, particularly if the needed directory is
manipulated only by that node. For cases where a shell node is involved or where
the created directories will be used across multiple nodes, we'll be safe and use the
more explicit fs node.

Data Lifecycle Management

[230]

Making development a little easier
It can sometimes get awkward to manage the files and resources for an Oozie job
during development. Some need to be on HDFS, while some need to be local, and
changes to some files require changes to others. The easiest approach is often to
develop or make changes in a complete clone of the workflow directory on the local
filesystem and push changes from there to the similarly named directory in HDFS,
not forgetting, of course, to ensure that all changes are under revision control! For
operational execution of the workflow, the job.properties file is the only thing that
needs to be on the local filesystem and, conversely, all the other files need to be on
HDFS. Always remember this: it's all too easy to make changes to a local copy of a
workflow, forget to push the changes to HDFS, and then be confused as to why the
workflow isn't reflecting the changes.

Extracting data and ingesting into Hive
With our data on HDFS, we can now extract the separate datasets for tweets and
users, and place data as in previous chapters. We can reuse extract_for_hive.pig
to parse the raw tweet JSON into separate files, store them again on HDFS, and then
follow up with a Hive step that ingests these new files into Hive tables for tweets,
users, and places.

To do this within Oozie, we'll need to add two new nodes to our workflow, a Pig
action for the first step and a Hive action for the second.

For our Hive action, we'll just create three external tables that point to the files
generated by Pig. This would then allow us to follow our previously described
model of ingesting into temporary or external tables and using HiveQL INSERT
statements from there to insert into the operational, and often partitioned, tables.
This create.hql script can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch8/v2/hive/create.hql but is simply of the
following form:

CREATE DATABASE IF NOT EXISTS twttr ;
USE twttr;
DROP TABLE IF EXISTS tweets;
CREATE EXTERNAL TABLE tweets (
...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/tweets';

DROP TABLE IF EXISTS user;
CREATE EXTERNAL TABLE user (

Chapter 8

[231]

...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/users';

DROP TABLE IF EXISTS place;
CREATE EXTERNAL TABLE place (
...
) ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\u0001'
STORED AS TEXTFILE
LOCATION '${ingestDir}/places';

Note that the file separator on each table is also explicitly set to match what we are
outputting from Pig. In addition to this, locations in both scripts are specified by
variables for which we will provide concrete values in our job.properties file.

With the preceding statements, we can create the Pig node for our workflow found in
the source code as v2 of the pipeline. Much of the node definition looks similar to the
shell node used previously, as we set the same configuration elements; also notice
our use of the prepare element to create the needed output directory. We can create
the Pig node for our workflow as shown in the following action:

<action name="pig-node">
 <pig>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${nameNode}/${outputDir}"/>
 <mkdir path="${nameNode}/${outputDir}"/>
 </prepare>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 </configuration>

Similarly as with the shell command, we need to tell the Pig action the location of the
actual Pig script. This is specified in the following script element:

 <script>${workflowRoot}/pig/extract_for_hive.pig</script>

Data Lifecycle Management

[232]

We also need to modify the command line used to invoke the Pig script to add
several parameters. The following elements do this; note the construction pattern
wherein one element adds the actual parameter name and the next its value
(we'll see an alternative mechanism for passing arguments in the next section):

 <argument>-param</argument>
 <argument>inputDir=${inputDir}</argument>
 <argument>-param</argument>
 <argument>outputDir=${outputDir}</argument>
 </pig>

Because we want to move from this step to the Hive node, we need to set the
following elements appropriately:

 <ok to="hive-node"/>
 <error to="fail"/>
 </action>

The Hive action itself is a little different than the previous nodes; even though it
starts in a similar fashion, it specifies the Hive action-specific namespace, as follows:

<action name="hive-node">
 <hive xmlns="uri:oozie:hive-action:0.2">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>

The Hive action needs many of the configuration elements used by Hive itself and,
in most cases, we copy the hive-site.xml file into the workflow directory and
specify its location, as shown in the following xml; note that this mechanism is not
Hive-specific and can also be used for custom actions:

 <job-xml>${workflowRoot}/hive-site.xml</job-xml>

In addition, we might need to override some MapReduce default configuration
properties, as shown in the following xml, where we specify that intermediate
compression should be used for our job:

 <configuration>
 <property>
 <name>mapred.compress.map.output</name>
 <value>true</value>
 </property>
 </configuration>

Chapter 8

[233]

After configuring the Hive environment, we now specify the location of the
Hive script:

 <script>${workflowRoot}/hive/create.hql</script>

We also have to provide the mechanism to pass arguments to the Hive script.
But instead of building out the command line one component at a time, we'll add
the param elements that map the name of a configuration element in the job.
properties file to variables specified in the Hive script; this mechanism is also
supported with Pig actions:

 <param>dbName=${dbName}</param>
 <param>ingestDir=${ingestDir}</param>
 </hive>

The Hive node then closes as the others, as follows:

 <ok to="end"/>
 <error to="fail"/>
</action>

We now need to put all this together to run the multistage workflow in Oozie.
The full workflow.xml file can be found at https://github.com/learninghadoop2/
book-examples/tree/master/ch8/v2 and the workflow is visualized in the
following diagram:

Extract with PigPrepare Collect Tweets Load in Hive

end

fs-node shell-node pig-node hive-node

Data ingestion workflow v2

This workflow performs all the steps discussed before; it generates tweet data,
extracts subsets of data via Pig, and then ingests these into Hive.

Data Lifecycle Management

[234]

A note on workflow directory structure
We now have quite a few files in our workflow directory and it is best to adopt some
structure and naming conventions. For the current workflow, our directory on HDFS
looks like the following:

/hive/
/hive/create.hql
/lib/
/pig/
/pig/extract_for_hive.pig
/scripts/
/scripts/gettweets.sh
/scripts/stream-json-batch.py
/scripts/twitter-keys
/hive-site.xml
/job.properties
/workflow.xml

The model we follow is to keep configuration files in the top-level directory but to
keep files related to a given action type in dedicated subdirectories. Note that it is
useful to have a lib directory even if empty, as some node types look for it.

With the preceding structure, the job.properties file for our combined job is now
the following:

jobTracker=localhost.localdomain:8032
nameNode=hdfs://localhost.localdomain:8020
queueName=default
tasksRoot=book

workflowRoot=${nameNode}/user/${user.name}/${tasksRoot}/v2
oozie.wf.application.path=${nameNode}/user/${user.name}/${tasksRoot}/
v2
oozie.use.system.libpath=true
EXEC=gettweets.sh
inputDir=/tmp/tweets
outputDir=/tmp/tweetdata
ingestDir=/tmp/tweetdata
dbName=twttr

In the preceding code, we've fully updated the workflow.xml definition to include
all the steps described so far—including an initial fs node to create the required
directory without worrying about user permissions.

Chapter 8

[235]

Introducing HCatalog
If we look at our current workflow, there is inefficiency in how we use HDFS as the
interface between Pig and Hive. We need to output the result of our Pig script onto
HDFS, where the Hive script can then use it as the location of some new tables. What
this highlights is that it is often very useful to have data stored in Hive, but this is
limited, as few tools (primarily Hive) can access the Hive metastore and hence read
and write such data. If we think about it, Hive has two main layers: its tools for
accessing and manipulating its data plus the execution framework to run queries on
that data.

The HCatalog subproject of Hive effectively provides an independent implementation
of the first of these layers—the means to access and manipulate data in the Hive
metastore. HCatalog provides mechanisms for other tools, such as Pig and
MapReduce, to natively read and write table-structured data that is stored on HDFS.

Remember, of course, that the data is stored on HDFS in one format or another. The
Hive metastore provides the models to abstract these files into the relational table
structure familiar from Hive. So when we say we are storing data in HCatalog, what
we really mean is that we are storing data on HDFS in such a way that this data can
then be exposed by table structures specified within the Hive metastore. Conversely,
when we refer to Hive data, what we really mean is data whose metadata is stored in
the Hive metastore, and which can be accessed by any metastore-aware tool, such
as HCatalog.

Using HCatalog
The HCatalog command-line tool is called hcat and will be preinstalled on the
Cloudera QuickStart VM—it is installed, in fact, with any version of Hive later than
0.11 inclusive.

The hcat utility doesn't have an interactive mode, so generally you will use it with
explicit command-line arguments or by pointing it at a file of commands, as follows:

$ hcat –e "use default; show tables"

$ hcat –f commands.hql

Though the hcat tool is useful and can be incorporated into scripts, the more
interesting element of HCatalog for our purposes here is its integration with
Pig. HCatalog defines a new Pig loader called HCatLoader and a storer called
HCatStorer. As the names suggest, these allow Pig scripts to read from or write to
Hive tables directly. We can use this mechanism to replace our previous Pig and
Hive actions in our Oozie workflow with a single HCatalog-based Pig action that
writes the output of the Pig job directly into our tables in Hive.

Data Lifecycle Management

[236]

For clarity, we'll create new tables named tweets_hcat, places_hcat, and
users_hcat into which we'll insert this data; note that these are no longer
external tables:

CREATE TABLE tweets_hcat…
CREATE TABLE places_hcat …
CREATE TABLE users_hcat …

Note that if we had these commands in a script file, we could use the hcat CLI
tool to execute them, as follows:

$ hcat –f create.hql

The HCat CLI tool does not, however, offer an interactive shell akin to the Hive CLI.
We can now use our previous Pig script and need to only change the store commands,
replacing the use of PigStorage with HCatStorer. Our updated Pig script,
extract_to_hcat.pig, therefore includes store commands such as the following:

store tweets_tsv into 'twttr.tweets_hcat' using org.apache.hive.
hcatalog.pig.HCatStorer();

Note that the package name for the HCatStorer class has the org.apache.hive.
hcatalog prefix; when HCatalog was in the Apache incubator, it used org.apache.
hcatalog for its package prefix. This older form is now deprecated, and the new
form that explicitly shows HCatalog as a subproject of Hive should be used instead.

With this new Pig script, we can now replace our previous Pig and Hive action
with an updated Pig action using HCatalog. This also requires the first usage of the
Oozie sharelib, which we'll discuss in the next section. In our workflow definition,
the pig element of this action will be defined as shown in the following xml and can
be found as v3 of the pipeline in the source bundle; in v3, we've also added a utility
Hive node to run before the Pig node to ensure that all necessary tables exist before
the Pig script that requires them is executed.

<pig>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <job-xml>${workflowRoot}/hive-site.xml</job-xml>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 <property>
 <name>oozie.action.sharelib.for.pig</name>
 <value>pig,hcatalog</value>

Chapter 8

[237]

 </property>
 </configuration>
 <script>${workflowRoot}/pig/extract_to_hcat.pig
 </script>
 <argument>-param</argument>
 <argument>inputDir=${inputDir}</argument>
</pig>

The two changes of note are the addition of the explicit reference to the
hive-site.xml file; this is required by HCatalog, and the new configuration
element that tells Oozie to include the required HCatalog JARs.

The Oozie sharelib
That last addition touched on an important aspect of Oozie we've not mentioned
thus far: the Oozie sharelib. When Oozie runs all its various action types, it requires
multiple JARs to access Hadoop and to invoke various tools, such as Hive and Pig. As
part of the Oozie installation, a large number of dependent JARs have been placed on
HDFS to be used by Oozie and its various action types: this is the Oozie sharelib.

For most usages of Oozie, it's enough to know the sharelib exists, usually under
/user/oozie/share/lib on HDFS, and when, as in the previous example, some
explicit configuration values need to be added. When using a Pig action, the Pig
JARs will automatically get picked up, but when the Pig script uses something like
HCatalog, then this dependency will not be explicitly known to Oozie.

The Oozie CLI allows manipulation of the sharelib, though the scenarios where this
will be required are outside of the scope of this book. The following command can be
useful though to see which components are included in the Oozie sharelib:

$ oozie admin -shareliblist

The following command is useful to see the individual JARs comprising a particular
component within the sharelib, in this case HCatalog:

$ oozie admin -shareliblist hcat

These commands can be useful to verify that the required JARs are being included
and to see which specific versions are being used.

Data Lifecycle Management

[238]

HCatalog and partitioned tables
If you rerun the previous workflow a second time, it will fail; dig into the logs,
and you will see HCatalog complaining that it cannot write to a table that already
contains data. This is a current limitation of HCatalog; it views tables and partitions
within tables as immutable by default. Hive, on the other hand, will add new data to
a table or partition; its default view of a table is that it is mutable.

Upcoming changes to Hive and HCatalog will see the support of a new table
property that will control this behavior in either tool; for example, the following
added to a table definition would allow table appends as supported in Hive today:

TBLPROPERTIES("immutable"="false")

This is currently not available in the shipping version of Hive and HCatalog,
however. For us to have a workflow that adds more and more data into our tables,
we therefore need to create a new partition for each new run of the workflow. We've
made these changes in v4 of our pipeline, where we first recreate the tables with an
integer partition key, as follows:

CREATE TABLE tweets_hcat (
…)
PARTITIONED BY (partition_key int)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE;

CREATE TABLE `places_hcat`(
…)
partitioned by(partition_key int)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE
TBLPROPERTIES("immutable"="false") ;

CREATE TABLE `users_hcat`(
…)
partitioned by(partition_key int)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\u0001'
STORED AS SEQUENCEFILE
TBLPROPERTIES("immutable"="false") ;

Chapter 8

[239]

The Pig HCatStorer takes an optional partition definition and we modify the store
statements in our Pig script accordingly; for example:

store tweets_tsv into 'twttr.tweets_hcat'
using org.apache.hive.hcatalog.pig.HCatStorer(
'partition_key=$partitionKey');

We then modify our Pig action in the workflow.xml file to include this
additional parameter:

<script>${workflowRoot}/pig/extract_to_hcat.pig</script>
 <param>inputDir=${inputDir}</param>
 <param>partitionKey=${partitionKey}</param>

The question is then how we pass this partition key to the workflow. We could
specify it in the job.properties file, but by doing so we would hit the same
problem with trying to write to an existing partition on the next re-run.

Create tablesPrepare Collect Tweets Extract & Load

with Pig

end

fs-node shell-node pig-nodehive-node

Ingestion workflow v4

For now, we'll pass this as an explicit argument to the invocation of the Oozie CLI
and explore better ways to do this later:

$ oozie job –run –config v4/job.properties –DpartitionKey=12345

Data Lifecycle Management

[240]

Note that a consequence of this behavior is that rerunning an HCat
workflow with the same arguments will fail. Be aware of this when
testing workflows or playing with the sample code from this book.

Producing derived data
Now that we have our main data pipeline established, there is most likely a series
of actions that we wish to take after we add each new additional dataset. As a simple
example, note that with our previous mechanism of adding each set of user data
to a separate partition, the users_hcat table will contain users multiple times.
Let's create a new table for unique users and regenerate this each time we add
new user data.

Note that given the aforementioned limitations of HCatalog, we'll use a Hive action
for this purpose, as we need to replace the data in a table.

First, we'll create a new table for unique user information, as follows:

CREATE TABLE IF NOT EXISTS `unique_users`(
 `user_id` string ,
 `name` string ,
 `description` string ,
 `screen_name` string)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\t'
STORED AS sequencefile ;

In this table, we'll only store the attributes of a user that either never change (ID)
or change rarely (the screen name, and so on). We can then write a simple Hive
statement to populate this table from the full users_hcat table:

USE twttr;
INSERT OVERWRITE TABLE unique_users
SELECT DISTINCT user_id, name, description, screen_name
FROM users_hcat;

Chapter 8

[241]

We can then add an additional Hive action node that comes after our previous Pig
node in the workflow. When doing this, we discover that our pattern of simply
giving nodes names such as hive-node is a really bad idea, as we now have two
Hive-based nodes. In v5 of the workflow, we add this new node and also change our
nodes to have more descriptive names:

Create tablesPrepare Collect Tweets Extract & Load

with Pig

fs-node gettweets-node heat-ingest-nodecreate-tables-node

Transform

end

derived-data-node

Ingestion workflow v5

Performing multiple actions in parallel
Our workflow has two types of activity: initial setup with the nodes that initialize the
filesystem and Hive tables, and the functional nodes that perform actual processing.
If we look at the two setup nodes we have been using, it is obvious that they are
quite distinct and not interdependent. We can therefore take advantage of an Oozie
feature called fork and join nodes to execute these actions in parallel. The start of
our workflow.xml file now becomes:

 <start to="setup-fork-node"/>

The Oozie fork node contains a number of path elements, each of which specifies a
starting node. Each of these will be launched in parallel:

<fork name="setup-fork-node">
 <path start="setup-filesystem-node" />
 <path start="create-tables-node" />
</fork>

Data Lifecycle Management

[242]

Each of the specified action nodes is no different from any we have used previously.
An action node can link to a series of other nodes; the only requirement is that each
parallel series of actions must end with a transition to the join node associated with
the fork node, as follows:

 <action name="setup-filesystem-node">
…
 <ok to="setup-join-node"/>
 <error to="fail"/>
 </action>
 <action name="create-tables-node">
…
 <ok to="setup-join-node"/>
 <error to="fail"/>
 </action>

The join node itself acts as the point of coordination; any workflow that has
completed will wait until all the paths specified in the fork node reach this point.
At that point, the workflow continues at the node specified within the join node.
Here's how the join node is used:

<join name="create-join-node" to="gettweets-node"/>

In the preceding code we omitted the action definitions for space purposes, but the
full workflow definition is in v6:

setup-filesystem-node

end

Collect Tweets Extract & Load

with Pig

Transform

Prepare

Prepare
derived-data-nodehcat-ingest-nodegettweets-nodecreate-join-node

create-tables-node

setup-fork-node

Ingestion workflow v6

Chapter 8

[243]

Calling a subworkflow
Though the fork/join mechanism makes the process of parallel actions more
efficient, it does still add significant verbosity if we include it in our main workflow.
xml definition. Conceptually, we have a series of actions that are performing related
tasks required by our workflow but not necessarily part of it. For this and similar
cases, Oozie offers the ability to invoke a subworkflow. The parent workflow will
execute the child and wait for it to complete, with the ability to pass configuration
elements from one workflow to the other.

The child workflow will be a full workflow in its own right, usually stored in a
directory on HDFS with all the usual structure we expect for a workflow, the main
workflow.xml file, and any required Hive, Pig, or similar files.

We can create a new directory on HDFS called setup-workflow, and in this create the
files required only for our filesystem and Hive creation actions. The subworkflow
configuration file will look like the following:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="create-workflow">
 <start to="setup-fork-node"/>
 <fork name="setup-fork-node">
 <path start="setup-filesystem-node" />
 <path start="create-tables-node" />
 </fork>
 <action name="setup-filesystem-node">
 …
 </action>
 <action name="create-tables-node">
 …
 </action>
 <join name="create-join-node" to="end"/>
 <kill name="fail">
 <message>Action failed, error
 message[${wf:errorMessage(wf:lastErrorNode())}]</message>
 </kill>
 <end name="end"/>
</workflow-app>

Data Lifecycle Management

[244]

With this subworkflow defined, we then modify the first nodes of our main
workflow to use a subworkflow node, as in the following:

 <start to="create-subworkflow-node"/>
 <action name="create-subworkflow-node">
 <sub-workflow>
 <app-path>${subWorkflowRoot}</app-path>
 <propagate-configuration/>
 </sub-workflow>
 <ok to="gettweets-node"/>
 <error to="fail"/>
 </action>

We will specify the subWorkflowPath in the job.properties of our parent
workflow, and the propagate-configuration element will pass the configuration
of the parent workflow to the child.

Adding global settings
By extracting utility nodes into subworkflows, we can significantly reduce clutter
and complexity in our main workflow definition. In v7 of our ingest pipeline, we'll
make one additional simplification and add a global configuration section, as in
the following:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="v7">
 <global>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <job-xml>${workflowRoot}/hive-site.xml</job-xml>
 <configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>${queueName}</value>
 </property>
 </configuration>
</global>
<start to="create-subworkflow-node"/>

By adding this global configuration section, we remove the need to specify any of
these values in the Hive and Pig nodes in the remaining workflow (note that currently
the shell node does not support the global configuration mechanism). This can
dramatically simplify some of our nodes; for example, our Pig node is now as follows:

<action name="hcat-ingest-node">
 <pig>

Chapter 8

[245]

 <configuration>
 <property>
 <name>oozie.action.sharelib.for.pig</name>
 <value>pig,hcatalog</value>
 </property>
 </configuration>
 <script>${workflowRoot}/pig/extract_to_hcat.pig</script>
 <param>inputDir=${inputDir}</param>
 <param>dbName=${dbName}</param>
 <param>partitionKey=${partitionKey}</param>
 </pig>
 <ok to="derived-data-node"/>
 <error to="fail"/>
</action>

As can be seen, we can add additional configuration elements, or indeed override
those specified in the global section, resulting in a much clearer action definition that
focuses only on the information specific to the action in question. Our workflow v7
has had both a global section added as well as the addition of the subworkflow, and
this makes a significant improvement in the workflow readability:

setup-filesystem-node

end

Collect Tweets Extract & Load

with Pig

Transform

Prepare

Prepare
derived-data-nodehcat-ingest-nodegettweets-nodecreate-join-node

create-tables-node

setup-fork-node

create-subworkflow-node

Ingestion workflow v7

Data Lifecycle Management

[246]

Challenges of external data
When we rely on external data to drive our application, we are implicitly dependent
on the quality and stability of that data. This is, of course, true for any data, but when
the data is generated by an external source over which we do not have control, the
risks are most likely higher. Regardless, when building what we expect to be reliable
applications on top of such data feeds, and especially when our data volumes grow,
we need to think about how to mitigate these risks.

Data validation
We use the general term data validation to refer to the act of ensuring that incoming
data complies with our expectations and potentially applying normalization to
modify it accordingly or to even delete malformed or corrupt input. What this
actually involves will be very application-specific. In some cases, the important
thing is ensuring the system only ingests data that conforms to a given definition of
accurate or clean. For our tweet data, we don't care about every single record and
could very easily adopt a policy such as dropping records that don't have values
in particular fields we care about. For other applications, however, it is imperative
to capture every input record, and this might drive the implementation of logic to
reformat every record to make sure it complies with the requirements. In yet other
cases, only correct records will be ingested, but the rest, instead of being discarded,
might be stored elsewhere for later analysis.

The bottom line is that trying to define a generic approach to data validation is vastly
beyond the scope of this chapter.

However, we can offer some thoughts on where in the pipeline to incorporate
various types of validation logic.

Validation actions
Logic to do any necessary validation or cleanup can be incorporated directly into
other actions. A shell node running a script to gather data can have commands
added to handle malformed records differently. Pig and Hive actions that load data
into tables can either perform filtering on ingest (easier done in Pig) or add caveats
when copying data from an ingest table to the operational store.

Chapter 8

[247]

There is an argument though for the addition of a validation node into the workflow,
even if initially it performs no actual logic. This could, for instance, be a Pig action
that reads the data, applies the validation, and writes the validated data to a new
location to be read by follow-on nodes. The advantage here is that we can later
update the validation logic without altering our other actions, which should reduce
the risk of accidentally breaking the rest of the pipeline and also make nodes more
cleanly defined in terms of responsibilities. The natural extension of this train of
thought is that a new subworkflow for validation is most likely a good model
as well, as it not only provides separation of responsibilities, but also makes the
validation logic easier to test and update.

The obvious disadvantage of this approach is that it adds additional processing and
another cycle of reading the data and writing it all again. This is, of course, directly
working against one of the advantages we highlighted when considering the use of
HCatalog from Pig.

In the end, it will come down to a trade-off of performance against workflow
complexity and maintainability. When considering how to perform validation and
just what that means for your workflow, take all these elements into account before
deciding on an implementation.

Handling format changes
We can't declare victory just because we have data flowing into our system and are
confident the data is sufficiently validated. Particularly when the data comes from an
external source we have to think about how the structure of the data might change
over time.

Remember that systems such as Hive only apply the table schema when the data is
being read. This is a huge benefit in enabling flexible data storage and ingest, but
can lead to user-facing queries or workloads failing suddenly when the ingested
data no longer matches the queries being executed against it. A relational database,
which applies schemas on write, would not even allow such data to be ingested
into the system.

The obvious approach to handling changes made to the data format would be to
reprocess existing data into the new format. Though this is tractable on smaller
datasets, it quickly becomes infeasible on the sort of volumes seen in large
Hadoop clusters.

Data Lifecycle Management

[248]

Handling schema evolution with Avro
Avro has some features with respect to its integration with Hive that help us with
this problem. If we take our table for tweets data, we could represent the structure
of a tweet record by the following Avro schema:

{
 "namespace": "com.learninghadoop2.avrotables",
 "type":"record",
 "name":"tweets_avro",
 "fields":[
 {"name": "created_at", "type": ["null" ,"string"]},
 {"name": "tweet_id_str", "type": ["null","string"]},
 {"name": "text","type":["null","string"]},
 {"name": "in_reply_to", "type": ["null","string"]},
 {"name": "is_retweeted", "type": ["null","string"]},
 {"name": "user_id", "type": ["null","string"]},
 {"name": "place_id", "type": ["null","string"]}
]
}

Create the preceding schema in a file called tweets_avro.avsc—this is the standard
file extension for Avro schemas. Then, place it on HDFS; we like to have a common
location for schema files such as /schema/avro.

With this definition, we can now create a Hive table that uses this schema for its table
specification, as follows:

CREATE TABLE tweets_avro
PARTITIONED BY (`partition_key` int)
ROW FORMAT SERDE
 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES (
'avro.schema.url'='hdfs://localhost.localdomain:8020/schema/avro/
tweets_avro.avsc'
)
STORED AS INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';

Chapter 8

[249]

Then, look at the table definition from within Hive (or HCatalog, which also
supports such definitions):

describe tweets_avro
OK
created_at string from deserializer
tweet_id_str string from deserializer
text string from deserializer
in_reply_to string from deserializer
is_retweeted string from deserializer
user_id string from deserializer
place_id string from deserializer
partition_key int None

We can also use this table like any other, for example, to copy the data from partition
3 from the non-Avro table into the Avro table, as follows:

SET hive.exec.dynamic.partition.mode=nonstrict
INSERT INTO TABLE tweets_avro
PARTITION (partition_key)
SELECT FROM tweets_hcat

Just as in previous examples, if Avro dependencies are not present
in the classpath, we need to add the Avro MapReduce JAR to our
environment before being able to select from the table.

We now have a new tweets table specified by an Avro schema; so far it just looks like
other tables. But the real benefits for our purposes in this chapter are in how we can
use the Avro mechanism to handle schema evolution. Let's add a new field to our
table schema, as follows:

{
 "namespace": "com.learninghadoop2.avrotables",
 "type":"record",
 "name":"tweets_avro",
 "fields":[

Data Lifecycle Management

[250]

 {"name": "created_at", "type": ["null" ,"string"]},
 {"name": "tweet_id_str", "type": ["null","string"]},
 {"name": "text","type":["null","string"]},
 {"name": "in_reply_to", "type": ["null","string"]},
 {"name": "is_retweeted", "type": ["null","string"]},
 {"name": "user_id", "type": ["null","string"]},
 {"name": "place_id", "type": ["null","string"]},
 {"name": "new_feature", "type": "string", "default": "wow!"}
]
}

With this new schema in place, we can validate that the table definition has also been
updated, as follows:

describe tweets_avro;
OK
created_at string from deserializer
tweet_id_str string from deserializer
text string from deserializer
in_reply_to string from deserializer
is_retweeted string from deserializer
user_id string from deserializer
place_id string from deserializer
new_feature string from deserializer
partition_key int None

Without adding any new data, we can run queries on the new field that will return
the default value for our existing data, as follows:

SELECT new_feature FROM tweets_avro LIMIT 5;
...
OK
wow!
wow!
wow!
wow!
wow!

Even more impressive is the fact that the new column doesn't need to be added
at the end; it can be anywhere in the record. With this mechanism, we can now
update our Avro schemas to represent the new data structure and see these changes
automatically reflected in our Hive table definitions. Any queries that refer to the
new column will retrieve the default value for all our existing data that does not
have that field present.

Chapter 8

[251]

Note that the default mechanism we are using here is core to Avro and is not specific
to Hive. Avro is a very powerful and flexible format that has applications in many
areas and is definitely worth deeper examination than we are giving it here.

Technically, what this provides us with is forward compatibility. We can make
changes to our table schema and have all our existing data remain automatically
compliant with the new structure we can't, however, continue to ingest data of
the old format into the updated tables since the mechanism does not provide
backward compatibility:

INSERT INTO TABLE tweets_avro
PARTITION (partition_key)
SELECT * FROM tweets_hcat;
FAILED: SemanticException [Error 10044]: Line 1:18 Cannot insert into
target table because column number/types are different 'tweets_avro':
Table insclause-0 has 8 columns, but query has 7 columns.

Supporting schema evolution with Avro allows data changes to be something that
is handled as part of normal business instead of the firefighting emergency they
all too often turn into. But plainly, it's not for free; there is still a need to make the
changes in the pipeline and roll these into production. Having Hive tables that
provide forward compatibility does, however, allow the process to be performed in
more manageable steps; otherwise, you would need to synchronize changes across
every stage of the pipeline. If the changes are made from ingest up to the point
they are inserted into Avro-backed Hive tables, then all users of those tables can
remain unchanged (as long as they don't do things like select *, which is usually
a terrible idea anyway) and continue to run existing queries against the new data.
These applications can then be changed on a different timetable to the ingestion
mechanism. In our v8 of the ingest pipeline, we show how to fully use Avro tables
for all of our existing functionality.

Note that Hive 0.14, currently unreleased at the time of writing this, will
likely include more built-in support for Avro that might simplify the
process of schema evolution even further. If Hive 0.14 is available when
you read this, then do check out the final implementation.

Final thoughts on using Avro schema evolution
With this discussion of Avro, we have touched on some aspects of much broader
topics, in particular of data management on a broader scale and policies around data
versioning and retention. Much of this area becomes very specific to an organization,
but here are a few parting thoughts that we feel are more broadly applicable.

Data Lifecycle Management

[252]

Only make additive changes
We discussed adding columns in the preceding example. Sometimes, though more
rarely, your source data drops columns or you discover you no longer need a new
column. Avro doesn't really provide tools to help with this, and we feel it is often
undesirable. Instead of dropping old columns, we tend to maintain the old data and
simply do not use the empty columns in all the new data. This is much easier to
manage if you control the data format; if you are ingesting external sources, then to
follow this approach you will either need to reprocess data to remove the old column
or change the ingest mechanism to add a default value for all new data.

Manage schema versions explicitly
In the preceding examples, we had a single schema file to which we made changes
directly. This is likely a very bad idea, as it removes our ability to track schema
changes over time. In addition to treating schemas as artifacts to be kept under
version control (your schemas are in Git too, aren't they?) it is often useful to tag
each schema with an explicit version. This is particularly useful when the incoming
data is also explicitly versioned. Then, instead of overwriting the existing schema
file, you can add the new file and use an ALTER TABLE statement to point the Hive
table definition at the new schema. We are, of course, assuming here that you don't
have the option of using a different query for the old data with the different format.
Though there is no automatic mechanism for Hive to select schema, there might be
cases where you can control this manually and sidestep the evolution question.

Think about schema distribution
When using a schema file, think about how it will be distributed to the clients.
If, as in the previous example, the file is on HDFS, then it likely makes sense to
give it a high replication factor. The file will be retrieved by each mapper in every
MapReduce job that queries the table.

The Avro URL can also be specified as a local filesystem location (file://), which
is useful for development and also as a web resource (http://). Though the latter is
very useful as it is a convenient mechanism to distribute the schema to non-Hadoop
clients, remember that the load on the web server might be high. With modern
hardware and efficient web servers, this is most likely not a huge concern, but if
you have a cluster of thousands of machines running many parallel jobs where each
mapper needs to hit the web server, then be careful.

Chapter 8

[253]

Collecting additional data
Many data processing systems don't have a single data ingest source; often, one
primary source is enriched by other secondary sources. We will now look at how to
incorporate the retrieval of such reference data into our data warehouse.

At a high level, the problem isn't very different from our retrieval of the raw tweet
data, as we wish to pull data from an external source, possibly do some processing on
it, and store it somewhere where it can be used later. But this does highlight an aspect
we need to consider; do we really want to retrieve this data every time we ingest new
tweets? The answer is certainly no. The reference data changes very rarely, and we
could easily fetch it much less frequently than new tweet data. This raises a question
we've skirted until now: just how do we schedule Oozie workflows?

Scheduling workflows
Until now, we've run all our Oozie workflows on demand from the CLI. Oozie
also has a scheduler that allows jobs to be started either on a timed basis or when
external criteria such as data appearing in HDFS are met. It would be a good fit for
our workflows to have our main tweet pipeline run, say, every 10 minutes but the
reference data only refreshed daily.

Regardless of when data is retrieved, think carefully how to handle
datasets that perform a delete/replace operation. In particular, don't
do the delete before retrieving and validating the new data; otherwise,
any jobs that require the reference data will fail until the next run of the
retrieval succeeds. It could be a good option to include the destructive
operations in a subworkflow that is only triggered after successful
completion of the retrieval steps.

Oozie actually defines two types of applications that it can run: workflows such as
we've used so far and coordinators, which schedule workflows to be executed based
on various criteria. A coordinator job is conceptually similar to our other workflows;
we push an XML configuration file onto HDFS and use a parameterized properties
file to configure it at runtime. In addition, coordinator jobs have the facility to receive
additional parameterization from the events that trigger their execution.

Data Lifecycle Management

[254]

This is possibly best described by an example. Let's say, we wish to do as previously
mentioned and create a coordinator that executes v7 of our ingest workflow every
10 minutes. Here's the coordinator.xml file (the standard name for the coordinator
XML definition):

<coordinator-app name="tweets-10min-coordinator" frequency="${freq}"
start="${startTime}" end="${endTime}" timezone="UTC" xmlns="uri:oozie
:coordinator:0.2">

The main action node in a coordinator is the workflow, for which we need to specify
its root location on HDFS and all required properties, as follows:

 <action>
 <workflow>
 <app-path>${workflowPath}</app-path>
 <configuration>
 <property>
 <name>workflowRoot</name>
 <value>${workflowRoot}</value>
 </property>
…

We also need to include any properties required by any action in the workflow or
by any subworkflow it triggers; in effect, this means that any user-defined variables
present in any of the workflows to be triggered need to be included here, as follows:

 <property>
 <name>dbName</name>
 <value>${dbName}</value>
 </property>
 <property>
 <name>partitionKey</name>
 <value>${coord:formatTime(coord:nominalTime(),
 'yyyyMMddhhmm')}
 </value>
 </property>
 <property>
 <name>exec</name>
 <value>gettweets.sh</value>
 </property>
 <property>
 <name>inputDir</name>
 <value>/tmp/tweets</value>
 </property>
 <property>

Chapter 8

[255]

 <name>subWorkflowRoot</name>
 <value>${subWorkflowRoot}</value>
 </property>
 </configuration>
 </workflow>
 </action>
</coordinator-app>

We used a few coordinator-specific features in the preceding xml. Note the
specification of the starting and ending time of the coordinator and also its frequency
(in minutes). We are using the simplest form here; Oozie also has a set of functions to
allow quite rich specifications of the frequency.

We use coordinator EL functions in our definition of the partitionKey variable.
Earlier, when running workflows from the CLI, we specified these explicitly but
mentioned there was a better way—this is it. The following expression generates a
formatted output containing the year, month, day, hour, and minute:

${coord:formatTime(coord:nominalTime(), 'yyyyMMddhhmm')}

If we then use this as the value for our partition key, we can ensure that each
invocation of the workflow correctly creates a unique partition in our HCatalog tables.

The corresponding job.properties for the coordinator job looks much like our
previous config files with the usual entries for the NameNode and similar variables
as well as having values for the application-specific variables, such as dbName. In
addition, we need to specify the root of the coordinator location on HDFS, as follows:

oozie.coord.application.path=${nameNode}/user/${user.
name}/${tasksRoot}/tweets_10min

Note the oozie.coord namespace prefix instead of the previously used oozie.wf.
With the coordinator definition on HDFS, we can submit the file to Oozie just as
with the previous jobs. But in this case, the job will only run for a given time period.
Specifically, it will run every five minutes (the frequency is variable) when the
system clock is between startTime and endTime.

We've included the full configuration in the tweets_10min directory in the source
code for this chapter.

Data Lifecycle Management

[256]

Other Oozie triggers
The preceding coordinator has a very simple trigger; it starts periodically within a
specified time range. Oozie has an additional capability called datasets, where it can
be triggered by the availability of new data.

This isn't a great fit for how we've defined our pipeline until now, but imagine
that, instead of our workflow collecting tweets as its first step, an external system
was pushing new files of tweets onto HDFS on a continuous basis. Oozie can be
configured to either look for the presence of new data based on a directory pattern or
to specifically trigger when a ready file appears on HDFS. This latter configuration
provides a very convenient mechanism with which to integrate the output of
MapReduce jobs, which by default, write a _SUCCESS file into their output directory.

Oozie datasets are arguably one of the most powerful parts of the whole system, and
we cannot do them justice here for space reasons. But we do strongly recommend
that you consult the Oozie home page for more information.

Pulling it all together
Let's review what we've discussed until now and how we can use Oozie to build
a sophisticated series of workflows that implement an approach to data life cycle
management by putting together all the discussed techniques.

First, it's important to define clear responsibilities and implement parts of the system
using good design and separation of concern principles. By applying this, we end up
with several different workflows:

•	 A subworkflow to ensure the environment (mainly HDFS and Hive
metadata) is correctly configured

•	 A subworkflow to perform data validation
•	 The main workflow that triggers both the preceding subworkflows and then

pulls new data through a multistep ingest pipeline
•	 A coordinator that executes the preceding workflows every 10 minutes
•	 A second coordinator that ingests reference data that will be useful to the

application pipeline

We also define all our tables with Avro schemas and use them wherever possible to
help manage schema evolution and changing data formats over time.

We present the full source code of these components in the final version of the
workflow in the source code of this chapter.

Chapter 8

[257]

Other tools to help
Though Oozie is a very powerful tool, sometimes it can be somewhat difficult
to correctly write workflow definition files. As pipelines get sizeable, managing
complexity becomes a challenge even with good functional partitioning into multiple
workflows. At a simpler level, XML is just never fun for a human to write! There are
a few tools that can help. Hue, the tool calling itself the Hadoop UI (http://gethue.
com/), provides some graphical tools to help compose, execute, and manage Oozie
workflows. Though powerful, Hue is not a beginner tool; we'll mention it a little
more in Chapter 11, Where to Go Next.

A new Apache project called Falcon (http://falcon.incubator.apache.org) might
also be of interest. Falcon uses Oozie to build a range of much higher-level data flows
and actions. For example, Falcon provides recipes to enable and ensure cross-site
replication across multiple Hadoop clusters. The Falcon team is working on much
better interfaces to build their workflows, so the project might well be worth watching.

Summary
Hopefully, this chapter presented the topic of data life cycle management as
something other than a dry abstract concept. We covered a lot, particularly:

•	 The definition of data life cycle management and how it covers a number
of issues and techniques that usually become important with large
data volumes

•	 The concept of building a data ingest pipeline along good data life
cycle management principles that can then be utilized by higher-level
analytic tools

•	 Oozie as a Hadoop-focused workflow manager and how we can use it
to compose a series of actions into a unified workflow

•	 Various Oozie tools, such as subworkflows, parallel action execution,
and global variables, that allow us to apply true design principles to
our workflows

•	 HCatalog and how it provides the means for tools other than Hive to read
and write table-structured data; we showed its great promise and integration
with tools such as Pig but also highlighted some current weaknesses

•	 Avro as our tool of choice to handle schema evolution over time

Data Lifecycle Management

[258]

•	 Using Oozie coordinators to build scheduled workflows based either
on time intervals or data availability to drive the execution of multiple
ingest pipelines

•	 Some other tools that can make these tasks easier, namely, Hue and Falcon

In the next chapter, we'll look at several of the higher-level analytic tools and
frameworks that can build sophisticated application logic upon the data collected in
an ingest pipeline.

Making Development Easier
In this chapter, we will look at how, depending on use cases and end goals,
application development in Hadoop can be simplified using a number of abstractions
and frameworks built on top of the Java APIs. In particular, we will learn about the
following topics:

•	 How the streaming API allows us to write MapReduce jobs using dynamic
languages such as Python and Ruby

•	 How frameworks such as Apache Crunch and Kite Morphlines allow us to
express data transformation pipelines using higher-level abstractions

•	 How Kite Data, a promising framework developed by Cloudera, provides us
with the ability to apply design patterns and boilerplate to ease integration
and interoperability of different components within the Hadoop ecosystem

Choosing a framework
In the previous chapters, we looked at the MapReduce and Spark programming
APIs to write distributed applications. Although very powerful and flexible, these
APIs come with a certain level of complexity and possibly require significant
development time.

In an effort to reduce verbosity, we introduced the Pig and Hive frameworks,
which compile domain-specific languages, Pig Latin and Hive QL, into a number
of MapReduce jobs or Spark DAGs, effectively abstracting the APIs away. Both
languages can be extended with UDFs, which is a way of mapping complex logic to
the Pig and Hive data models.

Making Development Easier

[260]

At times when we need a certain degree of flexibility and modularity, things can
get tricky. Depending on the use case and developer needs, the Hadoop ecosystem
presents a vast choice of APIs, frameworks, and libraries. In this chapter, we identify
four categories of users and match them with the following relevant tools:

•	 Developers that want to avoid Java in favor of scripting MapReduce jobs
using dynamic languages, or use languages not implemented on the JVM.
A typical use case would be upfront analysis and rapid prototyping:
Hadoop streaming

•	 Java developers that need to integrate components of the Hadoop ecosystem
and could benefit from codified design patterns and boilerplate: Kite Data

•	 Java developers who want to write modular data pipelines using a familiar
API: Apache Crunch

•	 Developers who would rather configure chains of data transformations.
For instance, a data engineer that wants to embed existing code in an ETL
pipeline: Kite Morphlines

Hadoop streaming
We have mentioned previously that MapReduce programs don't have to be written
in Java. There are several reasons why you might want or need to write your map
and reduce tasks in another language. Perhaps you have existing code to leverage
or need to use third-party binaries—the reasons are varied and valid.

Hadoop provides a number of mechanisms to aid non-Java development, primary
amongst which are Hadoop pipes that provide a native C++ interface and Hadoop
streaming that allows any program that uses standard input and output to be used
for map and reduce tasks. With the MapReduce Java API, both map and reduce
tasks provide implementations for methods that contain the task functionality.
These methods receive the input to the task as method arguments and then output
results via the Context object. This is a clear and type-safe interface, but it is by
definition Java-specific.

Hadoop streaming takes a different approach. With streaming, you write a map task
that reads its input from standard input, one line at a time, and gives the output of
its results to standard output. The reduce task then does the same, again using only
standard input and output for its data flow.

Chapter 9

[261]

Any program that reads and writes from standard input and output can be used
in streaming, such as compiled binaries, Unix shell scripts, or programs written in
a dynamic language such as Python or Ruby. The biggest advantage to streaming
is that it can allow you to try ideas and iterate them more quickly than using Java.
Instead of a compile/JAR/submit cycle, you just write the scripts and pass them as
arguments to the streaming JAR file. Especially when doing initial analysis on a new
dataset or trying out new ideas, this can significantly speed up development.

The classic debate regarding dynamic versus static languages balances the benefits of
swift development against runtime performance and type checking. These dynamic
downsides also apply when using streaming. Consequently, we favor the use of
streaming for upfront analysis and Java for the implementation of jobs that will be
executed on the production cluster.

Streaming word count in Python
We'll demonstrate Hadoop streaming by re-implementing our familiar word
count example using Python. First, we create a script that will be our mapper.
It consumes UTF-8 encoded rows of text from standard input with a for loop,
splits this into words, and uses the print function to write each word to standard
output, as follows:

#!/bin/env python
import sys

for line in sys.stdin:
 # skip empty lines
 if line == '\n':
 continue

 # preserve utf-8 encoding
 try:
 line = line.encode('utf-8')
 except UnicodeDecodeError:
 continue
 # newline characters can appear within the text
 line = line.replace('\n', '')

 # lowercase and tokenize
 line = line.lower().split()

Making Development Easier

[262]

 for term in line:
 if not term:
 continue
 try:
 print(
 u"%s" % (
 term.decode('utf-8')))
 except UnicodeEncodeError:
 continue

The reducer counts the number of occurrences of each word from standard input,
and gives the output as the final value to standard output, as follows:

#!/bin/env python
import sys

count = 1
current = None

for word in sys.stdin:
 word = word.strip()

 if word == current:
 count += 1
 else:
 if current:
 print "%s\t%s" % (current.decode('utf-8'), count)
 current = word
 count = 1
if current == word:
 print "%s\t%s" % (current.decode('utf-8'), count)

In both cases, we are implicitly using Hadoop input and output formats
discussed in the earlier chapters. It is the TextInputFormat that
processes the source file and provides each line one at a time to the
map script. Conversely, the TextOutputFormat will ensure that the
output of reduce tasks is also correctly written as text.

Copy map.py and reduce.py to HDFS, and execute the scripts as a streaming job
using the sample data from the previous chapters, as follows:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-
streaming.jar \

-file map.py \

Chapter 9

[263]

-mapper "python map.py" \

-file reduce.py \

-reducer "python reduce.py" \

-input sample.txt \

-output output.txt

Tweets are UTF-8 encoded. Make sure that PYTHONIOENCODING
is set accordingly in order to pipe data in a UNIX terminal:
$ export PYTHONIOENCODING='UTF-8'

The same code can be executed from the command-line prompt:

$ cat sample.txt | python map.py| python reduce.py > out.txt

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/wc/python/
map.py.

Differences in jobs when using streaming
In Java, we know that our map() method will be invoked once for each input
key/value pair and our reduce() method will be invoked for each key and its
set of values.

With streaming, we don't have the concept of the map or reduce methods anymore;
instead we have written scripts that process streams of received data. This changes
how we need to write our reducer. In Java, the grouping of values to each key was
performed by Hadoop; each invocation of the reduce method would receive a single,
tab separated key and all its values. In streaming, each instance of the reduce task is
given the individual ungathered values one at a time.

Hadoop streaming does sort the keys, for example, if a mapper emitted the
following data:

First 1

Word 1

Word 1

A 1

First 1

Making Development Easier

[264]

The streaming reducer would receive it in the following order:

A 1

First 1

First 1

Word 1

Word 1

Hadoop still collects the values for each key and ensures that each key is passed
only to a single reducer. In other words, a reducer gets all the values for a number of
keys, and they are grouped together; however, they are not packaged into individual
executions of the reducer, that is, one per key, as with the Java API. Since Hadoop
streaming uses the stdin and stdout channels to exchange data between tasks,
debug and error messages should not be printed to standard output. In the following
example, we will use the Python logging (https://docs.python.org/2/library/
logging.html) package to log warning statements to a file.

Finding important words in text
We will now implement a metric, Term Frequency-Inverse Document Frequency
(TF-IDF), that will help us to determine the importance of words based on how
frequently they appear across a set of documents (tweets, in our case).

Intuitively, if a word appears frequently in a document it is important and should
be given a high score. However, if a word appears in many documents, we should
penalize it with a lower score, as it is a common word and its frequency is not unique
to this document.

Therefore, common words such as the, and for, which appear in many documents,
will be scaled down. Words that appear frequently in a single tweet will be scaled
up. Uses of TF-IDF, often in combination with other metrics and techniques, include
stop word removal and text classification. Note that this technique will have
shortcomings when dealing with short documents, such as tweets. In such cases, the
term frequency component will tend to become one. Conversely, one could exploit
this property to detect outliers.

The definition of TF-IDF we will use in our example is the following:

tf = # of times term appears in a document (raw frequency)
idf = 1+log(# of documents / # documents with term in it)
tf-idf = tf * idf

Chapter 9

[265]

We will implement the algorithm in Python using three MapReduce jobs:

•	 The first one calculates term frequency
•	 The second one calculates document frequency (the denominator of IDF)
•	 The third one calculates per-tweet TF-IDF

Calculate term frequency
The term frequency part is very similar to the word count example. The main
difference is that we will be using a multi-field, tab-separated, key to keep track of
co-occurrences of terms and document IDs. For each tweet—in JSON format—the
mapper extracts the id_str and text fields, tokenizes text, and emits a term,
doc_id tuple:

for tweet in sys.stdin:
 # skip empty lines
 if tweet == '\n':
 continue
 try:
 tweet = json.loads(tweet)
 except:
 logger.warn("Invalid input %s " % tweet)
 continue
 # In our example one tweet corresponds to one document.
 doc_id = tweet['id_str']
 if not doc_id:
 continue

 # preserve utf-8 encoding
 text = tweet['text'].encode('utf-8')
 # newline characters can appear within the text
 text = text.replace('\n', '')

 # lowercase and tokenize
 text = text.lower().split()

 for term in text:
 try:
 print(
 u"%s\t%s" % (
 term.decode('utf-8'), doc_id.decode('utf-8'))
)
 except UnicodeEncodeError:
 logger.warn("Invalid term %s " % term)

Making Development Easier

[266]

In the reducer, we emit the frequency of each term in a document as a
tab-separated string:

freq = 1
cur_term, cur_doc_id = sys.stdin.readline().split()
for line in sys.stdin:
 line = line.strip()
 try:
 term, doc_id = line.split('\t')
 except:
 logger.warn("Invalid record %s " % line)

 # the key is a (doc_id, term) pair
 if (doc_id == cur_doc_id) and (term == cur_term):
 freq += 1

 else:
 print(
 u"%s\t%s\t%s" % (
 cur_term.decode('utf-8'), cur_doc_id.decode('utf-8'),
freq))
 cur_doc_id = doc_id
 cur_term = term
 freq = 1

print(
 u"%s\t%s\t%s" % (
 cur_term.decode('utf-8'), cur_doc_id.decode('utf-8'), freq))

For this implementation to work, it is crucial that the reducer input is sorted by term.
We can test both scripts from the command line with the following pipe:

$ cat tweets.json | python map-tf.py | sort -k1,2 | \

python reduce-tf.py

Whereas at the command line we use the sort utility, in MapReduce we will use
org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator. This comparator
implements a subset of features provided by the sort command. In particular,
ordering by field can be specified with the –k<position> option. To filter by
term, the first field of our key, we set -D mapreduce.text.key.comparator.
options=-k1:

Chapter 9

[267]

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D map.output.key.field.separator=\t \

-D stream.num.map.output.key.fields=2 \

-Dmapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator \

-D mapreduce.text.key.comparator.options=-k1,2 \

-input tweets.json \

-output /tmp/tf-out.tsv \

-file map-tf.py \

-mapper "python map-tf.py" \

-file reduce-tf.py \

-reducer "python reduce-tf.py"

We specify which fields belong to the key (for shuffling) in the
comparator options.

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/
python/map-tf.py.

Calculate document frequency
The main logic to calculate document frequency is in the reducer, while the mapper
is just an identity function that loads and pipes the (ordered by term) output of the
TF job. In the reducer, for each term, we count how many times it occurs across all
documents. For each term, we keep a buffer key_cache of (term, doc_id, tf) tuples,
and when a new term is found we flush the buffer to standard output, together with
the accumulated document frequency df:

Cache the (term,doc_id, tf) tuple.
key_cache = []

line = sys.stdin.readline().strip()
cur_term, cur_doc_id, cur_tf = line.split('\t')
cur_tf = int(cur_tf)
cur_df = 1

Making Development Easier

[268]

for line in sys.stdin:
 line = line.strip()

 try:
 term, doc_id, tf = line.strip().split('\t')
 tf = int(tf)
 except:
 logger.warn("Invalid record: %s " % line)
 continue

 # term is the only key for this input
 if (term == cur_term):
 # increment document frequency
 cur_df += 1

 key_cache.append(
 u"%s\t%s\t%s" % (term.decode('utf-8'), doc_
id.decode('utf-8'), tf))

 else:
 for key in key_cache:
 print("%s\t%s" % (key, cur_df))

 print (
 u"%s\t%s\t%s\t%s" % (
 cur_term.decode('utf-8'),
 cur_doc_id.decode('utf-8'),
 cur_tf, cur_df)
)

 # flush the cache
 key_cache = []
 cur_doc_id = doc_id
 cur_term = term
 cur_tf = tf
 cur_df = 1

for key in key_cache:
 print(u"%s\t%s" % (key.decode('utf-8'), cur_df))
print(
 u"%s\t%s\t%s\t%s\n" % (
 cur_term.decode('utf-8'),
 cur_doc_id.decode('utf-8'),
 cur_tf, cur_df))

Chapter 9

[269]

We can test the scripts from the command line with:

$ cat /tmp/tf-out.tsv | python map-df.py | python reduce-df.py > /tmp/
df-out.tsv

And we can test the scripts on Hadoop streaming with:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D map.output.key.field.separator=\t \

-D stream.num.map.output.key.fields=3 \

-D mapreduce.output.key.comparator.class=\

org.apache.hadoop.mapreduce.lib.KeyFieldBasedComparator \

-D mapreduce.text.key.comparator.options=-k1 \

-input /tmp/tf-out.tsv/part-00000 \

-output /tmp/df-out.tsv \

-mapper org.apache.hadoop.mapred.lib.IdentityMapper \

-file reduce-df.py \

-reducer "python reduce-df.py"

On Hadoop we use org.apache.hadoop.mapred.lib.IdentityMapper, which
provides the same logic as the map-df.py script.

The mapper and reducer code can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/streaming/tf-idf/
python/map-df.py.

Putting it all together – TF-IDF
To calculate TF-IDF, we only need a mapper that consumes the output of the
previous step:

num_doc = sys.argv[1]

for line in sys.stdin:
 line = line.strip()

 try:
 term, doc_id, tf, df = line.split('\t')

 tf = float(tf)

Making Development Easier

[270]

 df = float(df)
 num_doc = float(num_doc)
 except:
 logger.warn("Invalid record %s" % line)

 # idf = num_doc / df
 tf_idf = tf * (1+math.log(num_doc / df))
 print("%s\t%s\t%s" % (term, doc_id, tf_idf))

The number of documents in the collection is passed as a parameter to tf-idf.py:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-D mapreduce.reduce.tasks=0 \

-input /tmp/df-out.tsv/part-00000 \

-output /tmp/tf-idf.out \

-file tf-idf.py \

-mapper "python tf-idf.py 15578"

To calculate the total number of tweets, we can use the cat and wc Unix utilities in
combination with Hadoop streaming:

/usr/bin/hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
hadoop-streaming.jar \

-input tweets.json \

-output tweets.cnt \

-mapper /bin/cat \

-reducer /usr/bin/wc

The mapper source code can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch9/streaming/tf-idf/python/tf-idf.py.

Kite Data
The Kite SDK (http://www.kitesdk.org) is a collection of classes, command-line
tools, and examples that aims at easing the process of building applications on top
of Hadoop.

In this section we will look at how Kite Data, a subproject of Kite, can ease
integration with several components of a Hadoop data warehouse. Kite examples
can be found at https://github.com/kite-sdk/kite-examples.

Chapter 9

[271]

On Cloudera's QuickStart VM, Kite JARs can be found at /opt/cloudera/parcels/
CDH/lib/kite/.

Kite Data is organized in a number of subprojects, some of which we'll describe in
the following sections.

Data Core
As the name suggests, the core is the building block for all capabilities provided in
the Data module. Its principal abstractions are datasets and repositories.

The org.kitesdk.data.Dataset interface is used to represent an immutable set
of data:

@Immutable
public interface Dataset<E> extends RefinableView<E> {
 String getName();
 DatasetDescriptor getDescriptor();
 Dataset<E> getPartition(PartitionKey key, boolean autoCreate);
 void dropPartition(PartitionKey key);
 Iterable<Dataset<E>> getPartitions();
 URI getUri();
}

Each dataset is identified by a name and an instance of the org.kitesdk.data.
DatasetDescriptor interface, that is the structural description of a dataset and
provides its schema (org.apache.avro.Schema) and partitioning strategy.

Implementations of the Reader<E> interface are used to read data from an underlying
storage system and produce deserialized entities of type E. The newReader() method
can be used to get an appropriate implementation for a given dataset:

public interface DatasetReader<E> extends Iterator<E>, Iterable<E>,
Closeable {
 void open();

 boolean hasNext();

 E next();
 void remove();
 void close();
 boolean isOpen();
}

Making Development Easier

[272]

An instance of DatasetReader will provide methods to read and iterate over streams
of data. Similarly, org.kitesdk.data.DatasetWriter provides an interface to write
streams of data to the Dataset objects:

public interface DatasetWriter<E> extends Flushable, Closeable {
 void open();
 void write(E entity);
 void flush();
 void close();
 boolean isOpen();
}

Like readers, writers are use-once objects. They serialize instances of entities of type E
and write them to the underlying storage system. Writers are usually not instantiated
directly; rather, an appropriate implementation can be created by the newWriter()
factory method. Implementations of DatasetWriter will hold resources until
close() is called and expect the caller to invoke close() in a finally block when
the writer is no longer in use. Finally, note that implementations of DatasetWriter
are typically not thread-safe. The behavior of a writer being accessed from multiple
threads is undefined.

A particular case of a dataset is the View interface, which is as follows:

public interface View<E> {
 Dataset<E> getDataset();
 DatasetReader<E> newReader();
 DatasetWriter<E> newWriter();
 boolean includes(E entity);
 public boolean deleteAll();
}

Views carry subsets of the keys and partitions of an existing dataset; they are
conceptually similar to the notion of "view" in the relational model.

A View interface can be created from ranges of data, or ranges of keys, or as a union
between other views.

Data HCatalog
Data HCatalog is a module that enables the accessing of HCatalog repositories.
The core abstractions of this module are org.kitesdk.data.hcatalog.
HCatalogAbstractDatasetRepository and its concrete implementation, org.
kitesdk.data.hcatalog.HCatalogDatasetRepository.

Chapter 9

[273]

They describe a DatasetRepository that uses HCatalog to manage metadata and
HDFS for storage, as follows:

public class HCatalogDatasetRepository extends
HCatalogAbstractDatasetRepository {
 HCatalogDatasetRepository(Configuration conf) {
 super(conf, new HCatalogManagedMetadataProvider(conf));
 }
 HCatalogDatasetRepository(Configuration conf, MetadataProvider
provider) {
 super(conf, provider);
 }
 public <E> Dataset<E> create(String name, DatasetDescriptor
descriptor) {
 getMetadataProvider().create(name, descriptor);
 return load(name);
 }
 public boolean delete(String name) {
 return getMetadataProvider().delete(name);
 }
 public static class Builder {
 …
 }
}

As of Kite 0.17, Data HCatalog is deprecated in favor of the new
Data Hive module.

The location of the data directory is either chosen by Hive/HCatalog (so-called
"managed tables"), or specified when creating an instance of this class by providing
a filesystem and a root directory in the constructor (external tables).

Data Hive
The kite-data-module exposes Hive schemas via the Dataset interface. As of Kite
0.17, this package supersedes Data HCatalog.

Data MapReduce
The org.kitesdk.data.mapreduce package provides interfaces to read and write
data to and from a Dataset with MapReduce.

Making Development Easier

[274]

Data Spark
The org.kitesdk.data.spark package provides interfaces for reading and writing
data to and from a Dataset with Apache Spark.

Data Crunch
The org.kitesdk.data.crunch.CrunchDatasets package is a helper class to
expose datasets and views as Crunch ReadableSource or Target classes:

public class CrunchDatasets {
public static <E> ReadableSource<E> asSource(View<E> view, Class<E>
type) {
 return new DatasetSourceTarget<E>(view, type);
 }
public static <E> ReadableSource<E> asSource(URI uri, Class<E> type) {
 return new DatasetSourceTarget<E>(uri, type);
 }
public static <E> ReadableSource<E> asSource(String uri, Class<E>
type) {
 return asSource(URI.create(uri), type);
 }

public static <E> Target asTarget(View<E> view) {
 return new DatasetTarget<E>(view);
 }
 public static Target asTarget(String uri) {
 return asTarget(URI.create(uri));
 }
public static Target asTarget(URI uri) {
 return new DatasetTarget<Object>(uri);
 }
}

Apache Crunch
Apache Crunch (http://crunch.apache.org) is a Java and Scala library to create
pipelines of MapReduce jobs. It is based on Google's FlumeJava (http://dl.acm.
org/citation.cfm?id=1806638) paper and library. The project goal is to make
the task of writing MapReduce jobs as straightforward as possible for anybody
familiar with the Java programming language by exposing a number of patterns that
implement operations such as aggregating, joining, filtering, and sorting records.

Chapter 9

[275]

Similar to tools such as Pig, Crunch pipelines are created by composing immutable,
distributed data structures and running all processing operations on such structures;
they are expressed and implemented as user-defined functions. Pipelines are
compiled into a DAG of MapReduce jobs, whose execution is managed by the
library's planner. Crunch allows us to write iterative code and abstracts away the
complexity of thinking in terms of map and reduce operations, while at the same
time avoiding the need of an ad hoc programming language such as PigLatin. In
addition, Crunch offers a highly customizable type system that allows us to work
with, and mix, Hadoop Writables, HBase, and Avro serialized objects.

FlumeJava's main assumption is that MapReduce is the wrong level of abstraction
for several classes of problems, where computations are often made up of multiple,
chained jobs. Frequently, we need to compose logically independent operations (for
example, filtering, projecting, grouping, and other transformations) into a single
physical MapReduce job for performance reasons. This aspect also has implications
for code testability. Although we won't cover this aspect in this chapter, the reader is
encouraged to look further into it by consulting Crunch's documentation.

Getting started
Crunch JARs are already installed on the QuickStart VM. By default, the JARs are
found in /opt/cloudera/parcels/CDH/lib/crunch.

Alternatively, recent Crunch libraries can be downloaded from https://crunch.
apache.org/download.html, from Maven Central or Cloudera-specific repositories.

Concepts
Crunch pipelines are created by composing two abstractions: PCollection
and PTable.

The PCollection<T> interface is a distributed, immutable collection of objects of
type T. The PTable<Key, Value> interface is a distributed, immutable hashtable—a
sub-interface of PCollection—of keys of the Key type and values of the Value type
that exposes methods to work with the key-value pairs.

These two abstractions support the following four primitive operations:

•	 parallelDo: applies a user-defined function, DoFn, to a given PCollection
and returns a new PCollection

•	 union: merges two or more PCollections into a single virtual PCollection

Making Development Easier

[276]

•	 groupByKey: sorts and groups the elements of a PTable by their keys
•	 combineValues: aggregates the values from a groupByKey operation

The https://github.com/learninghadoop2/book-examples/blob/master/ch9/
crunch/src/main/java/com/learninghadoop2/crunch/HashtagCount.java
implements a Crunch MapReduce pipeline that counts hashtag occurrences:

Pipeline pipeline = new MRPipeline(HashtagCount.class, getConf());

pipeline.enableDebug();

PCollection<String> lines = pipeline.readTextFile(args[0]);

PCollection<String> words = lines.parallelDo(new DoFn<String,
String>() {
 public void process(String line, Emitter<String> emitter) {
 for (String word : line.split("\\s+")) {
 if (word.matches("(?:\\s|\\A|^)[##]+([A-Za-z0-9-_]+)")) {
 emitter.emit(word);
 }
 }
 }
}, Writables.strings());

PTable<String, Long> counts = words.count();

pipeline.writeTextFile(counts, args[1]);
// Execute the pipeline as a MapReduce.
pipeline.done();

In this example, we first create a MRPipeline pipeline and use it to first read the
content of sample.txt created with stream.py -t into a collection of strings, where
each element of the collection represents a tweet. We tokenize each tweet into words
with tweet.split("\\s+"), and we emit each word that matches the hashtag
regular expression, serialized as Writable. Note that the tokenizing and filtering
operations are executed in parallel by MapReduce jobs created by the parallelDo
call. We create a PTable that associates each hashtag, represented as a string, with
the number of times it occurred in the datasets. Finally, we write the PTable counts
into HDFS as a textfile. The pipeline is executed with pipeline.done().

Chapter 9

[277]

To compile and execute the pipeline, we can use Gradle to manage the needed
dependencies, as follows:

$./gradlew jar

$./gradlew copyJars

Add the Crunch and Avro dependencies downloaded with copyJars to the LIBJARS
environment variable:

$ export CRUNCH_DEPS=build/libjars/crunch-example/lib

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-
cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-
mapred-1.7.5-cdh5.0.3-hadoop2.jar

Then, run the example on Hadoop:

$ hadoop jar build/libs/crunch-example.jar \

com.learninghadoop2.crunch.HashtagCount \

tweets.json count-out \

-libjars $LIBJARS

Data serialization
One of the framework's goals is to make it easy to process complex records
containing nested and repeated data structures, such as protocol buffers and
Thrift records.

The org.apache.crunch.types.PType interface defines the mapping between a
data type that is used in a Crunch pipeline and a serialization and storage format
that is used to read/write data from/to HDFS. Every PCollection has an associated
PType that tells Crunch how to read/write data.

The org.apache.crunch.types.PTypeFamily interface provides an abstract factory
to implement instances of PType that share the same serialization format. Currently,
Crunch supports two type families: one based on the Writable interface and the other
on Apache Avro.

Although Crunch permits mixing and matching PCollection
interfaces that use different instances of PType in the same pipeline,
each PCollection interfaces's PType must belong to a unique family.
For instance, it is not possible to have a PTable with a key serialized
as Writable and its value serialized using Avro.

Making Development Easier

[278]

Both type families support a common set of primitive types (strings, longs, integers,
floats, doubles, booleans, and bytes) as well as more complex PType interfaces that
can be constructed out of other PTypes. These include tuples and collections of other
PType. A particularly important, complex, PType is tableOf, which determines
whether the return type of paralleDo will be a PCollection or PTable.

New PTypes can be created by inheriting and extending the built-ins of the Avro
and Writable families. This requires implementing input MapFn<S, T> and output
MapFn<T, S> classes. We are implementing PType for instances where S is the
original type and T is the new type .

Derived PTypes can be found in the PTypes class. These include serialization
support for protocol buffers, Thrift records, Java Enums, BigInteger, and UUIDs.
The Elephant Bird library we discussed in Chapter 6, Data Analysis with Apache Pig,
contains additional examples.

Data processing patterns
org.apache.crunch.lib implements a number of design patterns for common data
manipulation operations.

Aggregation and sorting
Most of the data processing patterns provided by org.apache.crunch.lib rely on
the PTable's groupByKey method. The method has three different overloaded forms:

•	 groupByKey(): lets the planner determine the number of partitions
•	 groupByKey(int numPartitions): is used to set the number of partitions

specified by the developer
•	 groupByKey(GroupingOptions options): allows us to specify custom

partitions and comparators for shuffling

The org.apache.crunch.GroupingOptions class takes instances of Hadoop's
Partitioner and RawComparator classes to implement custom partitioning and
sorting operations.

The groupByKey method returns an instance of PGroupedTable, Crunch's
representation of a grouped table. It corresponds to the output of the shuffle phase of
a MapReduce job and allows values to be combined with the combineValue method.

Chapter 9

[279]

The org.apache.crunch.lib.Aggregate package exposes methods to perform
simple aggregations (count, max, top, and length) on the PCollection instances.

Sort provides an API to sort PCollection and PTable instances whose contents
implement the Comparable interface.

By default, Crunch sorts data using one reducer. This behavior can be modified by
passing the number of partitions required to the sort method. The Sort.Order
method signals the order in which a sort should be done.

The following are how different sort options can be specified for collections:

public static <T> PCollection<T> sort(PCollection<T> collection)
public static <T> PCollection<T> sort(PCollection<T> collection,
Sort.Order order)
public static <T> PCollection<T> sort(PCollection<T> collection,
int numReducers, Sort.Order
order)

The following are how different sort options can be specified for tables:

public static <K,V> PTable<K,V> sort(PTable<K,V> table)

public static <K,V> PTable<K,V> sort(PTable<K,V> table,
Sort.Order key)
public static <K,V> PTable<K,V> sort(PTable<K,V> table,
int numReducers, Sort.Order key)

Finally, sortPairs sorts the PCollection of pairs using the specified column order
in Sort.ColumnOrder:

sortPairs(PCollection<Pair<U,V>> collection,
Sort.ColumnOrder... columnOrders)

Joining data
The org.apache.crunch.lib.Join package is an API to join PTables based on a
common key. The following four join operations are supported:

•	 fullJoin

•	 join (defaults to innerJoin)
•	 leftJoin

•	 rightJoin

Making Development Easier

[280]

The methods have a common return type and signature. For reference, we will
describe the commonly used join method that implements an inner join:

public static <K,U,V> PTable<K,Pair<U,V>> join(PTable<K,U> left,
PTable<K,V> right)

The org.apache.crunch.lib.Join.JoinStrategy package provides an interface to
define custom join strategies. Crunch's default strategy (defaultStrategy) is to join
data reduce-side.

Pipelines implementation and execution
Crunch comes with three implementations of the pipeline interface. The oldest one,
implicitly used in this chapter, is org.apache.crunch.impl.mr.MRPipeline, which
uses Hadoop's MapReduce as its execution engine. org.apache.crunch.impl.mem.
MemPipeline allows all operations to be performed in memory, with no serialization
to disk performed. Crunch 0.10 introduced org.apache.crunch.impl.spark.
SparkPipeline which compiles and runs a DAG of PCollections to Apache Spark.

SparkPipeline
With SparkPipeline, Crunch delegates much of the execution to Spark and does
relatively little of the planning tasks, with the following exceptions:

•	 Multiple inputs
•	 Multiple outputs
•	 Data serialization
•	 Checkpointing

At the time of writing, SparkPipeline is still heavily under development and
might not handle all of the use cases of a standard MRPipeline. The Crunch
community is actively working to ensure complete compatibility between the
two implementations.

MemPipeline
MemPipeline executes in-memory on a client. Unlike MRPipeline, MemPipeline
is not explicitly created but referenced by calling the static method MemPipeline.
getInstance(). All operations are in memory, and the use of PTypes is minimal.

Chapter 9

[281]

Crunch examples
We will now use Apache Crunch to reimplement some of the MapReduce code
written so far in a more modular fashion.

Word co-occurrence
In Chapter 3, Processing – MapReduce and Beyond, we showed a MapReduce job,
BiGramCount, to count co-occurrences of words in tweets. That same logic can be
implemented as a DoFn. Instead of emitting a multi-field key and having to parse it
at a later stage, with Crunch we can use a complex type Pair<String, String>,
as follows:

class BiGram extends DoFn<String, Pair<String, String>> {
 @Override
 public void process(String tweet,
Emitter<Pair<String, String>> emitter) {
 String[] words = tweet.split(" ") ;

 Text bigram = new Text();
 String prev = null;

 for (String s : words) {
 if (prev != null) {
 emitter.emit(Pair.of(prev, s));
 }
 prev = s;
 }
 }
}

Notice how, compared to MapReduce, the BiGram Crunch implementation is a
standalone class, easily reusable in any other codebase. The code for this example
is included in https://github.com/learninghadoop2/book-examples/
blob/master/ch9/crunch/src/main/java/com/learninghadoop2/crunch/
DataPreparationPipeline.java.

TF-IDF
We can implement the TF-IDF chain of jobs with a MRPipeline, as follows:

public class CrunchTermFrequencyInvertedDocumentFrequency
 extends Configured implements Tool, Serializable {

Making Development Easier

[282]

 private Long numDocs;

 @SuppressWarnings("deprecation")

 public static class TF {
 String term;
 String docId;
 int frequency;

 public TF() {}

 public TF(String term,
 String docId, Integer frequency) {
 this.term = term;
 this.docId = docId;
 this.frequency = (int) frequency;

 }
 }

 public int run(String[] args) throws Exception {
 if(args.length != 2) {
 System.err.println();
 System.err.println("Usage: " + this.getClass().getName() + "
[generic options] input output");

 return 1;
 }
 // Create an object to coordinate pipeline creation and
execution.
 Pipeline pipeline =
new MRPipeline(TermFrequencyInvertedDocumentFrequency.class,
getConf());

 // enable debug options
 pipeline.enableDebug();

 // Reference a given text file as a collection of Strings.
 PCollection<String> tweets = pipeline.readTextFile(args[0]);
 numDocs = tweets.length().getValue();

Chapter 9

[283]

 // We use Avro reflections to map the TF POJO to avsc
 PTable<String, TF> tf = tweets.parallelDo(new
TermFrequencyAvro(), Avros.tableOf(Avros.strings(), Avros.reflects(TF.
class)));

 // Calculate DF
 PTable<String, Long> df = Aggregate.count(tf.parallelDo(new
DocumentFrequencyString(), Avros.strings()));

 // Finally we calculate TF-IDF
 PTable<String, Pair<TF, Long>> tfDf = Join.join(tf, df);
 PCollection<Tuple3<String, String, Double>> tfIdf =
tfDf.parallelDo(new TermFrequencyInvertedDocumentFrequency(),
 Avros.triples(
 Avros.strings(),
 Avros.strings(),
 Avros.doubles()));

 // Serialize as avro
 tfIdf.write(To.avroFile(args[1]));

 // Execute the pipeline as a MapReduce.
 PipelineResult result = pipeline.done();
 return result.succeeded() ? 0 : 1;
 }
 …
}

The approach that we follow here has a number of advantages compared to
streaming. First of all, we don't need to manually chain MapReduce jobs using
a separate script. This task is Crunch's main purpose. Secondly, we can express
each component of the metric as a distinct class, making it easier to reuse in
future applications.

To implement term frequency, we create a DoFn class that takes as input a tweet and
emits Pair<String, TF>. The first element is a term, and the second is an instance
of the POJO class that will be serialized using Avro. The TF part contains three
variables: term, documentId, and frequency. In the reference implementation, we
expect input data to be a JSON string that we deserialize and parse. We also include
tokenizing as a subtask of the process method.

Making Development Easier

[284]

Depending on the use cases, we could abstract both operations in separate DoFns,
as follows:

class TermFrequencyAvro extends DoFn<String,Pair<String, TF>> {
 public void process(String JSONTweet,
Emitter<Pair <String, TF>> emitter) {
 Map<String, Integer> termCount = new HashMap<>();

 String tweet;
 String docId;

 JSONParser parser = new JSONParser();

 try {
 Object obj = parser.parse(JSONTweet);

 JSONObject jsonObject = (JSONObject) obj;

 tweet = (String) jsonObject.get("text");
 docId = (String) jsonObject.get("id_str");

 for (String term : tweet.split("\\s+")) {
 if (termCount.containsKey(term.toLowerCase())) {
 termCount.put(term,
termCount.get(term.toLowerCase()) + 1);
 } else {
 termCount.put(term.toLowerCase(), 1);
 }
 }

 for (Entry<String, Integer> entry : termCount.entrySet())
{
 emitter.emit(Pair.of(entry.getKey(), new TF(entry.
getKey(), docId, entry.getValue())));
 }
 } catch (ParseException e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 9

[285]

Document frequency is straightforward. For each Pair<String, TF> generated
in the term frequency step, we emit the term—the first element of the pair. We
aggregate and count the resulting PCollection of terms to obtain document
frequency, as follows:

class DocumentFrequencyString extends DoFn<Pair<String, TF>, String> {
@Override
 public void process(Pair<String, TF> tfAvro,
 Emitter<String> emitter) {
 emitter.emit(tfAvro.first());
 }
}

We finally join the PTable TF with the PTable DF on the shared key
(term) and feed the resulting Pair<String, Pair<TF, Long>> object to
TermFrequencyInvertedDocumentFrequency.

For each term and document, we calculate TF-IDF and return a term, docIf, and
tfIdf triple:

 class TermFrequencyInvertedDocumentFrequency extends
MapFn<Pair<String, Pair<TF, Long>>, Tuple3<String, String, Double> >
{
 @Override
 public Tuple3<String, String, Double> map(
 Pair<String, Pair<TF, Long>> input) {

 Pair<TF, Long> tfDf = input.second();
 Long df = tfDf.second();

 TF tf = tfDf.first();
 double idf = 1.0+Math.log(numDocs / df);
 double tfIdf = idf * tf.frequency;

 return Tuple3.of(tf.term, tf.docId, tfIdf);
 }

 }

We use MapFn because we are going to output one record for each input. The source
code for this example can be found at https://github.com/learninghadoop2/
book-examples/blob/master/ch9/crunch/src/main/java/com/
learninghadoop2/crunch/CrunchTermFrequencyInvertedDocumentFrequency.
java.

Making Development Easier

[286]

The example can be compiled and executed with the following commands:

$./gradlew jar

$./gradlew copyJars

If not already done, add the Crunch and Avro dependencies downloaded with
copyJars to the LIBJARS environment variable, as follows:

$ export CRUNCH_DEPS=build/libjars/crunch-example/lib

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/crunch-core-0.9.0-
cdh5.0.3.jar,${CRUNCH_DEPS}/avro-1.7.5-cdh5.0.3.jar,${CRUNCH_DEPS}/avro-
mapred-1.7.5-cdh5.0.3-hadoop2.jar

Furthermore, add the json-simple JAR to LIBJARS:

$ export LIBJARS=${LIBJARS},${CRUNCH_DEPS}/json-simple-1.1.1.jar

Finally, run CrunchTermFrequencyInvertedDocumentFrequency as a MapReduce
job, as follows:

$ hadoop jar build/libs/crunch-example.jar \

com.learninghadoop2.crunch.CrunchTermFrequencyInvertedDocumentFrequency
\

-libjars ${LIBJARS} \

tweets.json tweets.avro-out

Kite Morphlines
Kite Morphlines is a data transformation library, inspired by Unix pipes, originally
developed as part of Cloudera Search. A morphline is an in-memory chain of
transformation commands that relies on a plugin structure to tap heterogeneous
data sources. It uses declarative commands to carry out ETL operations on records.
Commands are defined in a configuration file, which is later fed to a driver class.

The goal is to make embedding ETL logic into any Java codebase a trivial task by
providing a library that allows developers to replace programming with a series of
configuration settings.

Chapter 9

[287]

Concepts
Morphlines are built around two abstractions: Command and Record.

Records are implementations of the org.kitesdk.morphline.api.Record interface:

public final class Record {
 private ArrayListMultimap<String, Object> fields;
…
 private Record(ArrayListMultimap<String, Object> fields) {…}
 public ListMultimap<String, Object> getFields() {…}
 public List get(String key) {…}
 public void put(String key, Object value) {…}
 …
}

A record is a set of named fields, where each field has a list of one or more
values. A Record is implemented on top of Google Guava's ListMultimap and
ArrayListMultimap classes. Note that a value can be any Java object, fields can
be multivalued, and two records don't need to use common field names. A record
can contain an _attachment_body field that can be a java.io.InputStream or a
byte array.

Commands implement the org.kitesdk.morphline.api.Command interface:

public interface Command {
 void notify(Record notification);
 boolean process(Record record);
 Command getParent();
}

A command transforms a record into zero or more records. Commands can call the
methods on the Record instance provided for read and write operations as well as
for adding or removing fields.

Commands are chained together, and at each step of a morphline the parent
command sends records to its child, which in turn processes them. Information
between parents and children is exchanged using two communication channels
(planes); notifications are sent via a control plane, and records are sent over a data
plane. Records are processed by the process() method, which returns a Boolean
value to indicate whether a morphline should proceed or not.

Making Development Easier

[288]

Commands are not instantiated directly, but via an implementation of the
org.kitesdk.morphline.api.CommandBuilder interface:

public interface CommandBuilder {
 Collection<String> getNames();
 Command build(Config config,
 Command parent,
 Command child,
 MorphlineContext context);
}

The getNames method returns the names with which the command can be invoked.
Multiple names are supported to allow backwards compatible name changes. The
build() method creates and returns a command rooted at the given morphline
configuration.

The org.kitesdk.morphline.api.MorphlineContext interface allows additional
parameters to be passed to all morphline commands.

The data model of morphlines is structured following a source-pipe-sink pattern,
where data is captured from a source, piped through a number of processing steps,
and its output is then delivered into a sink.

Morphline commands
Kite Morphlines comes with a number of default commands that implement data
transformations on common serialization formats (plaintext, Avro, JSON). Currently
available commands are organized as subprojects of morphlines and include:

•	 kite-morphlines-core-stdio: will read data from binary large objects
(BLOBs) and text

•	 kite-morphlines-core-stdlib: wraps around Java data types for data
manipulation and representation

•	 kite-morphlines-avro: is used for serialization into and deserialization
from data in the Avro format

•	 kite-morphlines-json: will serialize and deserialize data in
JSON format

•	 kite-morphlines-hadoop-core: is used to access HDFS

Chapter 9

[289]

•	 kite-morphlines-hadoop-parquet-avro: is used to serialize and
deserialize data in the Parquet format

•	 kite-morphlines-hadoop-sequencefile: is used to serialize and
deserialize data in the Sequencefile format

•	 kite-morphlines-hadoop-rcfile: is used to serialize and deserialize data
in RCfile format

A list of all available commands can be found at http://kitesdk.org/
docs/0.17.0/kite-morphlines/morphlinesReferenceGuide.html.

Commands are defined by declaring a chain of transformations in a configuration
file, morphline.conf, which is then compiled and executed by a driver program.
For instance, we can specify a read_tweets morphline that will load tweets stored
as JSON data, serialize and deserialize them using Jackson, and print the first 10,
by combining the default readJson and head commands contained in the org.
kitesdk.morphline package, as follows:

morphlines : [{
 id : read_tweets
 importCommands : ["org.kitesdk.morphline.**"]

 commands : [{
 readJson {
 outputClass : com.fasterxml.jackson.databind.JsonNode
 }}
 {
 head {
 limit : 10
 }}
]
}]

We will now show how this morphline can be executed both from a standalone Java
program as well as from MapReduce.

MorphlineDriver.java shows how to use the library embedded into a host system.
The first step that we carry out in the main method is to load morphline's JSON
configuration, build a MorphlineContext object, and compile it into an instance
of Command that acts as the starting node of the morphline. Note that Compiler.
compile() takes a finalChild parameter; in this case, it is RecordEmitter. We
use RecordEmitter to act as a sink for the morphline, by either printing a record
to stdout or storing it into HDFS. In the MorphlineDriver example, we use org.
kitesdk.morphline.base.Notifications to manage and monitor the morphline
life cycle in a transactional fashion.

Making Development Easier

[290]

A call to Notifications.notifyStartSession(morphline) starts the
transformation chain within a transaction defined by calling Notifications.
notifyBeginTransaction. Upon success, we terminate the pipeline with
Notifications.notifyShutdown(morphline). In the event of failure, we roll
back the transaction, Notifications.notifyRollbackTransaction(morphline),
and pass an exception handler from the morphline context to the calling Java code:

public class MorphlineDriver {
 private static final class RecordEmitter implements Command {
 private final Text line = new Text();

 @Override
 public Command getParent() {
 return null;
 }

 @Override
 public void notify(Record record) {

 }

 @Override
 public boolean process(Record record) {
 line.set(record.get("_attachment_body").toString());

 System.out.println(line);

 return true;
 }
 }

 public static void main(String[] args) throws IOException {
 /* load a morphline conf and set it up */
 File morphlineFile = new File(args[0]);
 String morphlineId = args[1];
 MorphlineContext morphlineContext = new MorphlineContext.
Builder().build();
 Command morphline = new Compiler().compile(morphlineFile,
morphlineId, morphlineContext, new RecordEmitter());

 /* Prepare the morphline for execution
 *

Chapter 9

[291]

 * Notifications are sent through the communication channel
 * */

 Notifications.notifyBeginTransaction(morphline);

 /* Note that we are using the local filesystem, not hdfs*/
 InputStream in = new BufferedInputStream(new
FileInputStream(args[2]));

 /* fill in a record and pass it over */
 Record record = new Record();
 record.put(Fields.ATTACHMENT_BODY, in);

 try {

 Notifications.notifyStartSession(morphline);
 boolean success = morphline.process(record);
 if (!success) {
 System.out.println("Morphline failed to process record:
" + record);
 }
 /* Commit the morphline */
 } catch (RuntimeException e) {
 Notifications.notifyRollbackTransaction(morphline);
 morphlineContext.getExceptionHandler().handleException(e,
null);
 }
 finally {
 in.close();
 }

 /* shut it down */
 Notifications.notifyShutdown(morphline);
 }
}

In this example, we load data in JSON format from the local filesystem into
an InputStream object and use it to initialize a new Record instance. The
RecordEmitter class contains the last processed record instance of the chain,
on which we extract _attachment_body and print it to standard output. The
source code for MorphlineDriver can be found at https://github.com/
learninghadoop2/book-examples/blob/master/ch9/kite/src/main/java/com/
learninghadoop2/kite/morphlines/MorphlineDriver.java.

Making Development Easier

[292]

Using the same morphline from a MapReduce job is straightforward. During the
setup phase of the Mapper, we build a context that contains the instantiation logic,
while the map method sets the Record object up and fires off the processing logic,
as follows:

public static class ReadTweets
 extends Mapper<Object, Text, Text, NullWritable> {
 private final Record record = new Record();
 private Command morphline;

 @Override
 protected void setup(Context context)
 throws IOException, InterruptedException {
 File morphlineConf = new File(context.getConfiguration()
 .get(MORPHLINE_CONF));
 String morphlineId = context.getConfiguration()
 .get(MORPHLINE_ID);
 MorphlineContext morphlineContext =
new MorphlineContext.Builder()
 .build();

 morphline = new org.kitesdk.morphline.base.Compiler()
 .compile(morphlineConf,
 morphlineId,
 morphlineContext,
 new RecordEmitter(context));
 }

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 record.put(Fields.ATTACHMENT_BODY,
 new ByteArrayInputStream(
value.toString().getBytes("UTF8")));
 if (!morphline.process(record)) {
 System.out.println(
"Morphline failed to process record: " + record);
 }

 record.removeAll(Fields.ATTACHMENT_BODY);
 }
}

Chapter 9

[293]

In the MapReduce code we modify RecordEmitter to extract the Fields payload
from post-processed records and store it into context. This allows us to write data
into HDFS by specifying a FileOutputFormat in the MapReduce configuration
boilerplate:

private static final class RecordEmitter implements Command {
 private final Text line = new Text();
 private final Mapper.Context context;

 private RecordEmitter(Mapper.Context context) {
 this.context = context;
 }

 @Override
 public void notify(Record notification) {
 }

 @Override
 public Command getParent() {
 return null;
 }

 @Override
 public boolean process(Record record) {
 line.set(record.get(Fields.ATTACHMENT_BODY).toString());
 try {
 context.write(line, null);
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 return true;
 }
}

Notice that we can now change the processing pipeline behavior and add further
data transformations by modifying morphline.conf without the explicit need to
alter the instantiation and processing logic. The MapReduce driver source code
can be found at https://github.com/learninghadoop2/book-examples/blob/
master/ch9/kite/src/main/java/com/learninghadoop2/kite/morphlines/
MorphlineDriverMapReduce.java.

Making Development Easier

[294]

Both examples can be compiled from ch9/kite/ with the following commands:

$./gradlew jar

$./gradlew copyJar

We add the runtime dependencies to LIBJARS, as follows

$ export KITE_DEPS=/home/cloudera/review/hadoop2book-private-reviews-
gabriele-ch8/src/ch8/kite/build/libjars/kite-example/lib

export LIBJARS=${LIBJARS},${KITE_DEPS}/kite-morphlines-core-
0.17.0.jar,${KITE_DEPS}/kite-morphlines-json-0.17.0.jar,${KITE_
DEPS}/metrics-core-3.0.2.jar,${KITE_DEPS}/metrics-healthchecks-
3.0.2.jar,${KITE_DEPS}/config-1.0.2.jar,${KITE_DEPS}/jackson-databind-
2.3.1.jar,${KITE_DEPS}/jackson-core-2.3.1.jar,${KITE_DEPS}/jackson-
annotations-2.3.0.jar

We can run the MapReduce driver with the following:

$ hadoop jar build/libs/kite-example.jar \

com.learninghadoop2.kite.morphlines.MorphlineDriverMapReduce \

-libjars ${LIBJARS} \

morphline.conf \

read_tweets \

tweets.json \

morphlines-out

The Java standalone driver can be executed with the following command:

$ export CLASSPATH=${CLASSPATH}:${KITE_DEPS}/kite-morphlines-core-
0.17.0.jar:${KITE_DEPS}/kite-morphlines-json-0.17.0.jar:${KITE_
DEPS}/metrics-core-3.0.2.jar:${KITE_DEPS}/metrics-healthchecks-
3.0.2.jar:${KITE_DEPS}/config-1.0.2.jar:${KITE_DEPS}/jackson-databind-
2.3.1.jar:${KITE_DEPS}/jackson-core-2.3.1.jar:${KITE_DEPS}/jackson-
annotations-2.3.0.jar:${KITE_DEPS}/slf4j-api-1.7.5.jar:${KITE_DEPS}/
guava-11.0.2.jar:${KITE_DEPS}/hadoop-common-2.3.0-cdh5.0.3.jar

$ java -cp $CLASSPATH:./build/libs/kite-example.jar \

com.learninghadoop2.kite.morphlines.MorphlineDriver \

morphline.conf \

read_tweets tweets.json \

morphlines-out

Chapter 9

[295]

Summary
In this chapter, we introduced four tools to ease development on Hadoop.
In particular, we covered:

•	 How Hadoop streaming allows the writing of MapReduce jobs using
dynamic languages

•	 How Kite Data simplifies interfacing with heterogeneous data sources
•	 How Apache Crunch provides a high-level abstraction to write pipelines

of Spark and MapReduce jobs that implement common design patterns
•	 How Morphlines allows us to declare chains of commands and data

transformations that can then be embedded in any Java codebase

In Chapter 10, Running a Hadoop 2 Cluster, we will shift our focus from the domain
of software development to system administration. We will discuss how to set up,
manage, and scale a Hadoop cluster, while taking aspects such as monitoring and
security into consideration.

Running a Hadoop Cluster
In this chapter, we will change our focus a little and look at some of the
considerations you will face when running an operational Hadoop cluster.
In particular, we will cover the following topics:

•	 Why a developer should care about operations and why Hadoop
operations are different

•	 More detail on Cloudera Manager and its capabilities and limitations
•	 Designing a cluster for use on both physical hardware and EMR
•	 Securing a Hadoop cluster
•	 Hadoop monitoring
•	 Troubleshooting problems with an application running on Hadoop

I'm a developer – I don't care about
operations!
Before going any further, we need to explain why we are putting a chapter about
systems operations in a book squarely aimed at developers. For anyone who
has developed for more traditional platforms (for example, web apps, database
programming, and so on) then the norm might well have been for a very clear
delineation between development and operations. The first group builds the code
and packages it up, and the second group controls and operates the environment in
which it runs.

In recent years, the DevOps movement has gained momentum with a belief that it
is best for everyone if these silos are removed and that the teams work more closely
together. When it comes to running systems and services based on Hadoop, we
believe this is absolutely essential.

Running a Hadoop Cluster

[298]

Hadoop and DevOps practices
Even though a developer can conceptually build an application ready to be dropped
into YARN and forgotten about, the reality is often more nuanced. How many
resources are allocated to the application at runtime is most likely something the
developer wishes to influence. Once the application is running, the operations staff
likely want some insight into the application when they are trying to optimize the
cluster. There really isn't the same clear-cut split of responsibilities seen in traditional
enterprise IT. And that's likely a really good thing.

In other words, developers need to be more aware of the operations aspects, and the
operations staff need to be more aware of what the developers are doing. So consider
this chapter our contribution to help you have those discussions with your operations
staff. We don't intend to make you an expert Hadoop administrator by the end of this
chapter; that really is emerging as a dedicated role and skillset in itself. Instead, we will
give a whistle-stop tour of issues you do need some awareness of and that will make
your life easier once your applications are running on live clusters.

By the nature of this coverage, we will be touching on a lot of topics and going into
them only lightly; if any are of deeper interest, then we provide links for further
investigation. Just make sure you keep your operations staff involved!

Cloudera Manager
In this book, we used as the most common platform the Cloudera Hadoop
Distribution (CDH) with its convenient QuickStart virtual machine and the
powerful Cloudera Manager application. With a Cloudera-based cluster, Cloudera
Manager will become (at least initially) your primary interface into the system to
manage and monitor the cluster, so let's explore it a little.

Note that Cloudera Manager has extensive and high-quality online documentation.
We won't duplicate this documentation here; instead we'll attempt to highlight
where Cloudera Manager fits into your development and operational workflows and
how it might or might not be something you want to embrace. Documentation for
the latest and previous versions of Cloudera Manager can be accessed via the main
Cloudera documentation page at http://www.cloudera.com/content/support/
en/documentation.html.

Chapter 10

[299]

To pay or not to pay
Before getting all excited about Cloudera Manager, it's important to consult the
current documentation concerning what features are available in the free version and
which ones require subscription to a paid-for Cloudera offering. If you absolutely
want some of the features offered only in the paid-for version but either can't or
don't wish to pay for subscription services, then Cloudera Manager, and possibly the
entire Cloudera distribution, might not be a good fit for you. We'll return to this topic
in Chapter 11, Where to Go Next.

Cluster management using Cloudera Manager
Using the QuickStart VM, it won't be obvious, but Cloudera Manager is the primary
tool to be used for management of all services in the cluster. If you want to enable
a new service, you'll use Cloudera Manager. To change a configuration, you will
need Cloudera Manager. To upgrade to the latest release, you will again require
Cloudera Manager.

Even if the primary management of the cluster is handled by operational staff, as
a developer you'll likely still want to become familiar with the Cloudera Manager
interface just to look to see exactly how the cluster is configured. If your jobs are
running slowly, then looking into Cloudera Manager to see just how things are
currently configured will likely be your first start. The default port for the Cloudera
Manager web interface is 7180, so the home page will usually be connected to via
a URL such as http://<hostname>:7180/cmf/home, and can be seen in the
following screenshot:

Cloudera Manager home page

Running a Hadoop Cluster

[300]

It's worth poking around the interface; however, if you are connecting with a user
account with admin privileges, be careful!

Click on the Clusters link, and this will expand to give a list of the clusters currently
managed by this instance of Cloudera Manager. This should tell you that a single
Cloudera Manager instance can manage multiple clusters. This is very useful,
especially if you have many clusters spread across development and production.

For each expanded cluster, there will be a list of the services currently running on
the cluster. Click on a service, and then you will see a list of additional choices. Select
Configuration, and you can start browsing the detailed configuration of that particular
service. Click on Actions, and you will get some service-specific options; this will
usually include stopping, starting, restarting, and otherwise managing the service.

Click on the Hosts option instead of Clusters, and you can start drilling down
into the servers managed by Cloudera Manager, and from there, see which service
components are deployed on each.

Cloudera Manager and other management tools
That last comment might raise a question: how does Cloudera Manager integrate
with other systems management tools? Given our earlier comments regarding
the importance of DevOps philosophies, how well does it integrate with the tools
favored in DevOps environments?

The honest answer: not always very well. Though the main Cloudera Manager
server can itself be managed by automation tools, such as Puppet or Chef, there
is an explicit assumption that Cloudera Manager will control the installation and
configuration of all the software Cloudera Manager needs on all the hosts that will
be included in its clusters. To some administrators, this makes the hardware behind
Cloudera Manager look like a big, black box; they might control the installation of
the base operating system, but the management of the configuration baseline going
forward is entirely managed by Cloudera Manager. There's nothing much to be done
here; it is what it is—to get the benefits of Cloudera Manager, it will add itself as a
new management system in your infrastructure, and how well that fits in with your
broader environment will be determined on a case-by-case basis.

Monitoring with Cloudera Manager
A similar point can be made regarding systems monitoring as Cloudera Manager
is also conceptually a point of duplication here. But start clicking around the
interface, and it will become apparent very quickly that Cloudera Manager
provides an exceptionally rich set of tools to assess the health and performance
of managed clusters.

Chapter 10

[301]

From graphing the relative performance of Impala queries through showing the
job status for YARN applications and giving low-level data on the blocks stored
on HDFS, it is all there in a single interface. We'll discuss later in this chapter how
troubleshooting on Hadoop can be challenging, but the single point of visibility
provided by Cloudera Manager is a great tool when looking to assess cluster health
or performance. We'll discuss monitoring in a little more detail later in this chapter.

Finding configuration files
One of the first confusions faced when running a cluster managed by Cloudera
Manager is trying to find the configuration files used by the cluster. In the vanilla
Apache releases of products, such as the core Hadoop, there would be files typically
stored in /etc/hadoop, similarly /etc/hive for Hive, /etc/oozie for Oozie,
and so on.

In a Cloudera Manager managed cluster, however, the config files are regenerated
each time a service is restarted, and instead of sitting in the /etc locations on the
filesystem, will be found at /var/run/cloudera-scm-agent-process/<pid>-<task
name>/, where the last directory might have a name such as 7007-yarn-NODEMANAGER.
This might seem odd to anyone used to working on earlier Hadoop clusters or other
distributions that don't do such a thing. But in a Cloudera Manager-controlled cluster,
it might often be easier to use the web interface to browse the configuration instead
of looking for the underlying config files. Which approach is best? This is a little
philosophical, and each team needs to decide which works best for them.

Cloudera Manager API
We've only given the highest level of overview of Cloudera Manager, and in
doing so, have completely ignored one area that might be very useful for some
organizations: Cloudera Manager offers an API that allows integration of its
capabilities into other systems and tools. Consult the documentation if this might
be of interest to you.

Cloudera Manager lock-in
This brings us to the point that is implicit in the whole discussion around Cloudera
Manager: it does cause a degree of lock-in to Cloudera and their distribution. That
lock-in might only exist in certain ways; code, for example, should be portable across
clusters modulo the usual caveats about different underlying versions—but the
cluster itself might not easily be reconfigured to use a different distribution. Assume
that switching distributions would be a complete remove/reformat/reinstall activity.

Running a Hadoop Cluster

[302]

We aren't saying don't use it, rather that you need to be aware of the lock-in that
comes with the use of Cloudera Manager. For small teams with little dedicated
operations support or existing infrastructure, the impact of such a lock-in is likely
outweighed by the significant capabilities that Cloudera Manager gives you.

For larger teams or ones working in an environment where integration with
existing tools and processes has more weight, the decision might be less clear.
Look at Cloudera Manager, discuss with your operations people, and determine
what is right for you.

Note that it is possible to manually download and install the various components
of the Cloudera distribution without using Cloudera Manager to manage the
cluster and its hosts. This might be an attractive middle ground for some users
as the Cloudera software can be used, but deployment and management can be
built into the existing deployment and management tools. This is also potentially a
way of avoiding the additional expense of the paid-for levels of Cloudera support
mentioned earlier.

Ambari – the open source alternative
Ambari is an Apache project (http://ambari.apache.org), which in theory,
provides an open source alternative to Cloudera Manager. It is the administration
console for the Hortonworks distribution. At the time of writing Hortonworks
employees are also the vast majority of the project contributors.

Ambari, as one would expect given its open source nature, relies on other open
source products, such as Puppet and Nagios, to provide the management and
monitoring of its managed clusters. It also has high-level functionality similar
to Cloudera Manager, that is, the installation, configuration, management, and
monitoring of a Hadoop cluster, and the component services within it.

It is good to be aware of the Ambari project as the choice is not just between full
lock-in to Cloudera and Cloudera Manager or a manually managed cluster. Ambari
provides a graphical tool that might be worth consideration, or indeed involvement,
as it matures. On an HDP cluster, the Ambari UI equivalent to the Cloudera Manager
home page shown earlier can be reached at http://<hostname>:8080/#/main/
dashboard and looks like the following screenshot:

Chapter 10

[303]

Ambari

Operations in the Hadoop 2 world
As mentioned in Chapter 2, Storage, some of the most significant changes made to
HDFS in Hadoop 2 involve its fault tolerance and better integration with external
systems. This is not just a curiosity, but the NameNode High Availability features,
in particular, have made a massive difference in the management of clusters since
Hadoop 1. In the bad old days of 2012 or so, a significant part of the operational
preparedness of a Hadoop cluster was built around mitigations for, and restoration
processes around failure of the NameNode. If the NameNode died in Hadoop 1, and
you didn't have a backup of the HDFS fsimage metadata file, then you basically lost
access to all your data. If the metadata was permanently lost, then so was the data.

Running a Hadoop Cluster

[304]

Hadoop 2 has added the in-built NameNode HA and the machinery to make
it work. In addition, there are components such as the NFS gateway into HDFS,
which make it a much more flexible system. But this additional capability does come
at the expense of more moving parts. To enable NameNode HA, there are additional
components in the JournalManager and FailoverController, and the NFS gateway
requires Hadoop-specific implementations of the portmap and nfsd services.

Hadoop 2 also now has extensive other integration points with external services
as well as a much broader selection of applications and services that run atop it.
Consequently, it might be useful to view Hadoop 2 in terms of operations as having
traded the simplicity of Hadoop 1 for additional complexity, which delivers a
substantially more capable platform.

Sharing resources
In Hadoop 1, the only time one had to consider resource sharing was in considering
which scheduler to use for the MapReduce JobTracker. Since all jobs were eventually
translated into MapReduce code having a policy for resource sharing at the
MapReduce level was usually sufficient to manage cluster workloads in the large.

Hadoop 2 and YARN changed this picture. As well as running many MapReduce
jobs, a cluster might also be running many other applications atop other YARN
ApplicationMasters. Tez and Spark are frameworks in their own right that run
additional applications atop their provided interfaces.

If everything runs on YARN, then it provides ways of configuring the maximum
resource allocation (in terms of CPU, memory, and soon I/O) consumed by each
container allocated to an application. The primary goal here is to ensure that enough
resources are allocated to keep the hardware fully utilized without either having
unused capacity or overloading it.

Things get somewhat more interesting when non-YARN applications, such as
Impala, are running on the cluster and want to grab allocated slices of capacity
(particularly memory in the case of Impala). This could also happen if, say, you
were running Spark on the same hosts in its non-YARN mode or indeed any other
distributed application that might benefit from co-location on the Hadoop machines.

Basically, in Hadoop 2, you need to think of the cluster as much more of a
multi-tenancy environment that requires more attention given to the allocation
of resources to the various tenants.

Chapter 10

[305]

There really is no silver bullet recommendation here; the right configuration will be
entirely dependent on the services co-located and the workloads they are running.
This is another example where you want to work closely with your operations
team to do a series of load tests with thresholds to determine just what the resource
requirements of the various clients are and which approach will give the maximum
utilization and performance. The following blog post from Cloudera engineers
gives a good overview of how they approach this very issue in having Impala and
MapReduce coexist effectively: http://blog.cloudera.com/blog/2013/06/
configuring-impala-and-mapreduce-for-multi-tenant-performance/.

Building a physical cluster
There is one minor requirement before thinking about allocation of hardware
resources: defining and selecting the hardware used for your cluster. In this section,
we'll discuss a physical cluster and move on to Amazon EMR in the next.

Any specific hardware advice will be out of date the moment it is written. We advise
perusing the websites of the various Hadoop distribution vendors as they regularly
write new articles on the currently recommended configurations.

Instead of telling you how many cores or GB of memory you need, we'll look at
hardware selection at a slightly higher level. The first thing to realize is that the hosts
running your Hadoop cluster will most likely look very different from the rest of
your enterprise. Hadoop is optimized for low(er) cost hardware, so instead of seeing
a small number of very large servers, expect to see a larger number of machines with
fewer enterprise reliability features. But don't think that Hadoop will run great on
any junk you have lying around. It might, but recently the profile of typical Hadoop
servers has been moving away from the bottom-end of the market, and instead, the
sweet spot would seem to be in mid-range servers where the maximum cores/disks/
memory can be achieved at a price point.

You should also expect to have different resource requirements for the hosts running
services such as the HDFS NameNode or the YARN ResourceManager, as opposed
to the worker nodes storing data and executing the application logic. For the former,
there is usually much less requirement for lots of storage, but frequently, a need for
more memory and possibly faster disks.

For Hadoop worker nodes, the ratio between the three main hardware categories of
cores, memory, and I/O is often the most important thing to get right. And this will
directly inform the decisions you make regarding workload and resource allocation.

Running a Hadoop Cluster

[306]

For example, many workloads tend to become I/O bound and having many times
as many containers allocated on a host than there are physical disks might actually
cause an overall slowdown due to contention for the spinning disks. At the time
of writing, current recommendations here are for the number of YARN containers
to be no more than 1.8 times the number of disks. If you have workloads that are
I/O bound, then you will most likely get much better performance by adding more
hosts to the cluster instead of trying to get more containers running or indeed faster
processors or more memory on the current hosts.

Conversely, if you expect to run lots of concurrent Impala, Spark, and other
memory-hungry jobs, then memory might quickly become the resource most under
pressure. This is why even though you can get current hardware recommendations
for general-purpose clusters from the distribution vendors, you still need to
validate against your expected workloads and tailor accordingly. There is really no
substitute for benchmarking on a small test cluster or indeed on EMR, which can
be a great platform to explore the resource requirements of multiple applications
that can inform hardware acquisition decisions. Perhaps EMR might be your main
environment; if so, we'll discuss that in a later section.

Physical layout
If you do use a physical cluster, there are a few things you will need to consider that
are largely transparent on EMR.

Rack awareness
The first of these aspects for clusters large enough to consume more than one rack
of data center space is building rack awareness. As mentioned in Chapter 2, Storage,
when HDFS places replicas of new files, it attempts to place the second replica on
a different host than the first, and the third in a different rack of equipment in a
multi-rack system. This heuristic is aimed at maximizing resilience; there will be at
least one replica available even if an entire rack of equipment fails. MapReduce uses
similar logic to attempt to get a better-balanced task spread.

If you do nothing, then each host will be specified as being in the single default rack.
But, if the cluster grows beyond this point, you will need to update the rack name.

Under the covers, Hadoop discovers a node's rack by executing a user-supplied script
that maps node hostname to rack names. Cloudera Manager allows rack names to be
set on a given host, and this is then retrieved when its rack awareness scripts are called
by Hadoop. To set the rack for a host, click on Hosts-><hostname>->Assign Rack, and
then assign the rack from the Cloudera Manager home page.

Chapter 10

[307]

Service layout
As mentioned earlier, you are likely to have two types of hardware in your cluster:
the machines running the workers and those running the servers. When deploying a
physical cluster, you will need to decide which services and which subcomponents
of the services run on which physical machines.

For the workers, this is usually pretty straightforward; most, though not all, services
have a model of a worker agent on all worker hosts. But, for the master/server
components, it requires a little thought. If you have three master nodes, then how do
you spread your primary and backup NameNodes: the YARN ResourceManager,
maybe Hue, a few Hive servers, and an Oozie manager? Some of these features are
highly available, while others are not. As you add more and more services to your
cluster, you'll also see this list of master services grow substantially.

In an ideal world, you might have a host per service master but that is only tractable
for very large clusters; in smaller installations it is prohibitively expensive. Plus it
might always be a little wasteful. There are no hard-and-fast rules here either, but
do look at your available hardware, and try to spread the services across the nodes
as much as possible. Don't, for example, have two nodes for the two NameNodes
and then put everything else on a third. Think about the impact of a single host
failure and manage the layout to minimize it. As the cluster grows across multiple
racks of equipment, the considerations will also need to consider how to survive
single-rack failures. Hadoop itself helps with this since HDFS will attempt to ensure
each block of data has replicas across at least two racks. But, this type of resilience is
undermined if, for example, all the master nodes reside in a single rack.

Upgrading a service
Upgrading Hadoop has historically been a time-consuming and somewhat risky
task. This remains the case on a manually deployed cluster, that is, one not managed
by a tool such as Cloudera Manager.

If you are using Cloudera Manager, then it takes the time-consuming part out of the
activity, but not necessarily the risk. Any upgrade should always be viewed as an
activity with a high chance of unexpected issues, and you should arrange enough
cluster downtime to account for this surprise excitement. There's really no substitute
for doing a test upgrade on a test cluster, which underlines the importance of
thinking about Hadoop as a component of your environment that needs to be treated
with a deployment life cycle like any other.

Running a Hadoop Cluster

[308]

Sometimes an upgrade requires modification to the HDFS metadata or might
otherwise affect the filesystem. This is, of course, where the real risks lie. In addition
to running a test upgrade, be aware of the ability to set HDFS in upgrade mode,
which effectively makes a snapshot of the filesystem state prior to the upgrade and
which will be retained until the upgrade is finalized. This can be really helpful as
even an upgrade that goes badly wrong and corrupts data can potentially be fully
rolled back.

Building a cluster on EMR
Elastic MapReduce is a flexible solution that, depending on requirements and
workloads, can sit next to, or replace, a physical Hadoop cluster. As we've seen
so far, EMR provides clusters preloaded and configured with Hive, Streaming,
and Pig as well as with custom JAR clusters that allow the execution of
MapReduce applications.

A second distinction to make is between transient and long-running life cycles.
A transient EMR cluster is generated on demand; data is loaded in S3 or HDFS,
some processing workflow is executed, output results are stored, and the cluster is
automatically shut down. A long-running cluster is kept alive once the workflow
terminates, and the cluster remains available for new data to be copied over and new
workflows to be executed. Long-running clusters are typically well-suited for data
warehousing or working with datasets large enough that loading and processing
data would be inefficient compared to a transient instance.

In a must-read white paper for prospective users (found at https://media.
amazonwebservices.com/AWS_Amazon_EMR_Best_Practices.pdf), Amazon
gives a heuristic to estimate which cluster type is a better fit as follows:

If number of jobs per day * (time to setup cluster including Amazon S3 data load
time if using Amazon S3 + data processing time) < 24 hours, consider transient
Amazon EMR clusters or physical instances. Long-running instances are
instantiated by passing the –alive argument to the ElasticMapreduce command,
which enables the Keep Alive option and disables auto termination.

Note that transient and long-running clusters share the same properties
and limitations; in particular, data on HDFS is not persisted once the cluster
is shut down.

Chapter 10

[309]

Considerations about filesystems
In our examples so far we assumed data to be available in S3. In this case, a bucket
is mounted in EMR as an s3n filesystem, and it is used as input source as well as a
temporary filesystem to store intermediate data in computations. With S3 we introduce
potential I/O overhead, operations such as reads and writes fire off GET and PUT
HTTP requests.

Note that EMR does not support S3 block storage. The s3 URI
maps to s3n.

Another option would be to load data into the cluster HDFS and run processing
from there. In this case, we do have faster I/O and data locality, but we would
lose persistence. When the cluster is shut down, our data disappears. As a rule
of thumb, if you are running a transient cluster, it makes sense to use S3 as a
backend. In practice, one should monitor and take decisions based on the workflow
characteristics. Iterative, multi-pass MapReduce jobs would greatly benefit from
HDFS; one could argue that for those types of workflows, an execution engine like
Tez or Spark would be more appropriate.

Getting data into EMR
When copying data from HDFS to S3, it is recommended to use s3distcp
(http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
UsingEMR_s3distcp.html) instead of Apache distcp or Hadoop distcp. This
approach is suitable also to transfer data within EMR and from S3 to HDFS. To
move very large amounts of data from the local disk into S3, Amazon recommends
parallelizing the workload using Jets3t or GNU Parallel. In general, it's important
to be aware that PUT requests to S3 are capped at 5 GB per file. To upload larger
files, one needs to rely on Multipart Upload (https://aws.amazon.com/about-
aws/whats-new/2010/11/10/Amazon-S3-Introducing-Multipart-Upload/),
an API that allows splitting large files into smaller parts and reassembles them when
uploaded. Files can also be copied with tools such as the AWS CLI or the popular
S3CMD utility, but these do not have the parallelism advantages of as s3distcp.

Running a Hadoop Cluster

[310]

EC2 instances and tuning
The size of an EMR cluster depends on the dataset size, the number of files and
blocks (determines the number of splits) and the type of workload (try to avoid
spilling to disk when a task runs out of memory). As a rule of thumb, a good size is
one that maximizes parallelism. The number of mappers and reducers per instance
as well as heap size per JVM daemon is generally configured by EMR when the
cluster is provisioned and tuned in the event of changes in the available resources.

Cluster tuning
In addition to the previous comments specific to a cluster run on EMR, there are
some general thoughts to keep in mind when running workloads on any type of
cluster. This will, of course, be more explicit when running outside of EMR as it
often abstracts some of the details.

JVM considerations
You should be running the 64-bit version of a JVM and using the server mode.
This can take longer to produce optimized code, but it also uses more aggressive
strategies and will re-optimize code over time. This makes it a much better fit for
long-running services, such as Hadoop processes.

Ensure that you allocate enough memory to the JVM to prevent overly-frequent
Garbage Collection (GC) pauses. The concurrent mark-and-sweep collector is
currently the most tested and recommended for Hadoop. The Garbage First (G1)
collector has become the GC option of choice in numerous other workloads since
its introduction with JDK7, so it's worth monitoring recommended best practice as
it evolves. These options can be configured as custom Java arguments within each
service's configuration section of Cloudera Manager.

The small files problem
Heap allocation to Java processes on worker nodes will be something you consider
when thinking about service co-location. But there is a particular situation regarding
the NameNode you should be aware of: the small files problem.

Hadoop is optimized for very large files with large block sizes. But sometimes
particular workloads or data sources push many small files onto HDFS. This is most
likely suboptimal as it suggests each task processing a block at a time will read only
a small amount of data before completing, causing inefficiency.

Chapter 10

[311]

Having many small files also consumes more NameNode memory; it holds in-memory
the mapping from files to blocks and consequently holds metadata for each file and
block. If the number of files and hence blocks increases quickly, then so will the
NameNode memory usage. This is likely to only hit a subset of systems as, at the time
of writing this, 1 GB of memory can support 2 million files or blocks, but with a default
heap size of 2 or 4 GB, this limit can easily be reached. If the NameNode needs to start
very aggressively running garbage collection or eventually runs out of memory, then
your cluster will be very unhealthy. The mitigation is to assign more heap to the JVM;
the longer-term approach is to combine many small files into a smaller number of
larger ones. Ideally, compressed with a splittable compression codec.

Map and reduce optimizations
Mappers and reducers both provide areas for optimizing performance; here are a
few pointers to consider:

•	 The number of mappers depends on the number of splits. When files are
smaller than the default block size or compressed using a non splittable
format, the number of mappers will equal the number of files. Otherwise,
the number of mappers is given by the total size of each file divided by
the block size.

•	 Compress mappers output to reduce writes to disk and increase I/O.
LZO is a good format for this task.

•	 Avoid spill to disk: the mappers should have enough memory to retain as
much data as possible.

•	 Number of Reducers: it is recommended that you use fewer reducers than
the total reducer capacity (this avoids execution waits).

Security
Once you built a cluster, the first thing you thought about was how to secure it,
right? Don't worry, most people don't. But, as Hadoop has moved on from being
something running in-house analysis in the research department to directly driving
critical systems, it's not something to ignore for too long.

Securing Hadoop is not something to be done on a whim or without significant testing.
We cannot give detailed advice on this topic and cannot stress strongly enough the
need to take this topic seriously and do it properly. It might consume time, it might
cost money, but weigh this against the cost of having your cluster compromised.

Running a Hadoop Cluster

[312]

Security is also a much bigger topic than just the Hadoop cluster. We'll explore
some of the security features available in Hadoop, but you do need a coherent
security strategy into which these discrete components fit.

Evolution of the Hadoop security model
In Hadoop 1, there was effectively no security protection as the provided security
model had obvious attack vectors. The Unix user ID with which you connected to the
cluster was assumed to be valid, and you had all the privileges of that user. Plainly,
this meant that anyone with administrative access on a host that could access the
cluster could effectively impersonate any other user.

This led to the development of the so-called "head node" access model, whereby the
Hadoop cluster was firewalled off from every host except one, the head node, and all
access to the cluster was mediated through this centrally-controlled node. This was
an effective mitigation for the lack of a real security model and can still be useful in
situations even when richer security schemes are utilized.

Beyond basic authorization
Core Hadoop has had additional security features added, which address the
previous concerns. In particular, they address the following:

•	 A cluster can require a user to authenticate via Kerberos and prove they are
who they say they are.

•	 In secure mode, the cluster can also use Kerberos for all node-node
communications, ensuring that all communicating nodes are authenticated
and preventing malicious nodes from attempting to join the cluster.

•	 To ease management, users can be collected into groups against which
data-access privileges can be defined. This is called Role Based Access
Control (RBAC) and is a prerequisite for a secure cluster with more than a
handful of users. The user-group mappings can be retrieved from corporate
systems, such as LDAP or active directory.

•	 HDFS can apply ACLs to replace the current Unix-inspired owner/group/
world model.

These capabilities give Hadoop a significantly stronger security posture than in the
past, but the community is moving fast and additional dedicated Apache projects
have emerged to address specific areas of security.

Chapter 10

[313]

Apache Sentry https://sentry.incubator.apache.org is a system to provide
much finer-grained authorization to Hadoop data and services. Other services build
Sentry mappings, and this allows, for example, specific restrictions to be placed not
only on particular HDFS directories, but also on entities such as Hive tables.

Whereas Sentry focuses on providing much richer tools for the internal, fine-grained
aspects of Hadoop security, Apache Knox (http://knox.apache.org) provides
a secure gateway to Hadoop that integrates with external identity management
systems and provides access control mechanisms to allow or disallow access to
specific Hadoop services and operations. It does this by presenting a REST-only
interface to Hadoop and securing all calls to this API.

The future of Hadoop security
There are many other developments happening in the Hadoop world. Core Hadoop
2.5 added extended file attributes to HDFS, which can be used as the basis of
additional access control mechanisms. Future versions will incorporate capabilities
for better support of encryption for data in transit as well as at rest, and the Project
Rhino initiative led by Intel (https://github.com/intel-hadoop/project-
rhino/) is building out richer support for filesystem cryptographic modules, a
secure filesystem, and, at some point, a fuller key-management infrastructure.

The Hadoop distribution vendors are moving fast to add these capabilities to
their releases, so if you care about security (you do, don't you!), then consult the
documentation for the latest release of your distribution. New security features are
being added even in point updates and aren't being delayed until major upgrades.

Consequences of using a secured cluster
After teasing you with all the security goodness that is now available and that
which is coming, it's only fair to give some words of warning. Security is often
hard to do correctly, and often the feeling of security wrongly employed with a
buggy deployment is worse than knowing you have no security.

However, even if you do it right, there are consequences to running a secure cluster.
It makes things harder for the administrators certainly and often the users, so there is
definitely an overhead. Specific Hadoop tools and services will also work differently
depending on what security is employed on a cluster.

Running a Hadoop Cluster

[314]

Oozie, which we discussed in Chapter 8, Data Lifecycle Management, uses its own
delegation tokens behind the scenes. This allows the oozie user to submit jobs that
are then executed on behalf of the originally submitting user. In a cluster using only
the basic authorization mechanism, this is very easily configured, but using Oozie in
a secure cluster will require additional logic to be added to the workflow definitions
and the general Oozie configuration. This isn't a problem with Hadoop or Oozie;
however, similarly as with the additional complexity resulting from the much better
HA features of HDFS in Hadoop 2, better security mechanisms will simply have
costs and consequences that you need take into consideration.

Monitoring
Earlier in this chapter, we discussed Cloudera Manager as a visual monitoring tool
and hinted that it could also be programmatically integrated with other monitoring
systems. But before plugging Hadoop into any monitoring framework, it's worth
considering just what it means to operationally monitor a Hadoop cluster.

Hadoop – where failures don't matter
Traditional systems monitoring tends to be quite a binary tool; generally speaking,
either something is working or it isn't. A host is alive or dead, and a web server
is responding or it isn't. But in the Hadoop world, things are a little different; the
important thing is service availability, and this can still be treated as live even if
particular pieces of hardware or software have failed. No Hadoop cluster should be
in trouble if a single worker node fails. As of Hadoop 2, even the failure of the server
processes, such as the NameNode shouldn't really be a concern if HA is configured.
So, any monitoring of Hadoop needs to take into account the service health and not
that of specific host machines, which should be unimportant. Operations people on
24/7 pager are not going to be happy getting paged at 3 AM to discover that one
worker node in a cluster of 10,000 has failed. Indeed, once the scale of the cluster
increases beyond a certain point, the failure of individual pieces of hardware
becomes an almost commonplace occurrence.

Monitoring integration
You won't be building your own monitoring tools; instead, you might likely
want to integrate with existing tools and frameworks. For popular open source
monitoring tools, such as Nagios and Zabbix, there are multiple sample templates to
integrate Hadoop's service-wide and node-specific metrics.

Chapter 10

[315]

This can give the sort of separation hinted previously; the failure of the YARN
ResourceManager would be a high-criticality event that should most likely cause
alerts to be sent to operations staff, but a high load on specific hosts should only
be captured and not cause alerts to be fired. This then provides the duality of
firing alerts when bad things happen in addition to capturing and providing the
information needed to delve into system data over time to do trend analysis.

Cloudera Manager provides a REST interface, which is another point of integration
against which tools such as Nagios can integrate and pull the Cloudera
Manager-defined service-level metrics instead of having to define its own.

For heavier-weight enterprise-monitoring infrastructure built on frameworks,
such as IBM Tivoli or HP OpenView, Cloudera Manager can also deliver events
via SNMP traps that will be collected by these systems.

Application-level metrics
At times, you might also want your applications to gather metrics that can be
centrally captured within the system. The mechanisms for this will differ from
one computational model to another, but the most well-known are the application
counters available within MapReduce.

When a MapReduce job completes, it outputs a number of counters, gathered
by the system throughout the job execution, that deal with metrics such as the
number of map tasks, bytes written, failed tasks, and so on. You can also write
application-specific metrics that will be available alongside the system counters
and which are automatically aggregated across the map/reduce execution.
First define a Java enum, and name your desired metrics within it, as follows:

public enum AppMetrics{
 MAX_SEEN,
 MIN_SEEN,
 BAD_RECORDS
};

Then, within the map, reduce, setup, and cleanup methods of your Map or Reduce
implementations, you can do something like the following to increment a counter
by one:

Context.getCounter(AppMetrics.BAD_RECORDS).increment(1);

Refer to the JavaDoc of the org.apache.hadoop.mapreduce.Counter interface for
more details of this mechanism.

Running a Hadoop Cluster

[316]

Troubleshooting
Monitoring and logging counters or additional information is all well and good, but
it can be intimidating to know how to actually find the information you need when
troubleshooting a problem with an application. In this section, we will look at how
Hadoop stores logs and system information. We can distinguish three typologies of
logs, as follows:

•	 YARN applications, including MapReduce jobs
•	 Daemon logs (NameNode and ResourceManager)
•	 Services that log non-distributed workloads, for example, HiveServer2

logging to /var/log

Next to these log typologies, Hadoop exposes a number of metrics at filesystem
(the storage availability, replication factor, and number of blocks) and system level.
As mentioned, both Apache Ambari and Cloudera Manager, which centralize access
to debug information, do a nice job as the frontend. However, under the hood, each
service logs to either HDFS or the single-node filesystem. Furthermore, YARN,
MapReduce, and HDFS expose their logfiles and metrics via web interfaces and
programmatic APIs.

Logging levels
Hadoop logs messages to Log4j by default. Log4j is configured via log4j.
properties in the classpath. This file defines what is logged and with which layout:

log4j.rootLogger=${root.logger}
root.logger=INFO,console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss}
%p %c{2}: %m%n

The default root logger is INFO,console, which logs all messages at the level INFO
and above to the console's stderr. Single applications deployed on Hadoop can ship
their own log4j.properties and set the level and other properties of their emitted
logs as required.

Chapter 10

[317]

Hadoop daemons have a web page to get and set the log level for any
Log4j property. This interface is exposed by the /LogLevel endpoint in each
service web UI. To enable debug logging for the ResourceManager class, we will
visit http://resourcemanagerhost:8088/LogLevel, and the screenshot can be
seen as follows:

Getting and setting the log level on ResourceManager

Alternatively, the YARN daemonlog <host:port> command interfaces with the
service /LogLevel endpoint. We can inspect the level associated with mapreduce.
map.log.level for the ResourceManager class using the –getlevel <property>
parameter, as follows:

$ hadoop daemonlog -getlevel localhost.localdomain:8088 mapreduce.map.
log.level

Connecting to http://localhost.localdomain:8088/logLevel?log=mapreduce.
map.log.level Submitted Log Name: mapreduce.map.log.level Log Class: org.
apache.commons.logging.impl.Log4JLogger Effective level: INFO

The effective level can be modified using the -setlevel <property> <level>
option:

$ hadoop daemonlog -setlevel localhost.localdomain:8088 mapreduce.map.
log.level DEBUG

Connecting to http://localhost.localdomain:8088/logLevel?log=mapreduce.
map.log.level&level=DEBUG

Running a Hadoop Cluster

[318]

Submitted Log Name: mapreduce.map.log.level

Log Class: org.apache.commons.logging.impl.Log4JLogger

Submitted Level: DEBUG

Setting Level to DEBUG ...

Effective level: DEBUG

Note that this setting will affect all logs produced by the ResourceManager class.
This includes system-generated entries as well as the ones generated by applications
running on YARN.

Access to logfiles
Logfile locations and naming conventions are likely to differ based on the
distribution. Apache Ambari and Cloudera Manager centralize access to logfiles,
both for services and single applications. On Cloudera's QuickStart VM, an overview
of the currently running processes and links to their logfiles, the stderr and stdout
channels can be found at http://localhost.localdomain:7180/cmf/hardware/
hosts/1/processes, and the screenshot can be seen as follows:

Access to log resources in Cloudera Manager

Chapter 10

[319]

Ambari provides a similar overview via the Services dashboard found at
http://127.0.0.1:8080/#/main/services on the HDP Sandbox, and the
screenshot can be seen as follows:

Access to log resources on Apache Ambari

Non-distributed logs are usually found under /var/log/<service> on each cluster
node. YARN containers and MRv2 logs locations also depend on the distribution.
On CDH5 these resources are available in HDFS under /tmp/logs/<user>.

The standard modality to access distributed logs is either via command-line tools or
using services web UIs.

For instance, the command is as follows:

$ yarn application -list -appStates ALL

Running a Hadoop Cluster

[320]

The preceding command will list all running and retried YARN applications.
The URL in the task column points to a web interface that exposes the task log,
as follows:

14/08/03 14:44:38 INFO client.RMProxy: Connecting to ResourceManager
at localhost.localdomain/127.0.0.1:8032 Total number of applications
(application-types: [] and states: [NEW, NEW_SAVING, SUBMITTED, ACCEPTED,
RUNNING, FINISHED, FAILED, KILLED]):4 Application-
Id Application-Name Application-Type User
Queue State Final-State Progress
Tracking-URL application_1405630696162_0002 PigLatin:DefaultJobNa
me MAPREDUCE cloudera root.cloudera FINISHED
SUCCEEDED 100% http://localhost.localdomain:19888/
jobhistory/job/job_1405630696162_0002 application_1405630696162_0004
PigLatin:DefaultJobName MAPREDUCE cloudera root.
cloudera FINISHED SUCCEEDED 100%
http://localhost.localdomain:19888/jobhistory/job/job_1405630696162_0004
application_1405630696162_0003 PigLatin:DefaultJobNa
me MAPREDUCE cloudera root.cloudera FINISHED
SUCCEEDED 100% http://localhost.localdomain:19888/
jobhistory/job/job_1405630696162_0003 application_1405630696162_0005 Pi
gLatin:DefaultJobName MAPREDUCE cloudera root.cloudera
FINISHED SUCCEEDED 100% http://localhost.
localdomain:19888/jobhistory/job/job_1405630696162_0005

For instance, http://localhost.localdomain:19888/jobhistory/job/
job_1405630696162_0002, a link to a task belonging to user cloudera, is a
frontend to the content stored under hdfs:///tmp/logs/cloudera/logs/
application_1405630696162_0002/.

In the following sections, we will give an overview of the available UIs for
different services.

Provisioning an EMR cluster with the –log-uri
s3://<bucket> option will ensure that Hadoop logs are
copied into the s3://<bucket> location.

Chapter 10

[321]

ResourceManager, NodeManager, and
Application Manager
On YARN the ResourceManager web UI provides information and general job
statistics of the Hadoop cluster, running/completed/failed jobs, and a job history
logfile. By default, the UI is exposed at http://<resourcemanagerhost>:8088/
and can be seen in the following screenshot:

Resource Manager

Applications
On the left-hand sidebar, it is possible to review the application status of interest:
NEW, SUBMITTED, ACCEPTED, RUNNING, FINISHING, FINISHED, FAILED, or KILLED.
Depending on the application status, the following information is available:

•	 The application ID
•	 The submitting user
•	 The application name
•	 The scheduler queue in which the application is placed
•	 Start/finish times and state
•	 Link to the Tracking UI for application history

Running a Hadoop Cluster

[322]

In addition, the Cluster Metrics view gives you information on the following:

•	 Overall application status
•	 Number of running containers
•	 Memory usage
•	 Node status

Nodes
The Nodes view is a frontend to the NodeManager service menu, which shows
health and location information on the node's running applications, as follows:

Nodes status

Each individual node of the cluster exposes further information and statistics at host
level via its own UI. These include which version of Hadoop is running on the node,
how much memory is available on the node, the node status, and a list of running
applications and containers, as shown in the following screenshot:

Single node info

Chapter 10

[323]

Scheduler
The following screenshot shows the Scheduler window:

Scheduler

MapReduce
Though the same information and logging details are available in MapReduce v1
and MapReduce v2, the access modality is slightly different.

MapReduce v1
The following screenshot shows the MapReduce JobTracker UI:

The Job Tracker UI

Running a Hadoop Cluster

[324]

The Job Tracker UI, available by default at http://<jobtracker>:50070, exposes
information on all currently running as well as retired MapReduce jobs, a summary
of the cluster resources and health, as well as scheduling information and completion
percentage, as shown in the following screenshot:

Job details

For each running and retired job, details are available, including its ID, owner,
priority, task assignment, and task launch for the mapper. Clicking on a jobid link
will lead to a job details page—the same URL exposed by the mapred job –list
command. This resource gives details about both the map and reduce tasks as well as
general counter statistics at the job, filesystem, and MapReduce levels; these include
the memory used, number of read/write operations, and the number of bytes read
and written.

Chapter 10

[325]

For each Map and Reduce operation, the JobTracker exposes the total, pending,
running, completed, and failed tasks, as shown in the following screenshot:

Job tasks overview

Clicking on the links in the Job table will lead to a further overview at the task and
task-attempt levels, as shown in the following screenshot:

Task attempts

Running a Hadoop Cluster

[326]

From this last page, we can access the logs of each task attempt, both for successful
and failed/killed tasks on each individual TaskTracker host. This log contains
the most granular information about the status of the MapReduce job, including
the output of Log4j appenders as well as output piped to the stdout and stderr
channels and syslog, as shown in the following screenshot:

TaskTracker logs

MapReduce v2 (YARN)
As we have seen in Chapter 3, Processing – MapReduce and Beyond, with YARN,
MapReduce is only one of many processing frameworks that can be deployed. Recall
from previous chapters that the JobTracker and TaskTracker services have been
replaced by the ResourceManager and NodeManager, respectively. As such, both the
service UIs and the logfiles from YARN are more generic than MapReduce v1.

Chapter 10

[327]

The application_1405630696162_0002 name shown in Resource Manager
corresponds to a MapReduce job with the job_1405630696162_0002 ID. That
application ID belongs to the task running inside the container, and clicking on
it will reveal an overview of the MapReduce job and allow a drill-down to the
individual tasks from either phase until the single-task log is reached, as shown
in the following screenshot:

A YARN application containing a MapReduce job

JobHistory Server
YARN ships with a JobHistory REST service that exposes details on finished
applications. Currently, it only supports MapReduce and provides information on
finished jobs. This includes the job final status SUCCESSFUL or FAILED, who submitted
the job, the total number of map and reduce tasks, and timing information.

Running a Hadoop Cluster

[328]

A UI is available at http://<jobhistoryhost>:19888/jobhistory, as shown in
the following screenshot:

JobHistory UI

Clicking on each job ID will lead to the MapReduce job UI shown in the YARN
application screenshot.

NameNode and DataNode
The web interface for the Hadoop Distributed File System (HDFS) shows
information about the NameNode itself as well as the filesystem generally.

Chapter 10

[329]

By default, it is located at http://<namenodehost>:50070/, as shown in the
following screenshot:

NameNode UI

The Overview menu exposes NameNode information about DFS capacity and
usage and the block pool status, and it gives a summary of the status of DataNode
health and availability. The information contained in this page is for the most part
equivalent to what is shown at the command-line prompt:

$ hdfs dfsadmin –report

Running a Hadoop Cluster

[330]

The DataNodes menu gives more detailed information about the status of each
node and offers a drill-down at the single-host level, both for available and
decommissioned nodes, as shown in the following screenshot:

Datanode UI

Summary
This has been quite a whistle-stop tour around the considerations of running an
operational Hadoop cluster. We didn't try to turn developers into administrators,
but hopefully, the broader perspective will help you to help your operations staff.
In particular, we covered the following topics:

•	 How Hadoop is a natural fit for DevOps approaches as its multilayered
complexity means it's not possible or desirable to have substantial knowledge
gaps between development and operations staff

•	 Cloudera Manager, and how it can be a great management and monitoring
tool; it might cause integration problems though, if you have other enterprise
tools, and it comes with a vendor lock-in risk

•	 Ambari, the Apache open source alternative to Cloudera Manager, and how
it is used in the Hortonworks distribution

•	 How to think about selecting hardware for a physical Hadoop cluster, and
how this naturally fits into the considerations of how the multiple workloads
possible in the world of Hadoop 2 can peacefully coexist on shared resources

•	 The different considerations for firing up and using EMR clusters and how
this can be both an adjunct to, as well as an alternative to, a physical cluster

Chapter 10

[331]

•	 The Hadoop security ecosystem, how it is a very fast moving area, and how
the features available today are vastly better than some years ago and there is
still much around the corner

•	 Monitoring of a Hadoop cluster, considering what events are important in
the Hadoop model of embracing failure, and how these alerts and metrics
can be integrated into other enterprise-monitoring frameworks

•	 How to troubleshoot issues with a Hadoop cluster, both in terms of
what might have happened and how to find the information to
inform your analysis

•	 A quick tour of the various web UIs provided by Hadoop, which can
give very good overviews of happenings within various components in
the system

This concludes our treatment of Hadoop in depth. In the final chapter, we will
express some thoughts on the broader Hadoop ecosystem, give some pointers for
useful and interesting tools and products that we didn't have a chance to cover in
the book, and suggest how to get involved with the community.

Where to Go Next
In the previous chapters we have examined many parts of Hadoop 2 and the
ecosystem around it. However, we have necessarily been limited by page count;
some areas we didn't get into as much depth as was possible, other areas we
referred to only in passing or did not mention at all.

The Hadoop ecosystem, with distributions, Apache and non-Apache projects, is an
incredibly vibrant and healthy place to be right now. In this chapter, we hope to
complement the previously discussed more detailed material with a travel guide,
if you will, for other interesting destinations. In this chapter, we will discuss the
following topics:

•	 Hadoop distributions
•	 Other significant Apache and non-Apache projects
•	 Sources of information and help

Of course, note that any overview of the ecosystem is both skewed by our interests
and preferences, and is outdated the moment it is written. In other words, don't for a
moment think this is all that's available, consider it instead a whetting of the appetite.

Alternative distributions
We've generally used the Cloudera distribution for Hadoop in this book, but have
attempted to keep the coverage distribution independent as much as possible.
We've also mentioned the Hortonworks Data Platform (HDP) throughout this
book but these are certainly not the only distribution choices available to you.

Where to Go Next

[334]

Before taking a look around, let's consider whether you need a distribution at all. It is
completely possible to go to the Apache website, download the source tarballs of the
projects in which you are interested, then work to build them all together. However,
given version dependencies, this is likely to consume more time than you would
expect. Potentially, vastly more so. In addition, the end product will likely lack some
polish in terms of tools or scripts for operational deployment and management. For
most users, these areas are why employing an existing Hadoop distribution is the
natural choice.

A note on free and commercial extensions—being an open source project with a quite
liberal license, distribution creators are also free to enhance Hadoop with proprietary
extensions that are made available either as free open source or commercial products.

This can be a controversial issue as some open source advocates dislike any
commercialization of successful open source projects; to them, it appears that the
commercial entity is freeloading by taking the fruits of the open source community
without having to build it for themselves. Others see this as a healthy aspect of the
flexible Apache license; the base product will always be free, and individuals and
companies can choose whether to go with commercial extensions or not. We don't
give judgment either way, but be aware that this is another of the controversies you
will almost certainly encounter.

So you need to decide if you need a distribution and if so for what reasons, which
specific aspects will benefit you most above rolling your own? Do you wish for
a fully open source product or are you willing to pay for commercial extensions?
With these questions in mind, let's look at a few of the main distributions.

Cloudera Distribution for Hadoop
You will be familiar with the Cloudera distribution (http://www.cloudera.com) as
it has been used throughout this book. CDH was the first widely available alternative
distribution and its breadth of available software, proven level of quality, and its free
cost has made it a very popular choice.

Recently, Cloudera has been actively extending the products it adds to its
distribution beyond the core Hadoop projects. In addition to Cloudera Manager and
Impala (both Cloudera-developed products), it has also added other tools such as
Cloudera Search (based on Apache Solr) and Cloudera Navigator (a data governance
solution). While CDH versions prior to 5 were focused more on the integration
benefits of a distribution, version 5 (and presumably beyond) is adding more and
more capability atop the base Apache Hadoop projects.

Cloudera also offers commercial support for its products in addition to training and
consultancy services. Details can be found on the company web page.

Chapter 11

[335]

Hortonworks Data Platform
In 2011, the Yahoo! division responsible for so much of the development of
Hadoop was spun off into a new company called Hortonworks. They have also
produced their own pre-integrated Hadoop distribution called the Hortonworks
Data Platform (HDP), available at http://hortonworks.com/products/
hortonworksdataplatform/.

HDP is conceptually similar to CDH but both products have differences in their
focus. Hortonworks makes much of the fact HDP is fully open source, including
the management tool Ambari, which we discussed briefly in Chapter 10, Running a
Hadoop Cluster. They have also positioned HDP as a key integration platform through
its support for tools such as Talend Open Studio. Hortonworks does not offer
proprietary software; its business model focuses instead on offering professional
services and support for the platform.

Both Cloudera and Hortonworks are venture-backed companies with significant
engineering expertise; both companies employ many of the most prolific contributors
to Hadoop. The underlying technology is, however, comprised of the same Apache
projects; the distinguishing factors are how they are packaged, the versions
employed, and the additional value-added offerings provided by the companies.

MapR
A different type of distribution is offered by MapR Technologies, although the
company and distribution are usually referred to simply as MapR. The distribution
available from http://www.mapr.com is based on Hadoop, but has added a number
of changes and enhancements.

The focus of the MapR distribution is on performance and availability. For example,
it was the first distribution to offer a high-availability solution for the Hadoop
NameNode and JobTracker, which you will remember from Chapter 2, Storage, was
a significant weakness in core Hadoop 1. It also offered native integration with NFS
filesystems long before Hadoop 2, which makes processing of existing data much
easier. To achieve these features, MapR replaced HDFS with a full POSIX compliant
filesystem that also features no NameNode, resulting in a true distributed system
with no master, and a claim of much better hardware utilization than Apache HDFS.

MapR provides both a community and enterprise edition of its distribution;
not all the extensions are available in the free product. The company also offers
support services as part of the enterprise product subscription in addition to
training and consultancy.

Where to Go Next

[336]

And the rest…
Hadoop distributions are not just the territory of young start-ups, nor are they a
static marketplace. Intel had its own distribution until early 2014 when it decided
to fold its changes into CDH instead. IBM has its own distribution called IBM
Infosphere Big Insights available in both free and commercial editions. There are also
various stories of numerous large enterprises rolling their own distributions, some of
which are made openly available while others are not. You will have no shortage of
options with so many high-quality distributions available.

Choosing a distribution
This raises the question: how to choose a distribution? As can be seen, the available
distributions (and we didn't cover them all) range from convenient packaging and
integration of fully open source products through to entire bespoke integration
and analysis layers atop them. There is no overall best distribution; think carefully
about your requirements and consider the alternatives. Since all these offer a free
download of at least a basic version, it's good to simply play and experience the
options for yourself.

Other computational frameworks
We've frequently discussed the myriad possibilities brought to the Hadoop
platform by YARN. We went into details of two new models, Samza and Spark.
Additionally, other more established frameworks such as Pig are also being ported
to the framework.

To give a view of the much bigger picture in this section, we will illustrate the
breadth of processing possible using YARN by presenting a set of computational
models that are currently being ported to Hadoop on top of YARN.

Apache Storm
Storm (http://storm.apache.org) is a distributed computation framework written
(mainly) in the Clojure programming language. It uses custom-created spouts
and bolts to define information sources and manipulations to allow distributed
processing of streaming data. A Storm application is designed as a topology of
interfaces that creates a stream of transformations. It provides similar functionality
to a MapReduce job with the exception that the topology will theoretically run
indefinitely until it is manually terminated.

Though initially built distinct from Hadoop, a YARN port is being developed by
Yahoo! and can be found at https://github.com/yahoo/storm-yarn.

Chapter 11

[337]

Apache Giraph
Giraph originated as the open source implementation of Google's Pregel paper
(which can be found at http://kowshik.github.io/JPregel/pregel_paper.pdf).
Both Giraph and Pregel are inspired by the Bulk Synchronous Parallel (BSP) model
of distributed computation introduced by Valiant in 1990. Giraph adds several
features including master computation, sharded aggregators, edge-oriented input,
and out-of-core computation. The YARN port can be found at https://issues.
apache.org/jira/browse/GIRAPH-13.

Apache HAMA
Hama is a top-level Apache project that aims, like other methods we've encountered
so far, to address the weakness of MapReduce with regard to iterative programming.
Similar to the aforementioned Giraph, Hama implements the BSP techniques and
has been heavily inspired by the Pregel paper. The YARN port can be found at
https://issues.apache.org/jira/browse/HAMA-431.

Other interesting projects
Whether you use a bundled distribution or stick with the base Apache Hadoop
download, you will encounter many references to other related projects. We've
covered several of these such as Hive, Samza, and Crunch in this book; we'll now
highlight some of the others.

Note that this coverage seeks to point out the highlights (from the authors'
perspective) as well as give a taste of the breadth of types of projects available. As
mentioned earlier, keep looking out, as there will be new ones launching all the time.

HBase
Perhaps the most popular Apache Hadoop-related project that we didn't cover in
this book is HBase (http://hbase.apache.org). Based on the BigTable model of
data storage publicized by Google in an academic paper (sound familiar?), HBase
is a nonrelational data store sitting atop HDFS.

While both MapReduce and Hive focus on batch-like data access patterns, HBase
instead seeks to provide very low-latency access to data. Consequently HBase can,
unlike the aforementioned technologies, directly support user-facing services.

Where to Go Next

[338]

The HBase data model is not the relational approach that was used in Hive and all
other RDBMSs, nor does it offer the full ACID guarantees that are taken for granted
with relational stores. Instead, it is a key-value schema-less solution that takes a
column-oriented view of data; columns can be added at runtime and depend on the
values inserted into HBase. Each lookup operation is then very fast, as it is effectively
a key-value mapping from the row key to the desired column. HBase also treats
timestamps as another dimension on the data so one can directly retrieve data from a
point in time.

The data model is very powerful but does not suit all use cases just as the relational
model isn't universally applicable. But if you have a requirement for structured
low-latency views on large-scale data stored in Hadoop, then HBase is absolutely
something you should look at.

Sqoop
In Chapter 7, Hadoop and SQL, we looked at tools for presenting a relational-like
interface to data stored on HDFS. Often, such data either needs to be retrieved from
an existing relational database or the output of its processing needs to be stored back.

Apache Sqoop (http://sqoop.apache.org) provides a mechanism for declaratively
specifying data movement between relational databases and Hadoop. It takes a task
definition and from this generates MapReduce jobs to execute the required data
retrieval or storage. It will also generate code to help manipulate relational records
with custom Java classes. In addition, it can integrate with HBase and Hcatalog/
Hive and it provides a very rich set of integration possibilities.

At the time of writing, Sqoop is slightly in flux. Its original version, Sqoop 1, was a
pure client-side application. Much like the original Hive command-line tool, Sqoop
1 has no server and generates all code on the client. This unfortunately means that
each client needs to know a lot of details about physical data sources, including exact
host names as well as authentication credentials.

Sqoop 2 provides a centralized Sqoop server that encapsulates all these details and
offers the various configured data sources to the connecting clients. It is a superior
model but at the time of writing, the general community recommendation is to stick
with Sqoop 1 until the new version evolves further. Check on the current status if
you are interested in this type of tool.

Chapter 11

[339]

Whir
When looking to use cloud services such as Amazon AWS for Hadoop deployments,
it is usually a lot easier to use a higher level service such as Elastic MapReduce as
opposed to setting up your own cluster on EC2. Though there are scripts to help, the
fact is that the overhead of Hadoop-based deployments on cloud infrastructures can
be involved. That's where Apache Whir (https://whirr.apache.org/) comes in.

Whir isn't focused on Hadoop; it's about supplier-independent instantiation of cloud
services of which Hadoop is a single example. Whir aims to provide a programmatic
way of specifying and creating Hadoop-based deployments on cloud infrastructures
in a way that handles all the underlying service aspects for you. It does this in a
provider-independent fashion so that once you've launched on say EC2 then you
can use the same code to create the identical setup on another provider such as
Rightscale or Eucalyptus. This makes vendor lock-in, often a concern with cloud
deployments, less of an issue.

Whir isn't quite there yet. Today, it is limited in services it can create and providers
it supports, however, if you are interested in cloud deployment with less pain then
it's worth watching its progress.

If you are building out your full infrastructure on Amazon Web
Services then you might find cloud formation gives much of the same
ability to define application requirements, though obviously in an
AWS-specific fashion.

Mahout
Apache Mahout (http://mahout.apache.org/) is a collection of distributed
algorithms, Java classes, and tools for performing advanced analytics on top
of Hadoop. Similar to Spark's MLLib briefly mentioned in Chapter 5, Iterative
Computation with Spark, Mahout ships with a number of algorithms for common use
cases: recommendation, clustering, regression, and feature engineering. Although
the system is focused on natural language processing and text-mining tasks, its
building blocks (linear algebra operations) are suitable to be applied to a number
of domains. As of Version 0.9, the project is being decoupled from the MapReduce
framework in favor of richer programming models such as Spark. The community
end goal is to obtain a platform-independent library based on a Scala DSL.

Where to Go Next

[340]

Hue
Initially developed by Cloudera and marketed as the "User Interface for Hadoop",
Hue (http://gethue.com/) is a collection of applications, bundled together under
a common web interface, that act as clients for core services and a number of
components of the Hadoop ecosystem:

The Hue Query Editor for Hive

Hue leverages many of the tools we discussed in previous chapters and provides an
integrated interface for analyzing and visualizing data. There are two components
that are remarkably interesting. On one hand, there is a query editor that allows
the user to create and save Hive (or Impala) queries, export the result set in CSV or
Microsoft Office Excel format as well as plot it in the browser. The editor features
the capability of sharing both HiveQL and result sets, thus facilitating collaboration
within an organization. On the other hand, there is an Oozie workflow and
coordinator editor that allows a user to create and deploy Oozie jobs manually,
automating the generation of XML configurations and boilerplate.

Chapter 11

[341]

Both Cloudera and Hortonworks distributions ship with Hue and typically include
the following:

•	 A file manager for HDFS
•	 A Job Browser for YARN (MapReduce)
•	 An Apache HBase browser
•	 A Hive metastore explorer
•	 Query editors for Hive and Impala
•	 A script editor for Pig
•	 A job editor for MapReduce and Spark
•	 An editor for Sqoop 2 jobs
•	 An Oozie workflow editor and dashboard
•	 An Apache ZooKeeper browser

On top of this, Hue is a framework with an SDK that contains a number of web
assets, APIs, and patterns for developing third-party applications that interact
with Hadoop.

Other programming abstractions
Hadoop isn't just extended by additional functionality, there are tools to provide
entirely different paradigms for writing the code used to process your data
within Hadoop.

Cascading
Developed by Concurrent, and open sourced under an Apache license,
Cascading (http://www.cascading.org/) is a popular framework that abstracts
the complexity of MapReduce away and allows us to create complex workflows on
top of Hadoop. Cascading jobs can compile to, and be executed on, MapReduce, Tez,
and Spark. Conceptually, the framework is similar to Apache Crunch, covered in
Chapter 9, Making Development Easier, though practically there are differences in
terms of data abstractions and end goals. Cascading adopts a tuple data model
(similar to Pig) rather than arbitrary objects, and encourages the user to rely on
a higher level DSL, powerful built-in types, and tools to manipulate data.

Where to Go Next

[342]

Put in simple terms, Cascading is to PigLatin and HiveQL what Crunch is to a
user-defined function.

Like Morphlines, which we also saw in Chapter 9, Making Development Easier, the
Cascading data model follows a source-pipe-sink approach, where data is captured
from a source, piped through a number of processing steps, and its output is then
delivered into a sink, ready to be picked up by another application.

Cascading encourages developers to write code in a number of JVM languages.
Ports of the framework exist for Python (PyCascading), JRuby (Cascading.jruby),
Clojure (Cascalog), and Scala (Scalding). Cascalog and Scalding in particular have
gained a lot of traction and spawned off their very own ecosystems.

An area where Cascading excels is documentation. The project provides
comprehensive javadocs of the API, extensive tutorials (http://www.cascading.
org/documentation/tutorials/) and an interactive exercise-based learning
environment (https://github.com/Cascading/Impatient).

Another strong selling point of Cascading is its integration with third-party
environments. Amazon EMR supports Cascading as a first-class processing
framework and allows us to launch Cascading clusters both with the command
line and web interfaces (http://docs.aws.amazon.com/ElasticMapReduce/
latest/DeveloperGuide/CreateCascading.html). Plugins for the SDK exist for
both the IntelliJ IDEA and Eclipse integrated development environments. One of
the framework's top projects, Cascading Patterns, a collection of machine-learning
algorithms, features a utility for translating Predictive Model Markup Language
(PMML) documents into applications on Apache Hadoop, thus facilitating
interoperability with popular statistical environments and scientific tools such
as R (http://cran.r-project.org/web/packages/pmml/index.html).

AWS resources
Many Hadoop technologies can be deployed on AWS as part of a self-managed
cluster. However, just as Amazon offers support for Elastic MapReduce, which
handles Hadoop as a managed service, there are a few other services that are
worth mentioning.

Chapter 11

[343]

SimpleDB and DynamoDB
For some time, AWS has offered SimpleDB as a hosted service providing an
HBase-like data model.

It has, however, largely been superseded by a more recent service from AWS,
DynamoDB, located at http://aws.amazon.com/dynamodb. Though its data model
is very similar to that of SimpleDB and HBase, it is aimed at a very different type of
application. Where SimpleDB has quite a rich search API but is very limited in terms
of size, DynamoDB provides a more constrained though constantly evolving API,
but with a service guarantee of near-unlimited scalability.

The DynamoDB pricing model is particularly interesting; instead of paying for a
certain number of servers hosting the service, you allocate a certain capacity for
read-and-write operations, and DynamoDB manages the resources required to meet
this provisioned capacity. This is an interesting development as it is a more pure
service model, where the mechanism of delivering the desired performance is kept
completely opaque to the service user. Have a look at DynamoDB but if you need
a much larger scale of data store than SimpleDB can offer; however, do consider
the pricing model carefully as provisioning too much capacity can become very
expensive very quickly. Amazon provides some good best practices for DynamoDB
at the following URL that illustrate that minimizing the service costs can result
in additional application-layer complexity: http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/BestPractices.html.

Of course the discussion of DynamoDB and SimpleDB assumes a
non-relational data model; there is the Amazon Relational Database
Service (Amazon RDS) for a relational database in the cloud service.

Kinesis
Just as EMR is hosted Hadoop and DynamoDB has similarities to a hosted HBase,
it wasn’t surprising to see AWS announce Kinesis, a hosted streaming data service in
2013. This can be found at http://aws.amazon.com/kinesis and it has very similar
conceptual building blocks to the stack of Samza atop Kafka. Kinesis provides a
partitioned view of messages as a stream of data and an API to have callbacks that
execute when messages arrive. As with most AWS services, there is tight integration
with other services making it easy to get data into and out of locations such as S3.

Where to Go Next

[344]

Data Pipeline
The final AWS service that we'll mention is Data Pipeline, which can be found at
http://aws.amazon.com/datapipeline. As the name suggests, it is a framework
for building up data-processing jobs that involve multiple steps, data movements,
and transformations. It has quite a conceptual overlap with Oozie, but with a few
twists. Firstly, Data Pipeline has the expected deep integration with many other
AWS services, enabling easy definition of data workflows that incorporate diverse
repositories such as RDS, S3, and DynamoDB. In addition however, Data Pipeline
does have the ability to integrate agents installed on local infrastructure, providing
an interesting avenue for building workflows that span across the AWS and
on-premises environments.

Sources of information
You don't just need new technologies and tools—even if they are cool. Sometimes, a
little help from a more experienced source can pull you out of a hole. In this regard,
you are well covered, as the Hadoop community is extremely strong in many areas.

Source code
It's sometimes easy to overlook, but Hadoop and all the other Apache projects are
after all fully open source. The actual source code is the ultimate source (pardon the
pun) of information about how the system works. Becoming familiar with the source
and tracing through some of the functionality can be hugely informative. Not to
mention helpful when you are hitting unexpected behavior.

Mailing lists and forums
Almost all the projects and services listed in this chapter have their own mailing lists
and/or forums; check out the home pages for the specific links. Most distributions
also have their own forums and other mechanisms to share knowledge and get (non-
commercial) help from the community. Additionally, if using AWS, make sure to
check out the AWS developer forums at https://forums.aws.amazon.com.

Always remember to read posting guidelines carefully and understand the expected
etiquette. These are tremendous sources of information; the lists and forums are
often frequently visited by the developers of the particular project. Expect to see the
core Hadoop developers on the Hadoop lists, Hive developers on the Hive list, EMR
developers on the EMR forums, and so on.

Chapter 11

[345]

LinkedIn groups
There are a number of Hadoop and related groups on the professional social network
LinkedIn. Do a search for your particular areas of interest, but a good starting point
might be the general Hadoop users' group at http://www.linkedin.com/groups/
Hadoop-Users-988957.

HUGs
If you want more face-to-face interaction then look for a Hadoop User Group (HUG)
in your area, most of which will be listed at http://wiki.apache.org/hadoop/
HadoopUserGroups. These tend to arrange semi-regular get-togethers that combine
things such as quality presentations, the ability to discuss technology with like-
minded individuals, and often pizza and drinks.

No HUG near where you live? Consider starting one.

Conferences
Though some industries take decades to build up a conference circuit, Hadoop
already has some significant conference action involving the open source, academic,
and commercial worlds. Events such as the Hadoop Summit and Strata are pretty
big; these and some other are linked from http://wiki.apache.org/hadoop/
Conferences.

Summary
In this chapter, we took a quick gallop around the broader Hadoop ecosystem,
looking at the following topics:

•	 Why alternative Hadoop distributions exist and some of the more
popular ones

•	 Other projects that provide capabilities, extensions, or Hadoop
supporting tools

•	 Alternative ways of writing or creating Hadoop jobs
•	 Sources of information and how to connect with other enthusiasts

Now, go have fun and build something amazing!

Index
A
additional data, collecting

about 253
Oozie triggers 256
workflows, scheduling 253-255

addMapper method, arguments
class 84
inputKeyClass 84
inputValueClass 84
job 84
mapperConf 84
outputKeyClass 84
outputValueClass 84

alternative distributions
about 333, 334
Cloudera Distribution 334
Hortonworks Data Platform (HDP) 335
MapR 335
selecting 336

Amazon account
URL 19

Amazon CLI
URL 21

Amazon EMR
about 19
AWS account, creating 19
required services, signing up 20

Amazon Relational Database Service
(Amazon RDS) 343

Amazon Web Services. See AWS
Ambari

about 302
URL 302

AMPLab
URL 132

Apache Avro
about 54
URL 54

Apache Crunch
about 274, 275
concepts 275-277
data processing patterns 278
data serialization 277, 278
examples 281
execution 280
JARs 275
Kite Morphlines 286
URL for libraries 275
PCollection<T> interface 275
pipelines implementation 280
PTable<Key, Value> interface 275
URL 274

Apache DataFu
about 168
reference link 167, 168

Apache Giraph
about 337
URL 337

Apache HAMA 337
Apache Kafka

about 107, 108
Twitter data, getting into 114
URL 102

Apache Knox
about 313
URL 313

Apache Mahout
about 339
URL 339

Apache Samza

[348]

Apache Sentry
URL 313

Apache Spark
about 102, 132-137
actions 134
cluster computing, with working

sets 132, 133
data, processing 141
deployment 134
Java API 138
on EC2 135
on YARN 134
Python API 139
Resilient Distributed Datasets

(RDDs) 133, 134
Scala API 137, 138
standalone applications, writing 137
URL 102
WordCount, in Java 138, 139

Apache Spark, ecosystem
about 140
GraphX 140
MLLib 141
Spark SQL 141
Spark Streaming 140

Apache Sqoop
about 338
URL 338

Apache Storm
about 106, 336
URL 106

Apache Thrift
about 49, 213, 214
URL 49

Apache Tika
about 119
URL 119

Apache Twill
URL 98

Apache Whir
Apache ZooKeeper

about 41, 42
blocks, building 44
distributed lock, implementing with

sequential ZNodes 42

group membership, implementing with
ephemeral ZNodes 43

Java API 44
leader election, implementing with

ephemeral ZNodes 43
URL 41
used, for enabling automatic NameNode

failover 45
application development

framework, selecting 259, 260
Application Manager 321
ApplicationMaster (AM) 95
architectural principles, HDFS and

MapReduce 10
array wrapper classes 50
automatic NameNode failover

enabling 45
Avro 194
Avro schema evolution, using

additive changes, making 252
schema distribution 252
schema versions, managing explicitly 252
thoughts 251

AvroSerde
about 194-196
URL 194

AWS
about 16, 17
command-line interface 21, 22
Elastic MapReduce (EMR) 18
Hive, working with 207
Simple Storage Service (S3) 17
URL, developer forums 344

AWS credentials
about 21
access key 21
account ID 21
key pairs 21
reference link 21
secret access key 21

AWS resources
about 342
Data Pipeline 344
DynamoDB 343
Kinesis 343
SimpleDB 343

[349]

B
block replication 35
Bulk Synchronous Parallel (BSP) model 337

C
Cascading

about 341, 342
reference links 342
URL 341

Cloudera
URL 16
URL, for blog post 305
URL, for documentation 298

Cloudera distribution, for Hadoop
about 334
URL 334

Cloudera Kitten
URL 98

Cloudera Manager
about 298
cluster management, performing 299, 300
configuration, finding 301
integrating, with management tools 300
monitoring with 300
payment, for subscription services 299

Cloudera Manager API 301
Cloudera Manager lock-in 301, 302
Cloudera QuickStart VM

about 19
advantages 19

cluster, Apache Spark
computing, with working sets 132, 133

cluster, on EMR
building 308
data, obtaining into EMR 309
EC2 instances 310
EC2 tuning 310
filesystem, considerations 309

cluster startup, HDFS
about 34
DataNode startup 35
NameNode startup 34

cluster tuning
about 310
JVM considerations 310

map optimization 311
reduce optimization 311

columnar stores 196
column-oriented data formats

about 53
Avro 54
Java API, using 55-58
ORC 54
Parquet 54
RCFile 54

combiner class, Java API to MapReduce 65
combineValues operation 276
command-line access, HDFS filesystem

about 36
dfsadmin command 36
dfs command 36
hdfs command 36

Comparable interface 51
complex data types

bag 160
map 160
tuple 160

complex event processing (CEP) 106
components, Hadoop

about 10
common building blocks 10
computation 11
storage 11

components, YARN
about 95
NodeManager (NM) 95
ResourceManager (RM) 95

computation 11
computational frameworks

about 336
Apache Giraph 337
Apache Storm 336

computation, Hadoop 2 14-16
conferences

about 345
reference link 345

configuration file, Samza 112, 113
containers 51
contributed UDFs

about 167
Apache DataFu 168

[350]

Elephant Bird 168
Piggybank 168

create.hql script
reference link 230

Crunch. See Apache Crunch
Crunch examples

about 281
TF-IDF 281-286
word co-occurrence 281

Curator project
reference link 44

D
Data Core 271, 272
Data Crunch 274
Data HCatalog 272, 273
Data Hive 273
data lifecycle management

about 221
importance 222
tools 222

data, managing
about 49
array wrapper classes 50
Comparable interface 51
wrapper classes 50
WritableComparable interface 51
Writable interface 49, 50

Data MapReduce 273
DataNodes 13, 328, 330
data, Pig

aggregation 164
FILTER operator 164
FOREACH operator 165
JOIN operator 165
working with 163

Data Pipeline
about 344
reference link 344

data processing
about 24
dataset, building 25
dataset, generating from Twitter 24
programmatic access, with Python 28-31

data processing, Apache Spark
about 141
data analysis, with Spark SQL 147, 148
examples, building 141
examples, running 141
examples, running on YARN 142
on streams 145, 146
popular topics, finding 143
sentiment, assigning to topics 144, 145
SQL, on data streams 149
state management 146, 147

data processing patterns, Crunch
about 278
aggregation and sorting 278
data joining 279

data serialization, Crunch 277, 278
dataset, building with Twitter

about 25
anatomy, of Tweet 25
multiple APIs, using 25
Twitter credentials 26, 27

Data Spark 274
data, storing

about 51
column-oriented data formats 53
containers file format 51
file compression 52
general-purpose file formats 52
serialization file format 51

data types, Hive
collections 190
date and time 190
misc 190
numeric 190
string 190

data types, Pig
complex data types 160
scalar data types 159

DDL statements, Hive 190-192
decayFactor function 147
DEFINE operator 167
derived data, producing

about 240, 241
global settings, adding 244, 245

[351]

multiple actions, performing in
parallel 241, 242

subworkflow, calling 243, 244
DevOps practices 298
directed acyclic graph (DAG) 94
document frequency

about 267
calculating, TF-IDF used 267-269

Drill
about 219
URL 219

Driver class, Java API to MapReduce 63-65
dynamic invokers

about 162
reference link 162

DynamoDB
about 343
URL 343

E
EC2 key pair

reference link 22
Elastic MapReduce

Hive, using with 208, 209
Elastic MapReduce (EMR)

about 16, 18
cluster, building on 308
URL, for best practices 308
URL, for documentation 209
URL 18
using 20

Elephant Bird
reference link 167, 168

entities 170
ephemeral ZNodes 43
eval functions, Pig

AVG(expression) 161
COUNT(expression) 161
COUNT_STAR(expression) 162
IsEmpty(expression) 162
MAX(expression) 162
MIN(expression) 162
SUM(expression) 162
TOKENIZE(expression) 162

examples, MapReduce programs
Elastic MapReduce 69
local cluster 69
reference link 69

ExecutionEngine interface 154
external data, challenges

about 246
data validation 246
format changes, handling 247
schema evolution, handling with

Avro 248-251
validation actions 246, 247

EXTERNAL keyword 191
Extract-Transform-Load (ETL) 191

F
Falcon

about 257
URL 257

FileFormat classes, Hive
HiveIgnoreKeyTextOutputFormat 193
SequenceFileInputFormat 193
SequenceFileOutputFormat 193
TextInputFormat 193

file format, Hive
about 192
JSON 193, 194

filesystem metadata, HDFS
client configuration 40
failover, working 40
Hadoop 2 NameNode HA 38
protecting 38
Secondary NameNode, demerits 38

FILTER operator 164
FlumeJava

reference link 274
FOREACH operator 165
fork node 241
functions, Pig

about 160
bag 162
built-in functions 160
datetime 162
dynamic invokers 162
eval 161
load/store functions 161

[352]

macros 163
map 162
math 162
reference link, for built-in functions 160
string 162
tuple 162

G
Garbage Collection (GC) 310
Garbage First (G1) collector 310
general availability (GA) 8
general-purpose file formats

about 52
SequenceFile 53
Text files 52

Giraph. See Apache Giraph
Google Chubby system

reference link 41
Google File System (GFS)

reference link 9
Gradle

URL 23
GraphX

about 140
URL 140

groupByKey(GroupingOptions options)
method 278

groupByKey(int numPartitions) method 278
groupByKey() method 278
GROUP operator 164
Grunt

about 156
exec command 156
fs command 156
help command 156
kill command 156
sh command 156

Guava library
URL 79

H
Hadoop

about 18
alternative distributions 333
AWS credentials 21

AWS resources 342
background 8, 9
components 10
computational frameworks 336
data processing 24
dual approach 17
EMR, using 20
interesting projects 337
operations 297
practices 298
programming abstractions 341
sources of information 344
using 20
versioning 7

Hadoop 2
about 12
computation 14-16
diagrammatic representation,

architecture 15
operations 303, 304
reference link 18
storage 13

Hadoop 2 NameNode HA
about 38
enabling 39
keeping, in sync 39

Hadoop Distributed File System. See HDFS
Hadoop distributions

about 16
Cloudera 16
Hortonworks 16
MapR 16
reference link 17

Hadoop filesystems
about 48
Hadoop interfaces 48
reference link 48

Hadoop interfaces
about 48
Apache Thrift 49
Java FileSystem API 48
Libhdfs 49

Hadoop-provided InputFormat,
MapReduce job

about 92
FileInputFormat 92

[353]

KeyValueTextInputFormat 92
SequenceFileInputFormat 92
TextInputFormat 92

Hadoop-provided Mapper and Reducer
implementations, Java API to
MapReduce

about 67
mappers 67
reducers 67

Hadoop-provided OutputFormat,
MapReduce job

about 93
FileOutputFormat 93
NullOutputFormat 93
SequenceFileOutputFormat 93
TextOutputFormat 93

Hadoop-provided RecordReader,
MapReduce job

about 92
LineRecordReader 92
SequenceFileRecordReader 92

Hadoop security model
additional security features 312
evolution 312

Hadoop streaming
about 260, 261
differences in jobs 263, 264
importance of words, determining 264
word count, streaming in Python 261-263

Hadoop UI
about 257
URL 257

Hadoop User Group (HUG) 345
HAMA. See Apache HAMA
hashtagRegExp 76
hashtags 80
HBase

about 337
URL 337

HCatalog
about 235
using 235-237

HCat CLI tool 236
hcat utility 235
HDFS

about 10, 11, 116, 328
architecture 33

block replication 35
characteristics 11
cluster startup 34
DataNodes 33
NameNode 33

HDFS filesystem
command-line access 36
exploring 36, 37

HDFS snapshots 45-47
Hello Samza

about 110
URL 110

high-availability (HA) 13
High Performance Computing (HPC) 15
Hive

about 101
data types 190
DDL statements 190-192
file formats 192
overview 187, 188
queries 197-199
scripts, writing 206, 207
storage 192
URL 101
URL, for source code of JDBC client 212
URL, for source code of Thrift client 213
using, with Elastic MapReduce 208, 209
using, with S3 207, 208
working, with Amazon Web Services 207

Hive 0.13 101
Hive architecture 189
hive-json module

about 194
URL 194

Hive-on-tez 101
HiveQL

about 184, 199
extending 209-211

HiveServer2
about 189
URL 189

Hive tables
about 188
structuring, from workloads 199

[354]

Hortonworks Data Platform (HDP)
about 333, 335
URL 335

Hue
about 340, 341
URL 340

HUGs
about 345
reference link 345

I
IAM console

URL 208
IBM Infosphere Big Insights 336
Identity and Access Management (IAM) 21
Impala

about 216
architecture 217
co-existing, with Hive 217, 218
references 216, 217

indices attribute, entity 170
InputFormat, MapReduce job 91, 92
input/output, MapReduce job 91
in-sync replicas (ISR) 114

J
Java

WordCount 138, 139
Java API

about 138
versus Scala API 138

Java API to MapReduce
about 61
combiner class 65
Driver class 63-65
Hadoop-provided Mapper and

Reducer implementations 67
Mapper class 61, 62
partitioning 66
Reducer class 62, 63
reference data, sharing 67, 68

Java FileSystem API 48
JDBC 212

JobTracker monitoring, MapReduce job 89
join node 242
JOIN operator 165, 166, 198
JSON 193, 194
JSON Simple

URL 111
JVM considerations, cluster tuning

about 310
small files problem 310, 311

K
Kite Data

about 270
Data Core 271, 272
Data Crunch 274
Data HCatalog 272, 273
Data Hive 273
Data MapReduce 273
Data Spark 274

Kite examples
reference link 270

Kite JARs
reference link 271

Kite Morphlines
about 286
commands 288-294
concepts 287
Record abstractions 287

kite-morphlines-avro command 288
kite-morphlines-core-stdio command 288
kite-morphlines-core-stdlib command 288
kite-morphlines-hadoop-core command 288
kite-morphlines-hadoop-parquet-avro

command 289
kite-morphlines-hadoop-rcfile

command 289
kite-morphlines-hadoop-sequencefile

command 289
kite-morphlines-json command 288
Kite SDK

URL 270
KVM

reference link 19

[355]

L
Lambda syntax

URL 139
Libhdfs 49
LinkedIn groups

about 345
URL 345

Log4j 316
logfiles

accessing to 318-320
logging levels 316, 317

M
Machine Learning (ML) 141
macros 163
Mahout. See Apache Mahout
map optimization, cluster tuning

considerations 311
Mapper class, Java API to

MapReduce 61, 62
mapper execution, MapReduce job 89
mapper input, MapReduce job 89
mapper output, MapReduce job 90
mappers, Mapper and Reducer

implementations
IdentityMapper 67
InverseMapper 67
TokenCounterMapper 67

MapR
about 335
URL 335

MapReduce
about 59, 60, 183
Map phase 60
reference link 9, 59

MapReduce driver source code
reference link 293

MapReduce job
about 87
Hadoop-provided InputFormat 92
Hadoop-provided OutputFormat 93
Hadoop-provided RecordReader 92
InputFormat 91
input/output 91
input, splitting 88

JobTracker monitoring 89
mapper execution 89
mapper input 89
mapper output 90
OutputFormat 93
RecordReader 91
RecordWriter 93
reducer execution 90
reducer input 90
reducer output 90
sequence files 93
shutdown 90
startup 87
task assignment 88
task startup 88

MapReduce programs
examples, running 69
hashtags 80-84
reference link, for HashTagCount example

source code 76
reference link, for HashTagSentimentChain

source code 87
reference link, for HashTagSentiment

source code 83
reference link, for TopTenHashTag source

code 79
social network topics 74-77
text cleanup, chain mapper used 84-86
Top N pattern 77-79
word co-occurrences 72, 74
WordCount example 70-72
writing 68

Massively Parallel Processing (MPP) 217
MemPipeline 280
Message Passing Interface (MPI) 15
MLLib 141
monitoring

about 314
application-level metrics 315
Hadoop 314

Morphline commands
kite-morphlines-avro 288
kite-morphlines-core-stdio 288
kite-morphlines-core-stdlib 288
kite-morphlines-hadoop-parquet-avro 289
kite-morphlines-hadoop-rcfile 289
kite-morphlines-hadoop-sequencefile 289

[356]

kite-morphlines-json 288
reference link 289

MRExecutionEngine 154
Multipart Upload

URL 309

N
NameNode 13, 328, 329
NameNode HA 13
NFS share 39
NodeManager (NM) 95, 321

O
Oozie

about 223
action nodes 224
data, extracting 230-233
data, ingesting into Hive 230-233
development, making easier 230
features 223
HCatalog 235
HCatalog and partitioned tables 238, 239
HDFS file permissions 229
sharelib 237
triggers 256
URL 223
using 256
workflow 224, 225
workflow directory structure 234

operations, Hadoop 2 303
operations, RDDs

collect 134
filter 134
for each 134
groupByKey 134
map 134
reduce 134
sortByKey 134

opinion lexicon
URL 80

Optimized Row Columnar file
format (ORC)

about 54
URL 54

org.apache.zookeeper.ZooKeeper class 44
OutputFormat, MapReduce job 93

P
parallelDo operation 275
PARALLEL operator 164
Parquet

about 54
URL 54

partitioning, Java API to MapReduce
about 66
optional partition function 66

PCollection<T> interface, Crunch 275
physical cluster

building 305, 306
physical cluster, considerations

about 306
rack awareness 306
service layout 307
service, upgrading 307, 308

Pig
about 154, 184
data types 159
data, working with 163
Elastic MapReduce 156
functions 160
fundamentals 157, 158
Grunt 156
overview 153
programming 159
reference link, for multi-query

implementation 159
reference link, for parallel feature 159
reference link, for source code and binary

distributions 155
running 155
use cases 154

Piggybank 168
Pig Latin 153
Pig UDFs

contributed UDFs 167
extending 167

pipelines implementation, Apache Crunch
about 280
MemPipeline 280
SparkPipeline 280

positive_words operator 166
Predictive Model Markup Language

(PMML) 342

Proudly sourced and uploaded by [StormRG]

[357]

pre-requisites 185, 186
processing models, YARN

Apache Twill 98
Cloudera Kitten 98

programmatic interfaces
about 212
JDBC 212, 213
Thrift 213, 214

Project Rhino
URL 313

PTable<Key, Value> interface, Crunch 275
Python

used, for programmatic access 28-31
Python API 139

Q
queries, Hive 197-199
Quorum Journal Manager

(QJM mechanism) 39

R
RDDs

about 132-134
operations 134

Record abstractions
implementing 287, 288

RecordReader, MapReduce job 91, 92
RecordWriter, MapReduce job 93
Reduce function 60
reduce optimization, cluster tuning

considerations 311
Reducer class, Java API to

MapReduce 62, 63
reducer execution, MapReduce job 90
reducer input, MapReduce job 90
reducer output, MapReduce job 90
reducers, Mapper and Reducer

implementations
IdentityReducer 67
IntSumReducer 67
LongSumReducer 67

reference data, Java API to MapReduce
sharing 67, 68

REGISTER operator 167

required services, AWS
Elastic Compute Cloud (EC2) 20
Elastic MapReduce 20
Simple Storage Service (S3) 20

Resilient Distributed Datasets. See RDDs
ResourceManager

about 321
applications 321
JobHistory Server 327
MapReduce 323
MapReduce v1 323-326
MapReduce v2 (YARN) 326
Nodes view 322
Scheduler window 323

resources
sharing 304, 305

Role Based Access Control (RBAC) 312
Row Columnar File (RCFile)

about 54
reference link 54

S
S3

Hive, using with 207, 208
s3distcp

URL 309
s3n 48
Samza

about 102, 103
Apache Kafka 107, 108
architecture 107
comparing, with Spark Streaming 150
configuration file 112, 113
HDFS 116
Hello Samza! 110
independent model 109
integrating, with YARN 109
job, executing 115
multijob workflows 118-120
tasks processing 125, 128
tweet parsing job, building 111
tweet sentiment analysis, performing 120
Twitter data, getting into Apache Kafka 114
URL 102

[358]

URL, for configuration options 113
used, for stream processing 105, 106
window function, adding 117, 118
working 106
YARN-independent frameworks 103

Samza, layers
execution 107
processing 107
streaming 107

sbt
URL 135

Scala
and Java source code, examples URL 141

Scala API 137
scalar data types

bigdecimal 160
biginteger 160
boolean 160
bytearray 160
chararray 160
datetime 160
double 159
float 159
int 159
long 159

Scala source code
URL 146

Secondary NameNode
about 38
demerits 38

secured cluster
using, consequences 313

security 311
sentiment analysis 80
SequenceFile format 53
SequenceFile class 93
sequence files, MapReduce job

about 93
advantages 93

SerDe classes, Hive
DynamicSerDe 193
MetadataTypedColumnsetSerDe 193
ThriftSerDe 193

serialization 51
sharelib, Oozie 237
SimpleDB 343

Simple Storage Service (S3), AWS
about 17
URL 17

sources of information, Hadoop
about 344
conferences 345
forums 344
HUGs 345
LinkedIn groups 345
mailing lists 344
source code 344

Spark. See Apache Spark
SparkContext object 137
SparkPipeline 280
Spark SQL

about 141
data analysis with 147, 148

Spark Streaming
about 140
comparing, with Samza 150
URL 140

specialized join
reference link 166

speed of thought analysis 218
SQL

on data streams 149
SQL-on-Hadoop

need for 184
solutions 184

Sqoop. See Apache Sqoop
Sqoop 1 338
Sqoop 2 338
standalone applications, Apache Spark

running 137
writing 137

statements 158
Stinger initiative 215, 216
storage 11
storage, Hadoop 2 13
storage, Hive

about 192
columnar stores 196

Storm. See Apache Storm
stream processing

with Samza 105, 106

[359]

stream.py
reference link 29

streams
data, processing on 145, 146

T
table partitioning

about 199, 201
bucketing 203-205
data, overwriting 202
data, sampling 205, 206
data, updating 202
sorting 203-205

Tajo
about 219
URL 219

tasks processing, Samza 125, 128
term frequency

about 265
calculating, with TF-IDF 265-267

Term Frequency-Inverse Document
Frequency. See TF-IDF

text attribute, entity 170
Text files 52
Tez

about 100, 101, 154
Hive-on-tez 101
reference link, for canonical

WordCount example 101
URL 100

TF-IDF
about 264
definition 264
document frequency, calculating 267, 269
implementing 269, 270
term frequency, calculating 265-267

Thrift. See Apache Thrift
TOBAG(expression) function 162
TOMAP(expression) function 162
tools, data lifecycle management

connectors 222
file formats 222
orchestration services 222

TOP(n, column, relation) function 162
TOTUPLE(expression) function 162
troubleshooting 316

tuples 158
tweet analysis capability

building 223
derived data, producing 240, 241
Oozie 223
tweet data, obtaining 223

tweet sentiment analysis
bootstrap streams 121-125
performing 120

Tweet structure
reference link 25

Twitter
about 24
signup page 26
URL 24
used, for generating dataset 24
web form 26

Twitter data, properties
geolocated 24
graph 24
real time 24
structured 24
unstructured 24

Twitter Search
URL 74

Twitter stream
analyzing 168
data preparation 170, 171
dataset exploration 169
datetime manipulation 173
influential users, identifying 178-182
link analysis 177, 178
prerequisites 169
sessions 174
top n statistics 172, 173
tweet metadata 170
users' interaction, capturing 175, 176

U
union operation 275
updateFunc function 147
User Defined Aggregate Functions

(UDAFs) 209
User Defined Functions (UDFs) 153, 159, 209
User Defined Table Functions (UDTF) 209

[360]

V
versioning, Hadoop 7
VirtualBox

reference link 19
VMware

reference link 19

W
Whir

about 339
URL 339

Who to Follow service
reference link 178

window function
adding 117, 118

WordCount
in Java 138, 139

WordCount example, MapReduce programs
about 70-72
reference link, for source code 74

workflow-app 224
workflows

building, Oozie used 256
workflow.xml file

reference link 233
workloads

Hive tables, structuring from 199
wrapper classes 50
WritableComparable interface 51
Writable interface 49, 50

Y
YARN

about 14, 15, 94, 99
Apache Samza 102
Apache Spark 102
architecture 95
components 95
examples, running on 142
future 103
issues, with MapReduce 99, 100
present situation 103
processing frameworks 98
processing models 98

Samza, integrating 109
Tez 100
URL 142

YARN API 97
YARN application

anatomy 95, 96
ApplicationMaster (AM) 95
execution models 98
fault tolerance 97
life cycle 96
monitoring 97

Yet Another Resource Negotiator. See
YARN

Z
ZooKeeper. See Apache ZooKeeper
ZooKeeper Failover Controller (ZKFC) 45
ZooKeeper quorum 45

Thank you for buying
Learning Hadoop 2

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1.	 Write Hadoop MapReduce within R.

2.	 Learn data analytics with R and the
Hadoop platform.

3.	 Handle HDFS data within R.

4.	 Understand Hadoop streaming with R.

Building Hadoop Clusters [Video]
ISBN: 978-1-78328-403-0 Duration: 02:34 hrs

Deploy multi-node Hadoop clusters to harness the
Cloud for storage and large-scale data processing

1.	 Familiarize yourself with Hadoop and its
services, and how to configure them.

2.	 Deploy compute instances and set up a
three-node Hadoop cluster on Amazon.

3.	 Set up a Linux installation optimized
for Hadoop.

Please check www.PacktPub.com for information on our titles

Microsoft SQL Server 2012
with Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and provide business intelligence on the
heterogeneous data

1.	 Integrate data from unstructured (Hadoop)
and structured (SQL Server 2012) sources.

2.	 Configure and install connectors for a
bi-directional transfer of data.

3.	 Full of illustrations, diagrams, and tips
with clear, step-by-step instructions and
practical examples.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1.	 Learn tools and techniques that let you
approach big data with relish and not fear.

2.	 Shows how to build a complete infrastructure
to handle your needs as your data grows.

3.	 Hands-on examples in each chapter give the
big picture while also giving direct experience.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction
	A note on versioning
	The background of Hadoop
	Components of Hadoop
	Common building blocks
	Storage
	Computation
	Better together

	Hadoop 2 – what's the big deal?
	Storage in Hadoop 2
	Computation in Hadoop 2

	Distributions of Apache Hadoop
	A dual approach
	AWS – infrastructure on demand from Amazon
	Simple Storage Service (S3)
	Elastic MapReduce (EMR)

	Getting started
	Cloudera QuickStart VM
	Amazon EMR
	Creating an AWS account
	Signing up for the necessary services

	Using Elastic MapReduce
	Getting Hadoop up and running
	How to use EMR
	AWS credentials

	The AWS command-line interface

	Running the examples
	Data processing with Hadoop
	Why Twitter?
	Building our first dataset
	One service, multiple APIs
	Anatomy of a Tweet
	Twitter credentials

	Programmatic access with Python

	Summary

	Chapter 2: Storage
	The inner workings of HDFS
	Cluster startup
	NameNode startup
	DataNode startup

	Block replication

	Command-line access to the HDFS filesystem
	Exploring the HDFS filesystem

	Protecting the filesystem metadata
	Secondary NameNode not to the rescue
	Hadoop 2 NameNode HA
	Keeping the HA NameNodes in sync

	Client configuration
	How a failover works

	Apache ZooKeeper – a different type of filesystem
	Implementing a distributed lock with sequential ZNodes
	Implementing group membership and leader election using ephemeral ZNodes
	Java API
	Building blocks
	Further reading

	Automatic NameNode failover
	HDFS snapshots
	Hadoop filesystems
	Hadoop interfaces
	Java FileSystem API
	Libhdfs
	Thrift

	Managing and serializing data
	The Writable interface
	Introducing the wrapper classes
	Array wrapper classes
	The Comparable and WritableComparable interfaces

	Storing data
	Serialization and Containers
	Compression
	General-purpose file formats
	Column-oriented data formats
	RCFile
	ORC
	Parquet
	Avro
	Using the Java API

	Summary

	Chapter 3: Processing – MapReduce and Beyond
	MapReduce
	Java API to MapReduce
	The Mapper class
	The Reducer class
	The Driver class
	Combiner
	Partitioning
	The optional partition function

	Hadoop-provided mapper and reducer implementations
	Sharing reference data

	Writing MapReduce programs
	Getting started
	Running the examples
	Local cluster
	Elastic MapReduce

	WordCount, the Hello World of MapReduce
	Word co-occurrences
	Trending topics
	The Top N pattern

	Sentiment of hashtags
	Text cleanup using chain mapper

	Walking through a run of a MapReduce job
	Startup
	Splitting the input
	Task assignment
	Task startup
	Ongoing JobTracker monitoring
	Mapper input
	Mapper execution
	Mapper output and reducer input
	Reducer input
	Reducer execution
	Reducer output
	Shutdown
	Input/Output
	InputFormat and RecordReader
	Hadoop-provided InputFormat
	Hadoop-provided RecordReader
	OutputFormat and RecordWriter
	Hadoop-provided OutputFormat
	Sequence files

	YARN
	YARN architecture
	The components of YARN
	Anatomy of a YARN application

	Life cycle of a YARN application
	Fault tolerance and monitoring

	Thinking in layers
	Execution models

	YARN in the real world – Computation beyond MapReduce
	The problem with MapReduce
	Tez
	Hive-on-tez

	Apache Spark
	Apache Samza
	YARN-independent frameworks

	YARN today and beyond

	Summary

	Chapter 4: Real-time Computation with Samza
	Stream processing with Samza
	How Samza works
	Samza high-level architecture
	Samza's best friend – Apache Kafka
	YARN integration
	An independent model
	Hello Samza!
	Building a tweet parsing job
	The configuration file
	Getting Twitter data into Kafka
	Running a Samza job
	Samza and HDFS
	Windowing functions
	Multijob workflows
	Tweet sentiment analysis
	Bootstrap streams

	Stateful tasks

	Summary

	Chapter 5: Iterative Computation with Spark
	Apache Spark
	Cluster computing with working sets
	Resilient Distributed Datasets (RDDs)
	Actions

	Deployment
	Spark on YARN
	Spark on EC2

	Getting started with Spark
	Writing and running standalone applications
	Scala API
	Java API
	WordCount in Java
	Python API

	The Spark ecosystem
	Spark Streaming
	GraphX
	MLlib
	Spark SQL

	Processing data with Apache Spark
	Building and running the examples
	Running the examples on YARN
	Finding popular topics
	Assigning a sentiment to topics

	Data processing on streams
	State management

	Data analysis with Spark SQL
	SQL on data streams

	Comparing Samza and Spark Streaming
	Summary

	Chapter 6: Data Analysis with Apache Pig
	An overview of Pig
	Getting started
	Running Pig
	Grunt – the Pig interactive shell
	Elastic MapReduce

	Fundamentals of Apache Pig
	Programming Pig
	Pig data types
	Pig functions
	Load/store
	Eval
	The tuple, bag, and map functions
	The math, string, and datetime functions
	Dynamic invokers
	Macros

	Working with data
	Filtering
	Aggregation
	Foreach
	Join

	Extending Pig (UDFs)
	Contributed UDFs
	Piggybank
	Elephant Bird
	Apache DataFu

	Analyzing the Twitter stream
	Prerequisites
	Dataset exploration
	Tweet metadata
	Data preparation
	Top n statistics
	Datetime manipulation
	Sessions

	Capturing user interactions
	Link analysis
	Influential users

	Summary

	Chapter 7: Hadoop and SQL
	Why SQL on Hadoop
	Other SQL-on-Hadoop solutions

	Prerequisites
	Overview of Hive
	The nature of Hive tables

	Hive architecture
	Data types
	DDL statements
	File formats and storage
	JSON
	Avro
	Columnar stores

	Queries
	Structuring Hive tables for given workloads
	Partitioning a table
	Overwriting and updating data
	Bucketing and sorting
	Sampling data

	Writing scripts

	Hive and Amazon Web Services
	Hive and S3
	Hive on Elastic MapReduce

	Extending HiveQL
	Programmatic interfaces
	JDBC
	Thrift

	Stinger initiative
	Impala
	The architecture of Impala
	Co-existing with Hive
	A different philosophy
	Drill, Tajo, and beyond

	Summary

	Chapter 8: Data Lifecycle Management
	What data lifecycle management is
	Importance of data lifecycle management
	Tools to help

	Building a tweet analysis capability
	Getting the tweet data
	Introducing Oozie
	A note on HDFS file permissions
	Making development a little easier
	Extracting data and ingesting into Hive
	A note on workflow directory structure
	Introducing HCatalog
	The Oozie sharelib
	HCatalog and partitioned tables

	Producing derived data
	Performing multiple actions in parallel
	Calling a subworkflow
	Adding global settings

	Challenges of external data
	Data validation
	Validation actions

	Handling format changes
	Handling schema evolution with Avro
	Final thoughts on using Avro schema evolution

	Collecting additional data
	Scheduling workflows
	Other Oozie triggers

	Pulling it all together
	Other tools to help

	Summary

	Chapter 9: Making Development Easier
	Choosing a framework
	Hadoop streaming
	Streaming word count in Python
	Differences in jobs when using streaming
	Finding important words in text
	Calculate term frequency
	Calculate document frequency
	Putting it all together – TF-IDF

	Kite Data
	Data Core
	Data HCatalog
	Data Hive
	Data MapReduce
	Data Spark
	Data Crunch

	Apache Crunch
	Getting started
	Concepts
	Data serialization
	Data processing patterns
	Aggregation and sorting
	Joining data

	Pipelines implementation and execution
	SparkPipeline
	MemPipeline

	Crunch examples
	Word co-occurrence
	TF-IDF

	Kite Morphlines
	Concepts
	Morphline commands

	Summary

	Chapter 10: Running a Hadoop Cluster
	I'm a developer – I don't care about operations!
	Hadoop and DevOps practices

	Cloudera Manager
	To pay or not to pay
	Cluster management using Cloudera Manager
	Cloudera Manager and other management tools

	Monitoring with Cloudera Manager
	Finding configuration files

	Cloudera Manager API
	Cloudera Manager lock-in

	Ambari – the open source alternative
	Operations in the Hadoop 2 world
	Sharing resources
	Building a physical cluster
	Physical layout
	Rack awareness
	Service layout
	Upgrading a service

	Building a cluster on EMR
	Considerations about filesystems
	Getting data into EMR
	EC2 instances and tuning

	Cluster tuning
	JVM considerations
	The small files problem

	Map and reduce optimizations

	Security
	Evolution of the Hadoop security model
	Beyond basic authorization
	The future of Hadoop security
	Consequences of using a secured cluster

	Monitoring
	Hadoop – where failures don't matter
	Monitoring integration
	Application-level metrics

	Troubleshooting
	Logging levels
	Access to logfiles
	ResourceManager, NodeManager, and Application Manager
	Applications
	Nodes
	Scheduler
	MapReduce
	MapReduce v1
	MapReduce v2 (YARN)
	JobHistory Server

	NameNode and DataNode

	Summary

	Chapter 11: Where to Go Next
	Alternative distributions
	Cloudera Distribution for Hadoop
	Hortonworks Data Platform
	MapR
	And the rest…
	Choosing a distribution

	Other computational frameworks
	Apache Storm
	Apache Giraph
	Apache HAMA

	Other interesting projects
	HBase
	Sqoop
	Whir
	Mahout
	Hue

	Other programming abstractions
	Cascading

	AWS resources
	SimpleDB and DynamoDB
	Kinesis
	Data Pipeline

	Sources of information
	Source code
	Mailing lists and forums
	LinkedIn groups
	HUGs
	Conferences

	Summary

	Index

