
Shelve in:
Graphics /Game Programming

User level:
Beginning–Intermediate

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

van der Spuy

www.apress.com

Learn Pixi.js
Learn Pixi.js shows you how to create and display interactive graphics,
build scenes and animated transitions, make cross-platform, responsive
games and applications for multiple screen resolutions, and use Pixi.js’s
spectacular WebGL rendering effects. Learn how to create applications for
desktop and touch-screen devices, and how to use the best open-source
plugins to extend Pixi.js’s capabilities in a myriad of exciting ways.

If you’ve ever wondered what you need to know to start making
games, or what technology you need to build high-performance mobile
apps, this book will show you the way. Learn Pixi.js is your one-stop shop
for everything you need to know to quickly start making spectacular
cross-platform interactive games and animations.

• Take a step-by-step tour of Pixi.js’s features by building fun game
projects

• Learn how to use Pixi.js to make richly interactive graphics and all
kind of cross-platform applications

Learn Pixi.js is a fun and practical brief introduction to using the powerful
Pixi.js graphics-rendering engine for making websites, games and mobile
apps.

• Make high-performance interactive games and mobile applications
• Create responsive applications for multiple resolutions and screen sizes
• Create multi-touch applications
• Learn to use ES6, the latest version of JavaScript

SOURCE CODE ONLINE 9 781484 210956

53499
ISBN 978-1-4842-1095-6

www.allitebooks.com

http://www.allitebooks.org

Learn Pixi.js
Create Great Interactive Graphics

for Games and the Web

Rex van der Spuy

www.allitebooks.com

http://www.allitebooks.org

Learn Pixi.js

Copyright © 2015 by Rex van der Spuy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1095-6

ISBN-13 (electronic): 978-1-4842-1094-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Development Editor: Matthew Moodie
Technical Reviewer: Jason Sturges
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Michael G. Laraque
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science+Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

For Freya, Queen of the Pixies!

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

 ■Chapter 1: Making Sprites �� 1

 ■Chapter 2: Moving Sprites �� 43

 ■Chapter 3: Shapes, Text, and Groups �� 69

 ■Chapter 4: Making Games �� 105

 ■Chapter 5: Animating Sprites ��� 121

 ■Chapter 6: Visual Effects and Transitions ����������������������������������� 145

 ■Chapter 7: Mouse and Touch Events ��� 175

 ■Appendix: Pixie Perilousness!—Complete Code ������������������������ 199

Index �� 207

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

 ■Chapter 1: Making Sprites �� 1

Creating the Renderer and Stage �� 1

Render Options ��� 2

Customizing the Canvas ��� 3

Scaling the Canvas to the Browser Window ��� 4

Pixi Sprites �� 6

Understanding Textures and the Texture Cache �� 7

Loading Images �� 8

Displaying Sprites ��� 9

Removing Sprites ��� 11

Using Aliases �� 12

A Little More About Loading Things ��� 13

Making a Sprite from an Ordinary HTML Image Object or Canvas ������������������������� 13

Assigning a Name to a Loading File ��� 14

Monitoring Load Progress��� 14

More About Pixi’s Loader �� 16

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Positioning Sprites �� 18

X and Y Properties �� 18

Size and Scale �� 20

Rotation �� 22

Making a Sprite from a Tileset Sub-image �� 24

Preventing Texture Bleed �� 28

Using a Texture Atlas ��� 30

Creating the Texture Atlas ��� 30

Loading the Texture Atlas ��� 33

Creating Sprites from a Loaded Texture Atlas �� 34

Making the Blob Monsters �� 37

The Complete Code��� 39

Summary ��� 42

 ■Chapter 2: Moving Sprites �� 43

Create a Game Loop �� 43

Using Velocity Properties ��� 46

Game States �� 48

Keyboard Movement ��� 51

Adding Acceleration and Friction �� 57

Adding Gravity ��� 60

Containing Movement Inside a Fixed Area �� 61

Using ES6 Sets ��� 64

The contain Function �� 66

Summary ��� 67

 ■Chapter 3: Shapes, Text, and Groups �� 69

Making Shapes �� 70

Rectangles �� 72

Circles ��� 74

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

Ellipses ��� 75

Straight Lines ��� 76

Polygons ��� 76

Curved Lines ��� 77

Drawing Arcs �� 80

Improving Graphics Rendering �� 81

Antialiasing for WebGL Graphics �� 81

Drawing on a Single Graphics Context ��� 83

Redrawing Animated Graphics Each Frame ��� 84

Displaying Text �� 87

The Text Object ��� 87

Loading Font Files �� 90

Using Bitmap Fonts �� 92

Grouping Sprites �� 95

Using a Container ��� 95

Using a ParticleContainer ��� 101

Summary ��� 103

 ■Chapter 4: Making Games �� 105

Collision Detection ��� 105

Installing and Setting Up Bump �� 106

Using the hitTestRectangle Method �� 106

Collision Detection in Action ��� 106

Treasure Hunter ��� 108

The Code Structure ��� 109

Initialize the Game in the Setup Function ��� 110

Playing the Game �� 115

Summary ��� 120

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 5: Animating Sprites ��� 121

Using SpriteUtilities ��� 121

MovieClip Sprites �� 122

The Even Easier Way��� 123

Using MovieClip Sprites �� 124

MovieClip Properties and Methods ��� 125

Make MovieClip Sprites Using a Texture Atlas �� 126

Using the frameSeries Utility Function ��� 128

Animation States ��� 128

Making a Sprite with a State Player ��� 128

Defining Sprite States ��� 129

Making a Walking Sprite ��� 134

Creating Frames for Animations ��� 137

Particle Effects �� 138

Add a Little Pixi Dust��� 138

Making Particles ��� 139

Using ParticleContainer �� 140

Customizing the Particle Options �� 141

Using a Particle Emitter �� 142

Summary ��� 144

 ■Chapter 6: Visual Effects and Transitions ����������������������������������� 145

Tiling Sprites ��� 146

Tools for Working with Textures �� 149

Using generateTexture �� 149

Using cacheAsBitmap ��� 150

Using RenderTexture �� 150

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xi

Tinting ��� 151

Masking ��� 152

Blend Modes ��� 153

Filters �� 154

Video Textures ��� 159

Working with Multiple Resolutions �� 160

Rope Mesh �� 161

Tweening and Transitions �� 163

Setting Up and Running Charm ��� 163

Sliding Tweens �� 164

Setting the Easing Types��� 165

Using slide for Scene Transitions �� 166

Following Curves �� 169

Following Paths �� 170

A Few More Tween Effects ��� 173

Summary ��� 174

 ■Chapter 7: Mouse and Touch Events ��� 175

Setting Up Tink �� 175

Setting the Optional Scale �� 176

A Universal Pointer �� 176

Pointer Interaction with Sprites ��� 177

Drag-and-Drop Sprites �� 179

Buttons �� 181

What Are Buttons? �� 181

Making Buttons �� 182

Making an Interactive Sprite �� 185

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xii

Case Study: Pixie Perilousness! �� 185

Creating the Scrolling Background �� 186

Creating the Pillars �� 188

Making Pixie Fly �� 190

Emitting Pixie Dust �� 192

Fine-Tuning the Pixi’s Animation ��� 193

Collisions with the Blocks �� 194

Resetting the Game �� 195

Taking It Further ��� 195

Your Next Steps ��� 196

 ■Appendix: Pixie Perilousness!—Complete Code ������������������������ 199

The HTML Code ��� 199

The JavaScript Code�� 200

Index �� 207

xiii

About the Author

Rex van der Spuy is a leading expert on video game
design and interactive graphics and the author of
the popular Foundation and Advanced series of
books about how to make video games. Rex has
designed games and performed interactive interface
programming with Agency Interactive (Dallas), Scottish
Power (Edinburgh), DC Interact (London), Draught
Associates (London), and the Bank of Montreal
(Canada). He’s also built game engines and interactive
interfaces for museum installations for PixelProject
(Cape Town, South Africa), as well as “Ga,” the world’s
smallest full-featured 2D game engine. He created and

taught advanced courses in game design for many years at the Canadian School of India
(Bangalore). The highlight of his career was programming video games on the Annapurna
glacier at 4,500 meters (which, to his delight, was 1,000 meters higher than the maximum
permissible operating altitude of his laptop).

xv

About the Technical
Reviewer

Jason Sturges is a cutting-edge technologist focused
on ubiquitous delivery of immersive user experiences.
Coming from a visualization background, he’s always
pushing the boundaries of computer graphics to the
widest reach cross-platform, while maintaining
natural and intuitive usability per device. From
interactivity, motion, animations, and creative design,
he has worked with numerous creative agencies on
projects from kiosks to video walls to Microsoft Kinect
games. Most recently, the core of his work has been
mobile apps.

Committed to the open source community, he
is also a frequent contributor to GitHub and Stack
Overflow as a community resource, leveraging modern

standards, solid design patterns, and best practices in multiple developer tool chains for
Web, mobile, desktop, and other platforms.

xvii

Acknowledgments

Most illustrations and game characters for this book were created by the extraordinarily
talented Kipp Lightburn (www.waymakercreative.com, waymakercreative@gmail.com).
Thanks so much, Kipp!

The game graphics for Treasure Hunter were designed by Lanea Zimmerman and
are from her brilliant Tiny 16 tileset (opengameart.org/content/tiny-16-basic).

For the game Pixie Perilousness! the green block graphic was designed by the author
GameArtForge (opengameart.org/content/blocks-set-01).

Thanks to Chad Engler (github.com/englercj), one of Pixi’s lead developers, for
patiently and generously answering all of my technical questions in the Pixi discussion
forum on html5gamedevs.com, and for single-handedly acting as Pixi’s tireless one-man
tech support team.

Thanks to Mat Groves (www.goodboydigital.com), the creator of Pixi..., for creating
Pixi (!) and also for his enthusiastic support of this project and permission to use images
and code samples from Pixi’s web site. In particular, the sample code and image for the
Rope object in Chapter 6 are based on Mat’s original work.

The photograph of me was by taken by Sivan Ritter, in Arambol, Goa.

www.waymakercreative.com
mailto:waymakercreative@gmail.com
www.goodboydigital.com

xix

Introduction

If you want to start making games or applications for the Web, desktop, or mobile devices,
Pixi is the best place to start. Pixi is an extremely fast 2D sprite rendering engine that
helps you to display, animate, and manage interactive graphics, so that it’s easy for you
to make any visually rich interactive software you can imagine, using JavaScript and
other HTML5 technologies. Pixi has a sensible, uncluttered API and includes many
useful features, such as supporting texture atlases, and provides a streamlined system for
animating sprites (interactive images).

 ■ Note What is an API? the acronym stands for “Application Programming Interface.”
the API refers to all of Pixi’s objects and methods that let you make a bunch of cool stuff,
without having to worry about how the underlying code actually works.

Pixi also gives you a complete scene graph, so that you can create hierarchies of
nested sprites (sprites inside sprites), as well as letting you attach mouse and touch
events directly to sprites. And, most important, Pixi gets out of your way, so that you
can use as much or as little of it as you want, adapt it to your personal coding style, and
integrate it seamlessly with other useful frameworks.

Pixi’s API is actually a refinement of a well-worn and battle-tested API pioneered by
Macromedia/Adobe Flash. Old-skool Flash developers will feel right at home. Other current
sprite rendering frameworks use a similar API: CreateJS, Starling, Sparrow, and Apple’s
SpriteKit. The strength of Pixi’s API is that it’s general-purpose: it gives you total expressive
freedom to make anything you like without dictating a specific workflow or architecture.
That’s good, because this means you can build your own architecture around it.

In this book, you’ll learn everything you need to know to start using Pixi quickly.
Although you can use Pixi to make any kind of interactive media, such as apps or web
sites, I’m going to show you how to use it to make games. Why games? Because if you
can make a game with Pixi, you can make anything else with Pixi. Besides, I like making
games—and you will too!

But Pixi doesn’t do everything! In this book, you’re also going to learn to use a suite
of easy-to-use helper libraries that extend Pixi’s functionality in all kinds of exciting ways.

Bump: 2D collision functions

github.com/kittykatattack/bump

Charm: Tweening animation effects

github.com/kittykatattack/charm

■ IntroduCtIon

xx

Tink: Mouse and touch interactivity

github.com/kittykatattack/tink

Dust: Particle effects

github.com/kittykatattack/dust

SpriteUtilities: Advanced sprite creation utilities

github.com/kittykatattack/spriteUtilities

Sound.js: Music and sounds effects

github.com/kittykatattack/sound.js

It’s everything you need to create anything you can imagine!

What Do You Have to Know?
To make use of this book, you should have a reasonable understanding of HTML and
JavaScript. You don’t have to be an expert or think of yourself as a “programmer.” You’re
just an ambitious beginner with an eagerness to learn—just like I am!

If you don’t know HTML and JavaScript, the best place to start learning is the book
Foundation Game Design with HTML5 and JavaScript. I know for a fact that it’s the best
book, because I wrote it! It will give you all the coding and conceptual background you
need to begin using this book. In fact, if you’ve read Foundation Game Design, then Learn
Pixi.js is the perfect sequel.

This is not a tech-heavy book! It’s a fun, practical book that gets to the point—fast.
I’m not going to bog you down with mountains of heavy code or theory. I’ve kept the code
simple and architecturally flat and expect that you’re smart enough to be able to look at
the examples and apply them to your own projects, in your own way. This book is just the
map; it’s up to you to take the journey.

 ■ Note If you’re curious and want to take a deeper technical dive into video game
programming, make sure to check out this book’s hip and sophisticated older sister:
Advanced Game Design with HTML5 and JavaScript. It shows how you can code a display
engine similar to Pixi from scratch, as well as all the essential code you must know to make
all kinds of 2d action games. It’s a great complement to Learn Pixi.js, and you can share
concepts and code between both books.

 ■ IntroduCtIon

xxi

JavaScript ES6
This book is written in the latest version of JavaScript: ECMAScript 6, or ES6 for short. I’ll
introduce any new ES6 features in the code as you stumble upon them. You’ll find them
easy to learn. ES6 is really just a better, friendlier version of JavaScript that gets more done
with less code. You won’t look back once you start using it.

But, just to get you started, following are the two most important things you need to
know about ES6.

1. Use let Instead of var
In most cases, you can declare a variable using the new keyword let.

let anyValue = 4;

In older versions of JavaScript (ES3 and ES5), you have to use var.
The let keyword gives the variable block scope. That means the variable can’t be

seen outside the pair of curly braces that it’s defined in. Here’s an example:

let say = "hello";
let outer = "An outer variable";

if (say === "hello") {
 let say = "goodbye";

 console.log(say);
 //Displays: "goodbye"

 console.log(outer);
 //Displays: "An outer variable"

 let inner = "An inner variable";
 console.log(inner);
 //Displays: "An inner variable"
}

console.log(say);
//Displays: "hello"

console.log(inner);
//Displays: ReferenceError: inner is not defined

A variable defined outside the if statement can be seen inside the if statement. But
any variables defined inside the if statement can’t be seen outside it. That’s what block
scope is. The if statement’s curly braces define the block in which the variable is visible.

■ IntroduCtIon

xxii

In this example, you can see that there are two variables called say. Because they
were defined in different blocks, they’re different variables. Changing the one inside the
if statement doesn’t change the one outside the if statement.

2. “Fat arrow” Function Expressions
ES6 has a new syntax for writing function expressions, as follows:

let saySomething = (value) => {
 console.log(value)
};

The => symbol represents an arrow pointing to the right, like this: . It’s visually
saying “use the value in the parentheses to do some work in the next block of code that
I’m pointing to.”

You define function expressions in the same way you define a variable, by using let
(or var). Each one also requires a semicolon after its closing brace. A function expression
must be defined before you use it, like this:

let saySomething = (value) => {
 console.log(value)
};

saySomething("Hello from a function statement");

That’s because function expressions are read at runtime. The code reads them in
the same order, from top to bottom, that it reads the rest of the code. If you try to call a
function expression before it has been defined, you’ll get an error.

If you want to write a function that returns a value, use a return statement, such as
the following:

let square = (x) => {
 return x * x;
};

console.log(square(4));
//Displays: 16

As a convenience, you can leave out the curly braces, the parentheses around
parameters, and the return keyword, if your function is just one line of code with one
parameter, as in the following:

let square = x => x * x;

console.log(square(4));
//Displays: 16

This is a neat, compact, and readable way to write functions.

 ■ IntroduCtIon

xxiii

 ■ Note A nice feature of arrow functions is that they make the scope inside a function the
same as the scope outside it. this solves a big problem called binding that plagued earlier
versions of Javascript. Briefly, a whole class of quirks you had to work around are no longer
issues. (For example, you no longer have to use the old var self = this; trick.)

You can write a function expression without using a fat arrow, as follows:

let saySomething = function(value) {
 console.log(value)
};

This will work the same way as the previous examples, with one important difference:
the function’s scope is local to that function, not the surrounding code. That means the
value of “this” will be undefined. Here’s an example that illustrates this difference:

let globalScope = () => console.log(this);

globalScope();
//Displays: Window...

let localScope = function(){
 console.log(this);
};

localScope();
//Displays: undefined

This difference is subtle but important. In most cases, I recommend that you use a
fat arrow to create a function expression, because it’s usually more convenient for code
inside a function to share the same scope as the code outside the function. But in some
rare situations, it’s important to isolate the function’s scope from the surrounding scope,
and I’ll introduce those situations when we encounter them.

 ■ Note this book was written when es6 was brand new. so new, in fact, that no web
browsers had yet fully implemented it. If you’re in that same position, use an es6 to es5
transpiler such as traceur or Babel to run the book’s source code. In the book’s source files,
you’ll find folders called es5 that contain es5 versions of all the source code and examples
in this book.

■ IntroduCtIon

xxiv

Running a Web Server
To use Pixi, you’ll also have to run a web server in your root project directory. The best
way is to use node.js (nodejs.org) and then install the extremely easy-to-use http-server
(github.com/nodeapps/http-server). However, you have to be comfortable working
with the Unix command line, if you want to do that.

 ■ Note Are you afraid of the unix command line? don’t be! unix is a wonderfully retro-future
way to scare your parents, and you can learn it in a few hours. Maybe start with the classic
tutorial “Learn unix in 10 minutes” (freeengineer.org/learnUNIXin10minutes.html) and
follow it up with the “unix Cheat sheet” (www.rain.org/~mkummel/unix.html). Install a
great little script called “Z” (github.com/rupa/z) to help you navigate the file system, and
then start playing around. You’ll also find dozens of videos on the Web for unix for beginners,
including Michael Johnston’s excellent two-part series.

But if you don’t want to mess around with the command line just yet, try the
Mongoose web server (cesanta.com/mongoose.shtml) or just write all your code using
one of the many HTML5-based text editors: Brackets, Light Table, or Atom. Any of these
will launch a built-in web server for you automatically, when you run your code in a
browser.

A Survival Guide for Future Pixi API Versions
This book was written when Pixi was in version 3, but Pixi is a fast-changing, living code
library. What that means is that if you’re using a future version of Pixi and run some
code that isn’t completely compatible with the code in this book, you’ll have to use your
judgment about how to adapt it to the new version. The good news is that Pixi’s core user-
facing API has been stable since version 1, so most of the code and techniques in this
book should be relevant to future versions. But you’ll have to stay on your toes! Following
are some Future Pixi survival tips.

•	 The object or method you’re trying to use might have been
renamed. Pixi’s development team sometimes likes to rearrange
the furniture a bit, and they’ll do so on a whim. That means
they might change the names of some object or method names
or give them new locations. For example, in version 2.0, the
TextureCache object was located in PIXI.TextureCache, while in
version 3.0, it was moved to PIXI.utils.TextureCache. Likewise,
the setFrame method became the frame property. These aren’t
deal breakers. They’re just cosmetic differences, and the code still
works in the same way. But you’ll have to be prepared to research
possible future changes such as these and update your code if the
JavaScript console gives you any errors or warnings.

www.allitebooks.com

http://www.rain.org/~mkummel/unix.html
http://www.allitebooks.org

 ■ IntroduCtIon

xxv

•	 Look for a deprecation document or script. Pixi v3.0 has a file
called deprecation.js that logs a message to the console if the
code you’re using has been changed from earlier versions. That’s
helpful, but you can’t count on it being in future versions. If
there’s no deprecation.js file in the version of Pixi you’re using,
look for any document in Pixi’s code repository that might list
differences between versions. If you can’t find one, post an issue
in the code repository asking for help.

•	 Use aliases for Pixi’s objects and methods. A way to slightly
buffer yourself against a changing API is to create your own
custom set of object and method names that just reference Pixi’s.
These are called aliases. For example, here’s how you might
create aliases for Pixi’s Sprite class and TextureCache object:

let Sprite = PIXI.Sprite,
 TextureCache = PIXI.utils.TextureCache;

Do this right at the beginning of your program and then write the rest of your code
using those aliases (Sprite and TextureCache) instead of Pixi’s originals. This is helpful,
because if Pixi’s API changes, you only have to change what the alias is pointing to in one
location, instead of every instance where you’ve used it throughout your entire program.
Your own code base will be stable, even if Pixi’s API fluctuates.

 ■ Note Another advantage to using aliases is that your code becomes more succinct: you
don’t have to prefix PIXI or PIXI.utils to everything. that can considerably shorten some
complex lines of code and make your whole program more readable. For all these reasons,
the sample code in this book uses aliases that follow this same format. You’ll learn more
about how to create and use aliases in Chapter 1.

Setting Up a Pixi Coding Environment
Let’s find out how to set up a basic coding environment that you can use to run all the
sample code in this book, as well as write your own original Pixi code. Do you have your
web server running in your project’s root directory, a text editor that you like to code in,
and a web browser to run your code? Great, now you’re ready to start working with Pixi!

Installing Pixi
Grab the latest version of the pixi.min.js file from Pixi’s code repository (Pixi v3.0 was
hosted at github.com/pixijs/pixi.js). You’ll find the pixi.min.js file in the “bin”
folder: github.com/pixijs/pixi.js/tree/master/bin. This one file is all you need to
use Pixi. You can ignore all the other files in the repository; you don’t need them.

http://dx.doi.org/10.1007/978-1-4842-1094-9_1

■ IntroduCtIon

xxvi

 ■ Note If you prefer, you could alternatively use the un-minified pixi.js file. the minified
file (.min.js) might run slightly faster, and it will certainly load faster. But the advantage to
using the un-minified plain Js file is that if the compiler thinks there’s a bug in Pixi’s source
code, it will give you an error message that displays the questionable code in a readable
format. this is useful while you’re working on a project, because even if the bug isn’t
actually in Pixi, the error might give you a hint as to what’s wrong with your own code.

You can also use Git to install and use Pixi. (What is Git? If you don’t know you
can find out here: github.com/kittykatattack/learningGit.) Using Git has some
advantages: you can just run `git pull` from the command line to update Pixi to the
latest version. And, if you think you’ve found a bug in Pixi, you can fix it and submit a pull
request to have the bug fix added to the main repository.

To clone the Pixi repository with Git, install `cd` into your project’s root directory
and type the following:

git clone git@github.com:pixijs/pixi.js.git

This automatically creates a folder called pixi.js and loads the latest version of
Pixi into it.

 ■ Note You can also install Pixi using node (nodejs.org) and Gulp (gulpjs.com), if you
have to do a custom build of Pixi to include or exclude certain features. see Pixi’s code
repository for details on how to do this.

Create a Basic HTML Container Page
Next, create a basic HTML page and use a <script> tag to link the pixi.min.js file that
you’ve just downloaded. The <script> tag’s src property should be relative to your root
directory on which your web server is running. Your <script> tag might look something
like this:

<script src="pixi.min.js"></script>

Here’s a basic HTML page that you could use to link Pixi and test that it’s working:

<!doctype html>
<meta charset="utf-8">
<title>Hello World</title>

 ■ IntroduCtIon

xxvii

<body>
<script src="pixi.min.js"></script>
<script>

//Test that Pixi is working
console.log(PIXI);

</script>
</body>

This is the minimal amount of valid HTML you need to start creating projects with
Pixi. If Pixi is linking correctly, console.log(PIXI) will display something such as this in
your web browser’s JavaScript console:

Object { VERSION: "3...

If you see that (or something similar) you know everything is working properly.
Now you can start working with Pixi!

1

Chapter 1

Making Sprites

The basic building block for making things with Pixi is an object called a sprite. Sprites
are just images that you can control with code. You can control their position, size, and
a host of other properties that are useful for making interactive and animated graphics.
Learning to make and control sprites is really the most important thing about learning to
use Pixi. If you know how to make and display sprites, you’re just a small step away from
starting to make games or any other kind of interactive application.

In this chapter, you’re going to learn everything you need in order to display and
position sprites on Pixi’s canvas, including the following:

•	 How to make a root container object called the stage

•	 How to make a renderer

•	 Using the loader to load images into Pixi’s texture cache

•	 Making sprites from loaded images, including from tilesets and
texture atlases

But before we can start making sprites, we have to create some sort of rectangular
screen to display them on. Let’s find out how to create one.

Creating the Renderer and Stage
Pixi has a renderer object that creates a display screen for you. It automatically generates
an HTML <canvas> element and figures out how to display your images on the canvas.
But you also have to create a special Pixi Container object called the stage. (Don’t worry,
you’ll find out a little later in this chapter exactly what Container objects are and why you
need them.) This stage object is going to be used as the root container that holds all the
things you want Pixi to display. Here’s the code you need to write to create a renderer and
stage. Add this code to your HTML document between the <script> tags:

//Create the renderer
let renderer = PIXI.autoDetectRenderer(256, 256);

//Add the canvas to the HTML document
document.body.appendChild(renderer.view);

Chapter 1 ■ Making SpriteS

2

//Create a container object called the `stage`
let stage = new PIXI.Container();

//Tell the `renderer` to `render` the `stage`
renderer.render(stage);

This is the most basic code you need write to get started using Pixi. It produces
a black 265 pixel by 256 pixel canvas element and adds it to your HTML document.
Figure 1-1 shows what it looks like in a browser when you run this code.

This simple black square should fill your little programmer’s heart with pure joy!
That’s because it’s the first and most important step to begin displaying things with Pixi.
Let’s take a closer look at what all this code is doing.

Render Options
Pixi’s autoDetectRenderer method figures out whether to use the Canvas Drawing API or
WebGL to render graphics, depending on which is available.

let renderer = PIXI.autoDetectRenderer(256, 256);

Its first and second arguments are the width and height of the canvas. However, you
can include an optional third argument with some additional values you can set. This
third argument is an object literal, and here’s how you could use it to set the renderer’s
anti-aliasing, transparency, and resolution:

renderer = PIXI.autoDetectRenderer(
 256, 256,
 {antialias: false, transparent: false, resolution: 1}
);

Figure 1-1. Pixi’s renderer displays a black square in the browser

Chapter 1 ■ Making SpriteS

3

This third argument (the object highlighted in the preceding) is optional. If you’re
happy with Pixi’s default settings, you can leave it out; there’s usually no need to change
them. But what do those options do? The antialias option smooths the edges of fonts
and graphic primitives. (WebGL anti-aliasing isn’t available on all platforms, so you’ll
have to test this on your application’s target platform.) The transparent option makes
the canvas background transparent. The resolution option makes it easier to work with
displays of varying resolutions and pixel densities. Usually, just keep resolution at 1 for
most projects, and you’ll be fine. But take a look at Chapter 6 for more information about
working with different resolutions.

 ■ Note the renderer has an additional, fourth, option called preserveDrawingBuffer
that defaults to false. the only reason to set it to true is if you ever have to call pixi’s
specialized dataToURL method in a WebgL canvas context. You might have to do this if you
ever want to convert a pixi canvas to an htML image object.

Pixi’s autoDetectRenderer will decide whether to use the Canvas Drawing API
or WebGL to display images. It defaults to WebGL, which is good, because WebGL is
incredibly fast and lets you use some spectacular visual effects that you’ll learn all about
in this book. But if you have to force Canvas Drawing API rendering over WebGL, you can
do it like this:

renderer = new PIXI.CanvasRenderer(256, 256);

Only the first two arguments are required: width and height.
You can also force WebGL rendering like this:

renderer = new PIXI.WebGLRenderer(256, 256);

Now let’s find out how to improve the appearance of the renderer.

Customizing the Canvas
The renderer.view object is just a plain old ordinary <canvas> object, so you can control
it the same way you would control any other canvas object. Here’s how to give the canvas
an optional dashed border:

renderer.view.style.border = "1px dashed black";

If you have to change the background color of the canvas after you’ve created it, set
the renderer object’s backgroundColor property to any hexadecimal color value. Here’s
how you could set it to pure white:

renderer.backgroundColor = 0xFFFFFF;

http://dx.doi.org/10.1007/978-1-4842-1094-9_6

Chapter 1 ■ Making SpriteS

4

 ■ Note a web search will turn up many hexadecimal color charts that you can use to
select an appropriate background color.

If you want to find the width or the height of the renderer, use renderer.view.width
and renderer.view.height.

To change the size of the canvas, use the renderer’s resize method, and supply any
new width and height values, as follows:

renderer.resize(512, 512);

If you want to make the canvas fill the entire window, you can apply this CSS styling:

renderer.view.style.position = "absolute";
renderer.view.style.width = window.innerWidth + "px";
renderer.view.style.height = window.innerHeight + "px";
renderer.view.style.display = "block";

But, if you do that, make sure you also set the default padding and margins to 0 on all
your HTML elements with this bit of CSS code:

<style>* {padding: 0; margin: 0}</style>

(The asterisk, *, in the preceding code, is the CSS “universal selector,” which just
means “all the tags.”) Without this bit of CSS, you might notice a few pixels of default
padding between the edge of the browser and Pixi’s canvas.

Scaling the Canvas to the Browser Window
You can use a custom function called scaleToWindow()to scale Pixi’s canvas to the
maximum size of the browser’s window. (You’ll find scaleToWindow in the library folder
of this book’s source code, or scaleToWindow’s own source code repository: github.com/
kittykatattack/scaleToWindow.) scaleToWindow will also align the canvas for the best
vertical or horizontal fit inside the browser window. For example, if you have a canvas
that’s wider than it is tall, it will be centered vertically inside the browser. If the canvas is
taller than it is wide, it will be centered horizontally. Figure 1-2 show an example of these
two alignments.

Chapter 1 ■ Making SpriteS

5

Here’s how to use scaleToWindow to scale and align Pixi’s canvas:

scaleToWindow(renderer.view, borderColor);

The optional second argument lets you set the color of the browser’s background
that borders the canvas. You can supply any RGB, HSLA, or hexadecimal color value,
as well as the any HTML color string, such as “blue” or “red.” (If you don’t supply this
optional color, the border will be set to a neutral dark gray: #2C3539.)

The scaleToWindow function also returns the scale value that the canvas is scaled to.
You can find the scale value like this:

let scale = scaleToWindow(renderer.view);

This will give you a number, possibly like 1.98046875, that tells you the ratio by which
the canvas was scaled. This might be an important value to know if you ever have to
convert browser pixel coordinates to the scaled pixel values of the canvas. For example, if
you have a pointer object that tracks the mouse’s position in the browser, you might have
to convert those pixel positions to the scaled canvas coordinates, to find out if the mouse
is touching something inside the canvas. Some general code such as the following will do
the trick:

pointer.x = pointer.x / scale;
pointer.y = pointer.y / scale;

 ■ Note You’ll learn about how to create and use a pixi pointer in Chapter 7.

Figure 1-2. Use the custom scaleToWindow function to scale and align the canvas inside
the browser window

http://dx.doi.org/10.1007/978-1-4842-1094-9_7

Chapter 1 ■ Making SpriteS

6

Optionally, you might also want the canvas to rescale itself every time the size of the
browser window is changed. If that’s the case, call scaleToWindow inside a window event
listener, as follows:

window.addEventListener("resize", event => {
 scaleToWindow(renderer.view);
});

Now that you know how to create a Pixi canvas, let’s find out how to display
images on it.

Pixi Sprites
In the previous section, you learned how to create a stage object, like this:

let stage = new PIXI.Container();

But what is the stage? It’s a Pixi Container object. You can think of a container as a
kind of empty box that will group together and store whatever you put inside it. The stage
object that we created is the root container for all the visible things in your scene. Pixi
requires that you have one root container object, because the renderer needs something
to render.

renderer.render(stage);

Whatever you put inside the stage will be rendered on the canvas. Right now, the
stage is empty, but soon we’re going to start putting things inside it.

 ■ Note You can give your root container any name you like. Call it scene or root, if you prefer.
the name stage is just an old but useful convention, and one i’ll be sticking to in this book.

So what do you put on the stage? Special image objects that you can control with
code, called sprites. Pixi has a specialized Sprite class that is a versatile way to make
game sprites. (In JavaScript, a class is a function that creates and returns an object with
useful properties that you can access or change.) The Sprite class gives you three main
ways to create sprites, as follows:

 1. From a single image file.

 2. From a sub-image on a tileset. A tileset is a single, big image
that includes all the images you’ll require in your game or
application.

 3. From a texture atlas (a JSON file that defines the size and
position of an image on a tileset).

Chapter 1 ■ Making SpriteS

7

You’re going to learn all three ways to make sprites, using Pixi’s Sprite class, but
before you do, let’s find out what you need to know about images before you can display
them with Pixi.

Understanding Textures and the Texture Cache
Pixi renders images using the GPU (Graphics Processing Unit) of the system that Pixi is
running on: a computer, mobile phone, or tablet. The GPU is just a specialized chip for
displaying high-performance graphics. The web browser communicates with the GPU,
using an HTML5 API called WebGL. So, to display your image, it has to be in a format that
WebGL can easily communicate to the GPU.

A WebGL-ready image is called a texture. Before you can make a sprite display
an image, you have to convert an ordinary image file into a WebGL texture. To keep
everything working fast and efficiently under the hood, Pixi uses a texture cache to store
and reference all the textures your sprites will need. The names of the textures are strings
that match the file locations of the images they refer to. That means that if you have a
texture that was loaded from "images/anyImage.png", you could find it in the texture
cache like this:

PIXI.utils.TextureCache["images/anyImage.png"];

The textures are stored in a WebGL compatible format that’s efficient for Pixi’s
renderer to work with. You can then use Pixi’s Sprite class to make a new sprite, using the
texture. Here’s how:

let texture = PIXI.utils.TextureCache["images/anyImage.png"];
let sprite = new PIXI.Sprite(texture);

 ■ Note You can always spot a class because the first letter of the class is capitalized
(like the S in Sprite.) also, classes are always instantiated by using the new keyword.
(Instantiate means to make a new copy of something, the same way you might make a
new cookie from a cookie cutter.) Sprite, Container, and TextureCache are examples
of pixi classes that you’ve seen so far. Some classes, such as TextureClass, can be used
directly without having to be instantiated. that’s because you don’t need more than one
copy; you just work directly with the single existing class. Classes that you use directly
without instantiating are sometimes referred to as static classes.

But how do you load the image file and convert it into a texture? Use Pixi’s built-in
loader object.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Making SpriteS

8

Loading Images
Pixi’s powerful loader object is all you need to load any kind of image. Here’s how to use
it to load an image and call a function called setup when the image has finished loading.

PIXI.loader
 .add("image.png")
 .load(setup);

function setup() {
 //This code will run when the loader has finished loading the image
}

Pixi’s development team recommends that if you use the loader, you should create
the sprite by referencing the texture in the loader’s resources object, like this:

let sprite = new PIXI.Sprite(PIXI.loader.resources("image.png").texture);

Here’s an example of some complete code you could write to load an image, call the
setup function, and create the sprite from the loaded image:

PIXI.loader
 .add("image.png")
 .load(setup);

function setup() {
 let sprite = new PIXI.Sprite(PIXI.loader.resources("image.png").texture);
}

This is the general format we’ll be using to load images and create sprites in this book.
You can load multiple images at a single time by listing them with chainable add

methods, like this:

PIXI.loader
 .add("imageOne.png")
 .add("imageTwo.png")
 .add("imageThree.png")
 .load(setup);

 ■ Note in JavaScript, chainable methods are methods, separated by dots, that you can
run in sequence: anyObject.firstMethod().secondMethod().thirdMethod();. You can
make your own chainable methods by setting the method’s return value to the parent object
that it belongs to. JavaScript developers discovered almost by accident that you could do
this, and it can be a very readable way to eliminate monotonous blocks of repetitive code.

Chapter 1 ■ Making SpriteS

9

Better yet, just list all the files you want to load in an array inside a single add method,
like this:

PIXI.loader
 .add([
 "images/imageOne.png",
 "images/imageTwo.png",
 "images/imageThree.png"
])
 .load(setup);

Pixi’s loader also lets you load JSON files, which you’ll learn all about ahead.

 ■ Note pixi’s Sprite class also has a method called fromImage that lets you make a
sprite directly from an image file, like this:

let sprite = PIXI.Sprite.fromImage("image.png");

if Sprite.fromImage detects that the image you’re trying to load isn’t already in pixi’s
texture cache, it will helpfully try and load it for you automatically, without you having to use
the loader. however, i suggest you don’t use this feature and always preload a texture with
pixi’s loader. that’s so you have a guarantee that the texture truly has loaded. if you write
some code that tries to access a texture that hasn’t fully loaded, you could encounter all
kinds of strange errors. pixi’s Texture class also has a fromImage method that works in the
same way.

Displaying Sprites
After you’ve loaded an image and used it to make a sprite, there are two more things you
have to do before you can actually see it on Pixi’s canvas.

 1. You have to add the sprite to Pixi’s stage with the
stage.addChild method, like this:

stage.addChild(anySprite);

The stage is the main container that holds all of your sprites.

 2. You have to tell Pixi’s renderer to render the stage.

renderer.render(stage);

Remember: None of your sprites will be visible before you do these two things.

Chapter 1 ■ Making SpriteS

10

Before we continue, let’s look at a practical example of how to use what you’ve just
learned to display a single image. In this chapter’s source code folder, you’ll find a 96 by
48 pixel PNG image of a game character (see Figure 1-3). In keeping with the theme, it’s of
a pixie!

Here’s the JavaScript code to load the image, create a sprite, and display it on
Pixi’s stage:

//Create the stage and renderer
let stage = new PIXI.Container(),
 renderer = PIXI.autoDetectRenderer(256, 256);
document.body.appendChild(renderer.view);

//Use Pixi's built-in `loader` object to load an image
PIXI.loader
 .add("images/pixie96x48.png")
 .load(setup);

//This `setup` function will run when the image has loaded
function setup() {

 //Create the sprite from the texture
 let pixie = new PIXI.Sprite(
 PIXI.loader.resources["images/pixie96x48.png"].texture
);

 //Add the sprite to the stage
 stage.addChild(pixie);

 //Render the stage
 renderer.render(stage);
}

Figure 1-3. An image of a game character

Chapter 1 ■ Making SpriteS

11

When this code runs, here’s what you’ll see (Figure 1-4):

Now we’re getting somewhere!

Removing Sprites
If you ever have to remove a sprite from the stage, use the removeChild method:

stage.removeChild(anySprite);

But, usually, setting a sprite’s visible property to false will be a simpler and more
efficient way of making sprites disappear.

anySprite.visible = false;

Pixi sprites also have a special method called destroy, which is used to manually
clear out GPU memory. Use destroy like this:

anySprite.destroy(true, true);

The two Boolean arguments are optional, but you should set them both to true.
They refer to the sprite’s texture and its base texture. (You’ll learn more about the base
texture ahead.) The only time you’ll ever have to use destroy is in extreme cases in which
your game is creating and destroying a lot of sprites, and you notice unusually high GPU
memory usage. In normal day-to-day Pixi programming, you’ll probably never have to
use destroy.

Figure 1-4. Displaying a sprite on the stage

Chapter 1 ■ Making SpriteS

12

 ■ Note pixi textures also have a destroy method. if you ever have to, you can manually
clear the entire texture cache of gpU memory with the following bit of code:

Object.keys(PIXI.utils.TextureCache).forEach(texture => {

 PIXI.utils.TextureCache[texture].destroy(true);
});.

But be careful: never destroy a sprite or texture if it’s used somewhere else in
your code.

Using Aliases
You can save yourself a little typing and make your code more readable by creating
short-form aliases for the Pixi objects and methods that you use frequently. For example,
is PIXI.utils.TextureCache too much to type? I think so, especially in a big project in
which you might use it dozens of times. So, create a shorter alias that points to it, like this:

let TextureCache = PIXI.utils.TextureCache;

Then, use that alias in place of the original, like this:

let texture = TextureCache["images/cat.png"];

In addition to letting you write more succinct code, using aliases has an extra benefit:
it helps to buffer you slightly from Pixi’s frequently changing API. If Pixi’s API changes in
future versions—which it will!—you’ll only have to update these aliases to Pixi objects
and methods in one place, at the beginning of your program, instead of in every instance
in which they’re used throughout your code.

To see how to set up and use aliases, let’s rewrite the code we wrote to load an image
and display it, using aliases for all the Pixi objects and methods.

//Aliases
let Container = PIXI.Container,
 autoDetectRenderer = PIXI.autoDetectRenderer,
 loader = PIXI.loader,
 resources = PIXI.loader.resources,
 Sprite = PIXI.Sprite;

//Create the stage and renderer
let stage = new Container(),
 renderer = autoDetectRenderer(256, 256);
document.body.appendChild(renderer.view);

Chapter 1 ■ Making SpriteS

13

//Load an image and call the `setup` function
loader
 .add("images/pixie96x48.png")
 .load(setup);

function setup() {

 //Create the sprite, add it to the stage and render it
 let pixie = new Sprite(resources["images/pixie96x48.png"].texture);
 stage.addChild(pixie);
 renderer.render(stage);
}

Most of the examples in this book will use aliases for Pixi objects that follow this
same model. Unless otherwise stated, you can assume that all the code examples use
aliases.

This is all you need to know to start loading images and creating sprites with Pixi.

A Little More About Loading Things
The format I’ve shown you above is what I suggest you use as your standard template for
loading images and displaying sprites. So, you can safely ignore the next few paragraphs
and jump straight to the next section, “Positioning Sprites.” But Pixi’s loader object is
quite sophisticated and includes a few features that you should be aware of, even if you
don’t use them on a regular basis. Let’s look at some of the most useful.

Making a Sprite from an Ordinary HTML Image Object
or Canvas
For optimization and efficiency, it’s always best to make a sprite from a texture that’s been
preloaded into Pixi’s texture cache. But if for some reason you have to make a texture from
a regular HTML image object, you can do so using Pixi’s BaseTexture (PIXI.BaseTexture)
and Texture (PIXI.Texture) classes.

let base = new BaseTexture(anyImageObject),
 texture = new Texture(base),
 sprite = new Sprite(texture);

You can use BaseTexture.fromCanvas if you want to make a texture from any
existing canvas element:

let base = BaseTexture.fromCanvas(anyCanvasElement);

Chapter 1 ■ Making SpriteS

14

If you want to change the texture the sprite is displaying, use the sprite’s texture
property. Set it to any Texture object, like this:

anySprite.texture = TextureCache["anyTexture.png"];

You can use this technique to interactively change the sprite’s appearance if
something significant happens to it in the game. (Although, as you’ll see ahead, there’s a
better way to do this using frames.)

Assigning a Name to a Loading File
It’s possible to assign a unique name to each resource you want to load. Just supply the
name (a string) as the first argument in the loader’s add method. For example, here’s how
to name an image of a cat as catImage:

loader
 .add("catImage", "images/cat.png")
 .load(setup);

This creates an object called catImage in loader.resources. And that means you
can create a sprite by referencing the catImage object, like this:

let cat = new Sprite(loader.resources.catImage.texture);

However, I recommend you don’t use this feature! That’s because you’ll have to
remember all the names you’ve given each loaded file, as well as make sure you don’t
accidentally use the same name more than once. Using the file path name, as we’ve done
in previous examples, is simpler and less error-prone. But, just in case you can think of a
clever use for this that I haven’t, now you know!

Monitoring Load Progress
Pixi’s loader has a special progress event that can call a customizable callback function
each time a file loads. progress events are called by the loader’s on method, like this:

loader.on("progress", loadProgressHandler);

Here’s how to include the on method in the loading chain and call a user-definable
function called loadProgressHandler each time a file loads:

loader
 .add([
 "images/one.png",
 "images/two.png",
 "images/three.png"
])
 .on("progress", loadProgressHandler)
 .load(setup);

Chapter 1 ■ Making SpriteS

15

function loadProgressHandler() {
 console.log("loading");
}

function setup() {
 console.log("setup");
}

Each time one of the files loads, the progress event calls loadProgressHandler to
display “loading” in the console. When all three files have loaded, the setup function
will run. Here’s the output of the preceding code in the console:

loading
loading
loading
setup

That’s neat, but it gets better. You can also find out exactly which file has loaded and
what percentage of overall files have currently loaded. You can do this by adding optional
loader and resource parameters to the loadProgressHandler, like this:

function loadProgressHandler(loader, resource) { //...

You can then use resource.url to find the file that’s currently loaded. (Use
resource.name, if you want to find the optional name that you might have assigned to
the file, as the first argument in the add method.) And you can use loader.progress to
find what percentage of total resources have currently loaded. Here’s some code that
does just that:

PIXI.loader
 .add([
 "images/one.png",
 "images/two.png",
 "images/three.png"
])
 .on("progress", loadProgressHandler)
 .load(setup);

function loadProgressHandler(loader, resource) {

 //Display the file `url` currently being loaded
 console.log(`loading: ${resource.url}`);

 //Display the percentage of files currently loaded
 console.log(`progress: ${loader.progress}`);
}

Chapter 1 ■ Making SpriteS

16

function setup() {
 console.log("All files loaded");
}

Here’s what this code will display in the console when it runs:

loading: images/one.png
progress: 33.333333333333336%
loading: images/two.png
progress: 66.66666666666667%
loading: images/three.png
progress: 100%
All files loaded

That’s really cool, because you could use this as the basis for creating a loading
progress bar. This code also demonstrates a JavaScript ES6 feature called a template string.

`loading: ${resource.url}`

It’s a way to create a new string by combining an existing string (`loading`) with
a variable (resource.url). (Note that template strings are surrounded by backtick
characters, not single quotes. You’ll probably find the backtick character near the top left
of your keyboard, possibly sharing the same key as the tilde [~] character.) The template
string above is the equivalent of writing the following older JavaScript code:

"loading:" + resource.url

There are additional properties you can access on the resource object. resource.error
will tell you of any possible error that occurred while trying to load a file. resource.data
lets you access the file’s raw binary data. For more information, visit Pixi’s loader code
repository: github.com/englercj/resource-loader.

More About Pixi’s Loader
Pixi’s loader is ridiculously feature-rich and configurable. Let’s take a quick bird’s-eye
view of its usage, to get you started.

The loader’s chainable add method takes four basic arguments:

add(name, url, optionObject, callbackFunction)

Here’s what the loader’s source code documentation has to say about these parameters:

name (string): The name of the resource to load. If it’s not
passed, the url is used.

url (string): The URL for this resource, relative to the baseUrl
of the loader

Chapter 1 ■ Making SpriteS

17

options (object literal): The options for the loader

options.crossOrigin (Boolean): Is the request cross-origin?
The default is to determine automatically.

options.loadType: How should the resource be loaded? The
default value is Resource.LOAD_TYPE.XHR.

options.xhrType: How should the data being loaded be
interpreted when using XHR? The default value is Resource.
XHR_RESPONSE_TYPE.DEFAULT.

callbackFunction: The function to call when this specific
resource completes loading.

The only one of these arguments that’s required is the url (the file that you want to load).
You won’t typically have to change or set any of these options, but, just in case, you now
know how to access them if you do.

Here are examples of some ways you could use the add method to load files. This first
are what the docs call the loader’s “normal syntax”:

.add("key", "http://...", () => {})

.add("http://...", () => {})

.add("http://...")

And these are examples of the loader’s “object syntax”:

.add({
 name: "key2",
 url: "http://..."
}, () => {})

.add({
 url: "http://..."
}, () => {})

.add({
 name: "key3",
 url: "http://...",
 onComplete: () => {}
})

.add({
 url: "https://...",
 onComplete: () => {},
 crossOrigin: true
})

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Making SpriteS

18

You can also pass the add method an array of objects, or URLs, or both:

.add([
 {name: "key4", url: "http://...", onComplete: () => {} },
 {url: "http://...", onComplete: () => {} },
 "http://..."
])

 ■ Note if you ever have to reset the loader to load a new batch of files, call the loader’s
reset method: PIXI.loader.reset();.

Pixi’s loader has many more advanced features, including options to let you load
and parse binary files of all types. This is not something you’ll have to do on a day-to-day
basis and is outside the scope of this book, so for more information, make sure to check
out the loader’s source code repository at github.com/englercj/resource-loader.

Positioning Sprites
Now that you know how to create and display sprites, let’s find out how to position and
resize them.

X and Y Properties
You can change the position of any sprite by setting its x and y properties. The x property
refers to how far, in pixels, the sprite’s top left corner is from the left side of the canvas.
The y property refers to how far the sprite’s top left corner is from the top of the canvas.
x values start at 0, at the left side of the canvas, and increase as the sprite moves right.
y values start at 0, the top of the canvas, and increase as the sprite moves down.

A practical example will make this clear. Imagine that you’ve got a Pixi canvas with
a width and height of 256. You have a sprite called cat that you want to position 96 pixels
to the right of the canvas and 128 pixels below the top of the canvas. You can position the
sprite using its x and y properties, like this:

cat.x = 96;
cat.y = 128;

Figure 1-5 illustrates this.

Chapter 1 ■ Making SpriteS

19

You can add those two lines of code anywhere inside the setup function, after you’ve
created the sprite. Here’s where to put them in the context of the entire setup function.

function setup() {

 //Create the `cat` sprite
 let cat = new Sprite(resources["images/cat64x64.png"].texture);

 //Change the sprite's position
 cat.x = 96;
 cat.y = 128;

 //Add the cat to the stage so you can see it
 stage.addChild(cat);

 //Render the stage
 renderer.render(stage);
}

These two new lines of code will move the cat 96 pixels to the right and 128 pixels
down, just as you can see in Figure 1-5.

The cat’s top left corner (its left ear) represents its x and y anchor point. To make the
cat move to the right, increase the value of its x property. To make the cat move down,
increase the value of its y property. If the cat has an x value of 0, it will be at the very left
side of the canvas. If it has a y value of 0, it will be at the very top of the canvas.

Figure 1-5. Positioning a sprite using x and y properties

Chapter 1 ■ Making SpriteS

20

Pixi gives you an alternative way to position sprites. Instead of setting the sprite’s x
and y properties independently, you can set them together in a single line of code,
like this:

sprite.position.set(x, y);

That can help make your code a little more compact.

Size and Scale
You can change a sprite’s size by setting its width and height properties. Here’s how to
give the cat a width of 80 pixels and a height of 120 pixels:

cat.width = 80;
cat.height = 120;

Add those two lines of code to the setup function, like this:

function setup() {

 //Create the `cat` sprite
 let cat = new Sprite(resources["images/cat64x64.png"].texture);

 //Change the sprite's position
 cat.x = 96;
 cat.y = 128;

 //Change the sprite's size
 cat.width = 80;
 cat.height = 120;

 //Add the cat to the stage
 stage.addChild(cat);
}

Figure 1-6 shows the result.

Chapter 1 ■ Making SpriteS

21

You can see that the cat’s position (its top left corner) didn’t change, only its width
and height. Sprites also have scale.x and scale.y properties that change the sprite’s
width and height proportionately. Here’s how to set the cat’s scale to half size:

cat.scale.x = 0.5;
cat.scale.y = 0.5;

scale values are numbers between 0 and 1 that represent a percentage of the sprite’s
size. 1 means 100% (full size), while 0.5 means 50% (half size).

 ■ Note Values between 0 and 1 are very commonly used in computer graphics and often
referred to as normalized values.

You can double the sprite’s size by setting its scale values to 2, like this:

cat.scale.x = 2;
cat.scale.y = 2;

Pixi has an alternative, concise way for you to set the sprite’s scale in one line of code,
using the scale.set method.

cat.scale.set(0.5, 0.5);

If that appeals to you, use it!

Figure 1-6. Changing a sprite’s width and height

Chapter 1 ■ Making SpriteS

22

Rotation
You can make a sprite rotate by setting its rotation property to a value in radians.

cat.rotation = 0.5;

 ■ Note radians are units of measurement for circles that are a bit easier to work with,
mathematically, than degrees. One radian is the measurement you get when you take a
circle’s radius and wrap it around the edge of the circle. 3.14 radians equal half a circle,
which, very conveniently, equals pi (3.14). a full circle is 6.28 radians (pi * 2). there are
about 57.3 degrees in one radian, and if you ever have to convert degrees to radians, or
radians to degrees, use the following formulas:

radians = degrees * (Math.PI / 180);

degrees = radians * (180 / Math.PI);

But around which point does that rotation occur? You’ve seen that a sprite’s top left
corner represents its x and y position. That point is called the anchor point. If you set the
sprite’s rotation property to something like 0.5, the rotation will occur around the sprite’s
anchor point. Figure 1-7 illustrates this.

Figure 1-7. Rotation occurs around the sprite’s anchor point

You can see that the anchor point, the cat’s left ear, is the center of the imaginary
circle around which the cat is rotating. What if you want the sprite to rotate around its
center? Change the sprite’s anchor point, so that it’s centered inside the sprite, like this:

cat.anchor.x = 0.5;
cat.anchor.y = 0.5;

Chapter 1 ■ Making SpriteS

23

Figure 1-8 shows the effect this will have on the rotation of our cat sprite.

The anchor.x and anchor.y values represent a percentage of the sprite’s image texture
dimensions, from 0 to 1 (0% to 100%). Setting it to 0.5 (50%) centers the texture over the point.

The location of the point itself won’t change, only the way the texture is positioned
over it. You can also see in Figure 1-8 that the sprite’s texture shifts up and to the left. This
is an important side effect to remember!

Just like with position and scale, you can set the anchor’s x and y values with one
line of code, like this:

sprite.anchor.set(x, y);

Sprites also have a pivot property, which works in a similar way to anchor. pivot
sets the position of the sprite’s x/y origin point. Usually, the x/y origin point is the sprite’s
top left corner, but pivot lets you change that. If you reposition the pivot point and then
rotate the sprite, the sprite will rotate around that new origin point. For example, the
following code will set the sprite’s pivot.x point to 32 and its pivot.y point to 32:

cat.pivot.set(32, 32);

This shifts the sprite’s x/y origin point 32 pixels to the right and 32 pixels down from
its top left corner. Assuming that the sprite is 64 by 64 pixels, the sprite will now rotate
around its center point. Its x/y origin point will now also be the sprite’s center, not its top
left corner. The visual effect of this code is identical to what occurred when we changed
the anchor point in Figure 1-8.

Figure 1-8. Set the sprite’s anchor to change the point around which it rotates

Chapter 1 ■ Making SpriteS

24

So what’s the difference between pivot and anchor? They’re really similar! anchor
shifts the origin point of the sprite’s image texture, using a 0 to 1 normalized value. pivot
shifts the origin of the sprite’s x and y point, using pixel values. Play around with both
anchor and pivot and see which you prefer!

Making a Sprite from a Tileset Sub-image
You now know how to make a sprite from a single image file. But, as a game or
interactive designer, you’ll usually be making your sprites using tilesets (also known as
spritesheets). Pixi has some convenient built-in ways to help you do this.

A tileset is a single image file that contains sub-images. The sub-images represent
all the graphics you want to use in your game. Figure 1-9 is an example of a typical tileset
image that contains game characters and game objects as sub-images.

Figure 1-9. A tileset is a single image that contains sub-images

Chapter 1 ■ Making SpriteS

25

The entire tileset is 512 by 512 pixels. Each image is in its own 32-by-32-pixel grid cell.
Storing and accessing all your game graphics on a tileset is a very processor- and
memory-efficient way to work with graphics, and Pixi is optimized for them.

You can capture a sub-image from a tileset by defining a rectangular area that’s the
same size and position as the sub-image you want to extract. Imagine that you want to
extract the image of the girl adventurer character that you can see near the center of the
tileset. Let’s look at code that will do this.

First, load the tileset.png image with Pixi’s loader, just as you’ve done in earlier
examples.

loader
 .add("images/tileset.png")
 .load(setup);

Next, when the image has loaded, use a rectangular subsection of the tileset to create
the sprite’s image. Here’s the code that extracts the sub-image, creates the adventuress
character sprite, and positions and displays her on Pixi’s canvas:

function setup() {

 //Create the `tileset` sprite from the texture
 let texture = TextureCache["images/tileset.png"];

 //Create a rectangle object that defines the position and
 //size of the sub-image you want to extract from the texture
 let rectangle = new Rectangle(160, 256, 32, 32);

 //Tell the texture to use that rectangular section
 texture.frame = rectangle;

 //Create the sprite from the texture
 let adventuress = new Sprite(texture);

 //Position the sprite on the canvas
 adventuress.x = 64;
 adventuress.y = 64;

 //Scale the sprite up so it's 3 times bigger than the original image
 adventuress.scale.set(3, 3);

 //Add the sprite to the stage
 stage.addChild(adventuress);

 //Render the stage
 renderer.render(stage);
}

Chapter 1 ■ Making SpriteS

26

Figure 1-10 shows the result. (You can see in the preceding code that Pixi’s scale.set
method has been used to make the sprite three times larger than the original image on
the tileset, just so it’s easier to see.)

How does this work? Pixi has a built-in Rectangle object (PIXI.Rectangle) that is a
general-purpose object for defining rectangular shapes. It takes four arguments. The first
two arguments define the rectangle’s x and y position. The last two define its width and
height. Here’s the general format for defining a new Rectangle object:

let rectangle = new Rectangle(x, y, width, height);

The rectangle object is just a data object. That means it’s not an image of a rectangle;
it’s just four numbers that define the position and size of an imaginary rectangle. It’s up to
you to decide how you want to use that data. In our example, we’re using it to define the
position and area of the sub-image on the tileset that we want to extract.

Pixi textures have a useful property called frame that can be set to any Rectangle
object. The frame crops the texture to the dimensions of the Rectangle. Here’s how to use
frame to crop the texture to the size and position of the sub-image you want to extract.

let rectangle = new Rectangle(160, 256, 32, 32);
texture.frame = rectangle;

You can then use that cropped texture to create the sprite.

let adventuress = new Sprite(texture);

Figure 1-11 illustrates how this code works.

Figure 1-10. The single image that has been extracted from the tileset

Chapter 1 ■ Making SpriteS

27

 ■ Note extracting sub-images from a single tileset such as this is a display technique
called blitting (from the old computer graphics technique: bit block image transfer, or “blit,”
for short).

As creating a sprite such as this from a single tileset image is such a common task,
I recommend that you use a convenient custom function called frame, to help you
automate this. Here’s the frame function:

function frame(source, x, y, width, height) {

 let texture, imageFrame;

 //If the source is a string, it's either a texture in the
 //cache or an image file
 if (typeof source === "string") {
 if (TextureCache[source]) {
 texture = new Texture(TextureCache[source]);
 }
 }

Figure 1-11. Extracting a sub-image from a tileset

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Making SpriteS

28

 //If the `source` is a texture, use it
 else if (source instanceof Texture) {
 texture = new Texture(source);
 }
 if(!texture) {
 console.log(`Please load the ${source} texture into the cache.`);
 } else {

 //Make a rectangle the size of the sub-image
 imageFrame = new Rectangle(x, y, width, height);
 texture.frame = imageFrame;
 return texture;
 }
}

You can then use the frame function to make sprite from a sub-image, like this:

let adventuress = new Sprite(
 frame("images/tileset.png", 160, 256, 32, 32)
);

The first argument is the tileset image. The next four arguments refer to the x, y,
width, and height values of the sub-image you want to extract.

 ■ Note You’ll find the frame function, along with a host of other help functions for working
with sprites, in the library/spriteUtilities folder in this book’s source files.

Preventing Texture Bleed
Unfortunately, GPUs don’t always accurately know where one pixel begins and ends. That
can produce a graphic glitch called texture bleed. Texture bleed is where a portion of a
neighboring image is unintentionally extracted in addition to the main image. Figure 1-12
shows a typical example.

Chapter 1 ■ Making SpriteS

29

 ■ Note texture bleed glitches such as this are often called artifacts.

The thin line above the sprite’s head is actually part of the image just above it on the
tileset.

Take a close look at the tileset we’ve been using in these examples (Figure 1-11),
and you’ll see that all the sub-images are jammed together, with no space between them.
That means that each sub-image has to be extracted with pixel-perfect precision, so that
no fragments of bordering images are accidentally displayed. Unfortunately, GPUs don’t
have pixel-perfect accuracy. Instead of using perfect integers to refer to pixel positions,
GPUs work exclusively with floating-point (decimal) numbers. That means a pixel
position might have a precise integer value of 10, but, to the GPU, it might have a less
precise floating-point value of 9.989087898909. And, unfortunately, there’s no consistency
among different GPUs as to how they decide to round up or down.

But there is a solution! You can change the algorithm that the GPU uses to extract pixels.
Here’s the line of code you need to make sure the GPU rounds to perfect pixel values:

texture.baseTexture.scaleMode = PIXI.SCALE_MODES.NEAREST;

The texture in this code refers to the tileset that you’re extracting your sub-images from.
No more texture bleed!

 ■ Note Use SCALE_MODE.LINEAR, if you want to set pixi back to using floating-point values
for scaling.

256525252525252552525525225252252525525225252526666666666666666666666666666666

Texture
bleed
artifact

Figure 1-12. An example of texture bleed

Chapter 1 ■ Making SpriteS

30

Using a Texture Atlas
If you’re working on a big, complex game or application, you’ll want a fast and efficient
way to create sprites from tilesets. This is where a texture atlas becomes really useful.
A texture atlas is a JSON data file that contains the positions and sizes of sub-images on
a matching tileset PNG image. If you use a texture atlas, all you need to know about the
sub-image you want to display is its name. You can arrange your tileset images in any
order, and the JSON file will keep track of their sizes and positions for you. This is really
convenient, because it means the sizes and positions of tileset images aren’t hard-coded
into your game program. If you make changes to the tileset, such as adding images,
resizing them, or removing them, just republish the JSON file, and your game will use that
data to display the correct images. You won’t have to make any changes to your game code.

Pixi is compatible with a standard JSON texture atlas format that is output by a
popular software tool called Texture Packer (www.codeandweb.com/texturepacker).
Texture Packer’s “Essential” license is free. Let’s find out how to use it to make a texture
atlas and then load the atlas into Pixi.

Creating the Texture Atlas

 ■ Note You don’t have to use texture packer. Similar tools, such as Shoebox
(renderhjs.net/shoebox) or spritesheet.js (github.com/krzysztof-o/spritesheet.js),
output png and JSOn files in the same standard format that is compatible with pixi.

First, start with a collection of individual image files that you’d like to use. Figure 1-13
shows some that you might want to use for a dungeon adventure game.

http://www.codeandweb.com/texturepacker

Chapter 1 ■ Making SpriteS

31

Next, open Texture Packer and choose JSON Hash as the framework type. Drag your
images into Texture Packer’s workspace. (Alternatively, you can point Texture Packer to
any folder that contains your images.) It will automatically arrange the images on a single
tileset image and give them names that match their original image names. Figure 1-14
shows what you’ll see.

Figure 1-13. Individual images that you want to add to the texture atlas

Figure 1-14. Adding the images to the texture atlas

Chapter 1 ■ Making SpriteS

32

 ■ Note if you’re using the free version of texture packer, set algorithm to “Basic,” set
trim mode to “none,” set Size constraints to “any size,” and slide the png Opt Level all
the way to the left, to “0.” these are the basic settings that will allow the free version of
texture packer to create your files without any warnings or errors. however, texture packer
changes these precise requirements frequently in new software updates, so, if you have
any problems, try turning off any other advanced features that texture packer might have
switched on in the current version you’re using.

In the Data file field, give the texture atlas a name, and give it a save location that’s
the same as the images you imported to Texture Packer. (That means if your images were
in a folder called “images,” set the save location to that same “images” folder.) In the
Texture file field, enter the same name and same save location. This will ensure that all
the texture atlas files share the same name and will be in the same folder.

When you’re done, click the “Publish sprite sheet” button. You’ll end up with
two new files: a PNG file and a JSON data file. In this example, my file names are
treasureHunter.json and treasureHunter.png. If you followed my suggestions in the
previous paragraph, they’ll be in the same folder. (You can think of the JSON file as extra
metadata for the image file, so it makes sense to keep both files in the same folder.)

 ■ Note in case you haven’t used them before, JSOn (JavaScript Object notation) files are
a very simple data storage format that lets you structure data in almost the same format
as JavaScript object literals. if you know how to work with object literals, you already know
how to work with JSOn files. the only small difference is that in JSOn, you have to surround
the property names (also called the keys) with quotation marks. typically, you would use
a JSOn file to store all the data for your game or application, load the JSOn file into your
program using a technology called Xhr, and then use that loaded data to create game
objects, such as sprites, or Ui (User interface) elements, such as menus or buttons. to learn
more about working with JSOn and Xhr, see Advanced Game Design with HTML5 and
JavaScript (apress, 2015).

You also have to save the Texture Packer file (which is in its own TPS format), so that
you can make changes to, and republish, the texture atlas later, if you need to. You can
save that TPS file anywhere you like.

Chapter 1 ■ Making SpriteS

33

The JSON file that Texture Packer produces describes the name, size, and position of
each of the sub-images in the tileset. Here’s an excerpt that describes the blob monster
sub-image:

"blob.png":
{
 "frame": {"x":55,"y":2,"w":32,"h":24},
 "rotated": false,
 "trimmed": false,
 "spriteSourceSize": {"x":0,"y":0,"w":32,"h":24},
 "sourceSize": {"w":32,"h":24},
 "pivot": {"x":0.5,"y":0.5}
},

The treasureHunter.json file also contains dungeon.png, door.png, exit.png, and
explorer.png properties, each with similar data. Each of these sub-images is called a
frame. Having this data is really helpful, because now you don’t have to know the size and
position of each sub-image in the tileset. All you must know is the sprite’s frame id. The
frame id is just the name of the original image file, such as blob.png or explorer.png.

 ■ Note among the many advantages to using a texture atlas is that texture packer adds two
pixels of padding around each image by default. this prevents any danger of texture bleed.

Now that you know how to create a texture atlas, let’s find out how to load it into your
application code.

Loading the Texture Atlas
Use Pixi’s loader to import the texture atlas JSON file into your code. If the JSON file
was made with Texture Packer, the loader will interpret the data and create a texture
from each frame on the tileset automatically. Here’s how to use the loader to load the
treasureHunter.json file that we created in the previous section. When it has loaded,
the setup function will run.

loader
 .add("images/treasureHunter.json")
 .load(setup);

You only have to load the one JSON file. Pixi automatically loads the matching PNG
file for you in the background and copies each individual image into the texture cache.
You can access each texture in the cache with the same name it had in Texture Packer:
blob.png, dungeon.png, explorer.png, and so on.

Chapter 1 ■ Making SpriteS

34

Creating Sprites from a Loaded Texture Atlas
Pixi gives you two general ways to create a sprite from a texture atlas:

 1. Using TextureCache, as follows:

let texture = TextureCache["frameId.png"],
 sprite = new Sprite(texture);

 2. If you’ve used Pixi’s loader to load the texture atlas, use the
loader’s resources, as follows:

let sprite = new Sprite(
 resources["images/treasureHunter.json"].textures["frameId.png"]
);

That’s way too much typing to have to do just to create a sprite! So, I suggest that you
create an alias, called id, that points to texture atlas’s textures object, like this:

let id = PIXI.loader.resources["images/treasureHunter.json"].textures;

Then you can just create each new sprite like this:

let sprite = new Sprite(id["frameId.png"]);

Much better!
Here’s how you could use these different sprite-creation techniques in the setup

function that will run after you’ve loaded the texture atlas. The code creates and displays
the dungeon, explorer, door, and treasure sprites.

//Define variables that might be used in more than one function
let dungeon, explorer, treasure, door;

function setup() {

 //There are two basic ways to create sprites from loaded texture
 //atlases:
 //1. Access the `TextureCache` directly
 let dungeonTexture = TextureCache["dungeon.png"];
 dungeon = new Sprite(dungeonTexture);
 stage.addChild(dungeon);

 //2. Access the texture using the loader's `resources`:
 explorer = new Sprite(
 resources["images/treasureHunter.json"].textures["explorer.png"]
);
 explorer.x = 68;

Chapter 1 ■ Making SpriteS

35

 //Center the explorer vertically
 explorer.y = stage.height / 2 - explorer.height / 2;
 stage.addChild(explorer);

 //3. Create an optional alias called `id` for all the texture atlas
 //frame id textures.
 let id = PIXI.loader.resources["images/treasureHunter.json"].textures;

 //Make the treasure box using the alias
 treasure = new Sprite(id["treasure.png"]);
 stage.addChild(treasure);

 //Position the treasure next to the right edge of the canvas
 treasure.x = stage.width - treasure.width - 48;
 treasure.y = stage.height / 2 - treasure.height / 2;
 stage.addChild(treasure);

 //Make the exit door
 door = new Sprite(id["door.png"]);
 door.position.set(32, 0);
 stage.addChild(door);

 //Render the stage
 renderer.render(stage);
}

Figure 1-15 shows what this code displays.

Chapter 1 ■ Making SpriteS

36

The stage dimensions are 512 by 512 pixels, and you can see in the preceding code
that the stage.height and stage.width properties are used to align the sprites. Here’s
how the explorer’s y position is centered vertically on the stage:

explorer.y = stage.height / 2 - explorer.height / 2;

The treasure box is also centered vertically and offset from the right side of the stage
in a similar way.

treasure.x = stage.width - treasure.width - 48;
treasure.y = stage.height / 2 - treasure.height / 2;

 ■ Note the width and height of the root stage container object will be the same as
that of the largest sprites that it contains. it is important to note that these values could
be different from the width and height of pixi’s renderer. Often, they’ll be same, but not
necessarily! if you have to know the exact width and height of the renderer, use
renderer.view.width and renderer.view.height.

Figure 1-15. Creating sprites using a loaded texture atlas

Chapter 1 ■ Making SpriteS

37

Making the Blob Monsters
We now want to add six blob monsters to the scene, space them evenly, and give them
random y positions. Here’s all the code you need to write to do this. Add it to the setup
function, just before you render the stage.

//Make the blobs
let numberOfBlobs = 6,
 spacing = 48,
 xOffset = 150;

//Make as many blobs as there are `numberOfBlobs`
for (let i = 0; i < numberOfBlobs; i++) {

 //Make a blob
 let blob = new Sprite(id["blob.png"]);

 //Space each blob horizontally according to the `spacing` value.
 //`xOffset` determines the point from the left of the screen
 //at which the first blob should be added
 let x = spacing * i + xOffset;

 //Give the blob a random y position
 //(`randomInt` is a custom function - see ahead)
 let y = randomInt(0, stage.height - blob.height);

 //Set the blob's position
 blob.x = x;
 blob.y = y;

 //Add the blob sprite to the stage
 stage.addChild(blob);
}

Figure 1-16 shows what this new code produces.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Making SpriteS

38

You can see in the preceding code that all the blobs are created by using a good old
JavaScript for loop. Each blob is spaced evenly along the x axis, like this:

let x = spacing * i + xOffset;
blob.x = x;

spacing has a value 48, and xOffset has a value of 150. What this means is that the
first blob will have an x position of 150. This offsets it from the left side of the stage by
150 pixels. Each subsequent blob will have an x value that’s 48 pixels greater than the blob
created in the previous iteration of the loop. This creates an evenly spaced line of blob
monsters, from left to right, along the dungeon floor.

Each blob is also given a random y position, using a custom function called
randomInt. Here’s the code that does this:

let y = randomInt(0, stage.height - blob.height);
blob.y = y;

The blob’s y position could be assigned any random number between 0 and 512,
which is the value of stage.height. randomInt returns a random number that’s within a
range between any two numbers you supply.

randomInt(lowestNumber, highestNumber)

Figure 1-16. Adding the blob monsters to the scene

Chapter 1 ■ Making SpriteS

39

This means that if you want a random number between one and ten, you can get one
like this:

var randomNumber = randomInt(1, 10);

Here’s the randomInt function definition that does all this work:

function randomInt(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}

randomInt is a great little helper function to keep in your back pocket for making
games. I use it all the time.

The Complete Code
Learning to create and display sprites using a texture atlas is an important benchmark and
the way to load and use images with Pixi. So, before I end this chapter, let’s take a look at the
entire code that creates this dungeon adventure scene. This code uses all the techniques
covered in this book so far, so it’s a great little summary of everything you’ve learned.

First, you need a containing HTML document, to host your JavaScript code, and to
load Pixi. Here’s the HTML code, from the example in the chapter’s source code files, that
does this:

<!doctype html>
<meta charset="utf-8">
<title>Sprite from texture atlas</title>
<body>
<script src="../library/plugins/pixi.js/bin/pixi.js"></script>
<script src="es6spriteFromTextureAtlas.js"></script>
</body>

 ■ Note the file paths in the preceding code are the same as the file paths in this book’s
sample source files. Your own file paths might be different, depending on how you’ve set up
your project folders.

Here’s the complete spriteFromTextureAtlas.js file that loads the texture atlas and
creates the sprites:

//Aliases
let Container = PIXI.Container,
 autoDetectRenderer = PIXI.autoDetectRenderer,
 loader = PIXI.loader,
 resources = PIXI.loader.resources,

Chapter 1 ■ Making SpriteS

40

 TextureCache = PIXI.utils.TextureCache,
 Texture = PIXI.Texture,
 Sprite = PIXI.Sprite;

//Create a Pixi stage and renderer and add the
//renderer.view to the DOM
let stage = new Container(),
 renderer = autoDetectRenderer(512, 512);
document.body.appendChild(renderer.view);

//Load an image and run the `setup` function when it's done
loader
 .add("images/treasureHunter.json")
 .load(setup);

//Define variables that might be used in more
//than one function
let dungeon, explorer, treasure, door, id;

function setup() {

 //There are two basic ways to create sprites from loaded texture
 //atlases:
 //1. Access the `TextureCache` directly
 let dungeonTexture = TextureCache["dungeon.png"];
 dungeon = new Sprite(dungeonTexture);
 stage.addChild(dungeon);

 //2. Access the texture using throuhg the loader's `resources`:
 explorer = new Sprite(
 resources["images/treasureHunter.json"].textures["explorer.png"]
);
 explorer.x = 68;

 //Center the explorer vertically
 explorer.y = stage.height / 2 - explorer.height / 2;
 stage.addChild(explorer);

 //Create an optional alias called `id` for all the texture atlas
 //frame id textures.
 let id = PIXI.loader.resources["images/treasureHunter.json"].textures;

 //Make the treasure box using the alias
 treasure = new Sprite(id["treasure.png"]);
 stage.addChild(treasure);

Chapter 1 ■ Making SpriteS

41

 //Position the treasure next to the right edge of the canvas
 treasure.x = stage.width - treasure.width - 48;
 treasure.y = stage.height / 2 - treasure.height / 2;
 stage.addChild(treasure);

 //Make the exit door
 door = new Sprite(id["door.png"]);
 door.position.set(32, 0);
 stage.addChild(door);

 //Make the blobs
 let numberOfBlobs = 6,
 spacing = 48,
 xOffset = 150;

 //Make as many blobs as there are `numberOfBlobs`
 for (let i = 0; i < numberOfBlobs; i++) {

 //Make a blob
 let blob = new Sprite(id["blob.png"]);

 //Space each blob horizontally according to the `spacing` value.
 //`xOffset` determines the point from the left of the screen
 //at which the first blob should be added.
 let x = spacing * i + xOffset;

 //Give the blob a random y position
 //(`randomInt` is a custom function - see below)
 let y = randomInt(0, stage.height - blob.height);

 //Set the blob's position
 blob.x = x;
 blob.y = y;

 //Add the blob sprite to the stage
 stage.addChild(blob);
 }

 //Render the stage
 renderer.render(stage);
}

//The `randomInt` helper function
function randomInt(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}

Chapter 1 ■ Making SpriteS

42

Summary
Congratulations, you’ve just completed the most important chapter in the book! The key
to working with Pixi is to get comfortable creating a renderer, loading images, turning
those image into sprites, and then using sprite properties to position them and change
their size. In this chapter, you’ve learned how to create a Pixi renderer, customize and
scale it, and how to set it up for Canvas Drawing API or WebGL rendering. You learned
all about Pixi’s flexible loader object and multiple ways of loading images and turning
images into sprites. You’ve also learned everything you need to know about how to create
a texture atlas and use texture atlas frames to create sprites. Now that you know how to do
all this, the rest is really just detail.

Pixi is a tool for creating interactive motion graphics, but so far, none of our sprites is
moving. That’s what the next chapter is all about: making sprites move.

43

Chapter 2

Moving Sprites

You now know how to make sprites, but how do you make them move? That’s what this
chapter is all about. We’re going to take a close look at all the code you have to write to
start making your sprites move around the stage. You’ll learn about

•	 Making a game loop

•	 Using velocity properties

•	 Modularizing your animation code by using game states

•	 Making a sprite move by using the keyboard

•	 Containing a sprite’s movement inside the canvas

•	 Applying physics to a sprite’s movement

At the end of this chapter, you’ll be well prepared to apply these techniques to all
kinds of interactive games and applications, so let’s get started!

Create a Game Loop
The first thing you must do to make sprites move is to create a game loop. A game loop is
just a function that is called, repeatedly, 60 times per second.

 ■ Note “Times per second” is more properly referred to as “frames per second,” or fps.
Each frame is a single unit of movement. You can think of a frame as one page from a
hand-drawn animation flip-book. If you flip through the pages (frames!) quickly, your brain is
tricked into thinking that many still images are actually one moving image. (This illusion is
called persistence of vision.)

Any code that you put inside the game loop will also be updated to 60 frames
per second. You can make a game loop by using a special JavaScript function called
requestAnimationFrame. requestAnimationFrame tells the browser to update any
function you specify at a rate that matches the refresh rate of the computer monitor

ChapTEr 2 ■ MovIng SprITES

44

or device screen that your game or application is running on. The result is that your
sprites will move with the smoothest possible animation that your system is capable of
producing.

Let’s look at some code that shows you how to use requestAnimationFrame to make
a sprite called pixie move from the left side of the canvas to the right side. Figure 2-1
shows what this code produces.

function gameLoop(){

 //Loop this function 60 times per second
 requestAnimationFrame(gameLoop);

 //Move the sprite 1 pixel per frame
 pixie.x += 1;

 //Render the stage
 renderer.render(stage);
}

//Call the `gameLoop` function once to get it started
gameLoop();

How does this code work? You can see that the name of this function is gameLoop.
The gameLoop function calls requestAnimationFrame and provides itself as an argument.

requestAnimationFrame(gameLoop);

This is what makes the function run in a continuous loop, at approximately 60 times
per second.

Figure 2-1. Making a sprite move from left to right

ChapTEr 2 ■ MovIng SprITES

45

To make the sprite move, all you have to do is add a value to the sprite’s position.
Adding a value of one to the sprite’s x position each time the loop is updated will make
the sprite move to the right at a rate of one pixel per frame.

pixie.x += 1;

This is what makes the sprite gradually move from left to right. If you want to make
the sprite move faster, use a bigger number, such as 3 or 5. If you want the sprite to move
in the opposite direction (from right to left), use a negative number, such as -1 or -4. If
you want the sprite to move down, add a positive number to the sprite’s y property. If you
want it to move up, add a negative number to the sprite’s y property.

But, don’t forget your last step: make sure you render the stage:

renderer.render(stage);

If you don’t render the stage, you won’t see anything!
And that’s really all there is to it! Just change any sprite property by small increments

inside the loop, and it will animate over time. Here’s the complete JavaScript code that
loads the image, creates the sprite, and makes it move.

//Create a Pixi stage and renderer
let stage = new Container(),
 renderer = autoDetectRenderer(512, 512);
document.body.appendChild(renderer.view);

//Set the canvas's border style and background color
renderer.view.style.border = "1px dashed black";
renderer.backgroundColor = "0xFFFFFF";

//load an image and run the `setup` function when it's done
loader
 .add("images/pixie96x48.png")
 .load(setup);

//Define any variables that are used in more than one function
let pixie;

function setup() {

 //Create the `pixie` sprite
 pixie = new Sprite(resources["images/pixie96x48.png"].texture);

 //Center the sprite vertically on the stage
 pixie.y = renderer.view.height / 2 - pixie.height / 2;

 //Add the sprite to the stage
 stage.addChild(pixie);

ChapTEr 2 ■ MovIng SprITES

46

 //Start the game loop
 gameLoop();
}

function gameLoop(){

 //Loop this function 60 times per second
 requestAnimationFrame(gameLoop);

 //Move the sprite 1 pixel per frame
 pixie.x += 1;

 //Render the stage
 renderer.render(stage);
}

 ■ Note notice that the pixie sprite variable has to be defined outside the setup and
gameLoop functions, so that you can access it inside both of them.

You can animate a sprite’s scale, rotation, or width and height—whatever! You’ll
see many more examples of how to animate sprites ahead.

Using Velocity Properties
To give you more flexibility, it’s a good idea to control a sprite’s movement speed, using
two velocity properties: vx and vy. vx is used to set the sprite’s speed and direction on
the x axis (horizontally). vy is used to set the sprite’s speed and direction on the
y axis (vertically). Instead of changing a sprite’s x and y values directly, first update the
velocity variables, and then assign those velocity values to the sprite. This is an extra bit
of modularity that you’ll need for interactive game animation.

The first step is to create vx and vy properties on your sprite and give them an
initial value.

pixie.vx = 0;
pixie.vy = 0;

Setting vx and vy to 0 means that the sprite isn’t moving.
Next, inside the game loop, update vx and vy with the velocity that you want the

sprite to move at. Then assign those values to the sprite’s x and y properties.

pixie.vx = 1;
pixie.vy = 1;

pixie.x += pixie.vx;
pixie.y += pixie.vy;

ChapTEr 2 ■ MovIng SprITES

47

This will make the sprite move down and to the right at one pixel each frame. Here
are the new setup and gameLoop functions that use this new code to produce the effect
you can see in Figure 2-2.

function setup() {

 //Create the `pixie` sprite
 pixie = new Sprite(resources["images/pixie96x48.png"].texture);

 //Position the sprite at the top left corner
 pixie.x = 0;
 pixie.y = 0;

 //Initialize the sprites's velocity variables
 pixie.vx = 0;
 pixie.vy = 0;

 //Add the sprite to the stage
 stage.addChild(pixie);

 //Start the game loop
 gameLoop();
}

function gameLoop(){

 //Loop this function 60 times per second
 requestAnimationFrame(gameLoop);

Figure 2-2. Making a sprite move down and to the right

www.allitebooks.com

http://www.allitebooks.org

ChapTEr 2 ■ MovIng SprITES

48

 //Update the sprite's velocity
 pixie.vx = 1;
 pixie.vy = 1;

 //Apply the velocity values to the sprite's position to make it move
 pixie.x += pixie.vx;
 pixie.y += pixie.vy;

 //Render the stage
 renderer.render(stage);
}

When you run this code, the pixie sprite will move down and to the right at one
pixel per frame. To make the sprite move at different speeds and in different directions,
just change the values of the vx and vy variables in the same way you changed the x and
y values in the previous example.

You’ll see ahead how modularizing a sprite’s velocity with vx and vy velocity
properties helps with keyboard and mouse pointer control systems for games, as well as
making it easier to implement physics.

Game States
As a matter of style, and to help modularize your code, I recommend structuring your
game loop like this:

//Set the game's current state to `play`:
let state = play;

function gameLoop() {

 //Loop this function at 60 frames per second
 requestAnimationFrame(gameLoop);

 //Update the current game state:
 state();

 //Render the stage to see the animation
 renderer.render(stage);
}

function play() {

 //Move the sprite 1 pixel to the right each frame
 anySprite.x += 1;
}
```



ChapTEr 2 ■ MovIng SprITES

49

(The variable anySprite in this sample code could be the name of any sprite in  
your program.)

You can see that the gameLoop is calling a function called state 60 times per second. 
What is the state function? It’s been assigned to another function called play, with  
this code: 

let state = play;

That means that state just points to play. And that means all the code in the 
play function will also run at 60 times per second whenever state is called inside the 
gameLoop, like this:

state();

Yes, I know, this is a bit of a head-swirler! But don’t let it scare you, and spend 
a minute or two walking through in your mind how those functions are connected. 
Figure 2-3 illustrates visually how all this code fits together.

As you’ll see ahead, structuring your game loop like this will make it much, much 
easier to do things such as switching game scenes and levels. It means that you can 
completely change what your game or application is doing by simply pointing the state 
variable to any other function that contains the next bit of code you want to run.

state = anyOtherFunction;

let state = play;

function gameLoop( ) {

  requestAnimationFrame(gameLoop);
  
  state( );

  renderer.render(stage);
}

function play( ) {

  anySprite.x += 1;

}

1. Create a variable called state that
points to a function called play.

2. When the game loop calls state 60 times per
second, state delegates the work to the play
function, which actually does the job of 
moving the sprite.

Figure 2-3. Using states to help modularize your code



ChapTEr 2 ■ MovIng SprITES

50

You can do this at any point in your code when you want your application’s behavior 
to change. Because the game loop is just calling the same state variable, the behavior 
will change automatically when you point state to a different function. You can use 
functions from the same JS file, load them with a <script> tag, or import them with ES6 
modules (or any other module system, such as CommonJS or AMD). In fact, this simple 
bit of code architecture is the key to scaling your games and applications in a modular 
and manageable way.

Here’s how the code from the previous example can be re-factored to this new model:

//Define any variables that are used in more than one function
let pixie;
 
//Set the game's current state to `play`:
let state = play;
 
function setup() {
 
  //Create the `pixie` sprite
  pixie = new Sprite(resources["images/pixie96x48.png"].texture);
 
  //Position the sprite at the top left corner
  pixie.x = 0;
  pixie.y = 0;
 
  //Initialize the sprites's velocity variables
  pixie.vx = 0;
  pixie.vy = 0;
 
  //Add the sprite to the stage
  stage.addChild(pixie);
  
  //Start the game loop
  gameLoop();
}
 
function gameLoop(){
 
  //Loop this function 60 times per second
  requestAnimationFrame(gameLoop);
 
  //Update the current game state
  state();
 
  //Render the stage
  renderer.render(stage);
}
 



ChapTEr 2 ■ MovIng SprITES

51

function play() {
 
  //Update the sprite's velocity
  pixie.vx = 1;
  pixie.vy = 1;
 
  //Apply the velocity values to the sprite's position to make it move
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
}

Now that we’ve got a solid model for animating sprites, let’s add a few more features: 
keyboard control, physics, and limiting the area of movement.

 ■ Note This basic game loop will be all you need for most games or applications. But, for 
a more full-featured game loop, including fine control over the frame rate, consider using a 
helper library called Smoothie: github.com/kittykatattack/smoothie.

Keyboard Movement
With just a little more work, you can build a simple system to control a sprite, using 
the keyboard. To simplify your code, I suggest that you use this custom function, called 
keyboard, that listens for and captures keyboard events. It’s really just a convenient 
wrapper function for HTML keyup and keydown events, so that you can keep your 
application code clutter-free and easier to write and read. Here’s the complete keyboard 
function. (You’ll also find it at its code repository at github.com/kittykatattack/
keyboard.)

function keyboard(keyCode) {
  let key = {};
  key.code = keyCode;
  key.isDown = false;
  key.isUp = true;
  key.press = undefined;
  key.release = undefined;
 
  //The `downHandler`
  key.downHandler = event => {
    if (event.keyCode === key.code) {
      if (key.isUp && key.press) key.press();
      key.isDown = true;
      key.isUp = false;
    }
    event.preventDefault();
  };
 



ChapTEr 2 ■ MovIng SprITES

52

  //The `upHandler`
  key.upHandler = event => {
    if (event.keyCode === key.code) {
      if (key.isDown && key.release) key.release();
      key.isDown = false;
      key.isUp = true;
    }
    event.preventDefault();
  };
 
  //Attach event listeners
  window.addEventListener(
    "keydown", key.downHandler.bind(key), false
  );
  window.addEventListener(
    "keyup", key.upHandler.bind(key), false
  );
 
  //Return the `key` object
  return key;
}

The keyboard function is easy to use. Create a new keyboard object, like this:

let keyObject = keyboard(asciiKeyCodeNumber);

Its one argument is the ASCII key code number of the keyboard key that you want 
to listen for. A web search will turn up many lists for all the codes on your computer’s 
keyboard, but the following are the four we’ll be using in this chapter:

left arrow: 37

up arrow: 38

right arrow: 39

down arrow: 40

Then assign press and release methods to the keyboard object, like this: 

keyObject.press = () => {
  //key object pressed
};
keyObject.release = () => {
  //key object released
};



ChapTEr 2 ■ MovIng SprITES

53

Keyboard objects also have isDown and isUp Boolean properties that you can use 
to check the state of each key. Have a look at the keyboardMovement.html file in this 
chapter’s source code folder to see how you can use this keyboard function to control a 
sprite, using your keyboard’s arrow keys. Run it and use the left, up, down, and right arrow 
keys to move the sprite around the canvas, as shown in Figure 2-4. 

Here’s the complete code that uses the keyboard function to create this effect:

//Create a Pixi stage and renderer
let stage = new Container(),
  renderer = autoDetectRenderer(512, 512);
document.body.appendChild(renderer.view);
 
//Set the canvas's border style and background color
renderer.view.style.border = "1px dashed black";
renderer.backgroundColor = "0xFFFFFF";
 
//load an image and run the `setup` function when it's done
loader
  .add("images/pixie96x48.png")
  .load(setup);
 

Figure 2-4. Controlling a sprite with the keyboard



ChapTEr 2 ■ MovIng SprITES

54

//Define any variables that are used in more than one function
let pixie, state;
 
function setup() {
 
  //Create the `pixie` sprite
  pixie = new Sprite(resources["images/pixie96x48.png"].texture);
 
  //Center the sprite
  pixie.x = renderer.view.width / 2 - pixie.width / 2;
  pixie.y = renderer.view.height / 2 - pixie.height / 2;
 
  //Initialize the sprites's velocity variables
  pixie.vx = 0;
  pixie.vy = 0;
 
  //Add the sprite to the stage
  stage.addChild(pixie);
 
  //Capture the keyboard arrow keys
  var left = keyboard(37),
      up = keyboard(38),
      right = keyboard(39),
      down = keyboard(40);
 
  //Left arrow key `press` method
  left.press = () => {
 
    //Change the sprite's velocity when the key is pressed
    pixie.vx = -5;
    pixie.vy = 0;
  };
 
  //Left arrow key `release` method
  left.release = () => {
 
    //If the left arrow has been released, and the right arrow isn't down,
    //and the pixie isn't moving vertically, stop the sprite from moving
    //by setting its velocity to zero
    if (!right.isDown && pixie.vy === 0) {
      pixie.vx = 0;
    }
  };
 
  //Up
  up.press = () => {
    pixie.vy = -5;
    pixie.vx = 0;
  };



ChapTEr 2 ■ MovIng SprITES

55

  up.release = () => {
    if (!down.isDown && pixie.vx === 0) {
      pixie.vy = 0;
    }
  };
 
  //Right
  right.press = () => {
    pixie.vx = 5;
    pixie.vy = 0;
  };
  right.release = () => {
    if (!left.isDown && pixie.vy === 0) {
      pixie.vx = 0;
    }
  };
 
  //Down
  down.press = () => {
    pixie.vy = 5;
    pixie.vx = 0;
  };
  down.release = () => {
    if (!up.isDown && pixie.vx === 0) {
      pixie.vy = 0;
    }
  };
 
  //Set the game's current state to `play`
  state = play;
  
  //Start the game loop
  gameLoop();
}
 
function gameLoop(){
 
  //Loop this function 60 times per second
  requestAnimationFrame(gameLoop);
 
  //Update the current game state
  state();
 
  //Render the stage
  renderer.render(stage);
}
 



ChapTEr 2 ■ MovIng SprITES

56

function play() {
 
  //Apply the velocity values to the sprite's position to make it move
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
}

This code works by first assigning variables to the four keyboard arrow keys:

var left = keyboard(37),
    up = keyboard(38),
    right = keyboard(39),
    down = keyboard(40);

The press and release methods for each of those four keys are then programmed. 
For example, if the user presses the left arrow key, the sprite’s horizontal velocity (vx) 
is set to -5, to make it move left. Its vertical velocity is set to 0, to prevent up or down 
movement.

left.press = () => {
  pixie.vx = -5;
  pixie.vy = 0;
};

If the user releases the left arrow key, the sprite’s horizontal velocity should be set to 
0. But that should only occur if the right arrow key isn’t being pressed, and the sprite isn’t 
moving up or down. Here’s the code that does all this:

left.release = () => {
  if (!right.isDown && pixie.vy === 0) {
    pixie.vx = 0;
  }
};

But none of these keys actually makes the sprite move! They just set the correct 
velocity. The sprite won’t move until the play function (which runs in the game loop) 
updates the sprite’s x and y position with these velocity values, like this: 

function play() {
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
}

This is what actually makes the sprite move!
Now that you know the basics of making a sprite move, let’s make the effect more 

interesting, by adding some simple physics.



ChapTEr 2 ■ MovIng SprITES

57

 ■ Note In Chapter 7, you’ll learn how to add mouse and touch interactivity.

Adding Acceleration and Friction
Acceleration is a physics effect that makes a sprite gradually speed up. Friction is an effect 
that makes the sprite gradually slow down. You can apply acceleration and friction to 
your keyboard-controlled sprite, so that when you press a key, the sprite gradually speeds 
up, and when you release a key, it gradually slows down.

The first step is to add acceleration and friction properties to the sprite object. Each 
axis (x and y) requires its own acceleration and friction property.

pixie.accelerationX = 0;
pixie.accelerationY = 0;
pixie.frictionX = 1;
pixie.frictionY = 1;

You also need a number that represents the speed at which the sprite should accelerate 
and a number that represents the amount of drag that will slow the sprite down.

pixie.speed = 0.2;
pixie.drag = 0.98;

The speed value is going to be used to set the acceleration, and the drag value is 
going to be used to set the friction.

The next step is to configure the press and release methods, so that they set the 
correct acceleration and friction on the sprite. If the user presses the left key, for example, 
you want to set accelerationX to the negative value of speed (to make the sprite move 
left). And you want to set friction to 1, which essentially means “don’t apply friction while 
the sprite is accelerating.”

left.press = () => {
  pixie.accelerationX = -pixie.speed;
  pixie.frictionX = 1;
};

 ■ Note Why set friction to 1? as you’ll soon see, the frictionX and frictionY values 
are multipliers. any value multiplied by 1 means that the value will be unchanged. For  
example: 1 times 5 equals 5, right? So a friction value of 1 means “no friction.”

http://dx.doi.org/10.1007/978-1-4842-1094-9_7


ChapTEr 2 ■ MovIng SprITES

58

If the user releases the left key, and the right key isn’t currently being pressed, set the 
acceleration to 0 to stop the sprite from moving and add drag to the friction.

left.release = () => {
  if (!right.isDown) {
    pixie.accelerationX = 0;
    pixie.frictionX = pixie.drag;
  }
};

You need to apply this same format to the three remaining keys, as follows:

//Up
up.press = () => {
  pixie.accelerationY = -pixie.speed;
  pixie.frictionY = 1;
};
up.release = () => {
  if (!down.isDown) {
    pixie.accelerationY = 0;
    pixie.frictionY = pixie.drag;
  }
};
 
//Right
right.press = () => {
  pixie.accelerationX = pixie.speed;
  pixie.frictionX = 1;
};
right.release = () => {
  if (!left.isDown) {
    pixie.accelerationX = 0;
    pixie.frictionX = pixie.drag;
  }
};
 
//Down
down.press = () => {
  pixie.accelerationY = pixie.speed;
  pixie.frictionY = 1;
};
down.release = () => {
  if (!up.isDown) {
    pixie.accelerationY = 0;
    pixie.frictionY = pixie.drag;
  }
};



ChapTEr 2 ■ MovIng SprITES

59

As the last step, you have to use acceleration and friction to make the sprite move inside 
the looping play function. Add the acceleration to the velocity, multiply the velocity by the 
friction, and then, finally, make the sprite move, by adding the velocity to the sprite’s position.

function play() {
 
  //Apply acceleration by adding the acceleration to the sprite's velocity
  pixie.vx += pixie.accelerationX;
  pixie.vy += pixie.accelerationY;
 
  //Apply friction by multiplying sprite's velocity by the friction
  pixie.vx *= pixie.frictionX;
  pixie.vy *= pixie.frictionY;
 
  //Apply the velocity to the sprite's position to make it move
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
}

Run the physics.html file in the chapter’s source code files for a fun interactive 
example of this code in action. Use the arrow keys to fly the pixie sprite all around the 
stage, as shown in Figure 2-5. She’ll accelerate and decelerate smoothly in all directions.

Figure 2-5. Smooth movement in all directions with acceleration and friction

The pixie sprite can now fly freely around the canvas, but let’s make it a bit more 
interesting, by adding another important physics property.



ChapTEr 2 ■ MovIng SprITES

60

Adding Gravity
Gravity is a constant downward force on an object. You can add it to a sprite by applying a 
constant positive value to the sprite’s vertical velocity, like this: 

pixie.vy += 0.1;

You have to add this line of code to the play function, along with the other bits of 
code that help calculate the sprite’s velocity. Here’s how you could add it to our current 
example:

function play() {
 
  //Acceleration and friction
  pixie.vx += pixie.accelerationX;
  pixie.vy += pixie.accelerationY;
  pixie.vx *= pixie.frictionX;
  pixie.vy *= pixie.frictionY;
 
  //Gravity
  pixie.vy += 0.1;
 
  //Move the sprite
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
}

If you add this code and run the sample file again, you’ll discover that you must keep 
pressing the up key to prevent being pulled down by gravity, as illustrated in Figure 2-6.



ChapTEr 2 ■ MovIng SprITES

61

By experimenting with different gravity and accelerationY values, you’ll be able to 
fine-tune this effect for an engaging player experience.

 ■ Note This is as much as you need to now to get started using physics with games. For 
a totally comprehensive exploration of game physics for 2D action games, see this book’s 
companion, Advanced Game Design with HTML5 and JavaScript (apress, 2015).

Containing Movement Inside a Fixed Area
So far, we can make our pixie sprite fly around the canvas, but we have no way of keeping 
her inside the canvas boundaries. We can fix that by using a special custom function 
called contain. Before you see the code that makes contain work, let’s find out how to 
use it. The contain function takes two arguments: a sprite and an object literal with x, y, 
width, and height properties. Here’s how we could apply it to our pixie sprite:

contain(pixie, {x: 0, y: 0, width: 512, height: 512});

Figure 2-6. Using gravity to pull the sprite down



ChapTEr 2 ■ MovIng SprITES

62

This code will contain the sprite’s position inside the 512 by 512 pixel area defined 
by the object literal. The contain function also returns a value that gives you useful 
information about the collision. For example, here’s how you could contain the sprite 
inside the canvas area and access the collision value:

let collision = contain(
  pixie,
  {
    x: 0,
    y: 0,
    width: renderer.view.width,
    height: renderer.view.height
  }
);

If the sprite bumps into any of the containing object’s boundaries, the collision 
value will tell you which side the sprite bumped into: "left", "top", "right", or 
"bottom". Here’s how you could use that collision value to find out which boundary the 
sprite hit.

if(collision) {
  if collision.has("left") console.log("The sprite hit the left");
  if collision.has("top") console.log("The sprite hit the top");
  if collision.has("right") console.log("The sprite hit the right");
  if collision.has("bottom") console.log("The sprite hit the bottom");
}

If the sprite doesn’t hit a boundary, the value of collision will be undefined.
To see the contain function in action, run the containingMovement.html example 

file in this chapter’s source code. Use the arrow keys to fly the pixie sprite around, 
and watch her bounce against the sides of the canvas when she hits them. Figure 2-7 
illustrates what you’ll see.



ChapTEr 2 ■ MovIng SprITES

63

Here’s the new code from the play function that uses contain to achieve this effect: 

function play() {
 
  //Apply physics to the sprite's position
  pixie.vx += pixie.accelerationX;
  pixie.vy += pixie.accelerationY;
  pixie.vx *= pixie.frictionX;
  pixie.vy *= pixie.frictionY;
  pixie.x += pixie.vx;
  pixie.y += pixie.vy;
 
  //Use the `contain` function to keep the sprite inside the canvas
 
  let collision = contain(
    pixie,                           //The sprite you want to contain
    {                                //An object that defines the area
      x: 0,                          //`x` position
      y: 0,                          //`y` position
      width: renderer.view.width,    //`width`
      height: renderer.view.height   //`height`
    }
  );
 

Figure 2-7. Bouncing the sprite against the sides of the canvas



ChapTEr 2 ■ MovIng SprITES

64

  //Check for a collision. If the value of `collision` isn't
  //`undefined` then you know the sprite hit a boundary
 
  if (collision) {
 
    //Reverse the sprite's `vx` value if it hits the left or right
    if (collision.has("left") || collision.has("right")){
      pixie.vx = -pixie.vx;
    }
 
    //Reverse the sprite's `vy` value if it hits the top or bottom
    if (collision.has("top") || collision.has("bottom")){
      pixie.vy = -pixie.vy;
    }
  }
}

The contain function automatically keeps the sprite contained in the area defined 
by the object literal. The bounce effect is achieved by the last two lines of the preceding 
code. If the sprite hits the left or right boundary, its vx velocity is reversed. If it hits the top 
or bottom boundary, its vy velocity is reversed.

 pixie.vx = -pixie.vx;
 pixie.vy = -pixie.vy;

That’s what makes the sprite bounce.
But where do those values, "left", "top", "right", and "bottom" come from, and 

what does collision.has mean? Let’s find out by taking a quick look at JavaScript sets, 
and then how they’re used in the custom contain function.

Using ES6 Sets
The collision value that was returned by the contain function in the previous example 
is actually a JavaScript ES6 Set object. A set is similar to an array, but with a few 
interesting little tweaks. Before we take a look at how the contain function works, let’s 
find out what an ES6 Set object is and how to use it. Following is a quick-start guide to 
using ES6 sets. 

You can create a set like this:

let things = new Set();

Set objects are like arrays, and you can populate them with data, like this:

let things = new Set(["left", "top", "right", "bottom"]);



ChapTEr 2 ■ MovIng SprITES

65

One of the biggest differences between sets and arrays is that sets can only contain 
one instance of any value. This is a really good thing and why sets can be really handy for 
situations in which you don’t need or want duplicate values. For example, in an array, 
you could have the value "left" two or three times. But in a set, you can only have one 
"left". If you try to add a second or third "left", nothing happens.

You can add a new item to a set with the add method, as follows:

things.add("anotherThing");

You can remove an item with the delete method.

things.delete("right");

You can completely empty a set of all its items by using the clear method.

things.clear();

If you want to find out whether a set contains a value, use the has method.

if (things.has("left")) {/* Then do this... */}

Using has is a much faster operation than checking whether items exist in an array 
using indexOf. Sets are optimized for these kinds of look-ups; it’s their super-power!

You can also initialize a set with any pre-existing array.

let things = new Set(anyArray);

That will give you a set that uses the values in the preexisting array, but if there are 
any duplicate values in the array, they’ll be removed from the set. Remember: Sets can 
only contain unique values.

If you want to find out how many elements are in a set, use the size property.

things.size;

And if you want to loop through all the elements in an set, use the forEach method.

things.forEach(element => console.log(element));

This will loop through and display all the elements in a set.



ChapTEr 2 ■ MovIng SprITES

66

 ■ Note ES6 also has a highly memory-efficient version of sets called WeakSet. WeakSets 
let the garbage collector immediately re-use the memory space of any elements in the set 
that were deleted, even if those elements reference other objects being used somewhere 
else in your code. This is a great feature, because it can prevent possible memory leaks. The 
trade-off is that WeakSet only supports the add, has, and delete methods. If that’s not a 
problem, it is preferable to use WeakSet instead of Set anywhere in your code.

Why should you use sets instead arrays or object literals? If you only want or need 
no more than one kind of value in the set, or want to prevent duplicate values from being 
added, use a set. If you want a high-performance look-up of values using the has method, 
use a set. If you want to be certain of preventing memory leaks, use a WeakSet. If you want 
more features and more flexibility, use arrays or object literals. Arrays and object literals 
are cool. We love them, and they’re not going anywhere!

OK, got it? Now that you know all about ES6 sets, let’s find out how a set was used to 
create the custom contain function we used in the previous example.

The contain Function
The contain function has two parameters: the sprite and the container object that defines 
the x, y, width, and height values of the containment areas. The code checks to see if the 
sprite’s x and y position has crossed any of those boundaries. If it has, the sprite is moved 
back to those boundary limits. A set called collision is used to track which boundary 
side the collision occurred on: "left", "top", "right", or "bottom". The collision set 
is returned by the function. If the sprite didn’t touch any of the boundaries, collision 
is set to undefined, to indicate that there was no collision. Here’s the complete contain 
function that does all this:

function contain(sprite, container) {
 
  //Create a `Set` called `collision` to keep track of the
  //boundaries with which the sprite is colliding
  var collision = new Set();
 
  //Left
  //If the sprite's x position is less than the container's x position,
  //move it back inside the container and add "left" to the collision Set
  if (sprite.x < container.x) {
    sprite.x = container.x;
    collision.add("left");
  }
 



ChapTEr 2 ■ MovIng SprITES

67

  //Top
  if (sprite.y < container.y) {
    sprite.y = container.y;
    collision.add("top");
  }
 
  //Right
  if (sprite.x + sprite.width > container.width) {
    sprite.x = container.width - sprite.width;
    collision.add("right");
  }
 
  //Bottom
  if (sprite.y + sprite.height > container.height) {
    sprite.y = container.height - sprite.height;
    collision.add("bottom");
  }
 
  //If there were no collisions, set `collision` to `undefined`
  if (collision.size === 0) collision = undefined;
 
  //Return the `collision` value
  return collision;
}

Keeping sprites contained inside a boundary is a very common task in games and 
interactive applications, and you’ll see many more examples of how the contain function 
is used later in this book. (You’ll find the contain function in this chapter’s source code or 
its code repository: github.com/kittykatattack/contain.)

Summary
You’ve now got all the basic skills you need to make sprites move. You’ve learned how 
to update a sprite’s position inside a game loop, how to use velocity variables, and how 
to apply useful physics properties such as acceleration, friction, and gravity. You also 
learned how to structure a modular application, by using a state variable to control 
the program flow. You’ll see how useful this will be a little later in this book when our 
applications become a bit more sophisticated. I’ve also covered the basics of interactive 
animation, by using a keyboard controller to move a sprite, and that will prepare you 
for Chapter 8, which takes a closer look at interactive animation using mouse and touch 
events. But we’re not done with animation yet—far from it! In Chapter 5, you’ll learn all 
about keyframe animation, and in Chapter 6, you’ll learn how to create transitions and 
use tweening effects.

So far in this book, we’ve looked at how to make sprites using images, but Pixi lets you 
make sprites just as easily using lines and shapes. Let’s find out how, in the next chapter!

http://dx.doi.org/10.1007/978-1-4842-1094-9_8
http://dx.doi.org/10.1007/978-1-4842-1094-9_5
http://dx.doi.org/10.1007/978-1-4842-1094-9_6


69

Chapter 3

Shapes, Text, and Groups

So far in this book, all the sprites we’ve used have been based on existing images that 
we loaded into our programs. But Pixi also has its own low-level drawing tools that you 
can use to make shapes, lines, and text. To help keep things organized, you can group all 
your shapes and images together, so that you can work with them as a single unit. In this 
chapter, you’re going to learn how to do all that, including:

•	 Making rectangles, circles, lines, ellipses, and polygons

•	 Creating text

•	 Grouping sprites

All the sample code in this chapter is meant to be run inside the setup function of 
the basic Pixi application template you learned to use in Chapter 2. Here’s the template; 
code comments show where to add the code we’ll be writing in this chapter:

//Create a Pixi stage and renderer
let stage = new Container(),
  renderer = autoDetectRenderer(512, 512);
document.body.appendChild(renderer.view);
 
//Set the canvas's border style and background color
renderer.view.style.border = "1px dashed black";
renderer.backgroundColor = "0xFFFFFF";
 
//load resources (images and fonts) and then run the `setup` function
loader
  .add("fonts/puzzler.ttf")
  .load(setup);
 
//Define any variables that are used in more than one function
 
//Set the initial game state
let state = play;
 

http://dx.doi.org/10.1007/978-1-4842-1094-9_2


Chapter 3 ■ ShapeS, text, and GroupS

70

function setup() {
 
  /*
  All the code for this chapter goes here
  */
 
  //Start the game loop
  gameLoop();
}
 
function gameLoop(){
 
  //Loop this function 60 times per second
  requestAnimationFrame(gameLoop);
 
  //Run the current state
  state();
 
  //Render the stage
  renderer.render(stage);
}
 
function play() {
 
  //Any animation or game logic code goes here
}

Making Shapes
Pixi’s application program interface (API) for making shapes and lines is very similar to 
the HTML Canvas drawing API, so, if you already know how to draw shapes with Canvas, 
you’ll find it very familiar.

 ■ Note For a comprehensive introduction to the Canvas drawing apI, see my book 
Advanced Game Design with HTML5 and JavaScript (apress, 2015).

But Pixi’s big advantage is that, unlike the Canvas drawing API, the shapes you draw 
with Pixi are rendered by WebGL on the graphics processor unit (GPU). Pixi lets you 
access all that untapped performance power and bundles it into a user-friendly package.



Chapter 3 ■ ShapeS, text, and GroupS

71

All shapes are made using the same basic format. Following is the basic code you 
have to write to make most kinds of shapes:

//Create a Graphics object
let shape = new Graphics();
 
//Set the fill color
shape.beginFill(hexColorCode);
                 
//Set the line style
anyShape.lineStyle(lineThickness, hexColorCode, alpha);
 
//Draw the shape
//Use `drawRect`, `drawCircle`, `drawEllipse`,
//`drawRoundedRect` or `drawPolygon` to draw the shape
 
//End the color fill
shape.endFill();
 
//Position the shape
shape.position.set(64, 64);

//Add the shape to the stage
stage.addChild(shape);

All the shapes (and lines) are created by first making an instance of Pixi’s Graphics 
class (PIXI.Graphics).

let shape = new Graphics();

Then use the beginFill method to set fill color for the shape. Use any hexadecimal 
color code.

shape.beginFill(hexColorCode);

If you want an outline around your shape, use the lineStyle method to set the 
outline thickness, color, and transparency. (Transparency is usually referred to by the 
graphics design term alpha.)

anyShape.lineStyle(lineThickness, hexColorCode, alpha);

lineThickness is a number, in pixels, that determines how thick you want the line  
to be. alpha is a value between 0 and 1. 0 means the line will be completely transparent;  
1 means it will be completely opaque (solid).

Next, use one of Pixi’s drawing methods (which you’ll learn about ahead!) to 
draw the shape you want: drawRect, drawCircle, drawEllipse, drawRoundedRect, or 
drawPolygon.



Chapter 3 ■ ShapeS, text, and GroupS

72

Finally, use the endFill method to fill the shape with the color.

shape.endFill();

You can then position the shape on the canvas, using x and y properties, and apply 
other optional sprite properties such as alpha and scale.

shape.position.set(64, 64);
stage.addChild(shape);

 ■ Remember Just as with a normal sprite, you won’t be able to see the shape until you 
add it to the stage.

Let’s find out how to use this general format to make basic shapes.

Rectangles
Use the drawRect method to draw a rectangle. Its four arguments are x, y, height,  
and width.

rectangle.drawRect(x, y, width, height);

Here’s how to draw a blue (0x0033CC) rectangle with a red (0xFF0000) outline, 
position it, and make it semitransparent:

let rectangle = new Graphics();
rectangle.beginFill(0x0033CC);
rectangle.lineStyle(4, 0xFF0000, 1);
rectangle.drawRect(0, 0, 96, 96);
rectangle.endFill();
rectangle.x = 64;
rectangle.y = 64;
rectangle.alpha = 0.5;
stage.addChild(rectangle);

Figure 3-1 shows the result of this code.



Chapter 3 ■ ShapeS, text, and GroupS

73

You’ll notice that the x and y arguments of the drawRect method are both set to 0.

rectangle.drawRect(0, 0, 96, 96);

These are the rectangle’s local x and y positions inside the graphics object. What you 
really want to do is position the rectangle relative to the canvas’s top-left corner: its global 
position. That’s why, after the rectangle is drawn, its x and y positions are set to 64 and 64, 
as follows:

rectangle.x = 64;
rectangle.y = 64;

I recommend that you adhere to this model, as it gives you a little more flexibility to 
position your shape in more complex drawing situations.

 ■ Note What’s the difference between local and global coordinates? don’t worry too 
much about that now. It’s all explained a little further ahead!

In the preceding code, you can also see that the rectangle is made semitransparent 
by setting its alpha value to 0.5, as follows:

rectangle.alpha = 0.5;

If there are any other sprites or shapes under this rectangle, they’ll be partially visible.

Rounded Rectangles
If you want a rectangle with rounded corners, use the drawRoundedRect method.

rectangle.drawRoundedRect(x, y, width, height, cornerRadius);

Figure 3-1. Drawing a rectangle



Chapter 3 ■ ShapeS, text, and GroupS

74

The last argument, cornerRadius, determines how rounded the corners should be. 
Here’s how to make a rounded rectangle with a corner radius of 12, shown in Figure 3-2:

rectangle.drawRoundedRect(0, 0, 96, 96, 12);

Circles
Use the drawCircle method to draw a circle. The first two arguments are the circle’s x and 
y positions, and the third is its radius (the distance from the circle’s center to its edge).

circle.drawCircle(x, y, radius);

Unlike rectangles, a circle’s x and y positions refer to its center point. Here’s some 
code that draws an orange (0xFF9933) circle with a radius of 48 pixels and a dark green 
(0x006600) outline:

let circle = new Graphics();
circle.beginFill(0xFF9933);
circle.lineStyle(4, 0x006600, 1);
circle.drawCircle(0, 0, 48);
circle.endFill();
circle.x = 256;
circle.y = 112;
stage.addChild(circle);

Figure 3-3 shows what this code produces.

Figure 3-2. A rectangle with rounded corners



Chapter 3 ■ ShapeS, text, and GroupS

75

 ■ Note does the line around the circle in Figure 3-3 look jagged and pixelated to you? It 
is! You’ll learn how to solve this problem in the section ahead on antialiasing.

Ellipses
Pixi also lets you draw an ellipse with the drawEllipse method.

drawEllipse(x, y, width, height);

As with circles, the x/y position defines the ellipse’s center point. Here’s a yellow 
(0xFFFF00) ellipse with a black (0x000000) outline that’s 64 pixels wide and 32 pixels high, 
shown in Figure 3-4.

let ellipse = new Graphics();
ellipse.beginFill(0xFFFF00);
ellipse.lineStyle(4, 0x000000, 1);
ellipse.drawEllipse(0, 0, 64, 32);
ellipse.endFill();
ellipse.x = 416;
ellipse.y = 112;
stage.addChild(ellipse);

Figure 3-3. Drawing a circle

Figure 3-4. Drawing an ellipse



Chapter 3 ■ ShapeS, text, and GroupS

76

Straight Lines
If you want to make a straight line, use the lineStyle method to set the line’s width, color, 
and alpha transparency. Then use two new methods, moveTo and lineTo to draw the line. 
moveTo sets the line’s start x/y position, and lineTo is the x/y position of the end point. 
Following is the code for a 4-pixel-wide black diagonal line. Figure 3-5 shows the result of 
this code.

let line = new Graphics();
line.lineStyle(4, 0x000000, 1);
line.moveTo(0, 0);
line.lineTo(100, 50);
line.x = 64;
line.y = 212;
stage.addChild(line);

Polygons
You can join lines together and fill them with colors to make complex shapes. Here’s how 
to connect three lines to make a red (0xFF3300) triangle with a blue (0x336699) border. 
The shape is drawn at position 0,0 and then positioned on the stage using x and y values.

let triangle = new Graphics();
triangle.beginFill(0xFF3300);
triangle.lineStyle(4, 0x336699, 1);
triangle.moveTo(0,0);
triangle.lineTo(-64, 64);
triangle.lineTo(64, 64);
triangle.lineTo(0, 0);
triangle.endFill();
 
//The x/y position refers to the first point of the triangle
triangle.x = 320;
triangle.y = 192;
stage.addChild(triangle);

Figure 3-6 illustrates how the moveTo and lineTo methods are used to define the 
corners of the triangle.

Figure 3-5. A diagonal line



Chapter 3 ■ ShapeS, text, and GroupS

77

Curved Lines
Pixi lets you draw two types of curved lines: quadratic curves and Bezier curves. It also 
lets you draw arcs (partial circles) between any two points. Let’s find out how.

Quadratic Curves
To draw a quadratic curve, use the quadraticCurveTo method. The following code 
produces the curve you can see in Figure 3-7:

let quadLine = new Graphics();
quadLine.lineStyle(4, 0x000000, 1);
quadLine.moveTo(32, 128);
quadLine.quadraticCurveTo(128, 20, 224, 128);
stage.addChild(quadLine);

1. moveTo(0,0)

2. lineTo(-64, 64) 3. lineTo(64, 64)

4. lineTo(0, 0) 

Figure 3-6. Using moveTo and lineTo to join lines to form shapes

Figure 3-7. A quadratic curve



Chapter 3 ■ ShapeS, text, and GroupS

78

The code alone is confusing, but it’s easy to understand with the help of the diagram. 
The x and y positions in Figure 3-7 represent the coordinate system of the graphics object. 
We’re drawing the line inside that coordinate system. The first thing you have to do is use 
moveTo to define the starting point of the line, near the left-center edge of the graphics 
object, as follows:

quadLine.moveTo(32, 128);

Then use the quadraticCurveTo method to define the curve. The first two arguments 
define what’s known as the control point. You can think of the control point as a kind of 
invisible gravity point that pulls the line toward it. In this example, the control point is 
near the center top of the graphics object, at an x position of 128 and a y position of 20, 
which I’ve highlighted here:

quadLine.quadraticCurveTo(128, 20, 224, 128);

The last two arguments are the line’s end point.

quadLine.quadraticCurveTo(128, 20, 224, 128);

Can you see in Figure 3-7 how these points work together to create the curve?

Local and Global Coordinates
We’ve drawn the line inside the Graphics object, and these x and y coordinates are the 
Graphics object’s own internal local coordinates. However, we still need to position this 
Graphics object on Pixi’s canvas. The position of the Graphics object is the line’s global 
coordinates. Here’s how to set them:

quadLine.x = 128;
quadLine.y = 128;

This will position the line 128 pixels to the left and 128 pixels from the top of Pixi’s 
canvas. If you don’t set these global coordinates, the line will be displayed at position 0,0, 
at the exact top-left corner of Pixi’s canvas. Figure 3-8 illustrates the relationship between 
local and global coordinates.



Chapter 3 ■ ShapeS, text, and GroupS

79

Bezier Curves
Bezier curves are similar to quadratic curves, but they add a second control point:

bezierCurveTo(control1X, control1Y, control2X, control2Y, endX, endY);

local coordinates

global coordinates
x

y

0

512

512128

128 0 256

256

y 128

 x 
32

quadLine.x  = 128;
quadLine.y  = 128;

Figure 3-8. Drawing a line by using local coordinates and positioning it on Pixi’s stage by 
using global coordinates



Chapter 3 ■ ShapeS, text, and GroupS

80

Again, it’s really difficult to understand how this works until you see a clear example. 
Here’s some code that produces the Bezier curve you can see in Figure 3-9.

let bezierLine = new Graphics();
bezierLine.lineStyle(4, 0x000000, 1);
bezierLine.moveTo(32, 128);
bezierLine.bezierCurveTo(32, 20, 224, 20, 224, 128);
stage.addChild(bezierLine);

You can see in Figure 3-9 how the four points are used to shape the curve. If you 
close the lines so that they start and end at the same point, you’ll produce a shape that 
you can fill with a color.

But don’t forget! You still have to position the line on Pixi’s stage, using its global 
coordinates, as follows:

bezierLine.x = 256;
bezierLine.y = 256;

Drawing Arcs
Earlier in this chapter, you learned how to make a circle, using the drawCircle method. 
But if you have to draw a partial circle, you can do this using the arc and arcTo methods.

The arc method lets you draw an arc (a partial circle), using this format:

arc(centerX, centerY, circleRadius, startAngle, endAngle, false)

The centerX and centerY coordinates are the circle’s center point. The 
circleRadius is a number, in pixels, that determines the circle’s radius (half its width). 
The startAngle and endAngle are numbers in radians that determine how complete the 
circle is. For a full circle, use a startAngle of 0 and an endAngle of 6.28 (2 * Math.PI).  
(The startAngle’s 0 position is at the circle’s 3 o’clock position.) The last argument, 
false, indicates that the circle should be drawn clockwise from the startAngle.

moveTo(32, 128)

bezierCurveTo(32, 20, 224, 20, 224, 128)

Two control points curve the line.

bezierLine.moveTo(32, 128);
bezierLine.bezierCurveTo(32, 20, 224, 20, 224, 128);

2560

256

Y

X bezierCurveTo(32, 20, 224, 20, 224, 128)

bezierCurveTo(32, 20, 224, 20, 224, 128)

Figure 3-9. A Bezier curve



Chapter 3 ■ ShapeS, text, and GroupS

81

Just use a startAngle greater than 0 and an endAngle less than 6.28 (2 * Math.PI). 
Here’s some code that draws an arc from 3.14 to 5 radians, as shown in Figure 3-10:

let partialCircle = new Graphics();
partialCircle.lineStyle(4, 0x000000, 1);
partialCircle.arc(64, 64, 64, 3.14, 5, false);
partialCircle.x = 64;
partialCircle.y = 416;
stage.addChild(partialCircle);

Pixi has an alternative method for drawing arcs called arcTo. Supply arcTo with the 
arc’s start and end points, and then the radius (in pixels) of the arc that you want to draw 
between those points.

arcTo(startX, startY, endX, endY, radius);

Use whichever method for drawing arcs that you prefer.
That’s it for Pixi’s lines and shapes! But before we move on, let’s refine some of our 

techniques for drawing them.

Improving Graphics Rendering
Now that you know how to draw lines and shapes, let’s look at some of the tools Pixi offers 
you to make them look and perform better: WebGL antialiasing, drawing on a single 
graphics context, and how to clear and redraw graphics.

Antialiasing for WebGL Graphics 
If you’re using Pixi’s WebGL renderer (which is what autoDetectRenderer defaults 
to), you’ll notice that your lines and shapes aren’t antialiased. What does that mean? 
Without antialiasing, curved lines and shapes look jagged and pixelated. Antialiasing is a 
computer graphics algorithm that creates the illusion of smooth curves by adding extra 
shaded pixels of varying gradations around the shape. It blurs the jaggies. Figure 3-11 
illustrates a comparative example of a non-antialiased and antialiased curve.

Figure 3-10. Drawing an arc



Chapter 3 ■ ShapeS, text, and GroupS

82

Pixi’s WebGLRenderer doesn’t antialias lines and shapes. Why? Because WebGL’s 
internal stencil buffer (the means Pixi uses to draw lines and shapes) doesn’t support 
antialiasing. This is just a limitation of the WebGL 1.0 specification. However, WebGL’s 
bitmap renderer does support antialiasing. So, if you want antialiased shapes, you must 
first convert your graphics into a bitmap texture and then display that new, antialiased, 
bitmap texture. Pixi doesn’t do this for you automatically, because it’s a computationally 
expensive thing to do, and Pixi wisely optimizes for performance. But, if you need 
antialiased WebGL graphics, Pixi gives you the tools to make them.

 ■ Note pixi’s CanvasRenderer automatically produces antialiased lines and 
shapes. however, CanvasRenderer is usually much slower at drawing graphics than 
WebGLRenderer. (But not always! test it with your particular setup and see.)

The trick to creating antialiased lines is first to use a Pixi Graphics object method 
called generateTexture to create a bitmap texture of the line or shape.

let texture = shape.generateTexture();

Then, use this new texture to create a sprite.

let shapeSprite = new Sprite(texture);

Let’s look at some code you could write to convert a jaggedy, non-antialiased circle 
into a smooth, antialiased circle. First, write some familiar code to draw the circle, using 
Pixi’s Graphics object.

let circle = new Graphics();
circle.beginFill(0xFF9933);
circle.lineStyle(4, 0x006600, 1);
circle.drawCircle(0, 0, 48);
circle.endFill();

Figure 3-11. Antialiasing produces smooth curves



Chapter 3 ■ ShapeS, text, and GroupS

83

This is the same code you saw before. Next, use generateTexture to create a texture 
from the circle, and use that texture to create a sprite.

let circleTexture = circle.generateTexture();
let circleSprite = new Sprite(circleTexture);
circleSprite.x = 212;
circleSprite.y = 64;
stage.addChild(circleSprite);

You’ve now got an ordinary Sprite object, called circleSprite, that you can use 
just like any other sprite you created in the previous chapter. And remember: Sprites have 
their x/y anchor point set to their top-left corner, so that means your new circleSprite 
also has its anchor point at the top-left corner.

Drawing on a Single Graphics Context
In the previous examples, we created a new Graphics object for each line and shape that 
we wanted to make. This is fine, if you’re making a small number of shapes (say, a few 
hundred), but if you are making thousands, there’s a more computationally efficient way to 
do it: draw all your shapes on a single graphics context. Graphics context is a formal term 
for describing the Graphics object onto which we’ve been drawing our shapes and lines.

Here’s some sample code to illustrate this. (In this code, “ctx” stands for “context.”)

//Create a single graphics context
let ctx = new Graphics();
 
//Draw a rectangle on the graphics context
ctx.beginFill(0x0033CC);
ctx.lineStyle(4, 0xFF0000, 1);
ctx.drawRect(32, 32, 96, 96);
ctx.endFill();
 
//Draw a circle without an outline
ctx.beginFill(0xFF9933);
ctx.lineStyle(0);
ctx.drawCircle(224, 80, 48);
ctx.endFill();
 
//Draw a line
ctx.lineStyle(4, 0x000000, 1);
ctx.moveTo(320, 48);
ctx.lineTo(420, 112);
 
//Add the graphics context to the stage
stage.addChild(ctx);



Chapter 3 ■ ShapeS, text, and GroupS

84

Figure 3-12 illustrates what this code produces.

Notice that the x/y positions of the lines and shapes are relative to the graphics 
context’s top-left corner. The graphics context itself is at position 0,0 on the canvas.

Another important detail in the preceding code is that if you want to draw a shape 
without an outline, set the lineStyle to 0 before you draw the shape, as follows:

ctx.lineStyle(0);

Give lineStyle new values if you want to draw another line on the same graphics 
context.

Redrawing Animated Graphics Each Frame
At some point, you might have to animate lines and shapes in your application. There are 
two ways to do this.

The easy way is to just create a shape from a single Graphics object and change its 
x/y position inside a game loop, just as we animated sprites in the previous chapter. That 
might be all you need. But if you want to animate the length of a line, the curve of an arc, 
or the corners of a rectangle, you’ll need to redraw that shape each frame.

A practical example is the best way to see how to do this. Run the 
animatingGraphics.html file located in the chapter’s source code, for a dynamically 
animated line in action (illustrated in Figure 3-13). The two ends of the line turn 
continuously around invisible points in space. The effect is like a crankshaft turning an 
invisible wheel, or a line buffeted by eddies of air or water. It’s fun to watch—and even 
slightly spooky.

Figure 3-12. Drawing shapes on a single graphics context for optimized rendering



Chapter 3 ■ ShapeS, text, and GroupS

85

The effect works with the help of a custom function called rotateAroundPoint.

function rotateAroundPoint(pointX, pointY, distanceX, distanceY, angle) {
 let point = {};
 point.x = pointX + Math.cos(angle) * distanceX;
 point.y = pointY + Math.sin(angle) * distanceY;
 return point;
}

The rotateAroundPoint function returns a point object with x and y values that 
represent the axis of rotation. The distanceX and distanceY arguments define the radius 
from the center of rotation to the edge of the imaginary circle that’s being traced in space. 
If distanceX and distanceY have the same values, the function will trace a circle. If you 
give them different values, the function will trace an ellipse. You can use the point object 
that rotatePoint returns to make any other x/y point rotate around that axis.

Here’s the code that uses rotateAroundPoint to create the wobbly line effect shown 
in Figure 3-13. The setup function creates the line and adds two properties to it: angleA 
and angleB, both initialized to zero. These new properties will be used to help update the 
angle of rotation on the line’s start and end points.

let line;
 
function setup() {
 
  //Create the line
  line = new Graphics();
  stage.addChild(line);
 
  //Add `angleA` and `angleB` properties
  line.angleA = 0;
  line.angleB = 0;
 
  //Start the game loop
  gameLoop();
}

rotation point A

rotation point B

Figure 3-13. A dynamically animated line



Chapter 3 ■ ShapeS, text, and GroupS

86

The play function (which runs in a continuous loop) updates the rotation angles and 
redraws the line each frame, using those angles to create the animation effect.

function play() {
 
  //Make the line's start point rotate clockwise around x/y point 64, 64
  line.angleA += 0.02;
  let rotatingA = rotateAroundPoint(64, 64, 20, 20, line.angleA);
 
  //Make the line's end point rotate counter-clockwise
  //around x/y point 192, 208
  line.angleB -= 0.03;
  let rotatingB = rotateAroundPoint(192, 208, 20, 20, line.angleB);
 
  //Clear the line to reset it from the previous frame
  line.clear();
 
  //Draw the line using the rotating points as start and end points
  line.lineStyle(4, 0x000000, 1);
  line.moveTo(rotatingA.x, rotatingA.y);
  line.lineTo(rotatingB.x, rotatingB.y);
}

The most important thing to note is that, before the line is drawn, the clear method 
runs (clear is a method on all Graphics objects).

line.clear();

This erases the line that was drawn in the previous frame. It means that the line that 
is drawn in the current frame will be using the updated start and end points. This is what 
creates the animation effect. Without using clear, the lines drawn in previous frames 
would remain on the canvas, producing a ghost-trail effect, something such as what you 
can see in Figure 3-14. This could be a desirable effect in some situations, however, so 
keep that in mind!



Chapter 3 ■ ShapeS, text, and GroupS

87

Now that you know all about how to draw lines and shapes, let’s find out how to 
display text.

Displaying Text
Pixi gives you two basic ways to display text. You can either display text using an ordinary 
font file (with a TTF, OTF, TTC, or WOFF extension). Or, you could use a special bitmap 
font (with an XML or FNT extension). There are advantages and disadvantages to both 
approaches, so let’s find out what they are.

The Text Object
The easiest way to display text with Pixi is to use the Text object (PIXI.Text). The 
constructor takes two arguments: the text you want to display and a style object that 
defines the font’s properties.

message = new Text(
  "Hello Pixi!",
  {font: "48px Impact", fill: "red"}
);

The style object (the second argument) can be supplied with a huge number 
of optional properties. Table 3-1 shows the complete list of style options from Pixi’s 
documentation.

Figure 3-14. If you don’t clear the graphics from the previous frame, the new line will be 
drawn on top of the old lines



Chapter 3 ■ ShapeS, text, and GroupS

88

Table 3-1. Style Options

Name Value Type Default Value Description

font String "bold 20px 
Arial"

The style and size of the font

fill String or 
number

"black" The text color

align String "left" Sets the alignment of multiline 
text. The other options are 
"right" and "center".

stroke String None The text’s outline color

strokeThickness Number 0 The thickness, in pixels, of the 
text outline

wordWrap Boolean 
(true/false)

false Sets word-wrapping for 
multiline text

wordWrapWidth Number 100 Width at which word-wrapping 
will start to occur. (wordWrap 
must also be set to true.)

lineHeight Number None The vertical space used by the 
text

dropShadow Boolean false Sets a drop shadow effect

dropShadowColor String "#000000" The shadow’s color

dropShadowAngle Number Math.PI/4 The shadow’s angle

dropShadowDistance Number 5 This size of the shadow, in pixels

padding Number 0 Adds padding to the top and 
bottom of fonts. This is to help 
prevent unwanted cropping that 
occurs with some fonts.

textBaseLine String "alphabetic" The baseline on which the text 
is drawn. Other options are 
"top", "hanging", "middle", 
"ideographic", and "bottom".

lineJoin String "mitre" The corner style of the text. 
Changing lineJoin can fix 
problems with spiky text. The 
two other options are "round" 
and "bevel".

mitreLimit Number 10 The limit, if you’re using the 
"mitre" lineJoin option. This 
can reduce or increase text 
spikiness.



Chapter 3 ■ ShapeS, text, and GroupS

89

 ■ Note all text colors can be in either rGBa, hLSa, hex, or htML color strings, such as 
“blue” or “green.” pixi makes text objects by using the Canvas drawing apI to render the 
text to an invisible and temporary canvas element. It then turns the canvas into a WebGL 
texture, so that it can be mapped onto a sprite. that’s why the text’s color has to be wrapped 
in a string: it’s a Canvas drawing apI color value.

Pixi’s Text objects are inherited from the Sprite class, so they contain all the same 
properties, such as x, y, width, height, alpha, rotation, and all the rest. Position and 
resize them just as you would any other sprite. Following is how you could center some 
text inside the canvas. Figure 3-15 shows how this appears.

message.x = renderer.view.width / 2 - message.width / 2;
message.y = renderer.view.height / 2 - message.height / 2;

Figure 3-15. Using a Text object to render text



Chapter 3 ■ ShapeS, text, and GroupS

90

And, just like any other sprite, you have to add text to the stage object before it’s 
visible on the canvas.

stage.addChild(message);

If you want to change the message content, use the text method, and set it to any 
string you want to display, such as the following:

message.text = "Text changed!";

Use the style property to redefine the font properties, as follows:

message.style = ({fill: "black", font: "16px Helvetica"});

Pixi can also wrap long lines of text. Set the text’s wordWrap style property to true, and 
then set wordWrapWidth to the maximum length, in pixels, that the line of text should be.

message.style = ({wordWrap: true, wordWrapWidth: 100});

So far in these examples, the code has only used built-in system fonts, such as 
Impact and Helvetica. But what if you want to load and use a custom TTF, OTF, or WOFF 
font file?

Loading Font Files
Loading font files poses a particular problem, because, unlike images, there’s no built-in 
HTML5 API to force them to load before they can be used. And Pixi doesn’t have any 
built-in solutions for this. The best you can do is link to the font file that you want to use 
with the help of the CSS @font-face rule. Here’s how:

@font-face {
 font-family: "fontFamilyName";
 src: url("fonts/fontFile.ttf");
}

You can either write this code into your HTML document by hand or, better yet, use a 
JavaScript function to do it for you. Here’s one called linkFont that does the trick:

function linkFont(source) {
 
  //Use the font's filename as the `fontFamily` name. This code captures
  //the font file's name without the extension or file path
  let fontFamily = source.split("/").pop().split(".")[0];
 



Chapter 3 ■ ShapeS, text, and GroupS

91

  //Append an `@afont-face` style rule to the head of the HTML document
  let newStyle = document.createElement("style");
  let fontFace
    = "@font-face {font-family: '" + fontFamily
    + "'; src: url('" + source + "');}";
  newStyle.appendChild(document.createTextNode(fontFace));
  document.head.appendChild(newStyle);
}

Use this function by passing it a string of the file path for the font you want to load, as 
follows:

linkFont("fonts/anyFont.ttf");

linkFont just dynamically writes the preceding CSS code based on the file path of 
the font. Use linkFont after you load other images or JSON files, using Pixi’s loader,  
like this:

loader
  .add("images/anyImage")
  .load(setup);
 
linkFont("fonts/SpicyRice.ttf");
linkFont("fonts/puzzler.otf");

But here’s the problem: the CSS code that linkFont produces doesn’t actually load 
the font; it just tells the browser where to find it. All browsers will only download the fonts 
when they’re used on the page, and never before. This means that anyone using your 
application might see a brief flash of un-styled text before the font is loaded. Or, the font 
just won’t load. And, unfortunately, at the time of writing, there’s no new HTML5 spec on 
the horizon to help solve this.

But that’s OK; we’ve got a workaround! The reason is because all your Pixi games 
and applications will be running in a game loop. So, just set your Text objects to a font 
you want to load inside the game loop. In the application structure we’ve been using, you 
would do it in the play function, as follows:

function play() {
  message.style = {font: "16px theFontFamilyName"};
}

This guarantees that the browser will have loaded the font file by the time the style is 
applied.



Chapter 3 ■ ShapeS, text, and GroupS

92

 ■ Note don’t despair! For the ultimate fix, use a brilliant font preloader called Font.js 
(github.com/Pomax/Font.js). It uses some sneaky coding to trick the browser into loading 
the font file before it’s displayed on the htML page or canvas. Font.js is great, so use it! 
at the time of writing, the pixi development team was also thinking of building a similar font 
preloader into pixi’s loader. Check—it might be there by the time you’re reading this.

Using Bitmap Fonts
Because of all the quirkiness and inconsistencies of working with font files, Pixi gives you 
another more reliable way of displaying custom fonts: bitmap fonts. Bitmap fonts are just 
sets of images. They contain an image for each character of the alphabet in the font set. 
So, instead of using the browser to render the shape of the letter, an image of the letter 
is displayed instead. This is great, because you have a total guarantee that the font will 
display exactly as you expect it to.

 ■ Note a possible disadvantage to bitmap fonts is that, because they’re just images,  
they have to be loaded like images and will also use more memory than vector-based ttF 
and otF font files. however, that also makes them more Cpu efficient, because, unlike 
vector-based files, the font outlines don’t have to be drawn dynamically by the Cpu. So, 
overall, you might get marginally better performance by using bitmap fonts.

Before you can use a bitmap font in Pixi, you have to create it. Fortunately, there are 
plenty of good software tools to help you do this, including the popular Glyph Designer. 
(Do a web search to locate the URL of its current home page.) They all work pretty much 
the same way: you load up an ordinary TTF or OTF font file, set some options, and get 
back a texture atlas of images for each letter shape. Figure 3-16 shows a free online tool 
called Littera (www.kvazars.com) that helps you do this.

http://www.kvazars.com/


Chapter 3 ■ ShapeS, text, and GroupS

93

Does that look familiar? Yes, you’re right; it’s just a texture atlas made up of letter-
shaped images, just like the texture atlas you learned to use in Chapter 1. The texture atlas 
is made up of two files: a PNG file containing the images and a matching XML data file 
(often using a .fnt file extension) that describes the position of each letter image in the 
PNG file.

When you’ve got those files, copy them both into your project’s fonts folder, and use 
Pixi’s loader to load the XML file.

loader
  .add("fonts/disko.xml")
  .load(setup);

Next, use the BitmapText class (PIXI.extras.BitmapText) to create the text.

message = new BitmapText(
  "Hello Pixi!",
  {font: "48px disko"}
);

Figure 3-17 shows an example of what this code produces.

Figure 3-16. Creating a bitmap font

http://dx.doi.org/10.1007/978-1-4842-1094-9_1


Chapter 3 ■ ShapeS, text, and GroupS

94

 ■ Note If you have any trouble loading the font or creating the BitmapText object, open 
the xML file in a text editor and make sure that the name of the font face property matches 
the name of the font you want to load. also, make sure the file property matches the name 
of pnG file that contains the letter images.

You can display the font in any size you like: 48px, 16px, 12px, or whatever. The letter 
images will scale to the right size.

BitmapText objects share all the same properties as Pixi’s sprites, but they have only 
the following three font options you can set:

•	 font: The font size and name

•	 align: The alignment for multiline text: "left", "right", or 
"center"

•	 tint: The tint color of the text: any RGBA, HLASA, Hex, or HTML 
string color value

This might seem limited, but it’s all you need. That’s because, if you’re working with 
bitmap fonts, all the customization and tweaking of the font style occurs in the software 
you use to create the font texture atlas.

We’re now finished with shapes and text! The last part of this chapter covers 
something quite different, but it’s an essential skill that you need to have.

Figure 3-17. Displaying the bitmap text



Chapter 3 ■ ShapeS, text, and GroupS

95

Grouping Sprites
It’s sometimes useful to be able to group sprites, text, and shapes together. You can group 
things together to make compound objects or use groups to organize sprites into different 
game scenes or for different display screens in your application. Pixi gives you two ways to 
make groups: using a Container object or using a high-performance ParticleContainer.

Using a Container
A practical example is the best way to learn how to group sprites using a Container. 
Imagine that you want to display three sprites: a cat, hedgehog, and tiger. Create them 
and set their positions—but don’t add them to the stage.

//The cat
cat = new Sprite(id["cat.png"]);
cat.position.set(0, 0);
 
//The hedgehog
hedgehog = new Sprite(id["hedgehog.png"]);
hedgehog.position.set(32, 32);
 
//The tiger
tiger = new Sprite(id["tiger.png"]);
tiger.position.set(64, 64);

Next, create a Container (PIXI.Container) called animals to group them together, 
like this:

animals = new Container();

Then use addChild to add the sprites to the animals group.

animals.addChild(cat);
animals.addChild(hedgehog);
animals.addChild(tiger);

Finally, add the animals group to the stage.

stage.addChild(animals);

Figure 3-18 shows what this code produces. What you can’t see on Pixi’s canvas is 
that there’s an invisible box, called animals, that’s grouping all the sprites together.



Chapter 3 ■ ShapeS, text, and GroupS

96

You can now treat the animals group as a single unit. You can think of a Container as 
a special kind of sprite that doesn’t have a texture. If you need a list of all the child sprites 
that animals contains, use its children array to obtain one.

console.log(animals.chidren)
//Displays: Array [Object, Object, Object]

This tells you that animals has three sprites as children.
Because the animals group is just like any other sprite, you can change its x and y 

values, alpha, scale, and all the other sprite properties. For example, if you want to find 
out the dimensions of the group, the width and height properties will tell you, as shown 
in Figure 3-19.

animals

Figure 3-18. Grouping the sprites

128

128

Figure 3-19. The size of the group matches its contents



Chapter 3 ■ ShapeS, text, and GroupS

97

The width and height of the group are determined by the size of the sprites that it 
contains.

console.log(`Width: ${animals.width} Height: ${animals.height}`);
//Displays: 128, 128

Any property value you change on the parent container will affect the child sprites in 
a relative way. What happens if you change a group’s width or height?

animals.width = 200;
animals.height = 200;

The child sprites rescale relative to the new size, as shown in Figure 3-20.

Figure 3-20. Changing the container’s size scales its contents

If you set the group’s x and y position, all the child sprites will be repositioned 
relative to the group’s top-left corner. What would happen if you set the group’s x and y 
positions to 96?

animals.position.set(96, 96);

Figure 3-21 shows the effect: the entire group of sprites will move 96 pixels right and 
96 pixels down.



Chapter 3 ■ ShapeS, text, and GroupS

98

You can nest as many Container objects inside other Container objects as you like, 
to create complex hierarchies, if you need to. However, a Pixi DisplayObject (such as a 
Sprite or another Container) can only belong to one parent at a time. If you use addChild 
to make a sprite the child of another object, Pixi will automatically remove it from its 
current parent. That’s a useful bit of management that you don’t have to worry about.

 ■ Note a hierarchy of sprites organized into nested parent-child containers like this is 
called a scene graph.

Local and Global Positions 
When you add a sprite to a Container, its x and y positions are relative to the group’s 
top-left corner. That’s the sprite’s local position. For example, what do you think the tiger’s 
local position is in Figure 3-21? Let’s find out.

x

y

0

256

25696

96

Figure 3-21. Moving the group by setting its x and y positions



Chapter 3 ■ ShapeS, text, and GroupS

99

console.log(`Tiger local x: ${tiger.x}`);
console.log(`Tiger local y: ${tiger.y}`);
//Displays:
//Tiger local x: 64
//Tiger local y: 64

This tells us that the tiger is at an x position of 64, and a y position of 64, relative to 
the top-left corner of the animals group. Figure 3-22 illustrates this.

local coordinates

96

96

y 64

 x 
640

tiger.x = 64
tiger.y = 64

Figure 3-22. The tiger’s x and y positions are relative to the group



Chapter 3 ■ ShapeS, text, and GroupS

100

Sprites also have a global position. The global position is the distance from the  
top-left corner of the root container (usually the stage) to the sprite’s anchor point 
(usually the sprite’s top-left corner). You can find a sprite’s global position with the help 
of the toGlobal method. Here’s the format you need to use it:

parentSprite.toGlobal(childSprite.position)

The toGlobal method returns an object with x and y properties that tell you the sprite’s 
global position. Here’s how you could use toGlobal to find the tiger’s global x and y values:

animals.toGlobal(tiger.position).x
animals.toGlobal(tiger.position).y

This will give you an x position of 160 and a y position of 160. Why? Because the 
tiger’s local x/y point (64, 64) is combined with the animal group’s x/y point (96, 96) to 
give you a global x/y point of 160, 160 (64 plus 96 equals 160). Figure 3-23 illustrates this.

global coordinates

96

96

y 64

 x 
64

animals.toGlobal(tiger.position).x = 160
animals.toGlobal(tiger.position).y = 160

y

0 96

x

y

0

256

25696

96

Figure 3-23. Using toGlobal to find a sprite’s global position



Chapter 3 ■ ShapeS, text, and GroupS

101

What if you want to find the global position of a sprite but don’t know what the 
sprite’s parent container is? Every sprite has a property called parent that will tell you 
what the sprite’s parent is. If you add a sprite directly to the stage container, stage will be 
the sprite’s parent. In the preceding example, the tiger’s parent is animals. That means 
you can alternatively get the tiger’s global position by writing code such as this:

tiger.parent.toGlobal(tiger.position);

And it will work even if you don’t know what the tiger’s parent container currently is.
There’s one more way to calculate the global position! If you want to know the 

distance from the top-left corner of the canvas to the sprite, and don’t know or care what 
the sprite’s parent containers are, use the getGlobalPosition method. Here’s how to use 
it to find the tiger’s global position:

tiger.getGlobalPosition().x
tiger.getGlobalPosition().y

The special thing about getGlobalPosition is that it’s highly precise: it will give 
you the sprite’s accurate global position at the exact instant its local position changes. 
The other ways of calculating global position give you a number that’s usually one frame 
behind, if you calculate them inside the game loop. I asked the Pixi development team to 
add this feature specifically for accurate collision detection for games, and you’ll see in 
Chapter 7 how useful it will be.

What if you want to convert a global position to a local position? You can use the 
toLocal method. It works in a similar way but uses the following general format:

sprite.toLocal(sprite.position, anyOtherSprite)

Use toLocal to determine the distance between a sprite and any other sprite. Here’s 
how you could find out the tiger’s local position, relative to the hedgehog.

tiger.toLocal(tiger.position, hedgehog).x
tiger.toLocal(tiger.position, hedgehog).y

This gives you an x value of 32 and a y value of 32. You can see in the sample images 
that the tiger’s top-left corner is 32 pixels down and to the left of the hedgehog’s top-left 
corner.

Using a ParticleContainer
Pixi has an alternative, high-performance way to group sprites, called a 
ParticleContainer (PIXI.ParticleContainer). Any sprites inside a ParticleContainer 
will render two to five times faster than they would if they were in a regular Container. It’s 
a great performance boost for games.

http://dx.doi.org/10.1007/978-1-4842-1094-9_7


Chapter 3 ■ ShapeS, text, and GroupS

102

Create a ParticleContainer like this:

let superFastSprites = new ParticleContainer();

Then use addChild to add sprites to it, just as you would with any ordinary Container.
You have to make some compromises if you decide to use a ParticleContainer. 

Sprites inside the ParticleContainer can only use a few basic properties: x, y, width, 
height, scale, alpha, pivot, and visible—and that’s about it. Also, the sprites that it 
contains can’t have nested children of their own. A ParticleContainer also can’t use 
Pixi’s advanced visual effects, such as filters, masks, and blend modes (which you’ll 
learn all about in Chapter 6). But for the huge performance boost that you get, those 
compromises are usually worth it. And you can use Containers and ParticleContainers 
simultaneously in the same project, so you can fine-tune your optimization.

 ■ Note Why are sprites in a ParticleContainer so fast? Because the positions of the 
sprites are being calculated directly on the Gpu.

Where you create a ParticleContainer, there are two optional arguments you can 
provide: the maximum number of sprites the container can hold and an options object.

let superFastSprites = new ParticleContainer(size, options);

The default value for size is 15,000. So, if you have to contain more sprites, set it to 
a higher number. The options argument is an object with five Boolean properties that 
you can set: scale, position, rotation, alpha, and uvs. The default value for position 
is true, but all the others are set to false. That means that if you want to change the 
rotation, scale, or alpha of a sprite in the ParticleContainer, you have to set those 
properties to true, as follows:

let superFastSprites = new ParticleContainer(
  size,
  {
    rotation: true,
    alpha: true,
    scale: true,
    uvs: true
  }
);

But, if you don’t think you’ll have to use these properties, keep them set to false, to 
squeeze out the maximum amount of performance.

http://dx.doi.org/10.1007/978-1-4842-1094-9_6


Chapter 3 ■ ShapeS, text, and GroupS

103

Hey, what is uvs? u and v are the WebGL terms for normalized x and y texture 
position values. They refer to the x and y positions of the section of the texture you want 
to display as a normalized (0 to 1) value. What that means is that if you are using different 
sub-images from a spritesheet to create your particles, the different particles will have 
different uvs, so you will have to set it to true.

 ■ Note Why doesn’t WebGL just use x and y instead of u an v? Because the WebGL 
specification reserved the names x and y for something else!

Summary
In this chapter, you’ve learned all the basic skills you need to know to start creating 
interactive images with Pixi. You’ve learned how to make basic shapes, such as rectangles, 
circles, and lines, and how to animate shapes dynamically inside a game loop. You now 
also know how to load font files, create bitmap fonts, and use those fonts to display text. 
You’ve also found out everything you need to know about the local and global positions  
of sprites and shapes and how to group sprites together using Containers and Pixi’s  
high-performance ParticleContainers.

You’ve now got all the basic tools to start using Pixi to make some really fun stuff. 
But what can you make? In the next chapter, you’ll find out: we’re going to make a simple 
game using all the skills you’ve learned so far.



105

Chapter 4

Making Games

I’ve covered all the basics of working with Pixi, so we can now start making some fun stuff! 
Games are a great place to start, because they give you a chance to practice all the skills 
you’ve learned so far, and games are a great model for interactive applications of all kinds. 
Making a game will also give you a chance to learn an essential new skill: how to check if 
two sprites are touching, and what to do when they are.

In this chapter, you’re going to learn how to make a basic game prototype called 
Treasure Hunter. It’s the most basic complete game you can make but contains all the 
essentials you need to know to make much bigger games. Here’s what you’ll learn in  
this chapter:

•	 Collision detection: how to check if two sprites are touching

•	 Making enemy sprites with simple artificial intelligence

•	 Different game scenes and how to switch between scenes to 
control the flow of a game

•	 Single compound sprites made up of different sub-sprites

•	 Game logic: how to determine if a player has won or lost the game

At the end of this chapter, you’ll be well on your way to start making your own 
original games.

Collision Detection
You now know how to make a huge variety of graphics objects, but what can you do with 
them? A fun thing to do is to build a simple collision detection system. Pixi doesn’t have 
a built-in collision detection system, but I wrote an easy-to-use library called Bump.js that 
gives you all the collision tools you’ll need to make most kinds of 2D action games. Let’s 
find out how to install and set up Bump, and then how to use it to make a game.



Chapter 4 ■ Making gaMes

106

Installing and Setting Up Bump
First, download Bump from its code repository: github.com/kittykatattack/bump.  
Next, use a <script> tag to link the bump.js file to your HTML document. Here’s how the 
bump.js file is linked to the HTML document in the sample files that you’ll find in this 
chapter’s source code:

<script src="../library/bump/bin/bump.js"></script>

(If you prefer, you can load bump.js using any JavaScript module system you might 
be familiar working with: ES6 modules, SystemJS, AMD, or CommonJS.)

Finally, in your setup function, create a new instance of Bump, like this:

b = new Bump(PIXI);

The variable b (for bump, of course!) now represents the running instance of Bump 
that you can use to access all of Bump’s collision methods.

Using the hitTestRectangle Method
Bump has a whole suite of built-in collision methods that you can use for games, but in 
this book, we only need to use one: hitTestRectangle. (Refer to Bump’s source code 
repository for details on how to use the other methods.) hitTestRectangle checks 
whether any two rectangular sprites are touching. 

b.hitTestRectangle(spriteOne, spriteTwo)

If they overlap, hitTestRectangle will return true. You can use hitTestRectangle 
with an if statement, to check for a collision between two sprites, like this:

if (b.hitTestRectangle(cat, box)) {
  //There's a collision
} else {
  //There's no collision
}

As you’ll soon see, hitTestRectangle is your front door into the vast universe of 
game design.

Collision Detection in Action
Run the rectangleCollision.html file in the chapter’s source files for a working example 
of how to use hitTestRectangle. Use the arrow keys to move the cat sprite. If the cat 
hits the box, the box becomes red, and “hit!” is displayed by the text object. Figure 4-1 
illustrates how the sample program runs. 



Chapter 4 ■ Making gaMes

107

You’ve already seen all the code that creates all these elements, as well as the 
keyboard control system that makes the cat move. The only new thing remaining is the 
way hitTestRectangle is used inside the play function to check for a collision.

function play() {
 
  //Apply the velocity values to the sprite's position to make it move
  cat.x += cat.vx;
  cat.y += cat.vy;
 
  //check for a collision between the cat and the box
  if (hitTestRectangle(cat, box)) {
 
    //if there's a collision, change the message text and tint the box red
    message.text = "hit!";
    box.tint = 0xFF3300;
  } else {
 
    //if there's no collision, reset the message text and the box's color
    message.text = "No collision...";
    box.tint = 0xFFFFFF;
  }
}

You know from Chapters 2 and 3 that the play function is being called by the game 
loop 60 times per second, which means that the if statement in the preceding code is 
also constantly checking for a collision between the cat and the box 60 times per second. 
If hitTestRectangle is true, the text message object sets its text to "hit", as follows:

message.text = "hit";

Figure 4-1. Using collision detection to find out if the cat and the box are touching

http://dx.doi.org/10.1007/978-1-4842-1094-9_2
http://dx.doi.org/10.1007/978-1-4842-1094-9_3


Chapter 4 ■ Making gaMes

108

The color of the box is tinted red by setting the box’s tint property to the 
hexadecimal red value.

box.tint = 0xff3300;

 ■ Note all sprites have a tint property that you can use to colorize them in a particular way.

If there’s no collision, the message and box are maintained in their original states.

message.setText("No collision...");
box.tint = 0xccff99;

This code is pretty simple, but suddenly you’ve created an interactive world that 
seems to be completely alive. It’s almost like magic! And, perhaps surprisingly, you now 
have all the skills you need to start making games with Pixi!

 ■ Note how does the hitTestRectangle method actually work under the hood? 
see Advanced Game Design with HTML5 and JavaScript (apress, 2015) for a detailed 
explanation.

Treasure Hunter
I told you that you now have all the skills you need to start making games. What? You 
don’t believe me? Let me prove it to you! Let’s take a closer look at how to make an object-
collection-and-enemy-avoidance game called Treasure Hunter, as shown in Figure 4-2. 
(You’ll find the complete game in this chapter’s source files.) 

Figure 4-2. Collecting the treasure, avoiding the blob monsters, and reaching the exit



Chapter 4 ■ Making gaMes

109

Treasure Hunter is a good example of one of simplest complete games you can make 
using the tools you’ve learned so far. Use the keyboard arrow keys to help the explorer 
find the treasure and carry it to the exit. Six blob monsters move up and down between 
the dungeon walls, and if they hit the explorer, he becomes semitransparent, and the 
health meter at the top right corner shrinks. If all the health is used up, “You lost!” is 
displayed on the canvas; if the explorer reaches the exit with the treasure, “You won!” is 
displayed. Although it’s a basic prototype, Treasure Hunter contains most of the elements 
you’ll find in much bigger games: texture atlas graphics, interactivity, collision, and 
multiple game scenes. Let’s go on a tour of how the game was put together, so that you 
can use it as a starting point for one of your own games.

The Code Structure
Open the treasureHunter.js file, and you’ll see that all the game code is in one big file. 
Here’s a bird’s-eye view of how all the code is organized:

//Set up Pixi and load the texture atlas files - call the `setup`
//function when they've loaded
 
//Declare any variables used in more than one function
 
function setup() {
 
  //Initialize the game sprites, set the game `state` to `play`
  //and start the 'gameLoop'
}
 
function gameLoop() {
 
  //Runs the current game `state` in a loop and render the sprites
}
 
function play() {
 
  //All the game logic goes here
}
 
function end() {
 
  //All the code that should run at the end of the game goes here
}
 
//The game's helper functions:
//`keyboard`, `hitTestRectangle`, `contain` and `randomInt`



Chapter 4 ■ Making gaMes

110

Use this as your world map of the complete code, as we look at how each section 
ahead works. You already know the details of this code structure from the many examples 
in Chapters 2 and 3, so I’ll only be highlighting the new parts in the code samples that 
follow. Refer back to earlier examples, or the complete code in this chapter’s source files, 
for a reminder of the complete picture.

Initialize the Game in the Setup Function
As soon as the texture atlas images have loaded, the setup function runs. It only runs 
once, and lets you perform one-time setup tasks for your game. It’s a great place to create 
and initialize objects, sprites, game scenes, populate data arrays, or parse loaded JSON 
game data.

Here’s an abridged view of the setup function in Treasure Hunter and the tasks that 
it performs.

function setup() {
 
  //Create a new instance of the Bump collision library
  //Create an `id` alias for the texture atlas frame ids
 
  //The `gameScene` container that contains all the main
  //game sprites
 
  //Create the main sprites:
  //The `dungeon` sprite
  //The `door` sprite
  //The `explorer` sprite
  //The `treasure` sprite
  //The `blobs` enemy sprites
 
  //Create the `healthBar` compound sprite
 
  //Add some text for the game over message
 
  //Create a `gameOverScene` container to contain the text
  //that will be displayed when the game is finished
 
  //Assign the player's keyboard controllers
 
  //set the game state to `play`
  state = play;
 
  //Start the game loop
  gameLoop();
}

http://dx.doi.org/10.1007/978-1-4842-1094-9_2
http://dx.doi.org/10.1007/978-1-4842-1094-9_3


Chapter 4 ■ Making gaMes

111

The last two lines of code in the preceding setup function are perhaps the most 
important.

state = play;
gameLoop();

Running gameLoop switches on the game’s engine, and causes the play function to 
be called in a continuous loop. But before we look at how that works, let’s see what the 
specific code inside the setup function does.

Creating the Game Scenes
The setup function creates two Container groups called gameScene and gameOverScene. 
Each of these is added to the stage. 

gameScene = new Container();
stage.addChild(gameScene);
gameOverScene = new Container();
stage.addChild(gameOverScene);

All of the sprites that are part of the main game are added to the gameScene group. 
The “game over” text message that should be displayed at the end of the game is added to 
the gameOverScene group. (See Figure 4-3.)

Figure 4-3. The game’s two scenes



Chapter 4 ■ Making gaMes

112

Although it’s created in the setup function, gameOverScene shouldn’t be visible when 
the game first starts, so its visible property is initialized to false.

gameOverScene.visible = false;

You’ll see ahead that, when the game ends, the gameOverScene’s visible property 
will be set to true, to display the text that appears at the end of the game.

You can think of game scenes as pages in a book. Treasure Hunter just has two pages, 
but most games will have many more. Just add as many additional scenes (pages) as you 
need for your own games, and you can create games of great complexity, using this same 
basic model.

Making the Dungeon, Door, Explorer, and Treasure
The dungeon background, exit door, explorer (player), and treasure chest images are all 
sprites made from texture atlas frames. Most important, they’re all added as children of 
the gameScene. 

//Dungeon
dungeon = new Sprite(id["dungeon.png"]);
gameScene.addChild(dungeon);
 
//Door
door = new Sprite(id["door.png"]);
door.position.set(32, 0);
gameScene.addChild(door);
 
//Explorer
explorer = new Sprite(id["explorer.png"]);
explorer.x = 68;
explorer.y = gameScene.height / 2 - explorer.height / 2;
explorer.vx = 0;
explorer.vy = 0;
gameScene.addChild(explorer);
 
//Treasure
treasure = new Sprite(id["treasure.png"]);
treasure.x = gameScene.width - treasure.width - 48;
treasure.y = gameScene.height / 2 - treasure.height / 2;
gameScene.addChild(treasure);

Keeping them together in the gameScene group will make it easy for us to hide the 
gameScene and display the gameOverScene when the game is finished.



Chapter 4 ■ Making gaMes

113

Making the Blob Monsters
The six blob monsters are created in a loop. Each blob is given a random initial position 
and velocity. The vertical velocity is alternately multiplied by 1 or -1 for each blob, and 
that’s what causes each blob to move in the direction opposite to the one next to it. Each 
blob monster that’s created is pushed into an array called blobs. 

let numberOfBlobs = 6,
    spacing = 48,
    xOffset = 150,
    speed = 2,
    direction = 1;
 
//An array to store all the blob monsters
blobs = [];
 
//Make as many blobs as there are `numberOfBlobs`
for (let i = 0; i < numberOfBlobs; i++) {
 
  //Make a blob
  let blob = new Sprite(id["blob.png"]);
 
  //Space each blob horizontally according to the `spacing` value.
  //`xOffset` determines the point from the left of the screen
  //at which the first blob should be added
  let x = spacing * i + xOffset;
 
  //Give the blob a random y position
  let y = randomInt(0, stage.height - blob.height);
 
  //Set the blob's position
  blob.x = x;
  blob.y = y;
 
  //Set the blob's vertical velocity. `direction` will be either `1` or
  //`-1`. `1` means the enemy will move down and `-1` means the blob will
  //move up. Multiplying `direction` by `speed` determines the blob's
  //vertical direction
  blob.vy = speed * direction;
 
  //Reverse the direction for the next blob
  direction *= -1;
 
  //Push the blob into the `blobs` array
  blobs.push(blob);
 
  //Add the blob to the `gameScene`
  gameScene.addChild(blob);
}



Chapter 4 ■ Making gaMes

114

Making the Health Bar
When you play Treasure Hunter, you’ll notice that when the explorer touches one of 
the enemies, the width of the health bar at the top right corner of the screen decreases. 
How was this health bar made? It’s just two overlapping rectangles at exactly the same 
position: a black rectangle behind, and a red rectangle in front. They’re grouped into a 
single healthBar group. The healthBar group is then added to gameScene and positioned 
on the stage. 

//Create the container
healthBar = new Container();
healthBar.position.set(stage.width - 170, 4);
gameScene.addChild(healthBar);
 
//Create the black background rectangle
let innerBar = new Graphics();
innerBar.beginFill(0x000000);
innerBar.drawRect(0, 0, 128, 8);
innerBar.endFill();
healthBar.addChild(innerBar);
 
//Create the front red rectangle
let outerBar = new Graphics();
outerBar.beginFill(0xFF3300);
outerBar.drawRect(0, 0, 128, 8);
outerBar.endFill();
healthBar.addChild(outerBar);
 
//Add an `outer` property to the `healthBar` that references
//the `outerBar`
healthBar.outer = outerBar;

You can see in the last line of the preceding code that a property called outer has 
been added to healthBar. It just references healthBar (the red rectangle), so that it will 
be convenient to access later. You don’t have to do this, but, hey, why not! It means that if 
you want to control the width of the red healthBar, you can write some smooth code that 
looks like this:

healthBar.outer.width = 30;

That’s pretty neat and readable, so we’ll keep it!

Making the Message Text
When the game is finished, some text displays “You won!” or “You lost!”, depending on 
the outcome of the game. This is made using a text sprite and adding it to gameOverScene. 
Because gameOverScene’s visible property is set to false when the game starts, you 



Chapter 4 ■ Making gaMes

115

can’t see this text. Here’s the code from the setup function that creates the message text 
and adds it to gameOverScene: 

message = new Text(
  "The End!",
  {font: "48px Futura"}
);
message.x = 120;
message.y = stage.height / 2 - 32;
gameOverScene.addChild(message);

Playing the Game
All the game logic and the code that makes the sprites move occurs inside the play function, 
which runs in a continuous loop. Here’s an overview of what the play function does: 

function play() {
 
  //Move the explorer and contain it inside the dungeon
  //Move the blob monsters
  //Check for a collision between the blobs and the explorer
  //Check for a collision between the explorer and the treasure
  //Check for a collision between the treasure and the door
  //Decide whether the game has been won or lost
  //Change the game `state` to `end` when the game is finished
}

Let’s find out how all these features work.

Moving the Explorer
The explorer is controlled using the keyboard, and the code that does that is very similar 
to the keyboard control code you learned in Chapter 2. The keyboard objects modify the 
explorer’s velocity, and that velocity is added to the explorer’s position inside the play 
function.

explorer.x += explorer.vx;
explorer.y += explorer.vy;

The contain function we wrote in Chapter 2 is also used to keep the explorer inside 
the inner-wall area of dungeon. 

contain(explorer, {x: 28, y: 10, width: 488, height: 480});

Figure 4-4 shows the area that the explorer’s movement is limited to.

http://dx.doi.org/10.1007/978-1-4842-1094-9_2
http://dx.doi.org/10.1007/978-1-4842-1094-9_2


Chapter 4 ■ Making gaMes

116

Moving the Monsters
The play function also moves the blob monsters, keeps them contained inside the 
dungeon walls, and checks each one for a collision with the player. If a blob bumps into 
the dungeon’s top or bottom walls, its direction is reversed. All this is done with the help 
of a forEach loop, which iterates through each of the blob sprites in the blobs array on 
every frame. 

blobs.forEach(blob => {
 
  //Move the blob
  blob.y += blob.vy;
 
  //Check the blob's screen boundaries
  let blobHitsWall = contain(
    blob,
    {x: 28, y: 10, width: 488, height: 480}
  );
 

Figure 4-4. Containing the explorer’s movement inside the dungeon walls



Chapter 4 ■ Making gaMes

117

  //If the blob hits the top or bottom of the stage, reverse its direction
  if(blobHitsWall) {
    if (blobHitsWall.has("top") || blobHitsWall.has("bottom")) {
      blob.vy *= -1;
    }
  }
 
  //Test for a collision. If any of the enemies are touching
  //the explorer, set `explorerHit` to `true`
  if(b.hitTestRectangle(explorer, blob)) {
    explorerHit = true;
  }
});

You can see in the preceding code how the return value of the contain function is 
used to make the blobs bounce off the walls. A variable called blobHitsWall is used to 
capture the return value, as follows:

let blobHitsWall = contain(blob, {x: 28, y: 10, width: 488, height: 480});

blobHitsWall will usually be undefined. But if the blob hits the top wall, 
blobHitsWall will have the value "top". If the blob hits the bottom wall, blobHitsWall 
will have the value "bottom". If either of these cases is true, you can reverse the blob’s 
direction by reversing its velocity. Here’s the code that does this:

if(blobHitsWall) {
  if (blobHitsWall.has("top") || blobHitsWall.has("bottom")) {
    blob.vy *= -1;
  }
}

Multiplying the blob’s vy (vertical velocity) value by -1 will flip the direction of its 
movement.

Checking for Collisions
The code in the previous section uses hitTestRectangle to determine if any of the 
enemies has touched the explorer. 

if(b.hitTestRectangle(explorer, blob)) {
  explorerHit = true;
}

If hitTestRectangle returns true, it means there’s been a collision, and a variable 
called explorerHit is set to true. If explorerHit is true, the play function makes the 
explorer semitransparent and reduces the width of the health bar by one pixel.



Chapter 4 ■ Making gaMes

118

if(explorerHit) {
 
  //Make the explorer semi-transparent
  explorer.alpha = 0.5;
 
  //Reduce the width of the health bar's inner rectangle by 1 pixel
  healthBar.outer.width -= 1;
 
} else {
 
  //Make the explorer fully opaque (non-transparent) if it hasn't been hit
  explorer.alpha = 1;
}

If explorerHit is false, the explorer’s alpha property is maintained at 1, which 
makes it fully opaque.

The play function also checks for a collision between the treasure chest and the 
explorer. If there’s a hit, the treasure is set to the explorer’s position, with a slight offset. 
This makes it look like the explorer is carrying the treasure, as illustrated in Figure 4-5.

Here’s the code that does this:

if (b.hitTestRectangle(explorer, treasure)) {
  treasure.x = explorer.x + 8;
  treasure.y = explorer.y + 8;
}

Reaching the Exit Door and Ending the Game
There are two ways the game can end. You can win if you carry the treasure to the exit, or 
you can lose if you run out of health.

To win the game, the treasure chest just needs to touch the exit door. If that happens, 
the game state is set to end, and the message text displays “You won.” 

if (b.hitTestRectangle(treasure, door)) {
  state = end;
  message.text = "You won!";
}

Figure 4-5. The explorer can pick up and carry the treasure



Chapter 4 ■ Making gaMes

119

If you run out of health, you lose the game. The game state is also set to end, and the 
message text displays “You lost!”

if (healthBar.outer.width < 0) {
  state = end;
  message.text = "You lost!";
}

But what does this mean?

state = end;

You’ll remember from Chapters 2 and 3 that the gameLoop is constantly updating a 
function called state at 60 times per second. Here’s the gameLoop that does this:

function gameLoop(){
  requestAnimationFrame(gameLoop);
  state();
  renderer.render(stage);
}

You’ll also remember that we initially set the value of state to play, which is why 
the play function runs in a loop. By setting state to end, we’re telling the code that we 
want another function, called end, to run in a loop. In a more complex game, you could 
have a titleScene state, and states for each game level, such as levelOne, levelTwo, and 
levelThree.

So what is that end function that displays the final message? Here it is!

function end() {
  gameScene.visible = false;
  gameOverScene.visible = true;
}

It just flips the visibility of the game scenes. This is what hides gameScene and 
displays gameOverScene when the game ends.

This is a really simple example of how to switch a game’s state, but you can have 
as many game states as you like in your games, and fill them with as much code as you 
require. Just change the value of state to whatever function you want to run in a loop.

 ■ Note if your game is really complex, create each game state function as a separate 
Javascript file and load them with a <script> tag or es6’s module system. You can have as 
many state functions as you require: 10, 50, or hundreds!

http://dx.doi.org/10.1007/978-1-4842-1094-9_2
http://dx.doi.org/10.1007/978-1-4842-1094-9_3


Chapter 4 ■ Making gaMes

120

And that’s really all there is to Treasure Hunter! With a little more work, you could 
turn this simple prototype into a full game. Try it! Make sure you check out the complete 
code in this chapter’s source files, so that you can see all the code we’ve looked at in its 
proper context.

Summary
You’ve seen in this chapter how you can take all the techniques you’ve learned in the 
book so far and use them to make something really exciting. The hitTestRectangle 
function is the most important collision-detection function you need to know, and it 
can form the basis of hundreds of different games. You also learned how to use Pixi’s 
Containers to organize a game into different scenes, and how to switch scenes by 
changing the function that the state variable is pointing to. In addition, you learned how 
use game logic to determine if the game has been won or lost, and how to interactively 
change a sprite’s property, healthBar, to create an interactive user interface.

Hey, you’re now a game designer! And even if game design isn’t your thing, you can 
use Treasure Hunter as a structural model for making any kind of interactive application, 
and scale it to any size or level of complexity. It’s the only software architectural model 
you need to know.

Now that you’ve got the basics under your belt, let’s find out how to make your games 
and applications much more engaging, by adding some interactive animation.



121

Chapter 5

Animating Sprites

So far in this book, you’ve learned how to make sprites, move them, and make them 
interactive. But what if you want to make a game character that can flap its wings, or move 
its arms and legs to walk around the game world? You have to use a technique called 
keyframe animation: displaying a series of slightly different images in sequence to create 
the illusion of motion. Pixi has some built-in tools to make keyframe animation easy, and 
that’s what this chapter is all about.

•	 Using MovieClip sprites

•	 Making animation frames using a texture atlas or tileset

•	 Using a custom sprite function for full-featured control over 
animations

•	 Making a walking sprite

•	 Creating particle effects

The first essential step is learning how to make Pixi’s MovieClip sprites work. So, let’s 
find out.

Using SpriteUtilities
This chapter uses a helper library called SpriteUtilities that contains many helpful 
methods that make it much easier to create and work with Pixi sprites. You’ll find 
SpriteUtilities in the library/spriteUtilities/ folder of this book’s source 
files, or you can find it at its online code repository: github.com/kittykatattack/
spriteUtilities. 

To use SpriteUtilities, link to the spriteUtilties.js file in your HTML 
document and create a new instance of it at the beginning of your program (in your setup 
function), like this:

let su = new SpriteUtilities(PIXI);

You can now access all the SpriteUtilities methods through this su object, as 
you’ll see in the examples ahead.



Chapter 5 ■ animating SpriteS

122

MovieClip Sprites
MovieClip sprites (PIXI.extras.MovieClip) are just ordinary sprites with a few extra 
features that make it easy to play animated image sequences. Instead of just using one 
texture, a MovieClip is a sprite that uses an array of textures. Here’s how you could create 
a new MovieClip sprite with an array of textures. 

let textureArray = [texture0, texture1, texture2];
let sprite = new MovieClip(textureArray);

This loads up the sprite with three images, and you’ll see ahead how you can control 
which image is displayed.

You can control which textures in the sequence are displayed with play, stop, 
gotoAndPlay, and gotoAndStop methods. You can also set the speed of the animation. 
MovieClip sprites are great for animated sequences or any sprites with more than one 
image state. Let’s look at a simple example, to learn how MovieClip sprites work.

Figure 5-1 shows a PNG tileset image with a three-frame animation sequence of the 
pixie game character flapping her wings.

To create an animation from those frames, you must extract each frame as a new 
texture and then add those textures to an array. You can then use that array of textures to 
make a MovieClip sprite. Here’s the code that does that:

//Get a reference to the base texture
let base = TextureCache["images/pixieFrames.png"];
 
//The first texture
let texture0 = new Texture(base);
texture0.frame = new Rectangle(0, 0, 48, 32);
 
//The second texture
let texture1 = new Texture(base);
texture1.frame = new Rectangle(48, 0, 48, 32);
 
//The third texture
let texture2 = new Texture(base);
texture2.frame = new Rectangle(96, 0, 48, 32);
 

Figure 5-1. A tileset containing animation frames



Chapter 5 ■ animating SpriteS

123

//Make an array of textures
let textures = [texture0, texture1, texture2];
 
//Create the `MovieClip` sprite using the `textures` array
let pixie = new MovieClip(textures);
 
//Set the sprite's position and add it to the stage
pixie.position.set(32, 32);
stage.addChild(pixie);

 ■ Note this bit of code just creates the MovieClip sprite; it doesn’t make it play yet. 
You’ll find out how to play and control MovieClip sprites a little further ahead.

You can see how each of the three textures was created. I coded it like this so that you 
can clearly see how everything fits together, but it’s rather tedious to use all the repetitive 
code just to create three textures, so let’s find a better way.

The only thing that changes for each texture is its x position on the tileset. That 
means you can express the x position of the three textures as an array. Each element in 
the array is the x position of each sequential animation frame on the tileset.

[0, 48, 96]

You can use this array to make a new array that uses those numbers to create each 
new texture. You could use JavaScript’s array map method to do this. Here’s how:

let textures = [0, 48, 96].map(x => {
  let texture = new Texture(base);
  texture.frame = new Rectangle(x, 0, 48, 32);
  return texture;
});

 ■ Note JavaScript’s map method works by using the array of x positions to create each 
new texture. it then returns each created texture back to a new array called textures.

The Even Easier Way
Does that still seem like too much work? It does to me! So, I suggest you don’t bother 
doing any of that and just use a helpful utility method from the SpriteUtilities library 
called filmstrip. Here’s how to use it: 



Chapter 5 ■ animating SpriteS

124

First, make sure you link the spriteUtilities.js file to your HTML document 
with a <script> tag, as I described at the beginning of the chapter, and then create a new 
instance of SpriteUtilities, like this:

let su = new SpriteUtilities(PIXI);

Next, use SpriteUtilities’s filmstrip method to capture all the tileset frames,  
like this:

su.filmstrip("anyTilesetImage", frameWidth, frameHeight, optionalPadding);

Supply filmstrip with the tileset image name and the width and height of each 
frame. If there’s padding around each frame, supply the padding amount, in pixels. 
filmstrip returns an array of frames that you can use to make an animated MovieClip 
sprite. Here’s how you could use filmstrip to create our pixie sprite from the previous 
example.

let frames = su.filmstrip("images/pixieFrames.png", 48, 32);
let pixie = new MovieClip(frames);

The filmstrip method automatically loads every frame from a tileset image into the 
sprite. But what if you only want to use a subset of frames from the tileset, not all of them? 
Use another utility method called frames. The frames method takes four arguments: the 
texture, a 2D array of x/y frame position coordinates, and the width and height of each 
frame. Here’s how you could use the frames method to create the pixie sprite.

let textures = frames(
  "images/pixieFrames.png",
  [[0,0],[48,0],[96,0]],
  48, 32
);
let pixie = new MovieClip(frames);

Use the frames function whenever you have to create a sprite using selected frames 
from a larger tileset PNG image.

Using MovieClip Sprites
Now that you have a MovieClip sprite, you can make its frames play in a loop, by using the 
play method, as follows: 

pixie.play();

This will make the pixie sprite flap her wings in a continuous loop. If you don’t want 
the animation to loop, set the sprite’s loop property to false.

pixie.loop = false;



Chapter 5 ■ animating SpriteS

125

Optionally, you might want to set animationSpeed to a slower rate, so that the pixie 
doesn’t flap her wings too quickly.

pixie.animationSpeed = 0.5;

Use any number between 0 and 1 (1 is full speed). If your game is running at 60 frames 
per second, 0.5 will make the animation run at 30 frames per second.

If you want to sprite to display a specific frame, you can use the gotoAndStop method

pixie.gotoAndStop(frameNumber);

gotoAndStop will make the sprite display whichever frame number you specify. Even 
if your sprite isn’t an animated sequence of frames, you can use gotoAndStop to selectively 
display different textures, if something good or bad happens to the sprite in a game.

 ■ Note remember: the root stage container has to be rendered inside a game loop in 
order for the animation to work.

MovieClip Properties and Methods
MovieClip sprites have some extra properties and methods that give you a lot of control 
over how the animation runs, which frames to display, and what the current state of the 
animation is. Table 5-1 describes all the properties, and Table 5-2 describes the methods. 

Table 5-1. Properties of MovieClip

MovieClip Property Value What It Does

animationSpeed 0 to 1 Changes the speed of the animation. 1 is full 
speed; 0 will stop the animation; 0.5 will play 
it at half speed

currentFrame A read-only array 
index number

Tells you the current frame number that the 
MovieClip is displaying

loop Boolean Determines whether or not to loop the 
animation

onComplete A function Lets you assign a callback function that 
should run when the animation has finished

playing Boolean Determines whether or not MovieClip is 
currently playing

textures Array MovieClip’s array of textures

totalFrames A read-only 
number

The total number of frames in the animation



Chapter 5 ■ animating SpriteS

126

These are the basic tools you need to know to work with Pixi’s MovieClip sprites.

Make MovieClip Sprites Using a Texture Atlas
It’s undoubtedly helpful to be able to make an animation from a few frames in any tileset 
PNG image, as we did in the previous example. But for a big project, you’ll probably want 
the extra control and convenience of using a texture atlas. Let’s find out how you can make 
a texture atlas of animation frames and then use the atlas to make a MovieClip sprite. 

First, drag your individual frame images into Texture Packer, as shown in Figure 5-2. 
The game character’s image files are named in a specific order, as follows:

pixie0.png
pixie1.png
pixie2.png

Table 5-2. Methods of MovieClip

MovieClip Methods Arguments What It Does

play ()
None

Starts the animation playing

stop ()
None

Stops the animation

gotoAndPlay (arrayIndexNumber) Goes to a specific frame number and 
starts playing from there

gotoAndStop (arrayIndexNumber) Goes to a specific frame number and 
stops the animation

fromImages (arrayOfStrings) Makes a MovieClip from an array of 
image file source paths. The image will 
be loaded into the texture cache if it isn’t 
already there.

fromFrames (arrayOfStrings) Makes a MovieClip from an array for 
texture atlas frame ids



Chapter 5 ■ animating SpriteS

127

The numbers in the file names are important! They indicate the order of each 
frame in the animation sequence. We’re going to use those numbers ahead to create the 
animated sprite and display the frames in the correct order.

Publish the texture atlas and load it into your Pixi program, as you learned to do in 
Chapter 1. In the setup function by which you create your sprites, use MovieClip to create 
the sprite. Supply an array of the frame ids from the texture atlas that you want to use in 
the animation.

//Create an alias for the texture atlas frame ids
id = resources["images/pixieAtlas.json"].textures;
 
//Create an array that references the frames you want to use
let frames = [
  id["pixie0.png"],
  id["pixie1.png"],
  id["pixie2.png"]
];
 
//Create a MovieClip from the frames
pixie = new MovieClip(frames);

You now have a sprite with three frames that you can control just as in the previous 
example.

Figure 5-2. Creating MovieClip frames using a texture atlas

http://dx.doi.org/10.1007/978-1-4842-1094-9_1


Chapter 5 ■ animating SpriteS

128

Using the frameSeries Utility Function
But wait! What if you have 100 animation frames? You definitely don’t want to manually 
type in 100 frame ids into an array. Instead, use a useful utility method from the 
SpriteUtilities library called frameSeries. The frameSeries function takes four 
arguments: the start frame sequence number, the end frame sequence number, the 
optional base file name, and the optional file extension. You could use the frameSeries 
function to create our pixie sprite from the texture atlas, like this:

let frames = su.frameSeries(0, 2, "pixie", ".png");
let pixie = new MovieClip(frames);

This automatically copies all three frames in the sequence, from 0 to 2, into the sprite.
These are the basic techniques you need to know to start using MovieClip sprites for 

a wide range of animation and state-change effects in games and interactive applications. 
But what if you want to make something much more complex, such as an animated game 
character that can walk around the screen?

Animation States
If you have a complex game character or interactive object, you might want that character to 
behave in different ways, depending on what’s happening in the game environment. Each 
separate behavior is called a state. If you define states on your sprite, you can trigger those 
states to display whenever something significant happens in the game that corresponds 
to that state. In this section, you’re going to learn how to define sprite states and how to 
control them in a game. But first, you need a few new tools to make this job a little easier.

Making a Sprite with a State Player
To start working with sprite states, you first need a state player. A state player is the thing 
that controls the sprite’s states. Pixi sprites don’t have their own state players, but you can 
use a method from the SpriteUtilities library called sprite that will create a sprite 
with a state player built into it. 

Here’s how to make a sprite using the sprite function:

let anySprite = su.sprite(frameTextures, xPosition, yPosition);

The first argument, frameTextures, can be any of the following:

•	 A single PNG image string

•	 A Pixi Texture object

•	 An array of texture atlas frame ids

•	 An array of single PNG image strings

•	 An array of Pixi Texture objects



Chapter 5 ■ animating SpriteS

129

You can essentially throw anything at it, and it will give you back a sprite that works 
as it should, depending on the kind of texture information you’ve supplied. That means 
you can use the sprite function as your one-stop shop for creating any kind of sprite. 
Forget about using Pixi’s Sprite and MovieClip classes to make sprites, and just use the 
sprite method for everything!

If you supply the sprite method with an array, it will return a MovieClip sprite, 
but with a bonus state player built into it. The state player is just a collection of four new 
properties and methods that make it easy to control sprite animation states.

•	 fps: A property to set the precise animation speed, as frames per 
second. Its default value is 12. The fps is not linked to the game 
loop fps, and that means you can have sprite animations playing 
at speeds that are independent of the game or application speed.

•	 playAnimation: A method to play the sprite’s animation. You 
can supply it with start and end frame values, if you want to play 
a subset of frames. By default, the animation will play in a loop, 
unless you set the sprite’s loop property value to false.

•	 stopAnimation: A method that stops the sprite’s animation at the 
current frame

•	 show: A method that displays a specific frame number

These are all the tools you require to control sprite states, so let’s find out how to  
use them.

Defining Sprite States
What are sprite states? Take a look at Figure 5-3. It’s a tileset PNG image of a game 
character that includes all the frames required to make the character look as if she’s 
walking in four different directions.



Chapter 5 ■ animating SpriteS

130

How many sprite states are in that tileset? There are actually eight of them: four static 
states and four animation states. Let’s find out what those states are and how to define 
them.

The Static States
The sprite’s static states define four positions on the sprite when it’s not moving. Those 
states are: down, left, right, and up. Figure 5-4 shows where those states are on the tileset 
and the frame numbers that identify those states.

Figure 5-3. A tileset containing character animation frames



Chapter 5 ■ animating SpriteS

131

You can see that frame 0 is the down state, frame 3 is the left state, frame 6 is the right 
state, and frame 9 is the up state. How can you define these states? First, create the sprite. 
This tileset image is called “adventuress.png,” and here’s how you could use it to create a 
sprite using the sprite method:

let frames = su.filmstrip("images/adventuress.png", 32, 32);
let adventuress = su.sprite(frames);

Next, create an object literal property on the sprite called states. Create keys in the 
object called down, left, right, and up. Set each of those keys to values that match the 
frame numbers of the state.

adventuress.states = {
  down: 0,
  left: 3,
  right: 6,
  up: 9
};

Now, all you have to do is use the sprite’s show method to display the correct state. 
For example, here’s how you could display the adventuress’s left state:

adventuress.show(adventuress.states.left);

Figure 5-4. The sprite’s four static states



Chapter 5 ■ animating SpriteS

132

Use some code such as this anywhere in your program when you want to change the 
sprite’s display state. Figure 5-5 shows the effect that changing the state like this will have 
on the appearance of the adventuress sprite.

Where could you use this code? Use it anywhere you need to have a sprite react to 
a change in the game world. An obvious place to put it would be the keyboard key press 
methods, so that you could change the direction the sprite is facing to match the direction 
of the arrow keys. For example, here’s how you could make the adventuress turn to the left 
when the left arrow key is pressed.

left.press = () => {
 
  //Show the left state
  adventuress.show(adventuress.states.left);
};

Just follow this same format for the rest of the arrow keys, to make the sprite face all 
four directions.

Now that you know how to define and display static states, let’s find out how to use 
animation states.

The Animation States
The sprite’s animation states define four motion sequences of the sprite when it’s 
moving. Those states are: walkDown, walkLeft, walkRight, and walkUp. Figure 5-6 shows 
where those states are on the tileset. 

Figure 5-5. Using the show method to change the sprite’s state



Chapter 5 ■ animating SpriteS

133

Each of those states is comprised of three frames, which, when played in a loop, will 
create a continuous walking animation. To define each of these animation states, create a 
key in the states object that describes that state. The value of the key should be an array 
with two elements: the start frame and end frame of the sequence. For example, here’s 
how you could define the walkLeft state:

walkLeft: [3, 5]

3 is the number of the frame that the animation sequence starts at, and 5 is the frame 
where it ends.

Here’s how you could add these four new animation states to the adventuress sprite:

adventuress.states = {
  down: 0,
  left: 3,
  right: 6,
  up: 9,
  walkDown: [0, 2],
  walkLeft: [3, 5],
  walkRight: [6, 8],
  walkUp: [9, 11]
};

Now that her states are defined, let’s make the adventuress walk around the stage.

Figure 5-6. The sprite’s four animation states



Chapter 5 ■ animating SpriteS

134

Making a Walking Sprite
You already know how to do this! Take what you learned about making animated sprites 
and defining states from this chapter, combine it with the keyboard control code you 
learned to use in Chapter 2, and you can make a walking game character. Run the 
statePlayer.html file in this chapter’s source code for an interactive example. Use the 
arrow keys to make the adventuress walk around the stage. When you release a key, she 
stops and displays one of her static states. Figure 5-7 illustrates the effect. 

Here’s the complete code from the program’s setup function that creates the sprite 
and programs the keyboard keys:

//Define any variables that are used in more than one function
let adventuress;
 
function setup() {
 
  //Use the custom `frameSeries` function to create the frames array
  let frames = filmstrip("images/adventuress.png", 32, 32);
 
  //Create a MovieClip from the frames using the
  //custom `sprite` utility function
  adventuress = sprite(frames);
  adventuress.vx = 0;
  adventuress.vy = 0;
 
  //Set the sprite's position and add it to the stage
  adventuress.position.set(32, 32);
  stage.addChild(adventuress);
 

Figure 5-7. Using the keyboard keys to make the adventuress walk

http://dx.doi.org/10.1007/978-1-4842-1094-9_2


Chapter 5 ■ animating SpriteS

135

  //Optionally set the sprite's `fps` to change the
  //speed of the animation effect (the default value is 12)
  adventuress.fps = 12
 
  //Define the sprite's states
  adventuress.states = {
    down: 0,
    left: 3,
    right: 6,
    up: 9,
    walkDown: [0, 2],
    walkLeft: [3, 5],
    walkRight: [6, 8],
    walkUp: [9, 11]
  };
 
  //Capture the keyboard arrow keys
  let left = keyboard(37),
      up = keyboard(38),
      right = keyboard(39),
      down = keyboard(40);
 
  //Program the arrow keys
       
  //Left arrow key `press` method
  left.press = () => {
 
    //Play the sprite's `walkLeft` animation
    //sequence and set the sprite's velocity
    adventuress.playAnimation(adventuress.states.walkLeft);
    adventuress.vx = -5;
    adventuress.vy = 0;
  };
 
  //Left arrow key `release` method
  left.release = () => {
 
    //If the left arrow has been released, and the right arrow isn't down,
    //and the sprite isn't moving vertically, stop the sprite from moving
    //by setting its velocity to zero. Then display the sprite's static
    //`left` state.
    if (!right.isDown && adventuress.vy === 0) {
      adventuress.vx = 0;
      adventuress.show(adventuress.states.left);
    }
  };
 



Chapter 5 ■ animating SpriteS

136

  //The rest of the arrow keys follow the same format
 
  //Up
  up.press = () => {
    adventuress.playAnimation(adventuress.states.walkUp);
    adventuress.vy = -5;
    adventuress.vx = 0;
  };
  up.release = () => {
    if (!down.isDown && adventuress.vx === 0) {
      adventuress.vy = 0;
      adventuress.show(adventuress.states.up);
    }
  };
 
  //Right
  right.press = () => {
    adventuress.playAnimation(adventuress.states.walkRight);
    adventuress.vx = 5;
    adventuress.vy = 0;
  };
  right.release = () => {
    if (!left.isDown && adventuress.vy === 0) {
      adventuress.vx = 0;
      adventuress.show(adventuress.states.right);
    }
  };
 
  //Down
  down.press = () => {
    adventuress.playAnimation(adventuress.states.walkDown);
    adventuress.vy = 5;
    adventuress.vx = 0;
  };
  down.release = () => {
    if (!up.isDown && adventuress.vx === 0) {
      adventuress.vy = 0;
      adventuress.show(adventuress.states.down);
    }
  };
 
  //Start the game loop
  gameLoop();
}



Chapter 5 ■ animating SpriteS

137

The play function (which gets called each frame by the game loop) is what makes 
the sprite move around the screen.

function play() {
  adventuress.x += adventuress.vx;
  adventuress.y += adventuress.vy;
}

If you want the sprite to move faster or slower across the screen, change, in the arrow 
key methods, the amount by which vx and vy are set. If you want the sprite’s walking 
animation effect to be faster or slower, change the sprite’s fps property.

Yes, you can use this in a real game! Take a look at the treasureHunter2.html file in 
this chapter’s source files, for a new, updated version of Treasure Hunter, featuring our 
fully animated adventuress sprite, shown in Figure 5-8. Use the arrow keys to make her 
walk around the dungeon. The code is exactly the same as the original version, but with 
the addition of the new code you’ve learned in this chapter.

Adding keyframe animation to the sprite makes the game feel much more immersive.
In this chapter, I’ve shown you how to control a sprite’s animation states, using a 

keyboard controller, but any change in the game logic could change the sprite’s state.  
In Chapter 7, you’ll learn how to make interactive sprites, using the mouse and touch.

Creating Frames for Animations
You’ve learned how to program animated game characters from preexisting tilesets, but 
how do you actually make those animation tilesets themselves? That topic deserves a 
whole book on its own, but fortunately, there are some great illustration and animation 
tools out there to help make this job easy and fun. You could use Adobe Illustrator or 

Figure 5-8. A walking sprite in Treasure Hunter

http://dx.doi.org/10.1007/978-1-4842-1094-9_7


Chapter 5 ■ animating SpriteS

138

Photoshop to draw each frame by hand, or you could use specialized animation software, 
such as any of the following: 

•	 Flash Professional. Still the best all-purpose animation tool out 
there. Just export your animation as a spritesheet, and you can 
use it in your JavaScript games. You can also use a tool such as 
Shoebox to convert Flash’s SWF file format to a texture atlas.

•	 Piskel. A fun, free online tool for making pixel art–style animated 
game characters.

•	 Dragon Bones, Spine, and Creature. These three tools are 
all very similar. They let you create complex game characters, 
animate them, and export them as tileset images and JSON files. 
Try them out and see which you prefer. Pixi v3.0 actually has 
limited import capability for Dragon Bones and Spine animation. 
Check Pixi’s current documentation for details.

•	 Shoebox. This is a useful (and free!) suite of animation and image 
extraction tools.

Spend an afternoon playing around with some of these tools and see what you  
can create.

Particle Effects
How do you create such effects as fire, smoke, magic, and explosions? You make lots 
of tiny sprites—dozens, hundreds, or thousands of them. Then apply some physical or 
gravitational constraints to those sprites, so that they behave like the element you’re 
trying to simulate. You also have to give them some rules about how they should appear 
and disappear and what kinds of patterns they should form. These tiny sprites are called 
particles. You can use them to make a wide range of special effects for games. In this last 
section of the chapter, you’re going to learn how to create animated particles.

Add a Little Pixi Dust
Pixi doesn’t have a built-in feature for making particle effects, but you can use a 
lightweight micro-library called Dust to help you make them. To use Dust, link to the 
dust.js application file in this book’s source code library or download it from its code 
repository: github.com/kittykatattack/dust. 

 ■ Note Dust is a quick and easy way to make most of the kinds of particle effects you’ll 
need for games, but for a more full-featured, but also more complex, library, take a look at 
proton: github.com/a-jie/Proton.



Chapter 5 ■ animating SpriteS

139

To get started with Dust, first create an instance of it at the beginning of your 
program, or in the setup function, and supply PIXI in the constructor, as follows:

d = new Dust(PIXI);

The variable d now represents your running instance of Dust.
Next, it is very important to make sure that you call Dust’s update function inside 

your game loop. In the application model that we’ve been using in this book, you could 
do this inside either the gameLoop or play function. I recommend that you do it in 
gameLoop, just after you call the state function but before you render the stage, like this:

function gameLoop(){
  requestAnimationFrame(gameLoop);
  state();
  d.update();
  renderer.render(stage);
}

You’re now ready to use Dust to make and animate particles.

Making Particles
With Dust all set up and running, you can now make particles using the create method. 
Here’s how to create 50 star sprites on the stage at an x/y position of 128/128. 

let stars = d.create(
  128,                                  //x start position
  128,                                  //y start position
  () => su.sprite("images/star.png"),   //Sprite function
  stage,                                //Container for particles
  50                                    //Number of particles
);

The first two arguments are the x/y point on which the particles will appear. The 
third argument is a function that returns the sprite you want to use for each particle. 
Use any sprite creation method we’ve used in this book. If you supply a sprite with 
more than one frame, Dust will randomly display different frames for each particle. The 
fourth argument is the container that you want to add the particles to. In this example, 
the particles will be added to the stage. The fifth argument is the number of particles 
you want to create. The create method returns an array containing references to all 
the sprites being used as particles, which might be useful if you have to access them for 
reasons such as performing collision detection.

Figure 5-9 shows the effect that this code produces. The particles appear at the same 
point with different random sizes and velocities. They fly away from the center point, 
randomly changing scale and alpha, until they all fade away and disappear. Many of the 
properties are randomized, so the effect is different every time. You’ll see ahead how you 
can fine-tune each of these properties to produce exactly the effect you need.



Chapter 5 ■ animating SpriteS

140

You can drop this code anywhere in your program, to create a single burst of 
particles, such as a key press or mouse click. (You’ll learn about mouse and touch 
interactivity in Chapter 7).

Using ParticleContainer
In the preceding sample code, the particles that we created were all added to the root 
stage container (the fourth argument.) However, you can add the particles to any 
container you like, or to any other sprite. In Chapter 2, you learned how to make a high-
performance ParticleContainer for displaying a large number of sprites on screen at 
a high frame rate. If you want to use ParticleContainer for your particles, just add the 
name of the ParticleContainer object you want to use in the create method’s fourth 
argument. Here’s how you could modify the preceding sample code to add the particles 
to a ParticleContainer called starContainer.

//Create the `ParticleContainer` and add it to the `stage`
let starContainer = new ParticleContainer(
  15000,
  {alpha: true, scale: true, rotation: true, uvs: true}
);
stage.addChild(starContainer);
 
//Create star particles and add them to the `starContainer`
let stars = d.create(
  128, 128,
  () => su.sprite("images/star.png"),
  starContainer,
  50
);

ParticleContainers are optimized for pushing many thousands of sprites, so, 
unless you’re animating that many particles, you probably won’t notice any performance 
improvement over using ordinary Container objects.

Figure 5-9. A starburst particle effect

http://dx.doi.org/10.1007/978-1-4842-1094-9_7
http://dx.doi.org/10.1007/978-1-4842-1094-9_2


Chapter 5 ■ animating SpriteS

141

Customizing the Particle Options
The create method has a total of 19 different parameters you can set to fully customize 
how the particles behave. Here’s the full parameter list, with examples of the kinds of 
values you could use: 

let stars = d.create(
  128,                                //x start position
  128,                                //y start position
  () => su.sprite("images/star.png"), //Sprite function
  stage                               //Container for particles
  50,                                 //Number of particles
  0.1,                                //Gravity
  true,                               //Random spacing
  0, 6.28,                            //Min/max angle
  12, 24,                             //Min/max size
  1, 2,                               //Min/max speed
  0.005, 0.01,                        //Min/max scale speed
  0.005, 0.01,                        //Min/max alpha speed
  0.05, 0.1                           //Min/max rotation speed
);

You can see that most of the parameters describe a range between the minimum 
and maximum values that should be used to change the sprites’ speed, rotation, scale, 
or alpha. You can also specify the number of particles that should be created and add 
optional gravity.

The minimum and maximum angle values are important for defining the circular 
spread of particles as they radiate from the origin point. For a completely circular 
explosion effect, use a minimum angle of 0 and a maximum angle of 6.28.

0, 6.28

(These values are radians; the equivalents in degrees are 0 and 360.) 0 starts at  
the 3 o’clock position, pointing directly to the right. 3.14 is the 9 o’clock position, and  
6.28 takes you around back to 0 again.

If you want to constrain the particle range to a narrower angle, just supply the 
minimum and maximum values that describe that angle. Here are values you could use to 
constrain the angle to a pizza-slice with the crust pointing left:

2.4, 3.6

You could use a constrained angle range such as this to create a particle stream, like 
those used to create a fountain or rocket engine flames. (You’ll see exactly how to do this  
in the example ahead.) The random spacing value (the seventh argument) determines 
whether the particles should be spaced evenly (false) or randomly (true) within this range.

By carefully choosing the sprite for the particle and finely adjusting each parameter, 
you can use this all-purpose create function to simulate everything from liquid to fire.



Chapter 5 ■ animating SpriteS

142

Using a Particle Emitter
The create method produces a single burst of particles, but often you’ll have to produce 
a continuous stream of particles. You can do this with the help of a particle emitter. A 
particle emitter produces particles at fixed intervals to produce just such a stream effect, 
and you can create one using Dust’s emitter method. The emitter has play and stop 
methods that let you turn the particle flow on and off, and you can define the interval at 
which particles are created. 

Here’s the general format for using Dust’s emitter method. It takes two arguments. 
The first argument is the interval, in milliseconds, between which bursts of particles 
are created. The second argument is the same create method we used in the previous 
examples.

let particleStream = d.emitter(
  100,
  () => d.create();
);

Any interval value of 100 milliseconds or less will make the particles appear to flow 
in a continuous stream. Here’s some code that produces a star fountain effect, illustrated 
in Figure 5-10. The stars appear in the center of the canvas, shoot up, and then cascade 
down with the pull of gravity.

let particleStream = d.emitter(
  100,
  () => d.create(
    128, 128,
    () => su.sprite("images/star.png"),
    stars,
    30,
    0.1,

Figure 5-10. Using a particle emitter to produce a continuous stream of particles



Chapter 5 ■ animating SpriteS

143

    false,
    3.14, 6.28,
    16, 32,
    2, 5
  )
);

The sixth argument, 0.1, is the force of gravity. Setting gravity to a higher number will 
pull the particles down faster. (Set gravity to 0 to turn it off.) The angle is between 3.14 and 
6.28. That makes the particles appear within a half-moon sized angle above their origin 
point. Figure 5-11 illustrates how that angle is defined.

The stars are created at the center origin point then fly up and out within the upper 
half of the circle. Gravity is acting on the particles the entire time, however, so they’ll 
eventually fall toward the bottom of the canvas. That’s what creates the cascading 
fountain effect.

You can use the emitter’s play and stop methods to turn the particle stream on or off 
at any time in your code, like this:

particleStream.play();
particleStream.stop();

This is all you need to know to start working with particle effects for Pixi.

Figure 5-11. Limiting the angle within which particles are created



Chapter 5 ■ animating SpriteS

144

Summary
In this chapter, you’ve learned all the important skills you need for making interactive 
game characters and objects. You learned how to load up MovieClip sprites with frames 
and how to use those frames to display different object states. This alone is one of the 
most important techniques to know, because it lets you change the visual appearance 
of a sprite to react to changes in the game or application. And, as a bonus, you learned 
how to use the custom sprite utility function to make this job easy and intuitive. You 
also learned how to make sprites from almost any kind of source: single tileset PNG 
images, texture atlas frame id sequences, and even subsets of frames inside a larger 
tileset. You put all these techniques together to make a very complex object—a walking 
game character—that you could control and move with the keyboard. That walking game 
character is the key to making much more complex interactive objects, if you ever need 
to. And finally, you learned how to use the Dust library to easily create all kinds of particle 
effects for games.

Particle effects are a great way to add sparkle to any game, but in the next chapter, 
you’re going to learn a boatload of cool visual effects that you can easily implement with 
Pixi. Let’s find out!



145

Chapter 6

Visual Effects and Transitions

Pixi is a high-powered 2D rendering engine packed with all kinds of useful tools to help 
you make spectacular visual effects with minimal effort. In this chapter, you’re going to 
learn all the techniques and code you need to know to get those tools working for you 
quickly, including the following:

•	 Tiling sprites. A quick way to scroll a seamlessly repeating pattern

•	 Texture effects. Specialized methods for working with textures

•	 Tinting. Changes a sprite’s color

•	 Masking. A shape that hides any part of the sprite that’s outside of 
the shape’s area.

•	 Blend modes. Determine how semitransparent sprites blend 
together

•	 Filters. A wide range of built-in distortion, blur and color effects

•	 Video textures. Play a video on a sprite

•	 Multiple resolutions. Automatically load different images to 
match the device display resolution

•	 Rope mesh. Move a series of points along a texture to create a 
wave effect

•	 Tweening and transitions. A handful of useful methods for 
quickly animating sprite properties.

This chapter is a fast-paced grand tour of all these techniques, which, as you’ll soon 
see, you’ll easily be able to implement into your own work.



Chapter 6 ■ Visual effeCts and transitions

146

Tiling Sprites
The first stop on the tour: tiling sprites. These are special sprites that repeat an  
image across their surface in a grid pattern. You can use them to easily create infinitely 
scrolling background effects. To create a tiling sprite, use the TilingSprite class  
(PIXI.extras.TilingSprite) with three arguments: texture, width, and height.

let tilingSprite = new TilingSprite(texture, width, height);

Apart from that, tiling sprites have all the same properties and work in the same 
way as regular sprites. They also have fromImage and fromFrame methods, like ordinary 
sprites. Here’s how to create a tiling sprite from a single 64 by 65 image called tile.png.  
It’s 192 by 192 pixels and is offset from the top of the canvas by 32 pixels.

let tilingSprite =  new TilingSprite(
  TextureCache["images/tile.png"], 192, 192
);
sprite.x = 32;
sprite.y = 32;

Figure 6-1 shows the original tile.png image and the effect of the preceding code.

Figure 6-1. Creating a sprite with a repeating image pattern

You can offset the repeating pattern using tilePosition.x and tilePosition.y 
properties. Here’s how to offset the pattern by 32 pixels.

sprite.tilePosition.x = 32;
sprite.tilePosition.y = 32;



Chapter 6 ■ Visual effeCts and transitions

147

Figure 6-2 shows the result.

Figure 6-2. Using tilePosition to offset the pattern

Figure 6-3. Using tileScale to change the size of the image in the pattern

You can also change the scale of the repeated image using tileScale.x and 
tileScale.y. Here’s how to increase the size of the repeated image by one and a half times:

sprite.tileScale.x = 1.5;
sprite.tileScale.y = 1.5;

Figure 6-3 shows what this does. 



Chapter 6 ■ Visual effeCts and transitions

148

 ■ Note as with the position property, you can use the set method to set tileScale 
and tilePosition with one line of code, as follows:

sprite.tilePosition.set(32, 32);

sprite.tileScale.set(1.5, 1.5);

There’s much more to tiling sprites than just being a convenient way to create 
repeating image patterns. Because you can shift the texture’s position, you can use tiling 
sprites to easily create seamless, scrolling background scenes. This is incredibly useful for 
many kinds of games. Let’s find out how to do this.

First, start with a seamless tile image. A seamless image is an image in which the 
patterns match up on all sides. If you laid out copies of the image side by side, they would 
appear to be one big continuous image. Figure 6-4 is an example of a seamless tile image 
of a cloudy sky.

Figure 6-4. A seamless tile image

Next, create a tiling sprite called clouds, using this image. Then update the sprite’s 
tilePosition.x property in the game loop.

function play() {
  clouds.tilePosition.x -= 1;
}



Chapter 6 ■ Visual effeCts and transitions

149

When you run this code, the clouds appear to scroll infinitely, from the left, across 
the canvas, as illustrated in Figure 6-5.

You can use this feature to create an impressive pseudo 3D effect called parallax 
scrolling. Here’s how: layer multiple tiling sprites like this at the same position, and 
make the images that are supposed to be farther away move slower than the ones that are 
supposed to be closer. Try it!

Tools for Working with Textures
Pixi has three useful tools for working with sprite textures: generateTexture, 
cacheAsBitmap, and the RenderTexture class.

Using generateTexture
Pixi lets you generate a texture from a Graphics or Sprite object, using the 
generateTexture method. Here’s how to use it:

let triangleTexture = triangle.generateTexture();

You can then use that texture to create a new sprite.

let triangleSprite = new Sprite(triangleTexture);

This is great for creating new sprites from existing sprites dynamically while your 
game is running.

Figure 6-5. Using a tiling sprite to easily create an infinitely scrolling background effect



Chapter 6 ■ Visual effeCts and transitions

150

Using cacheAsBitmap
A related property is cacheAsBitmap. Imagine that you have a Container or Sprite object 
that contains thousands of child sprites. Instead of making Pixi process and render each 
and every child, cacheAsBitmap will display the whole container as one single image. To 
use cacheAsBitmap, just set it to true on any Sprite or DisplayObjectContainer object.

sprite.cacheAsBitmap = true;

If any child sprites inside the container are moving, they’ll freeze in place. Set 
cacheAsBitmap back to false to make the parent render as usual and un-freeze the child 
sprites. cacheAsBitmap is a great optimization whenever you need to flatten lots objects 
or complex nested sprites into one single object.

Using RenderTexture
The third little trick you need to know is how to use a RenderTexture (PIXI.RenderTexture) 
object. RenderTexture is a special kind of texture that lets you project a sprite onto 
another sprite. It allows for all kinds of quirky mirror-like effects. Here’s how to create 
RenderTexture and use it to make a new sprite (only the first argument is required):

renderTexture = new RenderTexture(
  renderer, width, height, scaleMode, resolution
);
let sprite = new Sprite(renderTexture);

Now use the renderTexture’s render method to render any other sprite’s texture 
onto the original sprite.

renderTexture.render(anyOtherSprite);

The original sprite’s texture will now have the same texture as anyOtherSprite. If the 
other sprite’s texture is being animated using tilePosition or tileScale, the original 
sprite’s texture will also animate.

RenderTexture’s render method has three arguments (only the first is required).

renderTexture.render(sprite, position, clear);

The second argument, position, is a Point object (PIXI.Point) object that defines 
the sprite’s x and y position. You can use the sprite’s position object for this. But you can 
also create a Point object directly, as follows:

let point = new Point(xPosition, yPosition);

You can then access the point’s values, as follows:

point.x
point.y



Chapter 6 ■ Visual effeCts and transitions

151

The render method’s third argument, clear, is a Boolean that determines whether 
the texture should be cleared before the sprite is drawn.

With a bit of creativity, things can get really funky, really fast. What would happen if 
you rendered a texture back into itself? Figure 6-6 shows a complex example from Pixi’s 
web site.

Figure 6-6. Using RenderTexture to render any sprite to a dynamic texture

Tinting
Sprites have a tint property that lets you change their color. Here’s how to change the tint 
of three sprites to yellow, red and green, respectively.

cat.tint = 0xFFFF660;
tiger.tint = 0x66FF66;
hedgehog.tint = 0xFF6666;



Chapter 6 ■ Visual effeCts and transitions

152

The default tint for every sprite is white (0xFFFFFF), which essentially means, 
“no tint.” Use tinting whenever you want to change a sprite’s color without completely 
changing its texture.

Masking
Pixi lets you use a Graphics object to mask any sprite (or a container with nested child 
sprites). A mask is a shape that hides any part of the sprite that’s outside of the shape’s 
area. To use a mask, create a Sprite and a Graphics object. Then set the sprite’s mask 
property to the shape.

sprite.mask = shape;

Figure 6-8 shows an example. First, an ordinary cat sprite is created. A red square is 
then created and positioned over the cat (the color of the shape doesn’t matter, but red is 
traditional for masks). Last, the cat’s mask property is set to the square. This cuts out the 
image of the cat that’s inside the area of the square. Any part of the cat that’s outside that 
area isn’t visible.

Figure 6-7. Setting a tint property to change a sprite’s color

Figure 6-7 shows the effect this has.



Chapter 6 ■ Visual effeCts and transitions

153

Here’s an abridged version of the code that creates this effect.

let cat = new Sprite(id["cat.png"]);
//... create the cat...
 
let rectangle = new Graphics();
//... create the rectangle...
 
//Mask the cat with the rectangle
cat.mask = rectangle;

You can also animate masks for interesting layering effects.

Blend Modes
The blendMode property determines how semitransparent sprites blend with images below 
them. You have a choice of 17, which are listed ahead. Apply them to a sprite, like this:

sprite.blendMode = PIXI.BLEND_MODES.MULTIPLY;

Figure 6-9 shows three semitransparent sprites with their blend modes set to MULTIPLY.

Figure 6-8. Using a shape to mask a sprite



Chapter 6 ■ Visual effeCts and transitions

154

Here’s a full list of the blend modes you can use, and the effect each produces:

•	 NORMAL. No blending

•	 SOFT_LIGHT, HARD_LIGHT, OVERLAY. Contrast

•	 LIGHTEN, COLOR_DODGE, SCREEN. Lightening

•	 DARKEN, COLOR_BURN, MULTIPLY. Darkening

•	 DIFFERENCE, EXCLUSION. Color inversion

•	 HUE, SATURATION, COLOR, LUMINOSITY, ADD. Complex blending

These are the same transparency blend modes used in image editors (such as 
Photoshop, Pixelmator, or Gimp). The best way to appreciate the subtle effect of each 
blend mode is to open some images in an image editor, apply these blend modes to them, 
and observe the effect. If you’re feeling overwhelmed by choice, I suggest you just use 
MULTIPY for a darkening effect or SCREEN for a lightening effect.

Filters
Pixi has a wide range of filters that let you apply distortion effects to sprites in real time. 
(All the filters are in the PIXI.filters object.) Filters are one of Pixi’s best features, 
because they let you easily create dramatic effects that would otherwise only be possible 
with complex, low-level WebGL programming.

Figure 6-9. Using blend modes to enhance transparency effects



Chapter 6 ■ Visual effeCts and transitions

155

Here’s an example of how to create a BlurFilter (the other filters follow the 
 same format):

//Create the filter
let blurFilter = new PIXI.filters.BlurFilter();
         
//Set any of the filter's properties
blurFilter.blur = 20;
 
//Add the filter to the sprite's `filters` array
cat.filters = [blurFilter];

All Pixi DisplayObjects (Sprite and Container objects) have a filters array. To 
add a filter to a sprite, create the filter and just add it to the sprite’s filters array. You can 
add as many filters as you like.

cat.filters = [blurFilter, sepiaFilter, displacementFilter];

Manage it just like you would any other ordinary array. To clear all of a sprite’s filters, 
just clear the array.

cat.filters = [];

Table 6-1 is a list of Pixi’s currently supported filters, and the properties you can set 
on them.

Table 6-1. Pixi’s supported filters and their properties

Filter Properties What It Does

AsciiFilter size: The pixel size of the area 
that should be converted into 
characters

Displays the image using 
ASCII text characters

AlphaMaskFilter map: A texture Uses alpha pixel values from 
the map texture to let you 
create mask effects with 
gradients

BloomFilter blur: The amount of blur, in 
pixels, on both the x and y axis
blurX: The amount of x axis blur
blurY: The amount of y axis blur
(The default for these is 2.)

A natural-looking Gaussian 
blur, which is great for 
diffuse lighting effects

(continued)



Chapter 6 ■ Visual effeCts and transitions

156

Filter Properties What It Does

BlurDirFilter dirX: The blur in the x direction
dirY: The blur in the y direction

Applies a Gaussian blur in 
a specific direction. (There 
are also two separate 
filters, BlurXFilter and 
BlurYFilter, if you just want 
a blur in one direction.)

BlurFilter blur: The x and y blur amount
blurX: Amount of blur on the x axis
blurY: Amount of blur on the y axis.

Makes the sprite blurry, in a 
slightly less pretty but slightly 
better performing way than 
the BloomFilter

ColorMatrixFilter matrix: An array of 16 numbers. 
Each set of 4 numbers represents 
a color: red, green, blue, alpha.

Gives you fine control over 
color effects. Lets you apply a 
4 by 4 matrix transformation 
on the RGBA color and alpha 
values of every pixel on 
DisplayObject to produce a 
result with a new set of RGBA 
color and alpha values. Lets 
you create luminance, alpha, 
and saturation effects

ColorStepFilter step: A number by which to lower 
the color depth

Lets you lower the color detail 
of an image, for a flatter color 
effect

CrossHatchFilter None Creates a crosshatch effect 
and makes the sprite appear 
to be shaded by short, 
intersecting diagonal lines

DisplacementFilter map: A texture
scale: The multiplier used to 
scale the displacement

Warps a sprite based on pixel 
values in the map texture

DotScreenFilter angle: The angle, in radians, that 
the dots are tilted
scale: The size of the dot (0 to 1)

Makes sprites appear to be 
made of black dots, like comic 
book newsprint

Table 6-1. (continued)

(continued)



Chapter 6 ■ Visual effeCts and transitions

157

Table 6-1. (continued)

Filter Properties What It Does

DropShadowFilter alpha: The transparency (0 to 1)
angle: The shadow angle, in 
radians.
blur: Simultaneously sets the 
x and y axis blur to the same 
amount (a number in pixels)
blurX: Blur on the x axis
blurY: Blur on the y axis
color: The shadow color
distance: The shadow distance, 
in pixels

Creates a drop-shadow

GrayFilter gray: The amount of grayness. 0 is 
none (white); 1 is full (black).

Adds grayness to the sprite

InvertFilter invert: 0 to 1. 0 won’t invert the 
colors; 1 inverts them completely.

Inverts the sprite’s colors

PixelateFilter size: the size of the pixels. A 
Point object with x and y values 
that describe its width and the 
height of the blocks in pixels. x 
is the width of the block, y is the 
height.

Makes the sprite appear 
pixelated (blocky)

SepiaFilter sepia: The strength of the sepia 
effect (0 to 1)

Adds a yellow-brown tint to 
the sprite to make it look like 
an old photograph

ShockwaveFilter center: An object that contains two 
normalized (0 to 1) values that sets 
the center point of the shockwave 
on the sprite. For example, the 
value {x: 0.5, y: 0.5} sets it to 
the dead center of the sprite.
time: The duration, in 
milliseconds, that the shockwave 
should ripple out from the center 
point

An animated effect that 
produces a color shockwave 
that ripples across a sprite

TwistFilter angle: The angle of the twist,  
in radians
offset: A Point object that 
describes the offset of the twist
radius: The radius, in pixels, of 
the twist

Twists the sprite

(continued)



Chapter 6 ■ Visual effeCts and transitions

158

Filter Properties What It Does

RGBSplitFilter red: A Point object that sets the 
red channel offset
green: A Point object that sets the 
green channel offset
blue: A Point object that sets the 
blue channel offset

Splits the Red, Green, Blue 
and Alpha channels to make 
the sprite looks as if it’s being 
displayed by a misaligned 
video projector

SmartBlurFilter None Similar to the BlurFilter, 
but it produces a slightly 
different effect

TiltShiftFilter start: The y value to start the 
effect
end: The y value to end the effect
blur: The strength of the blur. 
Values between 0 and 10 look good.
gradientBlur: The strength of the 
gradient blur

Creates a tilt-shift effect: a 
blurring effect that makes 
images look like small, 
shiny plastic toys. (There’s 
also a TiltShiftXFilter 
and a TiltShiftYFilter, 
for applying the effect on 
one axis only. There’s also 
a TiltShiftAxisFilter, 
which is used by Pixi under 
the hood to help these other 
filters. You don’t have to use 
it directly.)

Table 6-1. (continued)

In addition to these properties, all filters also include additional padding and 
uniforms properties. padding adds space around the filter area. uniforms is an object that 
can be used to send extra values to the WebGL renderer. In day-to-day use, you’ll never 
have to worry about setting the uniforms property.

The best way to see the effect of these filters is an interactive demonstration on Pixi’s 
web site (www.goodboydigital.com/pixijs/examples/15/indexAll.html), shown in 
Figure 6-10. 

http://www.goodboydigital.com/pixijs/examples/15/indexAll.html


Chapter 6 ■ Visual effeCts and transitions

159

 ■ Note pixi’s filters only work with the WebGLRenderer, because the Canvas drawing api 
is too slow to update them in real time.

Video Textures
You can use a video as a texture for a sprite just as easily as you can use an image. First, 
load the video using Pixi’s loader, the same way you would load an image or JSON file. 
Then use the Texture class’s fromVideo method to create a video texture.

let videoTexture = Texture.fromVideo("videoFile.mp4");
let videoSprite = new Sprite(videoTexture);
stage.addChild(videoSprite);

(Alternatively, you can use the Texture.fromVideoUrl method to create a video 
texture from a URL address.)

The video texture is just an ordinary HTML5 video element, which you can access 
through the texture’s baseTexture.source property, as follows:

let videoSource = videoTexture.baseTexture.source;

Figure 6-10. Dynamic filter effects



Chapter 6 ■ Visual effeCts and transitions

160

You can then control the video with any of the HTML5 video element’s properties 
and methods, such as play and pause.

videoSource.play();
videoSource.stop();

Take a look at the HTML video element’s full specification, for a list of all the 
properties and methods you can use.

 ■ Note the fromVideo method has a second optional parameter: scaleMode. this 
determines the algorithm that is used to scale pixels if the size of the texture changes and 
can be any of the three SCALE_MODE values.

Hey, are you keeping up? Our whistle-stop tour is halfway over, but there’s lots more 
to come. Onward!

Working with Multiple Resolutions
Pixi automatically adjusts the pixel density to match the resolution of the device that your 
content is running on. All you have to do is provide different images, at high resolutions 
and low resolutions, and Pixi will help you choose the correct one based on the current 
device resolution.

 ■ Note When you’re creating high res images, add “@2x” to the image file name to indicate 
that the image is double resolution (for “retina” display, for example). this sets the resolution 
property on the sprite’s baseTexture property (sprite.texture.baseTexture.resolution).

The first step is to find out what the current resolution is. You can do this using the 
window.devicePixelRatio method. Assign this value to a variable.

let displayResolution = window.devicePixelRatio;

displayResolution will be a number that describes your resolution. It’s 
automatically provided by the device running your application. 1 is standard resolution;  
2 is high-density resolution; and you’ll increasingly find some super high-density displays 
that report 3.

The next step is to assign this value to the resolution property of the render’s 
options. Do this when you create the renderer, as follows:

let renderer = autoDetectRenderer(
  800, 600, {resolution: displayResolution}
);



Chapter 6 ■ Visual effeCts and transitions

161

Then selectively load the correct image into a texture, based on the resolution.  
Here’s how:

let texture;
if (displayResolution === 2) {
 
  //Load the high resolution image
  texture = TextureCache["highResImage@2x.png"];
 
} else {
 
  //Load the normal resolution image
  texture = TextureCache["normalResImage.png");
}
let anySprite = new Sprite(texture);

If you ever need to know what the resolution of a loaded texture is, you can find out 
by using texture’s baseTexture.resolution property (anySprite.texture.baseTexture.
resolution).

Rope Mesh
Another fun effect is a rope mesh. It allows you to make a sprite oscillate like a wave or 
slither like a snake, as shown in Figure 6-11.

Figure 6-12. Starting with a straight-line image

Figure 6-11. Creating a wave effect with a rope mesh

First, start with an image of the thing you want to deform. The slithering snake 
actually started as a plain, straight-line image, shown in Figure 6-12.



Chapter 6 ■ Visual effeCts and transitions

162

Then decide how many segments along the snake you want to move independently. 
The snake image is 600 pixels wide, so about 20 segments would create a nice effect. Divide 
the image width by the number of segments, to find the length of each rope segment.

numberOfSegments = 20;
imageWidth = 600;
ropeSegment = imageWidth / numberOfSegments;

Next, create an array of 20 Point objects. Each point’s x position (the first argument) 
will be separated from the next point by a distance of one ropeSegment.

points = [];
for (let i = 0; i < numberOfSegments; i++) {
  points.push(new Point(i * ropeSegment, 0));
}

Now create a new Rope object (PIXI.mesh.Rope). Supply two arguments: the image 
texture and the points array.

let snake = new Rope(TextureCache["images/snake.png"], points);

Add the snake to a parent container, so that it’s a bit easier to position. Then add the 
container to the stage and position it.

let snakeContainer = new Container();
snakeContainer.addChild(snake);
stage.addChild(snakeContainer);
snakeContainer.position.set(64, 128);

Now you have to animate the points inside the game loop (the play function, in the 
application structure model we’ve been using in this book). The for loop that creates the 
wave effect works by moving each point of the array in an ellipse.

//Increment the counter each frame
counter += 0.1;
 
//Loop through all the points and shift them in a circular pattern
//to produce the rippling effect
for (let i = 0; i < points.length; i++) {
  points[i].y = Math.sin((i * 0.5) + counter) * 30;
  points[i].x
    = i * ropeSegment
    + Math.cos((i * 0.3) + counter)
    * numberOfSegments;
}

Use a rope mesh anytime you want to make a sprite bend or oscillate in an organic 
and very natural-looking way.



Chapter 6 ■ Visual effeCts and transitions

163

Tweening and Transitions
You’ve learned two ways to animate sprites in this book so far: moving them 
programmatically with code and using keyframe animation. But there’s a third way: 
tweening! A tween is a quick, pre-baked animation effect that you can apply to a sprite 
with a single line of code, to make it change its position, scale, or alpha. You set the start 
and end values, and the tween automatically fills in all the in-between states.

 ■ Note if you haven’t already guessed, the term tween comes from in-between.

Pixi doesn’t have its own built-in tweening engine, but there are plenty of good open 
source, general purpose tweening libraries that you can use, including Tween.js and 
Dynamic.js. Use either of those two libraries, if you want to make very specialized custom 
tween effects. But I’m going to show you a very easy-to-use one called Charm.js, which 
was made by me and designed to work specifically with Pixi.

Setting Up and Running Charm 
To start using Charm, download it from its code repository (github.com/kittykatattack/ 
charm) and link to the charm.js file with a <script> tag. Create a new instance of Charm 
at the beginning of your program and initialize it using the PIXI object in the constructor, 
as follows:

c = new Charm(PIXI);

The variable c now represents our running instance of Charm.
Just as with the particle effects you learned to use in the previous chapter, tweens 

must be updated for each frame in the game loop. Call Charm’s update method in the 
game loop, just after you call the state function, as follows:

function gameLoop(){
  requestAnimationFrame(gameLoop);
  state();
  c.update();
  renderer.render(stage);
}

Now you’re ready to start tweening!



Chapter 6 ■ Visual effeCts and transitions

164

Sliding Tweens
One of Charm’s most useful tween effects is slide. Use the slide method to make a sprite 
move smoothly from its current position on the canvas to any other position. The slide 
method takes seven arguments, but only the first three are required.

slide(
  anySprite,              //A sprite
  finalXPosition,         //The x position where the movement should end
  finalYPosition,         //The y position where the movement should end
  durationInFrames,       //How long the movement should last, in frames
  easingType,             //The easing style of the movement
  yoyo?,                  //A Boolean. Should the sprite yoyo?
  delayTimeBeforeRepeat   //Delay time, in ms, before the sprite yoyos.
)

durationInFrames determines the number of frames over which the tween should 
occur (the default is 60). The easingType is a string that can be any of 15 different types, 
which you’ll find listed ahead (the default is "smoothstep"). yoyo is a Boolean that 
determines whether the sprite should move back and forth continuously between the 
tween’s start and end points. delayTimeBeforeRepeat is a number, in milliseconds, that 
determines the amount of optional delay before the sprite yoyos back.

Here’s how to use the slide method to make a sprite move from its original position 
to x/y point 128/128 over 120 frames. Figure 6-13 illustrates the effect.

c.slide(pixie, 128, 128, 120);

Figure 6-13. Sliding a sprite to a new position



Chapter 6 ■ Visual effeCts and transitions

165

That’s the only line of code you have to write. Charm’s engine animates the sprite 
automatically for you. This code will work the same way in the setup function or in your 
game loop (the play function). If you want the sprite to yoyo back and forth between its 
start and end points, here’s some code you could write:

c.slide(pixie, 128, 128, 120, "smoothstep", true);

true turns the yoyo effect on.

Tween Objects
All of Charm’s tween methods return a tween object, which you can create like this:

let slidePixie = c.slide(pixie, 128, 128, 120);

slidePixie is the tween object in this example, and it contains some useful 
properties and methods that let you control the tween.

One of these is a user-assignable onComplete method that will run as soon as the 
tween is finished. Here’s how you could use onComplete to display a message in the 
console when the sprite has reached its destination.

let slidePixie = c.slide(pixie, 128, 128, 120);
slidePixie.onComplete = () => console.log("Pixie slide complete");

If you set yoyo to true, onComplete will run continuously whenever the sprite 
reaches both its start and end points.

Tweens also have pause and play methods that let you stop and start the tween.

slidePixie.pause();
slidePixie.play();

Tween objects have a playing property that will be true if the tween is currently 
playing. All of Charm’s methods return tween objects that you can control and access 
similarly.

Setting the Easing Types
The slide method’s fourth argument is the easingType. It’s a string that determines how 
quickly or slowly the tween speeds up and slows down. There are 15 of these types to 
choose from, and they’re the same for all of Charm’s different tween methods. The easing 
types fall in to 5 general categories, so you can pick one by first choosing the general 
category and then the more specific type. Each category has a basic type and then a squared 



Chapter 6 ■ Visual effeCts and transitions

166

and cubed version. The squared and cubed versions just exaggerate the basic effect to 
further degrees. The default easing type for most of Charm’s tweens is "smoothstep".

•	 Linear: "linear". No easing on the sprite at all; the sprite just 
starts and stops abruptly

•	 Smoothstep: "smoothstep", "smoothstepSquared", 
"smoothstepCubed". Speeds the sprite up and slows it down in a 
very natural looking way

•	 Acceleration: "acceleration", "accelerationCubed". Gradually 
speeds the sprite up and stops it abruptly. For a slightly more 
rounded acceleration effect, use "sine", "sineSquared", or 
"sineCubed".

•	 Deceleration: "deceleration", "decelerationCubed". 
Starts the sprite abruptly and gradually slows it down. For a 
slightly more rounded deceleration effect, use "inverseSine", 
"inverseSineSquared", or "inverseSineCubed".

•	 Bounce: "bounce 10 -10". This will make the sprite overshoot 
the start and end points and bounce slightly when it hits them. 
Try changing the multipliers, 10 and -10, to vary the effect.

Use any of these easing types in Charm’s tween methods in the examples that follow.

Using slide for Scene Transitions
One thing you’ll definitely want to do in your game or application is make a screen slide 
away and a new screen slide into view. It could be your game’s title screen that slides 
away to reveal the game’s first level, or it could be a menu screen that slides away to reveal 
more application content. You can use the slide method to do this. A quick practical 
example will demonstrate how.

First, create two container objects: sceneOne and sceneTwo and add them to the stage.

sceneOne = new Container();
sceneTwo = new Container();
stage.addChild(sceneOne);
stage.addChild(sceneTwo);

Next, create sprites for each scene. Make a blue rectangle as big as the canvas; make 
some text that displays “Scene One”; and add both to the sceneOne container. Make a red 
rectangle as big as the canvas; make some text that displays “Scene Two”; and add both of 
those to the sceneTwo container. You’ll end up with two container objects that might look 
something like what you see in Figure 6-14.



Chapter 6 ■ Visual effeCts and transitions

167

Here’s an abridged version of some code that you could write to do this:

//1. Scene one sprites:
 
let blueRectangle = new Graphics();
//... draw the rectangle ...
sceneOne.addChild(blueRectangle);
 
let sceneOneText = new Text(/*...*/);
//... format the text and center it ...
sceneOne.addChild(sceneOneText);
 
//2. Scene two sprites:
 
let redRectangle = new Graphics();
//... draw the rectangle ...
sceneTwo.addChild(redRectangle);
 
let sceneTwoText = new Text(/*...*/);
//... format the text and center it ...
sceneTwo.addChild(sceneTwoText);

Of course, in a real project, you would fill each container with as many sprites as you 
require for each scene, just as we did in the Treasure Hunter game in Chapter 4. You can 
add as many more scene containers as you need for your project.

Next, move sceneTwo out of the way, so that it’s sitting beyond the right edge of the 
canvas. A line of code such as the following will do the trick:

sceneTwo.x = renderer.width;

This will reveal sceneOne on the canvas, with sceneTwo waiting to slide out from the 
left when it’s needed. Figure 6-15 illustrates this.

Figure 6-14. Two containers that represent each scene

http://dx.doi.org/10.1007/978-1-4842-1094-9_4


Chapter 6 ■ Visual effeCts and transitions

168

Finally, use the slide method to transition from sceneOne to sceneTwo. Just slide 
sceneOne out of the way, to the left, and slide sceneTwo in from the right, to take its place.

c.slide(sceneTwo, 0, 0);
c.slide(sceneOne, -renderer.width, 0);

Figure 6-16 illustrates what this code will do.

Figure 6-15. sceneTwo is waiting just offscreen

Figure 6-16. A smooth transition from scene one to scene two

Timed Transitions
You can initiate a transition like this in your game and application whenever you need 
it. You can make the transition occur after a set time interval, by using a helpful custom 
function called wait.

function wait(duration = 0) {
  return new Promise((resolve, reject) => {
    setTimeout(resolve, duration);
  });
}



Chapter 6 ■ Visual effeCts and transitions

169

To use wait, supply its one argument with the time, in milliseconds, that you want it 
to wait for. Here’s how you can use wait to transition from sceneOne to sceneTwo after a 
delay of 1 second (1000 milliseconds).

wait(1000).then(() => {
  c.slide(sceneTwo, 0, 0);
  c.slide(sceneOne, -renderer.width, 0);
});

In the next chapter, you’ll learn how to use mouse and touch interaction, which you 
can use to initiate actions such as this.

Following Curves
The slide method animates a sprite along a straight line, but you can use another 
method, called followCurve, to make a sprite move along a Bezier curve. First, define the 
Bezier curve as a 2D array of 4 x/y points, as follows:

let curve = [
  [pixie.x, pixie.y],   //Start position
  [108, 32],            //Control point 1
  [176, 32],            //Control point 2
  [196, 160]            //End position
];

The second and third set of points are the Bezier curve’s control points (see Chapter 3,  
if you need a reminder of how Bezier curve control points work). Next, use Charm’s 
followCurve method to make a sprite follow that curve. (Supply the curve array as the 
second argument.)

c.followCurve(
  pixie,            //The sprite
  curve,            //The Bezier curve array
  120,              //Duration, in milliseconds
  "smoothstep",     //Easing type
  true,             //Should the tween yoyo?
  1000              //Delay, in milliseconds, before it yoyos
);

Only the first two arguments are required. Figure 6-17 illustrates the effect.

http://dx.doi.org/10.1007/978-1-4842-1094-9_3


Chapter 6 ■ Visual effeCts and transitions

170

You’ll have the best result if you center the sprite over the curve. You can do that by 
centering the sprite’s anchor point, as follows:

pixie.anchor.set(0.5, 0.5);

The slide and followCurve methods are good for simple back-and-forth animation 
effects, but you can also connect them to make sprites traverse complex paths.

Following Paths
You can use Charm’s walkPath method to connect a series of points and make a sprite 
move to each of those points. Each point in the series is called a waypoint. First, start with 
a 2D array of x/y position waypoints that map out the path you want the sprite to follow.

let waypoints = [
  [32, 32],          //First x/y point
  [32, 128],         //Next x/y point
  [300, 128],        //Next x/y point
  [300, 32],         //Next x/y point
  [32, 32]           //Last x/y point
];

You can use as many waypoints as you need.

Figure 6-17. Making a sprite follow a curve



Chapter 6 ■ Visual effeCts and transitions

171

Next, use the walkPath method to make the sprite move to all those points, in 
sequence. (Only the first two arguments are required.)

c.walkPath(
  cat,             //The sprite
  waypoints,       //The array of waypoints
  300,             //Total duration, in frames
  "smoothstep",    //Easing type
  true,            //Should the path loop?
  true,            //Should the path reverse?
  1000             //Delay in milliseconds between segments
);

If you set the fifth argument to true, the sprite will start again from the beginning 
when it reaches the end. If you set the sixth argument to true, the sprite will walk the path 
in reverse when it reaches the end. The last argument sets the delay, in milliseconds, that 
the sprite should wait before moving to the next section of the path. Figure 6-18 illustrates 
what this code does.

Figure 6-18. Making a sprite follow a path of connected waypoints

With the walkCurve method, you can make a sprite follow a series of connected curves. 
First, create any array of Bezier curves that describe the path you want the sprite to follow.

let curvedWaypoints = [
 
    //First curve
    [[hedgehog.x, hedgehog.y],[75, 500],[200, 500],[300, 300]],
 
    //Second curve
    [[300, 300],[250, 100],[100, 100],[hedgehog.x, hedgehog.y]]
];



Chapter 6 ■ Visual effeCts and transitions

172

The four points for each curve are the same as in the followCurve method: the start 
position, control point 1, control point 2, and the end position. The last point in the first 
curve should be the same as the first point in the next curve. You can use as many curves 
as you need.

Next, supply the curvedWaypoints array as the second argument in the  
walkCurve method:

let hedgehogPath = c.walkCurve(
  hedgehog,                     //The sprite
  curvedWaypoints,              //Array of curved waypoints
  300,                          //Total duration, in frames
  "smoothstep",                 //Easing type
  true,                         //Should the path loop?
  true,                         //Should the path yoyo?
  1000                          //Delay in milliseconds between segments
);

Figure 6-19 illustrates the effect of this code.

Figure 6-19. Making a sprite follow a path of connected curves



Chapter 6 ■ Visual effeCts and transitions

173

Using walkPath and walkCurve will give you a great head start for making some fun 
animated sprites for games.

A Few More Tween Effects
Charm has bunch of other built-in tween effects that you’ll find a lot of use for in games 
and applications. Here’s a quick roundup.

fadeOut and fadeIn
Use fadeOut to make a sprite become gradually transparent and fadeIn to make it 
reappear. Here’s their most basic usage:

c.fadeOut(anySprite);
c.fadeIn(anySprite);

The optional second argument is the duration, in frames, that the fade should last 
(the default is 60 frames).

pulse
Use pulse to make a sprite fade out and in, continuously, at a steady rate.

c.pulse(anySprite);

The optional second argument is the duration, in frames, between each fade-in and 
fade-out. An optional third argument lets you set the minimum alpha level that the sprite 
should be reduced to. For example, if you only want the sprite to become half-transparent 
before fading in again, set the third argument to 0.5, as follows:

c.pulse(anySprite, 60, 0.5);

scale
You can tween a sprite’s scale with the scale method. Here are the arguments you can 
use (only the first is required):

c.scale(
  anySprite          //The sprite
  endScaleX,         //The final x scale value
  endScaleY,         //The final y scale value
  durationInframes   //The duration, in frames
);



Chapter 6 ■ Visual effeCts and transitions

174

breathe
If you want the scale tween effect to yoyo back and forth, use the related breathe method. 
It’s a scaling effect that makes a sprite look as though it’s breathing in and out. Here’s the 
full argument list (only the first is required):

c.breathe(
  anySprite,          //The sprite
  endScaleX,          //The final scale x value
  endScaleY,          //The final scale y value
  frames,             //The duration, in frames
  yoyo,               //Should the tween yoyo?
  delayBeforeRepeat,  //Delay, in milliseconds, before yoyoing
);

strobe
Use the strobe method to make a sprite appear to flash like a strobe light, by rapidly 
changing its scale.

c.strobe(sprite);

wobble
Make a sprite wobble like a plate of jelly, using the wobble method.

c.wobble(sprite);

If you use any of these scaling tween effects (scale, breathe, strobe, or wobble), 
center the sprite’s anchor point, so that the scaling occurs from the sprite’s center.

Summary
In this chapter, we overturned Pixi’s toy box on the floor and spent a dizzying few pages 
playing with all the contents. You learned how to make infinite scrolling effects with tiling 
sprites, slithering snakes with rope meshes, and how to display videos on sprites. You also 
learned everything you need to know about manipulating textures with cacheAsBitmap, 
generateTexture, and RenderTexture. If that’s not enough, you found out how to tint 
sprites, use masks, transparency blend modes, as well as Pixi’s vast collection of filter 
effects. And, finally, you learned how to quickly create scene transition and sprite easing 
effects with the Charm micro-library.

Are you exhausted yet? No? That’s great, because there’s one more exciting chapter 
just around the corner! It will cover the last essential skill you have to know to start 
working with Pixi: mouse and touch interactivity.



175

Chapter 7

Mouse and Touch Events

You’ve learned how to add interactivity to sprites, using the keyboard, but most of your 
games and applications will use a mouse or touch interface. In this chapter, you’ll learn 
how to

•	 Use a universal pointer object to interact with sprites

•	 Work with mouse and touch events

•	 Create a drag-and-drop interface

•	 Create clickable, pressable buttons

And, as a bonus, at the end of this chapter, you’ll put all these skills together to make 
a complete game.

But first, let’s find out the basics you need to know to start using mouse and touch 
interactivity with Pixi.

Setting Up Tink
Pixi has a limited set of built-in tools for mouse and touch interactivity, but for the kinds 
of rich interactivity you’ll need for games and applications, I recommend that you use a 
third-party library to make things easier. I wrote a lightweight helper library called Tink 
that adds some of the most useful features you’ll need: a universal pointer object, a drag-
and-drop interface, and a button object.

To start using Tink, first download it from its source code repository: github.com/
kittykatattack/tink. Link to the tink.js script in your HTML file, and create a new 
instance of Tink at the beginning of your program. Supply it with a reference to PIXI and 
the renderer.view object (the HTML5 canvas).

let t = new Tink(PIXI, renderer.view);

(In this chapter, the variable t will represent our running Tink instance.) Generally, 
you should create a new Tink instance in your setup function, after all the resources have 
loaded.



Chapter 7 ■ Mouse and touCh events

176

Next, call Tink’s update method inside your game loop, to update all of Tink’s 
interactive objects each frame. In the application template model we’ve been using in this 
book, update Tink just after you call the state function, as follows:

function gameLoop(){
  requestAnimationFrame(gameLoop);
  state();
  t.update();
  renderer.render(stage);
}

This is what you need to get started on the examples in the chapter.

 ■ Note among its many other helpful methods that you’ll learn ahead, tink also includes 
the keyboard method that you learned to use in Chapter 2 to capture key presses.

Setting the Optional Scale
Tink’s constructor has an optional second argument: scale. The default scale value is 
1, but if you’ve rescaled the canvas using the scaleToWindow function you learned to use 
in Chapter 1, supply scaleToWindow’s return value. Here’s an example of what this might 
look like:

First, run scaleToWindow and capture the returned scale value at the beginning of 
your program.

let scale = scaleToWindow(renderer.view);

Next, create a new instance of Tink in the setup function, and supply the scale value 
as the second argument in the constructor.

let t = new Tink(PIXI, renderer.view, scale);

This will ensure that the coordinates that Tink uses will match the canvas’s scaled 
pixel coordinates.

A Universal Pointer
Tink lets you make a pointer object that automatically figures out whether the user is 
interacting with a mouse or with touch. Use Tink’s makePointer method to create a pointer.

pointer = t.makePointer();

Usually, one pointer will be enough for most games or applications, but you can 
make as many as you require.

http://dx.doi.org/10.1007/978-1-4842-1094-9_2
http://dx.doi.org/10.1007/978-1-4842-1094-9_1


Chapter 7 ■ Mouse and touCh events

177

 ■ Note does your game or application require complex multi-touch interaction with 
gestures? then consider using an excellent htML5 library called hammer.js (hammerjs.
github.io/getting-started/).

The pointer object has three user-definable methods that you can program: press, 
release, and tap. press is triggered when the left mouse button is pressed, or the user 
presses his or her finger to the device screen. release is triggered when the mouse button 
is released, or the user lifts his or her finger from the screen. tap is triggered if the left 
mouse button is clicked, or the user taps the screen. Here’s an example of how you can 
define these methods on the pointer:

pointer.press = () => console.log("The pointer was pressed");
pointer.release = () => console.log("The pointer was released");
pointer.tap = () => console.log("The pointer was tapped");

Also use the tap method to capture mouse clicks.
The pointer also has x and y properties that tell you its position on the canvas (Pixi’s 

renderer.view).

pointer.x
pointer.y

It also has three Boolean properties that indicate the pointer’s current state: isUp, 
isDown, and tapped.

pointer.isUp
pointer.isDown
pointer.tapped

 ■ Note run the pointer.html file in this chapter’s source files, for an interactive 
demonstration of how to create and use a pointer.

Pointer Interaction with Sprites
The pointer has a hitTestSprite method that you can use to find out if the pointer is 
touching a sprite.

pointer.hitTestSprite(anySprite);

If the pointer is within the rectangular area of a sprite, hitTestSprite will return true.



Chapter 7 ■ Mouse and touCh events

178

hitTestSprite will also work with circular sprites. Just add a property called 
circular to a sprite and set it to true.

anyCircularSprite.circular = true;

This flags hitTestSprite to use a circular collision detection algorithm instead of 
the default rectangular one.

If you want to display a hand icon while the pointer is over a sprite, you can set the 
pointer’s cursor property to "pointer". Setting it to "auto" when the pointer leaves the 
sprite’s area will display the default arrow icon. Following is some sample code you could 
use inside your game loop to enable this feature:

if (pointer.hitTestSprite(anySprite)) {
   
  //Display a hand icon while the pointer is over the sprite
  pointer.cursor = "pointer";
}
else {
   
  //Display the default arrow icon when the
  //pointer moves outside the sprite's area
  pointer.cursor = "auto";
}

 ■ Note pointer.cursor only references the htML5 canvas element’s style.cursor 
property to achieve this, using two standard values from the htML5 spec: "pointer" and 
"auto". You can assign any cursor style value that you like. (a web search for “htML style 
cursor” will turn up a complete list of possible values.) You can also set this manually, if you 
want to through pixi’s renderer.view object. here’s how: renderer.view.style.cursor = 
"cursorStyle".

These cursor styles will only be visible on a mouse-based interface; on a touch 
interface, they’re ignored.

Run the spriteInteractivity.html file in the chapter’s source files for a working 
example, shown in Figure 7-1.



Chapter 7 ■ Mouse and touCh events

179

Move the pointer over the square and circle sprites and watch how the cursor icon 
changes. The text also displays “Rectangle!” or “Circle!” or “No collision…,” based on what 
the pointer is touching. Because the circle sprite’s circular property was set to true, 
you’ll notice that the shape of the circle is accurately detected. Here’s the code from the 
game loop that achieves these effects:

if (pointer.hitTestSprite(rectangle)) {
  message.text = "Box!";
  pointer.cursor = "pointer";
}
else if (pointer.hitTestSprite(circle)) {
  message.text = "Circle!";
  pointer.cursor = "pointer";
}
else {
  message.text = "No collision…";
  pointer.cursor = "auto";
}

Being able to detect which sprite the pointer is touching is nice, but better still would 
be if you could use it to move the sprite around the canvas. You can!

Drag-and-Drop Sprites
You can add drag-and-drop functionality to a sprite with Tink’s makeDraggable method. 
Just supply it with a single sprite, or a list of sprites, that you want to make draggable.

t.makeDraggable(cat, tiger, hedgehog);

You can then use the mouse or touch to drag the sprites around the canvas, as shown 
in Figure 7-2.

Figure 7-1. Interacting with sprites by using a pointer



Chapter 7 ■ Mouse and touCh events

180

When you select a draggable sprite, its stacking order changes so that it appears 
above the other sprites. The mouse’s arrow icon also changes to a hand when it’s over a 
draggable sprite.

Draggable sprites have a Boolean property called draggable that is set to true. To 
disable dragging, set draggable to false.

anySprite.draggable = false;

Setting it back to true will enable dragging again.
To completely remove a sprite (or list of sprites) from the drag-and-drop system, use 

the makeUndraggable method, as follows:

t.makeUndraggable(cat, tiger, hedgehog);

Drag-and-drop is a fundamental interactive feature that can be used as the basis for 
making puzzles, games, matching games, or sophisticated user interfaces.

 ■ Note If you’re making a drag-and-drop matching game, use the hitTestRectangle 
function you learned in Chapter 4, to find out whether a sprite you’re dragging is touching 
the correct destination target sprite.

Figure 7-2. Using the makeDraggable method to drag sprites around the canvas

http://dx.doi.org/10.1007/978-1-4842-1094-9_4


Chapter 7 ■ Mouse and touCh events

181

Buttons
Buttons are an important user interface (UI) component that you’ll definitely want to use 
in your games and applications. Tink has a useful button method that lets you quickly 
create them. Before I show you how to make buttons, let’s first find out what buttons 
actually are and how you can use them.

What Are Buttons?
You can think of buttons as “clickable/touchable sprites.” The most important thing you 
have to know about buttons is that they have states and actions. States define what the 
button looks like, and actions define what it does.

Most buttons have the following three states:

•	 Up. When the pointer is not touching the button

•	 Over. When the pointer is over the button

•	 Down. When the pointer is pressing down on the button. 
Figure 7-3 shows an example of these three button states.

Figure 7-3. Up, Over, and Down button states

Touch-based interfaces require only two states: up and down.
With the button object that you’ll learn to make in the next section, you will be able 

to access these states through the button’s state property, as follows:

playButton.state

The state property could have the string value "up", "over", or "down", which you 
could use in your game logic.



Chapter 7 ■ Mouse and touCh events

182

Buttons also have actions, such as the following:

•	 Press. When the pointer presses the button

•	 Release. When the pointer is released from the button

•	 Over. When the pointer moves into the button’s area.

•	 Out. When the pointer moves out of the button’s area

•	 Tap. When the button has been tapped (or clicked)

You can define these actions as user-definable methods, like this:

playButton.press = () => console.log("pressed");
playButton.release = () => console.log("released");
playButton.over = () => console.log("over");
playButton.out = () => console.log("out");
playButton.tap = () => console.log("tapped");

In the button object that we’ll make ahead, you’ll be able to access the button’s 
“pressed” and “released” actions in a string property, as follows:

playButton.action

Got it? Good! So, how do we actually make buttons?

Making Buttons
First, start with three images that define the three button states. You might call them  
up.png, over.png, and down.png. Then add those three images to a tileset, or as frames in 
a texture atlas. Figure 7-4 shows a simple texture atlas that contains these three states. 

Figure 7-4. Adding the button image states to a texture atlas



Chapter 7 ■ Mouse and touCh events

183

 ■ Note although having three image states is standard, sometimes buttons have only 
two image states. this is particularly true of touch-only buttons, which don’t have an “over” 
state. the button object that we’re going to make will use three images, if they’re available, 
but if there are only two, they will be used for the “up” and “down” states.

Next, publish the texture atlas and load it into your program.

loader
  .add("images/button.json")
  .load(setup);

Then, in the setup function where you initialize your sprites, create an array that 
references each of the three button frames in this order: up, over, and down.

let buttonFrames = [
  id["up.png"],
  id["over.png"],
  id["down.png"]
];

These don’t have to be frame ids: you can use an array of any Pixi textures, such as 
single image textures, if you want to.

Finally, use Tink’s button method to create the button. Supply the buttonFrames 
array as the first argument.

let playButton = t.button(buttonFrames, 32, 96);

The second and third optional arguments are the button’s x and y position.
And don’t forget to add the button to stage!

stage.addChild(playButton);

At its heart, a button is just an ordinary Pixi MovieClip with extra properties and 
methods, so you can treat it like any other MovieClip.

To see this button in action, run the button.html file in this chapter’s source code 
files. Its output is shown in Figure 7-5. When you move the pointer over the button, 
the cursor changes to a hand icon. The game loop updates some text that displays the 
button’s state and action.

stateMessage.text = `State: ${playButton.state}`;
actionMessage.text = `Action: ${playButton.action}`;



Chapter 7 ■ Mouse and touCh events

184

And now you have an essential UI element that you can use in all kinds of games and 
applications.

Figure 7-5. An interactive button sprite



Chapter 7 ■ Mouse and touCh events

185

Making an Interactive Sprite
Tink has another useful method called makeInteractive that lets you add button 
properties and methods to any ordinary sprite.

t.makeInteractive(anySprite);

This lets you turn any sprite into a button-like object. You can now assign press or 
release methods to the sprite and access its state and action properties, as follows:

anySprite.press = () => {
  //Do something when the pointer presses the sprite
};
 
anySprite.release = () => {
  //Do something when the pointer is released after pressing the sprite
};

Take a look at the interactiveSprite.html file in the chapter’s source files for an 
example of how you could use this feature to make a shape that randomly changes color 
each time you press it. (See Figure 7-6.)

Figure 7-6. Clicking to make the circle display random colors

Now that you know how to add interactivity to any sprite, let’s find out how you can 
use this new skill to make a game.

Case Study: Pixie Perilousness!
Play the game Pixie Perilousness! in this chapter’s source files (pixiePerilousness.html) 
for a great example of a simple game that you can make using most of the tools you’ve 
learned in this book. Tap the screen to make the pixie fly, and help her navigate through 
the gaps in 15 pillars to reach the finish, as shown in Figure 7-7. A trail of multicolored 
fairy dust follows her as she flies through the course. If she hits one of the green blocks, 
she explodes in a shower of dust. But if she manages to navigate through the increasingly 
narrowing gaps between all 15 pillars, she reaches a big floating “Finish” sign.



Chapter 7 ■ Mouse and touCh events

186

The game is less than 300 lines of code long and is a great model for you to use to start 
building your own games. Let’s go on a quick tour of how Pixie Perilousness! was made.

 ■ Note You’ll find the complete source code listing for pixie perilousness! in appendix a, 
which you can use as a reference to see how all the code fits together in its proper context.

Creating the Scrolling Background 
Pixie Perilousness! is a side-scrolling game using a parallax effect. Parallax is a shallow 
3D effect that creates the illusion of depth by making the background scroll at a slower 
rate than the foreground. This makes the background look as if it’s farther away.

To make the sky background, I started with a seamless 512 by 512 image of some 
clouds. The image is a big frame in the game’s texture atlas called clouds.png, shown in 
Figure 7-8.

Figure 7-7. Helping the pixie fly through the obstacle course of pillars to reach the finish



Chapter 7 ■ Mouse and touCh events

187

In the program’s setup function, I used the clouds.png frame to create a 
TilingSprite called sky.

sky = new TilingSprite(
  id["clouds.png"],
  renderer.view.width,
  renderer.view.height
);
stage.addChild(sky);

Figure 7-8. The clouds.png frame image in the texture atlas



Chapter 7 ■ Mouse and touCh events

188

The play function (which is called each frame by gameLoop) then moves the 
tiling sky by a small amount to the left of each frame, by slightly decreasing the sky’s 
tilePosition.x value.

sky.tilePosition.x -= 1;

And that’s all there is to it—infinite scrolling!

Creating the Pillars 
There are fifteen pillars in the game, with gaps that the pixie must fly through. Every five 
pillars, the gap between the top and bottom sections becomes narrower. The first five 
pillars have a gap of four blocks, the next five have a gap of three blocks, and the last five 
have a gap of two blocks. This makes the game increasingly difficult as the pixie flies 
farther. The exact position of the gap is random for each pillar, and different every time 
the game is played. Each pillar is spaced by 384 pixels, but Figure 7-9 shows what they 
would look like if they were right next to one another.

Figure 7-9. The gap between the top and bottom of each pillar gradually narrows

You can see how the gap gradually narrows from four spaces on the left down to two 
on the right.

All the blocks that make up the pillars are in a Container called blocks.

blocks = new Container();
stage.addChild(blocks);



Chapter 7 ■ Mouse and touCh events

189

A nested for loop creates each block and adds it to the blocks container. The outer 
loop runs fifteen times, once to create each pillar. The inner loop runs eight times, once 
for each block in the pillar. The blocks are only added if they’re not occupying the range 
that’s been randomly chosen for the gap. Every fifth time the outer loop runs, the size of 
the gap narrows by one. All this happens inside the program’s setup function.

//What should the initial size of the gap be between the pillars?
let gapSize = 4;
 
//How many pillars?
let numberOfPillars = 15;
 
//Loop 15 times to make 15 pillars
for (let i = 0; i < numberOfPillars; i++) {
 
  //Randomly place the gap somewhere inside the pillar
  let startGapNumber = randomInt(0, 8 - gapSize);
 
  //Reduce the `gapSize` by one after every fifth pillar. This is
  //what makes gaps gradually become narrower
  if (i > 0 && i % 5 === 0) gapSize -= 1;
 
  //Create a block if it's not within the range of numbers
  //occupied by the gap
  for (let j = 0; j < 8; j++) {
    if (j < startGapNumber || j > startGapNumber + gapSize - 1) {
      let block = u.sprite(id["greenBlock.png"]);
      blocks.addChild(block);
 
      //Space each pillar 384 pixels apart. The first pillar will be
      //placed at an x position of 512
      block.x = (i * 384) + 512;
      block.y = j * 64;
    }
  }
 
  //After the pillars have been created, add the finish image
  //right at the end
  if (i === numberOfPillars - 1) {
    finish = u.sprite(id["finish.png"]);
    blocks.addChild(finish);
    finish.x = (i * 384) + 896;
    finish.y = 192;
  }
}

The last part of the code adds the big floating finish sprite to the world, which the 
pixie will see, if she manages to make it through to the end.



Chapter 7 ■ Mouse and touCh events

190

The play function moves the group of blocks by 2 pixels to the right each frame, but 
only while the finish sprite is offscreen.

if (finish.getGlobalPosition().x > 256) {
  blocks.x -= 2;
}

When the finish sprite scrolls into the center of the canvas, the blocks container 
will stop moving. Notice that the code uses the finish sprite’s global x position to test 
whether it’s inside the area of the canvas. Because global coordinates are relative to the 
canvas, not the parent container, they’re really useful for just these kinds of situations in 
which you want to find a nested sprite’s position on the canvas.

Making Pixie Fly 
The pixie character is an animated MovieClip sprite made by using three texture atlas 
frames. Each frame is one image in the pixie’s wing-flapping animation. (Figure 7-10 
illustrates these texture atlas frames.) Here’s the code from the setup function that creates 
the pixie sprite.

let pixieFrames = [
  id["0.png"],
  id["1.png"],
  id["2.png"]
];
pixie = u.sprite(pixieFrames);
stage.addChild(pixie);
pixie.fps = 24;
pixie.position.set(232, 32);
pixie.vy = 0;
pixie.oldVy = 0;



Chapter 7 ■ Mouse and touCh events

191

You can see that the preceding code uses the custom sprite function from the 
SpriteUtilities library. Why? Because it makes creating sprites so easy!

The pixie sprite has a new property, called oldVy, which, as you’ll see ahead, is 
going to help us calculate the pixie’s vertical velocity.

To make the pixie move, the looping play function applies –0.05 to her vertical 
velocity each frame, to create gravity.

pixie.vy += -0.05;
pixie.y -= pixie.vy;

The player can make her fly by tapping or clicking anywhere on the canvas. This is 
done by assigning a custom tap method to a pointer object, which you learned to create in 
this chapter. Each tap adds 1.5 to the pixie’s vertical velocity, pushing her upward. Here’s 
the code from the setup function that makes the pointer and assigns the tap method.

pointer = t.makePointer();
pointer.tap = () => {
  pixie.vy += 1.5;
};

Figure 7-10. A stream of multicolored particles is emitted when the fairy flaps her wings



Chapter 7 ■ Mouse and touCh events

192

Emitting Pixie Dust 
The pixie emits a stream of multicolored particles while she’s flapping her wings. The 
particles are constrained to an angle between 2.4 and 3.6 radians, so they’re emitted 
within a cone-shaped wedge to the left of the pixie, as shown in Figure 7-10. The particle 
stream randomly emits pink, yellow, green, or violet particles, each of which is a separate 
frame on the texture atlas.

As you learned earlier in Chapter 5, Dust, the particle effects library, has a create 
method that will randomly display a frame on a sprite if that sprite contains multiple 
frames. To make this work, first define an array of texture atlas frames that you want to use 
for your particles.

dustFrames = [
  id["pink.png"],
  id["yellow.png"],
  id["green.png"],
  id["violet.png"]
];

Next, use those frames to initialize the sprite creation function that’s supplied to the 
emitter (I’ve highlighted the most important bit of code), as follows:

//Create a new instance of Dust
d = new Dust(PIXI);
 
//Next, create the emitter
particleStream = d.emitter(
  300,                                 //The interval
  () => d.create(                      //The creation function
    pixie.x + 8,                       //x position
    pixie.y + pixie.height / 2,        //y position
    () => u.sprite(dustFrames),        //Particle sprite
    stage,                             //The parent container
    3,                                 //Number of particles
    0,                                 //Gravity
    true,                              //Random spacing
    2.4, 3.6,                          //Min/max angle
    18, 24,                            //Min/max size
    2, 3,                              //Min/max speed
    0.005, 0.01,                       //Min/max scale speed
    0.005, 0.01,                       //Min/max alpha speed
    0.05, 0.1                          //Min/max rotation speed
  )
);

http://dx.doi.org/10.1007/978-1-4842-1094-9_5


Chapter 7 ■ Mouse and touCh events

193

You now have a particle emitter called particleStream. Just call its play method to 
make it start emitting particles.

particleStream.play();

Fine-Tuning the Pixi’s Animation 
When the pixie is going up, she flaps her wings and emits magical fairy dust. When 
she’s going down, the dust stops and she stops flapping her wings. But how do we know 
whether she’s flying upward or downward?

We have to find the difference in her velocity between the current frame and the 
previous frame. If her current velocity is greater than her previous velocity, she’s going 
up. If it’s less, and the previous velocity is greater than zero, she’s doing down. The code 
stores the fairy’s vy value from the current frame in a property called oldVy. When oldVy 
is accessed in the next frame, it tells you what the fairy’s previous vy value was. Here’s the 
code from the program’s play function that does this:

//Decide whether or not the pixie should flap her wings
//If she's starting to go up, make her flap her wings and emit pixie dust
if (pixie.vy > pixie.oldVy) {
  if(!pixie.animating) {
    pixie.playAnimation();
    if (pixie.visible && !particleStream.playing) {
      particleStream.play();
    }
  }
}
//If she's staring to go down, stop flapping her wings, show the
//first frame and stop the pixie dust
if (pixie.vy < 0 && pixie.oldVy > 0) {
  if (pixie.animating) pixie.stopAnimation();
  pixie.show(0);
  if (particleStream.playing) particleStream.stop();
}
 
//Store the pixie's current `vy` value so we can use it
//to find out if the pixie has changed direction
//in the next frame. (You have to do this as the last step)
pixie.oldVy = pixie.vy;

The oldVy property will be used to calculate the difference in velocity between 
frames when the next frame swings around. This is a very well-worn trick that you can use 
whenever you want to compare a sprite’s difference in velocity between two frames.



Chapter 7 ■ Mouse and touCh events

194

Collisions with the Blocks 
When the pixie hits a block, she disappears in a puff of dust, as shown in Figure 7-11. How 
does that behavior work?

Figure 7-11. Poof! She’s gone!

The game loop does this with the help of the Bump collision library’s 
hitTestRectangle method, which you learned to use in Chapter 4. The code loops 
through the blocks.children array and tests for a collision between each block and 
the pixie. If hitTestRectangle returns true, the loop quits and a collision object called 
pixieVsBlock becomes true.

let pixieVsBlock = blocks.children.some(block => {
  return b.hitTestRectangle(pixie, block, true);
});

 ■ Note You can see that the preceding code uses Javascript’s some array method to loop 
through all the blocks. the advantage to using some over forEach is that the loop will quit as 
soon as it finds a value that equals true. that saves you from redundant additional checking.

hitTestRectangle’s third argument has to be true, so that the collision detection 
is done using the sprite’s global coordinates. That’s because the pixie sprite is a child 
of stage, but each block is a child of the blocks group. That means they don’t share the 
same local coordinate space. Using their global coordinates forces hitTestRectangle to 
use the sprites’ positions relative to the canvas.

If pixieVsBlock is true, and the pixie is currently visible, the collision code runs. It 
makes the pixie invisible, creates the particle explosion, and calls the game’s reset function 
after a delay of three seconds. Here’s the code from the play function that does this:

if (pixieVsBlock && pixie.visible) {
 
  //Make the pixie invisible
  pixie.visible = false;
 
  //Create a pixie dust explosion
  d.create(
    pixie.centerX, pixie.centerY, //x and y position
    () => u.sprite(dustFrames),   //Particle sprite

http://dx.doi.org/10.1007/978-1-4842-1094-9_4


Chapter 7 ■ Mouse and touCh events

195

    stage,                        //The parent container
    20,                           //Number of particles
    0,                            //Gravity
    false,                        //Random spacing
    0, 6.28,                      //Min/max angle
    16, 32,                       //Min/max size
    1, 3                          //Min/max speed
  );
   
  //Stop the dust emitter that's trailing the pixie
  particleStream.stop();
 
  //Wait 3 seconds and then reset the game
  wait(3000).then(() => reset());
}

(You learned how to create the custom wait function in Chapter 6.)

Resetting the Game
If the pixie hits a block, the game is reset after a three-second delay. The game’s reset 
function does this by repositioning the pixie and the blocks to their initial positions and 
makes the pixie visible again.

function reset() {
  pixie.visible = true;
  pixie.y = 32;
  particleStream.play();
  blocks.x = 0;
}

This is all the code you need to make the game start from the beginning again.

Taking It Further
And that’s all there is to it! Between Pixie Perilousness! and Treasure Hunter (from 
Chapter 4), you have all the skills you need to start making any other game, no matter 
how complex. Just use the same structure and add as much detail as you require. 
Following are some features you might want to add to your games:

•	 Create different game scenes if you need to, using the technique 
described in Chapter 4.

•	 Add transitions between scenes, using the tweening technique 
described in Chapter 5.

http://dx.doi.org/10.1007/978-1-4842-1094-9_6
http://dx.doi.org/10.1007/978-1-4842-1094-9_4
http://dx.doi.org/10.1007/978-1-4842-1094-9_4
http://dx.doi.org/10.1007/978-1-4842-1094-9_5


Chapter 7 ■ Mouse and touCh events

196

•	 Use some text to display and update the player’s score.

•	 Let players start the game by pressing a button (you learned how 
create a button in this chapter).

You’re now well on your way in your career as a video game designer.

Your Next Steps
Wow, this book is almost finished! What did you learn? Everything you need to start 
making a rich variety of games and applications for desktop, mobile, and the Web. 
However, it’s only a start. It’s now up to you to take these skills and run with them. Here 
are some ideas for areas you might want to explore further:

•	 Sound. This book has been all about making engaging interactive 
graphics, but you’ll surely want to add some sound effects and 
music to your work. Adding sounds is as easy as choosing one of 
the many excellent HTML5 sound libraries out there and using 
simple methods such as load, play, and stop to control sounds. 
I wrote a lightweight micro-library called sound.js (github.com/
kittykatattack/sound.js), which has everything you need to 
load and play sound files, as well as generate synthesized sounds 
from scratch. You’ll find all the instructions on how to use sound.
js at its code repository; it’s as easy to use as any of the other 
helper libraries you’ve used in this book. For more complex sound 
libraries with extra features, try Howler (github.com/goldfire/
howler.js), Buzz (github.com/jaysalvat/buzz), WAD (github.
com/rserota/wad), or the delightfully titled Theresa’s Sound 
World (theresassoundworld.com).

•	 Making games. Do you want to delve deeper into game design? 
Then pick up a copy of this book’s companion: Advanced 
Game Design with HTML5 and JavaScript (Apress, 2015). It’s a 
comprehensive reference containing all the essential skills every 
game designer should know, and it’s completely compatible with 
this book. It even shows you how to build your own rendering 
engine, similar to Pixi, from scratch. But, if you want to use Pixi as 
your rendering engine, just skip all the stuff about how to make 
and display sprites, and just apply the higher level functions 
and methodologies to what you already know about using Pixi. 
If you’re new to game design and feel you might need to start 
with something more basic, pick up a copy of my Foundation 
Game Design with HTML5 and JavaScript (Apress, 2012). It’s a 
total beginner’s guide to programming and game design, and the 
techniques you’ll learn in that book are completely compatible 
with the skills you’ve learned in this one.



Chapter 7 ■ Mouse and touCh events

197

•	 Making applications. The beauty of HTML5 applications is that 
they’re completely cross-platform. You can use the same code 
base for the Web, mobile applications, and desktop applications. 
But how? The Web is easy: just dump your HTML and JS files  
on a web server connected to the Internet and you’re done! For  
mobile and desktop applications, you’ll require the help of a  
high-level wrapper. There are many to choose from, and they’re  
easy to use. For mobile, try Cocoon (www.ludei.com/cocoonjs)  
or PhoneGap (phonegap.com). For desktop, try NWJS  
(github.com/nwjs/nw.js), Electron (github.com/atom/electron), 
or Adobe Air (www.adobe.com/ca/products/air.html). Just 
follow the instructions specific to each wrapper, and you’ll end up 
with applications files that will run anywhere, on anything.  
Yay, HTML5!

•	 Game and application development engines. At it’s heart, Pixi 
is just a really fast and helpful 2D image renderer. In this book 
you’ve learned how to use other helpful libraries like Bump 
and Charm to add features that make working with Pixi faster 
and easier. To make things even easier still, you can use a game 
engine that wraps Pixi up with a whole bunch of other useful tools 
and libraries to give you a fully integrated game or application 
development environment. I wrote a library called Hexi  
(github.com/kittykatattack/hexi) which does this just that, 
and is all you need to make most kinds of 2D games. It’s based on 
exactly the same API and application architecture model you’ve 
been using in this book. Other libraries, like the popular Phaser 
game engine (phaser.io), also integrate Pixi with sound, physics 
and collision libraries. There are many helpful development 
tools like this out there—just choose the one that best suites your 
coding style.

But this is all just technology—lifeless tools! It’s up to you to add the heart, soul, and 
imagination to bring your ideas to life. But don’t take my word for it; prove it yourself. 
Close this book and start making some great stuff!

http://www.ludei.com/cocoonjs
http://www.adobe.com/ca/products/air.html
http://www.ludei.com/cocoonjs


199

Appendix

Pixie Perilousness!—
Complete Code

For your reference, here’s the complete code listing for the book’s final sample game: 
Pixie Perilousness!

The HTML Code
Following is the HTML container code that loads the main pixiePerilousness.js game 
file, along with the supporting helper libraries:

<!doctype html>
<meta charset="utf-8">
<title>Pixie Perilousness!</title>
<body>
<script src="../library/plugins/pixi.js/bin/pixi.js"></script>
<script src="../library/tink/bin/tink.js"></script>
<script src="../library/PixiDust/bin/dust.js"></script>
<script src="../library/scaleToWindow/scaleToWindow.js"></script>
<script src="../library/spriteUtilities/bin/spriteUtilities.js"></script>
<script src="../library/bump/bin/bump.js"></script>
<script src="es6/pixiePerilousness.js"></script>
</body>

Loading JS scripts such as this using <script> tags is the good old “cave man style” 
of loading script modules. I’ve done this just for simplicity, and it’s a perfectly fine way to 
modularize your code. But, if you prefer, you could alternatively load all these files using 
ES6 modules, SystemJS, CommonJS, or AMD module systems.



Appendix ■ pixie perilousness!—Complete Code

200

The JavaScript Code
Here’s the entire pixiePerilousness.js file code listing:

//Aliases
let Container = PIXI.Container,
  autoDetectRenderer = PIXI.autoDetectRenderer,
  Graphics = PIXI.Graphics,
  Sprite = PIXI.Sprite,
  MovieClip = PIXI.extras.MovieClip,
  TilingSprite = PIXI.extras.TilingSprite,
  loader = PIXI.loader,
  resources = PIXI.loader.resources,
  Text = PIXI.Text;
 
//Create a Pixi stage and renderer
let stage = new Container(),
    renderer = autoDetectRenderer(910, 512);
document.body.appendChild(renderer.view);
 
//Scale the canvas to the maximum window size
let scale = scaleToWindow(renderer.view);
 
//Set the initial game state
let state = play;
 
//load resources
loader
  .add("images/pixiePerilousness.json")
  .load(setup);
 
//Define any variables that might be used in more than one function
let t, b, d, pd, u, id, pointer, circle, pixie, sky, blocks,
    finish, particleStream, dustFrames;
 
function setup() {
 
  /* Initialize all the helper libraries */
 
  //Create a new instance of Tink, the interactive module.
  //The last argument, `scale` is
  //the return value of the `scaleToWindow` function above
  t = new Tink(PIXI, renderer.view, scale);
 
  //Create a new instance of Bump, the collision module
  b = new Bump(PIXI);
 



Appendix ■ pixie perilousness!—Complete Code

201

  //Create a new instance of SpriteUtilities, for easy sprite creation
  u = new SpriteUtilities(PIXI);
 
  //Get a reference to the texture atlas frame ids
  id = resources["images/pixiePerilousness.json"].textures;
 
  /* Create the sprites */
 
  //Make the sky background
  sky = new TilingSprite(
    id["clouds.png"],
    renderer.view.width,
    renderer.view.height
  );
  stage.addChild(sky);
 
  //Make the world
  //Create a `Container` for all the blocks
  blocks = new Container();
  stage.addChild(blocks);
 
  //What should the initial size of the gap be between the pillars?
  let gapSize = 4;
 
  //How many pillars?
  let numberOfPillars = 15;
 
  //Loop 15 times to make 15 pillars
  for (let i = 0; i < numberOfPillars; i++) {
 
    //Randomly place the gap somewhere inside the pillar
    let startGapNumber = randomInt(0, 8 - gapSize);
 
    //Reduce the `gapSize` by one after every fifth pillar. This is
    //what makes gaps gradually become narrower
    if (i > 0 && i % 5 === 0) gapSize -= 1;
 
    //Create a block if it's not within the range of numbers
    //occupied by the gap
    for (let j = 0; j < 8; j++) {
      if (j < startGapNumber || j > startGapNumber + gapSize - 1) {
        let block = u.sprite(id["greenBlock.png"]);
        blocks.addChild(block);
 



Appendix ■ pixie perilousness!—Complete Code

202

        //Space each pillar 384 pixels apart. The first pillar will be
        //placed at an x position of 512
        block.x = (i * 384) + 512;
        block.y = j * 64;
      }
    }
 
    //After the pillars have been created, add the finish image
    //right at the end
    if (i === numberOfPillars - 1) {
      finish = u.sprite(id["finish.png"]);
      blocks.addChild(finish);
      finish.x = (i * 384) + 896;
      finish.y = 192;
    }
  }
 
  //Make the pixie sprite
  let pixieFrames = [
    id["0.png"],
    id["1.png"],
    id["2.png"]
  ];
  pixie = u.sprite(pixieFrames);
  stage.addChild(pixie);
  pixie.fps = 24;
  pixie.position.set(232, 32);
  pixie.vy = 0;
  pixie.oldVy = 0;
 
  //Create the frames array for the pixie dust images
  //that trail the pixie
  dustFrames = [
    id["pink.png"],
    id["yellow.png"],
    id["green.png"],
    id["violet.png"]
  ];
 
  //Create the particle emitter.
  //First create a new instance of Dust, the particle effects library
  d = new Dust(PIXI);
   



Appendix ■ pixie perilousness!—Complete Code

203

  //Next, create the emitter
  particleStream = d.emitter(
    300,                                 //The interval
    () => d.create(                      //The function
      pixie.x + 8,                       //x position
      pixie.y + pixie.height / 2,        //y position
      () => u.sprite(dustFrames),        //Particle sprite
      stage,                             //The parent container
      3,                                 //Number of particles
      0,                                 //Gravity
      true,                              //Random spacing
      2.4, 3.6,                          //Min/max angle
      18, 24,                            //Min/max size
      2, 3,                              //Min/max speed
      0.005, 0.01,                       //Min/max scale speed
      0.005, 0.01,                       //Min/max alpha speed
      0.05, 0.1                          //Min/max rotation speed
    )
  );
 
  //Make the particle stream start playing when the game starts
  particleStream.play();
 
  //Make the pointer and increase the pixie's vertical
  //velocity when it's tapped
  pointer = t.makePointer();
  pointer.tap = () => {
    pixie.vy += 1.5;
  };
 
  //Start the game loop
  gameLoop();
}
 
function gameLoop(){
 
  //Loop this function 60 times per second
  requestAnimationFrame(gameLoop);
 
  //Run the current state
  state();
 
  //Update Tink
  t.update();
 
  //Update Dust
  d.update();
 



Appendix ■ pixie perilousness!—Complete Code

204

  //Render the stage
  renderer.render(stage);
}
 
function play() {
 
  //Make the sky background scroll by shifting the `tilePosition.x`
  //of the `sky` tiling sprite
  sky.tilePosition.x -= 1;
 
  //Move the blocks 2 pixels to the left each frame.
  //This will just happen while the finish image is off-screen.
  //As soon as the finish image scrolls into view, the blocks
  //container will stop moving
  if (finish.getGlobalPosition().x > 256) {
    blocks.x -= 2;
  }
 
  //Add gravity to the pixie
  pixie.vy += -0.05;
  pixie.y -= pixie.vy;
 
  //Decide whether or not the pixie should flap her wings
  //If she's starting to go up, make her flap her wings and emit pixie dust
  if (pixie.vy > pixie.oldVy) {
    if(!pixie.animating) {
      pixie.playAnimation();
      if (pixie.visible && !particleStream.playing) {
        particleStream.play();
      }
    }
  }

  //If she's staring to go down, stop flapping her wings,
  //show the first frame and stop the pixie dust
  if (pixie.vy < 0 && pixie.oldVy > 0) {
    if (pixie.animating) pixie.stopAnimation();
    pixie.show(0);
    if (particleStream.playing) particleStream.stop();
  }
 
  //Store the pixie's current vy so we can use it
  //to find out if the pixie has changed direction
  //in the next frame. (You have to do this as the last step)
  pixie.oldVy = pixie.vy;
 



Appendix ■ pixie perilousness!—Complete Code

205

  //Keep the pixie contained inside the stage and
  //neutralize her velocity if she hits the top or bottom boundary
  let pixieVsCanvas = b.contain(
    pixie,
    {
      x: 0,
      y: 0,
      width: renderer.view.width,
      height: renderer.view.height
    }
  );
  if (pixieVsCanvas) {
    if (pixieVsCanvas.has("bottom") || pixieVsCanvas.has("top")) {
      pixie.vy = 0;
    }
  }
 
  //Loop through all the blocks and check for a collision between
  //each block and the pixie. (`some` will quit the loop as soon as
  //`hitTestRectangle` returns `true`).
  //Set `hitTestRectangle`s third argument
  //to `true` to use the sprites' global coordinates
 
  let pixieVsBlock = blocks.children.some(block => {
    return b.hitTestRectangle(pixie, block, true);
  });
 
  //If there's a collision and the pixie is currently visible,
  //create the explosion effect and reset the game after
  //a three second delay
 
  if (pixieVsBlock && pixie.visible) {
 
    //Make the pixie invisible
    pixie.visible = false;
 
    //Create a pixie dust explosion
    d.create(
      pixie.centerX, pixie.centerY, //x and y position
      () => u.sprite(dustFrames),   //Particle sprite
      stage,                        //The parent container
      20,                           //Number of particles
      0,                            //Gravity
      false,                        //Random spacing
      0, 6.28,                      //Min/max angle
      16, 32,                       //Min/max size
      1, 3                          //Min/max speed
    );
     



Appendix ■ pixie perilousness!—Complete Code

206

    //Stop the dust emitter that's trailing the pixie
    particleStream.stop();
 
    //Wait 3 seconds and then reset the game
    wait(3000).then(() => reset());
  }
}
 
//The `reset` function runs if the pixie hits a block
function reset() {
 
  //Reset the game if the pixie hits a block
  pixie.visible = true;
  pixie.y = 32;
  particleStream.play();
  blocks.x = 0;
}
 
//Helper functions
 
//The `randomInt` helper function
function randomInt(min, max) {
  return Math.floor(Math.random() * (max - min + 1)) + min;
}
 
//The `wait` helper function
function wait(duration = 0) {
  return new Promise((resolve, reject) => {
    setTimeout(resolve, duration);
  });

}



207

��������� A
AlphaMaskFilter, 155
Application program interface (API), 70
arc and arcTo methods, 80
Artifacts, 29
AsciiFilter, 155
Pixi’s autoDetectRenderer method, 2

��������� B
Bezier curves, 79, 169
Bitmap fonts, 92
Blend modes, 145, 153
Blitting technique, 27
BloomFilter, 155
BlurDirFilter, 156
BlurFilter, 156
breathe method, 174
Buttons, 181

actions, 182
clickable/touchable sprites, 181
creation, 182
interactive button sprite, 184
makeInteractive, 185
states, 181

��������� C
Charm set-up, 163
circleSprite method, 83
Collision detection system, 105

in action, 106
Bump installation, 106
hitTestRectangle method, 106

ColorMatrixFilter, 156
ColorStepFilter, 156
CrossHatchFilter, 156

��������� D, E
DisplacementFilter, 156
DotScreenFilter, 156
Drag-and-drop sprites, 179
drawCircle method, 74, 80
drawEllipse method, 75
drawRoundedRect  

method, 73
DropShadowFilter, 157

��������� F
fadeIn and fadeOut  

methods, 173
Filters, 145, 154

AlphaMaskFilter, 155
AsciiFilter, 155
BloomFilter, 155
BlurDirFilter, 156
BlurFilter, 156
ColorMatrixFilter, 156
ColorStepFilter, 156
CrossHatchFilter, 156
DisplacementFilter, 156
DotScreenFilter, 156
DropShadowFilter, 157
dynamic filter  

effects, 159
GrayFilter, 157
InvertFilter, 157
PixelateFilter, 157
RGBSplitFilter, 158
SepiaFilter, 157
ShockwaveFilter, 157
SmartBlurFilter, 158
TiltShiftFilter, 158
TwistFilter, 157

Index



■ index

208

��������� G, H
generateTexture method, 82
getGlobalPosition method, 101
Global coordinates, 78
Graphics

animate lines and shapes, 84
antialiasing produces smooth curves, 82
circleSprite, 83
clear method, 86
generateTexture, 82
internal stencil buffer, 82
lines and shapes, 81
play function, 86
setup function, 85
single context, 83
WebGL renderer, 81

Graphics processor unit (GPU), 70
GrayFilter, 157

��������� I, J
InvertFilter, 157

��������� K
Keyframe animation

animation states, 128
frames, 138
state player, 128
static states, 130
walkDowm and walkLeft, 132
walkRight and walkUp, 132

MovieClip sprites, 122
filmstrip method, 123
frames, 122
frameSeries function, 128
fromFrames method, 126
fromImages method, 126
gotoAndPlay method, 126
gotoAndStop method, 125–126
play method, 124, 126
properties, 125
texture atlas, 126
stop method, 126

particle effects, 138
create method, 139, 141
emitter method, 142
ParticleContainer, 140
Pixi Dust, 138

SpriteUtilities library, 121
walking sprite, 134

��������� L
lineStyle method, 76
linkFont function, 90
Local coordinates, 78

��������� M, N, O
Masking, 145, 152
Moving Sprites

acceleration and friction, 57
contain function, 61

bounce effect, 64
collision, 66
ES6 Set object, 64
play function, 63

game loop, 43
Javascript code, 45
requestAnimationFrame  

function, 43
game states, 48

play function, 49
state variable, 50

gravity, 60
keyboard function

isDown and isUp, 53
keyup and keydown  

events, 51
play function, 56
press and release  

methods, 52, 56
velocity properties, 46

Multiple resolutions, 145

��������� P
ParticleContainer  

method, 101
PixelateFilter, 157
Pixi

filters
AlphaMaskFilter, 155
BloomFilter, 155
BlurDirFilter, 156
ColorMatrixFilter, 156
ColorStepFilter, 156
CrossHatchFilter, 156
DisplacementFilter, 156
DotScreenFilter, 156
DropShadowFilter, 157
GrayFilter, 157



■ Index

209

InvertFilter, 157
PixelateFilter, 157
RGBSplitFilter, 158
SepiaFilter, 157
ShockwaveFilter, 157
SmartBlurFilter, 158
TiltShiftFilter, 158
TwistFilter, 157

multiple resolutions, 160
rope mesh, 161
Tink set-up, 175

buttons, 181
drag-and-drop sprites, 179
pointer interaction with  

sprites, 177
scale argument, 176
universal pointer object, 176

Pixie Perilousness! game, 185
collisions with blocks, 194
emitting multicolored particle  

dust, 192
fine-tuning fairy’s animation, 193
flying pixie character, 190
parallax, shallow 3D effect, 186
pillar creation, 188
resetting game, 195

Pixi sprites, 6
aliases, 12
display object, 9
loader object, 8
removeChild method, 11
texture and texture cache, 7

Pixi’s supported filters, 156
Polygons, 76
pulse method, 173

��������� Q
Quadratic curves, 77
quadraticCurveTo method, 77–78

��������� R
Rectangles

drawRect method, 72–73
output result, 72
rounded corners, 73
semitransparent, 72

RGBSplitFilter, 158
Rope mesh, 145, 161
rotateAroundPoint method, 85

��������� S
scale method, 173
Scene transitions, 166
Seamless tile image, 148
SepiaFilter, 157
Shapes

alpha, 71
application program interface, 70
beginFill method, 71
circles, 74
control point, 78
curved lines, 77
drawing arcs, 80
drawing methods, 71
ellipses, 75
endFill method, 72
format and codes, 71
graphics processor unit, 70
images, 69
lineStyle method, 71
local and global coordinates, 78
polygons, 76
rectangles, 72
setup function, 69
straight lines, 76
WebGL, 70

ShockwaveFilter, 157
SmartBlurFilter, 158
Sprites

addChild method, 95
animals contains, 96
child sprites, 97
container, 95
getGlobalPosition, 101
loader object, 13

add method, 16
catImage object, 14
HTML image object, 13
progress events, 14

local and global positions, 98
ParticleContainer, 95, 101
Pixi, 2
PIXI.Container function, 95
Pixi sprites, 6
positioning, 18

rotation property, 22
size and scale properties, 20
x and y properties, 18

renderer object, 1
antialiasing option, 3



■ index

210

autoDetectRenderer method, 2
canvas object, 3
scaleToWindow() function, 4
transparent and resolution  

option, 3
stage object, 1
texture atlas, 30

blob monsters, 37
frame, 33
JSON Hash, 31
keys, 32
loader, 33
save location, 32
spriteFromTextureAtlas.js file, 39
TextureCache, 34
Texture Packer file, 32
treasure box, 36

tilesets, 24
blitting technique, 27
frame function, 28
rectangle object, 26
scale.set method, 26
texture bleed, 28

tilesets and texture atlases, 1
x and y positions, 98

strobe method, 174

��������� T, U
Text displays

bitmap fonts, 92
documentation, 87
font files poses, 90
game loop, 91
object, 87
render text, 89
style options, 88

Texture effects, 145
cacheAsBitmap, 150
generateTexture, 149
RenderTexture, 150

Tiling sprites, 145–146
TiltShiftFilter, 158
Timed scene transitions, 168
Tink library, 175

buttons, 181
drag-and-drop sprites, 179
pointer interaction with sprites, 177
scale argument, 176
universal pointer object, 176

Tinting, 145, 151
toGlobal method, 100
Transitions. See  Tweening  

and transitions
Treasure Hunter game, 108

blob monsters, 113, 116
code structure, 109
collision detection  

system, 105
contain function, 115
Dungeon and Door, 112
Explorer and Treasure, 112
gameScene and gameOverScene 

function, 111
game state, 118
healthBar group, 114
hitTestRectangle function, 117
Message Text, 115
play function, 115
setup function, 110

Tween, 163
Tweening and  

transitions, 145, 163
Bezier curve, 169
Charm set-up, 163
easingType, 165
scene transitions, 166
sliding tweens, 164
timed transitions, 168
tween object, 165
tween effects, 173

breathe, 174
fadeOut and fadeIn, 173
pulse, 173
scale, 173
strobe, 174
wobble, 174

walkPath and walkCurve  
methods, 170

TwistFilter, 157

��������� V
Video textures, 145, 159

��������� W, X, Y, Z
walkCurve method, 170
walkPath method, 170
WebGL renderer, 81
wobble method, 174

Sprites (cont.)


	Learn Pixi.js
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Making Sprites
	 Creating the Renderer and Stage
	 Render Options
	 Customizing the Canvas
	 Scaling the Canvas to the Browser Window

	 Pixi Sprites
	 Understanding Textures and the Texture Cache
	 Loading Images
	 Displaying Sprites
	 Removing Sprites
	 Using Aliases

	 A Little More About Loading Things
	 Making a Sprite from an Ordinary HTML Image Object or Canvas
	 Assigning a Name to a Loading File
	 Monitoring Load Progress
	 More About Pixi’s Loader

	 Positioning Sprites
	 X and Y Properties
	 Size and Scale
	 Rotation

	 Making a Sprite from a Tileset Sub-image
	 Preventing Texture Bleed

	 Using a Texture Atlas
	 Creating the Texture Atlas
	 Loading the Texture Atlas
	 Creating Sprites from a Loaded Texture Atlas
	 Making the Blob Monsters
	 The Complete Code

	 Summary

	Chapter 2: Moving Sprites
	 Create a Game Loop
	 Using Velocity Properties
	 Game States
	 Keyboard Movement
	 Adding Acceleration and Friction
	 Adding Gravity
	 Containing Movement Inside a Fixed Area
	 Using ES6 Sets
	 The contain Function

	 Summary

	Chapter 3: Shapes, Text, and Groups
	 Making Shapes
	 Rectangles 
	Rounded Rectangles

	 Circles 
	 Ellipses
	 Straight Lines 
	 Polygons 
	 Curved Lines
	Quadratic Curves
	 Local and Global Coordinates 
	Bezier Curves

	 Drawing Arcs 

	 Improving Graphics Rendering
	 Antialiasing for WebGL Graphics
	 Drawing on a Single Graphics Context 
	 Redrawing Animated Graphics Each Frame

	 Displaying Text
	 The Text Object
	 Loading Font Files
	 Using Bitmap Fonts 

	 Grouping Sprites 
	 Using a Container 
	 Local and Global Positions 

	 Using a ParticleContainer

	 Summary

	Chapter 4: Making Games
	 Collision Detection
	 Installing and Setting Up Bump
	 Using the hitTestRectangle Method
	 Collision Detection in Action

	 Treasure Hunter
	 The Code Structure
	 Initialize the Game in the Setup Function
	Creating the Game Scenes
	Making the Dungeon, Door, Explorer, and Treasure
	Making the Blob Monsters
	Making the Health Bar
	Making the Message Text

	 Playing the Game
	Moving the Explorer
	Moving the Monsters
	Checking for Collisions
	Reaching the Exit Door and Ending the Game


	 Summary

	Chapter 5: Animating Sprites
	 Using SpriteUtilities
	 MovieClip Sprites
	 The Even Easier Way
	 Using MovieClip Sprites
	 MovieClip Properties and Methods
	 Make MovieClip Sprites Using a Texture Atlas
	 Using the frameSeries Utility Function

	 Animation States
	 Making a Sprite with a State Player
	 Defining Sprite States
	The Static States
	The Animation States

	 Making a Walking Sprite
	 Creating Frames for Animations

	 Particle Effects
	 Add a Little Pixi Dust
	 Making Particles
	 Using ParticleContainer
	 Customizing the Particle Options
	 Using a Particle Emitter

	 Summary

	Chapter 6: Visual Effects and Transitions
	 Tiling Sprites 
	 Tools for Working with Textures
	 Using generateTexture 
	 Using cacheAsBitmap 
	 Using RenderTexture 

	 Tinting 
	 Masking 
	 Blend Modes 
	 Filters 
	 Video Textures 
	 Working with Multiple Resolutions 
	 Rope Mesh 
	 Tweening and Transitions 
	 Setting Up and Running Charm 
	 Sliding Tweens 
	 Tween Objects 

	 Setting the Easing Types 
	 Using slide for Scene Transitions 
	Timed Transitions 

	 Following Curves 
	 Following Paths 
	 A Few More Tween Effects 
	fadeOut and fadeIn 
	 pulse 
	 scale 
	 breathe 
	 strobe 
	 wobble 


	 Summary

	Chapter 7: Mouse and Touch Events
	 Setting Up Tink 
	 Setting the Optional Scale 

	 A Universal Pointer 
	 Pointer Interaction with Sprites 
	 Drag-and-Drop Sprites 
	 Buttons 
	 What Are Buttons?
	 Making Buttons 
	 Making an Interactive Sprite 

	 Case Study: Pixie Perilousness! 
	 Creating the Scrolling Background 
	 Creating the Pillars 
	 Making Pixie Fly 
	 Emitting Pixie Dust 
	 Fine-Tuning the Pixi’s Animation 
	 Collisions with the Blocks 
	 Resetting the Game 
	 Taking It Further

	 Your Next Steps

	Appendix: Pixie Perilousness!—Complete Code
	 The HTML Code
	 The JavaScript Code

	Index




