
www.allitebooks.com

http://www.allitebooks.org

KNIME Essentials

Perform accurate data analysis using the power
of KNIME

Gábor Bakos

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

KNIME Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-921-1

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Gábor Bakos

Reviewers
Thorsten Meinl

Takeshi Nakano

Acquisition Editors
Saleem Ahmed

Edward Gordon

Commissioning Editor
Amit Ghodake

Technical Editors
Iram Malik

Aman Preet Singh

Copy Editors
Gladson Monteiro

Kirti Pai

Mradula Hegde

Sayanee Mukherjee

Project Coordinator
Esha Thakker

Proofreader
Clyde Jenkins

Indexers
Tejal Daruwale

Priya Subramani

Graphics
Ronak Dhruv

Yuvraj Mannari

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gábor Bakos is a programmer and a mathematician, having a few years
of experience with KNIME and KNIME node development (HiTS nodes and
RapidMiner integration for KNIME).

In Trinity College, Dublin, the author was helping a research group with his
data analysis skills (also had the opportunity to improve those), and with the
new KNIME node development. When he worked for the evopro Kft. or the
Scriptum Informatika Zrt., he was also working on various data analysis
software products. He currently works for his own company, Mind Eratosthenes
Kft. (www.mind-era.com), where he develops the RapidMiner integration for
KNIME (tech.knime.org/community/rapidminer-integration), among
other things.

The author would like to thank the reviewers and Packt Publishing
for their help in creating this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Thorsten Meinl is currently a Senior Software Developer at KNIME.com in
Zurich. He holds a PhD in Computer Science from the University of Konstanz.
He has been working on KNIME for over seven years. His main responsibilities
are quality assurance, testing, and the continuous integration infrastructure, as
well as managing the KNIME Community Contributions. Besides this, he is also
interested in parallel computing and cheminformatics.

Takeshi Nakano is a Senior Research Engineer working for Recruit Technologies
Co., Ltd. and leads the Advanced Technology Lab in Japan. He holds a Master's
degree from the Nara Institute of Science and Technology (NAIST) in Computer
Science. He is the lead author of Hadoop Hacks, a book from O'Reilly Japan, and
also the author of Getting Started with Apache Solr, a book from Gijutsu Hyohron in
Japan. He loves to find inspiration for his hobbies (reading, scuba diving, and others).

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Installing and Using KNIME 7

Few words about KNIME 7
Installing KNIME 8

Installation using the archive 8
KNIME for Windows 8
KNIME for Linux 9
KNIME for Mac OS X 9

Troubleshooting 9
KNIME terminologies 9

Organizing your work 10
Nodes 10

Node lifecycle 11
Meta nodes 12
Ports 12

Data tables 12
Port view 14

Flow variables 14
Node views 15

HiLite 15
Eclipse concepts 16

Preferences 16
Logging 16

User interface 17
Getting started 17
Setting preferences 17

KNIME 17
Other preferences 18

Installing extensions 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Workbench 19
Workflow handling 21
Node controls 22
Meta nodes 26
Workflow lifecycle 26
Other views 27

Summary 27
Chapter 2: Data Preprocessing 29

Importing data 30
Importing data from a database 30

Starting Java DB 30
Importing data from tabular files 32
Importing data from web services 33

REST services 34
Importing XML files 34
Importing models 34
Other formats 34
Public data sources 35

Regular expressions 35
Basic syntax 35
Partial versus whole match 38
Usage from Java 38
References and tools 39
Alternative pattern description 39

Transforming the shape 39
Filtering rows 39

Sampling 40
Appending tables 41
Less columns 41

Dimension reduction 41
More columns 42
GroupBy 43
Pivoting and Unpivoting 44
One2Many and Many2One 45
Cosmetic transformations 45

Renames 45
Changing the column order 45
Reordering the rows 46
The row ID 46

Transpose 46
Transforming values 46

Generic transformations 46
Java snippets 47

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

The Math Formula node 48
Conversion between types 49

Binning 50
Normalization 51

Text normalization 51
Multiple columns 53
XML transformation 54
Time transformation 54
Smoothing 55

Data generation 55
Generating the grid 56

Constraints 58
Loops 60
Workflow customization 61
Case study – finding min-max in the next n rows 62
Case study – ranks within groups 65
Summary 66

Chapter 3: Data Exploration 67
Computing statistics 67
Overview of visualizations 70
Visual guide for the views 72
Distance matrix 79
Using visual properties 80

Color 80
Size 81
Shape 81

KNIME views 82
HiLite 82

Use cases for HiLite 83
Row IDs 83
Extreme values 83

Basic KNIME views 84
The Box plots 84
Hierarchical clustering 85
Histograms 85
Interactive Table 86
The Lift chart 86
Lines 86
Pie charts 87
The Scatter plots 87
Spark Line Appender 88

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Radar Plot Appender 88
The Scorer views 88

JFreeChart 89
The Bar charts 89
The Bubble chart 90
Heatmap 90
The Histogram chart 90
The Interval chart 90
The Line chart 91
The Pie chart 91
The Scatter plot 91

Open Street Map 91
3D Scatterplot 92
Other visualization nodes 92

The R plot, Python plot, and Matlab plot 93
The official R plots 93
The RapidMiner view 93
The HiTS visualization 94

Tips for HiLiting 95
Using Interactive HiLite Collector 95
Finding connections 96

Visualizing models 96
Further ideas 99

Summary 99
Chapter 4: Reporting 101

Installation of the reporting extensions 101
Reporting concepts 102
Importing data 103

Sending data and images to a report 103
Importing from other sources 104
Joining data sets 105

Preferences 106
Using the designer 107

In visible views 109
Report properties 110
Report items 111

Label 111
Text 111
Dynamic text 112
Data 112
Image 113
Grid 113

Table of Contents

[v]

List 113
Table 115
Chart 115
Cross Tab 117

Quick Tools 120
Aggregation 120
Relative time period 120

Generating reports 120
Using colors 121
Using HiLite 122
Using workflow variables 122
Suggested readings 123
Summary 124

Index 125

Preface
Dear reader, welcome to an intuitive way of data analysis. Using a visual
programming language based on dataflows, you can create an easy-to-understand
analysis process, while it internally checks signals about some of the common
problems. Obviously, any environment that does not help with proper
documentation would be destined to fail, but KNIME's success is based not just
on its high quality—cross-platform—code, but also on the good description about
what it does and how you can use the building blocks.

This book covers the most common tasks that are required during the data
preparation and visualization phase of data analysis using KNIME. Because of
the size constraints—and to bring the best price/value for those who are already
familiar with or not interested in modeling—we have not covered the modeling
and machine learning algorithms available for KNIME. If you are already familiar
with these algorithms, you will easily get familiar with the options in KNIME, and
these are quite obvious to use, so you lose almost nothing. If you have not found
time yet to get acquainted with these concepts, we encourage you to first learn
for what these procedures are good and when you should use them. There are
some good books, courses, and training available—these are the ideal options for
learning—but the Wikipedia articles can also give you a basic introduction specific
to the algorithm you want to use.

What this book covers
Chapter 1, Installation and Using KNIME, introduces the user interface, the concepts
used in the first three chapters, and how you can install and configure KNIME and
its extensions.

Chapter 2, Data Preprocessing, covers the most common tasks, so that you can analyze
your data, such as loading, transforming, and generating data; it also introduces the
powerful regular expressions and some case studies.

Preface

[2]

Chapter 3, Data Exploration, describes how you can use KNIME to get an overview
about your data, how you can visualize them in different forms, or even create
publication quality figures.

Chapter 4, Reporting, introduces the KNIME reporting extension with the specific
concepts, the user interface, and the basic blocks of reports.

What you need for this book
You only need a KNIME-compatible operating system, which is either a modern
Linux, Mac OS X (10.6 or above), or Windows XP or above. The Java runtime is
bundled with KNIME, and the first chapter describes how you can download and
install KNIME. For this reason, you will need Internet connection too.

Who this book is for
This book is designed to give a good start to the data scientists who are not familiar
with KNIME yet. Others, who are not familiar with programming, but need to load
and transform their data in an intuitive way might also find this book useful.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text are shown as follows: " In the first case, you have not much
control about the details, for example, a Pattern object will be created for each call
of the facade methods delegating to the Pattern class "

A block of code is set as follows:

// system imports
// Your custom imports:
import java.util.regex.*;
// system variables
// Your custom variables:
Pattern tuplePattern = Pattern.compile("\\((\\d+),\\s*(\\d+)\\)");
// expression start

Preface

[3]

// Enter your code here:
if (c_edge != null) {
 Matcher m = tuplePattern.matcher(c_edge);
 if (m.matches()) {
 out_edge = m.replaceFirst("($2, $1)");
 } else {
 out_edge = "NA";
 }
} else {
 out_edge = null;
}
// expression end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

// system imports
// Your custom imports:
import java.util.regex.*;
// system variables
// Your custom variables:
Pattern tuplePattern = Pattern.compile("\\((\\d+),\\s*(\\d+)\\)");
// expression start
// Enter your code here:
if (c_edge != null) {
 Matcher m = tuplePattern.matcher(c_edge);
 if (m.matches()) {
 out_edge = m.replaceFirst("($2, $1)");
 } else {
 out_edge = "NA";
 }
} else {
 out_edge = null;
}
// expression end

Any command-line input or output is written as follows:

$ tar –xvzf knime_2.8.0.linux.gtk.x86_64.tar.gz –C /path/to/extract

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Eclipse's
main window is the workbench".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic in which you have expertise, and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Installing and Using KNIME
In this chapter, we will go through the installation of KNIME, add some useful
extensions, customize the settings, and find out how to use it for basic tasks.
You will also be familiarized with the terminology of KNIME, so there's no
misunderstanding in the later chapters.

As always, it is a good idea to read the manual of the software you get. You will
find a short introduction on KNIME in the file, quickstart.pdf, present in the
installation folder. The topics we will cover in the chapter are as follows:

• Installation of KNIME on different platforms
• Terms used in KNIME
• Introduction to the KNIME user interface

Few words about KNIME
KNIME is an open source (GNU GPL available at http://www.gnu.org/licenses/
gpl.html) data analytics platform with a large set of building blocks and third-party
tools. You can use it from loading your data to a final report or to predict new values
using a previously found model.

KNIME is available in four flavors: Desktop/Professional, Team Space, Server, and
Cluster Execution. Only the Desktop version is open source; with a Professional
subscription, you will get support for it, and also support the future development of
KNIME. We will cover only the open source version. There is also an SDK version
for free, but it is intended for use by node developers. Most probably, you will not
need it yet.

At the time of writing this book, KNIME Desktop 2.8.0 was the latest version
available; all the information presented in this book is based on that version.

www.allitebooks.com

http://www.allitebooks.org

Installing and Using KNIME

[8]

Installing KNIME
KNIME is supported by various operating systems on 32-bit and 64-bit x86
Intel-architecture-based platforms. These operating systems are: Windows
(from XP to Windows 8 at the time of writing this book) and Linux (most
modern Linux operating systems work well with KNIME, Mac OS X (10.6
and above); you can check the list of supported platforms for details at:
http://www.eclipse.org/eclipse/development/readme_eclipse_3.7.1.html.
It also supports Java 7 on Windows and Linux, so extensions requiring Java 7 can
be used too. Unfortunately under Mac OS X, there were some problems with Java
7. So on Mac OS X, the recommended version is Java 6.

There are two ways to install KNIME: an easier way is to unpack the archive you
can download from their site, and a bit more complicated way is to install KNIME
to an existing Eclipse installation as a plugin. Both have use cases, but the general
recommendation is to install it from an archive.

Installation using the archive
We assume you are using the open source version of KNIME, which can be
downloaded from the following address (always download the latest version):

http://www.knime.org/knime-desktop-sdk-download

It is not necessary to subscribe to the newsletters, but if you have not done it yet, it
might be worth doing it. Some of the newsletters also contain tips for KNIME usage.
This is quite infrequent, usually one per month.

The supported operating system versions are 32-bit and 64-bit for Linux and
Windows, and 64-bit for Mac OS X.

KNIME for Windows
KNIME is available in an executable file for Windows (in a 7-zip compressed format).
You can execute it as a regular user (unless your network administrator blacklists
running executable files that are downloaded from the Internet); just double-click on
it and in the window that appears, select the destination folder.

On an older version of Windows (7 and older), there is a limitation to the
path length; it cannot be longer than 260 characters. KNIME and some
extensions can get close to this limit, so it is recommended to install it to a
short path. Installing it to Program Files is not recommended.

Chapter 1

[9]

You do not have to specify the folder name (such as knime), as a folder with the
name knime_KNIME version (in our case knime_2.8.0) will be created at the
destination address, and it will contain the whole installation. You can have multiple
versions installed.

You can start KNIME GUI with the knime.exe executable file from that folder. You
can create a shortcut of it on your desktop using the right-click menu by navigating
to Send to | Desktop (create shortcut). On its first start, KNIME might ask for
permissions to connect to the Internet. This may require administrator rights, but it is
usually a good idea to change the firewall settings to let KNIME through.

KNIME for Linux
This file is just a simple tar.gz archive. You can unzip it using a command similar to
the one shown as follows:

$ tar –xvzf knime_2.8.0.linux.gtk.x86_64.tar.gz –C /path/to/extract

Alternatively, you can use your favorite archive-handling tool to achieve similar
results. The executable you need is named knime. Your window manager's manual
might help you create application launchers for this executable if you prefer to
have one.

KNIME for Mac OS X
You should drag the dmg file to the Applications place, and if you have Java
installed, it should just work. The executable to start is called knime.app from the
command line, knime.app/Contents/MacOS/knime.

Troubleshooting
If you have problems installing KNIME, maybe others also had similar
problems; please check the FAQ page of KNIME at http://tech.knime.org/faq
first. If it does not solve your problem, you should search the forum at
http://tech.knime.org/forum; if even that fails to help, ask the experts there.

KNIME terminologies
It is important to share your thoughts and problems using the same terms.
This makes it easier to reach your goal, and others will appreciate if it is easy to
understand. This section will introduce the main concepts of KNIME.

Installing and Using KNIME

[10]

Organizing your work
In KNIME, you store your files in a workspace. When KNIME starts, you can specify
which workspace you want to use. The workspaces are not just for files; they also
contain settings and logs. It might be a good idea to set up an empty workspace, and
instead of customizing a new one each time, you start a new project; you just copy
(extract) it to the place you want to use, and open it with KNIME (or switch to it).

The workspace can contain workflow groups (sometimes referred to as workflow
set) or workflows. The groups are like folders in a filesystem that can help organize
your workflows. Workflows might be your programs and processes that describe the
steps which should be applied to load, analyze, visualize, or transform the data
you have, something like an execution plan. Workflows contain the executable
parts, which can be edited using the workflow editor, which in turn is similar to a
canvas. Both the groups and the workflows might have metadata associated with
them, such as the creation date, author, or comments (even the workspace can
contain such information).

Workflows might contain nodes, meta nodes, connections, workflow variables (or
just flow variables), workflow credentials, and annotations besides the previously
introduced metadata.

Workflow credentials is the place where you can store your login name and password
for different connections. These are kept safe, but you can access them easily.

It is safe to share a workflow if you use only the workflow credentials
for sensitive information (although the user name will be saved).

Nodes
Each node has a type, which identifies the algorithm associated with the node. You
can think of the type as a template; it specifies how to execute for different inputs
and parameters, and what should be the result. The nodes are similar to functions (or
operators) in programs.

The node types are organized according to the following general types, which
specify the color and the shape of the node for easier understanding of workflows.
The general types are shown in the following image:

Chapter 1

[11]

Example representation of different general types of nodes

The nodes are organized in categories; this way, it is easier to find them.

Each node has a node documentation that describes what can be achieved using that
type of node, possibly use cases or tips. It also contains information about parameters
and possible input ports and output ports. (Sometimes the last two are called inports
and outports, or even in-ports and out-ports.)

Parameters are usually single values (for example, filename, column name, text, number,
date, and so on) associated with an identifier; although, having an array of texts is
also possible. These are the settings that influence the execution of a node. There are
other things that can modify the results, such as workflow variables or any other
state observable from KNIME.

Node lifecycle
Nodes can have any of the following states:

• Misconfigured (also called IDLE)
• Configured
• Queued for execution
• Running
• Executed

There are possible warnings in most of the states, which might be important; you can
read them by moving the mouse pointer over the triangle sign.

Installing and Using KNIME

[12]

Meta nodes
Meta nodes look like normal nodes at first sight, although they contain other nodes
(or meta nodes) inside them. The associated context of the node might give options
for special execution. Usually they help to keep your workflow organized and less
scary at first sight.

A user-defined meta node

Ports
The ports are where data in some form flows through from one node to another. The
most common port type is the data table. These are represented by white triangles.
The input ports (where data is expected to get into) are on the left-hand side of the
nodes, but the output ports (where the created data comes out) are on the right-hand
side of the nodes. You cannot mix and match the different kinds of ports. It is also
not allowed to connect a node's output to its input or create circles in the graph of
nodes; you have to create a loop if you want to achieve something similar to that.

Currently, all ports in the standard KNIME distribution are presenting
the results only when they are ready; although the infrastructure
already allows other strategies, such as streaming, where you can view
partial results too.

The ports might contain information about the data even if their nodes are not
yet executed.

Data tables
These are the most common form of port types. It is similar to an Excel sheet or a
data table in the database. Sometimes these are named example set or data frame.

Each data table has a name, a structure (or schema, a table specification), and possibly
properties. The structure describes the data present in the table by storing some
properties about the columns. In other contexts, columns may be called attributes,
variables, or features.

Chapter 1

[13]

A column can only contain data of a single type (but the types form a hierarchy
from the top and can be of any type). Each column has a type, a name, and a position
within the table. Besides these, they might also contain further information, for
example, statistics about the contained values or color/shape information for visual
representation. There is always something in the data tables that looks like a column,
even if it is not really a column. This is where the identifiers for the rows are held,
that is, the row keys.

There can be multiple rows in the table, just like in most of the other data handling
software (similar to observations or records). The row keys are unique (textual)
identifiers within the table. They have multiple roles besides that; for example,
usually row keys are the labels when showing the data, so always try to find
user-friendly identifiers for the rows.

At the intersection of rows and columns are the (data) cells, similar to the data
found in Excel sheets or in database tables (whereas in other contexts, it might
refer to the data similar to values or fields). There is a special cell that represents
the missing values.

The missing value is usually represented as a question mark (?).

If you have to represent more information about the missing data,
you should consider adding a new column for each column, where
this requirement is present, and add that information; however, in
the original column, you just declare it as missing.

There are multiple cell types in KNIME, and the following table contains the most
important ones:

Cell type Symbol Remarks
Int cell I This represents integral numbers in the range from -231 to

231-1 (approximately 2E9).
Long cell L This represents larger integral numbers, and their range is

from -263 to 263-1 (approximately 9E18).
Double cell D This represents real numbers with double (64 bit) floating

point precision.
String cell S This represents unstructured textual information.

Installing and Using KNIME

[14]

Cell type Symbol Remarks
Date and
time cell

 calendar &
clock

With these cells, you can store either date or time.

Boolean cell B This represents logical values from the Boolean algebra
(true or false); note that you cannot exclude the missing
value.

Xml cell XML This cell is ideal for structured data.
Set cell {…} This cell can contain multiple cells (so a collection cell

type) of the same type (no duplication or order of values
are preserved).

List cell {…} This is also a collection cell type, but this keeps the order
and does not filter out the duplicates.

Unknown
type cell

? When you have different type of cells in a column (or in a
collection cell), this is the generic cell type used.

There are other cell types, for example, the ones for chemical data structures (SMILES,
CDK, and so on), for images (SVG cell, PNG cell, and so on), or for documents. This is
extensible, so the other extension can define custom data cell types.

Note that any data cell type can contain the missing value.

Port view
The port view allows you to get information about the content of the port. Complete
content is available only after the node is executed, but usually some information
is available even before that. This is very handy when you are constructing the
workflow. You can check the structure of the data even if you will usually use node
view in the later stages of data exploration during workflow construction.

Flow variables
Workflows can contain flow variables, which can act as a loop counter, a column
name, or even an expression for a node parameter. These are not constants, but you
can introduce them to the workspace level as well.

Chapter 1

[15]

This is a powerful feature; once you master it, you can create workflows you thought
were impossible to create using KNIME. A typical use case for them is to assign
roles to different columns (by assigning the column names to the role name as a flow
variable) and use this information for node configurations. If your workflow has
some important parameters that should be adjusted or set before each execution (for
example a file name), this is an ideal option to provide these to the user; use the flow
variables instead of a preset value that is hard to find. As the automatic generation of
figures gets more support, the flow variables will find use there too.

Iterating a range of values or files in a folder should also be done using flow variables.

Node views
Nodes can also have node views associated with them. These help to visualize your
data or a model, show the node's internal state, or select a subset of the data using
the HiLite feature. An important feature exists that a node's views can be opened
multiple times. This allows us to compare different options of visualization without
taking screenshots or having to remember what was it like, and how you reached
that state. You can export these views to image files.

HiLite
The HiLite feature of KNIME is quite unique. Its purpose is to help identify a group
of data that is important or interesting for some reason. This is related to the node
views, as this selection is only visible in nodes with node views (for example, it is
not available in port views). Support for data high lighting is optional, because not all
views support this feature.

The HiLite selection data is based on row keys, and this information can be lost
when the row keys change. For this reason, some of the nonview nodes also have
an option to keep this information propagated to the adjacent nodes. On the other
hand, when the row keys remain the same, the marks in different views point to
the same data rows.

It is very important that the HiLite selection is only visible in a well-connected
subgraph of workflow. It can also be available for non-executed nodes (for example,
the HiLite Collector node).

The HiLite information is not saved in the workflow, so you should
use the HiLite filter node once you are satisfied with your selection to
save that state, and you can reset that HiLite later.

Installing and Using KNIME

[16]

Eclipse concepts
Because KNIME is based on the Eclipse platform (http://eclipse.org), it
inherits some of its features too. One of them is the workspace model with projects
(workflows in case of KNIME), and another important one is modularity. You can
extend KNIME's functionality using plugins and features; sometimes these are
named KNIME extensions. The extensions are distributed through update sites,
which allow you to install updates or install new software from a local folder,
a zip file, or an Internet location.

The help system, the update mechanism (with proxy settings), or the file search
feature are also provided by Eclipse. Eclipse's main window is the workbench.
The most typical features are the perspectives and the views. Perspectives are
about how the parts of the UI are arranged, while these independently configurable
parts are the views. These views have nothing to do with node views or port views.
The Eclipse/KNIME views can be detached, closed, moved around, minimized, or
maximized within the window. Usually each view can have at most one instance
visible (the Console view is an exception). KNIME does not support alternative
perspectives (arrangements of views), so it is not important for you; however, you
can still reset it to its original state.

It might be important to know that Eclipse keeps the contents of files and folders in a
special form. If you generate files, you should refresh the content to load it from the
filesystem. You can do this from the context menu, but it can also be automated if
you prefer that option.

Preferences
The preferences are associated with the workspace you use. This is where most of
the Eclipse and KNIME settings are to be specified. The node parameters are stored
in the workflows (which are also within the workspace), and these parameters are
not considered to be preferences.

Logging
KNIME has something to tell you about almost every action. Usually, you do not
care to read these logs, you do not need to do so. For this reason, KNIME dispatches
these messages using different channels. There is a file in the workplace that collects
all the messages by default with considerable details. There is even a KNIME/Eclipse
view named Console, which contains only the most important details initially.

Chapter 1

[17]

User interface
So far, you got familiar with the concepts of KNIME and also installed it. Let's run it!

Getting started
When you start the program, the first dialog asks for the location of the workspace
you want to use. If the location does not exist, it will be created.

After this, a splash screen will inform you about the progress of the start, and bring
you to the welcome screen.

In the background, your firewall might notify you that this program wants to
connect to other computers. This is normal; it loads tips from the Internet and tests
whether other services (for example, the public repository of KNIME workflows) are
available or not. You can allow this if you have permission to do so, but unless you
want to connect to other servers, you do not have to give that permission.

The welcome screen shows two main options: one for initializing the workbench for
first use, and the other is to install new extensions.

Before we select either of them, we will introduce the most important preferences,
because configuring before the first use is always useful.

Setting preferences
Navigate to the Preferences... menu item under File | Preferences... to gain access to
the preferences dialog. In the General section, you will see an option to enable Show
heap status. It is useful, because it can help you optimize the memory settings for
KNIME. I suggest you to turn it on. It will be visible in the lower-right corner of the
status bar.

KNIME
You can set some KNIME-related options in the preferences of the KNIME category.

The KNIME GUI subcategory contains confirmation, Console logging, workflow
editor grid options, and some text-related options.

If you want to connect to databases, you should find a driver for your database,
and register it by navigating to KNIME | Database Driver. There, you can add
the archive file, and later, you will be able to use them in database connections.

www.allitebooks.com

http://www.allitebooks.org

Installing and Using KNIME

[18]

Database drivers
You can find JDBC database drivers on your database
provider's homepage, but you can also try the JDBC
database: http://www.databasedrivers.com/jdbc/

With Preferred Renderers you can set the default renderers for the columns.
This options is especially useful if you are working with chemical structures.

The main KNIME preference page contains the file logging detail settings,
the parallelism option, and the path to the temporary files.

Other preferences
To set up the proxy, you should navigate to General | Network Connections.

In the General | Keys page, you can redefine the key bindings for KNIME
commands. So, you can use the shortcuts with which you are familiar or
comfortable on your keyboard.

General | Web Browser and the Help pages are especially useful when you have
problems displaying help, or you want to browse local help in your browser.

You can also set some update sites by navigating to Install/Update | Available
Software Sites, but usually that is also done by navigating to Help | Install
New Software....

You can uninstall extensions by navigating to Help | About KNIME behind
the Installation Details button's dialog. The Installed Software tab contains
the extensions; you can uninstall them with a button.

Installing extensions
For installing extensions you need some update sites. You already have the default
KNIME options, which contain some useful extensions. There are community nodes
that also add helpful functionality to KNIME. The stable update site is http://tech.
knime.org/update/community-contributions/2.8, while nightly builds are
available at http://tech.knime.org/update/community-contributions/nightly.

To add update sites, navigate to Help | Install New Software.... Once you have
selected an update site, it will download its summary so you can select which
extensions (features) you want to install. These features have short descriptions, so
you can have an idea what functionality it will offer after installation. Once you have
selected what you want to install from the update site, you should click Next.

Chapter 1

[19]

The wizard's next page gives some details and summaries about the selected features.

On the next page, you can check the licenses and accept them if you are OK with them.
After clicking Finish, the installation starts. During the installation, you might be
asked to check whether you really want to install extensions with unsigned content,
or you want to accept a signing key. Once it is ready, you will be asked to restart your
workbench. After restarting it, you can use the features that were installed; however,
sometimes there are some preferences to be set before using them.

Workbench
So far, we have set up the work environment and installed some extensions.
Now let's select the large button named Open KNIME Workbench.

The initial workbench

Installing and Using KNIME

[20]

The menu bar is similar to any other menu bar, just like the toolbars and the status
bar. We will cover the menu bar and the toolbar in detail.

The KNIME Explorer view can be used to handle your workflows, workflow groups,
or connect to KNIME servers. The Favorite Nodes view contains the favorite, last
used, and most used nodes as a shortcut. You can specify the maximum number of
items that should be there.

You should play with the view controls a bit more and get
familiar with their usage.

Node Repository is one of the most important views. It contains nodes organized in
categories. The search box is really helpful when it comes to the workflow design,
and if you remember a part of the name but not its category. You will use this feature
quite often.

The Outline view gives an overview on what is in the current editor window; it can
also help navigating if the window is too large.

It is considered bad practice to have a single, huge workflow for
your task. Using meta nodes, you can have more compact parts
in every level.

The Console view contains messages—initially only the important ones.

The Node Description tab provides you with help information for the selected node.
Information on how you should use it, what are the parameters, what should be its
input, what is its output, and what kind of views are available are answered in that
tab. When you select a category in the Node Repository view, the contents of the
category will be displayed.

And finally, the central area of the window is for the workflow editor. A workflow
named KNIME_project was created. Now, you can start working on it. Try adding
the File Reader node from the IO | Read category in Node Repository. Drag it from
the repository to the workflow or just double-click it in the repository, move it around,
add another, delete it using the context menu, and that would be a good start.

The Undo (Ctrl + Z) and Redo (Ctrl + Y) commands from the Edit or the context
menu (or from the toolbar: curved left and right arrows) can help you go back to
the previous editing state.

Chapter 1

[21]

Workflow handling
To create a workflow group, open the context menu of the LOCAL (Local Workspace)
item in the KNIME Explorer view and select New Workflow Group... from the
menu. Specify the name of the workflow group and where it should be created (once
you have more groups, you can create groups inside those too). Creating a workflow
can also be done using the New Workflow... command. These commands are also
available from the File | New... (Ctrl + N) dialog.

The key bindings are not always easy to remember because there are
many of them; for more information and help about them, navigate to
the Help | Key Assist... menu item or use Ctrl + Shift + L.

To load a workflow, first you have to make it available locally. There are many
options to do that. You can import it to the workspace using the File | Import
KNIME workflow... dialog (also available from the context menu).

There is a file named ExampleFlow.zip in the installation folder;
you can use that.

The Example Flow workflow loads the iris dataset (do not reset that
node), colors the rows according to their class label, and visualizes the
data in three different ways.

Another option is to download a workflow from the KNIME Server. Fortunately,
the public KNIME Server is available for guests too. First you have to log in using
the context menu. Select the only available option, Login. Once the catalog has been
loaded, you can browse it similar to what you can do with the local workspace. But
you cannot open the workflow from there. You have to select the one you want to
import and copy it (in the context menu, use Copy or press Ctrl + C). Once you have
the right place in the local workspace, insert the workflow (in the context menu use
Paste, or press Ctrl + V).

The metadata information can be handy if you want to know when it was created,
who the author is, or what did someone comment. The comment information is
especially handy if you want to choose the workflow you want to download. To
get (or set for local workflows) this information, the context menu's Show Meta
Information (or Edit Meta Information...) command should be used.

Installing and Using KNIME

[22]

Describe your dependencies
If you mention the prerequisites to your workflow, it will help the
next user (who may be the future you) to set up things properly.

In loaded workflows, sometimes there are yellow notes about the structure of the
workflow to grab your attention for customization options, and others. You can
create your own notes from the context menu of the workflow editor using the New
Workflow Annotation menu item. You can close the workflow by closing its editor.

The context menu gives options to Rename... (F2) (only available for closed
workflows), Delete... (Delete), Copy (Ctrl + C), Paste (Ctrl + V), or Cut (Ctrl + X)—or
just move using dragging—workflows or workflow groups.

The quickstart.pdf file describes how you can export workflows to share
them with other users. The web guide for this is available at:
http://tech.knime.org/workbench#export

Node controls
Once you have nodes in the editor, you want to configure it. To do that, you
should double-click it, select it from the context menu or the Node menu using
the Configure... command, or use the toolbar's checklist icon (also accessible by
pressing F6). This opens a configuration dialog (Line Reader node), as shown in
the following screenshot:

Example configuration dialog

Chapter 1

[23]

This way you can set the parameters of the node. There can be various controls,
usually with helpful tooltips; you can open them in a side window, and add the node
description too. You might wonder what should that v=? button do. It opens up the
variable settings. For example, you can use the filename in subsequent nodes as a
flow variable, or substitute it with a flow variable, if that is what you need.

The configurations are organized in tabs. The last two tabs are present in all the
configuration dialogs. The Flow Variables tab allows you to assign flow variables to
the parameters as values, as shown in the following screenshot:

The Flow Variables tab

The Memory Policy tab is seldom needed; you can specify how the data should
be handled within KNIME during execution of the node, as shown in the
following screenshot:

The Memory Policy tab

Installing and Using KNIME

[24]

It really helps to identify the nodes or their purpose if you give them meaningful
names. To change the name, click on a previously selected node or press F2. If
you want more detailed information, you might consider adding a workflow
annotation around it. Alternatively, you might want to add a node description to it
by navigating to the context menu item Edit Node Description..., or the Node menu
Edit Node Name and Description... (Alt + F2), or by clicking the toolbar's yellow
speech balloon. This information will be the tooltip of the node.

If you find the names distracting or if they are the default name, you can hide or
enable them by navigating to Node | Hide Node Names, by pressing Ctrl + Alt + Q
or the stroked through text on the toolbar.

The way from not configured to configured, and then the executing and executed states.

We want to execute the node to get the results. To achieve this, select the context
menu or the Node menu, and select Execute (F7). On the toolbar, this is the play
button (a white triangle on green circle). You can also schedule execution to show
the first view after that (Shift + F10). You can change your mind and try to stop
the execution before it is finished. For this purpose, navigate to Node | Cancel
Execution (F9) of the selected nodes, or navigate to Node | Cancel All Execution
(Shift + F9).

There might be warnings or errors even after the execution; you will be notified
about those.

If the execution finishes successfully, you can check the ports by selecting one of
them from the context menu; alternatively, if you want to check the first output port,
navigate to Node | Open First Out-Port View (Shift + F6, a magnifier over a table on
the toolbar). Checking views is a good idea too (it can be selected from the context
menu or via Node | Open First View, F10, a magnifier on the toolbar). The node
views also have some common parts: the File and the HiLite menus.

Chapter 1

[25]

If you make changes to the configuration, your node will be reset to the configured
state; it can also be achieved using Node or the context menu's Reset (F8) command (or
the toolbar's x-table button). The reset will not delete the previously set parameters.

To connect a node's output port to another node's input port, just drag the output
port to the input port; when the mouse button is released they will be connected
(assuming the ports are compatible and would not create cycle in the graph of
nodes). From one output port, you can connect to as many input nodes as you want
(to same nodes too), but the input ports can only handle one port at the most.

There are arrangement commands available on the toolbar (horizontal, vertical,
and auto layout), and you can also configure the node snapping grid properties by
navigating to Node | Grid Settings... (Ctrl + Alt + Shift + X) from the toolbar—a grid.

HiLite
As we mentioned previously, HiLite is a view-related feature of KNIME, which
allows selecting certain set of rows and making it visible across different rows. The
Example Flow is a good start to get familiar with this concept and see it in action. As
you can see, there are four visual type nodes available, the Color Manager, Scatter
Plot, Parallel Coordinates, and Interactive table. Please open a view for the last
three nodes, and also execute them in the same order.

The interactive table node shows data with different colors for different flowers.
Select the first Iris-versicolor row, 51. Now from the HiLite menu, select HiLite
selected (also available from the context menu in this view). As you can see, a point
and a path has already been highlighted on the other two views—those representing
the row 51. If you try, you can highlight another row from the Interactive table view;
you can select some dots from the scatter plot or paths from the parallel coordinates.
Highlighting them can be done similar to what you did in the first view. You also
have the option to selectively unhighlight (UnHiLite Selected) or unhighlight all
(Clear HiLite). You can also hide or keep only the highlighted rows (in the view,
the port content will not be changed) using the HiLite | Filter menu items.

To store the HiLite information, you should add HiLite Filter (for example, add it to
the Color Manager node), execute them, and save the workflow. With the Interactive
HiLite Collector node, you can add custom information to the currently highlighted
rows, so that later you can identify multiple subsets (if you check the New Column
box before clicking on Apply). Do not forget to execute the node, and later save the
workflow once you are satisfied with your selection.

Installing and Using KNIME

[26]

Variable flows
When you bring your mouse cursor to the left and upper-right corner of the nodes
(a bit outside of it), you will get a different tooltip—Variable Inport and Variable
Outport (Variables Connection) respectively. Something useful is hidden there.
Select a node, and from the context menu, select Show Flow Variable Ports. This
way two circles will appear filled with the color red. You can connect them to the
other node's input/output flow ports. These connections are red. This way you can
make sure the proper set of variables will be available at the right time (circular
dependencies are not allowed this way). The loops also use the workflow variables,
and there are multiple nodes to create these or change them. You seldom need these
connections as flow variables are propagated through normal connections.

You can also specify workflow variables from the context menu of the workflow
(Workflow Variables...), or by using the QuickForm nodes.

Meta nodes
We mentioned that the meta nodes are useful for encapsulating the parts of the
workflow and to hide the distracting details. The quickstart.pdf file gives a nice
introduction to meta nodes; you can find the content on the web too at the link
http://tech.knime.org/metanodes.

An unmentioned option to create new meta nodes is by selecting a closed subset
of non-executed nodes or meta nodes and invoking the Collapse into Meta Node
action from the context menu. The opposite process (bringing the contents of the
meta node to the current level) is also possible with the Expand Meta Node context
menu item.

Opening a meta node is possible by double-clicking on it or selecting the Open Meta
Node context menu item. Both ways, another workflow editor tab will appear, where
you can continue the workflow design.

Workflow lifecycle
Once you have a workflow, you might want to save the changes you made and the
computed data and models. That is really easy; navigate to File | Save (Ctrl + S) or
use the toolbar's disc icon.

You cannot save workflows with executing nodes, so you have to
save them before or later, else you have to stop the execution.

Chapter 1

[27]

Sometimes you want to execute the whole workflow. To do that, you can use the
toolbar's Execute all executable nodes button (a fast forward icon with a green circle
background, Shift + F8) or the Node | Execute All menu item.

Batch processing
To process workflows from the command line (or from other program),
the KNIME FAQ gives a good description at the following link:
http://tech.knime.org/faq#q12

If there are multiple entry points to your workflow, it can be boring to reset all
those nodes one by one, but the Reset command from the context menu of KNIME
Explorer will reset all the nodes in the selected workflow.

Other views
The Server Workflow Projects view shows only the workflows (and groups)
available on servers, but the Workflow Projects view shows only the local ones. If
you do not need server workflows, this might be a better choice than the KNIME
Explorer view, as this is more compact.

KNIME Node Monitor (View | Other... | KNIME Views) view gives you
information about the selected item's state and other parameters. I think you will find
this useful, especially if you explore the dropdown menu from the white triangle:

KNIME Node Monitor's possible contents

Summary
In this chapter, we have installed KNIME, set it up for its first usage, configured it,
and installed a few extensions. We also went through the most important concepts
you will use. We started using the workflow editor and executed our first workflow.
Now it is time for you to check some of the example workflows from the KNIME
public server and try to execute and modify them.

www.allitebooks.com

http://www.allitebooks.org

Data Preprocessing
Data preprocessing usually takes a lot of time to set up, because you have to take
care of lot of different formats or sources. In this chapter, we will introduce the
basic options to not only read and generate data but also to reshape them. Changing
values is also a common task, and we will cover that too.

It is a good practice to keep checking certain constraints especially if you have
volatile input sources. This is also important in KNIME. Finally, we will go through
an example of workflow from import to preprocessing. In this chapter, we will cover
the following topics:

• Data import
 ° From database
 ° From files
 ° From web services

• Regular expressions
• Transforming tables
• Transforming values
• Generating data
• Constraints
• Case studies

Data Preprocessing

[30]

Importing data
Your data can be from multiple sources, such as databases, Internet/intranet, or files.
This section will give a short introduction to the various options.

Importing data from a database
In this section, we will use the Java DB (http://www.oracle.com/technetwork/
java/javadb/index.html) to create a local database because it is supported by
Oracle, bundled with JDKs, cross-platform, and easy to set up. The database we use
is described on eclipse's BIRT Sample Database page (http://www.eclipse.org/
birt/phoenix/db/#schema).

Starting Java DB
Once you have Java DB installed (unzipped the binary distribution from Derby
(http://db.apache.org/derby/derby_downloads.html) or located your JDK),
you should also download the BirtSample.jar file from this book's website
(originally from http://mirror-fpt-telecom.fpt.net/eclipse/birt/
update-site/3.7-interim/plugins/org.eclipse.birt.report.data.oda.
sampledb_3.7.2.v20120213.jar.pack.gz). Unzip the content to the database
server's install folder.

You should start a terminal from the database server's home folder, using the
following command:

bin/startNetworkServer

You can stop it with the bin/stopNetworkServer command.

Locate the database server's lib/derbyclient.jar file. You should install this
driver as described in the previous chapter (File | Preferences | KNIME |
Database Driver).

You can import the DatabaseConnection.zip file, downloaded from this book's
website, as a KNIME workflow. This time, we were not using workflow credentials
as it would always be asked for on load, and it might be hard to remember the
ClassicModels password.

Chapter 2

[31]

The previous screenshot reads different tables and filter some of the results. The Java
Edit Variable node provides the JDBC connection string as a flow variable.

There is a workflow variable named database location (default value: BirtSample),
in case you want to specify an absolute path to the database you want to use. The
Java Edit Variable node appends this path to the default local database connection,
so you can use the Derby JDBC connection variable in the subsequent nodes. You
should start with executing this node to configure the other nodes.

The Database Connector node can connect to the database and give a stub for further
processing (you can inspect it using the port viewer, though, once you execute).

Data Preprocessing

[32]

The Database Query can be used to express complex conditions in the table. Please
be careful. You should name the #table#, like we did in the following query:

SELECT * FROM #table# customerTable where customernumber < 300 or
customernumber is null

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

If you have simpler (single column) conditions, you can also use the Database
Row Filter node. Removal of a few columns (projection) can be performed with the
Database Column Filter node.

If you want to process or visualize the data in KNIME, you have to convert the
database connection port type to regular data tables using the Database Connection
Reader node. If you do not need post-processing of the database tables, you can
simply specify the connection and the query with the Database Reader node.

An interesting option to read data is by using the Database Looping node. It can
read the values from one of the input table's columns and select only the values that
match a subset of the column for one of the database columns' values.

Exercise
Check what happens if you uncheck the Aggregate by row option or
increase the No of Values per Query parameter.

You also have the option to modify the database, such as deleting rows, updating
certain rows, creating tables, and appending records. For details, check the Database
Delete, Database Update, and Database Writer nodes. While replacing/creating a
table for an existing database, the connection can be performed using the Database
Connection Writer node.

Importing data from tabular files
This time, for example, we will load a simple comma-separated file. For this purpose,
you can use the File Reader node and the following link:

http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
data

Chapter 2

[33]

KNIME will automatically set the parameters, although you have to specify the
column names (the http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.names file gives a description of the dataset).

In the configuration dialog, you can refine the columns in the preview area by
clicking on its header.

Naturally, you can open the local files too, if you specify the URL using the
Browse... button.

If you have the data in the Excel format, you might need the KNIME XLS Support
extension from the standard KNIME update site. This way, you will be able to read
(with the XLS Reader node) and also write the xls files (with the XLS Writer node).

The extension can also read the xlsx files, but cannot write them.

Just like the File Reader node, XLS Reader can load the files from the Internet too.
(If you have the data in the ods format, you have to convert/export it to either the
xls(x) or the csv file to be able to load from KNIME.)

The CSV Reader node is less important if you prefer to use the KNIME Desktop
product; however, with the batch mode, you might find this node useful (less
options for configuration, but it can provide the file name as a flow variable).

Try dragging a file which can be imported on the editor area.

Attribute-Relation File Format (ARFF) is also tabular (http://weka.wikispaces.
com/ARFF). You can read them with the ARFF Reader node. Exporting to ARFF can
be done with ARFF Writer.

Importing data from web services
For Web Services Description Language (WSDL) web services, you can use the
KNIME Webservice Client standard extension. It provides the Generic Webservice
Client node.

Data Preprocessing

[34]

This node gives many advanced features to access WSDL services,
but you should test it to see whether or not it is compatible with your
service interface before implementing a new one. It is based on Apache
CXF (http://cxf.apache.org/), so any limitation of that project is a
limitation of this node too.

Unfortunately, not much WSDL web services are available for free without
registration, but you can try it out at http://www.webservicex.com/
globalweather.asmx?wsdl. Naturally, if you are registered for another service, or
you have an own in the intranet, you can give it a try.

REST services
Nowadays, the REST (Representational State Transfer) services has gathered
momentum, so it is always nice if you can use it too. In this regard, I would
recommend the next section where we introduce the XML Reader node. You can
use the KREST (http://tech.knime.org/book/krest-rest-nodes-for-knime)
nodes to handle the JSON or XML REST queries.

Importing XML files
You need the KNIME XML-Processing extension from the standard KNIME update
site. The XML Reader node can parse either local or external files, which you can
further analyze or transform.

Importing models
Once you have a model, you might want to save it (Model Writer or PMML Writer)
to use it later in other workflows. In those workflows, you can use the Model Reader
or PMML Reader nodes to bring these models to the new workflow.

Other formats
Some extensions also provide reader nodes to certain data types. The standard
KNIME update site contains multiple chemical extensions supporting different
formats of chemical compounds.

The KNIME Labs Update Site extensions support text processing, graphs, and
logfile analyzing, and they contain readers for these tasks.

Chapter 2

[35]

Public data sources
Most probably you are already familiar with the available data sources for your area
of research/work, although a short list of generic data collections might interest you
in order to improve the results of your data analysis.

Here are some of them:

• Open data (http://en.wikipedia.org/wiki/Open_data) members, such
as DATA.GOV (http://www.data.gov/) and European Union Open Data
Portal (http://open-data.europa.eu/)

• Freebase (http://www.freebase.com/)
• WIKIDATA (http://www.wikidata.org/wiki/Wikidata:Main_Page)
• DBpedia (http://dbpedia.org/)
• YAGO2 (http://www.mpi-inf.mpg.de/yago-naga/yago/)
• Windows Azure Marketplace (http://datamarket.azure.com/)

This was just a short list; you can find many more of these, and the list of data
sources for specific areas would be even longer.

Regular expressions
Regular expressions are excellent for simpler parsing tasks, replaces, or splits. We
will give a short introduction on them and show some examples. These will allow
you to get better idea. At the end of this section, we will suggest further reading.

Basic syntax
Usually, when you write a text as a pattern, this means that the text will be matched;
for example, apple or pear will match the highlighted parts from the following
sentence: "Apple stores do not sell apple or pear."

These are case sensitive by default, so if the pattern were to be simply apple, this
will not match the first word of the sentence or the company name.

There are special characters that need to be escaped when you want to match them:
., [,], (,), {, }, -, ^, $, \ (Well, some of these only in certain positions). To escape
them, you should prefix them with \, which will result in the following patterns: \.,
\[, \], \(, \), \{, \}, \-, \^, \$, \\.

Data Preprocessing

[36]

When you do not want an exact match of characters, you can use the [characters]
brackets around the possible options, such as [abc], which will match either a, b,
or c but not bc (not a single character) or d (not among the options). You can specify
the range of characters using the character within brackets, such as [a-z], which will
match any lower case English alphabet characters. You can have multiple ranges and
values within brackets, such as [a-zA-Z,], which will match either a lowercase or an
uppercase character or a comma (equivalent to [[a-z][A-Z][,]] but not to [a-z]
[A-Z][,] because the latter would match three characters, not one).

To negate a certain character class, you can use the ^ character within brackets; for
example, the [^0-9] pattern will match a single character except the digits (or the
line separators).

It might be tedious and error prone to specify always certain groups of characters,
so there are special sets/classes predefined. Here is a non-exhaustive list of the most
important ones:

• \d: It identifies the decimal digits ([0-9])
• \s: It identifies the whitespace characters
• \n: It identifies a new line character (by default, only single lines are handled

so new lines cannot be matched in that mode, but you can specify a multiline
match too)

• \w: It identifies the English alphabet (identifier) characters and decimal digits
([a-zA-Z_0-9])

You can also use the groups within brackets to complement them; for example,
[^\d\s] (a character that is neither a whitespace nor a digit).

These can be used when you know in advance how long you want to match the
parts; although, usually this is not the case. You can specify a range for the number
of times you want to match certain patterns using the {n,m} syntax, where n and m
are nonnegative numbers; for example, [ab]{1,3} will match the following: a, aa,
aaa, and bab but not baba or the empty string.

When you do not specify m in the previously mentioned syntax, it will be (right)
unbounded the number of times it can appear. When you omit the comma sign too,
the preceding pattern has to appear exactly n times to get a match.

There are shorter versions for {0,1} - ?, {0,} - *, {1,} - +.

Chapter 2

[37]

When there is no suffix for these numeric or symbolic quantifiers, you are using the
greedy match; if you append ?, it implies the reluctant; while if you append a + sign,
it will be possessive. Here are some examples: [ab]+b, [ab]+?b, and [ab]++b. The
details are important, and can be shown by example. We will highlight the matches for
certain patterns and texts (we will separate the matches with | if there are multiple):

Text\
pattern

[ab]+b [ab]+?b [ab]++b [ab]+? [ab]++

abababbb abababbb ab|ab|ab|bb abababbb a|b|a|b|a|b|b|b abababbb

ababa ababa ab|aba ababa a|b|a|b|a ababa

abb abb abb abb a|b|b abb

The last column is a whole text match for each example, also the first column's first
and third patterns, but all other examples are just partial (or no) matches.

You might want to create more complex conditions, but you need grouping of
certain patterns for them. There are capturing groups and non-capturing groups.
The capturing groups can be referred to with their number (there is always an
implicit capturing group for each match and the whole match; that is, the 0 group),
but the non-capturing groups are not available for further reference or processing,
although they can be very useful when you want to separate unwanted parts. The
syntax for capturing groups is (subpattern) and for non-capturing groups is
(?:subpattern).

When you want to refer back to previous groups, you should use the \n notation,
where n is the index of the previous group (in the pattern, the start of the nth starting
group parentheses).

There is also an option to create named groups using the (?<name>subpattern)
syntax. (This feature is available since Java 7, so it will not work on Mac OS X until
you can use KNIME with Java 7 or a later version.) Referring to named patterns can
be done with the \k<name> syntax.

With these groups, you can express not just more kinds of quantification, but also
alternatives using the | (or) construct, for example (ab)?((?:[cd]+)|(?:xzy)),
which means that there is optionally a group of ab characters followed by some
sequence of c or d characters or the text xzy. The following will match: abxzy,
abdcdccd, xzy, c, and cd, but xzyc or cxzy will not.

Positionally, you do not have many options; you can specify whether the match
should start at the beginning of the line (^), or it should match till the end of the line
($), or you do not care (no sign).

www.allitebooks.com

http://www.allitebooks.org

Data Preprocessing

[38]

The lookahead and lookbehind options can be handy in certain situations too, but
we will not cover them at this time.

Beware. For certain patterns, the matching might take exponentially
long; see http://en.wikipedia.org/wiki/ReDoS for examples.
This might warn you to do not accept arbitrary regular expressions as
a user input in your workflows.

Partial versus whole match
The pattern can be matched by two ways. You can test whether the whole text
matches the pattern or just tries to find the matching parts within the text (probably
multiple times). Usually, the partial match is used, but the whole match also has
some use cases; for example, when you want to be sure that no remaining parts are
present in the input.

Usage from Java
If you want to use regular expressions from Java, you have basically two options:

• Use java.lang.String methods
• Use java.util.regex.Pattern and related classes

In the first case, you have not much control about the details; for example, a Pattern
object will be created for each call of the facade methods delegating to the Pattern
class (methods such as split, matches, or replaceAll, replaceFirst). The usage
of Pattern and Matcher allows you to write efficient (using Pattern#compile)
and complex conditions and transformations. However, in both cases, you have to
be careful, because the escaping rules of Java and the syntax of regular expressions
do not make them an easy match. When you use \ in a regular expression within a
string, you have to double them within the quotes, so you should write \\d instead
of \d and \\\\ instead of \\ to match a single \.

Automate the escaping
The QuickREx tool (see References, tools) can do the escaping. You create
the pattern, test it, navigate to File | New... | Untitled Text File, and
select the Copy RE to Java action from the menu or the QuickREx
toolbar. (Now you can copy the pattern to the clipboard and insert
them anywhere you want and close the text editor.)

Chapter 2

[39]

On the Pattern object, you can call the matcher method with the text as an
argument and get a Matcher object. On the Matcher object, you can invoke either
the find (for partial matches) or the matches (for whole matches) methods. As we
described previously, you might have different results.

References and tools
• The Java tutorial about regular expressions might be a good starting point,

and can be referred to at: http://docs.oracle.com/javase/tutorial/
essential/regex/index.html

• The Javadoc of the Pattern class is a good summary and you can refer to
it at: http://docs.oracle.com/javase/7/docs/api/java/util/regex/
Pattern.html

• If you prefer testing the regular expressions, QuickREx is a good choice
for eclipse (KNIME) and can be referred to at:
http://www.bastian-bergerhoff.com/eclipse/features/web/
QuickREx/toc.html

There is a Reg. Exp. Library view that is also included in QuickREx.

Alternative pattern description
In KNIME, there is an alternative, simpler form of pattern description named
wildcard patterns. These are similar to the DOS/Windows or UNIX shell script
wildcard syntax. The * character matches zero or more characters (greedy match),
but the ? character matches only a single character. The star and question mark
characters cannot be used in patterns to match these characters.

Transforming the shape
There are multiple ways to change the shape of the data. Usually, it is just projection
or filtering, but there are more complex options too.

Filtering rows
For row filters, the usual naming convention is used; that is, the node names ending
with "Filter" give only a single table as a result, while the "Splitter" nodes generate
two tables: one for the matches and one for the non-matching rows.

Data Preprocessing

[40]

For single-column conditions, the Row Filter (and Row Splitter) node can be used
to select rows based on a column value in a range, regular expression, or missing
values. It is also possible to keep only these rows or filter these out. For row IDs, you
can only use the regular expressions.

The rows can also be filtered by the (one-based) row index.

The Nominal Value Row Filter node gives a nice user interface when the possible
values of textual columns are known at configuration time; so, you do not have to
create complex regular expressions to match only those exact values.

There is a splitter, especially for numeric values, named Numeric Row Splitter. The
configuration dialog allows you to specify the range's openness and gives better
support for the variable handling than the Row Splitter node.

When you want to filter based on a date/time column, you should use the Extract
Time Window node, which allows you to specify which time interval should be
selected in the result table.

Imagine a situation where you already have a list of values that should be used as a
filter for other tables; for example, you used HiLite to select certain values of a table.
In this case, you can use one of this table's column to keep or remove the matching
rows based on the other table's column. This can be performed by using the
Reference Row Filter node. The Set Operator node is also an option to filter based
on the reference table (Complement, Intersection, Exclusive-or), but in this case,
you get only the selected columns and not the rest of the rows.

Use the Set Operator node to create reference tables.

A very general option to filter rows is using either the Java Snippet Row Filter or
the Java Snippet Row Splitter node. These are interpretations of Java (Boolean)
expressions for each row, and based on these results the rows are included or
excluded.

We have already introduced the HiLite Filter node in the previous chapter, which is
also a row-filtering node.

Sampling
If you want to split the data for training, testing, or validation, you can use the
Partition node that allows you to use the usual options for this purpose (such as
stratified sampling). The filtering version is named Row Sampling. If you need
sampling with replacement, you should use Bootstrap Sampling.

Chapter 2

[41]

The Equal Size Sampling node tries to find a subset of rows that satisfies the
condition of each value being represented (approximately or exactly) the same
number of times as a given nominal column.

Appending tables
This node might not be so easy to find; it is named Concatenate or Concatenate
(Optional in). These nodes can be used to have two or more (up to four) tables'
content in a new one. The handling of the row IDs and the different columns should
be specified.

If the data you want to add is just the empty rows with the specified columns, Add
Empty Rows will do that for you.

Less columns
Sometimes too much data can be distracting, or it might cause problems during
modeling and transformation. For this reason, there are nodes to reduce the number
of columns. In this section, we will introduce these nodes.

The Column Filter node is the most basic option to remove columns. You can specify
which columns you want to keep or remove. A similar purpose node is the Splitter
node. The only difference is that both parts will be available, but in different tables.

The Reference Column Filter node helps in creating similar tables, but you can also
use this to remove common columns based on a reference table.

When you create a column to represent the reason for missing values, you might need
to replace the original column's missing values with that reason. For this task, the
Column Merger node can be used. It has the option to keep the original columns too.

When you want to have the values from different columns in a single collection
column, you should use the Create Collection Column node. It can keep the original
columns, but can also remove them. You can specify if you want to get the duplicate
values removed, or if they should be kept in the selected columns.

Dimension reduction
Sometimes, you don't have a prior knowledge of which columns are useful and
which are not. In these cases, the dimension reduction nodes are of great help.

The Low Variance Filter node keeps the original columns unless their variance
is lower than a certain threshold (you can specify the variance threshold and the
columns to check). Low variance might indicate that the column is not having an
active role in identifying the samples.

Data Preprocessing

[42]

When you want to select the columns based on the inter-column correlation, you
should use the Correlation Filter node with the Linear Correlation node. The latter
can compute the correlation between the selected columns, and the filter keeps only
one of the highly correlated columns (for "high", you can specify a threshold).

The Principal Component Analysis (PCA) is a well-known dimension-reduction
algorithm. KNIME's implementation allows you to invert the transformation (with
errors if any information was omitted). The nodes are: PCA (computes and applies
transformation based on threshold or number of dimensions), PCA Compute
(computes the covariance matrix and the model), PCA Apply (applies the model
with the settings), PCA Inversion (inverts the transformation).

The multidimensional scaling (MDS) operation is also a dimension-reduction
algorithm. To use a fixed set of points/rows, you should use the MDS Projection
node, but if you want to use data points automatically, the MDS node is your choice.

More columns
When you have columns that contain too much data in a structured form, you might
want them being separated to new columns. You might also need to combine one
data source with another; we will describe how to do this in this section.

The Cell Splitter node can create new columns from textual columns by splitting
them using a delimiter text, while the Cell Splitter By Position node creates the
new columns by the specified positions (and column names). The first node is useful
when you have to do simple parsing, (for example, you read a table with tabs as
separator characters, but the date field also uses a separator character, such as /,
or -), but the second is better when you have a well-defined description with fixed
length parts (like ISBN numbers or personal IDs).

With the Regex Split node, you can do more complex parsing of the data. Each
capturing group can be extracted to a column. Keep in mind that for groups that
have multiple matches, such as (…)+, only the last match will be returned, not all, or
the first.

The Column to Grid node is used for moving data from rows to new columns in the
order of the rows. It will remove the unselected columns, because those cannot be
represented in this way, but the selected ones will contain the values from rows in
the new columns.

A practical task is referring to previous rows. It is not impossible to achieve this with
other nodes, but the Lag Column node makes this an easy task.

Chapter 2

[43]

Finally, you can combine two tables using the Joiner node. It can perform inner, left,
right, or outer joins, based on the row keys or columns. This way you can enrich your
data from other data sources (or from the same data source if there are self-references).
If you would like to join two tables based on the row indices (practically combine them
in a new table horizontally), you should use the Column Appender node.

GroupBy
GroupBy is the most versatile data shaping node, even though it looks simple.
You specify certain columns that should be used to group certain rows (when the
values in the selected columns are the same in two rows, they will be in the same
group) and compute aggregate values for the nongroup columns. These aggregation
columns can be quite complex; for example, you might retain all the values if you
create a list of them (almost works like pivoting). If you want to create a simple
textual summary about the values, the Unique concatenate with count node might
be a nice option for this purpose. If you want to filter out the infrequent or outlier
rows/groups, you can compute the necessary statistics with this node. It is worth
noting that there are special statistical nodes when you do not want to group certain
rows. Check the Statistics category for details. However, you can also check the
Conditional Box Plot node for robust estimates.

With the Ungroup node, you can reverse the effect of GroupBy transformations by
creating collection columns; for example, if you generate the group count and the
values in the first step, filtering out the infrequent rows will give you a table, which can
be retransformed with the Ungroup node (assuming you need only a single column).

Simpler pivoting/unpivoting can be done this way.

In the preceding screenshot, we start with a simple table, GroupBy using the Class
column, and generate the list of values belonging to those classes, then we undo this
transformation using the Ungroup node by specifying the collection column.

Data Preprocessing

[44]

Pivoting and Unpivoting
The Pivoting node's basic option (when there is no actual pivoting) is the same as the
GroupBy node. When you select the pivoting columns too, these columns will also
act as grouping columns for their values; however, the values for group keys will not
increase the number of rows, but multiply the number of columns for each aggregate
option. The group totals and the whole table totals are also generated to separate the
tables. The Append overall totals option has results in the Pivot totals table only.)

When you want to move the column headers to the rows and keep the values,
Unpivoting will be your friend. With this node, the column names can be retrieved,
and if you further process it using the Regex Split and Split Collection Column
nodes, you can even reconstruct the original table to some extent.

This time the initial table is a bit more complex, it has a new column, letter. The
Pivot node used with the new column (letter) as grouping and the Class as pivot
column. This time not just the list, but also the count of numbers are generated (the
count is the most typical usage). The three output tables represent the results, while
the table with the RowIDs column is the result when the Unpivoting node is used on
the top result table with the count columns as values and the letter column retained.

Chapter 2

[45]

One2Many and Many2One
Many modeling techniques cannot handle multinomial variables, but you can easily
transform them to binomial variables for each possible value. To perform this task, you
should use the One2Many node. Once you have created the model and applied it to
your data, you might want to see the results according to their original values. With
the Many2One node, this can be easily done if you have only one winner class label.

The One2Many node creates new columns with binary variables, while the Many2One can convert them back.

Cosmetic transformations
This section will summarize some of the options that are not so important for the data
mining algorithms, but are important when you want to present the results to humans.

Renames
The Extract Column Header and Insert Column Header nodes can help you if you
want to make multiple renames with a pattern in your mind. This way, you can
extract the header, modify it as you want (for example, using another table's header
as a reference), and insert the changed header to the result. For those places where a
regular expression is suitable for automatic renames, the Column Rename (Regex)
node can be used.

When a manual rename is easier, the Column Rename node is the best choice; it can
even change the type of columns to more generic or compatible ones.

Changing the column order
The Column Resorter node can do what its name suggests. You can manually select
the order you would prefer, but you can also specify the alphabetical order.

Data Preprocessing

[46]

Reordering the rows
Using the Sorter node, you can order your data by the values of the selected column.
Other columns can also be selected to handle ties.

When you want the opposite, for example, get a random order of rows, the Shuffle
node will reorder them.

The row ID
The row ID, or row key, has an important role in the views, as in the tooltips, or as
axis labels, where usually the row ID is used. With the RowID node, you can replace
the current ID of rows based on column values, or create a column with the values
of row ID. You can even test for duplication with this node by creating a row ID
from that column. If there are duplicates, the node can fail or append a suffix to the
generated ID depending on the settings.

When you use the row IDs to help HiLiting, the Key-Collection HiLite Translator
node is useful if you have a column with a collection of strings, which are the row
keys in the other table.

Transpose
The Transpose node simply switches the role of rows and columns and performs
the mathematical transpose function on matrices. It is not a cosmetic transformation,
although it can be seldom used to get better looking results. The type of the column
is the most specific type available for the original row.

Transforming values
Sometimes the data that you have requires further processing; that is, not just
moving around but also changing some values.

Generic transformations
A quite flexible node is the Rule Engine node that creates or replaces a column based
on certain rules involving other columns. It might contain logical and relational
operators for texts, and it can even check for inclusion (IN) for a certain set of values
or limited pattern matching (LIKE as in SQL). The result can be either a constant, a
column's value, or a flow variable. It can also handle the missing values.

When you want to fill the metadata, you should use the Domain Calculator node. With
the help of this node, you can create nominal columns from textual (String) columns.

Chapter 2

[47]

Java snippets
The most generic cell transformation nodes are the Java snippet nodes (Java Snippet
and Java Snippet (Simple)). They allow you to use the third-party libraries, custom
code to transform a row's values, or append new columns with those values. This
is considered a last resort option though, because it makes it harder to get a visual
overview of the workflow, when there are multiple snippet nodes used and requires
Java knowledge of the user.

You have been warned, so now we can introduce how to use it when you need it.

Let us see what is in the configuration dialog:

The main configuration tab of the Java Snippet node

www.allitebooks.com

http://www.allitebooks.org

Data Preprocessing

[48]

As you can see, to the left of the window, there is a columns list and the flow
variables list, while to the right you can see a coding area with the syntax highlighted
(also code completion and error highlighting). Beneath them you can specify the
values in the input and output columns. The output can be not only columns, but
also the flow variables (With the simple version, you can only have a single column
as the output). You can use the mouse to insert references to flow variables, columns,
or row/table properties; just double-click them. The code completion can be
activated using Ctrl + spacebar or just waiting after writing a method/field selector
(.) for an object.

In the coding area, the menu which appears on right-clicking also works, just like the
undo (Ctrl+Z)/redo (Ctrl+Y) commands. Some of the parts of the surrounding code
are hidden (folded) initially, but if you are curious, you can see them.

The regular exceptions are swallowed, so it will not stop the execution; however,
missing cells and null flow variables will be created for that row. If you want to stop
the execution, you should throw an Abort exception.

When you do not want to import a reference to a certain column or flow variable,
you use the snippets methods, which are described in the node description at:
http://www.knime.org/files/nodedetails/_misc_java_snippet_Java_
Snippet.html.

You can declare custom variables as static fields, but those will not
retain their values after a reset, so you will not gain too much (and
static fields can be seen as a bad practice).

In the Additional Libraries tab, you can specify which jars should also be loaded for
this snippet. This way, you can use quite complex libraries besides the standard Java
Runtime Environment.

The Templates tab allows you to load a template from the available repositories. You
can create your own using the Create Template... button on the main tab of the Java
Snippet configuration.

The flow control category contains similar, yet specialized, nodes to change flow
variables named Java Edit Variables and Java Edit Variables (simple), but as a row
filter, you can either use Java Snippet Row Filter or Java Snippet Row Splitter.

The Math Formula node
The KNIME Math Expression (JEP) extension is available from the standard KNIME
update site and adds the Math Formula node to the repository.

Chapter 2

[49]

The Math Formula node is similar to the String Manipulation node, but it works
with numbers and not with texts. Here you also have different kinds of composable
functions and a few helper variables and constants. The following are the main
categories of functions:

• Trigonometric
• Logarithmic/exponential
• Rounding
• Statistical
• Other (rand, abs, sqrt, if, and binom)

Using these functions, you can transform the values from a row without knowing the
Java syntax.

Conversion between types
We previously mentioned that "upcasting" can be performed using the Column
Rename node, although usually we are not that lucky to have only that kind of
transformation. If you want to sort the numeric data by their textual representation
(for example, "1"<"10"<"2"), the Number To String node will help to do that.
(Unfortunately, you cannot specify precision or number format this way. The format
uses scientific notation (no thousands separators) and use point (.) as a decimal
delimiter.) Another use case might be needed to append the units to the number.

Round before converting to text
Using the Round Double node, you can remove the noise of too precise
values if you want to show the converted values in a better way.

The Round Double node allows you to select the precision and the rounding
mode, and can convert to the data to textual format, but can keep the floating point
representation too. When you convert to text, it might not use the scientific notation;
so, it might suit your needs better in certain cases.

The other way, using the String To Number node, you can specify whether you
want to parse the values as floating point numbers or integers. You can also set what
should be the decimal and the thousands separator.

Another option to convert the textual column values to numbers is using the
Category To Number and apply helper nodes, Category To Number (Apply), if
you want to use the same transformation on a different table. These are creating a
transformation (PMML) model, which specifies which numbers should be assigned
to certain values of the selected textual columns.

Data Preprocessing

[50]

The Double To Int node can be used to convert the floating point numbers to
integers. You can select the columns and the rounding mode.

When you have (hexadecimal or binary) numbers represented as a text, or the
bit positions separated by spaces, you can create a bitvector from them using
the Bitvector Generator node. You can also use this node to assign 0 or 1 to each
selected numeric columns based on a fix separator value or relative to the mean of
the individual columns. These values are then combined to bitvectors.

The String to Date/Time and the Time to String nodes allow you to convert
between dates and texts. You can specify the date format in both cases, but you
cannot set the locale.

With the Column To XML node, you can convert multiple columns (row-wise)
to a single XML column, and the XPath node can extract information from XML
cells as texts. If you want to parse an XML document from a text column to the
KNIME XML data type, you should use the String To XML node.

Binning
When your preferred modeling algorithm cannot handle the numeric classes, but
there are too many values to use them for classification without overfitting, a good
option is creating intervals (bins) based on the values, and using those interval labels
(or their One2Many variables) for learning. Fortunately, KNIME has good tools to
solve this problem too.

First of all, you should decide whether you want to specify the boundaries manually,
or an automatic way is preferred. If you want manual bins, the Numeric Binner node
should be used. This node allows you to set the different ranges for selected numeric
columns in the configuration dialog. If you have a mapping already available as a
table, you should use the Binner (Dictionary) node. The rule table should contain
the label and the lower and the upper bounds (you cannot specify for each rule how
the end points of the interval should be included for the rule set).

The automatic binning construction can be done using the Auto-Binner node.
You can specify how many bins you want or just select the percentiles for the bin
boundaries. With the Auto-Binner (Apply) node, you can use the result of that
binning in other tables or columns, but in this case the boundary labels could be
misleading if there are values outside the original interval.

The other options for automatic binning are the CAIM Binner and CAIM Applier
nodes. These nodes learn binning based on a class label column that tries to minimize
the class interdependency measure.

Chapter 2

[51]

Normalization
Several algorithms do not work well when the range of the numeric values are
on a different scale. Think of those that use a difference metric. In such cases, a
relatively large change in a variable with small range is not recognizable. For this
reason, KNIME supports normalization of values using the Normalizer node,
which also creates a transformation model that can be applied to other tables using
the Normalizer (Apply) node. You can select from three different normalization
methods as follows:

• Min-max
• Z-score
• Decimal scaling

The min-max normalization scales the values to a user-defined range, while Z-score
will transform the values such that the mean will be zero and the standard deviation
will be one. Decimal scaling converts the values such that they are not larger than
one in their absolute values. This is achieved by finding the smallest power of 10 that
satisfies this condition.

The Denormalizer node inputs a model from Normalizer and applies its inverse
version on the data. This way, you can show the data in the original range.

Text normalization
Not only the numeric values should be normalized, but also the text in columns might
need some further processing. For this purpose, you can use the Cell Replacer, String
Replacer, String Replace (Dictionary), Case Converter, and String Manipulation
nodes. The Rule Engine node can also be used for related tasks, while the Missing
Value node can be used to specify alternative values for the missing values.

The Cell Replacer node is a general whole-content replacer node (or appends for
certain preferences). You have to specify a dictionary table and the column to change.
In the dictionary table, you also have to select the two columns (from and to).

This functionality is a little bit similar to the String Replace (Dictionary) node;
however, in the String Replace (Dictionary) node, the input is not another table,
but a file similar to prolog rules, where the term to generate is the first, whereas
the conditions are the rest. Although, unlike prolog, the conditions are "or"-ed, not
"and"-ed in the same rows; so, if any of the keys match, the head will be used as a
replacement. You can think of this as an ordinary dictionary table that was grouped
by the replacement values. This can be a compact form of the rules, although you still
can have multiple rows with the same replacement (first column) values.

Data Preprocessing

[52]

The String Replacer node can be handy when you want to replace only certain parts
of the input text. It uses the wildcard pattern or regular expressions. You can replace
the whole string or just the parts that match.

The Case Converter node can do a simple task; that is, normalize the texts to all
uppercase or to all lowercase.

The String Manipulation node, on the other hand, can do that and much more
with texts. You can use multiple (even non-textual) columns in the expression that
generate a result (which can also be not just text but logical or numeric values too).
The functions which you can use fall into the following categories:

• Change case
• Comparison
• Concatenate
• Convert type
• Count
• Extract
• Miscellaneous (only reverse yet)
• Remove
• Replace
• Search

These functions cannot handle date and time or collection values; however, for
positional or exact matches, these are great tools as they allow you to compose the
provided functions.

Regular expressions
With the Java Snippet node, you can perform the changes using regular expressions
too. Here is an example of the code snippet:

// system imports
// Your custom imports:
import java.util.regex.*;
// system variables
// Your custom variables:
Pattern tuplePattern = Pattern.compile("\\((\\d+),\\s*(\\d+)\\)");
// expression start
// Enter your code here:
if (c_edge != null) {
 Matcher m = tuplePattern.matcher(c_edge);

Chapter 2

[53]

 if (m.matches()) {
 out_edge = m.replaceFirst("($2, $1)");
 } else {
 out_edge = "NA";
 }
} else {
 out_edge = null;
}
// expression end

The automatically generated parts are hidden in this code. We have the c_edge field
as an input and out_edge as an output. First, we import the Pattern and Matcher
classes using the import statement. The pattern we used translates to the following:
find an opening parenthesis, then a nonnegative integer number (within a group,
so it is interesting for us, which is group number 1), a comma, possibly a few white
spaces, another nonnegative number (also interesting, group number 2), and closing
parenthesis. You might notice that to escape the \ character, we had to double them
between the quotes.

For each row's edge text, we test whether the edge is missing or not. After that,
we check (when not missing) whether it fully matches our pattern; if yes, we
replace the whole matching pattern with the opening parenthesis, the second
number ($2), a comma, a space, and the first number ($1) followed by a closing
parenthesis. If there is no proper match, we return NA, but if it is missing, we
return the missing value (null).

You can see this code in action if you import the project from ReverseEdges.zip.

It is worth noting that such a similar task can be more easily done with the String
Replacer node, but this technique can be used in more complex cases too, and can
be a template for extension.

Multiple columns
When you want to create a single value from multiple columns, you have several
options: Column Aggregator, Column Combiner, Column Merger, and Create
Collection Column.

The Create Collection Column option is quite specific and does what its name
suggests. The Column Aggregator option can do the same function as The Create
Collection Column option and also various other aggregation methods, such
as computing statistics, summarizing the selected columns, or performing set
operations among collections. For details about the available functions, check its
Description tab.

Data Preprocessing

[54]

When you just want a single string from multiple columns, you should use the
Column Combiner option. You can set the parameters to make it reversible for
text values.

The Column Merger node is useful when you want to merge two columns, based
on the presence of values; for example, imagine the state and country columns for
persons. When a country has no states, you might want the country name present
in the state column too (or you might want to keep only the state column with the
country value if it was missing previously). It is easy to solve using this node.

We already mentioned the Many2One node during structural transformations, but
it is worth referring to that here too. You can create a single column from the binary
columns with at most one inclusion value.

XML transformation
The XML transformation nodes are a part of the KNIME XML-Processing extension,
available from the standard KNIME update site.

With the XML Column Combine node, you can create new XML values row-wise
from the existing XML columns. In case you do not have XML values yet, you can
still create a new value with custom or data bound attributes for each row.

To create a single XML from a column's values, you should use the XML Row
Combine node. This can be useful when you want to generate parts for the XLSX or
ODS files. With the file handling nodes, you can replace data within templates.

There are Java libraries that can be used to transform XML content or even HTML;
for example, Web-Harvest (http://web-harvest.sourceforge.net/index.php).
These libraries are useful when something complex should be performed, but for
standard transformation tasks, the XSLT node is sufficient. It can collect values/
parts from the XML values; so, it is a form of extraction and search too, just like the
XPath node.

Time transformation
When you have too many details available, it might be hard to focus on the
important parts. In case of dates, you might be not interested in the actual time of
day, the actual day, month, or year, or the date is not important, because all of your
data points are within a day. We can split the date column to have this information
in separate (numeric valued) columns using the Date Field Extractor and the Time
Field Extractor nodes.

Chapter 2

[55]

The Mask Date/Time node does a similar thing, but it works on the time column and
keeps/removes the time of day, the date, or the milliseconds information (but only
one at a time).

With Preset Date/Time, you can specify the removed/missing parts of the date or
time to a preset value, but you can also use this node to set the date/time values for
missing values.

Computing the difference between the dates and time is a common task. With the
Time Difference node, you can not only find out the difference in various units
between two columns, but also a fixed date (and time), or the current time, or the
previous row.

Smoothing
Using the Moving Average node, we can smooth the numeric values using a date/
time column. It can use various methods to compute the moving average; the node
description introduces them with the formulae.

Data generation
There is a KNIME Labs plug-in named KNIME Datageneration (http://tech.
knime.org/datageneration). It gives support to generate values from different
distributions for existing rows to new columns:

• Random Number Assigner: It supports uniform distribution
• Gaussian Distributed Assigner: It supports Gaussian distribution
• Beta Distributed Assigner: It supports beta distribution
• Gamma Distributed Assigner: It supports gamma distribution

To generate rows with numeric content, the most obvious node is Data Generator. It
generates data for clusters of normally distributed data for various dimensions with
different cluster centers on the [0,1] interval. It also generates the cluster labels.

To generate empty rows for existing tables, the Add Empty Rows node gives
options. You might also want to create a table specification before you add (new or
additional) empty rows. This can be done using the Create Table Structure or the
Table Creator nodes. Both are manual, but if you have a tab/comma-separated file
with the header, it might be easier to read that file using the File Reader node.

If you have a table with empty rows, you can use the Java Snippet node to generate
sequences or grids to that table. You can see the idea in action in the workflow from
the GenerateGrid.zip file.

Data Preprocessing

[56]

The Time Generator node allows you to generate rows with equidistant values with
a single date column between two dates.

You can also use the Empty Table Creator node from the data generation plug-in to
generate empty rows without columns

The SMOTE node fills the spare parts of a class of rows with new rows. It uses an
algorithm to generate similar rows to previously existing ones in a class based on
their numeric attributes.

Generating the grid
We created a workflow which demonstrates how we can generate a grid with
equidistant points in each dimension. In this section, we will introduce some of the
details of this workflow. You can import the workflow from the GenerateGrid.
zip file.

First of all, you have to set the column structure and the parameters of the grid. The
column names should match in the Parameters node's colName column and the
Empty structure node columns.

Description of the Parameters node columns are as follows:

• colName: The name of the column to be generated
• numberOfPoints: Specifies the number of points that will be generated for

that dimension (including end points)
• minValue, maxValue: Specifies the two end points of the closed intervals

In the Generate Grid meta node, first (Java Snippet and helper columns), we
generate a few auxiliary values. The product of the number of points will be used
to find out how many rows should be generated, while the modulo will be used to
compute the row index's range for the column.

Next, we find out how many rows should be generated, by sorting in descending
order, based on the cumulativeProduct column and then converting the first row to
a workflow variable.

Using this variable, we add new empty rows to the table (Add Empty Rows).

Chapter 2

[57]

Now, we have to create an expression using the String Manipulator node, for each
parameter row, to generate the Java snippet formula. Fortunately, we have the
ROWINDEX information available when we use the $$ROWINDEX$$ expression. Here is
the whole expression of the node:

join("return ($$ROWINDEX$$ / ", string($modulo$), " % ",
 string($numberOfPoints$), " / (", string($numberOfPoints$), " -
 1.0)) * (", string($maxValue$), " - ", string($minValue$), ") +
 ", string($minValue$), ";")

It could have been easier if we used the Java Snippet node, but because this is just
concatenating few values, it was a more consistent option, and we can use this
opportunity to introduce a few String Manipulator functions. The join function just
concatenates its arguments, but it assumes all of them are textual. For this reason,
our numeric values are converted to text using the string function.

An example expression might look like the following after the execution of
the function:

return ($$ROWINDEX$$ / 7 % 11 / (11 - 1.0)) * (30.0 - 10.0) +
 10.0;

The number 7 is the modulo value, 11 is the number of points (n), and 1.0 is an
adjustment constant (the length of the [0, n-1] interval is n-1, which is the reason
for this constant), which also converts the expression to double, but 30.0 and 10.0
are the maximum and minimum end points of the interval of the current column.

Please note these expressions are for Java snippets (simple version),
although, you could also use the Math Formula node later with
little modifications.

The remaining part of the meta node is a loop over the extended parameters data
table (TableRow To Variable Loop Start); however, the content is not collected in
new rows for the consecutive runs, but in the columns (because we used the Loop
End (Column Append) looping node). We have to keep only the target column
from the original table, else the column names would generate conflict during the
loop end node's column append step, and these would be renamed. For this reason,
we used the Column Filter node. The final step within the loop is generating the
value we want in the target column for the specified rows using the Java Snippet
(Simple) node.

www.allitebooks.com

http://www.allitebooks.org

Data Preprocessing

[58]

In the end, you get a grid which looks like the following screenshot (the y-z
projection of it):

A generated grid with 11 data points from 10 to 30 for y values and 7 data points from 2.4 to 3.6 on the z axis.

Exercise
Modify the workflow to use not the number of points for each dimension
but the distance of the adjacent points! The bounds are still required.

The final node of the workflow is the Scatter Plot node to visualize (and check)
the results.

Constraints
You can seldom trust the data you have because there can be network problems
during import, or the program that was generated was wrongly parameterized, the
program got invalid input, or the device you used to collect the data was used out
of its operating conditions. For these reasons, it is a good practice to find constraints
and check them after import or more complex transformations. You should also
check the user input, and if it might cause hard-to-discover problems in later phases,
report them as soon as you can.

Chapter 2

[59]

The Flow Control/Switches nodes can be used to enable the workflow parts
selectively (this is useful if the check of constraints is not always required, or it is too
time consuming to be on by default or to try correcting the wrong data), but the loop-
related nodes (Flow Control/Loop Support) are also useful when multiple columns
should be tested and can handle complex conditions.

In the preceding screenshot, a flow variable comes from outside of the meta node,
the Java Edit Variable (simple) node transforms it, and the result goes to the
Counting Loop Start node, where it can be used to set the parameters.

The IF Switch node is not really helpful in this regard, but when you create mock/
artificial test data you can specify whether that should be merged to the normal
data or not. The actual merge can be done by either the End IF node or one of the
Concatenate nodes.

The CASE Switch node works similarly with just three possible states (outputs) and
better support for workflow variables in the switch condition. The join operation
of the case switch can be performed to signal possible errors (End (Model) CASE)
when there are more than one active branches, or just concatenate them (End CASE).

The Java IF node and the Empty Table Switch node are more automated. They
depend on the state of the input on the branching node too, not just during the join.
The latter simply forwards the data to the first output port if the input is not empty
(has rows), else it forwards the data to the second output port. On the other hand,
the Java IF node can use flow variables and other states (such as the current date and
the random number generators) to select the first or second port as the destination
for the input.

For example, when you remove the rows that contain missing values and no rows
remain, the Empty Table Switch node might give you an alternative path to handle
that situation, and yet finish the execution of the workflow. The Row Filter node can
also be used in combination with it to check whether a certain number of rows are
available or not.

Data Preprocessing

[60]

When you want to signal an error, the best option is the Breakpoint node because
it was designed for this purpose. You specify whether an empty table, an active or
inactive branch, or a certain flow variable value is the erroneous condition, and if it is
satisfied, the execution of the node will fail.

The Try and Catch Errors family of nodes in the Error Handling category is useful
when you want to handle the failures of the nodes in an alternative way.

Obviously, a Java Snippet node can be used to signal an error if the condition does not
require more context than a row, but it is not ideal to collect the "bad" rows. For this
purpose, the Java Snippet Row Filter node is a better choice. When it is combined with
the previous constructs, you can create complex error-handling scenarios.

Some of the metadata of a table can be converted to another table using the Extract
Table Dimension and the Extract Table Spec nodes. The former just computes how
many rows and columns are there, but the latter extracts the min-max values, types,
and column names for the input table.

The Set Operator node can be used to compare different tables; for example, if
you have possibly removed the rows (with the Missing Values node), you can
check whether the difference to the original table is an empty table or not with the
Breakpoint node.

Loops
Doing the same thing multiple times might look like a bad idea, but we usually are
doing slightly different things in each iteration, and with loops, we can factor out the
repetition, and our workflows are easily reused.

A few notes about the loops:

• The flow variables that they generate are read-only; when you replace them,
you do not modify them (as those are handled internally), just hide them
from further processing

• The loops can be nested, so it is possible to have things done quite a lot
of times

The simple Counting Loop Start node just feeds the same input table (as many times
as specified) to the loop, each time increasing the currentIteration flow variable.

When you would like to iterate without the [0, maxIteration-1] interval or the
preferred increment is not one, you should consider using the Interval Loop Start
node instead of the counting.

Chapter 2

[61]

Iterating through a table and splitting the input table to smaller chunks can be useful
when it is too large to handle it with the workflow; however, it can also be used to
make sure that certain parts are analyzed independently. With the Chunk Loop
Start node, the data will be split to parts with n rows, or they will be split to n parts
depending on the configuration. When you want to group the rows, not by their
order, but by their values in certain columns and use those chunks for processing,
you should use the Group Loop Start node.

With the Column List Loop Start node, you can go through the selected columns
of the input table without extracting them in the table. An alternative is using the
TableRow To Variable Loop Start node and the Extract Table Spec node. Both
looping nodes keep not just the current iteration number in a workflow variable, but
other information too (the column name in the former case or the row's actual values
in the latter).

The Generic Loop Start node can be thought of as a do … while loop's do part.
It is just a delimiter of the loop. The while part is the Variable Condition Loop
End node.

When you use the Loop End node to signal the end of a loop, the generated tables
(the input of this node) will be concatenated, and if that is not possible (for example,
incompatible columns are generated), it will fail. When you want to have your
generated columns available, you should end the loop with the Loop End (Column
Append) node (the tables are joined by their row IDs, so be sure they are compatible
in this case).

In cases where you need to return multiple tables from the loop, the previous loop
end options are not satisfactory; however; the Loop End (2 Ports) node enables you
to collect the tables from two sources and return them separately.

The Variable Loop End is useful when you do not have any tables to collect, because
it does not accept tables as input. It returns the variables for each iteration, so it can
be useful when you are debugging a looping flow.

Workflow customization
It is highly recommended to install the KNIME Nodes to create KNIME Quick
Forms extension from the standard KNIME update site, because its nodes allow
you to create configuration points for a whole part of your workflow. This way,
your users can customize their needs more easily or just experiment with
different parameters.

Data Preprocessing

[62]

Here comes a short introduction to the Quick Form nodes. First, we will group these
by what kind of information is generated:

• Boolean Input: It generates logical information
• Integer Input: It generates integer number
• Double Input: It generates double number
• Date (String) Input: It generates date (as text)
• Column Filter QuickForm (multiple column names; results in an empty

table) Column Selection QuickForm (single column name): These generate
date (as text)

• String Input (single line), String Radio Buttons, Single Selection Input
QuickForm (single choice from enumerated possible values), Multiple
Selection Input QuickForm (multiple choice from enumerated possible
values, returns a table), Variable Selection QuickForm (single selection
from the values of a nominal column), Variable Filter QuickForm (multiple
selection from the values of a nominal column), and Molecule String Input
(designed for molecules, although it does not check correctness in the
KNIME Desktop): These generate text

On the KNIME web portal, these can be represented as different controls. For this
reason, you can specify the label to show their description and the flow variable
name in each of the previously introduced nodes.

You can configure the actual values of the QuickForms nodes by
configuring the workflow or even the meta node. You can also use
the QuickForm Execution... option to specify their values before
executing the workflow.

Case study – finding min-max in the
next n rows
In the next few sections, we will introduce some problems and our solution to them
using KNIME.

Sometimes you are fine with the moving average for date type values, but in certain
situations, you need the range of values for a window. In the workflow available
in the sliding_minmax.zip file, we will do exactly this. We are assuming an
equidistant distribution of date values in the rows; you can try to generalize to
remove this restriction.

Chapter 2

[63]

In the preceding screenshot, first (after generating some sample data) we add an ID
based on the row index, then shift the content by the specified value in the Integer
Input node, and finally combine the tables to find min and max values.

The main idea we use is described in the following steps: create a new table for
each position in the sliding window (each shifted according to the position), and
combine these tables using an identifier. Finally, we use the GroupBy node to select
the values. Alternatively, we could also use the Group Loop Start node, but that
would be quite slow and harder to understand. However, if you have to calculate the
unsupported aggregation option(s), you should use the looping construct.

Let's see the details. The sample data was generated using the Data Generator
node and the Java Snippet node. The latter was adding a column with daily time
information to the generated table. If those were not equidistant consecutive dates,
you should sort the table and fill the holes with, for example, the SMOTE node.

The Integer Input quick form node allows you to specify the window size easily,
because we are using flow variables for this purpose. You might also create a meta
node from the part that computes the statistics and wrap it around with a (counting)
loop to try multiple options for the parameter.

We generate an integer ID to make it easy to combine the shifted tables later;
this is quite simple. We could also use the Math Formula node, but to reduce the
dependencies, we used the Java Snippet node with the row index as the values.

You should compute a different ID for non-equidistant values, but that
would also require collecting certain statistics. In that case, finding the
ID for the shifted values would also be harder.

Data Preprocessing

[64]

In the loop meta node (shift content), we first decrease the window size variable,
because the first shift is the no shift (that is, the original table), but the Row Filter
node does not support filtering by position, so we will have to generate the shifted
values and concatenate it to the result of the loop. In the loop, we delete the first n
(currentIteration) row and assign it a new ID. The Loop End node will take care
of the concatenation of the tables.

Simplify
Simplify the workflow with the Lag Column node. It was designed
to perform a task similar to the meta node named shift content.

We add the original table to the shifted ones as the last step in the Shift and combine
custom meta node.

To summarize the values in the sliding window, we use the GroupBy node. You
might think it would be very laborious to set all of these columns for the minimum
and the maximum too, but the KNIME configuration dialog is user-friendly and
makes this easy.

• In the Groups tab, select only the ID column (old_id in this case) for
inclusion

• In the Options tab, select add all >>, right-click on them, and select
Minimum from the context menu

• Now, select add all >> again, select the new aggregation columns, and from
the context menu, select Maximum.

Now everything is configured and ready to start.

Exercise
Would you prefer other ways of sliding windows? I do. We implemented
the analogous version of the Forward simple method of the Moving
Average node. Can you construct a Backward simple method? What
about a Center simple method? It would be nice if the user could
select between these methods using a String Radio Buttons node.

We hope you will find the trick useful to shift the rows. It can be useful in other
situations too.

Chapter 2

[65]

Case study – ranks within groups
In this case, we will compute ranks (based on a certain order) within groups.
This is a much easier task, but can be very useful if you want to select the outliers
without prior knowledge to define cut-off points. However, it can also be useful for
summarizing historical data (find the three/five top hits leading the sales list the
longest in different genres, for example). There is also a simplification when we do
not need the rank, but just the extreme values. But, certain algorithms can use the
rank values for better predictions, because we humans are biased to the best options.
For example, in a 100-minute race, the difference between the first and the fifth
drivers, is one minute hypothetically; that is it amounts to one percent. It's a quite
small difference, although the difference in the prizes and fame are much larger.

The example workflow is in the GroupRanks.zip file.

First, we generate some sample data with the Data Generator node, just like before.
Then we loop through the groups defined by the Cluster Membership column in
the Rank custom meta node using the Group Loop Start looping node.

In the group, we sort the data by the Universe_0_0 column in the ascending order
(and the other numeric columns to break ties) with the Sorter node.

The Java Snippet node just uses the ROWINDEX method to calculate the result (the
index + 1 to start ranking from one).

In the Loop End node, we disabled the generation of the iteration column, because it
is not interesting for us, and the Cluster Membership column identifies the groups
with a nice label.

That's it. This is really easy.

Exercise
Modify the example to give ranks from the opposite direction too. How
would you do that without resorting to the subtable? Could you do it in
a way that the small absolute ranks would be extreme values, while the
larger ones are the usual? For example, 1, 2, 3, 4, -4, -3, -2, -1

Sometimes the rows that are outliers in multiple dimensions can be explained with a
covariance between the columns. However, when you have other outliers, which are
outliers only in a few dimensions, those might be a measure error in that column.

Data Preprocessing

[66]

Exercise
Compute the ranks for a user-defined list of numeric columns in
both directions to find outliers with this method.

With the ranks in the columns, you can now perform the checks you find
worth executing.

Summary
In this chapter, we have constructed KNIME workflows to work with various data
sources (generated, Internet, file, and database). We introduced the most important
nodes to transform and preprocess the data we have. We have also combined this
knowledge to implement solutions to different problems. By now, you would have
an idea of how to construct KNIME workflows and how to use the flow variables
and the loops.

Data Exploration
In this chapter, we will go through the main functions of KNIME visualization
(except reporting) and other techniques to explore the data you have. This can
be helpful when you want to do the preprocessing too, but you can also check
the result of visualization or see how well they fit the computed models and the
test/validation data. The topics covered in this chapter are as follows:

• Statistics
• Distance matrix
• Visual properties
• KNIME views and HiLiting
• JFreeChart nodes
• Some third party visualization options
• Tips with HiLiting
• Visualizing models

Computing statistics
When you want to explore your data, it usually is a good idea to compute some
statistics about them so that you can spot the obviously wrong data (for example,
when some data should be positive and it appears as a negative minimal value,
it is suspicious).

Most of the nodes require you to not have NaN values within the data to be analyzed.
You can remove them with the value modification techniques presented in the
previous chapter, or by filtering the rows, also discussed in the previous chapter.

The minimal and maximal values can be checked in the port view's Spec Columns
tab. This can already be used to spot certain kinds of problems.

Data Exploration

[68]

For statistics within groups, we have the good old GroupBy node. That allows
you to aggregate using the functions described on the Description tab of the
configuration dialog.

When you do not need the grouping, you can use the Statistics node with easier
configuration. Just select the columns, the number of values that should be present
in the view, and the number of common/rare values that should be enumerated.
You might find that the median is not computed in the results. In this case, you
should check the Calculate median values (computationally expensive) checkbox.
The following is the statistics you get in the view (for the numeric columns):

• Minimum
• Maximum
• Mean
• Std deviation
• Variance
• Overall sum
• No. missings
• Median
• Row count

You also get the number of missing values and the most common and rarest values for
the selected nominal (and also numeric) columns, with their number of occurrences.

The statistics table, which is the first output port, contains the same content as the
view for the numeric columns. The second output port (occurrences table) gives
a table with the number of occurrences for each numeric and nominal values in a
decreasing order of frequencies (including the missing values).

Using the output tables, you can create conditions or further aggregate operations.
For example, creating the flow variables from the certain mean and standard
deviation and creating conditions using the Java Edit Variable node allows you to
filter the rows with certain ranges related to the mean and standard deviation with
the row filtering/splitting nodes. (Or use the Java Snippet Row Filter node directly
with the flow variables.)

The Value Counter node acts in a manner similar to the Statistics node's second
output, but in this case, only a single column is used. So, no missing values will
appear in the count column (which is not sorted) and the values from the original
column will appear as row IDs. In this form, they are better suited for visualization.
Also, because this node is able to support HiLite, you can select the original rows
based on the frequency values.

Chapter 3

[69]

When you want a similar (frequency) report with two columns and a possible weight
column to create crosstabs, you should use the Crosstab node. In the view of the
node, you get the crosstab values in the usual form. You can specify which parts
(Frequency, Expected, Deviation, Percent, Row Percent, Column Percent, or Cell
Chi-Square) should be visible. (The row and column totals are always visible, and if
there are too many rows or columns, you can keep only the first few.)

There is another table in the view, beneath the frequency. It is the summary of the
Chi-Square statistics (degree of freedom (DF), the 2 Value, and the probability (Prob)
of no association between the values (a p-value)), and also the Fischer test's probability,
when both columns contain exactly two values.

The Crosstab node's first output port contains the values similar to the view's main
table, but in this case, it is in a different form: the column values are in columns,
while the statistics (Frequency, Expected, Deviation, Percent, Row Percent, Column
Percent, Total Row Count, Total Column Count, Total Count, and Cell Chi-Square)
are in other columns. You can transform it to the usual crosstab form (keeping a
single statistics) using the Pivoting node (select one of the columns as the group
column, the other as pivot, and the statistics should be used as an aggregation
option). You can check the workflow from the crosstab.zip file available on this
book's website.

The second output table of the Crosstab node contains the statistics just like the
second part of the view, but in this case it is in a single row even if both the columns
contain two values (the Fischer test's p-value is in the last column).

When you want to create a correlation matrix, you should use the Linear
Correlation node. It will compute the correlation between the numeric-numeric
and nominal-nominal pairs. Also, a model will be created for further processing.
You can use this information to reduce the number of columns with the help of the
Correlation Filter node.

The view of the Linear Correlation node gives an overview about the correlation
values with the color codes.

There are three t-test computing nodes: Single sample t-test, Independent groups
t-test, and Paired t-test. The Single sample t-test can be used to test whether the
average of the selected columns is a specified value or not. The t-value (t), degree
of freedom (df), p-value (2-tailed), Mean Difference, and confidence interval
differences are computed relative to the specified mean value (the Test value). The
other output table contains some statistics about the columns, such as the computed
mean, standard deviation, standard error mean, and the number of missing values in
that column.

Data Exploration

[70]

The view of Single sample t-test contains the same information as the two
output tables.

When you want to compare the means of two measurements of the same population
(or at least not independent), you can use the Paired t-test node. The view and
the resulting tables contain the same statistics as the Single sample t-test node,
but in this case the mean difference is replaced with the standard deviation and
the standard error mean values, both in the view and the first output table. The
configuration options allow you to select multiple pairs of numeric columns.

For two sample t-tests, you should use the Independent groups t-test node. It
expects the two groups to be defined by a column; the values are grouped by that
column's values. You can select the column that contains the class for grouping
and the values/labels for the two groups within that column. The average of the
columns will be compared, and the t-tests will be computed both for the equal
variance assumption and without that assumption (first output table). The Levene
test is also computed to help decide whether the equal variance can be assumed
(second output table).

The descriptive statistics is augmented with the number of rows that are not in either
group (Ignored Count (Group Column)).

The last test for hypothesis testing is the One-way ANOVA. It allows you to
compare the means within groups defined by the values of a single column, just like
the Independent groups t-test node does; however, it supports multiple groups.

Finally, when you need robust statistics, you can use the Conditional Box Plot
node. It gives you the minimum and maximum values, the median, Q1, Q3, and the
whisker values (can be the same as min/max, else the 1.5 times interquartile range
(Q3 – Q1) below or above Q1 and Q3).

Overview of visualizations
The various options to visualize data in KNIME allow you to get an overview or
even publication-quality figures from the data you have preprocessed and analyzed.

The interactive versions of a node allow you to change the column selections and
probably the other extra options.

The JFreeChart nodes generate images from the input data, which is also available as
a view with further customization options. These nodes usually do not support the
HiLite feature and the different visual properties (color, size, and shape).

Chapter 3

[71]

First, to help decide what you use to open the data, we will compare the capabilities
of the different visualization nodes:

Node Supported data types Remarks
Box Plot Numeric (multiple) Provides robust stats
Conditional Box Plot Nominal and numeric

(multiple)
Also gives robust stats

Histogram Nominal or numeric and
numeric

Histogram (interactive) Nominal or numeric and
numeric

Interactive Table Any Similar to port view
Lift Chart Nominal and probability
Line Plot Numeric (multiple)
Parallel Coordinates Nominal or numeric
Pie chart Nominal and numeric
Pie chart (interactive) Nominal and numeric
Scatter Matrix Nominal or numeric Multiple scatter plots
Scatter Plot Nominal or numeric (two)
Bar Chart (JFreeChart) Nominal
Bubble Chart (JFreeChart) Numeric (three)
Group By Bar Chart
(JFreeChart)

Nominal (unique) and
numeric

Color properties
supported

HeatMap (JFreeChart) Distance or numeric Distance between rows
Interval Chart (JFreeChart) Date and nominal
Line Chart (JFreeChart) Numeric (multiple) or date Color properties

supported
Pie Chart (JFreeChart) Nominal Color properties

supported
Scatter Plot (JFreeChart) Numeric (two) Color, shape used
Linear Regression (Learner) Numeric (multiple) Scatter + line of model
Polynomial Regression
(Learner)

Numeric (multiple) Scatter + graph of model

OSM Map View Numeric (two) Spatial data
OSM Map to Image Numeric (two) Spatial data, creates

image
Hierarchical Cluster View Distance and cluster model Dendrogram

Data Exploration

[72]

Node Supported data types Remarks
ROC Curve Nominal and numeric

(multiple)
Enrichment Plotter Numeric (multiple)
Spark Line Appender Numeric (multiple) No view, but creates

images
Radar Plot Appender Numeric (multiple) No view, but creates

images

There are a few other view-related nodes in KNIME (and many more with mostly
textual views). The Image To Table node can be useful when you want to iterate
(loop) through certain parts generating images. Because the image ports (dark green
filled rectangles) cannot be used with loop end nodes, you have to convert them to a
table column. This is the exact purpose of the Image To Table node.

On the other hand, when you want an image port to hold an image (for example, to
include it in a report), you should use the Table To Image node, which selects the
first row's selected image column and returns it as an image port object.

The last notable node is the Renderer to Image. It simply grabs a column and the
selected renderer, and creates an SVG or PNG image column with its content. You
can use this later in web pages or other places, where supported. This is very handy
when you want to handle a special kind of content; for example, molecules.

Visual guide for the views
In this section, we will introduce the iris dataset (Frank, A. & Asuncion, A. (2010).
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). Irvine,
CA: University of California, School of Information and Computer Science. Iris dataset:
http://archive.ics.uci.edu/ml/datasets/Iris) with some screenshots from
the views (without their controls).

Chapter 3

[73]

Box plot for the numeric columns

The Conditional Box Plot and the Box Plot nodes' views look similar. These are
also sometimes called box-and-whisker diagrams. The Box Plot node visualizes
the values of different columns, while the Conditional Box Plot view shows one
column's values grouped by a nominal column's values. As you can see in the
screenshot, the HiLite information is visible for the outliers (but only for those
values). You can also select the outliers and HiLite them.

The shape of the outlier points is not influenced by the shape property.

Histogram with a few columns selected, HiLited rows and colored values based on class attribute

Data Exploration

[74]

As the screenshot shows, the Histogram node's view is capable of handling the
color properties. It also supports the aggregation of different values, and the option
to show the values for the selected (or all) columns. The adjacent columns within the
dashed lines represent the different columns for each binning column value. This
way, you can compare their distributions for certain aggregations. The interactive
and the normal versions look quite similar, but they differ in configuration and
view options.

The Interactive Table view with changed renderer for petal length and color codes for class, Row43 is HiLited

The Interactive Table view first looks and works like a normal port view for a data
table (such as the options on the context menu for the column header: Available
Renderers, Show Possible Values, and sorting by Ctrl + clicking on the header;
the latter can be done from the menu with a normal click, too), although it offers
HiLiting and a few other options.

Lift chart of a model predicted by a decision tree, the colors are: red – lift, green – baseline, cumulative lift – blue

Chapter 3

[75]

The Lift Chart view can help evaluate a models' performance. The Cumulative Gain
Chart tab looks similar, although it has only two lines.

Line plot with some two HiLited rows and the four numeric columns: red – sepal length, yellowish – sepal
width, green – petal length, blue – petal width

The Line Plot view can be used to compare the different columns of the same rows.
The rows are along the x axis, while their values for different columns are along the y
axis. The adjacent row's values for the same column are connected with a line.

Parallel coordinates with colored curvy lines, the columns are: sepal length, sepal width, petal length, petal
width and class

Data Exploration

[76]

The Parallel Coordinates view can also visualize the individual rows, but in this case,
the row values for the different columns are connected (with lines or with curves). In
this case, the columns are along the x axis, while the values are along the y axis.

Scatterplot of sepal length vs. petal width with size information from sepal width

The Scatter Plot views can be used efficiently to visualize the two dimensions.
Although, with the properties, the number of dimensions from which information is
presented can grow to five.

The Open Street Map integration offers many ways to visualize spatial data; it supports color, shape, and size
properties and also works with HiLiting. Selected information from the input table is also available as a tooltip.

Chapter 3

[77]

The OSM Map View and OSM Map to Image nodes are designed to show data on
maps. They are very flexible, and can show many details, but they can also hide the
distracting layers.

Hierarchical clustering dendrogram (average linkage with Euclidean distance using the numeric columns)

The best way to visualize a clustering is by using a dendrogram, because the
distances between the clusters are visible in this way. The Hierarchical Cluster
view offers this kind of model visualization. To show the similarity between the
rows, first you have to compute the cluster model using the Hierarchical Clustering
(DistMatrix) node from the KNIME Distance Matrix extension, available on the
KNIME update site.

JFreeChart bubble chart

Data Exploration

[78]

The Bubble Chart (JFreeChart) node can offer an alternative to the scatter plots;
however, in this case, the dimension of the size is also mandatory.

JFreeChart heatmap with Euclidean distance of numeric columns

The HeatMap (JFreeChart) node provides a way to visualize not just the collection
columns, but also the distances, as shown in the previous screenshot. To use the
regular tables, you might require a preprocessing step which uses the Create
Collection Column or the GroupBy node to compute the distances, but it also works
fine for displaying the values.

JFreeChart pie chart

The Pie Chart (JFreeChart) node also offers a visualization with a pie, and unlike the
Pie chart and the Pie chart (interactive) nodes, this can create three-dimensional pies.

Chapter 3

[79]

The spark lines and radar plot for numeric columns

The results of the Spark Lines Appender and the Radar Plot Appender nodes are
not the individual views, but are the new columns with the SVG images generated
for each row. We can use this in the next chapter.

Distance matrix
The distance matrix is used not just for visualization, but for learning algorithms
too. You can think of them as a column of collections, where each cell contains the
difference between the previous rows.

The supported distance functions are the following:

• Real distances
 ° Euclidean()
 ° Manhattan ()

 ° Cosine ()

• Bitvector distances

 ° Tanimoto (
v v

1 2

1
|v |+|v |-|v v |

1 2 1 2

| |
)

 ° Dice (1

v v
1 2

|v |+|v |
1 2

| |2

)

 ° Bitvector cosine (1
|v ||v |

1 2

v v
1 2

| |
)

• Distance vector (assuming you already have a distance vector, you can
transform it to a distance matrix when there are row order changes or filtering)

• Molecule distances (from extensions)

Data Exploration

[80]

The distance matrix feature can be used together with the hierarchical clustering,
which also provides a node to view it; this is the main reason we introduced them in
this chapter.

You can generate distances using the Distance Matrix Calculate node (just select
the function, the numeric columns, and set the name. The chunk size is just for
fine tuning larger tables), but you can also load that information with the Distance
Matrix Reader node.The HiTS extension (http://code.google.com/p/hits) also
provides a view to show dendrograms with heatmaps.

Using visual properties
One of KNIME's great features is that it allows you to set certain properties of the
views in advance. So, you need not remember how you set them in one view and
how it is set in another, you just have to connect them to the same table. This is a
big step towards reproducible experimental results and figures with the ease of
graphical configuration. Each property is applied to the rows based on column
values, so changes in column values will affect (remove) the property and each
kind of property is exclusive (a new node with the same kind of properties
replaces the original property). When you want to reuse the properties in another
place of the workflow, you can use the appender nodes.

The three supported properties are: color, size, and shape.

Color
With the Color Manager node, you can set the color for different rows. The colors
can be assigned either to a nominal or a numeric column.

In the case of the nominal columns, each value can have a different color. This can
be useful when you want to compare the actual or the predicted labels/classes of
the rows.

When you assign colors to the numeric columns, the color of the minimal and the
maximal value (as it is available in the column specification: Lower Bound, Upper
Bound) should be specified. The remaining shades are linearly computed.

The Color Appender node allows you to use the same color configuration for other
tables. Be careful when there are values outside the domain. The nearest extreme
value is used in case of numeric columns and the black color is used for nominal
columns. It is also possible to set an incompatible format to the column, but in that
case, it will not be used.

Chapter 3

[81]

Size
The size of the points can be really a good indicator of the nonvisible attributes.
It allows you to have larger or smaller dots for the different data points in views.
The size is computed by the Size Manager node as a function of the input from the
minimal value to the maximal value, similar to the numeric color property. (Based
on the domain bounds, outside them the nearest extreme is used.)

Be careful not to use this node on columns where the minimum is less
than zero (the logarithmic and the square root function would generate
a complex number). Also, check the bounds after filtering; you might
need to use the Domain Calculator.

The following are the supported functions:

• LINEAR: It is a linear function between the bounds
• SQUARE_ROOT: It is useful when you want a less increase in the

higher values, but want more details of the lower values
• LOGARITHMIC: It is ideal when there is large difference between

the bounds and more details near the lower bound is interesting
• EXPONENTIAL: The exponential function will make even small

differences large

The Size Appender allows you to use the same size configurations in different
places of the workflow, even for other columns.

Shape
The last property you can set is the shape of the points. For this purpose, you have
the Shape Manager node, which allows you to set the shape based on a nominal
column's values. Together with the Color Manager, you can visualize both the
predicted and the original class of the training dataset. This can give you a better
idea when the data is not properly learned and clustered, and might give you ideas
to improve the settings.

Similar to other properties, the Shape Appender can bring the shape configuration
to other parts of a workflow.

Data Exploration

[82]

KNIME views
You can export the view contents to either the PNG or SVG files from the File | Export
as menu. (The latter is only available when the KNIME SVG Support is installed.)

It is worth noting the other usual view controls. The File menu contains the Always
on top and Close options, besides the previously discussed Export as menu. The first
option allows you to compare the multiple views easily by having them side-by-side
and still working with other windows.

The rest of the menus are related to HiLiting, which will be discussed soon.

The configuration of nodes usually includes an option of how many different
values or how many rows should be used when you create the view. Because the
views usually load all the data (or the specified amount) in the memory to have
a resizable content, too many rows would require too much memory, while too
many different values would make it hard to understand either the legends or the
whole view in certain cases.

The mouse mode controls allow you to select certain points or set of points (for
example, in the case of hierarchical clustering and the histogram nodes), to zoom
in or to move around in a zoomed view. With the Background Color option, you
can change the background of the plot. The Use anti-aliasing option can be used to
apply subpixel rendering for fonts and lines.

HiLite
The HiLite menu consists of the HiLite Selected, UnHiLite Selected, and Clear
HiLite items. With these items, you can create fine-grained HiLite rows. Once
you select a few data points/rows, you can add or remove the HiLite signal using
the first two options, and the third clears all the HiLite signals from this part of
the workflow.

Lots of the nonview nodes also have HiLite-related options, which can be very
handy when the row's IDs change and want to propagate HiLiting to the parts
with different row IDs of the workflow; however, beware, as this usually requires
additional memory.

The Show/Hide menu (or the HiLite/Filter menu) also helps the HiLite operations.
The Show hilited only option hides all the non-HiLited rows/points. The default
option is usually Show all, but the Fade unhilited option is a compromise between
the two (shows both the kinds of data, but the non-HiLited are faded or grey).

Chapter 3

[83]

Use cases for HiLite
You might wonder how this HiLite feature is useful.

With the Box Plot and the Conditional Box Plot nodes, you can select the rows
that have extreme values in certain columns or extreme values within a class
without creating complex filtering. (The extremity is defined as below Q1 - 1.5IQR
or as above Q3 - 1.5IQR

It is also useful to see the same selection of data from different perspectives. For
example, you have the extremes selected based on some columns, but you are
curious to know how they relate to other columns' values. The Parallel Coordinates
or the Line Plot can give a visual overview of the values. The Scatter Plot (or the
Scatter Matrix) node is also useful when different columns should be compared.

When you prefer the numeric/textual values of the selected rows, you should use
the Interactive Table node. It allows you to check the HiLited and non-HiLited rows
together or independently with the order of the column you want.

With the Hierarchical Clustering View node, you can select certain clusters (similar
rows). This can also be useful to identify the outlier groups based on multiple
columns (as the distances can be computed from more than one columns).

Row IDs
It is important to remember that the row IDs play an important role for most of the
KNIME views. The row IDs are used as axis values; that is, tooltips. So, to create a
nice, easy-to-understand figure/view, you have to provide as many useful row IDs
as you can.

To use meaningful labels, you have to create a column with the proper (unique)
values, and make that column a row ID with the help of the RowID node. This
node also offers HiLite support (Enable Hiliting), so you do not have to make a
compromise between neat figures and HiLiting.

Extreme values
The infinite values (Double.POSITIVE_INFINITY and Double.NEGATIVE_INFINITY)
make the ranges meaningless, because these values are not measurable by normal
real values.

Data Exploration

[84]

The other special value is the Double.NaN (not a number) value, which you get, for
example, when you divide zero by zero. It is not equal to any numeric value, not
even to itself. It also makes comparison impossible, so it should be avoided as much
as possible. The previous chapter has already introduced how to handle these cases.

The missing values are usually handled by not showing the rows containing them,
but some views make it possible to use different strategies.

Basic KNIME views
The main views of KNIME give you multiple options to explore data. These nodes
do not provide options to generate images for further nodes, but they give quite a
good overview about the data, and you can save the files using the File menu.

There are different flavors for some of the nodes: the interactive and the normal.
With the interactive flavor, you can modify certain parameters of the view without
reconfiguring (and executing) the view. The interactive versions are better suited
for data exploration, but the normal ones make it easier to check certain things with
new data.

The Box plots
The Box Plot node has no configuration, but gives robust statistics (minimum,
smallest, lower quartile, median, largest, and maximum) for numeric columns. You
might wonder about the difference between the minimum and the smallest values or
the largest and maximum values. The smallest is the maximum of the minimal value
and the Q1 - 1.5 1 - 1.5(3 - 1)IQR = Q Q Q value. The largest is computed analogously.

The view gives a box-and-whisker diagram, which is useful to find outliers. The
Column Selection tab allows you to focus only on certain columns. The Normalize
option on the Appearance tab will rescale the box-and-whisker diagrams to have the
same length on the screen between the minimum and maximum values.

The Conditional Box Plot node's view is quite similar to the Box Plot view, although
in this case, the diagram is not split by the columns, but by a preselected nominal
column. The values are representing the values from a numeric column. You can also
select whether the missing values should be visible or not.

The node view controls are really similar to the Box Plot's. However, in this case,
the Column Selection tab does not refer to the columns from the table, but to the
columns on the diagram; you can select the class values that should be visible.

Chapter 3

[85]

Hierarchical clustering
There is an option to visualize the result of hierarchical clustering with the
Hierarchical Cluster View node; however, it is worth summarizing how you can
reach the state when you can show the cluster model. First, you have to specify the
distance between the rows using one of the options we described in the Distance
matrix section.

In the Hierarchical Clustering (DistMatrix) node's configuration, the main option
you have to select is the Linkage Type, which defines how the distance between the
clusters should be measured:

• Single: It measures the minimal distance between the cluster points
• Average: It measures the average of differences between the points of

the clusters
• Complete: It measures the maximal distance between the cluster points

You can also select between the distance matrices if you have multiple columns.

Histograms
The difference between Histogram and Histogram (interactive) is minimal in the
configurations (the non-interactive version allows you to specify the number of bins
configuration time). The common configuration options are the Binning column,
Aggregation column, and the No. of rows to display. With the Binning column
option, you can define how the main bins should be created; it can be either nominal
or numeric. The coloring information splits between the bars, and the aggregation
columns are available as separate, adjacent bars.

The possible aggregation options are: Average, Sum, Row Count, and Row Count
(w/o missing values). When you have multiple aggregation columns selected, Row
Count (with missing values) is not an informative or recommended choice.

On the Visualization settings tab, you can further customize the view, by enabling/
disabling outlines, grid lines, the orientation, width, or the labels.

The Details tab gives the information about the selected bars, such as the average,
sum, count for each column, and colors. (You can select the monochrome part of a
bar too.)

Data Exploration

[86]

Interactive Table
The interactive table looks like a plain port view; however, it gives further options,
such as the HiLiting support and the optional color information (in the port view,
it is not optional). You can also save the content to the CSV file (Output | Write
CSV), adjust the default column and row size (View | Row Height... and Column
Width...), and find certain values (Navigation | Find, Ctrl + F).

The options for sorting by columns (Ctrl + click, or the menu from the regular click)
and reordering (dragging) them are also available in this view, and you can select the
preferred renderers for them. However, you cannot check the metadata information
(column stats and the properties).

The Lift chart
The Lift Chart node is useful when you want to evaluate the fit of a model for a
binominal class. In the configuration dialog, you can specify what is the training
label and the value learned. The probabilities of the learned label should also be
specified, just like the width of the bins (in percentage, you will get 100/that value
points). In the view, there are two parts—Lift Chart and Cumulative Chart—both
with separate configurations of color, line widths and dot sizes (with visibilities).

The Lift Chart node also contains the cumulative lift, but it can be made invisible if
you do not want it.

Lines
The Line Plot node and the Parallel Coordinates views are similar, but they show
the data in the orthogonal/transposed form with respect to each other. The Parallel
Coordinates view contains the selected columns on the x axis and the row values
flow horizontally colored by the color properties, while in Line Plot, the rows are on
the x axis and the (numeric) columns are represented by user-defined colors.

The missing values are handled differently; in Line Plot, you can try to interpolate,
while in the other, you can either omit or show them or their rows.

Line Plot is more suited for equidistant data, such as time series, for other data
it might give misleading results (the distances between the rows are the same).
The Parallel Coordinates view is better suited to find connections between the
values of different columns, because in this case you have no ordering bias. The
Parallel Coordinates view gives a neat option to use curves instead of straight lines.
Fortunately, you can change the order of columns within the view using the extra
mouse mode Transformation, so you can create neat figures with this view. This
view is quite good to show intuitive correlations.

Chapter 3

[87]

Pie charts
The Pie Chart and the Pie Chart (interactive) nodes have the same configuration
options, although for the latter, the configuration gives only the overridable defaults
in the view. These configurations include the binning column and the aggregation
column, just like the aggregation function.

With Ctrl + click, you can select multiple pies. HiLiting works in this view, and
the Details tab contains statistical information for each selected sections, which
is split by the colors within the pies. When the binning is not consistent with the
color property, no coloring is applied unless you select them (and enable the Color
selected section).

In the Visualization setting tab, you can specify whether the section representing
the missing values should be visible or not, show outline, explode the selection, or
whether the aggregated value/percent should be visible or not (for selected, all, or
no sections). The size of the diagram too can be adjusted in this tab.

The Scatter plots
The Scatter Matrix and the Scatter Plot nodes are quite similar. The Scatter Matrix
node is a generalization of the latter. It allows you to check the scatter plots for
different columns side-by-side.

A scatter plot can use all the visual properties (size, shape, and color), so you can
visualize up to five different columns' values on a 2D plot.

There are not many configurations for either maximum rows or maximum distinct
nominal values in a column.

In the case of Scatter Plot, you can only select the two columns for the x and
y axes, but in case of the Scatter Matrix node, you can set the ranges for them.
With the Scatter Matrix, you can select multiple columns, and when you are in
the Transformation mouse mode, you can rearrange the rows/columns, but you
cannot change their ranges.

Both the views support the jittering when one of the columns is nominal (the
Appearance tab, Jitter slider). In that case, the values in the other dimension get
some random noise, so the number of points at a position could be easily estimated.
If you want precise positions, you might consider adding transparency to the color
of the points, so when there are overlaps, they will be more visible.

Data Exploration

[88]

The Linear Regression (Learner) and the Polynomial Regression (Learner) nodes
also provide the scatter plot views, although these show the model as a line. It can
be useful to have a visual view of the regression, even though these do not specify
which slice of the function is shown from the many possible functions, parallel to
the selected.

Spark Line Appender
The Spark Line Appender node does not have a view, but it generates a column
with an SVG image of a line plot of the selected numeric columns, for that row.
This can be useful to find interesting patterns. However, it is recommended to
use Interactive Table, because the initial size is hard to see, and changing the row
height multiple times is not so much fun (and can be avoided if you hold the Shift
key while you resize the height of a row). But with the special view, you can do
that from the menu.

Radar Plot Appender
The Radar Plot Appender node works quite like the previous node, although it has
more configuration options. You can set many colors for the SVG cell, and also the
ranges and the branches (columns) of the radar plot. The resulting table has a bit
larger predefined row height, but the use of an Interactive Table view might still be
a good idea.

The Scorer views
The ROC Curve (ROC (Receiver Operating Characteristic)) and Enrichment Plotter
nodes give options to evaluate a certain model's performance visually. Because the
views are not too interactive, you have to specify every parameter upfront in the
configuration dialog.

In the ROC Curve configuration, you have to select the binominal Class column and
the label (Positive class value) to which the probabilities belong. This way, you will
be able to compare different kinds of models or models with different parameters.
The node also provides the areas beneath the ROC curve in the result table.

The Enrichment Plotter node helps you decide where to set the cut-off point to select
the hits. The node description gives a more detailed guide on how to use it.

Chapter 3

[89]

JFreeChart
The JFreeChart nodes are not installed by default, but the extension is available
from the standard KNIME update site under the name KNIME JFreeChart.

The common part of these nodes is that you have to specify the appearance of
the result in advance, and the focus is not on the view, but on the resulting image
port object.

In the General Plot Options Configuration tab, you can specify the type of the
resulting image (PNG or SVG), the size, the title, colors, and the font size (relative
to the standard font for each item printed).

You can use the port objects in the reports, but you can also use them to check certain
properties if you iterate through a loop and convert the result with Image To Table.

It is important to note that the customizable JFreeChart View tab is only available in
freshly executed nodes. The generated image can be visualized either using the view
or the image output.

In the JFreeChart View tab, you can customize (from the context menu) almost every
aspect of the diagram (fonts, colors, tics, ranges, orientation, and outline style). This
way, the output can be of quite a high quality. It is also important to note that the
export is easier: you can use the Copy option to copy it to the clipboard or directly
use the Save as... option to save it as a PNG file, and because there are no visible
controls, you do not have to cut them off.

These nodes do not support HiLiting, but they provide tooltips about values. The
support for properties is usually not implemented.

You can zoom in on these nodes by selecting a region (left to right, top to bottom)
and zoom out by selecting in the opposite direction. You can also use the context
menu's zooming options. (It seems that you cannot move around using the mouse
or keyboard, so you have to zoom out and select another region if you want to see
the details of that region.)

The Bar charts
The Bar Chart (JFreeChart) node's view is similar to a usual histogram, but it does
not allow any other aggregation other than the count function, and only nominal
columns are accepted. The color of the first column can be specified, just like the
labels for the axis. The nominal columns' values can be rotated, and the angle can
be set. You can also enable/disable the legends.

Data Exploration

[90]

The GroupBy Bar Chart (JFreeChart) node's configuration is similar, except in this
case, the nominal column is a single column (it can also be numeric), and the rest
of the numeric columns can be visualized against it. It is important to note that the
binning column should contain unique values. (The numeric values are grouped by
these values.)

The Bubble chart
The Bubble Chart (JFreeChart) node's view is analogous to the Scatter Plot view,
but in this case, you cannot set the color and the shape, but the color is not opaque. It
also cannot handle nominal columns, so you have to convert them to numbers if you
want to plot them against other columns. You must specify the x and y positions of
the bubbles, just like their radius.

Heatmap
The Heatmap (JFreeChart) node is capable of visualizing not just the values in
multiple columns, but also the distances from the other color-coded rows, when a
distance column is available.

The extreme colors can be specified in the HeatMap (JFreeChart) node's
configuration for the minimal and the maximal distance, and the legend can also
be visible or hidden. The labels for the axes can be specified, and the tooltip is also
available on demand.

The Histogram chart
This is a bit different from the histogram views previously introduced. In this view,
the histograms can be either behind or in front of other histograms. The different
ranges are shown on the same scale, so some of them can be wider while the others
are narrower.

The color of the bars is only adjustable for the first column. The histograms are
plotted in order, the last is at the back, while the first is in the front. You cannot
change the order of the histograms from the view of Histogram (JFreeChart).

The Interval chart
The Interval Chart (JFreeChart) node's view is not so interesting when your
label is not unique (or the order is not defined by its alphabetical order). But this
view supports the time values without the need to transform your data with time
information before visualization, focusing on that information.

Chapter 3

[91]

You can specify the grouping nominal column (Label) and the start and end
positions of the time intervals. Each row represents an interval.

It supports the color properties, so you can create overlapping intervals with
different colors.

The Line chart
The Line Chart (JFreeChart) node's view is quite similar to the regular Line Plot
view, except in this case, you cannot have dots to show the values. However, there
is an extra input table to specify the colors of the series.

The other difference is that when specified, you can use the numeric or date column's
values instead of the rows for the values of other columns; however, the connections
are still done by the adjacent rows.

The Pie chart
The Pie Chart (JFreeChart) node's view is similar to the Pie Chart node, but it is
less interactive. It still uses the color properties (as opposed to the other JFreeChart
nodes) and can draw the pie in 3D.

The Scatter plot
The Scatter Plot (JFreeChart) node uses the shape and color properties, so it can
visualize at most four columns. This is still quite static but configurable, and the
result looks good (it can contain the legend, so it is practically ready to paste).

This node is quite constant too; you have to decide which columns should be there
in the configuration dialog.

Open Street Map
In the KNIME Labs Extensions (available from the main KNIME update site) you can
install the KNIME Open Street Map Integration in order to visualize spatial data.

This extension contains two nodes, OSM Map View and OSM Map to Image. The
first one is the interactive, you can browse the map and check the data points (the
tooltips can give details about them), think find the distribution of interesting points
by HiLiting them. (HiLiting cannot be done using these nodes, but you can select
area "blindly" if you use a Scatter Plot with the longitude and latitude information.)

Data Exploration

[92]

Both nodes require coordinates to be in the range of -90 to 90 for latitude and -180
to 180 for longitude if there is an input table (which is optional). The image node's
configuration includes a map to select which area should be visible on the resulting
image, the configuration for the coordinates is on the Map Marker tab.

In the OSM Map View, you can browse by holding the right mouse button down
and moving around. Zooming is configured for double-click and mouse wheel.

3D Scatterplot
We are highlighting a view from the many third party views because this is really
neatly done, and you might not find it initially interesting if you do not work with
chemical data.

In the Erl Wood Open Source Nodes extension (from the community update site),
you can find a node called 2D/3D Scatterplot. It allows you to plot 3D data and still
use KNIME The HiLite functionality and the color, and size properties (but that can
also be selected on demand). This is a very well designed and implemented view
node. Its configuration is limited to column filtering and the number of rows/distinct
values that should be on the screen.

This node does not support the automatic generation of a diagram. It's more focused
towards exploration and not towards creating final figures.

It can also provide a regression fit line in 2D mode. It can be a good alternative to the
normal Scatter Plot node too (unless you need the shape properties).

A right-click on the canvas gives information about the nearest point as a tooltip,
which can be very useful when you need more information about the other
dimensions (even the chemical structures and images are rendered nicely).

In the 3D mode, you can select points while holding down the Ctrl key.

Other visualization nodes
There are many options to show data, and you really do not have to limit yourself
with those which are bundled with KNIME. In the community contributions
(http://tech.knime.org/community), there are many options available. We will
cherry-pick some of the more general and interesting visualization nodes.

Chapter 3

[93]

The R plot, Python plot, and Matlab plot
The R plot, Python plot, and Matlab plot are available from the corresponding
scripting extensions (the KNIME R Scripting extension, KNIME Python Scripting
extension, and KNIME Matlab Scripting extension) on the community nodes
update site.

The usage of these nodes do not require experience in the corresponding
programming languages. There are templates from which you can choose and the
parameters can be adjusted using KNIME controls. Obviously, you can create your
own templates or fine-tune existing ones if you are not satisfied.

You need to have access to (possibly local) servers to connect to the extensions. (The
Python Plot node uses (C)Python with some extensions.)

These nodes also generate images as their outputs in the PNG format.

Please take a look at their figure template gallery (http://idisk-srv1.mpi-cbg.
de/knime/scripting-templates_public/figure-template-gallery.html) to
get an idea of what is possible and how they look.

The official R plots
The KNIME R Statistics Integration extension from the main KNIME update site
offers similar options like the R Plot discussed previously, but it does require some R
programming knowledge (the templates help the configuration).

When you want to use it locally, you will need the Table R-View node, but when
you use an R server, you should use the R View (Remote) node. The result is also
available in the PNG format.

The recently introduced R View and other interactive KNIME nodes offer other
options for the visualization of data. For details, please check KNIME's site at
http://tech.knime.org/whats-new-in-knime-28

The RapidMiner view
The RapidMiner Viewer node is available on the community nodes and offers the
Plot View and the Advanced Charts modes to visualize the data using RapidMiner's
results view. It requires some pre-configuration, but after that, you will have a
powerful tool for visual data exploration. (Unfortunately, it does not use many
KNIME features; it neither supports HiLiting, color, shape, or size properties, nor
provides the figure as an image.)

Data Exploration

[94]

The views offer a wide range of visualization options and give highly customizable
figures. It can even de-pivot in the view, so you do not have to create complex
workflows to get an overview of the data. This view supports the following plots:
Scatter, Scatter Multiple, Scatter Matrix, Scatter 3D, Scatter 3D Color, Bubble, Parallel,
Deviation, Series, Series Multiple, Survey, SOM, Block, Density, Pie, Pie 3D, Ring,
Bars, Bars Stacked, Pareto, Andrews Curves, Distribution, Histogram, Histogram
Color, Quartile, Quartile Color, Quartile Color Matrix, Sticks, Sticks 3D, Box, Box 3D,
and Surface 3D.

The Advanced Charts also support multiple visualizations. You can set the color,
shape, and the size dimensions, although these are not auto-populated by the
available properties. With the Advanced Charts, the details of the diagram can
be configured in more depth than with the JFreeChart. It is worth reading the
user manual of RapidMiner in this regard at http://docs.rapid-i.com/files/
rapidminer/RapidMiner-5.2-Advanced-Charts-english-v1.0.pdf.

This node allows you to export the figure (without the controls) in various image
formats. It is available from the icon in the upper-right corner.

The HiTS visualization
The HiTS visualization might not fit the previous extensions as it is not available
on the usual KNIME update sites. But it might bring your attention to look for
alternative options when you need a functionality, because there are many KNIME
nodes available besides the one we saw in the previous sections.

The HiTS extension's website is https://code.google.com/p/hits/. The update
site is http://hits.googlecode.com/svn/trunk/ie.tcd.imm.hits.update/.
On the website, look for the HiTS experimental features (and also check its
dependencies: HiTS main feature and HiTS third party components feature) in the
HiTS main category.

The Plate Heatmap node might not be so interesting, because it is quite specific to
high content/throughput screening, but the Simple Heatmap and the Dendrogram
with Heatmap nodes are generally useful. These support the HiLite feature and give
an overview about the data with color codes.

The Dendrogram with Heatmap node uses the hierarchical clustering model to
show the dendrogram. Together with the heatmap, it gives you a better idea about
your clusters.

Chapter 3

[95]

Tips for HiLiting
HiLiting gives great tools for various tasks: outlier detection, manual row selection,
and visualization of a custom subset.

Using Interactive HiLite Collector
First, let's assume you want to label the different outlier categories. In case of an iris
dataset, the outlier categories should be the high sepal length, high sepal width, high
petal length, high petal width, and their lower counterparts. You can also select the
outliers by different classes (iris-setosa, iris-versicolor, and iris-virginica) for each
column (in both extreme directions), which gives possible options. Quite
a lot, but you will need only four views to compute these (and only a single, if you
do not want to split according to the classes).

Let's see how this can be done. We will cover only the simpler (no-class) analysis.

Connect the Box Plot node to the data source. Also, connect the Interactive
HiLite Collector node to it. Open both the views; you should execute Box Plot,
and the collector.

There are only four outlier points on this plot: three high values for sepal width and
one low value also for sepal width. First, you can select and HiLite, for example,
the high values. Now switch to the collector view and set a label to this group (for
example, high sepal width), and also check the New Column checkbox. Once done,
click on Apply. Now you can clear the HiLite (from any view) and select the other
group and HiLite. Go to the collector again and give a name to this group too; then
click on Apply again (keeping the New Column option on).

The Interactive HiLite Collector node is executed by every click on Apply and
augment the original table with two new columns. The different labels are in the new
columns. The rows that are not marked contain missing values in those columns.

If you do not check the New Column checkbox (when you click on Apply), the
values will go to the same column. If there were already some value(s), then the new
value will be appended, separated by a comma (,).

You can start a new selection after you reset the Interactive HiLite Collector node,
but you can use a different collector if you want to keep the previous selection.

In the final result, you might want to replace the missing values with something,
such as the text normal using the Missing Value node. (Do not forget to recalculate
the domain with the Domain Calculator node for certain use cases.) This way, you
can further visualize, add color, or shape properties. With this information, you can
have better understanding and can find other connections among the data.

Data Exploration

[96]

When you need only a single HiLited/non-HiLited option to split the data, you
should use the HiLite Filter option (yes, it would be more consistent if it were
named HiLite Splitter, but for historical reasons, this name remained).

Finding connections
We already mentioned the tip to further process the result of the Interactive HiLite
Collector node. That way, you can identify various outliers and compare them to
other dimensions; for example, with Parallel Coordinates, Line Chart, or one of the
scatter plots.

Use Color Manager or Shape Manager to change the plot of the points.

Most of the nodes supporting HiLite also support filtering out the non-HiLited rows;
because you can have multiple views open, and also focus only on the interesting
rows/points in the other views too.

When you pivot or group according to the table, you can still use HiLiting, so
you can select an interesting point in one table and HiLite it; on the other end, the
corresponding rows will also be HiLited. For example, with this technique you can
use Box Plot instead of the Conditional Box Plot, and you do not need to iterate
through the possible columns individually.

Visualizing models
In the previous chapter, we created a workflow to generate a grid. That must have
looked pointless at that time, but now, we will move a bit forward and show an
application. The GenerateGridForLogisticRegression.zip file contains the
workflow demonstrating this idea with the iris dataset.

In this workflow, we use a setup very similar to the Generate Grid workflow till
the preprocessing meta node, but in this case, we use the average of minimum and
maximum values instead of creating NaN values when we generate a grid with a
single value in that dimension. (This will be important when we apply the model.)
We also modified the grid parameters to be compatible with the iris dataset. In the
lower region of the workflow, we load the iris dataset from http://archive.ics.
uci.edu/ml/datasets/Iris, so we can create a logistic regression model with the
Logistic Regression (Learner) node (it uses all numeric columns).

We would like to apply this model to both the data and the grid. This is an easy part;
we can use two Logistic Regression (Predictor) nodes.

Chapter 3

[97]

Exercise
Once you understand the details of the Prepare (combine) meta node, try
to modify the workflow to use a single predictor. (You can use the Row
Filter node for an efficient solution, but other options are also possible.)

Let's see what is inside the Prepare (combine) meta node. It uses three input tables:
the configuration, the grid, and the data. We use the configuration to iterate through
the other tables' content and bin them according to the configuration settings.

There is one problem though. When you select a single point for one of the
dimensions, the grid will only have that value for binning, and the data values will
not be properly binned. For this reason, we will add the data to create a single bin.
But when the minimum and maximum values are present, we do not include them
because that would cause different bin boundaries. To express this condition, we use
two Java IF (Table) nodes and an End IF node.

With the Auto-Binner node, we create the bins. We have to keep only the newly
created binned column (Auto-Binner (Apply)). So, we first have to compute its name
(add [Binner] Java Edit Variable), then set as include column filter.

Finally, we collect the new columns (the Loop End (Column Append) node's "Loop
has same row IDs in each iteration" option) and join the two old (data and grid)
tables with the new bin columns using the Joiner node.

You might wonder why we have to bin the values at all. Look at the following figure:

In the three-dimensional space, we have some points and a plane orthogonal to one
of the axes; on that plane, there is a single red point. On most of the planes there are
no points; the circled points are between the two blue planes

Data Exploration

[98]

If we would slice by a single value on the orthogonal axis, there would be no values
most of the time. For this reason, we select a region (a bin on the orthogonal axis)
where we assume that the points would behave similarly when we project them to
the plane we selected. (That is the cuboid in the figure; however, that is not limited
to the non-orthogonal axis.)

Alright; so, we have these projections, but the points can be in multiple projections.
We have to select only a single one to not get confused. To achieve this, we have
added two Nominal Value Row Filters (filter by bin one and filter by bin two).
(In the current initial configuration, this is not required, but it is usually necessary.)

How many Row Filters do we need in the general case?
The number of columns used to generate the model specifies the
number of dimensions visualized in the view (for example, if we add
a size manager we would need only a single row filter).

Now, we add the training class information (class column) as a shape property
(the grid does not have this information) with the Shape Manager and add the
predicted class (class (prediction) column) as colors with the Color Manager.

Finally, we add the Scatter Plot node to visualize the data.

Exercise
Can you generate all the possible slices for the grid? (You should
increase the current 1 grid parameters before doing this.) With the
Scatter Plot (JFreeChart) node, you can generate quite similar figures.

KNIME has many nodes, not just for visualization, but for classification too.
This gives the idea for the next exercise.

Exercise
Try other classification models and check how they look like compared
to the logistic regression. Try other visualizing options too.

Chapter 3

[99]

Further ideas
One of our problems was that we cannot visualize four dimensions of data (with
two dimensions of nominal information) on the screen. Could we use a different
approach to approximate this problem? (Previously, we created slices of the space,
projected to 2D planes, and visualized the plane.) We are already familiar with the
dimension reduction techniques from the previous chapter. Why not use them in this
visualization task? We can do that. And it might be interesting to see which one is
easier to understand.

Where should we put the MDS or PCA transformation? It has to be somewhere
between the data and the visualization. But, should it be before the model learning
or after that? Both have advantages. When you reduce the dimensions after model
learning, you are creating the model with more available information, so it might get
better results and you can use that model without dimension reduction too. On the
other hand, when you do the dimension reduction in advance, the resulting model
is expressed in the reduced space. It can be simpler, even more accurate (because the
dimension reduction could rotate and transform the data to an easier-to-learn form),
and faster.

Exercise
Try the different dimension reduction techniques before and after
learning. Also try different classification tasks too. Does one of
them give you neat figures?

It might be interesting to see the transformed grid too, because the different dimension
reduction techniques will give different results. These will give some clue about where
the original points were. HiLiting is a great tool to understand these transformations.

Exercise
In your data analysis practice, you could try to adapt one of the
techniques we introduced. In real-world data, different approaches
might work better.

Summary
In this chapter, we introduced the main visualization nodes and the statistical
techniques that could be used to explore your data. We built on the knowledge
you gathered in the previous chapter, because data transformation is inevitable in
a complex analysis. The HiLiting was previously introduced, but with the use cases
in this chapter, you might now have a better idea about when you should use it.

Reporting
In this chapter, we will demonstrate how to create nicely formatted documents from
the data you gathered, with KNIME's report designer. To achieve this, we introduce
some new concepts specific to the reporting extension, and show how to use the
report designer to create templates and reports. In this chapter, we'll cover the
following topics:

• Reporting concepts
• Importing data
• Using the designer
• Generate the report document
• KNIME integration-specific topics

Installation of the reporting extensions
The standard KNIME desktop distribution does not contain reporting capabilities,
but KNIME Report Designer and KNIME HTML/PDF Writer extensions are
available from the standard KNIME update site to generate reports. The latter is
optional and not covered in this book.

This is not distributed under the standard KNIME open source license
(based on GNU GPL). It is still free, but in this case you are not allowed
to modify the master page of the report template.

Reporting

[102]

We will cover the report designer in detail. KNIME uses Eclipse BIRT (Business
Intelligence and Reporting Tools) to design and generate reports. Eclipse BIRT has
a large community, providing a lot of products and tools. You can check it on the
eclipse marketplace at http://marketplace.eclipse.org/category/categories/
birt. The Eclipse version for KNIME 2.8.x is 3.7.2, so you might want to filter
accordingly. The marketplace client for Eclipse 3.7 is available from the main eclipse
update site at http://download.eclipse.org/releases/indigo/ with updates at
http://download.eclipse.org/eclipse/updates/3.7. This way you can be sure
you will install only compatible extensions, although there is always a chance that
the feature you install will not be available readily.

These extensions include additional report items (bar codes, charts, and so on),
functions, data sources, but also new export formats (RTF, DOCX, XLSX, and so on).
You can also create your own if you need your functionality to be unique.

Reporting concepts
In this section, we will introduce the main concepts related to reports.

First of all, what is a report? It is a formatted document. It can include figures, text,
and tables, possibly in a highly customized way.

The report is generated from a report design and some data. The report design is
created from a template; it consists of a layout and a master page. The master page and
the layout are similar in function; however, the master page is only for the header
and footer of the pages, and the layout provides the main/body content.

The data can be from various data sources, for example, cubes, databases, and others;
for now, we are focusing on KNIME data that is imported using the special nodes.
The data imported is named a data set.

The data cube is a multidimensional data set, which can be used to summarize other
data sets. You can think of it as a more processed, derived data set.

The reports can have report parameters and report variables, which can be further
processed with (JavaScript) scripts.

There are special functions which help in transforming and processing the data. You
can also find more implementations of other functions, so it is worth checking the
Internet if you need to do something that is not supported by the default installation.
You can use these functions in the scripts, although most of the tasks can be done in
KNIME in advance.

Chapter 4

[103]

The report items are the building blocks of the layout and the master page. There are
various options to generate report items. You can also design your own report items
if you miss one; however, chances are high that there already are solutions for that
purpose, so you just have to select the best for your tasks.

AutoTexts and QuickTools both add more options in report design. QuickTools are
only available for layout, but AutoTexts are only available for the master page.

The resources of a report are usually static images and scripts. They are often copied
to the workflow's folder and referenced from there.

The report designer perspective can be used to create and customize the report design.

Document/report emitters can generate a report in various formats.
Different emitters are available for most of the common formats, and you can
write your own if you want. The report generation is done in three phases:
preparation, generation, and presentation. For more details, you will find a
nice figure describing the generation from the scripting perspective on the page:
http://www.eclipse.org/birt/phoenix/deploy/reportScripting.php

The styles and themes can be used to have the report look consistent, so you can
have a result that fits well to other parts of your resources. For details, you can check
the page http://www.packtpub.com/article/creating-themes-report-birt
that has an article from John Ward. You can apply styles to individual items, while
the themes contain the default styles for the items.

Importing data
There are many options to import data to a report. For example, you can use SQL
databases and access them through JDBC; however, you can also use this feature to
import KNIME nodes' exported tabular content with a proper JDBC driver, although
this is not the recommended way.

The Data menu can be used to create a new data set, data cube, or data source.

Sending data and images to a report
The first thing you might notice after the install is that you have a new category
named Reporting with two new nodes within Node Repository. The Data to Report
node brings a table to the report as a data source and creates a data set for it.

Reporting

[104]

There are not many configuration options here; one is where you can set how images
within the table should be handled. For example, an image can be resized to a fixed
size. Here, ideally the best option would be to use SVG, although using SVG is a
bit harder. The node description gives a detailed description on how to use them;
however, unfortunately, the preview does not support the rendering of SVG images,
so you will need to generate them to check for the results.

In reporting, the combination of different tables is a bit more limited, so it
might be necessary to combine the tables to a denormalized table too.

The date and time data columns are imported as strings, so in the designer, you will
need to change that to Date, Date Time, or Time. When the data is an image, it is not
automatically represented as an image. It is imported as a blob that stands for a large
binary object. You need to use report items for those supporting images.

Dates
Because the dates are imported as a string, you have to create a computed
column if you prefer to use them as a date. For cubes, this is a strongly
recommended transformation to do.

The Image to Report node acts similar to the Data to Report node, although it makes
only a single image available in the report designer from an image port object.

The preferences for the Image to Report node are similar to the Data to Report
node's preferences and works in the same way.

Importing from other sources
When it comes to data presentation, you might want to enrich the data from another
source to make it more up-to-date, or just import a table structure file already
processed with KNIME or exported from KNIME.

There are multiple ODA (Open Data Access) data source importer extensions
available for BIRT. So, besides the default options, you can import from other reports
or different services.

Check the BIRT exchange marketplace at http://www.birt-
exchange.com/be/marketplace/app-listing/ for the BIRT
emitter or ODA extensions besides the BIRT-related section of the eclipse
marketplace at http://marketplace.eclipse.org/category/
categories/birt.

Chapter 4

[105]

The default data providers include: the flat file, JDBC, KNIME, scripted, and XML
source support.

To import a new data source, you have to open a view showing the Data Explorer
or the Outline view. Then, you can select the New Data Source option from the
context menu.

From the data source, you can create data sets; using the context menu of Data Sets,
select the New Data Set menu item.

With flat files, you can import files separated by a comma (CSV), space (SSV), tab
(TSV), or pipe (|, PSV (pipe separated values)). When the type of the columns is
specified in the second row, it can parse the input accordingly. You can import data
locally or from a URI.

With the JDBC Data Source, you have to specify the connection settings, and then
you can use that data source to import tables, such as data sets. You can also bind the
connection settings or use a connection profile store. An example data source is also
available; you can check the BIRT tutorial about its usage at:

http://www.eclipse.org/birt/phoenix/tutorial/basic/basic04.php

You cannot add another KNIME Data Source, although one is enough to get
multiple tables imported. Therefore, it is not necessary either.

With a Scripted Data Source, you can compute and import data using JavaScript; for
example, using RESTful services with JSON results are well suited for this kind of
data source.

The XML Data Source can be used to import XML files with a schema. The schema
is optional, although useful to have. In the associated data sets, you can define the
columns using XPath expressions.

Joining data sets
When you have multiple but possibly semantically connected data sets, you might
want to connect them. You just need to create a new data set by selecting the New
Joint Data Set menu item from the context menu of Data Sets.

Reporting

[106]

There you have to select the columns you want to join, and the way you want to
connect them: Inner Join, Left Outer Join, Right Outer Join, and Full Outer Join.
After that you will be asked to set further options, such as the output or computed
columns, the parameters of the data set, and the possible filters. You also have an
option to preview the resulting data set.

Preferences
After you have installed the plugin, a few new options will appear in File |
Preferences.

The two main parts of the new options are KNIME | Report Designer and Report
Design. In KNIME | Report Designer there are only two options, which you most
probably do not want to change if you prefer having an up-to-date state of the data.

In Report Design, there are many preferences; we will cover only a subset of them.

Within Report Design, the Preview subpage might be interesting, because you
can customize how the preview should work, such as setting the locale, time zone,
bidirectional orientation, using external browser, or enabling SVG charts. You can
also disable the master page in previews. In its Data subpage, you can set bounds
on data usage for previews. If you are bound by your machine running KNIME, you
can also use a server to generate the preview of the reports. To do this, you have to
specify the server in the Preview Server page in Report Design.

In Report Design | Crosstab, Chart, and Data Set Editor, you can also set limits on
the data to show/use and affect the behavior of the editors.

The report templates and the report resource folders can be set in Report Design |
Template and Resource respectively.

In Report Design | Layout, you can specify the units (Auto, in, cm, mm, points, or
picas) that you want to see/use in the report design.

By default, you can only use JavaScript Syntax for expressions (Report Design |
Expression Syntax), and that is the recommended one , because script generators
and templates usually use JavaScript.

In Report Design | Comment Template, you can specify whether a template should
be used for new files, and what it should be.

In the preference page, you can see a link named Configure Project Specific
Settings..., although the KNIME workflows are not compatible with the expected
reporting projects. Therefore, you cannot select any workflows/reports available
from KNIME.

Chapter 4

[107]

Using the designer
There is a good introduction to BIRT at http://www.eclipse.org/birt/phoenix/
tutorial/—although the KNIME version is slightly different, it still offers
information on few other options. Some of the views are not visible by default, so we
will explain how you can create report designs for your workflow.

You might realize that when you installed the reporting extension, a new button
appeared on the toolbar. The icon looks like four yellow/orange stripes and a line
plot with four points. Also, it is on the right-hand side of the zooming factor. When
you have saved your workflow, click it and apply the changes, so that the data from
KNIME will be available as a data set.

Then, you open the KNIME report designer perspective, and you should get a dialog
about the new data being available. It is recommended to apply the changes so that
you will get the updated data in the designer, the preview, and in the reports.

KNIME report designer perspective

Reporting

[108]

You can immediately see that this is quite different from the normal KNIME
perspective, although there are familiar views, such as KNIME Explorer; also, the
toolbar contains the buttons that were discussed previously.

The KNIME Explorer view can be safely closed or minimized to quick views, or
hidden as a sibling tab, because opening a workflow from it will leave the reporting
perspective. You can also leave and go back to the workflow belonging to the report
using the button with the KNIME symbol or by selecting the workflow tab in the
editor area.

On the toolbar, you can find two more buttons; one of them toggles between the
breadcrumb path of the actual element, while the other opens the report in the report
viewer (or in the external browser of your choice). From the latter's menu, you can
select the generation of the report in a different format too.

There is a view named Data set view, which allows you to check the contents of the
tables you imported and synchronize the content of the view with the associated
workflow—if there was a change and was not applied, you can apply that change
any time. The report parameters are also available in this view.

The Palette view is similar to Node Repository in the basic KNIME perspective;
however, here you are not selecting nodes, but report items, and quick tools are
available (and you can specify the mouse selection behavior). Similarly, you can grab
an item from the Palette and place it on the editor area. When you edit master pages,
quick tools will be replaced with auto-text items.

The Property Editor view is an important part of the perspective, where you can
adjust and change the properties of the selected item. These properties are arranged
in categories, making it easier to find the appropriate one.

The Report editor has five tabs: Layout, Master Page, Script, XML Source, and
Preview. You can also use the Page menu to switch between the tabs.

The Layout tab is usually used most often when you want to edit. It is almost like a
what-you-see-is-what-you-get editor; although, because it is not practical to see the
actual data, you see only the editable version, along with the skeleton showing how
the data will be generated.

To see what you would get in a report, you should check the Preview tab. It does not
show the entire data, but shows the data as it will appear in the report and hides the
way the report is generated (from the layout and the master page). There are some
parts that do not get properly rendered, for example, the SVG images (although those
will be rendered when the report is generated with an emitter supporting SVG).

Chapter 4

[109]

Before each preview, the report design is saved.

On the Master Page tab, you can specify the header and footer for the report. By
default, a KNIME-specific footer is there; you can remove/replace it if you want to
use that space for a different purpose. You can also change the report page's size and
orientation via its properties.

Multiple master pages
You can create different master pages for the same report
design to format different sections of the document with the
corresponding header and footer, page size, margin, and
orientation. To switch between the master pages, select one
of the report items' properties in General | Page Break.

In the XML Source tab, you can fine tune the report design or check how it appears
in a low-level description; however, the most important use case might be that of
pasting parts from other designs so you do not have to go through all the options to
change an element. You can also use this to correct misspellings and similar tasks
with the Find/Replace dialog (Ctrl + F).

In visible views
We already mentioned that keeping the KNIME Explorer view is not so efficient.
Here, you will get some tips on what should be visible to be more effective using
the report editor.

The Data Explorer view gives an overview on not just data sources, sets, and cubes,
but also on report parameters and variables. From its context menu, you can open
dialogs to create and edit different entities of the tree.

There is an even more detailed view of the report design, the Outline view in
General. It is so useful to navigate between the different parts of the report design
and find out the parent/child relationships, that it is highly recommended to make
it visible at least as a quick view.

The Problems view in General can also be useful for easily navigating to the errors
and getting detailed information about them.

Reporting

[110]

The Report and Chart Design category in the Other... view contains examples
for more complex charts and reports with preview images. These views are Chart
Examples and Report Examples. Unfortunately, neither of them supports an easy
copy and paste or simple dragging option in this version of BIRT, although you can
export the charts as an XML (using the icon with the arrow pointing upwards); add a
new chart to your layout and replace its content in the XML Source tab of the editor
with the content of the example chart.

With Report Examples, you can open or export the report design using the context
menu, but neither of them is really a good option. If you select Open, you will get an
error message because the generated project is not a workflow—so KNIME cannot
handle it properly—but you can explore the different settings and check the XML
version of it to copy the relevant parts. When you export, you can only use the XML
version and select parts that are interesting for you blindly. A good compromise
would be to have a separate Eclipse workspace with BIRT installed; open the reports
you want to use for inspiration from there and copy the parts you find useful in the
XML form from that instance. This way you will not get errors; you do not have to
worry about potentially selecting something that you do not want.

Report properties
The report has some properties that should be introduced to be able to work
efficiently with the designer. You can select a part of the page with no report item,
and the properties view will show the available options.

The most common options are also available from the context menu, for example,
the layout preference (fixed or auto), theme selection, or style handling.

The title, author, and other parameters can also be set in properties. To access them,
you can use a code similar to the following statement from scripts:

reportContext.getDesignHandle().getProperty("title")

Let's go through what we have. The reportContext value holds the content
associated with the report, and its design handle (getDesignHandle()) is
responsible for the design time context. It has a getProperty method which
can be used to get the values of a named property. How do we know how the
properties are named? You can check the Javadoc of the associated class at the link:

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.birt.
doc.isv%2Fengine%2Fapi%2Forg%2Feclipse%2Fbirt%2Freport%2Fengine%2Fapi
%2FIReportRunnable.html

Chapter 4

[111]

On the other hand, to access the user properties or named expressions, you need
the following object:

reportContext.getReportRunnable().getDesignInstance()

This is similar to the design handle discussed previously, but this is more like
its runtime view. From this design instance, you can get not just the named
expressions (the getNamedExpression method), the user properties (with the
getUserPropertyExpression or the deprecated getUserProperty methods)
but also the report items, styles, theme, and so on.

Report items
We will discuss the report items in this section in a bit more detail, because they
have an important role on how the resulting report will look. We will only cover
the items available in the default installation, but you can install others too.

You can insert report items either from Palette or from the Insert menu.

Each report item has properties, and most of them have the Highlights options
for conditional formatting of texts. Only the Chart items miss this option. For
Image items, only the alternative text can be formatted this way. You can apply
a predefined style or use custom formatting.

The user properties and the named expressions are common properties for
report items.

The comment and the visualization-related options (padding, margin, border,
page break, visibility, localization, bookmark, and table of contents) are also
common properties, just like the event handler, where you can specify a Java
class from the libraries.

Label
With Label, you can show static text with various formatting for the whole text.

Text
The Text report item is quite similar to the Label item, although you can use
formatting inside the item too. So, you do not need to break the text to multiple
Label items.

To use dynamic text (result of a script), you can use the <value-of>…</value-of>
tags.

Reporting

[112]

When there are other report items or data set bind, you can use the expression
builder's Available Column Bindings item.

Binding
This is the first report item in our list that has binding options, so we will introduce
these options now.

You can bind certain report elements to either other report items or to data sets,
although both have to be named (for data sets naming is usually done automatically).
After binding, you can refer to the columns associated with the data set or the report
item in the expressions.

You can always bind to a newly created (not necessarily visible) Table
instead of a KNIME data set; if you remove the original KNIME Data
to Report or Image to Report node and use a compatible one, you have
to change it only in a single place (in Table).

Without bindings, you should use global variables and custom code, so it's worth
using bindings when applicable.

Dynamic text
When you need to generate a single text, you should use the Dynamic Text report
item. It allows you to execute scripts to get the preferred content, not just to highlight
the content on certain conditions. It also supports formatting within text, so it is more
like the Text item and not like Label. However you can select the content type to be
Plain (instead of HTML) to prevent further processing or adding text effects.

The main difference between Text and Dynamic Text is that the former requires
to have <value-of> … </value-of> blocks around the dynamic content, and
the latter works the opposite way—you have to concatenate the static text to the
dynamic content.

Data
Using the Data report items is a bit tricky. The following statement is a quote from
its description:

Insert a Data Set column or expression result.

Chapter 4

[113]

These are two different ways to represent data. When you grab it from Palette to
a report design area, no bindings will be set by default, so you can only use other
expressions. Although when you grab a column from Data Explorer, Data set view,
or from the Outline view, you get the data to bind.

The binding options in the Data report item are the same as in other items. Although
here you also have a Map tab in the Property Editor view where you can change the
displayed values based on certain conditions—you can also use localization and use
keys for translations.

Image
You can show images from four different sources: from a URI, from a shared
resource folder (be careful when you export because you can select images from
any KNIME project, not just the opened ones), from an embedded (in the report
design xml) image, or a dynamic image.

You can also set the binding, so each row in a table can have the correct image
displayed.

It is important to set the mime type of the image properly, such as image/png or
image/svg+xml. This should be set in Type Expression (between quotes, as that
expression is a JavaScript expression) in the Advanced property.

It is always a good habit to set a meaningful alternative text (Alt Text) to them,
so the screen readers and potential robots can have an idea of what is on the image.

Grid
This is just a tool to arrange certain report items visually. It does not support
binding, but you can format the grid lines.

List
When you want to represent the data in a single column, the List report item is a
good choice. You can specify what should be in the header, footer, and detail. You
can also define grouping of the data; this way, you can have something like tables
in a table.

The column/group headers are typically the name of the content, but the detail is
the actual data. The footer (and the group footer) can be used to show aggregate
data, such as totals.

You can also change the values and their style based on conditions in the Map and
Highlights tabs.

Reporting

[114]

Because you can use grouping, you have a new tab named Groups in Property
Editor for List, and you have an Add Aggregation... button below the Add...
button on the Binding tab.

Groups
With groups, you can embed a range of values in the table, based on certain
key values.

There are various options to set for each group; here is a screenshot of the
new group dialog:

Grouping has many options

As you can see, you can sort the group values and the details within the group,
but you can filter certain values too.

The interesting options are time-related grouping settings. It is not so easy to
group data by time intervals within KNIME but in the report, you have a lot
of options to do that.

Chapter 4

[115]

Sorting
When you get the data, you do not necessarily have it in the right order, or you
might not want to pass the same data with multiple sorting. For this reason you
can sort the data based on the columns you prefer. This can be done by setting the
preferences available on the Sorting tab. You can sort by multiple columns, and you
can specify the locale and the strength. For details about the strength parameter, you
should check the following page:

http://docs.oracle.com/javase/7/docs/api/java/text/Collator.
html#PRIMARY

Filters
Similar to sorting, you might need different subsets of the same data on different
parts of the report, so it is useful to have an option to filter these values. On the
Filters page, you can add filtering expressions to the data.

Table
The Table report items work similarly to the List items; the main difference is that
it can handle multiple columns. You can set the headers, footers, the data, and the
groups just like in the List item. All the other options available for them are available
for Table items as well.

When you grab a data set from one of the contained views, you will get a Table with
its content prefilled with the data set values.

Chart
As the adage says, "A picture is worth a thousand words," so it worth adding some
figures and charts to the report to make it easier to understand it.

Reporting

[116]

The following screenshot shows the available chart types:

The possible chart types with preview and basic options

As you can see, some of the chart types have properties like that of subtype (this
example has no other subtypes), dimension (2D or 2D With Depth—parallel
projection—or 3D—perspective projection), and the output format. You can also
specify the behavior of the series, and flip the axis.

New chart types can be added by using extensions. Most of the available chart types
in the default installation might be familiar to you, although the Gantt and the Meter
types are different from the previous options. The usual chart types also offer other
subtypes that might be interesting for you.

When it comes to customization of charts, it gets as detailed as what the JFreeChart
nodes offer. You can set each series and axis, just like the text and the background.

With a chart, you also have the option to highlight it on certain conditions, and to
bind, filter, sort, or group the data in that chart.

Chapter 4

[117]

Cross Tab
The last report item available in the default install is Cross Tab. It is designed to
be used with a data cube, so you will need a data cube, although the designer can
automatically generate it for you based on the data set you selected.

The Cross Tab report item looks similar to the Table/Grid items, analogous to the
tables. When you drag a data cube to the report design area, a Cross Tab will be
generated, not a Table.

Property Editor has some new tabs, the Row Area and the Column Area. These can be
used to generate grand totals of the summarized values or subtotals when the splitting
dimension is hierarchical. You can also influence the page breaks in these tabs.

The Binding, Map, Highlights, Sorting, and Filters tabs are similar in function and
their appearance to the options similar in Table.

It is a bit hard to change the settings after the construction, so it is worth taking care
when you create it. We will give you some help on how to change them if you are
not satisfied with the results.

Setting up
Let's see how we can configure an empty Cross Tab. First, the group dimension of
the cube should go to the rows or to the columns. You can select a different group
to the other dimension if you prefer, but it is optional—both directions support
hierarchical groups too.

Use the rows when the group dimension has many different values,
because usually the vertical space is less limited than the horizontal;
although, the language of the report might prefer the other option. It is
worth noting that there are the birt-controls-lib (https://code.google.
com/a/eclipselabs.org/p/birt-controls-lib/) report items,
where one of them is a rotated text. It might be useful for the columns.

When you are not using a predefined cube (for example, when you drag columns
there from a data set), a cube creation wizard will open, where you can specify the
groups and summary fields.

Next, you should add the summarized values to the Drop data fields to be
summarized here cell by dragging them there from the Data Explorer or the
Outline view.

Reporting

[118]

Changing
Now, it is time to show the options to change the Cross Tab report items. Look at
this simple Cross Tab:

Design view of a Cross Tab report item

As you can see, the rows are showing the Cluster Membership values (this cube
was created from a table generated by the KNIME Data Generator node and PCA
transformed), but the columns do not split the data into groups.

In the summarized data section, there are two dimensions, one of them is created
from PCA dimension 0 and the other is from PCA dimension 1. The latter is represented
by a chart, and the former is printed as text.

As you can see, all the row values and the summarized data cells have a gray bar
with an icon to the right of them—the columns would also have one. The context
menu of these areas gives you the option to change the preferences.

In the row or column, you have the following options (in the context menu): Show/
Hide Group Levels, Totals, and Remove. Because only a single cube dimension can
be selected (for each row or column split area), the last one is most important from
the modification point of view. Once you have removed the group, you can drag
another group there just like we described in the previous section.

When you have hierarchical (typically time related) dimensions in the groups, the
other two options will be useful too. By default, only the outer hierarchy is selected
for the groups, but you can show the inner dimensions too with the Show/Hide
Group Levels option.

Now, you might have an idea of what Totals might do. You can define the subtotals
(based on inner dimensions) and the grand totals for each dimension (either rows
or columns). You can do this on a well-designed interface. The former and later
positions refer to the position relative to the summarized data.

Chapter 4

[119]

In the summarized field, you have other options in the context menu. These are
Show as Text, Show as Chart, Add Relative Time Period, Add Derived Measure,
Show/Hide Measures, and Remove.

You can switch between the text and chart representation for each summarization
separately. When you select a chart view, you can configure that chart from its
context menu. The available chart types are: Bar, Line, Area, Scatter, Tube, Cone,
and Pyramid. Each of these is represented by a single subtype.

Add Relative Time Period will be covered in the Quick Tools section soon.

With the Add Derived Measure menu item, the cube will not be affected; you can
compute additional summarized values, but that is only visible in the Cross Tab.

The Show/Hide Measures allows you to select the summarized values you want
to show, while the Remove item removes all the summarized values so you can
drag other fields there.

Finally you can change the data cube you bind in the Binding tab in Property
Editor of Cross Tab, which will clear all the previous bindings.

Using data cubes
You might already have cubes if you tried to grab a column from a data set to
a Cross Tab report item; however, if you do not have a cube, you can create one
from the context menu of the Data Cubes tree item in the Data Explorer or the
Outline view.

In the data cube's context menu, you can select the Edit option, or simply
double-clicking on it will bring up the configuration dialog. Here you can
change the associated data set, and add, change, or remove summary fields
or groups. For dates, you have two group options: the first is creating regular
groups or time groups, and the latter is the recommended option, because a
hierarchy will be automatically created for the date/time.

There is also an option to link to other data sets and set the dimensions that
should be used to join them in the Link Groups tab.

Handling dates
Because you cannot group by a newly defined computed column, you
must be sure that the initial data set's column is not a string, but has a
date or datetime type. You can create new columns for the dates in the
data set with the compute column option.

Reporting

[120]

Quick Tools
The Quick Tools option offers shortcuts to common tasks.

Aggregation
In the Aggregation dialog, you can easily add aggregated data to the footers of a
Table. For example, there is no need to calculate a new column and bind to that; just
drag the Aggregation item to the place where you need a single value generated
from a data set, and use the dialog to set the parameters.

The Aggregation items do not support data cubes, and you cannot use another data
set for computation. This reduces the chance to show something unrelated to the
data set.

Be careful about copying the aggregations around as—unlike
Excel—the report designer will not adjust the columns according
to the position. It is recommended to configure each aggregation
independently, and not copy them.

Relative time period
The Relative Time Period item is applicable only if at least one of the group
dimensions is temporal. Just drag it to the summary data area, and the dialog will
guide you through the new column configuration. Alternatively, you can select the
Add Relative Time Period option from a summarized column's context menu.

The cube will not get changed, but you will be able to show the data in Cross Tab
compared to historical data, for example.

Configuring the time period is straightforward. You have to select the expression
(usually a measure) to summarize by the selected time period (it has many options,
such as previous n years, current year, month to-date, last year, and so on) and select
the aggregation function. You can also select a reference date and filter the data, the
time dimension, and the aggregation dimensions.

This way, you can create complex tables without the need to do a lot of scripting.

Generating reports
At the end, the goal is to have a nice document with all the data transformed
according to the report design.

Chapter 4

[121]

To export rptdocument (the report document), navigate to Run | Generate
Document. This way, you will be able to use this in other frameworks compatible
with BIRT, such as a report server. For details check the BIRT integration guide:

http://www.eclipse.org/birt/phoenix/deploy/

When you want to export the report in a more static format, you should select one
of the options in Run | View Report, or use the icon that resembles "Earth" from the
icon's menu to access the same options. The default installation has the following
options to export the document: Web Viewer (it is an interactive local or remote report
viewer), doc, HTML, odp, ods, odt, pdf, postscript, ppt, and xls.

The ppt support is not ideal; visit the following link for more
information:https://bugs.eclipse.org/bugs/show_bug.
cgi?id=328982

When you either generate or just view the report, you will be prompted for the
report parameters. You can specify them in the URL. For further details, please
refer to http://www.eclipse.org/birt/phoenix/deploy/viewerUsage.
php#parameters.

Different emitters have different capabilities, so it worth testing all the export
options you want to support on a sample data.

Similar to many other parts of BIRT and KNIME, there are additional extensions
for exports too; search for them with the BIRT emitter search expression.

Using colors
There are a few KNIME example workflows on the public server; in this section,
we just mention one of them, which describes how to use the color information
present in KNIME in the reports.

The 010006_UseKNIMEColorsInReporting workflow is available from the
KNIME public server. To use it, just copy it from the public server and paste it
to the local workspace.

It requires a basic scripting knowledge, but the workflow gives detailed description on
how to use the color information so that it can be used as an introduction to scripting.

If you are fine not defining the colors in the KNIME workflow, it might be easier to
define those within the reporting template and bind the colors to certain values.

Reporting

[122]

Using HiLite
There is no direct option to handle the HiLite information within the report, but you
can easily work around this.

First, you can add a new table where you have the highlighted rows filtered by the
HiLite Filter node. This way, you need to use this other table to signal (for example,
with highlights) what was "HiLited". This has an advantage, in that it does not
require manual steps, but it might be a good idea to add a new column to the result
and rejoin it with the original table before sending the data to the report editor.

Another option is using Interactive HiLite Collector. Its output can contain different
information based on different groups. So in the reporting data, you can choose
between multiple visualizations; you can even combine them. The drawback is that
it requires to be set manually after each reset of the node with the same column
names/values.

Using workflow variables
The following video link demonstrates how you can create a workflow with
parameters set for the workflow but still used in the report generation:

http://youtu.be/RHvVuHsvf0U

Basically, the recipe is to create a workflow variable with a name and type you want
to use in the report. This workflow variable will appear in the report designer as a
report parameter.

If you use the workflow variable in the workflow in a way that can change the
data passed to the report generating engine (in the example, the data was filtered
according its value), you can use this variable as a report parameter and generate
the report with the updated data.

In the example, it is also demonstrated that you can pass another table to the report
generator, and use that information to set the domain of the possible values for that
report parameter. This might be an unexpected way to parameterize your execution,
but it is a quite powerful option. You can check this behavior using our example
workflow from the workflowVariables.zip file.

Chapter 4

[123]

Suggested readings
In this chapter, we have covered the basics, but the BIRT ecosystem has much more
to offer. The most important might be the way you can create interactive reports.
Although there are highly interactive components available, such as the BIRT
Interactive Viewer (http://www.birt-exchange.com/be/products/birt-user-
experience/interactive-viewer/features/), which is not an open source option,
you still have the option to change the behavior on certain conditions with JavaScript.

The Advanced BIRT Report Customization: Report Scripting video (from 2008) might be a
good start towards scripting. You can view it after registration at the following link:

http://www.birt-exchange.com/be/info/birtscripting-websem/

There is a nice JavaScript library named D3.js (http://d3js.org), which allows
you to have reports almost as interactive as the BIRT Interactive Viewer would offer
for certain output formats. An example on how you can combine both BIRT and
D3.js together can be found at http://www.birt-exchange.org/org/devshare/
designing-birt-reports/1535-d3-tree-node-layout-example/.

You can check the other KNIME workflows featuring KNIME reporting; it can help
you get familiarized with how to use both parts of KNIME efficiently, and which
tasks should be done in separate processing steps.

If you prefer, you can check the following YouTube videos from the KNIME
documentation page (http://tech.knime.org/screencasts-0):

• KNIME Report Creation: http://youtu.be/jKWQhFrBuzQ
• KNIME - Use of Variables with Reporting: http://youtu.be/RHvVuHsvf0U
• KNIME - Including Chemical Structures in Reporting: http://youtu.

be/5T2SIrKAc5s

The BIRT Exchange site (http://www.birt-exchange.org/org/home/) is also a
great source of help. It contains tutorials, examples, and components. Obviously, the
Eclipse BIRT home page (http://www.eclipse.org/birt/phoenix/) can also be a
good place to start.

The other user communities (for example, http://www.birtreporting.com) and
BIRT-related materials are usually easily adaptable for KNIME reporting. If you do
not find a solution for your KNIME reporting problem, it is always a good strategy
to try it with the BIRT search expression instead of KNIME reporting.

The companies offering commercial extensions for BIRT usually also have some
BIRT-related forums or articles.

Reporting

[124]

If you want to integrate the reporting to another product, the Jason Weathersby;
Tom Bondur; and Iana Chatalbasheva's book Integrating and Extending BIRT may be
interesting for you.

Finally, you can read the following two books that might be useful for digging deep
into the BIRT design:

• BIRT A Field Guide by Diana Peh, Nola Hague, and Jane Tatchell
• Practical Data Analysis and Reporting with BIRT by John Ward

Summary
In this chapter we introduced how to import data to KNIME Report Designer
(we also covered the installation). The main concepts were explained before we
went through the basics of report design. Before we gave some examples on how
this can be used in practice, we also presented how you can export your documents.
Finally, we suggested some further learning materials, because this chapter is just the
surface of what you can achieve with KNIME and BIRT.

Index
Symbols
3D Scatterplot 92
\d 36
\n 36
\s 36
\w 36

A
Add Aggregation... button 114
Add... button 114
Advanced property 113
Aggregation 120
Apache CXF

URL 34
archive

used, for installing KNIME 8
ARFF

URL 33
Attribute-Relation File Format. See ARFF
Auto-Binner node 50

B
Bar Chart node 89
basic KNIME views

about 84
box plots 84
hierarchical clustering 85
histograms 85
interactive table 86
lift chart 86
lines 86
pie charts 87
Radar Plot Appender 88
scatter plots 87

Scorer views 88
Spark Line Appender 88

basic syntax 35-37
binding 112
BIRT

URL 107
birt-controls- lib

URL 117
BIRT Exchange site

URL 123
BIRT home page

URL 123
BIRT Interactive Viewer

URL 123
BIRT Sample Database page

URL 30
Box Plot node 73, 84
Browse... button 33
Bubble Chart node 78, 90

C
Case Converter node 52
CASE Switch node 59
Cell Splitter By Position node 42
Cell Splitter node 42
chart report item 115, 116
Chi-Square statistics 69
Color Appender node 80
Color Manager node 80
colors

using 121
Column Appender node 43
Column Filter node 41
Column List Loop Start node 61
Column Merger node 41, 54

[126]

column order
changing 45

Column Rename node 45
Column Resorter node 45
Column to Grid node 42
Column To XML node 50
concepts

reporting 102, 103
Conditional Box Plot node 70, 73, 84
Conditional Box Plot view 73
Configure... command 22
Console view 20
constraints 58-60
conversion between types

about 49, 50
binning 50

Correlation Filter node 42, 69
cosmetic transformations

column order, changing 45
renames 45
row ID 46
rows, reordering 46

Counting Loop Start node 60
Create Collection Column node 41
Create Template... button 48
Crosstab node 69
Cross Tab report item

about 117
changing 118, 119
data cubes, using 119
setting up 117

CSV Reader node 33
Cumulative Gain Chart tab 75

D
D3.js

URL 123
data

importing 30, 103
importing, from database 30
importing, from tabular files 32, 33
importing, from web services 33, 34
models, importing 34
other formats 34
public data sources 35
XML files, importing 34

database
data, importing from 30

Database Connector node 31
Database Row Filter node 32
data cubes

about 102
using 119

Data Explorer view 109
data generation

about 55, 56
grid, generating 56-58

Data Generator node 63
DATA.GOV

URL 35
data, importing

data, sending to report 103, 104
data sets, joining 105
from other sources 104, 105
images, sending to report 103, 104
Java DB, starting 30-32
REST services 34

Data report item 112
data set 102
data sources 35
data tables 12-14
DBpedia

URL 35
Decimal scaling normalization 51
dendrogram 77
Dendrogram with Heatmap node 94
Derby

URL 30
designer

using 107-109
designer, using

report items 111
report properties 110

dimension reduction 41, 42
distance functions

bitvector cosine 79
bitvector distances 79
real distances 79

distance matrix 79
Distance Matrix Calculate node 80
Distance Matrix Reader node 80
Domain Calculator node 46

[127]

Double To Int node 50
Dynamic text report item 112

E
Eclipse

about 16
logging 16
preferences 16
URL 16

Eclipse BIRT 102
Empty Table Creator node 56
Empty Table Switch node 59
Enrichment Plotter node 88
Equal Size Sampling node 41
European Union Open Data Portal

URL 35
Extract Time Window node 40
extreme values 84

F
Flow Control/Switches node 59
flow variables 14
Flow Variables tab 23
Freebase

URL 35

G
GenerateGridForLogisticRegression.zip

file 96
Generic Loop Start node 61
generic transformations

about 46
Java Snippets 47, 48
Math Formula node 48, 49

GNU GPL
URL 7

grid
generating 56-58

grid report item 113
GroupBy 43
GroupBy Bar Chart node 90
GroupBy node 68
groups 114

H
Heatmap node 90
HeatMap node 78
Hierarchical Cluster view 77
Hierarchical Cluster View node 85
HiLite

about 15, 25, 82
use cases 83
using 122

HiLiting
tips 95

Histogram chart 90
Histogram node 74
histograms 85
HiTS visualization 94

I
IF Switch node 59
Image report item 113
Image To Table node 72
Independent groups t-test node 69
Interactive HiLite Collector

using 95
Interactive HiLite Collector node 95
Interactive Table view 74, 86
Interval chart node 90

J
Java

regular expressions, using from 38
Java DB

starting 30-32
URL 30

Javadoc
URL 110

Java Edit Variable node 31, 68
java.lang.String method 38
Java Snippet node 57, 65
Java Snippet Row Filter node 68
Java Snippets node 47, 48
Java tutorial

URL 39
JDBC database drivers

URL 18

[128]

JFreeChart
about 89
Bar charts 89
Bubble chart 90
Heatmap 90
Histogram chart 90
Interval chart 90
Line chart 91
Pie chart 91
Scatter Plot 91

Joiner node 43

K
KNIME

about 7, 17
installing 8
installing, for Linux 9
installing, for Mac OS X 9
installing, for Windows 8, 9

KNIME Datageneration
URL 55

KNIME extensions 16
KNIME FAQ

URL 9
KNIME terminologies

Eclipse 16
flow variables 14
meta nodes 12
nodes 10, 11
node views 15
ports 12
work, organizing 10

KNIME views
about 82
extreme values 84
HiLite 82
row IDs 83

KREST
URL 34

L
Label report item 111
Lag Column node 42, 64
less columns

about 41
dimension reduction 41, 42

Lift Chart node 86
Lift Chart view 75
Linear Correlation node 42 69
Linear Regression (Learner) node 88
Line chart node 91
Line Plot node 86
Line Plot view 75
Linux

KNIME, installing for 9
List report item

about 113
filters 115
groups 114
sorting 115

logging 16
loops 60, 61
Low Variance Filter node 41

M
Mac OS X

KNIME, installing for 9
Many2One node 45
Mask Date/Time node 55
matcher method 39
Matcher object 39
Math Formula node 48, 49
Matlab plot 93
Memory Policy tab 23
meta nodes 12, 26
min-max

finding, in next n rows 62-64
min-max normalization 51
models

importing 34
visualizing 96-98

more columns 42
multiple columns 53, 54

N
node controls

HiLite 25
variable flows 26

Node Description tab 20
node lifecycle 11
Node Repository 20

[129]

nodes
about 10, 11
node lifecycle 11

node views
about 15
HiLite 15

Nominal Value Row Filter node 40
normalization

about 51
Decimal scaling normalization 51
min-max normalization 51
text normalization 51, 52
Z-score normalization 51

Number To String node 49
Numeric Binner node 50
Numeric Row Splitter 40

O
ODA (Open Data Access) 104
official R plots 93
One2Many node 45
One-way ANOVA 70
Open data

URL 35
Open Street Map 91
OSM Map to Image node 77, 91
OSM Map View node 77, 91
other preferences 18
Outline view 20

P
Paired t-test node 69, 70
Parallel Coordinates view 76, 86
Parameters node 56
partial match

versus whole match 38
Partition node 40
Pattern class

about 38
URL 39

Pattern object 39
PCA 42
Pie Chart node 78, 87, 91
pivoting 44
Pivoting node 69

Plate Heatmap node 94
Polynomial Regression (Learner) node 88
ports

about 12
data tables 12-14
port view 14

port view 14
preferences 16, 106
Principal Component Analysis. See PCA
Python plot 93

Q
QuickREx

URL 39
Quick Tools

Aggregation 120
Relative Time Period item 120

R
Radar Plot Appender node 79, 88
ranks

within groups 65, 66
RapidMiner Viewer node 93
Reference Column Filter node 41
Regex Split node 42
regular expressions

about 35, 52, 53
basic syntax 35-37
partial versus whole match 38
used, from Java 38

Relative Time Period item 120
renames 45
Renderer to Image node 72
report

generating 120
report design 102
reporting extensions

installing 101, 102
report items

about 111
chart report item 116
Cross Tab report item 117
Data report item 112
Dynamic text 112
grid report item 113

[130]

Image report item 113
Label 111
List report item 113
Table report item 115
Text 111

report properties 110
Representational State Transfer. See REST

services
REST services 34
ROC Curve node 88
ROC (Receiver Operating Characteristic) 88
Round Double node 49
row filters

sampling 40
row ID 46
row IDs 83
ROWINDEX method 65
rows

filtering 39, 40
reordering 46

Row Splitter node 40
R plot 93
Rule Engine node 46

S
sampling 40
Scatter Matrix node 87
Scatter plot node 91
Scatter Plot views 76
Scorer views 88
Set Operator node 40
setting preferences

about 17
KNIME 17
other preferences 18

Shape Manager node 81
shape, transforming

cosmetic transformations 45
GroupBy 43
less columns 41
Many2One node 45
more columns 42
One2Many node 45
pivoting 44
rows, filtering 39, 40

tables, appending 41
Transpose node 46
unpivoting 44

Shuffle node 46
Simple Heatmap node 94
Single sample t-test node 69, 70
smoothing 55
snippets methods

URL 48
Sorter node 46
sorting 115
Spark Line Appender node 79, 88
statistics

computing 67-70
Statistics node 68
String Manipulation node 52
String Radio Buttons node 64
String Replacer node 52
String to Date/Time node 50
String To XML node 50

T
Table report item 115
tables

appending 41
Table To Image node 72
tabular files

data, importing from 32, 33
text normalization

about 51, 52
regular expressions 52, 53

Text report item
about 111
binding 112

Time Generator node 56
Time to String node 50
time transformation 54, 55
tips, HiLiting

connections, searching 96
Interactive HiLite Collector, using 95

Transpose node 46
t-test computing nodes

about 69
Independent groups t-test 69, 70
Paired t-test 69
Single sample t-test 69

[131]

U
Ungroup node 43
unpivoting 44
use cases, HiLite 83
User Interface

about 17
extensions, installing 18
setting preferences 17
workbench 19, 20

V
Value Counter node 68
values, transforming

conversion between types 49, 50
generic transformations 46
multiple columns 53, 54
normalization 51
smoothing 55
time transformation 54, 55
XML transformation 54

variable flows 26
views

visual guide 72
visualization nodes

about 92
HiTS visualization 94
Matlab plot 93
official R plots 93
Python plot 93
RapidMiner view 93
R plot 93

visualizations
overview 70-72

visual properties
color property 80
shape property 81
size property 81
using 80

W
Web-Harvest

URL 54
web services

data, importing from 33, 34
whole match

versus partial match 38
WIKIDATA

URL 35
wildcard patterns 39
Windows

KNIME, installing for 8, 9
Windows Azure Marketplace

URL 35
workbench

meta nodes 26
node controls 22-25
workflow, handling 21, 22
workflow lifecycle 26, 27

workflow customization 61, 62
Workflow Editor 10
workflow groups 10
workflow lifecycle 26, 27
workflow variables

using 122

X
XML files

importing 34
XML transformation 54

Y
YAGO2

URL 35

Z
Z-score normalization 51

Thank you for buying
KNIME Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-84969-316-5 Paperback: 284 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1. Collection of data visualization recipes with
functionalized versions of common tasks
for easy integration into your data analysis
workflow

2. Recipes cross-referenced with MATLAB
product pages and MATLAB Central File
Exchange resources for improved coverage

3. Includes hand created indices to find exactly
what you need; such as application driven, or
functionality driven solutions

Data Visualization: a successful
design process
ISBN: 978-1-84969-346-2 Paperback: 206 pages

A structured design approach to equip you with the
knowledge if how to successfully accomplish any
data visualization challenge efficiently and effectively

1. A portable, versatile and flexible data
visualization design approach that will help
you navigate the complex path towards success

2. Explains the many different reasons for creating
visualizations and identifies the key parameters
which lead to very different design options

3. Thorough explanation of the many visual
variables and visualization taxonomy to
provide you with a menu of creative options

Please check www.PacktPub.com for information on our titles

Circos Data Visualization How-to
ISBN: 978-1-84969-440-7 Paperback: 72 pages

Create dynamic data visualizations in the social,
physical, and computer science with the Circos data
visualization program

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Transform simple tables into engaging
diagrams

3. Learn to install Circos on Windows, Linux, and
MacOS

4. Create Circos diagrams using ribbons,
heatmaps, and other data tracks

Learning IPython for Interactive
Computing and Data Visualization
ISBN: 978-1-78216-993-2 Paperback: 138 pages

Learn IPython for interactive Python programming,
high-performance numerical computing, and data
visualization

1. A practical step-by-step tutorial which will
help you to replace the Python console with the
powerful IPython command-line interface

2. Use the IPython notebook to modernize the
way you interact with Python

3. Perform highly efficient computations with
NumPy and Pandas

4. Optimize your code using parallel computing
and Cython

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Using KNIME
	Few words about KNIME
	Installing KNIME
	Installation using the archive
	KNIME for Windows
	KNIME for Linux
	KNIME for Mac OS X

	Troubleshooting

	KNIME terminologies
	Organizing your work
	Nodes
	Node lifecycle

	Meta nodes
	Ports
	Data tables
	Port view

	Flow variables
	Node views
	HiLite

	Eclipse concepts
	Preferences
	Logging

	User interface
	Getting started
	Setting preferences
	KNIME
	Other preferences

	Installing extensions
	Workbench
	Workflow handling
	Node controls
	Meta nodes
	Workflow lifecycle
	Other views

	Summary

	Chapter 2: Data Preprocessing
	Importing data
	Importing data from a database
	Starting Java DB

	Importing data from tabular files
	Importing data from web services
	REST services

	Importing XML files
	Importing models
	Other formats
	Public data sources

	Regular expressions
	Basic syntax
	Partial versus whole match
	Usage from Java
	References and tools
	Alternative pattern description

	Transforming the shape
	Filtering rows
	Sampling

	Appending tables
	Less columns
	Dimension reduction

	More columns
	GroupBy
	Pivoting and Unpivoting
	One2Many and Many2One
	Cosmetic transformations
	Renames
	Changing the column order
	Reordering the rows
	The row ID

	Transpose

	Transforming values
	Generic transformations
	Java snippets
	The Math Formula node

	Conversion between types
	Binning

	Normalization
	Text normalization

	Multiple columns
	XML transformation
	Time transformation
	Smoothing

	Data generation
	Generating the grid

	Constraints
	Loops
	Workflow customization
	Case study – finding min-max in the
next n rows
	Case study – ranks within groups
	Summary

	Chapter 3: Data Exploration
	Computing statistics
	Overview of visualizations
	Visual guide for the views
	Distance matrix
	Using visual properties
	Color
	Size
	Shape

	KNIME views
	HiLite
	Use cases for HiLite

	Row IDs
	Extreme values

	Basic KNIME views
	The Box plots
	Hierarchical clustering
	Histograms
	Interactive Table
	The Lift chart
	Lines
	Pie charts
	The Scatter plots
	Spark Line Appender
	Radar Plot Appender
	The Scorer views

	JFreeChart
	The Bar charts
	The Bubble chart
	Heatmap
	The Histogram chart
	The Interval chart
	The Line chart
	The Pie chart
	The Scatter plot

	Open Street Map
	3D Scatterplot
	Other visualization nodes
	The R plot, Python plot, and Matlab plot
	The official R plots
	The RapidMiner view
	The HiTS visualization

	Tips for HiLiting
	Using Interactive HiLite Collector
	Finding connections

	Visualizing models
	Further ideas

	Summary

	Chapter 4: Reporting
	Installation of the reporting extensions
	Reporting concepts
	Importing data
	Sending data and images to a report
	Importing from other sources
	Joining data sets

	Preferences
	Using the designer
	In visible views
	Report properties
	Report items
	Label
	Text
	Dynamic text
	Data
	Image
	Grid
	List
	Table
	Chart
	Cross Tab

	Quick Tools
	Aggregation
	Relative time period

	Generating reports
	Using colors
	Using HiLite
	Using workflow variables
	Suggested readings
	Summary

	Index

